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Chapter 8 Time-Independent Perturbation Theory

8.1 Nondegenerate Case

For most physically interesting systems, it is not possible to find
simple, exact formulas for the energy eigenvalues and state
vectors.

In many cases, however, the real system is very similar to
another system that we can solve exactly in closed form.

Our procedure will then be to approximate the real system by
the similar system and approximately calculate corrections to
find the corresponding values for the real system. The
approximation method that is most often used is called
perturbation theory.



8.1.1 Rayleigh-Schrodinger Perturbation Theory

Consider the problem of finding the energies (eigenvalues) and
state vectors (eigenvectors) for a system with a Hamiltonian Ĥ
that can be written in the form

Ĥ = Ĥ0 + V̂ (8.1)

where we have already solved the system described by Ĥ0, i.e.,
we know that

Ĥ0 |n〉 = εn |n〉 (8.2)
with 〈m |n〉 = δmn (remember that the eigenvectors of a
Hermitian operator always form a complete orthonormal set ...
or we can make them so using the Gram-Schmidt process if
degeneracy exists).

We call this solvable system the unperturbed or zero-order
system.

We then assume that the extra term V̂ is a small correction to
Ĥ0 (that is what we mean by similar systems).



This says that the real physical system will have a solution
given by

Ĥ |N〉 = En |N〉 (8.3)

where the real physical state vectors |N〉 are only slightly
different from the unperturbed state vectors |n〉 and the real
physical energies En are only slightly different from the
unperturbed energies εn. Mathematically, we can express this
situation by writing the perturbation in the form

V̂ = gÛ (8.4)

where g is some small (� 1) constant factor pulled out of the
correction term V̂ that characterizes its strength (or effect on
the system described by Ĥ0) of the perturbation.

As g → 0, each eigenvector |N〉 of Ĥ must approach the
corresponding eigenvector |n〉 of Ĥ0 and each energy eigenvalue
En of Ĥ must approach the corresponding energy eigenvalue εn
of Ĥ0.



We can guarantee that this property is true by assuming that
power series expansions in the small parameter g exist for all
physically relevant quantities of the real system, i.e.,

Ĥ = Ĥ0 + V̂ = Ĥ0 + gÛ (8.5)

|N〉 = |n〉+ g
∣∣∣N (1)

〉
+ g2

∣∣∣N (2)
〉

+ . . . (8.6)

En = εn + gE(1)
n + g2E(2)

n + . . . (8.7)

where the terms
∣∣N (i)

〉
and E(i)

n are called the ith-order
correction to the unperturbed or zero-order solution. This is a
major assumption, that we cannot, in general, prove is true a
priori, i.e., we cannot prove that the power series converge and
therefore make sense.

The usual normalization condition we might impose would be
〈N |N〉 = 1. Since the results of any calculation are
independent of the choice of normalization (remember the
expectation value and density operator definitions all include
the norm in the denominator), we choose instead to use the
normalization condition



〈n | N〉 = 1 (8.8)

which will greatly simplify our derivations and subsequent
calculations.

Substituting the power series expansion into the normalization
condition we get

〈n | N〉 = 1 = 〈n | n〉+ g
〈
n
∣∣∣ N (1)

〉
+ g2

〈
n
∣∣∣ N (2)

〉
+ . . . (8.9)

But since we already have assumed that 〈n |n〉 = 1, we must
have

0 = g
〈
n
∣∣∣ N (1)

〉
+ g2

〈
n
∣∣∣ N (2)

〉
+ .... (8.10)

Now the only way for a power series to be identically zero is for
the coefficient of each power of g to be separately equal to zero.
This gives the result〈

n
∣∣∣ N (i)

〉
= 0 , i = 1, 2, 3, 4, . . . (8.11)



as a direct consequence of the normalization condition, i.e., all
corrections to the state vector are orthogonal to the
unperturbed state vector.

We now substitute all of these power series into the original
energy eigenvalue equation for Ĥ:

Ĥ |N〉 = En |N〉(
Ĥ0 + gÛ

)(
|n〉+ g

∣∣∣N (1)
〉

+ g2 +
∣∣∣N (2)

〉
....
)

=
(
εn + gE(1)

n + g2E(2)
n + ....

)(
|n〉+ g

∣∣∣N (1)
〉

+ g2 +
∣∣∣N (2)

〉
....
)

We now multiply everything out and collect terms in a single
power series in g. We get



0 =
(
Ĥ0 |n〉 − εn |n〉

)
g0

+
(
Ĥ0

∣∣∣N (1)
〉

+ Û |n〉 − εn
∣∣∣N (1)

〉
− E(1)

n |n〉
)
g1

+ ...................................................

+
(
Ĥ0

∣∣∣N (k)
〉

+ Û
∣∣∣N (k−1)

〉
− εn

∣∣∣N (k)
〉

−E(1)
n

∣∣∣N (k−1)
〉
− ....− E(k)

n |n〉
)
gk

+ ...................................................

Since the power series is equal to zero, the coefficient of each
power of g must be equal to zero. We get (labelling the equation
by the corresponding power of g)

0th − order Ĥ0 |n〉 = εn |n〉 (8.12)

which is just our original assumption = unperturbed solution.



1st − order Ĥ0

∣∣∣N (1)
〉

+ Û |n〉 = εn

∣∣∣N (1)
〉

+ E(1)
n |n〉 (8.13)

...........................................

...........................................

kth − order Ĥ0

∣∣∣N (k)
〉

+ Û
∣∣∣N (k−1)

〉
= εn

∣∣∣N (k)
〉

+ E(1)
n

∣∣∣N (k−1)
〉

+ ....+ E(k)
n

∣∣∣N (0)
〉

(8.14)

...........................................

where we have used the notation |n〉 =
∣∣N (0)

〉
.

Let us consider the 1st − order equation. If we apply the linear
functional 〈n| we get



〈n| Ĥ0

∣∣∣N (1)
〉

+ 〈n| Û |n〉 = 〈n| εn
∣∣∣N (1)

〉
+ 〈n|E(1)

n |n〉 (8.15)

εn

〈
n
∣∣∣ N (1)

〉
+ 〈n| Û |n〉 = εn

〈
n
∣∣∣ N (1)

〉
+ E(1)

n 〈n | n〉 (8.16)

or since
〈
n
∣∣N (1)

〉
= 0 we get

E(1)
n = 〈n| Û |n〉 = 1st − order correction to the energy

= diagonal matrix element of Û in the |n〉 (unperturbed) basis

or the expectation value of Û in the state |n〉
or in the nth unperturbed state

Therefore, to first order in g we have

En = εn + gE(1)
n = εn + g 〈n| Û |n〉

= εn + 〈n| V̂ |n〉 (8.17)

where we have reabsorbed the factor g back into the original
potential energy function.



In the same manner, if we apply the linear functional 〈n| to the
kth − order equation we get

E(k)
n = 〈n| Û

∣∣∣N (k−1)
〉

(8.18)

This says that, if we know the correction to the eigenvector to
order (k − 1), then we can calculate the correction to the energy
eigenvalue to order k (the next order).

Now the kth − order correction to the eigenvector,
∣∣N (k)

〉
is just

another vector in the space and, hence, we can expand it as a
linear combination of the |n〉 states (since they are a basis).∣∣∣N (k)

〉
=
∑
m 6=n
|m〉

〈
m
∣∣∣ N (k)

〉
(8.19)

The state |n〉 is not included because
〈
n
∣∣N (i)

〉
= 0 by our

choice of normalization.

In order to evaluate this sum, we must find an expression for the
coefficients

〈
m
∣∣N (k)

〉
.



This can be done by applying the linear functional 〈m|, m 6= n
to the kth − order equation. We get

〈m| Ĥ0

∣∣∣N (k)
〉

+ 〈m| Û
∣∣∣N (k−1)

〉
= 〈m| εn

∣∣∣N (k)
〉

+ 〈m|E(1)
n

∣∣∣N (k−1)
〉

+ ....+ 〈m|E(k)
n

∣∣∣N (0)
〉

εm

〈
m
∣∣∣ N (k)

〉
+ 〈m| Û

∣∣∣N (k−1)
〉

= εn

〈
m
∣∣∣ N (k)

〉
+ E(1)

n

〈
m
∣∣∣ N (k−1)

〉
+ ......+ E(k)

n

〈
m
∣∣∣ N (0)

〉
If we assume that εm 6= εn (we have nondegenerate levels) we get〈

n
∣∣∣M (k)

〉
=

1

εn − εm

(
〈m| Û

∣∣∣N (k−1)
〉
− E(1)

n

〈
m
∣∣∣N (k−1)

〉
− ...− E(k)

n

〈
m
∣∣∣N (0)

〉
(8.20)



This formula allows us to find the kth − order correction to the
eigenvector in terms of lower order corrections to |N〉 and En as
long as |n〉 corresponds to a nondegenerate level.

To see how this works, we will calculate the corrections to
second order.

For first order, we let k = 1 and get〈
m
∣∣∣ N (1)

〉
=

1

εn − εm

(
〈m| Û

∣∣∣N (0)
〉
− E(1)

n

〈
m
∣∣∣ N (0)

〉)
=

1

εn − εm

(
〈m| Û |n〉 − E(1)

n 〈m | n〉
)

=
1

εn − εm
〈m| Û |n〉 (8.21)

which gives∣∣∣N (1)
〉

=
∑
m 6=n
|m〉

〈
m
∣∣∣ N (1)

〉
=
∑
m 6=n
|m〉 1

εn − εm
〈m| Û |n〉

(8.22)



Therefore, to first order in g we have

|N〉 = |n〉+ g
∣∣∣N (1)

〉
= |n〉+

∑
m6=n
|m〉 1

εn − εm
〈m| V̂ |n〉 (8.23)

We then use N (1) to calculate E(2)
n , the second order correction

to the energy, using

E(2)
n = 〈n| Û

∣∣∣N (1)
〉

= 〈n| Û

∑
m 6=n
|m〉 1

εn − εm
〈m| Û |n〉


=
∑
m 6=n

∣∣∣〈n| Û |m〉∣∣∣2
εn − εm

(8.24)

Therefore, to second order in g we have

En = εn + gE(1)
n + g2E(2)

n

= εn + 〈n| V̂ |n〉+
∑
m6=n

∣∣∣〈n| V̂ |m〉∣∣∣2
εn − εm

(8.25)



We then obtain the second order correction to the state vector
in the same way.〈
m
∣∣∣ N (2)

〉
=

1

εn − εm

(
〈m| Û

∣∣∣N (1)
〉
− E(1)

n

〈
m
∣∣∣ N (1)

〉
−E(2)

n

〈
m
∣∣∣ N (0)

〉)
=

1

εn − εm
〈m| Û

∣∣∣N (1)
〉
− 1

εn − εm
〈n| Û |n〉

〈
m
∣∣∣ N (1)

〉
=

1

εn − εm
〈m| Û

∑
k 6=n
|k〉 1

εn − εk
〈k| Û |n〉


− 1

εn − εm
〈n| Û |n〉 1

εn − εm
〈m| Û |n〉

=
∑
k 6=n

〈m| Û |k〉 〈k| Û |n〉
(εn − εm)(εn − εk)

− 〈n| Û |n〉 〈m| Û |n〉
(εn − εm)2

(8.26)



Therefore,∣∣∣N (2)
〉

=
∑
m 6=n

∑
k 6=n
|m〉 〈m| Û |k〉 〈k| Û |n〉

(εn − εm)(εn − εk)
−
∑
m6=n
|m〉 〈n| Û |n〉 〈m| Û |n〉

(εn − εm)2

(8.27)
and so on.

An Example

We will now do an example where we know the exact answer so
that we can compare it to the perturbation results.

We consider a 1-dimensional system represented by a perturbed
harmonic oscillator where

Ĥ = Ĥ0 + V̂ (8.28)

with



Ĥ0 = ~ω(â+â+
1

2
)→ harmonic oscillator (8.29)

Ĥ0 |n〉 = εn |n〉 = ~ω(n+
1

2
) |n〉 (8.30)

In standard operator notation

Ĥ0 =
p̂2

2m
+

1

2
kx2 , k = mω2 (8.31)

We now perturb the system with the potential energy term

V̂ =
1

2
k ′x2 , k ′ << k (8.32)

Therefore,

Ĥ =
p̂2

2m
+

1

2
(k + k ′)x2 (8.33)

We still have a harmonic oscillator (with a changed spring
constant). This says that the new energies are given by



En = ~ω̃(n+
1

2
) (8.34)

where

ω̃ =

√
k + k ′

m
=

√
k

m

√
1 +

k ′

k
= ω

√
1 +

k ′

k
(8.35)

Therefore, the exact energies for the perturbed system are

En = ~ω̃(n+
1

2
) = ~ω

√
1 +

k ′

k
(n+

1

2
) (8.36)

For k′ � k, we can expand this as

En = ~ω(n+
1

2
)

(
1 +

1

2

k ′

k
− 1

8

(
k ′

k

)2

+ . . .

)
(8.37)

which should correspond to the perturbation calculated energy
calculated to 2nd order in perturbation theory. We now do the
perturbation calculation.



Our earlier derivation gives

En = εn + 〈n| V̂ |n〉+
∑
m 6=n

∣∣∣〈n| V̂ |m〉∣∣∣2
εn − εm

(8.38)

|N〉 = |n〉+
∑
m6=n
|m〉 1

εn − εm
〈m| V̂ |n〉 (8.39)

where
V̂ =

1

2
k ′x2 =

1

4

k′~
mω

(â+ â+)2 (8.40)

We need to calculate this matrix element



〈m| V̂ |n〉 =
1

4

k ′~
mω
〈m| (â+ â+)2 |n〉

=
1

4

k ′~
mω
〈m| â2 + ââ+ + â+â+ (â+)2 |n〉

=
1

4

k ′~
mω
〈m|

(√
n(n− 1) |n− 2〉+ (n+ 1) |n〉

+n |n〉+
√

(n+ 1)(n+ 2) |n+ 2〉
)

=
1

4

k ′~
mω

(√
n(n− 1)δm,n−2 + (2n+ 1)δm,n

+
√

(n+ 1)(n+ 2)δm,n+2

)
(8.41)

where we have used

〈m| â |n〉 =
√
n 〈m | n− 1〉 =

√
nδm,n−1 (8.42)

〈m| â+ |n〉 =
√
n+ 1 〈m | n+ 1〉 =

√
n+ 1δm,n+1 (8.43)



Therefore,

〈n| V̂ |n〉 =
1

4

k ′~
mω

(2n+ 1) = ~ω(n+
1

2
)

(
1

2

k ′

k

)
(8.44)

and

∑
m6=n

∣∣∣〈n| V̂ |m〉∣∣∣2
εn − εm

=

(
1

4

k ′~
mω

)2 [n(n− 1)

2~ω
− (n+ 1)(n+ 2)

(−2~ω)

]

= −~ω
(
n+

1

2

)[
1

8

(
k ′

k

)2
]

(8.45)

which then gives

En = ~ω(n+
1

2
)

(
1 +

1

2

k ′

k
− 1

8

(
k ′

k

)2

+ . . .

)
(8.46)

in agreement with the exact result (to 2nd order).



To calculate the new state vector to first order we need∑
m6=n
|m〉 1

εn − εm
〈m| V̂ |n〉

=
1

4

k ′~
mω

√
n(n− 1)

2~ω
|n− 2〉+

1

4

k ′~
mω

√
(n+ 1)(n+ 2)

(−2~ω)
|n+ 2〉

(8.47)

which gives

|N〉 = |n〉+1

4

k ′~
mω

√
n(n− 1)

2~ω
|n− 2〉−1

4

k ′~
mω

√
(n+ 1)(n+ 2)

2~ω
|n+ 2〉

(8.48)
What does the new ground state wave function look like? We
have

|N = 0〉 = |0〉 −
√

2

2~ω
|2〉 (8.49)

and



〈x | N = 0〉 = 〈x | 0〉 − 1

4

k ′~
mω

√
2

2~ω
〈x | 2〉 (8.50)

ψN=0(x) = ψ0(x)− 1

4

k ′~
mω

√
2

2~ω
ψ2(x) (8.51)

Now we found earlier that

〈x | 0〉 = ψ0(x) =
(mω
π~

)1/4
e−

mωx2

2~ (8.42)

and

〈x | 2〉 = ψ2(x) =
(mω

4π~

)1/4
(2
mω

~
x2 − 1)e−

mωx2

2~ (8.53)

which gives

ψN=0(x) =
(mω
π~

)1/4
e−

mωx2

2~

(
1 +

1

4

k ′~
mω

√
2

2~ω
1√
2

(
1− 2

mω

~
x2
))

=
(mω
π~

)1/4
e−

mωx2

2~

(
1 +

k ′

8k
− mωk ′

4~k
x2
)

(8.54)



Since we are only changing the spring constant we should have

ψN=0(x) =

(
mω̃

π~

)1/4

e−
mω̃x2

2~ =
(mω
π~

)1/4(
1 +

k ′

k

)1/8

e−
mωx2

2~

√
1+ k ′

k

=
(mω
π~

)1/4(
1 +

k ′

8k

)
e
−mωx

2

2~

(
1+ k′

2k

)

=
(mω
π~

)1/4(
1 +

k ′

8k

)(
1− mωk ′

4~k
x2
)
e−

mωx2

2~

=
(mω
π~

)1/4
e−

mωx2

2~

(
1 +

k ′

8k
− mωk ′

4~k
x2
)

(8.55)

which agrees with the perturbation result to this order.

The perturbation theory we have developed so far breaks down
if there are any states where

εn = εm but 〈m| V̂ |n〉 6= 0 (8.56)

i.e., degenerate states with nonzero matrix elements of the
perturbing potential between them.



