
Wolfram Mathematica ® Tutorial Collection

ADVANCED ALGEBRA

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Adam Strzebonski and John Novak

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Complex Polynomial Systems . 1

Real Polynomial Systems . 24

Diophantine Polynomial Systems . 74

Algebraic Number Fields . 105

Solving Frobenius Equations and Computing Frobenius Numbers 119

Complex Polynomial Systems

Introduction

The Mathematica functions Reduce, Resolve, and FindInstance allow you to solve a wide

variety of problems that can be expressed in terms of equations and inequalities. The functions

use a collection of algorithms applicable to classes of problems satisfying particular properties,

as well as a set of heuristics that attempt to reduce the given problem to a sequence of prob-

lems that can be solved using the algorithms. This tutorial describes the algorithms used to

solve the class of problems known as complex polynomial systems. It characterizes the struc-

ture of the returned answers and describes the options that affect various aspects of the meth-

ods involved.

A complex polynomial system is an expression constructed with polynomial equations and

inequations

f Hx1, …, xnLã gHx1, …, xnL and f Hx1, …, xnL ≠ gHx1, …, xnL

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F, and $x F.

An occurrence of a variable x inside "x F or $x F is called a bound occurrence, and any other

occurrence of x is called a free occurrence. A variable x is called a free variable of a complex

polynomial system if the system contains a free occurrence of x. A complex polynomial system

is quantifier-free if it contains no quantifiers.

Here is an example of a complex polynomial system with free variables x, y, and z.

(1)x2 + y2 ã z2 Ì $t J"u t x ≠ u y z + 7 Î x2 tã 2 z + 1N

In Mathematica, quantifiers are represented using the functions Exists ($) and ForAll (").

Any complex polynomial system can be transformed to the prenex normal form

Q1 x1 Q2 x2 …Qn xn FHx1, …, xn; y1, …, ymL,

where each Qi is a quantifier " or $, and FHx1, …, xn; y1, …, ymL is quantifier-free.

Any quantifier-free complex polynomial system can be transformed to the disjunctive normal

form

Any quantifier-free complex polynomial system can be transformed to the disjunctive normal

form

Ij1,1 Ï … Ï j1,n1 M Í … Í Ijm,1 Ï … Ï jm,nm M,

where each ji, j is a polynomial equation or inequation.

Reduce, Resolve, and FindInstance always put complex polynomial systems in the prenex

normal form, with quantifier-free parts in the disjunctive normal form, and subtract the sides of

the equations and inequations to put them in the form

f Hx1, …, xnLã 0 and f Hx1, …, xnL ≠ 0.

In all the tutorials for complex polynomial system solving, assume that the system has been

transformed to this form.

Reduce can solve arbitrary complex polynomial systems. The solution (possibly after expanding

fl with respect to fi) is a disjunction of terms of the form

(2)
x1 = r1 Ï g1Hx1L ≠ 0 Ï x2 = r2Hx1L Ï g2Hx1, x2L ≠ 0 Ï …

g -1Hx1, …, xn-1L ≠ 0 Ï xn = rnHx1, …, xn-1L Ï gnHx1, …, xnL ≠ 0,

where x1, …, xn are the free variables of the system, each gi is a polynomial, each ri is an alge-

braic function expressed using radicals or Root objects, and any terms of the conjunction (2)

may be absent. Each riHx1, …, xi-1L is well defined, that is, no denominators or leading terms of

Root objects in ri become zero for any Hx1, …, xi-1L satisfying the preceding terms of the conjunc-

tion (2).

This solves the system (1).

In[1]:= ReduceAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<E

Out[1]= Hy ã 0 && z ã -xL »» Hy ã 0 && z ã xL »» HHy ã -Â x »» y ã Â xL && z ã 0L »»

z ã - x2 + y2 »» z ã x2 + y2 && x ≠ 0 »» x ã 0 && y ã -
1

2
&& z ã -

1

2
»» x ã 0 && y ã

1

2
&& z ã -

1

2

Resolve can eliminate quantifiers from arbitrary complex polynomial systems. If no variables

are specified, the result is a logical combination of terms

f Hx1, …, xnLã 0 and gHx1, …, xnL ≠ 0,

where f and g are polynomials, and each xi is a free variable of the system. With variables

specified in the input, Resolve gives the same answer as Reduce.

This eliminates quantifiers from the system (1).

2 Advanced Algebra

This eliminates quantifiers from the system (1).

In[2]:= ResolveAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1ME

Out[2]= Hy ã 0 && x - z ã 0L »» Hy ã 0 && x + z ã 0L »» Ix2 + y2 ã 0 && z ã 0M »» Hx ã 0 && -1 + 2 y ã 0 && 1 + 2 z ã 0L »»

Hx ã 0 && 1 + 2 y ã 0 && 1 + 2 z ã 0L »» Ix2 + y2 - z2 ã 0 && y - z ≠ 0 && y + z ≠ 0M

FindInstance can handle arbitrary complex polynomial systems giving instances of complex

solutions, or an empty list for systems that have no solutions. If the number of instances

requested is more than one, the instances are randomly generated from the full solution of the

system, and therefore they may depend on the value of the RandomSeed option. If one instance

is requested, a faster algorithm that produces one instance is used, and the instance returned

is always the same.

This finds a solution for the system (1).

In[3]:= FindInstanceAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<E

Out[3]= 88x Ø 0, y Ø 0, z Ø 0<<

The main tool used in solving complex polynomial systems is the Gröbner basis algorithm [1],

which is available in Mathematica as the GroebnerBasis function.

Gröbner Bases

Theory

This section gives a very brief introduction to the theory of Gröbner bases. It presents only the

properties that are necessary to describe the algorithms used by Mathematica in solving com-

plex polynomial systems. For a more complete presentation see, for example, [1, 2]. Note that

what [2] calls a monomial, [1] calls a term, and vice versa. This tutorial uses the terminology of

[1].

A monomial in x1, …, xn is an expression of the form x1e1 …xnen with non-negative integers ei.

Let M =MHx1, …, xnL be the set of all monomials in x1, …, xn. A monomial order is a linear order Ç

on M, such that 1 Ç t for all t œM, and t1 Ç t2 implies t1 s Ç t2 s for all t1, t2, s œ M.

Let R be a field, the domain of integers, or the domain of univariate polynomials over a field.

Let Quot and Rem be functions R2öR defined as follows. If R is a field, QuotHa, bL = a êb, and

RemHa, bL = 0. If R is the domain of integers, Quot and Rem are the integer quotient and remainder

functions, with - b ê2 < RemHa, bL § b ê2. If R is the domain of univariate polynomials over a

field, Quot and Rem are the polynomial quotient and remainder functions.

Advanced Algebra 3

Let R be a field, the domain of integers, or the domain of univariate polynomials over a field.

Let Quot and Rem be functions R2öR defined as follows. If R is a field, QuotHa, bL = a êb, and

RemHa, bL = 0. If R is the domain of integers, Quot and Rem are the integer quotient and remainder

functions, with - b ê2 < RemHa, bL § b ê2. If R is the domain of univariate polynomials over a

field, Quot and Rem are the polynomial quotient and remainder functions.

A product t = a m, where a is a nonzero element of R and m is a monomial, is called a term.

Let Ç be a monomial order on M, and let f œ R@x1, …, xnD \ 80<. The leading monomial LMH f L of f is

the Ç-largest monomial appearing in f , the leading coefficient LCH f L of f is the coefficient at

LMH f L in f , and the leading term LTH f L of f is the product LCH f L LMH f L.

A Gröbner basis of an ideal I in R@x1, …, xnD, with respect to a monomial order Ç, is a finite set G

of polynomials, such that for each f œ I, there exists g œG, such that LTHgL divides LTH f L. Every

ideal I has a Gröbner basis (see [1] for a proof).

Let p œ R@x1, …, xnD \ 80<, and let m œ R@x1, …, xnD be a monomial. A term t = a m is reducible modulo p,

if LMHpL divides m, and a ≠ RemHa, LCHpLL. If t is reducible modulo p, the reduction of t modulo p is

the polynomial

RedHt, pL = t - QuotHa, LCHpLL
m

LMHpL
p.

Note that if RemHa, LCHpLL ≠ 0, then LTHRedHt, pLL = RemHa, LCHpLLm; otherwise, LM HRed Ht, pLL Çm.

Let f œ R@x1, …, xnD, and let P be an ordered finite subset of R@x1, …, xnD \ 80<. f is reducible modulo

P if f contains a term reducible modulo an element of P. The reduction RedH f , PL of f modulo P is

defined by the following procedure. While the set RT of terms of f reducible modulo an element

of P is not empty, take the term t œ RT with the Ç-largest monomial, take the first p œ P, such

that t is reducible modulo p, and replace the term t in f with RedHt, pL. Note that the monomials

of terms t chosen in subsequent steps of the procedure form a Ç-descending chain, and each

monomial can appear at most k times, where k is the number of elements of P, hence the proce-

dure terminates.

A Gröbner basis G is semi-reduced if for all g œG, g is not reducible modulo G \ 8g<, and if R is the

domain of integers, LCHgL > 0.

The Mathematica function GroebnerBasis returns semi-reduced Gröbner bases. In the follow-

ing discussion, all Gröbner bases are assumed to be semi-reduced. Note that this is not the

same as reduced Gröbner bases defined in the literature, since here the basis polynomials are

not required to be monic. For a fixed monomial order, every ideal has a unique reduced Gröb-

ner basis. Semi-reduced Gröbner bases defined here are only unique up to multiplication by

invertible elements of R (see Property 2).

4 Advanced Algebra

The Mathematica function GroebnerBasis returns semi-reduced Gröbner bases. In the follow-

ing discussion, all Gröbner bases are assumed to be semi-reduced. Note that this is not the

same as reduced Gröbner bases defined in the literature, since here the basis polynomials are

not required to be monic. For a fixed monomial order, every ideal has a unique reduced Gröb-

ner basis. Semi-reduced Gröbner bases defined here are only unique up to multiplication by

invertible elements of R (see Property 2).

Property 1: Let G be a Gröbner basis of an ideal I in R@x1, …, xnD, and let f œ R@x1, …, xnD. Then

f œ I iff RedH f , GL = 0.

This is a simple consequence of the definitions.

Property 2: Let G = 9g1, …gk= and H = 8h1, …hm< be two Gröbner bases of an ideal I with respect

to the same monomial order Ç, and suppose that elements of G and H are ordered by their

leading monomials. Then k =m, and for all 1 § i § k, if R is the domain of integers, gi = hi; other-

wise, gi = ci hi for some invertible element ci of R.

Proof: If LMH f L = LMHgL, then LTH f L is reducible modulo g or LTHgL is reducible modulo f . Hence the

leading monomials of the elements of a Gröbner basis are all different. Without loss of general-

ity, assume k §m. For induction, fix j § k and suppose that for all i < j, gi = ci hi for some invertible

element ci of R. If R is the domain of integers, ci = 1. Without loss of generality, assume

LMIg jM Ç LMIh jM. Since g j belongs to I, there exists i such that LTHhiL divides LTIg jM. Then

LMHhiL Ç LMIg jM, and so i § j. If i < j, then g j would be reducible modulo hi and also modulo gi = ci hi,

which is impossible, since G is semi-reduced. Hence i = j, and LMIg jM = LMIh jM, and LTIh jM divides

LTIg jM. Similarly, LTIg jM divides LTIh jM. Therefore, there exists an invertible element c j of R, such

that LTIg jM = c j LTIh jM. If R is the domain of integers, LCIg jM and LCIh jM are positive, and so c j = 1.

Let r = c j h j - g j. Suppose r ≠ 0. Since r belongs to I, LT HrL must be divisible by LTHgiL, for some

i < j. Let a and b be the coefficients at LMHrL in g j and h j. If R is a field, the term a LMHrL of g j is

reducible modulo gi, which contradicts the assumption that G is semi-reduced. If R is the

domain of univariate polynomials over a field,

degHLCHgiLL § degHLCHrLL §maxHdegHaL, degHbLL

and so either g j is reducible modulo gi, or h j is reducible modulo hi = ci gi, which contradicts the

assumption that G and H are semi-reduced. Finally, let R be the domain of integers. Since

neither g j is reducible modulo gi nor h j is reducible modulo hi = gi, -LCHgiL ê2 < a § LCHgiL ê2 and

-LCHgiL ê2 < b § LCHgiL ê2. Hence -LCHgiL < LCHrL = b - a < LCHgiL, which is impossible, since LTHrL is

divisible by LTHgiL. Therefore r = 0, and so g j = c j h j. By induction on j, for all j § k, g j = c j h j. If

k <m, then hk+1 would be reducible modulo some g j, with j § k, and hence hk+1 would be reducible

modulo h j = c j-1 g j. Therefore k =m, which completes the proof of Property 2.

Advanced Algebra 5

and so either g j is reducible modulo gi, or h j is reducible modulo hi = ci gi, which contradicts the

assumption that G and H are semi-reduced. Finally, let R be the domain of integers. Since

neither g j is reducible modulo gi nor h j is reducible modulo hi = gi, -LCHgiL ê2 < a § LCHgiL ê2 and

-LCHgiL ê2 < b § LCHgiL ê2. Hence -LCHgiL < LCHrL = b - a < LCHgiL, which is impossible, since LTHrL is

divisible by LTHgiL. Therefore r = 0, and so g j = c j h j. By induction on j, for all j § k, g j = c j h j. If

k <m, then hk+1 would be reducible modulo some g j, with j § k, and hence hk+1 would be reducible

modulo h j = c j-1 g j. Therefore k =m, which completes the proof of Property 2.

Property 3: Let I be an ideal in R@x1, …, xnD, let f œ R@x1, …, xnD, and let G be a Gröbner basis of

the ideal < I, 1 - y f > in R@x1, …, xn, yD. Then f belongs to the radical of I iff G = 8c< for an invertible

element c of R.

If an ideal contains invertible elements of R, GroebnerBasis always returns 81<.

Proof: Note first that

1 - y2
k
f 2

k
= H1 - y f L H1 + y f L …J1 + y2

k-1
f 2

k-1
N

belongs to the ideal J = < I, 1 - y f > for any non-negative integer k. Hence, if f belongs to the

radical of I, then 1 belongs to J. Since G is a Gröbner basis of J, it must contain an element c

whose leading coefficient divides 1. Hence c is an invertible element of R. Since G is semi-

reduced and c divides any term, G = 8c<. Now suppose that G = 8c< for an invertible element c of R.

Then 1 belongs to J, and so

1 = a0 + a1 y + … + am ym + H1 - y f L Ib0 + b1 y + … + bm-1 ym-1M,

where each ai belongs to I, and each bi belongs to R@x1, …, xnD. Hence comparing coefficients at

powers of y leads to the following equations modulo I: b0 ª 1, bi ª bi-1 f , for 1 § i §m - 1, and

bm-1 f ª 0. Then, bi ª f i, for 0 § i §m - 1, and fm ª 0 modulo I. Therefore, f belongs to the radical of

I, which completes the proof of Property 3.

The following more technical property is important for solving complex polynomial systems.

Property 4: Let G be a Gröbner basis of an ideal I in @x1, …, xn, yD with a monomial order that

makes monomials containing y greater than monomials not containing y, let h be the element of

G with the lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let

8h1, …, hs< be all elements of G that do not depend on y. Then for any polynomial p œ I and any

point Ha1, …, an, bL if cHa1, …, anL ≠ 0, hiHa1, …, anL = 0, for 1 § i § s, and hHa1, …, an, bL = 0, then

pHa1, …, an, bL = 0.

6 Advanced Algebra

Property 4: Let G be a Gröbner basis of an ideal I in @x1, …, xn, yD with a monomial order that

makes monomials containing y greater than monomials not containing y, let h be the element of

G with the lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let

8h1, …, hs< be all elements of G that do not depend on y. Then for any polynomial p œ I and any

point Ha1, …, an, bL if cHa1, …, anL ≠ 0, hiHa1, …, anL = 0, for 1 § i § s, and hHa1, …, an, bL = 0, then

pHa1, …, an, bL = 0.

Proof: Consider the pseudoremainder r of the division of p by h as polynomials in y.

(1)cHx1, …, xnLe pHx1, …, xn, yL = qHx1, …, xn, yL hHx1, …, xn, yL + rHx1, …, xn, yL

Since p and h belong to I, so does r. By Property 1, reduction of r by G must yield zero. Since

the degree of r in y is less than d, r cannot be reduced by any of the elements of G that depend

on y. Hence

rHx1, …, xn, yL = p1Hx1, …, xn, yL h1Hx1, …, xnL + … + psHx1, …, xn, yL hsHx1, …, xnL

and so rHa1, …, an, bL = 0. Since cHa1, …, anL ≠ 0, (1) implies that pHa1, …, an, bL = 0, which completes

the proof of Property 4.

Mathematica Function GroebnerBasis

The Mathematica function GroebnerBasis finds semi-reduced Gröbner bases. This section

describes GroebnerBasis options used in the solving of complex polynomial systems.

option name default value

CoefficientDomain Automatic the type of objects assumed to be
coefficients

Method Automatic the method used to compute the basis

MonomialOrder Lexicographic the criterion used for ordering monomials

GroebnerBasis options used in the solving of complex polynomial systems.

