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Building Up Calculations

Using Previous Results

In doing calculations, you will often need to use previous results that you have got. In Mathemat -

ica, % always stands for your last result. 

% the last result generated

%% the next-to-last result

%% … % Hk timesL the kth previous result

% n the result on output line Out@nD (to be used with care)

Ways to refer to your previous results. 

Here is the first result. 

In[1]:= 77^2

Out[1]= 5929

This adds 1 to the last result. 

In[2]:= % + 1

Out[2]= 5930

This uses both the last result, and the result before that. 

In[3]:= 3 % + %^2 + %%

Out[3]= 35188619

You will have noticed that all the input and output lines in Mathematica are numbered. You can

use these numbers to refer to previous results. 

This adds the results on lines 2 and 3 above. 

In[4]:= %2 + %3

Out[4]= 35194549

If  you  use  a  text-based  interface  to  Mathematica,  then  successive  input  and  output  lines  will

always appear in order. However, if you use a notebook interface to Mathematica, as discussed

in "Notebook Interfaces", then successive input and output lines need not appear in order. You

can for example "scroll  back" and insert your next calculation wherever you want in the note-

book. You should realize that % is always defined to be the last result that Mathematica gener-

ated. This may or may not be the result that appears immediately above your present position

in  the  notebook.  With  a  notebook  interface,  the  only  way  to  tell  when  a  particular  result  was

generated  is  to  look  at  the  Out@nD  label  that  it  has.  Because  you  can  insert  and  delete  any-

where in a notebook, the textual ordering of results in a notebook need have no relation to the

order in which the results were generated. 
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always appear in order. However, if you use a notebook interface to Mathematica, as discussed

in "Notebook Interfaces", then successive input and output lines need not appear in order. You

can for example "scroll  back" and insert your next calculation wherever you want in the note-

book. You should realize that % is always defined to be the last result that Mathematica gener-

ated. This may or may not be the result that appears immediately above your present position

in  the  notebook.  With  a  notebook  interface,  the  only  way  to  tell  when  a  particular  result  was

generated  is  to  look  at  the  Out@nD  label  that  it  has.  Because  you  can  insert  and  delete  any-

where in a notebook, the textual ordering of results in a notebook need have no relation to the

order in which the results were generated. 

Defining Variables

When  you  do  long  calculations,  it  is  often  convenient  to  give  names  to  your  intermediate

results.  Just  as  in  standard mathematics,  or  in  other  computer  languages,  you can do this  by

introducing named variables. 

This sets the value of the variable x to be 5. 

In[1]:= x = 5

Out[1]= 5

Whenever x appears, Mathematica now replaces it with the value 5. 

In[2]:= x^2

Out[2]= 25

This assigns a new value to x. 

In[3]:= x = 7 + 4

Out[3]= 11

pi is set to be the numerical value of p to 40-digit accuracy. 

In[4]:= pi = N@Pi, 40D

Out[4]= 3.141592653589793238462643383279502884197
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Here is the value you defined for pi. 

In[5]:= pi

Out[5]= 3.141592653589793238462643383279502884197

This gives the numerical value of p2, to the same accuracy as pi. 

In[6]:= pi^2

Out[6]= 9.86960440108935861883449099987615113531

x=value assign a value to the variable x

x=y=value assign a value to both x and y

x=.  or Clear@xD remove any value assigned to x

Assigning values to variables. 

It  is  very  important  to  realize  that  values  you  assign  to  variables  are  permanent.  Once  you

have assigned a value to a particular variable, the value will be kept until you explicitly remove

it. The value will, of course, disappear if you start a whole new Mathematica session. 

Forgetting  about  definitions  you  made  earlier  is  the  single  most  common  cause  of  mistakes

when  using  Mathematica.  If  you  set  x = 5,  Mathematica  assumes  that  you  always  want  x  to

have the value 5, until  or unless you explicitly tell  it otherwise. To avoid mistakes, you should

remove values you have defined as soon as you have finished using them. 

† Remove values you assign to variables as soon as you finish using them.

A useful principle in using Mathematica. 

The  variables  you  define  can  have  almost  any  name.  There  is  no  limit  on  the  length  of  their

names.  One  constraint,  however,  is  that  variable  names  can  never  start  with  numbers.  For

example, x2 could be a variable, but 2 x means 2 * x.

Mathematica  uses  both  uppercase  and  lowercase  letters.  There  is  a  convention  that  built-in

Mathematica  objects  always  have  names  starting  with  uppercase  (capital)  letters.  To  avoid

confusion,  you  should  always  choose  names  for  your  own  variables  that  start  with  lowercase

letters.
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aaaaa a variable name containing only lowercase letters

Aaaaa a built-in object whose name begins with a capital letter

Naming conventions. 

You can type formulas involving variables in Mathematica almost exactly as you would in mathe-

matics. There are a few important points to watch, however. 

† x y means x times y.

† xy with no space is the variable with name xy.

† 5 x means 5 times x.

† x^2 y means Hx^2L y, not x^H2 yL.

Some points to watch when using variables in Mathematica. 

Values for Symbols

When Mathematica transforms an expression such as x + x into 2 x, it is treating the variable x

in  a  purely  symbolic  or  formal  fashion.  In  such  cases,  x  is  a  symbol  which  can  stand  for  any

expression. 

Often,  however,  you  need  to  replace  a  symbol  like  x  with  a  definite  “value”.  Sometimes  this

value will be a number; often it will be another expression. 

To take an expression such as 1 + 2 x and replace the symbol x that appears in it with a definite

value, you can create a Mathematica transformation rule, and then apply this rule to the expres-

sion. To replace x with the value 3, you would create the transformation rule x -> 3. You must

type ->  as a pair  of  characters,  with no space in between. You can think of  x -> 3  as being a

rule in which “x goes to 3”. 

To apply a transformation rule to a particular Mathematica expression, you type expr ê. rule. The

“replacement operator” ê. is typed as a pair of characters, with no space in between. 

This uses the transformation rule x -> 3 in the expression 1 + 2 x. 

In[1]:= 1 + 2 x ê. x -> 3

Out[1]= 7
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You can replace x with any expression. Here every occurrence of x is replaced by 2 - y. 

In[2]:= 1 + x + x^2 ê. x -> 2 - y

Out[2]= 3 + H2 - yL2 - y

Here is a transformation rule. Mathematica treats it like any other symbolic expression. 

In[3]:= x -> 3 + y

Out[3]= x Ø 3 + y

This applies the transformation rule on the previous line to the expression x^2 - 9. 

In[4]:= x^2 - 9 ê. %

Out[4]= -9 + H3 + yL2

exprê.x->value replace x by value in the expression expr

exprê.8x->xval,y->yval< perform several replacements

Replacing symbols by values in expressions. 

You can apply rules together by putting the rules in a list. 

In[5]:= Hx + yL Hx - yL^2 ê. 8x -> 3, y -> 1 - a<

Out[5]= H4 - aL H2 + aL2

The  replacement  operator  ê.  allows  you  to  apply  transformation  rules  to  a  particular  expres-

sion. Sometimes, however, you will  want to define transformation rules that should always  be

applied. For example, you might want to replace x with 3 whenever x occurs. 

As discussed in "Defining Variables", you can do this by assigning the value 3 to x using x = 3.

Once  you  have  made  the  assignment  x = 3,  x  will  always  be  replaced  by  3,  whenever  it

appears. 

This assigns the value 3 to x. 

In[6]:= x = 3

Out[6]= 3

Now x will automatically be replaced by 3 wherever it appears. 

In[7]:= x^2 - 1

Out[7]= 8

This assigns the expression 1 + a to be the value of x. 
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This assigns the expression 1 + a to be the value of x. 

In[8]:= x = 1 + a

Out[8]= 1 + a

Now x is replaced by 1 + a. 

In[9]:= x^2 - 1

Out[9]= -1 + H1 + aL2

You  can  define  the  value  of  a  symbol  to  be  any  expression,  not  just  a  number.  You  should

realize that once you have given such a definition, the definition will continue to be used when-

ever the symbol appears, until you explicitly change or remove the definition. For most people,

forgetting to remove values you have assigned to symbols is the single most common source of

mistakes in using Mathematica. 

x=value define a value for x which will always be used

x=. remove any value defined for x

Assigning values to symbols. 

The symbol x still has the value you assigned to it. 

In[10]:= x + 5 - 2 x

Out[10]= 6 + a - 2 H1 + aL

This removes the value you assigned to x. 

In[11]:= x =.

Now x has no value defined, so it can be used as a purely symbolic variable. 

In[12]:= x + 5 - 2 x

Out[12]= 5 - x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the

flexibility  of  Mathematica  comes from being  able  to  mix  these  purposes  at  will.  However,  you

need to  keep some of  the different  uses of  x  straight  in  order  to  avoid  making mistakes.  The

most important distinction is between the use of x as a name for another expression, and as a

symbolic variable that stands only for itself. 

Traditional programming languages that do not support symbolic computation allow variables to

be  used  only  as  names  for  objects,  typically  numbers,  that  have  been  assigned  as  values  for

them.  In  Mathematica,  however,  x  can  also  be  treated  as  a  purely  formal  variable,  to  which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable. 
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Traditional programming languages that do not support symbolic computation allow variables to

be  used  only  as  names  for  objects,  typically  numbers,  that  have  been  assigned  as  values  for

them.  In  Mathematica,  however,  x  can  also  be  treated  as  a  purely  formal  variable,  to  which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable. 

You should understand that explicit definitions such as x = 3 have a global effect. On the other

hand, a replacement such as expr ê. x -> 3 affects only the specific expression expr. It is usually

much  easier  to  keep  things  straight  if  you  avoid  using  explicit  definitions  except  when  abso-

lutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to

expressions in which you want to do replacements, or to rules that you want to use to do the

replacements. 

This assigns a value to the symbol t. 

In[13]:= t = 1 + x^2

Out[13]= 1 + x2

This finds the value of t, and then replaces x by 2 in it. 

In[14]:= t ê. x -> 2

Out[14]= 5

This finds the value of t for a different value of x. 

In[15]:= t ê. x -> 5 a

Out[15]= 1 + 25 a2

This finds the value of t when x is replaced by Pi, and then evaluates the result numerically. 

In[16]:= t ê. x -> Pi êê N

Out[16]= 10.8696
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The Four Kinds of Bracketing in Mathematica

There  are  four  kinds  of  bracketing  used  in  Mathematica.  Each  kind  of  bracketing  has  a  very

different meaning. It is important that you remember all of them. 

HtermL parentheses for grouping

f@xD square brackets for functions

8a,b,c< curly braces for lists

v@@iDD double brackets for indexing (Part@v, iD)

The four kinds of bracketing in Mathematica. 

When the expressions  you type in  are  complicated,  it  is  often a  good idea to  put  extra  space

inside  each  set  of  brackets.  This  makes  it  somewhat  easier  for  you  to  see  matching  pairs  of

brackets. v@@ 8a, b< DD is, for example, easier to recognize than v@@8a, b<DD. 

Sequences of Operations

In  doing  a  calculation  with  Mathematica,  you  usually  go  through  a  sequence  of  steps.  If  you

want to, you can do each step on a separate line. Often, however, you will find it convenient to

put several steps on the same line. You can do this simply by separating the pieces of input you

want to give with semicolons. 

expr1;expr2;expr3 do several operations, and give the result of the last one

expr1;expr2; do the operations, but print no output

Ways to do sequences of operations in Mathematica. 

This does three operations on the same line. The result is the result from the last operation. 

In[1]:= x = 4; y = 6; z = y + 6

Out[1]= 12

If you end your input with a semicolon, it is as if you are giving a sequence of operations, with

an “empty” one at the end. This has the effect of making Mathematica perform the operations

you specify, but display no output. 
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expr; do an operation, but display no output

Inhibiting output. 

Putting a semicolon at the end of the line tells Mathematica to show no output. 

In[2]:= x = 67 - 5;

You can still use % to get the output that would have been shown. 

In[3]:= %

Out[3]= 62
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Lists

Making Lists of Objects

In doing calculations, it  is often convenient to collect together several objects, and treat them

as a single entity.  Lists  give you a way to make collections of objects in Mathematica.  As you

will see later, lists are very important and general structures in Mathematica. 

A  list  such  as  83, 5, 1<  is  a  collection  of  three  objects.  But  in  many ways,  you  can  treat  the

whole list as a single object. You can, for example, do arithmetic on the whole list at once, or

assign the whole list to be the value of a variable. 

Here is a list of three numbers. 

In[1]:= 83, 5, 1<

Out[1]= 83, 5, 1<

This squares each number in the list, and adds 1 to it. 

In[2]:= 83, 5, 1<^2 + 1

Out[2]= 810, 26, 2<

This takes differences between corresponding elements in the two lists. The lists must be the 
same length. 

In[3]:= 86, 7, 8< - 83.5, 4, 2.5<

Out[3]= 82.5, 3, 5.5<

The value of % is the whole list. 

In[4]:= %

Out[4]= 82.5, 3, 5.5<

You can apply any of the mathematical functions in "Some Mathematical Functions" to whole 
lists. 

In[5]:= Exp@%D êê N

Out[5]= 812.1825, 20.0855, 244.692<

Just as you can set variables to be numbers, so also you can set them to be lists. 

This assigns v to be a list. 
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This assigns v to be a list. 

In[6]:= v = 82, 4, 3.1<

Out[6]= 82, 4, 3.1<

Wherever v appears, it is replaced by the list. 

In[7]:= v ê Hv - 1L

Out[7]= :2,
4

3
, 1.47619>

Collecting Objects Together

We first encountered lists in "Making Lists of Objects" as a way of collecting numbers together.

Here, we shall see many different ways to use lists. You will find that lists are some of the most

flexible  and  powerful  objects  in  Mathematica.  You  will  see  that  lists  in  Mathematica  represent

generalizations of several standard concepts in mathematics and computer science. 

At a basic level, what a Mathematica list essentially does is to provide a way for you to collect

together several expressions of any kind. 

Here is a list of numbers. 

In[1]:= 82, 3, 4<

Out[1]= 82, 3, 4<

This gives a list of symbolic expressions. 

In[2]:= x^% - 1

Out[2]= 9-1 + x2, -1 + x3, -1 + x4=

You can differentiate these expressions. 

In[3]:= D@%, xD

Out[3]= 92 x, 3 x2, 4 x3=

And then you can find values when x is replaced with 3. 

In[4]:= % ê. x -> 3

Out[4]= 86, 27, 108<

The mathematical functions that are built into Mathematica are mostly set up to be "listable" so

that they act separately on each element of a list. This is, however, not true of all functions in

Mathematica. Unless you set it up specially, a new function f that you introduce will treat lists

just as single objects. "Applying Functions to Parts of Expressions" and "Structural Operations"

will  describe how you can use Map  and Thread  to apply a function like this separately to each

element in a list. 
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The mathematical functions that are built into Mathematica are mostly set up to be "listable" so

that they act separately on each element of a list. This is, however, not true of all functions in

Mathematica. Unless you set it up specially, a new function f that you introduce will treat lists

just as single objects. "Applying Functions to Parts of Expressions" and "Structural Operations"

will  describe how you can use Map  and Thread  to apply a function like this separately to each

element in a list. 

Making Tables of Values

You can use lists as tables of values. You can generate the tables, for example, by evaluating

an expression for a sequence of different parameter values. 

This gives a table of the values of i2, with i running from 1 to 6. 

In[1]:= Table@i^2, 8i, 6<D

Out[1]= 81, 4, 9, 16, 25, 36<

Here is a table of sinHn ê5L for n from 0 to 4. 

In[2]:= Table@Sin@n ê 5D, 8n, 0, 4<D

Out[2]= :0, SinB
1

5
F, SinB

2

5
F, SinB

3

5
F, SinB

4

5
F>

This gives the numerical values. 

In[3]:= N@%D

Out[3]= 80., 0.198669, 0.389418, 0.564642, 0.717356<

You can also make tables of formulas. 

In[4]:= Table@x^i + 2 i, 8i, 5<D

Out[4]= 92 + x, 4 + x2, 6 + x3, 8 + x4, 10 + x5=

Table uses exactly the same iterator notation as the functions Sum  and Product, which are 
discussed in "Sums and Products". 

In[5]:= Product@x^i + 2 i, 8i, 5<D

Out[5]= H2 + xL I4 + x2M I6 + x3M I8 + x4M I10 + x5M
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This makes a table with values of x running from 0 to 1 in steps of 0.25. 

In[6]:= Table@Sqrt@xD, 8x, 0, 1, 0.25<D

Out[6]= 80, 0.5, 0.707107, 0.866025, 1.<

You can perform other operations on the lists you get from Table. 

In[7]:= %^2 + 3

Out[7]= 83, 3.25, 3.5, 3.75, 4.<

TableForm displays lists in a "tabular" format. Notice that both words in the name TableForm 
begin with capital letters.

In[8]:= % êê TableForm

Out[8]//TableForm= 

3
3.25
3.5
3.75
4.

All  the  examples  so  far  have  been of  tables  obtained  by  varying  a  single  parameter.  You  can

also make tables  that  involve several  parameters.  These multidimensional  tables  are  specified

using the standard Mathematica iterator notation, discussed in "Sums and Products". 

This makes a table of x i + y j with i running from 1 to 3 and j running from 1 to 2. 

In[9]:= Table@x^i + y^j, 8i, 3<, 8j, 2<D

Out[9]= 99x + y, x + y2=, 9x2 + y, x2 + y2=, 9x3 + y, x3 + y2==

The table in this example is a list of lists. The elements of the outer list correspond to succes-

sive  values  of  i.  The  elements  of  each  inner  list  correspond  to  successive  values  of  j,  with  i

fixed. 

Sometimes  you  may  want  to  generate  a  table  by  evaluating  a  particular  expression  many

times, without incrementing any variables. 

This creates a list containing four copies of the symbol x. 

In[10]:= Table@x, 84<D

Out[10]= 8x, x, x, x<
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This gives a list of four pairs of numbers sampled from 81, 2, 3, 4<. Table re-evaluates 
RandomSample @81, 2, 3, 4<, 2D for each element in the list, so that you get four different 
samples. 

In[11]:= Table@RandomSample@81, 2, 3, 4<, 2D, 84<D

Out[11]= 883, 2<, 84, 2<, 84, 3<, 82, 1<<

This evaluates i  for each of the values of i in the list 81, 4, 9, 16<.

In[12]:= TableB i , 8i, 81, 4, 9, 16<<F

Out[12]= 81, 2, 3, 4<

This creates a 3×2 table.

In[13]:= Table@i + 2 j, 8i, 3<, 8j, 2<D

Out[13]= 883, 5<, 84, 6<, 85, 7<<

In this table, the length of the rows depends on the more slowly varying iterator variable, i.

In[14]:= Table@i + 2 j, 8i, 3<, 8j, i<D

Out[14]= 883<, 84, 6<, 85, 7, 9<<

You can use Table to generate arrays with any number of dimensions. 

This generates a three-dimensional 2×2×2 array. It is a list of lists of lists. 

In[15]:= Table@i j^2 k^3, 8i, 2<, 8j, 2<, 8k, 2<D

Out[15]= 8881, 8<, 84, 32<<, 882, 16<, 88, 64<<<

Table@ f,8imax<D give a list of imax values of f

Table@ f,8i,imax<D give a list of the values of f  as i runs from 1 to imax

Table@ f,8i,imin,imax<D give a list of values with i running from imin to imax

Table@ f,8i,imin,imax,di<D use steps of di

Table@ f,8i,imin,
imax<,8 j, jmin, jmax<,…D

generate a multidimensional table

Table@ f,8i,8i1,i2,…<E give a list of the values of f  as i successively takes the 
values i1, i2, …

TableForm@listD display a list in tabular form

Functions for generating tables. 

You can use the operations discussed in "Manipulating Elements of Lists" to extract elements of

the table.
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You can use the operations discussed in "Manipulating Elements of Lists" to extract elements of

the table.

This creates a table and gives it the name sq.

In[16]:= sq = Table@j^2, 8j, 7<D

Out[16]= 81, 4, 9, 16, 25, 36, 49<

This gives the third part of the table.

In[17]:= sq@@3DD

Out[17]= 9

This gives a list of the third through fifth parts.

In[18]:= sq@@3 ;; 5DD

Out[18]= 89, 16, 25<

This creates a 2×2 table, and gives it the name m. 

In[19]:= m = Table@i - j, 8i, 2<, 8j, 2<D

Out[19]= 880, -1<, 81, 0<<

This extracts the first sublist from the list of lists that makes up the table. 

In[20]:= m@@1DD

Out[20]= 80, -1<

This extracts the second element of that sublist. 

In[21]:= %@@2DD

Out[21]= -1

This does the two operations together. 

In[22]:= m@@1, 2DD

Out[22]= -1

This displays m in a "tabular" form. 

In[23]:= TableForm@mD

Out[23]//TableForm= 
0 -1
1 0
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t@@iDD  or Part@t,iD give the ith sublist in t (also input as tPiT)

t@@i;; jDD  or Part@t,i;; jD give a list of the parts i through j

t@@8i1,i2,…<DD  or 
Part@t,8i1,i2,…<D

give a list of the i1th, i2th, … parts of t

t@@i, j,…DD  or Part@t,i, j,…D

give the part of t corresponding to t@@iDD@@ jDD …

Ways to extract parts of tables. 

As mentioned in "Manipulating Elements of Lists", you can think of lists in Mathematica as being

analogous  to  "arrays".  Lists  of  lists  are  then  like  two-dimensional  arrays.  When  you  lay  them

out in a tabular form, the two indices of each element are like its x and y coordinates.

Manipulating Elements of Lists

Many  of  the  most  powerful  list  manipulation  operations  in  Mathematica  treat  whole  lists  as

single objects. Sometimes, however, you need to pick out or set individual elements in a list.

You can refer to an element of a Mathematica list by giving its "index". The elements are num-

bered in order, starting at 1.

8a,b,c< a list

Part@list,iD  or list@@iDD the ith element of list (the first element is list@@1DD)

Part@list,8i, j,…<D
 or list@@8i, j,…<DD

a list of the ith, jth, … elements of list

Part@list,i;; jD a list of the ith through jth elements of list

Operations on list elements. 

This extracts the second element of the list. 

In[1]:= 85, 8, 6, 9<@@2DD

Out[1]= 8

This extracts a list of elements. 

In[2]:= 85, 8, 6, 9<@@83, 1, 3, 2, 4<DD

Out[2]= 86, 5, 6, 8, 9<
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This assigns the value of v to be a list. 

In[3]:= v = 82, 4, 7<

Out[3]= 82, 4, 7<

You can extract elements of v. 

In[4]:= v@@2DD

Out[4]= 4

By assigning a variable to be a list, you can use Mathematica  lists much like "arrays" in other

computer languages. Thus, for example, you can reset an element of a list by assigning a value

to v@@iDD. 

Part@v,iD  or v@@iDD extract the ith element of a list

Part@v,iD=value  or v@@iDD=value reset the ith element of a list

Array-like operations on lists. 

Here is a list. 

In[5]:= v = 84, -1, 8, 7<

Out[5]= 84, -1, 8, 7<

This resets the third element of the list. 

In[6]:= v@@3DD = 0

Out[6]= 0

Now the list assigned to v has been modified. 

In[7]:= v

Out[7]= 84, -1, 0, 7<

Vectors and Matrices

Vectors and matrices in Mathematica are simply represented by lists and by lists of lists, respec-

tively. 

Core Language     17



8a,b,c< vector Ha, b, cL

88a,b<,8c,d<< matrix 
a b
c d

The representation of vectors and matrices by lists. 

This is a 2×2 matrix. 

In[1]:= m = 88a, b<, 8c, d<<

Out[1]= 88a, b<, 8c, d<<

Here is the first row.

In[2]:= m@@1DD

Out[2]= 8a, b<

Here is the element m12.

In[3]:= m@@1, 2DD

Out[3]= b

This is a two-component vector.

In[4]:= v = 8x, y<

Out[4]= 8x, y<

The objects p and q are treated as scalars.

In[5]:= p v + q

Out[5]= 8q + p x, q + p y<

Vectors are added component by component. 

In[6]:= v + 8xp, yp< + 8xpp, ypp<

Out[6]= 8x + xp + xpp, y + yp + ypp<

This gives the dot (scalar) product of two vectors.

In[7]:= 8x, y<.8xp, yp<

Out[7]= x xp + y yp
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You can also multiply a matrix by a vector. 

In[8]:= m.v

Out[8]= 8a x + b y, c x + d y<

Or a matrix by a matrix. 

In[9]:= m.m

Out[9]= 99a2 + b c, a b + b d=, 9a c + c d, b c + d2==

Or a vector by a matrix. 

In[10]:= v.m

Out[10]= 8a x + c y, b x + d y<

This combination makes a scalar. 

In[11]:= v.m.v

Out[11]= x Ha x + c yL + y Hb x + d yL

Because of the way Mathematica  uses lists to represent vectors and matrices, you never have

to distinguish between "row" and "column" vectors.

Table@ f,8i,n<D build a length-n vector by evaluating f  with i = 1, 2, …, n

Array@a,nD build a length-n vector of the form 8a@1D, a@2D, …<

Range@nD create the list 81, 2, 3, …, n<

Range@n1,n2D create the list 8n1, n1 + 1, …, n2<

Range@n1,n2,dnD create the list 8n1, n1 + dn, …, n2<

list@@iDD  or Part@list,iD give the ith element in the vector list

Length@listD give the number of elements in list

c v multiply a vector by a scalar

a.b dot product of two vectors

Cross@a,bD cross product of two vectors (also input as a µ b)

Norm@vD Euclidean norm of a vector

Functions for vectors. 
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Table@ f,8i,m<,8 j,n<D build an m×n matrix by evaluating f  with i ranging from 1 
to m and j ranging from 1 to n

Array@a,8m,n<D build an m×n matrix with i, jth element a@i, jD

IdentityMatrix@nD generate an n×n identity matrix

DiagonalMatrix@listD generate a square matrix with the elements in list on the 
main diagonal

list@@iDD  or Part@list,iD give the ith row in the matrix list

listAAAll, jEE  or PartAlist,All, jE

give the jth column in the matrix list

list@@i, jDD  or Part@list,i, jD give the i, jth element in the matrix list

Dimensions@listD give the dimensions of a matrix represented by list

Functions for matrices. 

Column@listD display the elements of list in a column

MatrixForm@listD display list in matrix form

Formatting constructs for vectors and matrices.

This builds a 3×3 matrix s with elements si j = i + j. 

In[12]:= s = Table@i + j, 8i, 3<, 8j, 3<D

Out[12]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

This displays s in standard two-dimensional matrix format. 

In[13]:= MatrixForm@sD

Out[13]//MatrixForm=
2 3 4
3 4 5
4 5 6

This gives a vector with symbolic elements. You can use this in deriving general formulas that 
are valid with any choice of vector components. 

In[14]:= Array@a, 4D

Out[14]= 8a@1D, a@2D, a@3D, a@4D<

This gives a 3×2 matrix with symbolic elements. "Building Lists from Functions" discusses how 
you can produce other kinds of elements with Array. 

In[15]:= Array@p, 83, 2<D

Out[15]= 88p@1, 1D, p@1, 2D<, 8p@2, 1D, p@2, 2D<, 8p@3, 1D, p@3, 2D<<

Here are the dimensions of the matrix on the previous line. 
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Here are the dimensions of the matrix on the previous line. 

In[16]:= Dimensions@%D

Out[16]= 83, 2<

This generates a 3×3 diagonal matrix. 

In[17]:= DiagonalMatrix@8a, b, c<D

Out[17]= 88a, 0, 0<, 80, b, 0<, 80, 0, c<<

c m multiply a matrix by a scalar

a.b dot product of two matrices

Inverse@mD matrix inverse

MatrixPower@m,nD nth power of a matrix

Det@mD determinant

Tr@mD trace

Transpose@mD transpose

Eigenvalues@mD eigenvalues

Eigenvectors@mD eigenvectors

Some mathematical operations on matrices. 

Here is the 2×2 matrix of symbolic variables that was defined. 

In[18]:= m

Out[18]= 88a, b<, 8c, d<<

This gives its determinant. 

In[19]:= Det@mD

Out[19]= -b c + a d

Here is the transpose of m. 

In[20]:= Transpose@mD

Out[20]= 88a, c<, 8b, d<<

This gives the inverse of m in symbolic form. 

In[21]:= Inverse@mD

Out[21]= ::
d

-b c + a d
, -

b

-b c + a d
>, :-

c

-b c + a d
,

a

-b c + a d
>>

Here is a 3×3 rational matrix.
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Here is a 3×3 rational matrix.

In[22]:= h = Table@1 ê Hi + j - 1L, 8i, 3<, 8j, 3<D

Out[22]= ::1,
1

2
,
1

3
>, :

1

2
,
1

3
,
1

4
>, :

1

3
,
1

4
,
1

5
>>

This gives its inverse. 

In[23]:= Inverse@hD

Out[23]= 889, -36, 30<, 8-36, 192, -180<, 830, -180, 180<<

Taking the dot product of the inverse with the original matrix gives the identity matrix. 

In[24]:= %.h

Out[24]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

Here is a 3×3 matrix. 

In[25]:= r = Table@i + j + 1, 8i, 3<, 8j, 3<D

Out[25]= 883, 4, 5<, 84, 5, 6<, 85, 6, 7<<

Eigenvalues  gives the eigenvalues of the matrix. 

In[26]:= Eigenvalues@rD

Out[26]= :
1

2
15 + 249 ,

1

2
15 - 249 , 0>

This gives a numerical approximation to the matrix. 

In[27]:= rn = N@rD

Out[27]= 883., 4., 5.<, 84., 5., 6.<, 85., 6., 7.<<

Here are numerical approximations to the eigenvalues.

In[28]:= Eigenvalues@rnD

Out[28]= 915.3899, -0.389867, -1.49955µ10-16=

"Linear  Algebra  in  Mathematica"  discusses  many  other  matrix  operations  that  are  built  into

Mathematica. 
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Getting Pieces of Lists

First@listD the first element in list

Last@listD the last element

Part@list,nD  or list@@nDD the nth element

Part@list,-nD  or list@@-nDD the nth element from the end

Part@list,m;;nD elements m through n

Part@list,8n1,n2,…<D  or list@@8n1,n2,…<DD

the list of elements at positions n1, n2, …

Picking out elements of lists. 

We will use this list for the examples. 

In[1]:= t = 8a, b, c, d, e, f, g<

Out[1]= 8a, b, c, d, e, f, g<

Here is the last element of t. 

In[2]:= Last@tD

Out[2]= g

This gives the third element. 

In[3]:= t@@3DD

Out[3]= c

This gives the list of elements 3 through 6.

In[4]:= t@@3 ;; 6DD

Out[4]= 8c, d, e, f<

This gives a list of the first and fourth elements. 

In[5]:= t@@81, 4<DD

Out[5]= 8a, d<
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Take@list,nD the first n elements in list

Take@list,-nD the last n elements

Take@list,8m,n<D elements m through n (inclusive)

Rest@listD list with its first element dropped

Drop@list,nD list with its first n elements dropped

Most@listD list with its last element dropped

Drop@list,-nD list with its last n elements dropped

Drop@list,8m,n<D list with elements m through n dropped

Picking out sequences in lists. 

This gives the first three elements of the list t defined above. 

In[6]:= Take@t, 3D

Out[6]= 8a, b, c<

This gives the last three elements. 

In[7]:= Take@t, -3D

Out[7]= 8e, f, g<

This gives elements 2 through 5 inclusive. 

In[8]:= Take@t, 82, 5<D

Out[8]= 8b, c, d, e<

This gives elements 3 through 7 in steps of 2. 

In[9]:= Take@t, 83, 7, 2<D

Out[9]= 8c, e, g<

This gives t with the first element dropped. 

In[10]:= Rest@tD

Out[10]= 8b, c, d, e, f, g<

This gives t with its first three elements dropped. 

In[11]:= Drop@t, 3D

Out[11]= 8d, e, f, g<
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This gives t with only its third element dropped. 

In[12]:= Drop@t, 83, 3<D

Out[12]= 8a, b, d, e, f, g<

"Manipulating  Expressions  like  Lists"  shows  how  all  the  functions  here  can  be  generalized  to

work not only on lists, but on any Mathematica expressions. 

The  functions  here  allow  you  to  pick  out  pieces  that  occur  at  particular  positions  in  lists.

"Finding Expressions That  Match a Pattern" shows how you can use functions like Select  and

Cases to pick out elements of lists based not on their positions, but instead on their properties. 

Testing and Searching List Elements

Position@list, formD the positions at which form occurs in list

Count@list, formD the number of times form appears as an element of list

MemberQ@list, formD test whether form is an element of list

FreeQ@list, formD test whether form occurs nowhere in list

Testing and searching for elements of lists. 

"Getting  Pieces  of  Lists"  discusses  how  to  extract  pieces  of  lists  based  on  their  positions  or

indices. Mathematica also has functions that search and test for elements of lists, based on the

values of those elements. 

This gives a list of the positions at which a appears in the list. 

In[1]:= Position@8a, b, c, a, b<, aD

Out[1]= 881<, 84<<

Count counts the number of occurrences of a. 

In[2]:= Count@8a, b, c, a, b<, aD

Out[2]= 2

This shows that a is an element of 8a, b, c<. 

In[3]:= MemberQ@8a, b, c<, aD

Out[3]= True
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On the other hand, d is not. 

In[4]:= MemberQ@8a, b, c<, dD

Out[4]= False

This assigns m to be the 3×3 identity matrix. 

In[5]:= m = IdentityMatrix@3D

Out[5]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This shows that 0 does occur somewhere in m. 

In[6]:= FreeQ@m, 0D

Out[6]= False

This gives a list of the positions at which 0 occurs in m. 

In[7]:= Position@m, 0D

Out[7]= 881, 2<, 81, 3<, 82, 1<, 82, 3<, 83, 1<, 83, 2<<

As discussed in "Finding Expressions That Match a Pattern", the functions Count  and Position,

as well as MemberQ  and FreeQ, can be used not only to search for particular list elements, but

also to search for classes of elements which match specific “patterns”. 

Adding, Removing and Modifying List Elements

Prepend@list,elementD add element at the beginning of list

Append@list,elementD add element at the end of list

Insert@list,element,iD insert element at position i in list

Insert@list,element,-iD insert at position i counting from the end of list

Riffle@list,elementD interleave element between the entries of list

Delete@list,iD delete the element at position i in list

ReplacePart@list,i->newD replace the element at position i in list with new

ReplacePart@list,8i, j<->newD replace list@@i, jDD with new

Functions for manipulating elements in explicit lists. 
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This gives a list with x prepended. 

In[1]:= Prepend@8a, b, c<, xD

Out[1]= 8x, a, b, c<

This inserts x so that it becomes element number 2. 

In[2]:= Insert@8a, b, c<, x, 2D

Out[2]= 8a, x, b, c<

This interleaves x between the entries of the list. 

In[3]:= Riffle@8a, b, c<, xD

Out[3]= 8a, x, b, x, c<

This replaces the third element in the list with x. 

In[4]:= ReplacePart@8a, b, c, d<, 3 -> xD

Out[4]= 8a, b, x, d<

This replaces the 1, 2 element in a 2×2 matrix. 

In[5]:= ReplacePart@88a, b<, 8c, d<<, 81, 2< -> xD

Out[5]= 88a, x<, 8c, d<<

Functions like ReplacePart  take explicit lists and give you new lists. Sometimes, however, you

may want to modify a list “in place”, without explicitly generating a new list. 

v=8e1,e2,…< assign a variable to be a list

v@@iDD=new assign a new value to the ith element

Resetting list elements. 

This defines v to be a list. 

In[6]:= v = 8a, b, c, d<

Out[6]= 8a, b, c, d<

This sets the third element to be x. 

In[7]:= v@@3DD = x

Out[7]= x

Now v has been changed. 
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Now v has been changed. 

In[8]:= v

Out[8]= 8a, b, x, d<

m@@i, jDD=new replace the Hi, jLth element of a matrix

m@@iDD=new replace the ith row

mAAAll,iEE=new replace the ith column

Resetting pieces of matrices. 

This defines m to be a matrix. 

In[9]:= m = 88a, b<, 8c, d<<

Out[9]= 88a, b<, 8c, d<<

This sets the first column of the matrix. 

In[10]:= m@@All, 1DD = 8x, y<; m

Out[10]= 88x, b<, 8y, d<<

This sets every element in the first column to be 0. 

In[11]:= m@@All, 1DD = 0; m

Out[11]= 880, b<, 80, d<<

Combining Lists

Join@list1,list2,…D concatenate lists together

Union@list1,list2,…D combine lists, removing repeated elements and sorting the 
result

Riffle@list1,list2D interleave elements of list1 and list2 

Functions for combining lists. 

Join concatenates any number of lists together. 

In[1]:= Join@8a, b, c<, 8x, y<, 8t, u<D

Out[1]= 8a, b, c, x, y, t, u<

Union combines lists, keeping only distinct elements. 
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Union combines lists, keeping only distinct elements. 

In[2]:= Union@8a, b, c<, 8c, a, d<, 8a, d<D

Out[2]= 8a, b, c, d<

Riffle combines lists by interleaving their elements.

In[3]:= Riffle@8a, b, c<, 8x, y, z<D

Out[3]= 8a, x, b, y, c, z<

Lists as Sets

Mathematica  usually  keeps  the  elements  of  a  list  in  exactly  the  order  you  originally  entered

them. If you want to treat a Mathematica list like a mathematical set, however, you may want

to ignore the order of elements in the list.

Union@list1,list2,…D give a list of the distinct elements in the listi

Intersection@list1,list2,…D give a list of the elements that are common to all the listi

Complement@universal,list1,…D give a list of the elements that are in universal, but not in 
any of the listi

Subsets@listD give a list of all subsets of the elements in list

DeleteDuplicates@listD delete all duplicates from list

Set theoretical functions. 

Union gives the elements that occur in any of the lists.

In[1]:= Union@8c, a, b<, 8d, a, c<, 8a, e<D

Out[1]= 8a, b, c, d, e<

Intersection gives only elements that occur in all the lists.

In[2]:= Intersection@8a, c, b<, 8b, a, d, a<D

Out[2]= 8a, b<

Complement gives elements that occur in the first list, but not in any of the others. 

In[3]:= Complement@8a, b, c, d<, 8a, d<D

Out[3]= 8b, c<

This gives all the subsets of the list. 
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This gives all the subsets of the list. 

In[4]:= Subsets@8a, b, c<D

Out[4]= 88<, 8a<, 8b<, 8c<, 8a, b<, 8a, c<, 8b, c<, 8a, b, c<<

DeleteDuplicates deletes all duplicate elements from the list. 

In[5]:= DeleteDuplicates@8a, b, c, a<D

Out[5]= 8a, b, c<

Rearranging Lists

Sort@listD sort the elements of list into a standard order

Union@listD sort elements, removing any duplicates

Reverse@listD reverse the order of elements in list

RotateLeft@list,nD rotate the elements of list n places to the left

RotateRight@list,nD rotate n places to the right

Functions for rearranging lists. 

This sorts the elements of a list into a standard order. In simple cases like this, the order is 
alphabetical or numerical. 

In[1]:= Sort@8b, a, c, a, b<D

Out[1]= 8a, a, b, b, c<

This sorts the elements, removing any duplicates. 

In[2]:= Union@8b, a, c, a, b<D

Out[2]= 8a, b, c<

This rotates (“shifts”) the elements in the list two places to the left. 

In[3]:= RotateLeft@8a, b, c, d, e<, 2D

Out[3]= 8c, d, e, a, b<

You can rotate to the right by giving a negative displacement, or by using RotateRight . 

In[4]:= RotateLeft@8a, b, c, d, e<, -2D

Out[4]= 8d, e, a, b, c<
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PadLeft@list,len,xD pad list on the left with x to make it length len

PadRight@list,len,xD pad list on the right

Padding lists. 

This pads a list with x’s to make it length 10. 

In[5]:= PadLeft@8a, b, c<, 10, xD

Out[5]= 8x, x, x, x, x, x, x, a, b, c<

Grouping and Combining Elements of Lists

Partition@list,nD partition list into n-element pieces

Partition@list,n,dD use offset d for successive pieces

Split@listD split list into pieces consisting of runs of identical elements

Functions for grouping together elements of lists. 

Here is a list. 

In[1]:= t = 8a, b, c, d, e, f, g<

Out[1]= 8a, b, c, d, e, f, g<

This groups the elements of the list in pairs, throwing away the single element left at the end. 

In[2]:= Partition@t, 2D

Out[2]= 88a, b<, 8c, d<, 8e, f<<

This groups elements in triples. There is no overlap between the triples. 

In[3]:= Partition@t, 3D

Out[3]= 88a, b, c<, 8d, e, f<<

This makes triples of elements, with each successive triple offset by just one element. 

In[4]:= Partition@t, 3, 1D

Out[4]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<, 8e, f, g<<
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This splits up the list into runs of identical elements. 

In[5]:= Split@8a, a, b, b, b, a, a, a, b<D

Out[5]= 88a, a<, 8b, b, b<, 8a, a, a<, 8b<<

Tuples@list,nD generate all possible n-tuples of elements from list

Tuples@8list1,list2,…<D generate all tuples whose ith element is from listi

Finding possible tuples of elements in lists. 

This gives all possible ways of picking two elements out of the list. 

In[6]:= Tuples@8a, b<, 2D

Out[6]= 88a, a<, 8a, b<, 8b, a<, 8b, b<<

This gives all possible ways of picking one element from each list. 

In[7]:= Tuples@88a, b<, 81, 2, 3<<D

Out[7]= 88a, 1<, 8a, 2<, 8a, 3<, 8b, 1<, 8b, 2<, 8b, 3<<

Ordering in Lists

Sort@listD sort the elements of list into order

Ordering@listD the positions in list of the elements in Sort@listD

Ordering@list,nD the first n elements of Ordering@listD

Ordering@list,-nD the last n elements of Ordering@listD

Permutations@listD all possible orderings of list

Min@listD the smallest element in list

Max@listD the largest element in list

Ordering in lists. 

Here is a list of numbers. 

In[1]:= t = 817, 21, 14, 9, 18<

Out[1]= 817, 21, 14, 9, 18<
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This gives the elements of t in sorted order.

In[2]:= Sort@tD

Out[2]= 89, 14, 17, 18, 21<

This gives the positions of the elements of t, from the position of the smallest to that of the 
largest. 

In[3]:= Ordering@tD

Out[3]= 84, 3, 1, 5, 2<

This is the same as Sort@tD. 

In[4]:= t@@%DD

Out[4]= 89, 14, 17, 18, 21<

This gives the smallest element in the list. 

In[5]:= Min@tD

Out[5]= 9

Rearranging Nested Lists

You  will  encounter  nested  lists  if  you  use  matrices  or  generate  multidimensional  arrays  and

tables. Mathematica provides many functions for handling such lists.

Flatten@listD flatten out all levels in list

Flatten@list,nD flatten out the top n levels in list

Partition@list,8n1,n2,…<D partition into blocks of size n1×n2×…
Transpose@listD interchange the top two levels of lists

RotateLeft@list,8n1,n2,…<D rotate successive levels by ni places

PadLeft@list,8n1,n2,…<D pad successive levels to be length ni

A few functions for rearranging nested lists. 

This “flattens out” sublists. You can think of it as effectively just removing all inner braces. 

In[1]:= Flatten@88a<, 8b, 8c<<, 8d<<D

Out[1]= 8a, b, c, d<
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This flattens out only one level of sublists. 

In[2]:= Flatten@88a<, 8b, 8c<<, 8d<<, 1D

Out[2]= 8a, b, 8c<, d<

There  are  many  other  operations  you  can  perform  on  nested  lists.  More  operations  are  dis-

cussed in "Manipulating Lists". 

34     Core Language



Manipulating Lists

Constructing Lists

Lists are widely used in Mathematica, and there are many ways to construct them.

Range@nD the list 81, 2, 3, …, n<
Table@expr,8i,n<D the values of expr with i from 1 to n

Array@ f,nD the list 8 f @1D, f @2D, …, f @nD<
NestList@ f,x,nD 8x, f @xD, f @ f @xDD, …< with up to n nestings

NormalA
SparseArray@8i1->v1,…<,nDE

a length n list with element ik being vk

Apply@List, f@e1,e2,…DD the list 8e1, e2, …<

Some explicit ways to construct lists. 

This gives a table of the first five powers of two. 

In[1]:= Table@2^i, 8i, 5<D

Out[1]= 82, 4, 8, 16, 32<

Here is another way to get the same result. 

In[2]:= Array@2^Ò &, 5D

Out[2]= 82, 4, 8, 16, 32<

This gives a similar list. 

In[3]:= NestList@2 Ò &, 1, 5D

Out[3]= 81, 2, 4, 8, 16, 32<

SparseArray  lets you specify values at particular positions. 

In[4]:= Normal@SparseArray@83 -> x, 4 -> y<, 5DD

Out[4]= 80, 0, x, y, 0<
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You can also use patterns to specify values. 

In[5]:= Normal@SparseArray@8i_ -> 2^i<, 5DD

Out[5]= 82, 4, 8, 16, 32<

Often you will know in advance how long a list is supposed to be, and how each of its elements

should be generated. And often you may get one list from another. 

Table@expr,8i,list<D the values of expr with i taking on values from list

Map@ f,listD apply f  to each element of list

MapIndexed@ f,listD give f @elem, 8i<D for the ith element

Cases@list, formD give elements of list that match form

Select@list,testD select elements for which test@elemD is True

Pick@list,sel, formD pick out elements of list for which the corresponding 
elements of sel match form

TakeWhile@list,testD give elements ei from the beginning of list as long as test@eiD 
is True

list@@8i1,i2,…<DD  or Part@list,8i1,i2,…<D

give a list of the specified parts of list

Constructing lists from other lists. 

This selects elements less than 5. 

In[6]:= Select@81, 3, 7, 4, 10, 2<, Ò < 5 &D

Out[6]= 81, 3, 4, 2<

This takes elements up to the first element that is not less than 5. 

In[7]:= TakeWhile@81, 3, 7, 4, 10, 2<, Ò < 5 &D

Out[7]= 81, 3<

This explicitly gives numbered parts. 

In[8]:= 8a, b, c, d<@@82, 1, 4<DD

Out[8]= 8b, a, d<

This picks out elements indicated by a 1 in the second list. 

In[9]:= Pick@8a, b, c, d<, 81, 0, 1, 1<, 1D

Out[9]= 8a, c, d<

Sometimes you may want to accumulate a list of results during the execution of a program. You

can do this using Sow and Reap. 
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Sometimes you may want to accumulate a list of results during the execution of a program. You

can do this using Sow and Reap. 

Sow@valD sow the value val for the nearest enclosing Reap

Reap@exprD evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap. 

This program iteratively squares a number. 

In[10]:= Nest@Ò^2 &, 2, 6D

Out[10]= 18446744073709551616

This does the same computation, but accumulating a list of intermediate results above 1000. 

In[11]:= Reap@Nest@HIf@Ò > 1000, Sow@ÒDD; Ò^2L &, 2, 6DD

Out[11]= 818446744073709551616, 8865536, 4294967296<<<

An alternative but less efficient approach involves introducing a temporary variable, then start-

ing with t = 8<, and successively using AppendTo@t, elemD. 

Manipulating Lists by Their Indices

Part@list,specD   or  list@@specDD part or parts of a list

Part@list,spec1,spec2,…D
  or  list@@spec1,spec2,…DD

part or parts of a nested list

n the nth part from the beginning

-n the nth part from the end

8i1,i2,…< a list of parts

m;;n parts m through n 

All all parts

Getting parts of lists. 

This gives a list of parts 1 and 3. 

In[1]:= 8a, b, c, d<@@81, 3<DD

Out[1]= 8a, c<
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Here is a nested list. 

In[2]:= m = 88a, b, c<, 8d, e<, 8f, g, h<<;

This gives a list of its first and third parts. 

In[3]:= m@@81, 3<DD

Out[3]= 88a, b, c<, 8f, g, h<<

This gives a list of the first part of each of these. 

In[4]:= m@@81, 3<, 1DD

Out[4]= 8a, f<

And this gives a list of the first two parts. 

In[5]:= m@@81, 3<, 81, 2<DD

Out[5]= 88a, b<, 8f, g<<

This gives the first two parts of m.

In[6]:= m@@1 ;; 2DD

Out[6]= 88a, b, c<, 8d, e<<

This gives the last part of each of these.

In[7]:= m@@1 ;; 2, -1DD

Out[7]= 8c, e<

This gives the second part of all sublists. 

In[8]:= m@@All, 2DD

Out[8]= 8b, e, g<

This gives the last two parts of all sublists.

In[9]:= m@@All, -2 ;; -1DD

Out[9]= 88b, c<, 8d, e<, 8g, h<<

You can always reset one or more pieces of a list by doing an assignment like m@@…DD = value.
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This resets part 1,2 of m. 

In[10]:= m@@1, 2DD = x

Out[10]= x

This is now the form of m. 

In[11]:= m

Out[11]= 88a, x, c<, 8d, e<, 8f, g, h<<

This resets part 1 to x and part 3 to y. 

In[12]:= m@@81, 3<DD = 8x, y<; m

Out[12]= 8x, 8d, e<, y<

This resets parts 1 and 3 both to p. 

In[13]:= m@@81, 3<DD = p; m

Out[13]= 8p, 8d, e<, p<

This restores the original form of m. 

In[14]:= m = 88a, b, c<, 8d, e<, 8f, g, h<<;

This now resets all parts specified by m@@81, 3<, 81, 2<DD. 

In[15]:= m@@81, 3<, 81, 2<DD = x; m

Out[15]= 88x, x, c<, 8d, e<, 8x, x, h<<

You can use ;; to indicate all indices in a given range. 

In[16]:= m@@1 ;; 3, 2DD = y; m

Out[16]= 88x, y, c<, 8d, y<, 8x, y, h<<

It  is  sometimes  useful  to  think  of  a  nested  list  as  being  laid  out  in  space,  with  each  element

being at a coordinate position given by its indices. There is then a direct geometrical interpreta-

tion for list@@spec1, spec2, …DD. If a given speck  is a single integer, then it represents extracting a

single  slice  in  the  kth  dimension,  while  if  it  is  a  list,  it  represents  extracting  a  list  of  parallel

slices.  The final  result  for  list@@spec1, spec2, …DD  is  then the collection  of  elements  obtained by

slicing in each successive dimension. 
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Here is a nested list laid out as a two-dimensional array. 

In[17]:= Hm = 88a, b, c<, 8d, e, f<, 8g, h, i<<L êê TableForm

Out[17]//TableForm= 
a b c
d e f
g h i

This picks out rows 1 and 3, then columns 1 and 2. 

In[18]:= m@@81, 3<, 81, 2<DD êê TableForm

Out[18]//TableForm= 
a b
g h

Part is set up to make it easy to pick out structured slices of nested lists. Sometimes, however,

you may want to pick out arbitrary collections of individual parts. You can do this conveniently

with Extract.

Part@list,8i1,i2,…<D the list 8list@@i1DD, list@@i2DD, …<

Extract@list,8i1,i2,…<D the element list@@i1, i2, …DD

Part@list,spec1,spec2,…D parts specified by successive slicing

Extract@list,
88i1,i2,…<,8 j1, j2,…<,…<D

the list of individual parts 
8list@@i1, i2, …DD, list@@ j1, j2, …DD, …<

Getting slices versus lists of individual parts. 

This extracts the individual parts 1,3 and 1,2. 

In[19]:= Extract@m, 881, 3<, 81, 2<<D

Out[19]= 8c, b<

An important feature of Extract  is that it takes lists of part positions in the same form as they

are returned by functions like Position. 

This sets up a nested list. 

In[20]:= m = 88a@1D, a@2D, b@1D<, 8b@2D, c@1D<, 88b@3D<<<;

This gives a list of positions in m. 

In[21]:= Position@m, b@_DD

Out[21]= 881, 3<, 82, 1<, 83, 1, 1<<
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This extracts the elements at those positions. 

In[22]:= Extract@m, %D

Out[22]= 8b@1D, b@2D, b@3D<

Take@list,specD take the specified parts of a list

Drop@list,specD drop the specified parts of a list

Take@list,spec1,spec2,…D
, Drop@list,spec1,spec2,…D

take or drop specified parts at each level in nested lists

n the first n elements

-n the last n elements

8n< element n only

8m,n< elements m through n (inclusive)

8m,n,s< elements m through n in steps of s

All all parts

None no parts

Taking and dropping sequences of elements in lists. 

This takes every second element starting at position 2. 

In[23]:= Take@8a, b, c, d, e, f, g<, 82, -1, 2<D

Out[23]= 8b, d, f<

This drops every second element. 

In[24]:= Drop@8a, b, c, d, e, f, g<, 82, -1, 2<D

Out[24]= 8a, c, e, g<

Much like Part, Take  and Drop  can be viewed as picking out sequences of slices at successive

levels in a nested list. You can use Take and Drop to work with blocks of elements in arrays. 

Here is a 3×3 array. 

In[25]:= Hm = 88a, b, c<, 8d, e, f<, 8g, h, i<<L êê TableForm

Out[25]//TableForm= 
a b c
d e f
g h i
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Here is the first 2×2 subarray. 

In[26]:= Take@m, 2, 2D êê TableForm

Out[26]//TableForm= 
a b
d e

This takes all elements in the first two columns. 

In[27]:= Take@m, All, 2D êê TableForm

Out[27]//TableForm= 
a b
d e
g h

This leaves no elements from the first two columns. 

In[28]:= Drop@m, None, 2D êê TableForm

Out[28]//TableForm= 

Prepend@list,elemD add element at the beginning of list

Append@list,elemD add element at the end of list

Insert@list,elem,iD insert element at position i

Insert@list,elem,8i, j,…<D insert at position 8i, j, …<

Delete@list,iD delete the element at position i

Delete@list,8i, j,…<D delete at position 8i, j, …<

Adding and deleting elements in lists. 

This makes the 2,1 element of the list be x. 

In[29]:= Insert@88a, b, c<, 8d, e<<, x, 82, 1<D

Out[29]= 88a, b, c<, 8x, d, e<<

This deletes the element again. 

In[30]:= Delete@%, 82, 1<D

Out[30]= 88a, b, c<, 8d, e<<
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ReplacePart@list,i->newD replace the element at position i in list with new

ReplacePart@list,8i, j,…<->newD replace list@@i, j, …DD with new

ReplacePart@list,
8i1->new1,i2->new2,…<D

replaces parts at positions in by newn

ReplacePart@list,
88i1, j1,…<->new1,…<D

replace parts at positions 8in, jn, …< by newn 

ReplacePart@list,
88i1, j1,…<,…<->newD

replace all parts list@@ik, jk, …DD with new

Replacing parts of lists. 

This replaces the third element in the list with x. 

In[31]:= ReplacePart@8a, b, c, d<, 3 -> xD

Out[31]= 8a, b, x, d<

This replaces the first and fourth parts of the list. Notice the need for double lists in specifying 
multiple parts to replace. 

In[32]:= ReplacePart@8a, b, c, d<, 881<, 84<< -> xD

Out[32]= 8x, b, c, x<

Here is a 3×3 identity matrix. 

In[33]:= IdentityMatrix@3D

Out[33]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This replaces the 2,2 component of the matrix by x. 

In[34]:= ReplacePart@%, 82, 2< -> xD

Out[34]= 881, 0, 0<, 80, x, 0<, 80, 0, 1<<

It is important to understand that ReplacePart  always creates a new list. It does not modify a

list that has already been assigned to a symbol, the way m@@…DD = val does.

This assigns a list of values to alist. 

In[35]:= alist = 8a, b, c, d<

Out[35]= 8a, b, c, d<
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This gives a copy of the list in which the third element has been replaced with x. 

In[36]:= ReplacePart@alist, 3 -> xD

Out[36]= 8a, b, x, d<

The value of alist has not changed.

In[37]:= alist

Out[37]= 8a, b, c, d<

Nested Lists

8list1,list2,…< list of lists

Table@expr,8i,m<,8 j,n<,…D m×n×… table of values of expr

Array@ f,8m,n,…<D m×n×… array of values f@i, j, …D

NormalASparseArray@88i1, j1,…<->v1,…<,8m,n,…<DE

m×n×… array with element 8is, js, …< being vs

Outer@ f,list1,list2,…D generalized outer product with elements combined using f

Tuples@list,8m,n,…<D all possible m×n×… arrays of elements from list

Ways to construct nested lists. 

This generates a table corresponding to a 2×3 nested list. 

In[1]:= Table@x^i + j, 8i, 2<, 8j, 3<D

Out[1]= 981 + x, 2 + x, 3 + x<, 91 + x2, 2 + x2, 3 + x2==

This generates an array corresponding to the same nested list. 

In[2]:= Array@x^Ò1 + Ò2 &, 82, 3<D

Out[2]= 981 + x, 2 + x, 3 + x<, 91 + x2, 2 + x2, 3 + x2==

Elements not explicitly specified in the sparse array are taken to be 0. 

In[3]:= Normal@SparseArray@881, 3< -> 3 + x<, 82, 3<DD

Out[3]= 880, 0, 3 + x<, 80, 0, 0<<
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Each element in the final list contains one element from each input list. 

In[4]:= Outer@f, 8a, b<, 8c, d<D

Out[4]= 88f@a, cD, f@a, dD<, 8f@b, cD, f@b, dD<<

Functions like Array, SparseArray  and Outer  always generate full arrays, in which all sublists

at a particular level are the same length. 

Dimensions@listD the dimensions of a full array

ArrayQ@listD test whether all sublists at a given level are the same 
length

ArrayDepth@listD the depth to which all sublists are the same length

Functions for full arrays. 

Mathematica can handle arbitrary nested lists. There is no need for the lists to form a full array.

You can easily generate ragged arrays using Table.

This generates a triangular array. 

In[5]:= Table@x^i + j, 8i, 3<, 8j, i<D

Out[5]= 981 + x<, 91 + x2, 2 + x2=, 91 + x3, 2 + x3, 3 + x3==

Flatten@listD flatten out all levels of list

Flatten@list,nD flatten out the top n levels

ArrayFlatten@list,rankD create a flattened array from an array of arrays

Flattening out sublists and subarrays. 

This generates a 2×3 array. 

In[6]:= Array@a, 82, 3<D

Out[6]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<<

Flatten in effect puts elements in lexicographic order of their indices. 

In[7]:= Flatten@%D

Out[7]= 8a@1, 1D, a@1, 2D, a@1, 3D, a@2, 1D, a@2, 2D, a@2, 3D<

This creates a matrix from a block matrix.

In[8]:= ArrayFlatten@88881<<, 882, 3<<<, 8884<, 87<<, 885, 6<, 88, 9<<<<D

Out[8]= 881, 2, 3<, 84, 5, 6<, 87, 8, 9<<
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Transpose@listD transpose the top two levels of list

Transpose@list,8n1,n2,…<D put the kth level in list at level nk

Transposing levels in nested lists. 

This generates a 2×2×2 array. 

In[9]:= Array@a, 82, 2, 2<D

Out[9]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

This permutes levels so that level 3 appears at level 1. 

In[10]:= Transpose@%, 83, 1, 2<D

Out[10]= 888a@1, 1, 1D, a@2, 1, 1D<, 8a@1, 1, 2D, a@2, 1, 2D<<,
88a@1, 2, 1D, a@2, 2, 1D<, 8a@1, 2, 2D, a@2, 2, 2D<<<

This restores the original array. 

In[11]:= Transpose@%, 82, 3, 1<D

Out[11]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

Map@ f,list,8n<D map f  across elements at level n

Apply@ f,list,8n<D apply f  to the elements at level n

MapIndexed@ f,list,8n<D map f  onto parts at level n and their indices

Applying functions in nested lists. 

Here is a nested list. 

In[12]:= m = 888a, b<, 8c, d<<, 88e, f<, 8g, h<, 8i<<<;

This maps a function f at level 2. 

In[13]:= Map@f, m, 82<D

Out[13]= 88f@8a, b<D, f@8c, d<D<, 8f@8e, f<D, f@8g, h<D, f@8i<D<<

This applies the function at level 2. 

In[14]:= Apply@f, m, 82<D

Out[14]= 88f@a, bD, f@c, dD<, 8f@e, fD, f@g, hD, f@iD<<
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This applies f to both parts and their indices. 

In[15]:= MapIndexed@f, m, 82<D

Out[15]= 88f@8a, b<, 81, 1<D, f@8c, d<, 81, 2<D<, 8f@8e, f<, 82, 1<D, f@8g, h<, 82, 2<D, f@8i<, 82, 3<D<<

Partition@list,8n1,n2,…<D partition into n1×n1×… blocks

PadLeft@list,8n1,n2,…<D pad on the left to make an n1×n1×… array

PadRight@list,8n1,n2,…<D pad on the right to make an n1×n1×… array

RotateLeft@list,8n1,n2,…<D rotate nk places to the left at level k

RotateRight@list,8n1,n2,…<D rotate nk places to the right at level k

Operations on nested lists. 

Here is a nested list. 

In[16]:= m = 888a, b, c<, 8d, e<<, 88f, g<, 8h<, 8i<<<;

This rotates different amounts at each level. 

In[17]:= RotateLeft@m, 80, 1, -1<D

Out[17]= 888e, d<, 8c, a, b<<, 88h<, 8i<, 8g, f<<<

This pads with zeros to make a 2×3×3 array. 

In[18]:= PadRight@%, 82, 3, 3<D

Out[18]= 888e, d, 0<, 8c, a, b<, 80, 0, 0<<, 88h, 0, 0<, 8i, 0, 0<, 8g, f, 0<<<

Partitioning and Padding Lists

Partition@list,nD partition list into sublists of length n

Partition@list,n,dD partition into sublists with offset d

Split@listD split list into runs of identical elements

Split@list,testD split into runs with adjacent elements satisfying test

Partitioning elements in a list. 

This partitions in blocks of 3. 

In[1]:= Partition@8a, b, c, d, e, f<, 3D

Out[1]= 88a, b, c<, 8d, e, f<<

This partitions in blocks of 3 with offset 1. 
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This partitions in blocks of 3 with offset 1. 

In[2]:= Partition@8a, b, c, d, e, f<, 3, 1D

Out[2]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<<

The offset can be larger than the block size. 

In[3]:= Partition@8a, b, c, d, e, f<, 2, 3D

Out[3]= 88a, b<, 8d, e<<

This splits into runs of identical elements. 

In[4]:= Split@81, 4, 1, 1, 1, 2, 2, 3, 3<D

Out[4]= 881<, 84<, 81, 1, 1<, 82, 2<, 83, 3<<

This splits into runs where adjacent elements are unequal. 

In[5]:= Split@81, 4, 1, 1, 1, 2, 2, 3, 3<, UnequalD

Out[5]= 881, 4, 1<, 81<, 81, 2<, 82, 3<, 83<<

Partition in effect goes through a list, grouping successive elements into sublists. By default it

does not include any sublists that would "overhang" the original list. 

This stops before any overhang occurs. 

In[6]:= Partition@8a, b, c, d, e<, 2D

Out[6]= 88a, b<, 8c, d<<

The same is true here. 

In[7]:= Partition@8a, b, c, d, e<, 3, 1D

Out[7]= 88a, b, c<, 8b, c, d<, 8c, d, e<<

You can tell Partition to include sublists that overhang the ends of the original list. By default,

it  fills  in additional  elements by treating the original  list  as cyclic.  It  can also treat it  as being

padded with elements that you specify. 

This includes additional sublists, treating the original list as cyclic. 

In[8]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<D

Out[8]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, a<, 8e, a, b<<
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Now the original list is treated as being padded with the element x. 

In[9]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, xD

Out[9]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, x<, 8e, x, x<<

This pads cyclically with elements x and y. 

In[10]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, 8x, y<D

Out[10]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, y<, 8e, y, x<<

This introduces no padding, yielding sublists of differing lengths. 

In[11]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, 8<D

Out[11]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e<, 8e<<

You can think of  Partition  as  extracting sublists  by sliding a template along and picking out

elements from the original list. You can tell Partition where to start and stop this process. 

This gives all sublists that overlap the original list. 

In[12]:= Partition@8a, b, c, d<, 3, 1, 8-1, 1<, xD

Out[12]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This allows overlaps only at the beginning. 

In[13]:= Partition@8a, b, c, d<, 3, 1, 8-1, -1<, xD

Out[13]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<<

Partition@list,n,dD  or 
Partition@list,n,d,81,-1<D

keep only sublists with no overhangs

Partition@list,n,d,81,1<D allow an overhang at the end

Partition@list,n,d,8-1,-1<D allow an overhang at the beginning

Partition@list,n,d,8-1,1<D allow overhangs at both the beginning and end

Partition@list,n,d,8kL,kR<D specify alignments of first and last sublists

Partition@list,n,d,specD pad by cyclically repeating elements in list

Partition@list,n,d,spec,xD pad by repeating the element x

Partition@list,n,d,spec,8x1,x2,…<D

pad by cyclically repeating the xi

Partition@list,n,d,spec,8<D use no padding

Specifying alignment and padding. 

An alignment specification 8kL, kR< tells Partition to give the sequence of sublists in which the

first element of the original list appears at position kL in the first sublist, and the last element of

the original list appears at position kR in the last sublist. 
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An alignment specification 8kL, kR< tells Partition to give the sequence of sublists in which the

first element of the original list appears at position kL in the first sublist, and the last element of

the original list appears at position kR in the last sublist. 

This makes a appear at position 1 in the first sublist. 

In[14]:= Partition@8a, b, c, d<, 3, 1, 81, 1<, xD

Out[14]= 88a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This makes a appear at position 2 in the first sublist. 

In[15]:= Partition@8a, b, c, d<, 3, 1, 82, 1<, xD

Out[15]= 88x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

Here a is in effect made to appear first at position 4. 

In[16]:= Partition@8a, b, c, d<, 3, 1, 84, 1<, xD

Out[16]= 88x, x, x<, 8x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This fills in padding cyclically from the list given. 

In[17]:= Partition@8a, b, c, d<, 3, 1, 84, 1<, 8x, y<D

Out[17]= 88y, x, y<, 8x, y, a<, 8y, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, y<<

Functions like ListConvolve use the same alignment and padding specifications as Partition. 

In some cases it may be convenient to insert explicit padding into a list. You can do this using

PadLeft and PadRight. 

PadLeft@list,nD pad to length n by inserting zeros on the left

PadLeft@list,n,xD pad by repeating the element x

PadLeft@list,n,8x1,x2,…<D pad by cyclically repeating the xi

PadLeft@list,n,listD pad by cyclically repeating list

PadLeft@list,n,padding,mD leave a margin of m elements on the right

PadRight@list,nD pad by inserting zeros on the right

Padding a list. 

This pads the list to make it length 6. 

