
10 - Potentials and Fields 
10.1 THE POTENTIAL FORMULATION 
10.1.1 Scalar and Vector Potentials 
In this chapter we seek the general solution to Maxwell’s equations, 

(10.1)

Given ρ(r, t) and J(r, t), what are the fields E(r, t) and B(r, t)? 

In the static case, Coulomb’s law and the Biot-Savart law provide the answer. 

What we’re looking for, then, is the generalization of those laws to time-dependent configurations. 

This is not an easy problem, and it pays to begin by representing the fields in terms of potentials. 

In electrostatics ∇ × E = 0 allowed us to write E as the gradient of a scalar potential: E = −∇V . 

In electrodynamics this is no longer possible, because the curl of E is nonzero. 

But B remains divergenceless, so we can still write 

(10.2)

as in magnetostatics. 

Putting this into Faraday’s law (iii) yields 



or 

Here is a quantity, unlike E alone, whose curl does vanish; it can therefore be written as the gradient of a 
scalar: 

In terms of V and A, then, 

(10.3)

This reduces to the old form, of course, when A is constant.
The potential representation (Eqs. 10.2 and 10.3) automatically fulfills the two homogeneous Maxwell 
equations, (ii) and (iii). 

How about Gauss’s law (i) and the Ampère/Maxwell law (iv)? 

Putting Eq. 10.3 into (i), we find that 

this replaces Poisson’s equation (to which it reduces in the static case). 

Putting Eqs. 10.2 and 10.3 into (iv) yields 

or, using the vector identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A, and rearranging the terms a bit: 

(10.4)



Equations 10.4 and 10.5 contain all the information in Maxwell’s equations. 

(10.5)

Example 10.1. Find the charge and current distributions that would give rise to the potentials 

where k is a constant, and (of course) c =                   . 
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Solution 

First we’ll determine the electric and magnetic fields, using Eqs. 10.2 and 10.3: 

(plus, for x > 0; minus, for x < 0). 

These are for |x| < ct; when |x| > ct, E = B = 0 (Fig. 10.1). 

Calculating every derivative in sight, I find 



As you can easily check, Maxwell’s equations are all satisfied, with ρ and J both zero. 

Notice, however, that B has a discontinuity at x = 0, and this signals the presence of a surface current K 
in the yz plane; boundary condition (iv) in Eq. 7.64 gives 

and hence 

Evidently we have here a uniform surface current flowing in the z direction over the plane x = 0, which 
starts up at t = 0, and increases in proportion to t. 

Notice that the news travels out (in both directions) at the speed of light: for points |x| > ct the message 
(“current is now flowing”) has not yet arrived, so the fields are zero. 

10.1.2 Gauge Transformations 

Equations 10.4 and 10.5 are ugly, and you might be inclined to abandon the potential formulation 
altogether. 

However, we have succeeded in reducing six problems—finding E and B (three components each)—
down to four: 

V (one component) and A (three more). 



Moreover, Eqs. 10.2 and 10.3 do not uniquely define the potentials; we are free to impose extra 
conditions on V and A, as long as nothing happens to E and B. 

Let’s work out precisely what this gauge freedom entails. 

Suppose we have two sets of potentials, (V, A) and (V ʹ, Aʹ), which correspond to the same electric and 
magnetic fields. 

By how much can they differ? 

Write 

Since the two A’s give the same B, their curls must be equal, and hence 

We can therefore write α as the gradient of some scalar: 

The two potentials also give the same E, so 

or 

The term in parentheses is therefore independent of position (it could, however, depend on time); call it 
k(t): 



Actually, we might as well absorb k(t) into λ, defining a new λ by adding   k(tʹ)dtʹ to the old one. 

This will not affect the gradient of λ; it just adds k(t) to ∂λ/∂t. 

It follows that 

Conclusion: For any old scalar function λ(r, t ), we can with impunity add ∇λ to A, provided we 
simultaneously subtract ∂λ/∂t from V. 

This will not affect the physical quantities E and B. Such changes in V and A are called gauge 
transformations. 

They can be exploited to adjust the divergence of A, with a view to simplifying the “ugly” equations 
10.4 and 10.5. 