CoefficientDomain

This option specifies the domain R of coefficients. With the default Automatic setting, the

coefficient domain is the field generated by numeric coefficients present in the input.

Advanced Algebra 7

Integers the domain of integers

InexactNumbers@precD inexact numbers with precision prec

Polynomials@xD the domain of polynomials in x

RationalFunctions the field of rational functions in variables not on the vari-
able list given to GroebnerBasis

Rationals the field of rational numbers

Available settings for CoefficientDomain.

Note that the coefficient domain R also depends on the setting of the Modulus option of

GroebnerBasis. With Modulus -> p, for a prime number p, the coefficient domain is the field

p, or the field of rational functions over p if CoefficientDomain -> RationalFunctions.

Method

With the default setting Method -> Automatic, GroebnerBasis normally uses a variant of the

Buchberger algorithm. Another algorithm available is the Gröbner walk, which computes a

Gröbner basis in an easier monomial order and then transforms it to the required harder mono-

mial order. This is often faster than directly computing a Gröbner basis in the required order,

especially if the input polynomials are known to be a Gröbner basis for the easier order. With

the Method -> Automatic setting, GroebnerBasis uses the Gröbner walk for the default

CoefficientDomain -> Rationals and MonomialOrder -> Lexicographic.

GroebnerBasisApolys,vars,
Method->8"GroebnerWalk","InitialMonomialOrder"->order1<,MonomialOrder->order2E

find a Gröbner basis in order1 and use the Gröbner walk
algorithm to transform it to a Gröbner basis in order2

Transforming Gröbner bases using the Gröbner walk algorithm.

MonomialOrder

This option specifies the monomial order. The value can be either one of the named monomial

orders or a weight matrix. The following table gives conditions for x1d1 …xndnÇ x1e1 …xnen.

8 Advanced Algebra

Lexicographic d1 ã e1 Ï … Ï di-1 ã ei-1 Ï di < ei

DegreeLexicographic d1 + … + dn < e1 + … + en Í
Hd1 + … + dn ã e1 + … + en Ï d1 ã e1 Ï

… Ï di-1 ã ei-1 Ï di < eiL

DegreeReverseLexicographic d1 + … + dn < e1 + … + en Í
Hd1 + … + dn ã e1 + … + en Ï dn ã en Ï

… Ï di+1 ã ei+1 Ï di > eiL

Monomial orders.

Quantifier elimination needs an order in which monomials containing quantifier variables are

greater than monomials not containing quantifier variables. The Lexicographic order satisfies

this condition, but the following EliminationOrder usually leads to faster computations.

m1HXL n1HYL Çm2HXL n2HYLó dHn1HYLL < dHn2HYLL Í HdHn1HYLLã dHn2HYLL Ïm1HXL n1HYL ÇDRL m2HXL n2HYL,

where d denotes total degree, X denotes free variables, Y denotes quantifier variables, mi and ni

are monomials, and ÇDRL denotes the DegreeReverseLexicographic order.

Using EliminationOrder requires the GroebnerBasis syntax with elimination variables

specified.

GroebnerBasis@polys,xvars,yvars,MonomialOrder->EliminationOrderD

find a Gröbner basis in

Gröbner basis in elimination order.

By default, GroebnerBasis with MonomialOrder -> EliminationOrder drops the polynomials

that contain yvars from the result, returning only basis polynomials in xvars. To get all basis

polynomials, the value of the system option EliminateFromGroebnerBasis from the

GroebnerBasisOptions group must be changed. (Mathematica changes the option locally in the

quantifier elimination algorithm.) The option value can be changed with

SetSystemOptions@
"GroebnerBasisOptions" -> 8"EliminateFromGroebnerBasis" -> False<D

.

Advanced Algebra 9

EliminationOrder

option name default value

"EliminateFromGroebnerBasÖ
is"

True whether GroebnerBasis with
MonomialOrder -> EliminationOrder
should remove polynomials containing
elimination variables

System option EliminateFromGroebnerBasis.

This eliminates y from $y Ix12 + x22 - x1 x2 yã 1 Ï x12 + x22 + x1 x2 y + 1 ã 0M. The answer is a polyno-
mial whose zeros are the Zariski closure of the projection of the solution set of the two original
equations on the Hx1, x2L plane.

In[4]:= GroebnerBasisA9x1
2 + x2

2 - x1 x2 y - 1, x1
2 + x2

2 + x1 x2 y + 1=,
8x1, x2<, 8y<, MonomialOrder Ø EliminationOrderE

Out[4]= 9x1
2 + x2

2=

The exact description of the projection of the solution set on the Hx1, x2L plane depends on all
basis polynomials. Note that the second basis polynomial cannot be zero if x1 or x2 is zero.

In[5]:= SetSystemOptions@
"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø False<D;

GroebnerBasisA9x1
2 + x2

2 - x1 x2 y - 1, x1
2 + x2

2 + x1 x2 y + 1=,
8x1, x2<, 8y<, MonomialOrder Ø EliminationOrderE

Out[6]= :x1
2 + x2

2, 1 + y x1 x2, -x1 + y x2
3>

This resets the system option to its default value.

In[7]:= SetSystemOptions@"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø True<D;

Resolve gives the exact description of the projection of the solution set on the Hx1, x2L plane.

In[8]:= ResolveA$y Ix1
2 + x2

2 - x1 x2 y ã 1Ï x1
2 + x2

2 + x1 x2 y + 1 ã 0ME

Out[8]= x1
2 + x2

2 ã 0 && x2 ≠ 0

Decision Problems

A decision problem is a system with all variables existentially quantified, that is, a system of the

form

$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn are all variables in F. Solving a decision problem means deciding whether it is

equivalent to True or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequations FHx1, …, xnL has solutions.

10 Advanced Algebra

where x1, …, xn are all variables in F. Solving a decision problem means deciding whether it is

equivalent to True or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequations FHx1, …, xnL has solutions.

Solving this decision problem proves that a quadratic equation with a zero determinant cannot
have two different roots.

In[9]:= ReduceA$8a,b,c,x,y< Ia x2 + b x + c ã 0 && a y2 + b y + c ã 0 && x ≠ y && b2 - 4 a c ã 0 && a ≠ 0ME

Out[9]= False

Given the identities

$x HF1 Í … Í Fn L ó $x F1 Í … Í $x Fn
g1 ≠ 0 Ï … Ï gk ≠ 0 ó g1 ÿ… ÿgk ≠ 0

solving any decision problem can be reduced to solving a finite number of decision problems of

the form

$x1 $x2 … $xn f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

By Hilbert's Nullstellensatz and Property 3 of Gröbner bases

f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0

has complex solutions iff

GroebnerBasis@8 f1, …, fk, 1 - g z<, 8x1, …, xn, z<D

with an arbitrary monomial order, is different than {1}.

This shows that x2 + y2 == 2 Ï x == y Ï x ≠ -1 has complex solutions.

In[10]:= GroebnerBasisA9x2 + y2 - 2, x - y, 1 - Hx + 1L z=, 8x, y, z<E

Out[10]= 8-1 + 2 z, -1 + y, -1 + x<

This shows that x2 + y2 == 2 Ï x == y Ï x2 ≠ 1 has no complex solutions.

In[11]:= GroebnerBasisA9x2 + y2 - 2, x - y, 1 - Ix2 - 1M z=, 8x, y, z<E

Out[11]= 81<

When Mathematica solves a decision problem, the monomial order used by the GroebnerBasis

computation is MonomialOrder -> EliminationOrder, with 8z< specified as the elimination

variable list. This setting corresponds to the monomial ordering in which monomials containing z

are greater than those that do not contain z, and the ordering of monomials not containing z is

degree reverse lexicographic. If there is no inequation condition, there is no need to introduce

z, and Mathematica uses MonomialOrder -> DegreeReverseLexicographic.

Advanced Algebra 11

When Mathematica solves a decision problem, the monomial order used by the GroebnerBasis

computation is MonomialOrder -> EliminationOrder, with 8z< specified as the elimination

variable list. This setting corresponds to the monomial ordering in which monomials containing z

are greater than those that do not contain z, and the ordering of monomials not containing z is

degree reverse lexicographic. If there is no inequation condition, there is no need to introduce

z, and Mathematica uses MonomialOrder -> DegreeReverseLexicographic.

Quantifier Elimination

For any complex polynomial system there exists an equivalent quantifier-free complex polyno-

mial system. This follows from Chevalley's theorem, which states that a projection of a quasi-

algebraically constructible set (a solution set of a quantifier-free system of polynomial equa-

tions and inequations) is a quasi-algebraically constructible set [3]. Quantifier elimination is the

procedure of finding a quantifier-free complex polynomial system equivalent to a given complex

polynomial system. In Mathematica, quantifier elimination for complex polynomial systems is

done by Resolve. It is also used by Reduce and FindInstance as the first step in solving or

finding instances of solutions of complex polynomial systems.

Eliminating quantifiers from this system gives a condition for quadratic equations to have at
least two different zeros.

In[12]:= ResolveA$8x,y< Ia x2 + b x + c ã 0 && a y2 + b y + c ã 0 && x ≠ yME

Out[12]= Ia ≠ 0 && -b2 + 4 a c ≠ 0M »» Ha ã 0 && b ã 0 && c ã 0L

For complex polynomial systems Mathematica uses the following quantifier elimination method.

Given the identities

"x F ó Ÿ H$x Ÿ FL
$x HF1 Í … Í Fn L ó $x F1 Í … Í $x Fn
g1 ≠ 0 Ï … Ï gk ≠ 0 ó g1 ÿ… ÿgk ≠ 0,

eliminating quantifiers from any complex polynomial system can be reduced to a finite number

of single existential quantifier eliminations from systems of the form

(1)$y f1Hx1, …, xn, yLã 0 Ï … Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0.

To eliminate the quantifier from (1), Mathematica first computes the Gröbner basis of equations

G = GroebnerBasis@8 f1, …, fk<, 8x1, …, xn, y<D

with a monomial order that makes monomials containing y greater than monomials not contain-

ing y.

12 Advanced Algebra

with a monomial order that makes monomials containing y greater than monomials not contain-

ing y.

The monomial order used is EliminationOrder, with 8y< specified as the elimination variable list

and all basis polynomials kept.

If G contains no polynomials that depend on y, then a quantifier-free system equivalent to (1)

can be obtained by equating all elements of G to zero, and asserting that at least one coeffi-

cient of g as a polynomial in y is not equal to zero. Otherwise let h be the element of G with the

lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let 8h1, …, hs<

be all elements of G that do not depend on y. Now (1) can be split into a disjunction of two

systems

(2)
$y cHx1, …, xnLã 0 Ï f1Hx1, …, xn, yLã 0 Ï

… Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0

and

(3)
$y cHx1, …, xnL ≠ 0 Ï f1Hx1, …, xn, yLã 0 Ï

… Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0.

To eliminate the quantifier from (2), the quantifier elimination procedure is called recursively.

Since the ideal generated by 8c, f1, …, fk< strictly contains the ideal generated by 8 f1, …, fk<, the

Noetherian property of polynomial rings guarantees finiteness of the recursion.

If c belongs to the radical of the ideal generated by 8 f1, …, fk<, which is exactly when 1 belongs

to

GroebnerBasis@8h1, …, hs, 1 - c z<, 8x1, …, xn, z<D,

(3) is equivalent to False. Otherwise let

r = rd-1Hx1, …, xnL yd-1 + … + r0Hx1, …, xnLã cHx1, …, xnLe gHx1, …, xn, yLd - qHx1, …, xn, yL hHx1, …, xn, yL

be the pseudoremainder of the division of gd by h as polynomials in y. Then (3) is equivalent to

the quantifier-free system

(4)
cHx1, …, xnL ≠ 0 Ï h1Hx1, …, xnLã 0 Ï … Ï

hsHx1, …, xnLã 0 Ï Hrd-1Hx1, …, xnL ≠ 0 Í … Í r0Hx1, …, xnL ≠ 0L.

To show that (3) implies (4), suppose that Ha1, …, anL satisfies (3). Then cHa1, …, anL ≠ 0 and there

exists b, such that

Advanced Algebra 13

f1Ha1, …, an, bLã 0 Ï … Ï fkHa1, …, an, bLã 0 Ï gHa1, …, an, bL ≠ 0.

Since 8h1, …, hs< and h belong to the ideal generated by 8 f1, …, fk<,

h1Ha1, …, anLã 0 Ï … Ï hsHa1, …, anLã 0

and hHa1, …, an, bLã 0. Hence

rHa1, …, an, bLã rd-1Ha1, …, anL bd-1 + … + r0Ha1, …, anLã cHa1, …, anLe gHa1, …, an, bLd ≠ 0,

which implies that

rd-1Ha1, …, anL ≠ 0 Í … Í r0Ha1, …, anL ≠ 0.

To show that (4) implies (3), suppose that Ha1, …, anL satisfies (4). Then

rHa1, …, an, yLã rd-1Ha1, …, anL yd-1 + … + r0Ha1, …, anLã
cHa1, …, anLe gHa1, …, an, yLd - qHa1, …, an, yL hHa1, …, an, yL.

Since hHa1, …, an, yL is a polynomial of degree d, and rHa1, …, an, yL is a nonzero polynomial of

degree less than d, there is a root b of hHa1, …, an, yL such that Hy - bLm divides hHa1, …, an, yL but

not rHa1, …, an, yL for some 1 §m § d. If gHa1, …, an, bL were zero, then Hy - bLm would divide

gHa1, …, an, yLd, which is impossible because it would imply that Hy - bLm divides rHa1, …, an, yL.

Therefore gHa1, …, an, bL ≠ 0. Property 4 shows that pHa1, …, an, bLã 0 for any polynomial p œG.

Since G is a Gröbner basis of the ideal generated by 8 f1, …, fk<,

f1Ha1, …, an, bLã 0 Ï … Ï fkHa1, …, an, bLã 0,

which completes the proof of correctness of the quantifier elimination algorithm.

This eliminates the quantifier from $y x12 + x22 + y2 == 1 Ï x1 + x2 == y. Here g = 1, h = -y + x1 + x2,
and c = -1. Since c is a nonzero constant, (2) is False and the equivalent quantifier-free
system is given by (4). Since g is a nonzero constant, (4) becomes 1 - 2 x12 - 2 x1 x2 - 2 x22 ã 0.

In[13]:= SetSystemOptions@
"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø False<D;

GroebnerBasisA9x1
2 + x2

2 + y2 - 1, x1 + x2 - y=, 8x1, x2<, 8y<,
MonomialOrder Ø EliminationOrderE

Out[14]= 9-1 + 2 x1
2 + 2 x1 x2 + 2 x2

2, y - x1 - x2=

This resets the system option to its default value.

In[15]:= SetSystemOptions@"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø True<D;

Arbitrary Complex Polynomial Systems

14 Advanced Algebra

Arbitrary Complex Polynomial Systems

FindInstance

FindInstance can handle arbitrary complex polynomial systems giving instances of complex

solutions, or an empty list for systems that have no solutions. If the number of instances

requested is more than one, the instances are randomly generated from the full solution of the

system given by Reduce. If one instance is requested, a faster algorithm that produces one

instance is used. Here is a description of the algorithm used to find a single instance, or prove

that a system has no solutions.

If the system contains general quantifiers ("), the quantifier elimination algorithm is used to

eliminate the innermost quantifiers until the system contains only existential quantifiers ($) or

is quantifier-free. Note that

(1)$x1 $x2 … $xn FHx1, …, xn, y1, …, ymL

has solutions if and only if FHx1, …, xn, y1, …, ymL has solutions, and if Ha1, …, an, b1, …, bmL is a

solution of FHx1, …, xn, y1, …, ymL, then Hb1, …, bmL is a solution of (1). Hence to find instances of

solutions of systems containing only existential quantifiers it is enough to be able to find ins-

tances of quantifier-free systems. Moreover, Ha1, …, anL is a solution of

F1Hx1, …, xnL Í … Í FmHx1, …, xnL

if and only if it is a solution of one of the FiHx1, …, xnL, with 1 § i §m, so it is enough to show how

to find instances of solutions of

(2)f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

First compute the GroebnerBasis G of 8 f1, …, fk, 1 - g z< with

MonomialOrder -> EliminationOrder, eliminating the polynomials that depend on z (if there is

no inequation condition, G is the GroebnerBasis of 8 f1, …, fk< with

MonomialOrder -> DegreeReverseLexicographic). If G contains 1, there are no solutions.

Otherwise, compute a subset S of 8x1, …, xn< of the highest cardinality among subsets strongly

independent modulo the ideal generated by G with respect to the degree reverse lexicographic

order ([1], Section 9.3). Reorder 8x1, …, xn< so that Sã 8xn-d+1, …, xn<, and compute the lexico-

graphic order GroebnerBasis H of the ideal generated by G. To compute H, Mathematica uses

the Gröbner walk algorithm.

Advanced Algebra 15

First compute the GroebnerBasis G of 8 f1, …, fk, 1 - g z< with

MonomialOrder -> EliminationOrder, eliminating the polynomials that depend on z (if there is

no inequation condition, G is the GroebnerBasis of 8 f1, …, fk< with

MonomialOrder -> DegreeReverseLexicographic). If G contains 1, there are no solutions.