8.2 Degenerate Case

We handle this case as follows. Suppose we have a group of k
states

|n1〉 , |n2〉 , |n3〉 , . . . , |nk〉 (8.57)

that are degenerate states of the unperturbed Hamiltonian Ĥ0,
i.e.,

Ĥ0 |ni〉 = εn1 |ni〉 , i = 1, 2, 3, 4, 5, . . . , k (8.58)

If 〈ni| V̂ |nj〉 6= 0 for i 6= j within this set, the previous
perturbation formulas will fail because the energy denominators
εni − εnj → 0.

Remember, however, that any linear combination of the
degenerate states

|n1〉 , |n2〉 , |n3〉 , . . . , |nk〉 (8.59)

is also an eigenstate of Ĥ0 with the same energy εn1 .



Therefore, if we can choose a different set of basis states (start
off with a new set of zero-order states) within this degenerate
subspace, i.e., choose a new set of k orthogonal states (linear
combinations of the old set of degenerate states)

|nα〉 =

k∑
i=1

Cαi |ni〉 (8.60)

such that we have

〈nα| V̂ |nβ〉 = 0 for α 6= β (8.61)

then we can use the perturbation formulas as derived earlier.

This procedure will work because the terms with zero
denominators will have zero numerators and if one looks at the
derivation, this means that these terms do not even appear in
the final results, i.e., the zero numerators take effect before the
zero denominators appear.



This condition says that the correct choice of zero-order states
within the degenerate subspace (the set of degenerate vectors) for
doing degenerate perturbation theory is that set which
diagonalizes the matrix representation of V̂ within each group of
degenerate states.

The problem of diagonalizing V̂ within a group of k states

|n1〉 , |n2〉 , |n3〉 , . . . , |nk〉 (8.62)

that of finding the eigenvectors and eigenvalues of the k × k
matrix

〈n1| V̂ |n1〉 〈n1| V̂ |n2〉 · 〈n1| V̂ |nk〉
〈n2| V̂ |n1〉 · · ·

· · · ·
〈nk| V̂ |n1〉 · · 〈nk| V̂ |nk〉

 (8.63)



We now show that if the coefficients Cαi of the new zero-order
states are just the components of the eigenvectors of this
matrix, then it will be diagonalized in the degenerate subspace.

Suppose that we represent the eigenvector by the column vector

|nα〉 =


Cα1
Cα2
·

Cαk

 (8.64)

then the statement that |nα〉 is an eigenvector of the k × k
submatrix of V̂ with eigenvalues that we write as E(1)

nα is
equivalent to writing

V̂ |nα〉 = E(1)
nα |nα〉 (8.65)

or




〈n1| V̂ |n1〉 〈n1| V̂ |n2〉 · 〈n1| V̂ |nk〉
〈n2| V̂ |n1〉 · · ·

· · · ·
〈nk| V̂ |n1〉 · · 〈nk| V̂ |nk〉



Cα1
Cα2
·

Cαk

 = E(1)
nα


Cα1
Cα2
·

Cαk


(8.66)

or finally ∑
i

〈nj |V̂ |ni〉Cαi = E(1)
nαCαi (8.67)

All of these calculations take place within the k-dimensional
degenerate subspace. We will assume that the eigenvectors are
normalized, which implies that∑

i

|Cαi|2 = 1 (8.68)

i.e., vectors are normalized to one.



Now consider another of the new vectors given by

|nβ〉 =

k∑
j=1

Cβj |nj〉 (8.69)

We then have

〈nβ| =
k∑
j=1

C∗βj 〈nj | (8.70)

Applying the linear functional 〈nβ| to the
eigenvector/eigenvalue equation we get∑

j

∑
i

〈nj |C∗βj V̂ Cαi |ni〉 = E(1)
nα

∑
j

C∗βjCαi (8.71)

Now, since the eigenvectors of any Hermitian matrix are always
a complete orthonormal set (or can always be made so using the
Gram-Schmidt process), the orthonormality of the new vectors
says that



∑
j

C∗βjCαi = 〈nβ | nα〉 = δβα (8.72)

Therefore the vectors

|nα〉 =

k∑
i=1

Cαi |ni〉 (8.73)

satisfy ∑
j

〈nj |C∗βj

 V̂

(∑
i

Cαi |ni〉

)
= E(1)

nα δαβ (8.74)

〈nβ| V̂ |nα〉 = E(1)
nα δαβ (8.75)

This says that the corresponding eigenvalue E(1)
nα of one of the

new vectors is the first order energy corrections for the state
|Nα〉. The states



|nα〉 , |nβ〉 , |nγ〉 , . . . , |nκ〉 (8.76)

are called the new zeroth-order state vectors.

Thus the group of states

|n1〉 , |n2〉 , |n3〉 , . . . , |nk〉 (8.77)

in the presence of the perturbation V̂ split(rearrange) into the k
states

|nα〉 , |nβ〉 , |nγ〉 , . . . , |nκ〉 (8.78)

which are given to first order by

|Nα〉 = |nα〉+
∑

m 6=α,β,..,κ

|m〉 〈m| V̂ |nα〉
εn1 − εm

(8.79)

and the energy shift to second order is



Enα = εn1 + 〈nα| V̂ |nα〉+
∑

m6=α,β,..,κ

∣∣∣〈m| V̂ |nα〉∣∣∣2
εn1 − εm

(8.80)

where
〈nα| V̂ |nα〉 = E(1)

nα (8.81)

is an eigenvalue of the V̂ matrix in the degenerate subspace.

An Example

We now consider a 2−dimensional oscillator that is perturbed
by a potential of the form

V̂ = λx̂ŷ (8.82)

We then have
Ĥ = Ĥ0 + V̂ (8.83)

where



Ĥ0 =
p̂2x
2m

+
p̂2y
2m

+
1

2
k(x2 + y2) (8.84)

As we showed earlier, using the âx and ây operators we get

Ĥ0 = ~ω(â+x âx + â+y ây + 1) (8.85)

Ĥ0 |nx, ny〉 = εnx,ny |nx, ny〉 = ~ω(nx + ny + 1) |nx, ny〉 (8.86)
degeneracy = nx + ny + 1 (8.87)

and
V̂ = λ

~
2mω

(âx + â+x )(ây + â+y ) (8.88)

The unperturbed ground-state is |0, 0〉 with ε0,0 = ~ω. It is a
nondegenerate level, so we can apply the standard perturbation
theory to get

E0 = ε0,0 + 〈0, 0| V̂ |0, 0〉+
∑
m6=0
n6=0

∣∣∣〈m,n| V̂ |0, 0〉∣∣∣
ε0,0 − εm,n

(8.89)



Now

〈0, 0| V̂ |0, 0〉 =
λ~

2mω
〈0, 0| (âx + â+x )(ây + â+y ) |0, 0〉 = 0 (8.90)

and

〈m,n| V̂ |0, 0〉 =
λ~

2mω
〈m,n| (âx + â+x )(ây + â+y ) |0, 0〉

=
λ~

2mω
〈m,n| â+x â+y |0, 0〉 =

λ~
2mω

〈m,n | 1, 1〉

=
λ~

2mω
δm,1δn,1 (8.91)

Thus, the correction to first order is zero. Calculating to second
order we get

E0 = ~ω −
(
λ~

2mω

)2 1

2~ω
= ~ω

(
1− λ2

8m2ω4

)
(8.92)



The next unperturbed level is 2−fold degenerate, i.e.,

nx = 0, ny = 1→ ε0,1 = 2~ω
nx = 1, ny = 0→ ε1,0 = 2~ω

For ease of notation we will sometimes denote

|1, 0〉 = |a〉 and |0, 1〉 = |b〉 (8.93)

We now use degenerate perturbation theory.

The procedure is to evaluate the V̂ matrix in the 2× 2
degenerate subspace, diagonalize it and obtain the first order
corrections.

The 2× 2 matrix is

V =

(
V̂aa V̂ab
V̂ba V̂bb

)
=

(
〈a| V̂ |a〉 〈a| V̂ |b〉
〈b| V̂ |a〉 〈b| V̂ |b〉

)
(8.94)



Now

V̂aa = 〈1, 0| V̂ |1, 0〉 = 0 = 〈0, 1| V̂ |0, 1〉 = V̂bb (8.95)

V̂ab = V̂ba = 〈1, 0| V̂ |0, 1〉 =
λ~

2mω
〈1, 0| â+x ây |0, 1〉

=
λ~

2mω
(8.96)

Therefore the 2× 2 submatrix is

V =
λ~

2mω

(
0 1
1 0

)
(8.97)

This is simple to diagonalize. We get these results∣∣a ′〉 =
1√
2

(|a〉+ |b〉) =
1√
2

(
1
1

)
→ eigenvalue = +

λ~
2mω

(8.98)∣∣b ′〉 =
1√
2

(|a〉 − |b〉) =
1√
2

(
1
−1

)
→ eigenvalue = − λ~

2mω

(8.99)



|a′〉 and |b′〉 are the new zeroth order state vectors (eigenvectors
of the 2× 2 submatrix) and

± λ~
2mω

(8.100)

are the corresponding first order energy corrections.

Thus, the 2−fold degenerate level splits into two nondegenerate
levels as shown in the figure below.

Figure: Splitting of a degenerate Level

where



Ea′ = 2~ω − λ~
2mω

(8.101)

Eb′ = 2~ω +
λ~

2mω
(8.102)

∆E = levelsplitting =
λ~
mω

(8.103)

Another Example

Now let us consider a system of two spin−1/2 particles in a
magnetic field. We also assume that there exists a direct
spin-spin interaction so that the Hamiltonian takes the form

Ĥ =
(
α~S1,op + β~S2,op

)
· ~B + γ~S1,op · ~S2,op (8.104)

If we choose ~B = Bẑ and γ � α, β, then we can write



Ĥ = Ĥ0 + V̂ (8.105)

Ĥ0 = γ~S1,op · ~S2,op (8.106)

V̂ = αBŜ1z + βBŜ2z (8.107)

We define

~Sop = ~S1,op + ~S2,op = total spin angular momentum (8.108)

and then we have

~S2
op = ~Sop · ~Sop = (~S1,op + ~S2,op) · (~S1,op + ~S2,op)

= ~S2
1,op + ~S2

2,op + 2~S1,op · ~S2,op

=
3

4
~2Î +

3

4
~2Î + 2~S1,op · ~S2,op (8.109)

or
Ĥ0 = γ~S1,op · ~S2,op =

γ

2

(
~S2
op −

3

2
~2Î
)

(8.110)



Our earlier discussion of the addition of angular momentum says
that when we add two spin−1/2 angular momenta we get the
resultant total angular momentum values 0 and 1, i.e.,

1

2
⊗ 1

2
= 0⊕ 1 (8.111)

Each separate spin−1/2 system has the eigenvectors/eigenvalues

~S2
1,op |±〉 =

3

4
~ |±〉 , ~S1z |±〉 = ±~

2
|±〉 (8.112)

The corresponding direct-product states are

|++〉 , |+−〉 , |−+〉 , |−−〉 (8.113)

where the symbols mean

|+−〉 = |+〉1 |−〉2 (8.114)

and so on.



The total angular momentum states are (we derived them
earlier) labeled as |s,m〉 where

~S2
op |s,m〉 = ~2s(s+ 1) |s,m〉 (8.115)

Ŝz |s,m〉 = (Ŝ1z + Ŝ2z) |s,m〉 = ±m~ |s,m〉 (8.116)

They are given in terms of the direct product states by

|1, 1〉 = |++〉 = |1〉 (8.117)

|1, 0〉 =
1√
2
|+−〉+

1√
2
|−+〉 = |2〉 (8.118)

|1,−1〉 = |−−〉 = |3〉 (8.119)

|0, 0〉 =
1√
2
|+−〉 − 1√

2
|−+〉 = |4〉 (8.120)

The total angular momentum states are eigenstates of Ĥ0 and
we use them as the unperturbed or zero-order states.



Ĥ0 |1, 1〉 =
γ~2

4
|1, 1〉 = ε1 |1, 1〉 (8.121)

Ĥ0 |1, 0〉 =
γ~2

4
|1, 0〉 = ε2 |1, 0〉 (8.122)

Ĥ0 |1,−1〉 =
γ~2

4
|1,−1〉 = ε3 |1,−1〉 (8.123)

Ĥ0 |0, 0〉 = −3γ~2

4
|0, 0〉 = ε4 |0, 0〉 (8.124)

We thus have one nondegenerate level and one 3−fold
degenerate level. Now using

V̂ = αBŜ1z + βBŜ2z (8.125)

we do perturbation theory on these levels.



Nondegenerate Level

First order:

E
(1)
4 = 〈4| V̂ |4〉

=

(
1√
2
〈+−|+ 1√

2
〈−+|

)
(αBŜ1z + βBŜ2z)

(
1√
2
|+−〉 − 1√

2
|−+〉

)
= 0



Second order:

E
(2)
4 =

∑
m 6=4

∣∣∣〈m| V̂ |4〉∣∣∣2
ε4 − εm

=

∣∣∣〈++|αBŜ1z + βBŜ2z

(
1√
2
|+−〉 − 1√

2
|−+〉

)∣∣∣2
ε4 − ε1

+

∣∣∣( 1√
2
〈+−|+ 1√

2
〈−+|

)
αBŜ1z + βBŜ2z

(
1√
2
|+−〉 − 1√

2
|−+〉

)∣∣∣2
ε4 − ε2

+

∣∣∣〈−−|αBŜ1z + βBŜ2z

(
1√
2
|+−〉 − 1√

2
|−+〉

)∣∣∣2
ε4 − ε3



E
(2)
4

=

∣∣∣( 1√
2
〈+−|+ 1√

2
〈−+|

)
αBŜ1z + βBŜ2z

(
1√
2
|+−〉 − 1√

2
|−+〉

)∣∣∣2
ε4 − ε2

= −B
2(α− β)2

γ

Therefore the energy to second order for the non-degenerate
level is

E4 = ε4 + E
(1)
4 + E

(2)
4 = −3γ~2

4
− B2(α− β)2

γ
(8.126)



Degenerate Level

In this case, the 3× 3 degenerate submatrix of V̂ is 〈1| V̂ |1〉 〈1| V̂ |2〉 〈1| V̂ |3〉〈2| V̂ |1〉 〈2| V̂ |2〉 〈2| V̂ |3〉
〈3| V̂ |1〉 〈3| V̂ |2〉 〈3| V̂ |3〉

 =
(α+ β)~B

2

 1 0 0
0 0 0
0 0 −1


(8.127)

which is already diagonal. Since the diagonal elements are the
first order energy corrections, we have (to first order)

E1 =
γ~2

4
+

(α+ β)~B
2

(8.128)

E2 =
γ~2

4
(8.129)

E3 =
γ~2

4
− (α+ β)~B

2
(8.130)



Exact Solution

We can, in fact, solve this problem exactly and compare it to
the perturbation result. We do this by choosing a new basis set
(arbitrary choice made to simplify calculations) and rewriting Ĥ
in terms of operators appropriate to the basis choice(that is
what is meant by simplify calculations).

We then use the new basis to construct the 4× 4 Ĥ matrix and
then diagonalize the matrix. This method always works for a
system with a small number of states.

Choose the direct product states as a basis

|++〉 = |1〉 , |+−〉 = |2〉 , |−+〉 = |3〉 , |−−〉 = |4〉 (8.131)



Write Ĥ as (choose operators appropriate(easy to calculate) to
the basis or the HOME space)

Ĥ = αBŜ1z + βBŜ2z + γ
(
Ŝ1zŜ2z + Ŝ1xŜ2x + Ŝ1yŜ2y

)
= αBŜ1z + βBŜ2z + γ

(
Ŝ1zŜ2z +

1

2

(
Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

))
(8.132)

Construct the 4× 4 Ĥ matrix
〈1| Ĥ |1〉 〈1| Ĥ |2〉 〈1| Ĥ |3〉 〈1| Ĥ |4〉
〈2| Ĥ |1〉 〈2| Ĥ |2〉 〈2| Ĥ |3〉 〈2| Ĥ |4〉
〈3| Ĥ |1〉 〈3| Ĥ |2〉 〈3| Ĥ |3〉 〈3| Ĥ |4〉
〈4| Ĥ |1〉 〈4| Ĥ |2〉 〈4| Ĥ |3〉 〈4| Ĥ |4〉

 (8.133)

using



Ŝz |±〉 = ±~
2
|±〉 (8.134)

Ŝ+ |+〉 = 0 = Ŝ− |−〉 (8.135)

Ŝ+ |−〉 = ~ |+〉 and Ŝ− |+〉 = ~ |−〉 (8.136)

We get 

B~(α+β)
+ γ~2

4

0 0 0

0
B~(α−β)
− γ~

2

4

γ~2
2 0

0 γ~2
2

−B~(α−β)
− γ~

2

4

0

0 0 0
−B~(α+β)

+ γ~2
4





Diagonalizing to get the eigenvalues we find the exact energies

E1 =
γ~2

4
+B~(α+ β) , E2 = −γ~

2

4
+

1

2

√
γ2~4 + 4B2~2(α− β)2

E3 = −γ~
2

4
− 1

2

√
γ2~4 + 4B2~2(α− β)2 , E4 =

γ~2

4
−B~(α+ β)

To compare to the perturbation calculation we let B → 0 and
we get the approximation

E1 =
γ~2

4
+B~(α+ β) , E2 =

γ~2

4
+
B2(α− β)2

γ

E3 = −3γ~2

4
− B2(α− β)2

γ
, E4 =

γ~2

4
−B~(α+ β)

which agrees with the perturbation results.



8.2.1 More Ideas about Perturbation Methods

The main problem with Rayleigh-Schrodinger perturbation
theory (RSPT) is that the form of the higher order terms
becomes increasingly complex and, hence, the series is difficult
to evaluate.

