ADVANCED STRING PATTERNS

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Oyvind Tafjord

Printed in the United States of America.
15141312111098765432

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram') make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction 1
General String Patterns 2
Regular EXPresSiONS 6
RegularExpression versus StringExpression 11
String Manipulation Functions 13
StringMatchQ 13
StHiNGFreeQ e 14
SErINGCaASES 14
The Overlaps Option e 15
StringPosition e 16
StringCount e e 17
StringReplace e 17
StringReplaceList 18
StringSPlit 18
For Perl Users 20
OV VIR 20
1177/ 22 21
S/ e e 22
SPIIE () e 23
L R 24
Some Examples 25
Highlight Patterns 26
HTML Parsing e e 27
FINd MoneY 29
Find Textin Files 30
Tips and Tricks for Efficient Matching 30
StringExpression versus RegularExpression 31
Conditions and PatternTests 31
Avoid Nested Quantifiers e 31
Avoid Many Callstoa Function 31
Rewrite General Expression Searches as StringSearches 32
Implementation Details 34

RefeIreNCES 35

Introduction

The general symbolic string patterns in Mathematica allow you to perform powerful string manipu-
lation efficiently. What follows discusses the details of string patterns, including usage and

implementation notes. The emphasis is on issues not mentioned elsewhere in the help system.

At the heart of Mathematica is a powerful language for describing patterns in general expres-
sions. This language is used in function definitions, substitutions, and searches, with constructs
likex_,a | b, x..,and soon.

MatchQ[{a, b, c, d}, {___, X, X_, ___ }]
Fal se

Mat chQ[{a, b, c, ¢, d}, {__ , x_, X, ___}]
True

Cases[{a, 3, 4, b, c, 8}, _Integer]
(3, 4, 8)

A Mathematica string pattern uses the same constructs to describe patterns in a text string.
You can think of a string as a sequence of characters and apply the principles of general Mathe-
matica patterns. In addition there are several useful string-specific pattern constructs.

StringMatchQ["abcd", ___ ~~X_ ~~X_ ~~ ___1

Fal se

StringMat chQ["abccd", _ ~~ X_ ~~X_ ~~ __ 1]

True

StringCases ["a34bc8", DigitCharacter]
(3, 4, 8}

Regular expressions can be used as an alternative way to specify string patterns. These tend to
be more compact, but less readable.

StringhMat chQ["abcd", Regul arExpression[". (.)\\1. %"1]

Fal se

StringMat chQ["abccd", Regul ar Expression [". (.)\\1. %"]]

True

2 | Advanced String Patterns

StringCases ["a34bc8", Regul ar Expression ["\\d"]]
{3, 4, 8}

Here is a list of several functions that recognize string patterns.

Stringhat chQ["s', patt] test whether s matches patt

StringFreeQ["s", patt] test whether s is free of substrings matching patt
StringCases ["S', patt] give a list of the substrings of s that match patt
StringCases ["S', Ihs->rhs] replace each case of lhs by rhs

StringPosition["s', patt] give a list of the positions of substrings that match patt
StringCount ["S', patt] count how many substrings match patt

StringRepl ace ["S', Ihs->rhs] replace every substring that matches lhs

StringRepl acelLi st ["s', Ihs->rhs] give a list of all ways of replacing |hs

StringSplit ["s', patt] split s at every substring that matches patt

StringSplit ["S', lhs->rhs] split at Ihs, inserting rhsin its place

Functions that support string patterns.

General String Patterns

A general string pattern is formed from pattern objects similar to the general pattern objects in
Mathematica. To join several string pattern objects, use the St ri ngExpr essi on operator ~~.

Ful | Form["a" ~~ _]

StringExpression("a", Blank[]]

St ri ngExpr essi on is closely related to St ri ngJoi n, except nonstrings are allowed and lists
are not flattened. For pure strings, they are equivalent.

"aa" ~~ "bbb" ~~"c"

aabbbc

The list of objects that can appear in a string pattern closely matches the list for ordinary Mathe-
matica patterns. In terms of string patterns, a string is considered a sequence of characters,

that is, "abc" can be thought of as something like String[a, b, c], to which the ordinary pat-

tern constructs apply.

The following objects can appear in a symbolic string pattern.

Advanced String Patterns

3

X: pattern

pattern. .

pattern. . .

{ patt, patt,, ...} or patt, | patt,|...
patt/; cond

pattern?test

Wi t espace

Nunber St ri ng

Dat ePat t er n [spec]

charobj

Regul ar Expr essi on [" regexp” |
StringExpression/[...]

a literal string of characters

any single character

any substring of one or more characters

any substring of zero or more characters

substrings given the name x

pattern given the name x

pattern repeated one or more times

pattern repeated zero or more times

a pattern matching at least one of the patt,

a pattern for which cond evaluates to Tr ue

a pattern for which test yields Tr ue for each character
a sequence of whitespace characters

the characters of a number

the characters of a date

an object representing a character class (see below)
substring matching a regular expression

an arbitrary string expression

The following represent classes of characters.

{Cll CZ! }
Characters ["¢Cy..."]

Char act er Range ["¢;", "C)"]
Hexadeci mal Char act er

Di gi t Char act er

Lett er Char act er

Wi t espaceChar act er

Wor dChar act er

Except [p]

any of the " ¢"

any of the "¢"

any character in the range " ¢;" to" ¢,"
hexadecimal digit 0-9, a-f, A-F

digit 0-9

letter

space, newline, tab or other whitespace character
letter or digit

any character except ones matching p

The following represent positions in strings.

4 | Advanced String Patterns

StartOf String

EndOF Stri ng

Start Of Li ne

EndOf Li ne

Wor dBoundary

Except [Wor dBoundary |

start of the whole string

end of the whole string

start of a line

end of a line

boundary between word characters and others

anywhere except a word boundary

The following determine which match will be used if there are several possibilities.

Short est [p]
Longest [p]

the shortest consistent match for p

the longest consistent match for p (default)

Some nontrivial issues regarding these objects follow.

The _, __, and ___ wildcards match any characters including newlines. To match any character
except newline (analogous to the "." in regular expressions), use Except ["\ n"],

Except ["\n"] .., and Except ["\n"]....

StringCases ["linel\nline2\n", _]

{l'inel

l'ine2

}

StringCases ["]inel\nline2\n", Except ["\Nn"]1..]

{linel, line2}

StringCases ["]inel\nline2\n", Regul ar Expression[". +"]]

{l'inel, line2}

A list of patterns, such as {"a",

"b", "c"}, is equivalent to a list of alternatives, such as

"a" | "b" | "c". This is convenient in that functions like Char act er s and Char act er Range
can be used to specify classes of characters.

StringRepl ace ["t he cat

thee caat iin thee haat

in the hat", x: Characters ["aeiou"] = X <>X]

Advanced String Patterns 5

When Condi ti on (/;) is used, the patterns involved are treated as strings as far as the rest
of Mathematica is concerned, so you need to use TOEXpr essi on in some cases.

StringCases ["al3 al8 a4l a42",
"a" ~~x: DigitCharacter .. ~~ WrdBoundary /; PrineQ[ToExpression[x]] = X]

(13, 413

Similar to ordinary Mathematica patterns, the function in Patt er nTest (?) is applied to each
individual character.

StringCases ["125378132", __ ? (ToExpression[#] <5 &)]

{12, 3, 132}

The Whi t espace construct is equivalent to Wi t espaceCharacter ...

StringRepl ace ["13 \t 17 \n22 19", Witespace » ", "]
13,17, 22,19

You can insert a Regul ar Expr essi on object into a general string pattern.