Otherwise, compute a subset S of 8x1, …, xn< of the highest cardinality among subsets strongly

order ([1], Section 9.3). Reorder 8x1, …, xn< so that Sã 8xn-d+1, …, xn<, and compute the lexico-

graphic order GroebnerBasis H of the ideal generated by G. To compute H, Mathematica uses

the Gröbner walk algorithm.

For each of the variables xi, 1 § i § n - d, select the polynomial hi œ H with the smallest leading

monomial among elements of H that depend on xi and not on 8x1, …, xi-1<. Let ci be the leading

coefficient of hi as a polynomial in xi. If ci depends on a variable that is not in S, replace H with

the lexicographic order Gröbner basis of the ideal generated by H and ci. The following shows

that this operation keeps S strongly independent modulo the ideal generated by H. Hence,

possibly after a finite (by the Noetherian property of polynomial rings) number of extensions of

H, the leading coefficient ci of hi depends only on 8xn-d+1, …, xn<, for all 1 § i § n - d. For the set of

polynomials P, let ZHPL be the set of common zeros of elements of P. Both ZHGL and ZHHL have

dimension d, and ZHHL Õ ZHGL, hence any d-dimensional irreducible component of ZHHL is also a

component of ZHGL. Since g does not vanish on any irreducible component of ZHGL, it does not

vanish on any d-dimensional irreducible component of ZHHL. Therefore, the Gröbner basis of H

and g contains a polynomial t depending only on 8xn-d+1, …, xn<. Let p = t c1 …cn-d. To find a solu-

tion of (2), pick its last d coordinates 8an-d+1, …, an< so that pHan-d+1, …, anL ≠ 0. For all 1 § i § n - d,

ciHan-d+1, …, anL ≠ 0, and so by Property 4 if ai, for i = n - d, …, 1, is chosen to be the first root of

hiHxi, ai+1, …, anL, then Ha1, …, anL œ ZHHL Õ ZHGL. Moreover, gHa1, …, anL ≠ 0, because otherwise

Ha1, …, anL would belong to ZHH ‹ 8g<L, which would imply that tHan-d+1, …, anLã 0, which is impossi-

ble since t divides p.

To prove the correctness of the aforementioned algorithm, it must be shown that extending H

by ci that depend on a variable not in S preserves strong independence of S modulo the ideal

generated by H. Suppose for some 1 § i § n - d, ci depends on a variable, which is not in S. Let

Ii+1 Õ @xi+1, …, xnD denote the ideal generated by H › @xi+1, …, xnD, and let Ji+1 Õ @xi+1, …, xnD

denote the ideal generated by Ii+1 and ci. Then Ji+1 does not contain nonzero elements of

@xn-d+1, …, xnD. To prove this, suppose that rã p ci + q œ Ji+1 › @xn-d+1, …, xnD \ 80< where

p œ @xi+1, …, xnD and q œ Ii+1. Then hi ã ci xik + t, with degxi HtL < k, and

p hi ã p ci xik + p tã r xik - q xik + p t

belongs to the ideal generated by H, and so does gi = r xik + p t. This contradicts the choice of hi

since the leading monomial of gi depends on xi and is strictly smaller than the leading monomial

of hi. Therefore, the projection of ZHJi+1L on Ad = IdM
9xn-d+1,…, xn=

 is dense in Ad, and so, since ZHIi+1L

has dimension d, ci must be zero on some irreducible component Ci+1 of ZHIi+1L whose projection

on Ad is dense in Ad. Since ZHIi+1L is the Zariski closure of the projection of the d-dimensional set

ZHHL, Ci+1 is contained in the Zariski closure of the projection of an irreducible component C of

ZHHL. ZHciL › C has dimension d, hence ci is zero on C, and the projection of C on Ad is dense in

Ad, which proves that S is strongly independent modulo the ideal generated by H and ci.

16 Advanced Algebra

belongs to the ideal generated by H, and so does gi = r xik + p t. This contradicts the choice of hi

since the leading monomial of gi depends on xi and is strictly smaller than the leading monomial

of hi. Therefore, the projection of ZHJi+1L on Ad = IdM
9xn-d+1,…, xn=

 is dense in Ad, and so, since ZHIi+1L

has dimension d, ci must be zero on some irreducible component Ci+1 of ZHIi+1L whose projection

on Ad is dense in Ad. Since ZHIi+1L is the Zariski closure of the projection of the d-dimensional set

ZHHL, Ci+1 is contained in the Zariski closure of the projection of an irreducible component C of

ZHHL. ZHciL › C has dimension d, hence ci is zero on C, and the projection of C on Ad is dense in

Ad, which proves that S is strongly independent modulo the ideal generated by H and ci.

Here is an example in which H needs to be extended. Here Sã 8x3<, h1 ã Hx2 - x3L x1, c1 ã x2 - x3,
and I2 ã < Hx2 - x3L2 Hx2 - 2 x3L >. c1 is zero on one of the two one-dimensional components of I2.

In[16]:= GroebnerBasisA9Hx2 - x3L2 Hx2 - 2 x3L, Hx2 - x3L x1, x1
2 - x1=, 8x1, x2, x3<E

Out[16]= :x2
3 - 4 x2

2 x3 + 5 x2 x3
2 - 2 x3

3, x1 x2 - x1 x3, -x1 + x1
2>

Extending H by c1 results in all ci depending on x3 only (in fact even constant) while preserving
the strong independence of 8x3<.

In[17]:= GroebnerBasisA9x2
3 - 4 x2

2 x3 + 5 x2 x3
2 - 2 x3

3, x1 x2 - x1 x3, -x1 + x1
2, x2 - x3 =, 8x1, x2, x3<E

Out[17]= 9x2 - x3, -x1 + x1
2=

Reduce

Reduce can solve arbitrary complex polynomial systems. As the first step, Reduce uses the

quantifier elimination algorithm to eliminate the quantifiers. If the obtained quantifier-free

system is a disjunction, each term of the disjunction is solved separately, and the solution is

given as a disjunction of the solutions of the terms. Thus, the problem is reduced to solving

quantifier-free systems of the form

(3)f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

First compute the GroebnerBasis G of 8 f1, …, fk, 1 - g z< with variable order 8z, xn, …, x1< and

MonomialOrder -> Lexicographic, and select the polynomials that do not depend on z. Then

the solution set of Gã 0 Ï gHx1, …, xnL ≠ 0 is equal to the solution set of (3) and g does not vanish

on any component of the zero set ZHGL of G. If G contains 1, (3) has no solutions. Otherwise for

each 1 § i § n, such that the set Gi of elements of G depending on xi and not on any x j with j > i is

not empty, select an element hi of Gi with the lowest positive degree in xi. If one of the leading

coefficients ci of hi is zero on ZHGL, that is, it belongs to the radical of the ideal generated by G,

replace G by the lexicographic Gröbner basis of the ideal generated by G and ci. Now split the

system into

Advanced Algebra 17

First compute the GroebnerBasis G of 8 f1, …, fk, 1 - g z< with variable order 8z, xn, …, x1< and

MonomialOrder -> Lexicographic, and select the polynomials that do not depend on z. Then

the solution set of Gã 0 Ï gHx1, …, xnL ≠ 0 is equal to the solution set of (3) and g does not vanish

each 1 § i § n, such that the set Gi of elements of G depending on xi and not on any x j with j > i is

not empty, select an element hi of Gi with the lowest positive degree in xi. If one of the leading

coefficients ci of hi is zero on ZHGL, that is, it belongs to the radical of the ideal generated by G,

replace G by the lexicographic Gröbner basis of the ideal generated by G and ci. Now split the

system into

(4)
Ici1 ã 0 ÏGã 0 Ï g ≠ 0MÎ Ici2 ã 0 ÏGã 0 Ï ci1 g ≠ 0MÎ

… ÎJcis ã 0 ÌGã 0 Ì ci1 …cis-1 g ≠ 0NÎ IGã 0 Ï ci1 …cis g ≠ 0M.

and call the solving procedure recursively on all but the last term of the disjunction (4). Note

that the algebraic set ci j ã 0 ÌGã 0 is strictly contained in Gã 0, so the recursion is finite. If the

product of all the ci and g belongs to the radical of the ideal generated by G, the last term has

no solutions. Otherwise, by Property 4, the solution set of the last term is equal to

ci1 Hx1, …, xi1-1L ≠ 0 Ï Roots@hi1 ã 0, xi1D Ï … Ï

cis Ix1, …, xis-1M ≠ 0 Ï RootsAhis ã 0, xisE Ï g Hx1, …, xnL ≠ 0.

The conditions ci j ≠ 0 guarantee that all the solutions (represented as radicals or Root objects)

given by RootsAhi j ã 0, xi j E are well defined. Reduce performs several operations in order to

simplify the inequation conditions returned, like removing multiple factors, removing factors

common with earlier inequation conditions, reducing modulo the hi j, and removing factors that

are nonzero on ZHGL.

18 Advanced Algebra

Options

Options for Reduce, Resolve, and FindInstance

The Mathematica functions for solving complex polynomial systems have a number of options

that control the way they operate. This section gives a summary of these options.

option name default value

Backsubstitution False whether the solutions given by Reduce
and Resolve with specified variables
should be unwound by backsubstitution

Cubics False whether the Cardano formulas should be
used to express solutions of cubics

Quartics False whether the Cardano formulas should be
used to express solutions of quartics

Options of Reduce and Resolve affecting the behavior of complex polynomial systems.

option name default value

WorkingPrecision ¶ the working precision to be used in computa -
tions, with the default settings of system
options; the value of working precision
affects only calls to Roots

Options of Reduce, Resolve, and FindInstance affecting the behavior of complex polynomial systems.

Backsubstitution

By default, Reduce may use variables appearing earlier in the variable list to express solutions
for variables appearing later in the variable list.

In[18]:= ReduceAx2 + y2 ã 1 && x5 - 3 x + 7 ã 0, 8x, y<E

Out[18]= Ix ã RootA7 - 3 Ò1 + Ò15 &, 1E »» x ã RootA7 - 3 Ò1 + Ò15 &, 2E »» x ã RootA7 - 3 Ò1 + Ò15 &, 3E »»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E »» x ã RootA7 - 3 Ò1 + Ò15 &, 5EM && y ã - 1 - x2 »» y ã 1 - x2

Advanced Algebra 19

With Backsubstitution -> True, Reduce uses backsubstitution to eliminate variables from
the right-hand sides of the equations.

In[19]:= ReduceAx2 + y2 ã 1 && x5 - 3 x + 7 ã 0, 8x, y<, Backsubstitution Ø TrueE

Out[19]= x ã RootA7 - 3 Ò1 + Ò15 &, 1E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 1E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 1E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 1E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 2E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 2E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 2E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 2E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 3E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 3E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 3E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 3E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 4E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 4E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 5E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 5E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 5E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 5E
2

Cubics and Quartics

By default Reduce does not use the Cardano formulas for solving cubics or quartics.

In[20]:= ReduceAx3 - 3 x + 7 ã 0, xE

Out[20]= x ã RootA7 - 3 Ò1 + Ò13 &, 1E »» x ã RootA7 - 3 Ò1 + Ò13 &, 2E »» x ã RootA7 - 3 Ò1 + Ò13 &, 3E

Setting the options Cubics and Quartics to True allows Reduce to use the Cardano formu-
las for solving cubics and quartics.

In[21]:= ReduceAx3 - 3 x + 7 ã 0, x, Cubics Ø TrueE

Out[21]= x ã -
2

7 - 3 5

1ë3

-
1

2
7 - 3 5

1ë3

»» x ã
1

2
1 + Â 3

1

2
7 - 3 5

1ë3

+
1 - Â 3

22ë3 J7 - 3 5 N
1ë3

»»

x ã
1

2
1 - Â 3

1

2
7 - 3 5

1ë3

+
1 + Â 3

22ë3 J7 - 3 5 N
1ë3

WorkingPrecision

20 Advanced Algebra

WorkingPrecision

With WorkingPrecision set to a finite number, Reduce uses numeric methods to find polyno-
mial roots.

In[22]:= ReduceAx3 - 3 x + 7 ã 0, x, WorkingPrecision Ø 20E

Out[22]= x ã -2.4259887573616221261 »» x ã 1.2129943786808110630 - 1.1891451081065508908 Â »»
x ã 1.2129943786808110630 + 1.1891451081065508908 Â

The ReduceOptions Group of System Options

Here are the system options from the ReduceOptions group that may affect the behavior of

Reduce, Resolve, and FindInstance for complex polynomial systems. The options can be set

with

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.

This sets the option FinitePrecisionGB to True.

In[23]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø True<D;

This checks the value of FinitePrecisionGB.

In[24]:= "FinitePrecisionGB" ê. H"ReduceOptions" ê. SystemOptions@DL

Out[24]= True

This sets the option FinitePrecisionGB back to the default value False.

In[25]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø False<D;

option name default value

"FinitePrecisionGB" False whether finite values of working precision
should be used in calls to GroebnerBasis

"ReorderVariables" False whether Reduce and Resolve are allowed
to reorder the specified variables

ReduceOptions group options that affect the behavior of Reduce, Resolve, and FindInstance for
complex polynomial systems.

Advanced Algebra 21

FinitePrecisionGB

By default, Reduce uses GroebnerBasis with CoefficientDomain -> Automatic. This
means that even with WorkingPrecision set to a finite number prec, if the input is exact
GroebnerBasis uses exact computations.

In[26]:= SeedRandom@123D;

f = ‚

i=0

2

‚

j=0

3

RandomIntegerA9-10100, 10100=E xi yj;

g = ‚

i=0

3

‚

j=0

2

RandomIntegerA9-10100, 10100=E xi yj;

Timing@a1 =
Reduce@f ã 0 && g ã 0, 8x, y<, WorkingPrecision Ø 100, Backsubstitution Ø TrueD;D

Out[28]= 80.481, Null<

Setting the system option "FinitePrecisionGB" -> True makes Reduce use
GroebnerBasis with CoefficientDomain -> InexactNumbers@precD.

In[29]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø True<D;
Timing@a2 =

Reduce@f ã 0 && g ã 0, 8x, y<, WorkingPrecision Ø 100, Backsubstitution Ø TrueD;D
Out[30]= 80.25, Null<

Using finite precision may significantly improve the speed of GroebnerBasis computations.
However, the numeric computations may fail due to loss of precision, or give incorrect answers.
They usually give less precise results than exact GroebnerBasis computations followed by
numeric root finding.

In[31]:= Precision êü 8a1, a2<

Out[31]= 890.7267, 48.2583<

This shows that the results are equal up to their precision.

In[32]:= Sort@8x, y< ê. 8ToRules@a1D<D - Sort@8x, y< ê. 8ToRules@a2D<D

Out[32]= 990.µ10-55 + 0.µ10-55 Â, 0.µ10-49 + 0.µ10-49 Â=,

90.µ10-55 + 0.µ10-55 Â, 0.µ10-49 + 0.µ10-49 Â=, 90.µ10-54, 0.µ10-49=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-55 + 0.µ10-55 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-55 + 0.µ10-55 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=,

90.µ10-58 + 0.µ10-58 Â, 0.µ10-55 + 0.µ10-55 Â=, 90.µ10-58 + 0.µ10-58 Â, 0.µ10-55 + 0.µ10-55 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-52 + 0.µ10-52 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-52 + 0.µ10-52 Â==

In[33]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø False<D;

22 Advanced Algebra

ReorderVariables

By default, Reduce is not allowed to reorder the specified variables. Variables appearing earlier
in the variable list may be used to express solutions for variables appearing later in the variable
list, but not vice versa.

In[34]:= ReduceAz3 + 3 z - 2 y + 1 ã x && z2 - 7 ã y, 8x, y, z<E

Out[34]= x ã 21 && y ã -10 && z ã -Â 3 »» z ã Â 3 »» Hx ã 21 && y ã -3 && z ã 2L »»

Iy ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 1E »»

y ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 2E »»

y ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 3EM && -21 + x ≠ 0 && z ã
72 - 2 x + 13 y + y2

-21 + x

Setting the system option "ReorderVariables" -> True allows Reduce to pick a variable
order that makes the equations easier to solve.

In[35]:= SetSystemOptions@"ReduceOptions" Ø 8"ReorderVariables" Ø True<D;
ReduceAz3 + 3 z - 2 y + 1 ã x && z2 - 7 ã y, 8x, y, z<E

Out[35]= y ã -7 + z2 && x ã 15 + 3 z - 2 z2 + z3

In[36]:= SetSystemOptions@"ReduceOptions" Ø 8"ReorderVariables" Ø False<D;

References

[1] Becker, T. and V. Weispfenning. Gröbner Bases. Springer-Verlag, 1993.

[2] Cox, D., J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. (2nd ed.)

Springer-Verlag, 1997

 [3] Łojasiewicz, S. Introduction to Complex Analytic Geometry. Birkhaüser, 1991.