The Brillouin-Wigner Method

This technique allows us to see the higher order structure of the
perturbation series more clearly.

Consider the energy eigenvalue equation

Ĥ |N〉 = En |N〉 =
(
Ĥ0 + gÛ

)
|N〉 (8.137)

Applying the linear functional 〈m| we get



〈m| Ĥ |N〉 = En 〈m | N〉 = 〈m| Ĥ0 |N〉+ g 〈m| Û |N〉
En 〈m | N〉 = εm 〈m | N〉+ g 〈m| Û |N〉
(En − εm) 〈m | N〉 = g 〈m| Û |N〉 (8.138)

We will use the normalization 〈n |N〉 = 1 once again.

Now since the |m〉 states are a complete orthonormal basis we
can always write

|N〉 =
∑
m

|m〉 〈m | N〉 = |n〉 〈n | N〉+
∑
m6=n
|m〉 〈m | N〉

= |n〉+
∑
m6=n
|m〉 〈m | N〉 (8.139)

Using the results above (10.139) we get

|N〉 = |n〉+
∑
m6=n
|m〉 g

En − εm
〈m| Û |N〉 (8.140)



We now develop a series expansion of |N〉 in powers of g as
follows:

0th − order :
|N〉 = |n〉

1st − order : ( substitute 0th − order result for |N〉 into general
formula (8.140))

|N〉 = |n〉+
∑
m6=n
|m〉 g

En − εm
〈m| Û |n〉

This is not the same result as in RSPT since the full energy En
remains in the denominator.



2nd − order : ( substitute 1st − order result for |N〉 into general
formula (8.140))

|N〉 = |n〉+
∑
m 6=n
|m〉 g

En − εm
〈m| Û

|n〉+
∑
j 6=n
|j〉 g

En − εj
〈j| Û |n〉


= |n〉+

∑
m 6=n
|m〉 g

En − εm
〈m| Û |n〉

+ g2
∑
m 6=n

∑
j 6=n
|m〉 g

En − εm
〈m| Û |j〉 g

En − εj
〈j| Û |n〉

and so on.

This is a complex power series in g since the full energy En
remains in the denominator. If we let |m〉 = |n〉 in (8.138) we get



En 〈n | N〉 = εn 〈n | N〉+ g 〈n| Û |N〉 (8.141)

En = εn + g 〈n| Û |N〉 (8.142)

This can be expanded to give En as a series in powers of g, i.e.,
substituting the 0th − order approximation for |N〉 gives the
1st − order approximation for En and substituting the
1st − order approximation for |N〉 gives the 2nd − order
approximation for En and so on.

If we substitute the 1st − order approximation for |N〉 we get

En = εn + g 〈n| Û |N〉

= εn + g 〈n| Û

|n〉+
∑
m6=n
|m〉 g

En − εm
〈m| Û |n〉


= εn + g 〈n| Û |n〉+ g2

∑
m6=n

∣∣∣〈m| Û |n〉∣∣∣2
En − εm

(8.143)



which is the second-order energy.

So the BWPT and the RSPT agree at each order of
perturbation theory, as they must. The structure of the
equations, however, is very different.

A simple example shows the very different properties of the two
methods.

Consider the Hamiltonian given by Ĥ = Ĥ0 + V̂ where

Ĥ0 =

(
ε1 0
0 ε2

)
→ eigenvectors |1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
(8.144)

and

V̂ =

(
0 α
α∗ 0

)
(8.145)



The exact energy eigenvalues are obtained by diagonalizing the
Ĥ matrix

Ĥ =

(
ε1 α
α∗ ε2

)
(8.146)

to get the characteristic equation

det

[
ε1 − E α
α∗ ε2 − E

]
= 0 = E2 − (ε1 + ε2)E + (ε1ε2 − |α|2)

(8.147)
which has solutions

E1 =
1

2
(ε1 + ε2) +

1

2

√
(ε1 − ε2)2 + 4 |α|2 (8.148)

E2 =
1

2
(ε1 + ε2)−

1

2

√
(ε1 − ε2)2 + 4 |α|2 (8.149)

In the degenerate limit, ε1 = ε2 = ε, we have the exact solutions

E1 = ε+ |α| and E2 = ε− |α| (8.150)



Now, BWPT gives

En = εn + 〈n| V̂ |N〉

= εn + 〈n| V̂ |n〉+
∑
m 6=n

∣∣∣〈m| V̂ |n〉∣∣∣2
En − εm

(8.151)

or

E1 = εn + 〈1| V̂ |1〉+

∣∣∣〈2| V̂ |1〉∣∣∣2
E1 − ε2

= ε1 +
|α|2

E1 − ε2
(8.152)

Rearranging we get

E2
1 − (ε1 + ε2)E1 + (ε1ε2 − |α|2) = 0 (8.153)

which is the same eigenvalue equation as the exact solution. In
the degenerate limit, ε1 = ε2 = ε, we have

E1 = ε+ |α| (8.154)

or BWPT gives the exact answer for this simple system, even in
the degenerate case.



On the other hand, RSPT gives to second-order

E1 = ε1 + 〈1| V̂ |1〉+
|α|2

ε1 − ε2
(8.155)

This is equivalent to the exact formula to second order only!

In the degenerate limit we get nonsense since the denominator
vanishes. As we saw earlier, RSPT requires an entirely different
procedure in the degenerate case.

Notice that RSPT is in trouble even if ε1 ≈ ε2 which implies
that

|α|2

ε1 − ε2
is very large (8.156)

and thus, that the perturbation expansion makes no sense(the
terms are supposed to get smaller!). A clever trick for handling
these almost degenerate cases using RSPT goes as follows.



Almost Degenerate Perturbation Theory

Given Ĥ = Ĥ0 + V̂ , suppose, as in the last example, we have two
states |n〉 and |m〉 of the unperturbed (zero order) Hamiltonian
Ĥ0 that have energies that are approximately equal.

This is a troublesome situation for RSPT because it is an
expansion that includes increasing numbers of

1

εn − εm
(8.157)

terms. This implies that successive terms in the perturbation
series might decrease slowly or not at all.

To develop a more rapidly converging perturbation expansion
we rearrange the calculation as follows. We use the definition of
the identity operator in terms of projection operators to write

V̂ = Î V̂ Î =
∑
i,j

|i〉 〈i| V̂ |j〉 〈j| (8.158)



We then break up V̂ into two parts

V̂ = V̂1 + V̂2 (8.159)

where we separate out the m and n terms into v̂1

V̂1 = |m〉 〈m| V̂ |m〉 〈m|+ |m〉 〈m| V̂ |n〉 〈n|
+ |n〉 〈n| V̂ |m〉 〈m|+ |n〉 〈n| V̂ |n〉 〈n| (8.160)

and v̂2 = the rest of the terms. We then write

Ĥ = Ĥ0 + V̂ = Ĥ0 + V̂1 + V̂2 = Ĥ ′0 + V̂2 (8.161)

This new procedure then finds exact eigenvectors/eigenvalues of
Ĥ ′0 and treats v̂2 by ordinary perturbation theory.

Since the basis is orthonormal, we have from the definition of
v̂2, i.e.,

V̂2 =
∑

i,j 6=m,n
|i〉 〈i| V̂ |j〉 〈j| (8.162)

which gives



0 = 〈n| V̂2 |n〉 = 〈n| V̂2 |m〉 = 〈m| V̂2 |n〉 = 〈m| V̂2 |m〉 (8.163)

Thus, the closeness of the levels εn and εm will not prevent us
from applying standard perturbation theory to v̂2, i.e., the
numerators of terms with very small energy denominators,
which might cause the series to diverge, all vanish identically!

Now if |i〉 is an eigenvector of Ĥ0 (not |m〉 or |n〉), then it is also
an eigenvector of Ĥ ′0 since, by the orthonormality condition,

V̂1 |i〉 = 0 (8.164)

Neither |m〉 nor |n〉 is an eigenvector of Ĥ ′0 however.

Now, the Ĥ0 matrix is diagonal since we are using its
eigenvectors as a basis. The Ĥ ′0 matrix is diagonal also except
for the 2× 2 submatrix



(
〈m| Ĥ ′0 |m〉 〈m| Ĥ ′0 |n〉
〈n| Ĥ ′0 |m〉 〈n| Ĥ ′0 |n〉

)
(8.165)

Therefore, we can finish the solution of the problem of Ĥ ′0 by
diagonalizing this 2× 2 matrix.

Diagonalizing the 2× 2 matrix is equivalent to finding the linear
combinations (or new zero order eigenvectors)

α |n〉+ β |m〉 (8.166)

that diagonalize the 2× 2 matrix.

We must have

Ĥ ′0 (α |n〉+ β |m〉) =
(
Ĥ0 + V̂1

)
(α |n〉+ β |m〉) = E ′ (α |n〉+ β |m〉)

(8.167)
Now



Ĥ ′0 |n〉 = Ĥ0 |n〉+ V̂1 |n〉
= εn |n〉+ |m〉 〈m| V̂ |m〉 〈m | n〉+ |m〉 〈m| V̂ |n〉 〈n | n〉

+ |n〉 〈n| V̂ |m〉 〈m | n〉+ |n〉 〈n| V̂ |n〉 〈n | n〉
= εn |n〉+ |m〉 〈m| V̂ |n〉+ |n〉 〈n| V̂ |n〉

=
(
εn + 〈n| V̂ |n〉

)
|n〉+ |m〉 〈m| V̂ |n〉

= E(1)
n |n〉+ 〈m| V̂ |n〉 |m〉 (8.168)

and similarly

Ĥ ′0 |m〉 = E(1)
m |m〉+ 〈n| V̂ |m〉 |n〉 (8.169)

Therefore, we get

α
(
E(1)
n |n〉+ 〈m| V̂ |n〉 |m〉

)
+ β

(
E(1)
m |m〉+ 〈n| V̂ |m〉 |n〉

)
= E ′ (α |n〉+ β |m〉) (8.170)

Since the state vectors |m〉 and |n〉 are orthogonal, we must
then have



E(1)
n α+ 〈n| V̂ |m〉β = E ′α (8.171)

〈m| V̂ |n〉α+ E(1)
m β = E ′β (8.172)

These equations have two solutions, namely,

α = 〈n| V̂ |m〉 (8.173)

β± =
E

(1)
m − E(1)

n

2
±

√√√√(E(1)
m − E(1)

n

2

)2

+
∣∣∣〈n| V̂ |m〉∣∣∣2 (8.174)

which then give the results

E± =
E

(1)
m + E

(1)
n

2
±

√√√√(E(1)
m − E(1)

n

2

)2

+
∣∣∣〈n| V̂ |m〉∣∣∣2 (8.175)

We then know all the eigenvectors/eigenvalues of Ĥ ′0 (we know
all of the unperturbed states) and we can deal with V̂2 by
perturbation theory.

Finally, let us introduce another interesting idea.



Fake Degenerate Perturbation Theory

Consider the problem of finding the energy eigenvalues and
state vectors for a system with a Hamiltonian Ĥ = Ĥ0 + V̂
where we know the solution to the zero-order system

Ĥ0 |n〉 = εn |n〉 (8.176)

We will assume that the unperturbed states are nondegenerate.

Now define
Eaverage = Eav =

1

n

∑
n

εn (8.177)

and redefine
Ĥ = Eav Î + Û (8.178)

where
Û = Ĥ0 − Eav Î + V̂ (8.179)



If the energies associated with Û are small corrections to Eav,
then we can use degenerate perturbation theory to solve this
problem, i.e., the new unperturbed Hamiltonian is

Ĥ ′0 = Eav Î (8.180)

and all of its levels are degenerate in zero order.

The problem is then solved by diagonalizing the Û matrix in the
basis of Ĥ0 states.

8.2.2 Thoughts on Degeneracy and Position
Representation

When we derived the energy spectrum of the hydrogen atom we
found that the states were labeled by three quantum numbers

|ψ〉 = |n`m〉 (8.181)



where

n = the radial quantum number
` = orbital angular momentum quantum number
m = z − component of orbital angular momentum quantum number

and we found that

n = 1, 2, 3, ........

` = 0, 1, 2, ....., n− 1 for a given value of n
m = −`,−`+ 1, ......`− 1, ` for a given value of `

The energy eigenvalues, however, did not depend on ` or m. We
found that

En`m = En = − e2

2a0n2
(8.182)



Therefore, each energy level had a degeneracy given by

g =

n−1∑
`=0

∑̀
m=−`

1 =

n−1∑
`=0

(2`+ 1) = 2

n−1∑
`=0

`+

n−1∑
`=0

1

= 2
n(n− 1)

2
+ n = n2 (8.183)

The degeneracy with respect to m is understandable since no
direction is explicitly preferred in the Hamiltonian. We expect
that this degeneracy will disappear as soon as a preferred
direction is added to the Hamiltonian, as in the case of external
electric(Stark effect) or magnetic(Zeeman effect) fields.

The degeneracy with respect to ` is a property peculiar to the
pure 1/r Coulomb potential. Since no other atom except
hydrogen has a pure Coulomb potential, we expect this
degeneracy to vanish in other atoms.



Such a degeneracy is called an accidental degeneracy.

Now the electron and proton making up the hydrogen atom also
have spin angular momentum. The presence of these
extra(internal) degrees of freedom should change the
Hamiltonian.

The Schrodinger equation was derived from the eigenvalue
equation for the Hamiltonian

Ĥ |ψ〉 = E |ψ〉 (8.184)

by re-expressing that equation in the position representation.
The associated Schrodinger wave functions were given by the
scalar product(linear functional) relation

ψ(~r) = 〈~r | ψ〉 (8.185)



The single particle Schrodinger equation is relevant for problems
where the Hamiltonian contains terms dependent on ordinary
3−dimensional space(for many-particle systems we must use a
multi-dimensional configuration space which bears no simple
relationship to ordinary three-dimensional space). Spin is an
internal degree of freedom that has no representation in the
3−dimensional space of the Schrodinger wave equation.

The Schrodinger picture, however, does not choose a particular
representation and, therefore, we can include spin within the
context of solving the Schrodinger equation in the following ad
hoc manner. A more rigorous treatment requires relativity.

If there are spin-dependent terms in the Hamiltonian, then we
expand the Hilbert space used to solved the problem by
constructing a new basis that is made up of direct product
states of the following type



|ψnew〉 = |ψ〉 ⊗ |s,ms〉 (8.186)

where |ψ〉 depends on only ordinary 3−dimensional space and
|s,ms〉 is an eigenvector of ~S2

op and Ŝz.

The energy eigenvalue equation becomes

_

H |ψnew〉 = E |ψnew〉
= (((3-space operators)) |ψ〉)⊗ (((spin-dependent operators)) |s,ms〉)

and the corresponding wave function is

〈~r | ψnew〉 = 〈~r | ψ〉 |s,ms〉 = ψ(~r) |s,ms〉 (8.187)

where abstract spin vector is stuck onto the wave function in
some way (maybe with superglue).

Let us now investigate what happens in atoms when we add in
spin, some aspects of relativity and external fields. We restrict
our attention to one-electron atoms like hydrogen at this point.



8.3 Spin-Orbit Interaction - Fine Structure

The proton in hydrogen generates an electric field

~E =
e

r2
r̂ =

e

r3
~r (8.188)

that acts on the moving electron. This result is approximately
true (to first order) in most atoms. Now special relativity says
that an electron moving with a velocity ~v through an electric
field ~E also behaves as if it is interacting with a magnetic field
given by

~B = −1

c
~v × ~E (8.189)

to first order in v/c.

This magnetic field interacts with the spin (actually with its
associated magnetic moment) to produce an additional
contribution to the energy of the form

E = − ~Mspin · ~B (8.190)

where



~Mspin = − e

mc
~S (8.191)

Substituting everything in we get

E = − e

mc2
~S ·
(
~v × ~E

)
= − e

mc2
~S ·
(
~v × e

r3
~r
)

=
1

m2c2
~S · ~Le

2

r3
(8.192)

Now

e2

r3
=

1

r

dV

dr
for V (r) = −e

2

r
= potential energy of the electron

(8.193)
so that we finally obtain the so-called spin-orbit energy
contribution

E =

[
1

m2c2
1

r

dV

dr

]
~S · ~L = Espin−orbit = Eso (8.194)



This corresponds to an additional term in the Hamiltonian of
the form

Ĥso =

[
1

m2c2
1

r

dV

dr

]
~Sop · ~Lop (8.195)

This term couples the orbital and spin angular momentum
degrees of freedom (hence the label spin-orbit energy) and mixes
3−dimensional space with spin space. That is why we had to
expand the Hilbert space as we discussed earlier.

Another way to think about this interaction is that the electron
spin magnetic moment vector (or spin vector) is precessing
about the direction of the magnetic field. The equations for
such a precessional motion are

~Mspin × ~B =
d~S

dt
= ~ΩL(armor) × ~S (8.196)

where ∣∣∣~ΩL

∣∣∣ =
eB

m
(8.197)



Now
~B = −1

c
~v × ~E =

1

emc2
1

r

dV

dr
~L (8.198)

which implies that ∣∣∣~ΩL

∣∣∣ =
1

m2c2
1

r

dV

dr

∣∣∣~L∣∣∣ (8.199)

It turns out that this is exactly a factor of 2 too large. There is
another relativistic effect, which gives another precession (called
Thomas precession) effect, that cancels exactly one-half of this
spin-orbit effect.

8.3.1 Thomas Precession

This is a relativistic kinematic effect. It results from the time
dilation between the rest frames of the electron and the proton.
This causes observers in these two frames to disagree on the
time required for one of the particles to a make a complete
revolution about the other particle.



If an observer on the electron measures a time interval T , then
the observer on the proton measures

T ′ = γT where γ =
1√

1− v2

c2

, v = speed of the electron

(8.200)
We assume uniform circular motion for simplicity.