StringCases ["al3bl2c17a32", "a" ~~ x: Regul arExpression ["\\d+"] = x]
{13, 323

This inserts a lookbehind constraint (see "Regular Expressions") to ensure that you only pick
words preceded by "t he "

StringCases["the cat in the hat",
Regul ar Expressi on [" (?<=the)"] ~~ WirdCharacter ..]

{cat, hat}

Stri ngExpr essi on objects can be nested.

StringCases ["ba3ala78a2b7ba9", "b" ~~ ("a" ~~ DigitCharacter) ..]
{ba3ala7, ba9}

The Except construct for string patterns takes a single argument that should represent a single

character or a class of single characters.

This deletes all nonvowel characters from the string.
StringReplace["the cat in the hat", Except [Characters["aeiou"]] »""]

eai ea

6 | Advanced String Patterns

When trying to match patterns of variable length (such as __ and patt ..), the longest possi-
ble match is tried first by default. To force the matcher to try the shortest match first, you can
wrap the relevant part of the pattern in Shortest [].

StringCases [" (ab) (cde)", " (" ~~ __ ~~")"]

{ (ab) (cde)}

StringCases [" (ab) (cde)", Shortest [" (" ~~ __ ~~")"1]
{(ab), (cde)}

If for some reason you need a longest match within the short match, you can use Longest .

StringCases [" (ab132cd) 137 (ef 576gh)",
Shortest [" (" ~~___ ~~x: DigitCharacter .. ~~__ ~~")"7] = X]

{1, 53

StringCases [" (ab132cd) (ef 576gh)",
Shortest [" (" ~~___ ~~Longest [x: DigitCharacter ..] ~~ __ ~~")"] = X]

(132, 576}

You could alternatively rewrite this pattern without use of Longest .

StringCases [" (ab132cd) (ef 576gh)",
"(" ~~Shortest [] ~~x: DigitCharacter .. ~~Shortest [] ~~")" = X]

(132, 576)

Regular Expressions

The regular expression syntax follows the underlying Perl Compatible Regular Expressions
(PCRE) library, which is close to the syntax of Perl. (See [1] for further information and documen-

tation.) A regular expression in Mathematica is denoted by the head Regul ar Expr essi on.

The following basic elements can be used in regular expression strings.

Advanced String Patterns 7

(o the literal character c

any character except newline

[C1Cp...] any of the characters ¢;

[C1-Co] any character in the range c;-C,
[AC1Co...] any character except the ¢

p* p repeated zero or more times

p+ p repeated one or more times

p? zero or one occurrence of p

p{m, n} p repeated between m and n times

px?, p+?, p?? the shortest consistent strings that match
Px+, P+, P?+ possessive match

(pP1P2...) strings matching the sequence p;, po, ...
p1l P2 strings matching p; or p,

The following represent classes of characters.

\\d digit 0-9

\\D nondigit

\\s space, newline, tab or other whitespace character
\\'S non-whitespace character

\\w word character (letter, digit or _)

\\W nonword character

[[:class:] characters in a named class

[M[:class] characters not in a named class

The following hamed classes can be used: alnum, alpha, ascii, blank, cntrl, digit, graph, lower, print,

punct, space, upper, word, and xdigit.

The following represent positions in strings.

8 | Advanced String Patterns

N

$

\\A
\\z
\\Z

\\b
\\B

the beginning of the string (or line)
the end of the string (or line)

the beginning of the string

the end of the string

the end of the string (allowing for a single newline charac-
ter first)

word boundary

anywhere except a word boundary

The following set options for all regular expression elements that follow them.

(?1)
(?m

(?s)

(?x)

(?- \#c)

treat uppercase and lowercase as equivalent (ignore case)

make » and $ match start and end of lines (multiline
mode)

allow . to match newline

disregard all whitespace and treat everything between " "
and "\ n" as comments

unset options

The following are lookahead/lookbehind constructs.

(?=p)
(?1p)
(<= p)
(?<1p)

the following text must match p
the following text cannot match p
the preceding text must match p

the preceding text cannot match p

Discussion of a few issues regarding regular expressions follows.

This looks for runs of word characters of length between 2 and 4.

StringCases ["a bb ccc dddd eeeee", Regul ar Expression ["\\b\\w{2,4}\\b" 1]

{bb, ccc, dddd}

Advanced String Patterns 9

With the possessive " +" quantifier, as many characters as possible are grabbed by the
matcher, and no characters are given up, even if the rest of the patterns require it.

StringCases ["a2 b6", Regul ar Expression ["\\w+\\d"]]
{a2, b6}

StringCases ["a2 b6", Regul arExpression ["\\w++\\d" 1]
{}

StringCases ["a2 b6", Regul ar Expression ["\\D++\\d" 1]
{a2, b6}

[[: xdigit: 1] corresponds to characters in a hexadecimal number.
StringCases ["ff, 13, 1a3, xyz, 3b", Regul arExpression["[[:xdigit:]]+"]]
(ff, 13, 1a3, 3b}

The complete list of characters that need to be escaped in a regular expression consists of . , \,
2, 6), 4, Y, 0,1, %, =, +, and |. For instance, to write a literal period, use "\\." and to write

a literal backslash, use "\\\\",

Inside a character class " [...]", the complete list of escaped charactersis”, -, \, [, and].

By default, » and $ match the beginning and end of the string, respectively. In multiline mode,
these match the beginning/end of lines instead.
StringCases ["]inel\nline2", Regul ar Expression ["". %"]]

{l'inel}

StringCases ["]inel\nline2", Regul arExpression[" (?m”. %" 1]

{linel, line2}

In multiline mode, \\ Aand \\ Z can be used to denote the beginning and end of the string.
StringCases ["]inel\nline2", Regul ar Expression [" (?m\\ A %"1]
{linel}

10 | Advanced String Patterns

The (?x) modifier allows you to add whitespace and comments to a regular expression for
readability.

StringCases ["12.45 bc58. 11",

Regul ar Expressi on ["\ <(?x)
\W\d+ \\. s#renenber to escape the period
\Wd+\>"1]

(12. 45, 58.11)

Named subpatterns are achieved by surrounding them with parentheses (subpatt); they then

become numbered subpatterns. The number of a given subpattern counts the opening parenthe-
sis, starting from the start of the pattern. You can refer to these subpatterns using \\ n for the

n™ pattern later in the pattern, or by " $n" in the right-hand side of a rule. " $0" refers to all of
the matched pattern.
StringCases ["alb6a3b3a3c3a8b8", Regul arExpression[" (a(\\d))b\\2"71]

{a3b3, a8b8}

StringCases ["alb6a3b3a3c3a8b8",
Regul ar Expression [" (a(\\d))b\\2"] » {"$0", "$1", "Nunber: $2"}]

{{a3b3, a3, Nunber: 3}, {a8b8, a8, Nunber:8}}

If you need a literal $ in this context (when the head of the left-hand side is
Regul ar Expr essi on), you can escape it by using backslashes (for example, "\ \ $2").
StringCases ["alb6a3b3a3c3a8b8",

Regul ar Expression [" (a(\\d))b\\2"] » {"$0", "$1", "Nunber: $2", "Literal :\\$2"}]
{{a3b3, a3, Nunber:3, Literal:$2}, {a8b8, a8, Nunmber:8, Literal:%$2}}

If you happen to need a single literal backslash followed by a literal $ under these circum-
stances, you need to be a bit tricky and split into two strings temporarily.

StringCases ["alb6a3b3a3c3a8b8", Regul ar Expression [(a(\\d))b\\2"7] :>
{"$0", "$1", "Nunber:$2", "Literal :\\" <>"\\$2"}]

{{a3b3, a3, Nunber:3, Literal:\$2}, {a8b8, a8, Nunmber:8, Literal:\$2}}

If you need to group a part of the pattern, but you do not want to count the group as a num-
bered subpattern, you can use the (?: patt) construct.

