




Elliptic Integrals and Elliptic Functions

Even more so than for other special functions, you need to be very careful about the arguments

you give to elliptic integrals and elliptic functions. There are several incompatible conventions in

common use, and often these conventions are distinguished only by the specific names given to

arguments or by the presence of separators other than commas between arguments. 

† Amplitude f (used by Mathematica, in radians)
† Argument u (used by Mathematica): related to amplitude by f = amHuL

† Delta amplitude DHfL: DHfL = 1 -m sin2HfL
† Coordinate x: x = sinHfL
† Characteristic n (used by Mathematica in elliptic integrals of the third kind)
† Parameter m (used by Mathematica): preceded by », as in IHf mL
† Complementary parameter m1: m1 = 1 -m
† Modulus k: preceded by comma, as in IHf, kL; m = k2 
† Modular angle a: preceded by \ , as in IHf \aL; m = sin2HaL 
† Nome q: preceded by comma in q functions; q = exp@-pKH1 -mL êK 8mLD = expHi p w£ êwL 
† Invariants g2, g3 (used by Mathematica) 

† Half-periods w, w£: g2 = 60 ⁄r, s
£ w-4, g3 = 140 ⁄r, s

£ w-6, where w = 2 rw + 2 sw£ 

† Ratio of periods t: t = w£ êw 

† Discriminant D: D = g2
3 - 27 g32 

† Parameters of curve a, b (used by Mathematica) 
† Coordinate y (used by Mathematica): related by y2 = x3 + a x2 + b x 

Common argument conventions for elliptic integrals and elliptic functions. 

JacobiAmplitude@u,mD give the amplitude f corresponding to argument u and 
parameter m

EllipticNomeQ@mD give the nome q corresponding to parameter m

InverseEllipticNomeQ@qD give the parameter m corresponding to nome q

WeierstrassInvariants@8w,w£<D

give the invariants 8g2, g3< corresponding to the half-
periods 8w, w£<

WeierstrassHalfPeriods@8g2,g3<D

give the half-periods 8w, w£< corresponding to the invari-
ants 8g2, g3<

Converting between different argument conventions. 

Elliptic Integrals
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Elliptic Integrals

EllipticK@mD complete elliptic integral of the first kind K HmL

EllipticF@f,mD elliptic integral of the first kind FHf mL

EllipticE@mD complete elliptic integral of the second kind E HmL

EllipticE@f,mD elliptic integral of the second kind E Hf mL

EllipticPi@n,mD complete elliptic integral of the third kind P Hn mL

EllipticPi@n,f,mD elliptic integral of the third kind P Hn; f mL

JacobiZeta@f,mD Jacobi zeta function Z Hf mL

Elliptic integrals. 

Integrals of the form Ÿ RHx, yL „ x, where R is a rational function, and y2 is a cubic or quartic polyno -

mial in x, are known as elliptic integrals. Any elliptic integral can be expressed in terms of the

three standard kinds of Legendre-Jacobi elliptic integrals. 

The  elliptic  integral  of  the  first  kind  EllipticF@f, mD  is  given  for  -p ê2 < f < p ê2  by

FHf mL = Ÿ0
f
A1 -m sin2HqLE

-1ê2
„q= Ÿ0

sin HfL
AI1 - t2M I1 -m t2ME-1ê2 „ t.  This  elliptic  integral  arises  in  solving

the equations of motion for a simple pendulum. It is sometimes known as an incomplete elliptic

integral of the first kind.

Note that the arguments of the elliptic integrals are sometimes given in the opposite order from

what is used in Mathematica. 

The complete elliptic integral of the first kind EllipticK@mD is given by KHmL = F I
p

2
mM. Note that

K  is used to denote the complete elliptic integral of the first kind, while F is used for its incom-

plete  form. In  many applications,  the parameter  m  is  not  given explicitly,  and KHmL  is  denoted

simply  by  K.  The  complementary  complete  elliptic  integral  of  the  first  kind  K£HmL  is  given  by

KH1 -mL. It is often denoted K£. K  and i K£  give the "real" and "imaginary" quarter-periods of the

corresponding Jacobi elliptic functions discussed in "Elliptic Functions". 

The  elliptic  integral  of  the  second  kind  EllipticE@f, mD  is  given  for  -p ê2 < f < p ê2  by

EHf mL = Ÿ0
f
A1 -m sin2HqLE

1ê2
„q= Ÿ0

sin HfL
I1 - t2M-1ê2 I1 -m t2M1ê2 „ t.