In[18]:= PadLeft@8a, b, c<, 6D

Out[18]= 80, 0, 0, a, b, c<

This cyclically inserts 8x, y< as the padding. 
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This cyclically inserts 8x, y< as the padding. 

In[19]:= PadLeft@8a, b, c<, 6, 8x, y<D

Out[19]= 8x, y, x, a, b, c<

This also leaves a margin of 3 on the right. 

In[20]:= PadLeft@8a, b, c<, 10, 8x, y<, 3D

Out[20]= 8y, x, y, x, a, b, c, x, y, x<

PadLeft, PadRight and Partition can all be used on nested lists. 

This creates a 3x3 array. 

In[21]:= PadLeft@88a, b<, 8e<, 8f<<, 83, 3<, xD

Out[21]= 88x, a, b<, 8x, x, e<, 8x, x, f<<

This partitions the array into 2x2 blocks with offset 1. 

In[22]:= Partition@%, 82, 2<, 81, 1<D

Out[22]= 8888x, a<, 8x, x<<, 88a, b<, 8x, e<<<, 888x, x<, 8x, x<<, 88x, e<, 8x, f<<<<

If you give a nested list as a padding specification, its elements are picked up cyclically at each

level. 

This cyclically fills in copies of the padding list. 

In[23]:= PadLeft@88a, b<, 8e<, 8f<<, 84, 4<, 88x, y<, 8z, w<<D

Out[23]= 88x, y, x, y<, 8z, w, a, b<, 8x, y, x, e<, 8z, w, z, f<<

Here is a list containing only padding. 

In[24]:= PadLeft@88<<, 84, 4<, 88x, y<, 8z, w<<D

Out[24]= 88x, y, x, y<, 8z, w, z, w<, 8x, y, x, y<, 8z, w, z, w<<

Sparse Arrays: Manipulating Lists

Lists  are  normally  specified  in  Mathematica  just  by  giving  explicit  lists  of  their  elements.  But

particularly  in  working  with  large  arrays,  it  is  often  useful  instead  to  be  able  to  say  what  the

values of elements are only at certain positions, with all other elements taken to have a default

value, usually zero. You can do this in Mathematica using SparseArray objects. 
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8e1,e2,…< , 88e11,e12,…<,…< , … ordinary lists

SparseArray@8pos1->val1,pos2->val2,…<D

sparse arrays

Ordinary lists and sparse arrays. 

This specifies a sparse array. 

In[1]:= SparseArray@82 -> a, 5 -> b<D

Out[1]= SparseArray@<2>, 85<D

Here it is as an ordinary list. 

In[2]:= Normal@%D

Out[2]= 80, a, 0, 0, b<

This specifies a two-dimensional sparse array. 

In[3]:= SparseArray@881, 2< -> a, 83, 2< -> b, 83, 3< -> c<D

Out[3]= SparseArray@<3>, 83, 3<D

Here it is an ordinary list of lists. 

In[4]:= Normal@%D

Out[4]= 880, a, 0<, 80, 0, 0<, 80, b, c<<

SparseArray@listD sparse array version of list

SparseArray@8pos1->val1,pos2->val2,…<D

sparse array with values vali at positions posi

SparseArray@8pos1,pos2,…<->8val1,val2,…<D

the same sparse array

SparseArrayABand@8i, j<D->valE banded sparse array with values val

SparseArray@data,8d1,d2,…<D d1×d2×… sparse array

SparseArray@data,dims,valD sparse array with default value val

Normal@arrayD ordinary list version of array

ArrayRules@arrayD position-value rules for array

Creating and converting sparse arrays. 
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This generates a sparse array version of a list. 

In[5]:= SparseArray@8a, b, c, d<D

Out[5]= SparseArray@<4>, 84<D

This converts back to an ordinary list. 

In[6]:= Normal@%D

Out[6]= 8a, b, c, d<

This makes a length 7 sparse array with default value x. 

In[7]:= SparseArray@83 -> a, 5 -> b<, 7, xD

Out[7]= SparseArray@<2>, 87<, xD

Here is the corresponding ordinary list. 

In[8]:= Normal@%D

Out[8]= 8x, x, a, x, b, x, x<

This shows the rules used in the sparse array. 

In[9]:= ArrayRules@%%D

Out[9]= 883< Ø a, 85< Ø b, 8_< Ø x<

This creates a banded matrix. 

In[10]:= SparseArray@8Band@81, 1<D Ø x, Band@82, 1<D Ø y<, 85, 5<D êê MatrixForm

Out[10]//MatrixForm=

x 0 0 0 0
y x 0 0 0
0 y x 0 0
0 0 y x 0
0 0 0 y x

An important feature of SparseArray is that the positions you specify can be patterns. 

This specifies a 4×4 sparse array with 1 at every position matching 8i_, i_<. 

In[11]:= SparseArray@8i_, i_< -> 1, 84, 4<D

Out[11]= SparseArray@<4>, 84, 4<D

The result is a 4×4 identity matrix. 

In[12]:= Normal@%D

Out[12]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

Here is an identity matrix with an extra element. 
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Here is an identity matrix with an extra element. 

In[13]:= Normal@SparseArray@881, 3< -> a, 8i_, i_< -> 1<, 84, 4<DD

Out[13]= 881, 0, a, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

This makes the whole third column be a. 

In[14]:= Normal@SparseArray@88_, 3< -> a, 8i_, i_< -> 1<, 84, 4<DD

Out[14]= 881, 0, a, 0<, 80, 1, a, 0<, 80, 0, a, 0<, 80, 0, a, 1<<

You can think of SparseArray@rulesD as taking all possible position specifications, then applying

rules to determine values in each case. As usual, rules given earlier in the list will be tried first. 

This generates a random diagonal matrix. 

In[15]:= Normal@SparseArray@88i_, i_< :> RandomReal@D<, 83, 3<DD

Out[15]= 880.0560708, 0, 0<, 80, 0.6303, 0<, 80, 0, 0.359894<<

You can have rules where values depend on indices. 

In[16]:= Normal@SparseArray@i_ -> i^2, 10DD

Out[16]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

This fills in even-numbered positions with p. 

In[17]:= Normal@SparseArray@8_?EvenQ -> p, i_ -> i^2<, 10DD

Out[17]= 81, p, 9, p, 25, p, 49, p, 81, p<

You can use patterns involving alternatives. 

In[18]:= Normal@SparseArray@81 3, 2 4< -> a, 84, 4<DD

Out[18]= 880, a, 0, a<, 80, 0, 0, 0<, 80, a, 0, a<, 80, 0, 0, 0<<

You can also give conditions on patterns. 

In[19]:= Normal@SparseArray@i_ ê; 3 < i < 7 -> p, 10DD

Out[19]= 80, 0, 0, p, p, p, 0, 0, 0, 0<

This makes a band-diagonal matrix. 

In[20]:= Normal@SparseArray@88i_, j_< ê; Abs@i - jD < 2 -> i + j<, 85, 5<DD

Out[20]= 882, 3, 0, 0, 0<, 83, 4, 5, 0, 0<, 80, 5, 6, 7, 0<, 80, 0, 7, 8, 9<, 80, 0, 0, 9, 10<<
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Here is another way. 

In[21]:= Normal@SparseArray@8Band@81, 1<D Ø 82, 4, 6, 8, 10<,
Band@81, 2<D Ø 83, 5, 7, 9<, Band@82, 1<D Ø 83, 5, 7, 9<<, 85, 5<DD

Out[21]= 882, 3, 0, 0, 0<, 83, 4, 5, 0, 0<, 80, 5, 6, 7, 0<, 80, 0, 7, 8, 9<, 80, 0, 0, 9, 10<<

For  many  purposes,  Mathematica  treats  SparseArray  objects  just  like  the  ordinary  lists  to

which they correspond. Thus, for example, if you ask for parts of a sparse array object, Mathe-

matica will operate as if you had asked for parts in the corresponding ordinary list. 

This generates a sparse array object. 

In[22]:= s = SparseArray@82 -> a, 4 -> b, 5 -> c<, 10D

Out[22]= SparseArray@<3>, 810<D

Here is the corresponding ordinary list. 

In[23]:= Normal@sD

Out[23]= 80, a, 0, b, c, 0, 0, 0, 0, 0<

Parts of the sparse array are just like parts of the corresponding ordinary list. 

In[24]:= s@@2DD

Out[24]= a

This part has the default value 0. 

In[25]:= s@@3DD

Out[25]= 0

Many  operations  treat  SparseArray  objects  just  like  ordinary  lists.  When  possible,  they  give

sparse arrays as results. 

This gives a sparse array. 

In[26]:= 3 s + x

Out[26]= SparseArray@<3>, 810<, xD

Here is the corresponding ordinary list. 

In[27]:= Normal@%D

Out[27]= 8x, 3 a + x, x, 3 b + x, 3 c + x, x, x, x, x, x<

Core Language     55



Dot works directly with sparse array objects. 

In[28]:= s.s

Out[28]= a2 + b2 + c2

You can mix sparse arrays and ordinary lists. 

In[29]:= s.Range@10D

Out[29]= 2 a + 4 b + 5 c

Mathematica  represents  sparse  arrays  as  expressions  with  head  SparseArray.  Whenever  a

sparse  array  is  evaluated,  it  is  automatically  converted  to  an  optimized  standard  form  with

structure SparseArray@Automatic, dims, val, …D. 

This structure is, however, rarely evident, since even operations like Length are set up to give

results for the corresponding ordinary list, not for the raw SparseArray expression structure. 

This generates a sparse array. 

In[30]:= t = SparseArray@81 -> a, 5 -> b<, 10D

Out[30]= SparseArray@<2>, 810<D

Here is the underlying optimized expression structure. 

In[31]:= InputForm@%D

Out[31]//InputForm= SparseArray[Automatic, {10}, 0,   {1, {{0, 2}, {{1}, {5}}}, {a, b}}]

Length gives the length of the corresponding ordinary list. 

In[32]:= Length@tD

Out[32]= 10

Map also operates on individual values. 

In[33]:= Normal@Map@f, tDD

Out[33]= 8f@aD, f@0D, f@0D, f@0D, f@bD, f@0D, f@0D, f@0D, f@0D, f@0D<
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Expressions

Everything Is an Expression

Mathematica handles many different kinds of things: mathematical formulas, lists and graphics,

to  name  a  few.  Although  they  often  look  very  different,  Mathematica  represents  all  of  these

things in one uniform way. They are all expressions. 

A  prototypical  example  of  a  Mathematica  expression  is  f@x, yD.  You  might  use  f@x, yD  to

represent a mathematical function f Hx, yL. The function is named f, and it has two arguments, x

and y. 

You do not always have to write expressions in the form f@x, y, …D. For example, x + y is also

an  expression.  When  you  type  in  x + y,  Mathematica  converts  it  to  the  standard  form

Plus@x, yD. Then, when it prints it out again, it gives it as x + y. 

The same is true of other "operators", such as ^ (Power) and ê (Divide). 

In fact, everything you type into Mathematica is treated as an expression. 

x+y+z Plus@x,y,zD

x y z Times@x,y,zD

x^n Power@x,nD

8a,b,c< List@a,b,cD

a->b Rule@a,bD

a=b Set@a,bD

Some examples of Mathematica expressions. 

You can see the full form of any expression by using FullForm@exprD.

Here is an expression. 

In[1]:= x + y + z

Out[1]= x + y + z
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This is the full form of the expression. 

In[2]:= FullForm@%D

Out[2]//FullForm= Plus@x, y, zD

Here is another expression. 

In[3]:= 1 + x^2 + Hy + zL^2

Out[3]= 1 + x2 + Hy + zL2

Its full form has several nested pieces. 

In[4]:= FullForm@%D

Out[4]//FullForm= Plus@1, Power@x, 2D, Power@Plus@y, zD, 2DD

The  object  f  in  an  expression  f@x, y, …D  is  known  as  the  head  of  the  expression.  You  can

extract it using Head@exprD. Particularly when you write programs in Mathematica, you will often

want to test the head of an expression to find out what kind of thing the expression is. 

Head gives the "function name" f. 

In[5]:= Head@f@x, yDD

Out[5]= f

Here Head gives the name of the "operator". 

In[6]:= Head@a + b + cD

Out[6]= Plus

Everything has a head. 

In[7]:= Head@8a, b, c<D

Out[7]= List

Numbers also have heads. 

In[8]:= Head@23 432D

Out[8]= Integer

You can distinguish different kinds of numbers by their heads. 

In[9]:= Head@345.6D

Out[9]= Real
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Head@exprD give the head of an expression: the f  in f@x, yD

FullForm@exprD display an expression in the full form used by Mathematica

Functions for manipulating expressions. 

The Meaning of Expressions

The notion of expressions is a crucial unifying principle in Mathematica. It is the fact that every

object in Mathematica has the same underlying structure that makes it possible for Mathemat-

ica to cover so many areas with a comparatively small number of basic operations. 

Although  all  expressions  have  the  same  basic  structure,  there  are  many  different  ways  that

expressions can be used. Here are a few of the interpretations you can give to the parts of an

expression.

meaning of f meaning of 
x, y, …

examples

Function arguments or 
parameters

Sin@xD , f@x,yD

Command arguments or 
parameters

Expand@Hx+1L^2D

Operator operands x+y , a=b
Head elements 8a,b,c<
Object type contents RGBColor@r,g,bD

Some interpretations of parts of expressions. 

Expressions  in  Mathematica  are  often  used  to  specify  operations.  So,  for  example,  typing  in

2 + 3 causes 2 and 3 to be added together, while Factor@x^6 - 1D performs factorization. 

Perhaps an even more important use of expressions in Mathematica, however, is to maintain a

structure, which can then be acted on by other functions. An expression like 8a, b, c< does not

specify  an  operation.  It  merely  maintains  a  list  structure,  which  contains  a  collection  of  three

elements. Other functions, such as Reverse or Dot, can act on this structure. 

The full form of the expression 8a, b, c< is List@a, b, cD. The head List  performs no opera-

tions. Instead, its purpose is to serve as a “tag” to specify the “type” of the structure. 

You can use expressions in Mathematica to create your own structures. For example, you might

want to represent points in three-dimensional space, specified by three coordinates. You could

give each point as point@x, y, zD. The “function” point again performs no operation. It serves

merely to collect the three coordinates together, and to label the resulting object as a point. 
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You can use expressions in Mathematica to create your own structures. For example, you might

want to represent points in three-dimensional space, specified by three coordinates. You could

give each point as point@x, y, zD. The “function” point again performs no operation. It serves

merely to collect the three coordinates together, and to label the resulting object as a point. 

You  can  think  of  expressions  like  point@x, y, zD  as  being  “packets  of  data”,  tagged  with  a

particular head. Even though all expressions have the same basic structure, you can distinguish

different “types” of expressions by giving them different heads. You can then set up transforma-

tion rules and programs which treat different types of expressions in different ways. 

Special Ways to Input Expressions

Mathematica  allows  you  to  use  special  notation  for  many  common  operators.  For  example,

although internally  Mathematica  represents  a  sum of  two  terms as  Plus@x, yD,  you  can  enter

this expression in the much more convenient form x + y. 

The  Mathematica  language  has  a  definite  grammar  which  specifies  how  your  input  should  be

converted to  internal  form. One aspect  of  the grammar is  that  it  specifies  how pieces  of  your

input should be grouped. For example, if you enter an expression such as a + b^c, the Mathemat-

ica grammar specifies that this should be considered, following standard mathematical notation,

as  a + Hb^cL  rather  than  Ha + bL^c.  Mathematica  chooses  this  grouping  because  it  treats  the

operator ^ as having a higher precedence than +. In general, the arguments of operators with

higher precedence are grouped before those of operators with lower precedence. 

You should realize that absolutely every special input form in Mathematica is assigned a definite

precedence. This includes not only the traditional mathematical operators, but also forms such

as ->, := or the semicolons used to separate expressions in a Mathematica program. 

The table in "Operator Input Forms" gives all the operators of Mathematica in order of decreas-

ing  precedence.  The precedence is  arranged,  where  possible,  to  follow standard  mathematical

usage, and to minimize the number of parentheses that are usually needed. 

You  will  find,  for  example,  that  relational  operators  such  as  <  have  lower  precedence  than

arithmetic  operators  such  as  +.  This  means  that  you  can  write  expressions  such  as  x + y > 7

without using parentheses. 

There are nevertheless many cases where you do have to use parentheses. For example, since

; has a lower precedence than =, you need to use parentheses to write x = Ha; bL. Mathematica

interprets the expression x = a; b as Hx = aL; b. In general, it can never hurt to include extra

parentheses, but it can cause a great deal of trouble if you leave parentheses out, and Mathe-

matica interprets your input in a way you do not expect. 
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There are nevertheless many cases where you do have to use parentheses. For example, since

; has a lower precedence than =, you need to use parentheses to write x = Ha; bL. Mathematica

interprets the expression x = a; b as Hx = aL; b. In general, it can never hurt to include extra

parentheses, but it can cause a great deal of trouble if you leave parentheses out, and Mathe-

matica interprets your input in a way you do not expect. 

f @x,yD standard form for f @x, yD

füx prefix form for f @xD

xêê f postfix form for f @xD

x~ f~y infix form for f @x, yD

Four ways to write expressions in Mathematica. 

There are several common types of operators in Mathematica. The + in x + y is an “infix” opera-

tor. The - in - p is a “prefix” operator. Even when you enter an expression such as f@x, y, …D

Mathematica allows you to do it in ways that mimic infix, prefix and postfix forms.

This “postfix form” is exactly equivalent to f@x + yD. 

In[1]:= x + y êê f

Out[1]= f@x + yD

You will often want to add functions like N as “afterthoughts”, and give them in postfix form. 

In[2]:= 3^H1 ê 4L + 1 êê N

Out[2]= 2.31607

It is sometimes easier to understand what a function is doing when you write it in infix form. 

In[3]:= 8a, b, c<~Join~8d, e<

Out[3]= 8a, b, c, d, e<

You should notice that êê has very low precedence. If you put êê f  at the end of any expres-

sion containing arithmetic or logical operators, the f  is applied to the whole expression. So, for

example, x + y êê f means f@x + yD, not x + f@yD. 

The prefix form ü has a much higher precedence. füx + y is equivalent to f@xD + y, not f@x + yD.

You can write f@x + yD in prefix form as füHx + yL. 
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Parts of Expressions

Since lists are just a particular kind of expression, it will come as no surprise that you can refer

to parts of any expression much as you refer to parts of a list. 

This gets the second element in the list 8a, b, c<. 

In[1]:= 8a, b, c<@@2DD

Out[1]= b

You can use the same method to get the second element in the sum x + y + z. 

In[2]:= Hx + y + zL@@2DD

Out[2]= y

This gives the last element in the sum. 

In[3]:= Hx + y + zL@@-1DD

Out[3]= z

Part 0 is the head. 

In[4]:= Hx + y + zL@@0DD

Out[4]= Plus

You  can  refer  to  parts  of  an  expression  such  as  f@g@aD, g@bDD  just  as  you  refer  to  parts  of

nested lists. 

This is part 1. 

In[5]:= f@g@aD, g@bDD@@1DD

Out[5]= g@aD

This is part 81, 1<. 

In[6]:= f@g@aD, g@bDD@@1, 1DD

Out[6]= a

This extracts part 82, 1< of the expression 1 + x^2. 

In[7]:= H1 + x^2L@@2, 1DD

Out[7]= x

To see what part is 82, 1<, you can look at the full form of the expression. 
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To see what part is 82, 1<, you can look at the full form of the expression. 

In[8]:= FullForm@1 + x^2D

Out[8]//FullForm= Plus@1, Power@x, 2DD

You should realize that the assignment of indices to parts of expressions is done on the basis of

the internal Mathematica forms of the expression, as shown by FullForm. These forms do not

always correspond directly with what you see printed out. This is particularly true for algebraic

expressions,  where  Mathematica  uses  a  standard  internal  form,  but  prints  the  expressions  in

special ways. 

Here is the internal form of x ê y. 

In[9]:= FullForm@x ê yD

Out[9]//FullForm= Times@x, Power@y, -1DD

It is the internal form that is used in specifying parts. 

In[10]:= Hx ê yL@@2DD

Out[10]= 
1

y

You can manipulate parts of expressions just as you manipulate parts of lists. 

This replaces the third part of a + b + c + d by x^2. Note that the sum is automatically rear-
ranged when the replacement is done. 

In[11]:= ReplacePart@a + b + c + d, 3 -> x^2D

Out[11]= a + b + d + x2

Here is an expression. 

In[12]:= t = 1 + H3 + xL^2 ê y

Out[12]= 1 +
H3 + xL2

y

This is the full form of t. 

In[13]:= FullForm@tD

Out[13]//FullForm= Plus@1, Times@Power@Plus@3, xD, 2D, Power@y, -1DDD
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This resets a part of the expression t. 

In[14]:= t@@2, 1, 1DD = x

Out[14]= x

Now the form of t has been changed. 

In[15]:= t

Out[15]= 1 +
x2

y

Part@expr,nD  or expr@@nDD the nth part of expr

Part@expr,8n1,n2,…<D  or expr@@8n1,n2,…<DD

a combination of parts of an expression

Part@expr,n1;;n2D parts n1 through n2 of an expression

ReplacePart@expr,n->elemD replace the nth part of expr by elem

Functions for manipulating parts of expressions. 

"Manipulating Elements of Lists" discusses how you can use lists of indices to pick out several

elements  of  a  list  at  a  time.  You  can  use  the  same procedure  to  pick  out  several  parts  in  an

expression at a time. 

This picks out elements 2 and 4 in the list, and gives a list of these elements. 

In[16]:= 8a, b, c, d, e<@@82, 4<DD

Out[16]= 8b, d<

This picks out parts 2 and 4 of the sum, and gives a sum of these elements. 

In[17]:= Ha + b + c + d + eL@@82, 4<DD

Out[17]= b + d

Any  part  in  an  expression  can  be  viewed  as  being  an  argument  of  some  function.  When  you

pick out several parts by giving a list of indices, the parts are combined using the same function

as in the expression. 

This picks out parts 2 through 4 of the list.

In[18]:= 8a, b, c, d, e<@@2 ;; 4DD

Out[18]= 8b, c, d<

Manipulating Expressions like Lists
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Manipulating Expressions like Lists

You can use most of the list operations discussed in "Lists" on any kind of Mathematica expres-

sion. By using these operations, you can manipulate the structure of expressions in many ways. 

Here is an expression that corresponds to a sum of terms. 

In[1]:= t = 1 + x + x^2 + y^2

Out[1]= 1 + x + x2 + y2

Take@t, 2D takes the first two elements from t, just as if t were a list. 

In[2]:= Take@t, 2D

Out[2]= 1 + x

Length gives the number of elements in t. 

In[3]:= Length@tD

Out[3]= 4

You can use FreeQ@expr, formD to test whether form appears nowhere in expr. 

In[4]:= FreeQ@t, xD

Out[4]= False

This gives a list of the positions at which x appears in t. 

In[5]:= Position@t, xD

Out[5]= 882<, 83, 1<<

You  should  remember  that  all  functions  which  manipulate  the  structure  of  expressions  act  on

the internal  forms of  these expressions.  You can see these forms using FullForm@exprD.  They

may not be what you would expect from the printed versions of the expressions. 

Here is a function with four arguments. 

In[6]:= f@a, b, c, dD

Out[6]= f@a, b, c, dD
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You can add an argument using Append. 

In[7]:= Append@%, eD

Out[7]= f@a, b, c, d, eD

This reverses the arguments. 

In[8]:= Reverse@%D

Out[8]= f@e, d, c, b, aD

There are a few extra functions that can be used with expressions, as discussed in "Structural

Operations". 

Expressions as Trees

Here is an expression in full form. 

In[1]:= FullForm@x^3 + H1 + xL^2D

Out[1]//FullForm= Plus@Power@x, 3D, Power@Plus@1, xD, 2DD

TreeForm prints out expressions to show their “tree” structure.

In[2]:= TreeForm@x^3 + H1 + xL^2D

Out[2]//TreeForm=

Plus

Power

x 3

Power

Plus

1 x

2

You can think of any Mathematica expression as a tree. In the expression above, the top node

in the tree consists of a Plus. From this node come two “branches”, x^3 and H1 + xL^2. From

the x^3  node,  there are then two branches,  x  and 3,  which can be viewed as “leaves”  of  the

tree. 

This matrix is a simple tree with just two levels. 
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This matrix is a simple tree with just two levels. 

In[3]:= TreeForm@88a, b<, 8c, d<<D

Out[3]//TreeForm=

List

List

a b

List

c d

Here is a more complicated expression. 

In[4]:= 88a b, c d^2<, 8x^3 y^4<<

Out[4]= 99a b, c d2=, 9x3 y4==

The tree for this expression has several levels. The representation of the tree here was too long 
to fit on a single line, so it had to be broken onto two lines. 

In[5]:= TreeForm@%D

Out[5]//TreeForm=

List

List

Times

a b

Times

c Power

d 2

List

Times

Power

x 3

Power

y 4

The indices that label each part of an expression have a simple interpretation in terms of trees.

Descending from the top node of the tree, each index specifies which branch to take in order to

reach the part you want. 
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Levels in Expressions

The Part  function allows you to access specific parts of Mathematica expressions. But particu-

larly  when your  expressions  have fairly  uniform structure,  it  is  often  convenient  to  be  able  to

refer to a whole collection of parts at the same time. 

Levels  provide  a  general  way  of  specifying  collections  of  parts  in  Mathematica  expressions.

Many  Mathematica  functions  allow  you  to  specify  the  levels  in  an  expression  on  which  they

should act. 

Here is a simple expression, displayed in tree form. 

In[1]:= Ht = 8x, 8x, y<, y<L êê TreeForm

Out[1]//TreeForm=

List

x List y

x y

This searches for x in the expression t down to level 1. It finds only one occurrence. 

In[2]:= Position@t, x, 1D

Out[2]= 881<<

This searches down to level 2. Now it finds both occurrences of x. 

In[3]:= Position@t, x, 2D

Out[3]= 881<, 82, 1<<
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This searches only at level 2. It finds just one occurrence of x. 

In[4]:= Position@t, x, 82<D

Out[4]= 882, 1<<

Position@expr, form,nD give the positions at which form occurs in expr down to 
level n

Position@expr, form,8n<D give the positions exactly at level n

Controlling Position using levels. 

You  can  think  of  levels  in  expressions  in  terms  of  trees.  The  level  of  a  particular  part  in  an

expression is simply the distance down the tree at which that part appears, with the top of the

tree considered as level 0. 

It is equivalent to say that the parts which appear at level n are those that can be specified by a

sequence of exactly n indices. 

n levels 1 through n

Infinity all levels (except 0)

8n< level n only

8n1,n2< levels n1 through n2
Heads->True include heads

Heads->False exclude heads

Level specifications. 
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Here is an expression, displayed in tree form. 

In[5]:= Hu = f@f@g@aD, aD, a, h@aD, fDL êê TreeForm

Out[5]//TreeForm=

f

f a h f

g a

a

a

This searches for a at levels from 2 downward. 

In[6]:= Position@u, a, 82, Infinity<D

Out[6]= 881, 1, 1<, 81, 2<, 83, 1<<

This shows where f appears other than in the head of an expression. 

In[7]:= Position@u, f, Heads -> FalseD

Out[7]= 884<<

This includes occurrences of f in heads of expressions. 

In[8]:= Position@u, f, Heads -> TrueD

Out[8]= 880<, 81, 0<, 84<<

Level@expr,levD a list of the parts of expr at the levels specified by lev

Depth@exprD the total number of levels in expr

Testing and extracting levels. 

This gives a list of all parts of u that occur down to level 2. 
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This gives a list of all parts of u that occur down to level 2. 

In[9]:= Level@u, 2D

Out[9]= 8g@aD, a, f@g@aD, aD, a, a, h@aD, f<

Here are the parts specifically at level 2. 

In[10]:= Level@u, 82<D

Out[10]= 8g@aD, a, a<

When  you  have  got  the  hang  of  ordinary  levels,  you  can  try  thinking  about  negative  levels.

Negative levels label parts of expressions starting at the bottom  of the tree. Level -1 contains

all the leaves of the tree: objects like symbols and numbers.

This shows the parts of u at level -1. 

In[11]:= Level@u, 8-1<D

Out[11]= 8a, a, a, a, f<

You can think of expressions as having a "depth", as shown by TreeForm. In general, level -n

in an expression is defined to consist of all subexpressions whose depth is n.

The depth of g@aD is 2. 

In[12]:= Depth@g@aDD

Out[12]= 2

The parts of u at level -2 are those that have depth exactly 2.

In[13]:= Level@u, 8-2<D

Out[13]= 8g@aD, h@aD<
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Patterns

Introduction to Patterns

Patterns are used throughout Mathematica to represent classes of expressions. A simple exam-

ple of a pattern is the expression f@x_D.  This pattern represents the class of expressions with

the form f@anythingD. 

The main power of patterns comes from the fact that many operations in Mathematica  can be

done  not  only  with  single  expressions,  but  also  with  patterns  that  represent  whole  classes  of

expressions. 

You can use patterns in transformation rules to specify how classes of expressions should be 
transformed. 

In[1]:= f@aD + f@bD ê. f@x_D -> x^2

Out[1]= a2 + b2

You can use patterns to find the positions of all expressions in a particular class. 

In[2]:= Position@8f@aD, g@bD, f@cD<, f@x_DD

Out[2]= 881<, 83<<

The  basic  object  that  appears  in  almost  all  Mathematica  patterns  is  _  (traditionally  called

“blank”  by  Mathematica  programmers).  The  fundamental  rule  is  simply  that  _  stands  for  any

expression.  On  most  keyboards  the  _  underscore  character  appears  as  the  shifted  version  of

the - dash character. 

Thus,  for  example,  the  pattern  f@_D  stands  for  any  expression  of  the  form  f@anythingD.  The

pattern f@x_D  also stands for any expression of the form f@anythingD,  but gives the name x  to

the  expression  anything,  allowing  you  to  refer  to  it  on  the  right-hand  side  of  a  transformation

rule. 

You  can  put  blanks  anywhere  in  an  expression.  What  you  get  is  a  pattern  which  matches  all

expressions that can be made by “filling in the blanks” in any way. 
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f@n_D f with any argument, named n

f@n_,m_D f with two arguments, named n and m

x^n_ x to any power, with the power named n

x_^n_ any expression to any power

a_+b_ a sum of two expressions

8a1_,a2_< a list of two expressions

f@n_,n_D f with two identical arguments

Some examples of patterns. 

You can construct patterns for expressions with any structure. 

In[3]:= f@8a, b<D + f@cD ê. f@8x_, y_<D -> p@x + yD

Out[3]= f@cD + p@a + bD

One  of  the  most  common  uses  of  patterns  is  for  “destructuring”  function  arguments.  If  you

make a definition for f@list_D, then you need to use functions like Part  explicitly in order to

pick  out  elements  of  the  list.  But  if  you  know  for  example  that  the  list  will  always  have  two

elements,  then  it  is  usually  much  more  convenient  instead  to  give  a  definition  instead  for

f@8x_, y_<D.  Then  you  can  refer  to  the  elements  of  the  list  directly  as  x  and  y.  In  addition,

Mathematica will not use the definition you have given unless the argument of f really is of the

required form of a list of two expressions. 

Here is one way to define a function which takes a list of two elements, and evaluates the first 
element raised to the power of the second element. 

In[4]:= g@list_D := Part@list, 1D^Part@list, 2D

Here is a much more elegant way to make the definition, using a pattern. 

In[5]:= h@8x_, y_<D := x^y

A crucial point to understand is that Mathematica patterns represent classes of expressions with

a given structure. One pattern will match a particular expression if the structure of the pattern

is the same as the structure of the expression, in the sense that by filling in blanks in the pat-

tern  you  can  get  the  expression.  Even  though two expressions  may be  mathematically  equal,

they  cannot  be  represented  by  the  same  Mathematica  pattern  unless  they  have  the  same

structure. 

Thus,  for  example,  the  pattern  H1 + x_L^2  can  stand  for  expressions  like  H1 + aL^2  or

H1 + b^3L^2  that  have  the  same  structure.  However,  it  cannot  stand  for  the  expression

1 + 2 a + a^2.  Although  this  expression  is  mathematically  equal  to  H1 + aL^2,  it  does  not  have

the same structure as the pattern H1 + x_L^2. 
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Thus,  for  example,  the  pattern  H1 + x_L^2  can  stand  for  expressions  like  H1 + aL^2  or

H1 + b^3L^2  that  have  the  same  structure.  However,  it  cannot  stand  for  the  expression

1 + 2 a + a^2.  Although  this  expression  is  mathematically  equal  to  H1 + aL^2,  it  does  not  have

the same structure as the pattern H1 + x_L^2. 

The fact that patterns in Mathematica specify the structure of expressions is crucial in making it

possible to set up transformation rules which change the structure of expressions, while leaving

them mathematically equal. 

It  is  worth  realizing  that  in  general  it  would  be  quite  impossible  for  Mathematica  to  match

patterns  by  mathematical,  rather  than  structural,  equivalence.  In  the  case  of  expressions  like

H1 + aL^2 and 1 + 2 a + a^2, you can determine equivalence just by using functions like Expand

and  Factor.  But,  as  discussed  in  "Reducing  Expressions  to  Their  Standard  Form"  there  is  no

general way to find out whether an arbitrary pair of mathematical expressions are equal. 

As  another  example,  the  pattern  x^_  will  match  the  expression  x^2.  It  will  not,  however,

match  the  expression  1,  even  though  this  could  be  considered  as  x^0.  "Optional  and  Default

Arguments" discusses how to construct a pattern for which this particular case will  match. But

you  should  understand  that  in  all  cases  pattern  matching  in  Mathematica  is  fundamentally

structural. 

The x^n_ matches only x^2 and x^3. 1 and x can mathematically be written as xn, but do not 
have the same structure.

In[6]:= 81, x, x^2, x^3< ê. x^n_ -> r@nD

Out[6]= 81, x, r@2D, r@3D<

Another  point  to  realize  is  that  the structure Mathematica  uses  in  pattern matching is  the full

form of expressions printed by FullForm. Thus, for example, an object such as 1 ê x, whose full

form  is  Power@x, -1D  will  be  matched  by  the  pattern  x_^n_,  but  not  by  the  pattern  x_ ê y_,

whose  full  form  is  Times@x_, Power@y_, -1DD.  Again,  "Optional  and  Default  Arguments"  will

discuss how you can construct patterns which can match all these cases. 

The expressions in the list contain explicit powers of b, so the transformation rule can be 
applied. 

In[7]:= 8a ê b, 1 ê b^2, 2 ê b^2< ê. b^n_ -> d@nD

Out[7]= 8a d@-1D, d@-2D, 2 d@-2D<
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Here is the full form of the list. 

In[8]:= FullForm@8a ê b, 1 ê b^2, 2 ê b^2<D

Out[8]//FullForm= List@Times@a, Power@b, -1DD, Power@b, -2D, Times@2, Power@b, -2DDD

Although  Mathematica  does  not  use  mathematical  equivalences  such  as  x1 = x  when  matching

patterns,  it  does  use  certain  structural  equivalences.  Thus,  for  example,  Mathematica  takes

account of properties such as commutativity and associativity in pattern matching. 

To apply this transformation rule, Mathematica makes use of the commutativity and associativ-
ity of addition. 

In[9]:= f@a + bD + f@a + cD + f@b + dD ê. f@a + x_D + f@c + y_D -> p@x, yD

Out[9]= f@b + dD + p@b, aD

The discussion considers only pattern objects such as x_ which can stand for any single expres-

sion.  Other  Tutorials  discuss  the  constructs  that  Mathematica  uses  to  extend  and  restrict  the

classes of expressions represented by patterns. 

Finding Expressions That Match a Pattern

Cases@list, formD give the elements of list that match form

Count@list, formD give the number of elements in list that match form

Position@list, form,81<D give the positions of elements in list that match form

Select@list,testD give the elements of list on which test gives True

Pick@list,sel, formD give the elements of list for which the corresponding 
elements of sel match form

Finding elements that match a pattern. 

This gives the elements of the list which match the pattern x^_. 

In[1]:= Cases@83, 4, x, x^2, x^3<, x^_D

Out[1]= 9x2, x3=

Here is the total number of elements which match the pattern. 

In[2]:= Count@83, 4, x, x^2, x^3<, x^_D

Out[2]= 2

You can apply functions like Cases  not only to lists, but to expressions of any kind. In addition,

you can specify the level of parts at which you want to look. 
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You can apply functions like Cases  not only to lists, but to expressions of any kind. In addition,

you can specify the level of parts at which you want to look. 

Cases@expr,lhs->rhsD find elements of expr that match lhs, and give a list of the 
results of applying the transformation rule to them

Cases@expr,lhs->rhs,levD test parts of expr at levels specified by lev

Count@expr, form,levD give the total number of parts that match form at levels 
specified by lev

Position@expr, form,levD give the positions of parts that match form at levels speci-
fied by lev 

Searching for parts of expressions that match a pattern. 

This returns a list of the exponents n. 

In[3]:= Cases@83, 4, x, x^2, x^3<, x^n_ -> nD

Out[3]= 82, 3<

The pattern _Integer matches any integer. This gives a list of integers appearing at any level. 

In[4]:= Cases@83, 4, x, x^2, x^3<, _Integer, InfinityD

Out[4]= 83, 4, 2, 3<

Cases@expr, form,lev,nD find only the first n parts that match form

Position@expr, form,lev,nD give the positions of the first n parts that match form

Limiting the number of parts to search for. 

This gives the positions of the first two powers of x appearing at any level. 

In[5]:= Position@84, 4 + x^a, x^b, 6 + x^5<, x^_, Infinity, 2D

Out[5]= 882, 2<, 83<<

The positions are specified in exactly the form used by functions such as Extract and 
ReplacePart  discussed in "Lists". 

In[6]:= ReplacePart@84, 4 + x^a, x^b, 6 + x^5<, zzz, %D

Out[6]= 94, 4 + zzz, zzz, 6 + x5=
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DeleteCases@expr, formD delete elements of expr that match form

DeleteCases@expr, form,levD delete parts of expr that match form at levels specified by 
lev

Deleting parts of expressions that match a pattern. 

This deletes the elements which match x^n_. 

In[7]:= DeleteCases@83, 4, x, x^2, x^3<, x^n_D

Out[7]= 83, 4, x<

This deletes all integers appearing at any level. 

In[8]:= DeleteCases@83, 4, x, 2 + x, 3 + x<, _Integer, InfinityD

Out[8]= 8x, x, x<

ReplaceList@expr,lhs->rhsD find all ways that expr can match lhs

Finding arrangements of an expression that match a pattern. 

This finds all ways that the sum can be written in two parts. 

In[9]:= ReplaceList@a + b + c, x_ + y_ -> g@x, yDD

Out[9]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<

This finds all pairs of identical elements. The pattern ___ stands for any sequence of elements. 

In[10]:= ReplaceList@8a, b, b, b, c, c, a<, 8___, x_, x_, ___< -> xD

Out[10]= 8b, b, c<

Naming Pieces of Patterns

Particularly when you use transformation rules, you often need to name pieces of patterns. An

object like x_ stands for any expression, but gives the expression the name x. You can then, for

example, use this name on the right-hand side of a transformation rule. 

An important point is that when you use x_, Mathematica requires that all occurrences of blanks

with the same name x in a particular expression must stand for the same expression. 

Thus f@x_, x_D can only stand for expressions in which the two arguments of f are exactly the

same. f@_, _D,  on the other hand, can stand for any expression of  the form f@x, yD,  where x

and y need not be the same. 
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Thus f@x_, x_D can only stand for expressions in which the two arguments of f are exactly the

same. f@_, _D,  on the other hand, can stand for any expression of  the form f@x, yD,  where x

and y need not be the same. 

The transformation rule applies only to cases where the two arguments of f are identical. 

In[1]:= 8f@a, aD, f@a, bD< ê. f@x_, x_D -> p@xD

Out[1]= 8p@aD, f@a, bD<

Mathematica allows you to give names not just to single blanks, but to any piece of a pattern.

The object x : pattern in general represents a pattern which is assigned the name x. In transforma-

tion rules, you can use this mechanism to name exactly those pieces of a pattern that you need 

to refer to on the right-hand side of the rule. 

_ any expression

x _ any expression, to be named x

x:pattern an expression to be named x, matching pattern

Patterns with names. 

This gives a name to the complete form _^_ so you can refer to it as a whole on the right-hand 
side of the transformation rule. 

In[2]:= f@a^bD ê. f@x : _^_D -> p@xD

Out[2]= pAabE

Here the exponent is named n, while the whole object is x. 

In[3]:= f@a^bD ê. f@x : _^n_D -> p@x, nD

Out[3]= pAab, bE

When you give the same name to two pieces of a pattern, you constrain the pattern to match

only those expressions in which the corresponding pieces are identical. 

Here the pattern matches both cases. 

In[4]:= 8f@h@4D, h@4DD, f@h@4D, h@5DD< ê. f@h@_D, h@_DD -> q

Out[4]= 8q, q<
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Now both arguments of f are constrained to be the same, and only the first case matches. 

In[5]:= 8f@h@4D, h@4DD, f@h@4D, h@5DD< ê. f@x : h@_D, x_D -> r@xD

Out[5]= 8r@h@4DD, f@h@4D, h@5DD<

Specifying Types of Expression in Patterns

You can tell a lot about what “type” of expression something is by looking at its head. Thus, for

example, an integer has head Integer, while a list has head List. 

In a pattern,  _h  and x_h  represent expressions that are constrained to have head h.  Thus,  for

example, _Integer represents any integer, while _List represents any list. 

x_h an expression with head h

x_Integer an integer

x_Real an approximate real number

x_Complex a complex number

x_List a list

x_Symbol a symbol

Patterns for objects with specified heads. 

This replaces just those elements that are integers. 

In[1]:= 8a, 4, 5, b< ê. x_Integer -> p@xD

Out[1]= 8a, p@4D, p@5D, b<

You  can  think  of  making  an  assignment  for  f@x_IntegerD  as  like  defining  a  function  f  that

must take an argument of “type” Integer. 

This defines a value for the function gamma when its argument is an integer. 

In[2]:= gamma@n_IntegerD := Hn - 1L!

The definition applies only when the argument of gamma is an integer. 

In[3]:= gamma@4D + gamma@xD

Out[3]= 6 + gamma@xD
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The object 4. has head Real, so the definition does not apply. 

In[4]:= gamma@4.D

Out[4]= gamma@4.D

This defines values for expressions with integer exponents. 

In[5]:= d@x_^n_IntegerD := n x^Hn - 1L

The definition is used only when the exponent is an integer. 

In[6]:= d@x^4D + d@Ha + bL^3D + d@x^H1 ê 2LD

Out[6]= 3 Ha + bL2 + 4 x3 + dB x F

Putting Constraints on Patterns

Mathematica provides a general mechanism for specifying constraints on patterns. All you need

do is to put ê; condition at the end of a pattern to signify that it applies only when the specified

condition is True. You can read the operator ê; as "slash-semi", "whenever" or "provided that". 

patternê;condition a pattern that matches only when a condition is satisfied

lhs:>rhsê;condition a rule that applies only when a condition is satisfied

lhs:=rhsê;condition a definition that applies only when a condition is satisfied

Putting conditions on patterns and transformation rules. 

This gives a definition for fac that applies only when its argument n is positive. 

In[1]:= fac@n_ ê; n > 0D := n!

The definition for fac is used only when the argument is positive. 

In[2]:= fac@6D + fac@-4D

Out[2]= 720 + fac@-4D

This gives the negative elements in the list. 

In[3]:= Cases@83, -4, 5, -2<, x_ ê; x < 0D

Out[3]= 8-4, -2<

You can use ê; on whole definitions and transformation rules, as well as on individual patterns.

In general, you can put ê; condition at the end of any := definition or :> rule to tell Mathematica

that the definition or rule applies only when the specified condition holds.  Note that ê;  condi-

tions should not  usually  be put at  the end of  =  definitions or  ->  rules,  since they will  then be

evaluated immediately, as discussed in "Immediate and Delayed Definitions". 
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You can use ê; on whole definitions and transformation rules, as well as on individual patterns.

In general, you can put ê; condition at the end of any := definition or :> rule to tell Mathematica

that the definition or rule applies only when the specified condition holds.  Note that ê;  condi-

tions should not  usually  be put at  the end of  =  definitions or  ->  rules,  since they will  then be

evaluated immediately, as discussed in "Immediate and Delayed Definitions". 

Here is another way to give a definition which applies only when its argument n is positive. 

In[4]:= fac2@n_D := n! ê; n > 0

Once again, the factorial functions evaluate only when their arguments are positive. 

In[5]:= fac2@6D + fac2@-4D

Out[5]= 720 + fac2@-4D

You can use the ê; operator to implement arbitrary mathematical constraints on the applicabil-

ity of rules. In typical cases, you give patterns which structurally match a wide range of expres-

sions,  but  then  use  mathematical  constraints  to  reduce  the  range  of  expressions  to  a  much

smaller set. 

This rule applies only to expressions that have the structure v@x_, 1 - x_D. 

In[6]:= v@x_, 1 - x_D := p@xD

This expression has the appropriate structure, so the rule applies. 

In[7]:= v@a^2, 1 - a^2D

Out[7]= pAa2E

This expression, while mathematically of the correct form, does not have the appropriate 
structure, so the rule does not apply. 

In[8]:= v@4, -3D

Out[8]= v@4, -3D

This rule applies to any expression of the form w@x_, y_D, with the added restriction that 
y == 1 - x. 

In[9]:= w@x_, y_D := p@xD ê; y == 1 - x

The new rule does apply to this expression. 

In[10]:= w@4, -3D

Out[10]= p@4D

In  setting  up  patterns  and  transformation  rules,  there  is  often  a  choice  of  where  to  put  ê;

conditions. For example, you can put a ê; condition on the right-hand side of a rule in the form

lhs :> rhs ê; condition, or you can put it on the left-hand side in the form lhs ê; condition -> rhs. You

may also be able to insert the condition inside the expression lhs. The only constraint is that all

the names of patterns that you use in a particular condition must appear in the pattern to which

the condition is  attached.  If  this  is  not  the case,  then some of  the names needed to evaluate

the condition may not yet have been "bound" in the pattern-matching process. If this happens,

then Mathematica uses the global values for the corresponding variables, rather than the values

determined by pattern matching. 
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In  setting  up  patterns  and  transformation  rules,  there  is  often  a  choice  of  where  to  put  ê;

conditions. For example, you can put a ê; condition on the right-hand side of a rule in the form

lhs :> rhs ê; condition, or you can put it on the left-hand side in the form lhs ê; condition -> rhs. You

may also be able to insert the condition inside the expression lhs. The only constraint is that all

the names of patterns that you use in a particular condition must appear in the pattern to which

the condition is  attached.  If  this  is  not  the case,  then some of  the names needed to evaluate

the condition may not yet have been "bound" in the pattern-matching process. If this happens,

then Mathematica uses the global values for the corresponding variables, rather than the values

determined by pattern matching. 

Thus, for example, the condition in f@x_, y_D ê; Hx + y < 2L will use values for x and y that are

found  by  matching  f@x_, y_D,  but  the  condition  in  f@x_ ê; x + y < 2, y_D  will  use  the  global

value for y, rather than the one found by matching the pattern. 

As long as you make sure that the appropriate names are defined, it is usually most efficient to

put ê; conditions on the smallest possible parts of patterns. The reason for this is that Mathe-

matica  matches  pieces  of  patterns  sequentially,  and  the  sooner  it  finds  a  ê;  condition  which

fails, the sooner it can reject a match. 

Putting the ê; condition around the x_ is slightly more efficient than putting it around the 
whole pattern. 

In[11]:= Cases@8z@1, 1D, z@-1, 1D, z@-2, 2D<, z@x_ ê; x < 0, y_DD

Out[11]= 8z@-1, 1D, z@-2, 2D<

You need to put parentheses around the ê; piece in a case like this. 

In[12]:= 81 + a, 2 + a, -3 + a< ê. Hx_ ê; x < 0L + a -> p@xD

Out[12]= 81 + a, 2 + a, p@-3D<

It is common to use ê; to set up patterns and transformation rules that apply only to expres-

sions with certain properties. There is a collection of functions built into Mathematica for testing

the properties of expressions. It is a convention that functions of this kind have names that end

with the letter Q, indicating that they "ask a question". 
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IntegerQ@exprD integer

EvenQ@exprD even number

OddQ@exprD odd number

PrimeQ@exprD prime number

NumberQ@exprD explicit number of any kind

NumericQ@exprD numeric quantity

PolynomialQ@expr,8x1,x2,…<D

polynomial in x1, x2, ...

VectorQ@exprD a list representing a vector

MatrixQ@exprD a list of lists representing a matrix

VectorQAexpr,NumericQE , MatrixQAexpr,NumericQE

vectors and matrices where all elements are numeric

VectorQ@expr,testD , MatrixQ@expr,testD

vectors and matrices for which the function test yields 
True on every element

ArrayQ@expr,dD full array with depth matching d

Some functions for testing mathematical properties of expressions. 

The rule applies to all elements of the list that are numbers. 

In[13]:= 82.3, 4, 7 ê 8, a, b< ê. Hx_ ê; NumberQ@xDL -> x^2

Out[13]= :5.29, 16,
49

64
, a, b>

This definition applies only to vectors of integers. 

In[14]:= mi@list_D := list^2 ê; VectorQ@list, IntegerQD

The definition is now used only in the first case. 

In[15]:= 8mi@82, 3<D, mi@82.1, 2.2<D, mi@8a, b<D<

Out[15]= 884, 9<, mi@82.1, 2.2<D, mi@8a, b<D<

An important feature of all the Mathematica property-testing functions whose names end in Q is

that they always return False  if they cannot determine whether the expression you give has a

particular property. 
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4561 is an integer, so this returns True. 

In[16]:= IntegerQ@4561D

Out[16]= True

This returns False, since x is not known to be an integer. 

In[17]:= IntegerQ@xD

Out[17]= False

Functions  like  IntegerQ@xD  test  whether  x  is  explicitly  an  integer.  With  assertions  like  x  œ

Integers  you  can  use  Refine,  Simplify  and  related  functions  to  make  inferences  about

symbolic variables x. 

SameQAx,yE  or x===y x and y are identical

UnsameQAx,yE  or x=!=y x and y are not identical

OrderedQ@8a,b,…<D a, b, ... are in standard order

MemberQ@expr, formD form matches an element of expr

FreeQ@expr, formD form matches nothing in expr

MatchQ@expr, formD expr matches the pattern form

ValueQ@exprD a value has been defined for expr

AtomQ@exprD expr has no subexpressions

Some functions for testing structural properties of expressions. 

With ==, the equation remains in symbolic form; === yields False unless the expressions are 
manifestly equal. 

In[18]:= 8x == y, x === y<

Out[18]= 8x ã y, False<

The expression n is not a member of the list 8x, x^n<. 

In[19]:= MemberQ@8x, x^n<, nD

Out[19]= False

However, 8x, x^n< is not completely free of n. 

In[20]:= FreeQ@8x, x^n<, nD

Out[20]= False
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You can use FreeQ to define a "linearity" rule for h. 

In[21]:= h@a_ b_, x_D := a h@b, xD ê; FreeQ@a, xD

Terms free of x are pulled out of each h. 

In[22]:= h@a b x, xD + h@2 H1 + xL x^2, xD

Out[22]= a b h@x, xD + 2 hAx2 H1 + xL, xE

pattern?test a pattern which matches an expression only if test yields 
True when applied to the expression

Another way to constrain patterns. 

The  construction  pattern ê; condition  allows  you  to  evaluate  a  condition  involving  pattern  names

to determine whether there is  a match.  The construction pattern? test  instead applies  a function

test to the whole expression matched by pattern to determine whether there is a match. Using ?

instead of ê; sometimes leads to more succinct definitions. 

With this definition matches for x_ are tested with the function NumberQ. 

In[23]:= p@x_?NumberQD := x^2

The definition applies only when p has a numerical argument. 

In[24]:= p@4.5D + p@3 ê 2D + p@uD

Out[24]= 22.5 + p@uD

Here is a more complicated definition. Do not forget the parentheses around the pure function. 

In[25]:= q@8x_Integer, y_Integer<?HFunction@v, v.v > 4DLD := qp@x + yD

The definition applies only in certain cases. 

In[26]:= 8q@83, 4<D, q@81, 1<D, q@8-5, -7<D<

Out[26]= 8qp@7D, q@81, 1<D, qp@-12D<

Except@cD a pattern which matches any expression except c

Except@c,pattD a pattern which matches patt but not c

Patterns with exceptions. 
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This gives all elements except 0. 

In[27]:= Cases@81, 0, 2, 0, 3<, Except@0DD

Out[27]= 81, 2, 3<

Except can take a pattern as an argument. 

In[28]:= Cases@8a, b, 0, 1, 2, x, y<, Except@_IntegerDD

Out[28]= 8a, b, x, y<

This picks out integers that are not 0. 

In[29]:= Cases@8a, b, 0, 1, 2, x, y<, Except@0, _IntegerDD

Out[29]= 81, 2<

Except@cD  is  in  a  sense a very general  pattern:  it  matches anything  except  c.  In  many situa-

tions  you  instead  need  to  use  Except@c, pattD,  which  starts  from  expressions  matching  patt,

then excludes ones that match c. 

Patterns Involving Alternatives

patt1 patt2 … a pattern that can have one of several forms

Specifying patterns that involve alternatives. 

This defines h to give p when its argument is either a or b. 

In[1]:= h@a bD := p

The first two cases give p. 

In[2]:= 8h@aD, h@bD, h@cD, h@dD<

Out[2]= 8p, p, h@cD, h@dD<

You can also use alternatives in transformation rules. 

In[3]:= 8a, b, c, d< ê. Ha bL -> p

Out[3]= 8p, p, c, d<
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Here is another example, in which one of the alternatives is itself a pattern.

In[4]:= 81, x, x^2, x^3, y^2< ê. Hx x^_L -> q

Out[4]= 91, q, q, q, y2=

When  you  use  alternatives  in  patterns,  you  should  make  sure  that  the  same  set  of  names

appear in each alternative. When a pattern like Ha@x_D b@x_DL  matches an expression, there

will  always  be  a  definite  expression  that  corresponds  to  the  object  x.  If  you  try  to  match  a

pattern like Ha@x_D b@y_DL, then there still will be definite expressions corresponding to x and

y, but the unmatched one will be Sequence@ D. 

Here f is used to name the head, which can be either a or b. 

In[5]:= 8a@2D, b@3D, c@4D, a@5D< ê. Hf : Ha bLL@x_D -> r@f, xD

Out[5]= 8r@a, 2D, r@b, 3D, c@4D, r@a, 5D<

Pattern Sequences

In some cases you may need to specify pattern sequences that are more intricate than things

like x__ or x ..; for such situations you can use PatternSequence@p1, p2, …D.

PatternSequence@p1,p2,…D a sequence of arguments matching p1, p2, …

Pattern sequences.

This defines a function with two or more arguments, grouping the first two.

In[1]:= f@x : PatternSequence@_, _D, y___D := p@8x<, 8y<D

Evaluate the function for different numbers of arguments.

In[2]:= 8f@1D, f@1, 2D, f@1, 2, 3, 4, 5D<

Out[2]= 8f@1D, p@81, 2<, 8<D, p@81, 2<, 83, 4, 5<D<

This picks out the longest run of the sequence a, b in the list.

In[3]:= 8a, b, b, a, b, a, b, a, a, b< ê. 8___, x : Longest@PatternSequence@a, bD ..D, ___< ß 8x<

Out[3]= 8a, b, a, b<

The empty sequence, PatternSequence@D, is sometimes useful to specify an optional argument.

This picks out expressions with exactly one or two arguments.
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This picks out expressions with exactly one or two arguments.

In[4]:= 8g@D, g@1D, g@1, 2D, g@1, 2, 3D< ê. x : g@_, _ PatternSequence@DD ß p@xD

Out[4]= 8g@D, p@g@1DD, p@g@1, 2DD, g@1, 2, 3D<

Flat and Orderless Functions

Although  Mathematica  matches  patterns  in  a  purely  structural  fashion,  its  notion  of  structural

equivalence is quite sophisticated. In particular, it takes account of properties such as commuta-

tivity and associativity in functions like Plus and Times. 

This means, for example, that Mathematica  considers the expressions x + y  and y + x  equivalent

for the purposes of pattern matching. As a result, a pattern like g@x_ + y_, x_D can match not

only g@a + b, aD, but also g@a + b, bD. 

This expression has exactly the same form as the pattern. 

In[1]:= g@a + b, aD ê. g@x_ + y_, x_D -> p@x, yD

Out[1]= p@a, bD

In this case, the expression has to be put in the form g@b + a, bD in order to have the same 
structure as the pattern. 

In[2]:= g@a + b, bD ê. g@x_ + y_, x_D -> p@x, yD

Out[2]= p@b, aD

Whenever  Mathematica  encounters  an  orderless  or  commutative  function  such  as  Plus  or

Times  in  a  pattern,  it  effectively  tests  all  the  possible  orders  of  arguments  to  try  and  find  a

match. Sometimes, there may be several orderings that lead to matches. In such cases, Mathe-

matica  just  uses  the  first  ordering  it  finds.  For  example,  h@x_ + y_, x_ + z_D  could  match

h@a + b, a + bD  with  xØa,  yØb,  zØb  or  with  xØb,  yØa,  zØa.  Mathematica  tries  the  case  xØa,

yØb, zØb first, and so uses this match.

This can match either with x Ø a or with x Ø b. Mathematica tries x Ø a first, and so uses this 
match. 

In[3]:= h@a + b, a + bD ê. h@x_ + y_, x_ + z_D -> p@x, y, zD

Out[3]= p@a, b, bD
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ReplaceList  shows both possible matches. 

In[4]:= ReplaceList@h@a + b, a + bD, h@x_ + y_, x_ + z_D -> p@x, y, zDD

Out[4]= 8p@a, b, bD, p@b, a, aD<

As  discussed  in  "Attributes",  Mathematica  allows  you  to  assign  certain  attributes  to  functions,

which specify how those functions should be treated in evaluation and pattern matching. Func-

tions can for example be assigned the attribute Orderless, which specifies that they should be

treated as commutative or symmetric, and allows their arguments to be rearranged in trying to

match patterns. 

Orderless commutative function: f@b, c, aD, etc., are equivalent to 
f@a, b, cD

Flat associative function: f@ f@aD, bD, etc., are equivalent to 
f@a, bD

OneIdentity f[f[a]], etc., are equivalent to a

Attributes@ fD give the attributes assigned to f

SetAttributes@ f,attrD add attr to the attributes of f

ClearAttributes@ f,attrD remove attr from the attributes of f

Some attributes that can be assigned to functions. 

Plus has attributes Orderless and Flat, as well as others. 

In[5]:= Attributes@PlusD

Out[5]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

This defines q to be an orderless or commutative function. 

In[6]:= SetAttributes@q, OrderlessD

The arguments of q are automatically sorted into order. 

In[7]:= q@b, a, cD

Out[7]= q@a, b, cD

Mathematica rearranges the arguments of q functions to find a match. 

In[8]:= f@q@a, bD, q@b, cDD ê. f@q@x_, y_D, q@x_, z_DD -> p@x, y, zD

Out[8]= p@b, a, cD

In  addition  to  being  orderless,  functions  like  Plus  and  Times  also  have  the  property  of  being

flat  or  associative.  This  means  that  you  can  effectively  “parenthesize”  their  arguments  in  any

way, so that, for example, x + Hy + zL is equivalent to x + y + z, and so on.
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In  addition  to  being  orderless,  functions  like  Plus  and  Times  also  have  the  property  of  being

flat  or  associative.  This  means  that  you  can  effectively  “parenthesize”  their  arguments  in  any

way, so that, for example, x + Hy + zL is equivalent to x + y + z, and so on.

Mathematica  takes  account  of  flatness  in  matching  patterns.  As  a  result,  a  pattern  like

g@x_ + y_D can match g@a + b + cD, with x Ø a and y Ø Hb + cL. 

The argument of g is written as a + Hb + cL so as to match the pattern. 

In[9]:= g@a + b + cD ê. g@x_ + y_D -> p@x, yD

Out[9]= p@a, b + cD

If there are no other constraints, Mathematica will match x_ to the first element of the sum. 

In[10]:= g@a + b + c + dD ê. g@x_ + y_D -> p@x, yD

Out[10]= p@a, b + c + dD

This shows all the possible matches. 

In[11]:= ReplaceList@g@a + b + cD, g@x_ + y_D -> p@x, yDD

Out[11]= 8p@a, b + cD, p@b, a + cD, p@c, a + bD, p@a + b, cD, p@a + c, bD, p@b + c, aD<

Here x_ is forced to match b + d. 

In[12]:= g@a + b + c + d, b + dD ê. g@x_ + y_, x_D -> p@x, yD

Out[12]= p@b + d, a + cD

Mathematica can usually apply a transformation rule to a function only if the pattern in the rule

covers all  the arguments in the function. However, if  you have a flat function, it  is sometimes

possible to apply transformation rules even though not all the arguments are covered. 

This rule applies even though it does not cover all the terms in the sum. 

In[13]:= a + b + c ê. a + c -> p

Out[13]= b + p

This combines two of the terms in the sum. 

In[14]:= u@aD + u@bD + v@cD + v@dD ê. u@x_D + u@y_D -> u@x + yD

Out[14]= u@a + bD + v@cD + v@dD

Functions like Plus and Times  are both flat and orderless. There are, however, some functions,

such as Dot, which are flat, but not orderless. 

Both x_ and y_ can match any sequence of terms in the dot product. 
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Both x_ and y_ can match any sequence of terms in the dot product. 

In[15]:= a.b.c.d.a.b ê. x_.y_.x_ -> p@x, yD

Out[15]= p@a.b, c.dD

This assigns the attribute Flat to the function r. 

In[16]:= SetAttributes@r, FlatD

Mathematica writes the expression in the form r@r@a, bD, r@a, bDD to match the pattern. 

In[17]:= r@a, b, a, bD ê. r@x_, x_D -> rp@xD

Out[17]= rp@r@a, bDD

Mathematica writes this expression in the form r@a, r@r@bD, r@bDD, cD to match the pat-
tern. 

In[18]:= r@a, b, b, cD ê. r@x_, x_D -> rp@xD

Out[18]= r@a, rp@r@bDD, cD

In an ordinary function that is not flat, a pattern such as x_ matches an individual argument of

the function. But in a function f@a, b, c, …D that is flat, x_  can match objects such as f@b, cD

which  effectively  correspond  to  a  sequence  of  arguments.  However,  in  the  case  where  x_

matches a single argument in a flat function, the question comes up as to whether the object it

matches  is  really  just  the  argument  a  itself,  or  f@aD.  Mathematica  chooses  the  first  of  these

cases if the function carries the attribute OneIdentity, and chooses the second case otherwise. 

This adds the attribute OneIdentity  to the function r. 

In[19]:= SetAttributes@r, OneIdentityD

Now x_ matches individual arguments, without r wrapped around them. 

In[20]:= r@a, b, b, cD ê. r@x_, x_D -> rp@xD

Out[20]= r@a, rp@bD, cD

The functions Plus, Times  and Dot all have the attribute OneIdentity, reflecting the fact that

Plus@xD  is  equivalent  to  x,  and  so  on.  However,  in  representing  mathematical  objects,  it  is

often convenient to deal with flat functions that do not have the attribute OneIdentity. 
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Functions with Variable Numbers of Arguments

Unless f  is a flat function, a pattern like f@x_, y_D stands only for instances of the function with

exactly two arguments. Sometimes you need to set up patterns that can allow any number of

arguments. 

You can do this using multiple blanks. While a single blank such as x_ stands for a single Mathe-

matica  expression,  a double blank such as x__  stands for  a sequence of  one or  more expres-

sions. 

Here x__ stands for the sequence of expressions Ha, b, cL. 

In[1]:= f@a, b, cD ê. f@x__D -> p@x, x, xD

Out[1]= p@a, b, c, a, b, c, a, b, cD

Here is a more complicated definition, which picks out pairs of duplicated elements in h. 

In[2]:= h@a___, x_, b___, x_, c___D := hh@xD h@a, b, cD

The definition is applied twice, picking out the two paired elements. 

In[3]:= h@2, 3, 2, 4, 5, 3D

Out[3]= h@4, 5D hh@2D hh@3D

“Double blanks” __  stand for sequences of one or more expressions. “Triple blanks” ___  stand

for sequences of zero or more expressions. You should be very careful whenever you use triple

blank patterns.  It  is  easy to make a mistake that  can lead to an infinite loop.  For example,  if

you  define  p@x_, y___D := p@xD q@yD,  then  typing  in  p@aD  will  lead  to  an  infinite  loop,  with  y

repeatedly matching a sequence with zero elements.  Unless you are sure you want to include

the case of zero elements, you should always use double blanks rather than triple blanks. 
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_ any single expression

x _ any single expression, to be named x

__ any sequence of one or more expressions

x __ sequence named x

x __ h sequence of expressions, all of whose heads are h

___ any sequence of zero or more expressions

x ___ sequence of zero or more expressions named x

x ___ h sequence of zero or more expressions, all of whose heads 
are h

More kinds of pattern objects. 

Notice  that  with  flat  functions  such  as  Plus  and  Times,  Mathematica  automatically  handles

variable numbers of arguments, so you do not explicitly need to use double or triple blanks, as

discussed in "Flat and Orderless Functions". 

When you use multiple blanks, there are often several matches that are possible for a particular

expression.  By  default,  Mathematica  tries  first  those  matches  that  assign  the  shortest

sequences of arguments to the first multiple blanks that appear in the pattern. You can change

this order by wrapping Longest or Shortest around parts of the pattern.

Longest@pD match the longest sequence consistent with the pattern p

Shortest@pD match the shortest sequence consistent with the pattern p

Controlling the order in which matches are tried.

This gives a list of all the matches that Mathematica tries. 

In[4]:= ReplaceList@f@a, b, c, dD, f@x__, y__D -> g@8x<, 8y<DD

Out[4]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<

This forces Mathematica to try the longest matches for x__ first. 

In[5]:= ReplaceList@f@a, b, c, dD, f@Longest@x__D, y__D -> g@8x<, 8y<DD

Out[5]= 8g@8a, b, c<, 8d<D, g@8a, b<, 8c, d<D, g@8a<, 8b, c, d<D<

Many kinds of enumeration can be done by using ReplaceList  with various kinds of patterns. 

In[6]:= ReplaceList@f@a, b, c, dD, f@___, x__D -> g@xDD

Out[6]= 8g@a, b, c, dD, g@b, c, dD, g@c, dD, g@dD<

This effectively enumerates all sublists with at least one element. 
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This effectively enumerates all sublists with at least one element. 