StringCases ["allb16c22b77", Regul ar Expression [" (?:a|b) (\\d)\\1"]]
(all, b77}

Lookahead and lookbehind patterns are used to ensure a pattern is matched without actually

including that text as part of the match.

Advanced String Patterns 11

This picks out words following the string "t he

StringCases["the cat in the hat", Regul ar Expression[" (?<=the)\\w+"]]
{cat, hat}

This tries to pick out all even numbers in the string, but it will find matches that include partial
numbers.

StringCases ["a23b42¢63d80, 123",
x : Regul ar Expressi on ["\\d+"] /; Mdd[ToExpression[x], 2] = 0]
{2, 42, 6, 80, 12}

Using lookbehind/lookahead, you can ensure that the characters before/after the match are not
digits (note that the lookbehind test is superfluous in this particular case).

StringCases ["a23b42c63d80, 123",
X : Regul ar Expression [" (?<!\\d)\\d+(?:1\\d)"] /; Mod[ToExpression[x], 2] == 0]
{42, 80}

RegularExpression versus StringExpression

There is a close correspondence between the various pattern objects that can be used in general
symbolic string patterns and in regular expressions. Here is a list of examples of patterns written

as regular expressions and as symbolic string patterns.

regular expression general string explanation
pattern
"abc" "abc" the literal string " abc"
o Except ["\ n"] any character except newline
"(?s)." _ any character
"(?s). +" . one or more characters (greedy)
" (?s). +?" Shortest [__] one or more characters (nongreedy)
"(?s). «" _ zero or more characters
"o Except ["\n"]... zero or more characters (except newlines)
"a?b" at """ ~~"b" zero or one "a" followed by a "b" (that is,

"b" or"ab")

12 | Advanced String Patterns

" [abef 1"

" [abef]+"

" la-f "

" [~abef 1"

"ab|efg"
" (ab|ef)gh"

or" (?:ab|ef)gh"
"\\s"

"\\s+"
"(alb)\\ 1"
"\\d"
"\\ D'

"\\d+"

"\ w

[[:al pha: 1]

"[~[:al pha: 11"

"Nabf" or "\\ Aabc"

" (?m) Mabf "

"wxz$" or "wxz\\z"

"wxz\\ Z"

Characters |
"abef"]

Characters |
"abef"]..

Char act er Range [
"at, " f"]
Except |
Characters |
"abef"]]
"ab" |"ef g"
("ab" |"ef")~~
n ghll

Wi t espaceCh-
aracter

Wi t espace

X: an ‘ n bn NNX_

Di gi t Char act er

Except [
Di gi t Char act er

]

Di gi t Char act er

Wor dChar act er |

Let t er Char act -
er

Except {

Lett er Char act -

er

}

StartOf String~~
llabfll

Start Of Li ne~~
n abf n

WKz ~~
EndOf Stri ng

"WKZ" ~~
"\n" "~
EndOf Stri ng

any of the characters "a", "b",
" f "

e", or

one or more of the characters "a", "b",
" e|| , or " f "

any character in the range between " a"
and "f"

any character except the characters "a",
" bll , " e|| , or " f "

match the strings " ab" or " ef g"

"ab" or"ef" followed by "gh" (thatis,
"abgh" or"efgh")

any whitespace character

one or more characters of whitespace
this will match either "aa" or " bb"
any digit character

any nondigit character

one or more digit characters

any digit, letter, or " _" character

any letter character

any nonletter character

the string "abf " at the start of the string

the string "abf " at the start of a line

the string "wxz" at the end of the string

the string "wxz" at the end of the string or
before newline at the end of the string

Advanced String Patterns | 13

Pattern objects that can be used in general string patterns, but not in regular expressions,
include conditions (/;) and pattern tests (?) that can access general Mathematica code during

the match.

Some special constructs in regular expressions are not directly available in general string pat-
terns. These include lookahead/lookbehinds and repeats of a given length. They can be embed-

ded into a larger general string pattern by inserting a Regul ar Expr essi on object.

String Manipulation Functions

The following discusses some particulars and subtleties in the various string manipulation func-

tions (see the reference pages for more information on these functions).

StringMatchQ

Stri ngMat chQ is used to check whether a whole string matches a certain pattern.

StringMatchQ["test", "t" ~~ _ ~~"t"]
True

StringMatchQ["tester", "t" ~~ _ ~~"t"]
Fal se

StringMat chQ is special in that it also allows the metacharacters » and @ to be entered as
wildcards (for backward compatibility reasons). =« is equivalent to Shortest []
(Regul ar Expression[" (?s). «?"]) and @ is equivalent to Except [Char act er Range ["A", "Z"]]

(Regul ar Expression[" ["A-Z]"]).

The following three patterns are therefore equivalent.

StringMatchQ["test", _ ~~"ex"]

True

StringMatchQ["test", _ ~~"e" ~~ Shortest [__ 1]
True

StringMatchQ["test", Regul ar Expression[" (?s).e. x?"1]

True

14 | Advanced String Patterns

Note that technically the appearance of Short est does not make a difference here, since we are
only looking for a possible match.
If you need to access parts of the string matched by subpatterns in the pattern, use

StringCases instead.

Stri ngVat chQ has a Spel |'i ngCorrecti on option for finding matches allowing for a small
number of discrepancies. This only works for patterns consisting of a single literal string.
StringhMat chQ["al pha", "al pa", SpellingCorrection - True]

True

StringFreeQ

St ri ngFreeQ is used to check whether a string contains a substring matching the pattern.
You cannot extract the matching substring; to do this you would use St ri ngCases.

StringFreeQ["abcde", "b" ~~ ~~"d"]

Fal se

StringFreeQ["abcde", Regul ar Expression ["b. xd"]]

Fal se

StringCases
StringCases is a general purpose function for finding occurrences of patterns in a string, pick-

ing out subpatterns, and processing the results.

Find substrings matching a pattern.
StringCases ["alb2a26d15a42", "a" ~~ _]
{al, a2, a4}

Pick apart the matching substring.
StringCases ["alb2a26d15a42", "a" ~~ x: DigitCharacter .. -» x]
{1, 26, 42}

StringCases ["alb2a26d15a42", Regul arExpression["a(\\d+)"] » "$1"]
{1, 26, 42)

Advanced String Patterns 15

Restrict the number of matches.
StringCases["a b ¢ d e", LetterCharacter, 3]
{a, b, c}

You can use a list of rules.

StringCases ["al3bF5b1Aa33", {"a" ~~x: DigitCharacter .. »f1[x],
"b" ~~x: (DigitCharacter | CharacterRange ["A", "F"']) .. » hex[Xx]}]

{f1[13], hex[F5], hex[1A], f1[33]}

You can also give a list of strings as the first argument for efficient processing of many strings
(see "Tips and Tricks for Efficient Matching" for a discussion).

StringCases [{"cat", "in", "the", "hat"}, _ ~~"t" ~~ EndOFString]
{{cat}, {}, {3, (hat}}

Flatten[%]
{cat, hat}

The Overlaps Option

The Overl aps option for StringCases, StringPosition, and StringCount deals with how the
matcher proceeds after finding a match. It has three possible settings: Fal se, True, or Al |l . The

default is Fal se for Stri ngCases and St ri ngCount , while it is True for Stri ngPosi ti on.

With Over | aps -> Fal se, the matcher continues the match testing at the character following
the last matched substring.
StringCases [" (a(b)c(d)", Shortest [" (" ~~ __ ~~")"11]

With Over | aps -> True, the matcher continues at the character following the first character
of the last matched substring (when a single pattern is involved).
StringCases [" (a(b)c(d)", Shortest [" (" ~~__ ~~")"1, Overlaps - True]

16 Advanced String Patterns

With Over |l aps -> Al | , the matcher keeps starting at the same position until no more new
matches are found.