Advanced Algebra 23

Real Polynomial Systems

Introduction

A real polynomial system is an expression constructed with polynomial equations and

inequalities

f Hx1, …, xnLã gHx1, …, xnL, f Hx1, …, xnL ≠ gHx1, …, xnL,
f Hx1, …, xnL ¥ gHx1, …, xnL, f Hx1, …, xnL > gHx1, …, xnL,
f Hx1, …, xnL § gHx1, …, xnL, f Hx1, …, xnL < gHx1, …, xnL

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F, and $x F.

An occurrence of a variable x inside "x F or $x F is called a bound occurrence; any other occur-

rence of x is called a free occurrence. A variable x is called a free variable of a real polynomial

system if the system contains a free occurrence of x. A real polynomial system is quantifier free

if it contains no quantifiers.

An example of a real polynomial system with free variables x, y, and z is the following

(1)x2 + y2 § z2 Ì $t J"u t x > u y z + 7 Î x2 tã 2 z + 1N.

Any real polynomial system can be transformed to the prenex normal form

(2)Q1 y1 Q2 y2 …Qm ym FHx1, …, xn; y1, …, ymL,

where each Qi is " or $, and FHx1, …, xn; y1, …, ymL is a quantifier-free formula called the quantifier-

free part of the system.

Any quantifier-free real polynomial system can be transformed to the disjunctive normal form

(3)Ij1,1 Ï … Ï j1,n1 M Í … Í Ijm,1 Ï … Ï jm,nm M,

where each ji, j is a polynomial equation or inequality.

Reduce, Resolve, and FindInstance always put real polynomial systems in the prenex normal

form, with quantifier-free parts in the disjunctive normal form, and subtract sides of equations

and inequalities to put them in the form

24 Advanced Algebra

Reduce, Resolve, and FindInstance always put real polynomial systems in the prenex normal

form, with quantifier-free parts in the disjunctive normal form, and subtract sides of equations

and inequalities to put them in the form

f Hx1, …, xnLã Ior ≠, ¥ , > , § , <M 0.

In all of the real polynomial system solving tutorials, we will always assume the system has

been transformed to this form.

Reduce can solve arbitrary real polynomial systems. For a system with free variables x1, …, xn,

the solution (possibly after expanding fl with respect to fi) is a disjunction of terms of the form

(4)BHx1;L Ï BHx2; x1L Ï BHx3; x1, x2L Ï … Ï BHxn; x1, …, xn-1L,

where BHxk; x1, …, xk-1L is one of

(5)

xk ã r1Hx1, …, xk-1L
L < Ior §M xk < Ior §M r2Hx1, …, xk-1L
< Ior §M r2Hx1, …, xk-1L
> Ior ¥M r1Hx1, …, xk-1L

True

and r1 and r2 are algebraic functions (expressed using Root objects or radicals) such that for all

x1, …, xk-1 satisfying BHx1;L Ï BHx2; x1L Ï … Ï BHxk-1; x1, …, xk-2L, r1and r2 are well defined (that is,

denominators and leading terms of Root objects are nonzero), real valued, continuous, and

satisfy inequality r1 < r2.

The subset of n described by formula (4) is called a cell. The cells described by different terms

of solution of a real polynomial system are disjoint.

Advanced Algebra 25

This solves the system (1). The cells are represented in a nested form.

In[1]:= sol = ReduceAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<, RealsE

Out[1]= x < 0 && z § - x2 + y2 »» z ¥ x2 + y2 »» x ã 0 && -
1

2
§ y §

1

2
&& z ã -

1

2
»»

0 < x <
1

2
&& y < -

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »»

y ã -
1

2
1 - 4 x2 && z § -

1

2
»» z ¥ x2 + y2 »»

-
1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »» y ã

1

2
1 - 4 x2 &&

z § -
1

2
»» z ¥ x2 + y2 »» y >

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »»

x ã
1

2
&& y < 0 && z § -

1

4
+ y2 »» z ¥

1

4
+ y2 »» y ã 0 && z § -

1

2
»» z ¥

1

2
»»

y > 0 && z § -
1

4
+ y2 »» z ¥

1

4
+ y2 »» x >

1

2
&& z § - x2 + y2 »» z ¥ x2 + y2

This defines a function expanding fl with respect to fi.

In[2]:= lexp@e_OrD := lexp êü e
lexp@And@a___, b_Or, c___DD := lexp@And@a, Ò, cDD & êü b
lexp@other_D := other

26 Advanced Algebra

Here is the solution of the system (1) written explicitly as a union of disjoint cells.

In[5]:= lexp@solD

Out[5]= x < 0 && z § - x2 + y2 »» x < 0 && z ¥ x2 + y2 »» x ã 0 && -
1

2
§ y §

1

2
&& z ã -

1

2
»»

0 < x <
1

2
&& y < -

1

2
1 - 4 x2 && z § - x2 + y2 »» 0 < x <

1

2
&& y < -

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y ã -

1

2
1 - 4 x2 && z § -

1

2
»» 0 < x <

1

2
&& y ã -

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& -

1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z § - x2 + y2 »»

0 < x <
1

2
&& -

1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y ã

1

2
1 - 4 x2 && z § -

1

2
»» 0 < x <

1

2
&& y ã

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y >

1

2
1 - 4 x2 && z § - x2 + y2 »» 0 < x <

1

2
&& y >

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

x ã
1

2
&& y < 0 && z § -

1

4
+ y2 »» x ã

1

2
&& y < 0 && z ¥

1

4
+ y2 »»

x ã
1

2
&& y ã 0 && z § -

1

2
»» x ã

1

2
&& y ã 0 && z ¥

1

2
»» x ã

1

2
&& y > 0 && z § -

1

4
+ y2 »»

x ã
1

2
&& y > 0 && z ¥

1

4
+ y2 »» x >

1

2
&& z § - x2 + y2 »» x >

1

2
&& z ¥ x2 + y2

Resolve can eliminate quantifiers from arbitrary real polynomial systems. If no variables are

specified in the input and all input polynomials are at most linear in the bound variables,

Resolve may be able to eliminate the quantifiers without solving the resulting system. Other-

wise, Resolve uses the same algorithm and gives the same answer as Reduce.

This eliminates quantifiers from the system (1).

In[6]:= ResolveAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, RealsE

Out[6]=
1

2
+ z ã 0 && x2 + y2 - z2 § 0 »» Ix2 ≠ 0 && x2 + y2 - z2 § 0M »»

I-x < 0 && y z ã 0 && x2 + y2 - z2 § 0M »» Ix < 0 && y z ã 0 && x2 + y2 - z2 § 0M

FindInstance can handle arbitrary real polynomial systems, giving instances of real solutions

or an empty list for systems that have no solutions. If the number of instances requested is

more than one, the instances are randomly generated from the full solution of the system and

therefore may depend on the value of the RandomSeed option. If one instance is requested and

the system does not contain general (") quantifiers, a faster algorithm producing one instance

is used and the instance returned is always the same.

This finds a solution of the system (1).

Advanced Algebra 27

This finds a solution of the system (1).

In[7]:= FindInstanceAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<, RealsE

Out[7]= ::x Ø -18, y Ø
8

5
, z Ø -115>>

The main general tool used in solving real polynomial systems is the Cylindrical Algebraic Decom-

position (CAD) algorithm (see, for example, [1]). CAD for quantifier-free systems is available in

Mathematica directly as CylindricalDecomposition. There are also several other algorithms

used to solve special case problems.

Cylindrical Algebraic Decomposition

Semi-Algebraic Sets and Cell Decomposition

A subset of n is semi-algebraic if it is a solution set of a quantifier-free real polynomial system.

According to Tarski's theorem [2], solution sets of arbitrary (quantified) real polynomial

systems are semi-algebraic.

Every semi-algebraic set can be represented as a finite union of disjoint cells [3] defined recur-

sively as follows:

† A cell in  is a point or an open interval

† A cell in k has one of the two forms

(6)
8Ha1, …, ak, ak+1L : Ha1, …, akL œ CkÔak+1 = rHa1, …, akL<
8Ha1, …, ak, ak+1L : Ha1, …, akL œ CkÔr1 Ha1, …, akL < ak+1 < r2Ha1, …, akL<,

where Ck is a cell in k, r is a continuous algebraic function, r1 and r2 are continuous algebraic

functions or -¶ or ¶, and r1 < r2 on Ck.

By an algebraic function we mean a function r : Ckö for which there is a polynomial

f = c0 xk+1m + c1 xk+1m-1 + …cm œ@x1, …, xk, xk+1D

such that

c0Ha1, …, akL ≠ 0Ô f Ha1, …, ak, rHa1, …, akLL = 0.

In Mathematica algebraic functions can be represented as Root objects or radicals.

28 Advanced Algebra

In Mathematica algebraic functions can be represented as Root objects or radicals.

The CAD algorithm, introduced by Collins [4], computes a cell decomposition of solution sets of

arbitrary real polynomial systems. The objective of the original Collins algorithm was to elimi-

nate quantifiers from a quantified real polynomial system and to produce an equivalent quanti-

fier-free polynomial system. After finding a cell decomposition, the algorithm performed an

additional step of finding an implicit representation of the semi-algebraic set in terms of polyno-

mial equations and inequalities in the free variables. The objective of Reduce is somewhat

different. Given a semi-algebraic set presented by a real polynomial system, quantified or not,

Reduce finds a cell decomposition of the set, explicitly written in terms of algebraic functions.

While Reduce may use other methods to solve the system, CylindricalDecomposition gives a

direct access to the CAD algorithm. For a quantifier-free real polynomial system,

CylindricalDecomposition gives a nested formula representing disjunction of cells in the

solved form (4). As in the output of Reduce, the cells are disjoint and additionally are always

ordered lexicographically with respect to ranges of the subsequent variables.

This finds a cell decomposition of an annulus.

In[8]:= CylindricalDecomposition@1 § x^2 + y^2 < 2, 8x, y<D

Out[8]= - 2 < x < -1 && - 2 - x2 < y < 2 - x2 »»

-1 § x § 1 && - 2 - x2 < y § - 1 - x2 »» 1 - x2 § y < 2 - x2 »»

1 < x < 2 && - 2 - x2 < y < 2 - x2

The Projection Phase of the CAD Algorithm

Finding a cell decomposition of a semi-algebraic set using the CAD algorithm consists of two

phases, projection and lifting. In the projection phase, we start with the set An+m of factors of

the polynomials present in the quantifier-free part FHx1, …, xn; y1, …, ymL of the system (2) and

eliminate variables one by one using a projection operator P such that

Pk+1 : @t1, …, tk, tk+1D ⊃ Ak+1öAk Õ@t1, …, tkD.

Generally speaking, if all polynomials of Ak have constant signs on a cell C Õk, then all polynomi -

als of Ak+1 are delineable over C, that is, each has a fixed number of real roots on C as a polyno-

tk+1, the roots are continuous functions on C, they have constant multiplicities, and two

roots of two of the polynomials are equal either everywhere or nowhere in C. Variables are

ordered so that

Advanced Algebra 29

Generally speaking, if all polynomials of Ak have constant signs on a cell C Õk, then all polynomi-

als of + are delineable over C, that is, each has a fixed number of real roots on C as a polyno-

mial in tk+1, the roots are continuous functions on C, they have constant multiplicities, and two

roots of two of the polynomials are equal either everywhere or nowhere in C. Variables are

ordered so that

Ht1, …, tn+mL = Hx1, …, xn, y1, …, ymL.

This way the roots of polynomials of A1, …, An are the algebraic functions needed in the construc-

tion of the cell decomposition of the semi-algebraic set.

Several improvements have reduced the size of the original Collins projection. The currently

best projection operator applicable in all cases is due to Hong [5]; however, in most situations

we can use a smaller projection operator given by McCallum [6, 7], with an improvement by

Brown [8]. There are even smaller projection operators that can be applied in some special

cases. When equational constraints are present, we can use the projection operator suggested

by Collins [9], and developed and proven by McCallum [10, 11]. When there are no equations

and only strict inequalities, and there are no free variables or we are interested only in the full-

dimensional part of the semi-algebraic set, we can use an even smaller projection operator

described in [12, 13]. For systems containing equational constraints that generate a zero-

dimensional ideal, Gröbner bases are used to find projection polynomials.

Mathematica uses the smallest of the previously mentioned projections that is appropriate for

the given example. Whenever applicable, we use the equational constraints; otherwise, we

attempt to use McCallum’s projection with Brown’s improvement. When the system does not

turn out to be well oriented, we compute Hong’s projection.

30 Advanced Algebra

The Lifting Phase of the CAD Algorithm

In the lifting phase, we find a cell decomposition of the semi-algebraic set. Generally speaking,

although the actual details depend on the projection operator used, we start with cells in 1

consisting of all distinct roots of A1 and the open intervals between the roots. We find a sample

point in each of the cells and remove the cells whose sample points do not satisfy the system

describing the semi-algebraic set (the system may contain conditions involving only t1). Next

we lift the cells to cells in n, one dimension at a time. Suppose we have lifted the cells to k.

To lift a cell C Õk to k+1, we find the real roots of Ak+1 with t1, …, tk replaced with the coordi-

nates of the sample point c in C. Since the polynomials of Ak+1 are delineable on C, each root r is

a value of a continuous algebraic function at c, and the function can be represented as a pth

root of a polynomial f œ Ak+1 such that r is the pth root of f Hc, tk+1L. Now the lifting of the cell C to

k+1 will consist of graphs of these algebraic functions and of the slices of C× between the

subsequent graphs. The sample points in each of the new cells will be obtained by adding the

k + 1st coordinate to c, equal to one of the roots, or to a number between two subsequent roots.

As in the first step, we remove those lifted cells whose sample points do not satisfy the system

describing the semi-algebraic set.

If k ¥ n, tk+1 = yl is a quantifier variable and we may not need to construct all the lifted cells. All

we need is to find the (necessarily constant) truth value of Ql yl Ql+1 yl+1 …Qm ym F on C. If Ql ã $, we

know that the value is True as soon as the truth value of Ql+1 yl+1 …Qm ym F on one of the lifted

cells is True. If Ql ã ", we know that the value is False as soon as the truth value of

Ql+1 yl+1 …Qm ym F on one of the lifted cells is False.

The coefficients of sample points computed this way are in general algebraic numbers. To save

costly algebraic number computations, Mathematica uses arbitrary-precision floating-point

number (Mathematica "bignum") approximations of the coefficients, whenever the results can

be validated. Note that using approximate arithmetic may be enough to prove that two roots of

a polynomial or a pair of polynomials are distinct, and to find a nonzero sign of a polynomial at

a sample point. What we cannot prove with approximate arithmetic is that two roots of a polyno-

mial or a pair of polynomials are equal, or that a polynomial is zero at a sample point. However,

we can often use information about the origins of the cell to resolve these problems. For ins-

tance, if we know that the resultant of two polynomials vanishes on the cell, and these two

polynomials have exactly one pair of complex roots that can be equal within the precision

bounds, we can conclude that these roots are equal. Similarly, if the last coordinate of a sample

point was a root of a factor of the given polynomial, we know that this polynomial is zero at the

sample point. If we cannot resolve all the uncertainties using the collected information about

the cell, we compute the exact algebraic number values of the coordinates. For more details,

see [14, 24].

Advanced Algebra 31

The coefficients of sample points computed this way are in general algebraic numbers. To save

costly algebraic number computations, Mathematica uses arbitrary-precision floating-point

number (Mathematica "bignum") approximations of the coefficients, whenever the results can

be validated. Note that using approximate arithmetic may be enough to prove that two roots of

a polynomial or a pair of polynomials are distinct, and to find a nonzero sign of a polynomial at

a sample point. What we cannot prove with approximate arithmetic is that two roots of a polyno-

mial or a pair of polynomials are equal, or that a polynomial is zero at a sample point. However,

tance, if we know that the resultant of two polynomials vanishes on the cell, and these two

polynomials have exactly one pair of complex roots that can be equal within the precision

bounds, we can conclude that these roots are equal. Similarly, if the last coordinate of a sample

point was a root of a factor of the given polynomial, we know that this polynomial is zero at the

sample point. If we cannot resolve all the uncertainties using the collected information about

the cell, we compute the exact algebraic number values of the coordinates. For more details,

see [14, 24].

Decision Problems, FindInstance, and Assumptions

A decision problem is a system with all variables existentially quantified, that is, a system of the

form

$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn are all variables in F. Solving a decision problem means deciding whether it is

equivalent to True or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequalities FHx1, …, xnL has solutions.

All algorithms used by Mathematica to solve real polynomial decision problems are capable of

producing a point satisfying FHx1, …, xnL if the system has solutions. Therefore the algorithms

discussed in this section are used not only in Reduce and Resolve for decision problems, but

also in FindInstance, whenever a single instance is requested and the system is quantifier free

or contains only existential quantifiers. The algorithms discussed here are also used for infer-

ence testing by Mathematica functions using assumptions such as Simplify, Refine,

Integrate, and so forth.

Solving this decision problem proves that the set S = 9Hx, yL œ2 : x4 + y4 - 2 x y § 1= contains the
disk of radius 4/5 centered at the origin.

In[9]:= ReduceB$8x,y< x2 + y2 §
16

25
&& x4 + y4 - 2 x y > 1 , RealsF

Out[9]= False

32 Advanced Algebra

This shows that S does not contain the unit disk and provides a counterexample: a point in the
unit disk that does not belong to S.