The orbital angular velocities measured by the observers are

2π

T
and

2π

T ′
(8.201)

respectively.

In the rest frame of the electron, the spin angular momentum
vector maintains its direction in space. This implies that an
observer on the proton sees this spin vector precessing at a rate
equal to the difference of the two angular velocities, i.e., the
precessional frequency is



ΩThomas =
2π

T
− 2π

T ′
=

2π

T ′

(
T ′

T
− 1

)

=
2π

T ′

 1√
1− v2

c2

− 1


≈ 2π

T ′

(
v2

2c2

)
(8.202)

But we also have

2π

T ′
= ω =

∣∣∣~L∣∣∣
mr2

and
mv2

r
= −dV

dr
(8.203)

for circular motion.

Thus, we get∣∣∣~ΩT

∣∣∣ = −1

2

1

m2c2
1

r

dV

dr

∣∣∣~L∣∣∣ = −1

2

∣∣∣~ΩL

∣∣∣ (8.204)



Therefore, the combined precession is reduced by a factor of two
and we get the result

Ĥso =

[
1

2m2c2
1

r

dV

dr

]
~Sop · ~Lop (8.205)

The energy levels arising from this correction are called the
atomic fine structure.

8.4 Another Relativity Correction

The correct relativistic kinetic energy term is

K = (γ − 1)mc2 =

 1√
1− v2

c2

− 1

mc2

=

((
1 +

1

2

v2

c2
− 1

8

v4

c4
+ ...

)
− 1

)
mc2

=

(
1

2

v2

c2
− 1

8

v4

c4

)
mc2 =

~p2op
2m
−

~p4op
8m3c2

(8.206)



Therefore, we must correct the ~p2op/2m we have already included
in the Hamiltonian by adding a terms of the form

Ĥrelativity = −
~p4op

8m3c2
(8.207)

Thus, if no external field are present we have the Hamiltonian

Ĥ = Ĥ0 + Ĥrelativity + Ĥso (8.208)

where

Ĥ0 =
~p2op
2m
− e2

(
1

r

)
op

(8.209)

Ĥrelativity = −
~p4op

8m3c2
(8.210)

Ĥso =

[
1

2m2c2
1

r

dV

dr

]
~Sop · ~Lop (8.211)



8.5 External Fields - Zeeman and Stark Effects;
Hyperfine Structure

8.5.1 Zeeman Effect

If an external magnetic field exists, then it interacts with the
total magnetic moment of the electron, where

~Mtotal = ~Morbital + ~Mspin = − e

2mc

(
g`~L+ gs~S

)
(8.212)

as we derived earlier. If we define

µB = Bohr magneton =
e~
mc

(8.213)

and let ~Bext = Bẑ, then we have, using g` = 1 and gs = 2, the
result

EZeeman = − ~Mtotal · ~Bext =
µBB

~
(Lz + 2Sz) (8.214)



Thus, we must add a term of the form

ĤZeeman =
µBB

~
(L̂z + 2Ŝz) (8.215)

to the Hamiltonian when an external magnetic field is present.

We can see directly how the orbital angular momentum part of
this energy arises. We saw earlier that if we had a Hamiltonian

Ĥ0 =
~p2op
2m

+ V (~rop) (8.216)

and we add an electromagnetic field characterized by a vector
potential ~A, where ~B = ∇× ~A, then the momentum operator
changes to

~pem = ~p− e

c
~A(~r) (8.217)

and the Hamiltonian changes to



Ĥ =
~p2em,op

2m
+ V (~rop) =

(
~pop − e

c
~A(~rop)

)2
2m

+ V (~rop)

= Ĥ0 −
e

2mc

(
~pop · ~A(~rop) + ~A(~rop) · ~pop

)
+

e2

2mc2
~A2(~rop)

(8.218)

The magnetic field has to be enormous or the radial quantum
number n very large for the ~A2 term to have any effect, so we
will neglect it for now. Let us look at the term

~pop · ~A(~rop) + ~A(~rop) · ~pop (8.219)

For a uniform (constant in magnitude and direction) external
field ~B, we have

~A = −1

2
~r × ~B (8.220)

I will prove this so we get a chance to see the use of εijk in
vector algebra.



∇× ~A = −1

2
∇×

(
~r × ~B

)
= −1

2

∑
ijk

εijk
∂

∂xj

(
~r × ~B

)
k
êi

= −1

2

∑
ijk

εijk
∂

∂xj

(∑
mn

εkmnxmBn

)
êi

= −1

2

∑
ij

∑
mn

(∑
k

εijkεmnk

)
∂

∂xj
(xmBn) êi

= −1

2

∑
ij

∑
mn

(δimδjn − δinδjm)
∂

∂xj
(xmBn) êi

= −1

2

∑
ij

[
∂

∂xj
(xiBj) êi −

∂

∂xj
(xjBi) êi

]

= −1

2

∑
ij

[
∂xi
∂xj

Bj + xi
∂Bj
∂xj
− ∂xj
∂xj

Bi − xj
∂Bi
∂xj

]
êi



Now
∂xi
∂xj

= δij and
∂Bi
∂xj

= 0 (8.221)

so we get

∇× ~A = −1

2

∑
ij

[δijBj − δjjBi]êi

= −1

2

[∑
i

Biêi − 3
∑
i

Biêi

]

= −1

2

[
~B − 3 ~B

]
= ~B

Therefore, we have

~pop · ~A(~rop) + ~A(~rop) · ~pop = −1

2

[
~pop ·

(
~rop × ~B

)
+
(
~rop × ~B

)
· ~pop

]
= −1

2

∑
ijk

εijkBk [p̂ix̂j + x̂j p̂i]

 = −1

2

∑
ijk

εijkBk [2x̂j p̂i − i~δij ]


=
∑
ijk

εkjix̂j p̂iBk = (~rop × ~pop) · ~B = ~Lop · ~B (8.222)



which then gives

Ĥ = Ĥ0 −
e

2mc
~Lop · ~B +

e2

2mc2
~A2(~rop) (8.223)

which accounts for the orbital angular momentum part of the
Zeeman energy.

The spin angular momentum part of the Zeeman energy cannot
be derived from the non-relativistic Schrodinger equation.
When one derives the Dirac relativistic equation for the
electron, the ~Sop · ~B term appears naturally.

8.5.2 Stark Effect

If a hydrogen atom is placed in an external electric field ~E which
is constant is space and time (uniform and static), then an
additional energy appears. It corresponds to an interaction
between and electric dipole made up of the electron and proton
separated by a distance and the external electric field. We
introduce the electric dipole moment operator



~dop = −e~rop (8.224)
where ~r is the position vector of the electron relative to the
proton. We then write the extra energy term as

Ĥdipole = −~dop · ~E (8.225)

If we choose ~E = E ẑ, then we have Ĥdipole = −ezE . The full
Hamiltonian is then

Ĥ = Ĥ0 + Ĥrelativity + Ĥso + ĤZeeman + Ĥdipole (8.226)

where

Ĥ0 =
~p2op
2m
− e2

(
1

r

)
op

(8.227)

Ĥrelativity = −
~p4op

8m3c2
(8.228)

Ĥso =

[
1

2m2c2
1

r

dV

dr

]
~Sop · ~Lop (8.229)

ĤZeeman =
µB
~

(~Lop + 2~Sop) · ~B (8.230)



Ĥdipole = −e~rop · ~E (8.231)

8.5.3 Hyperfine Structure

The nuclear magnetic dipole moment also generates a magnetic
field. If we assume that it is a point dipole ~MN , then the
magnetic field is given by

~B(~r) =

3
(
~MN · ~r

)
~r

r5
−

~MN

r3

+
8π

3
~MNδ(~r) (8.232)

where the first two terms are the standard result of the magnetic
field due to a loop of current as seen from very far away
(approximates dipole as a point) and the last term is peculiar to
a point dipole. The last term will give a contribution only for
spherically symmetric states (` = 0). The extra energy is then



Ĥhyperfine = − ~Me · ~B

= −

3
(
~MN · ~r

)(
~Me · ~r

)
r5

−
~MN · ~Me

r3

− 8π

3
~MN · ~Meδ(~r)

(8.233)

where

~MN = gN
Ze

2mNc
~SN,op and ~Me =

e

mc
~Se,op (8.234)

This is clearly due to spin-spin interactions between the electron
and the nucleus and gives rise to the so-called hyperfine level
splitting.



8.6 Examples

Now that we have identified all of the relevant corrections to the
Hamiltonian for atoms, let us illustrate the procedures for
calculation of the new energy levels via perturbation theory. We
look at the simplest atom first.

8.6.1 Spin-Orbit, Relativity, Zeeman Effect in Hydrogen
Atom

The Hamiltonian is

Ĥ = Ĥ0 + Ĥrelativity + Ĥso + ĤZeeman (8.235)

where



Ĥ0 =
~p2op
2m
− e2

(
1

r

)
op

(8.236)

Ĥrelativity = −
~p4op

8m3c2
(8.237)

Ĥso =

[
1

2m2c2
1

r

dV

dr

]
~Sop · ~Lop (8.238)

ĤZeeman =
µB
~

(~Lop + 2~Sop) · ~B (8.239)

The first step is to calculate all relevant commutators so that we
can find those operators that have a common eigenbasis.[

~J2
op, Ĥ0

]
= 0 =

[
Ĵz, Ĥ0

]
=
[
~L2
op, Ĥ0

]
=
[
~S2
op, Ĥ0

]
(8.240)[

~L2
op, ~S

2
op

]
= 0 =

[
~L2
op, ~J

2
op

]
=
[
~S2
op, ~J

2
op

]
(8.241)[

~J2
op, Ĵz

]
= 0 =

[
~L2
op, Ĵz

]
=
[
~S2
op, Ĵz

]
(8.242)



This says that there exists a common set of eigenvectors in the
unperturbed system for the set of operators

Ĥ0, ~J
2
op, ~L

2
op, ~S

2
op, Ĵz (8.243)

We label these states by the corresponding eigenvalues of the
commuting set of observables (these are called good quantum
numbers)

|n, `, s, j,mj〉 (8.244)

We also have[
Ŝz, Ĥ0

]
= 0 =

[
L̂z, Ĥ0

]
=
[
~L2
op, Ĥ0

]
=
[
~S2
op, Ĥ0

]
(8.245)[

~L2
op, ~S

2
op

]
= 0 =

[
~L2
op, Ŝz

]
=
[
~S2
op, Ŝz

]
=
[
~L2
op, L̂z

]
=
[
~S2
op, L̂z

]
(8.246)

which says that there exists another common set of eigenvectors
in the unperturbed system for the operators



Ĥ0, ~L
2
op,

~S2
op, L̂z, Ŝz (8.247)

We label these states by the corresponding eigenvalues of this
commuting set of observables (again these are called good
quantum numbers)

|n, `, s,m`,ms〉 (8.248)

In this latter basis, the unperturbed or zero-order Hamiltonian
has solutions represented by

Ĥ0 |n, `,m`, s,ms〉 = E(0)
n |n, `,m`, s,ms〉 , E(0)

n = − Ze2

2a0n2

Ze = nucleus charge (Z = 1 for hydrogen )

a0 = Bohr radius =
~2

me2

ψn`m`sms(r, θ, φ) = 〈~r| (|nlm`sms〉) = 〈~r| (|nlm`〉 |sms〉)
= 〈~r | nlm`〉 |sms〉 = ψn`m`(r, θ, φ) |sms〉



and first few unperturbed wave functions are

ψ100(r, θ, φ) =
1√
π

(
Z

a0

)3/2

e
−Zr
a0 (8.249)

ψ200(r, θ, φ) =
1√
32π

(
Z

a0

)3/2(
2− Zr

a0

)
e
− Zr

2a0 (8.250)

ψ210(r, θ, φ) =
1√
32π

(
Z

a0

)3/2 Zr

a0
e
− Zr

2a0 cos θ (8.251)

ψ21±1(r, θ, φ) =
1√
64π

(
Z

a0

)3/2 Zr

a0
e
− Zr

2a0 sin θe±iφ (8.252)

We also have the relations below for the unperturbed states.



~L2
op |n, `, s, j,mj〉 = ~2`(`+ 1) |n, `, s, j,mj〉 (8.253)
~S2
op |n, `, s, j,mj〉 = ~2s(s+ 1) |n, `, s, j,mj〉 (8.254)
~J2
op |n, `, s, j,mj〉 = ~j(j + 1) |n, `, s, j,mj〉 (8.255)

Ĵz |n, `, s, j,mj〉 = ~2mj |n, `, s, j,mj〉 (8.256)
~L2
op |n, `, s,m`,ms〉 = ~2`(`+ 1) |n, `, s,m`,ms〉 (8.257)
~S2
op |n, `, s,m`,ms〉 = ~2s(s+ 1) |n, `, s,m`,ms〉 (8.258)

L̂z |n, `, s,m`,ms〉 = ~m` |n, `, s,m`,ms〉 (8.259)

Ŝz |n, `, s,m`,ms〉 = ~ms |n, `, s,m`,ms〉 (8.260)

Ĵz |n, `, s,m`,ms〉 = (L̂z + Ŝz) |n, `, s,m`,ms〉 (8.261)
= ~(m` +ms) |n, `, s,m`,ms〉 (8.262)
= ~mj |n, `, s,m`,ms〉 (8.263)



Since the total angular momentum is given by

~Jop = ~Lop + ~Sop (8.264)

the rules we developed for the addition of angular momentum
say that

j = `+ s, `+ s− 1, ......., |`− s|+ 1, |`− s| (8.265)

and
mj = j, j − 1, j − 2, ........,−j + 1,−j (8.266)

In the case of hydrogen, where s = 1/2, we have only two
allowed total j values for each ` value, namely,

j = `± 1

2
(8.267)

We can use either of the two sets of basis states (both are an
orthonormal basis)

|n, `, s, j,mj〉 or |nlm`sms〉 (8.268)



as the zero-order states for a perturbation theory development
of the energies. The choice depends on the specific
perturbations we are trying to calculate.

Let us start off by using the |n, `, s, j,mj〉 states.

If we use the potential energy function

V (r) = −e
2

r
(8.269)

for hydrogen, then the spin-orbit correction to the Hamiltonian
becomes

Ĥso =

[
1

2m2c2
1

r

dV

dr

]
~Sop · ~Lop =

e2

2m2c2

(
1

r3

)
~Sop · ~Lop (8.270)

Now ~Jop = ~Lop + ~Sop implies that



~J2
op = ~L2

op + ~S2
op + 2~Lop · ~Sop (8.271)

→ ~Lop · ~Sop =
1

2

(
~J2
op − ~L2

op − ~S2
op

)
(8.272)

and therefore

Ĥso =
e2

4m2c2

(
1

r3

)(
~J2
op − ~L2

op − ~S2
op

)
(8.273)

Therefore,[
~J2
op, Ĥso

]
= 0 =

[
Ĵz, Ĥso

]
=
[
~L2
op, Ĥso

]
=
[
~S2
op, Ĥso

]
=
[
Ĥ0, Ĥso

]
(8.274)

which implies that the state vectors |n, `, s, j,mj〉 are also
eigenvectors of Ĥso. This means that the matrix representation
of Ĥso in this basis will be diagonal and we can apply standard
non-degenerate perturbation theory.



Applying our rules for first order perturbation theory we have

En`sjmj = E(0)
n + 〈n`sjmj | Ĥso |n`sjmj〉

= E(0)
n +

e2~2

4m2c2
(j(j + 1)− `(`+ 1)− s(s+ 1)) 〈n`sjmj |

1

r3op
|n`sjmj〉

(8.275)

We now evaluate

〈n`sjmj |
1

r3op
|n`sjmj〉

=

∫
d3~r′

∫
d3~r

〈
n`sjmj

∣∣ ~r′〉 〈~r′∣∣ 1

r3op
|~r〉 〈~r | n`sjmj〉 (8.276)

Now 〈
~r′
∣∣ 1

r3op
|~r〉 =

1

r3
〈
~r′
∣∣ ~r〉 =

1

r3
δ(~r′ − ~r) (8.277)

which gives



〈n`sjmj |
1

r3op
|n`sjmj〉 =

∫
d3~r

1

r3
|〈~r | n`sjmj〉|2

=

∫
d3~r

1

r3
∣∣ψn`sjmj (~r)∣∣2

Therefore, we can calculate the energy corrections once we know
|n, `, s, j,mj〉.

We first consider the trivial case of the n = 1 level in hydrogen.
We have

E
(0)
1 = − e2

2a0
(8.278)

and the corresponding states are shown in Table 8.1 below.

n ` s m` ms j mj

1 0 1/2 0 +1/2 1/2 +1/2
1 0 1/2 0 -1/2 1/2 -1/2

Table: n = 1 level quantum numbers



or ∣∣∣∣1, 0, 1

2
,
1

2
,
1

2

〉
jm

and
∣∣∣∣1, 0, 1

2
,
1

2
,−1

2

〉
jm

(8.279)

where we have added the label jm to distinguish them from the
|n, `, s,m`,ms〉 states which we label with m`ms = mm. We are
able to specify m` and ms also in this case because when ` = 0
we must have m` = 0 and j = s which says that mj = ms.

This is a two-fold degenerate ground state for the atom in zeroth
order.

Since ` = 0, which implies that j = s = 1/2, the expectation
value 〈Ĥso〉 = 0. Thus, there is no spin orbit correction for this
state to first order, In fact, there is no spin orbit correction to
any order for an ` = 0 state.

Now in general, we can write

|n, `, s, j,mj〉 =
∑

m`,ms
m`+ms=mj

an`sjmjm`ms |n, `, s,m`,ms〉 (8.280)



where the an`sjmjm`ms are the relevant Clebsch-Gordon(CG)
coefficients.