In magnetostatics, it was best to choose ∇ · A = 0 (Eq. 5.63); in electrodynamics, the situation is not so 
clear cut, and the most convenient gauge depends to some extent on the problem at hand. 

There are many famous gauges in the literature; I’ll show you the two most popular ones. 

(10.7)
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10.1.3 Coulomb Gauge and Lorenz Gauge 
The Coulomb Gauge. 

As in magnetostatics, we pick 

With this, Eq. 10.4 becomes 
(10.8)

(10.9)



This is Poisson’s equation, and we already know how to solve it: setting V = 0 at infinity, 

(10.10)

There is a very peculiar thing about the scalar potential in the Coulomb gauge: it is determined by the 
distribution of charge right now. 

If I move an electron in my laboratory, the potential V on the moon immediately records this change. 

That sounds particularly odd in the light of special relativity, which allows no message to travel faster 
than c. 

The point is that V by itself is not a physically measurable quantity—all the man in the moon can 
measure is E, and that involves A as well (Eq. 10.3). 

Somehow it is built into the vector potential (in the Coulomb gauge) that whereas V instantaneously 
reflects all changes in ρ, the combination −∇V − (∂A/∂t) does not; E will change only after sufficient 
time has elapsed for the “news” to arrive. 
The advantage of the Coulomb gauge is that the scalar potential is particularly simple to calculate; the 
disadvantage (apart from the acausal appearance of V ) is that A is particularly difficult to calculate. 

The differential equation for A (Eq. 10.5) in the Coulomb gauge reads 
(10.11)

The Lorenz gauge. 

In the Lorenz gauge, we pick 
(10.12)



This is designed to eliminate the middle term in Eq. 10.5. 

With this,
(10.13)

Meanwhile, the differential equation for V, (Eq. 10.4), becomes 

The virtue of the Lorenz gauge is that it treats V and A on an equal footing: the same differential operator 

(10.14)

(10.15)

(called the d’Alembertian) occurs in both equations: 

(10.16)

This democratic treatment of V and A is especially nice in the context of special relativity, where the 
d’Alembertian is the natural generalization of the Laplacian, and Eqs. 10.16 can be regarded as             
four-dimensional versions of Poisson’s equation. 

In this same spirit, the wave equation       f = 0, might be regarded as the four-dimensional version of 
Laplace’s equation. 



In the Lorenz gauge, V and A satisfy the inhomogeneous wave equation, with a “source” term (in place 
of zero) on the right. 

From now on, I shall use the Lorenz gauge exclusively, and the whole of electrodynamics reduces to the 
problem of solving the inhomogeneous wave equation for a specified source. 
10.1.4 Lorentz Force Law in Potential Form
It is illuminating to express the Lorentz force law in terms of potentials: 

(10.17)
where p = mv is the momentum of the particle. 

Now, product rule 4 says 

(v, the velocity of the particle, is a function of time, but not of position). 

Thus 

The combination 

is called the convective derivative of A, and written dA/dt (total derivative). 

It represents the time rate of change of A at the (moving) location of the particle. 

For suppose that at time t the particle is at point r, where the potential is A(r,t); a moment dt later it is at 
r + vdt, where the potential is A(r + vdt,t + dt). 

The change in A, then, is 

(10.18)



so 

As the particle moves, the potential it “feels” changes for two distinct reasons: first, because the potential 
varies with time, and second, because it is now in a new location, where A is different because of its 
variation in space. 

Hence the two terms in Eq. 10.19. 

With the aid of the convective derivative, the Lorentz force law reads:

This is reminiscent of the standard formula from mechanics, for the motion of a particle whose potential 
energy U is a specified function of position: 

Playing the role of p is the so-called canonical momentum, 

while the part of U is taken by the velocity-dependent quantity 

(10.19)

(10.20)

(10.21)

(10.22)



A similar argument gives the rate of change of the particle’s energy: 

(10.23)

where T = 1/2 mv2 is its kinetic energy and qV is its potential energy (The derivative on the right acts 
only on V and A, not on v). 

Curiously, the same quantity Uvel appears on the right side of both equations. 

The parallel between Eq. 10.20 and Eq. 10.23 invites us to interpret A as a kind of “potential 
momentum” per unit charge, just as V is potential energy per unit charge. 