In[10]:= FindInstanceAx2 + y2 § 1 && x4 + y4 - 2 x y > 1, 8x, y<, RealsE

Out[10]= ::x Ø
3

4
, y Ø -

1

2
>>

The primary method that allows Mathematica to solve arbitrary real polynomial decision prob-

lems is the Cylindrical Algebraic Decomposition (CAD) algorithm. There are, however, several

other special case algorithms that provide much better performance in cases in which they are

applicable.

When all polynomials are linear with rational number or floating-point number coefficients,

Mathematica uses a method based on the Simplex linear programming method. For other linear

systems, Mathematica uses a variant of the Loos|Weispfenning linear quantifier elimination

algorithm [15]. When the system contains no equations and only strict inequalities, a faster

“generic” version of CAD is used [12, 13]. For systems containing equational constraints that

generate a zero-dimensional ideal, Mathematica uses Gröbner bases to find a solution. For

nonlinear systems with floating-point number coefficients, an inexact coefficient version of CAD

[16] is used.

There are also some special case methods that can be used as preprocessors to other decision

methods. When the system contains an equational constraint linear with a constant coefficient

in one of the variables, the constraint is used to eliminate the linear variable. If there is a

variable that appears in the system only linearly with constant coefficients, the variable is

eliminated using the Loos|Weispfenning linear quantifier elimination algorithm [15]. If there is a

variable that appears in the system only quadratically, the quadratic case of Weispfenning's

quantifier elimination by virtual substitution algorithm [22, 23] could be used to eliminate the

variable. For some examples this gives a substantial speedup; however, quite often it results in

a significant slowdown. By default, the algorithm is not used as a preprocessor. Setting the

system option QVSPreprocessor in the InequalitySolvingOptions group to True makes

Mathematica use it.

There are two other special cases of real decision algorithms available in Mathematica. An

algorithm by Aubry, Rouillier, and Safey El Din [17] applies to systems containing only equa-

tions. There are examples for which the algorithm performs much better than CAD; however,

for randomly chosen systems of equations, it seems to perform significantly worse; therefore, it

is not used by default. Setting the system option ARSDecision in the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm. Another

algorithm by G. X. Zeng and X. N. Zeng [18] applies to systems that consist of a single strict

inequality. Again, the algorithm is faster than CAD for some examples, but slower in general;

therefore, it is not used by default. Setting the system option ZengDecision in the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm.

Advanced Algebra 33

There are two other special cases of real decision algorithms available in Mathematica. An

algorithm by Aubry, Rouillier, and Safey El Din [17] applies to systems containing only equa-

tions. There are examples for which the algorithm performs much better than CAD; however,

is not used by default. Setting the system option ARSDecision in the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm. Another

algorithm by G. X. Zeng and X. N. Zeng [18] applies to systems that consist of a single strict

inequality. Again, the algorithm is faster than CAD for some examples, but slower in general;

therefore, it is not used by default. Setting the system option ZengDecision in the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm.

Arbitrary Real Polynomial Systems

Solving Real Polynomial Systems

According to Tarski's theorem [2], the solution set of an arbitrary (quantified) real polynomial

system is a semi-algebraic set. Reduce gives a description of this set in the solved form (4).

This shows for what r > 0 the set S = 9Hx, yL œ2 : x4 + y4 - 2 x y § 1= contains the disk of radius r
centered at the origin.

In[11]:= ReduceA"8x,y<,r>0&&x2+y2§r2 x
4 + y4 - 2 x y § 1, r, RealsE

Out[11]= r § RootA-2 + 2 Ò12 + Ò14 &, 2E

This gives the projection of x2 + y2 + z2 - x y z § 1 on the Hx, yL plane along the z axis.

In[12]:= ReduceA$z x2 + y2 + z2 - x y z § 1, 8x, y<E

Out[12]= x < -2 && y § -
-4 + 4 x2

-4 + x2
»» y ¥

-4 + 4 x2

-4 + x2
»»

Hx ã -1 && y ã 0L »» -1 < x < 1 && -
-4 + 4 x2

-4 + x2
§ y §

-4 + 4 x2

-4 + x2
»»

Hx ã 1 && y ã 0L »» x > 2 && y § -
-4 + 4 x2

-4 + x2
»» y ¥

-4 + 4 x2

-4 + x2

This finds the projection of Whitney's umbrella x2 - y2 zã 0 on the Hy, zL plane along the x axis.

In[13]:= ReduceA$x x2 - y2 z ã 0, 8y, z<, RealsE

Out[13]= Hy < 0 && z ¥ 0L »» y ã 0 »» Hy > 0 && z ¥ 0L

34 Advanced Algebra

Here we find the interior of the previous projection set by directly using the definition.

In[14]:= ReduceA$d,d>0 I"8v,w<,Hv-yL2+Hw-zL2§d I$u u2 - v2 w ã 0MM, 8y, z<, RealsE

Out[14]= z > 0

Quantifier Elimination

The objective of Resolve with no variables specified is to eliminate quantifiers and produce an

equivalent quantifier-free formula. The formula may or may not be in a solved form, depending

on the algorithm used.

Producing a fully solved quantifier-free formula here is difficult because of the complexity of
polynomials in a, b, and c appearing in the input. However, since x appears in the input polynomi-
als only linearly, the quantifier can be quickly eliminated using the Loos|Weispfenning linear
quantifier elimination algorithm, which depends very little on the complexity of coefficients.

In[15]:= ResolveA$x Ia x ¥ b3 - 3 a c2 - 5 a3 b c + 9 && b c2 x - 3 x § 11 a2 b - 3 c3 + 4 a b2 c + 9ME

Out[15]= Ha b cL œ Reals &&
II-a < 0 && -27 - 9 a - 11 a3 b - 3 b3 + 15 a3 b c - 4 a2 b2 c + 9 a c2 + 9 b c2 + b4 c2 + 3 a c3 - 5 a3 b2 c3 - 3 a b c4 §

0M »» Ia < 0 &&

27 + 9 a + 11 a3 b + 3 b3 - 15 a3 b c + 4 a2 b2 c - 9 a c2 - 9 b c2 - b4 c2 - 3 a c3 + 5 a3 b2 c3 + 3 a b c4 § 0M »»

I3 - b c2 < 0 && -27 - 9 a - 11 a3 b - 3 b3 + 15 a3 b c - 4 a2 b2 c + 9 a c2 + 9 b c2 +

b4 c2 + 3 a c3 - 5 a3 b2 c3 - 3 a b c4 § 0M »» I-3 + b c2 < 0 &&

27 + 9 a + 11 a3 b + 3 b3 - 15 a3 b c + 4 a2 b2 c - 9 a c2 - 9 b c2 - b4 c2 - 3 a c3 + 5 a3 b2 c3 + 3 a b c4 § 0M »»

Ia ã 0 && 9 + b3 - 5 a3 b c - 3 a c2 § 0 && -9 - 11 a2 b - 4 a b2 c + 3 c3 § 0M »»

I-3 + b c2 ã 0 && 9 + b3 - 5 a3 b c - 3 a c2 § 0 && -9 - 11 a2 b - 4 a b2 c + 3 c3 § 0MM

Algorithms

The primary method used by Mathematica for solving real polynomial systems and real quanti-

fier elimination is the CAD algorithm. There are, however, simpler methods applicable in special

cases.

If the system contains an equational constraint in a variable from the innermost quantifier, the

constraint is used to simplify the system using the identity

$y a yã bÔFHx1, …, xn; yLóa ≠ 0ÔFHx1, …, xn; b êaLÓ$y aã 0Ôbã 0ÔFHx1, …, xn; yL.

Note that if a or b is a nonzero constant, this eliminates the variable y.

If all polynomials in the system are linear in a variable from the innermost quantifier, the vari-

able is eliminated using the Loos|Weispfenning linear quantifier elimination algorithm [15].

If all polynomials in the system are at most quadratic in a variable from the innermost quanti-

fier, the variable is eliminated using the quadratic case of Weispfenning's quantifier elimination

by virtual substitution algorithm [22, 23]. With the default setting of the system option

QuadraticQE, the algorithm is used for Resolve with no variables specified and with at least

two parameters present, and for Reduce and Resolve with at least three variables as long as

elimination of one variable at most doubles the LeafCount of the system.

Advanced Algebra 35

If all polynomials in the system are at most quadratic in a variable from the innermost quanti-

fier, the variable is eliminated using the quadratic case of Weispfenning's quantifier elimination

by virtual substitution algorithm [22, 23]. With the default setting of the system option

QuadraticQE, the algorithm is used for Resolve with no variables specified and with at least

two parameters present, and for Reduce and Resolve with at least three variables as long as

elimination of one variable at most doubles the LeafCount of the system.

The CAD algorithm is used when the previous three special case methods are no longer applica-

ble, but there are still quantifiers left to eliminate or a solution is required.

For systems containing equational constraints that generate a zero-dimensional ideal, Mathemat-

ica uses Gröbner bases to find the solution set.

Options

The Mathematica functions for solving real polynomial systems have a number of options that

control the way that they operate. This section gives a summary of these options.

option name default value

Cubics False whether the Cardano formulas should be
used to express numeric solutions of cubics

Quartics False whether the Cardano formulas should be
used to express numeric solutions of
quartics

WorkingPrecision ¶ the working precision to be used in
computations

Reduce, Resolve, and FindInstance options affecting the behavior for real polynomial systems.

Cubics and Quartics

By default, Reduce does not use the Cardano formulas for solving cubics or quartics over the
reals.

In[16]:= ReduceAx3 - 3 x + 7 ã 0, x, RealsE

Out[16]= x ã RootA7 - 3 Ò1 + Ò13 &, 1E

36 Advanced Algebra

Setting options Cubics and Quartics to True makes Reduce use the Cardano formulas to
represent numeric solutions of cubics and quartics.

In[17]:= ReduceAx3 - 3 x + 7 ã 0, x, Reals, Cubics Ø TrueE

Out[17]= x ã -
2

7 - 3 5

1ë3

-
1

2
7 - 3 5

1ë3

Solutions of cubics and quartics involving parameters will still be represented using Root
objects.

In[18]:= ReduceAx3 ã a, x, Reals, Cubics Ø TrueE

Out[18]= x ã RootA-a + Ò13 &, 1E

This is because the Cardano formulas do not separate real solutions from nonreal ones. For
instance, in this case, for a = -1 the third radical solution is real, but for a = 1 the first radical
solution is real.

In[19]:= sol = ReduceAx3 ã a, x, Cubics Ø TrueE

Out[19]= x ã a1ë3 »» x ã -H-1L1ë3 a1ë3 »» x ã H-1L2ë3 a1ë3

In[20]:= sol ê. 88a Ø -1<, 8a Ø 1<<

Out[20]= 9x ã H-1L1ë3 »» x ã -H-1L2ë3 »» x ã -1, x ã 1 »» x ã -H-1L1ë3 »» x ã H-1L2ë3=

WorkingPrecision

The setting of WorkingPrecision affects the lifting phase of the CAD algorithm. With a finite

working precision prec, sample points in the first variable lifted are represented as arbitrary-

precision floating-point numbers with prec digits of precision. When we compute sample points

for subsequent variables, we find roots of polynomials whose coefficients depend on already

computed sample point coordinates and therefore may be inexact. Hence coordinates of sample

points will have precision prec or lower. Determining the sign of polynomials at sample points is

simply done by evaluating Sign of the floating-point number obtained after the substitution.

Using a finite WorkingPrecision may allow getting the answer faster; however, the answer

may be incorrect or the computation may fail due to loss of precision.

Advanced Algebra 37

This problem is too hard for Reduce working in infinite WorkingPrecision, due to the high
degrees of the algebraic numbers involved. Using sample points with 30 digits of precision gives
a solution in under two seconds.

In[21]:= ReduceA$8y,z< Ix4 + 2 y4 + 3 z4 § 1 && x3 - 9 y3 + 7 z3 ¥ 2M,
x, Reals, WorkingPrecision Ø 30E êê Timing

Out[21]= 90.821, RootA-192 899 - 6912 Ò13 + 589065 Ò14 + 5184 Ò16 - 589065 Ò18 - 1728 Ò19 + 196571 Ò112 &, 1E § x §

RootA-192 899 - 6912 Ò13 + 589065 Ò14 + 5184 Ò16 - 589065 Ò18 - 1728 Ò19 + 196571 Ò112 &, 2E=

ReduceOptions Group of System Options

Here are the system options from the ReduceOptions group that may affect the behavior of

Reduce, Resolve, and FindInstance for real polynomial systems. The options can be set with

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.

option name default value

"FactorInequalities" False whether inequalities should be factored at
the input preprocessing stage

"ReorderVariables" False whether Reduce and Resolve are allowed
to reorder the specified variables

ReduceOptions group options affecting the behavior of Reduce, Resolve, and FindInstance for real
polynomial systems.

FactorInequalities

Using transformations

(7)
f g < 0ö f < 0 Ï g > 0 Í f > 0 Ï g < 0
f g § 0ö f § 0 Ï g ¥ 0 Í f ¥ 0 Ï g § 0

at the input preprocessing stage may speed up the computations in some cases. In general,

however, it does not make the problem easier to solve, and, in some cases, it may make the

problem significantly harder. By default, these transformations are not used.

38 Advanced Algebra

Here Reduce does not use transformations (7).

In[22]:= t1 =
TimingAReduceAIx3 - 5 x y2 - 3 y2 + 7 z2 - 1M Ix2 - 3 x y + 5 y2 + 3 y z - 2M Ix2 - 2 z + y - 3M § 0,

8x, y, z<, RealsEEP1T;

t2 = TimingBReduceB‰
i=1

10

Hx - y iL § 0, 8x, y<, RealsFFP1T;

t3 = TimingAReduceA
y21 - x y7 + z - 1 < 0 && y14 + 3 x2 y7 - 11 z + 7 > 0 && y7 ¥ 0, 8x, y, z<, RealsEEP1T;

8t1,
t2,
t3<

Out[25]= 88.152, 0.02, 0.04<

Using transformations (7) speeds up the first example; however, it makes the other two exam-
ples significantly slower. The second example suffers from exponential growth of the number of
inequalities. By replacing y7 ¥ 0 with y ¥ 0 in the third example, we get a degree-21 system in y
instead of a degree-3 system in y7.

In[26]:= SetSystemOptions@"ReduceOptions" Ø "FactorInequalities" Ø TrueD;
t1 = TimingAReduceAIx3 - 5 x y2 - 3 y2 + 7 z2 - 1M

Ix2 - 3 x y + 5 y2 + 3 y z - 2M Ix2 - 2 z + y - 3M § 0, 8x, y, z<, RealsEEP1T;

t2 = TimingBReduceB‰
i=1

10

Hx - y iL § 0, 8x, y<, RealsFFP1T;

t3 = TimingAReduceAy21 - x y7 + z - 1 < 0 && y14 + 3 x2 y7 - 11 z + 7 > 0 && y7 ¥ 0,
8x, y, z<, RealsEEP1T;

8t1,
t2,
t3<

Out[28]= 87.861, 8.833, 0.411<

In[29]:= SetSystemOptions@"ReduceOptions" Ø "FactorInequalities" Ø FalseD;

ReorderVariables

By default, Reduce is not allowed to reorder the specified variables. Variables appearing earlier
in the variable list may be used to express solutions for variables appearing later in the variable
list, but not vice versa.

In[30]:= ReduceAx > y3 + 7 y - 1, 8x, y<, RealsE

Out[30]= y < RootA-1 - x + 7 Ò1 + Ò13 &, 1E

Setting the system option ReorderVariables -> True allows Reduce to pick a variable order
that makes the system easier to solve.