For the n = 1 level we have the simple cases where∣∣∣∣1, 0, 1

2
,
1

2
,±1

2

〉
jm

=

∣∣∣∣1, 0, 1

2
, 0,±1

2

〉
mm

(8.281)

i.e., the CG coefficients are equal to 1,

a1,0, 1
2
, 1
2
,± 1

2
,0,± 1

2
= 1 (8.282)

which is always true for the (maximum j, maximum(minimum)
mj) states. There is always only one such state.

The next level is the n = 2 level of hydrogen and the complexity
of the calculation increases fast. We have

E
(0)
2 = − e2

8a0
(8.283)



It is always the case that the direct-product states
|n, `, s,m`,ms〉 are easier to write down. For this level the
|n, `, s, j,mj〉 states need to be constructed from the
|n, `, s,m`,ms〉 states. Before we proceed, we can enumerate the
states in both schemes. The degeneracy is given by

degeneracy = 2

n−1∑
`=0

(2`+ 1) = 2n2 = 8

=
n−1∑
`=0

`+s∑
j=|`−s|

(2j + 1) = 2

n−1∑
`=0

(2`+ 1)

The states are shown in the tables below.



n ` s m` ms ket
2 1 1/2 1 +1/2 |2, 1, 1/2, 1, 1/2〉mm
2 1 1/2 0 +1/2 |2, 1, 1/2, 0, 1/2〉mm
2 1 1/2 -1 +1/2 |2, 1, 1/2,−1, 1/2〉mm
2 1 1/2 1 -1/2 |2, 1, 1/2, 1,−1/2〉mm
2 1 1/2 0 -1/2 |2, 1, 1/2, 0,−1/2〉mm
2 1 1/2 -1 -1/2 |2, 1, 1/2,−1,−1/2〉mm
2 0 1/2 0 1/2 |2, 0, 1/2, 0, 1/2〉mm
2 0 1/2 0 -1/2 |2, 0, 1/2, 0,−1/2〉mm
Table: n = 2 level quantum numbers m`ms states



n ` s j mj ket
2 1 1/2 3/2 3/2 |2, 1, 1/2, 1, 1/2〉mm
2 1 1/2 3/2 1/2 |2, 1, 1/2, 0, 1/2〉mm
2 1 1/2 3/2 -1/2 |2, 1, 1/2,−1, 1/2〉mm
2 1 1/2 3/2 -3/2 |2, 1, 1/2, 1,−1/2〉mm
2 1 1/2 1/2 1/2 |2, 1, 1/2, 0,−1/2〉mm
2 1 1/2 1/2 -1/2 |2, 1, 1/2,−1,−1/2〉mm
2 0 1/2 1/2 1/2 |2, 0, 1/2, 0, 1/2〉mm
2 0 1/2 1/2 -1/2 |2, 0, 1/2, 0,−1/2〉mm

Table: n = 2 level quantum numbers jmj states

In the first set of states, we could have also included the mj

label since we must have mj = m` +ms.

In order to learn all the intricate details of this type of
calculation, we shall proceed in two ways using the spin-orbit
correction as an example.



In method #1, we will construct the |n, `, s, j,mj〉 states (the
zero-order state vectors) from the |n, `, s,m`,ms〉 and then
calculate the first-order energy corrections. In this basis, the
〈Ĥso〉 matrix will be diagonal.

In method #2, we will construct the 〈Ĥso〉 matrix using the
easiest states to write down, namely the |n, `, s,m`,ms〉 states,
and then diagonalize it to find the correct first order energies
and new zero-order state vectors, which should be the
|n, `, s, j,mj〉 states.

Method #1

We start with the state with maximum j and mj values. This
state always has a CG coefficient equal to 1, i.e., there is only
one way to construct it from the other angular momenta.



∣∣∣∣n = 2, ` = 1, s =
1

2
, j =

3

2
,mj =

3

2

〉
jm

=

∣∣∣∣n = 2, ` = 1, s =
1

2
,m` = 1,ms =

1

2

〉
mm

where we have shown all the labels explicitly. From now on we
will write such equations as∣∣∣∣2, 1, 1

2
,
3

2
,
3

2

〉
jm

=

∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

We then use the lowering operators to obtain



Ĵ−

∣∣∣∣2, 1, 1

2
,
3

2
,
3

2

〉
jm

= ~

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

) ∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

= ~
√

3

∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

=
(
L̂− + Ŝ−

) ∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

= ~
√

1 (1 + 1)− 1 (1− 1)

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

+ ~

√
1

2

(
1

2
+ 1

)
− 1

2

(
1

2
− 1

) ∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

= ~
√

2

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

+ ~
√

1

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

or∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

=

√
2

3

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

+

√
1

3

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

(8.284)



Notice that we use the total J operators on the left and the L
and S operators on the right.

The result is a linear combination of the |n, `, s,m`,ms〉 states
all with mj = 1/2 as we expected.

Continuing this process we have

Ĵ−

∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

= ~

√
3

2

(
3

2
+ 1

)
− 1

2

(
1

2
− 1

) ∣∣∣∣2, 1, 1

2
,
3

2
,−1

2

〉
jm

= 2~
∣∣∣∣2, 1, 1

2
,
3

2
,−1

2

〉
jm

=
(
L̂− + Ŝ−

)(√2

3

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

+

√
1

3

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

)

= ~
√

4

3

∣∣∣∣2, 1, 1

2
,−1,

1

2

〉
mm

+ ~
√

8

3

∣∣∣∣2, 1, 1

2
, 0,−1

2

〉
mm



or ∣∣∣∣2, 1, 1

2
,
3

2
,−1

2

〉
jm

=

√
1

3

∣∣∣∣2, 1, 1

2
,−1,

1

2

〉
mm

+

√
2

3

∣∣∣∣2, 1, 1

2
, 0,−1

2

〉
mm

(8.285)

and finally∣∣∣∣2, 1, 1

2
,
3

2
,−3

2

〉
jm

=

∣∣∣∣2, 1, 1

2
,−1,−1

2

〉
mm

(8.286)

We now need to construct the maximum state for then next
lowest value of j, namely,∣∣∣∣2, 1, 1

2
,
1

2
,
1

2

〉
jm

(8.287)

This state has mj = 1/2 so it must be constructed out of the
same states that make up



∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

(8.288)

or it can be written as∣∣∣∣2, 1, 1

2
,
1

2
,
1

2

〉
jm

= a

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

+ b

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

(8.289)
Now we must have〈

2, 1,
1

2
,
3

2
,
1

2

∣∣∣∣ 2, 1,
1

2
,
1

2
,
1

2

〉
jm

= 0 orthogonality (8.290)〈
2, 1,

1

2
,
1

2
,
1

2

∣∣∣∣ 2, 1,
1

2
,
1

2
,
1

2

〉
jm

= 1 normalization (8.291)

Using the orthonormality of the |n, `, s,m`,ms〉 states we get√
2

3
a+

√
1

3
b = 0 and a2 + b2 = 1 (8.292)



The solution is

a =

√
1

3
andb = −

√
2

3
(8.293)

and therefore∣∣∣∣2, 1, 1

2
,
1

2
,
1

2

〉
jm

=

√
1

3

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

−
√

2

3

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

(8.294)
In a similar manner, we find∣∣∣∣2, 1, 1

2
,
1

2
,−1

2

〉
jm

=

√
2

3

∣∣∣∣2, 1, 1

2
,−1,

1

2

〉
mm

−
√

1

3

∣∣∣∣2, 1, 1

2
, 0,−1

2

〉
mm

(8.295)

Finally, we construct the other j = 1/2 states with ` = 0. They
are



∣∣∣∣2, 0, 1

2
, 0,

1

2

〉
jm

=

∣∣∣∣2, 0, 1

2
, 0,

1

2

〉
mm

(8.296)∣∣∣∣2, 0, 1

2
, 0,−1

2

〉
jm

=

∣∣∣∣2, 0, 1

2
, 0,−1

2

〉
mm

(8.297)

We can now calculate the first-order energy corrections. We do
not actually need the detailed construction of the states to do
this, but we will need these states to compare with the results of
Method #2 later. We found earlier (10.276) that in the
|n, `, s, j,mj〉 basis

En`sjmj = E(0)
n +

e2~2An`sjmj
4m2c2

(j(j + 1)− `(`+ 1)− s(s+ 1))

(8.298)

An`sjmj =

∫
d3~r

1

r3
∣∣ψn`sjmj (~r)∣∣2 (8.299)

or



∆En,`,s,j,mj = En,`,s,j,mj−E
(0)
n =

e2~2A±
4m2c2


` j = `+ 1/2

−(`+ 1) j = `− 1/2

0 ` = 0

(8.300)

A± =

∫
d3~r

1

r3

∣∣∣ψn,`,s,j=`± 1
2
,mj

(~r)
∣∣∣2 (8.301)

Evaluating the integrals we get

∆En,`,s,j,mj =
Z2
∣∣∣E(0)

n

∣∣∣α2

n(2`+ 1)(`+ 1)
j = `+

1

2
(8.302)

∆En,`,s,j,mj = −
Z2
∣∣∣E(0)

n

∣∣∣α2

n`(2`+ 1)
j = `− 1

2
(8.303)

∆En,`,s,j,mj = 0 ` = 0 (8.304)

where

α =
e2

~c
= fine structure constant (8.305)



Therefore, for the n = 2 level we have

∆E2,1, 1
2
, 3
2
,mj

=
Z2
∣∣∣E(0)

2

∣∣∣α2

12
j = `+

1

2
=

3

2
(8.306)

∆E2,1, 1
2
, 1
2
,mj

= −
Z2
∣∣∣E(0)

2

∣∣∣α2

6
j = `− 1

2
=

1

2
(8.307)

∆E2,0, 1
2
, 1
2
,mj

= 0 j = `+
1

2
=

1

2
(8.3058)

We note that for hydrogen Z2α2 ≈ 10−4 and thus, the fine
structure splitting is significantly smaller than the zero-order
energies.

The relativity correction is the same order of magnitude as the
spin-orbit correction. We found

Ĥrelativity = −
~p4op

8m3c2
(8.309)



This gives the correction

∆Erel = − ~4

8m3c2

∞∫
0

r2drψ∗n`m(r)∇4ψn`m(r)

=
Z2
∣∣∣E(0)

n

∣∣∣α2

4n2

(
3− 4n

`+ 1
2

)
(8.310)

Combining these two correction terms(spin-orbit and relativity)
gives

∆Efine structure =
Z2
∣∣∣E(0)

2

∣∣∣α2

4n2

(
3− 4n

j + 1
2

)
(8.311)

The result is independent of `. It turns out that this result is
valid for ` = 0 also. There is an additional term that must be
added to the Hamiltonian which contributes only in ` = 0
states. It is called the Darwin term.



The Darwin term comes from the relativistic equation for the
electron and takes the form

ĤDarwin =
~2

8m2c2
∇2V = − ~2

8m2c2
(4πeQnuclear(~r)) =

π~2Ze2

2m2c2
δ(~r)

(8.312)
where

Qnuclear(~r) = the nuclear charge density (8.313)

Because of the delta function, a contribution〈
ĤDarwin

〉
nj`

=
π~2Ze2

2m2c2
|ψn`(0)|2 =

mc2Z4α4

2n3
δ`,0 (8.314)

arises for ` = 0 states only. This is identical to the contribution
〈Ĥso + Ĥrel〉 for ` = 0, j = 1/2.



Method #2

We use the |n, `, s,m`,ms〉 basis. In this case, the best form of
the operators to use (means we know how to evaluate them with
these states) are

Ĥso =
e2

2m2c2

(
1

r3

)
~Sop · ~Lop

=
e2

2m2c2

(
1

r3

)(
L̂zŜz +

1

2

(
L̂+Ŝ− + L̂−Ŝ+

))
(8.315)

If we label the rows and columns of the matrix representation by

|1〉 =

∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

mj =
3

2

|2〉 =

∣∣∣∣2, 1, 1

2
, 1,−1

2

〉
mm

mj =
1

2

|3〉 =

∣∣∣∣2, 1, 1

2
, 0,

1

2

〉
mm

mj =
1

2

(1)



|4〉 =

∣∣∣∣2, 1, 1

2
, 0,−1

2

〉
mm

mj = −1

2

|5〉 =

∣∣∣∣2, 1, 1

2
,−1,

1

2

〉
mm

mj = −1

2

|6〉 =

∣∣∣∣2, 1, 1

2
,−1,−1

2

〉
mm

mj = −3

2

|7〉 =

∣∣∣∣2, 0, 1

2
, 0,

1

2

〉
mm

mj =
1

2

|8〉 =

∣∣∣∣2, 0, 1

2
, 0,−1

2

〉
mm

mj = −1

2

then we get the matrix for 〈Ĥso〉 as shown in the table below.

I have used a table rather than an equation format so that I
could clearly label the rows and columns by the state index.



1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 b c 0 0 0 0 0
3 0 c d 0 0 0 0 0
4 0 0 0 e f 0 0 0
5 0 0 0 f g 0 0 0
6 0 0 0 0 0 h 0 0
7 0 0 0 0 0 0 p 0
8 0 0 0 0 0 0 0 q

Table: 〈Ĥso〉 matrix

We have marked the non-zero elements. Using the operator
properties derived earlier we get



a = 〈1| Ĥso |1〉 =

〈
2, 1,

1

2
, 1,

1

2

∣∣∣∣ Ĥso

∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

=

〈
2, 1,

1

2
, 1,

1

2

∣∣∣∣ e2

2m2c2

(
1

r3

)
×
(
L̂zŜz +

1

2

(
L̂+Ŝ− + L̂−Ŝ+

)) ∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

=
e2

2m2c2
〈2, 1| 1

r3
|2, 1〉mm

×
〈

2, 1,
1

2
, 1,

1

2

∣∣∣∣ (L̂zŜz +
1

2

(
L̂+Ŝ− + L̂−Ŝ+

)) ∣∣∣∣2, 1, 1

2
, 1,

1

2

〉
mm

=
e2

2m2c2
〈2, 1| 1

r3
|2, 1〉mm

〈
2, 1,

1

2
, 1,

1

2

∣∣∣∣ L̂zŜz ∣∣∣∣2, 1, 1

2
, 1,

1

2

〉

=
e2~2

4m2c2

∞∫
0

1

r
R2
n`(r)dr =

e2~2

4m2c2

[
Z3

a30n
3`(`+ 1

2)(`+ 1)

]
(8.316)



Similar calculations give 〈Ĥso〉 as shown in the table below.

1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 -a

√
2a 0 0 0 0 0

3 0
√

2a 0 0 0 0 0 0
4 0 0 0 0

√
2a 0 0 0

5 0 0 0
√

2a -a 0 0 0
6 0 0 0 0 0 a 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Table: 〈Ĥso〉 matrix - revised

This says that (only diagonal elements)



E
(1)
1 = a = E

(1)
6 , E

(1)
7 = 0 = E

(1)
8 (8.317)

and

|1〉 =

∣∣∣∣2, 1, 1

2
,
3

2
,
3

2

〉
jm

and |6〉 =

∣∣∣∣2, 1, 1

2
,
3

2
,−3

2

〉
jm

|7〉 =

∣∣∣∣2, 0, 1

2
,
1

2
,
1

2

〉
jm

and |8〉 =

∣∣∣∣2, 0, 1

2
,
1

2
,−1

2

〉
jm

In order to find E(1)
2′ , E

(1)
3′ , E

(1)
4′ , E

(1)
5′ , corresponding to the new

zero-order state vectors |2′〉 , |3′〉 , |4′〉 , |5′〉, we must diagonalize
the two 2× 2 submatrices.

We begin with the submatrix involving states |2〉 and |3〉 as
shown in the table below, namely,

2 3

2 -a
√

2a
3
√

2a 0

Table: 〈Ĥso〉 2-3 submatrix



The characteristic equation is

(−a− E)(−E)− 2a2 = 0 = E2 + aE − 2a2 (8.318)

or
E

(1)
2′ = a and E(1)

3′ = −2a (8.319)

Notice that these energies are

E
(1)
2′ = `a and E(1)

3′ = −(`+ 1)a (8.320)

as expected for the

j = `+
1

2
and j = `− 1

2
(8.321)

states respectively.



We find the eigenvectors using the eigenvalue equations. For |2′〉
we have (

−a a
√

2

a
√

2 0

) ∣∣2′〉 =

(
−a a

√
2

a
√

2 0

)(
u
v

)
= E

(1)
2′

(
u
v

)
= a

(
u
v

)
or

−u+
√

2v = u and
√

2u = v (8.322)

Using the normalization condition u2 + v2 = 1 we get

u =

√
1

3
and v =

√
2

3
(8.323)

or ∣∣2′〉 =

√
1

3
|2〉+

√
2

3
|3〉 =

∣∣∣∣2, 1, 1

2
,
3

2
,
1

2

〉
jm

(8.324)



and similarly

∣∣3 ′〉 =

√
2

3
|2〉 −

√
1

3
|3〉 =

∣∣∣∣2, 1, 1

2
,
1

2
,
1

2

〉
jm

(8.325)

We then deal with the submatrix involving states |4〉 and |5〉 as
shown in table below, namely,

4 5

4 0
√

2a
5
√

2a -a

Table: 〈Ĥso〉 4-5 submatrix

The characteristic equation is

(−a− E)(−E)− 2a2 = 0 = E2 + aE − 2a2 (8.326)

or



E
(1)
4′ = a and E(1)

5′ = −2a (8.327)

and the eigenvectors are

∣∣4′〉 =

√
2

3
|4〉+

√
1

3
|5〉 =

∣∣∣∣2, 1, 1

2
,
3

2
,−1

2

〉
jm

(8.328)

∣∣5 ′〉 =

√
1

3
|4〉 −

√
2

3
|5〉 =

∣∣∣∣2, 1, 1

2
,
1

2
,−1

2

〉
jm

(8.329)

So including the spin-orbit correction we end up with the energy
levels

E
(0)
2 + a for 1, 2′, 4′, 6→ 4 - fold degenerate

E
(0)
2 for 7, 8→ 2 - fold degenerate

E
(0)
2 − 2a for 3′, 5′ → 2 - fold degenerate



8.6.2 Spin-Orbit and Arbitrary Magnetic Field

Now let us add on the Zeeman correction (for ~B = Bẑ)

ĤZeeman =
µB
~

(~Lop + 2~Sop) · ~B =
µBB

~
(L̂z + 2Sz) (8.330)

We can solve this problem for arbitrary magnetic field by
repeating Method #2 using the correction term as the sum of
spin-orbit and Zeeman effects.