StringCases [" (a(b)c(d)", Shortest [" (" ~~
{(a(b), (a(b)c(d), (b), (byc(d), (d)}

~~")"1, Overlaps - Al |]

If multiple patterns are given in a list, Over | aps -> Tr ue will cause the matcher to start at
the same position once for each of the patterns before proceeding to the next character.

StringCases [" (a(b)c (d)",
{Shortest [" (" ~~__ ~~")"1, Shortest [" (" ~~__ ~~" ("1}, Overlaps » True]

{(a(), (a(, (b), (b)yc(, (d)}

StringCases [" (a(b)c (d)",
{Shortest [" (" ~~ __ ~~")"1, Shortest [" (" ~~__ ~~" ("1}, Overlaps -» Fal se]

{(a(b), (d)}

Note that with Over| aps -> Tr ue, there can thus be a difference between specifying a list of
patterns and using the alternatives operator (|).

StringCases ["ab", {_, __}, Overlaps - True]
{a, ab, b, b}
StringCases ["ab", _ | __, Overlaps -» True]
{a, b}

StringPosition

StringPosi ti on works much like St ri ngCases, except the positions of the matching
substrings are returned.

StringPosition["alb2a26d15a42", "a" ~~ _]

({1, 2}, {5, 6}, {11, 12}}

StringTake ["alb2a26d15a42", #] &/@%

{al, a2, a4}

The Over | aps option is Tr ue by default (see "The Overlaps Option" for more details on
this option).

StringPosition[" (a(b)c(d)", Shortest [" (" ~~ __ ~~")"11]

({1, 5}, {3, 5}, {7, 9}}

Advanced String Patterns 17

Note that even empty strings can be matches.

StringPosition["abc", __]
{{1, 3}, {2, 3}, {3, 3}, {4, 3}}

StringCount

Stri ngCount returns the number of matching substrings (which are found by
StringPositionorStringCases). It is useful for cases with many matches where memory

for storing all the substrings might be an issue.

StringCount ["abaababba", "a" ~~ __ ~~"b", Overlaps » All]

12

StringCases ["abaababba", "a" ~~ ___ ~~"b", Overlaps » All] // Length
12

Note that Over | aps -> Fal se is the default for St ri ngCount .

StringReplace

Stri ngRepl ace is used for substituting substrings matching the given patterns.
StringRepl ace ["abcde", {"a" -»"A", "cd" - "XX"}]
AbXXe

Named patterns can be used as strings on the right-hand side of the replacement rules. Note
the use of Rul eDel ayed (:») to avoid premature evaluation.
StringReplace["this is a test", x: WirdCharacter .. > StringReverse [Xx]]

siht si a tset

When using regular expressions, it is convenient to remember that " $0" on the right-hand side

refers to the whole matched substring.
StringReplace["this is a test", Regul arExpression ["\\w+"] =» StringReverse ["$0" 1]

siht si a tset

18 Advanced String Patterns

You can limit the number of replacements made by specifying a third argument.
StringReplace["this is a test", x: WirdCharacter .. = StringReverse [x], 1]

siht is a test

Note that the replacement does not have to be a string. If the result is not a string, a
Stri ngExpr essi on is returned.

St ringRepl ace ["sonme bol d and <i>italics</i>.",
Shortest ["<" ~~X___ ~~">"1:= Tag[x]]

some ~~Tag[b] ~~bold~~Tag[/b] ~~ and ~~Tag[i] ~~italics ~~Tag[/i] ~~.

I nput For m[%]
StringExpression["sone ", Tag["b"], "bold", Tag["/b"], " and ", Tag["i"], "italics", Tag|

There is limited support for using the old Met aChar act ers option in conjunction with general

string patterns, but this option is deprecated and its use should be avoided.

StringReplaceList

StringRepl acelLi st returns a list of strings where a single string replacement has been

made in all possible ways.
StringRepl acelLi st ["abaac", "a" ~~ x_ =» ToUpper Case [X]]

{Baac, abAc, abaC}

If a list of strings is given as input, the output is a nested list of results.
StringRepl aceLi st [{"abaac", "baaba"}, "a" ~~ x_ =» ToUpper Case [X]]
{{Baac, abAc, abaC}, {bAba, baBa}}

StringSplit

StringSplit is useful for splitting a string into many strings at delimiters matching a pattern.
By default, the splits happen at runs of whitespace.
StringSplit ["this is a test"]

{this, is, a, test}

Advanced String Patterns 19

For instance, to split a normal sentence into words, you need to also include punctuation in the
delimiter.

StringSplit ["A sentence: with conmas, semcolons; etc...!?",
Characters[":,;.!? "1..]

{A, sentence, with, commas, sem col ons, etc}

By default, empty strings at the beginning and the end of the result are removed.
StringSplit [":a:b:c:", ":"]
{a, b, ¢}

These can be included by specifying Al | as a third argument.
StringSplit [":a:b:c:", ":", All]
{, a, b, c, }

The third argument can also be a number giving the maximum number of strings to split into.
StringSplit ["this is a test", Witespace, 2]

{this, is a test}

This splits a string into individual lines.
StringSplit ["linel\nthis is line 2\nline3", "\n"]

{linel, this is line 2, line3}

You can also split at patterns that match positions, such as St art O Li ne. This keeps the
newline characters in the result.
StringSplit ["linel\nthis is line 2\nline3", Start O Line]

{linel
, thisis line 2
, line3}

You can keep the delimiters, or parts of the delimiters, in the output by using a rule as the
second argument.

StringSplit ["this is a test", " " " "]
{this, ,is, , a , test}
StringSplit ["this is a test", " " =s":"]

{this, :, is, :, a, :, test}

20 | Advanced String Patterns

StringSplit ["the <tagl>first</tagl> and the <tag2>second</tag2>",
Shortest ["<" ~~ __ ~~">"1]]

{the , first, and the , second}

StringSplit ["the <tagl>first</tagl> and the <tag2>second</tag2>",
Shortest ["<" ~~X__ ~~">"1 = Tag[x1]

{the , Tag[tagl], first, Tag[/tagl], and the , Tag[tag2], second, Tag[/tag2]}

You can give a list of patterns and rules as well; the delimiters matching the patterns will be
left out of the result.

StringSplit ["the <tagl>first</tagl> and the <tag2>second</tag2>",
{Wi tespace, Shortest ["<" ~~X__ ~~">"] = Tag[x]}] // | nput Form

{"the", "", Tag["tagl"], "first", Tag["/tagl"], "", "and", "the", "", Tag["tag2"], "secon

For Perl Users

Overview

With the addition of general string patterns, Mathematica can be a powerful alternative to lan-
guages like Perl and Python for many general, everyday programming tasks. For people familiar
with Perl syntax, and the way Perl does string manipulation, the following rough guide shows

how to get similar functionality in Mathematica.

Here is an overview of the Mathematica functions involved in constructing Perl-like functions.

Advanced String Patterns 21

Perl construct Mathematica explanation
function
m.../ StringFreeQor match a string with a regular expression,
StringCases possibly extracting subpatterns

S/ /o] St ri ngRepl ace replace substrings matching a regular
expression

split (...) StringSplit split a string at delimiters matching a
regular expression

tr/o.. /.. / Stri ngRepl ace replace characters by other characters

/i I gnor eCase-> case-insensitive modifier

True or" (?i)

/s " (?s)" force ". " to match all characters (including
newlines)
/X ex)" ignore whitespace and allow extended

comments in regular expression

/m "(?m" multiline mode ("~" and "$" match
start/end of lines)

Following are some common Perl constructs in more detail.

m/.../

The match operator m/ regex / tests whether a string contains a substring matching the r egex.