The complete elliptic  integral  of  the second kind  EllipticE@mD  is  given by EHmL = E I
p

2
mM.  It  is

often denoted E. The complementary form is E£HmL = EH1 -mL. 

The Jacobi zeta function JacobiZeta@f, mD is given by ZHf mL = EHf mL - EHmL FHf mL êKHmL. 
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The Jacobi zeta function JacobiZeta@f, mD is given by ZHf mL = EHf mL - EHmL FHf mL êKHmL. 

The Heuman lambda function is given by L0Hf mL = FHf 1 -mL êKH1 -mL + 2
p
KHmL ZHf 1 -mL.

The  elliptic  integral  of  the  third  kind  EllipticPi@n, f, mD  is  given  by

PHn; f mL = Ÿ0
f
I1 - n sin2HqLM

-1
A1 -m sin2HqLE

-1ê2
„q.

The complete elliptic integral of the third kind EllipticPi@n, mD is given by PHn mL = PIn; p

2
mM. 

Here is a plot of the complete elliptic integral of the second kind EHmL. 

In[1]:= Plot@EllipticE@mD, 8m, 0, 1<D

Out[1]=

0.2 0.4 0.6 0.8 1.0

1.1

1.2

1.3

1.4

1.5

Here is KHaL with a = 30È. 
In[2]:= EllipticK@Sin@30 DegreeD^2D êê N

Out[2]= 1.68575

The elliptic integrals have a complicated structure in the complex plane. 

In[1]:= Plot3D@Im@EllipticF@px + I py, 2DD, 8px, 0.5, 2.5<, 8py, -1, 1<, PlotPoints -> 60D

Out[1]=

Elliptic Functions
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Elliptic Functions

JacobiAmplitude@u,mD amplitude function amHu mL

JacobiSN@u,mD , JacobiCN@u,mD , etc.

Jacobi elliptic functions snHu mL, etc.

InverseJacobiSN@v,mD , InverseJacobiCN@v,mD , etc.

inverse Jacobi elliptic functions sn-1Hv mL, etc.

EllipticTheta@a,u,qD theta functions JaHu, qL (a = 1, …, 4)

EllipticThetaPrime@a,u,qD derivatives of theta functions Ja
£ Hu, qL (a = 1, …, 4)

SiegelTheta@t,sD Siegel theta function QHt, sL
SiegelTheta@v,t,sD Siegel theta function Q@vD Ht, sL
WeierstrassP@u,8g2,g3<D Weierstrass elliptic function ƒHu; g2, g3L

WeierstrassPPrime@u,8g2,g3<D

derivative of Weierstrass elliptic function ƒ£Hu; g2, g3L

InverseWeierstrassP@p,8g2,g3<D

inverse Weierstrass elliptic function

WeierstrassSigma@u,8g2,g3<D Weierstrass sigma function sHu; g2, g3L

WeierstrassZeta@u,8g2,g3<D Weierstrass zeta function zHu; g2, g3L

Elliptic and related functions. 

Rational  functions  involving  square  roots  of  quadratic  forms  can  be  integrated  in  terms  of

inverse trigonometric functions. The trigonometric functions can thus be defined as inverses of

the functions obtained from these integrals. 

By  analogy,  elliptic  functions  are  defined  as  inverses  of  the  functions  obtained  from  elliptic

integrals. 

The amplitude  for Jacobi elliptic functions JacobiAmplitude@u, mD  is  the inverse of the elliptic

integral of the first kind. If u = FHf mL, then f = amHu mL. In working with Jacobi elliptic functions,

the argument m is often dropped, so amHu mL is written as amHuL.

The  Jacobi  elliptic  functions  JacobiSN@u, mD  and  JacobiCN@u, mD  are  given  respectively  by

snHuL = sinHfL  and  cnHuL = cosHfL,  where  f = amHu mL.  In  addition,  JacobiDN@u, mD  is  given  by

dnHuL = 1 -m sin2HfL = DHfL.
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There  are  a  total  of  twelve  Jacobi  elliptic  functions  JacobiPQ@u, mD,  with  the  letters  P  and  Q

chosen  from  the  set  S,  C,  D  and  N.  Each  Jacobi  elliptic  function  JacobiPQ@u, mD  satisfies  the

relation pqHuL = pnHuL êqnHuL, where for these purposes nnHuL = 1. 