The zero-order Hamiltonian is Ĥ0 and the zero-order state
vectors are the |n, `, s,m`,ms〉 states. The eight zero-order
n = 2 states are all degenerate with energy

E
(0)
2 = − e2

8a0
(8.331)

so we must use degenerate perturbation theory.



We have already calculated the 〈Ĥso〉 in this basis. It is shown
in the table below.

1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 -a

√
2a 0 0 0 0 0

3 0
√

2a 0 0 0 0 0 0
4 0 0 0 0

√
2a 0 0 0

5 0 0 0
√

2a -a 0 0 0
6 0 0 0 0 0 a 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Table: 〈Ĥso〉 matrix

where

a =
e2~2

96m2a30c
2

(8.332)



The 〈L̂z + 2Ŝz〉 matrix is diagonal in this representation and its
diagonal elements are given by m` + 2ms and so the Zeeman
contribution 〈ĤZeeman〉 is shown in the table below.

1 2 3 4 5 6 7 8

1 2b 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 b 0 0 0 0 0
4 0 0 0 -b 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 -2b 0 0
7 0 0 0 0 0 0 b 0
8 0 0 0 0 0 0 0 -b

Table: 〈ĤZeeman〉 matrix

where b = µBB. The combined perturbation matrix 〈V̂ 〉 is then
given in the table below.



1 2 3 4 5 6 7 8

1 a+2b 0 0 0 0 0 0 0
2 0 -a a

√
2 0 0 0 0 0

3 0 a
√

2 b 0 0 0 0 0
4 0 0 0 -b a

√
2 0 0 0

5 0 0 0 a
√

2 -a 0 0 0
6 0 0 0 0 0 a-2b 0 0
7 0 0 0 0 0 0 b 0
8 0 0 0 0 0 0 0 -b

Table: 〈V̂ 〉 matrix



After diagonalizing, the new energies are

E1′ = − e2

8a0
+

e2

8a0

α2

12
+ 2µBB

E2′ = − e2

8a0
+

1

2
(−(a− b) +

√
9a2 + 2ab+ b2)

E3′ = − e2

8a0
+

1

2
(−(a− b)−

√
9a2 + 2ab+ b2)

E4′ = − e2

8a0
+

1

2
(−(a+ b) +

√
9a2 − 2ab+ b2)

E5′ = − e2

8a0
+

1

2
(−(a+ b)−

√
9a2 − 2ab+ b2)

E6′ = − e2

8a0
+

e2

8a0

α2

12
− 2µBB

E7′ = − e2

8a0
+ µBB

E8′ = − e2

8a0
− µBB



If we let B be small so that b� a, we then get the approximate
energies

E1′ = − e2

8a0
+

e2

8a0

α2

12
+ 2µBB

E2′ = − e2

8a0
+

1

2
(−(a− b) + 3a(1 +

b

9a
))

= − e2

8a0
+ a+

2

3
b = − e2

8a0
+

e2

8a0

α2

12
+

2

3
µBB

E3′ = − e2

8a0
+

1

2
(−(a− b)− 3a(1 +

b

9a
))

= − e2

8a0
− 2a+

1

3
b = − e2

8a0
− e2

8a0

α2

6
+

1

3
µBB

E4′ = − e2

8a0
+

1

2
(−(a+ b) + 3a(1− b

9a
))

= − e2

8a0
+ a− 2

3
b = − e2

8a0
+

e2

8a0

α2

12
− 2

3
µBB



E5′ = − e2

8a0
+

1

2
(−(a+ b)− 3a(1− b

9a
))

= − e2

8a0
− 2a− 1

3
b = − e2

8a0
− e2

8a0

α2

6
− 1

3
µBB

E6′ = − e2

8a0
+

e2

8a0

α2

12
− 2µBB

E7′ = − e2

8a0
+ µBB

E8′ = − e2

8a0
− µBB

This is clearly a perturbation of the spin-orbit energy levels. We
assume that the new state vectors become the zero-order vectors
in the spin-orbit case for low fields. In this case the Zeeman
effect corrections(to the fine structure energies) are given by the
table below.



` s j mj ∆EZeeman State
1 1/2 3/2 3/2 2µBB 1′

1 1/2 3/2 1/2 2µBB/3 2′

1 1/2 1/2 1/2 µBB/3 3′

1 1/2 3/2 -1/2 −2µBB/3 4′

1 1/2 1/2 -1/2 −µBB/3 5′

1 1/2 3/2 -3/2 −2µBB 6′

0 1/2 1/2 1/2 µBB 7′

0 1/2 1/2 -1/2 −µBB 8′

Table: n = 2 energy corrections for small B

A little bit of study shows the general relation

∆EZeeman = gµBBmj (8.333)

where

g = Lande g - factor = 1 +
j(j + 1)− `(`+ 1) + s(s+ 1)

2j(j + 1)
(8.334)

This is called the Zeeman effect.



We can prove this result in general. The general method uses
the Wigner-Eckart Theorem.

8.6.3 Wigner-Eckart Theorem

Consider a vector operator ~Aop. We have already shown that
the Cartesian components of any vector operator has the
following commutation relations with the Cartesian components
of the angular momentum operator[

Âi, Ĵj

]
= i~εijkÂk (8.334)

We will now prove the following powerful theorem:

In a basis that diagonalizes ~J2
op and Ĵz (i.e., the |λ, `, s, j,mj〉

states, where λ signifies other operators that commute with ~J2
op

and Ĵz), the matrix elements of ~Aop between states with the
same j−value are proportional to the matrix elements of ~Jop
and the proportionality factor is independent of mj .



The algebra involved in the proof is simpler if we work in the
so-called spherical basis instead of the Cartesian basis. The
spherical basis uses

Ĵ± = Ĵx ± iĴy , Ĵ0 = Ĵz (8.335)

Â± = Âx ± iÂy , Â0 = Âz (8.336)

The corresponding commutators are[
Â±, Ĵ0

]
= ∓~Â± ,

[
Â±, Ĵ±

]
= 0 (8.337)[

Â±, Ĵ∓

]
= ±2~Â0 ,

[
Â0, Ĵ0

]
= 0 (8.338)[

Â0, Ĵ±

]
= ±~Â± (8.339)

which all follow from the original commutator for the arbitrary
vector operator. Now, by definition of the operators, we have



Ĵ0 |λ, j,mj〉 = ~mj |λ, j,mj〉 = 〈j,mj | Ĵ0 |j,mj〉 |λ, j,mj〉
(8.340)

Ĵ± |λ, j,mj〉 = ~
√
j(j + 1)−mj(mj ± 1) |λ, j,mj ± 1〉

= 〈j,mj ± 1| Ĵ± |j,mj〉 |λ, j,mj ± 1〉 (8.341)

〈λ, j,mj | Ĵ± =
(
Ĵ∓ |λ, j,mj〉

)+
= 〈λ, j,mj ∓ 1| ~

√
j(j + 1)−mj(mj ∓ 1)

= 〈λ, j,mj ∓ 1| 〈j,mj | Ĵ± |j,mj ∓ 1〉 (8.343)

We now work with the matrix elements of some of the
commutators and use the defining relations above to prove the
theorem.

First, we have



∓~
〈
λ′, j,m′j

∣∣ Â± |λ, j,mj〉 =
〈
λ′, j,m′j

∣∣ [Â±, Ĵ0] |λ, j,mj〉

=
〈
λ′, j,m′j

∣∣ [Â±Ĵ0 − Ĵ0Â±] |λ, j,mj〉

= (mj −m′j)~
〈
λ′, j,m′j

∣∣ Â± |λ, j,mj〉
(8.344)

or
0 = (mj −m′j ± 1)~

〈
λ′, j,m′j

∣∣ Â± |λ, j,mj〉 (8.345)

This says that either m′j = mj ± 1 or the matrix element〈
λ′, j,m′j

∣∣ Â± |λ, j,mj〉 = 0 (8.346)

Since we have an identical property for the matrix elements of
Ĵ± this implies that the matrix elements of Â± are proportional
to those of Ĵ± and we can write the proportionality constant as

〈λ′, j,mj ± 1| Â± |λ, j,mj〉
〈j,mj ± 1| Ĵ± |j,mj〉

(8.347)

Second, we have



〈
λ′, j,m′j

∣∣ [Â±, Ĵ±] |λ, j,mj〉 = 0 (8.348)〈
λ′, j,m′j

∣∣ Â±Ĵ± |λ, j,mj〉 =
〈
λ′, j,m′j

∣∣ Ĵ±Â± |λ, j,mj〉 (8.349)〈
λ′, j,m′j

∣∣ Â± |λ, j,mj ± 1〉
〈
λ′, j,mj ± 1

∣∣ Ĵ± |λ, j,mj〉
=
〈
λ′, j,m′j ∓ 1

∣∣ Â± |λ, j,mj〉 〈λ, j,mj ± 1| Ĵ±
∣∣λ, j,m′j ∓ 1

〉
(8.350)

Using the result from the first commutator this says that
m′j = mj ± 2, which, in turn, implies that

〈λ′, j,mj ± 2| Â± |λ, j,mj ± 1〉
〈j,mj ± 2| Ĵ± |j,mj ± 1〉

=
〈λ′, j,mj ± 1| Â± |λ, j,mj〉
〈j,mj ± 1| Ĵ± |j,mj〉

(8.351)
This says that the proportionality constant is independent of
mj .

We define a new symbol for the proportionality constant〈
λ′, j

∣∣ |A| |λ, j〉± = the reduced matrix element (8.352)



which gives the relation〈
λ′, j,m′j

∣∣ Â± |λ, j,mj〉 =
〈
λ′, j

∣∣ |A| |λ, j〉± 〈j,m′j∣∣ Ĵ± |j,mj〉
(8.353)

To complete the proof we need to show that the same result
holds for Â0 and that〈

λ′, j
∣∣ |A| |λ, j〉+ =

〈
λ′, j

∣∣ |A| |λ, j〉− (8.354)

We have

± 2~
〈
λ′, j,m′j

∣∣ Â0 |λ, j,mj〉 =
〈
λ′, j,m′j

∣∣ [Â±, Ĵ∓] |λ, j,mj〉

=
〈
λ′, j,m′j

∣∣ [Â±Ĵ∓ − Ĵ∓Â±] |λ, j,mj〉

=
〈
λ′, j,m′j

∣∣ Â± |λ, j,mj ∓ 1〉 〈j,mj ∓ 1| Ĵ∓ |j,mj〉
−
〈
λ′, j,m′j ± 1

∣∣ Â± |λ, j,mj〉
〈
j,m′j

∣∣ Ĵ∓ ∣∣j,m′j ± 1
〉

(8.355)

Now substituting in the matrix element of Â± we get



± 2~
〈
λ′, j,m′j

∣∣ Â0 |λ, j,mj〉
=
〈
λ′, j

∣∣ |A| |λ, j〉± [
〈
j,m′j

∣∣ Ĵ± |j,mj ∓ 1〉 〈j,mj ∓ 1| Ĵ∓ |j,mj〉
−
〈
j,m′j ± 1

∣∣ Ĵ± |j,mj〉
〈
j,m′j

∣∣ Ĵ∓ ∣∣j,m′j ± 1
〉
]

(8.356)

This says that Â0 has non-vanishing matrix elements only when
m′j = mj . We then get

± 2~
〈
λ′, j,m′j

∣∣ Â0 |λ, j,mj〉

=
〈
λ′, j

∣∣ |A| |λ, j〉± [
∣∣∣〈j,mj ∓ 1| Ĵ∓ |j,mj〉

∣∣∣2 − ∣∣∣〈j,mj ± 1| Ĵ∓ |j,mj〉
∣∣∣2]

= ±2~mj = ±2~
〈
λ′, j,m′j

∣∣ Ĵ0 |λ, j,mj〉 (8.357)

Putting it all together we get〈
λ′, j,m′j

∣∣ Â0 |λ, j,mj〉 =
〈
λ′, j

∣∣ |A| |λ, j〉± 〈j,m′j∣∣ Ĵ0 |j,mj〉
(8.358)

Since no operator has a ± subscript, this also says that〈
λ′, j

∣∣ |A| |λ, j〉+ =
〈
λ′, j

∣∣ |A| |λ, j〉− =
〈
λ′, j

∣∣ |A| |λ, j〉 (8.359)



and we finally have〈
λ′, j,m′j

∣∣ ~Aop |λ, j,mj〉 =
〈
λ′, j

∣∣ |A| |λ, j〉± 〈j,m′j∣∣ ~Jop |j,mj〉
(8.360)

This completes the proof of the Wigner-Eckart theorem.

A very important extension of this theorem is the following
result:〈
λ′, j,m′j

∣∣ ~Aop · ~Jop |λ, j,mj〉 =
〈
λ′, j

∣∣ |A| |λ, j〉 〈j,m′j∣∣ ~J2
op |j,mj〉

= δm′j ,mj~
2j(j + 1)

〈
λ′, j

∣∣ |A| |λ, j〉
(8.361)

which says that the scalar product is diagonal in mj . This result
follows directly from the Wigner-Eckart theorem



〈
λ′, j,m′j

∣∣ ~Aop · ~Jop |λ, j,mj〉 =
∑
k

〈
λ′, j,m′j

∣∣Aop,kJop,k |λ, j,mj〉

=
∑
k

〈
λ′, j,m′j

∣∣Aop,k
∑

m′′j

∣∣λ, j,m′′j 〉 〈λ, j,m′′j ∣∣
 Jop,k |λ, j,mj〉

=
∑

λ′′,j′′,m′′j

∑
k

〈
λ′, j,m′j

∣∣Aop,k ∣∣λ, j,m′′j 〉 〈λ, j,m′′j ∣∣ Jop,k |λ, j,mj〉

=
∑
m′′j

∑
k

〈
λ′, j

∣∣ |A| |λ, j〉 〈λ′, j,m′j∣∣ Jop,k ∣∣λ, j,m′′j 〉
×
〈
λ, j,m′′j

∣∣ Jop,k |λ, j,mj〉

=
〈
λ′, j

∣∣ |A| |λ, j〉∑
k

〈
λ′, j,m′j

∣∣ Jop,k
∑

m′′j

∣∣λ, j,m′′j 〉 〈λ, j,m′′j ∣∣


× Jop,k |λ, j,mj〉
=
〈
λ′, j

∣∣ |A| |λ, j〉 〈j,m′j∣∣ ~J2
op |j,mj〉 = δm′j ,mj~

2j(j + 1)
〈
λ′, j

∣∣ |A| |λ, j〉



Now back to the Zeeman effect. In the low field limit, we need
to evaluate the diagonal matrix elements

〈`sjmj | (L̂z + 2Ŝz) |`sjmj〉 = 〈`sjmj | (Ĵz + Ŝz) |`sjmj〉
= ~mj + 〈`sjmj | Ŝz |`sjmj〉 (8.362)

Now the Wigner-Eckart theorem says that

〈`sjmj | Ŝz |`sjmj〉 = 〈`sj| |S| |`sj〉 〈`sjmj | Ĵz |`sjmj〉
= ~mj 〈`sj| |S| |`sj〉 (8.363)

The scalar product matrix element formula gives

〈`sjmj | ~Sop · ~Jop |`sjmj〉 = 〈`sj| |S| |`sj〉 〈jmj | ~J2
op |jmj〉

= ~2j(j + 1) 〈`sj| |S| |`sj〉 (8.364)

But we also have

( ~Jop − ~Sop)
2 = ~L2

op = ~J2
op + ~S2

op − 2~Sop · ~Jop (8.365)



〈`sjmj | ~Sop · ~Jop |`sjmj〉 =
1

2
〈`sjmj | ( ~J2

op + ~S2
op − ~L2

op) |`sjmj〉

=
1

2
~2(j(j + 1) + s(s+ 1)− `(`+ 1))

(8.366)
or

〈`sj| |S| |`sj〉 =
j(j + 1) + s(s+ 1)− `(`+ 1)

2j(j + 1)
(8.367)

and thus

〈`sjmj | (L̂z + 2Ŝz) |`sjmj〉

= ~mj + ~mj
j(j + 1) + s(s+ 1)− `(`+ 1)

2j(j + 1)

= ~mjgj`s (8.368)

gj`s = 1 +
j(j + 1) + s(s+ 1)− `(`+ 1)

2j(j + 1)
= Lande g - factor

(8.369)



Finally, we have

〈`sjmj | ĤZeeman |`sjmj〉 = µBBmjgj`s (8.370)

and the result we found earlier in the special example case is
now proved in general.

8.6.4 Paschen-Bach Effect

When B is large enough such that ∆EZeeman � ∆Eso, but not
large enough so that the ~B2 term we neglected earlier is
important. We have the so-called Paschen-Bach effect. If the ~B2

term is dominant we have the so-called quadratic Zeeman effect.