In[7]:= ReplaceList@f@a, b, c, dD, f@___, x__, ___D -> g@xDD

Out[7]= 8g@aD, g@a, bD, g@a, b, cD, g@a, b, c, dD, g@bD, g@b, cD, g@b, c, dD, g@cD, g@c, dD, g@dD<

This tries the shortest matches for x__ first. 

In[8]:= ReplaceList@f@a, b, c, dD, f@___, Shortest@x__D, ___D -> g@xDD

Out[8]= 8g@aD, g@bD, g@cD, g@dD, g@a, bD, g@b, cD, g@c, dD, g@a, b, cD, g@b, c, dD, g@a, b, c, dD<

Optional and Default Arguments

Sometimes  you  may  want  to  set  up  functions  where  certain  arguments,  if  omitted,  are  given

"default  values".  The pattern x_: v  stands for an object that can be omitted, and if  so,  will  be

replaced by the default value v.

This defines a function j with a required argument x, and optional arguments y and z, with 
default values 1 and 2, respectively. 

In[1]:= j@x_, y_: 1, z_: 2D := jp@x, y, zD

The default value of z is used here. 

In[2]:= j@a, bD

Out[2]= jp@a, b, 2D

Now the default values of both y and z are used. 

In[3]:= j@aD

Out[3]= jp@a, 1, 2D

x _:v an expression which, if omitted, is taken to have default 
value v

x _ h:v an expression with head h and default value v

x _. an expression with a built-in default value

Pattern objects with default values. 

Some common Mathematica functions have built-in default values for their arguments. In such

cases, you need not explicitly give the default value in x_: v, but instead you can use the more

convenient notation x_. in which a built-in default value is assumed. 
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x_+y_. default for y is 0

x_ y_. default for y is 1

x_^y_. default for y is 1

Some patterns with optional pieces. 

Here a matches the pattern x_ + y_. with y taken to have the default value 0. 

In[4]:= 8f@aD, f@a + bD< ê. f@x_ + y_.D -> p@x, yD

Out[4]= 8p@a, 0D, p@b, aD<

Because Plus  is a flat function, a pattern such as x_ + y_ can match a sum with any number of

terms.  This  pattern  cannot,  however,  match  a  single  term  such  as  a.  However,  the  pattern

x_ + y_. contains an optional piece, and can match either an explicit sum of terms in which both

x_ and y_ appear, or a single term x_, with y taken to be 0. 

Using constructs  such as x_.,  you can easily  construct  single  patterns that  match expressions

with  several  different  structures.  This  is  particularly  useful  when  you  want  to  match  several

mathematically equal forms that do not have the same structure. 

The pattern matches g@a^2D, but not g@a + bD. 

In[5]:= 8g@a^2D, g@a + bD< ê. g@x_^n_D -> p@x, nD

Out[5]= 8p@a, 2D, g@a + bD<

By giving a pattern in which the exponent is optional, you can match both cases. 

In[6]:= 8g@a^2D, g@a + bD< ê. g@x_^n_.D -> p@x, nD

Out[6]= 8p@a, 2D, p@a + b, 1D<

The pattern a_. + b_. x_ matches any linear function of x_. 

In[7]:= lin@a_. + b_. x_, x_D := p@a, bD

In this case, b Ø 1. 

In[8]:= lin@1 + x, xD

Out[8]= p@1, 1D
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Here b Ø 1 and a Ø 0. 

In[9]:= lin@y, yD

Out[9]= p@0, 1D

Standard Mathematica  functions such as Plus  and Times  have built-in default  values for  their

arguments. You can also set up defaults for your own functions, as described in "Patterns". 

Sometimes it  is  convenient  not  to assign a default  value to an optional  argument;  such argu-

ments can be specified with the help of PatternSequence@D.

p PatternSequence@D optional pattern p with no default value

Optional argument without a default value.

The pattern matches an optional second argument of 2, without a default value.

In[10]:= 8g@1D, g@1, 1D, g@1, 2D< ê. g@x_, 2 PatternSequence@DD ß p@xD

Out[10]= 8p@1D, g@1, 1D, p@1D<

Setting Up Functions with Optional Arguments

When you define a  complicated function,  you will  often want  to  let  some of  the arguments  of

the function be “optional”. If you do not give those arguments explicitly, you want them to take

on certain “default” values.

Built-in Mathematica functions use two basic methods for dealing with optional arguments. You

can choose between the same two methods when you define your own functions in Mathemat-

ica. 

The first method is to have the meaning of each argument determined by its position, and then

to allow one to drop arguments, replacing them by default values. Almost all built-in Mathemat-

ica  functions  that  use  this  method  drop  arguments  from  the  end.  For  example,  the  built-in

function  Flatten@list, nD  allows  you  to  drop  the  second  argument,  which  is  taken  to  have  a

default value of Infinity. 

You can implement this kind of “positional” argument using _ : patterns. 
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f@x_,k_: kdefD:=value a typical definition for a function whose second argument 
is optional, with default value kdef

Defining a function with positional arguments. 

This defines a function with an optional second argument. When the second argument is omit-
ted, it is taken to have the default value Infinity. 

In[1]:= f@list_, n_: InfinityD := f0@list, nD

Here is a function with two optional arguments. 

In[2]:= fx@list_, n1_: 1, n2_: 2D := fx0@list, n1, n2D

Mathematica assumes that arguments are dropped from the end. As a result m here gives the 
value of n1, while n2 has its default value of 2. 

In[3]:= fx@k, mD

Out[3]= fx0@k, m, 2D

The second method that built-in Mathematica functions use for dealing with optional arguments

is to give explicit names to the optional arguments, and then to allow their values to be given

using transformation rules. This method is particularly convenient for functions like Plot  which

have a very large number of optional parameters, only a few of which usually need to be set in

any particular instance.

The  typical  arrangement  is  that  values  for  “named”  optional  arguments  can  be  specified  by

including  the  appropriate  transformation  rules  at  the  end  of  the  arguments  to  a  particular

function. Thus, for example, the rule Joined -> True, which specifies the setting for the named

optional argument Joined, could appear as ListPlot@list, Joined -> TrueD. 

When  you  set  up  named  optional  arguments  for  a  function  f ,  it  is  conventional  to  store  the

default values of these arguments as a list of transformation rules assigned to Options@ fD.

fAx_,OptionsPattern@DE:=value a typical definition for a function with zero or more named 
optional arguments

OptionValue@nameD the value of a named optional argument in the body of the 
function

Named arguments. 

Core Language     97



This sets up default values for two named optional arguments opt1 and opt2 in the function 
fn. 

In[4]:= Options@fnD = 8opt1 -> 1, opt2 -> 2<

Out[4]= 8opt1 Ø 1, opt2 Ø 2<

Here is the definition for a function fn which allows zero or more named optional arguments to 
be specified. 

In[5]:= fn@x_, OptionsPattern@DD := k@x, OptionValue@opt2DD

With no optional arguments specified, the default rule for opt2 is used.

In[6]:= fn@4D

Out[6]= k@4, 2D

If you explicitly give a rule for opt2, it will override the default rules stored in Options@fnD. 

In[7]:= fn@4, opt2 -> 7D

Out[7]= k@4, 7D

FilterRulesAopts,Options@nameDE the rules in opts used as options by the function f

FilterRulesAopts,ExceptAOptions@nameDEE

the rules in opts not used as options by the function f

Filtering options.

Sometimes when you write a function you will want to pass on options to functions that it calls.

Here is a simple function that solves a differential equation numerically and plots its solution.

In[8]:= odeplot@de_, y_, 8x_, x0_, x1_<, opts : OptionsPattern@DD :=
Module@8sol<,
sol = NDSolve@de, y, 8x, x0, x1<, FilterRules@8opts<, Options@NDSolveDDD;
If@Head@solD === NDSolve,
$Failed,
Plot@Evaluate@y ê. solD, 8x, x0, x1<,
Evaluate@FilterRules@8opts<, Options@PlotDDDD

D
D
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With no options given, the default options for NDSolve and Plot are used.

In[9]:= odeplot@8y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0<, y@xD, 8x, 0, 10<D

Out[9]=

This changes the method used by NDSolve and the color in the plot.

In[10]:= odeplot@8y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0<,
y@xD, 8x, 0, 10<, Method Ø "ExplicitRungeKutta", PlotStyle Ø RedD

Out[10]=

Repeated Patterns

expr.. a pattern or other expression repeated one or more times

expr... a pattern or other expression repeated zero or more times

Repeated patterns. 

Multiple blanks such as x__  allow you to give patterns in which sequences of arbitrary expres-

sions  can  occur.  The  Mathematica  pattern  repetition  operators  ..  and  ...  allow  you  to  con-

struct patterns in which particular forms can be repeated any number of times. Thus, for exam-

ple, f@a ..D represents any expression of the form f@aD, f@a, aD, f@a, a, aD, and so on. 

The pattern f@a ..D allows the argument a to be repeated any number of times. 

In[1]:= Cases@8f@aD, f@a, b, aD, f@a, a, aD<, f@a ..DD

Out[1]= 8f@aD, f@a, a, aD<

This pattern allows any number of a arguments, followed by any number of b arguments. 

In[2]:= Cases@8f@aD, f@a, a, bD, f@a, b, aD, f@a, b, bD<, f@a .., b ..DD

Out[2]= 8f@a, a, bD, f@a, b, bD<

Core Language     99



Here each argument can be either a or b. 

In[3]:= Cases@8f@aD, f@a, b, aD, f@a, c, aD<, f@Ha bL ..DD

Out[3]= 8f@aD, f@a, b, aD<

You can use .. and ... to represent repetitions of any pattern. If the pattern contains named

parts, then each instance of these parts must be identical. 

This defines a function whose argument must consist of a list of pairs. 

In[4]:= v@x : 88_, _< ..<D := Transpose@xD

The definition applies in this case. 

In[5]:= v@88a1, b1<, 8a2, b2<, 8a3, b3<<D

Out[5]= 88a1, a2, a3<, 8b1, b2, b3<<

With this definition, the second elements of all the pairs must be the same. 

In[6]:= vn@x : 88_, n_< ..<D := Transpose@xD

The definition applies in this case. 

In[7]:= vn@88a, 2<, 8b, 2<, 8c, 2<<D

Out[7]= 88a, b, c<, 82, 2, 2<<

The pattern x .. can be extended to two arguments to control the number of repetitions more

precisely. 

p ..  or Repeated@pD a pattern or other expression repeated one or more times

Repeated@p,maxD a pattern repeated up to max times

Repeated@p,8min,max<D a pattern repeated between min and max times

Repeated@p,8n<D a pattern repeated exactly n times

Controlling the number of repetitions.

This finds from two to three repetitions of the argument a. 

In[8]:= Cases@8f@aD, f@a, aD, f@a, a, aD, f@a, a, a, aD<, f@Repeated@a, 82, 3<DDD

Out[8]= 8f@a, aD, f@a, a, aD<
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Verbatim Patterns

Verbatim@exprD an expression that must be matched verbatim

Verbatim patterns. 

Here the x_ in the rule matches any expression. 

In[1]:= 8f@2D, f@aD, f@x_D, f@y_D< ê. f@x_D -> x^2

Out[1]= 94, a2, x_2, y_2=

The Verbatim tells Mathematica that only the exact expression x_ should be matched. 

In[2]:= 8f@2D, f@aD, f@x_D, f@y_D< ê. f@Verbatim@x_DD -> x^2

Out[2]= 9f@2D, f@aD, x2, f@y_D=

Patterns for Some Common Types of Expression

Using the objects described above, you can set up patterns for many kinds of  expressions.  In

all cases, you must remember that the patterns must represent the structure of the expressions

in Mathematica internal form, as shown by FullForm. 

Especially for some common kinds of expressions, the standard output format used by Mathe-

matica is not particularly close to the full internal form. But it is the internal form that you must

use in setting up patterns. 
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n _Integer an integer n

x _Real an approximate real number x

z _Complex a complex number z

Complex@x _,y _D a complex number x + i y

Complex@x _Integer,y _IntegerD a complex number where both real and imaginary parts 
are integers

Hr _Rational r _IntegerL rational number or integer r

Rational@n _,d _D a rational number n
d

Hx _ê;NumberQ@xD&&Im@xD==0L a real number of any kind

Hx _ê;NumberQ@xDL a number of any kind

Some typical patterns for numbers. 

Here are the full forms of some numbers. 

In[1]:= 82, 2.5, 2.5 + I, 2 ê 7< êê FullForm

Out[1]//FullForm= List@2, 2.5`, Complex@2.5`, 1D, Rational@2, 7DD

The rule picks out each piece of the complex numbers. 

In[2]:= 82.5 - I, 3 + I< ê. Complex@x_, y_D -> p@x, yD

Out[2]= 8p@2.5, -1D, p@3, 1D<

The fact that these expressions have different full forms means that you cannot use x_ + I y_ to 
match a complex number. 

In[3]:= 82.5 - I, x + I y< êê FullForm

Out[3]//FullForm= List@Complex@2.5`, -1D, Plus@x, Times@Complex@0, 1D, yDDD

The pattern here matches both ordinary integers, and complex numbers where both the real 
and imaginary parts are integers. 

In[4]:= Cases@82.5 - I, 2, 3 + I, 2 - 0.5 I, 2 + 2 I<, _Integer Complex@_Integer, _IntegerDD

Out[4]= 82, 3 + Â, 2 + 2 Â<

As  discussed  in  "Symbolic  Computation",  Mathematica  puts  all  algebraic  expressions  into  a

standard form, in  which they are written essentially  as a sum of  products  of  powers.  In addi-

tion,  ratios  are  converted  into  products  of  powers,  with  denominator  terms  having  negative

exponents, and differences are converted into sums with negated terms. To construct patterns

for  algebraic  expressions,  you  must  use  this  standard  form.  This  form  often  differs  from  the

way  Mathematica  prints  out  the  algebraic  expressions.  But  in  all  cases,  you  can  find  the  full

internal form using FullForm@exprD. 
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for  algebraic  expressions,  you  must  use  this  standard  form.  This  form  often  differs  from  the

way  Mathematica  prints  out  the  algebraic  expressions.  But  in  all  cases,  you  can  find  the  full

internal form using FullForm@exprD. 

Here is a typical algebraic expression. 

In[5]:= -1 ê z^2 - z ê y + 2 Hx zL^2 y

Out[5]= -
1

z2
-
z

y
+ 2 x2 y z2

This is the full internal form of the expression. 

In[6]:= FullForm@%D

Out[6]//FullForm= Plus@Times@-1, Power@z, -2DD,
Times@-1, Power@y, -1D, zD, Times@2, Power@x, 2D, y, Power@z, 2DDD

This is what you get by applying a transformation rule to all powers in the expression. 

In[7]:= % ê. x_^n_ -> e@x, nD

Out[7]= -z e@y, -1D - e@z, -2D + 2 y e@x, 2D e@z, 2D

x _+y _ a sum of two or more terms

x _+y _. a single term or a sum of terms

n _Integer x_ an expression with an explicit integer multiplier

a _.+b _. x _ a linear expression a + b x

x _^n _ xn  with n≠0, 1

x _^n _. xn  with n≠0

a _.+b _. x _+c _. x _^2 a quadratic expression with nonzero linear term

Some typical patterns for algebraic expressions. 

This pattern picks out linear functions of x. 

In[8]:= 81, a, x, 2 x, 1 + 2 x< ê. a_. + b_. x -> p@a, bD

Out[8]= 81, a, p@0, 1D, p@0, 2D, p@1, 2D<
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x_List or x:8___< a list

x _Listê;VectorQ@xD a vector containing no sublists

x _Listê;VectorQAx,NumberQE a vector of numbers

x:8___List< or x:88___<...< a list of lists

x _Listê;MatrixQ@xD a matrix containing no sublists

x _Listê;MatrixQAx,NumberQE a matrix of numbers

x:88_,_<...< a list of pairs

Some typical patterns for lists. 

This defines a function whose argument must be a list containing lists with either one or two 
elements. 

In[9]:= h@x : 8H8_< 8_, _<L ...<D := q

The definition applies in the second and third cases. 

In[10]:= 8h@8a, b<D, h@88a<, 8b<<D, h@88a<, 8b, c<<D<

Out[10]= 8h@8a, b<D, q, q<

An Example: Defining Your Own Integration Function

Now that we have introduced the basic features of patterns in Mathematica,  we can use them

to give a more or less complete example. We will show how you could define your own simple

integration function in Mathematica.

From a mathematical point of view, the integration function is defined by a sequence of mathe-

matical  relations.  By  setting  up  transformation  rules  for  patterns,  you  can  implement  these

mathematical relations quite directly in Mathematica. 
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mathematical form Mathematica definition

Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x integrate@y_+z_,x_D:=integrate@y,xD+integrate@z,xD

Ÿ cy „ x = c Ÿ y „ x (c independent of x) integrate@c_y _,x_D:=c integrate@y,xDê;FreeQ@c,xD

Ÿ c „ x = cx integrate@c_,x_D:=cxê;FreeQ@c,xD

Ÿ xn „ x =
xHn+1L

n+1
, n ≠ -1 integrate@x_^n_.,x_D:=

x^Hn+1LêHn+1Lê;FreeQ@n,xD&&n!=-1

Ÿ
1

a x+b
„ x = logHa x+bL

a
integrate@1êHa_. x_+b_.L,x_D:=

Log@ax+bDëaê;FreeQ@8a,b<,xD

Ÿ ea x+b „ x =
1
a
ea x+b integrateAExp@a_. x_+b_.D,x_E:=

Exp@ax+bDëaê;FreeQ@8a,b<,xD

Definitions for an integration function. 

This implements the linearity relation for integrals: Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x. 

In[1]:= integrate@y_ + z_, x_D := integrate@y, xD + integrate@z, xD

The associativity of Plus makes the linearity relation work with any number of terms in the 
sum. 

In[2]:= integrate@a x + b x^2 + 3, xD

Out[2]= integrate@3, xD + integrate@a x, xD + integrateAb x2, xE

This makes integrate pull out factors that are independent of the integration variable x. 

In[3]:= integrate@c_ y_, x_D := c integrate@y, xD ê; FreeQ@c, xD

Mathematica tests each term in each product to see whether it satisfies the FreeQ condition, 
and so can be pulled out. 

In[4]:= integrate@a x + b x^2 + 3, xD

Out[4]= integrate@3, xD + a integrate@x, xD + b integrateAx2, xE

This gives the integral Ÿ c „ x = c x of a constant. 

In[5]:= integrate@c_, x_D := c x ê; FreeQ@c, xD

Now the constant term in the sum can be integrated. 

In[6]:= integrate@a x + b x^2 + 3, xD

Out[6]= 3 x + a integrate@x, xD + b integrateAx2, xE

This gives the standard formula for the integral of xn. By using the pattern x_^n_., rather than 

x_^n_, we include the case of x1 = x. 
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This gives the standard formula for the integral of xn. By using the pattern x_^n_., rather than 

x_^n_, we include the case of x1 = x. 

In[7]:= integrate@x_^n_., x_D := x^Hn + 1L ê Hn + 1L ê; FreeQ@n, xD && n != -1

Now this integral can be done completely. 

In[8]:= integrate@a x + b x^2 + 3, xD

Out[8]= 3 x +
a x2

2
+
b x3

3

Of course, the built-in integration function Integrate (with a capital I) could have done the 
integral anyway. 

In[9]:= Integrate@a x + b x^2 + 3, xD

Out[9]= 3 x +
a x2

2
+
b x3

3

Here is the rule for integrating the reciprocal of a linear function. The pattern a_. x_ + b_. 
stands for any linear function of x. 

In[10]:= integrate@1 ê Ha_. x_ + b_.L, x_D := Log@a x + bD ê a ê; FreeQ@8a, b<, xD

Here both a and b take on their default values. 

In[11]:= integrate@1 ê x, xD

Out[11]= Log@xD

Here is a more complicated case. The symbol a now matches 2 p. 

In[12]:= integrate@1 ê H2 p x - 1L, xD

Out[12]= 
Log@-1 + 2 p xD

2 p

You can go on and add many more rules for integration. Here is a rule for integrating exponen-
tials. 

In[13]:= integrate@Exp@a_. x_ + b_.D, x_D := Exp@a x + bD ê a ê; FreeQ@8a, b<, xD
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Transformation Rules and Definitions

Applying Transformation Rules

exprê.lhs->rhs apply a transformation rule to expr

exprê.8lhs1->rhs1,lhs2->rhs2,…< try a sequence of rules on each part of expr

Applying transformation rules. 

The replacement operator ê. (pronounced “slash-dot”) applies rules to expressions. 

In[1]:= x + y ê. x -> 3

Out[1]= 3 + y

You can give a list of rules to apply. Each rule will be tried once on each part of the expression. 

In[2]:= x + y ê. 8x -> a, y -> b<

Out[2]= a + b

exprê.8rules1,rules2,…< give a list of the results from applying each of the rulesi to 
expr

Applying lists of transformation rules. 

If you give a list of lists of rules, you get a list of results. 

In[3]:= x + y ê. 88x -> 1, y -> 2<, 8x -> 4, y -> 2<<

Out[3]= 83, 6<

Functions such as Solve and NSolve return lists whose elements are lists of rules, each 
representing a solution. 

In[4]:= Solve@x^3 - 5 x^2 + 2 x + 8 == 0, xD

Out[4]= 88x Ø -1<, 8x Ø 2<, 8x Ø 4<<

When you apply these rules, you get a list of results, one corresponding to each solution. 

In[5]:= x^2 + 6 ê. %

Out[5]= 87, 10, 22<

When  you  use  expr ê. rules,  each  rule  is  tried  in  turn  on  each  part  of  expr.  As  soon  as  a  rule

applies, the appropriate transformation is made, and the resulting part is returned. 
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When  you  use  expr ê. rules,  each  rule  is  tried  in  turn  on  each  part  of  expr.  As  soon  as  a  rule

applies, the appropriate transformation is made, and the resulting part is returned. 

The rule for x^3 is tried first; if it does not apply, the rule for x^n_ is used. 

In[6]:= 8x^2, x^3, x^4< ê. 8x^3 -> u, x^n_ -> p@nD<

Out[6]= 8p@2D, u, p@4D<

A result is returned as soon as the rule has been applied, so the inner instance of h is not 
replaced. 

In[7]:= h@x + h@yDD ê. h@u_D -> u^2

Out[7]= Hx + h@yDL2

The replacement expr ê. rules tries each rule just once on each part of expr. 

Since each rule is tried just once, this serves to swap x and y. 

In[8]:= 8x^2, y^3< ê. 8x -> y, y -> x<

Out[8]= 9y2, x3=

You can use this notation to apply one set of rules, followed by another. 

In[9]:= x^2 ê. x -> H1 + yL ê. y -> b

Out[9]= H1 + bL2

Sometimes you may need to go on applying rules over and over again, until the expression you

are working on no longer  changes.  You can do this  using the repeated replacement  operation

expr êê. rules (or ReplaceRepeated@expr, rulesD). 

exprê.rules try rules once on each part of expr

exprêê.rules try rules repeatedly until the result no longer changes

Single and repeated rule application. 

With the single replacement operator ê. each rule is tried only once on each part of the expres-
sion. 

In[10]:= x^2 + y^6 ê. 8x -> 2 + a, a -> 3<

Out[10]= H2 + aL2 + y6
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With the repeated replacement operator êê. the rules are tried repeatedly until the expression 
no longer changes. 

In[11]:= x^2 + y^6 êê. 8x -> 2 + a, a -> 3<

Out[11]= 25 + y6

Here the rule is applied only once. 

In[12]:= log@a b c dD ê. log@x_ y_D -> log@xD + log@yD

Out[12]= log@aD + log@b c dD

With the repeated replacement operator, the rule is applied repeatedly, until the result no 
longer changes. 

In[13]:= log@a b c dD êê. log@x_ y_D -> log@xD + log@yD

Out[13]= log@aD + log@bD + log@cD + log@dD

When  you  use  êê.  (pronounced  “slash-slash-dot”),  Mathematica  repeatedly  passes  through

your  expression,  trying  each  of  the  rules  given.  It  goes  on  doing  this  until  it  gets  the  same

result on two successive passes. 

If you give a set of rules that is circular, then êê. can keep on getting different results forever.

In practice, the maximum number of passes that êê. makes on a particular expression is deter-

mined by the setting for  the option MaxIterations.  If  you want  to  keep going for  as  long as

possible,  you  can  use  ReplaceRepeated@expr, rules, MaxIterations -> InfinityD.  You  can

always stop by explicitly interrupting Mathematica. 

By setting the option MaxIterations, you can explicitly tell ReplaceRepeated how many 
times to try the rules you give. 

In[14]:= ReplaceRepeated@x, x -> x + 1, MaxIterations -> 1000D

ReplaceRepeated::rrlim: Exiting after x scanned 1000 times. à

Out[14]= 1000 + x

The replacement operators ê. and êê. share the feature that they try each rule on every sub-

part  of  your  expression.  On  the  other  hand,  Replace@expr, rulesD  tries  the  rules  only  on  the

whole of expr, and not on any of its subparts. 

You can use Replace, together with functions like Map and MapAt, to control exactly which parts

of  an  expression  a  replacement  is  applied  to.  Remember  that  you  can  use  the  function

ReplacePart@expr, new, posD to replace part of an expression with a specific object. 

The operator ê. applies rules to all subparts of an expression. 
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The operator ê. applies rules to all subparts of an expression. 

In[15]:= x^2 ê. x -> a

Out[15]= a2

Without a level specification, Replace applies rules only to the whole expression. 

In[16]:= Replace@x^2, x^2 -> bD

Out[16]= b

No replacement is done here. 

In[17]:= Replace@x^2, x -> aD

Out[17]= x2

This applies rules down to level 2, and so replaces x. 

In[18]:= Replace@x^2, x -> a, 2D

Out[18]= a2

exprê.rules apply rules to all subparts of expr

Replace@expr,rulesD apply rules to the whole of expr only

Replace@expr,rules,levspecD apply rules to parts of expr on levels specified by levspec

Applying rules to whole expressions. 

Replace returns the result from using the first rule that applies. 

In[19]:= Replace@f@uD, 8f@x_D -> x^2, f@x_D -> x^3<D

Out[19]= u2

ReplaceList  gives a list of the results from every rule that applies. 

In[20]:= ReplaceList@f@uD, 8f@x_D -> x^2, f@x_D -> x^3<D

Out[20]= 9u2, u3=

If a single rule can be applied in several ways, ReplaceList  gives a list of all the results. 

In[21]:= ReplaceList@a + b + c, x_ + y_ -> g@x, yDD

Out[21]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<
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This gives a list of ways of breaking the original list in two. 

In[22]:= ReplaceList@8a, b, c, d<, 8x__, y__< -> g@8x<, 8y<DD

Out[22]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<

This finds all sublists that are flanked by the same element. 

In[23]:= ReplaceList@8a, b, c, a, d, b, d<, 8___, x_, y__, x_, ___< -> g@x, 8y<DD

Out[23]= 8g@a, 8b, c<D, g@b, 8c, a, d<D, g@d, 8b<D<

Replace@expr,rulesD apply rules in one way only

ReplaceList@expr,rulesD apply rules in all possible ways

Applying rules in one way or all possible ways. 

Manipulating Sets of Transformation Rules

You can manipulate lists of transformation rules in Mathematica just like other symbolic expres-

sions. It is common to assign a name to a rule or set of rules. 

This assigns the “name” sinexp to the trigonometric expansion rule. 

In[1]:= sinexp = Sin@2 x_D -> 2 Sin@xD Cos@xD

Out[1]= Sin@2 x_D Ø 2 Cos@xD Sin@xD

You can now request the rule “by name”. 

In[2]:= Sin@2 H1 + xL^2D ê. sinexp

Out[2]= 2 CosAH1 + xL2E SinAH1 + xL2E

You can use lists of rules to represent mathematical and other relations. Typically you will find

it  convenient  to  give  names  to  the  lists,  so  that  you  can  easily  specify  the  list  you  want  in  a

particular case. 

In  most  situations,  it  is  only  one  rule  from any  given  list  that  actually  applies  to  a  particular

expression. Nevertheless, the ê. operator tests each of the rules in the list in turn. If the list is

very long, this process can take a long time. 

Mathematica  allows  you  to  preprocess  lists  of  rules  so  that  ê.  can  operate  more  quickly  on

them. You can take any list of rules and apply the function Dispatch  to them. The result is a

representation  of  the  original  list  of  rules,  but  including  dispatch  tables  which  allow  ê.  to

“dispatch” to potentially applicable rules immediately, rather than testing all the rules in turn. 
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Mathematica  allows  you  to  preprocess  lists  of  rules  so  that  ê.  can  operate  more  quickly  on

them. You can take any list of rules and apply the function Dispatch  to them. The result is a

representation  of  the  original  list  of  rules,  but  including  dispatch  tables  which  allow  ê.  to

“dispatch” to potentially applicable rules immediately, rather than testing all the rules in turn. 

Here is a list of rules for the first five factorials. 

In[3]:= facs = Table@f@iD -> i!, 8i, 5<D

Out[3]= 8f@1D Ø 1, f@2D Ø 2, f@3D Ø 6, f@4D Ø 24, f@5D Ø 120<

This sets up dispatch tables that make the rules faster to use. 

In[4]:= dfacs = Dispatch@facsD

Out[4]= Dispatch@8f@1D Ø 1, f@2D Ø 2, f@3D Ø 6, f@4D Ø 24, f@5D Ø 120<, -DispatchTables -D

You can apply the rules using the ê. operator. 

In[5]:= f@4D ê. dfacs

Out[5]= 24

Dispatch@rulesD create a representation of a list of rules that includes 
dispatch tables

exprê.drules apply rules that include dispatch tables

Creating and using dispatch tables. 

For  long lists  of  rules,  you will  find  that  setting  up dispatch  tables  makes  replacement  opera-

tions much faster. This is particularly true when your rules are for individual symbols or other

expressions  that  do  not  involve  pattern  objects.  Once  you  have  built  dispatch  tables  in  such

cases,  you will  find that  the ê.  operator  takes a time that  is  more or  less independent of  the

number of rules you have. Without dispatch tables, however, ê. will take a time directly propor-

tional to the total number of rules. 

Making Definitions

The replacement operator ê. allows you to apply transformation rules to a specific expression.

Often,  however,  you want  to  have transformation rules  automatically  applied  whenever  possi-

ble. 

You  can  do  this  by  assigning  explicit  values  to  Mathematica  expressions  and  patterns.  Each

assignment specifies a transformation rule to be applied whenever an expression of the appropri-

ate form occurs. 
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You  can  do  this  by  assigning  explicit  values  to  Mathematica  expressions  and  patterns.  Each

assignment specifies a transformation rule to be applied whenever an expression of the appropri- 

ate form occurs.  

exprê.lhs->rhs apply a transformation rule to a specific expression

lhs=rhs assign a value which defines a transformation rule to be 
used whenever possible

Manual and automatic application of transformation rules. 

This applies a transformation rule for x to a specific expression. 

In[1]:= H1 + xL^6 ê. x -> 3 - a

Out[1]= H4 - aL6

By assigning a value to x, you tell Mathematica to apply a transformation rule for x whenever 
possible. 

In[2]:= x = 3 - a

Out[2]= 3 - a

Now x is transformed automatically. 

In[3]:= H1 + xL^7

Out[3]= H4 - aL7

You  should  realize  that  except  inside  constructs  like  Module  and  Block,  all  assignments  you

make in a Mathematica session are permanent. They continue to be used for the duration of the

session, unless you explicitly clear or overwrite them. 

The fact  that  assignments are permanent  means that  they must  be made with  care.  Probably

the single most common mistake in using Mathematica is to make an assignment for a variable

like x at one point in your session, and then later to use x having forgotten about the assign-

ment you made. 

There are several ways to avoid this kind of mistake. First, you should avoid using assignments

whenever  possible,  and  instead  use  more  controlled  constructs  such  as  the  ê.  replacement

operator. Second, you should explicitly use the deassignment operator =. or the function Clear

to remove values you have assigned when you have finished with them. 

Another  important  way  to  avoid  mistakes  is  to  think  particularly  carefully  before  assigning

values to variables with common or simple names. You will often want to use a variable such as

x  as  a  symbolic  parameter.  But  if  you  make  an  assignment  such  as  x = 3,  then  x  will  be

replaced by 3 whenever it occurs, and you can no longer use x as a symbolic parameter. 
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Another  important  way  to  avoid  mistakes  is  to  think  particularly  carefully  before  assigning

values to variables with common or simple names. You will often want to use a variable such as

x  as  a  symbolic  parameter.  But  if  you  make  an  assignment  such  as  x = 3,  then  x  will  be

replaced by 3 whenever it occurs, and you can no longer use x as a symbolic parameter. 

In general, you should be sure not to assign permanent values to any variables that you might

want to use for more than one purpose. If at one point in your session you wanted the variable

c  to stand for the speed of light, you might assign it  a value such as 3. * 10^8.  But then you

cannot  use c  later  in  your  session to  stand,  say,  for  an undetermined coefficient.  One way to

avoid this kind of problem is to make assignments only for variables with more explicit names,

such as SpeedOfLight.

x=. remove the value assigned to the object x

Clear@x,y,…D clear all the values of x, y, … 

Removing assignments. 

This does not give what you might expect, because x still has the value you assigned it above. 

In[4]:= Factor@x^2 - 1D

Out[4]= H-4 + aL H-2 + aL

This removes any value assigned to x. 

In[5]:= Clear@xD

Now this gives the result you expect. 

In[6]:= Factor@x^2 - 1D

Out[6]= H-1 + xL H1 + xL

Special Forms of Assignment

Particularly when you write procedural programs in Mathematica, you will often need to modify

the  value  of  a  particular  variable  repeatedly.  You  can  always  do  this  by  constructing  the  new

value  and  explicitly  performing  an  assignment  such  as  x = value.  Mathematica,  however,  pro-

vides  special  notations  for  incrementing  the  values  of  variables,  and  for  some  other  common

cases. 
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i++ increment the value of i by 1

i-- decrement i

++i pre-increment i

--i pre-decrement i

i+=di add di to the value of i

i-=di subtract di from i

x*=c multiply x by c

xê=c divide x by c

Modifying values of variables. 

This assigns the value 7 x to the variable t. 

In[1]:= t = 7 x

Out[1]= 7 x

This increments the value of t by 18 x. 

In[2]:= t += 18 x

Out[2]= 25 x

The value of t has been modified. 

In[3]:= t

Out[3]= 25 x

This sets t to 8, multiplies its value by 7, then gives the final value of t. 

In[4]:= t = 8; t *= 7; t

Out[4]= 56

The value of i++ is the value of i before the increment is done. 

In[5]:= i = 5; Print@i++D; Print@iD

5

6
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The value of ++i is the value of i after the increment. 

In[6]:= i = 5; Print@++iD; Print@iD

6

6

x=y=value assign the same value to both x and y

8x,y<=8value1,value2< assign different values to x and y

8x,y<=8y,x< interchange the values of x and y

Assigning values to several variables at a time. 

This assigns the value 5 to x and 8 to y. 

In[7]:= 8x, y< = 85, 8<

Out[7]= 85, 8<

This interchanges the values of x and y. 

In[8]:= 8x, y< = 8y, x<

Out[8]= 88, 5<

Now x has value 8. 

In[9]:= x

Out[9]= 8

And y has value 5. 

In[10]:= y

Out[10]= 5

You can use assignments to lists to permute values of variables in any way. 

In[11]:= 8a, b, c< = 81, 2, 3<; 8b, a, c< = 8a, c, b<; 8a, b, c<

Out[11]= 83, 1, 2<

When you write programs in Mathematica, you will sometimes find it convenient to take a list,

and  successively  add  elements  to  it.  You  can  do  this  using  the  functions  PrependTo  and

AppendTo. 
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PrependTo@v,elemD prepend elem to the value of v

AppendTo@v,elemD append elem

v=8v,elem< make a nested list containing elem

Assignments for modifying lists. 

This assigns the value of v to be the list 85, 7, 9<. 

In[12]:= v = 85, 7, 9<

Out[12]= 85, 7, 9<

This appends the element 11 to the value of v. 

In[13]:= AppendTo@v, 11D

Out[13]= 85, 7, 9, 11<

Now the value of v has been modified. 

In[14]:= v

Out[14]= 85, 7, 9, 11<

Although AppendTo@v, elemD is always equivalent to v = Append@v, elemD, it is often a convenient

notation.  However,  you  should  realize  that  because  of  the  way  Mathematica  stores  lists,  it  is

usually less efficient to add a sequence of elements to a particular list than to create a nested

structure that consists, for example, of lists of length 2 at each level. When you have built up

such a structure, you can always reduce it to a single list using Flatten. 

This sets up a nested list structure for w. 

In[15]:= w = 81<; Do@w = 8w, k^2<, 8k, 1, 4<D; w

Out[15]= 888881<, 1<, 4<, 9<, 16<

You can use Flatten to unravel the structure. 

In[16]:= Flatten@wD

Out[16]= 81, 1, 4, 9, 16<
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Making Definitions for Indexed Objects

In many kinds of calculations, you need to set up "arrays" which contain sequences of expres-

sions,  each  specified  by  a  certain  index.  One  way  to  implement  arrays  in  Mathematica  is  by

using lists. You can define a list, say a = 8x, y, z, …<, then access its elements using a@@iDD, or

modify  them  using  a@@iDD = value.  This  approach  has  a  drawback,  however,  in  that  it  requires

you to fill in all the elements when you first create the list. 

Often, it  is  more convenient to set up arrays in which you can fill  in only those elements that

you  need  at  a  particular  time.  You  can  do  this  by  making  definitions  for  expressions  such  as

a@iD. 

This defines a value for a@1D. 

In[1]:= a@1D = 9

Out[1]= 9

This defines a value for a@2D. 

In[2]:= a@2D = 7

Out[2]= 7

This shows all the values you have defined for expressions associated with a so far. 

In[3]:= ? a

Global`a

a@1D = 9

a@2D = 7

You can define a value for a@5D, even though you have not yet given values to a@3D and a@4D. 

In[4]:= a@5D = 0

Out[4]= 0

This generates a list of the values of the a@iD. 

In[5]:= Table@a@iD, 8i, 5<D

Out[5]= 89, 7, a@3D, a@4D, 0<

You can think of the expression a@iD as being like an "indexed" or "subscripted" variable.
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You can think of the expression a@iD as being like an "indexed" or "subscripted" variable.

a@iD=value add or overwrite a value

a@iD access a value

a@iD=. remove a value

?a show all defined values

Clear@aD clear all defined values

Table@a@iD,8i,1,n<D
 or Array@a,nD

convert to an explicit List

Manipulating indexed variables. 

When you have an expression of the form a@iD, there is no requirement that the "index" i be a

number.  In  fact,  Mathematica  allows  the  index  to  be  any  expression  whatsoever.  By  using

indices that are symbols, you can for example build up simple databases in Mathematica. 

This defines the "object" area with "index" square to have value 1. 

In[6]:= area@squareD = 1

Out[6]= 1

This adds another result to the area "database". 

In[7]:= area@triangleD = 1 ê 2

Out[7]=
1

2

Here are the entries in the area database so far. 

In[8]:= ? area

Global`area

area@squareD = 1

area@triangleD = 1
2

You can use these definitions wherever you want. You have not yet assigned a value for 
area@pentagonD. 

In[9]:= 4 area@squareD + area@pentagonD

Out[9]= 4 + area@pentagonD

Making Definitions for Functions
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Making Definitions for Functions

"Defining Functions" discusses how you can define functions in Mathematica. In a typical case,

you  would  type  in  f@x_D = x^2  to  define  a  function  f.  (Actually,  the  definitions  in  "Defining

Functions"  use  the  :=  operator,  rather  than  the  =  one.  "Immediate  and  Delayed  Definitions"

explains exactly when to use each of the := and = operators.) 

The  definition  f@x_D = x^2  specifies  that  whenever  Mathematica  encounters  an  expression

which  matches  the  pattern  f@x_D,  it  should  replace  the  expression  by  x^2.  Since  the  pattern

f@x_D matches all expressions of the form f@anythingD, the definition applies to functions f with

any "argument". 

Function definitions like f@x_D = x^2 can be compared with definitions like f@aD = b for indexed

variables discussed in "Making Definitions for Indexed Objects". The definition f@aD = b specifies

that whenever the particular expression f@aD occurs, it is to be replaced by b. But the definition

says nothing about expressions such as f@yD, where f appears with another "index". 

To define a "function", you need to specify values for expressions of the form f@xD, where the

argument x can be anything. You can do this by giving a definition for the pattern f@x_D, where

the pattern object x_ stands for any expression. 

f@xD=value definition for a specific expression x

f@x _D=value definition for any expression, referred to as x

The difference between defining an indexed variable and a function. 

Making  definitions  for  f@2D  or  f@aD  can  be  thought  of  as  being  like  giving  values  to  various

elements of an "array" named f. Making a definition for f@x_D is like giving a value for a set of

"array  elements"  with  arbitrary  "indices".  In  fact,  you  can  actually  think  of  any  function  as

being like an array with an arbitrarily variable index.

In mathematical terms, you can think of f as a mapping. When you define values for, say, f@1D

and  f@2D,  you  specify  the  image  of  this  mapping  for  various  discrete  points  in  its  domain.

Defining a value for f@x_D specifies the image of f on a continuum of points. 

120     Core Language



This defines a transformation rule for the specific expression f@xD. 

In[1]:= f@xD = u

Out[1]= u

When the specific expression f@xD appears, it is replaced by u. Other expressions of the form 
f@argumentD are, however, not modified. 

In[2]:= f@xD + f@yD

Out[2]= u + f@yD

This defines a value for f with any expression as an "argument". 

In[3]:= f@x_D = x^2

Out[3]= x2

The old definition for the specific expression f@xD is still used, but the new general definition 
for f@x_D is now used to find a value for f@yD.

In[4]:= f@xD + f@yD

Out[4]= u + y2

This removes all definitions for f. 

In[5]:= Clear@fD

Mathematica  allows you to  define  transformation rules  for  any expression or  pattern.  You can

mix definitions for specific expressions such as f@1D  or f@aD  with definitions for patterns such

as f@x_D. 

Many kinds of mathematical functions can be set up by mixing specific and general definitions

in Mathematica. As an example, consider the factorial function. This particular function is in fact

built into Mathematica (it is written n!). But you can use Mathematica definitions to set up the

function for yourself. 

The  standard  mathematical  definition  for  the  factorial  function  can  be  entered  almost  directly

into  Mathematica,  in  the  form:  f@n_D := n f@n - 1D; f@1D = 1.  This  definition  specifies  that  for

any  n,  f@nD  should  be  replaced  by  n f@n - 1D,  except  that  when  n  is  1,  f@1D  should  simply  be

replaced by 1. 
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Here is the value of the factorial function with argument 1. 

In[6]:= f@1D = 1

Out[6]= 1

Here is the general recursion relation for the factorial function. 

In[7]:= f@n_D := n f@n - 1D

Now you can use these definitions to find values for the factorial function. 

In[8]:= f@10D

Out[8]= 3628800

The results are the same as you get from the built-in version of factorial. 

In[9]:= 10!

Out[9]= 3628800

The Ordering of Definitions

When  you  make  a  sequence  of  definitions  in  Mathematica,  some  may  be  more  general  than

others.  Mathematica  follows  the  principle  of  trying  to  put  more  general  definitions  after  more

specific  ones.  This  means  that  special  cases  of  rules  are  typically  tried  before  more  general

cases. 

This behavior is crucial to the factorial function example given in "Making Definitions for Func-

tions". Regardless of the order in which you entered them, Mathematica will always put the rule

for the special  case f@1D  ahead of the rule for the general case f@n_D.  This means that when

Mathematica looks for the value of an expression of the form f@nD, it tries the special case f@1D

first, and only if this does not apply, it tries the general case f@n_D. As a result, when you ask

for f@5D, Mathematica will keep on using the general rule until the “end condition” rule for f@1D

applies. 

† Mathematica tries to put specific definitions before more general definitions.

Treatment of definitions in Mathematica. 

If  Mathematica  did  not  follow  the  principle  of  putting  special  rules  before  more  general  ones,

then  the  special  rules  would  always  be  “shadowed”  by  more  general  ones.  In  the  factorial

example,  if  the  rule  for  f@n_D  was  ahead  of  the  rule  for  f@1D,  then  even  when  Mathematica

tried to evaluate f@1D, it would use the general f@n_D rule, and it would never find the special

f@1D rule. 
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If  Mathematica  did  not  follow  the  principle  of  putting  special  rules  before  more  general  ones,

then  the  special  rules  would  always  be  “shadowed”  by  more  general  ones.  In  the  factorial

example,  if  the  rule  for  f@n_D  was  ahead  of  the  rule  for  f@1D,  then  even  when  Mathematica

tried to evaluate f@1D, it would use the general f@n_D rule, and it would never find the special

f@1D rule. 

Here is a general definition for f@n_D. 

In[1]:= f@n_D := n f@n - 1D

Here is a definition for the special case f@1D. 

In[2]:= f@1D = 1

Out[2]= 1

Mathematica puts the special case before the general one. 

In[3]:= ? f

Global`f

f@1D = 1

f@n_D := n f@n - 1D

In  the  factorial  function  example  used  above,  it  is  clear  which  rule  is  more  general.  Often,

however, there is no definite ordering in generality of the rules you give. In such cases, Mathe-

matica simply tries the rules in the order you give them. 

These rules have no definite ordering in generality. 

In[4]:= log@x_ y_D := log@xD + log@yD; log@x_^n_D := n log@xD

Mathematica stores the rules in the order you gave them. 

In[5]:= ? log

Global`log

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD
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This rule is a special case of the rule for log@x_ y_D. 

In[6]:= log@2 x_D := log@xD + log2

Mathematica puts the special rule before the more general one. 

In[7]:= ? log

Global`log

log@2 x_D := log@xD + log2

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD

Although  in  many  practical  cases,  Mathematica  can  recognize  when  one  rule  is  more  general

than another, you should realize that this is not always possible. For example, if two rules both

contain  complicated  ê;  conditions,  it  may not  be  possible  to  work  out  which  is  more  general,

and,  in  fact,  there  may  not  be  a  definite  ordering.  Whenever  the  appropriate  ordering  is  not

clear, Mathematica stores rules in the order you give them. 

Immediate and Delayed Definitions

You may have noticed that there are two different ways to make assignments in Mathematica:

lhs = rhs  and  lhs := rhs.  The  basic  difference  between  these  forms  is  when  the  expression  rhs  is

evaluated. lhs = rhs is an immediate assignment, in which rhs is evaluated at the time when the

assignment is made. lhs := rhs, on the other hand, is a delayed assignment, in which rhs is not

evaluated when the assignment is made, but is instead evaluated each time the value of lhs is

requested. 

lhs=rhs  (immediate assignment) rhs is evaluated when the assignment is made

lhs:=rhs  (delayed assignment) rhs is evaluated each time the value of lhs is requested

The two types of assignments in Mathematica. 

This uses the := operator to define the function ex. 

In[1]:= ex@x_D := Expand@H1 + xL^2D
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Because := was used, the definition is maintained in an unevaluated form. 

In[2]:= ? ex

Global`ex

ex@x_D := ExpandAH1 + xL2E

When you make an assignment with the = operator, the right-hand side is evaluated immedi-
ately. 

In[3]:= iex@x_D = Expand@H1 + xL^2D

Out[3]= 1 + 2 x + x2

The definition now stored is the result of the Expand command. 

In[4]:= ? iex

Global`iex

iex@x_D = 1 + 2 x + x2

When you execute ex, the Expand is performed. 

In[5]:= ex@y + 2D

Out[5]= 9 + 6 y + y2

iex simply substitutes its argument into the already expanded form, giving a different answer. 

In[6]:= iex@y + 2D

Out[6]= 1 + 2 H2 + yL + H2 + yL2

As you can see from the example above, both = and := can be useful in defining functions, but

they have different meanings, and you must be careful about which one to use in a particular

case. 

One rule of thumb is the following. If you think of an assignment as giving the final “value” of

an  expression,  use  the  =  operator.  If  instead  you  think  of  the  assignment  as  specifying  a

“command” for finding the value, use the := operator. If in doubt, it is usually better to use the

:= operator than the = one. 
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lhs=rhs rhs is intended to be the “final value” of lhs (e.g., 
f@x_D = 1 - x^2)

lhs:=rhs rhs gives a “command” or “program” to be executed 
whenever you ask for the value of lhs (e.g., 
f@x_D := Expand@1 - x^2D)

Interpretations of assignments with the = and := operators. 

Although  :=  is  probably  used  more  often  than  =  in  defining  functions,  there  is  one  important

case in which you must use = to define a function. If you do a calculation, and get an answer in

terms of a symbolic parameter x,  you often want to go on and find results for various specific

values of x. One way to do this is to use the ê. operator to apply appropriate rules for x in each

case. It is usually more convenient, however, to use = to define a function whose argument is x. 

Here is an expression involving x. 

In[7]:= D@Log@Sin@xDD^2, xD

Out[7]= 2 Cot@xD Log@Sin@xDD

This defines a function whose argument is the value to be taken for x. 

In[8]:= dlog@x_D = %

Out[8]= 2 Cot@xD Log@Sin@xDD

Here is the result when x is taken to be 1 + a. 

In[9]:= dlog@1 + aD

Out[9]= 2 Cot@1 + aD Log@Sin@1 + aDD

An  important  point  to  notice  in  the  example  above  is  that  there  is  nothing  special  about  the

name  x  that  appears  in  the  x_  pattern.  It  is  just  a  symbol,  indistinguishable  from  an  x  that

appears in any other expression. 

f@x _D=expr define a function which gives the value expr for any particu-
lar value of x

Defining functions for evaluating expressions. 
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You can use = and := not only to define functions, but also to assign values to variables. If you

type x = value, then value is immediately evaluated, and the result is assigned to x. On the other

hand, if you type x := value, then value is not immediately evaluated. Instead, it is maintained in

an unevaluated form, and is evaluated afresh each time x is used. 

This evaluates RandomReal@D to find a pseudorandom number, then assigns this number to 
r1. 

In[10]:= r1 = RandomReal@D

Out[10]= 0.0560708

Here RandomReal@D is maintained in an unevaluated form, to be evaluated afresh each time 
r2 is used. 

In[11]:= r2 := RandomReal@D

Here are values for r1 and r2. 

In[12]:= 8r1, r2<

Out[12]= 80.0560708, 0.6303<

The value of r1 never changes. Every time r2 is used, however, a new pseudorandom number 
is generated. 

In[13]:= 8r1, r2<

Out[13]= 80.0560708, 0.359894<

The distinction between immediate and delayed assignments is particularly important when you

set up chains of assignments. 

This defines a to be 1. 

In[14]:= a = 1

Out[14]= 1

Here a + 2 is evaluated to give 3, and the result is assigned to be the value of ri. 

In[15]:= ri = a + 2

Out[15]= 3

Here a + 2 is maintained in an unevaluated form, to be evaluated every time the value of rd is 
requested. 

In[16]:= rd := a + 2
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In this case, ri and rd give the same values. 

In[17]:= 8ri, rd<

Out[17]= 83, 3<

Now the value of a is changed. 

In[18]:= a = 2

Out[18]= 2

Now rd uses the new value for a, while ri keeps its original value. 

In[19]:= 8ri, rd<

Out[19]= 83, 4<

You can use delayed assignments such as t := rhs to set up variables whose values you can find

in a variety of  different  “environments”.  Every time you ask for  t,  the expression rhs  is  evalu-

ated using the current values of the objects on which it depends. 

The right-hand side of the delayed assignment is maintained in an unevaluated form. 

In[20]:= t := 8a, Factor@x^a - 1D<

This sets a to 4, then finds the value of t. 

In[21]:= a = 4; t

Out[21]= 94, H-1 + xL H1 + xL I1 + x2M=

Here a is 6. 

In[22]:= a = 6; t

Out[22]= 96, H-1 + xL H1 + xL I1 - x + x2M I1 + x + x2M=

In the example above, the symbol a acts as a “global variable”, whose value affects the value

of t.  When you have a large number of  parameters,  many of  which change only occasionally,

you may find this kind of setup convenient. However, you should realize that implicit or hidden

dependence  of  one  variable  on  others  can  often  become  quite  confusing.  When  possible,  you

should make all  dependencies explicit,  by defining functions which take all  necessary parame-

ters as arguments. 
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lhs->rhs rhs is evaluated when the rule is given

lhs:>rhs rhs is evaluated when the rule is used

Two types of transformation rules in Mathematica. 

Just as you can make immediate and delayed assignments in Mathematica, so you can also set

up immediate and delayed transformation rules. 

The right-hand side of this rule is evaluated when you give the rule. 

In[23]:= f@x_D -> Expand@H1 + xL^2D

Out[23]= f@x_D Ø 1 + 2 x + x2

A rule like this is probably not particularly useful. 

In[24]:= f@x_D -> Expand@xD

Out[24]= f@x_D Ø x

Here the right-hand side of the rule is maintained in an unevaluated form, to be evaluated 
every time the rule is used. 

In[25]:= f@x_D :> Expand@xD

Out[25]= f@x_D ß Expand@xD

Applying the rule causes the expansion to be done. 

In[26]:= f@H1 + pL^2D ê. f@x_D :> Expand@xD

Out[26]= 1 + 2 p + p2

In analogy with assignments, you should typically use -> when you want to replace an expres-

sion with a definite value, and you should use :> when you want to give a command for finding

the value. 

Functions That Remember Values They Have Found

When you make a  function  definition  using  :=,  the  value  of  the  function  is  recomputed  every

time you ask for it. In some kinds of calculations, you may end up asking for the same function

value many times. You can save time in these cases by having Mathematica remember all the

function values it finds. Here is an “idiom” for defining a function that does this. 
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f@x _D:=f@xD=rhs define a function which remembers values that it finds

Defining a function that remembers values it finds. 

This defines a function f which stores all values that it finds. 

In[1]:= f@x_D := f@xD = f@x - 1D + f@x - 2D

Here are the end conditions for the recursive function f. 

In[2]:= f@0D = f@1D = 1

Out[2]= 1

Here is the original definition of f. 

In[3]:= ? f

Global`f

f@0D = 1

f@1D = 1

f@x_D := f@xD = f@x - 1D + f@x - 2D

This computes f@5D. The computation involves finding the sequence of values f@5D, f@4D, … 
f@2D. 

In[4]:= f@5D

Out[4]= 8

All the values of f found so far are explicitly stored. 

In[5]:= ? f
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Global`f

f@0D = 1

f@1D = 1

f@2D = 2

f@3D = 3

f@4D = 5

f@5D = 8

f@x_D := f@xD = f@x - 1D + f@x - 2D

If you ask for f@5D again, Mathematica can just look up the value immediately; it does not 
have to recompute it.

In[6]:= f@5D

Out[6]= 8

You can see how a definition like f@x_D := f@xD = f@x - 1D + f@x - 2D works. The function f@x_D

is  defined  to  be  the  “program”  f@xD = f@x - 1D + f@x - 2D.  When  you  ask  for  a  value  of  the

function  f,  the  “program”  is  executed.  The  program  first  calculates  the  value  of

f@x - 1D + f@x - 2D, then saves the result as f@xD. 

It is often a good idea to use functions that remember values when you implement mathemati-

cal recursion relations in Mathematica. In a typical case, a recursion relation gives the value of

a function f  with an integer argument x in terms of values of the same function with arguments

x - 1, x - 2, etc. The Fibonacci function definition f HxL = f Hx - 1L + f Hx - 2L used above is an example

of this kind of recursion relation. The point is that if you calculate say f H10L by just applying the

recursion  relation  over  and  over  again,  you  end  up  having  to  recalculate  quantities  like  f H5L

many times.  In  a  case like  this,  it  is  therefore  better  just  to  remember  the  value of  f H5L,  and

look it up when you need it, rather than having to recalculate it. 

There  is  of  course  a  trade-off  involved in  remembering values.  It  is  faster  to  find  a  particular

value, but it takes more memory space to store all of them. You should usually define functions

to remember values only if the total number of different values that will be produced is compara-

tively small, or the expense of recomputing them is very great. 

Associating Definitions with Different Symbols
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Associating Definitions with Different Symbols

When you make a definition in the form f@argsD = rhs  or f@argsD := rhs,  Mathematica  associates

your definition with the object  f .  This  means,  for  example,  that  such definitions are displayed

when you type ? f . In general, definitions for expressions in which the symbol f  appears as the

head are termed downvalues of f . 

Mathematica  however  also  supports  upvalues,  which  allow  definitions  to  be  associated  with

symbols that do not appear directly as their head. 

Consider  for  example  a  definition  like  Exp@g@x_DD := rhs.  One  possibility  is  that  this  definition

could be associated with the symbol Exp,  and considered as a downvalue of Exp.  This is how-

ever probably not the best thing either from the point of view of organization or efficiency. 

Better  is  to  consider  Exp@g@x_DD := rhs  to  be associated with g,  and to correspond to an upv-

alue of g. 

f@argsD:=rhs define a downvalue for f

f@g@argsD,…D^:=rhs define an upvalue for g

Associating definitions with different symbols. 

This is taken to define a downvalue for f. 

In[1]:= f@g@x_DD := fg@xD

You can see the definition when you ask about f. 

In[2]:= ? f

Global`f

f@g@x_DD := fg@xD

This defines an upvalue for g. 

In[3]:= Exp@g@x_DD ^:= expg@xD

The definition is associated with g. 

In[4]:= ? g
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Global`g

‰g@x_D ^:= expg@xD

It is not associated with Exp. 

In[5]:= ?? Exp

Exp@zD is the exponential function. à

Attributes@ExpD = 8Listable, NumericFunction, Protected, ReadProtected

The definition is used to evaluate this expression. 

In[6]:= Exp@g@5DD

Out[6]= expg@5D

In simple cases, you will get the same answers to calculations whether you give a definition for

f@g@xDD  as a downvalue for f  or  an upvalue for g.  However,  one of  the two choices is  usually

much more natural and efficient than the other. 

A  good  rule  of  thumb  is  that  a  definition  for  f@g@xDD  should  be  given  as  an  upvalue  for  g  in

cases  where  the  function  f  is  more  common  than  g.  Thus,  for  example,  in  the  case  of

Exp@g@xDD,  Exp  is  a  built-in  Mathematica  function,  while  g  is  presumably  a  function  you  have

added.  In  such  a  case,  you  will  typically  think  of  definitions  for  Exp@g@xDD  as  giving  relations

satisfied by g.  As a result,  it  is  more natural  to treat the definitions as upvalues for g  than as

downvalues for Exp. 

This gives the definition as an upvalue for g. 

In[7]:= g ê: g@x_D + g@y_D := gplus@x, yD

Here are the definitions for g so far. 

In[8]:= ? g

Global`g

‰g@x_D ^:= expg@xD

g@x_D + g@y_D ^:= gplus@x, yD
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The definition for a sum of g’s is used whenever possible. 

In[9]:= g@5D + g@7D

Out[9]= gplus@5, 7D

Since  the  full  form  of  the  pattern  g@x_D + g@y_D  is  Plus@g@x_D, g@y_DD,  a  definition  for  this

pattern  could  be  given  as  a  downvalue  for  Plus.  It  is  almost  always  better,  however,  to  give

the definition as an upvalue for g. 

In  general,  whenever  Mathematica  encounters  a  particular  function,  it  tries  all  the  definitions

you have given for that function. If you had made the definition for g@x_D + g@y_D a downvalue

for Plus, then Mathematica would have tried this definition whenever Plus  occurs. The defini-

tion  would  thus  be  tested  every  time  Mathematica  added  expressions  together,  making  this

very common operation slower in all cases. 

However, by giving a definition for g@x_D + g@y_D as an upvalue for g, you associate the defini-

tion with g. In this case, Mathematica only tries the definition when it finds a g inside a function

such as Plus. Since g presumably occurs much less frequently than Plus, this is a much more

efficient procedure. 

f@gD^=value   or  f@g@argsDD^=value

make assignments to be associated with g, rather than f

f@gD^:=value   or  f@g@argsDD^:=value

make delayed assignments associated with g

f@arg1,arg2,…D^=value make assignments associated with the heads of all the argi

Shorter ways to define upvalues. 

A typical use of upvalues is in setting up a "database" of properties of a particular object. With

upvalues,  you can associate  each definition  you make with  the  object  that  it  concerns,  rather

than with the property you are specifying. 

This defines an upvalue for square which gives its area. 

In[10]:= area@squareD ^= 1

Out[10]= 1
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This adds a definition for the perimeter. 

In[11]:= perimeter@squareD ^= 4

Out[11]= 4

Both definitions are now associated with the object square. 

In[12]:= ? square

Global`square

area@squareD ^= 1

perimeter@squareD ^= 4

In  general,  you  can  associate  definitions  for  an  expression  with  any  symbol  that  occurs  at  a

sufficiently high level in the expression. With an expression of the form f@argsD, you can define

an upvalue for a symbol g so long as either g itself, or an object with head g, occurs in args. If g

occurs at a lower level in an expression, however, you cannot associate definitions with it. 

g occurs as the head of an argument, so you can associate a definition with it. 

In[13]:= g ê: h@w@x_D, g@y_DD := hwg@x, yD

Here g appears too deep in the left-hand side for you to associate a definition with it. 

In[14]:= g ê: h@w@g@x_DD, y_D := hw@x, yD

TagSetDelayed::tagpos : Tag g in h@w@g@x_DD, y_D is too deep for an assigned rule to be found. à

Out[14]= $Failed

f@…D:=rhs downvalue for f

fê: f@g@…DD@…D:=rhs downvalue for f

gê: f@…,g,…D:=rhs upvalue for g

gê: f@…,g@…D,…D:=rhs upvalue for g

Possible positions for symbols in definitions. 

As discussed in "The Meaning of Expressions", you can use Mathematica symbols as "tags", to

indicate the "type" of an expression. For example, complex numbers in Mathematica are repre-

sented  internally  in  the  form  Complex@x, yD,  where  the  symbol  Complex  serves  as  a  tag  to

indicate that the object is a complex number. 

Upvalues provide a convenient mechanism for specifying how operations act on objects that are

tagged  to  have  a  certain  type.  For  example,  you  might  want  to  introduce  a  class  of  abstract

mathematical objects of type quat. You can represent each object of this type by a Mathemat-

ica expression of the form quat@dataD. 
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Upvalues provide a convenient mechanism for specifying how operations act on objects that are

tagged  to  have  a  certain  type.  For  example,  you  might  want  to  introduce  a  class  of  abstract

mathematical objects of type quat. You can represent each object of this type by a Mathemat-

ica expression of the form quat@dataD. 

In a typical case, you might want quat objects to have special properties with respect to arith-

metic operations such as addition and multiplication. You can set up such properties by defining

upvalues for quat with respect to Plus and Times. 

This defines an upvalue for quat with respect to Plus. 

In[15]:= quat@x_D + quat@y_D ^:= quat@x + yD

The upvalue you have defined is used to simplify this expression. 

In[16]:= quat@aD + quat@bD + quat@cD

Out[16]= quat@a + b + cD

When  you  define  an  upvalue  for  quat  with  respect  to  an  operation  like  Plus,  what  you  are

effectively doing is to extend the domain of the Plus operation to include quat objects. You are

telling Mathematica  to use special  rules for  addition in the case where the things to be added

together are quat objects. 

In  defining  addition  for  quat  objects,  you  could  always  have a  special  addition  operation,  say

quatPlus, to which you assign an appropriate downvalue. It is usually much more convenient,

however,  to  use  the  standard  Mathematica  Plus  operation  to  represent  addition,  but  then  to

"overload" this operation by specifying special behavior when quat objects are encountered. 

You can think of  upvalues as a way to implement certain aspects  of  object-oriented program-

ming. A symbol like quat represents a particular type of object. Then the various upvalues for

quat  specify "methods" that  define how quat  objects should behave under certain operations,

or on receipt of certain "messages". 

Defining Numerical Values

If you make a definition such as f@x_D := value, Mathematica will use the value you give for any

f function it encounters. In some cases, however, you may want to define a value that is to be

used specifically when you ask for numerical values. 
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expr=value define a value to be used whenever possible

N@exprD=value define a value to be used for numerical approximation

Defining ordinary and numerical values. 

This defines a numerical value for the function f. 

In[1]:= N@f@x_DD := Sum@x^-i ê i^2, 8i, 20<D

Defining the numerical value does not tell Mathematica anything about the ordinary value of f. 

In[2]:= f@2D + f@5D

Out[2]= f@2D + f@5D

If you ask for a numerical approximation, however, Mathematica uses the numerical values you 
have defined. 

In[3]:= N@%D

Out[3]= 0.793244

You can define numerical values for both functions and symbols. The numerical values are used

by all numerical Mathematica functions, including NIntegrate, FindRoot and so on. 

N@exprD=value define a numerical value to be used when default numeri-
cal precision is requested

NAexpr,9n,Infinity=E=value define a numerical value to be used when n-digit precision 
and any accuracy is requested

Defining numerical values that depend on numerical precision. 

This defines a numerical value for the symbol const, using 4 n + 5 terms in the product for n-
digit precision. 

In[4]:= N@const, 8n_, Infinity<D := Product@1 - 2^-i, 8i, 2, 4 n + 5<D

Here is the value of const, computed to 30-digit precision using the value you specified. 

In[5]:= N@const, 30D

Out[5]= 0.577576190173204842557799443858

Mathematica  treats  numerical  values  essentially  like  upvalues.  When  you  define  a  numerical

value for  f ,  Mathematica  effectively  enters  your  definition as an upvalue for  f  with  respect  to

the numerical evaluation operation N. 

Modifying Built-in Functions
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Modifying Built-in Functions

Mathematica allows you to define transformation rules for any expression. You can define such

rules not only for functions that you add to Mathematica, but also for intrinsic functions that are

already built into Mathematica. As a result, you can enhance, or modify, the features of built-in

Mathematica functions. 

This capability is powerful,  but potentially dangerous. Mathematica  will  always follow the rules

you give it. This means that if the rules you give are incorrect, then Mathematica will give you

incorrect answers. 

To  avoid  the  possibility  of  changing  built-in  functions  by  mistake,  Mathematica  “protects”  all

built-in  functions from redefinition.  If  you want  to  give a definition for  a  built-in  function,  you

have to remove the protection first. After you give the definition, you should usually restore the

protection, to prevent future mistakes. 

Unprotect@ fD remove protection

Protect@ fD add protection

Protection for functions. 

Built-in functions are usually “protected”, so you cannot redefine them. 

In[1]:= Log@7D = 2

Set::write : Tag Log in Log@7D is Protected. à

Out[1]= 2

This removes protection for Log. 

In[2]:= Unprotect@LogD

Out[2]= 8Log<

Now you can give your own definitions for Log. This particular definition is not mathematically 
correct, but Mathematica will still allow you to give it.