For simple matches of this sort in Mathematica, use St ri ngFr eeQ.

Here is a Perl snippet for testing whether a string contains a "b" somewhere after an "a" .

$string = "sdakdb";
if ($string =~ ma.*b/){
print "Match!";

Here is a Mathematica version of the same test.

string = "sdakdb";
I f[tStringFreeQ[string, Regul arExpression["a. xb"1], Print ["Match!" 1]

Mat ch!

If parts of the matched string need to be accessed later, using $1, $2, ... in Perl, the best Mathe-

matica function to use is normally Stri ngCases.

22

s/..

Advanced String Patterns

Here is Perl code for extracting an error message.
$res = "ERROR = paper jant';
if ($res =~ MERROR = (.*)/){

print "Hey, you should check the $1!";

Here is a Mathematica version.

res = "ERROR = paper jant;
Wth[{test = StringCases [res, Regul ar Expression ["
If[test =1= {}, Print ["Hey, you should check the

Hey, you should check the paper jam:

ERROR = (.%)"]->"$1"1},
", test [[111, "!"111

Here is Perl code for extracting several subpatterns at once.

$date = "88/6/13";

($year, $nonth, $day) = $date =~ mA(\d+)/(\d+)/(\d+)$/;

In Mathematica, this is done with Stri ngCases.

date = "88/6/13";
{year, nmonth, day} = StringCases [dat e,

Regul ar Expression ["A (\\d+)/(\\d+) /7 (\\d+)$" 1 -> {"$1", "$2", "$3"}1[[1]]

(88, 6, 13)

This is similar to assigning all the matches to an array using the / g modifier.

$text = "128.32.13.117";
@uns = $text =~ m\d+/ g;

The same thing is easily done with St ri ngCases in Mathematica.

text ="128.32.13.117";
nunms = StringCases [text, Regul ar Expression ["\\d+"]
(128, 32, 13, 117}

S../

The obvious Mathematica version of the Perls /... /..
StringRepl ace.

$t ext = "abcagh";
$text =~ sla./ XX ;

]

./ substitution operator is

Advanced String Patterns 23

The default Perl behavior is to do a single replacement.

text = "abcagh";
StringRepl ace [text, Regul arExpression[“a."] ->"XX", 1]
XXcagh

The / g modifier in Perl does global replacement of all matches.
$text =~ s/a./ XX g

StringRepl ace [text, Regul arExpression["a."] -> "XX"]
XXc XXh

Using the evaluation / e modifier, Perl can use subpatterns as part of the replacement. This is
easily done in Mathematica.

$text = "13 27 3",
$text =~ s/ (\d+)/$1$1/ eg
text ="13 27 3";

StringRepl ace [text, Regul arExpression[" (\\d+)"] = "$1$1"]
1313 2727 33

split(...)

The Perl split command is similar to Stri ngSpl it in Mathematica.
$text = "ab:cd:efg";
split(/:/, $text)

text = "ab:cd:efg";

StringSplit [text, ":"]

{ab, cd, efg}

You can specify the number of blocks to split into in both Perl and Mathematica.
split(/:/, $text,2)

StringSplit [text, ":", 2]
{ab, cd:efg}

24 | Advanced String Patterns

A spl it with capturing parentheses in the pattern, for which the captured substrings are
included in the result, can be done in Mathematica using rules in the second argument of
StringSplit.Compared to Perl, in Mathematica it is easy to then apply a function to these
substrings.

$text = "test with <tagl>tags</tagl> and nore";

split(/<([*>]*)>/, $text)
text ="test with <tagls>tags</tagl> and nore";
StringSplit [text, Regul arExpression["<([*>]#*)>"]1 - "$1"] // | nput Form

{"test with ", "tagl", "tags", "/tagl", " and ", "b", "nore", "/b"}

text ="test with <tagl>tags</tagl> and nore";
StringSplit [text, Regul arExpression["<([">]%)>"]1 = Tag["$1"1] // I nputForm
{"test with ", Tag["tagl"], "tags", Tag["/tagl"], " and ", Tag["b"], "nore", Tag["/b"]}

tr/.../7.../

The Perl tr command can be simulated using Mathematica Stri ngRepl ace together with the

appropriate list of rules.

Here is the simplest form where the characters "a", "b", and "c" are replaced by " X", "Y",
and " Z", respectively.

$t ext = "abcdef";
$text =~ tr/abc/ Xyz/

This generates the appropriate rules in Mathematica using Thr ead.

text = "abcdef";
StringRepl ace [text, Thread[Rul e[Characters ["abc"], Characters ["XYZ"1]1]
Xyzdef

Here is an example where the replacement list is shorter than the character list, so "d", "e",
and "f" are all replaced by "Z".

$t ext = "abcdef ghi ";

$t ext =~ tr/abcdef/WKYZ/

text = "abcdefghi ";
StringRepl ace [text, Append[

Thread [Rul e[Characters ["abc"], Characters ["WKY"]]], Characters["def"] - "Z"]]
WKYZZZghi

Advanced String Patterns 25

Character ranges in Perl are emulated using Char act er Range in Mathematica.

$text = "this and that";
$text =~ tr/a-z/x/

text ="this and that";

StringRepl ace [text, CharacterRange ["a", "z"] » "Xx"]
XXXX XXX XXXX

With the / d modifier, the surplus characters are instead deleted.

$text = "abcdef ghi";

$t ext =~ tr/abcdef/WKYZ/d
text = "abcdefghi";
StringRepl ace [text, Append[

Thread [Rul e [Characters ["abcd"], Characters ["WKYZ"]]], Characters["ef"] »""]]
WKYZghi

With the / ¢ modifier, the complement of the character list is used.
$text =~ tr/aeh/ /c

StringRepl ace [text, Except [Characters["aeh"]] »" "]

a e h

StringRepl ace [text, Regul ar Expression [" [*aeh]"] »>" "]
a e h

The /s modifier squeezes down to one any run of characters translating into the same
character.

$t ext = "abbcccddddeeeeeef f eeded"”;
$text =~ tr/abcde/ ABCD s

You get the same effect in Mathematica using Repeat ed (. .).

text = "abbcccddddeeeeeef f eeded”;
StringRepl ace [t ext,

Append [Thr ead [Rul e [Repeat ed /@ Characters ["abc"], Characters["ABC']]],
Characters["de"].. »"D"']]

ABCDf f D

Some Examples

Some brief examples of practical uses of string patterns are presented in this section.

26 | Advanced String Patterns

Highlight Patterns

This defines a 1000-base random DNA string.