The best way to see what is happening for all magnetic field
values is a plot. In CGS Gaussian units

µB = 5.7884× 10−9
eV

gauss
, a0 = 5.2918× 10−8cm, e = 4.80× 10−10esu

e2

a0
= 27.2 eV a = 1.509× 10−5 eV b = 5.7884× 10−9B eV



Using our earlier results we then have

E1′ = − e2

8a0
+

e2

8a0

α2

12
+ 2µBB

E2′ = − e2

8a0
+

1

2
(−(a− b) +

√
9a2 + 2ab+ b2)

E3′ = − e2

8a0
+

1

2
(−(a− b)−

√
9a2 + 2ab+ b2)

E4′ = − e2

8a0
+

1

2
(−(a+ b) +

√
9a2 − 2ab+ b2)

E5′ = − e2

8a0
+

1

2
(−(a+ b)−

√
9a2 − 2ab+ b2)

E6′ = − e2

8a0
+

e2

8a0

α2

12
− 2µBB

E7′ = − e2

8a0
+ µBB

E8′ = − e2

8a0
− µBB



A plot of (
E +

e2

8a0

)
× 105 eV versus loge(B(gauss))

looks like the figure below.

Figure: Hydrogen Atom In a Magnetic Field - Zeeman Effect



This plot for fields below 400 gauss ( loge(B) ≈ 6) shows the
characteristic level structure of the Zeeman effect.

The very large magnetic field Paschen-Bach effect is illustrated
in Figure 8.3 below.

Figure: Hydrogen Atom In a Magnetic Field - Paschen-Bach Effect

Notice the equally-spaced level signature of the Paschen-Bach
effect.



We now define some notation that will be important later as we
study atomic spectra. For small magnetic fields we found that
the approximate state vectors are the |n`sjmj〉 states. The
energy levels including spin-orbit effects are

En = E(0)
n + ∆Eso

= − Ze2

2a0n2

+
Z2α2

∣∣∣E(0)
n

∣∣∣
n`(2`+ 1)(`+ 1)

(1− δ`,0)
(
`δj,`+1/2 − (`+ 1)δj,`−1/2

)
(8.371)

We define a spectroscopic notation to label the energy levels
using the scheme shown below:

|n`sjmj〉 → n2S+1L(symbol)J (8.372)

so that∣∣∣∣21
1

2

3

2
mj

〉
→ 22P 3

2
,

∣∣∣∣21
1

2

1

2
mj

〉
→ 22P 1

2
,

∣∣∣∣20
1

2

1

2
mj

〉
→ 22S 1

2



The L(symbols) are defined by the table below.

L 0 1 2 3

Symbol S P D F

Table: Spectroscopic Labels

The energy level diagram for n = 1 and n = 2 is shown in the
figure below.

Figure: Spin-Orbit Energy Levels



Earlier we calculated the relativistic correction and found that it
was the same order of magnitude as the spin-orbit correction for
hydrogen. We found

∆Erel = −
Z2α2

∣∣∣E(0)
n

∣∣∣
n

(
2

2`+ 1
− 3

4n

)
(8.373)

Combining these two corrections we have

∆Efs = ∆Eso+∆Erel = −
Z2α2

∣∣∣E(0)
n

∣∣∣
n

(
1

j + 1
2

− 3

4n

)
j = `±1

2

(8.374)
which is independent of `. This changes the energy level
structure to that shown in the figure below.



Figure: Fine Structure Energy Levels

The observed spectral lines result from an electron making a
transition between these levels. We will discuss this topic later.

8.6.5 Stark Effect

When a hydrogen atom is placed in an external electric field ~E0,
the potential energy of the proton and the electron is given by



Vdipole(~re, ~rp) = −e~E0 · ~rp + e~E0 · ~re
= eE0(ze − zp) = eE0z (8.375)

where
z = ze − zp = zrelative (8.376)

Therefore, we consider the Hamiltonian

Ĥ = Ĥ0 + Ĥdipole (8.377)

where

Ĥ0 =
~p2op
2m
− e2

(
1

r

)
op

(8.378)

Ĥdipole = eE0zop (8.379)

For weak electric fields, we can apply perturbation theory (we
ignore spin in this calculation). First, we apply perturbation
theory to the n = 1 ground state of the hydrogen atom.

For the ground state, the wave function is ψ100(~r) and the
first-order correction to the energy is



E
(1)
1 = 〈100| eE0zop |100〉

= eE0
∫
d3~rd3~r′ 〈100 | ~r〉 〈~r| zop

∣∣~r′〉 〈~r′ ∣∣ 100
〉

= eE0
∫
d3~rd3~r′zψ∗100(~r)

〈
~r
∣∣ ~r′〉ψ100(~r

′)

= eE0
∫
d3~rd3~r′zψ∗100(~r)δ(~r − ~r′)ψ100(~r

′)

= eE0
∫
d3~rz |ψ100(~r)|2 (8.380)

This equals zero since the integrand is the product of an even
and odd functions. Thus, the first-order correction is zero for
the ground state.

The second-order correction is given by non-degenerate
perturbation theory as

E
(2)
1 =

∞∑
n=2

n−1∑
`=0

∑̀
m=−`

|〈n`m| eE0zop |100〉|2

E
(0)
1 − E

(0)
m

(8.381)



Using z = r cos θ we have

〈n`m| zop |100〉 =

∫
d3~r [Rn`(r)Y

∗
`m(θ, φ)] [r cos θ]R10(r)Y00(θ, φ)

(8.382)
Now

Y00 =
1√
4π

and z =

√
4π

3
Y10 (8.383)

Therefore,

〈n`m| zop |100〉 =

∫
r3drRn`(r)R10(r)

1√
3

∫
dΩY ∗`m(θ, φ)Y10(θ, φ)

(8.384)
Now ∫

dΩY ∗`m(θ, φ)Y10(θ, φ) = δ`,1δm,0 (8.385)

by the orthonormality of the (~L2
op, L̂z) eigenfunctions. Therefore,



〈n`m| zop |100〉 =
1√
3
δ`,1δm,0

∞∫
0

r3drRn1(r)R10(r) (8.386)

and

|〈n10| zop |100〉|2 =
1

3

28n7(n− 1)2n−5

(n+ 1)2n+5
a20 = β(n)a20 (8.387)

Finally,

E
(2)
1 = (eE0a0)2

∞∑
n=2

β(n)
e2

2a0

(
1− 1

n2

) = −2FE20a30 (8.388)

where

F =

∞∑
n=2

n2β(n)

(n2 − 1)
≈ 1.125 (8.389)

Therefore, the ground state exhibits a quadratic Stark effect.



The n = 2 level, which is the first excited state of hydrogen, has
4 degenerate states.

n = 2→ ` = 0→ ψ200 = ψ1

→ ` = 1→ m =


1→ ψ211 = ψ2

0→ ψ210 = ψ3

−1→ ψ21−1 = ψ4

We must use degenerate perturbation theory. We construct the
4× 4 〈eE0zop〉 matrix and then diagonalize it. We have

〈eE0zop〉 = eE0


〈1| zop |1〉 〈1| zop |2〉 〈1| zop |3〉 〈1| zop |4〉
〈2| zop |1〉 〈2| zop |2〉 〈2| zop |3〉 〈2| zop |4〉
〈3| zop |1〉 〈3| zop |2〉 〈3| zop |3〉 〈3| zop |4〉
〈4| zop |1〉 〈4| zop |2〉 〈4| zop |3〉 〈4| zop |4〉


(8.390)

Now z has no ϕ dependence and therefore,

〈j| zop |k〉 = 0 if mj 6= mk (8.391)



Thus,

〈1| zop |2〉 = 0 = 〈1| zop |4〉
〈2| zop |1〉 = 0 = 〈2| zop |3〉 = 〈2| zop |4〉
〈3| zop |2〉 = 0 = 〈3| zop |4〉
〈4| zop |1〉 = 0 = 〈4| zop |2〉 = 〈4| zop |3〉

and the matrix becomes

〈eE0zop〉 = eE0


〈1| zop |1〉 0 〈1| zop |3〉 0

0 〈2| zop |2〉 0 0
〈3| zop |1〉 0 〈3| zop |3〉 0

0 0 0 〈4| zop |4〉


(8.392)

We also have

〈1| zop |1〉 = 0 = 〈2| zop |2〉 = 〈3| zop |3〉 = 〈4| zop |4〉 (8.393)

since these integrands involve the product of even and odd
functions.



Finding out which matrix elements are equal to zero without
actually evaluating the integrals corresponds to finding what are
called selection rules. We will elaborate on the idea of selection
rules in the next section on the Van der Waal’s interaction.

Thus, the matrix finally becomes (after relabeling the rows and
columns)

〈eE0zop〉 = eE0


0 〈1| zop |3〉 0 0

〈3| zop |1〉 0 0 0
0 0 0 0
0 0 0 0

 (8.394)

where

〈1| zop |3〉 = 〈3| zop |1〉 =

∫
ψ200(~r)zψ210(~r)d

3~r = −3eE0a0
(8.395)



Diagonalizing the 2× 2 submatrix gives eigenvalues ±3eE0a0.
The first-order energies and new zero-order wave functions are

ψ211(~r)→ E211 = E
(0)
2 remains degenerate (8.396)

ψ21−1(~r)→ E21−1 = E
(0)
2 remains degenerate (8.397)

ψ(+)(~r) =
1√
2

(ψ200(~r)− ψ210(~r))→ E+ = E
(0)
2 + 3eE0a0

ψ(−)(~r) =
1√
2

(ψ200(~r) + ψ210(~r))→ E− = E
(0)
2 − 3eE0a0

The degeneracy is broken for the m = 0 levels and we see a
linear Stark effect. The linear Stark effect only appears for
degenerate levels.



8.6.6 Van der Waal’s Interaction

We now consider a system consisting of two widely separated
atoms. In particular, we consider the interaction between two
hydrogen atoms, where we treat the two protons as fixed point
charges separated by a vector ~R and we define

~r1 = vector from first proton to its electron
~r2 = vector from second proton to its electron

as shown in Figure 8.6 below.

Figure: Van der Wall’s System



The Hamiltonian is given by

Ĥ = Ĥ0 + V (8.398)

where

Ĥ0 =
~p21,op
2µ
− e

2

r1
+
~p22,op
2µ
− e

2

r2
= 2 non-interacting hydrogen atoms

(8.399)
and

V̂ = rest of the Coulomb interactions
= Vp1p2 + Ve1e2 + Ve1p2 + Ve2p1

= e2

 1

R
+

1∣∣∣~R+ ~r2 − ~r1
∣∣∣ − 1∣∣∣~R+ ~r2

∣∣∣ − 1∣∣∣~R− ~r1∣∣∣
 (8.400)

This is the perturbation potential.



We know the zero-order solution for two non-interacting
hydrogen atoms. It is

zero-order states : |n1`1m1〉 |n2`2m2〉 (8.401)

with

zero-order energies : E(0)
n1n2

= − e2

2a0

(
1

n21
+

1

n22

)
(8.402)

where

Ĥ0 |n1`1m1〉 |n2`2m2〉 = − e2

2a0

(
1

n21
+

1

n22

)
|n1`1m1〉 |n2`2m2〉

(8.403)
This expression for the perturbation potential is too
complicated to calculate. We will need to make an
approximation. We make the reasonable assumption that



R >> r2 and R >> r1 (8.404)

We have two useful mathematical results that we can apply. In
general, we can write

1∣∣∣~R+ ~a
∣∣∣ =

1[
R2 + 2~R · ~a+ a2

]1/2 =
1

R

[
1 +

2~R · ~a
R2

+
a2

R2

]−1/2
(8.405)

and for small x we have

[1 + x]−1/2 ≈ 1− 1

2
x+

3

8
x2 − 5

16
x3 + ...... (8.406)

Using

x =
2~R · ~a
R2

+
a2

R2
(8.407)

we get the general result



1∣∣∣~R+ ~a
∣∣∣ =

1

R

1− 1

2

(
2~R · ~a
R2

+
a2

R2

)
+

3

8

(
2~R · ~a
R2

+
a2

R2

)2

− .....


=

1

R

1− ~a ·
~R

R2
− 1

2

a2

R2
+

3

2

(
~a · ~R

)2
R4

+ .....

 (8.408)

Therefore, we have

1∣∣∣~R+ ~r2

∣∣∣ =
1

R
− ~r2 · ~R

R3
− 1

2

r22
R3

+
3

2

(
~r2 · ~R

)2
R5

(8.409)

1∣∣∣~R− ~r1∣∣∣ =
1

R
+
~r1 · ~R
R3

− 1

2

r21
R3

+
3

2

(
~r1 · ~R

)2
R5

(8.410)



1∣∣∣~R+ ~r2 − ~r1
∣∣∣ =

1

R
− (~r2 − ~r1) · ~R

R2
− 1

2

(~r2 − ~r1)2

R2
+

3

2

(
(~r2 − ~r1) · ~R

)2
R4

=
1

R
− ~r2 · ~R

R3
+
~r1 · ~R
R3

− 1

2

r21
R3
− 1

2

r22
R3

+
~r1 · ~r2
R3

+
3

2

(
~r2 · ~R

)2
R5

+
3

2

(
~r1 · ~R

)2
R5

− 3

(
(~r1 · ~R)(~r2 · ~R

)
R5

(8.411)

Putting all this together we get

V =
e2

R3

~r1 · ~r2 − 3

(
(~r1 · ~R)(~r2 · ~R

)
R2

 (8.412)

Physically, this says that for large separations, the interaction
between the atoms is the same as that between two dipoles e~r1
and e~r2 separated by ~R.



To simplify the algebra, we now choose the vector ~R to lie along
the z−axis

~R = Rẑ (8.413)

which gives

V =
e2

R3

[
(x1x2 + y1y2 + z1z2)− 3

z1z2R
2

R2

]
=

e2

R3
(x1x2 + y1y2 − 2z1z2) (8.414)

We now specialize to consider the case n1 = n2 = 2. When
n = 2, there are 4 electron states for each atom

` = 0,m = 0

` = 1,m = 1, 0,−1

Therefore, there are 16 = (4× 4) degenerate unperturbed
zero-order states, each with energy

E0 = − e2

8a0
− e2

8a0
= − e2

4a0
(8.415)



We use degenerate perturbation theory. To carry out degenerate
perturbation theory, we must construct the 16× 16 matrix
representation of 〈V̂ 〉 and diagonalize it to find the energies
corrected to first-order.

The typical matrix element is (leaving off the n labels)

〈`1m1`2m2| V̂ |`1m1`2m2〉

=
e2

R3
〈`1m1| x̂1 |`1m1〉 〈`2m2| x̂2 |`2m2〉

+
e2

R3
〈`1m1| ŷ1 |`1m1〉 〈`2m2| ŷ2 |`2m2〉

− 2
e2

R3
〈`1m1| ẑ1 |`1m1〉 〈`2m2| ẑ2 |`2m2〉 (8.416)



We have

x = r sin θ cosφ = −r
√

2π

3
(Y1,1 − Y1,−1) (8.417)

y = r sin θ sinφ = +ir

√
2π

3
(Y1,1 + Y1,−1) (8.416)

z = r cos θ = r

√
4π

3
Y10 (8.419)

and



〈n`m|x
∣∣n`′m′〉

= −
√

2π

3

 ∞∫
0

r3Rn`(r)Rn`′(r)dr

[∫ dΩY ∗`m(Y1,1 − Y1,−1)Y`′m′
]

(8.420)

〈n`m| y
∣∣n`′m′〉

= i

√
2π

3

 ∞∫
0

r3Rn`(r)Rn`′(r)dr

[∫ dΩY ∗`m(Y1,1 + Y1,−1)Y`′m′

]
(8.421)

〈n`m| z
∣∣n`′m′〉

=

√
4π

3

 ∞∫
0

r3Rn`(r)Rn`′(r)dr

[∫ dΩY ∗`mY10Y`′m′

]
(8.422)



Now let us return to the subject of selection rules.

We will just begin the discussion here and then elaborate and
finish it later when we cover the topic of time-dependent
perturbation theory.

Consider the integrals involving the spherical harmonics above.
We have∫

dΩY ∗`mY1m′′Y`′m′ = 0unless

{
`+ `′ + 1 = even
m = m′ +m′′

(8.423)

These rules follow from doing the integrations over the θ and ϕ
variables.

In particular, when the perturbation involves x, y, or z we have

for x and y m = m′ ± 1

for z m = m′



which is the so-called
∆m = ±1, 0 (8.424)

selection rule for this type of perturbation.

In addition, we have the

∆` = ±1 (8.425)

selection rule for this type of perturbation.

These two rules will enable us to say many matrix elements are
equal to zero by inspection.

We can derive two more very useful selection rules as follows.
We know that [

L̂i, rj

]
= i~εijkrk (8.426)

This allows us to write (after much algebra)



[
L̂z, V̂

]
=
[
(L̂1z + L̂2z), V̂

]
=
[
L̂1z, V̂

]
+
[
L̂2z, V̂

]
=

e2

R3

[
L̂1z, (x1x2 + y1y2 − 2z1z2)

]
+
e2

R3

[
L̂2z, (x1x2 + y1y2 − 2z1z2)

]
= 0

This implies that
[
L̂z, Ĥ

]
= 0 or that the z−component of the

total angular momentum of the electrons is not changed by this
perturbation (it is conserved).

This gives the selection rule

m1 +m2 = m′1 +m′2 (8.427)

Summarizing the selection rules we have



`1 + `′1 + 1 = even ( = reason b for a zero)
`2 + `′2 + 1 = even ( = reason c for a zero)
m1 −m′1 = ±1, 0 ( = reason d for a zero)
m2 −m′2 = ±1, 0 ( = reason d for a zero)
m1 +m2 = m′1 +m′2 ( = reason a for a zero)

and we have also given reason labels for each.