There  are  many  relations  between  the  Jacobi  elliptic  functions,  somewhat  analogous  to  those

between trigonometric functions. In limiting cases, in fact, the Jacobi elliptic functions reduce to

trigonometric  functions.  So,  for  example,  snHu 0L = sinHuL,  snHu 1L = tanhHuL,  cnHu 0L = cosHuL,

cnHu 1L = sechHuL, dnHu 0L = 1 and dnHu 1L = sechHuL. 

The notation PqHuL is often used for the integrals Ÿ0
upq2HtL „ t. These integrals can be expressed in

terms of the Jacobi zeta function defined in "Elliptic Integrals". 

One of the most important properties of elliptic functions is that they are doubly periodic in the

complex values of their arguments. Ordinary trigonometric functions are singly periodic, in the

sense  that  f Hz + swL = f HzL  for  any  integer  s.  The  elliptic  functions  are  doubly  periodic,  so  that

f Hz + rw + sw£L = f HzL for any pair of integers r and s. 

The Jacobi elliptic functions snHu mL, etc. are doubly periodic in the complex u plane. Their peri-

ods  include  w = 4KHmL  and  w£ = 4 iKH1 -mL,  where  K  is  the  complete  elliptic  integral  of  the  first

kind. 

The choice of p and q in the notation pqHu mL  for Jacobi elliptic functions can be understood in

terms of the values of the functions at the quarter periods K and i K£. 

This shows two complete periods in each direction of the absolute value of the Jacobi elliptic 

function snJu 1
3
N. 

In[3]:= ContourPlot@Abs@JacobiSN@ux + I uy, 1 ê 3DD,
8ux, 0, 4 EllipticK@1 ê 3D<, 8uy, 0, 4 EllipticK@2 ê 3D<D

Out[3]=
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0

2

4
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Also  built  into  Mathematica  are  the  inverse  Jacobi  elliptic  functions  InverseJacobiSN@v, mD,

InverseJacobiCN@v, mD,  etc.  The inverse  function  sn-1Hv mL,  for  example,  gives  the  value  of  u

for which v = snHu mL. The inverse Jacobi elliptic functions are related to elliptic integrals.

The  four  theta  functions  JaHu, qL  are  obtained  from  EllipticTheta@a, u, qD

by  taking  a  to  be  1,  2,  3  or  4.  The  functions  are

defined  by:  J1Hu, qL = 2 q1ê4⁄n=0
¶ H-1Ln qn Hn+1L sin @H2 n + 1L uD,  J2Hu, qL = 2 q1ê4⁄n=0

¶ qn Hn+1L cos @H2 n + 1L uD,

J3Hu, qL = 1 + 2 ⁄n=1
¶ qn2 cosH2 n uL,  J4Hu, qL = 1 + 2 ⁄n=1

¶ H-1Ln qn2 cosH2 n uL.  The  theta  functions  are  often

written  as  JaHuL  with  the  parameter  q  not  explicitly  given.  The  theta  functions  are  sometimes

written in  the form JHu mL,  where m  is  related to  q  by q = exp @-pKH1 -mL êKHmLD.  In  addition,  q  is

sometimes replaced by t, given by q = ei pt. All the theta functions satisfy a diffusion-like differen-

tial equation ∂2 JHu, tLë∂u2 = 4 p i ∂JHu, tL ê∂t. 

The Siegel theta function SiegelTheta@t, sD with Riemann square modular matrix t of dimen-

sion p and vector s generalizes the elliptic theta functions to complex dimension p. It is defined

by QHt, sL =⁄n expHÂ pHn.t.n + 2 n.sLL,  where n  runs over all  p-dimensional integer vectors. The Siegel

theta  function  with  characteristic  SiegelTheta@n, t, sD  is  defined  by

QHn, t, sL =⁄n expHÂ pHHn + aL.t.Hn + aL + 2 Hn + aL.Hs + bLLL, where the characteristic n is a pair of p-dimen-

sional vectors 8a, b<.

The Jacobi elliptic functions can be expressed as ratios of the theta functions. 

An  alternative  notation  for  theta  functions  is  QHu mL = J4Hv mL,  Q1Hu mL = J3Hv mL,  HHu mL = J1HvL,

H1Hu mL = J2HvL, where v = p u ê2KHmL. 