In[3]:= Log@7D = 2

Out[3]= 2
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Mathematica will use your definitions whenever it can, whether they are mathematically correct 
or not. 

In[4]:= Log@7D + Log@3D

Out[4]= 2 + Log@3D

This removes the incorrect definition for Log. 

In[5]:= Log@7D =.

This restores the protection for Log. 

In[6]:= Protect@LogD

Out[6]= 8Log<

Definitions you give can override built-in features of Mathematica. In general, Mathematica tries

to use your definitions before it uses built-in definitions. 

The rules that are built into Mathematica are intended to be appropriate for the broadest range

of calculations. In specific cases, however, you may not like what the built-in rules do. In such

cases, you can give your own rules to override the ones that are built in. 

There is a built-in rule for simplifying Exp@Log@exprDD. 

In[7]:= Exp@Log@yDD

Out[7]= y

You can give your own rule for Exp@Log@exprDD, overriding the built-in rule. 

In[8]:= HUnprotect@ExpD; Exp@Log@expr_DD := explog@exprD; Protect@ExpD;L

Now your rule is used, rather than the built-in one. 

In[9]:= Exp@Log@yDD

Out[9]= explog@yD
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Manipulating Value Lists

DownValues@ fD give the list of downvalues of f

UpValues@ fD give the list of upvalues of f

DownValues@ fD=rules set the downvalues of f

UpValues@ fD=rules set the upvalues of f

Finding and setting values of symbols. 

Mathematica  effectively  stores  all  definitions  you give as  lists  of  transformation rules.  When a

particular symbol is encountered, the lists of rules associated with it are tried. 

Under  most  circumstances,  you  do  not  need  direct  access  to  the  actual  transformation  rules

associated  with  definitions  you  have  given.  Instead,  you  can  simply  use  lhs = rhs  and  lhs =.  to

add and remove rules. In some cases, however, you may find it useful to have direct access to

the actual rules. 

Here is a definition for f. 

In[1]:= f@x_D := x^2

This gives the explicit rule corresponding to the definition you made for f. 

In[2]:= DownValues@fD

Out[2]= 9HoldPattern@f@x_DD ß x2=

Notice  that  the  rules  returned  by  DownValues  and  UpValues  are  set  up  so  that  neither  their

left- nor right-hand sides get evaluated. The left-hand sides are wrapped in HoldPattern, and

the rules are delayed, so that the right-hand sides are not immediately evaluated. 

As discussed in "Making Definitions for Functions", Mathematica tries to order definitions so that

more specific  ones appear before more general  ones.  In general,  however,  there is  no unique

way to make this ordering, and you may want to choose a different ordering from the one that

Mathematica  chooses by default.  You can do this  by reordering the list  of  rules obtained from

DownValues or UpValues. 

Here are some definitions for the object g. 

In[3]:= g@x_ + y_D := gp@x, yD; g@x_ y_D := gm@x, yD
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This shows the default ordering used for the definitions. 

In[4]:= DownValues@gD

Out[4]= 8HoldPattern@g@x_ + y_DD ß gp@x, yD, HoldPattern@g@x_ y_DD ß gm@x, yD<

This reverses the order of the definitions for g. 

In[5]:= DownValues@gD = Reverse@DownValues@gDD

Out[5]= 8HoldPattern@g@x_ y_DD ß gm@x, yD, HoldPattern@g@x_ + y_DD ß gp@x, yD<
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Functions and Programs

Defining Functions

There are many functions that are built  into Mathematica.  This tutorial  discusses how you can

add your own simple functions to Mathematica.

As a first example, consider adding a function called f which squares its argument. The Mathe-

matica command to define this function is f@x_D := x^2. The _ (referred to as "blank") on the

left-hand side is very important; what it means will be discussed below. For now, just remem-

ber to put a _ on the left-hand side, but not on the right-hand side, of your definition. 

This defines the function f. Notice the _ on the left-hand side. 

In[1]:= f@x_D := x^2

f squares its argument. 

In[2]:= f@a + 1D

Out[2]= H1 + aL2

The argument can be a number. 

In[3]:= f@4D

Out[3]= 16

Or it can be a more complicated expression. 

In[4]:= f@3 x + x^2D

Out[4]= I3 x + x2M
2

You can use f in a calculation. 

In[5]:= Expand@f@Hx + 1 + yLDD

Out[5]= 1 + 2 x + x2 + 2 y + 2 x y + y2

This shows the definition you made for f. 

In[6]:= ? f
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Global`f

f@x_D := x2

f@x_D:=x^2 define the function f

?f show the definition of f

Clear@fD clear all definitions for f

Defining a function in Mathematica. 

The names like f that you use for functions in Mathematica are just symbols. Because of this,

you should make sure to avoid using names that begin with capital letters, to prevent confusion

with  built-in  Mathematica  functions.  You  should  also  make  sure  that  you  have  not  used  the

names for anything else earlier in your session. 

Mathematica functions can have any number of arguments. 

In[7]:= hump@x_, xmax_D := Hx - xmaxL^2 ê xmax

You can use the hump function just as you would any of the built-in functions. 

In[8]:= 2 + hump@x, 3.5D

Out[8]= 2 + 0.285714 H-3.5 + xL2

This gives a new definition for hump, which overwrites the previous one. 

In[9]:= hump@x_, xmax_D := Hx - xmaxL^4

The new definition is displayed. 

In[10]:= ? hump

Global`hump

hump@x_, xmax_D := Hx - xmaxL4

This clears all definitions for hump. 

In[11]:= Clear@humpD
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When you have finished with a particular function, it  is always a good idea to clear definitions

you have made for it. If you do not do this, then you will run into trouble if you try to use the

same function for a different purpose later in your Mathematica session. You can clear all defini-

tions you have made for a function or symbol f  by using Clear@ fD. 

Functions as Procedures

In many kinds of calculations, you may find yourself typing the same input to Mathematica over

and over again. You can save yourself a lot of typing by defining a function that contains your

input commands. 

This constructs a product of three terms, and expands out the result. 

In[1]:= Expand@Product@x + i, 8i, 3<DD

Out[1]= 6 + 11 x + 6 x2 + x3

This does the same thing, but with four terms. 

In[2]:= Expand@Product@x + i, 8i, 4<DD

Out[2]= 24 + 50 x + 35 x2 + 10 x3 + x4

This defines a function exprod which constructs a product of n terms, then expands it out. 

In[3]:= exprod@n_D := Expand@Product@x + i, 8i, 1, n<DD

Every time you use the function, it will execute the Product and Expand operations. 

In[4]:= exprod@5D

Out[4]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

The functions you define in Mathematica are essentially procedures that execute the commands

you give. You can have several steps in your procedures, separated by semicolons. 

The result you get from the whole function is simply the last expression in the procedure. Notice 
that you have to put parentheses around the procedure when you define it like this. 

In[5]:= cex@n_, i_D := Ht = exprod@nD; Coefficient@t, x^iDL

This “runs” the procedure. 

In[6]:= cex@5, 3D

Out[6]= 85
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expr1;expr2;… a sequence of expressions to evaluate

Module@8a,b,…<,procD a procedure with local variables a, b, … 

Constructing procedures. 

When you write procedures in Mathematica, it is usually a good idea to make variables you use

inside  the  procedures  local,  so  that  they  do  not  interfere  with  things  outside  the  procedures.

You can do this by setting up your procedures as modules, in which you give a list of variables

to be treated as local. 

The function cex defined above is not a module, so the value of t “escapes”, and exists even 
after the function returns. 

In[7]:= t

Out[7]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

This function is defined as a module with local variable u. 

In[8]:= ncex@n_, i_D := Module@8u<, u = exprod@nD; Coefficient@u, x^iDD

The function gives the same result as before. 

In[9]:= ncex@5, 3D

Out[9]= 85

Now, however, the value of u does not escape from the function. 

In[10]:= u

Out[10]= u

Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options

you can set. Mathematica provides some general mechanisms for handling such options. 

If you do not give a specific setting for an option to a function like Plot, then Mathematica will

automatically  use  a  default  value  for  the  option.  The  function  Options@ function, optionD  allows

you  to  find  out  the  default  value  for  a  particular  option.  You  can  reset  the  default  using

SetOptions@ function, option -> valueD. Note that if you do this, the default value you have given

will stay until you explicitly change it. 
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Options@ functionD give a list of the current default settings for all options

Options@ function,optionD give the default setting for a particular option

SetOptions@ function,
option->value,…D

reset defaults

Manipulating default settings for options. 

Here is the default setting for the PlotRange option of Plot. 

In[1]:= Options@Plot, PlotRangeD

Out[1]= 8PlotRange Ø 8Full, Automatic<<

This resets the default for the PlotRange option. The semicolon stops Mathematica from 
printing out the rather long list of options for Plot. 

In[2]:= SetOptions@Plot, PlotRange -> AllD;

Until you explicitly reset it, the default for the PlotRange option will now be All. 

In[3]:= Options@Plot, PlotRangeD

Out[3]= 8PlotRange Ø All<

The graphics objects that you get from Plot or Show store information on the options they use.

You can get this information by applying the Options function to these graphics objects. 

Options@plotD show all the options used for a particular plot

Options@plot,optionD show the setting for a specific option

AbsoluteOptions@plot,optionD show the absolute form used for a specific option, even if 
the setting for the option is Automatic or All

Getting information on options used in plots. 

Here is a plot, with default settings for all options. 

In[4]:= g = Plot@SinIntegral@xD, 8x, 0, 20<D

Out[4]=
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The setting used for the PlotRange option was All. 

In[5]:= Options@g, PlotRangeD

Out[5]= 8PlotRange Ø 8All, All<<

AbsoluteOptions gives the absolute automatically chosen values used for PlotRange. 

In[6]:= AbsoluteOptions@g, PlotRangeD

Out[6]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

While it is often convenient to use a variable to represent a graphic as in the above examples,

the graphic itself can be evaluated directly. The typical ways to do this in the notebook interface

are  to  copy  and  paste  the  graphic  or  to  simply  begin  typing  in  the  graphical  output  cell,  at

which point the output cell will be converted into a new input cell.

When a plot created with no explicit ImageSize is placed into an input cell, it will automatically

shrink to more easily accommodate input.

The following input cell was created by copying and pasting the graphical output created in the 
previous example.

In[7]:= AbsoluteOptionsB

5 10 15 20

0.5

1.0

1.5

, PlotRangeF

Out[7]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===
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Repetitive Operations

In  using  Mathematica,  you  sometimes  need  to  repeat  an  operation  many  times.  There  are

many ways to do this. Often the most natural is in fact to set up a structure such as a list with

many elements, and then apply your operation to each of the elements. 

Another  approach is  to  use  the  Mathematica  function  Do,  which  works  much like  the  iteration

constructs in languages such as C and Fortran. Do  uses the same Mathematica iterator notation

as Sum  and Product, described in "Sums and Products". 

Do@expr,8i,imax<D evaluate expr with i running from 1 to imax

Do@expr,8i,imin,imax,di<D evaluate expr with i running from imin to imax in steps of di

Print@exprD print expr

Table@expr,8i,imax<D make a list of the values of expr with i running from 1 to 
imax

Implementing repetitive operations. 

This prints out the values of the first five factorials. 

In[1]:= Do@Print@i!D, 8i, 5<D

1

2

6

24

120

It is often more useful to have a list of results, which you can then manipulate further. 

In[2]:= Table@i!, 8i, 5<D

Out[2]= 81, 2, 6, 24, 120<

If you do not give an iteration variable, Mathematica simply repeats the operation you have 
specified, without changing anything. 

In[3]:= r = 1; Do@r = 1 ê H1 + rL, 8100<D; r

Out[3]= 
573147844013817084101

927372692193078999176

Transformation Rules for Functions
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Transformation Rules for Functions

"Values for Symbols" discussed how you can use transformation rules of the form x -> value  to

replace symbols by values. The notion of transformation rules in Mathematica is, however, quite

general.  You  can  set  up  transformation  rules  not  only  for  symbols,  but  for  any  Mathematica

expression. 

Applying the transformation rule x -> 3 replaces x by 3. 

In[1]:= 1 + f@xD + f@yD ê. x -> 3

Out[1]= 1 + f@3D + f@yD

You can also use a transformation rule for f@xD. This rule does not affect f@yD. 

In[2]:= 1 + f@xD + f@yD ê. f@xD -> p

Out[2]= 1 + p + f@yD

f@t_D is a pattern that stands for f with any argument. 

In[3]:= 1 + f@xD + f@yD ê. f@t_D -> t^2

Out[3]= 1 + x2 + y2

Probably  the  most  powerful  aspect  of  transformation  rules  in  Mathematica  is  that  they  can

involve not only literal expressions, but also patterns. A pattern is an expression such as f@t_D

which contains a blank (underscore). The blank can stand for any expression. Thus, a transfor-

mation rule for  f@t_D  specifies how the function f  with any  argument should be transformed.

Notice that, in contrast, a transformation rule for f@xD without a blank, specifies only how the

literal  expression f@xD  should be transformed, and does not,  for example, say anything about

the transformation of f@yD. 

When you give a function definition such as f@t_D := t^2, all you are doing is telling Mathemat-

ica to automatically apply the transformation rule f@t_D -> t^2 whenever possible. 

You can set up transformation rules for expressions of any form. 

In[4]:= f@a bD + f@c dD ê. f@x_ y_D -> f@xD + f@yD

Out[4]= f@aD + f@bD + f@cD + f@dD
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This uses a transformation rule for x^p_. 

In[5]:= 1 + x^2 + x^4 ê. x^p_ -> f@pD

Out[5]= 1 + f@2D + f@4D

"Patterns"  and "Transformation Rules and Definitions"  will  explain in  detail  how to set  up pat-

terns and transformation rules for any kind of expression. Suffice it to say here that in Mathe-

matica  all  expressions  have  a  definite  symbolic  structure;  transformation  rules  allow  you  to

transform parts of that structure. 
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Functional Operations

Function Names as Expressions

In an expression like f@xD, the “function name” f  is itself an expression, and you can treat it as

you would any other expression. 

You can replace names of functions using transformation rules. 

In[1]:= f@xD + f@1 - xD ê. f -> g

Out[1]= g@1 - xD + g@xD

Any assignments you have made are used on function names. 

In[2]:= p1 = p2; p1@x, yD

Out[2]= p2@x, yD

This defines a function which takes a function name as an argument. 

In[3]:= pf@f_, x_D := f@xD + f@1 - xD

This gives Log as the function name to use. 

In[4]:= pf@Log, qD

Out[4]= Log@1 - qD + Log@qD

The ability to treat the names of functions just like other kinds of expressions is an important

consequence of the symbolic nature of the Mathematica language. It makes possible the whole

range of functional operations. 

Ordinary  Mathematica  functions  such  as  Log  or  Integrate  typically  operate  on  data  such  as

numbers  and  algebraic  expressions.  Mathematica  functions  that  represent  functional  opera-

tions, however, can operate not only on ordinary data, but also on functions themselves. Thus,

for example, the functional operation InverseFunction  takes a Mathematica function name as

an argument, and represents the inverse of that function. 
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InverseFunction is a functional operation: it takes a Mathematica function as an argument, 
and returns another function which represents its inverse. 

In[5]:= InverseFunction@ArcSinD

Out[5]= Sin

The result obtained from InverseFunction is a function which you can apply to data. 

In[6]:= %@xD

Out[6]= Sin@xD

You can also use InverseFunction in a purely symbolic way. 

In[7]:= InverseFunction@fD@xD

Out[7]= fH-1L@xD

There  are  many  kinds  of  functional  operations  in  Mathematica.  Some  represent  mathematical

operations; others represent various kinds of procedures and algorithms. 

Unless  you  are  familiar  with  advanced  symbolic  languages,  you  will  probably  not  recognize

most of the functional operations discussed. At first, the operations may seem difficult to unders-

tand. But it is worth persisting. Functional operations provide one of the most conceptually and 

practically efficient ways to use Mathematica. 

Applying Functions Repeatedly

Many programs you write  will  involve  operations  that  need to  be  iterated  several  times.  Nest

and NestList are powerful constructs for doing this. 

Nest@ f,x,nD apply the function f  nested n times to x

NestList@ f,x,nD generate the list 8x, f @xD, f @ f @xDD, …<, where f  is nested up 
to n deep

Applying functions of one argument repeatedly. 

Nest@ f, x, nD takes the “name” f  of a function, and applies the function n times to x. 

In[1]:= Nest@f, x, 4D

Out[1]= f@f@f@f@xDDDD
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This makes a list of each successive nesting. 

In[2]:= NestList@f, x, 4D

Out[2]= 8x, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD<

Here is a simple function. 

In[3]:= recip@x_D := 1 ê H1 + xL

You can iterate the function using Nest. 

In[4]:= Nest@recip, x, 3D

Out[4]= 
1

1 +
1

1+
1

1+x

Nest  and NestList  allow you to apply functions a fixed number of times. Often you may want

to  apply  functions  until  the  result  no  longer  changes.  You  can  do  this  using  FixedPoint  and

FixedPointList.

FixedPoint@ f,xD apply the function f  repeatedly until the result no longer 
changes

FixedPointList@ f,xD generate the list 8x, f @xD, f @ f @xDD, …<, stopping when the 
elements no longer change

Applying functions until the result no longer changes. 

Here is a function that takes one step in Newton’s approximation to 3 . 
In[5]:= newton3@x_D := N@1 ê 2 Hx + 3 ê xLD

Here are five successive iterates of the function, starting at x = 1. 

In[6]:= NestList@newton3, 1.0, 5D

Out[6]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205<

Using the function FixedPoint, you can automatically continue applying newton3 until the 
result no longer changes. 

In[7]:= FixedPoint@newton3, 1.0D

Out[7]= 1.73205
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Here is the sequence of results. 

In[8]:= FixedPointList@newton3, 1.0D

Out[8]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

NestWhile@ f,x,testD apply the function f  repeatedly until applying test to the 
result no longer yields True

NestWhileList@ f,x,testD generate the list 8x, f @xD, f @ f @xDD, …<, stopping when apply-
ing test to the result no longer yields True

NestWhile@ f,x,test,mD , NestWhileList@ f,x,test,mD

supply the m most recent results as arguments for test at 
each step

NestWhileA f,x,test,AllE , NestWhileListA f,x,test,AllE

supply all results so far as arguments for test

Applying functions repeatedly until a test fails. 

Here is a function which divides a number by 2. 

In[9]:= divide2@n_D := n ê 2

This repeatedly applies divide2 until the result is no longer an even number. 

In[10]:= NestWhileList@divide2, 123456, EvenQD

Out[10]= 8123456, 61728, 30864, 15432, 7716, 3858, 1929<

This repeatedly applies newton3, stopping when two successive results are no longer consid-
ered unequal, just as in FixedPointList. 

In[11]:= NestWhileList@newton3, 1.0, Unequal, 2D

Out[11]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

This goes on until the first time a result that has been seen before reappears. 

In[12]:= NestWhileList@Mod@5 Ò, 7D &, 1, Unequal, AllD

Out[12]= 81, 5, 4, 6, 2, 3, 1<

Operations  such as  Nest  take a  function  f  of  one argument,  and apply  it  repeatedly.  At  each

step, they use the result of the previous step as the new argument of f . 

It is important to generalize this notion to functions of two arguments. You can again apply the

function repeatedly, but now each result  you get supplies only one of the new arguments you

need.  A  convenient  approach  is  to  get  the  other  argument  at  each  step  from  the  successive

elements of a list. 
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It is important to generalize this notion to functions of two arguments. You can again apply the

function repeatedly, but now each result  you get supplies only one of the new arguments you

need.  A  convenient  approach  is  to  get  the  other  argument  at  each  step  from  the  successive

elements of a list. 

FoldList@ f,x,8a,b,…<D create the list 8x, f @x, aD, f @ f @x, aD, bD, …<

Fold@ f,x,8a,b,…<D give the last element of the list produced by 
FoldList@ f, x, 8a, b, …<D

Ways to repeatedly apply functions of two arguments. 

Here is an example of what FoldList does. 

In[13]:= FoldList@f, x, 8a, b, c<D

Out[13]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

Fold gives the last element of the list produced by FoldList. 

In[14]:= Fold@f, x, 8a, b, c<D

Out[14]= f@f@f@x, aD, bD, cD

This gives a list of cumulative sums. 

In[15]:= FoldList@Plus, 0, 8a, b, c<D

Out[15]= 80, a, a + b, a + b + c<

Using Fold  and FoldList  you can write many elegant and efficient programs in Mathematica.

In  some cases,  you  may  find  it  helpful  to  think  of  Fold  and  FoldList  as  producing  a  simple

nesting of a family of functions indexed by their second argument. 

This defines a function nextdigit. 

In[16]:= nextdigit@a_, b_D := 10 a + b

This is now like the built-in function FromDigits. 

In[17]:= fromdigits@digits_D := Fold@nextdigit, 0, digitsD

Here is an example of the function in action. 

In[18]:= fromdigits@81, 3, 7, 2, 9, 1<D

Out[18]= 137291

Applying Functions to Lists and Other Expressions
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Applying Functions to Lists and Other Expressions

In  an  expression  like  f@8a, b, c<D  you  are  giving  a  list  as  the  argument  to  a  function.  Often

you need instead to apply a function directly to the elements of a list, rather than to the list as

a whole. You can do this in Mathematica using Apply. 

This makes each element of the list an argument of the function f. 

In[1]:= Apply@f, 8a, b, c<D

Out[1]= f@a, b, cD

This gives Times@a, b, cD which yields the product of the elements in the list. 

In[2]:= Apply@Times, 8a, b, c<D

Out[2]= a b c

Here is a definition of a function that works like the built-in function GeometricMean, written 
using Apply. 

In[3]:= geom@list_D := Apply@Times, listD^H1 ê Length@listDL

Apply@ f,8a,b,…<D apply f  to a list, giving f @a, b, …D

Apply@ f,exprD or füüexpr apply f  to the top level of an expression

Apply@ f,expr,81<D or füüüexpr apply f  at the first level in an expression

Apply@ f,expr,levD apply f  at the specified levels in an expression

Applying functions to lists and other expressions. 

What Apply does in general is to replace the head of an expression with the function you 
specify. Here it replaces Plus by List. 

In[4]:= Apply@List, a + b + cD

Out[4]= 8a, b, c<

Here is a matrix. 

In[5]:= m = 88a, b, c<, 8b, c, d<<

Out[5]= 88a, b, c<, 8b, c, d<<
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Using Apply without an explicit level specification replaces the top-level list with f. 

In[6]:= Apply@f, mD

Out[6]= f@8a, b, c<, 8b, c, d<D

This applies f only to parts of m at level 1. 

In[7]:= Apply@f, m, 81<D

Out[7]= 8f@a, b, cD, f@b, c, dD<

This applies f at levels 0 through 1. 

In[8]:= Apply@f, m, 80, 1<D

Out[8]= f@f@a, b, cD, f@b, c, dDD

Applying Functions to Parts of Expressions

If you have a list of elements, it is often important to be able to apply a function separately to

each of the elements. You can do this in Mathematica using Map. 

This applies f separately to each element in a list. 

In[1]:= Map@f, 8a, b, c<D

Out[1]= 8f@aD, f@bD, f@cD<

This defines a function which takes the first two elements from a list. 

In[2]:= take2@list_D := Take@list, 2D

You can use Map to apply take2 to each element of a list. 

In[3]:= Map@take2, 881, 3, 4<, 85, 6, 7<, 82, 1, 6, 6<<D

Out[3]= 881, 3<, 85, 6<, 82, 1<<

Map@ f,8a,b,…<D apply f  to each element in a list, giving 8 f@aD, f@bD, …< 

Applying a function to each element in a list. 

What  Map@ f, exprD  effectively  does  is  to  “wrap”  the  function  f  around  each  element  of  the

expression expr. You can use Map on any expression, not just a list. 
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This applies f to each element in the sum. 

In[4]:= Map@f, a + b + cD

Out[4]= f@aD + f@bD + f@cD

This applies Sqrt to each argument of g. 

In[5]:= Map@Sqrt, g@x^2, x^3DD

Out[5]= gB x2 , x3 F

Map@ f, exprD applies f  to the first level of parts in expr. You can use MapAll@ f, exprD to apply f

to all the parts of expr.

This defines a 2x2 matrix m. 

In[6]:= m = 88a, b<, 8c, d<<

Out[6]= 88a, b<, 8c, d<<

Map applies f to the first level of m, in this case the rows of the matrix. 

In[7]:= Map@f, mD

Out[7]= 8f@8a, b<D, f@8c, d<D<

MapAll applies f at all levels in m. If you look carefully at this expression, you will see an f 
wrapped around every part. 

In[8]:= MapAll@f, mD

Out[8]= f@8f@8f@aD, f@bD<D, f@8f@cD, f@dD<D<D

In general, you can use level specifications as described in "Levels in Expressions" to tell Map to

which parts of an expression to apply your function. 

This applies f only to the parts of m at level 2. 

In[9]:= Map@f, m, 82<D

Out[9]= 88f@aD, f@bD<, 8f@cD, f@dD<<

Setting the option Heads -> True wraps f around the head of each part, as well as its ele-
ments. 

In[10]:= Map@f, m, Heads -> TrueD

Out[10]= f@ListD@f@8a, b<D, f@8c, d<DD

158     Core Language



Map@ f,exprD or fêüexpr apply f  to the first-level parts of expr

MapAll@ f,exprD or fêêüexpr apply f  to all parts of expr

Map@ f,expr,levD apply f  to each part of expr at levels specified by lev

Ways to apply a function to different parts of expressions. 

Level  specifications allow you to tell  Map  to  which levels  of  parts  in  an expression you want  a

function applied. With MapAt, however, you can instead give an explicit list of parts where you

want  a  function  applied.  You  specify  each  part  by  giving  its  indices,  as  discussed  in  "Parts  of

Expressions". 

Here is a 2x3 matrix. 

In[11]:= mm = 88a, b, c<, 8b, c, d<<

Out[11]= 88a, b, c<, 8b, c, d<<

This applies f to parts 81, 2< and 82, 3<. 

In[12]:= MapAt@f, mm, 881, 2<, 82, 3<<D

Out[12]= 88a, f@bD, c<, 8b, c, f@dD<<

This gives a list of the positions at which b occurs in mm. 

In[13]:= Position@mm, bD

Out[13]= 881, 2<, 82, 1<<

You can feed the list of positions you get from Position directly into MapAt. 

In[14]:= MapAt@f, mm, %D

Out[14]= 88a, f@bD, c<, 8f@bD, c, d<<

To avoid ambiguity, you must put each part specification in a list, even when it involves only 
one index. 

In[15]:= MapAt@f, 8a, b, c, d<, 882<, 83<<D

Out[15]= 8a, f@bD, f@cD, d<

MapAt@ f,expr,8part1,part2,…<D apply f  to specified parts of expr

Applying a function to specific parts of an expression. 
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Here is an expression. 

In[16]:= t = 1 + H3 + xL^2 ê x

Out[16]= 1 +
H3 + xL2

x

This is the full form of t. 

In[17]:= FullForm@tD

Out[17]//FullForm= Plus@1, Times@Power@x, -1D, Power@Plus@3, xD, 2DDD

You can use MapAt on any expression. Remember that parts are numbered on the basis of the 
full forms of expressions. 

In[18]:= MapAt@f, t, 882, 1, 1<, 82, 2<<D

Out[18]= 1 +
fAH3 + xL2E

f@xD

MapIndexed@ f,exprD apply f  to the elements of an expression, giving the part 
specification of each element as a second argument to f

MapIndexed@ f,expr,levD apply f  to parts at specified levels, giving the list of indices 
for each part as a second argument to f

Applying a function to parts and their indices. 

This applies f to each element in a list, giving the index of the element as a second argument 
to f. 

In[19]:= MapIndexed@f, 8a, b, c<D

Out[19]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D<

This applies f to both levels in a matrix. 

In[20]:= MapIndexed@f, 88a, b<, 8c, d<<, 2D

Out[20]= 8f@8f@a, 81, 1<D, f@b, 81, 2<D<, 81<D, f@8f@c, 82, 1<D, f@d, 82, 2<D<, 82<D<

Map  allows  you  to  apply  a  function  of  one  argument  to  parts  of  an  expression.  Sometimes,

however,  you  may  instead  want  to  apply  a  function  of  several  arguments  to  corresponding

parts of several different expressions. You can do this using MapThread. 
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MapThread@ f,8expr1,expr2,…<D apply f  to corresponding elements in each of the expri

MapThread@ f,8expr1,expr2,…<,levD apply f  to parts of the expri at the specified level

Applying a function to several expressions at once. 

This applies f to corresponding pairs of list elements. 

In[21]:= MapThread@f, 88a, b, c<, 8ap, bp, cp<<D

Out[21]= 8f@a, apD, f@b, bpD, f@c, cpD<

MapThread works with any number of expressions, so long as they have the same structure. 

In[22]:= MapThread@f, 88a, b<, 8ap, bp<, 8app, bpp<<D

Out[22]= 8f@a, ap, appD, f@b, bp, bppD<

Functions like Map  allow you to create expressions with parts modified. Sometimes you simply

want to go through an expression, and apply a particular function to some parts of it,  without

building  a  new  expression.  A  typical  case  is  when  the  function  you  apply  has  certain  “side

effects”, such as making assignments, or generating output. 

Scan@ f,exprD evaluate f  applied to each element of expr in turn

Scan@ f,expr,levD evaluate f  applied to parts of expr on levels specified by lev

Evaluating functions on parts of expressions. 

Map constructs a new list in which f has been applied to each element of the list. 

In[23]:= Map@f, 8a, b, c<D

Out[23]= 8f@aD, f@bD, f@cD<

Scan evaluates the result of applying a function to each element, but does not construct a new 
expression. 

In[24]:= Scan@Print, 8a, b, c<D

a

b

c
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Scan visits the parts of an expression in a depth-first walk, with the leaves visited first. 

In[25]:= Scan@Print, 1 + x^2, InfinityD

1

x

2

x2

Pure Functions

Function@x,bodyD a pure function in which x is replaced by any argument you 
provide

Function@8x1,x2,…<,bodyD a pure function that takes several arguments

body& a pure function in which arguments are specified as Ò or 
Ò1, Ò2, Ò3, etc.

Pure functions. 

When you use functional operations such as Nest  and Map, you always have to specify a func-

tion to apply. In all the examples above, we have used the "name" of a function to specify the

function. Pure functions allow you to give functions which can be applied to arguments, without

having to define explicit names for the functions. 

This defines a function h. 

In[1]:= h@x_D := f@xD + g@xD

Having defined h, you can now use its name in Map. 

In[2]:= Map@h, 8a, b, c<D

Out[2]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<

Here is a way to get the same result using a pure function. 

In[3]:= Map@f@ÒD + g@ÒD &, 8a, b, c<D

Out[3]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<

There are several equivalent ways to write pure functions in Mathematica. The idea in all cases

is to construct an object which, when supplied with appropriate arguments, computes a particu-

lar function. Thus, for example, if fun is a pure function, then fun@aD evaluates the function with

argument a. 
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There are several equivalent ways to write pure functions in Mathematica. The idea in all cases

is to construct an object which, when supplied with appropriate arguments, computes a particu-

lar function. Thus, for example, if fun is a pure function, then fun@aD evaluates the function with

argument a. 

Here is a pure function which represents the operation of squaring. 

In[4]:= Function@x, x^2D

Out[4]= FunctionAx, x2E

Supplying the argument n to the pure function yields the square of n. 

In[5]:= %@nD

Out[5]= n2

You can use a pure function wherever you would usually give the name of a function. 

You can use a pure function in Map. 

In[6]:= Map@Function@x, x^2D, a + b + cD

Out[6]= a2 + b2 + c2

Or in Nest. 

In[7]:= Nest@Function@q, 1 ê H1 + qLD, x, 3D

Out[7]= 
1

1 +
1

1+
1

1+x

This sets up a pure function with two arguments and then applies the function to the arguments 
a and b. 

In[8]:= Function@8x, y<, x^2 + y^3D@a, bD

Out[8]= a2 + b3

If you are going to use a particular function repeatedly, then you can define the function using

f@x_D := body, and refer to the function by its name f . On the other hand, if you only intend to

use a function once, you will  probably find it better to give the function in pure function form,

without ever naming it. 

If  you  are  familiar  with  formal  logic  or  the  LISP  programming  language,  you  will  recognize

Mathematica pure functions as being like l expressions or anonymous functions. Pure functions

are also close to the pure mathematical notion of operators. 
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Ò the first variable in a pure function

Ò n the nth variable in a pure function

ÒÒ the sequence of all variables in a pure function

ÒÒ n the sequence of variables starting with the nth one

Short forms for pure functions. 

Just as the name of a function is irrelevant if you do not intend to refer to the function again, so

also the names of arguments in a pure function are irrelevant. Mathematica allows you to avoid

using explicit names for the arguments of pure functions, and instead to specify the arguments

by giving "slot  numbers"  Ò n.  In  a  Mathematica  pure function,  Ò n  stands for  the nth  argument

you supply. Ò stands for the first argument. 

Ò^2 & is a short form for a pure function that squares its argument. 

In[9]:= Map@Ò^2 &, a + b + cD

Out[9]= a2 + b2 + c2

This applies a function that takes the first two elements from each list. By using a pure function, 
you avoid having to define the function separately. 

In[10]:= Map@Take@Ò, 2D &, 882, 1, 7<, 84, 1, 5<, 83, 1, 2<<D

Out[10]= 882, 1<, 84, 1<, 83, 1<<

Using short forms for pure functions, you can simplify the definition of fromdigits given 
in "Applying Functions Repeatedly". 

In[11]:= fromdigits@digits_D := Fold@H10 Ò1 + Ò2L &, 0, digitsD

When you  use  short  forms  for  pure  functions,  it  is  very  important  that  you  do  not  forget  the

ampersand. If you leave the ampersand out, Mathematica will not know that the expression you

give is to be used as a pure function. 

When you use the ampersand notation for pure functions, you must be careful about the group-

ing  of  pieces  in  your  input.  As  shown  in "Operator  Input  Forms"  the  ampersand  notation  has

fairly low precedence, which means that you can type expressions like Ò1 + Ò2 & without paren-

theses. On the other hand, if you want, for example, to set an option to be a pure function, you

need to use parentheses, as in option -> H fun &L. 

Pure functions in Mathematica can take any number of arguments. You can use ÒÒ to stand for

all the arguments that are given, and ÒÒ n to stand for the nth and subsequent arguments. 

ÒÒ stands for all arguments. 
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ÒÒ stands for all arguments. 

In[12]:= f@ÒÒ, ÒÒD &@x, yD

Out[12]= f@x, y, x, yD

ÒÒ2 stands for all arguments except the first one. 

In[13]:= Apply@f@ÒÒ2, Ò1D &, 88a, b, c<, 8ap, bp<<, 81<D

Out[13]= 8f@b, c, aD, f@bp, apD<

Building Lists from Functions

Array@ f,nD generate a length n list of the form 8 f@1D, f@2D, …<

Array@ f,8n1,n2,…<D generate an n1×n2×… nested list, each of whose entries 
consists of f  applied to its indices

NestList@ f,x,nD generate a list of the form 8x, f@xD, f@ f@xDD, …<, 
where f  is nested up to n deep

FoldList@ f,x,8a,b,…<D generate a list of the form 
8x, f@x, aD, f@ f@x, aD, bD, …<

ComposeList@8 f1, f2,…<,xD generate a list of the form 8x, f1@xD, f2@ f1@xDD, …<

Making lists from functions. 

This makes a list of 5 elements, each of the form p@iD. 

In[1]:= Array@p, 5D

Out[1]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

Here is another way to produce the same list. 

In[2]:= Table@p@iD, 8i, 5<D

Out[2]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

This produces a list whose elements are i + i2. 
In[3]:= Array@Ò + Ò^2 &, 5D

Out[3]= 82, 6, 12, 20, 30<
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This generates a 2×3 matrix whose entries are m@i, jD. 

In[4]:= Array@m, 82, 3<D

Out[4]= 88m@1, 1D, m@1, 2D, m@1, 3D<, 8m@2, 1D, m@2, 2D, m@2, 3D<<

This generates a 3×3 matrix whose elements are the squares of the sums of their indices. 

In[5]:= Array@Plus@ÒÒD^2 &, 83, 3<D

Out[5]= 884, 9, 16<, 89, 16, 25<, 816, 25, 36<<

NestList  and  FoldList  were  discussed  in  "Applying  Functions  Repeatedly".  Particularly  by

using them with pure functions, you can construct some very elegant and efficient Mathematica

programs. 

This gives a list of results obtained by successively differentiating xn with respect to x. 

In[6]:= NestList@D@Ò, xD &, x^n, 3D

Out[6]= 9xn, n x-1+n, H-1 + nL n x-2+n, H-2 + nL H-1 + nL n x-3+n=

Selecting Parts of Expressions with Functions

"Manipulating  Elements  of  Lists"  shows how you can pick  out  elements  of  lists  based on their

positions.  Often,  however,  you will  need to select  elements based not  on where  they are,  but

rather on what they are. 

Select@list, fD  selects  elements  of  list  using  the  function  f  as  a  criterion.  Select  applies  f  to

each element of list in turn, and keeps only those for which the result is True. 

This selects the elements of the list for which the pure function yields True, i.e., those numeri-
cally greater than 4. 

In[1]:= Select@82, 15, 1, a, 16, 17<, Ò > 4 &D

Out[1]= 815, 16, 17<

You can use Select to pick out pieces of any expression, not just elements of a list. 

This gives a sum of terms involving x, y and z. 

In[2]:= t = Expand@Hx + y + zL^2D

Out[2]= x2 + 2 x y + y2 + 2 x z + 2 y z + z2
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You can use Select to pick out only those terms in the sum that do not involve the symbol x. 

In[3]:= Select@t, FreeQ@Ò, xD &D

Out[3]= y2 + 2 y z + z2

Select@expr, fD select the elements in expr for which the function f  gives 
True

Select@expr, f,nD select the first n elements in expr for which the function f  
gives True

Selecting pieces of expressions. 

"Putting Constraints on Patterns" discusses some “predicates” that are often used as criteria in

Select. 

This gives the first element which satisfies the criterion you specify. 

In[4]:= Select@8-1, 3, 10, 12, 14<, Ò > 3 &, 1D

Out[4]= 810<

Expressions with Heads That Are Not Symbols

In  most  cases,  you  want  the  head  f  of  a  Mathematica  expression  like  f@xD  to  be  a  single

symbol. There are, however, some important applications of heads that are not symbols. 

This expression has f@3D as a head. You can use heads like this to represent “indexed func-
tions”. 

In[1]:= f@3D@x, yD

Out[1]= f@3D@x, yD

You can use any expression as a head. Remember to put in the necessary parentheses. 

In[2]:= Ha + bL@xD

Out[2]= Ha + bL@xD

One case where we have already encountered the use of complicated expressions as heads is in

working with pure functions in "Pure Functions". By giving Function@vars, bodyD as the head of

an expression, you specify a function of the arguments to be evaluated. 
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With the head Function@x, x^2D, the value of the expression is the square of the argument. 

In[3]:= Function@x, x^2D@a + bD

Out[3]= Ha + bL2

There  are  several  constructs  in  Mathematica  which  work  much  like  pure  functions,  but  which

represent specific kinds of functions, typically numerical ones. In all cases, the basic mechanism

involves giving a head which contains complete information about the function you want to use. 

Function@vars,bodyD@argsD pure function

InterpolatingFunction@dataD@argsD

approximate numerical function (generated by 
Interpolation and NDSolve)

CompiledFunction@dataD@argsD compiled numerical function (generated by Compile)

LinearSolveFunction@dataD@vecD

matrix solution function (generated by LinearSolve)

Some expressions which have heads that are not symbols. 

NDSolve returns a list of rules that give y as an InterpolatingFunction object. 

In[4]:= NDSolve@8y''@xD == y@xD, y@0D == y'@0D == 1<, y, 8x, 0, 5<D

Out[4]= 88y Ø InterpolatingFunction@880., 5.<<, <>D<<

Here is the InterpolatingFunction object. 

In[5]:= y ê. First@%D

Out[5]= InterpolatingFunction@880., 5.<<, <>D

You can use the InterpolatingFunction object as a head to get numerical approximations 
to values of the function y. 

In[6]:= %@3.8D

Out[6]= 44.7012

Another important use of more complicated expressions as heads is in implementing functionals

and functional operators in mathematics. 
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As one example, consider the operation of differentiation. As discussed in "The Representation

of  Derivatives",  an  expression  like  f'  represents  a  derivative  function,  obtained  from  f  by

applying a functional  operator to it.  In Mathematica,  f'  is  represented as Derivative@1D@fD:

the  “functional  operator”  Derivative@1D  is  applied  to  f  to  give  another  function,  represented

as f'.

This expression has a head which represents the application of the “functional operator” 
Derivative@1D to the “function” f. 

In[7]:= f'@xD êê FullForm

Out[7]//FullForm= Derivative@1D@fD@xD

You can replace the head f' with another head, such as fp. This effectively takes fp to be a 
“derivative function” obtained from f. 

In[8]:= % ê. f' -> fp

Out[8]= fp@xD

Working with Operators

You can think of an expression like f @xD as being formed by applying an operator f  to the expres-

sion x. You can think of an expression like f @g@xDD as the result of composing the operators f  and

g, and applying the result to x. 

Composition@ f,g,…D the composition of functions  f , g, …  

InverseFunction@ fD the inverse of a function f

Identity the identity function

Some functional operations. 

This represents the composition of the functions f , g and h. 

In[1]:= Composition@f, g, hD

Out[1]= Composition@f, g, hD

You can manipulate compositions of functions symbolically. 

In[2]:= InverseFunction@Composition@%, qDD

Out[2]= CompositionAqH-1L, hH-1L, gH-1L, fH-1LE
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The composition is evaluated explicitly when you supply a specific argument. 

In[3]:= %@xD

Out[3]= qH-1LAhH-1LAgH-1LAfH-1L@xDEEE

You  can  get  the  sum of  two  expressions  in  Mathematica  just  by  typing  x + y.  Sometimes  it  is

also worthwhile to consider performing operations like addition on operators. 

You can think of this as containing a sum of two operators f  and g. 

In[4]:= Hf + gL@xD

Out[4]= Hf + gL@xD

Using Through, you can convert the expression to a more explicit form. 

In[5]:= Through@%, PlusD

Out[5]= f@xD + g@xD

This corresponds to the mathematical operator 1 + ∂

∂x
. 

In[6]:= Identity + HD@Ò, xD &L

Out[6]= Identity + H∂x Ò1 &L

Mathematica does not automatically apply the separate pieces of the operator to an expression. 

In[7]:= %@x^2D

Out[7]= HIdentity + H∂x Ò1 &LLAx2E

You can use Through to apply the operator. 

In[8]:= Through@%, PlusD

Out[8]= 2 x + x2

Identity@exprD the identity function

Through@p@ f1, f2D@xD,qD give p@ f1@xD, f2@xDD if p is the same as q

Operate@p, f@xDD give p@ f D@xD

Operate@p, f@xD,nD apply p at level n in f

MapAllAp,expr,Heads->TrueE apply p to all parts of expr, including heads

Operations for working with operators. 
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This has a complicated expression as a head. 

In[9]:= t = HH1 + aL H1 + bLL@xD

Out[9]= HH1 + aL H1 + bLL@xD

Functions like Expand do not automatically go inside heads of expressions. 

In[10]:= Expand@%D

Out[10]= HH1 + aL H1 + bLL@xD

With the Heads option set to True, MapAll goes inside heads. 

In[11]:= MapAll@Expand, t, Heads -> TrueD

Out[11]= H1 + a + b + a bL@xD

The replacement operator ê. does go inside heads of expressions. 

In[12]:= t ê. a -> 1

Out[12]= H2 H1 + bLL@xD

You can use Operate to apply a function specifically to the head of an expression. 

In[13]:= Operate@p, tD

Out[13]= p@H1 + aL H1 + bLD@xD

Structural Operations

Mathematica  contains  some powerful  primitives  for  making  structural  changes  to  expressions.

You can use these primitives  both to  implement mathematical  properties  such as associativity

and distributivity, and to provide the basis for some succinct and efficient programs. 

Here we describe various operations that you can explicitly perform on expressions. "Attributes"

describes how some of these operations can be performed automatically on all expressions with

a particular head by assigning appropriate attributes to that head. 

You  can  use  the  Mathematica  function  Sort@exprD  to  sort  elements  not  only  of  lists,  but  of

expressions  with  any  head.  In  this  way,  you  can  implement  the  mathematical  properties  of

commutativity or symmetry for arbitrary functions. 
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You can use Sort to put the arguments of any function into a standard order. 

In[1]:= Sort@f@c, a, bDD

Out[1]= f@a, b, cD

Sort@exprD sort the elements of a list or other expression into a 
standard order

Sort@expr,predD sort using the function pred to determine whether pairs are 
in order

Ordering@exprD give the ordering of elements when sorted

Ordering@expr,nD give the ordering of the first n elements when sorted

Ordering@expr,n,predD use the function pred to determine whether pairs are in 
order

OrderedQ@exprD give True if the elements of expr are in standard order, 
and False otherwise

Order@expr1,expr2D give 1 if expr1 comes before expr2 in standard order, and 
-1 if it comes after

Sorting into order. 

The second argument to Sort is a function used to determine whether pairs are in order. This 
sorts numbers into descending order. 

In[2]:= Sort@85, 1, 8, 2<, HÒ2 < Ò1L &D

Out[2]= 88, 5, 2, 1<

This sorting criterion puts elements that do not depend on x before those that do. 

In[3]:= Sort@8x^2, y, x + y, y - 2<, FreeQ@Ò1, xD &D

Out[3]= 9y, -2 + y, x + y, x2=

Flatten@exprD flatten out all nested functions with the same head as expr

Flatten@expr,nD flatten at most n levels of nesting

Flatten@expr,n,hD flatten functions with head h

FlattenAt@expr,iD flatten only the ith element of expr

Flattening out expressions. 
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Flatten removes nested occurrences of a function. 

In[4]:= Flatten@f@a, f@b, cD, f@f@dDDDD

Out[4]= f@a, b, c, dD

You can use Flatten to “splice” sequences of elements into lists or other expressions. 

In[5]:= Flatten@8a, f@b, cD, f@a, b, dD<, 1, fD

Out[5]= 8a, b, c, a, b, d<

You  can  use  Flatten  to  implement  the  mathematical  property  of  associativity.  The  function

Distribute allows you to implement properties such as distributivity and linearity. 

Distribute@ f@a+b+…,…DD distribute f  over sums to give f@a, …D + f@b, …D + …
Distribute@ f@argsD,gD distribute f  over any arguments which have head g

Distribute@expr,g, fD distribute only when the head is f

Distribute@expr,g, f,gp, fpD distribute f  over g, replacing them with fp and gp, 
respectively

Applying distributive laws. 

This “distributes” f over a + b. 

In[6]:= Distribute@f@a + bDD

Out[6]= f@aD + f@bD

Here is a more complicated example. 

In[7]:= Distribute@f@a + b, c + dDD

Out[7]= f@a, cD + f@a, dD + f@b, cD + f@b, dD

In general, if f  is distributive over Plus, then an expression like f@a + bD can be “expanded” to

give f@aD + f@bD. The function Expand does this kind of expansion for standard algebraic opera-

tors such as Times. Distribute  allows you to perform the same kind of expansion for arbitrary

operators. 

Expand uses the distributivity of Times over Plus to perform algebraic expansions. 

In[8]:= Expand@Ha + bL Hc + dLD

Out[8]= a c + b c + a d + b d
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This applies distributivity over lists, rather than sums. The result contains all possible pairs of 
arguments. 

In[9]:= Distribute@f@8a, b<, 8c, d<D, ListD

Out[9]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, but does so only if the head of the whole expression is f. 

In[10]:= Distribute@f@8a, b<, 8c, d<D, List, fD

Out[10]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, making sure that the head of the whole expression is f. In the result, 
it uses gp in place of List, and fp in place of f. 

In[11]:= Distribute@f@8a, b<, 8c, d<D, List, f, gp, fpD

Out[11]= gp@fp@a, cD, fp@a, dD, fp@b, cD, fp@b, dDD

Related to Distribute  is the function Thread. What Thread effectively does is to apply a func-

tion in parallel to all the elements of a list or other expression. 

Thread@ f@8a1,a2<,8b1,b2<DD

thread f  over lists to give 8 f@a1, b1D, f@a2, b2D<

Thread@ f@argsD,gD thread f  over objects with head g in args

Functions for threading expressions. 

Here is a function whose arguments are lists. 

In[12]:= f@8a1, a2<, 8b1, b2<D

Out[12]= f@8a1, a2<, 8b1, b2<D

Thread applies the function “in parallel” to each element of the lists. 

In[13]:= Thread@%D

Out[13]= 8f@a1, b1D, f@a2, b2D<

Arguments that are not lists get repeated. 

In[14]:= Thread@f@8a1, a2<, 8b1, b2<, c, dDD

Out[14]= 8f@a1, b1, c, dD, f@a2, b2, c, dD<
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As  mentioned  in  "Collecting  Objects  Together",  and  discussed  in  more  detail  in  "Attributes",

many  built-in  Mathematica  functions  have  the  property  of  being  “listable”,  so  that  they  are

automatically threaded over any lists that appear as arguments. 

Built-in mathematical functions such as Log are listable, so that they are automatically 
threaded over lists. 

In[15]:= Log@8a, b, c<D

Out[15]= 8Log@aD, Log@bD, Log@cD<

Log is, however, not automatically threaded over equations. 

In[16]:= Log@x == yD

Out[16]= Log@x ã yD

You can use Thread to get functions applied to both sides of an equation. 

In[17]:= Thread@%, EqualD

Out[17]= Log@xD ã Log@yD

Outer@ f,list1,list2D generalized outer product

Inner@ f,list1,list2,gD generalized inner product

Generalized outer and inner products. 

Outer@ f, list1, list2D  takes  all  possible  combinations  of  elements  from  list1  and  list2,  and  com-

bines them with f . Outer  can be viewed as a generalization of a Cartesian product for tensors,

as discussed in "Tensors". 

Outer forms all possible combinations of elements, and applies f to them. 

In[18]:= Outer@f, 8a, b<, 81, 2, 3<D

Out[18]= 88f@a, 1D, f@a, 2D, f@a, 3D<, 8f@b, 1D, f@b, 2D, f@b, 3D<<

Here Outer produces a lower-triangular Boolean matrix. 

In[19]:= Outer@Greater, 81, 2, 3<, 81, 2, 3<D

Out[19]= 88False, False, False<, 8True, False, False<, 8True, True, False<<
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You can use Outer on any sequence of expressions with the same head. 

In[20]:= Outer@g, f@a, bD, f@c, dDD

Out[20]= f@f@g@a, cD, g@a, dDD, f@g@b, cD, g@b, dDDD

Outer,  like  Distribute,  constructs  all  possible  combinations  of  elements.  On the other  hand,

Inner, like Thread, constructs only combinations of elements that have corresponding positions

in the expressions it acts on. 

Here is a structure built by Inner. 

In[21]:= Inner@f, 8a, b<, 8c, d<, gD

Out[21]= g@f@a, cD, f@b, dDD

Inner is a generalization of Dot. 

In[22]:= Inner@Times, 8a, b<, 8c, d<, PlusD

Out[22]= a c + b d

Sequences

The function Flatten allows you to explicitly flatten out all sublists. 

In[1]:= Flatten@8a, 8b, c<, 8d, e<<D

Out[1]= 8a, b, c, d, e<

FlattenAt lets you specify at what positions you want sublists flattened. 

In[2]:= FlattenAt@8a, 8b, c<, 8d, e<<, 2D

Out[2]= 8a, b, c, 8d, e<<

Sequence objects automatically get spliced in, and do not require any explicit flattening. 

In[3]:= 8a, Sequence@b, cD, Sequence@d, eD<

Out[3]= 8a, b, c, d, e<
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Sequence@e1,e2,…D a sequence of arguments that will automatically be spliced 
into any function

Representing sequences of arguments in functions. 

Sequence works in any function. 

In[4]:= f@Sequence@a, bD, cD

Out[4]= f@a, b, cD

This includes functions with special input forms. 

In[5]:= a == Sequence@b, cD

Out[5]= a ã b ã c

Here is a common way that Sequence is used. 

In[6]:= 8a, b, f@x, yD, g@wD, f@z, yD< ê. f -> Sequence

Out[6]= 8a, b, x, y, g@wD, z, y<
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Modularity and the Naming of Things

Modules and Local Variables

Mathematica  normally  assumes that  all  your  variables  are  global.  This  means  that  every  time

you  use  a  name  like  x,  Mathematica  normally  assumes  that  you  are  referring  to  the  same

object. 

Particularly  when  you  write  programs,  however,  you  may  not  want  all  your  variables  to  be

global. You may, for example, want to use the name x to refer to two quite different variables

in two different programs. In this case, you need the x in each program to be treated as a local

variable. 

You can set up local variables in Mathematica using modules. Within each module, you can give

a list of variables which are to be treated as local to the module. 

Module@8x,y,…<,bodyD a module with local variables x, y, … 

Creating modules in Mathematica. 

This defines the global variable t to have value 17. 

In[1]:= t = 17

Out[1]= 17

The t inside the module is local, so it can be treated independently of the global t. 

In[2]:= Module@8t<, t = 8; Print@tDD

8

The global t still has value 17. 

In[3]:= t

Out[3]= 17

The most common way that modules are used is to set up temporary or intermediate variables

inside functions you define.  It  is  important  to make sure that  such variables are kept local.  If

they are not, then you will run into trouble whenever their names happen to coincide with the

names of other variables. 

The intermediate variable t is specified to be local to the module. 
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The intermediate variable t is specified to be local to the module. 

In[4]:= f@v_D := Module@8t<, t = H1 + vL^2; t = Expand@tDD

This runs the function f. 

In[5]:= f@a + bD

Out[5]= 1 + 2 a + a2 + 2 b + 2 a b + b2

The global t still has value 17. 

In[6]:= t

Out[6]= 17

You can treat local variables in modules just like other symbols. Thus, for example, you can use

them as names for local functions, you can assign attributes to them, and so on. 

This sets up a module which defines a local function f. 

In[7]:= gfac10@k_D := Module@8f, n<, f@1D = 1; f@n_D := k + n f@n - 1D; f@10DD

In this case, the local function f is just an ordinary factorial. 

In[8]:= gfac10@0D

Out[8]= 3628800

In this case, f is set up as a generalized factorial. 

In[9]:= gfac10@2D

Out[9]= 8841802

When  you  set  up  a  local  variable  in  a  module,  Mathematica  initially  assigns  no  value  to  the

variable. This means that you can use the variable in a purely symbolic way, even if there was

a global value defined for the variable outside the module. 

This uses the global value of t defined above, and so yields a number. 

In[10]:= Expand@H1 + tL^3D

Out[10]= 5832

Here Length simply receives a number as its argument. 

In[11]:= Length@Expand@H1 + tL^3DD

Out[11]= 0

The local variable t has no value, so it acts as a symbol, and Expand produces the anticipated 
algebraic result. 
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The local variable t has no value, so it acts as a symbol, and Expand produces the anticipated 
algebraic result. 

In[12]:= Module@8t<, Length@Expand@H1 + tL^3DDD

Out[12]= 4

Module@8x=x0,y=y0,…<,bodyD

a module with initial values for local variables

Assigning initial values to local variables. 

This specifies t to be a local variable, with initial value u. 

In[13]:= g@u_D := Module@8t = u<, t += t ê H1 + uLD

This uses the definition of g. 

In[14]:= g@aD

Out[14]= a +
a

1 + a

You  can  define  initial  values  for  any  of  the  local  variables  in  a  module.  The  initial  values  are

always evaluated before the module is executed. As a result, even if a variable x is defined as

local to the module, the global x will be used if it appears in an expression for an initial value. 

The initial value of u is taken to be the global value of t. 

In[15]:= Module@8t = 6, u = t<, u^2D

Out[15]= 289

lhs:=Module@vars,rhsê;condD share local variables between rhs and cond

Using local variables in definitions with conditions. 

When you set up ê; conditions for definitions, you often need to introduce temporary variables.

In many cases,  you may want  to  share these temporary variables with the body of  the right-

hand side of the definition. Mathematica allows you to enclose the whole right-hand side of your

definition in a module, including the condition. 

This defines a function with a condition attached. 

In[16]:= h@x_D := Module@8t<, t^2 - 1 ê; Ht = x - 4L > 1D
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Mathematica shares the value of the local variable t between the condition and the body of the 
right-hand side. 

In[17]:= h@10D

Out[17]= 35

Local Constants

With@8x=x0,y=y0,…<,bodyD define local constants x, y, … 

Defining local constants. 

Module  allows  you  to  set  up  local  variables,  to  which  you  can  assign  values  and  then  change

them. Often, however, all you really need are local constants, to which you assign a value only

once. The Mathematica With construct allows you to set up such local constants. 

This defines a global value for t. 

In[1]:= t = 17

Out[1]= 17

This defines a function using t as a local constant. 

In[2]:= w@x_D := With@8t = x + 1<, t + t^3D

This uses the definition of w. 

In[3]:= w@aD

Out[3]= 1 + a + H1 + aL3

t still has its global value. 

In[4]:= t

Out[4]= 17

Just as in Module, the initial values you define in With are evaluated before With is executed. 

The expression t + 1 which gives the value of the local constant t is evaluated using the global 
t. 

In[5]:= With@8t = t + 1<, t^2D

Out[5]= 324

The way With@8x = x0, …<, bodyD works is to take body, and replace every occurrence of x, etc.

in it by x0, etc. You can think of With as a generalization of the ê. operator, suitable for applica-

tion to Mathematica code instead of other expressions. 
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The way With@8x = x0, …<, bodyD works is to take body, and replace every occurrence of x, etc.

in it by x0, etc. You can think of With as a generalization of the ê. operator, suitable for applica-

tion to Mathematica code instead of other expressions. 

This replaces x with a. 

In[6]:= With@8x = a<, x = 5D

Out[6]= 5

After the replacement, the body of With is a = 5, so a gets the global value 5. 

In[7]:= a

Out[7]= 5

This clears the value of a. 

In[8]:= Clear@aD

In some respects, With is like a special case of Module, in which each local variable is assigned

a value exactly once. 

One of the main reasons for using With rather than Module is that it typically makes the Mathe-

matica programs you write easier to understand. In a module, if you see a local variable x at a

particular point, you potentially have to trace through all of the code in the module to work out

the value of x at that point. In a With construct, however, you can always find out the value of

a  local  constant  simply  by looking at  the initial  list  of  values,  without  having to  trace through

specific code. 

If you have several With constructs, it is always the innermost one for a particular variable that

is  in  effect.  You  can  mix  Module  and  With.  The  general  rule  is  that  the  innermost  one  for  a

particular variable is the one that is in effect. 

With nested With constructs, the innermost one is always the one in effect. 

In[9]:= With@8t = 8<, With@8t = 9<, t^2DD

Out[9]= 81

You can mix Module and With constructs. 

In[10]:= Module@8t = 8<, With@8t = 9<, t^2DD

Out[10]= 81

Local variables in inner constructs do not mask ones outside unless the names conflict. 
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Local variables in inner constructs do not mask ones outside unless the names conflict. 

In[11]:= With@8t = a<, With@8u = b<, t + uDD

Out[11]= a + b

Except for the question of when x and body are evaluated, With@8x = x0, …<, bodyD works essen-

tially  like  body ê. x -> x0.  However,  With  behaves  in  a  special  way  when  the  expression  body

itself  contains  With  or  Module  constructs.  The  main  issue  is  to  prevent  the  local  constants  in

the various With  constructs from conflicting with each other, or with global objects. The details

of how this is done are discussed in "How Modules Work". 

The y in the inner With is renamed to prevent it from conflicting with the global y. 

In[12]:= With@8x = 2 + y<, Hold@With@8y = 4<, x + yDDD

Out[12]= Hold@With@8y$ = 4<, H2 + yL + y$DD

How Modules Work

The way modules work in Mathematica is basically very simple. Every time any module is used,

a  new  symbol  is  created  to  represent  each  of  its  local  variables.  The  new  symbol  is  given  a

unique  name  which  cannot  conflict  with  any  other  names.  The  name  is  formed  by  taking  the

name you specify for the local variable, followed by $, with a unique “serial number” appended. 

The serial number is found from the value of the global variable $ModuleNumber. This variable

counts the total number of times any Module of any form has been used. 

Module generates symbols with names of the form x$nnn to represent each local variable.

The basic principle of modules in Mathematica. 

This shows the symbol generated for t within the module. 

In[1]:= Module@8t<, Print@tDD

t$1

The symbols are different every time any module is used. 

In[2]:= Module@8t, u<, Print@tD; Print@uDD

t$2

u$2

For  most  purposes,  you  will  never  have  to  deal  directly  with  the  actual  symbols  generated

inside modules. However, if for example you start up a dialog while a module is being executed,

then  you  will  see  these  symbols.  The  same is  true  whenever  you  use  functions  like  Trace  to

watch the evaluation of modules. 
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For  most  purposes,  you  will  never  have  to  deal  directly  with  the  actual  symbols  generated

inside modules. However, if for example you start up a dialog while a module is being executed,

then  you  will  see  these  symbols.  The  same is  true  whenever  you  use  functions  like  Trace  to

watch the evaluation of modules. 

You see the symbols that are generated inside modules when you use Trace. 

In[3]:= Trace@Module@8t<, t = 3DD

Out[3]= 8Module@8t<, t = 3D, 8t$3 = 3, 3<, 3<

This starts a dialog inside a module. 

In[4]:= Module@8t<, t = 6; Dialog@DD

Inside the dialog, you see the symbols generated for local variables such as t. 

In[5]:= Stack@_D

Out[5]= 8Module@8t<, t = 6; Dialog@DD, t$4 = 6; Dialog@D, Dialog@D<

You can work with these symbols as you would with any other symbols. 

In[6]:= t$4 + 1

Out[6]= 7

This returns from the dialog. 

In[7]:= Return@t$4^2D

Out[7]= 36

Under  some  circumstances,  it  is  convenient  explicitly  to  return  symbols  that  are  generated

inside modules. 

You can explicitly return symbols that are generated inside modules. 

In[8]:= Module@8t<, tD

Out[8]= t$6

You can treat these symbols as you would any others. 

In[9]:= %^2 + 1

Out[9]= 1 + t$62
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Unique@xD generate a new symbol with a unique name of the form 
x$nnn

Unique@8x,y,…<D generate a list of new symbols

Generating new symbols with unique names. 

The  function  Unique  allows  you  to  generate  new  symbols  in  the  same  way  as  Module  does.

Each time you call Unique, $ModuleNumber  is incremented, so that the names of new symbols

are guaranteed to be unique. 

This generates a unique new symbol whose name starts with x. 

In[10]:= Unique@xD

Out[10]= x$7

Each time you call Unique you get a symbol with a larger serial number. 

In[11]:= 8Unique@xD, Unique@xD, Unique@xD<

Out[11]= 8x$8, x$9, x$10<

If you call Unique with a list of names, you get the same serial number for each of the 
symbols. 

In[12]:= Unique@8x, xa, xb<D

Out[12]= 8x$11, xa$11, xb$11<

You  can  use  the  standard  Mathematica  ? name  mechanism to  get  information  on  symbols  that

were generated inside modules or by the function Unique. 

Executing this module generates the symbol q$nnn. 

In[13]:= Module@8q<, q^2 + 1D

Out[13]= 1 + q$122

You can see the generated symbol here. 

In[14]:= ? q*

q    q$12
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Symbols  generated by Module  behave in  exactly  the same way as  other  symbols  for  the pur-

poses  of  evaluation.  However,  these  symbols  carry  the  attribute  Temporary,  which  specifies

that they should be removed completely from the system when they are no longer used. Thus

most  symbols  that  are  generated  inside  modules  are  removed  when  the  execution  of  those

modules is finished. The symbols survive only if they are explicitly returned. 

This shows a new q variable generated inside a module. 

In[15]:= Module@8q<, Print@qDD

q$13

The new variable is removed when the execution of the module is finished, so it does not show 
up here. 

In[16]:= ? q*

q    q$12

You should realize that the use of names such as x$nnn for generated symbols is purely a conven-

tion. You can in principle give any symbol a name of this form. But if you do, the symbol may 

collide with one that is produced by Module. 

An  important  point  to  note  is  that  symbols  generated  by  Module  are  in  general  unique  only

within  a  particular  Mathematica  session.  The  variable  $ModuleNumber  which  determines  the

serial numbers for these symbols is always reset at the beginning of each session. 

This  means  in  particular  that  if  you  save  expressions  containing  generated  symbols  in  a  file,

and then read them into another session, there is no guarantee that conflicts will not occur. 

One way to avoid such conflicts is explicitly to set $ModuleNumber differently at the beginning of

each  session.  In  particular,  if  you  set  $ModuleNumber = 10^10 $SessionID,  you  should  avoid

any conflicts. The global variable $SessionID  should give a unique number which characterizes

a particular Mathematica  session on a particular computer. The value of this variable is deter-

mined  from  such  quantities  as  the  absolute  date  and  time,  the  ID  of  your  computer,  and,  if

appropriate, the ID of the particular Mathematica process. 

$ModuleNumber the serial number for symbols generated by Module and 
Unique

$SessionID a number that should be different for every Mathematica 
session

Variables to be used in determining serial numbers for generated symbols. 

Having  generated  appropriate  symbols  to  represent  the  local  variables  you  have  specified,

Module@vars, bodyD  then has to evaluate body  using these symbols. The first step is to take the

actual expression body as it appears inside the module, and effectively to use With to replace all

occurrences  of  each  local  variable  name  with  the  appropriate  generated  symbol.  After  this  is

done, Module actually performs the evaluation of the resulting expression. 
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Having  generated  appropriate  symbols  to  represent  the  local  variables  you  have  specified,

Module@vars, bodyD  then has to evaluate body  using these symbols. The first step is to take the

actual expression body as it appears inside the module, and effectively to use With to replace all

occurrences  of  each  local  variable  name  with  the  appropriate  generated  symbol.  After  this  is

done, Module actually performs the evaluation of the resulting expression. 

An  important  point  to  note  is  that  Module@vars, bodyD  inserts  generated  symbols  only  into  the

actual  expression  body.  It  does  not,  for  example,  insert  such  symbols  into  code  that  is  called

from body, but does not explicitly appear in body. 

"Blocks and Local Values" discusses how you can use Block  to set up “local values” which work

in a different way. 

Since x does not appear explicitly in the body of the module, the local value is not used. 