The unperturbed states are (using the format |`1m1〉 |`2m2〉 are

|1〉 = |00〉 |00〉 , |2〉 = |00〉 |11〉 , |3〉 = |00〉 |10〉 , |4〉 = |00〉 |1,−1〉
|5〉 = |11〉 |00〉 , |6〉 = |11〉 |11〉 , |7〉 = |11〉 |10〉 , |8〉 = |11〉 |1,−1〉
|9〉 = |10〉 |00〉 , |10〉 = |10〉 |11〉 , |11〉 = |10〉 |10〉 , |12〉 = |10〉 |1,−1〉
|13〉 = |1,−1〉 |00〉 , |14〉 = |1,−1〉 |11〉 , |15〉 = |1,−1〉 |10〉 ,
|16〉 = |1,−1〉 |1,−1〉



The 〈V̂ 〉 matrix looks like (using labels (VALUE) or
(0=reason)) and labeling the rows/columns in order as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure: 〈V̂ 〉 matrix entries

There are only 12 nonzero elements(out of 256) and because the
matrix is Hermitian we only have 6 to calculate (one side of the
diagonal). It should now be clear why finding the relevant
selection rules is so important!!!



The 10 nonzero elements are given by the expressions

A = C =
e2

R3
〈200| 〈200| (x1x2 + y1y2) |211〉 |21,−1〉 (8.428)

B = E = −2
e2

R3
〈200| 〈200| z1z2 |210〉 |21, 0〉 (8.429)

D =
e2

R3
〈200| 〈211| (x1x2 + y1y2) |211〉 |200〉 (8.430)

F =
e2

R3
〈200| 〈21,−1| (x1x2 + y1y2) |21,−1〉 |200〉 (8.431)

If we define

α =

√
8π

3

∞∫
0

r3R20R21dr (8.432)

we have



we have

〈200|x |211〉 =
α

2
= −〈200|x |21,−1〉 (8.433)

〈200| y |211〉 = i
α

2
= 〈200|x |21,−1〉 (8.434)

〈200| z |211〉 =

√
2

2
α (8.435)

and

A = C =
E

2
=
B

2
= −D = −F = −1

2
α2 e

2

R3
(8.436)

Now we rearrange the row/column labels(the original choice was
arbitrary) to create a Jordan canonical form with blocks on the
diagonal. We choose

1 8 11 14 2 5 3 9 4 13 6 7 10 12 15 16



0 A 2A A 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -A 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -A 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2A 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2A 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -A 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -A 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Jordan Canonical Form



The is called the block-diagonalized form. We have one 4× 4
and three 2× 2 matrices to diagonalize. We get the eigenvalues

4× 4→ 0, 0,±
√

6A , 2× 2→ ±A
2× 2→ ±2A , 2× 2→ ±A

Therefore, the energies correct to first-order are

E =



E0 +
√

6A degeneracy = 1

E0 + 2A degeneracy = 1

E0 +A degeneracy = 2

E0 degeneracy = 8

E0 −A degeneracy = 2

E0 − 2A degeneracy = 1

E0 −
√

6A degeneracy = 1

(8.437)

That was a real problem!



8.7 Variational Methods

All perturbation methods rely on our ability to make the
separation Ĥ = Ĥ0 + V̂ where Ĥ0 is solvable exactly and V̂ is a
small correction. The Rayleigh-Ritz variational method is not
subject to any such restrictions. This method is based on the
following mathematical results.

We can always write

Ĥ = ÎĤ =
∑
N

|N〉 〈N | Ĥ =
∑
N

En |N〉 〈N | (8.438)

where
Ĥ |N〉 = En |N〉 (8.439)

This is just the spectral decomposition of Ĥ in terms of its
eigenvectors and eigenvalues. Now, if we choose some arbitrary
state vector |ψ〉 (called a trial vector), then have



〈ψ| Ĥ |ψ〉 =
∑
N

En 〈ψ | N〉 〈N | ψ〉

≥
∑
N

E0 〈ψ | N〉 〈N | ψ〉 = E0

∑
N

〈ψ | N〉 〈N | ψ〉

≥ E0 〈ψ|

(∑
N

|N〉 〈N |

)
|ψ〉 = E0 〈ψ| Î |ψ〉 = E0 〈ψ | ψ〉

(8.440)

or
〈ψ| Ĥ |ψ〉
〈ψ | ψ〉

≥ E0 (8.441)

for any choice of the trial vector |ψ〉, where E0 is the ground
state energy (the lowest energy). Equality holds only if |ψ〉 is
the true ground state vector. This result says that

〈ψ| Ĥ |ψ〉
〈ψ | ψ〉

is an upper bound for E0 (8.442)



Procedure

1. Pick a trial vector |ψ〉 that contains unknown parameters
{αk}

2. Calculate
〈ψ| Ĥ |ψ〉
〈ψ | ψ〉

= E0 ({αk}) (8.443)

3. Since E0 ({αk}) is an upper bound, we then minimize it
with respect to all of the parameters {αk}. This gives a
least upper bound for that choice of the functional form for
the trial vector.

4. We perform the minimization by setting

∂E0

∂αk
= 0 for all k (8.444)

5. The more complex the trial vector, i.e., the more
parameters we incorporate allows us to better approximate
the true functional form of the ground state vector and we
will get closer and closer to the true energy value.



What about states other than the ground state? If the ground
state has different symmetry properties than the first excited
state, i.e.,

ground state → ` = 0→ contains Y00
1st excited state → ` = 1→ contains Y1m

then if we choose a trial vector with the symmetry of an ` = 0
state we obtain an approximation to the ground state energy. If,
however, we choose a trial vector with the symmetry of an ` = 1
state, then we obtain an approximation to the first-excited state
energy and so on.

In other words, the variational method always gives the least
upper bound for the energy of the state with the same
symmetry as the trial vector.



Example

Let us choose the harmonic oscillator Hamiltonian

Ĥ = − ~2

2m

d2

dx2
+

1

2
kx2 (8.445)

and a trial wave function

ψ(x, a) =

{
(a2 − x2)2 |x| < a

0 |x| ≥ a
(8.4446)

where a is an unknown parameter. The variational principle
says that

〈ψ(a)| Ĥ |ψ(a)〉
〈ψ(a) | ψ(a)〉

= E0(a) ≥ E0 = true ground state energy

We get a best value for this choice of trial function by
minimizing with respect to a using

dE0(a)

da
= 0 (8.447)



Now we need to calculate the integrals. We have for the
denominator (the normalization integral)

〈ψ(a) | ψ(a)〉 =

a∫
−a

ψ2(x, a)dx =

a∫
−a

(a2 − x2)4dx

= 2

a∫
0

(a2 − x2)4dx =
336

315
a9 (8.448)

and for the numerator

〈ψ(a)| Ĥ |ψ(a)〉 = − ~2

2m
2

a∫
0

ψ(x, a)
d2ψ(x, a)

dx2
dx+

1

2
k2

a∫
0

ψ2(x, a)x2dx

= − ~2

2m

(
−80

21
a7
)

+
1

2
k

(
336

3465
a11
)

(8.449)



Therefore,

E0(a) = 1.786
~2

ma2
+ 0.045ka2 (8.450)

The minimum condition gives

a2 = 6.300

(
~2

mk

)1/2

(8.451)

which then says that
0.566~ω ≥ E0 (8.452)

The true value is 0.500~ω. This is an excellent result
considering that the trial function does not look at all like the
correct ground-state wave function (it is a Gaussian function).
This points out clearly how powerful the variational technique
can be for many problems.



8.8, 2nd-Order Degenerate Perturbation Theory

Suppose that the first order correction in perturbation theory is
zero for some degenerate states so that the states remain
degenerate. In this case, second-order degenerate perturbation
theory must be applied. This is complex. We follow the
derivation in Schiff (using our notation).

We assume that

εm = εk , Vkm = 0 and Vkk = Vmm (8.453)

so that the degeneracy is not removed in first order.

We assume the equations (to second order)



Ĥ = Ĥ0 + V̂ = Ĥ0 + gÛ (8.454)

|M〉 = am |m〉+ ak |k〉+ g
∑
l 6=m,k

a
(1)
l |l〉+ g2

∑
l 6=m,k

a
(2)
l |l〉

(8.455)

|K〉 = bm |m〉+ bk |k〉+ g
∑
l 6=m,k

b
(1)
l |l〉+ g2

∑
l 6=m,k

b
(2)
l |l〉 (8.456)

|N〉 = |n〉+ g
∑
l 6=m,k

a
(1)
nl |l〉+ g2

∑
l 6=m,k

a
(2)
nl |l〉 , n 6= m, k

(8.457)

Ep = εp + gE(1)
p + g2E(2)

p (8.458)

Ĥ |M〉 = (Ĥ0 + V̂ ) |M〉 = Em |M〉 = (εm + gE(1)
m + g2E(2)

m ) |M〉
(8.459)

where the degenerate states are labeled by k, m and we assume
the degenerate zero-order states are linear combinations of the
two zero order degenerate states as shown.



A very important point is being made here.

If the system remains degenerate after first-order correction,
then one must redevelop the equations for degenerate
perturbation theory, using the correct zero order state vectors,
i.e., linear combinations of the degenerate states. Even in the
special case where the degenerate basis is uncoupled, i.e.,

〈k|V |m〉 = Vkm = 0 (8.460)

we must not use non-degenerate perturbation theory, as one
might do if many textbooks are to be believed.

Remember that the primary object of degenerate perturbation
theory is not only to eliminate the divergent terms, but to
determine the appropriate linear combinations to use for
zero-order state vectors. If we start with the wrong linear
combinations, then we would have a discontinuous change of
states in the limit of vanishing interactions, which says that the
perturbation expansion is not valid.



We then have

gamU |m〉+ gakU |k〉+ g
∑
l 6=m,k

a
(1)
l εl |l〉

+ g2
∑
l 6=m,k

a
(2)
l εl |l〉+ g2

∑
l 6=m,k

a
(1)
l U |l〉

=
(
gE(1)

m + g2E(2)
m

)
(am |m〉+ ak |k〉) + g

∑
l 6=m,k

a
(1)
l εm |l〉

+ g2
∑
l 6=m,k

a
(2)
l εm |l〉+ g2

∑
l 6=m,k

a
(1)
l E(1)

m |l〉

Applying the linear functional 〈m| we get

gamUmm + g2
∑
l 6=m,k

a
(1)
l Uml = gE(1)

m am + g2E(2)
m am (8.461)



Applying the linear functional 〈k| we get

gakUkk + g2
∑
l 6=m,k

a
(1)
l Ukl = gE(1)

m ak + g2E(2)
m ak (8.462)

Applying the linear functional 〈n| we get

gamUnm + gakUnk + gεna
(1)
n + g2εna

(2)
n + g2

∑
l 6=m,k

a
(1)
l Unl

= gεma
(1)
m + g2εma

(2)
m + g2E(1)

m a(2)m (8.463)

The first-order terms in (10.462) and (10.463) give the expected
result

E(1)
m = Umm = Ukk (8.464)

The second-order terms in (8.462) and (8.463) give (equation
(8.465))∑

l 6=m,k
a
(1)
l Uml = E(2)

m am ,
∑
l 6=m,k

a
(1)
l Ukl = E(2)

m ak (8.465)



The first-order terms in (8.464) give an expression for a(1)l when
n = l 6= m, k (8.467)

a
(1)
l (εm − εl) = amUlm + akUlk (8.466)

Substituting (8.467) into (8.466) we get a pair of homogeneous
algebraic equations for am and ak.

These equations have a nonvanishing solution if and only if the
determinant of the coefficients of am and ak is zero or

det


∑

l 6=m,k

UmlUlm
εm−εl − E

(2)
m

∑
l 6=m,k

UmlUlk
εm−εl∑

l 6=m,k

UklUlm
εm−εl

∑
l 6=m,k

UklUlk
εm−εl − E

(2)
m

 = 0 (8.467)

or



det


∑

l 6=m,k

VmlVlm
εm−εl − g

2E
(2)
m

∑
l 6=m,k

VmlVlk
εm−εl∑

l 6=m,k

VklVlm
εm−εl

∑
l 6=m,k

VklVlk
εm−εl − g

2E
(2)
m

 = 0

(8.468)
The two roots of this equation are g2E(2)

m and g2E(2)
k and the

two pairs of solutions of (10.466) are am,ak and bm,bk. We thus
obtain perturbed energy levels in which the degeneracy has been
removed in second order and we also find the correct linear
combinations of the unperturbed degenerate state vectors |m〉
and |k〉.

Example

This is a tricky problem because the degeneracy between the
first and second state is not removed in first order degenerate
perturbation theory.



A system that has three unperturbed states can be represented
by the perturbed Hamiltonian matrix

Ĥ = Ĥ0 + V̂

=

 E1 0 0
0 E1 0
0 0 E2

+

 0 0 a
0 0 b
a∗ b∗ 0

 =

 E1 0 a
0 E1 b
a∗ b∗ E2


(8.469)

where E2 > E1. The quantities a and b are to be regarded as
perturbations that are of same order and are small compared to
E2 − E1. The procedure is:



1. Diagonalize the matrix to find the exact eigenvalues.
2. Use second-order nondegenerate perturbation theory to

calculate the perturbed energies. Is this procedure correct?
3. Use second-order degenerate perturbation theory to

calculate the perturbed energies.
4. Compare the three results obtained.

Solution - We have

Ĥ = Ĥ0 + V̂

=

 E1 0 0
0 E1 0
0 0 E2

+

 0 0 a
0 0 b
a∗ b∗ 0

 =

 E1 0 a
0 E1 b
a∗ b∗ E2


with E2 > E1 and E2 − E1 � a = b.



1. For an exact solution we need to find the eigenvalues of E1 0 a
0 E1 b
a∗ b∗ E2

 (8.470)

This leads to the characteristic equation

(E1 − E)(E1 − E)(E2 − E)− (E1 − E) |b|2 − (E1 − E) |a|2 = 0
(8.471)

This says that one of the eigenvalues is E = E1 and the
remaining quadratic equation is

E2 − (E1 + E2)E + (E1E2 − |b|2 − |a|2) = 0 (8.472)

or the other two eigenvalues are

E =
1

2

(
(E1 + E2)±

√
(E1 + E2)

2 − 4(E1E2 − |b|2 − |a|2)
)

(8.473)



The exact energy values are

E1

1

2

(
(E1 + E2) +

√
(E1 + E2)

2 − 4(E1E2 − |b|2 − |a|2)
)

≈ E1 +
|a|2 + |b|2

E1 − E2

E =
1

2

(
(E1 + E2)−

√
(E1 + E2)

2 − 4(E1E2 − |b|2 − |a|2)
)

≈ E2 −
|a|2 + |b|2

E1 − E2



2. Apply non-degenerate second-order perturbation theory. The
unperturbed system has

Ĥ0 =

 E1 0 0
0 E1 0
0 0 E2

 (8.474)

Since this is diagonal we have

E
(0)
1 = E1 = E

(0)
2 , E

(0)
3 = E2 (levels 1 and 2 are degenerate)

and unperturbed eigenvectors

|1〉 =

 1
0
0

 , |2〉 =

 0
1
0

 , |3〉 =

 0
0
1

 (8.475)

The perturbation is (in the unperturbed basis)

V̂ =

 0 0 a
0 0 b
a∗ b∗ 0

 (8.476)

Since the diagonal matrix elements of the perturbation are zero
we have



E
(1)
1 = E

(1)
2 = E

(1)
3 = 0 or no first - order corrections (8.477)

Thus, levels 1 and 2 remain degenerate.

If we formally (and incorrectly) apply non-degenerate
second-order perturbation theory to this system we get

E(2)
n =

∑
m6=n

|Vmn|2

E
(0)
n − E(0)

m

(8.478)

Now V12 = 0,V13 = a,V23 = b and so we get

E
(2)
1 =

∑
m 6=1

|Vm1|2

E
(0)
1 − E

(0)
m

=
0

0
+

|V13|2

E
(0)
1 − E

(0)
3

?
=

|a|2

E1 − E2
incorrect because of 0/0 term



E
(2)
2 =

∑
m 6=2

|Vm2|2

E
(0)
2 − E

(0)
m

=
0

0
+

|V23|2

E
(0)
2 − E

(0)
3

?
=

|b|2

E1 − E2
incorrect because of 0/0 term

E
(2)
3 =

∑
m 6=3

|Vm3|2

E
(0)
3 − E

(0)
m

=
|V13|2

E
(0)
3 − E

(0)
1

+
|V23|2

E
(0)
3 − E

(0)
2

=
|a|2 + |b|2

E2 − E1

which agrees with the exact solution.



3. Now we apply second-order degenerate perturbation theory
for the two degenerate levels. We have

det

∣∣∣∣∣∣∣
|V13|2

E
(0)
1 −E

(0)
3

− E(2) V13V32

E
(0)
1 −E

(0)
3

V23V31

E
(0)
2 −E

(0)
3

|V23|2

E
(0)
2 −E

(0)
3

− E(2)

∣∣∣∣∣∣∣ (8.479)

= det

∣∣∣∣∣ |a|2
E1−E2

− E(2) ab∗

E1−E2

ba∗

E1−E2

|b|2
E1−E2

− E(2)

∣∣∣∣∣ = 0

(E(2))2 − |a|
2 + |b|2

E1 − E2
E(2) +

|a|2 |b|2

(E1 − E2)2
− |a|2 |b|2

(E1 − E2)2

= E(2)

(
E(2) − |a|

2 + |b|2

E1 − E2

)
= 0 (8.480)

corresponding to

E(2) = 0

E(2) =
|a|2 + |b|2

E1 − E2



so that to second-order we have

E1

E1 +
|a|2 + |b|2

E1 − E2

E2 −
|a|2 + |b|2

E1 − E2

which agrees with the exact solution.