The Neville theta functions can be defined in terms of the theta functions as JsHuL = 2KHmL J1Hv mL ê

pJ1
£ H0 mL,  JcHuL = J2Hv mL êJ2H0 mL,  JdHuL = J3Hv mL êJ3H0 mL,  JnHuL = J4Hv mL êJ4H0 mL,  where  v = p u ê2KHmL.

The Jacobi elliptic functions can be represented as ratios of the Neville theta functions. 

The Weierstrass elliptic function WeierstrassP@u, 8g2, g3<D can be considered as the inverse of

an  elliptic  integral.  The  Weierstrass  function  ƒHu; g2, g3L  gives  the  value  of  x  for  which

u = Ÿ¶
x
I4 t3 - g2 t - g3M

-1ê2
„ t.  The  function  WeierstrassPPrime@u, 8g2, g3<D  is  given  by

ƒ£Hu; g2, g3L =
∂

∂u
ƒHu; g2, g3L. 

The Weierstrass functions are also sometimes written in terms of their fundamental half-periods

w and w£, obtained from the invariants g2 and g3 using WeierstrassHalfPeriods@8u, 8g2, g3<D. 

The  function  InverseWeierstrassP@p, 8g2, g3<D  finds  one  of  the  two  values  of  u  for  which

p = ƒHu; g2, g3L.  This value always lies in the parallelogram defined by the complex number half-

periods w and w£. 
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The  function  InverseWeierstrassP@p, 8g2, g3<D  finds  one  of  the  two  values  of  u  for  which

p = ƒHu; g2, g3L.  This value always lies in the parallelogram defined by the complex number half-

periods w and w£. 

InverseWeierstrassP@8p, q<, 8g2, g3<D finds the unique value of u for which p = ƒHu; g2, g3L and

q = ƒ£Hu; g2, g3L.  In  order  for  any  such  value  of  u  to  exist,  p  and  q  must  be  related  by

q2 = 4 p3 - g2 p - g3. 

The  Weierstrass  zeta  function  WeierstrassZeta@u, 8g2, g3<D  and  Weierstrass  sigma  function

WeierstrassSigma@u, 8g2, g3<D  are  related  to  the  Weierstrass  elliptic  functions  by

z£Hz; g2, g3L = -ƒHz; g2, g3L and s£Hz; g2, g3L êsHz; g2, g3L = zHz; g2, g3L. 

The  Weierstrass  zeta  and  sigma  functions  are  not  strictly  elliptic  functions  since  they  are  not

periodic. 

Elliptic Modular Functions

DedekindEta@tD Dedekind eta function hHtL

KleinInvariantJ@tD Klein invariant modular function JHtL

ModularLambda@tD modular lambda function lHtL

Elliptic modular functions. 

The modular lambda function ModularLambda@tD relates the ratio of half-periods t = w£ êw to the

parameter according to m = lHtL. 

The  Klein  invariant  modular  function  KleinInvariantJ@tD  and  the  Dedekind  eta  function

DedekindEta@tD satisfy the relations D = g2
3 ëJHtL = H2 pL12 h24HtL. 

Modular elliptic functions are defined to be invariant under certain fractional linear transforma-

tions of their arguments. Thus for example lHtL is invariant under any combination of the trans-

formations t Ø t + 2 and t Ø t ê H1 - 2 tL. 
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Generalized Elliptic Integrals and Functions

ArithmeticGeometricMean@a,bD the arithmetic-geometric mean of a and b

EllipticExp@u,8a,b<D generalized exponential associated with the elliptic curve 
y2 = x3 + a x2 + bx

EllipticLog@8x,y<,8a,b<D generalized logarithm associated with the elliptic curve 
y2 = x3 + a x2 + bx

Generalized elliptic integrals and functions. 

The  definitions  for  elliptic  integrals  and  functions  given  above  are  based  on  traditional  usage.

For modern algebraic geometry, it is convenient to use slightly more general definitions. 

The  function  EllipticLog@8x, y<, 8a, b<D  is  defined  as  the  value  of  the  integral
1
2 Ÿ¶

x
It3 + a t2 + b tM-1ê2 „ t, where the sign of the square root is specified by giving the value of y such

that  y = x3 + a x2 + b x .  Integrals  of  the  form  Ÿ¶
x
It2 + a tM-1ê2 „ t  can  be  expressed  in  terms  of  the

ordinary  logarithm  (and  inverse  trigonometric  functions).  You  can  think  of  EllipticLog  as

giving  a  generalization  of  this,  where  the  polynomial  under  the  square  root  is  now  of  degree

three. 