In[17]:= tmp = x^2 + 1; Module@8x = 4<, tmpD

Out[17]= 1 + x2

Most of the time, you will  probably set up modules by giving explicit Mathematica input of the

form Module@vars, bodyD. Since the function Module has the attribute HoldAll, the form of body

will usually be kept unevaluated until the module is executed. 

It  is,  however,  possible  to  build  modules  dynamically  in  Mathematica.  The  generation  of  new

symbols, and their insertion into body are always done only when a module is actually executed,

not when the module is first given as Mathematica input. 

This evaluates the body of the module immediately, making x appear explicitly. 

In[18]:= tmp = x^2 + 1; Module@8x = 4<, Evaluate@tmpDD

Out[18]= 17

Variables in Pure Functions and Rules

Module and With  allow you to give a specific list of symbols whose names you want to treat as

local.  In  some  situations,  however,  you  want  to  automatically  treat  certain  symbol  names  as

local. 

For example, if you use a pure function such as Function@8x<, x + aD, you want x to be treated

as a “formal parameter”, whose specific name is local. The same is true of the x that appears in

a rule like f@x_D -> x^2, or a definition like f@x_D := x^2. 

Mathematica uses a uniform scheme to make sure that the names of formal parameters which

appear in constructs like pure functions and rules are kept local,  and are never confused with

global names. The basic idea is to replace formal parameters when necessary by symbols with

names of the form x$. By convention, x$ is never used as a global name. 
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Mathematica uses a uniform scheme to make sure that the names of formal parameters which

appear in constructs like pure functions and rules are kept local,  and are never confused with

global names. The basic idea is to replace formal parameters when necessary by symbols with

names of the form x$. By convention, x$ is never used as a global name. 

Here is a nested pure function. 

In[1]:= Function@8x<, Function@8y<, x + yDD

Out[1]= Function@8x<, Function@8y<, x + yDD

Mathematica renames the formal parameter y in the inner function to avoid conflict with the 
global object y. 

In[2]:= %@2 yD

Out[2]= Function@8y$<, 2 y + y$D

The resulting pure function behaves as it should. 

In[3]:= %@aD

Out[3]= a + 2 y

In general, Mathematica renames the formal parameters in an object like Function@vars, bodyD

whenever body is modified in any way by the action of another pure function. 

The formal parameter y is renamed because the body of the inner pure function was changed. 

In[4]:= Function@8x<, Function@8y<, x + yDD@aD

Out[4]= Function@8y$<, a + y$D

Since the body of the inner function does not change, the formal parameter is not renamed. 

In[5]:= Function@8x<, x + Function@8y<, y^2DD@aD

Out[5]= a + FunctionA8y<, y2E

Mathematica renames formal parameters in pure functions more liberally than is strictly neces-

sary. In principle, renaming could be avoided if the names of the formal parameters in a particu-

lar  function  do  not  actually  conflict  with  parts  of  expressions  substituted  into  the  body  of  the

pure  function.  For  uniformity,  however,  Mathematica  still  renames  formal  parameters  even  in

such cases. 
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In this case, the formal parameter x in the inner function shields the body of the function, so no 
renaming is needed.

In[6]:= Function@8x<, Function@8x<, x + yDD@aD

Out[6]= Function@8x<, x + yD

Here are three nested functions. 

In[7]:= Function@8x<, Function@8y<, Function@8z<, x + y + zDDD

Out[7]= Function@8x<, Function@8y<, Function@8z<, x + y + zDDD

Both inner functions are renamed in this case. 

In[8]:= %@aD

Out[8]= Function@8y$<, Function@8z$<, a + y$ + z$DD

As  mentioned  in  "Pure  Functions",  pure  functions  in  Mathematica  are  like  l  expressions  in

formal  logic.  The  renaming  of  formal  parameters  allows  Mathematica  pure  functions  to  repro-

duce all the semantics of standard l expressions faithfully. 

Function@8x,…<,bodyD local parameters

lhs->rhs  and lhs:>rhs local pattern names

lhs=rhs  and lhs:=rhs local pattern names

With@8x=x0,…<,bodyD local constants

Module@8x,…<,bodyD local variables

Scoping constructs in Mathematica. 

Mathematica  has  several  “scoping  constructs”  in  which  certain  names  are  treated  as  local.

When you mix these constructs in any way, Mathematica does appropriate renamings to avoid

conflicts. 

Mathematica renames the formal parameter of the pure function to avoid a conflict. 

In[9]:= With@8x = a<, Function@8a<, a + xDD

Out[9]= Function@8a$<, a$ + aD

Here the local constant in the inner With is renamed to avoid a conflict. 

In[10]:= With@8x = y<, Hold@With@8y = 4<, x + yDDD

Out[10]= Hold@With@8y$ = 4<, y + y$DD

There is no conflict between names in this case, so no renaming is done. 
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There is no conflict between names in this case, so no renaming is done. 

In[11]:= With@8x = y<, Hold@With@8z = x + 2<, z + 2DDD

Out[11]= Hold@With@8z = y + 2<, z + 2DD

The local variable y in the module is renamed to avoid a conflict. 

In[12]:= With@8x = y<, Hold@Module@8y<, x + yDDD

Out[12]= Hold@Module@8y$<, y + y$DD

If you execute the module, however, the local variable is renamed again to make its name 
unique. 

In[13]:= ReleaseHold@%D

Out[13]= y + y$1

Mathematica treats transformation rules as scoping constructs, in which the names you give to

patterns  are  local.  You  can  set  up  named  patterns  either  using  x_,  x__  and  so  on,  or  using

x : patt. 

The x in the h goes with the x_, and is considered local to the rule. 

In[14]:= With@8x = 5<, g@x_, xD -> h@xDD

Out[14]= g@x_, 5D Ø h@xD

In a rule like f@x_D -> x + y, the x which appears on the right-hand side goes with the name of

the x_ pattern. As a result, this x is treated as a variable local to the rule, and cannot be modi-

fied by other scoping constructs. 

The y,  on the other hand,  is  not  local  to  the rule,  and can  be modified by other scoping con-

structs.  When  this  happens,  Mathematica  renames  the  patterns  in  the  rule  to  prevent  the

possibility of a conflict. 

Mathematica renames the x in the rule to prevent a conflict. 

In[15]:= With@8w = x<, f@x_D -> w + xD

Out[15]= f@x$_D Ø x + x$

When  you  use  With  on  a  scoping  construct,  Mathematica  automatically  performs  appropriate

renamings.  In some cases,  however,  you may want to make substitutions inside scoping con-

structs, without any renaming. You can do this using the ê. operator. 

When you substitute for y using With, the x in the pure function is renamed to prevent a 
conflict. 
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When you substitute for y using With, the x in the pure function is renamed to prevent a 
conflict. 

In[16]:= With@8y = x + a<, Function@8x<, x + yDD

Out[16]= Function@8x$<, x$ + Ha + xLD

If you use ê. rather than With, no such renaming is done. 

In[17]:= Function@8x<, x + yD ê. y -> a + x

Out[17]= Function@8x<, x + Ha + xLD

When you apply a rule such as f@x_D -> rhs, or use a definition such as f@x_D := rhs, Mathemat-

ica  implicitly  has  to  substitute  for  x  everywhere  in  the  expression  rhs.  It  effectively  does  this

using the ê. operator. As a result, such substitution does not respect scoping constructs. How-

ever, when the insides of a scoping construct are modified by the substitution, the other vari-

ables in the scoping construct are renamed. 

This defines a function for creating pure functions. 

In[18]:= mkfun@var_, body_D := Function@8var<, bodyD

The x and x^2 are explicitly inserted into the pure function, effectively by using the ê. opera-
tor. 

In[19]:= mkfun@x, x^2D

Out[19]= FunctionA8x<, x2E

This defines a function that creates a pair of nested pure functions. 

In[20]:= mkfun2@var_, body_D := Function@8x<, Function@8var<, body + xDD

The x in the outer pure function is renamed in this case. 

In[21]:= mkfun2@x, x^2D

Out[21]= FunctionA8x$<, FunctionA8x<, x2 + x$EE

Dummy Variables in Mathematics

When  you  set  up  mathematical  formulas,  you  often  have  to  introduce  various  kinds  of  local

objects  or  "dummy variables".  You  can  treat  such  dummy variables  using  modules  and  other

Mathematica scoping constructs. 

Integration  variables  are  a  common  example  of  dummy  variables  in  mathematics.  When  you

write  down  a  formal  integral,  conventional  notation  requires  you  to  introduce  an  integration

variable with a definite name. This variable is essentially "local" to the integral,  and its name,

while arbitrary, must not conflict with any other names in your mathematical expression. 
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Integration  variables  are  a  common  example  of  dummy  variables  in  mathematics.  When  you

write  down  a  formal  integral,  conventional  notation  requires  you  to  introduce  an  integration

variable with a definite name. This variable is essentially "local" to the integral,  and its name,

while arbitrary, must not conflict with any other names in your mathematical expression. 

Here is a function for evaluating an integral. 

In[1]:= p@n_D := Integrate@f@sD s^n, 8s, 0, 1<D

The s here conflicts with the integration variable. 

In[2]:= p@s + 1D

Out[2]= ‡
0

1
s1+s f@sD „s

Here is a definition with the integration variable specified as local to a module. 

In[3]:= pm@n_D := Module@8s<, Integrate@f@sD s^n, 8s, 0, 1<DD

Since you have used a module, Mathematica automatically renames the integration variable to 
avoid a conflict. 

In[4]:= pm@s + 1D

Out[4]= ‡
0

1
s$201+s f@s$20D „s$20

In  many  cases,  the  most  important  issue  is  that  dummy  variables  should  be  kept  local,  and

should  not  interfere  with  other  variables  in  your  mathematical  expression.  In  some  cases,

however,  what  is  instead important  is  that  different  uses  of  the  same  dummy variable  should

not conflict. 

Repeated  dummy  variables  often  appear  in  products  of  vectors  and  tensors.  With  the

"summation convention", any vector or tensor index that appears exactly twice is summed over

all  its  possible  values.  The  actual  name of  the  repeated  index  never  matters,  but  if  there  are

two separate repeated indices, it is essential that their names do not conflict. 

This sets up the repeated index j as a dummy variable. 

In[5]:= q@i_D := Module@8j<, a@i, jD b@jDD

The module gives different instances of the dummy variable different names. 

In[6]:= q@i1D q@i2D

Out[6]= a@i1, j$29D a@i2, j$30D b@j$29D b@j$30D

There  are  many  situations  in  mathematics  where  you  need  to  have  variables  with  unique

names.  One example is  in  representing solutions to equations.  With an equation like cosHxL = 1,

there are an infinite number of solutions, each of the form x = 2 p n, where n is a dummy variable

that can be equal to any integer.
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There  are  many  situations  in  mathematics  where  you  need  to  have  variables  with  unique

names.  One example is  in  representing solutions to equations.  With an equation like cosHxL = 1,

there are an infinite number of solutions, each of the form x = 2 p n, where n is a dummy variable

that can be equal to any integer.

When Mathematica solves this equation, it creates a dummy variable.

In[7]:= Reduce@Cos@xD == 1, xD

Out[7]= C@1D œ Integers && x ã 2 p C@1D

Here is a way to make the dummy variable unique. 

In[8]:= Reduce@Cos@xD == 1, x, GeneratedParameters :> Unique@CDD

Out[8]= C$489@1D œ Integers && x ã 2 p C$489@1D

Another  place  where  unique  objects  are  needed  is  in  representing  "constants  of  integration".

When you do  an  integral,  you  are  effectively  solving  an  equation  for  a  derivative.  In  general,

there  are  many possible  solutions  to  the  equation,  differing  by  additive  "constants  of  integra-

tion". The standard Mathematica Integrate function always returns a solution with no constant

of  integration.  But  if  you  were  to  introduce  constants  of  integration,  you  would  need  to  use

modules to make sure that they are always unique.

Blocks and Local Values

Modules  in  Mathematica  allow  you  to  treat  the  names  of  variables  as  local.  Sometimes,  how-

ever, you want the names to be global, but values to be local. You can do this in Mathematica

using Block. 

Block@8x,y,…<,bodyD evaluate body using local values for x, y, …
Block@8x=x0,y=y0,…<,bodyD assign initial values to x, y, …

Setting up local values. 

Here is an expression involving x. 

In[1]:= x^2 + 3

Out[1]= 3 + x2
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This evaluates the previous expression, using a local value for x. 

In[2]:= Block@8x = a + 1<, %D

Out[2]= 3 + H1 + aL2

There is no global value for x. 

In[3]:= x

Out[3]= x

As  described  in  "Modules  and  Local  Variables",  the  variable  x  in  a  module  such  as

Module@8x<, bodyD is always set up to refer to a unique symbol, different each time the module

is  used,  and  distinct  from the  global  symbol  x.  The  x  in  a  block  such  as  Block@8x<, bodyD  is,

however, taken to be the global symbol x. What the block does is to make the value of x local.

The value x  had when you entered the block is  always restored when you exit  the block.  And

during the execution of the block, x can take on any value. 

This sets the symbol t to have value 17. 

In[4]:= t = 17

Out[4]= 17

Variables in modules have unique local names. 

In[5]:= Module@8t<, Print@tDD

t$1

In blocks, variables retain their global names, but can have local values. 

In[6]:= Block@8t<, Print@tDD

t

t is given a local value inside the block. 

In[7]:= Block@8t<, t = 6; t^4 + 1D

Out[7]= 1297

When the execution of the block is over, the previous value of t is restored. 

In[8]:= t

Out[8]= 17

Blocks in Mathematica effectively allow you to set up "environments" in which you can temporar-

ily change the values of variables. Expressions you evaluate at any point during the execution

of a block will  use the values currently defined for variables in the block. This is true whether

the expressions appear directly as part of the body of the block, or are produced at any point in

its evaluation. 
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Blocks in Mathematica effectively allow you to set up "environments" in which you can temporar-

ily change the values of variables. Expressions you evaluate at any point during the execution

of a block will  use the values currently defined for variables in the block. This is true whether

the expressions appear directly as part of the body of the block, or are produced at any point in

its evaluation. 

This defines a delayed value for the symbol u. 

In[9]:= u := x^2 + t^2

If you evaluate u outside a block, the global value for t is used. 

In[10]:= u

Out[10]= 289 + x2

You can specify a temporary value for t to use inside the block. 

In[11]:= Block@8t = 5<, u + 7D

Out[11]= 32 + x2

An important  implicit  use  of  Block  in  Mathematica  is  for  iteration  constructs  such  as  Do,  Sum

and Table. Mathematica effectively uses Block  to set up local values for the iteration variables

in all of these constructs. 

Sum  automatically makes the value of the iterator t local. 

In[12]:= Sum@t^2, 8t, 10<D

Out[12]= 385

The local values in iteration constructs are slightly more general than in Block. They handle 
variables such as a@1D, as well as pure symbols. 

In[13]:= Sum@a@1D^2, 8a@1D, 10<D

Out[13]= 385

When  you  set  up  functions  in  Mathematica,  it  is  sometimes  convenient  to  have  "global  vari-

ables"  which  can  affect  the  functions  without  being  given  explicitly  as  arguments.  Thus,  for

example,  Mathematica  itself  has  a  global  variable  $RecursionLimit  which  affects  the  evalua-

tion of all functions, but is never explicitly given as an argument. 

Mathematica  will  usually  keep  any  value  you  define  for  a  global  variable  until  you  explicitly

change  it.  Often,  however,  you  want  to  set  up  values  which  last  only  for  the  duration  of  a

particular computation, or part of a computation. You can do this by making the values local to

a Mathematica block. 
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Mathematica  will  usually  keep  any  value  you  define  for  a  global  variable  until  you  explicitly

change  it.  Often,  however,  you  want  to  set  up  values  which  last  only  for  the  duration  of  a

particular computation, or part of a computation. You can do this by making the values local to

a Mathematica block. 

This defines a function which depends on the "global variable" t. 

In[14]:= f@x_D := x^2 + t

In this case, the global value of t is used. 

In[15]:= f@aD

Out[15]= 17 + a2

Inside a block, you can set up a local value for t. 

In[16]:= Block@8t = 2<, f@bDD

Out[16]= 2 + b2

You  can  use  global  variables  not  only  to  set  parameters  in  functions,  but  also  to  accumulate

results from functions. By setting up such variables to be local  to a block, you can arrange to

accumulate results only from functions called during the execution of the block. 

This function increments the global variable t, and returns its current value. 

In[17]:= h@x_D := Ht += x^2L

If you do not use a block, evaluating h@aD changes the global value of t. 

In[18]:= h@aD

Out[18]= 17 + a2

With a block, only the local value of t is affected. 

In[19]:= Block@8t = 0<, h@cDD

Out[19]= c2

The global value of t remains unchanged. 

In[20]:= t

Out[20]= 17 + a2

When you enter a block such as Block@8x<, bodyD, any value for x is removed. This means that

you can in principle treat x as a "symbolic variable" inside the block. However, if you explicitly

return x from the block, it will be replaced by its value outside the block as soon as it is evalu-

ated. 
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When you enter a block such as Block@8x<, bodyD, any value for x is removed. This means that

you can in principle treat x as a "symbolic variable" inside the block. However, if you explicitly

return x from the block, it will be replaced by its value outside the block as soon as it is evalu-

ated. 

The value of t is removed when you enter the block. 

In[21]:= Block@8t<, Print@Expand@Ht + 1L^2DDD

1 + 2 t + t2

If you return an expression involving t, however, it is evaluated using the global value for t. 

In[22]:= Block@8t<, t^2 - 3D

Out[22]= -3 + I17 + a2M
2

Blocks Compared with Modules

When you write a program in Mathematica, you should always try to set it up so that its parts

are as independent as possible. In this way, the program will be easier for you to understand,

maintain and add to. 

One  of  the  main  ways  to  ensure  that  different  parts  of  a  program do  not  interfere  is  to  give

their variables only a certain "scope". Mathematica provides two basic mechanisms for limiting

the scope of variables: modules and blocks. 

In  writing  actual  programs,  modules  are  far  more  common  than  blocks.  When  scoping  is

needed in interactive calculations, however, blocks are often convenient. 

Module@vars,bodyD lexical scoping

Block@vars,bodyD dynamic scoping

Mathematica variable scoping mechanisms. 

Most traditional computer languages use a so-called "lexical scoping" mechanism for variables,

which  is  analogous  to  the  module  mechanism  in  Mathematica.  Some  symbolic  computer  lan-

guages such as LISP also allow "dynamic scoping", analogous to Mathematica blocks. 

When lexical scoping is used, variables are treated as local to a particular section of the code in

a  program.  In  dynamic  scoping,  the  values  of  variables  are  local  to  a  part  of  the  execution

history of the program. 

In  compiled  languages  like  C  and  Java,  there  is  a  very  clear  distinction  between  "code"  and

"execution  history".  The  symbolic  nature  of  Mathematica  makes  this  distinction  slightly  less

clear, since "code" can in principle be built up dynamically during the execution of a program. 
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In  compiled  languages  like  C  and  Java,  there  is  a  very  clear  distinction  between  "code"  and

"execution  history".  The  symbolic  nature  of  Mathematica  makes  this  distinction  slightly  less

clear, since "code" can in principle be built up dynamically during the execution of a program. 

What Module@vars, bodyD  does is to treat the form of the expression body  at the time when the

module is executed as the "code" of a Mathematica program. Then when any of the vars explic-

itly appears in this "code", it is considered to be local. 

Block@vars, bodyD  does  not  look  at  the  form  of  the  expression  body.  Instead,  throughout  the

evaluation of body, the block uses local values for the vars. 

This defines m in terms of i. 

In[1]:= m = i^2

Out[1]= i2

The local value for i in the block is used throughout the evaluation of i + m. 

In[2]:= Block@8i = a<, i + mD

Out[2]= a + a2

Here only the i that appears explicitly in i + m is treated as a local variable. 

In[3]:= Module@8i = a<, i + mD

Out[3]= a + i2

Contexts

It is always a good idea to give variables and functions names that are as explicit as possible.

Sometimes, however, such names may get inconveniently long. 

In Mathematica, you can use the notion of "contexts" to organize the names of symbols. Con-

texts  are  particularly  important  in  Mathematica  packages  which  introduce  symbols  whose

names must not conflict  with those of any other symbols. If  you write Mathematica  packages,

or  make  sophisticated  use  of  packages  that  others  have  written,  then  you  will  need  to  know

about contexts. 

The  basic  idea  is  that  the  full  name  of  any  symbol  is  broken  into  two  parts:  a  context  and  a

short  name.  The  full  name  is  written  as  context`short,  where  the  `  is  the  backquote  or  grave

accent character (ASCII decimal code 96), called a "context mark" in Mathematica. 

Here is a symbol with short name x, and context aaaa. 
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Here is a symbol with short name x, and context aaaa. 

In[1]:= aaaa`x

Out[1]= aaaa`x

You can use this symbol just like any other symbol. 

In[2]:= %^2 - %

Out[2]= -aaaa`x + aaaa`x2

You can for example define a value for the symbol. 

In[3]:= aaaa`x = 78

Out[3]= 78

Mathematica treats a`x and b`x as completely different symbols. 

In[4]:= a`x == b`x

Out[4]= a`x ã b`x

It  is typical  to have all  the symbols that relate a particular topic in a particular context. Thus,

for example, symbols that represent physical units might have a context PhysicalUnits`. Such

symbols might have full names like PhysicalUnits`Joule or PhysicalUnits`Mole. 

Although  you  can  always  refer  to  a  symbol  by  its  full  name,  it  is  often  convenient  to  use  a

shorter name. 

At any given point in a Mathematica  session, there is always a current  context  $Context.  You

can  refer  to  symbols  that  are  in  this  context  simply  by  giving  their  short  names,  unless  the

symbol  is  shadowed  by  the  symbol  with  the  same  short  name  on  the  $ContextPath.  If  a

symbol  with  the  given  short  name  exists  on  the  context  path,  it  will  be  used  instead  of  the

symbol in the current context.

The default context for Mathematica sessions is Global`. 

In[5]:= $Context

Out[5]= Global`

Short names are sufficient for symbols that are in the current context. 

In[6]:= 8x, Global`x<

Out[6]= 8x, x<

Contexts  in  Mathematica  work  somewhat  like  file  directories  in  many  operating  systems.  You

can always specify a particular file by giving its complete name, including its directory. But at

any given point, there is usually a current working directory, analogous to the current Mathemat-

ica  context.  Files  that  are  in  this  directory  can  then  be  specified  just  by  giving  their  short

names. 
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Contexts  in  Mathematica  work  somewhat  like  file  directories  in  many  operating  systems.  You

can always specify a particular file by giving its complete name, including its directory. But at 

any given point, there is usually a current working directory, analogous to the current Mathemat-

ica  context.  Files  that  are  in  this  directory  can  then  be  specified  just  by  giving  their  short

names. 

Like directories in many operating systems, contexts in Mathematica can be hierarchical. Thus,

for  example,  the  full  name  of  a  symbol  can  involve  a  sequence  of  context  names,  as  in

c1 `c2 `c3 `name. 

context ` name  or c1 ` c2 ` … ` name a symbol in an explicitly specified context

` name a symbol in the current context

` context ` name  or 
` c1 ` c2 ` … ` name

a symbol in a specific context relative to the current context

name a symbol in the current context, or found on the context 
search path

Specifying symbols in various contexts. 

Here is a symbol in the context a`b`. 

In[7]:= a`b`x

Out[7]= a`b`x

When  you  start  a  Mathematica  session,  the  default  current  context  is  Global`.  Symbols  that

you introduce  will  usually  be  in  this  context.  However,  built-in  symbols  such  as  Pi  are  in  the

context System`. 

In order to let you easily access not only symbols in the context Global`, but also in contexts

such as System`, Mathematica supports the notion of a context search path. At any point in a

Mathematica  session,  there  is  both  a  current  context  $Context,  and  also  a  current  context

search  path  $ContextPath.  The  idea  of  the  search  path  is  to  allow  you  to  type  in  the  short

name of  a  symbol,  then have Mathematica  search in  a  sequence of  contexts  to  find a symbol

with that short name. 

The  context  search  path  for  symbols  in  Mathematica  is  analogous  to  the  "search  path"  for

program files provided in operating systems. 
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The default context path includes the contexts for system-defined symbols. 

In[8]:= $ContextPath

Out[8]= 8System`, Global`<

When you type in Pi, Mathematica interprets it as the symbol with full name System`Pi. 

In[9]:= Context@PiD

Out[9]= System`

Context@sD the context of a symbol

$Context the current context in a Mathematica session

$ContextPath the current context search path

Contexts@D a list of all contexts

Finding contexts and context search paths. 

When you use contexts in Mathematica, there is no reason that two symbols which are in differ-

ent contexts cannot have the same short name. Thus, for example, you can have symbols with

the  short  name  Mole  both  in  the  context  PhysicalUnits`  and  in  the  context

BiologicalOrganisms`. 

There is,  however,  then the question of  which symbol  you actually  get  when you type in only

the  short  name  Mole.  The  answer  to  this  question  is  determined  by  which  of  the  contexts

comes first in the sequence of contexts listed in the context search path. 

This introduces two symbols, both with short name Mole. 

In[10]:= 8PhysicalUnits`Mole, BiologicalOrganisms`Mole<

Out[10]= 8PhysicalUnits`Mole, BiologicalOrganisms`Mole<

This adds two additional contexts to $ContextPath. Typically, Mathematica adds new contexts 
to the beginning of $ContextPath.

In[11]:= $ContextPath = Join@8"PhysicalUnits`", "BiologicalOrganisms`"<, $ContextPathD

Out[11]= 8PhysicalUnits`, BiologicalOrganisms`, System`, Global`<

Now if you type in Mole, you get the symbol in the context PhysicalUnits`. 

In[12]:= Context@MoleD

Out[12]= PhysicalUnits`

In general, when you type in a short name for a symbol, Mathematica assumes that you want

the  symbol  with  that  name  whose  context  appears  earliest  in  the  context  search  path.  As  a

result,  symbols  with  the  same short  name whose  contexts  appear  later  in  the  context  search

path are effectively "shadowed". To refer to these symbols, you need to use their full names. 
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In general, when you type in a short name for a symbol, Mathematica assumes that you want

the  symbol  with  that  name  whose  context  appears  earliest  in  the  context  search  path.  As  a

result,  symbols  with  the  same short  name whose  contexts  appear  later  in  the  context  search

path are effectively "shadowed". To refer to these symbols, you need to use their full names. 

Mathematica  issues  a  message when you introduce new symbols  that  "shadow" existing  sym-

bols with your current choice for $ContextPath. In addition, in the notebook front end Mathe-

matica warns you of shadowed symbols by coloring them red. 

This introduces a symbol with short name Mole in the context Global`. Mathematica warns 
you that the new symbol shadows existing symbols with short name Mole. 

In[13]:= Global`Mole

Global`Mole::shdw:
Symbol Mole appears in multiple contexts 8Global`, PhysicalUnits`, BiologicalOrganisms`<;

definitions in context Global` may shadow or be shadowed by other definitions. à
Out[13]= Global`Mole

Now when you type in Mole, you get the symbol that appears first in the context path, 
PhysicalUnits`. 

In[14]:= Context@MoleD

Out[14]= PhysicalUnits`

If you once introduce a symbol which shadows existing symbols, it  will  continue to do so until

you either rearrange $ContextPath, or explicitly remove the symbol. You should realize that it

is  not  sufficient  to  clear  the  value  of  the  symbol;  you  need  to  actually  remove  the  symbol

completely from Mathematica. You can do this using the function Remove@sD. 

Clear@sD clear the values of a symbol

Remove@sD remove a symbol completely from the system

Clearing and removing symbols in Mathematica. 

This removes the symbol PhysicalUnits`Mole. 

In[15]:= Remove@MoleD
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Now if you type in Mole, you get the symbol BiologicalOrganisms`Mole. 

In[16]:= Context@MoleD

Out[16]= BiologicalOrganisms`

When Mathematica  prints out the name of a symbol,  it  has to choose whether to give the full

name, or just the short name. What it does is to give whatever version of the name you would

have  to  type  in  to  get  the  particular  symbol,  given  your  current  settings  for  $Context  and

$ContextPath. 

The short name is printed for the first symbol, so this would give that symbol if you typed it in. 

In[17]:= 8BiologicalOrganisms`Mole, Global`Mole<

Out[17]= 8Mole, Global`Mole<

If you type in a short name for which there is no symbol either in the current context, or in any

context  on  the  context  search  path,  then  Mathematica  has  to  create  a  new  symbol  with  this

name. It always puts new symbols of this kind in the current context, as specified by $Context. 

This introduces the new symbol with short name tree. 

In[18]:= tree

Out[18]= tree

Mathematica puts tree in the current context Global`. 

In[19]:= Context@treeD

Out[19]= Global`

Contexts and Packages

A  typical  package  written  in  Mathematica  introduces  several  new  symbols  intended  for  use

outside  the  package.  These  symbols  may  correspond  for  example  to  new  functions  or  new

objects defined in the package. 

There is  a general  convention that all  new symbols introduced in a particular package are put

into a context whose name is related to the name of the package. When you read in the pack-

age, it adds this context at the beginning of your context search path $ContextPath. 
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This reads in a package for proving primality.

In[1]:= << PrimalityProving`

The package prepends its context to $ContextPath. 

In[2]:= $ContextPath

Out[2]= 8PrimalityProving`, System`, Global`<

The symbol ProvablePrimeQ is in the context set up by the package. 

In[3]:= Context@ProvablePrimeQD

Out[3]= PrimalityProving`

You can refer to the symbol using its short name. 

In[4]:= ProvablePrimeQ@2143D

Out[4]= True

The full  names of  symbols  defined in  packages  are  often  quite  long.  In  most  cases,  however,

you will only need to use their short names. The reason for this is that after you have read in a

package, its context is added to $ContextPath, so the context is automatically searched when-

ever you type in a short name. 

There is a complication, however, when two symbols with the same short name appear in two

different  packages.  In  such  a  case,  Mathematica  will  warn  you  when  you  read  in  the  second

package. It will  tell  you which symbols will  be "shadowed" by the new symbols that are being

introduced. 

The symbol ProvablePrimeQ in the context PrimalityProving` is shadowed by the symbol 
with the same short name in the new package. 

In[5]:= << NewPrimalityProving`

ProvablePrimeQ::shdw:
Symbol ProvablePrimeQ appears in multiple contexts 8NewPrimalityProving`, PrimalityProving`<;

definitions in context NewPrimalityProving` may shadow or be shadowed by other definitions. à

You can access the shadowed symbol by giving its full name. 

In[6]:= PrimalityProving`ProvablePrimeQ@2143D

Out[6]= True
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Conflicts can occur not only between symbols in different packages, but also between symbols

in packages and symbols that you introduce directly in your Mathematica session. If you define

a symbol in your current context, then this symbol may become shadowed by another symbol

with the same short name in packages that you read in. The reason for this is that Mathematica

searches for symbols in contexts on the context search path before looking in the current con-

text. 

This defines a function in the current context. 

In[7]:= Div@f_D = 1 ê f

Out[7]=
1

f

The Div function in your current context will be shadowed by the one in the package. 

In[8]:= << VectorAnalysis`

Div::shdw: Symbol Div appears in multiple contexts 8VectorAnalysis`, Global`<; definitions
in context VectorAnalysis` may shadow or be shadowed by other definitions. à

This sets up the coordinate system for vector analysis. 

In[9]:= SetCoordinates@Cartesian@x, y, zDD

Out[9]= Cartesian@x, y, zD

The Div from the package is used. 

In[10]:= Div@8x, y^2, x<D

Out[10]= 1 + 2 y

If you get into the situation where unwanted symbols are shadowing the symbols you want, the

best thing to do is usually to get rid of the unwanted symbols using Remove@sD. An alternative

that  is  sometimes  appropriate  is  to  rearrange  the  entries  in  $ContextPath  and  to  reset  the

value of $Context  so as to make the contexts that contain the symbols you want be the ones

that are searched first.

$Packages a list of the contexts corresponding to all packages loaded 
into your Mathematica session

Getting a list of packages. 
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Mathematica Packages

One of the most important features of Mathematica is that it is an extensible system. There is a

certain  amount  of  mathematical  and  other  functionality  that  is  built  into  Mathematica.  But  by

using the Mathematica language, it is always possible to add more functionality. 

For  many kinds  of  calculations,  what  is  built  into  the  standard  version  of  Mathematica  will  be

quite  sufficient.  However,  if  you  work  in  a  particular  specialized  area,  you  may  find  that  you

often need to use certain functions that are not built into Mathematica. 

In such cases, you may well be able to find a Mathematica package that contains the functions

you need. Mathematica packages are files written in the Mathematica language. They consist of

collections  of  Mathematica  definitions  which  "teach"  Mathematica  about  particular  application

areas. 

<<package read in a Mathematica package

Reading in Mathematica packages. 

If  you  want  to  use  functions  from a  particular  package,  you  must  first  read  the  package  into

Mathematica.  The  details  of  how  to  do  this  are  discussed  in  "External  Programs".  There  are

various conventions that govern the names you should use to refer to packages. 

This command reads in a particular Mathematica package. 

In[1]:= << PrimalityProving`

The ProvablePrimeQ function is defined in the package. 

In[2]:= ProvablePrimeQ@1093D

Out[2]= True

There  are  a  number  of  subtleties  associated  with  such  issues  as  conflicts  between  names  of

functions in different packages. These are discussed in "Contexts and Packages". One point to

note,  however,  is  that  you  should  not  refer  to  a  function  that  you  will  read  from  a  package

before  actually  reading  in  the  package.  If  you  do  this  by  mistake,  Mathematica  will  issue  a

message  warning  about  the  duplicate  names  and  use  the  one  last  defined.  This  means  that

your  version  of  the  function  will  not  be  used;  it  will  be  the  one  from  the  package.  You  can

execute the command Remove@"name"D to get rid of the package function.
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Remove@"name"D remove a function that has been introduced in error

Making sure that Mathematica uses correct definitions from packages. 

The fact that Mathematica can be extended using packages means that the boundary of exactly

what is "part of Mathematica" is quite blurred. As far as usage is concerned, there is actually no

difference  between  functions  defined  in  packages  and  functions  that  are  fundamentally  built

into Mathematica. 

In  fact,  a  fair  number  of  the  functions  built  into  the  core  Mathematica  system  are  actually

implemented  as  Mathematica  packages.  However,  on  most  Mathematica  systems,  the  neces-

sary packages have been preloaded, so that the functions they define are always present. 

To blur the boundary of what is part of Mathematica even further, "Automatic Loading of Pack-

ages" describes how you can tell Mathematica automatically to load a particular package if you

ever try to use a certain function. If you never use that function, then it will not be present. But

as soon as you try to use it, its definition will be read in from a Mathematica package. 

As a practical matter, the functions that should be considered "part of Mathematica" are proba-

bly  those that  are  present  in  all  Mathematica  systems.  It  is  these functions  that  are  primarily

discussed in this documentation. 

Nevertheless,  most  versions  of  Mathematica  come  with  a  standard  set  of  Mathematica  pack-

ages,  which  contain  definitions  for  many  more  functions.  To  use  these  functions,  you  must

usually read in the necessary packages explicitly. 
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You can use the Documentation Center to get information on Mathematica 7 Standard Extra 
Packages.

It is possible to set your Mathematica system up so that particular packages are preloaded, or

are automatically loaded when needed. If you do this, then there may be many functions that

appear as standard in your version of Mathematica, but which are not documented in the Mathe-

matica system reference pages. 

One point that should be mentioned is the relationship between packages and notebooks. Both

are stored as files on your computer system, and both can be read into Mathematica. However,

a notebook is intended to be displayed, typically with a notebook interface, while a package is

intended  only  to  be  used  as  Mathematica  input.  Many  notebooks  in  fact  contain  sections  that

can be considered as packages, and which contain sequences of definitions intended for input to

Mathematica. There are also capabilities that allow packages set up to correspond to notebooks

to be maintained automatically.
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intended  only  to  be  used  as  Mathematica  input.  Many  notebooks  in  fact  contain  sections  that

can be considered as packages, and which contain sequences of definitions intended for input to

Mathematica. There are also capabilities that allow packages set up to correspond to notebooks

to be maintained automatically.

Setting Up Mathematica Packages

In a typical Mathematica package, there are generally two kinds of new symbols that are intro-

duced. The first kind are ones that you want to “export” for use outside the package. The sec-

ond kind are ones that you want to use only internally within the package. You can distinguish

these two kinds of symbols by putting them in different contexts. 

The usual  convention is  to put symbols intended for export  in a context with a name Package`

that  corresponds  to  the  name  of  the  package.  Whenever  the  package  is  read  in,  it  adds  this

context  to  the  context  search  path,  so  that  the  symbols  in  this  context  can be  referred  to  by

their short names. 

Symbols that are not intended for export, but are instead intended only for internal use within

the package, are conventionally put into a context with the name Package`Private`.  This con-

text is not added to the context search path. As a result, the symbols in this context cannot be

accessed except by giving their full names. 

Package ` symbols for export

Package `Private` symbols for internal use only

System` built-in Mathematica symbols

Needed1 ` , Needed2 ` , … other contexts needed in the package

Contexts conventionally used in Mathematica packages. 

There  is  a  standard  sequence  of  Mathematica  commands  that  is  typically  used  to  set  up  the

contexts in a package. These commands set the values of $Context  and $ContextPath so that

the new symbols which are introduced are created in the appropriate contexts. 
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BeginPackage@"Package`"D set Package ` to be the current context, and put only 
System` on the context search path

f::usage="text" , … introduce the objects intended for export (and no others)

Begin@"`Private`"D set the current context to Package `Private`

fAargsE=value , … give the main body of definitions in the package

End@D revert to the previous context (here Package `)

EndPackage@D end the package, prepending the Package ` to the context 
search path

The standard sequence of context control commands in a package. 

BeginPackage["Collatz`"]

Collatz::usage =
        "Collatz[n] gives a list of the iterates in the 3n+1 problem,
        starting from n. The conjecture is that this sequence always
        terminates."

Begin["`Private`"]

Collatz[1] := {1}

Collatz[n_Integer]  := Prepend[Collatz[3 n + 1], n] /; OddQ[n] && n > 0

Collatz[n_Integer] := Prepend[Collatz[n/2], n] /; EvenQ[n] && n > 0

End[ ]

EndPackage[ ]

The sample package Collatz.m. 

Defining  usage  messages  at  the  beginning  of  a  package  is  the  standard  way  of  making  sure

that symbols you want to export are created in the appropriate context. The way this works is

that in defining these messages, the only symbols you mention are exactly the ones you want

to export. These symbols are then created in the context Package`, which is then current. 

In the actual  definitions of  the functions in a package, there are typically  many new symbols,

introduced  as  parameters,  temporary  variables,  and  so  on.  The  convention  is  to  put  all  these

symbols in the context Package`Private`, which is not put on the context search path when the

package is read in. 
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This reads in the sample package given above. 

In[1]:= << ExampleData/Collatz.m

The EndPackage command in the package adds the context associated with the package to the 
context search path. 

In[2]:= $ContextPath

Out[2]= 8Collatz`, Global`, System`<

The Collatz function was created in the context Collatz`. 

In[3]:= Context@CollatzD

Out[3]= Collatz`

The parameter n is put in the private context Collatz`Private`. 

In[4]:= ? Collatz`Private`*

Collatz`Private`n

In  the  Collatz  package,  the  functions  that  are  defined  depend  only  on  built-in  Mathematica

functions.  Often,  however,  the  functions  defined  in  one  package  may  depend  on  functions

defined in another package. 

Two things are needed to make this work. First, the other package must be read in, so that the

functions  needed  are  defined.  And  second,  the  context  search  path  must  include  the  context

that these functions are in. 

You  can  explicitly  tell  Mathematica  to  read  in  a  package  at  any  point  using  the  command

<< context`.  ("Files for Packages" discusses the tricky issue of translation from system-indepen-

dent context names to system-dependent file names.) Often, however, you want to set it up so

that  a  particular  package is  read  in  only  if  it  is  needed.  The  command Needs@"context`"D  tells

Mathematica to read in a package if the context associated with that package is not already in

the list $Packages. 
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GetA"context`"E  or <<context ` read in the package corresponding to the specified context

Needs@"context`"D read in the package if the specified context is not already 
in $Packages

BeginPackage@"Package`",8" Needed1 ` ", … <D

begin a package, specifying that certain contexts in addi-
tion to System` are needed

Functions for specifying interdependence of packages. 

If you use BeginPackage@"Package`"D with a single argument, Mathematica puts on the context

search path only the Package` context and the contexts for built-in Mathematica symbols. If the

definitions  you  give  in  your  package  involve  functions  from  other  packages,  you  must  make

sure  that  the  contexts  for  these  packages  are  also  included  in  your  context  search  path.  You

can do this by giving a list of the additional contexts as a second argument to BeginPackage.

BeginPackage  automatically calls Needs  on these contexts, reading in the corresponding pack-

ages if necessary, and then making sure that the contexts are on the context search path. 

Begin@"context`"D switch to a new current context

End@D revert to the previous context

Context manipulation functions. 

Executing a function like Begin  which manipulates contexts changes the way that Mathematica

interprets names you type in. However, you should realize that the change is effective only in

subsequent  expressions  that  you  type  in.  The  point  is  that  Mathematica  always  reads  in  a

complete  input  expression,  and  interprets  the  names  in  it,  before  it  executes  any  part  of  the

expression. As a result, by the time Begin  is executed in a particular expression, the names in

the expression have already been interpreted, and it is too late for Begin to have an effect. 

The  fact  that  context  manipulation  functions  do  not  have  an  effect  until  the  next  complete

expression is read in means that you must be sure to give those functions as separate expres-

sions, typically on separate lines, when you write Mathematica packages. 

The name x is interpreted before this expression is executed, so the Begin has no effect. 

In[5]:= Begin@"a`"D; Print@Context@xDD; End@D

Global`
Out[5]= a`

Context manipulation functions are used primarily as part of packages intended to be read into

Mathematica.  Sometimes,  however,  you  may  find  it  convenient  to  use  such  functions  interac-

tively. 
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Context manipulation functions are used primarily as part of packages intended to be read into

Mathematica.  Sometimes,  however,  you  may  find  it  convenient  to  use  such  functions  interac-

tively. 

This can happen, for example, if you go into a dialog, say using TraceDialog, while executing a

function  defined  in  a  package.  The  parameters  and  temporary  variables  in  the  function  are

typically  in  a  private  context  associated  with  the  package.  Since  this  context  is  not  on  your

context search path, Mathematica will print out the full names of the symbols, and will require

you  to  type  in  these  full  names  in  order  to  refer  to  the  symbols.  You  can  however  use

Begin@"Package`Private`"D  to  make the private context  of  the package your current  context.

This will make Mathematica print out short names for the symbols, and allow you to refer to the

symbols by their short names.

Files for Packages

When you create or use Mathematica packages, you will often want to refer to files in a system-

independent way. You can use contexts to do this. 

The basic  idea is  that  on every computer  system there is  a  convention about  how files  corre-

sponding  to  Mathematica  contexts  should  be  named.  Then,  when  you  refer  to  a  file  using  a

context, the particular version of Mathematica you are using converts the context name to the

file name appropriate for the computer system you are on. 

<<context` read in the file corresponding to the specified context

Using contexts to specify files. 

This reads in one of the standard packages that come with Mathematica. 

In[1]:= << VectorAnalysis`

name.mx file in DumpSave format

name.mxë$SystemIDëname.mx file in DumpSave format for your computer system

name.m file in Mathematica source format

nameëinit.m initialization file for a particular directory

dirê… files in other directories specified by $Path

The typical sequence of files looked for by << name`. 

Mathematica is set up so that << name` will automatically try to load the appropriate version of a

file. It will first try to load a name.mx file that is optimized for your particular computer system.

If it finds no such file, then it will try to load a name.m file containing ordinary system-indepen-

dent Mathematica input. 
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Mathematica is set up so that << name` will automatically try to load the appropriate version of a

file. It will first try to load a name.mx file that is optimized for your particular computer system.

If it finds no such file, then it will try to load a name.m file containing ordinary system-indepen-

dent Mathematica input. 

If  name  is  a  directory,  then  Mathematica  will  try  to  load  the  initialization  file  init.m  in  that

directory. The purpose of the init.m file is to provide a convenient way to set up Mathematica

packages that involve many separate files. The idea is to allow you to give just the command

<< name`,  but  then  to  load  init.m  to  initialize  the  whole  package,  reading  in  whatever  other

files are necessary.

Automatic Loading of Packages

Other  tutorials  have  discussed  explicit  loading  of  Mathematica  packages  using  << package  and

Needs@packageD. Sometimes, however, you may want to set Mathematica up so that it automati-

cally loads a particular package when the package is needed. 

You  can  use  DeclarePackage  to  give  the  names  of  symbols  which  are  defined  in  a  particular

package. Then, when one of these symbols is actually used, Mathematica will automatically load

the package where the symbol is defined. 

DeclarePackage@"context`",8"name1","name2",…<D

declare that a package should automatically be loaded if a 
symbol with any of the names namei is used 

Arranging for automatic loading of packages. 

This specifies that the symbols Div, Grad and Curl are defined in VectorAnalysis`. 

In[1]:= DeclarePackage@"VectorAnalysis`", 8"Div", "Grad", "Curl"<D

Out[1]= VectorAnalysis`

When you first use Grad, Mathematica automatically loads the package that defines it. 

In[2]:= Grad@x^2 + y^2, Cartesian@x, y, zDD

Out[2]= 82 x, 2 y, 0<

When you set up a large collection of Mathematica packages, it is often a good idea to create an

additional  “names  file”  which  contains  a  sequence  of  DeclarePackage  commands,  specifying

packages to load when particular names are used. Within a particular Mathematica session, you

then need to load explicitly only the names file. When you have done this, all  the other pack-

ages will automatically be loaded if and when they are needed. 
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When you set up a large collection of Mathematica packages, it is often a good idea to create an

additional  “names  file”  which  contains  a  sequence  of  DeclarePackage  commands,  specifying

packages to load when particular names are used. Within a particular Mathematica session, you

then need to load explicitly only the names file. When you have done this, all  the other pack-

ages will automatically be loaded if and when they are needed. 

DeclarePackage works by immediately creating symbols with the names you specify, but giving

each  of  these  symbols  the  special  attribute  Stub.  Whenever  Mathematica  finds  a  symbol  with

the  Stub  attribute,  it  automatically  loads  the  package  corresponding  to  the  context  of  the

symbol, in an attempt to find the definition of the symbol.

Manipulating Symbols and Contexts by Name

Symbol@"name"D construct a symbol with a given name

SymbolName@symbD find the name of a symbol

Converting between symbols and their names. 

Here is the symbol x. 

In[1]:= x êê InputForm

Out[1]//InputForm= x

Its name is a string. 

In[2]:= SymbolName@xD êê InputForm

Out[2]//InputForm= "x"

This gives the symbol x again. 

In[3]:= Symbol@"x"D êê InputForm

Out[3]//InputForm= x

Once you have made an assignment such as x = 2, then whenever x is evaluated, it is replaced

by 2. Sometimes, however, you may want to continue to refer to x itself, without immediately

getting the value of x. 

You  can  do  this  by  referring  to  x  by  name.  The  name of  the  symbol  x  is  the  string  "x",  and

even though x itself may be replaced by a value, the string "x" will always stay the same. 

The names of the symbols x and xp are the strings "x" and "xp". 
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The names of the symbols x and xp are the strings "x" and "xp". 

In[4]:= t = 8SymbolName@xD, SymbolName@xpD< êê InputForm

Out[4]//InputForm= {"x", "xp"}

This assigns a value to x. 

In[5]:= x = 2

Out[5]= 2

Whenever you enter x it is now replaced by 2. 

In[6]:= 8x, xp< êê InputForm

Out[6]//InputForm= {2, xp}

The name "x" is not affected, however. 

In[7]:= t êê InputForm

Out[7]//InputForm= InputForm[{"x", "xp"}]

NameQ@" form"D test whether any symbol has a name which matches form

Names@" form"D give a list of all symbol names which match form

Contexts@" form`"D give a list of all context names which match form

Referring to symbols and contexts by name. 

x and xp are symbols that have been created in this Mathematica session; xpp is not. 

In[8]:= 8NameQ@"x"D, NameQ@"xp"D, NameQ@"xpp"D<

Out[8]= 8True, True, False<

You can specify the form of symbol names using string patterns of the kind discussed in "String

Patterns". "x*" stands, for example, for all names that start with x. 

This gives a list of all symbol names in this Mathematica session that begin with x. 

In[9]:= Names@"x*"D êê InputForm

Out[9]//InputForm= {"x", "xp"}

These names correspond to built-in functions in Mathematica. 

In[10]:= Names@"Qu*"D êê InputForm

Out[10]//InputForm= {"QuadraticIrrationalQ", "Quantile", "Quartics", "QuartileDeviation", "Quartiles", 
 "QuartileSkewness", "Quiet", "Quit", "Quotient", "QuotientRemainder"}

This asks for names “close” to WeierstrssP. 
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This asks for names “close” to WeierstrssP. 

In[11]:= Names@"WeierstrssP", SpellingCorrection -> TrueD

Out[11]= 8WeierstrassP<

Clear@" form"D clear the values of all symbols whose names match form

Clear@"context`*"D clear the values of all symbols in the specified context

Remove@" form"D remove completely all symbols whose names match form

Remove@"context`*"D remove completely all symbols in the specified context

Getting rid of symbols by name. 

This clears the values of all symbols whose names start with x. 

In[12]:= Clear@"x*"D

The name "x" is still known, however. 

In[13]:= Names@"x*"D

Out[13]= 8x, xp<

But the value of x has been cleared. 

In[14]:= 8x, xp<

Out[14]= 8x, xp<

This removes completely all symbols whose names start with x. 

In[15]:= Remove@"x*"D

Now not even the name "x" is known. 

In[16]:= Names@"x*"D

Out[16]= 8<

Remove@"Global`*"D remove completely all symbols in the Global` context

Removing all symbols you have introduced. 

If you do not set up any additional contexts, then all the symbols that you introduce in a Mathe-

matica session will be placed in the Global` context. You can remove these symbols completely

using  Remove@"Global`*"D.  Built-in  Mathematica  objects  are  in  the  System`  context,  and  are

thus unaffected by this.

Intercepting the Creation of New Symbols

Core Language     217



Intercepting the Creation of New Symbols

Mathematica  creates  a  new  symbol  when  you  first  enter  a  particular  name.  Sometimes  it  is

useful to “intercept” the process of creating a new symbol. Mathematica provides several ways

to do this. 

OnAGeneral::newsymE print a message whenever a new symbol is created

OffAGeneral::newsymE switch off the message printed when new symbols are 
created

Printing a message when new symbols are created. 

This tells Mathematica to print a message whenever a new symbol is created. 

In[1]:= On@General::newsymD

Mathematica now prints a message about each new symbol that it creates. 

In[2]:= sin@kD

General::newsym: Symbol sin is new. à

General::newsym: Symbol k is new. à

Out[2]= sin@kD

This switches off the message. 

In[3]:= Off@General::newsymD

Generating a message when Mathematica  creates a  new symbol  is  often a good way to  catch

typing  mistakes.  Mathematica  itself  cannot  tell  the  difference  between  an  intentionally  new

name, and a misspelling of a name it already knows. But by reporting all new names it encoun-

ters, Mathematica allows you to see whether any of them are mistakes. 

$NewSymbol a function to be applied to the name and context of new 
symbols which are created

Performing operations when new symbols are created. 
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When  Mathematica  creates  a  new  symbol,  you  may  want  it  not  just  to  print  a  message,  but

instead to perform some other action. Any function you specify as the value of the global vari-

able  $NewSymbol  will  automatically  be  applied  to  strings  giving  the name and context  of  each

new symbol that Mathematica creates. 

This defines a function to be applied to each new symbol which is created. 

In[4]:= $NewSymbol = Print@"Name: ", Ò1, " Context: ", Ò2D &

Out[4]= Print@Name: , Ò1, Context: , Ò2D &

The function is applied once to v and once to w. 

In[5]:= v + w

Name: v Context: Global`

Name: w Context: Global`
Out[5]= v + w
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Strings and Characters

Properties of Strings

Much of what Mathematica does revolves around manipulating structured expressions. But you

can also use Mathematica as a system for handling unstructured strings of text.

"text" a string containing arbitrary text

Text strings. 

When you input a string of text to Mathematica you must always enclose it in quotes. However,

when Mathematica outputs the string it usually does not explicitly show the quotes.

You can see the quotes by asking for the input form of the string. In addition, in a Mathematica

notebook, quotes will typically appear automatically as soon as you start to edit a string. 

When Mathematica outputs a string, it usually does not explicitly show the quotes. 

In[1]:= "This is a string."

Out[1]= This is a string.

You can see the quotes, however, by asking for the input form of the string. 

In[2]:= InputForm@%D

Out[2]//InputForm= "This is a string."

The fact that Mathematica does not usually show explicit quotes around strings makes it possi-

ble for you to use strings to specify quite directly the textual output you want. 

The strings are printed out here without explicit quotes. 

In[3]:= Print@"The value is ", 567, "."D

The value is 567.

You should understand, however, that even though the string "x" often appears as x in output,

it is still a quite different object from the symbol x. 
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The string "x" is not the same as the symbol x. 

In[4]:= "x" === x

Out[4]= False

You can test whether any particular expression is  a string by looking at its  head. The head of

any string is always String. 

All strings have head String. 

In[5]:= Head@"x"D

Out[5]= String

The pattern _String matches any string. 

In[6]:= Cases@8"ab", x, "a", y<, _StringD

Out[6]= 8ab, a<

You  can  use  strings  just  like  other  expressions  as  elements  of  patterns  and  transformations.

Note, however, that you cannot assign values directly to strings. 

This gives a definition for an expression that involves a string. 

In[7]:= z@"gold"D = 79

Out[7]= 79

This replaces each occurrence of the string "aa" by the symbol x. 

In[8]:= 8"aaa", "aa", "bb", "aa"< ê. "aa" -> x

Out[8]= 8aaa, x, bb, x<

Operations on Strings

Mathematica  provides  a  variety  of  functions  for  manipulating  strings.  Most  of  these  functions

are based on viewing strings as a sequence of characters, and many of the functions are analo-

gous to ones for manipulating lists. 
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s1<>s2<>…   or  
StringJoin@8s1,s2,…<D

join several strings together

StringLength@sD give the number of characters in a string

StringReverse@sD reverse the characters in a string

Operations on complete strings. 

You can join together any number of strings using <>. 

In[1]:= "aaaaaaa" <> "bbb" <> "cccccccccc"

Out[1]= aaaaaaabbbcccccccccc

StringLength gives the number of characters in a string. 

In[2]:= StringLength@%D

Out[2]= 20

StringReverse reverses the characters in a string. 

In[3]:= StringReverse@"A string."D

Out[3]= .gnirts A

StringTake@s,nD make a string by taking the first n characters from s

StringTake@s,8n<D take the nth character from s

StringTake@s,8n1,n2<D take characters n1 through n2
StringDrop@s,nD make a string by dropping the first n characters in s

StringDrop@s,8n1,n2<D drop characters n1 through n2

Taking and dropping substrings. 

StringTake  and StringDrop  are the analogs for  strings of  Take  and Drop  for  lists.  Like Take

and Drop, they use standard Mathematica sequence specifications, so that, for example, nega-

tive numbers count character positions from the end of a string. Note that the first character of

a string is taken to have position 1. 

Here is a sample string. 

In[4]:= alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Out[4]= ABCDEFGHIJKLMNOPQRSTUVWXYZ
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This takes the first five characters from alpha. 

In[5]:= StringTake@alpha, 5D

Out[5]= ABCDE

Here is the fifth character in alpha. 

In[6]:= StringTake@alpha, 85<D

Out[6]= E

This drops the characters 10 through 2, counting from the end of the string. 

In[7]:= StringDrop@alpha, 8-10, -2<D

Out[7]= ABCDEFGHIJKLMNOPZ

StringInsert@s,snew,nD insert the string snew at position n in s

StringInsert@s,snew,8n1,n2,…<D

insert several copies of snew into s

Inserting into a string. 

StringInsert@s, snew, nD is set up to produce a string whose nth character is the first character

of snew. 

This produces a new string whose fourth character is the first character of the string "XX". 

In[8]:= StringInsert@"abcdefgh", "XX", 4D

Out[8]= abcXXdefgh

Negative positions are counted from the end of the string. 

In[9]:= StringInsert@"abcdefgh", "XXX", -1D

Out[9]= abcdefghXXX

Each copy of "XXX" is inserted at the specified position in the original string. 

In[10]:= StringInsert@"abcdefgh", "XXX", 82, 4, -1<D

Out[10]= aXXXbcXXXdefghXXX

This uses Riffle to add a space between the words in a list. 

In[11]:= StringJoin@Riffle@8"cat", "in", "the", "hat"<, " "DD

Out[11]= cat in the hat
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StringReplacePart@s,snew,8m,n<D replace the characters at positions m through n in s by the 
string snew

StringReplacePart@s,
snew,88m1,n1<,8m2,n2<,…<D

replace several substrings in s by snew

StringReplacePart@
s,8snew1,snew2,…<,
88m1,n1<,8m2,n2<,…<D

replace substrings in s by the corresponding snewi

Replacing parts of a string. 

This replaces characters 2 through 6 by the string "XXX". 

In[12]:= StringReplacePart@"abcdefgh", "XXX", 82, 6<D

Out[12]= aXXXgh

This replaces two runs of characters by the string "XXX". 

In[13]:= StringReplacePart@"abcdefgh", "XXX", 882, 3<, 85, -1<<D

Out[13]= aXXXdXXX

Now the two runs of characters are replaced by different strings. 

In[14]:= StringReplacePart@"abcdefgh", 8"XXX", "YYYY"<, 882, 3<, 85, -1<<D

Out[14]= aXXXdYYYY

StringPosition@s,subD give a list of the starting and ending positions at which sub 
appears as a substring of s

StringPosition@s,sub,kD include only the first k occurrences of sub in s

StringPosition@s,8sub1,sub2,…<D

include occurrences of any of the subi

Finding positions of substrings. 

You can use StringPosition to find where a particular substring appears within a given string.

StringPosition  returns  a  list,  each  of  whose  elements  corresponds  to  an  occurrence  of  the

substring.  The  elements  consist  of  lists  giving  the  starting  and  ending  character  positions  for

the  substring.  These  lists  are  in  the  form  used  as  sequence  specifications  in  StringTake,

StringDrop and StringReplacePart. 
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This gives a list of the positions of the substring "abc". 

In[15]:= StringPosition@"abcdabcdaabcabcd", "abc"D

Out[15]= 881, 3<, 85, 7<, 810, 12<, 813, 15<<

This gives only the first occurrence of "abc". 

In[16]:= StringPosition@"abcdabcdaabcabcd", "abc", 1D

Out[16]= 881, 3<<

This shows where both "abc" and "cd" appear. By default, overlaps are included. 

In[17]:= StringPosition@"abcdabcdcd", 8"abc", "cd"<D

Out[17]= 881, 3<, 83, 4<, 85, 7<, 87, 8<, 89, 10<<

This does not include overlaps. 

In[18]:= StringPosition@"abcdabcdcd", 8"abc", "cd"<, Overlaps -> FalseD

Out[18]= 881, 3<, 85, 7<, 89, 10<<

StringCount@s,subD count the occurrences of sub in s

StringCount@s,8sub1,sub2,…<D count occurrences of any of the subi

StringFreeQ@s,subD test whether s is free of sub

StringFreeQ@s,8sub1,sub2,…<D test whether s is free of all the subi

Testing for substrings. 

This counts occurrences of either substring, by default not including overlaps. 

In[19]:= StringCount@"abcdabcdcd", 8"abc", "cd"<D

Out[19]= 3

StringReplace@s,sb->sbnewD replace sb by sbnew wherever it appears in s

StringReplace@s,
8sb1->sbnew1,sb2->sbnew2,…<D

replace sbi by the corresponding sbnewi

StringReplace@s,rules,nD do at most n replacements

StringReplaceList@s,rulesD give a list of the strings obtained by making each possible 
single replacement

StringReplaceList@s,rules,nD give at most n results

Replacing substrings according to rules. 

This replaces all occurrences of the character a by the string XX. 
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This replaces all occurrences of the character a by the string XX. 

In[20]:= StringReplace@"abcdabcdaabcabcd", "a" -> "XX"D

Out[20]= XXbcdXXbcdXXXXbcXXbcd

This replaces abc by Y, and d by XXX. 

In[21]:= StringReplace@"abcdabcdaabcabcd", 8"abc" -> "Y", "d" -> "XXX"<D

Out[21]= YXXXYXXXaYYXXX

The first occurrence of cde is not replaced because it overlaps with abc. 

In[22]:= StringReplace@"abcde abacde", 8"abc" -> "X", "cde" -> "Y"<D

Out[22]= Xde abaY

StringReplace  scans  a  string  from  left  to  right,  doing  all  the  replacements  it  can,  and  then

returning the resulting string.  Sometimes,  however,  it  is  useful  to  see what  all  possible  single

replacements would give. You can get a list of all these results using StringReplaceList. 

This gives a list of the results of replacing each of the a’s. 

In[23]:= StringReplaceList@"aaaaa", "a" -> "X"D

Out[23]= 8Xaaaa, aXaaa, aaXaa, aaaXa, aaaaX<

This shows the results of all possible single replacements. 

In[24]:= StringReplaceList@"abcde abacde", 8"abc" -> "X", "cde" -> "Y"<D

Out[24]= 8Xde abacde, abY abacde, abcde abaY<

StringSplit@sD split s into substrings delimited by whitespace

StringSplit@s,delD split at delimiter del

StringSplit@s,8del1,del2,…<D split at any of the deli

StringSplit@s,del,nD split into at most n substrings

Splitting strings. 

This splits the string at every run of spaces. 

In[25]:= StringSplit@"a b::c d::e f g"D

Out[25]= 8a, b::c, d::e, f, g<
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This splits at each "::". 

In[26]:= StringSplit@"a b::c d::e f g", "::"D

Out[26]= 8a b, c d, e f g<

This splits at each colon or space. 

In[27]:= StringSplit@"a b::c d::e f g", 8":", " "<D

Out[27]= 8a, b, , c, d, , e, f, g<

StringSplit@s,del->rhsD insert rhs at the position of each delimiter

StringSplit@s,
8del1->rhs1,del2->rhs2,…<D

insert rhsi at the position of the corresponding deli

Splitting strings with replacements for delimiters. 

This inserts 8x, y< at each :: delimiter. 

In[28]:= StringSplit@"a b::c d::e f g", "::" -> 8x, y<D

Out[28]= 8a b, 8x, y<, c d, 8x, y<, e f g<

Sort@8s1,s2,s3,…<D sort a list of strings

Sorting strings. 

Sort sorts strings into standard dictionary order. 

In[29]:= Sort@8"cat", "fish", "catfish", "Cat"<D

Out[29]= 8cat, Cat, catfish, fish<

StringTrim@sD trims whitespace from the beginning and end of s

StringTrim@s,pattD trims substrings matching patt from the beginning and end

Remove whitespace from ends of string.

In[30]:= StringTrim@" abcabc "D êê FullForm

Out[30]//FullForm= "abcabc"

SequenceAlignment@s1,s2D finds an optimal alignment of s1 and s2
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Find an optimal alignment of two strings.

In[31]:= SequenceAlignment@"abcXabcXabc", "abcYabcYabc"D

Out[31]= 8abc, 8X, Y<, abc, 8X, Y<, abc<

Characters in Strings

Characters@"string"D convert a string to a list of characters

StringJoin@8"c1","c2",…<D convert a list of characters to a string

Converting between strings and lists of characters. 

This gives a list of the characters in the string. 

In[1]:= Characters@"A string."D

Out[1]= 8A, , s, t, r, i, n, g, .<

You can apply standard list manipulation operations to this list. 

In[2]:= RotateLeft@%, 3D

Out[2]= 8t, r, i, n, g, ., A, , s<

StringJoin converts the list of characters back to a single string. 

In[3]:= StringJoin@%D

Out[3]= tring.A s

DigitQ@stringD test whether all characters in a string are digits

LetterQ@stringD test whether all characters in a string are letters

UpperCaseQ@stringD test whether all characters in a string are uppercase letters

LowerCaseQ@stringD test whether all characters in a string are lowercase letters

Testing characters in a string. 

All characters in the string given are letters. 

In[4]:= LetterQ@"Mixed"D

Out[4]= True
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Not all the letters are uppercase, so the result is False. 

In[5]:= UpperCaseQ@"Mixed"D

Out[5]= False

ToUpperCase@stringD generate a string in which all letters are uppercase

ToLowerCase@stringD generate a string in which all letters are lowercase

Converting between upper and lower case. 

This converts all letters to upper case. 

In[6]:= ToUpperCase@"Mixed Form"D

Out[6]= MIXED FORM

CharacterRange@"c1","c2"D generate a list of all characters from c1 and c2

Generating ranges of characters. 

This generates a list of lowercase letters in alphabetical order. 

In[7]:= CharacterRange@"a", "h"D

Out[7]= 8a, b, c, d, e, f, g, h<

Here is a list of uppercase letters. 

In[8]:= CharacterRange@"T", "Z"D

Out[8]= 8T, U, V, W, X, Y, Z<

Here are some digits. 

In[9]:= CharacterRange@"0", "7"D

Out[9]= 80, 1, 2, 3, 4, 5, 6, 7<

CharacterRange  will  usually  give  meaningful  results  for  any  range  of  characters  that  have  a

natural ordering. The way CharacterRange works is by using the character codes that Mathemat -

ica internally assigns to every character. 

This shows the ordering defined by the internal character codes used by Mathematica. 

In[10]:= CharacterRange@"T", "e"D

Out[10]= 9T, U, V, W, X, Y, Z, @, \, D, ^, _, `, a, b, c, d, e=

String Patterns
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String Patterns

An  important  feature  of  string  manipulation  functions  like  StringReplace  is  that  they  handle

not only literal strings but also patterns for collections of strings. 

This replaces b or c by X. 

In[1]:= StringReplace@"abcd abcd", "b" "c" -> "X"D

Out[1]= aXXd aXXd

This replaces any character by u. 

In[2]:= StringReplace@"abcd abcd", _ -> "u"D

Out[2]= uuuuuuuuu

You  can  specify  patterns  for  strings  by  using  string  expressions  that  contain  ordinary  strings

mixed with Mathematica symbolic pattern objects. 

s1~~s2~~…   or  StringExpression@s1,s2,…D

a sequence of strings and pattern objects

String expressions. 

Here is a string expression that represents the string ab followed by any single character. 

In[3]:= "ab" ~~ _

Out[3]= ab ~~ _

This makes a replacement for each occurrence of the string pattern. 