SeedRandom[1234];
dna = StringJoin[Table[{"a", "c", "g", "t"}[[Random nteger [{1, 4}1]1], {1000}1]

acaaccgccgcgaat t ct cacaaacgt cgagt gt gat at agaaaat cccagat cacact at agggt ggaaaccaggt gat agt t gcct ct gcca-
tgcat at gcgat t aaat gt t cgt t gaat at gagt aaagaat ct aagcgt agt t t t t at agt aaagaccccgegect ct gcgegt gat agt g+
ttaccgacgcat ct cgat gt t gt acat gt agcact gt acgt aat cat t at acgat t t ccat aacgt aagct gggt aacagacct aacgt ag-
ggttcatctacgcgcttat cct ccgacct aggat t gcgt ct agaaaact gaacaagt aaaccgt act cct tt at ccgccgacagt ccagaas
cagtctgacttccagctacttaatggtttcccagatttcctgcggaat acct cgaccgt gt ggccatt gct ccaccaccgcaattcgectc:
ttctgcacaggt ccacgcacgttttccct gagcat aaaaacccagcaat acgaaaggt t ct ct acacat cagcagct t cccgagt gacct g
at t ggggcet gegcet at aacgt cggt cgegt t t ccat caggacgcat gcagcgacgect gcagcagcagt cccct t cacagegt acagggcet -
ct ggt aagggcagccagt tt cgct aacggt cct gt t get t acat gcgeat acaat t at gccaaacggacacgt gct at ccagacgaggt gt -
cgt aaaggggat t t ct aagt gaccagaat t act gt cagacgacct t aagat agt caggct t t cagcggt agat aggcgggat gaat cgaaa-.
gcaat gacaaggcccggt cgccagagagacaggct t agt at t cagt aagcagt agcgcgacat acccgaaact ccgegegggt at agagt a-
cat ct act aggt gt gt at ct gcagcacat t agggct at t cagaccgt t aat t ccggect gaggccat gccgacagaacaaat t gect

This highlights parts of the DNA that match a certain pattern.

StringRepl ace [dna,
X: ("ag" ~~ _ ~w o~ "tY ee _~~"ca’) s "\ i\ (\#StyleBox [\ <> X <>
"\", Font Col or ->R@BCol or [1, 0, 0], Font Si ze->18, Font Wi ght ->\ " Bol d\ "]\)"]

acaaccgccgcgaat t ct cacaaacgt cgagt gt gat at agaaaat cccagat cacact at agggt ggaaaccaggt gat agt t gcct ct gcca-

tgcat at gcgat t aaat gt t cgt t gaat at gagt aaagaat ct aagcgt agt t t t t at agt aaagaccccgegect ct gcgegt gat agt g+
ttaccgacgcat ct cgat gt t gt acat gt agcact gt acgt aat cat t at acgat t t ccat aacgt aagct gggt aacagacct aacg-
tagggttcat.
ctacgcgctt at cct ccgacct aggat t gcgt ct agaaaact gaacaagt aaaccgt act cct tt at ccgccgacagt ccagaacagt ct g-
acttccagctacttaatggtttcccagatttcctgcggaat acct cgaccgt gt ggccatt gct ccaccaccgeaattcgectcttctgeas
caggt ccacgcacgt t tt ccct gagcat aaaaacccagcaat acgaaaggt t ct ct acacat cagcagct t cccgagt gacct gat t gggg-
ctgcgct at aacgt cggt cgegt tt ccat caggacgcat gcagcgacgect gcagcagecagt cccct t cacagCgt aCagggctct gg-
t aagggcagccagt tt cgct aacggt cct gt t gct t acat gcgeat acaat t at gccaaacggacacgt get at ccagacgaggt gt cgt a-
aaggggat t t ct aagt gaccagaat t act gt cagacgacct t aagat agt caggct t t cagcggt agat aggcgggat gaat cgaaagcaa-
t gacaaggcccggt cgccagagagacagget t Agt at t Cagt aagcagt agegegacat acccgaaact ccgegegggt at

agagt aca

tctact aggt gt gt at ct gcagcacat t agggct at t cagaccgt t aat t ccggect gaggccat gccgacagaacaaat t gect

Advanced String Patterns 27

Here is the same result using a regular expression.

StringRepl ace [dna, Regul ar Expression["ag..t.ca"] =
"\ 1\ (\ #Styl eBox [\ " $0\ ", Font Col or ->RGBCol or [1, 0, 0], Font Si ze->18, Font Wi ght ->\"
Bol d\"1\)"]
acaaccgccgcgaat t ct cacaaacgt cgagt gt gat at agaaaat cccagat cacact at agggt ggaaaccaggt gat agt t gcct ct gcca-
tgcat at gcgat t aaat gt t cgt t gaat at gagt aaagaat ct aagcgt agt t t t t at agt aaagaccccgegect ct gcgegt gat agt g+
ttaccgacgcat ct cgat gt t gt acat gt agcact gt acgt aat cat t at acgat t t ccat aacgt aagct gggt aacagacct aacg-
tagggttcar-
ctacgcgcttat cct ccgacct aggat t gcgt ct agaaaact gaacaagt aaaccgt act ccttt at ccgccgacagt ccagaacagt ct g-
acttccagctacttaatggtttcccagatttcctgcggaat acct cgaccgt gt ggccatt gct ccaccaccgecaatt cgectcttctgeas
caggt ccacgcacgt ttt ccct gagcat aaaaacccagcaat acgaaaggt t ct ct acacat cagcagct t cccgagt gacct gat t gggg -
ctgcgct at aacgt cggt cgegt tt ccat caggacgcat gcagcgacgect gcagcagcagt cccct t cacagCgt aCagggctctgg-
t aagggcagccagt tt cgect aacggt cct gt t gect t acat gcgeat acaat t at gccaaacggacacgt get at ccagacgaggt gt cgt a-
aaggggat t t ct aagt gaccagaat t act gt cagacgacct t aagat agt caggct t t cagcggt agat aggcgggat gaat cgaaagcaa-
t gacaaggcccggt cgccagagagacaggcttagt at t cagtaagcagt agcgecgacat acccgaaact ccgegegggt at
agagt aca
tct act aggt gt gt at ct gcagcacat t agggct at t cagaccgt t aat t ccggect gaggccat gccgacagaacaaat t gect

HTML Parsing

String patterns are useful for taking raw HTML and extracting information from it.

28 Advanced String Patterns

Here is the source from www.google.com.

text ="\<<htm ><head><neta http-equiv='content -type
content =' text /html ; charset =UTF-8' ><titl e>CGoogl e</titl e><styl e><!--body, td
,a,p,.h{font -famly:arial,sans-serif;}
.h{font -si ze: 20px; }
. g{col or: #0000cc; }
//-->
</style>
<script >
<!--function sf () {docunent.f.qg.focus();}
//-=>
</script>
</head><body bgcol or =sf fffff text=#000000 |ink=#0000cc
vl i nk=#551a8b al i nk=#f f 0000 onLoad=sf () ><center ><tabl e border =0
cel I spaci ng=0 cel | paddi ng=0><tr><td><inmg src='/i mages/l ogo. gif
wi dt h=276 hei ght =110 al t =' Googl e' ></td></tr ></tabl e>

<form action='/search' name=f><script><!--function
gs(el) {if (w ndow. RegExp&&w ndow. encodeURI Conponent)
{var ge=encodeURI Conponent (docunent.f.q.value);if
(el . href.indexOf ("g=")#-1) {el.href=el.href.replace (new
RegExp (‘' q=["&$]1*"'), ' q="+qe); } else {el.href +=' &q=" +qe; }}return 1;}
//-->
</script ><tabl e border =0 cel | spaci ng=0
cel | paddi ng=4><tr><td nowap class=q>Web</f ont > &bsp; <a
id=1a class=q href="/imghp?hl =en&t ab=wi * onCick="return
gs (this);"' >l mages &bsp; <a i d=2a
class=q href =" /grphp?hl zen& ab=wg' onCick="return
gs (this);' >G oups &bsp; &bsp; <a i d=4a
class=q href =" /nwshp?hl =en&t ab=wn" onCick="return
gs (this);' >News &bsp; <a i d=5a
class=q href ="' /froogl e?hl =en& ab=wf' onCick='return
gs (this);' >Froogl e &bsp; &bsp; &bsp; <a
href =' /options/i ndex. htn"'
cl ass=q>nor e & aquo; </td></tr></table> <table
cel I spaci ng=0 cel |l paddi ng=0><tr><td w dt h=25%> </td><td
al i gn=cent er ><i nput type=hi dden nane=hl val ue=en><i nput type=hi dden nane=i e val ue=' UTF-8' ><i nput
maxLengt h=256 si ze=55 nane=q val ue=""' >
<i nput
type=submt val ue='" Googl e Search' name=btnG><i nput
type=submt value='l"'m Feeling Lucky' name=btnl ></td><td
valign=top now ap w dth=25%> &bsp; <a
hr ef =/advanced_sear ch ?hl =en>Advanced Sear ch
 &bsp; Pr ef er ences
 <a
hr ef =/1 anguage_t ool s ?hl =en>Language
Tool s</td></tr></tabl e></f orm>