The  function  EllipticExp@u, 8a, b<D  is  the  inverse  of  EllipticLog.  It  returns  the  list  8x, y<

that  appears in  EllipticLog.  EllipticExp  is  an elliptic  function,  doubly periodic  in  the com-

plex u plane. 

ArithmeticGeometricMean@a, bD gives the arithmetic-geometric mean (AGM) of two numbers a

and b. This quantity is central to many numerical algorithms for computing elliptic integrals and

other functions. For positive reals a and b the AGM is obtained by starting with a0 = a, b0 = b, then

iterating the transformation an+1 =
1
2
Han + bnL, bn+1 = an bn  until an = bn to the precision required. 
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Mathieu and Related Functions

MathieuC@a,q,zD even Mathieu functions with characteristic value a and 
parameter q

MathieuS@b,q,zD odd Mathieu functions with characteristic value b and 
parameter q

MathieuCPrime@a,q,zD
 and MathieuSPrime@b,q,zD

z derivatives of Mathieu functions

MathieuCharacteristicA@r,qD characteristic value ar for even Mathieu functions with 
characteristic exponent r and parameter q

MathieuCharacteristicB@r,qD characteristic value br for odd Mathieu functions with 
characteristic exponent r and parameter q

MathieuCharacteristicExpone-
nt

@

a,qD

characteristic exponent r for Mathieu functions with charac -
teristic value a and parameter q

Mathieu and related functions. 

The  Mathieu  functions  MathieuC@a, q, zD  and  MathieuS@a, q, zD  are  solutions  to  the  equation

y££ + @a - 2 q cos H2 zLD y = 0.  This equation appears in many physical  situations that involve elliptical

shapes or periodic potentials. The function MathieuC  is defined to be even in z, while MathieuS

is odd.

When q = 0 the Mathieu functions are simply cos I a zM and sin I a zM. For nonzero q, the Mathieu

functions  are  only  periodic  in  z  for  certain  values  of  a.  Such  Mathieu  characteristic  values  are

given by MathieuCharacteristicA@r, qD and MathieuCharacteristicB@r, qD with r an integer

or rational number. These values are often denoted by ar and br. 

For integer r, the even and odd Mathieu functions with characteristic values ar  and br  are often

denoted c er Hz, qL and s er Hz, qL, respectively. Note the reversed order of the arguments z and q. 

According to Floquet’s Theorem any Mathieu function can be written in the form ei r z f HzL, where

f HzL  has  period  2 p  and  r  is  the  Mathieu  characteristic  exponent

MathieuCharacteristicExponent@a, qD.  When  the  characteristic  exponent  r  is  an  integer  or

rational number, the Mathieu function is therefore periodic. In general, however, when r is not a

real integer, ar and br turn out to be equal. 
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This shows the first five characteristic values ar as functions of q. 

In[1]:= Plot@Evaluate@Table@MathieuCharacteristicA@r, qD, 8r, 0, 4<DD, 8q, 0, 15<D

Out[1]=
2 4 6 8 10 12 14

-20

-10

10

20

Working with Special Functions

automatic evaluation exact results for specific arguments

N@expr,nD numerical approximations to any precision

D@expr,xD exact results for derivatives

N@D@expr,xDD numerical approximations to derivatives

Series@expr,8x,x0,n<D series expansions

Integrate@expr,xD exact results for integrals

NIntegrate@expr,xD numerical approximations to integrals

FindRoot@expr==0,8x,x0<D numerical approximations to roots

Some common operations on special functions. 

Most special functions have simpler forms when given certain specific arguments. Mathematica

will automatically simplify special functions in such cases. 

Mathematica automatically writes this in terms of standard mathematical constants. 

In[1]:= PolyLog@2, 1 ê 2D

Out[1]=
p2

12
-
Log@2D2

2

Here again Mathematica reduces a special case of the Airy function to an expression involving 
gamma functions. 