In[4]:= StringReplace@"abc abcb abdc", "ab" ~~ _ -> "X"D

Out[4]= X Xb Xc
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StringMatchQ@"s",pattD test whether "s" matches patt

StringFreeQ@"s",pattD test whether "s" is free of substrings matching patt

StringCases@"s",pattD give a list of the substrings of "s" that match patt

StringCases@"s",lhs->rhsD replace each case of lhs by rhs

StringPosition@"s",pattD give a list of the positions of substrings that match patt

StringCount@"s",pattD count how many substrings match patt

StringReplace@"s",lhs->rhsD replace every substring that matches lhs

StringReplaceList@"s",lhs->rhsD

give a list of all ways of replacing lhs

StringSplit@"s",pattD split s at every substring that matches patt

StringSplit@"s",lhs->rhsD split at lhs, inserting rhs in its place

Functions that support string patterns. 

This gives all cases of the pattern that appear in the string. 

In[5]:= StringCases@"abc abcb abdc", "ab" ~~ _D

Out[5]= 8abc, abc, abd<

This gives each character that appears after an "ab" string. 

In[6]:= StringCases@"abc abcb abdc", "ab" ~~ x_ -> xD

Out[6]= 8c, c, d<

This gives all pairs of identical characters in the string. 

In[7]:= StringCases@"abbcbccaabbabccaa", x_ ~~ x_D

Out[7]= 8bb, cc, aa, bb, cc, aa<

You can use all  the standard Mathematica  pattern objects in string patterns. Single blanks (_)

always  stand  for  single  characters.  Double  blanks  (__)  stand  for  sequences  of  one  or  more

characters. 

Single blank (_) stands for any single character. 

In[8]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ _ -> "X"D

Out[8]= 8ab, aX, aXd<
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Double blank (__) stands for any sequence of one or more characters. 

In[9]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ __ -> "X"D

Out[9]= 8ab, aX, aX<

Triple blank (___) stands for any sequence of zero or more characters. 

In[10]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ ___ -> "X"D

Out[10]= 8aX, aX, aX<

"string" a literal string of characters

_ any single character

__ any sequence of one or more characters

___ any sequence of zero or more characters

x_ , x__ , x___ substrings given the name x

x:pattern pattern given the name x

pattern.. pattern repeated one or more times

pattern... pattern repeated zero or more times

8patt1,patt2,…<  or patt1 patt2 …

a pattern matching at least one of the patti

pattê;cond a pattern for which cond evaluates to True

pattern?test a pattern for which test yields True for each character

Whitespace a sequence of whitespace characters

NumberString the characters of a number

charobj an object representing a character class (see below)

RegularExpression@"regexp"D substring matching a regular expression

Objects in string patterns. 

This splits at either a colon or semicolon. 

In[11]:= StringSplit@"a:b;c:d", ":" ";"D

Out[11]= 8a, b, c, d<

This finds all runs containing only a or b. 

In[12]:= StringCases@"aababbcccdbaa", H"a" "b"L ..D

Out[12]= 8aababb, baa<
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Alternatives can be given in lists in string patterns. 

In[13]:= StringCases@"aababbcccdbaa", 8"a", "b"< ..D

Out[13]= 8aababb, baa<

You  can  use  standard  Mathematica  constructs  such  as  Characters@"c1c2…"D  and

CharacterRange@"c1", "c2"D to generate lists of alternative characters to use in string patterns. 

This gives a list of characters. 

In[14]:= Characters@"aeiou"D

Out[14]= 8a, e, i, o, u<

This replaces the vowel characters. 

In[15]:= StringReplace@"abcdefghijklm", Characters@"aeiou"D -> "X"D

Out[15]= XbcdXfghXjklm

This gives characters in the range "A" through "H". 

In[16]:= CharacterRange@"A", "H"D

Out[16]= 8A, B, C, D, E, F, G, H<

In addition to allowing explicit lists of characters, Mathematica provides symbolic specifications

for several common classes of possible characters in string patterns. 

8"c1","c2",…< any of the "ci"

Characters@"c1c2…"D any of the "ci"

CharacterRange@"c1","c2"D any character in the range "c1" to "c2"

DigitCharacter digit 0|9

LetterCharacter letter

WhitespaceCharacter space, newline, tab or other whitespace character

WordCharacter letter or digit

Except@pD any character except ones matching p

Specifications for classes of characters. 

This picks out the digit characters in a string. 

In[17]:= StringCases@"a6;b23c456;", DigitCharacterD

Out[17]= 86, 2, 3, 4, 5, 6<

This picks out all characters except digits. 
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This picks out all characters except digits. 

In[18]:= StringCases@"a6;b23c456;", Except@DigitCharacterDD

Out[18]= 8a, ;, b, c, ;<

This picks out all runs of one or more digits. 

In[19]:= StringCases@"a6;b23c456", DigitCharacter ..D

Out[19]= 86, 23, 456<

The results are strings. 

In[20]:= InputForm@%D

Out[20]//InputForm= {"6", "23", "456"}

This converts the strings to numbers. 

In[21]:= ToExpression@%D + 1

Out[21]= 87, 24, 457<

String patterns are often used as a way to extract structure from strings of textual data. Typi-

cally this works by having different parts of a string pattern match substrings that correspond

to different parts of the structure. 

This picks out each = followed by a number. 

In[22]:= StringCases@"a1=6.7, b2=8.87", "=" ~~ NumberStringD

Out[22]= 8=6.7, =8.87<

This gives the numbers alone. 

In[23]:= StringCases@"a1=6.7, b2=8.87", "=" ~~ x : NumberString -> xD

Out[23]= 86.7, 8.87<

This extracts “variables” and “values” from the string. 

In[24]:= StringCases@"a1=6.7, b2=8.87",
v : WordCharacter .. ~~ "=" ~~ x : NumberString -> 8v, x<D

Out[24]= 88a1, 6.7<, 8b2, 8.87<<

ToExpression converts them to ordinary symbols and numbers. 

In[25]:= ToExpression@%D^2

Out[25]= 99a12, 44.89=, 9b22, 78.6769==

In many situations, textual data may contain sequences of spaces, newlines or tabs that should

be  considered  “whitespace”,  and  perhaps  ignored.  In  Mathematica,  the  symbol  Whitespace

stands for any such sequence. 
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In many situations, textual data may contain sequences of spaces, newlines or tabs that should

be  considered  “whitespace”,  and  perhaps  ignored.  In  Mathematica,  the  symbol  Whitespace

stands for any such sequence. 

This removes all whitespace from the string. 

In[26]:= StringReplace@"aa b cc d", Whitespace -> ""D

Out[26]= aabccd

This replaces each sequence of spaces by a single comma. 

In[27]:= StringReplace@"aa b cc d", Whitespace -> ","D

Out[27]= aa,b,cc,d

String patterns normally apply to substrings that appear at any position in a given string. Some-

times, however, it is convenient to specify that patterns can apply only to substrings at particu-

lar positions. You can do this by including symbols such as StartOfString  in your string pat-

terns. 

StartOfString start of the whole string

EndOfString end of the whole string

StartOfLine start of a line

EndOfLine end of a line

WordBoundary boundary between word characters and others

ExceptAStartOfStringE , etc. anywhere except at the particular positions 
StartOfString, etc.

Constructs representing special positions in a string. 

This replaces "a" wherever it appears in a string. 

In[28]:= StringReplace@8"abc", "baca"<, "a" -> "XX"D

Out[28]= 8XXbc, bXXcXX<

This replaces "a" only when it immediately follows the start of a string. 

In[29]:= StringReplace@8"abc", "baca"<, StartOfString ~~ "a" -> "XX"D

Out[29]= 8XXbc, baca<
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This replaces all occurrences of the substring "the". 

In[30]:= StringReplace@"the others", "the" -> "XX"D

Out[30]= XX oXXrs

This replaces only occurrences that have a word boundary on both sides. 

In[31]:= StringReplace@"the others", WordBoundary ~~ "the" ~~ WordBoundary -> "XX"D

Out[31]= XX others

String  patterns  allow  the  same  kind  of  ê;  and  other  conditions  as  ordinary  Mathematica  pat-

terns. 

This gives cases of unequal successive characters in the string. 

In[32]:= StringCases@"aaabbcaaaabaaa", x_ ~~ y_ ê; x != yD

Out[32]= 8ab, bc, ab<

When you give an object such as x__ or e .. in a string pattern, Mathematica normally assumes

that you want this to match the longest possible sequence of characters. Sometimes, however,

you may instead want to match the shortest possible sequence of  characters.  You can specify

this using Shortest@pD. 

Longest@pD the longest consistent match for p (default)

Shortest@pD the shortest consistent match for p

Objects representing longest and shortest matches. 

The string pattern by default matches the longest possible sequence of characters. 

In[33]:= StringCases@"-HaL--HbbL--HcL-", "H" ~~ __ ~~ "L"D

Out[33]= 8HaL--HbbL--HcL<

Shortest specifies that instead the shortest possible match should be found. 

In[34]:= StringCases@"-HaL--HbbL--HcL-", Shortest@"H" ~~ __ ~~ "L"DD

Out[34]= 8HaL, HbbL, HcL<

Mathematica by default treats characters such "X" and "x" as distinct. But by setting the option

IgnoreCase -> True  in  string  manipulation  operations,  you  can  tell  Mathematica  to  treat  all

such uppercase and lowercase letters as equivalent. 
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IgnoreCase->True treat uppercase and lowercase letters as equivalent

Specifying case-independent string operations. 

This replaces all occurrences of "the", independent of case. 

In[35]:= StringReplace@"The cat in the hat.", "the" -> "a", IgnoreCase -> TrueD

Out[35]= a cat in a hat.

In some string operations, one may have to specify whether to include overlaps between sub-

strings.  By  default  StringCases  and  StringCount  do  not  include  overlaps,  but

StringPosition does. 

This picks out pairs of successive characters, by default omitting overlaps. 

In[36]:= StringCases@"abcdefg", _ ~~ _D

Out[36]= 8ab, cd, ef<

This includes the overlaps. 

In[37]:= StringCases@"abcdefg", _ ~~ _, Overlaps -> TrueD

Out[37]= 8ab, bc, cd, de, ef, fg<

StringPosition includes overlaps by default. 

In[38]:= StringPosition@"abcdefg", _ ~~ _D

Out[38]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<<

Overlaps->All include all overlaps

Overlaps->True include at most one overlap beginning at each position

Overlaps->False exclude all overlaps

Options for handling overlaps in strings. 

This yields only a single match. 

In[39]:= StringCases@"abcd", __, Overlaps -> FalseD

Out[39]= 8abcd<

This yields a succession of overlapping matches. 

In[40]:= StringCases@"abcd", __, Overlaps -> TrueD

Out[40]= 8abcd, bcd, cd, d<

This includes all possible overlapping matches. 
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This includes all possible overlapping matches. 

In[41]:= StringCases@"abcd", __, Overlaps -> AllD

Out[41]= 8abcd, abc, ab, a, bcd, bc, b, cd, c, d<

Regular Expressions

General  Mathematica  patterns  provide  a  powerful  way  to  do  string  manipulation.  But  particu-

larly if you are familiar with specialized string manipulation languages, you may sometimes find

it  convenient  to  specify  string  patterns  using  regular  expression  notation.  You  can  do  this  in

Mathematica with RegularExpression objects.

RegularExpression@"regex"D a regular expression specified by "regex"

Using regular expression notation in Mathematica. 

This replaces all occurrences of a or b. 

In[1]:= StringReplace@"abcd acbd", RegularExpression@"@abD"D -> "XX"D

Out[1]= XXXXcd XXcXXd

This specifies the same operation using a general Mathematica string pattern. 

In[2]:= StringReplace@"abcd acbd", "a" "b" -> "XX"D

Out[2]= XXXXcd XXcXXd

You can mix regular expressions with general patterns. 

In[3]:= StringReplace@"abcd acbd", RegularExpression@"@abD"D ~~ _ -> "YY"D

Out[3]= YYcd YYYY

RegularExpression in Mathematica supports all standard regular expression constructs. 
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c the literal character c

. any character except newline

@c1 c2 …D any of the characters ci

@c1-c2D any character in the range c1|c2
@^c1 c2 …D any character except the ci

p* p repeated zero or more times

p+ p repeated one or more times

p? zero or one occurrence of p

p 8m,n< p repeated between m and n times

p*?, p+?, p ?? the shortest consistent strings that match

Hp1 p2 …L strings matching the sequence p1 p2 …
p1 p2 strings matching p1 or p2

Basic constructs in Mathematica regular expressions. 

This finds substrings that match the specified regular expression. 

In[4]:= StringCases@"abcddbbbacbbaa", RegularExpression@"Ha»bbL+"DD

Out[4]= 8a, bb, a, bbaa<

This does the same operation with a general Mathematica string pattern. 

In[5]:= StringCases@"abcddbbbacbbaa", H"a" "bb"L ..D

Out[5]= 8a, bb, a, bbaa<

There is a close correspondence between many regular expression constructs and basic general

Mathematica string pattern constructs. 

Core Language     239



. _  (strictly Except@"în"D )

@c1 c2 …D Characters@" c1 c2 … "D

@c1-c2D CharacterRange@"c1","c2"D

@^c1 c2 …D ExceptACharacters@" c1 c2 … "DE

p* p...
p+ p..
p? p ""

p*?, p+?, p ?? Shortest@p…D,…
Hp1 p2 …L Hp1~~p2~~…L

p1 p2 p1 p2

Correspondences between regular expression and general string pattern constructs. 

Just  as  in  general  Mathematica  string  patterns,  there  are  special  notations  in  regular  expres-

sions for various common classes of characters. Note that you need to use double backslashes

( î î) to enter most of these notations in Mathematica regular expression strings. 

\\ d digit 0|9 (DigitCharacter)

\\ D non-digit (Except@DigitCharacterD)

\\ s space, newline, tab or other whitespace character 
(WhitespaceCharacter)

\\ S non-whitespace character 
(Except@WhitespaceCharacterD)

\\ w word character (letter, digit or _) (WordCharacter)

\\ W non-word character (Except@WordCharacterD)

@@:class:DD characters in a named class

@^@:class:DD characters not in a named class

Regular expression notations for classes of characters. 

This gives each occurrence of a followed by digit characters. 

In[6]:= StringCases@"a10b6a77a3aÒ", RegularExpression@"a\\d+"DD

Out[6]= 8a10, a77, a3<

Here is the same thing done with a general Mathematica string pattern. 

In[7]:= StringCases@"a10b6a77a3aÒ", "a" ~~ DigitCharacter ..D

Out[7]= 8a10, a77, a3<

Mathematica  supports  the  standard  POSIX  character  classes  alnum,  alpha,  ascii,  blank,

cntrl, digit, graph, lower, print, punct, space, upper, word, xdigit. 

240     Core Language



Mathematica  supports  the  standard  POSIX  character  classes  alnum,  alpha,  ascii,  blank,

cntrl, digit, graph, lower, print, punct, space, upper, word, xdigit. 

This finds runs of uppercase letters. 

In[8]:= StringCases@"AaBBccDDeefG", RegularExpression@"@@:upper:DD+"DD

Out[8]= 8A, BB, DD, G<

This does the same thing. 

In[9]:= StringCases@"AaBBccDDeefG", CharacterRange@"A", "Z"D ..D

Out[9]= 8A, BB, DD, G<

^ the beginning of the string (StartOfString)

$ the end of the string (EndOfString)

\\ b word boundary (WordBoundary)

\\ B anywhere except a word boundary 
(Except@WordBoundaryD)

Regular expression notations for positions in strings. 

In  general  Mathematica  patterns,  you  can  use  constructs  like  x_  and  x : patt  to  give  arbitrary

names  to  objects  that  are  matched.  In  regular  expressions,  there  is  a  way  to  do  something

somewhat  like  this  using  numbering:  the  nth  parenthesized  pattern  object  HpL  in  a  regular

expression can be referred to as \\ n within the body of the pattern, and $n outside it. 

This finds pairs of identical letters that appear together. 

In[10]:= StringCases@"aaabcccabbaacba", RegularExpression@"H.L\\1"DD

Out[10]= 8aa, cc, bb, aa<

This does the same thing using a general Mathematica string pattern. 

In[11]:= StringCases@"aaabcccabbaacba", x_ ~~ x_D

Out[11]= 8aa, cc, bb, aa<

The $1 refers to the letter matched by H.L. 

In[12]:= StringCases@"aaabcccabbaacba", RegularExpression@"H.L\\1"D -> "$1"D

Out[12]= 8a, c, b, a<
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Here is the Mathematica pattern version. 

In[13]:= StringCases@"aaabcccabbaacba", x_ ~~ x_ -> xD

Out[13]= 8a, c, b, a<

Special Characters

In addition to the ordinary characters that appear on a standard keyboard, you can include in

Mathematica strings any of the special characters that are supported by Mathematica. 

Here is a string containing special characters. 

In[1]:= "a⊕b⊕…"

Out[1]= a⊕b⊕…

You can manipulate this string just as you would any other. 

In[2]:= StringReplace@%, "⊕" -> " üü "D

Out[2]= a üü b üü …

Here is the list of the characters in the string. 

In[3]:= Characters@%D

Out[3]= 8a, , ü, ü, , b, , ü, ü, , …<

In a Mathematica notebook, a special character such as a can always be displayed directly. But

if  you  use  a  text-based  interface,  then  typically  the  only  characters  that  can  readily  be  dis-

played are the ones that appear on your keyboard. 

As a result,  what Mathematica  does in such situations is to try to approximate special  charac-

ters by similar-looking sequences of ordinary characters. And when this is not practical, Mathe-

matica just gives the full name of the special character. 

In a Mathematica notebook using StandardForm, special characters can be displayed directly. 

In[4]:= "Lamé ö ab+"

Out[4]= Lamé ö ab+

242     Core Language



In OutputForm, however, the special characters are approximated when possible by sequences 
of ordinary ones. 

In[5]:= % êê OutputForm

Out[5]//OutputForm= Lamé ö ab+

Mathematica always uses full names for special characters in InputForm. This means that when

special characters are written out to files or external programs, they are by default represented

purely as sequences of ordinary characters. 

This uniform representation is crucial  in allowing special  characters in Mathematica  to be used

in a way that does not depend on the details of particular computer systems. 

In InputForm the full names of all special characters are always written out explicitly. 

In[6]:= "Lamé ö ab+" êê InputForm

Out[6]//InputForm= "Lamé ö ab+"

a a literal character

î@NameD a character specified using its full name

î" a " to be included in a string

îî a î to be included in a string

Ways to enter characters in a string. 

You have to use î to “escape” any " or î characters in strings that you enter. 

In[7]:= "Strings can contain \"quotes\" and \\ characters."

Out[7]= Strings can contain "quotes" and \ characters.

îî produces a literal î rather than forming part of the specification of a. 

In[8]:= "\\@AlphaD is a."

Out[8]= \[Alpha] is a.

This breaks the string into a list of individual characters. 

In[9]:= Characters@%D

Out[9]= 9\, @, A, l, p, h, a, D, , i, s, , a, .=
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This creates a list of the characters in the full name of a. 

In[10]:= Characters@ToString@FullForm@"a"DDD

Out[10]= 9", \, @, A, l, p, h, a, D, "=

And this produces a string consisting of an actual a from its full name. 

In[11]:= ToExpression@"\"\\@" <> "Alpha" <> "D\""D

Out[11]= a

Newlines and Tabs in Strings

în a newline (line feed) to be included in a string

ît a tab to be included in a string

Explicit representations of newlines and tabs in strings. 

This prints on two lines. 

In[1]:= "First line.\nSecond line."

Out[1]= First line.
Second line.

In InputForm there is an explicit î n to represent the newline. 

In[2]:= InputForm@%D

Out[2]//InputForm= "First line.\nSecond line."

Mathematica keeps line breaks entered within a string.

In[3]:= "A string on
two lines."

Out[3]= A string on
two lines.

There is a newline in the string. 

In[4]:= InputForm@%D

Out[4]//InputForm= "A string on \ntwo lines."
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With a single backslash at the end of a line, Mathematica ignores the line break. 

In[5]:= "A string on \
one line."

Out[5]= A string on one line.

You should  realize  that  even though it  is  possible  to  achieve  some formatting  of  Mathematica

output  by  creating  strings  which  contain  raw  tabs  and  newlines,  this  is  rarely  a  good  idea.

Typically  a  much better  approach is  to  use the higher-level  Mathematica  formatting primitives

discussed in "String-Oriented Output Formats", "Output Formats for Numbers", and "Tables and

Matrices".  These  primitives  will  always  yield  consistent  output,  independent  of  such  issues  as

the positions of tab settings on a particular device. 

In strings with newlines, text is always aligned on the left. 

In[6]:= 8"Here is\na string\non several lines.", "Here is\nanother"<

Out[6]= 8Here is
a string
on several lines., Here is
another<

The front end formatting construct Column gives more control. Here text is aligned on the right. 

In[7]:= Column@8"First line", "Second", "Third"<, RightD

Out[7]=
First line

Second
Third

And here the text is centered. 

In[8]:= Column@8"First line", "Second", "Third"<, CenterD

Out[8]=
First line

Second
Third
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Character Codes

ToCharacterCode@"string"D give a list of the character codes for the characters in a 
string

FromCharacterCode@nD construct a character from its character code

FromCharacterCode@8n1,n2,…<D

construct a string of characters from a list of character 
codes

Converting to and from character codes. 

Mathematica assigns every character that can appear in a string a unique character code. This

code is used internally as a way to represent the character. 

This gives the character codes for the characters in the string. 

In[1]:= ToCharacterCode@"ABCD abcd"D

Out[1]= 865, 66, 67, 68, 32, 97, 98, 99, 100<

FromCharacterCode reconstructs the original string. 

In[2]:= FromCharacterCode@%D

Out[2]= ABCD abcd

Special characters also have character codes. 

In[3]:= ToCharacterCode@"a⊕Gû«"D

Out[3]= 8945, 8853, 915, 8854, 8709<

CharacterRange@"c1","c2"D generate a list of characters with successive character 
codes

Generating sequences of characters. 

This gives part of the English alphabet. 

In[4]:= CharacterRange@"a", "k"D

Out[4]= 8a, b, c, d, e, f, g, h, i, j, k<
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Here is the Greek alphabet. 

In[5]:= CharacterRange@"a", "w"D

Out[5]= 8a, b, g, d, ε, z, h, q, i, k, l, m, n, x, o, p, r, V, s, t, u, j, c, y, w<

Mathematica  assigns  names  such  as  î @AlphaD  to  a  large  number  of  special  characters.  This

means  that  you  can  always  refer  to  such  characters  just  by  giving  their  names,  without  ever

having to know their character codes. 

This generates a string of special characters from their character codes. 

In[6]:= FromCharacterCode@88706, 8709, 8711, 8712<D

Out[6]= ∂«“œ

You can always refer to these characters by their names, without knowing their character 
codes. 

In[7]:= FullForm@%D

Out[7]//FullForm= "\@PartialDD\[EmptySet]\@DelD\@ElementD"

Mathematica has names for all the common characters that are used in mathematical notation

and in standard European languages. But for a language such as Japanese, there are more than

3,000  additional  characters,  and  Mathematica  does  not  assign  an  explicit  name  to  each  of

them. Instead, it refers to such characters by standardized character codes. 

Here is a string containing Japanese characters. 

In[8]:= "数学"

Out[8]= 数学

In FullForm, these characters are referred to by standardized character codes. The character 
codes are given in hexadecimal. 

In[9]:= FullForm@%D

Out[9]//FullForm= "\:6570\:5b66"
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The notebook front end for Mathematica is typically set up so that when you enter a character

in a particular font, Mathematica will automatically work out the character code for that charac-

ter. 

Sometimes,  however,  you may find it  convenient  to  be able to enter  characters  directly  using

character codes. 

î.nn a character with hexadecimal code nn

\:nnnn a character with hexadecimal code nnnn

Ways to enter characters directly in terms of character codes. 

For characters with character codes below 256, you can use \.nn. For characters with character

codes above 256, you must use \:nnnn. Note that in all cases you must give a fixed number of

hexadecimal digits, padding with leading 0s if necessary. 

This gives character codes in hexadecimal for a few characters. 

In[10]:= BaseForm@ToCharacterCode@"Aàa¡"D, 16D

Out[10]//BaseForm= 84116, e016, 3b116, 213516<

This enters the characters using their character codes. Note the leading 0 inserted in the charac-
ter code for a. 

In[11]:= "Aàa¡"

Out[11]= Aàa¡

In assigning codes to characters, Mathematica  follows three compatible standards: ASCII, ISO

Latin-1, and Unicode. ASCII covers the characters on a normal American English keyboard. ISO

Latin-1  covers  characters  in  many  European  languages.  Unicode  is  a  more  general  standard

which  defines  character  codes  for  several  tens  of  thousands  of  characters  used  in  languages

and notations around the world. 
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0 | 127 (î.00 | î.7f) ASCII characters

1 | 31 (î.01 | î.1f) ASCII control characters

32 | 126 (î.20 | î.7e) printable ASCII characters

97 | 122 (î.61 | î.7a) lower-case English letters

129 | 255 (î.81 | î.ff) ISO Latin-1 characters

192 | 255 (î.c0 | î.ff) letters in European languages

0 | 59391 (î:0000 | î:e7ff) Unicode standard public characters

913 | 1009 (î:0391 | î:03f1) Greek letters

12288 | 35839 (î:3000 | î:8bff) Chinese, Japanese and Korean characters

8450 | 8504 (î:2102 | î:2138) modified letters used in mathematical notation

8592 | 8677 (î:2190 | î:21e5) arrows

8704 | 8945 (î:2200 | î:22f1) mathematical symbols and operators

64256 | 64300 (î:fb00 | î:fb2c) Unicode private characters defined specially by 
Mathematica

A few ranges of character codes used by Mathematica. 

Here are all the printable ASCII characters. 

In[12]:= FromCharacterCode@Range@32, 126DD

Out[12]= 
!"Ò$%&'HL*+,-.ê0123456789:;<=>?üABCDEFGHIJKLMNOPQRSTUVWXYZ@\D^_`abcdefghijklmnopqrstuvwxyz8»<
~

Here are some ISO Latin-1 letters. 

In[13]:= FromCharacterCode@Range@192, 255DD

Out[13]= ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖµØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö¸øùúûüýþÿ

Here are some special characters used in mathematical notation. The empty boxes correspond 
to characters not available in the current font. 

In[14]:= FromCharacterCode@Range@8704, 8750DD

Out[14]= "∁∂$±«∆“œ–∊úù'∎¤ˇ⁄-°∔∕î∗Î∙,∛∜∝¶¨—∡Æ˝I˛Jflfi∩∪Ÿ ∬∭ò

Here are a few Japanese characters. 

In[15]:= FromCharacterCode@Range@30 000, 30030DD

Out[15]= 田由甲申甴电甶男甸甹町画甼甽甾甿畀畁畂畃畄畅畆畇畈畉畊畋界畍畎

Raw Character Encodings
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Raw Character Encodings

Mathematica  always  allows  you  to  refer  to  special  characters  by  using  names  such  as

î @AlphaD  or  explicit  hexadecimal  codes such as î : 03 b1.  And when Mathematica  writes  out

files, it by default uses these names or hexadecimal codes.

But sometimes you may find it convenient to use raw encodings for at least some special charac-

ters.  What this  means is  that rather than representing special  characters by names or explicit

hexadecimal codes, you instead represent them by raw bit patterns appropriate for a particular

computer system or particular font. 

$CharacterEncoding=None use printable ASCII names for all special characters

$CharacterEncoding="name" use the raw character encoding specified by name

$SystemCharacterEncoding the default raw character encoding for your particular 
computer system

Setting up raw character encodings. 

When you press a key or combination of keys on your keyboard, the operating system of your

computer  sends  a  certain  bit  pattern  to  Mathematica.  How this  bit  pattern  is  interpreted  as  a

character within Mathematica will depend on the character encoding that has been set up. 

The  notebook  front  end  for  Mathematica  typically  takes  care  of  setting  up  the  appropriate

character encoding automatically for whatever font you are using. But if  you use Mathematica

with a text-based interface or via files or pipes, then you may need to set $CharacterEncoding

explicitly. 

By  specifying  an  appropriate  value  for  $CharacterEncoding  you  will  typically  be  able  to  get

Mathematica to handle raw text generated by whatever language-specific text editor or operat-

ing system you use. 

You should realize, however, that while the standard representation of special  characters used

in  Mathematica  is  completely  portable  across  different  computer  systems,  any  representation

that involves raw character encodings will inevitably not be. 
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"PrintableASCII" printable ASCII characters only (default)

"ASCII" all ASCII including control characters

"ISOLatin1" characters for common western European languages

"ISOLatin2" characters for central and eastern European languages

"ISOLatin3" characters for additional European languages (e.g. Cata-
lan, Turkish)

"ISOLatin4" characters for other additional European languages (e.g. 
Estonian, Lappish)

"ISOLatinCyrillic" English and Cyrillic characters

"AdobeStandard" Adobe standard PostScript font encoding

"MacintoshRoman" Macintosh roman font encoding

"WindowsANSI" Windows standard font encoding

"Symbol" symbol font encoding

"ZapfDingbats" Zapf dingbats font encoding

"ShiftJIS" shift-JIS for Japanese (mixture of 8- and 16-bit)

"EUC" extended Unix code for Japanese (mixture of 8- and 16-bit)

"UTF8" Unicode transformation format encoding

"Unicode" raw 16-bit Unicode bit patterns

Some raw character encodings supported by Mathematica. 

Mathematica  knows about various raw character encodings, appropriate for different computer

systems  and  different  languages.  Copying  of  characters  between  the  Mathematica  notebook

interface and user interface environment on your computer generally uses the native character

encoding  for  that  environment.  Mathematica  characters  which  are  not  included  in  the  native

encoding will be written out using standard Mathematica full names or hexadecimal codes.

The  Mathematica  kernel  can  use  any  character  encoding  you  specify  when  it  writes  or  reads

text files. By default, Put and PutAppend produce an ASCII representation for reliable portabil-

ity of Mathematica language files from one system to another.

This writes a string to the file tmp.

In[1]:= "a b c é a p ❦" >> tmp

Special characters are written out using full names or explicit hexadecimal codes. 

In[2]:= Read@"tmp", StringD

Out[2]= "a b c \[EAcute] \[Alpha] \[Pi] \:2766"

Mathematica  supports  both  8-  and  16-bit  raw  character  encodings.  In  an  encoding  such  as

"ISOLatin1", all characters are represented by bit patterns containing 8 bits. But in an encod-

ing such as "ShiftJIS" some characters instead involve bit patterns containing 16 bits.
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Mathematica  supports  both  8-  and  16-bit  raw  character  encodings.  In  an  encoding  such  as

"ISOLatin1", all characters are represented by bit patterns containing 8 bits. But in an encod-

ing such as "ShiftJIS" some characters instead involve bit patterns containing 16 bits.

Most of the raw character encodings supported by Mathematica include basic ASCII as a subset.

This means that even when you are using such encodings, you can still give ordinary Mathemat-

ica input in the usual way, and you can specify special characters using î @ and î : sequences. 

Some raw character encodings, however, do not include basic ASCII as a subset. An example is

the  "Symbol"  encoding,  in  which  the  character  codes  normally  used  for  a  and  b  are  instead

used for a and b.

This gives the usual ASCII character codes for a few English letters. 

In[3]:= ToCharacterCode@"abcdefgh"D

Out[3]= 897, 98, 99, 100, 101, 102, 103, 104<

In the "Symbol" encoding, these character codes are used for Greek letters. 

In[4]:= FromCharacterCode@%, "Symbol"D

Out[4]= abcdefgh

ToCharacterCode@"string"D generate codes for characters using the standard Mathemat-
ica encoding

ToCharacterCode@"string","encoding"D

generate codes for characters using the specified encoding

FromCharacterCode@8n1,n2,…<D

generate characters from codes using the standard Mathe -
matica encoding

FromCharacterCode@8n1,n2,…<,"encoding"D

generate characters from codes using the specified 
encoding

Handling character codes with different encodings. 

This gives the codes assigned to various characters by Mathematica. 

In[5]:= ToCharacterCode@"abcép"D

Out[5]= 897, 98, 99, 233, 960<
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Here are the codes assigned to the same characters in the Macintosh roman encoding. 

In[6]:= ToCharacterCode@"abcép", "MacintoshRoman"D

Out[6]= 897, 98, 99, 142, 185<

Here are the codes in the Windows standard encoding. There is no code for î @PiD in that 
encoding. 

In[7]:= ToCharacterCode@"abcép", "WindowsANSI"D

Out[7]= 897, 98, 99, 233, None<

The  character  codes  used  internally  by  Mathematica  are  based  on  Unicode.  But  externally

Mathematica  by  default  always  uses  plain  ASCII  sequences  such  as  î @NameD  or  î : nnnn  to

refer to special characters. By telling it to use the raw "Unicode" character encoding, however,

you can get Mathematica to read and write characters in raw 16-bit Unicode form. 
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Evaluation of Expressions

Principles of Evaluation

The  fundamental  operation  that  Mathematica  performs  is  evaluation.  Whenever  you  enter  an

expression, Mathematica evaluates the expression, then returns the result. 

Evaluation  in  Mathematica  works  by  applying  a  sequence  of  definitions.  The  definitions  can

either be ones you explicitly entered, or ones that are built into Mathematica. 

Thus,  for  example,  Mathematica  evaluates  the  expression  6 + 7  using  a  built-in  procedure  for

adding  integers.  Similarly,  Mathematica  evaluates  the  algebraic  expression  x - 3 x + 1  using  a

built-in simplification procedure. If you had made the definition x = 5, then Mathematica would

use this definition to reduce x - 3 x + 1 to -9. 

The  two  most  central  concepts  in  Mathematica  are  probably  expressions  and  evaluation.

"Expressions"  discusses  how  all  the  different  kinds  of  objects  that  Mathematica  handles  are

represented in a uniform way using expressions. This tutorial  describes how all  the operations

that Mathematica can perform can also be viewed in a uniform way as examples of evaluation. 

Computation 5 + 6ö11

Simplification x - 3 x + 1ö1 - 2 x

Execution x = 5ö5

Some interpretations of evaluation. 

Mathematica  is an infinite evaluation  system. When you enter an expression, Mathematica  will

keep on using definitions it knows until it gets a result to which no definitions apply. 

This defines x1 in terms of x2, and then defines x2. 

In[1]:= x1 = x2 + 2; x2 = 7

Out[1]= 7

If you ask for x1, Mathematica uses all the definitions it knows to give you a result. 

In[2]:= x1

Out[2]= 9

Here is a recursive definition in which the factorial function is defined in terms of itself. 
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Here is a recursive definition in which the factorial function is defined in terms of itself. 

In[3]:= fac@1D = 1; fac@n_D := n fac@n - 1D

If you ask for fac@10D, Mathematica will keep on applying the definitions you have given until 
the result it gets no longer changes. 

In[4]:= fac@10D

Out[4]= 3628800

When  Mathematica  has  used  all  the  definitions  it  knows,  it  gives  whatever  expression  it  has

obtained as the result. Sometimes the result may be an object such as a number. But usually

the result is an expression in which some objects are represented in a symbolic form. 

Mathematica uses its built-in definitions for simplifying sums, but knows no definitions for f@3D, 
so leaves this in symbolic form. 

In[5]:= f@3D + 4 f@3D + 1

Out[5]= 1 + 5 f@3D

Mathematica  follows  the  principle  of  applying  definitions  until  the  result  it  gets  no  longer

changes.  This  means  that  if  you  take  the  final  result  that  Mathematica  gives,  and  enter  it  as

Mathematica  input,  you  will  get  back  the  same  result  again.  (There  are  some  subtle  cases

discussed in "Controlling Infinite Evaluation" in which this does not occur.) 

If you type in a result from Mathematica, you get back the same expression again. 

In[6]:= 1 + 5 f@3D

Out[6]= 1 + 5 f@3D

At any given time, Mathematica can only use those definitions that it knows at that time. If you

add more definitions later, however, Mathematica will be able to use these. The results you get

from Mathematica may change in this case. 

Here is a new definition for the function f. 

In[7]:= f@x_D = x^2

Out[7]= x2

With the new definition, the results you get can change. 

In[8]:= 1 + 5 f@3D

Out[8]= 46

The simplest examples of evaluation involve using definitions such as f@x_D = x^2 which trans-

form one  expression  directly  into  another.  But  evaluation  is  also  the  process  used  to  execute

programs  written  in  Mathematica.  Thus,  for  example,  if  you  have  a  procedure  consisting  of  a

sequence  of  Mathematica  expressions,  some  perhaps  representing  conditionals  and  loops,  the

execution of this procedure corresponds to the evaluation of these expressions. Sometimes the

evaluation process may involve evaluating a particular expression several times, as in a loop. 
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The simplest examples of evaluation involve using definitions such as f@x_D = x^2 which trans-

form one  expression  directly  into  another.  But  evaluation  is  also  the  process  used  to  execute

programs  written  in  Mathematica.  Thus,  for  example,  if  you  have  a  procedure  consisting  of  a

sequence  of  Mathematica  expressions,  some  perhaps  representing  conditionals  and  loops,  the

execution of this procedure corresponds to the evaluation of these expressions. Sometimes the

evaluation process may involve evaluating a particular expression several times, as in a loop. 

The expression Print@zzzzD is evaluated three times during the evaluation of the Do expres-
sion. 

In[9]:= Do@Print@zzzzD, 83<D

zzzz

zzzz

zzzz

Reducing Expressions to Their Standard Form

The built-in functions in Mathematica operate in a wide variety of ways. But many of the mathe-

matical  functions  share  an  important  approach:  they  are  set  up  so  as  to  reduce  classes  of

mathematical expressions to standard forms. 

The built-in definitions for the Plus function, for example, are set up to write any sum of terms

in  a  standard  unparenthesized  form.  The  associativity  of  addition  means  that  expressions  like

Ha + bL + c, a + Hb + cL and a + b + c are all equivalent. But for many purposes it is convenient for

all  these  forms to  be  reduced  to  the  single  standard  form a + b + c.  The  built-in  definitions  for

Plus are set up to do this. 

Through the built-in definitions for Plus, this expression is reduced to a standard unparenthe-
sized form. 

In[1]:= Ha + bL + c

Out[1]= a + b + c

Whenever Mathematica knows that a function is associative, it tries to remove parentheses (or

nested invocations of the function) to get the function into a standard “flattened” form.

A function like addition is not only associative, but also commutative, which means that expres-

sions like a + c + b and a + b + c with terms in different orders are equal. Once again, Mathemat-

ica tries to put all such expressions into a “standard” form. The standard form it chooses is the

one in which all the terms are in a definite order, corresponding roughly to alphabetical order.
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A function like addition is not only associative, but also commutative, which means that expres-

sions like a + c + b and a + b + c with terms in different orders are equal. Once again, Mathemat-

ica tries to put all such expressions into a “standard” form. The standard form it chooses is the

one in which all the terms are in a definite order, corresponding roughly to alphabetical order.

Mathematica sorts the terms in this sum into a standard order.

In[2]:= c + a + b

Out[2]= a + b + c

flat (associative) f[f[a,b],c] is equivalent to f[a,b,c], etc.

orderless (commutative) f[b,a] is equivalent to f[a,b], etc.

Two important properties that Mathematica uses in reducing certain functions to standard form.

There are several reasons to try to put expressions into standard forms. The most important is

that if two expressions are really in standard form, it is obvious whether or not they are equal.

When the two sums are put into standard order, they are immediately seen to be equal, so that 
two f’s cancel, leaving the result 0. 

In[3]:= f@a + c + bD - f@c + a + bD

Out[3]= 0

You  could  imagine  finding  out  whether  a + c + b  was  equal  to  c + a + b  by  testing  all  possible

orderings of each sum. It  is clear that simply reducing both sums to standard form is a much

more efficient procedure. 

One  might  think  that  Mathematica  should  somehow  automatically  reduce  all  mathematical

expressions to a single standard canonical form. With all but the simplest kinds of expressions,

however, it is quite easy to see that you do not want the same standard form for all purposes. 

For polynomials, for example, there are two obvious standard forms, which are good for differ-

ent purposes.  The first  standard form for a polynomial  is  a simple sum of  terms, as would be

generated in Mathematica by applying the function Expand. This standard form is most appropri-

ate if you need to add and subtract polynomials. 

There is, however, another possible standard form that you can use for polynomials. By apply-

ing  Factor,  you  can  write  any  polynomial  as  a  product  of  irreducible  factors.  This  canonical

form is useful if you want to do operations like division. 

Expanded and factored forms are in a sense both equally good standard forms for polynomials.

Which one you decide to use simply depends on what you want to use it for. As a result, Mathe-

matica  does  not  automatically  put  polynomials  into  one  of  these  two  forms.  Instead,  it  gives

you functions like Expand  and Factor  that  allow you explicitly  to put  polynomials  in  whatever

form you want. 
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Expanded and factored forms are in a sense both equally good standard forms for polynomials.

Which one you decide to use simply depends on what you want to use it for. As a result, Mathe-

matica  does  not  automatically  put  polynomials  into  one  of  these  two  forms.  Instead,  it  gives

you functions like Expand  and Factor  that  allow you explicitly  to put  polynomials  in  whatever

form you want. 

Here is a list of two polynomials that are mathematically equal. 

In[4]:= t = 8x^2 - 1, Hx + 1L Hx - 1L<

Out[4]= 9-1 + x2, H-1 + xL H1 + xL=

You can write both of them in expanded form just by applying Expand. In this form, the equal-
ity of the polynomials is obvious. 

In[5]:= Expand@tD

Out[5]= 9-1 + x2, -1 + x2=

You can also see that the polynomials are equal by writing them both in factored form. 

In[6]:= Factor@tD

Out[6]= 8H-1 + xL H1 + xL, H-1 + xL H1 + xL<

Although  it  is  clear  that  you  do  not  always  want  expressions  reduced  to  the  same  standard

form, you may wonder whether it is at least possible to reduce all expressions to some standard

form. 

There is  a basic  result  in the mathematical  theory of  computation which shows that this  is,  in

fact, not always possible. You cannot guarantee that any finite sequence of transformations will

take any two arbitrarily chosen expressions to a standard form.

In a sense, this is not particularly surprising. If you could in fact reduce all mathematical expres-

sions to a standard form, then it would be quite easy to tell whether any two expressions were

equal.  The fact  that  so  many of  the difficult  problems of  mathematics  can be stated as  ques-

tions about the equality of expressions suggests that this can in fact be difficult. 

258     Core Language



Attributes

Definitions such as f@x_D = x^2 specify values for functions. Sometimes, however, you need to

specify general properties of functions, without necessarily giving explicit values. 

Mathematica provides a selection of attributes that you can use to specify various properties of

functions.  For  example,  you can use the attribute  Flat  to  specify  that  a  particular  function  is

"flat", so that nested invocations are automatically flattened, and it behaves as if it were associa-

tive. 

This assigns the attribute Flat to the function f. 

In[1]:= SetAttributes@f, FlatD

Now f behaves as a flat, or associative, function, so that nested invocations are automatically 
flattened. 

In[2]:= f@f@a, bD, cD

Out[2]= f@a, b, cD

Attributes like Flat  can affect not only evaluation, but also operations such as pattern match-

ing.  If  you  give  definitions  or  transformation  rules  for  a  function,  you  must  be  sure  to  have

specified the attributes of the function first. 

Here is a definition for the flat function f. 

In[3]:= f@x_, x_D := f@xD

Because f is flat, the definition is automatically applied to every subsequence of arguments. 

In[4]:= f@a, a, a, b, b, b, c, cD

Out[4]= f@a, b, cD

Attributes@ fD give the attributes of f

Attributes@ fD=8attr1,attr2,…< set the attributes of f

Attributes@ fD=8< set f  to have no attributes

SetAttributes@ f,attrD add attr to the attributes of f

ClearAttributes@ f,attrD remove attr from the attributes of f

Manipulating attributes of symbols. 
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This shows the attributes assigned to f. 

In[5]:= Attributes@fD

Out[5]= 8Flat<

This removes the attributes assigned to f. 

In[6]:= Attributes@fD = 8<

Out[6]= 8<

Orderless orderless, commutative function (arguments are sorted 
into standard order)

Flat flat, associative function (arguments are "flattened out")

OneIdentity f@ f@aDD, etc. are equivalent to a for pattern matching

Listable f  is automatically "threaded" over lists that appear as 
arguments (e.g., f@8a, b<D becomes 8 f@aD, f@bD<)

Constant all derivatives of f  are zero

NumericFunction f  is assumed to have a numerical value when its argu-
ments are numeric quantities 

Protected values of f  cannot be changed

Locked attributes of f  cannot be changed

ReadProtected values of f  cannot be read

HoldFirst the first argument of f  is not evaluated

HoldRest all but the first argument of f  is not evaluated

HoldAll none of the arguments of f  are evaluated

HoldAllComplete the arguments of f  are treated as completely inert

NHoldFirst the first argument of f  is not affected by N

NHoldRest all but the first argument of f  is not affected by N

NHoldAll none of the arguments of f  are affected by N

SequenceHold Sequence objects appearing in the arguments of f  are not 
flattened out

Temporary f  is a local variable, removed when no longer used

Stub Needs is automatically called if f  is ever explicitly input

The complete list of attributes for symbols in Mathematica. 
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Here are the attributes for the built-in function Plus. 

In[7]:= Attributes@PlusD

Out[7]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

An  important  attribute  assigned  to  built-in  mathematical  functions  in  Mathematica  is  the

attribute  Listable.  This  attribute  specifies  that  a  function  should  automatically  be  distributed

or "threaded" over lists that appear as its arguments. This means that the function effectively

gets applied separately to each element in any lists that appear as its arguments. 

The built-in Log function is Listable. 

In[8]:= Log@85, 8, 11<D

Out[8]= 8Log@5D, Log@8D, Log@11D<

This defines the function p to be listable. 

In[9]:= SetAttributes@p, ListableD

Now p is automatically threaded over lists that appear as its arguments. 

In[10]:= p@8a, b, c<, dD

Out[10]= 8p@a, dD, p@b, dD, p@c, dD<

Many of the attributes you can assign to functions in Mathematica directly affect the evaluation

of  those  functions.  Some  attributes,  however,  affect  only  other  aspects  of  the  treatment  of

functions. For example, the attribute OneIdentity  affects only pattern matching, as discussed

in "Flat and Orderless Functions". Similarly, the attribute Constant is only relevant in differentia-

tion, and operations that rely on differentiation. 

The  Protected  attribute  affects  assignments.  Mathematica  does  not  allow  you  to  make  any

definition  associated  with  a  symbol  that  carries  this  attribute.  The  functions  Protect  and

Unprotect  discussed  in  "Modifying  Built-in  Functions"  can  be  used  as  alternatives  to

SetAttributes  and ClearAttributes to set and clear this attribute. As discussed in "Modifying

Built-in Functions" most built-in Mathematica  objects are initially  protected so that you do not

make definitions for them by mistake. 

Here is a definition for the function g. 

In[11]:= g@x_D = x + 1

Out[11]= 1 + x

This sets the Protected attribute for g. 
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This sets the Protected attribute for g. 

In[12]:= Protect@gD

Out[12]= 8g<

Now you cannot modify the definition of g. 

In[13]:= g@x_D = x

Set::write : Tag g in g@x_D is Protected. à

Out[13]= x

You can usually see the definitions you have made for a particular symbol by typing ? f , or by

using  a  variety  of  built-in  Mathematica  functions.  However,  if  you  set  the  attribute

ReadProtected, Mathematica will not allow you to look at the definition of a particular symbol.

It will nevertheless continue to use the definitions in performing evaluation. 

Although you cannot modify it, you can still look at the definition of g. 

In[14]:= ? g

Global`g

Attributes@gD = 8Protected<

g@x_D = 1 + x

This sets the ReadProtected attribute for g. 

In[15]:= SetAttributes@g, ReadProtectedD

Now you can no longer read the definition of g. 

In[16]:= ? g

Global`g

Attributes@gD = 8Protected, ReadProtected<

Functions like SetAttributes  and ClearAttributes  usually allow you to modify the attributes

of a symbol in any way. However, if you once set the Locked attribute on a symbol, then Mathe-

matica  will  not  allow  you  to  modify  the  attributes  of  that  symbol  for  the  remainder  of  your

Mathematica  session.  Using  the  Locked  attribute  in  addition  to  Protected  or  ReadProtected,

you can arrange for it to be impossible for users to modify or read definitions. 

262     Core Language



Clear@ fD remove values for f , but not attributes

ClearAll@ fD remove both values and attributes of f

Clearing values and attributes. 

This clears values and attributes of p which was given attribute Listable above. 

In[17]:= ClearAll@pD

Now p is no longer listable. 

In[18]:= p@8a, b, c<, dD

Out[18]= p@8a, b, c<, dD

By  defining  attributes  for  a  function  you  specify  properties  that  Mathematica  should  assume

whenever that function appears. Often, however, you want to assume the properties only in a

particular instance. In such cases, you will be better off not to use attributes, but instead to call

a particular function to implement the transformation associated with the attributes. 

By explicitly calling Thread, you can implement the transformation that would be done automati -
cally if p were listable. 

In[19]:= Thread@p@8a, b, c<, dDD

Out[19]= 8p@a, dD, p@b, dD, p@c, dD<

Orderless Sort@ f@argsDD

Flat Flatten@ f@argsDD

Listable Thread@ f@argsDD

Constant DtAexpr,Constants-> fE

Functions that perform transformations associated with some attributes. 

Attributes in Mathematica can only be permanently defined for single symbols. However, Mathe-

matica also allows you to set up pure functions which behave as if they carry attributes. 

Function@vars,body,8attr1,…<D a pure function with attributes attr1, … 

Pure functions with attributes. 

This pure function applies p to the whole list. 

In[20]:= Function@8x<, p@xDD@8a, b, c<D

Out[20]= p@8a, b, c<D

By adding the attribute Listable, the function gets distributed over the elements of the list 
before applying p. 
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By adding the attribute Listable, the function gets distributed over the elements of the list 
before applying p. 

In[21]:= Function@8x<, p@xD, 8Listable<D@8a, b, c<D

Out[21]= 8p@aD, p@bD, p@cD<

The Standard Evaluation Procedure

Here  we  describe  the  standard  procedure  used  by  Mathematica  to  evaluate  expressions.  This

procedure is  the one followed for  most  kinds of  expression.  There are however some kinds of

expressions,  such  as  those  used  to  represent  Mathematica  programs  and  control  structures,

which are evaluated in a nonstandard way.

In  the  standard  evaluation  procedure,  Mathematica  first  evaluates  the  head  of  an  expression,

and then evaluates each element of the expressions. These elements are in general themselves

expressions, to which the same evaluation procedure is recursively applied. 

The three Print functions are evaluated in turn, each printing its argument, then returning the 
value Null. 

In[1]:= 8Print@1D, Print@2D, Print@3D<

1

2

3
Out[1]= 8Null, Null, Null<

This assigns the symbol ps to be Plus. 

In[2]:= ps = Plus

Out[2]= Plus

The head ps is evaluated first, so this expression behaves just like a sum of terms. 

In[3]:= ps@ps@a, bD, cD

Out[3]= a + b + c
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As soon as Mathematica has evaluated the head of an expression, it sees whether the head is a

symbol that has attributes. If the symbol has the attributes Orderless, Flat or Listable, then

immediately after evaluating the elements of the expression Mathematica performs the transfor-

mations associated with these attributes. 

The  next  step  in  the  standard  evaluation  procedure  is  to  use  definitions  that  Mathematica

knows  for  the  expression  it  is  evaluating.  Mathematica  first  tries  to  use  definitions  that  you

have made, and if there are none that apply, it tries built-in definitions. 

If  Mathematica  finds a definition that applies, it  performs the corresponding transformation on

the expression. The result is another expression, which must then in turn be evaluated accord-

ing to the standard evaluation procedure. 

† Evaluate the head of the expression.

† Evaluate each element in turn.

† Apply transformations associated with the attributes Orderless, Listable and Flat.

† Apply any definitions that you have given.

† Apply any built-in definitions.

† Evaluate the result.

The standard evaluation procedure. 

As discussed in  "Principles  of  Evaluation",  Mathematica  follows the principle  that  each expres-

sion is evaluated until no further definitions apply. This means that Mathematica must continue

re-evaluating results until  it  gets an expression which remains unchanged through the evalua-

tion procedure. 

Here is an example that shows how the standard evaluation procedure works on a simple expres -

sion. We assume that a = 7. 
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2 a x+a^2+1 here is the original expression

Plus@Times@2,a,xD,Power@a,2D,1D

this is the internal form

Times@2,a,xD this is evaluated first

Times@2,7,xD a is evaluated to give 7

Times@14,xD built-in definitions for Times give this result

Power@a,2D this is evaluated next

Power@7,2D here is the result after evaluating a

49 built-in definitions for Power give this result

Plus@Times@14,xD,49,1D here is the result after the arguments of Plus have been 
evaluated

Plus@50,Times@14,xDD built-in definitions for Plus give this result

50+14 x the result is printed like this

A simple example of evaluation in Mathematica. 

Mathematica  provides various ways to “trace” the evaluation process, as discussed in "Tracing

Evaluation".  The  function  Trace@exprD  gives  a  nested  list  showing  each  subexpression  gener-

ated  during  evaluation.  (Note  that  the  standard  evaluation  traverses  the  expression  tree  in  a

depth-first  way,  so  that  the  smallest  subparts  of  the  expression  appear  first  in  the  results  of

Trace.) 

First set a to 7. 

In[4]:= a = 7

Out[4]= 7

This gives a nested list of all the subexpressions generated during the evaluation of the expres-
sion. 

In[5]:= Trace@2 a x + a^2 + 1D

Out[5]= 988a, 7<, 2 µ 7 x, 14 x<, 98a, 7<, 72, 49=, 14 x + 49 + 1, 50 + 14 x=

The order in which Mathematica applies different kinds of definitions is important. The fact that

Mathematica applies definitions you have given before it applies built-in definitions means that

you  can  give  definitions  which  override  the  built-in  ones,  as  discussed  in  "Modifying  Built-in

Functions". 
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This expression is evaluated using the built-in definition for ArcSin. 

In[6]:= ArcSin@1D

Out[6]= 
p

2

You can give your own definitions for ArcSin. You need to remove the protection attribute first. 

In[7]:= Unprotect@ArcSinD; ArcSin@1D = 5 Pi ê 2;

Your definition is used before the one that is built in. 

In[8]:= ArcSin@1D

Out[8]= 
5 p

2

As  discussed  in  "Associating  Definitions  with  Different  Symbols",  you  can  associate  definitions

with  symbols  either  as  upvalues  or  downvalues.  Mathematica  always  tries  upvalue  definitions

before downvalue ones. 

If  you have an expression like f@g@xDD,  there are in  general  two sets  of  definitions that  could

apply:  downvalues  associated  with  f ,  and  upvalues  associated  with  g.  Mathematica  tries  the

definitions associated with g before those associated with f . 

This  ordering  follows  the  general  strategy  of  trying  specific  definitions  before  more  general

ones.  By applying upvalues associated with  arguments  before  applying downvalues  associated

with a function, Mathematica allows you to make definitions for special arguments which over-

ride the general definitions for the function with any arguments. 

This defines a rule for f@g@x_DD, to be associated with f. 

In[9]:= f ê: f@g@x_DD := frule@xD

This defines a rule for f@g@x_DD, to be associated with g. 

In[10]:= g ê: f@g@x_DD := grule@xD

The rule associated with g is tried before the rule associated with f. 

In[11]:= f@g@2DD

Out[11]= grule@2D
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If you remove rules associated with g, the rule associated with f is used. 

In[12]:= Clear@gD; f@g@1DD

Out[12]= frule@1D

† Definitions associated with g are applied before definitions associated with f  in the expression 
f@g@xDD.

The order in which definitions are applied. 

Most functions such as Plus  that are built into Mathematica have downvalues. There are, how-

ever,  some  objects  in  Mathematica  which  have  built-in  upvalues.  For  example,  SeriesData

objects, which represent power series, have built-in upvalues with respect to various mathemati-

cal operations. 

For an expression like f@g@xDD, the complete sequence of definitions that are tried in the stan-

dard evaluation procedure is: 

† Definitions you have given associated with g; 

† Built-in definitions associated with g;

† Definitions you have given associated with f ;

† Built-in definitions associated with f .

The fact that upvalues are used before downvalues is important in many situations. In a typical

case,  you  might  want  to  define  an  operation  such  as  composition.  If  you  give  upvalues  for

various objects with respect to composition, these upvalues will be used whenever such objects

appear.  However,  you  can  also  give  a  general  procedure  for  composition,  to  be  used  if  no

special objects are present. You can give this procedure as a downvalue for composition. Since

downvalues are tried after upvalues, the general procedure will be used only if no objects with

upvalues are present. 

Here is a definition associated with q for composition of “q objects”. 

In[13]:= q ê: comp@q@x_D, q@y_DD := qcomp@x, yD

Here is a general rule for composition, associated with comp. 

In[14]:= comp@f_@x_D, f_@y_DD := gencomp@f, x, yD
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If you compose two q objects, the rule associated with q is used. 

In[15]:= comp@q@1D, q@2DD

Out[15]= qcomp@1, 2D

If you compose r objects, the general rule associated with comp is used. 

In[16]:= comp@r@1D, r@2DD

Out[16]= gencomp@r, 1, 2D

In general, there can be several objects that have upvalues in a particular expression. Mathemat-

ica first looks at the head of the expression, and tries any upvalues associated with it. Then it 

successively looks at each element of the expression, trying any upvalues that exist. Mathemat-

ica  performs  this  procedure  first  for  upvalues  that  you  have  explicitly  defined,  and  then  for

upvalues  that  are  built-in.  The  procedure  means  that  in  a  sequence  of  elements,  upvalues

associated with earlier elements take precedence over those associated with later elements. 

This defines an upvalue for p with respect to c. 

In[17]:= p ê: c@l___, p@x_D, r___D := cp@x, 8l, r<D

This defines an upvalue for q. 

In[18]:= q ê: c@l___, q@x_D, r___D := cq@x, 8l, r<D

Which upvalue is used depends on which occurs first in the sequence of arguments to c. 

In[19]:= 8c@p@1D, q@2DD, c@q@1D, p@2DD<

Out[19]= 8cp@1, 8q@2D<D, cq@1, 8p@2D<D<

Non-Standard Evaluation

While  most  built-in  Mathematica  functions  follow  the  standard  evaluation  procedure,  some

important  ones  do  not.  For  example,  most  of  the  Mathematica  functions  associated  with  the

construction  and  execution  of  programs  use  non-standard  evaluation  procedures.  In  typical

cases, the functions either never evaluate some of their  arguments, or do so in a special  way

under their own control. 
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x=y do not evaluate the left-hand side

If@p,a,bD evaluate a if p is True, and b if it is False

Do@expr,8n<D evaluate expr n times

Plot@ f,8x,…<D evaluate f  with a sequence of numerical values for x

Function@8x<,bodyD do not evaluate until the function is applied

Some functions that use non-standard evaluation procedures. 

When you give a definition such as a = 1, Mathematica does not evaluate the a that appears on

the left-hand side. You can see that there would be trouble if the a was evaluated. The reason

is  that  if  you  had  previously  set  a = 7,  then  evaluating  a  in  the  definition  a = 1  would  put  the

definition into the nonsensical form 7 = 1. 

In the standard evaluation procedure, each argument of a function is evaluated in turn. This is

prevented by setting the attributes HoldFirst, HoldRest  and HoldAll. These attributes make

Mathematica “hold” particular arguments in an unevaluated form.

HoldFirst do not evaluate the first argument

HoldRest evaluate only the first argument

HoldAll evaluate none of the arguments

Attributes for holding function arguments in unevaluated form. 

With the standard evaluation procedure, all arguments to a function are evaluated. 

In[1]:= f@1 + 1, 2 + 4D

Out[1]= f@2, 6D

This assigns the attribute HoldFirst to h. 

In[2]:= SetAttributes@h, HoldFirstD

The first argument to h is now held in an unevaluated form. 

In[3]:= h@1 + 1, 2 + 4D

Out[3]= h@1 + 1, 6D

When you use the first argument to h like this, it will get evaluated. 

In[4]:= h@1 + 1, 2 + 4D ê. h@x_, y_D -> x^y

Out[4]= 64

Built-in functions like Set carry attributes such as HoldFirst. 
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Built-in functions like Set carry attributes such as HoldFirst. 

In[5]:= Attributes@SetD

Out[5]= 8HoldFirst, Protected, SequenceHold<

Even though a function may have attributes which specify that it should hold certain arguments

unevaluated, you can always explicitly tell Mathematica to evaluate those arguments by giving

the arguments in the form Evaluate@argD. 

Evaluate effectively overrides the HoldFirst attribute, and causes the first argument to be 
evaluated. 

In[6]:= h@Evaluate@1 + 1D, 2 + 4D

Out[6]= h@2, 6D

f@Evaluate@argDD evaluate arg immediately, even though attributes of f  may 
specify that it should be held

Forcing the evaluation of function arguments. 

By holding its arguments, a function can control when those arguments are evaluated. By using

Evaluate, you can force the arguments to be evaluated immediately, rather than being evalu-

ated under the control of the function. This capability is useful in a number of circumstances. 

The Mathematica Set function holds its first argument, so the symbol a is not evaluated in this 
case. 

In[7]:= a = b

Out[7]= b

You can make Set evaluate its first argument using Evaluate. In this case, the result is the 
object which is the value of a, namely b is set to 6. 

In[8]:= Evaluate@aD = 6

Out[8]= 6

b has now been set to 6. 

In[9]:= b

Out[9]= 6

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,

however,  you may want  to  prevent  the evaluation of  certain  expressions.  For  example,  if  you

want  to  manipulate  pieces  of  a  Mathematica  program  symbolically,  then  you  must  prevent

those pieces from being evaluated while you are manipulating them. 
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In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,

however,  you may want  to  prevent  the evaluation of  certain  expressions.  For  example,  if  you

want  to  manipulate  pieces  of  a  Mathematica  program  symbolically,  then  you  must  prevent

those pieces from being evaluated while you are manipulating them. 

You  can  use  the  functions  Hold  and  HoldForm  to  keep  expressions  unevaluated.  These  func-

tions  work  simply  by  carrying  the  attribute  HoldAll,  which  prevents  their  arguments  from

being  evaluated.  The  functions  provide  “wrappers”  inside  which  expressions  remain  unevalu-

ated. 

The difference between Hold@exprD and HoldForm@exprD is that in standard Mathematica output 

format, Hold is printed explicitly, while HoldForm is not. If you look at the full internal Mathemat-

ica form, you can however see both functions. 

Hold maintains expressions in an unevaluated form. 

In[10]:= Hold@1 + 1D

Out[10]= Hold@1 + 1D

HoldForm also keeps expressions unevaluated, but is invisible in standard Mathematica output 
format. 

In[11]:= HoldForm@1 + 1D

Out[11]= 1 + 1

HoldForm is still present internally. 

In[12]:= FullForm@%D

Out[12]//FullForm= HoldForm@Plus@1, 1DD

The function ReleaseHold  removes Hold and HoldForm, so the expressions they contain get 
evaluated. 

In[13]:= ReleaseHold@%D

Out[13]= 2
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Hold@exprD keep expr unevaluated

HoldComplete@exprD keep expr unevaluated and prevent upvalues associated 
with expr from being used

HoldForm@exprD keep expr unevaluated, and print without HoldForm

ReleaseHold@exprD remove Hold and HoldForm in expr

ExtractAexpr,index,HoldE get a part of expr, wrapping it with Hold to prevent 
evaluation

Functions for handling unevaluated expressions. 

Parts of expressions are usually evaluated as soon as you extract them. 

In[14]:= Extract@Hold@1 + 1, 2 + 3D, 2D

Out[14]= 5

This extracts a part and immediately wraps it with Hold, so it does not get evaluated. 

In[15]:= Extract@Hold@1 + 1, 2 + 3D, 2, HoldD

Out[15]= Hold@2 + 3D

f@…,Unevaluated@exprD,…D give expr unevaluated as an argument to f

Temporary prevention of argument evaluation. 

1 + 1 evaluates to 2, and Length@2D gives 0. 

In[16]:= Length@1 + 1D

Out[16]= 0

This gives the unevaluated form 1 + 1 as the argument of Length. 

In[17]:= Length@Unevaluated@1 + 1DD

Out[17]= 2

Unevaluated@exprD  effectively  works  by  temporarily  giving  a  function  an  attribute  like

HoldFirst, and then supplying expr as an argument to the function. 

SequenceHold do not flatten out Sequence objects that appear as 
arguments

HoldAllComplete treat all arguments as completely inert

Attributes for preventing other aspects of evaluation. 

By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments

of a function. But even with this attribute set, Mathematica will still do some transformations on

the  arguments.  By  setting  SequenceHold  you  can  prevent  it  from  flattening  out  Sequence

objects that appear in the arguments. And by setting HoldAllComplete you can also inhibit the

stripping of Unevaluated, and prevent Mathematica from using any upvalues it finds associated

with the arguments.
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By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments

of a function. But even with this attribute set, Mathematica will still do some transformations on

the  arguments.  By  setting  SequenceHold  you  can  prevent  it  from  flattening  out  Sequence

objects that appear in the arguments. And by setting HoldAllComplete you can also inhibit the

stripping of Unevaluated, and prevent Mathematica from using any upvalues it finds associated

with the arguments.

Evaluation in Patterns, Rules and Definitions

There  are  a  number  of  important  interactions  in  Mathematica  between evaluation  and pattern

matching.  The  first  observation  is  that  pattern  matching  is  usually  done  on  expressions  that

have already been at least partly evaluated. As a result, it is usually appropriate that the pat-

terns to which these expressions are matched should themselves be evaluated. 

The fact that the pattern is evaluated means that it matches the expression given. 

In[1]:= f@k^2D ê. f@x_^H1 + 1LD -> p@xD

Out[1]= p@kD

The right-hand side of the ê; condition is not evaluated until it is used during pattern matching. 

In[2]:= f@8a, b<D ê. f@list_ ê; Length@listD > 1D -> list^2

Out[2]= 9a2, b2=

There are some cases, however, where you may want to keep all or part of a pattern unevalu-

ated. You can do this by wrapping the parts you do not want to evaluate with HoldPattern. In

general, whenever HoldPattern@pattD appears within a pattern, this form is taken to be equiva-

lent to patt  for the purpose of pattern matching, but the expression patt  is maintained unevalu-

ated. 

HoldPattern@pattD equivalent to patt for pattern matching, with patt kept 
unevaluated

Preventing evaluation in patterns. 

One  application  for  HoldPattern  is  in  specifying  patterns  which  can  apply  to  unevaluated

expressions, or expressions held in an unevaluated form. 
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HoldPattern  keeps the 1 + 1 from being evaluated, and allows it to match the 1 + 1 on the 
left-hand side of the ê. operator. 