In[31]:= SetSystemOptions@"ReduceOptions" Ø "ReorderVariables" Ø TrueD;
ReduceAx > y3 + 7 y - 1, 8x, y<, RealsE

Out[32]= x > -1 + 7 y + y3

Advanced Algebra 39

In[33]:= SetSystemOptions@"ReduceOptions" Ø "ReorderVariables" Ø FalseD;

InequalitySolvingOptions Group of System Options

Here are the system options from the InequalitySolvingOptions group that may affect the

behavior of Reduce, Resolve, and FindInstance for real polynomial systems. The options can

be set with

SetSystemOptions@"InequalitySolvingOptions" -> 8"option name" -> value<D.

option name default value

"ARSDecision" False whether to use the decision algorithm
given in [17]

"BrownProjection" True whether the CAD algorithm should use the
improved projection operator given in [8]

"CAD" True whether to use the CAD algorithm

"CADDefaultPrecision" 30.103 the precision to which nonrational roots are
computed in the lifting phase of the CAD
algorithm; if computation with approximate
roots cannot be validated, the algorithm
reverts to exact algebraic number
computation

"CADSortVariables" True whether the CAD algorithm should use
variable reordering heuristics for quantifier
variables within a single quantifier or in
decision problems

"CADZeroTest" 80,¶< determines the zero testing method used
by the CAD algorithm for expressions
obtained by evaluating polynomials at
points with algebraic number coordinates

"ContinuedFractionRootIsolation"

True whether the CAD algorithm should use a
real root isolation method based on contin-
ued fractions rather than on interval
bisection [19]

40 Advanced Algebra

"EquationalConstraintsCAD" Automatic whether the projection phase of the CAD
algorithm should use equational con-
straints; with the default Automatic
setting the operator proven correct in [11]
is used; if True the unproven projection
operator using multiple equational con-
straints suggested in [4] is used

"FGLMBasisConversion" False whether the CAD algorithm should use a
Gröbner basis conversion algorithm based
on [20] to find univariate polynomials in
zero-dimensional Gröbner bases; other-
wise, GroebnerWalk is used

"FGLMElimination" Automatic whether the decision and quantifier elimina-
tion algorithms for systems with equational
constraints forming a zero-dimensional
ideal should use an algorithm based on
[20] to look for linear equation constraints
(with constant leading coefficients) in one
of the variables to be used for elimination

"GenericCAD" True whether to use the variant of the CAD
algorithm described in [13] for decision
and optimization problems

"GroebnerCAD" True whether the CAD algorithm for systems
with equational constraints forming a zero-
dimensional ideal should use Gröbner
bases as projection

"LinearDecisionMethodCrossovers"

80,30,20< determines methods used to find solutions
of systems of linear equations and inequali-
ties with rational number coefficients

"LinearEquations" True whether to use linear equation constraints
(with constant leading coefficients) to
eliminate variables in decision problems

"LinearQE" True whether to use the Loos|Weispfenning
linear quantifier elimination algorithm [15]
for quantifier elimination problems

"LWDecision" True whether to use the Loos|Weispfenning
linear quantifier elimination algorithm [15]
for decision problems with linear inequality
systems

Advanced Algebra 41

"LWPreprocessor" Automatic whether to use the Loos|Weispfenning
linear quantifier elimination algorithm [15]
as a preprocessor for the decision problems

"ProjectAlgebraic" Automatic whether the CAD algorithm should com-
pute projections with respect to variables
replacing algebraic number coefficients or
use their minimal polynomials instead

"ProveMultiplicities" True determines the way in which the lifting
phase of the CAD algorithm validates
multiple roots and zero leading coefficients
of projection polynomials

"QuadraticQE" Automatic whether to use the quadratic case of
Weispfenning's quantifier elimination by
virtual substitution algorithm in quantifier
elimination

"QVSPreprocessor" False whether to use the quadratic case of
Weispfenning's quantifier elimination by
virtual substitution algorithm as a preproces-
sor for the decision problems

"ReducePowers" True whether to replace xd with x in the input to
the CAD, where d is the GCD of all expo-
nents of x in the system

"RootReduced" False whether the coordinates of solutions of
systems with equational constraints form-
ing a zero-dimensional ideal should be
reduced to single Root objects

"Simplex" True whether to use the Simplex algorithm in
the decision algorithm for linear inequality
systems

"ThreadOr" True whether to solve each case of disjunction
separately in decision problems, optimiza-
tion, and in quantifier elimination of existen-
tial quantifiers when the quantifier-free
system does not need to be solved

"ZengDecision" False whether to use the decision algorithm
given in [18]

InequalitySolvingOptions group options affecting the behavior of Reduce, Resolve, and
FindInstance for real polynomial systems.

42 Advanced Algebra

ARSDecision

The option ARSDecision specifies whether Mathematica should use the algorithm by Aubry,
Rouillier, and Safey El Din [17]. The algorithm applies to decision problems containing only
equations. There are examples for which the algorithm performs much better than the CAD
algorithm; however, for randomly chosen systems of equations it seems to perform significantly
worse. Therefore it is not used by default. Here is a decision problem (referred to as butcher8 in
the literature), which is not done by CAD in 1000 seconds, but which can be done quite fast by
the algorithm given in [17].

In[34]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ARSDecision" Ø TrueD;

FindInstanceB-a - b + b1 + b2 + b3 ã 0 && -
1

2
-
b

2
+ a b - b2 + b2 c2 + b3 c3 ã 0 &&

4 b

3
+ b2 + b3 - a

1

3
+ b2 + b2 c2

2 + b3 c3
2 ã 0 &&

2 b

3
+ b2 + b3 - a

1

6
+
b

2
+ b2 + b3 c2 a3,2 ã

0 && -
1

4
-
b

4
-
5 b2

2
-
3 b3

2
- b4 + a Ib + b3M + b2 c2

3 + b3 c3
3 ã 0 &&

-
1

8
-
3 b

8
-
7 b2

4
-
3 b3

2
- b4 + a

b

2
+
b2

2
+ b3 + b3 c2 c3 a3,2 ã 0 &&

-
1

12
-

b

12
-
7 b2

6
-
3 b3

2
- b4 + a

2 b

3
+ b2 + b3 + b3 c2

2 a3,2 ã 0 &&

1

24
+
7 b

24
+
13 b2

12
+
3 b3

2
+ b4 - a

b

3
+ b2 + b3 ã 0,

8a, b, a3,2, b1, b2, b3, c2, c3<, RealsF êê Timing

Out[34]= :0.46, ::a Ø RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E, b Ø -1 + RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E, a3,2 Ø

1

356
J-93 + 630 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 684 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

b1 Ø
1

2916
J-3959 + 3954 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E +

2028 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E
2
N, b2 Ø

1

2916

J-1381 + 4542 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 3144 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E
2
N,

b3 Ø
1

243
J202 - 222 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E + 93 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

c2 Ø
1

3
J-4 + 17 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 12 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

c3 Ø 2 - RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E>>>

In[35]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ARSDecision" Ø FalseD;

Advanced Algebra 43

BrownProjection

By default, the Mathematica implementation of the CAD algorithm uses Brown’s improved
projection operator [8]. The improvement usually speeds up computations substantially. There
are some cases where using Brown’s projection operator results in a slight slowdown. The
option BrownProjection specifies whether Brown’s improvement should be used. In the first
example [21], using Brown’s improved projection operator results in a speedup by a factor of 3;
in the second, it results in a 40% slowdown.

In[36]:= t1 = TimingAReduceA$8q1,q2<,q1>1&&q2>0 I"w,wœReals II4 - q12M w4 +
I4 IH1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0 &&

I4 - q12M w4 + I4 IH-1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0MMEEP1T;
f = x3 - 5 x y - 3 y2 + 7;
g = x4 - 4 x2 y - y3 - 1;
t2 = TimingAReduceAf z2 < f + g, 8x, y, z<, RealsEEP1T;
8t1, t2<

Out[40]= 80.301, 0.24<

In[41]:= SetSystemOptions@"InequalitySolvingOptions" Ø "BrownProjection" Ø FalseD;

In[42]:= t1 = TimingAReduceA$8q1,q2<,q1>1&&q2>0 I"w,wœReals II4 - q12M w4 +
I4 IH1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0 &&

I4 - q12M w4 + I4 IH-1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0MMEEP1T;
t2 = TimingAReduceAf z2 < f + g, 8x, y, z<, RealsEEP1T;
8t1, t2<

Out[44]= 80.611, 0.17<

In[45]:= SetSystemOptions@"InequalitySolvingOptions" Ø "BrownProjection" Ø TrueD;

CAD

The option CAD specifies whether Mathematica is allowed to use the CAD algorithm. With CAD
set to False, computations that require CAD will fail immediately instead of attempting the
high complexity CAD computation. With CAD enabled, this computation is not done in 1000
seconds.

In[46]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CAD" Ø FalseD;
ReduceAx12 + 2 x7 y5 z3 - 21 z4 t2 y7 + 19 § 0 && t7 - 24 x5 y4 z - 32 z11 ã 0,

8x, y, z, t<, RealsE êê Timing

Reduce::nsmet :
This system cannot be solved with the methods available to Reduce. à

Out[47]= 90.641, ReduceA19 + x12 + 2 x7 y5 z3 - 21 t2 y7 z4 § 0 && t7 - 24 x5 y4 z - 32 z11 ã 0, 8x, y, z, t<, RealsE=

In[48]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CAD" Ø TrueD;

44 Advanced Algebra

CADDefaultPrecision

By default, Mathematica uses validated numeric computations in the lifting phase of the CAD
algorithm, reverting to exact algebraic number computations only if the numeric computations
cannot be validated [14]. The option CADDefaultPrecision specifies the initial precision with
which the sample point coordinates are computed. Choosing the value of
CADDefaultPrecision is a trade-off between speed of numeric computations and the number
of points where the algorithm reverts to exact computations due to precision loss. With the
default value of 100 bits, the cases where the algorithm needs to revert to exact computations
due to precision loss seem quite rare. Setting CADDefaultPrecision to Infinity causes
Mathematica to use exact algebraic number computations in the lifting phase of CAD. Here is an
example that runs fastest with the lowest CADDefaultPrecision setting. (Specifying values
lower than 16.2556 (54 bits) results in CADDefaultPrecision being set to 16.2556.) With
CADDefaultPrecision -> Infinity, the example did not finish in 1000 seconds.

In[49]:= ReduceA$8x,y< I931 + 576 y3 + 626 x2 y - 564 y z - 750 z2 < 0 && -535 + 961 y + 578 z § 0 &&
-410 + 528 y2 - 905 x § 0 && z2 - 71 x y + 4 y2 - 81 § 0M, z, RealsE êê Timing

Out[49]= 90.611, RootA
-39135557564264692223468097 + 70369504018854614821499160 Ò1 - 7499740633203604239774740

Ò12 - 91567784348961473370737040 Ò13 + 10948550214483020279449920 Ò14 -

1313704439523340062769800 Ò15 - 47035179704857006865939040 Ò16 -

18217590707582813495520 Ò17 + 23290773235831759680 Ò18 + 9309551043209472 Ò110 &, 1E < z §

RootA-55 420506053355 + 915537370820 Ò1 - 18135837359975 Ò12 + 7238953493376 Ò13 &, 1E=

In[50]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADDefaultPrecision" Ø 16D;
ReduceA$8x,y< I931 + 576 y3 + 626 x2 y - 564 y z - 750 z2 < 0 && -535 + 961 y + 578 z § 0 &&

-410 + 528 y2 - 905 x § 0 && z2 - 71 x y + 4 y2 - 81 § 0M, z, RealsE êê Timing

Out[51]= 90.551, RootA
-39135557564264692223468097 + 70369504018854614821499160 Ò1 - 7499740633203604239774740

Ò12 - 91567784348961473370737040 Ò13 + 10948550214483020279449920 Ò14 -

1313704439523340062769800 Ò15 - 47035179704857006865939040 Ò16 -

18217590707582813495520 Ò17 + 23290773235831759680 Ò18 + 9309551043209472 Ò110 &, 1E < z §

RootA-55 420506053355 + 915537370820 Ò1 - 18135837359975 Ò12 + 7238953493376 Ò13 &, 1E=

In[52]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADDefaultPrecision" Ø 30.103D;

Advanced Algebra 45

CADSortVariables

The performance of the CAD algorithm often depends quite strongly on the order of variables
used. Some aspects of the variable ordering are fixed by the problem we are solving: quantifier
variables need to be projected before free variables, and variables from innermost quantifiers
need to be projected first. Variables specified in Reduce and Resolve cannot be reordered
unless ReorderVariables is set to True. This, however, still leaves some freedom in order-
ing of variables: variables from the same quantifier can be reordered, and so can be variables
given to FindInstance. By default, Mathematica uses a variable ordering heuristic to deter-
mine the order of these variables. In most cases the heuristic improves the performance of
CAD; in some examples, however, the heuristic does not pick the best ordering. Setting
CADSortVariables to False disables the heuristic and the order of variables used is as given
in the quantifier variable list or in the variable list argument to FindInstance. Here is an
example [21] that without reordering of quantified variables does not finish in 1000 seconds.

In[53]:= TimingAReduceA
"8p1,p2,w1,w2<,16§20 p1§25&&16§20 p2§25&&0§w1§2 Ip2 H1 + p1 q1L < 0 && -24 w1

2 + p2
2 IH1 + p1 q1L2 - 25M >

0 && I400 - q1
2M w2

2 + p2
2 I400 H1 + p1 q1L2 - q1

2M > 0M, q1, RealsEE

Out[53]= :0.521, -20 § q1 <
5

4
-1 - 5 7 >

This shows the optimal variable ordering for the example.

In[54]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADSortVariables" Ø FalseD;

In[55]:= TimingAReduceA
"8w1,w2,p2,p1<,16§20 p1§25&&16§20 p2§25&&0§w1§2 Ip2 H1 + p1 q1L < 0 && -24 w1

2 + p2
2 IH1 + p1 q1L2 - 25M >

0 && I400 - q1
2M w2

2 + p2
2 I400 H1 + p1 q1L2 - q1

2M > 0M, q1, RealsEE

Out[55]= :0.47, -20 § q1 <
5

4
-1 - 5 7 >

In[56]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADSortVariables" Ø TrueD;

46 Advanced Algebra

CADZeroTest

One of the most time-consuming operations in the lifting phase of the CAD algorithm is determin -

ing the sign of a polynomial evaluated at a sample point with algebraic number coordinates. We

try to avoid the problem by using sample points with arbitrary-precision floating-point number

coordinates and keeping track of the “genealogy” of projection polynomials and sample points

in order to validate the results. However, if some of the results cannot be validated, we have to

revert to computations with exact algebraic number coordinates. To determine the sign of a

polynomial evaluated at a sample point with algebraic number coordinates, we first evaluate

the polynomial at numeric approximations of the algebraic numbers. If the result is nonzero

(that is, zero is not within the error bounds of the resulting bignum), we know the sign. Other-

wise, we need to test whether a polynomial expression in algebraic numbers is zero. The value

of the CADZeroTest option specifies what zero testing method should be used at this moment.

The value should be a pair 8t, acc<. With the default value tã 0, Mathematica computes an accu-

racy eacc such that if the expression is zero up to this accuracy, it must be zero. If eacc § acc, the

value of the expression is computed up to accuracy eacc and its sign is checked. Otherwise, the

expression is represented as a single Root object using RootReduce and the sign of the Root

object is found. With the default value accã¶, we revert to RootReduce if

eacc > $MaxPrecision. If tã 1, RootReduce is always used. If tã 2, expressions that are zero up

to accuracy acc are considered zero. This is the fastest method, but, unlike the other two, it

may give incorrect results because expressions that are nonzero but close to zero may be

treated as zero.

This example runs faster with the CAD algorithm using the 30 digits of accuracy numeric zero
test. The result in this example is correct; however, this setting of CADZeroTest may lead to
incorrect results.

In[57]:= t1 = TimingAReduceA$z Iz3 - a2 z + b ã 0 && z3 - b2 z + a ã 0M, 8a, b<, RealsEE@@1DD;
SetSystemOptions@"InequalitySolvingOptions" Ø "CADZeroTest" Ø 82, 30<D;
t2 = TimingAReduceA$z Iz3 - a2 z + b ã 0 && z3 - b2 z + a ã 0M, 8a, b<, RealsEE@@1DD;
8t1, t2<

Out[60]= 80.271, 0.23<

In[61]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADZeroTest" Ø 80, Infinity<D;

Advanced Algebra 47

ContinuedFractionRootIsolation

To isolate real roots of polynomials, Mathematica uses methods based on Descartes’ rule of

sign. There are two interval subdivision strategies implemented, one based on interval bisection

and another based on continued fractions (see [19] for details). The variant based on continued

fractions is generally faster and is used by default. Setting ContinuedFractionRootIsolation

to False causes Mathematica to use the interval bisection variant.

Here is an example where the speed difference between the two root isolation methods affects
Reduce timing. We need to clear the Root cache between the Reduce calls; otherwise, the
second call would save time on factoring the 400th degree polynomial when Root objects are
created.

In[62]:= SeedRandom@1234D;

f = ‚

i=0

399

RandomInteger@8-1000, 1000<D xi + x400;

t1 = Timing@Reduce@f § 0, x, RealsDD;
ClearSystemCache@"Root"D;
SetSystemOptions@

"InequalitySolvingOptions" Ø "ContinuedFractionRootIsolation" Ø FalseD;
t2 = Timing@Reduce@f § 0, x, RealsDD;
8t1P1T, t2P1T, t1P2T === t2P2T<

Out[68]= 83.705, 4.607, True<

In[69]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "ContinuedFractionRootIsolation" Ø TrueD;

EquationalConstraintsCAD

The EquationalConstraintsCAD option specifies whether the projection phase of the CAD

algorithm should use equational constraints. With the default setting Automatic, Mathematica

uses the projection operator proven correct in [11]. With EquationalConstraintsCAD -> True,

the smaller but unproven projection operator suggested in [4] is used.

Here we find an instance satisfying the system using the CAD algorithm with
EquationalConstraintsCAD -> True. Even though the method used to find the solution
was based on an unproven conjecture, the solution is proven to be correct, that is, it satisfies
the input system.

In[70]:= SetSystemOptions@"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø TrueD;
FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&

1 + a - v2
2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3

2 ã 0 &&
18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -

2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[71]= :0.18, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

With the default setting EquationalConstraintsCAD -> Automatic, finding a solution of
this system takes more than twice as long.

48 Advanced Algebra

With the default setting EquationalConstraintsCAD -> Automatic, finding a solution of
this system takes more than twice as long.

In[72]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø AutomaticD;

FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[73]= :0.491, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

With EquationalConstraintsCAD -> False, finding a solution of this system again takes
almost twice as long.