In[2]:= AiryAi@0D

Out[2]=
1

32ë3 GammaB 2

3
F

For  most  choices  of  arguments,  no  exact  reductions  of  special  functions  are  possible.  But  in

such  cases,  Mathematica  allows  you  to  find  numerical  approximations  to  any  degree  of  preci-

sion. The algorithms that are built into Mathematica cover essentially all values of parameters~

real and complex~for which the special functions are defined. 
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For  most  choices  of  arguments,  no  exact  reductions  of  special  functions  are  possible.  But  in

such  cases,  Mathematica  allows  you  to  find  numerical  approximations  to  any  degree  of  preci-

sion. The algorithms that are built into Mathematica cover essentially all values of parameters~

real and complex~for which the special functions are defined. 

There is no exact result known here. 

In[3]:= AiryAi@1D

Out[3]= AiryAi@1D

This gives a numerical approximation to 40 digits of precision. 

In[4]:= N@AiryAi@1D, 40D

Out[4]= 0.1352924163128814155241474235154663061749

The result here is a huge complex number, but Mathematica can still find it. 

In[5]:= N@AiryAi@1000 IDD

Out[5]= -4.780266637767027µ106472 + 3.674920907226875µ106472 Â

Most special functions have derivatives that can be expressed in terms of elementary functions

or  other  special  functions.  But  even  in  cases  where  this  is  not  so,  you  can  still  use  N  to  find

numerical approximations to derivatives.

This derivative comes out in terms of elementary functions. 

In[6]:= D@FresnelS@xD, xD

Out[6]= SinB
p x2

2
F

This evaluates the derivative of the gamma function at the point 3. 

In[7]:= Gamma‘@3D

Out[7]= 2
3

2
- EulerGamma

There is no exact formula for this derivative of the zeta function. 

In[8]:= Zeta‘@PiD

Out[8]= Zeta£@pD
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Applying N gives a numerical approximation. 

In[9]:= N@%D

Out[9]= -0.167603

Mathematica incorporates a vast amount of knowledge about special functions~including essen-

tially all the results that have been derived over the years. You access this knowledge whenever

you do operations on special functions in Mathematica. 

Here is a series expansion for a Fresnel function. 

In[10]:= Series@FresnelS@xD, 8x, 0, 15<D

Out[10]=
p x3

6
-

p3 x7

336
+

p5 x11

42240
-

p7 x15

9676800
+ O@xD16

Mathematica knows how to do a vast range of integrals involving special functions. 

In[11]:= Integrate@AiryAi@xD^2, 8x, 0, Infinity<D

Out[11]=
1

32ë3 GammaB 1

3
F
2

One  feature  of  working  with  special  functions  is  that  there  are  a  large  number  of  relations

between different functions, and these relations can often be used in simplifying expressions. 

FullSimplify@exprD try to simplify expr using a range of transformation rules

Simplifying expressions involving special functions. 

This uses the reflection formula for the gamma function. 

In[12]:= FullSimplify@Gamma@xD Gamma@1 - xDD

Out[12]= p Csc@p xD

This makes use of a representation for Chebyshev polynomials. 

In[13]:= FullSimplify@ChebyshevT@n, zD - k Cos@n ArcCos@zDDD

Out[13]= -H-1 + kL Cos@n ArcCos@zDD

The Airy functions are related to Bessel functions. 

In[14]:= FullSimplify@3 AiryAi@1D + Sqrt@3D AiryBi@1DD

Out[14]= 2 BesselIB-
1

3
,
2

3
F
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FunctionExpand@exprD try to expand out special functions

Manipulating expressions involving special functions. 

This expands the Gauss hypergeometric function into simpler functions. 

In[15]:= FunctionExpand@Hypergeometric2F1@1 ê 2, 3 ê 2, 3, xDD

Out[15]=
16 H2 - xL EllipticE@xD

3 p x2
+
16 H-2 + 2 xL EllipticK@xD

3 p x2

Here is an example involving Bessel functions. 

In[16]:= FunctionExpand@BesselY@n, I xDD

Out[16]= -
2 HÂ xL-n xn BesselK@n, xD

p
+ BesselI@n, xD I-HÂ xL-n xn + HÂ xLn x-n Cos@n pDM Csc@n pD

In this case the final result does not even involve PolyGamma. 

In[17]:= FunctionExpand@Im@PolyGamma@0, 3 IDDD

Out[17]=
1

6
+
1

2
p Coth@3 pD

This finds an expression for a derivative of the Hurwitz zeta function. 

In[18]:= FunctionExpand@Derivative@1, 0D@ZetaD@-1, 4DD

Out[18]=
1

12
+ 2 Log@2D + 3 Log@3D - Log@GlaisherD
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