<f ont
size=-1>Adverti si ng Prograns- Busi ness Sol uti ons- About
Googl e
<script >
//<t--if (rthp.isHomePage (' http: //ww. googl e. conv'))

Advanced String Patterns | 29

{document .write (' <p><a href =\" /mgyhp. htm \"'
ond ick=\"style. behavior =" url (#def aul t #shomepage)' ; set HomePage (' http: //ww
.google.conmv');\' >Make Googl e Your Honepage!');}
//-=>
</script ><p>© 2004 Googl e-Sear chi ng
4,285,199, 774 web pages</p></center ></body></htm >\ >";

StringlLength [text]
2639

This extracts all the direct hyperlinks in the source.

StringCases [text, Shortest ["<a" ~~
__~~"href=" ~~ref__ ~~ (WitespaceCharacter |">") ~~__ ~~">"]mref]

{" /i mghp?hl =en&t ab=wi ', ' /gr php?hl =en&t ab=wg' , ' /nwshp?hl =en&t ab=wn'
' /froogl e?hl =en& ab=wf', ' /options/i ndex. htm ', /advanced_search?hl =en, /preferences?hl =en
/I anguage_t ool s?hl =en, ' sads/', ' /services/', /about.htm, \' /mgyhp. htni\'}

This deletes everything inside tags < ... >.

StringRepl ace [text, Shortest ["<" ~~ __ ~~">"1-""]

Googl e

Web &bsp; &bsp; &bsp; | mages &bsp; &bsp; &bsp; Gr oups &bsp; &bsp; &bsp; News &
nbsp; &bsp; Fr oogl e nor e & aquo

 &bsp; &bsp; Advanced Sear ch &bsp; Pr ef er ences &bsp; Language

Tool sAdverti si ng Progranms- Busi ness Sol uti ons- About Coogl e

//Make Googl e Your Honepage!');}
//==>
© 2004 Googl e-Sear chi ng 4, 285,199, 774 web pages

Find Money

Here is some text to scan for strings that look like dollar amounts.

text ="This $100 sentence can be bought for $85.00, at 15% di scount"
This $100 sentence can be bought for $85.00, at 15% di scount

This is one way to do the search using symbolic string patterns.
StringCases [text, "$" ~~ DigitCharacter .. ~~ (("." ~~DigitCharacter ..) ["")]
{$100, $85.00}

30 | Advanced String Patterns

Here is the same search using regular expressions (note that you must remember to escape
the dollar sign).
StringCases [text, Regul arExpression ["\\$\\d+(\.\\d+)?"1]

{$100, $85.00}

There is also a built-in pattern object, Nunber St ri ng, for this particular situation.

StringCases [text, "$" ~~ NunberString]
{$100, $85.00}

Find Text in Files

Here is a very simple grep-like function for finding lines in a text file containing text matching a
given pattern.
Gep[file_, patt_]:=Wth[{data =Inport [file, "Lines"]},

Pi ck [Transpose [{Range [Lengt h[data]], data}], StringFreeQ[data, patt], False]]

This creates a sample text file.

Export ["test.txt", {"this is a line",
"a line with 2 nunbers 5", "third line and nore", "line 4"}, "Lines"]

test.txt

This returns the line numbers and lines in "t ext. t xt" containing any digit characters.

Gep[“test.txt", DigitCharacter] // Tabl eForm

2 aline with 2 nunbers 5
4 line 4

This finds lines containing "a" as a standalone word.
Gep["test.txt", Regul ar Expression["\\ba\\b"]] // Tabl eForm

1 thisis aline
2 aline with 2 nunbers 5

Tips and Tricks for Efficient Matching

This section addresses some issues involving efficiency in string pattern matching.

Advanced String Patterns 31

StringExpression versus RegularExpression

Since a string pattern written in Mathematica syntax is immediately translated to a regular
expression and then compiled and cached, there is very little overhead in using the Mathematica
syntax as opposed to the regular expression syntax directly. An exception to this happens when

many different patterns are used a few times; in that case the overhead might be noticeable.

Conditions and PatternTests

If a pattern contains Condi tion (/;) or PatternTest (?) statements, the general Mathemat-

ica evaluator must be invoked during the match, thus slowing it down. If a pattern can be
written without such constructs, it will typically be faster.

SeedRandom[1234];
test = StringJoin[Tabl e [FrontChar act er Code [Random nt eger [{48, 80}11, {200}11;

StringCases [test, DigitCharacter ..] // Length // Ti m ng
{0. Second, 45}

StringCases [test, _ ?DigitQ] // Length // Timng
{0. 03 Second, 45}

Avoid Nested Quantifiers

Because of the nondeterministic finite automaton (NFA) algorithm used in the match, patterns

involving nested quantifiers (such as __ and patt .. or the regular expression equivalents) can
become arbitrarily slow. Such patterns can usually be "unrolled" into more efficient versions (see

Friedl [2] for additional information).

Avoid Many Calls to a Function

If you are searching through a long list of strings for certain matches, it is more efficient to
feed the whole list to a string function at once, rather than using something like Sel ect and

St ri nghat chQC (see the earlier dictionary example for an illustration). Here is another example
that generates a list of 2000 strings with 10 characters each and searches for the strings that
start with an "a" and contain " ggg" as a substring.

SeedRandom[12347]; test = Tabl e[StringJoin][
{"a", "c", "g", "t"}[[#]] &/@Tabl e[Random nteger [{1, 4}], {10}]1]1, {2000}1];

32 | Advanced String Patterns

Take [test, 3]

{acaaccgccg, cgaattctca, caaacgtcga)

Here is the slower version, using Sel ect and Stri ngMat chQ.

Sel ect [test, StringMatchQ[#, "a" ~~

{0. 01 Second,
agcgggactc,
agct acgggc,
agaggggaac,
aagagggaat ,
aagggat att,
aagggagggg,

{acgt agggt t,

acagagggt g,
at aagccggg,
at gcagggat ,
agggacggag,
agggcaggt g,
aagggcat gt ,

at t agggct a,
at gggacatc,
at agggagaa,
at cgt agggc,
at t cgggagce,
agaacgggt a,
aagt t gaggg,

at agggct ct,
agggat aaga,
act t gat ggg,
aggggaagct,
aat aact ggg,
aatt gggt ct,
aaaacggggt ,

aagggccegtc,
accacgggct ,
acagt gaggg,
agtggggctg,
agggcgecca,
agcgggt agg,
agagggcgt a,

agtgttaggg,
aaaagggcat ,
agggcaggga,
aaacaaggga,
agaggggatt,
act cgggccc,
aagt ct aggg,

___~~"009" ~~___1&] // Timng

aggggt ggca,
agt aagggac,
agggttctag,
aagt gggat g,
agggacgaag,
agggcect cct,
agggagcgtc}}

aggggcggag,
agggtagtta,

If you instead feed the whole list to St ri ngMat chQ at once, it will be much faster. Then Pi ck
can be used to extract the wanted elements.