In[3]:= Hold@u@1 + 1DD ê. HoldPattern@1 + 1D -> x

Out[3]= Hold@u@xDD

Notice that while functions like Hold  prevent evaluation of  expressions,  they do not affect  the

manipulation of parts of those expressions with ê. and other operators. 

This defines values for r whenever its argument is not an atomic object. 

In[4]:= r@x_D := x^2 ê; ! AtomQ@xD

According to the definition, expressions like r@3D are left unchanged. 

In[5]:= r@3D

Out[5]= r@3D

However, the pattern r@x_D is transformed according to the definition for r. 

In[6]:= r@x_D

Out[6]= x_2

You need to wrap HoldPattern  around r@x_D to prevent it from being evaluated. 

In[7]:= 8r@3D, r@5D< ê. HoldPattern@r@x_DD -> x

Out[7]= 83, 5<

As  illustrated  above,  the  left-hand  sides  of  transformation  rules  such  as  lhs -> rhs  are  usually

evaluated  immediately,  since  the  rules  are  usually  applied  to  expressions  which  have  already

been  evaluated.  The  right-hand  side  of  lhs -> rhs  is  also  evaluated  immediately.  With  the

delayed rule lhs :> rhs, however, the expression rhs is not evaluated. 

The right-hand side is evaluated immediately in -> but not :> rules. 

In[8]:= 88x -> 1 + 1<, 8x :> 1 + 1<<

Out[8]= 88x Ø 2<, 8x ß 1 + 1<<

Here are the results of applying the rules. The right-hand side of the :> rule gets inserted inside 
the Hold without evaluation. 

In[9]:= 8x^2, Hold@xD< ê. %

Out[9]= 884, Hold@2D<, 84, Hold@1 + 1D<<
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lhs->rhs evaluate both lhs and rhs

lhs:>rhs evaluate lhs but not rhs

Evaluation in transformation rules. 

While  the  left-hand  sides  of  transformation  rules  are  usually  evaluated,  the  left-hand  sides  of

definitions are usually not. The reason for the difference is as follows. Transformation rules are

typically  applied  using  ê.  to  expressions  that  have  already  been  evaluated.  Definitions,  how-

ever,  are used during the evaluation of  expressions,  and are applied to expressions that have

not yet been completely evaluated. To work on such expressions, the left-hand sides of defini-

tions must be maintained in a form that is at least partially unevaluated. 

Definitions  for  symbols  are  the  simplest  case.  As  discussed  in  "Non-Standard  Evaluation",  a

symbol on the left-hand side of a definition such as x = value is not evaluated. If x had previously

been assigned a value y, then if the left-hand side of x = value were evaluated, it would turn into

the quite unrelated definition y = value. 

Here is a definition. The symbol on the left-hand side is not evaluated. 

In[10]:= k = w@3D

Out[10]= w@3D

This redefines the symbol. 

In[11]:= k = w@4D

Out[11]= w@4D

If you evaluate the left-hand side, then you define not the symbol k, but the value w@4D of the 
symbol k. 

In[12]:= Evaluate@kD = w@5D

Out[12]= w@5D

Now w@4D has value w@5D. 

In[13]:= w@4D

Out[13]= w@5D

Although individual symbols that appear on the left-hand sides of definitions are not evaluated,

more complicated expressions are partially evaluated. In an expression such as f@argsD  on the

left-hand side of a definition, the args are evaluated. 

The 1 + 1 is evaluated, so that a value is defined for g@2D. 
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The 1 + 1 is evaluated, so that a value is defined for g@2D. 

In[14]:= g@1 + 1D = 5

Out[14]= 5

This shows the value defined for g. 

In[15]:= ? g

Global`g

g@2D = 5

You can see why the arguments of a function that appears on the left-hand side of a definition

must be evaluated by considering how the definition is used during the evaluation of an expres-

sion. As discussed in "Principles of Evaluation", when Mathematica evaluates a function, it first

evaluates each of the arguments, then tries to find definitions for the function. As a result, by

the time Mathematica applies any definition you have given for a function, the arguments of the

function  must  already  have  been  evaluated.  An  exception  to  this  occurs  when  the  function  in

question has attributes which specify that it should hold some of its arguments unevaluated. 

symbol=value symbol is not evaluated; value is evaluated

symbol:=value neither symbol nor value is evaluated

f@argsD=value args are evaluated; left-hand side as a whole is not

f@HoldPattern@argDD=value f[arg] is assigned, without evaluating arg

Evaluate@lhsD=value left-hand side is evaluated completely

Evaluation in definitions. 

While in most cases it is appropriate for the arguments of a function that appears on the left-

hand side of a definition to be evaluated, there are some situations in which you do not want

this  to  happen.  In  such  cases,  you  can  wrap  HoldPattern  around  the  parts  that  you  do  not

want to be evaluated. 

Evaluation in Iteration Functions

The built-in Mathematica iteration functions such as Table  and Sum  evaluate their arguments in

a slightly special way. 

When  evaluating  an  expression  like  Table@ f, 8i, imax<D,  the  first  step,  as  discussed  in "Blocks

and Local Values", is to make the value of i local. Next, the limit imax in the iterator specification

is  evaluated.  The expression f  is  maintained in  an unevaluated form, but  is  repeatedly evalu-

ated as a succession of values are assigned to i.  When this is finished, the global value of i  is

restored. 
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When evaluating  an  expression  like  Table@ f, 8i, imax<D,  the  first  step,  as  discussed  in "Blocks

and Local Values", is to make the value of i local. Next, the limit imax in the iterator specification

is  evaluated.  The expression f  is  maintained in  an unevaluated form, but  is  repeatedly evalu-

ated as a succession of values are assigned to i.  When this is finished, the global value of i  is

restored. 

The function RandomReal@D is evaluated four separate times here, so four different pseudoran-
dom numbers are generated.

In[1]:= Table@RandomReal@D, 84<D

Out[1]= 80.300949, 0.450179, 0.831238, 0.161379<

This evaluates RandomReal@D before feeding it to Table. The result is a list of four identical 
numbers. 

In[2]:= Table@Evaluate@RandomReal@DD, 84<D

Out[2]= 80.653098, 0.653098, 0.653098, 0.653098<

In most cases, it is convenient for the function f  in an expression like Table@ f, 8i, imax<D to be

maintained in an unevaluated form until specific values have been assigned to i. This is true in

particular if a complete symbolic form for f  valid for any i cannot be found. 

This defines fac to give the factorial when it has an integer argument, and to give NaN 
(standing for “Not a Number”) otherwise. 

In[3]:= fac@n_IntegerD := n!; fac@x_D := NaN

In this form, fac@iD is not evaluated until an explicit integer value has been assigned to i. 

In[4]:= Table@fac@iD, 8i, 5<D

Out[4]= 81, 2, 6, 24, 120<

Using Evaluate forces fac@iD to be evaluated with i left as a symbolic object. 

In[5]:= Table@Evaluate@fac@iDD, 8i, 5<D

Out[5]= 8NaN, NaN, NaN, NaN, NaN<

In  cases  where  a  complete  symbolic  form  for  f  with  arbitrary  i  in  expressions  such  as

Table@ f, 8i, imax<D can be found, it is often more efficient to compute this form first, and then

feed it to Table. You can do this using Table@Evaluate@ fD, 8i, imax<D. 
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The Sum  in this case is evaluated separately for each value of i. 

In[6]:= Table@Sum@i^k, 8k, 4<D, 8i, 8<D

Out[6]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

It is however possible to get a symbolic formula for the sum, valid for any value of i. 

In[7]:= Sum@i^k, 8k, 4<D

Out[7]= i + i2 + i3 + i4

By inserting Evaluate, you tell Mathematica first to evaluate the sum symbolically, then to 
iterate over i. 

In[8]:= Table@Evaluate@Sum@i^k, 8k, 4<DD, 8i, 8<D

Out[8]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

Table@ f,8i,imax<D keep f  unevaluated until specific values are assigned to i

TableAEvaluate@ fD,8i,imax<E evaluate f  first with i left symbolic

Evaluation in iteration functions.

Conditionals

Mathematica provides various ways to set up conditionals, which specify that particular expres-

sions should be evaluated only if certain conditions hold. 

lhs:=rhsê;test use the definition only if test evaluates to True

If@test,then,elseD evaluate then if test is True, and else if it is False

Which@test1,value1,test2,…D evaluate the testi in turn, giving the value associated with 
the first one that is True

Switch@expr, form1,value1, form2,…D compare expr with each of the formi, giving the value 

associated with the first form it matches

Switch@expr, form1,
value1, form2,…,_,defD

use def  as a default value

Piecewise@88value1,test1<,…<,defD give the value corresponding to the first testi which yields 
True

Conditional constructs. 
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The test gives False, so the "else" expression y is returned. 

In[1]:= If@7 > 8, x, yD

Out[1]= y

Only the "else" expression is evaluated in this case. 

In[2]:= If@7 > 8, Print@xD, Print@yDD

y

When  you  write  programs  in  Mathematica,  you  will  often  have  a  choice  between  making  a

single definition whose right-hand side involves several branches controlled by If  functions, or

making  several  definitions,  each  controlled  by  an  appropriate  ê;  condition.  By  using  several

definitions, you can often produce programs that are both clearer, and easier to modify. 

This defines a step function, with value 1 for x > 0, and -1 otherwise. 

In[3]:= f@x_D := If@x > 0, 1, -1D

This defines the positive part of the step function using a ê; condition. 

In[4]:= g@x_D := 1 ê; x > 0

Here is the negative part of the step function. 

In[5]:= g@x_D := -1 ê; x <= 0

This shows the complete definition using ê; conditions. 

In[6]:= ? g

Global`g

g@x_D := 1 ê; x > 0

g@x_D := -1 ê; x § 0

The function If  provides a way to choose between two alternatives. Often, however, there will

be more than two alternatives. One way to handle this is to use a nested set of If  functions.

Usually, however, it is instead better to use functions like Which and Switch. 

This defines a function with three regions. Using True as the third test makes this the default 
case. 

In[7]:= h@x_D := Which@x < 0, x^2, x > 5, x^3, True, 0D

This uses the first case in the Which. 
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This uses the first case in the Which. 

In[8]:= h@-5D

Out[8]= 25

This uses the third case. 

In[9]:= h@2D

Out[9]= 0

This defines a function that depends on the values of its argument modulo 3. 

In[10]:= r@x_D := Switch@Mod@x, 3D, 0, a, 1, b, 2, cD

Mod@7, 3D is 1, so this uses the second case in the Switch. 

In[11]:= r@7D

Out[11]= b

17 matches neither 0 nor 1, but does match _. 

In[12]:= Switch@17, 0, a, 1, b, _, qD

Out[12]= q

An important point about symbolic systems such as Mathematica is that the conditions you give

may yield neither True  nor False. Thus, for example, the condition x == y does not yield True

or False unless x and y have specific values, such as numerical ones. 

In this case, the test gives neither True nor False, so both branches in the If remain unevalu-
ated. 

In[13]:= If@x == y, a, bD

Out[13]= If@x ã y, a, bD

You can add a special fourth argument to If, which is used if the test does not yield True or 
False. 

In[14]:= If@x == y, a, b, cD

Out[14]= c
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If@test,then,else,unknownD a form of If which includes the expression to use if test is 
neither True nor False

TrueQ@exprD give True if expr is True, and False otherwise

lhs===rhs  or SameQ@lhs,rhsD give True if lhs and rhs are identical, and False otherwise

lhs=!=rhs  or UnsameQ@lhs,rhsD give True if lhs and rhs are not identical, and False 
otherwise

MatchQ@expr, formD give True if the pattern form matches expr, and give 
False otherwise

Functions for dealing with symbolic conditions. 

Mathematica leaves this as a symbolic equation. 

In[15]:= x == y

Out[15]= x ã y

Unless expr is manifestly True, TrueQ@exprD effectively assumes that expr is False. 

In[16]:= TrueQ@x == yD

Out[16]= False

Unlike ==, === tests whether two expressions are manifestly identical. In this case, they are 
not. 

In[17]:= x === y

Out[17]= False

The main difference between lhs === rhs and lhs == rhs is that === always returns True  or False,

whereas == can leave its input in symbolic form, representing a symbolic equation, as discussed

in "Equations". You should typically use === when you want to test the structure of an expres-

sion, and == if you want to test mathematical equality. The Mathematica pattern matcher effec-

tively uses === to determine when one literal expression matches another. 

You can use === to test the structure of expressions. 

In[18]:= Head@a + b + cD === Times

Out[18]= False

The == operator gives a less useful result. 

In[19]:= Head@a + b + cD == Times

Out[19]= Plus ã Times

In  setting  up  conditionals,  you  will  often  need  to  use  combinations  of  tests,  such  as

test1 && test2 && ….  An  important  point  is  that  the  result  from  this  combination  of  tests  will  be

False  if any of the testi  yield False. Mathematica always evaluates the testi  in turn, stopping if

any of the testi yield False. 

282     Core Language



In  setting  up  conditionals,  you  will  often  need  to  use  combinations  of  tests,  such  as

test1 && test2 && ….  An  important  point  is  that  the  result  from  this  combination  of  tests  will  be

False  if any of the testi  yield False. Mathematica always evaluates the testi  in turn, stopping if

any of the testi yield False. 

expr1&&expr2&&expr3 evaluate until one of the expri is found to be False

expr1»»expr2»»expr3 evaluate until one of the expri is found to be True

Evaluation of logical expressions. 

This function involves a combination of two tests. 

In[20]:= t@x_D := Hx != 0 && 1 ê x < 3L

Here both tests are evaluated. 

In[21]:= t@2D

Out[21]= True

Here the first test yields False, so the second test is not tried. The second test would involve 
1 ê 0, and would generate an error. 

In[22]:= t@0D

Out[22]= False

The  way  that  Mathematica  evaluates  logical  expressions  allows  you  to  combine  sequences  of

tests  where  later  tests  may  make  sense  only  if  the  earlier  ones  are  satisfied.  The  behavior,

which  is  analogous  to  that  found  in  languages  such  as  C,  is  convenient  in  constructing  many

kinds of Mathematica programs. 

Loops and Control Structures

The execution of a Mathematica program involves the evaluation of a sequence of Mathematica

expressions. In simple programs, the expressions to be evaluated may be separated by semi-

colons,  and  evaluated  one  after  another.  Often,  however,  you  need  to  evaluate  expressions

several times, in some kind of "loop". 
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Do@expr,8i,imax<D evaluate expr repetitively, with i varying from 1 to imax in 
steps of 1

Do@expr,8i,imin,imax,di<D evaluate expr with i varying from imin to imax in steps of di

Do@expr,8i,list<D evaluate expr with i taking on values from list

Do@expr,8n<D evaluate expr n times

Simple looping constructs. 

This evaluates Print@i^2D, with i running from 1 to 4. 

In[1]:= Do@Print@i^2D, 8i, 4<D

1

4

9

16

This executes an assignment for t in a loop with k running from 2 to 6 in steps of 2. 

In[2]:= t = x; Do@t = 1 ê H1 + k tL, 8k, 2, 6, 2<D; t

Out[2]= 
1

1 +
6

1+
4

1+2 x

The way iteration is specified in Do  is exactly the same as in functions like Table  and Sum . Just

as  in  those  functions,  you  can  set  up  several  nested  loops  by  giving  a  sequence  of  iteration

specifications to Do. 

This loops over values of i from 1 to 4, and for each value of i, loops over j from 1 to i - 1. 

In[3]:= Do@Print@8i, j<D, 8i, 4<, 8j, i - 1<D

82, 1<

83, 1<

83, 2<

84, 1<

84, 2<

84, 3<

Sometimes you may want  to  repeat  a  particular  operation a certain  number of  times,  without

changing the value of an iteration variable. You can specify this kind of repetition in Do  just as

you can in Table and other iteration functions. 
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Sometimes you may want  to  repeat  a  particular  operation a certain  number of  times,  without

changing the value of an iteration variable. You can specify this kind of repetition in Do  just as

you can in Table and other iteration functions. 

This repeats the assignment t = 1 ê H1 + tL three times. 

In[4]:= t = x; Do@t = 1 ê H1 + tL, 83<D; t

Out[4]= 
1

1 +
1

1+
1

1+x

You can put a procedure inside Do. 

In[5]:= t = 67; Do@Print@tD; t = Floor@t ê 2D, 83<D

67

33

16

Nest@ f,expr,nD apply f  to expr n times

FixedPoint@ f,exprD start with expr, and apply f  repeatedly until the result no 
longer changes

NestWhile@ f,expr,testD start with expr, and apply f  repeatedly until applying test to 
the result no longer yields True

Applying functions repetitively. 

Do  allows  you  to  repeat  operations  by  evaluating  a  particular  expression  many  times  with

different  values  for  iteration  variables.  Often,  however,  you  can  make  more  elegant  and  effi-

cient  programs  using  the  functional  programming  constructs  discussed  in  "Applying  Functions

Repeatedly". Nest@ f, x, nD, for example, allows you to apply a function repeatedly to an expres-

sion. 

This nests f three times. 

In[6]:= Nest@f, x, 3D

Out[6]= f@f@f@xDDD
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By nesting a pure function, you can get the same result as in the example with Do above. 

In[7]:= Nest@Function@t, 1 ê H1 + tLD, x, 3D

Out[7]= 
1

1 +
1

1+
1

1+x

Nest allows you to apply a function a specified number of times. Sometimes, however, you may

simply want to go on applying a function until the results you get no longer change. You can do

this using FixedPoint@ f, xD. 

FixedPoint goes on applying a function until the result no longer changes. 

In[8]:= FixedPoint@Function@t, Print@tD; Floor@t ê 2DD, 67D

67

33

16

8

4

2

1

0
Out[8]= 0

You can use FixedPoint  to imitate the evaluation process in Mathematica, or the operation of

functions such as expr êê. rules. FixedPoint  goes on until two successive results it gets are the

same. NestWhile allows you to go on until an arbitrary function no longer yields True. 

Catch@exprD evaluate expr until Throw@valueD is encountered, then 
return value

Catch@expr, formD evaluate expr until Throw@value, tagD is encountered, 
where form matches tag

Catch@expr, form, fD return f@value, tagD instead of value

Non local control of evaluation. 

When the Throw is encountered, evaluation stops, and the current value of i is returned as the 
value of the enclosing Catch. 

In[9]:= Catch@Do@Print@iD; If@i > 3, Throw@iDD, 8i, 10<DD
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1

2

3

4
Out[9]= 4

Throw  and  Catch  provide  a  flexible  way  to  control  the  process  of  evaluation  in  Mathematica.

The basic idea is that whenever a Throw  is encountered, the evaluation that is then being done

is stopped, and Mathematica immediately returns to the nearest appropriate enclosing Catch.

Scan applies the function Print to each successive element in the list, and in the end just 
returns Null. 

In[10]:= Scan@Print, 87, 6, 5, 4<D

7

6

5

4

The evaluation of Scan stops as soon as Throw is encountered, and the enclosing Catch 
returns as its value the argument of Throw. 

In[11]:= Catch@Scan@HPrint@ÒD; If@Ò < 6, Throw@ÒDDL &, 87, 6, 5, 4<DD

7

6

5
Out[11]= 5

The same result is obtained with Map, even though Map would have returned a list if its evalua-
tion had not been stopped by encountering a Throw. 

In[12]:= Catch@Map@HPrint@ÒD; If@Ò < 6, Throw@ÒDDL &, 87, 6, 5, 4<DD

7

6

5
Out[12]= 5

You  can  use  Throw  and  Catch  to  divert  the  operation  of  functional  programming  constructs,

allowing for example the evaluation of such constructs to continue only until some condition has

been met. Note that if you stop evaluation using Throw, then the structure of the result you get

may  be  quite  different  from  what  you  would  have  got  if  you  had  allowed  the  evaluation  to

complete. 
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You  can  use  Throw  and  Catch  to  divert  the  operation  of  functional  programming  constructs,

allowing for example the evaluation of such constructs to continue only until some condition has

been met. Note that if you stop evaluation using Throw, then the structure of the result you get

may  be  quite  different  from  what  you  would  have  got  if  you  had  allowed  the  evaluation  to

complete. 

Here is a list generated by repeated application of a function. 

In[13]:= NestList@1 ê HÒ + 1L &, -2.5, 6D

Out[13]= 8-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Since there is no Throw encountered, the result here is just as before. 

In[14]:= Catch@NestList@1 ê HÒ + 1L &, -2.5, 6DD

Out[14]= 8-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Now the evaluation of the NestList is diverted, and the single number given as the argument 
of Throw is returned.

In[15]:= Catch@NestList@If@Ò > 1, Throw@ÒD, 1 ê HÒ + 1LD &, -2.5, 6DD

Out[15]= 3.

Throw  and Catch  operate in a completely global way: it does not matter how or where a Throw

is generated~it will always stop evaluation and return to the enclosing Catch. 

The Throw stops the evaluation of f, and causes the Catch to return just a, with no trace of f 
left. 

In[16]:= Catch@f@Throw@aDDD

Out[16]= a

This defines a function which generates a Throw when its argument is larger than 10. 

In[17]:= g@x_D := If@x > 10, Throw@overflowD, x!D

No Throw is generated here. 

In[18]:= Catch@g@4DD

Out[18]= 24

But here the Throw generated inside the evaluation of g returns to the enclosing Catch. 

In[19]:= Catch@g@40DD

Out[19]= overflow

In  small  programs,  it  is  often adequate  to  use Throw@valueD  and Catch@exprD  in  their  simplest

form.  But  particularly  if  you  write  larger  programs  that  contain  many  separate  pieces,  it  is

usually much better to use Throw@value, tagD and Catch@expr, formD. By keeping the expressions

tag  and form  local  to a particular piece of  your program, you can then ensure that your Throw

and Catch will also operate only within that piece.
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In  small  programs,  it  is  often adequate  to  use Throw@valueD  and Catch@exprD  in  their  simplest

form.  But  particularly  if  you  write  larger  programs  that  contain  many  separate  pieces,  it  is

usually much better to use Throw@value, tagD and Catch@expr, formD. By keeping the expressions

tag  and form  local  to a particular piece of  your program, you can then ensure that your Throw

and Catch will also operate only within that piece.

Here the Throw is caught by the inner Catch. 

In[20]:= Catch@f@Catch@Throw@x, aD, aDD, bD

Out[20]= f@xD

But here it is caught only by the outer Catch. 

In[21]:= Catch@f@Catch@Throw@x, bD, aDD, bD

Out[21]= x

You can use patterns in specifying the tags which a particular Catch should catch. 

In[22]:= Catch@Throw@x, aD, a bD

Out[22]= x

This keeps the tag a completely local. 

In[23]:= Module@8a<, Catch@Throw@x, aD, aDD

Out[23]= x

You should realize that there is no need for the tag that appears in Throw  to be a constant; in

general it can be any expression.

Here the inner Catch catches all throws with tags less than 4, and continues the Do. But as 
soon as the tag reaches 4, the outer Catch is needed. 

In[24]:= Catch@Do@Catch@Throw@i^2, iD, n_ ê; n < 4D, 8i, 10<D, _D

Out[24]= 16

When you use Catch@expr, formD with Throw@value, tagD, the value returned by Catch  is simply

the  expression  value  given  in  the  Throw.  If  you  use  Catch@expr, form, fD,  however,  then  the

value returned by Catch is instead f@value, tagD. 

Here f is applied to the value and tag in the Throw. 

In[25]:= Catch@Throw@x, aD, a, fD

Out[25]= f@x, aD

If there is no Throw, f is never used. 
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If there is no Throw, f is never used. 

In[26]:= Catch@x, a, fD

Out[26]= x

While@test,bodyD evaluate body repetitively, so long as test is True

For@start,test,incr,bodyD evaluate start, then repetitively evaluate body and incr, until 
test fails

General loop constructs. 

Functions like Do, Nest and FixedPoint  provide structured ways to make loops in Mathematica

programs,  while  Throw  and  Catch  provide  opportunities  for  modifying  this  structure.  Some-

times,  however,  you may want to create loops that  even from the outset  have less structure.

And in such cases, you may find it convenient to use the functions While  and For, which per-

form operations repeatedly, stopping when a specified condition fails to be true. 

The While loop continues until the condition fails. 

In[27]:= n = 17; While@Hn = Floor@n ê 2DL != 0, Print@nDD

8

4

2

1

The functions While  and For in Mathematica are similar to the control structures while and for

in languages such as C. Notice, however, that there are a number of important differences. For

example, the roles of comma and semicolon are reversed in Mathematica For loops relative to

C language ones.

This is a very common form for a For loop. i++ increments the value of i. 

In[28]:= For@i = 1, i < 4, i++, Print@iDD

1

2

3

290     Core Language



Here is a more complicated For loop. Notice that the loop terminates as soon as the test 
i^2 < 10 fails. 

In[29]:= For@i = 1; t = x, i^2 < 10, i++, t = t^2 + i; Print@tDD

1 + x2

2 + I1 + x2M
2

3 + J2 + I1 + x2M
2
N
2

In Mathematica, both While  and For  always evaluate the loop test before evaluating the body

of the loop. As soon as the loop test fails to be True, While  and For terminate. The body of the

loop is thus only evaluated in situations where the loop test is True. 

The loop test fails immediately, so the body of the loop is never evaluated. 

In[30]:= While@False, Print@xDD

In a While  or For  loop, or in general in any Mathematica procedure, the Mathematica expres-

sions you give are evaluated in a definite sequence. You can think of this sequence as defining

the "flow of control" in the execution of a Mathematica program. 

In  most  cases,  you  should  try  to  keep  the  flow  of  control  in  your  Mathematica  programs  as

simple as possible. The more the flow of control depends for example on specific values gener-

ated during the execution of the program, the more difficult you will typically find it to unders-

tand the structure and operation of the program. 

Functional programming constructs typically involve very simple flow of control. While  and For

loops are always more complicated, since they are set up to make the flow of control depend on

the  values  of  the  expressions  given  as  tests.  Nevertheless,  even  in  such  loops,  the  flow  of

control does not usually depend on the values of expressions given in the body of the loop. 

In some cases, however, you may need to construct Mathematica programs in which the flow of

control is affected by values generated during the execution of a procedure or of the body of a

loop. One way to do this, which fits in with functional programming ideas, is to use Throw  and

Catch. But Mathematica also provides various functions for modifying the flow of control which

work like in languages such as C. 
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Break@D exit the nearest enclosing loop

Continue@D go to the next step in the current loop

Return@exprD return the value expr, exiting all procedures and loops in a 
function

Goto@nameD go to the element Label@nameD in the current procedure

Throw@valueD return value as the value of the nearest enclosing Catch 
(non-local return)

Control flow functions. 

The Break@D causes the loop to terminate as soon as t exceeds 19. 

In[31]:= t = 1; Do@t *= k; Print@tD; If@t > 19, Break@DD, 8k, 10<D

1

2

6

24

When k < 3, the Continue@D causes the loop to be continued, without executing t += 2. 

In[32]:= t = 1; Do@t *= k; Print@tD; If@k < 3, Continue@DD; t += 2, 8k, 10<D

1

2

6

32

170

1032

7238

57920

521298

5213000

Return@exprD allows you to exit a particular function, returning a value. You can think of Throw

as  a  kind  of  non-local  return  which  allows  you  to  exit  a  whole  sequence  of  nested  functions.

Such behavior can be convenient for handling certain error conditions. 

Here is an example of the use of Return. This particular procedure could equally well have 
been written without using Return. 
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Here is an example of the use of Return. This particular procedure could equally well have 
been written without using Return. 

In[33]:= f@x_D := HIf@x > 5, Return@bigDD; t = x^3; Return@t - 7DL

When the argument is greater than 5, the first Return in the procedure is used. 

In[34]:= f@10D

Out[34]= big

This function "throws" error if its argument is negative. 

In[35]:= h@x_D := If@x < 0, Throw@errorD, Sqrt@xDD

No Throw is generated here. 

In[36]:= Catch@h@6D + 2D

Out[36]= 2 + 6

But in this case a Throw is generated, and the whole Catch returns the value error. 

In[37]:= Catch@h@-6D + 2D

Out[37]= error

Functions like Continue@D and Break@D allow you to "transfer control" to the beginning or end

of a loop in a Mathematica program. Sometimes you may instead need to transfer control to a

particular element in a Mathematica procedure. If you give a Label  as an element in a proce-

dure, you can use Goto to transfer control to this element. 

This goes on looping until q exceeds 6. 

In[38]:= Hq = 2; Label@beginD; Print@qD; q += 3; If@q < 6, Goto@beginDDL

2

5

Note  that  you  can  use  Goto  in  a  particular  Mathematica  procedure  only  when  the  Label  it

specifies  occurs  as  an  element  of  the  same  Mathematica  procedure.  In  general,  use  of  Goto

reduces  the  degree  of  structure  that  can  readily  be  perceived  in  a  program,  and  therefore

makes the operation of the program more difficult to understand. 
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Collecting Expressions During Evaluation

In many computations one is concerned only with the final result of evaluating the expression

given as input. But sometimes one also wants to collect expressions that were generated in the

course of the evaluation. You can do this using Sow and Reap. 

Sow@valD sow the value val for the nearest enclosing Reap

Reap@exprD evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap. 

Here the output contains only the final result. 

In[1]:= a = 3; a += a^2 + 1; a = Sqrt@a + a^2D

Out[1]= 182

Here two intermediate results are also given. 

In[2]:= Reap@Sow@a = 3D; a += Sow@a^2 + 1D; a = Sqrt@a + a^2DD

Out[2]= : 182 , 883, 10<<>

This computes a sum, collecting all terms that are even. 

In[3]:= Reap@Sum@If@EvenQ@ÒD, Sow@ÒD, ÒD &@i^2 + 1D, 8i, 10<DD

Out[3]= 8395, 882, 10, 26, 50, 82<<<

Like Throw and Catch, Sow and Reap can be used anywhere in a computation. 

This defines a function that can do a Sow. 

In[4]:= f@x_D := HIf@x < 1 ê 2, Sow@xDD; 3.5 x H1 - xLL

This nests the function, reaping all cases below 1/2. 

In[5]:= Reap@Nest@f, 0.8, 10DD

Out[5]= 80.868312, 880.415332, 0.446472, 0.408785, 0.456285<<<
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Sow@val,tagD sow val with a tag to indicate when to reap

Sow@val,8tag1,tag2,…<D sow val for each of the tagi

Reap@expr, formD reap all values whose tags match form

Reap@expr,8 form1, form2,…<D make separate lists for each of the formi

Reap@expr,8 form1,…<, fD apply f  to each distinct tag and list of values

Sowing and reaping with tags. 

This reaps only values sown with tag x. 

In[6]:= Reap@Sow@1, xD; Sow@2, yD; Sow@3, xD, xD

Out[6]= 83, 881, 3<<<

Here 1 is sown twice with tag x. 

In[7]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, xD

Out[7]= 83, 881, 1, 3<<<

Values sown with different tags always appear in different sublists. 

In[8]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xDD

Out[8]= 83, 881, 1, 3<, 82<<<

The makes a sublist for each form of tag being reaped. 

In[9]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, 8x, x, y<D

Out[9]= 83, 8881, 1, 3<<, 881, 1, 3<<, 882<<<<

This applies f to each distinct tag and list of values. 

In[10]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, _, fD

Out[10]= 83, 8f@x, 81, 1, 3<D, f@y, 82<D<<

The tags can be part of the computation. 

In[11]:= Reap@Do@Sow@i ê j, GCD@i, jDD, 8i, 4<, 8j, i<DD

Out[11]= :Null, ::1, 2, 3,
3

2
, 4,

4

3
>, 81, 2<, 81<, 81<>>
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Tracing Evaluation

The  standard  way  in  which  Mathematica  works  is  to  take  any  expression  you  give  as  input,

evaluate the expression completely, and then return the result. When you are trying to unders-

tand  what  Mathematica  is  doing,  however,  it  is  often  worthwhile  to  look  not  just  at  the  final

result of evaluation, but also at intermediate steps in the evaluation process. 

Trace@exprD generate a list of all expressions used in the evaluation of 
expr

Trace@expr, formD include only expressions which match the pattern form

Tracing the evaluation of expressions. 

The expression 1 + 1 is evaluated immediately to 2. 

In[1]:= Trace@1 + 1D

Out[1]= 81 + 1, 2<

The 2^3 is evaluated before the addition is done. 

In[2]:= Trace@2^3 + 4D

Out[2]= 9923, 8=, 8 + 4, 12=

The evaluation of each subexpression is shown in a separate sublist. 

In[3]:= Trace@2^3 + 4^2 + 1D

Out[3]= 9923, 8=, 942, 16=, 8 + 16 + 1, 25=

Trace@exprD gives a list which includes all the intermediate expressions involved in the evalua-

tion  of  expr.  Except  in  rather  simple  cases,  however,  the  number  of  intermediate  expressions

generated in this way is typically very large, and the list returned by Trace is difficult to unders-

tand. 

Trace@expr, formD allows you to “filter” the expressions that Trace  records, keeping only those

which match the pattern form. 

Here is a recursive definition of a factorial function. 

In[4]:= fac@n_D := n fac@n - 1D; fac@1D = 1

Out[4]= 1

This gives all the intermediate expressions generated in the evaluation of fac@3D. The result is 
quite complicated. 
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This gives all the intermediate expressions generated in the evaluation of fac@3D. The result is 
quite complicated. 

In[5]:= Trace@fac@3DD

Out[5]= 8fac@3D, 3 fac@3 - 1D, 883 - 1, 2<, fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<, 3 µ 2, 6<

This shows only intermediate expressions of the form fac@n_D. 

In[6]:= Trace@fac@3D, fac@n_DD

Out[6]= 8fac@3D, 8fac@2D, 8fac@1D<<<

You can specify any pattern in Trace. 

In[7]:= Trace@fac@10D, fac@n_ ê; n > 5DD

Out[7]= 8fac@10D, 8fac@9D, 8fac@8D, 8fac@7D, 8fac@6D<<<<<

Trace@expr, formD effectively works by intercepting every expression that is about to be evalu-

ated during the evaluation of expr, and picking out those that match the pattern form. 

If you want to trace “calls” to a function like fac, you can do so simply by telling Trace  to pick

out expressions of the form fac@n_D. You can also use patterns like f@n_, 2D to pick out calls

with particular argument structure. 

A typical  Mathematica  program, however, consists not only of “function calls” like fac@nD,  but

also of  other elements,  such as assignments to variables,  control  structures,  and so on. All  of

these elements are represented as expressions. As a result,  you can use patterns in Trace  to

pick out any kind of Mathematica  program element. Thus, for example, you can use a pattern

like k = _ to pick out all assignments to the symbol k. 

This shows the sequence of assignments made for k. 

In[8]:= Trace@Hk = 2; For@i = 1, i < 4, i++, k = i ê kD; kL, k = _D

Out[8]= :8k = 2<, ::k =
1

2
>, 8k = 4<, :k =

3

4
>>>

Trace@expr, formD can pick out expressions that occur at any time in the evaluation of expr. The

expressions need not, for example, appear directly in the form of expr that you give. They may

instead occur, say, during the evaluation of functions that are called as part of the evaluation of

expr. 

Here is a function definition. 

In[9]:= h@n_D := Hk = n ê 2; Do@k = i ê k, 8i, n<D; kL

You can look for expressions generated during the evaluation of h. 
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You can look for expressions generated during the evaluation of h. 

In[10]:= Trace@h@3D, k = _D

Out[10]= ::k =
3

2
>, ::k =

2

3
>, 8k = 3<, 8k = 1<>>

Trace  allows you to monitor intermediate steps in the evaluation not only of functions that you

define, but also of some functions that are built into Mathematica. You should realize, however,

that  the  specific  sequence  of  intermediate  steps  followed  by  built-in  Mathematica  functions

depends in detail on their implementation and optimization in a particular version of Mathemat-

ica. 

Trace@expr, f@___DD show all calls to the function f

Trace@expr,i=_D show assignments to i

Trace@expr,_=_D show all assignments

Trace@expr,Message@___DD show messages generated

Some ways to use Trace. 

The function Trace  returns  a  list  that  represents  the “history”  of  a  Mathematica  computation.

The expressions in the list are given in the order that they were generated during the computa-

tion.  In  most  cases,  the  list  returned  by  Trace  has  a  nested  structure,  which  represents  the

“structure” of the computation. 

The  basic  idea  is  that  each  sublist  in  the  list  returned  by  Trace  represents  the  “evaluation

chain” for a particular Mathematica expression. The elements of this chain correspond to differ-

ent forms of the same expression. Usually, however, the evaluation of one expression requires

the evaluation of a number of other expressions, often subexpressions. Each subsidiary evalua-

tion is represented by a sublist in the structure returned by Trace. 

Here is a sequence of assignments. 

In[11]:= a@1D = a@2D; a@2D = a@3D; a@3D = a@4D

Out[11]= a@4D

This yields an evaluation chain reflecting the sequence of transformations for a@iD used. 

In[12]:= Trace@a@1DD

Out[12]= 8a@1D, a@2D, a@3D, a@4D<

The successive forms generated in the simplification of y + x + y show up as successive ele-
ments in its evaluation chain. 
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The successive forms generated in the simplification of y + x + y show up as successive ele-
ments in its evaluation chain. 

In[13]:= Trace@y + x + yD

Out[13]= 8y + x + y, x + y + y, x + 2 y<

Each argument of the function f has a separate evaluation chain, given in a sublist. 

In[14]:= Trace@f@1 + 1, 2 + 3, 4 + 5DD

Out[14]= 881 + 1, 2<, 82 + 3, 5<, 84 + 5, 9<, f@2, 5, 9D<

The evaluation chain for each subexpression is given in a separate sublist. 

In[15]:= Trace@x x + y yD

Out[15]= 99x x, x2=, 9y y, y2=, x2 + y2=

Tracing the evaluation of a nested expression yields a nested list. 

In[16]:= Trace@f@f@f@1 + 1DDDD

Out[16]= 88881 + 1, 2<, f@2D<, f@f@2DD<, f@f@f@2DDD<

There are two basic ways that subsidiary evaluations can be required during the evaluation of a

Mathematica expression. The first way is that the expression may contain subexpressions, each

of which has to be evaluated. The second way is that there may be rules for the evaluation of

the expression that involve other expressions which themselves must be evaluated. Both kinds

of subsidiary evaluations are represented by sublists in the structure returned by Trace. 

The subsidiary evaluations here come from evaluation of the arguments of f and g. 

In[17]:= Trace@f@g@1 + 1D, 2 + 3DD

Out[17]= 8881 + 1, 2<, g@2D<, 82 + 3, 5<, f@g@2D, 5D<

Here is a function with a condition attached. 

In[18]:= fe@n_D := n + 1 ê; EvenQ@nD

The evaluation of fe@6D involves a subsidiary evaluation associated with the condition. 

In[19]:= Trace@fe@6DD

Out[19]= 8fe@6D, 88EvenQ@6D, True<, RuleCondition@$ConditionHold@$ConditionHold@6 + 1DD, TrueD,
$ConditionHold@$ConditionHold@6 + 1DD<, 6 + 1, 7<

You  often  get  nested  lists  when  you  trace  the  evaluation  of  functions  that  are  defined

“recursively”  in  terms of  other  instances  of  themselves.  The reason is  typically  that  each new

instance of the function appears as a subexpression in the expressions obtained by evaluating

previous instances of the function. 
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You  often  get  nested  lists  when  you  trace  the  evaluation  of  functions  that  are  defined

“recursively”  in  terms of  other  instances  of  themselves.  The reason is  typically  that  each new

instance of the function appears as a subexpression in the expressions obtained by evaluating

previous instances of the function. 

Thus, for example, with the definition fac@n_D := n fac@n - 1D, the evaluation of fac@6D yields

the expression 6 fac@5D, which contains fac@5D as a subexpression. 

The successive instances of fac generated appear in successively nested sublists. 

In[20]:= Trace@fac@6D, fac@_DD

Out[20]= 8fac@6D, 8fac@5D, 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D<<<<<<

With this definition, fp@n - 1D is obtained directly as the value of fp@nD. 

In[21]:= fp@n_D := fp@n - 1D ê; n > 1

fp@nD never appears in a subexpression, so no sublists are generated. 

In[22]:= Trace@fp@6D, fp@_DD

Out[22]= 8fp@6D, fp@6 - 1D, fp@5D, fp@5 - 1D, fp@4D, fp@4 - 1D, fp@3D, fp@3 - 1D, fp@2D, fp@2 - 1D, fp@1D<

Here is the recursive definition of the Fibonacci numbers. 

In[23]:= fib@n_D := fib@n - 1D + fib@n - 2D

Here are the end conditions for the recursion. 

In[24]:= fib@0D = fib@1D = 1

Out[24]= 1

This shows all the steps in the recursive evaluation of fib@5D. 

In[25]:= Trace@fib@5D, fib@_DD

Out[25]= 

Each step in  the evaluation of  any Mathematica  expression can be thought of  as the result  of

applying a particular transformation rule. As discussed in "Associating Definitions with Different

Symbols", all the rules that Mathematica knows are associated with specific symbols or “tags”.

You  can  use  Trace@expr, fD  to  see  all  the  steps  in  the  evaluation  of  expr  that  are  performed

using transformation rules associated with the symbol f . In this case, Trace  gives not only the

expressions to which each rule is applied, but also the results of applying the rules. 

In  general,  Trace@expr, formD  picks  out  all  the  steps  in  the  evaluation  of  expr  where  form

matches either the expression about to be evaluated, or the tag associated with the rule used. 
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In  general,  Trace@expr, formD  picks  out  all  the  steps  in  the  evaluation  of  expr  where  form

matches either the expression about to be evaluated, or the tag associated with the rule used. 

Trace@expr, fD show all evaluations which use transformation rules associ-
ated with the symbol f

Trace@expr, f gD show all evaluations associated with either f  or g

Tracing evaluations associated with particular tags. 

This shows only intermediate expressions that match fac@_D. 

In[26]:= Trace@fac@3D, fac@_DD

Out[26]= 8fac@3D, 8fac@2D, 8fac@1D<<<

This shows all evaluations that use transformation rules associated with the symbol fac. 

In[27]:= Trace@fac@3D, facD

Out[27]= 8fac@3D, 3 fac@3 - 1D, 8fac@2D, 2 fac@2 - 1D, 8fac@1D, 1<<<

Here is a rule for the log function. 

In[28]:= log@x_ y_D := log@xD + log@yD

This traces the evaluation of log@a b c dD, showing all transformations associated with log. 

In[29]:= Trace@log@a b c dD, logD

Out[29]= 8log@a b c dD, log@aD + log@b c dD, 8log@b c dD, log@bD + log@c dD, 8log@c dD, log@cD + log@dD<<<

TraceAexpr, form,TraceOn->oformE

switch on tracing only within forms matching oform

TraceAexpr, form,TraceOff->oformE

switch off tracing within any form matching oform

Switching off tracing inside certain forms. 

Trace@expr, formD allows you to trace expressions matching form generated at any point in the

evaluation of expr. Sometimes, you may want to trace only expressions generated during certain

parts of the evaluation of expr. 

By setting the option TraceOn -> oform, you can specify that tracing should be done only during

the  evaluation  of  forms  which  match  oform.  Similarly,  by  setting  TraceOff -> oform,  you  can

specify that tracing should be switched off during the evaluation of forms which match oform. 

This shows all steps in the evaluation. 
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This shows all steps in the evaluation. 

In[30]:= Trace@log@fac@2D xDD

Out[30]= 888fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<, 2 x<, log@2 xD, log@2D + log@xD<

This shows only those steps that occur during the evaluation of fac. 

In[31]:= Trace@log@fac@2D xD, TraceOn -> facD

Out[31]= 888fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<<<

This shows only those steps that do not occur during the evaluation of fac. 

In[32]:= Trace@log@fac@2D xD, TraceOff -> facD

Out[32]= 888fac@2D, 2<, 2 x<, log@2 xD, log@2D + log@xD<

Trace@expr,lhs->rhsD find all expressions matching lhs that arise during the 
evaluation of expr, and replace them with rhs

Applying rules to expressions encountered during evaluation. 

This tells Trace to return only the arguments of fib used in the evaluation of fib@5D. 

In[33]:= Trace@fib@5D, fib@n_D -> nD

Out[33]= 

A powerful aspect of the Mathematica Trace  function is that the object it returns is basically a

standard Mathematica expression which you can manipulate using other Mathematica functions.

One important point to realize, however, is that Trace  wraps all expressions that appear in the

list  it  produces  with  HoldForm  to  prevent  them  from  being  evaluated.  The  HoldForm  is  not

displayed in standard Mathematica output format, but it is still present in the internal structure

of the expression. 

This shows the expressions generated at intermediate stages in the evaluation process. 

In[34]:= Trace@1 + 3^2D

Out[34]= 9932, 9=, 1 + 9, 10=

The expressions are wrapped with HoldForm to prevent them from evaluating. 

In[35]:= Trace@1 + 3^2D êê InputForm

Out[35]//InputForm= {{HoldForm[3^2], HoldForm[9]}, HoldForm[1 + 9],   HoldForm[10]}

In standard Mathematica output format, it is sometimes difficult to tell which lists are associ-
ated with the structure returned by Trace, and which are expressions being evaluated. 
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In standard Mathematica output format, it is sometimes difficult to tell which lists are associ-
ated with the structure returned by Trace, and which are expressions being evaluated. 

In[36]:= Trace@81 + 1, 2 + 3<D

Out[36]= 881 + 1, 2<, 82 + 3, 5<, 82, 5<<

Looking at the input form resolves any ambiguities. 

In[37]:= InputForm@%D

Out[37]//InputForm= {{HoldForm[1 + 1], HoldForm[2]},   {HoldForm[2 + 3], HoldForm[5]}, HoldForm[{2, 5}]}

When you use a transformation rule in Trace, the result is evaluated before being wrapped 
with HoldForm. 

In[38]:= Trace@fac@4D, fac@n_D -> n + 1D

Out[38]= 85, 84, 83, 82<<<<

For sophisticated computations, the list structures returned by Trace  can be quite complicated.

When you use Trace@expr, formD, Trace  will include as elements in the lists only those expres-

sions which match the pattern form. But whatever pattern you give, the nesting structure of the

lists remains the same. 

This shows all occurrences of fib@_D in the evaluation of fib@3D. 

In[39]:= Trace@fib@3D, fib@_DD

Out[39]= 8fib@3D, 8fib@2D, 8fib@1D<, 8fib@0D<<, 8fib@1D<<

This shows only occurrences of fib@1D, but the nesting of the lists is the same as for fib@_D. 

In[40]:= Trace@fib@3D, fib@1DD

Out[40]= 888fib@1D<<, 8fib@1D<<

You  can  set  the  option  TraceDepth -> n  to  tell  Trace  to  include  only  lists  nested  at  most  n

levels deep. In this way, you can often pick out the “big steps” in a computation, without seeing

the details. Note that by setting TraceDepth  or TraceOff  you can avoid looking at many of the

steps  in  a  computation,  and  thereby  significantly  speed  up  the  operation  of  Trace  for  that

computation. 

This shows only steps that appear in lists nested at most two levels deep. 

In[41]:= Trace@fib@3D, fib@_D, TraceDepth -> 2D

Out[41]= 8fib@3D, 8fib@1D<<
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TraceAexpr, form,TraceDepth->nE

trace the evaluation of expr, ignoring steps that lead to lists 
nested more than n levels deep

Restricting the depth of tracing. 

When  you  use  Trace@expr, formD,  you  get  a  list  of  all  the  expressions  which  match  form  pro-

duced during the evaluation of  expr.  Sometimes it  is  useful  to  see not  only  these expressions,

but  also  the  results  that  were  obtained  by  evaluating  them.  You  can  do  this  by  setting  the

option TraceForward -> True in Trace. 

This shows not only expressions which match fac@_D, but also the results of evaluating those 
expressions. 

In[42]:= Trace@fac@4D, fac@_D, TraceForward -> TrueD

Out[42]= 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D, 1<, 2<, 6<, 24<

Expressions  picked  out  using  Trace@expr, formD  typically  lie  in  the  middle  of  an  evaluation

chain. By setting TraceForward -> True, you tell Trace  to include also the expression obtained

at  the end of  the evaluation chain.  If  you set  TraceForward -> All,  Trace  will  include all  the

expressions that occur after the expression matching form on the evaluation chain. 

With TraceForward -> All, all elements on the evaluation chain after the one that matches 
fac@_D are included. 

In[43]:= Trace@fac@4D, fac@_D, TraceForward -> AllD

Out[43]= 8fac@4D, 4 fac@4 - 1D,
8fac@3D, 3 fac@3 - 1D, 8fac@2D, 2 fac@2 - 1D, 8fac@1D, 1<, 2 µ 1, 2<, 3 µ 2, 6<, 4 µ 6, 24<

By setting the option TraceForward, you can effectively see what happens to a particular form

of  expression during an evaluation.  Sometimes,  however,  you want  to  find out  not  what  hap-

pens to a particular expression, but instead how that expression was generated. You can do this

by setting the option TraceBackward. What TraceBackward  does is to show you what preceded

a particular form of expression on an evaluation chain. 

This shows that the number 120 came from the evaluation of fac@5D during the evaluation of 
fac@10D. 

In[44]:= Trace@fac@10D, 120, TraceBackward -> TrueD

Out[44]= 888888fac@5D, 120<<<<<<
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Here is the whole evaluation chain associated with the generation of the number 120. 

In[45]:= Trace@fac@10D, 120, TraceBackward -> AllD

Out[45]= 888888fac@5D, 5 fac@5 - 1D, 5 µ 24, 120<<<<<<

TraceForward  and  TraceBackward  allow  you  to  look  forward  and  backward  in  a  particular

evaluation chain. Sometimes, you may also want to look at the evaluation chains within which

the particular evaluation chain occurs. You can do this using TraceAbove. If you set the option

TraceAbove -> True, then Trace  will include the initial and final expressions in all the relevant

evaluation  chains.  With  TraceAbove -> All,  Trace  includes  all  the  expressions  in  all  these

evaluation chains.

This includes the initial and final expressions in all evaluation chains which contain the chain 
that contains 120. 

In[46]:= Trace@fac@7D, 120, TraceAbove -> TrueD

Out[46]= 8fac@7D, 8fac@6D, 8fac@5D, 120<, 720<, 5040<

This shows all the ways that fib@2D is generated during the evaluation of fib@5D. 

In[47]:= Trace@fib@5D, fib@2D, TraceAbove -> TrueD

Out[47]= 

Trace@expr, form,optsD trace the evaluation of expr using the specified options

TraceForward->True include the final expression in the evaluation chain contain -
ing form

TraceForward->All include all expressions following form in the evaluation 
chain

TraceBackward->True include the first expression in the evaluation chain contain -
ing form

TraceBackward->All include all expressions preceding form in the evaluation 
chain

TraceAbove->True include the first and last expressions in all evaluation 
chains which contain the chain containing form

TraceAbove->All include all expressions in all evaluation chains which 
contain the chain containing form

Option settings for including extra steps in trace lists. 

The  basic  way  that  Trace@expr, …D  works  is  to  intercept  each  expression  encountered  during

the  evaluation  of  expr,  and  then  to  use  various  criteria  to  determine  whether  this  expression

should be recorded. Normally, however, Trace  intercepts expressions only after function argu-

ments have been evaluated. By setting TraceOriginal -> True, you can get Trace  also to look

at expressions before function arguments have been evaluated. 
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The  basic  way  that  Trace@expr, …D  works  is  to  intercept  each  expression  encountered  during

the  evaluation  of  expr,  and  then  to  use  various  criteria  to  determine  whether  this  expression

should be recorded. Normally, however, Trace  intercepts expressions only after function argu-

ments have been evaluated. By setting TraceOriginal -> True, you can get Trace  also to look

at expressions before function arguments have been evaluated. 

This includes expressions which match fac@_D both before and after argument evaluation. 

In[48]:= Trace@fac@3D, fac@_D, TraceOriginal -> TrueD

Out[48]= 8fac@3D, 8fac@3 - 1D, fac@2D, 8fac@2 - 1D, fac@1D<<<

The list structure produced by Trace  normally includes only expressions that constitute steps in

non-trivial evaluation chains. Thus, for example, individual symbols that evaluate to themselves

are  not  normally  included.  Nevertheless,  if  you  set  TraceOriginal -> True,  then  Trace  looks

at  absolutely  every  expression  involved  in  the  evaluation  process,  including  those  that  have

trivial evaluation chains. 

In this case, Trace includes absolutely all expressions, even those with trivial evaluation 
chains. 

In[49]:= Trace@fac@1D, TraceOriginal -> TrueD

Out[49]= 8fac@1D, 8fac<, 81<, fac@1D, 1<

option name default value
TraceForward False whether to show expressions following form 

in the evaluation chain
TraceBackward False whether to show expressions preceding 

form in the evaluation chain
TraceAbove False whether to show evaluation chains leading 

to the evaluation chain containing form
TraceOriginal False whether to look at expressions before their 

heads and arguments are evaluated

Additional options for Trace. 

When you  use  Trace  to  study  the  execution  of  a  program,  there  is  an  issue  about  how local

variables in the program should be treated. As discussed in "How Modules Work", Mathematica

scoping constructs such as Module create symbols with new names to represent local variables.

Thus,  even  if  you  called  a  variable  x  in  the  original  code  for  your  program,  the  variable  may

effectively be renamed x$nnn when the program is executed. 

Trace@expr, formD  is  set  up  so  that  by  default  a  symbol  x  that  appears  in  form  will  match  all

symbols with names of the form x$nnn  that arise in the execution of expr.  As a result,  you can

for  example  use  Trace@expr, x = _D  to  trace  assignment  to  all  variables,  local  and global,  that

were named x in your original program. 
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Trace@expr, formD  is  set  up  so  that  by  default  a  symbol  x  that  appears  in  form  will  match  all

symbols with names of the form x$nnn  that arise in the execution of expr.  As a result,  you can

for  example  use  Trace@expr, x = _D  to  trace  assignment  to  all  variables,  local  and global,  that

were named x in your original program. 

TraceAexpr, form,MatchLocalNames->FalseE

include all steps in the execution of expr that match form, 
with no replacements for local variable names allowed

Preventing the matching of local variables. 

In  some cases,  you  may want  to  trace  only  the  global  variable  x,  and  not  any  local  variables

that were originally named x. You can do this by setting the option MatchLocalNames -> False. 

This traces assignments to all variables with names of the form x$nnn. 

In[50]:= Trace@Module@8x<, x = 5D, x = _D

Out[50]= 88x$1 = 5<<

This traces assignments only to the specific global variable x. 

In[51]:= Trace@Module@8x<, x = 5D, x = _, MatchLocalNames -> FalseD

Out[51]= 8<

The  function  Trace  performs  a  complete  computation,  then  returns  a  structure  which  repre-

sents  the  history  of  the  computation.  Particularly  in  very  long  computations,  it  is  however

sometimes  useful  to  see  traces  of  the  computation  as  it  proceeds.  The  function  TracePrint

works essentially like Trace, except that it prints expressions when it encounters them, rather

than saving up all of the expressions to create a list structure. 
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This prints expressions encountered in the evaluation of fib@3D. 

In[52]:= TracePrint@fib@3D, fib@_DD

fib@3D

fib@3 - 1D

fib@2D

fib@2 - 1D

fib@1D

fib@2 - 2D

fib@0D

fib@3 - 2D

fib@1D
Out[52]= 3

The  sequence  of  expressions  printed  by  TracePrint  corresponds  to  the  sequence  of  expres-

sions given in the list structure returned by Trace. Indentation in the output from TracePrint

corresponds  to  nesting  in  the  list  structure  from  Trace.  You  can  use  the  Trace  options

TraceOn,  TraceOff  and  TraceForward  in  TracePrint.  However,  since  TracePrint  produces

output as it  goes, it  cannot support the option TraceBackward.  In addition, TracePrint  is set

up so that TraceOriginal is effectively always set to True. 

Trace@expr,…D trace the evaluation of expr, returning a list structure 
containing the expressions encountered

TracePrint@expr,…D trace the evaluation of expr, printing the expressions 
encountered

TraceDialog@expr,…D trace the evaluation of expr, initiating a dialog when each 
specified expression is encountered

TraceScan@ f,expr,…D trace the evaluation of expr, applying f  to HoldForm of 
each expression encountered

Functions for tracing evaluation. 

This enters a dialog when fac@5D is encountered during the evaluation of fac@10D. 

In[53]:= TraceDialog@fac@10D, fac@5DD

TraceDialog::dgbgn: Entering Dialog; use Return@D to exit.

Out[53]= fac@5D

Inside the dialog you can for example find out where you are by looking at the “stack”. 
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Inside the dialog you can for example find out where you are by looking at the “stack”. 

In[54]:= Stack@D

Out[54]= 8TraceDialog, Times, Times, Times, Times, Times, fac<

This returns from the dialog, and gives the final result from the evaluation of fac@10D. 

In[55]:= Return@D

TraceDialog::dgend: Exiting Dialog.

Out[55]= 3628800

The  function  TraceDialog  effectively  allows  you  to  stop  in  the  middle  of  a  computation,  and

interact  with  the  Mathematica  environment  that  exists  at  that  time.  You  can  for  example  find

values  of  intermediate  variables  in  the  computation,  and  even  reset  those  values.  There  are

however a number of subtleties, mostly associated with pattern and module variables. 

What  TraceDialog  does  is  to  call  the  function  Dialog  on  a  sequence  of  expressions.  The

Dialog  function  is  discussed  in  detail  in  "Dialogs".  When  you  call  Dialog,  you  are  effectively

starting a subsidiary Mathematica session with its own sequence of input and output lines. 

In general, you may need to apply arbitrary functions to the expressions you get while tracing

an evaluation. TraceScan@ f, expr, …D applies f  to each expression that arises. The expression

is wrapped with HoldForm to prevent it from evaluating. 

In  TraceScan@ f, expr, …D,  the  function f  is  applied  to  expressions  before  they are  evaluated.

TraceScan@ f, expr, patt, fpD applies f  before evaluation, and fp after evaluation. 

The Evaluation Stack

Throughout any computation, Mathematica maintains an evaluation stack containing the expres-

sions  it  is  currently  evaluating.  You  can  use  the  function  Stack  to  look  at  the  stack.  This

means, for example, that if you interrupt Mathematica in the middle of a computation, you can

use Stack to find out what Mathematica is doing. 

The expression that Mathematica  most recently started to evaluate always appears as the last

element of the evaluation stack. The previous elements of the stack are the other expressions

whose evaluation is currently in progress. 

Thus  at  the  point  when  x  is  being  evaluated,  the  stack  associated  with  the  evaluation  of  an

expression like f @g@xDD will have the form 8 f @g@xDD, g@xD, x<. 

Core Language     309



Thus  at  the  point  when  x  is  being  evaluated,  the  stack  associated  with  the  evaluation  of  an

expression like f @g@xDD will have the form 8 f @g@xDD, g@xD, x<. 

Stack@_D gives the expressions that are being evaluated at the time when it is called, in this 

case including the Print function. 

In[1]:= f@g@Print@Stack@_DDDD;

8f@g@Print@Stack@_DDDD;, f@g@Print@Stack@_DDDD,
g@Print@Stack@_DDD, Print@Stack@_DD<

Stack@D gives the tags associated with the evaluations that are being done when it is called. 

In[2]:= f@g@Print@Stack@DDDD;

8CompoundExpression, f, g, Print<

In general,  you can think of the evaluation stack as showing what functions called what other

functions  to  get  to  the point  Mathematica  is  at  in  your  computation.  The sequence of  expres-

sions corresponds to the first elements in the successively nested lists returned by Trace  with

the option TraceAbove set to True. 

Stack@D give a list of the tags associated with evaluations that are 
currently being done

Stack@_D give a list of all expressions currently being evaluated

Stack@ formD include only expressions which match form

Looking at the evaluation stack. 

It  is  rather  rare to  call  Stack  directly  in  your  main Mathematica  session.  More often,  you will

want  to  call  Stack  in  the  middle  of  a  computation.  Typically,  you  can  do  this  from  within  a

dialog, or subsidiary session, as discussed in "Dialogs". 

Here is the standard recursive definition of the factorial function. 

In[3]:= fac@1D = 1; fac@n_D := n fac@n - 1D

This evaluates fac@10D, starting a dialog when it encounters fac@4D.

In[4]:= TraceDialog@fac@10D, fac@4DD

TraceDialog::dgbgn: Entering Dialog; use Return@D to exit.

Out[4]= fac@4D
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This shows what objects were being evaluated when the dialog was started. 

In[5]:= Stack@D

Out[5]= 8TraceDialog, Times, Times, Times, Times, Times, Times, fac<

This ends the dialog. 

In[6]:= Return@D

TraceDialog::dgend: Exiting Dialog.

Out[6]= 3628800

In  the  simplest  cases,  the  Mathematica  evaluation  stack  is  set  up  to  record  all  expressions

currently being evaluated. Under some circumstances, however, this may be inconvenient. For

example, executing Print@Stack@DD will always show a stack with Print as the last function. 

The  function  StackInhibit  allows  you  to  avoid  this  kind  of  problem.  StackInhibit@exprD

evaluates expr without modifying the stack. 

StackInhibit prevents Print from being included on the stack. 

In[7]:= f@g@StackInhibit@Print@Stack@DDDDD;

Out[7]= 8CompoundExpression, f, g<

Functions like TraceDialog  automatically call StackInhibit each time they start a dialog. This

means that Stack does not show functions that are called within the dialog, only those outside. 

StackInhibit@exprD evaluate expr without modifying the stack

StackBegin@exprD evaluate expr with a fresh stack

StackComplete@exprD evaluate expr with intermediate expressions in evaluation 
chains included on the stack

Controlling the evaluation stack. 

By using StackInhibit and StackBegin, you can control which parts of the evaluation process

are recorded on the stack. StackBegin@exprD evaluates expr, starting a fresh stack. This means

that during the evaluation of expr, the stack does not include anything outside the StackBegin.

Functions like TraceDialog@expr, …D call StackBegin  before they begin evaluating expr, so that

the stack shows how expr is evaluated, but not how TraceDialog was called. 
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StackBegin@exprD uses a fresh stack in the evaluation of expr. 

In[8]:= f@StackBegin@g@h@StackInhibit@Print@Stack@DDDDDDD

8g, h<
Out[8]= f@g@h@NullDDD

Stack  normally  shows  you  only  those  expressions  that  are  currently  being  evaluated.  As  a

result, it includes only the latest form of each expression. Sometimes, however, you may find it

useful also to see earlier forms of the expressions. You can do this using StackComplete. 

What  StackComplete@exprD  effectively  does  is  to  keep  on  the  stack  the  complete  evaluation

chain for each expression that is currently being evaluated. In this case, the stack corresponds

to the sequence of expressions obtained from Trace  with the option TraceBackward -> All  as

well as TraceAbove -> True. 

Controlling Infinite Evaluation

The  general  principle  that  Mathematica  follows  in  evaluating  expressions  is  to  go  on  applying

transformation  rules  until  the  expressions  no  longer  change.  This  means,  for  example,  that  if

you  make  an  assignment  like  x = x + 1,  Mathematica  should  go  into  an  infinite  loop.  In  fact,

Mathematica  stops  after  a  definite  number  of  steps,  determined  by  the  value  of  the  global

variable  $RecursionLimit.  You  can  always  stop  Mathematica  earlier  by  explicitly  interrupting

it. 

This assignment could cause an infinite loop. Mathematica stops after a number of steps deter-
mined by $RecursionLimit. 

In[1]:= x = x + 1

$RecursionLimit::reclim: Recursion depth of 256 exceeded. à

Out[1]= 255 + Hold@1 + xD

When Mathematica stops without finishing evaluation, it returns a held result. You can continue 
the evaluation by explicitly calling ReleaseHold .

In[2]:= ReleaseHold@%D

$RecursionLimit::reclim: Recursion depth of 256 exceeded. à

Out[2]= 510 + Hold@1 + xD
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$RecursionLimit maximum depth of the evaluation stack

$IterationLimit maximum length of an evaluation chain

Global variables that limit infinite evaluation. 

Here is a circular definition, whose evaluation is stopped by $IterationLimit. 

In[3]:= 8a, b< = 8b, a<

$IterationLimit::itlim: Iteration limit of 4096 exceeded. à

$IterationLimit::itlim: Iteration limit of 4096 exceeded. à

Out[3]= 8Hold@bD, Hold@aD<

The  variables  $RecursionLimit  and  $IterationLimit  control  the  two  basic  ways  that  an

evaluation can become infinite in Mathematica. $RecursionLimit  limits the maximum depth of

the evaluation stack,  or  equivalently,  the maximum nesting depth that  would  occur  in  the list

structure  produced  by  Trace.  $IterationLimit  limits  the  maximum  length  of  any  particular

evaluation chain, or the maximum length of any single list in the structure produced by Trace. 

$RecursionLimit  and  $IterationLimit  are  by  default  set  to  values  that  are  appropriate  for

most  computations,  and  most  computer  systems.  You  can,  however,  reset  these  variables  to

any integer  (above a  lower  limit),  or  to  Infinity.  Note  that  on most  computer  systems,  you

should never set $RecursionLimit = Infinity, as discussed in "Memory Management". 

This resets $RecursionLimit and $IterationLimit to 20. 

In[4]:= $RecursionLimit = $IterationLimit = 20

Out[4]= 20

Now infinite definitions like this are stopped after just 20 steps. 

In[5]:= t = 8t<

$RecursionLimit::reclim: Recursion depth of 20 exceeded. à

Out[5]=

Without an end condition, this recursive definition leads to infinite computations. 

In[6]:= fn@n_D := 8fn@n - 1D, n<
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A fairly large structure is built up before the computation is stopped. 

In[7]:= fn@10D

$RecursionLimit::reclim: Recursion depth of 20 exceeded. à

Out[7]=

Here is another recursive definition. 

In[8]:= fm@n_D := fm@n - 1D

In this case, no complicated structure is built up, and the computation is stopped by 
$IterationLimit. 

In[9]:= fm@0D

$IterationLimit::itlim: Iteration limit of 20 exceeded. à

Out[9]= Hold@fm@-19 - 1DD

It is important to realize that infinite loops can take up not only time but also computer mem-

ory.  Computations  limited  by  $IterationLimit  do  not  normally  build  up  large  intermediate

structures.  But  those  limited  by  $RecursionLimit  often  do.  In  many  cases,  the  size  of  the

structures  produced is  a  linear  function  of  the  value  of  $RecursionLimit.  But  in  some cases,

the size can grow exponentially, or worse, with $RecursionLimit. 