In[74]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø FalseD;

FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[75]= :0.921, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

Here FindInstance shows that the system has no solutions. Since it is using the CAD algo-
rithm with EquationalConstraintsCAD -> True, the correctness of the answer depends on
an unproven conjecture.

In[76]:= SetSystemOptions@"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø TrueD;
FindInstanceAk ≠ 1 && -1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&

1 + a - v2
2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3

2 ã 0 &&
18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -

2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[77]= 80.301, 8<<

Advanced Algebra 49

With the default setting EquationalConstraintsCAD -> Automatic, proving that the
system has no solutions takes longer, but the answer is known to be correct.

In[78]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø AutomaticD;

FindInstanceAk ≠ 1 && -1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[79]= 80.911, 8<<

FGLMBasisConversion

For systems with equational constraints generating a zero-dimensional ideal I, Mathematica

uses a variant of the CAD algorithm that finds projection polynomials using Gröbner basis

methods. If the lexicographic order Gröbner basis of I does not contain linear polynomials with

constant coefficients in every variable but the last one, then for every variable xi we find a

univariate polynomial in xi that belongs to I. Mathematica can do this in two ways. By default, it

uses a method based on GroebnerWalk computations. Setting FGLMBasisConversion to True

causes Mathematica to use a method based on [20].

The method based on [20] seems to be slightly slower in general.

In[80]:= t1 = TimingAReduceAx10 + 3 x4 - 5 x3 + 7 x2 - 9 x ã 11 &&
y3 - y2 + x ã 1 && z3 + 2 z - 3 x ã 4, 8x, y, z<, RealsEE;

SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMBasisConversion" Ø TrueD;
t2 = TimingAReduceAx10 + 3 x4 - 5 x3 + 7 x2 - 9 x ã 11 &&

y3 - y2 + x ã 1 && z3 + 2 z - 3 x ã 4, 8x, y, z<, RealsEE;
8t1P1T, t2P1T, t1P2T === t2P2T<

Out[83]= 80.15, 0.181, True<

In[84]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMBasisConversion" Ø FalseD;

FGLMElimination

The FGLMElimination option specifies whether Mathematica should use a special case heuristic

applicable to systems with equational constraints generating a zero-dimensional ideal I. The

heuristic uses a method based on [20] to find in I polynomials that are linear (with a constant

coefficient) in one of the quantified variables and uses such polynomials for elimination. The

method can be used both in the decision algorithm and in quantifier elimination. With the

default Automatic setting, it is used only in Resolve with no “solve” variables specified and for

systems with at least two free variables.

This by default uses the elimination method based on [20], and returns a quantifier-free system
in an unsolved form.

50 Advanced Algebra

This by default uses the elimination method based on [20], and returns a quantifier-free system
in an unsolved form.

In[85]:= ResolveA
$z Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 && y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M,
RealsE êê Timing

Out[85]= 90.05,

-387703943456010 + 836307322497954 x + 94016672514000 x2 + 42483692361858 x3 + 48951449972226
x4 + 592457191920 x5 + 6111106822080 x6 - 682099934085412 y + 2386910531381715 x y -

33458557021065 x2 y + 179029980402448 x3 y + 23352969127806 x4 y - 10673134807104 x5 y +

1298614472640 x6 y - 6165373996350 y2 + 1787681183046234 x y2 - 463516345125783 x2 y2 +

1221461511750 x3 y2 + 7275931779870 x4 y2 - 3220021226880 x5 y2 + 453968712000 x6 y2 -

1333886745639423 y3 - 2629577891362724 y4 - 20449871823375 y5 + 473314204852983 y6 ã 0 &&
-567795134 + 1059962112 x + 430480332 x2 + 309282350 x3 - 11545182 x4 + 23721822 x5 -

7231680 x6 + 2099520 x7 + 320591520 y + 927840621 x y - 389548395 x2 y - 209188980 x3 y -

29695086 x4 y + 15536448 x5 y - 3779136 x6 y - 40678200 y2 - 761836590 x y2 +

158630400 x2 y2 + 30508650 x3 y2 - 2255020201 y3 + 1242292140 y4 - 157628025 y5 ã 0 &&
-394500 + 962118 x - 153630 x2 + 43806 x3 + 17982 x4 + 5760 x6 - 578624 y + 2180295 x y -

352890 x2 y + 291671 x3 y + 12492 x4 y - 10368 x5 y + 168480 y2 + 1168968 x y2 - 445266 x2 y2 -

50220 x3 y2 - 1370121 y3 - 2271328 y4 + 652860 y5 + 445266 y6 - 112995 y7 ã 0 &&
-8 + 18 x + 2 x3 + 21 x y - 9 x2 y - 31 y3 + 9 x y3 ã 0=

With FGLMElimination set to False, the example takes longer to compute and the answer is
in a solved form. (We show N of the answer for better readability.)

In[86]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø FalseD;
ResolveA

$z Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 && y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M,
RealsE êê Timing êê N

Out[87]= 90.11,

Iy ã -0.616811 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 + 7185.17 y5 + 10827. y6 -

17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 + 90884.3 y12 +

9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã -0.510025 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 +

7185.17 y5 + 10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã -0.0897985 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 +

7185.17 y5 + 10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã 0.664342 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 + 7185.17 y5 +

10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M=

Advanced Algebra 51

If there is only one free variable, Resolve by default does not use the elimination method
based on [20]. (We show N of the answer for better readability.)

In[88]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø AutomaticD;
ResolveA$8y,z< Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 &&

y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M, RealsE êê Timing êê N

Out[89]= 80.13, x ã -1.05088 »» x ã 0.452835 »» x ã 0.47114 »» x ã 0.534627<

With FGLMElimination set to True, the example takes longer to compute and the answer is
given in an unsolved form.

In[90]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø TrueD;
ResolveA$8y,z< Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 &&

y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M, RealsE êê Timing

Out[91]= 90.2,

-27206534396294947 + 328914818820879210 x - 1654010622073883961 x2 + 4186250649401504955 x3 -

4131264062314837638 x4 - 5359613482785909285 x5 + 20455887169340134671 x6 -

18111422036067816735 x7 - 14851799572578604767 x8 + 46025930760201888392 x9 -

33951750015320895222 x10 - 3130213891174116318 x11 + 18846711211560897036 x12 -

13729694750794525104 x13 + 8758251556584250005 x14 - 4917731156959045278 x15 +

2285701226953461792 x16 - 895869248032870029 x17 + 304502137753065983 x18 -

88547080320192096 x19 + 21286381859013600 x20 - 4017686252055552 x21 +

554267616334848 x22 - 49218499805184 x23 + 2176782336000 x24 ã 0=

In[92]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø AutomaticD;

GenericCAD

Mathematica uses a simplified version of the CAD algorithm described in [13] to solve decision

problems or find solutions of real polynomial systems that do not contain equations. The

method finds a solution or proves that there are no solutions if all inequalities in the system are

strict (< or >). The method is also used for systems containing weak (<= or >=) inequalities. In

this case, if it finds a solution of the strict inequality version of the system, it is also a solution

of the original system. However, if it proves that the strict inequality version of the system has

no solutions, the full version of the CAD algorithm is needed to decide whether the original

system has solutions. The system option GenericCAD specifies whether Mathematica should use

the method.

Here the GenericCAD method finds a solution of the strict inequality version of the system.

In[93]:= FindInstanceA
x4 + y4 + z4 § 12 && x2 y2 - 3 x2 z2 ¥ 1 && x y § 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[93]= :0.191, ::x Ø
145

128
, y Ø -

113

64
, z Ø -

113

128
>>>

52 Advanced Algebra

Without GenericCAD, finding a solution of the system takes much longer.

In[94]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceA

x4 + y4 + z4 § 12 && x2 y2 - 3 x2 z2 ¥ 1 && x y § 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[95]= :0.961, ::x Ø
309

256
, y Ø -

223

128
, z Ø -

1809

2048
>>>

In[96]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

This system has no solutions and contains weak inequalities. After the GenericCAD method
finds no solutions of the strict inequality version of the system, Mathematica needs to run the
full CAD to prove that there are no solutions.

In[97]:= FindInstanceAx4 + y4 + z4 § 12 && x3 + y3 - z3 ¥ 9, 8x, y, z<, RealsE êê Timing

Out[97]= 81.122, 8<<

Running the same example with GenericCAD -> False allows you to save the time previously
used by the GenericCAD computation.

In[98]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceAx4 + y4 + z4 § 12 && x3 + y3 - z3 ¥ 9, 8x, y, z<, RealsE êê Timing

Out[99]= 80.611, 8<<

In[100]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

This system contains only strict inequalities, so GenericCAD can prove that it has no solutions.

In[101]:= FindInstanceA
x4 + y4 + z4 < 12 && x2 y2 - 3 x2 z2 > 7 && x y < 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[101]= 80.18, 8<<

Without GenericCAD, it takes much longer to prove that the system has no solutions.

In[102]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceA

x4 + y4 + z4 < 12 && x2 y2 - 3 x2 z2 > 7 && x y < 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[103]= 82.393, 8<<

In[104]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

GroebnerCAD

For systems with equational constraints generating a zero-dimensional ideal I, Mathematica

uses a variant of the CAD algorithm that finds projection polynomials using Gröbner basis

methods. Setting GroebnerCAD to False causes Mathematica to use the standard CAD projec-

tion instead.

With GroebnerCAD -> False, this example runs three orders of magnitude slower.

Advanced Algebra 53

With GroebnerCAD -> False, this example runs three orders of magnitude slower.

In[105]:= a1 = ReduceAx2 + y2 + z2 ã 12 && x2 y2 - 3 x2 z2 ã 1 && x y ã 3 z3 + 4, 8x, y, z<, RealsE; êê
Timing

Out[105]= 80.03, Null<

In[106]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GroebnerCAD" Ø FalseD;

In[107]:= a2 = ReduceAx2 + y2 + z2 ã 12 && x2 y2 - 3 x2 z2 ã 1 && x y ã 3 z3 + 4, 8x, y, z<, RealsE; êê
Timing

Out[107]= 82.043, Null<

This checks that the solutions are equivalent.

In[108]:= Chop@H8x, y, z< êê. N@8ToRules@a1D<, 30DL - H8x, y, z< êê. N@8ToRules@a2D<, 30DLD

Out[108]= 880, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<

In[109]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GroebnerCAD" Ø TrueD;

LinearDecisionMethodCrossovers, LWDecision, and Simplex

These three options specify methods used to solve decision problems or find solution instances

for systems of linear equations and inequalities. The available methods are the Loos|Weispfen-

ning algorithm [15], the Simplex algorithm, and the Revised Simplex algorithm. All three meth-

ods can handle systems with rational or floating-point number coefficients. For systems with

exact numeric nonrational coefficients, only the Loos|Weispfenning algorithm is implemented.

LWDecision specifies whether the Loos|Weispfenning algorithm is available. Simplex specifies

whether the Simplex and Revised Simplex algorithms can be used.

LinearDecisionMethodCrossovers determines which method is used if all are available and

applicable. The value of the option should be a triple 8m, n, p<. For linear systems with up to m

variables, Mathematica uses the Loos|Weispfenning method [15]; for systems with m + 1 to n

variables, the Simplex algorithm; and for more than n variables, the Revised Simplex algorithm.

If the Simplex algorithm is used, the slack variables are used if the number of inequalities is no

more than p times the number of variables. The default values are m = 0, n = 30, and p = 20.

By default, the Simplex algorithm is used to find a solution of a linear system with three
variables.

In[110]:= FindInstance@
x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12, 8x, y, z<, RealsD êê Timing

Out[110]= :0., ::x Ø
199

138
, y Ø

149

276
, z Ø

34

69
>>>

Here the Revised Simplex algorithm is used.

54 Advanced Algebra

Here the Revised Simplex algorithm is used.

In[111]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 80, 0, 20<D;

FindInstance@x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12,
8x, y, z<, RealsD êê Timing

Out[112]= :0.081, ::x Ø 0, y Ø
5

52
, z Ø

33

26
>>>

Here the Loos|Weispfenning algorithm is used.

In[113]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 810, 0, 20<D;

FindInstance@x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12,
8x, y, z<, RealsD êê Timing

Out[114]= :3.17801µ10-15, ::x Ø
34

23
, y Ø

5

46
, z Ø

53

69
>>>

In[115]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 80, 30, 20<D;

Here the Loos|Weispfenning algorithm is used because the Simplex and Revised Simplex algo-
rithms are not implemented for systems with exact nonrational coefficients.

In[116]:= FindInstanceB

x + p y + ‰ z > Sin@1D && Log@2D x + p‰ y - 7p z ã
8

‰
, 8x, y, z<, RealsF êê Timing

Out[116]= :0.01, ::x Ø 0, y Ø 2, z Ø -
8 7-p

‰
+ 2 7-p p‰>>>

With LWDecision set to False, and Simplex and Revised Simplex not applicable,
FindInstance has to use the CAD algorithm here.

In[117]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWDecision" Ø FalseD;
FindInstanceB

x + p y + ‰ z > Sin@1D && Log@2D x + p‰ y - 7p z ã
8

‰
, 8x, y, z<, RealsF êê Timing

Out[118]= :0.03, ::x Ø
33

10
, y Ø 66, z Ø

7-p H-80 + 660 ‰ p‰ + 33 ‰ Log@2DL

10 ‰
>>>

In[119]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWDecision" Ø TrueD;

LinearEquations

The LinearEquations option specifies whether linear equation constraints with constant lead-

ing coefficients should be used to eliminate variables. This generally improves the performance

of the algorithm. The option is provided to allow experimentation with the “pure” CAD-based

decision algorithm.

Here Mathematica uses the first equation to eliminate x before using CAD to find a solution of
the resulting system with two variables.

Advanced Algebra 55

Here Mathematica uses the first equation to eliminate x before using CAD to find a solution of
the resulting system with two variables.

In[120]:= FindInstanceAx + 2 y2 + z3 ã 7 && 2 x2 y3 - 3 x z3 + 5 x y z - x3 + x + y - z ¥ 3 &&
4 x y3 + 5 y4 z2 + 11 y z2 § 3 z3 + 7 && x2 + y2 + z2 § 4, 8x, y, z<, RealsE êê Timing

Out[120]= :0.15, ::x Ø -
17411

55296
, y Ø

123

64
, z Ø -

5

12
>>>

Here Mathematica uses CAD to find a solution of the original system with three variables.

In[121]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearEquations" Ø FalseD;
FindInstanceAx + 2 y2 + z3 ã 7 && 2 x2 y3 - 3 x z3 + 5 x y z - x3 + x + y - z ¥ 3 &&

4 x y3 + 5 y4 z2 + 11 y z2 § 3 z3 + 7 && x2 + y2 + z2 § 4, 8x, y, z<, RealsE êê Timing

Out[122]= :0.31, ::x Ø -
78015

262144
, y Ø

491

256
, z Ø -

25

64
>>>

In[123]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearEquations" Ø TrueD;

LinearQE

The LinearQE option specifies methods used to handle systems containing at least one inner-

most quantifier variable that appears at most linearly in all equations and inequalities in the

system. The option setting does not affect solving of decision problems. With the default setting

True, Mathematica uses the Loos|Weispfenning algorithm [15] to eliminate all quantifier vari-

ables that appear only linearly in the system, and then if there are any quantifiers left or the

result needs to be solved for the free variables, the CAD algorithm is used. With

LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only for variables that appear

in the system only linearly with constant coefficients. With LinearQE -> False, the Loos|

Weispfenning algorithm is not used.

With the default setting LinearQE -> True, the Loos|Weispfenning algorithm is used to elimi-
nate both x and y, and CAD is used to solve the remaining quantifier-free system with two
variables.

In[124]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;

In[125]:= a1 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&
3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[125]= 810.205, Null<

In[126]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;

56 Advanced Algebra

With LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only to eliminate x,
and CAD is used to solve the remaining system with three variables. For this example, the
default method is much faster.

In[127]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;
a2 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[128]= 848.81, Null<

With LinearQE -> False, the Loos|Weispfenning algorithm is not used. Reduce uses CAD to
solve the original system with four variables, which for this example takes much longer.

In[129]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø FalseD;
a3 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[130]= 897.881, Null<

All three methods give the same answer.

In[131]:= a1 === a2 === a3

Out[131]= True

Here is an example where the default method is not the fastest. With the default setting
LinearQE -> True, the Loos|Weispfenning algorithm is used to eliminate both x and y, and
CAD is used to solve the remaining system with one quantified and one free variable.

In[132]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[133]= 90.421,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=

With LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only to eliminate x,
and then CAD is used to solve the remaining system with two quantified variables and one free
variable. This is the fastest method for this example.

In[134]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[135]= 90.31,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=

Advanced Algebra 57

With LinearQE -> False, the CAD algorithm is used to solve the system.

In[136]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø FalseD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[137]= 90.401,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=

The default setting LinearQE -> True is definitely advantageous for quantifier elimination
problems where all quantified variables appear only linearly in the system and the quantifier-
free version of the system does not need to be given in a solved form. This is because the
complexity of the Loos|Weispfenning algorithm depends very little on the number of free vari-
ables, unlike the complexity of the CAD algorithm that is doubly exponential in the number of
all variables. With LinearQE -> False, this example does not finish in 1000 seconds.