Pi ck [test, StringMWatchQJ[test, "a" ~~
{acgtagggtt, attagggcta, atagggctct, aagggccgtc, agtgttaggg, aggggtggca, aggggcggag,

{0. Second,
agcgggact c,
agct acgggc,
agaggggaac,
aagagggaat ,
aagggat att,
aagggagggg,

acagagggt g,
at aagccggg,
at gcagggat ,
agggacggag,
agggcaggt g,
aagggcat gt ,

at gggacat c,
at agggagaa,
at cgt agggc,
at t cgggagc,
agaacgggt a,
aagt t gaggg,

agggat aaga,
actt gat ggg,
aggggaagct ,
aat aact ggg,
aattgggtct,
aaaacggggt,

accacgggct ,
acagt gaggg,
agt ggggctg,
agggcgecca,
agcgggt agg,
agagggcgt a,

aaaagggcat,
agggcaggga,
aaacaaggga,
agaggggatt,
act cgggccc,
aagt ct aggg,

~~"gg9g9" ~~ ___11 // Timng

agt aagggac,
agggttctag,
aagt gggat g,
agggacgaag,
agggcct cct,
agggagegt c}}

agggt agt t a,

Alternatively, you could use St ri ngCases, which is also fast. Note that you need to anchor
the pattern using St art O St ri ng to ensure that the "a" is at the start (the EndOf Stri ng is
superfluous in this particular case).
Flatten[StringCases [test,

StartOfString ~~"a" ~~ ~~"0gg9" ~~ ___
{acgtagggtt, attagggcta, atagggctct, aagggccgtc, agtgttaggg, aggggtggca, aggggcggag,

{0. Second,
agcgggact c,
agct acgggce,
agaggggaac,
aagagggaat ,
aagggat att,
aagggagggg,

acagagggt g,
at aagccggg,
at gcagggat ,
agggacggag,
agggcaggt g,
aagggcat gt ,

at gggacat c,
at agggagaa,
at cgt agggc,
at t cgggagce,
agaacgggt a,
aagt t gaggg,

agggat aaga,
actt gat ggg,
aggggaagct ,
aat aact ggg,
aattgggtct,
aaaacggggt,

accacgggct ,
acagt gaggg,
agt ggggct g,
agggcgcecca,
agcgggt agg,
agagggcgt a,

aaaagggcat ,
agggcaggga,
aaacaaggga,
agaggggat t,
act cgggccc,
aagt ct aggg,

~~EndOFStringl] // Timng

agt aagggac, agggtagtta,
agggt tct ag,
aagt gggat g,
agggacgaag,
agggcect cct,

agggagcegtc}}

Rewrite General Expression Searches as String Searches

Because the string-matching algorithm is different than the algorithm Mathematica uses for
general expression matching (string matching can assume a finite alphabet and a flat structure,
for instance), there are cases where it is advantageous to translate a normal expression-match-
ing problem to a string-matching problem. A typical case is matching a long list of symbols

against a pattern involving several occurrences of __and

Advanced String Patterns 33

As an example, assume you want to find primes (after prime number 1000000, say) that have
at least four identical digits. Using ordinary pattern matching, it could be accomplished like this.

Sel ect [Array [Prine, 1000, 10000007,
Mat chQ[I ntegerDi gi ts [#], { , X, , X, , X, . X, }1 & // Timng

{0. 16 Second, {15488881, 15491117, 15491171, 15491711, 15493333, 15493999,
15496111, 15499111, 15499199, 15499399, 15499499, 15499919, 15499997, 15500557,
15501119, 15501121, 15501151, 15501553, 15501559, 15501911, 15502111}}

By converting the list of integers to a string, you can use string matching instead.

Sel ect [Array [Prine, 1000, 10000007,
St ri ngMat chQ[FromChar act er Code [48 + I ntegerDigits [#]],
StringExpression[___, x_, . X, X, ., X_, ___11&] // Timng

{0. 05 Second, {15488881, 15491117, 15491171, 15491711, 15493333, 15493999,
15496111, 15499111, 15499199, 15499399, 15499499, 15499919, 15499997, 15500557,
15501119, 15501121, 15501151, 15501553, 15501559, 15501911, 15502111}}

By using the previous tips of using Pi ck or St ri ngCases, you can speed it up even more.

Wth[{list = Array [Prine, 1000, 100000017},
Pick[list, StringhMatchQ[FronCharacterCode [48 +IntegerDigits [#]] &/@list,
StringExpression[___, x_, . X, Xy, X_, 1111 //Timng

{0. 04 Second, {15488881, 15491117, 15491171, 15491711, 15493333, 15493999,
15496111, 15499111, 15499199, 15499399, 15499499, 15499919, 15499997, 15500557,
15501119, 15501121, 15501151, 15501553, 15501559, 15501911, 15502111}}

Fl atten[StringCases [FrontCharacter Code [48 +IntegerDigits [#]] &/@
Array [Prime, 1000, 1000000], StringExpression[StartOfString,
, X, , X, , X, , X_, ___, EndOsString11] 7/ Tim ng

{0. 04 Second, {15488881, 15491117, 15491171, 15491711, 15493333,
15493999, 15496111, 15499111, 15499199, 15499399, 15499499, 15499919, 15499997,
15500557, 15501119, 15501121, 15501151, 15501553, 15501559, 15501911, 15502111}}

For long sequences, the difference can be significant.
test = Range[100]; test [[{50, 75}1] = 5;

Position[test, 5]
({5}, {50}, {75}}

Mat chQ[test, {__ , X_, __ , X_, ___, X_, }1 // Timng

{0. 121 Second, True}

teststr = FrontCharact er Code [t est];

StringPosition [teststr, FronCharacterCode [5]]
{{5, 5}, {50, 50}, {75, 75}}

34 | Advanced String Patterns

StringMatchQ[teststr, StringExpression[___, x_, . X, , X_, 117/ Timng

{0. Second, True}

Implementation Details

String pattern matching in Mathematica is built on top of the PCRE (Perl Compatible Regular
Expressions) library by Philip Hazel [1].

In some cases the pre-5.1 Mathematica algorithms are used (for example, when the pattern is

just a single, literal string).

Any symbolic string pattern is first translated to a regular expression. You can see this transla-
tion by using the internal Stri ngPattern” PatternConvert function.

StringPattern PatternConvert ["a" |"" ~~ DigitCharacter ..] // InputForm
{"(?nms)aA\\d+", {}, {}, {}, Hold[None]}

The first element returned is the regular expression, while the rest of the elements have to do

with conditions, replacement rules, and named patterns.

The regular expression is then compiled by PCRE, and the compiled version is cached for future
use when the same pattern appears again. The translation from symbolic string pattern to

regular expression only happens once.

Mathematica conditions in the pattern are handled by external call-outs from the PCRE library to
the Mathematica evaluator, so this will slow down the matching.
Explicit Regul ar Expr essi on objects embedded into a general string pattern will be spliced into

the final regular expression (surrounded by noncapturing parentheses " (?:...)"), so the count-

ing of named patterns can become skewed compared to what you might expect.

Because PCRE currently does not support preset character classes with characters beyond charac-
ter code 255, the word and letter character classes (such as W rdCharacter and
LetterCharacter) only include character codes in the Unicode range 0-255. Thus

Letter Character and _?Letter Qdo not give equivalent results beyond character code 255.

Because of a similar PCRE restriction, case-insensitive matching (for example, with

I gnor eCase -> True) will only apply to letters in the Unicode range 0-127 (that is, the normal

English letters "a" -"z" and " A" -"Z").

Advanced String Patterns 35

References

[1] Hazel, P. "PCRE—Perl Compatible Regular Expressions." 2008. www.pcre.org

[2] Friedl, J. E. F. Mastering Regular Expressions. (2nd ed.) O'Reilly & Associates, 2002.