An assignment like x = x + 1 is obviously circular. When you set up more complicated recursive

definitions, however, it can be much more difficult to be sure that the recursion terminates, and

that you will not end up in an infinite loop. The main thing to check is that the right-hand sides

of your transformation rules will always be different from the left-hand sides. This ensures that

evaluation  will  always  “make  progress”,  and  Mathematica  will  not  simply  end  up  applying  the

same transformation rule to the same expression over and over again. 

Some of  the  trickiest  cases  occur  when you have rules  that  depend on complicated  ê;  condi-

tions (see "Putting Constraints on Patterns"). One particularly awkward case is when the condi-

tion involves a “global variable”. Mathematica may think that the evaluation is finished because

the expression did not change. However, a side effect of some other operation could change the

value of the global variable, and so should lead to a new result in the evaluation. The best way

to avoid this kind of difficulty is not to use global variables in ê; conditions. If all else fails, you

can  type  Update@sD  to  tell  Mathematica  to  update  all  expressions  involving  s.  Update@D  tells

Mathematica to update absolutely all expressions. 

Interrupts and Aborts
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Interrupts and Aborts

"Interrupting  Calculations"  describes  how  you  can  interrupt  a  Mathematica  computation  by

pressing appropriate keys on your keyboard. 

In some cases, you may want to simulate such interrupts from within a Mathematica program.

In general, executing Interrupt@D has the same effect as pressing interrupt keys. On a typical

system, a menu of options is displayed, as discussed in "Interrupting Calculations". 

Interrupt@D interrupt a computation

Abort@D abort a computation

CheckAbort@expr, failexprD evaluate expr and return the result, or failexpr if an abort 
occurs

AbortProtect@exprD evaluate expr, masking the effect of aborts until the evalua-
tion is complete 

Interrupts and aborts. 

The  function  Abort@D  has  the  same  effect  as  interrupting  a  computation,  and  selecting  the

abort option in the interrupt menu. 

You  can  use  Abort@D  to  implement  an  “emergency  stop”  in  a  program.  In  almost  all  cases,

however, you should try to use functions like Return and Throw, which lead to more controlled

behavior. 

Abort terminates the computation, so only the first Print is executed. 

In[1]:= Print@aD; Abort@D; Print@bD

a
Out[1]= $Aborted

If  you  abort  at  any  point  during  the  evaluation  of  a  Mathematica  expression,  Mathematica

normally abandons the evaluation of the whole expression, and returns the value $Aborted. 

You can, however, “catch” aborts using the function CheckAbort. If an abort occurs during the

evaluation of expr  in CheckAbort@expr, failexprD, then CheckAbort  returns failexpr, but the abort

propagates no further. Functions like Dialog  use CheckAbort  in this way to contain the effect

of aborts. 
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CheckAbort catches the abort, prints c and returns the value aborted. 

In[2]:= CheckAbort@Print@aD; Abort@D; Print@bD, Print@cD; abortedD

a

c
Out[2]= aborted

The effect of the Abort is contained by CheckAbort, so b is printed. 

In[3]:= CheckAbort@Print@aD; Abort@D, Print@cD; abortedD; Print@bD

a

c

b

When  you  construct  sophisticated  programs  in  Mathematica,  you  may  sometimes  want  to

guarantee that a particular section of code in a program cannot be aborted, either interactively

or  by  calling  Abort.  The  function  AbortProtect  allows  you  to  evaluate  an  expression,  saving

up any aborts until after the evaluation of the expression is complete. 

The Abort is saved up until AbortProtect is finished. 

In[4]:= AbortProtect@Abort@D; Print@aDD; Print@bD

a
Out[4]= $Aborted

The CheckAbort sees the abort, but does not propagate it further. 

In[5]:= AbortProtect@Abort@D; CheckAbort@Print@aD, xDD; Print@bD

b

Even  inside  AbortProtect,  CheckAbort  will  see  any  aborts  that  occur,  and  will  return  the

appropriate failexpr. Unless this failexpr itself contains Abort@D, the aborts will be “absorbed” by

the CheckAbort. 
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Compiling Mathematica Expressions

If you make a definition like f@x_D := x Sin@xD, Mathematica will store the expression x Sin@xD

in a form that can be evaluated for any x. Then when you give a particular value for x, Mathe-

matica  substitutes  this  value  into  x Sin@xD,  and  evaluates  the  result.  The  internal  code  that

Mathematica  uses to  perform this  evaluation is  set  up to  work equally  well  whether  the value

you give for x is a number, a list, an algebraic object, or any other kind of expression. 

Having to take account of all these possibilities inevitably makes the evaluation process slower.

However,  if  Mathematica  could  assume  that  x  will  be  a  machine  number,  then  it  could  avoid

many steps, and potentially evaluate an expression like x Sin@xD much more quickly. 

Using Compile, you can construct compiled functions in Mathematica, which evaluate Mathemat-

ica  expressions  assuming  that  all  the  parameters  which  appear  are  numbers  (or  logical  vari-

ables).  Compile@8x1, x2, …<, exprD  takes  an  expression  expr  and returns  a  "compiled  function"

which evaluates this expression when given arguments x1, x2, …. 

In  general,  Compile  creates  a  CompiledFunction  object  which  contains  a  sequence of  simple

instructions  for  evaluating  the  compiled  function.  The  instructions  are  chosen  to  be  close  to

those found in the machine code of a typical computer, and can thus be executed quickly. 

Compile@8x1,x2,…<,exprD create a compiled function which evaluates expr for numeri-
cal values of the xi 

Creating compiled functions. 

This defines f to be a pure function which evaluates x Sin@xD for any x. 

In[1]:= f = Function@8x<, x Sin@xDD

Out[1]= Function@8x<, x Sin@xDD

This creates a compiled function for evaluating x Sin@xD. 

In[2]:= fc = Compile@8x<, x Sin@xDD

Out[2]= CompiledFunction@8x<, x Sin@xD, -CompiledCode-D

f and fc yield the same results, but fc runs faster when the argument you give is a number. 

In[3]:= 8f@2.5D, fc@2.5D<

Out[3]= 81.49618, 1.49618<

Compile  is  useful  in  situations  where  you  have  to  evaluate  a  particular  numerical  or  logical

expression  many  times.  By  taking  the  time  to  call  Compile,  you  can  get  a  compiled  function

which can be executed more quickly than an ordinary Mathematica function. 
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Compile  is  useful  in  situations  where  you  have  to  evaluate  a  particular  numerical  or  logical

expression  many  times.  By  taking  the  time  to  call  Compile,  you  can  get  a  compiled  function

which can be executed more quickly than an ordinary Mathematica function. 

For simple expressions such as x Sin@xD, there is usually little difference between the execution

speed  for  ordinary  and  compiled  functions.  However,  as  the  size  of  the  expressions  involved

increases,  the advantage of  compilation also increases.  For  large expressions,  compilation can

speed up execution by a factor as large as 20. 

Compilation makes the biggest difference for expressions containing a large number of simple,

say  arithmetic,  functions.  For  more  complicated  functions,  such  as  BesselK  or  Eigenvalues,

most  of  the  computation  time  is  spent  executing  internal  Mathematica  algorithms,  on  which

compilation has no effect. 

This creates a compiled function for finding values of the tenth Legendre polynomial. The 
Evaluate tells Mathematica to construct the polynomial explicitly before doing compilation. 

In[4]:= pc = Compile@8x<, Evaluate@LegendreP@10, xDDD

Out[4]= CompiledFunctionB8x<,
1

256
I-63 + 3465 x2 - 30030 x4 + 90090 x6 - 109395 x8 + 46189 x10M, -CompiledCode-F

This finds the value of the tenth Legendre polynomial with argument 0.4. 

In[5]:= pc@0.4D

Out[5]= 0.0968391

This uses built-in numerical code. 

In[6]:= LegendreP@10, 0.4D

Out[6]= 0.0968391

Even  though  you  can  use  compilation  to  speed  up  numerical  functions  that  you  write,  you

should  still  try  to  use  built-in  Mathematica  functions  whenever  possible.  Built-in  functions  will

usually  run faster  than any compiled Mathematica  programs you can create.  In  addition,  they

typically  use  more  extensive  algorithms,  with  more  complete  control  over  numerical  precision

and so on. 
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You  should  realize  that  built-in  Mathematica  functions  quite  often  themselves  use  Compile.

Thus,  for  example,  NIntegrate  by  default  automatically  uses  Compile  on  the  expression  you

tell  it  to  integrate.  Similarly,  functions  like  Plot  and  Plot3D  use  Compile  on  the  expressions

you ask them to plot.  Built-in  functions that  use Compile  typically  have the option Compiled.

Setting Compiled -> False tells the functions not to use Compile. 

Compile@88x1,t1<,8x2,t2<,…<,exprD

compile expr assuming that xi is of type ti

Compile@88x1,t1,n1<,8x2,t2,n2<,…<,exprD

compile expr assuming that xi is a rank ni array of objects 
each of type ti

Compile@vars,expr,88p1,pt1<,…<D

compile expr, assuming that subexpressions which match 
pi are of type pti

_Integer machine-size integer

_Real machine-precision approximate real number

_Complex machine-precision approximate complex number

True False logical variable

Specifying types for compilation. 

Compile  works by making assumptions about the types of objects that occur in evaluating the

expression you give. The default assumption is that all variables in the expression are approxi-

mate real numbers. 

Compile  nevertheless  also  allows  integers,  complex  numbers  and  logical  variables  (True  or

False), as well as arrays of numbers. You can specify the type of a particular variable by giving

a pattern which matches only values that have that type. Thus, for example, you can use the

pattern _Integer  to specify the integer type. Similarly,  you can use True False  to specify a

logical variable that must be either True or False. 

This compiles the expression 5 i + j with the assumption that i and j are integers. 

In[7]:= Compile@88i, _Integer<, 8j, _Integer<<, 5 i + jD

Out[7]= CompiledFunction@8i, j<, 5 i + j, -CompiledCode-D
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This yields an integer result. 

In[8]:= %@8, 7D

Out[8]= 47

This compiles an expression that performs an operation on a matrix of integers. 

In[9]:= Compile@88m, _Integer, 2<<, Apply@Plus, Flatten@mDDD

Out[9]= CompiledFunction@8m<, Plus üü Flatten@mD, -CompiledCode-D

The list operations are now carried out in a compiled way, and the result is an integer. 

In[10]:= %@881, 2, 3<, 87, 8, 9<<D

Out[10]= 30

The  types  that  Compile  handles  correspond  essentially  to  the  types  that  computers  typically

handle  at  a  machine-code  level.  Thus,  for  example,  Compile  can  handle  approximate  real

numbers  that  have  machine  precision,  but  it  cannot  handle  arbitrary-precision  numbers.  In

addition, if you specify that a particular variable is an integer, Compile  generates code only for

the case when the integer is of "machine size", typically between ±231. 

When  the  expression  you  ask  to  compile  involves  only  standard  arithmetic  and  logical  opera-

tions, Compile  can deduce the types of objects generated at every step simply from the types

of the input variables. However, if you call other functions, Compile will typically not know what

type  of  value  they  return.  If  you  do  not  specify  otherwise,  Compile  assumes  that  any  other

function yields an approximate real number value. You can, however, also give an explicit list of

patterns, specifying what type to assume for an expression that matches a particular pattern. 

This defines a function which yields an integer result when given an integer argument. 

In[11]:= com@i_D := Binomial@2 i, iD

This compiles x^com@iD using the assumption that com@_D is always an integer. 

In[12]:= Compile@8x, 8i, _Integer<<, x^com@iD, 88com@_D, _Integer<<D

Out[12]= CompiledFunctionA8x, i<, xcom@iD, -CompiledCode-E

This evaluates the compiled function. 

In[13]:= %@5.6, 1D

Out[13]= 31.36

The idea of Compile  is to create a function which is optimized for certain types of arguments.

Compile  is  nevertheless  set  up  so  that  the  functions  it  creates  work  with  whatever  types  of

arguments  they  are  given.  When  the  optimization  cannot  be  used,  a  standard  Mathematica

expression is evaluated to find the value of the function. 
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The idea of Compile  is to create a function which is optimized for certain types of arguments.

Compile  is  nevertheless  set  up  so  that  the  functions  it  creates  work  with  whatever  types  of

arguments  they  are  given.  When  the  optimization  cannot  be  used,  a  standard  Mathematica

expression is evaluated to find the value of the function. 

Here is a compiled function for taking the square root of a variable. 

In[14]:= sq = Compile@8x<, Sqrt@xDD

Out[14]= CompiledFunctionB8x<, x , -CompiledCode-F

If you give a real number argument, optimized code is used. 

In[15]:= sq@4.5D

Out[15]= 2.12132

The compiled code cannot be used, so Mathematica prints a warning, then just evaluates the 
original symbolic expression. 

In[16]:= sq@1 + uD

CompiledFunction::cfsa : Argument 1+u at position 1 should be a machine-size real number. à

Out[16]= 1 + u

The compiled code generated by Compile  must make assumptions not only about the types of

arguments you will  supply, but also about the types of all objects that arise during the execu-

tion  of  the  code.  Sometimes  these  types  depend  on  the  actual  values  of  the  arguments  you

specify.  Thus,  for  example,  Sqrt@xD  yields a real  number result  for  real  x  if  x  is  not  negative,

but yields a complex number if x is negative. 

Compile  always makes a definite assumption about the type returned by a particular function.

If  this  assumption  turns  out  to  be  invalid  in  a  particular  case  when  the  code  generated  by

Compile  is  executed,  then  Mathematica  simply  abandons  the  compiled  code  in  this  case,  and

evaluates an ordinary Mathematica expression to get the result. 

Core Language     321



The compiled code does not expect a complex number, so Mathematica has to revert to explic-
itly evaluating the original symbolic expression. 

In[17]:= sq@-4.5D

CompiledFunction::cfn :
Numerical error encountered at instruction 2; proceeding with uncompiled evaluation. à

Out[17]= 0. + 2.12132 Â

An important  feature of  Compile  is  that  it  can handle  not  only  mathematical  expressions,  but

also various simple Mathematica programs. Thus, for example, Compile can handle conditionals

and control flow structures. 

In  all  cases,  Compile@vars, exprD  holds  its  arguments  unevaluated.  This  means  that  you  can

explicitly give a "program" as the expression to compile. 

This creates a compiled version of a Mathematica program which implements Newton’s approxi-
mation to square roots. 

In[18]:= newt = Compile@8x, 8n, _Integer<<, Module@8t<, t = x; Do@t = Ht + x ê tL ê 2, 8n<D; tDD

Out[18]= CompiledFunctionB8x, n<, ModuleB8t<, t = x; DoBt =
1

2
t +

x

t
, 8n<F; tF, -CompiledCode-F

This executes the compiled code. 

In[19]:= newt@2.4, 6D

Out[19]= 1.54919

Manipulating Compiled Code

If  you use compiled code created by Compile  only  within  Mathematica  itself,  then you should

never  need  to  know  the  details  of  its  internal  form.  Nevertheless,  the  compiled  code  can  be

represented by an ordinary Mathematica  expression,  and it  is  sometimes useful  to manipulate

it. 

For  example,  you can take compiled code generated by Compile,  and feed it  to  external  pro-

grams or devices. You can also create CompiledFunction  objects yourself, then execute them

in Mathematica.

In  all  of  these  cases,  you  need  to  know  the  internal  form  of  CompiledFunction  objects.  The

first element of a CompiledFunction  object is always a list of patterns which specifies the types

of  arguments  accepted  by  the  object.  The  fifth  element  of  a  CompiledFunction  object  is  a

Mathematica  pure  function  that  is  used  if  the  compiled  code  instruction  stream  fails  for  any

reason to give a result. 
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In  all  of  these  cases,  you  need  to  know  the  internal  form  of  CompiledFunction  objects.  The

first element of a CompiledFunction  object is always a list of patterns which specifies the types

of  arguments  accepted  by  the  object.  The  fifth  element  of  a  CompiledFunction  object  is  a

Mathematica  pure  function  that  is  used  if  the  compiled  code  instruction  stream  fails  for  any

reason to give a result. 

CompiledFunction@
8arg1,arg2,…<,8reg1,reg2,…<,
8nl,ni,nr,nc,nt<,instr, funcD

compiled code taking arguments of type argi and executing 

the instruction stream instr using nk registers of type k

The structure of a compiled code object. 

This shows the explicit form of the compiled code generated by Compile. 

In[1]:= Compile@8x<, x^2D êê InputForm

Out[1]//InputForm= CompiledFunction[{_Real}, {{3, 0, 0}, {3, 0, 1}}, {0, 1, 2, 0, 0}, 
 {{1, 5}, {7, 2, 0}, {94, 264, 3, 0, 0, 2, 0, 0, 3, 0, 1}, {2}}, 
 Function[{x}, x^2], Evaluate]

The  instruction  stream  in  a  CompiledFunction  object  consists  of  a  list  of  instructions  for  a

simple  idealized  computer.  The  computer  is  assumed to  have  numbered  "registers",  on  which

operations  can  be  performed.  There  are  five  basic  types  of  registers:  logical,  integer,  real,

complex  and  tensor.  For  each  of  these  basic  types  it  is  then  possible  to  have  either  a  single

scalar  register  or  an  array  of  registers  of  any  rank.  A  list  of  the  total  number  of  registers  of

each  type  required  to  evaluate  a  particular  CompiledFunction  object  is  given  as  the  second

element of the object. 

The  actual  instructions  in  the  compiled  code  object  are  given  as  lists.  The  first  element  is  an

integer "opcode" which specifies what operation should be performed. Subsequent elements are

either  the  numbers  of  registers  of  particular  types,  or  literal  constants.  Typically  the  last  ele-

ment of the list is the number of a "destination register", into which the result of the operation

should be put. 
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Appendix: Language Structure

Basic Objects

Expressions

Expressions are the main type of data in Mathematica.

Expressions  can be written  in  the  form h@e1, e2, …D.  The object  h  is  known generically  as  the

head  of  the expression.  The ei  are termed the elements  of  the expression.  Both the head and

the elements may themselves be expressions.

The  parts  of  an  expression  can  be  referred  to  by  numerical  indices.  The  head  has  index  0;

element  ei  has  index  i.  Part@expr, iD  or  expr@@iDD  gives  the  part  of  expr  with  index  i.  Negative

indices count from the end. 

Part@expr, i1, i2, …D,  expr@@i1, i2, …DD,  or  Extract@expr, 8i1, i2, …<D  gives  the  piece  of  expr

found by successively  extracting parts  of  subexpressions with indices i1, i2, ….  If  you think of

expressions  as  trees,  the  indices  specify  which  branch  to  take  at  each  node  as  you  descend

from the root. 

The  pieces  of  an  expression  that  are  specified  by  giving  a  sequence  of  exactly  n  indices  are

defined to be at level n in the expression. You can use levels to determine the domain of applica-

tion of functions like Map. Level 0 corresponds to the whole expression.

The depth of an expression is defined to be the maximum number of indices needed to specify

any part of the expression, plus one. A negative level number -n refers to all parts of an expres-

sion that have depth n. 

Symbols

Symbols are the basic named objects in Mathematica.

The name of a symbol must be a sequence of letters, letter-like forms and digits, not starting

with a digit. Uppercase and lowercase letters are always distinguished in Mathematica.
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aaaaa user-defined symbol

Aaaaa system-defined symbol

$Aaaa global or internal system-defined symbol

aaaa$ symbol renamed in a scoping construct

aa$nn unique local symbol generated in a module

Conventions for symbol names. 

Essentially  all  system-defined  symbols  have  names  that  contain  only  ordinary  English  letters,

together with numbers and $. The exceptions are p, ¶, ‰, Â and ¸.

System-defined  symbols  conventionally  have  names  that  consist  of  one  or  more  complete

English words. The first letter of each word is capitalized, and the words are run together. 

Once  created,  an  ordinary  symbol  in  Mathematica  continues  to  exist  unless  it  is  explicitly

removed using Remove.  However,  symbols created automatically in scoping constructs such as

Module  carry  the  attribute  Temporary  which  specifies  that  they  should  automatically  be

removed as soon as they no longer appear in any expression. 

When  a  new  symbol  is  to  be  created,  Mathematica  first  applies  any  value  that  has  been

assigned to $NewSymbol  to strings giving the name of the symbol, and the context in which the

symbol would be created. 

If  the message General::newsym  is  switched on,  then Mathematica  reports  new symbols  that

are created. This message is switched off by default. Symbols created automatically in scoping

constructs are not reported.

Contexts

The full name of any symbol in Mathematica consists of two parts: a context and a short name.

The  full  name  is  written  in  the  form  context`name.  The  context  context`  can  contain  the  same

characters  as  the  short  name.  It  may also  contain  any number  of  context  mark  characters  `,

and must end with a context mark.

At  any  point  in  a  Mathematica  session,  there  is  a  current  context  $Context  and  a  context

search path $ContextPath consisting of a list of contexts. Symbols in the current context, or in

contexts  on  the  context  search  path,  can  be  specified  by  giving  only  their  short  names,  pro-

vided they are not shadowed by another symbol with the same short name.
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name search $ContextPath, then $Context; create in 
$Context if necessary

` name search $Context only; create there if necessary

context ` name search context only; create there if necessary

` context ` name search $Context` context only; create there if necessary

Contexts used for various specifications of symbols. 

With  Mathematica  packages,  it  is  conventional  to  associate  contexts  whose names correspond

to the names of the packages. Packages typically use BeginPackage  and EndPackage  to define

objects  in  the  appropriate  context,  and  to  add  the  context  to  the  global  $ContextPath.

EndPackage  prints a warning about any symbols that were created in a package but which are

"shadowed" by existing symbols on the context search path. 

The context is included in the printed form of a symbol only if it would be needed to specify the

symbol at the time of printing.

Atomic Objects

All expressions in Mathematica are ultimately made up from a small number of basic or atomic

types of objects. 

These objects  have heads which are symbols  that  can be thought  of  as  "tagging"  their  types.

The objects contain "raw data", which can usually be accessed only by functions specific to the

particular  type  of  object.  You  can  extract  the  head  of  the  object  using  Head,  but  you  cannot

directly extract any of its other parts.

Symbol symbol (extract name using SymbolName)

String character string "cccc" (extract characters using 
Characters)

Integer integer (extract digits using IntegerDigits)

Real approximate real number (extract digits using 
RealDigits)

Rational rational number (extract parts using Numerator and 
Denominator)

Complex complex number (extract parts using Re and Im)

Atomic objects. 

Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with

AtomQ. 
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Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with

AtomQ. 

Numbers

Integer integer nnnn

Real approximate real number nnn.nnn

Rational rational number nnn ê nnn

Complex complex number nnn + nnn I

Basic types of numbers. 

All numbers in Mathematica can contain any number of digits. Mathematica does exact computa-

tions when possible with integers and rational numbers, and with complex numbers whose real

and imaginary parts are integers or rational numbers. 

There  are  two  types  of  approximate  real  numbers  in  Mathematica:  arbitrary  precision  and

machine  precision.  In  manipulating  arbitrary-precision  numbers,  Mathematica  tries  to  modify

the precision so as to ensure that all digits actually given are correct. 

With  machine-precision  numbers,  all  computations  are  done  to  the  same  fixed  precision,  so

some digits given may not be correct. 

Unless  otherwise  specified,  Mathematica  treats  as  machine-precision  numbers  all  approximate

real numbers that lie between $MinMachineNumber  and $MaxMachineNumber  and that are input

with less than $MachinePrecision digits. 

In InputForm,  Mathematica  prints  machine-precision numbers with $MachinePrecision  digits,

except when trailing digits are zero. 

In  any  implementation  of  Mathematica,  the  magnitudes  of  numbers  (except  0)  must  lie

between $MinNumber  and $MaxNumber. Numbers with magnitudes outside this range are repre-

sented by Underflow@D and Overflow@D.

Character Strings

Character strings in Mathematica can contain any sequence of characters. They are input in the

form "ccccc".

The individual characters can be printable ASCII (with character codes between 32 and 126), or

in general any 8- or 16-bit characters. Mathematica uses the Unicode character encoding for 16-

bit characters. 
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The individual characters can be printable ASCII (with character codes between 32 and 126), or

in general any 8- or 16-bit characters. Mathematica uses the Unicode character encoding for 16-

bit characters. 

In input form, 16-bit characters are represented when possible in the form î @nameD, and other-

wise as î : nnnn. 

Null bytes can appear at any point within Mathematica strings. 

Input Syntax

Entering Characters

† Enter it directly (e.g. +)

† Enter it by full name (e.g. î @AlphaD)

† Enter it by alias (e.g. Esc aEsc) (notebook front end only)

† Enter it by choosing from a palette (notebook front end only)

† Enter it by character code (e.g. î : 03 b1)

Typical ways to enter characters. 

All  printable  ASCII  characters  can  be  entered  directly.  Those  that  are  not  alphanumeric  are

assigned explicit names in Mathematica, allowing them to be entered even on keyboards where

they do not explicitly appear. 

î @RawSpaceD
! î @RawExclamationD
" î @RawDoubleQuoteD
Ò î @RawNumberSignD
$ î @RawDollarD
% î @RawPercentD
& î @RawAmpersandD
' î @RawQuoteD
H î @RawLeftParenthesisD
L î @RawRightParenthesisD
* î @RawStarD
+ î @RawPlusD

; î @RawSemicolonD
< î @RawLessD
= î @RawEqualD
> î @RawGreaterD
? î @RawQuestionD
ü î @RawAtD
@ î @RawLeftBracketD
î î @RawBackslashD
D î @RawRightBracketD
^ î @RawWedgeD
_ î @RawUnderscoreD
` î @RawBackquoteD
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, î @RawCommaD
- î @RawDashD
. î @RawDotD
ê î @RawSlashD
: î @RawColonD

8 î @RawLeftBraceD
î @RawVerticalBarD

< î @RawRightBraceD
~ î @RawTildeD

Full names for non-alphanumeric printable ASCII characters. 

All  characters  which  are  entered into  the  Mathematica  kernel  are  interpreted according  to  the

setting for the CharacterEncoding option for the stream from which they came. 

î@NameD a character with the specified full name

înnn a character with octal code nnn

î.nn a character with hexadecimal code nn

î:nnnn a character with hexadecimal code nnnn

Ways to enter characters. 

Codes  for  characters  can  be  generated  using  ToCharacterCode.  The  Unicode  standard  is  fol-

lowed, with various extensions. 

8-bit  characters  have  codes  less  than  256;  16-bit  characters  have  codes  between  256  and

65535. Approximately 900 characters are assigned explicit names in Mathematica. Other charac-

ters must be entered using their character codes. 

îî single backslash (decimal code 92)

î single space (decimal code 32)

î" double-quote (decimal code 34)

îb backspace or Ctrl+H (decimal code 8)

ît tab or Ctrl+I (decimal code 9)

în newline or Ctrl+J (decimal code 10; full name 
î @NewLineD)

îf form feed or Ctrl+L (decimal code 12)

îr carriage return or Ctrl+M (decimal code 13)

î000 null byte (code 0)

Some special 8-bit characters. 
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Types of Input Syntax

The standard input  syntax used by Mathematica  is  the one used by default  in  InputForm  and

StandardForm.  You  can  modify  the  syntax  by  making  definitions  for

MakeExpression@expr, formD. 

Options  can  be  set  to  specify  what  form of  input  should  be  accepted  by  a  particular  cell  in  a

notebook or from a particular stream. 

The  input  syntax  in  TraditionalForm,  for  example,  is  different  from  that  in  InputForm  and

StandardForm. 

In general, what input syntax does is to determine how a particular string or collection of boxes

should  be  interpreted  as  an  expression.  When  boxes  are  set  up,  say  with  the  notebook  front

end,  there  can  be  hidden InterpretationBox  or  TagBox  objects  which  modify  the  interpreta-

tion of the boxes. 

Character Strings

"characters" a character string

î " a literal " in a character string

î î a literal î in a character string

î (at end of line) ignore the following newline

î ! î H… îL a substring representing two-dimensional boxes

Entering character strings. 

Character  strings  can  contain  any  sequence  of  8-  or  16-bit  characters.  Characters  entered  by

name or character code are stored the same as if they were entered directly. 

In  a  notebook  front  end,  text  pasted  into  a  string  by  default  automatically  has  appropriate  î

characters  inserted  so  that  the  string  stored  in  Mathematica  reproduces  the  text  that  was

pasted.

Within î ! î H… îL any box structures represented using backslash sequences can be used. 

StringExpression  objects  can  be  used  to  represent  strings  that  contain  symbolic  constructs,

such as pattern elements. 

Symbol Names and Contexts
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Symbol Names and Contexts

name symbol name

`name symbol name in current context

context`name symbol name in specified context

context` context name

context1`context2` compound context name

`context` context relative to the current context

Symbol names and contexts. 

Symbol  names  and  contexts  can  contain  any  characters  that  are  treated  by  Mathematica  as

letters or letter-like forms. They can contain digits  but cannot start  with them. Contexts must

end in a backquote `. 

Numbers

digits integer

digits.digits approximate number

base^^digits integer in specified base

base^^digits.digits approximate number in specified base

mantissa*^n scientific notation (mantissa×10n)

base^^mantissa*^n scientific notation in specified base (mantissa×basen)

number` machine-precision approximate number

number`s arbitrary-precision number with precision s

number``s arbitrary-precision number with accuracy s

Input forms for numbers. 

Numbers can be entered with the notation base^ ^digits in any base from 2 to 36. The base itself

is given in decimal. For bases larger than 10, additional digits are chosen from the letters a|z or

A|Z.  Upper-  and  lower-case  letters  are  equivalent  for  these  purposes.  Floating-point  numbers

can be specified by including . in the digits sequence.

In scientific notation, mantissa can contain ` marks. The exponent n must always be an integer,

specified in decimal.

The precision or accuracy s can be any real number; it does not need to be an integer. 

In the form base^ ^number`s the precision s is given in decimal, but it gives the effective number

of digits of precision in the specified base, not in base 10. 
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In the form base^ ^number`s the precision s is given in decimal, but it gives the effective number

of digits of precision in the specified base, not in base 10. 

An approximate number x is taken to be machine precision if the number of digits given in it is

Ceiling@$MachinePrecisionD + 1  or  less.  If  more  digits  are  given,  then  x  is  taken  to  be  an

arbitrary-precision number. The accuracy of x is taken to be the number of digits that appear to

the right of the decimal point, while its precision is taken to be Log@10, Abs@xDD + Accuracy@xD. 

A number entered in the form 0`` s is taken to have precision 0 and accuracy s. 

Bracketed Objects

Bracketed objects use explicit left and right delimiters to indicate their extent. They can appear

anywhere within Mathematica input, and can be nested in any way. 

The delimiters in bracketed objects are matchfix operators. But since these delimiters explicitly

enclose all operands, no precedence need be assigned to such operators. 

H*any text*L comment

HexprL parenthesization: grouping of input

Bracketed objects without comma-separated elements. 

Comments can be nested, and can continue for any number of lines. They can contain any 8- or

16-bit characters.

Parentheses must enclose a single complete expression; neither He, eL nor HL are allowed. 

8e1,e2,…< List@e1,e2,…D

Xe1,e2,…\ AngleBracket@e1,e2,…D

dexprt Floor@exprD

`exprp Ceiling@exprD

†e1,e2,…§ BracketingBar@e1,e2,…D

°e1,e2,…¥ DoubleBracketingBar@e1,e2,…D

îHinputîL input or grouping of boxes

Bracketed objects that allow comma-separated elements. 
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The notation … is used to stand for any sequence of expressions. 

8e1, e2, …<  can include any number of elements, with successive elements separated by com-

mas. 

8< is List@D, a list with zero elements. 

Xe1, e2, …\ can be entered as î @LeftAngleBracketD e1, e2, … î @RightAngleBracketD. 

The  character  î @InvisibleCommaD  can  be  used  interchangeably  with  ordinary  commas;  the

only difference is that î @InvisibleCommaD will not be displayed. 

When  the  delimiters  are  special  characters,  it  is  a  convention  that  they  are  named

î @LeftNameD and î @RightNameD. 

î H… îL  is  used to enter  boxes using one-dimensional  strings.  Note that  within  the outermost

î H… îL  in  a  piece  of  input  the  syntax  used  is  slightly  different  from  outside,  as  described

in "Input of Boxes". 

h@e1,e2,…D standard expression

e@@i1,i2,…DD Part@e,i1,i2,…D

ePi1,i2,…T Part@e,i1,i2,…D

Bracketed objects with heads. 

Bracketed objects with heads explicitly delimit all their operands except the head. A precedence

must be assigned to define the extent of the head. 

The precedence of h@eD is high enough that ! h@eD is interpreted as Not@h@eDD. However, h_s@eD

is interpreted as Hh_sL@eD. 
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Two-Dimensional Input Forms

xy Power@x, yD
x
y

Divide@x, yD

x Sqrt@xD

x
n

Power@x, 1 ê nD
a11 a12 …

a21 a22 … 88a11, a12, …<, 8a21, a22, …<<

∂x y D@y, xD
∂x,… y D@y, x, …D

Ÿxmin
xmaxy „x Integrate@y, 8x, xmin, xmax<D

Ÿxmin
xmax y w

z
„x Integrate@y w ê z, 8x, xmin, xmax<D

⁄
x=xmin

xmax
y Sum@y, 8x, xmin, xmax<D

¤
x=xmin

xmax
y Product@y, 8x, xmin, xmax<D

Two-dimensional input forms with built-in evaluation rules. 

Any array of expressions represented by a GridBox  is interpreted as a list of lists. Even if  the

GridBox has only one row, the interpretation is still 88a1, a2, …<<. 

In the form Ÿxmin
xmaxy w „x

z
 the limits xmin and xmax can be omitted, as can y and w.

xy Subscript@x, yD

x+ SubPlus@xD
x- SubMinus@xD
x* SubStar@xD
x+ SuperPlus@xD
x- SuperMinus@xD
x* SuperStar@xD
x† SuperDagger@xD

x
y

Overscript@x, yD
x
y

Underscript@x, yD

x OverBar@xD
x” OverVector@xD
xè OverTilde@xD
x` OverHat@xD
x° OverDot@xD
x UnderBar@xD

Two-dimensional input forms without built-in evaluation rules. 

There is no issue of precedence for forms such as x  and x`  in which operands are effectively

spanned by the operator. For forms such as xy  and x†  a left precedence does need to be speci-

fied, so such forms are included in the main table of precedences above. 
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Input of Boxes

† Use a palette

† Use control keys

Ways to input boxes. 

Control Keys

Ctrl+2 or Ctrl+@ square root

Ctrl+5 or Ctrl+% switch to alternate position (e.g. subscript to superscript)

Ctrl+6 or Ctrl+^ superscript

Ctrl+7 or Ctrl+& overscript

Ctrl+9 or Ctrl+( begin a new cell within an existing cell

Ctrl+0 or Ctrl+) end a new cell within an existing cell

Ctrl+- or Ctrl+_ subscript

Ctrl+= or Ctrl+Plus underscript

Ctrl+Enter create a new row in a table

Ctrl+, create a new column in a table

Ctrl+. expand current selection

Ctrl+/ fraction

Ctrl+Space return from current position or state

Ctrl+, Ctrl+Ø, Ctrl+Æ, Ctrl+

move an object by minimal increments on the screen

Standard control keys. 

On  English-language  keyboards  both  forms  will  work  where  alternates  are  given.  On  other

keyboards the first form should work but the second may not. 

Boxes Constructed from Text

When  textual  input  that  you  give  is  used  to  construct  boxes,  as  in  StandardForm  or

TraditionalForm  cells  in  a  notebook,  the  input  is  handled  slightly  differently  from when  it  is

fed directly to the kernel. 

The  input  is  broken  into  tokens,  and  then  each  token  is  included  in  the  box  structure  as  a

separate  character  string.  Thus,  for  example,  xx + yyy  is  broken  into  the  tokens  "xx",  "+",

"yyy". 
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† symbol name (e.g. x123)

† number (e.g. 12.345)

† operator (e.g. +=)

† spacing (e.g. â)

† character string (e.g. "text")

Types of tokens in text used to construct boxes. 

A RowBox is constructed to hold each operator and its operands. The nesting of RowBox objects

is determined by the precedence of the operators in standard Mathematica syntax. 

Note that spacing characters are not automatically discarded. Instead, each sequence of consec-

utive such characters is made into a separate token. 

String-Based Input

îH…îL input raw boxes

î!îH…îL input and interpret boxes

Inputting raw and interpreted boxes. 

Any textual input that you give between \H and \L is taken to specify boxes to construct. The

boxes  are  only  interpreted if  you specify  with  \!  that  this  should  be  done.  Otherwise  x \^ y  is

left for example as SuperscriptBox@x, yD, and is not converted to Power@x, yD. 

Within  the  outermost  \H… îL,  further  \H… îL  specify  grouping  and  lead  to  the  insertion  of

RowBox objects. 
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îHbox1,box2,…îL RowBox@box1,box2,…D

box1î^box2 SuperscriptBox@box1,box2D

box1ï_ box2 SubscriptBox@box1,box2D

box1ï_ box2ï% box3 SubsuperscriptBox@box1,box2,box3D

box1î& box2 OverscriptBox@box1,box2D

box1î+box2 UnderscriptBox@box1,box2D

box1î+box2î% box3 UnderoverscriptBox@box1,box2,box3D

box1îêbox2 FractionBox@box1,box2D

\übox SqrtBox@boxD

formî` box FormBox@box, formD

\*input construct box by interpreting input

\â insert a space

\n insert a newline

\t indent at the beginning of a line

String-based ways of constructing raw boxes. 

In string-based input between \H  and \L  spaces, tabs and newlines are discarded. î â  can be

used  to  insert  a  single  space.  Special  spacing  characters  such  as  \[ThinSpace],

\[ThickSpace] or \[NegativeThinSpace] are not discarded. 

When you  input  typesetting  forms into  a  string,  the  internal  representation  of  the  string  uses

the above forms. The front end displays the typeset form, but uses the \H… îL  notation when

saving the content to a file or when sending the string to the kernel for evaluation.

The Extent of Input Expressions

Mathematica will treat all input that you give on a single line as being part of the same expres-

sion. 

Mathematica  allows  a  single  expression  to  continue  for  several  lines.  In  general,  it  treats  the

input that you give on successive lines as belonging to the same expression whenever no com-

plete expression would be formed without doing this. 

Thus,  for  example,  if  one line  ends with  =,  then Mathematica  will  assume that  the expression

must continue on the next line. It will do the same if for example parentheses or other matchfix

operators remain open at the end of the line. 

If  at  the  end  of  a  particular  line  the  input  you  have  given  so  far  corresponds  to  a  complete

expression, then Mathematica will normally begin immediately to process that expression. 
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If  at  the  end  of  a  particular  line  the  input  you  have  given  so  far  corresponds  to  a  complete

expression, then Mathematica will normally begin immediately to process that expression. 

You  can  however  explicitly  tell  Mathematica  that  a  particular  expression  is  incomplete  by

putting a î or a Ö (\[Continuation]) at the end of the line. Mathematica will then include the

next line in the same expression, discarding any spaces or tabs that occur at the beginning of

that line. 

Special Input

?symbol get information

??symbol get more information

?s1 s2 … get information on several objects

!command execute an external command (text-based interface only)

!! file display the contents of an external file (text-based inter-
face only)

Special input lines. 

In most implementations of Mathematica, you can give a line of special input anywhere in your

input. The only constraint is that the special input must start at the beginning of a line.

Some implementations of Mathematica may not allow you to execute external commands using

! command. 

Front End Files

Notebook files as well as front end initialization files can contain a subset of standard Mathemat-

ica language syntax. This syntax includes: 

† Any Mathematica expression in FullForm.

† Lists in 8…< form. The operators ->, :> and &. Function slots in Ò form.

† Various Mathematica operators such as +, *, ;, etc.

† Special characters in î @NameD, î : nnnn or î .xx form.

† String representation of boxes involving î H, î L and other backslash operators.

† Mathematica comments delimited by H* and *L.

Some General Notations and Conventions
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Some General Notations and Conventions

Function Names

The names of built-in functions follow some general guidelines.

† The  name  consists  of  complete  English  words,  or  standard  mathematical  abbreviations.
American spelling is used.

† The first letter of each word is capitalized.

† Functions  whose  names  end  with  Q  usually  “ask  a  question”,  and  return  either  True  or
False.

† Mathematical functions that are named after people usually have names in Mathematica of
the form PersonSymbol.

Function Arguments

The  main  expression  or  object  on  which  a  built-in  function  acts  is  usually  given  as  the  first

argument to the function. Subsidiary parameters appear as subsequent arguments.

The following are exceptions: 

† In functions like Map  and Apply, the function to apply comes before the expression it is to
be applied to. 

† In scoping constructs such as Module  and Function,  local variables and parameter names
come before bodies.

† In functions like Write  and Export,  the name of the file is  given before the objects to be
written to it.

For mathematical functions, arguments that are written as subscripts in standard mathematical

notation are given before those that are written as superscripts. 
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Options

Some built-in functions can take options. Each option has a name, represented as a symbol, or

in some cases a string. Options are set by giving rules of the form name -> value or name :> value.

Such rules must appear after all  the other arguments in a function. Rules for different options

can be given in any order. If you do not explicitly give a rule for a particular option, a default

setting for that option is used. 

Options@ fD give the default rules for all options associated with f

Options@exprD give the options set in a particular expression

Options@expr,nameD give the setting for the option name in an expression

AbsoluteOptions@expr,nameD give the absolute setting for name, even if its actual setting 
is Automatic

SetOptions@ f,name->value,…D set default rules for options associated with f

CurrentValue@nameD give the option setting for the front end option name; can 
be used on the left-hand side of an assignment to set the 
option

Operations on options. 

Part Numbering

n element n (starting at 1)

-n element n from the end

0 head

Numbering of parts. 
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Sequence Specifications

All all elements

None no elements

n elements 1 through n

-n last n elements

8n< element n only

8m,n< elements m through n (inclusive)

8m,n,s< elements m through n in steps of s

Specifications for sequences of parts. 

The  sequence  specification  8m, n, s<  corresponds  to  elements  m,  m + s,  m + 2 s,  …,  up  to  the

largest element not greater than n. 

Sequence  specifications  are  used  in  the  functions  Drop,  Ordering,  StringDrop,  StringTake,

Take and Thread.

Level Specifications

n levels 1 through n

Infinity levels 1 through Infinity

8n< level n only

8n1,n2< levels n1 through n2
Heads->True include heads of expressions

Heads->False do not include heads of expressions

Level specifications. 

The  level  in  an  expression  corresponding  to  a  non-negative  integer  n  is  defined  to  consist  of

parts  specified  by  n  indices.  A  negative  level  number  -n  represents  all  parts  of  an  expression

that have depth n. The depth of an expression, Depth@exprD, is the maximum number of indices

needed to specify any part,  plus one. Levels do not  include heads of  expressions,  except with

the option setting Heads -> True. Level 0 is the whole expression. Level -1 contains all symbols

and other objects that have no subparts. 

Ranges of levels specified by 8n1, n2< contain all parts that are neither above level n1, nor below

level n2  in the tree. The ni  need not have the same sign. Thus, for example, 82, -2<  specifies

subexpressions which occur anywhere below the top level, but above the leaves, of the expres-

sion tree. 
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Ranges of levels specified by 8n1, n2< contain all parts that are neither above level n1, nor below

level n2  in the tree. The ni  need not have the same sign. Thus, for example, 82, -2<  specifies

subexpressions which occur anywhere below the top level, but above the leaves, of the expres-

sion tree. 

Level  specifications  are  used  by  functions  such  as  Apply,  Cases,  Count,  FreeQ,  Level,  Map,

MapIndexed, Position, Replace  and Scan. Note, however, that the default level specifications

are not the same for all of these functions.

Iterators

8imax< iterate imax times

8i,imax< i goes from 1 to imax in steps of 1

8i,imin,imax< i goes from imin to imax in steps of 1

8i,imin,imax,di< i goes from imin to imax in steps of di

8i,list< i takes on the successive values in list

8i,imin,imax<,8 j, jmin, jmax<,… i goes from imin to imax, and for each value of i, j goes from 
jmin to jmax, etc.

Iterator notation. 

Iterators are used in such functions as Sum , Table, Do and Range. 

The  iteration  parameters  imin, imax  and  di  do  not  need  to  be  integers.  The  variable  i  is  given  a

sequence of values starting at imin, and increasing in steps of di, stopping when the next value of

i would be greater than imax. The iteration parameters can be arbitrary symbolic expressions, so

long as Himax - iminL ê di is a number.

When several iteration variables are used, the limits for the later ones can depend on the val-

ues of earlier ones. 

The variable i can be any symbolic expression; it need not be a single symbol. The value of i is

automatically set up to be local to the iteration function. This is effectively done by wrapping a

Block construct containing i around the iteration function.

The procedure for evaluating iteration functions is described in "Evaluation".

Scoping Constructs
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Scoping Constructs

Function@8x,…<,bodyD local parameters

lhs->rhs  and lhs:>rhs local pattern names

lhs=rhs  and lhs:=rhs local pattern names

With@8x=x0,…<,bodyD local constants

Module@8x,…<,bodyD local variables

Block@8x,…<,bodyD local values of global variables

DynamicModule@8x,…<,bodyD local variables in a Dynamic interface

Scoping constructs in Mathematica. Functions in the first group scope variables lexically.

Scoping constructs allow the names or values of certain symbols to be local.

Some scoping contracts scope lexically, meaning that literal instances of the specified variables

or  patterns  are  replaced  with  appropriate  values.  When  local  variable  names  are  required,

symbols with names of the form xxx  are generally renamed to xxx$. When nested scoping con-

structs are evaluated, new symbols are automatically generated in the inner scoping constructs

so as to avoid name conflicts with symbols in outer scoping constructs. 

When a transformation rule or definition is used, ReplaceAll  (ê.) is effectively used to replace

the pattern  names that  appear  on the right-hand side.  Nevertheless,  new symbols  are  gener-

ated when necessary to represent other objects that appear in scoping constructs on the right-

hand side. 

Each time it is evaluated, Module generates symbols with unique names of the form xxx$nnn as

replacements for all local variables that appear in its body. 

Block  localizes the value of global variables. Any evaluations in the body of a block which rely

on the global variable will use the locally specified value even if the variable does not explicitly

appear  in  the  body,  but  is  only  referenced  through  subsequent  evaluation.  The  body  of  the

Block  may  also  make  changes  to  the  global  variable,  but  any  such  changes  will  only  persist

until the Block has finished executing.

DynamicModule  localizes its variables to each instance of the DynamicModule  output in a note-

book. This means each copy of a DynamicModule  output created using copy and paste will use

its own localized variables.

Ordering of Expressions
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Ordering of Expressions

The  canonical  ordering  of  expressions  used  automatically  with  the  attribute  Orderless  and  in

functions such as Sort satisfies the following rules: 

† Integers, rational and approximate real numbers are ordered by their numerical values.

† Complex numbers are ordered by their real parts, and in the event of a tie, by the absolute
values of their imaginary parts.

† Symbols are ordered according to their names, and in the event of a tie, by their contexts.

† Expressions are usually  ordered by comparing their  parts  in  a  depth-first  manner.  Shorter
expressions come first.

† Powers  and  products  are  treated  specially,  and  are  ordered  to  correspond  to  terms  in  a
polynomial.

† Strings are ordered as they would be in a dictionary, with the uppercase versions of letters
coming after lowercase ones.

Ordinary  letters  appear  first,  followed  in  order  by  script,  Gothic,  double-struck,  Greek  and

Hebrew. Mathematical operators appear in order of decreasing precedence.

Mathematical Functions

The mathematical functions such as Log@xD and BesselJ@n, xD that are built into Mathematica

have a number of features in common.

† They carry the attribute Listable, so that they are automatically “threaded” over any lists
that appear as arguments.

† They  carry  the  attribute  NumericFunction,  so  that  they  are  assumed  to  give  numerical
values when their arguments are numerical. 

† They give exact results in terms of integers, rational numbers and algebraic expressions in
special cases.
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† Except  for  functions  whose  arguments  are  always  integers,  mathematical  functions  in
Mathematica  can  be  evaluated  to  any  numerical  precision,  with  any  complex  numbers  as
arguments.  If  a  function  is  undefined  for  a  particular  set  of  arguments,  it  is  returned  in
symbolic form in this case.

† Numerical  evaluation leads to results  of  a precision no higher than can be justified on the
basis  of  the precision of  the arguments.  Thus N@Gamma@27 ê 10D, 100D  yields  a  high-preci-
sion result, but N@Gamma@2.7D, 100D cannot.

† When possible, symbolic derivatives, integrals and series expansions of built-in mathemati-
cal functions are evaluated in terms of other built-in functions.

Mathematical Constants

Mathematical  constants  such  as  E  and  Pi  that  are  built  into  Mathematica  have  the  following

properties: 

† They do not have values as such.

† They have numerical values that can be found to any precision.

† They are treated as numeric quantities in NumericQ and elsewhere.

† They carry the attribute Constant, and so are treated as constants in derivatives.

Protection

Mathematica allows you to make assignments that override the standard operation and mean-

ing of built-in Mathematica objects. 

To  make  it  difficult  to  make  such  assignments  by  mistake,  most  built-in  Mathematica  objects

have  the  attribute  Protected.  If  you  want  to  make  an  assignment  for  a  built-in  object,  you

must first remove this attribute. You can do this by calling the function Unprotect.

There are a few fundamental  Mathematica  objects to which you absolutely cannot assign your

own  values.  These  objects  carry  the  attribute  Locked,  as  well  as  Protected.  The  Locked

attribute  prevents  you  from  changing  any  of  the  attributes,  and  thus  from  removing  the

Protected attribute.
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Abbreviated String Patterns

Functions such as StringMatchQ,  Names  and Remove  allow you to give abbreviated string pat-

terns,  as  well  as  full  string  patterns  specified  by  StringExpression.  Abbreviated  string  pat-

terns can contain certain metacharacters, which can stand for sequences of ordinary characters. 

* zero or more characters

ü one or more characters excluding uppercase letters

\\*, etc. literal *, etc.

Metacharacters used in abbreviated string patterns. 

Evaluation

The Standard Evaluation Sequence

The following is the sequence of steps that Mathematica follows in evaluating an expression like

h@e1, e2 …D.  Every  time  the  expression  changes,  Mathematica  effectively  starts  the  evaluation

sequence over again.

† If the expression is a raw object (e.g., Integer, String, etc.), leave it unchanged. 

† Evaluate the head h of the expression. 

† Evaluate  each  element  ei  of  the  expression  in  turn.  If  h  is  a  symbol  with  attributes
HoldFirst,  HoldRest,  HoldAll  or  HoldAllComplete,  then  skip  evaluation  of  certain  ele-
ments. 

† Unless h has attribute HoldAllComplete, strip the outermost of any Unevaluated  wrappers
that appear in the ei.

† Unless  h  has  attribute  SequenceHold,  flatten  out  all  Sequence  objects  that  appear  among
the ei.

† If h has attribute Flat, then flatten out all nested expressions with head h.

† If h has attribute Listable, then thread through any ei that are lists.

† If h has attribute Orderless, then sort the ei into order.

† Unless h has attribute HoldAllComplete, use any applicable transformation rules associated
with f  that you have defined for objects of the form h@ f@e1, …D, …D.

† Use  any  built-in  transformation  rules  associated  with  f  for  objects  of  the  form
h@ f@e1, …D, …D.
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†

Use  any  built-in  transformation  rules  associated  with  f  for  objects  of  the  form
h@ f@e1, …D, …D.

† Use any applicable transformation rules that you have defined for h@ f@e1, e2, …D, …D or for
h@…D@…D.

† Use any built-in transformation rules for h@e1, e2, …D or for h@…D@…D.

Nonstandard Argument Evaluation

There are a number of  built-in Mathematica  functions that evaluate their  arguments in special

ways. The control structure While  is an example. The symbol While  has the attribute HoldAll.

As a result, the arguments of While  are not evaluated as part of the standard evaluation pro-

cess. Instead, the internal code for While  evaluates the arguments in a special way. In the case

of While, the code evaluates the arguments repeatedly, so as to implement a loop. 

Control structures arguments evaluated in a sequence determined by control 
flow (e.g., CompoundExpression)

Conditionals arguments evaluated only when they correspond to 
branches that are taken (e.g., If, Which)

Logical operations arguments evaluated only when they are needed in deter- 
mining the logical result (e.g., And, Or) 

Iteration functions first argument evaluated for each step in the iteration 
(e.g., Do, Sum , Plot)

Tracing functions form never evaluated (e.g., Trace)

Assignments first argument only partially evaluated (e.g., Set, AddTo)

Pure functions function body not evaluated (e.g., Function)

Scoping constructs variable specifications not evaluated (e.g., Module, Block)

Holding functions argument maintained in unevaluated form (e.g., Hold, 
HoldPattern)

Built-in functions that evaluate their arguments in special ways. 

Logical Operations

In  an  expression  of  the  form e1 && e2 && e3  the  ei  are  evaluated  in  order.  As  soon  as  any  ei  is

found to be False, evaluation is stopped, and the result False  is returned. This means that you

can  use  the  ei  to  represent  different  “branches”  in  a  program,  with  a  particular  branch  being

evaluated only if certain conditions are met.

The Or  function works much like And; it returns True  as soon as it finds any argument that is

True. Xor, on the other hand, always evaluates all its arguments. 
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The Or  function works much like And; it returns True  as soon as it finds any argument that is

True. Xor, on the other hand, always evaluates all its arguments. 

Iteration Functions

An iteration function such as Do@ f, 8i, imin, imax<D is evaluated as follows:

† The limits imin, imax are evaluated. 

† The value of the iteration variable i is made local, effectively using Block. 

† imin  and  imax  are  used  to  determine  the  sequence  of  values  to  be  assigned  to  the  iteration
variable i.

† The iteration variable is successively set to each value, and f  is evaluated in each case.

† The local values assigned to i are cleared.

If there are several iteration variables, the same procedure is followed for each variable in turn,

for every value of all the preceding variables. 

Unless otherwise specified, f  is not evaluated until a specific value has been assigned to i, and

is then evaluated for each value of i chosen. You can use Evaluate@ fD to make f  be evaluated

immediately, rather than only after a specific value has been assigned to i. 

Assignments

The left-hand sides of assignments are only partially evaluated. 

† If the left-hand side is a symbol, no evaluation is performed.

† If the left-hand side is a function without hold attributes, the arguments of the function are
evaluated, but the function itself is not evaluated.

The right-hand side is evaluated for immediate (=), but not for delayed (:=), assignments. 

Any  subexpression  of  the  form  HoldPattern@exprD  that  appears  on  the  left-hand  side  of  an

assignment is not evaluated. When the subexpression is used for pattern matching, it matches

as though it were expr without the HoldPattern. 

348     Core Language



Overriding Nonstandard Argument Evaluation

fA…,Evaluate@exprD,…E evaluates the argument expr, whether or not f  has a 
HoldFirst, HoldRest, or HoldAll attribute specifying 
that it should be held

Overriding holding of arguments. 

By using Evaluate, you can get any argument of a function evaluated immediately, even if the

argument  would  usually  be  evaluated  later  under  the  control  of  the  function.  An  exception  to

this  is  when  the  function  has  the  HoldComplete  attribute;  in  this  case,  the  contents  of  the

function are not modified by the evaluator.

Preventing Evaluation

Mathematica  provides  various  functions  which  act  as  “wrappers”  to  prevent  the  expressions

they contain from being evaluated. 

Hold@exprD treated as Hold@exprD in all cases

HoldComplete@exprD treated as HoldComplete@exprD with upvalues disabled

HoldForm@exprD treated as expr for printing

HoldPattern@exprD treated as expr in rules, definitions and patterns

Unevaluated@exprD treated as expr when arguments are passed to a function

Wrappers that prevent expressions from being evaluated. 

Global Control of Evaluation

In the evaluation procedure described so far, two basic kinds of steps are involved: 

† Iteration: evaluate a particular expression until it no longer changes.

† Recursion:  evaluate  subsidiary  expressions  needed  to  find  the  value  of  a  particular
expression.

Iteration leads to evaluation chains in which successive expressions are obtained by the applica-

tion of various transformation rules. 

Trace  shows  evaluation  chains  as  lists,  and  shows  subsidiary  evaluations  corresponding  to

recursion in sublists. 
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Trace  shows  evaluation  chains  as  lists,  and  shows  subsidiary  evaluations  corresponding  to

recursion in sublists. 

The expressions associated with the sequence of subsidiary evaluations which lead to an expres-

sion currently being evaluated are given in the list returned by Stack@D. 

$RecursionLimit maximum recursion depth

$IterationLimit maximum number of iterations

Global variables controlling the evaluation of expressions.

Aborts

You can ask Mathematica to abort at any point in a computation, either by calling the function

Abort@D, or by typing appropriate interrupt keys. 

When asked to abort, Mathematica will terminate the computation as quickly as possible. If the

answer obtained would be incorrect or incomplete, then Mathematica returns $Aborted  instead

of giving that answer. 

Aborts can be caught using CheckAbort, and can be postponed using AbortProtect. 

Patterns and Transformation Rules

Patterns

Patterns stand for classes of expressions. They contain pattern objects which represent sets of

possible expressions.
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_ any expression

x _ any expression, given the name x

x:pattern a pattern, given the name x

pattern?test a pattern that yields True when test is applied to its value

_ h any expression with head h

x _ h any expression with head h, given the name x

__ any sequence of one or more expressions

___ any sequence of zero or more expressions

x __  and x ___ sequences of expressions, given the name x

__ h  and ___ h sequences of expressions, each with head h

x __ h  and x ___ h sequences of expressions with head h, given the name x

PatternSequence@p1,p2,…D a sequence of patterns

x _:v an expression with default value v

x _ h:v an expression with head h and default value v

x _. an expression with a globally defined default value

Optional@x _ hD an expression that must have head h, and has a globally 
defined default value

Except@cD any expression except one that matches c

Except@c,patternD any expression matching pattern, except one that matches c

pattern.. a pattern repeated one or more times

pattern... a pattern repeated zero or more times

Repeated@pattern, specD a pattern repeated according to spec

pattern1 pattern2 … a pattern which matches at least one of the patterni

patternê;cond a pattern for which cond evaluates to True

HoldPattern@patternD a pattern not evaluated

Verbatim@exprD an expression to be matched verbatim

OptionsPattern@D a sequence of options

Longest@patternD the longest sequence consistent with pattern

Shortest@patternD the shortest sequence consistent with pattern

Pattern objects. 

When  several  pattern  objects  with  the  same  name  occur  in  a  single  pattern,  all  the  objects

must stand for the same expression. Thus f@x_, x_D can stand for f@2, 2D but not f@2, 3D. 

In a pattern object such as _h, the head h can be any expression, but cannot itself be a pattern. 

A pattern object such as x__ stands for a sequence of expressions. So, for example, f@x__D can

stand for f@a, b, cD, with x being Sequence@a, b, cD. If you use x, say in the result of a trans-

formation  rule,  the  sequence  will  be  spliced  into  the  function  in  which  x  appears.  Thus

g@u, x, uD would become g@u, a, b, c, uD. 
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A pattern object such as x__ stands for a sequence of expressions. So, for example, f@x__D can

stand for f@a, b, cD, with x being Sequence@a, b, cD. If you use x, say in the result of a trans-

formation  rule,  the  sequence  will  be  spliced  into  the  function  in  which  x  appears.  Thus

g@u, x, uD would become g@u, a, b, c, uD. 

When  the  pattern  objects  x_: v  and  x_.  appear  as  arguments  of  functions,  they  represent

arguments  which  may be  omitted.  When the  argument  corresponding  to  x_: v  is  omitted,  x  is

taken to have value v. When the argument corresponding to x_. is omitted, x is taken to have a

default  value  that  is  associated  with  the  function  in  which  it  appears.  You  can  specify  this

default value by making assignments for Default@ fD and so on. 

Default@ fD default value for x _. when it appears as any argument of 
the function f

Default@ f,nD default value for x _. when it appears as the nth argument 
(negative n count from the end)

Default@ f,n,totD default value for the nth argument when there are a total of 
tot arguments

Default values. 

A  pattern  like  f@x__, y__, z__D  can  match  an  expression  like  f@a, b, c, d, eD  with  several

different choices of x,  y  and z.  The choices with x  and y  of minimum length are tried first.  In

general, when there are multiple __ or ___ in a single function, the case that is tried first takes

all the __ and ___ to stand for sequences of minimum length, except the last one, which stands

for "the rest" of the arguments.

When  x_: v  or  x_.  are  present,  the  case  that  is  tried  first  is  the  one  in  which  none  of  them

correspond to omitted arguments. Cases in which later arguments are dropped are tried next.

The order in which the different cases are tried can be changed using Shortest and Longest. 

Orderless f @x, yD and f @y, xD are equivalent

Flat f @ f @xD, yD and f @x, yD are equivalent

OneIdentity f @xD and x are equivalent

Attributes used in matching patterns. 

Pattern objects like x_  can represent any sequence of arguments in a function f  with attribute

Flat.  The  value  of  x  in  this  case  is  f  applied  to  the  sequence  of  arguments.  If  f  has  the

attribute OneIdentity, then e is used instead of f @eD when x corresponds to a sequence of just

one argument. 
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Pattern objects like x_  can represent any sequence of arguments in a function f  with attribute

Flat.  The  value  of  x  in  this  case  is  f  applied  to  the  sequence  of  arguments.  If  f  has  the

attribute OneIdentity, then e is used instead of f @eD when x corresponds to a sequence of just

one argument. 

Assignments

lhs=rhs immediate assignment: rhs is evaluated at the time of 
assignment

lhs:=rhs delayed assignment: rhs is evaluated when the value of lhs 
is requested

The two basic types of assignment in Mathematica. 

Assignments  in  Mathematica  specify  transformation  rules  for  expressions.  Every  assignment

that you make must be associated with a particular Mathematica symbol.

f@argsD=rhs assignment is associated with f  (downvalue)

tê: f@argsD=rhs assignment is associated with t (upvalue)

f@g@argsDD^=rhs assignment is associated with g (upvalue)

Assignments associated with different symbols. 

In the case of an assignment like f@argsD = rhs, Mathematica looks at f , then the head of f , then

the head of that, and so on, until it finds a symbol with which to associate the assignment. 

When  you  make  an  assignment  like  lhs ^= rhs,  Mathematica  will  set  up  transformation  rules

associated with each distinct symbol that occurs either as an argument of lhs, or as the head of

an argument of lhs. 

The  transformation  rules  associated  with  a  particular  symbol  s  are  always  stored  in  a  definite

order,  and are  tested  in  that  order  when they are  used.  Each time you make an assignment,

the corresponding transformation rule is  inserted at the end of  the list  of  transformation rules

associated with s, except in the following cases: 
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† The left-hand side  of  the  transformation rule  is  identical  to  a  transformation rule  that  has
already been stored, and any ê; conditions on the right-hand side are also identical. In this
case, the new transformation rule is inserted in place of the old one.

† Mathematica  determines  that  the  new  transformation  rule  is  more  specific  than  a  rule
already present, and would never be used if it were placed after this rule. In this case, the
new rule is placed before the old one. Note that in many cases it  is not possible to deter-
mine whether one rule is more specific than another; in such cases, the new rule is always
inserted at the end.

Types of Values

AttributesA f E attributes of f

DefaultValuesA f E default values for arguments of f

DownValuesA f E values for f@…D, f@…D@…D, etc.

FormatValuesA f E print forms associated with f

MessagesA f E messages associated with f

NValuesA f E numerical values associated with f

OptionsA f E defaults for options associated with f

OwnValuesA f E values for f  itself

UpValuesA f E values for …@…, f@…D, …D

Types of values associated with symbols. 

Clearing and Removing Objects

expr=. clear a value defined for expr

fê:expr=. clear a value associated with f  defined for expr

Clear@s1,s2,…D clear all values for the symbols si, except for attributes, 
messages and defaults

ClearAll@s1,s2,…D clear all values for the si, including attributes, messages 
and defaults

Remove@s1,s2,…D clear all values, and then remove the names of the si

Ways to clear and remove objects. 

In  Clear,  ClearAll  and  Remove,  each  argument  can  be  either  a  symbol  or  the  name  of  a

symbol as a string. String arguments can contain the metacharacters * and @ to specify action

on all symbols whose names match the pattern.
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In  Clear,  ClearAll  and  Remove,  each  argument  can  be  either  a  symbol  or  the  name  of  a

symbol as a string. String arguments can contain the metacharacters * and @ to specify action

on all symbols whose names match the pattern.

Clear, ClearAll and Remove do nothing to symbols with the attribute Protected. 

Transformation Rules

lhs->rhs immediate rule: rhs is evaluated when the rule is first given

lhs:>rhs delayed rule: rhs is evaluated when the rule is used

The two basic types of transformation rules in Mathematica. 

Replacements  for  pattern  variables  that  appear  in  transformation  rules  are  effectively  done

using ReplaceAll (the ê. operator). 

Files and Streams

File Names

name.m Mathematica language source file

name.nb Mathematica notebook file

name.ma Mathematica notebook file from before Version 3

name.mx Mathematica expression dump

name.exe MathLink executable program

name.tm MathLink template file

name.ml MathLink stream file

Conventions for file names. 

Most  files  used  by  Mathematica  are  completely  system  independent.  .mx  and  .exe  files  are

however system dependent.  For  these files,  there is  a  convention that  bundles of  versions for

different computer systems have names with forms such as name ê $SystemID ê name. 
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In general, when you refer to a file, Mathematica tries to resolve its name as follows: 

† If  the  name  starts  with  !,  Mathematica  treats  the  remainder  of  the  name  as  an  external
command, and uses a pipe to this command. 

† If  the  name  contains  metacharacters  used  by  your  operating  system,  then  Mathematica
passes the name directly to the operating system for interpretation. 

† Unless the file is to be used for input, no further processing on the name is done.

† Unless the name given is an absolute file name under your operating system, Mathematica
will search each of the directories specified in the list $Path.

† If  what  is  found  is  a  directory  rather  than  a  file,  then  Mathematica  will  look  for  a  file
name ê $SystemID ê name.

For  names  of  the  form  name`  the  following  further  translations  are  done  in  Get  and  related

functions: 

† A file name.mx is used if it exists.

† If name.mx is a directory, then name.mx ê $SystemID ê name.mx is used if it exists.

† A file name.m is used if it exists.

† If name is a directory, then the file name ê init.m is used if it exists.

In Install, name` is taken to refer to a file or directory named name.exe. 
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Streams

InputStream@"name",nD input from a file or pipe

OutputStream@"name",nD output to a file or pipe

Types of streams. 

option name default value
CharacterEncoding Automatic encoding to use for special characters
BinaryFormat False whether to treat the file as being in binary 

format
FormatType InputForm default format for expressions
PageWidth 78 number of characters per line
TotalWidth Infinity maximum number of characters in a single 

expression

Options for output streams. 

You can test options for streams using Options, and reset them using SetOptions. 
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