In[138]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;
ResolveA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 u + v^7 - 6 w^4 t § 3 &&

3 x - 5 t z2 - 3 t2 - y z t - 5 y w z ¥ 2M, RealsE êê Timing

Out[139]= :0.01,

I-t3 < 0 && 5 t3 + 30 t5 + 27 z + 6 t z + 36 t3 z + 8 t4 z - 9 v7 z - 2 t v7 z + 30 w z + 40 t3 w z - 10 v7 w z + 54 t w4 z +

12 t2 w4 z + 60 t w5 z + 110 t4 z2 - 36 t2 u z3 - 8 t3 u z3 - 40 t2 u w z3 - 63 z5 - 14 t z5 - 70 w z5 § 0M »»

It3 < 0 && -5 t3 - 30 t5 - 27 z - 6 t z - 36 t3 z - 8 t4 z + 9 v7 z + 2 t v7 z - 30 w z - 40 t3 w z + 10 v7 w z - 54 t w4

z - 12 t2 w4 z - 60 t w5 z - 110 t4 z2 + 36 t2 u z3 + 8 t3 u z3 + 40 t2 u w z3 + 63 z5 + 14 t z5 + 70 w z5 § 0M »»

I-9 z - 2 t z - 10 w z < 0 && -5 t3 - 30 t5 - 27 z - 6 t z - 36 t3 z - 8 t4 z + 9 v7 z + 2 t v7 z -

30 w z - 40 t3 w z + 10 v7 w z - 54 t w4 z - 12 t2 w4 z - 60 t w5 z - 110 t4 z2 + 36 t2 u z3 +

8 t3 u z3 + 40 t2 u w z3 + 63 z5 + 14 t z5 + 70 w z5 § 0M »» I9 z + 2 t z + 10 w z < 0 &&

5 t3 + 30 t5 + 27 z + 6 t z + 36 t3 z + 8 t4 z - 9 v7 z - 2 t v7 z + 30 w z + 40 t3 w z - 10 v7 w z + 54 t w4 z +

12 t2 w4 z + 60 t w5 z + 110 t4 z2 - 36 t2 u z3 - 8 t3 u z3 - 40 t2 u w z3 - 63 z5 - 14 t z5 - 70 w z5 § 0M »»

t3 ã 0 &&
1

2
+ 3 t2 + 11 t z2 § 0 && -3 - 4 t3 + v7 - 6 t w4 + 4 t2 u z2 + 7 z4 § 0 »»

9 z + 2 t z + 10 w z ã 0 &&
1

2
+ 3 t2 + 11 t z2 § 0 && -3 - 4 t3 + v7 - 6 t w4 + 4 t2 u z2 + 7 z4 § 0 >

LWPreprocessor

The LWPreprocessor option setting affects solving decision problems and instance finding. The

option specifies whether the Loos|Weispfenning algorithm [8] should be used to eliminate

variables that appear at most linearly in all equations and inequalities before applying the CAD

algorithm to the resulting system. With the default setting Automatic, Mathematica uses the

Loos|Weispfenning algorithm to eliminate variables that appear only linearly with constant

coefficients. With LWPreprocessor -> True, the Loos|Weispfenning algorithm is used for all

variables that appear only linearly. With LWPreprocessor -> False, the Loos|Weispfenning

algorithm is not used as a preprocessor to the CAD-based decision algorithm.

With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning algorithm is
used only to eliminate x, and CAD is used to find a solution of the remaining system with three
variables.

58 Advanced Algebra

With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning algorithm is
used only to eliminate x, and CAD is used to find a solution of the remaining system with three
variables.

In[140]:= FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&
3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[140]= :0.06, ::x Ø -
44923

48
, y Ø 306, z Ø

3

4
, t Ø -15>>>

With LWPreprocessor -> True, the Loos|Weispfenning algorithm is used to eliminate both x
and y, and CAD is used to find a solution of the remaining system with two variables. For this
example, this method is slower than the default one.

In[141]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø TrueD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[142]= :0.17, ::x Ø -
845057

1109760
, y Ø

54532

24565
, z Ø 1, t Ø -

17

16
>>>

With LWPreprocessor -> False, the CAD algorithm is used to find a solution of the original
system with four variables. For this example, this method is as fast as the default.

In[143]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø FalseD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[144]= :0.06, ::x Ø -332, y Ø 306, z Ø
3

4
, t Ø -15>>>

This example differs from the previous one only in that the last inequality was turned into an
equation. With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning
algorithm is only used to eliminate x, and CAD is used to find a solution of the remaining
system with three variables.

In[145]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø AutomaticD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[146]= :0.2, ::x Ø
1

3

3341

256
-
4117 943

4096
, y Ø 4, z Ø

23

16
, t Ø -

943

16
>>>

Advanced Algebra 59

With LWPreprocessor -> True, the Loos|Weispfenning algorithm is used to eliminate both x
and y, and CAD is used to find a solution of the remaining system with two variables. For the
revised example, this method is faster than the default one.

In[147]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø TrueD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[148]= :0.08, ::x Ø
1

3
J2 + 5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E + 3 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

2
+

J-4 - 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
+ 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

3
Ní

J5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
NN,

y Ø J-4 - 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
+ 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

3
Ní

J5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
3
N, z Ø 1, t Ø RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E>>>

With LWPreprocessor -> False, the CAD algorithm is used to find a solution of the original
system with four variables. For the revised example, this is seven times slower than the default
method.

In[149]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø FalseD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[150]= :1.432, ::x Ø 0, y Ø 11, z Ø 3, t Ø -2 6 >>>

In[151]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø AutomaticD;

ProjectAlgebraic

The setting of the ProjectAlgebraic option affects handling of algebraic number coefficients in

the CAD algorithm.

Algebraic numbers found in coefficients of the input system are replaced with new variables.

The new variables are always put first in the variable ordering so that in the projection phase of

the CAD algorithm they are eliminated last. When the current projection polynomials contain

k + 1 variables with at least k first variables replacing algebraic number coefficients, we have a

choice of whether or not to continue the projection phase. If we do not continue the projection

phase, we can start the lifting phase extending the zero-dimensional cell in the first k variables

on which each of the variables is equal to the corresponding algebraic number coefficient. If we

choose to compute the last k projections, we may find in the lifting phase that the algebraic

number coefficient corresponding to a variable being lifted lies between the roots of the projec-

tion polynomials. Hence for this variable we will be extending a one-dimensional cell with a

rational number sample point. Thus there is a trade-off between avoiding computation of the

last k projections and avoiding algebraic number coordinates in sample points.

With ProjectAlgebraic -> True, the projection phase is continued for variables replacing

algebraic number coefficients until there is one variable left. With ProjectAlgebraic -> False,

the projection phase is stopped as soon as there is one variable left that does not replace an

algebraic number coefficient. With the default setting ProjectAlgebraic -> Automatic, the

projection phase is stopped if there is at most one variable left that does not replace an alge-

braic number coefficient and there are at least three projection polynomials, or there is a projec-

tion polynomial of degree more than two in the projection variable.

60 Advanced Algebra

With ProjectAlgebraic -> True, the projection phase is continued for variables replacing

algebraic number coefficients until there is one variable left. With ProjectAlgebraic -> False,

the projection phase is stopped as soon as there is one variable left that does not replace an

algebraic number coefficient. With the default setting ProjectAlgebraic -> Automatic, the

projection phase is stopped if there is at most one variable left that does not replace an alge-

braic number coefficient and there are at least three projection polynomials, or there is a projec-

tion polynomial of degree more than two in the projection variable.

With few high-degree algebraic number coefficients, equations, and inequalities in the system,
ProjectAlgebraics -> True tends to be a better choice. (N is applied to the output for
better readability.)

In[152]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø TrueD;
FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,

8x, y<, RealsE êê Timing êê N

Out[153]= 80.011, 88x Ø -1., y Ø -1.72698<<<

In[154]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø FalseD;
FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,

8x, y<, RealsE êê Timing êê N

Out[155]= 80.39, 88x Ø -1., y Ø -1.72698<<<

With many low-degree algebraic number coefficients, equations, and inequalities in the system,
ProjectAlgebraics -> False tends to be faster.

In[156]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø TrueD;

FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[157]= :6.509, ::x Ø
3

4
, y Ø -

57

64
>>>

In[158]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø FalseD;

FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[159]= :0.01, ::x Ø
3

4
, y Ø -

57

64
>>>

With ProjectAlgebraics -> Automatic, Mathematica picks the faster method in the second
example, but fails to pick the faster method in the first example.

In[160]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø AutomaticD;

In[161]:= FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,
8x, y<, RealsE êê Timing êê N

Out[161]= 80.291, 88x Ø -1., y Ø -1.72698<<<

Advanced Algebra 61

In[162]:= FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[162]= :0.01, ::x Ø
3

4
, y Ø -

57

64
>>>

ProveMultiplicities

The setting of ProveMultiplicities determines the way in which the lifting phase of the CAD

algorithm validates multiple roots and zero leading coefficients of projection polynomials

obtained using arbitrary-precision floating-point number (Mathematica "bignum") computations

(for more details, see [14, 24]). With the default setting ProveMultiplicities -> True, Mathe-

matica uses information about the origins of the cell, if this is not sufficient computes exact

values of cell coordinates and uses principal subresultant coefficients and exact zero testing,

and only if this fails reverts to exact computations. With ProveMultiplicities -> Automatic,

Mathematica uses information about the origins of the cell and, if this is not sufficient, reverts

to exact computation. With ProveMultiplicities -> False, Mathematica reverts to exact

computation each time bignum computations fail to separate all roots or prove that the leading

coefficients of projection polynomials are nonzero.

Generally, using all available methods of validating results obtained with arbitrary-precision
floating-point number computations leads to better performance.

In[163]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø TrueD;
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing

Out[164]= 90.17,

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 1E § x §

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 2E=

In[165]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø AutomaticD;
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing

Out[166]= 99.314,

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 1E § x §

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 2E=

62 Advanced Algebra

In[167]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø FalseD;
TimeConstrained@
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing, 60D

Out[168]= $Aborted

In[169]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø TrueD;

QuadraticQE

The QuadraticQE option specifies whether the quadratic case of Weispfenning's quantifier

elimination by virtual substitution algorithm [22, 23] should be used to eliminate quantified

variables that appear at most quadratically in all equations and inequalities in the system. The

complexity of Weispfenning's algorithm depends very little on the number of free variables,

unlike the complexity of the CAD algorithm that is doubly exponential in the number of all

variables. Hence, it is definitely advantageous to use it when all quantifiers can be eliminated

using the algorithm, there are many free variables present, and the quantifier-free version of

the system does not need to be given in a solved form. On the other hand, eliminating a vari-

able using Weispfenning's algorithm often significantly increases the size of the formula. So if

Mathematica needs to apply CAD to the result or if the system contains few free variables,

using CAD on the original system may be faster. With the default setting Automatic, Mathemat-

ica uses the algorithm for Resolve with no variables specified and with at least two parameters

present, and for Reduce and Resolve with at least three variables as long as elimination of one

variable at most doubles the LeafCount of the system. This criterion seems to work reasonably

well; however, for some examples it does not give the optimal choice of the algorithm. Chang-

ing the option value may allow problems to be solved which otherwise take a very long time.

With LinearQE -> True, Weispfenning's algorithm is used whenever there is a quadratic vari-

able to eliminate, with LinearQE -> False, Weispfenning's algorithm is not used.

Resolve with no variables specified and with at least two parameters present uses Weispfen-
ning's algorithm to eliminate x. The result is not solved for the parameters a, b, and c.

In[170]:= ResolveA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, RealsE êê Timing

Out[170]= 90.03, a c < 0 »» Ha ã 0 && a b + b c > 0L »» Hc ã 0 && a b + b c > 0L »» Ia ≠ 0 && -b2 + 4 a c § 0M »»

Ic ≠ 0 && -b2 + 4 a c § 0M »» Ia ã 0 && b ã 0 && a2 + b2 + c2 § 0M »» Ia ã 0 && a + c ã 0 && a2 + b2 + c2 § 0M »»

Ia ã 0 && b ≠ 0 && a2 b2 c2 - a b2 c3 + a c5 § 0M »» Ib ã 0 && c ã 0 && a2 + b2 + c2 § 0M »»

Ic ã 0 && a + c ã 0 && a2 + b2 + c2 § 0M »» Ib ≠ 0 && c ã 0 && a5 c - a3 b2 c + a2 b2 c2 § 0M=

Advanced Algebra 63

Reduce by default uses CAD for this example. The result is solved for the parameters a, b, and
c.

In[171]:= ReduceA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, 8a, b, c<, RealsE êê Timing

Out[171]= :0.291, a < 0 && c ¥
b2

4 a
»» a ã 0 »» a > 0 && c §

b2

4 a
>

With QuadraticQE -> True, Reduce uses Weispfenning's algorithm to eliminate x and then
CAD to solve the quantifier-free formula for the parameters a, b, and c. In this example this is
faster than the default method of using CAD from the beginning.

In[172]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø TrueD;
ReduceA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, 8a, b, c<, RealsE êê Timing

Out[173]= :0.17, a < 0 && c ¥
b2

4 a
»» a ã 0 »» a > 0 && c §

b2

4 a
>

For this system with three free variables Weispfenning's algorithm works much better than CAD.
With QuadraticQE -> False, Resolve does not finish in 1000 seconds.

In[174]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø AutomaticD;
ResolveA

$t I-602 + 528 z - 222 z2 - 410 t - 685 z t + 427 t2 + 422 x + 5 z x - 279 t x - 188 x2 + 1000 y -

704 z y + 879 t y - 179 x y - 689 y2 ã 0 &&
-723 - 380 z + 323 z2 - 964 t - 749 z t - 9 t2 + 497 x - 191 z x + 147 t x +

815 x2 + 935 y - 536 z y - 558 t y - 152 x y + 400 y2 ¥ 0M, RealsE êê Timing

Out[175]= 90.02,

I93310576 x + 312563284 x2 + 619260202 y - 174039637 x y + 343049591 y2 - 552659742 z - 119285170

x z - 72117355 y z - 107223538 z2 ¥ 438555086 && -491996 x + 398945 x2 - 2428780 y -

184750 x y + 1949453 y2 - 340124 z + 373690 x z - 1798 y z + 848401 z2 ¥ -1196316M »»

I-491 996 x + 398945 x2 - 2428780 y - 184750 x y + 1949453 y2 - 340124 z +

373690 x z - 1798 y z + 848401 z2 ¥ -1196316 &&
86243585140 x - 498040191089 x2 + 109809123842 x3 + 131969169211 x4 - 484187889894 y +

419393624593 x y + 362278042647 x2 y - 133070811401 x3 y + 202349297280 y2 - 82166879722 x y2 +

289809046115 x2 y2 + 247824969889 y3 - 76078568059 x y3 + 19522904791 y4 + 300933814382 z +

137426763740 x z - 651512554048 x2 z - 82614322010 x3 z - 106739496711 y z -

29291657121 x y z - 82755933843 x2 y z - 840794940583 y2 z + 38003381704 x y2 z -

469158313975 y3 z + 299057381894 z2 + 126196261244 x z2 - 114619700688 x2 z2 +

129231867162 y z2 + 56929552463 x y z2 - 439149714263 y2 z2 - 102928178270 z3 +

26325949198 x z3 - 153241487043 y z3 - 107856045675 z4 § 19224638243M=

For this system with only one free variable Resolve uses CAD.

In[176]:= ResolveA"8x,y< ImpliesAx > r && y > r, x2 H1 + 2 yL2 > y2 I1 + 2 x2ME, RealsE êê Timing

Out[176]= :0.06, r ¥
1

2
>

64 Advanced Algebra

Weispfenning's algorithm is slower here and gives a more complicated result.

In[177]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø TrueD;
ResolveA"8x,y< ImpliesAx > r && y > r, x2 H1 + 2 yL2 > y2 I1 + 2 x2ME, RealsE êê LeafCount êê
Timing

Out[177]= 80.27, 2711<

In[178]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø AutomaticD;

QVSPreprocessor

The QVSPreprocessor option setting affects solving decision problems and instance finding. The

option specifies whether the quadratic case of Weispfenning's quantifier elimination by virtual

substitution algorithm [22, 23] should be used to eliminate variables that appear at most

quadratically in all equations and inequalities before applying the CAD algorithm to the resulting

system. The default setting is False and the algorithm is not used. There are examples where

using Weispfenning's algorithm as a preprocessor significantly helps the performance, and there

are examples where using the preprocessor significantly hurts the performance. It seems that

the preprocessor tends to help in examples with many variables and where instances exist.

With QVSPreprocessor -> True, Weispfenning's algorithm is used each time there is a

quadratic variable. With QVSPreprocessor -> Automatic, Mathematica uses the algorithm for

systems with at least four variables.

Here Mathematica finds a solution using Weispfenning's algorithm as a preprocessor. Without
the preprocessor this example takes 470 seconds.

In[179]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QVSPreprocessor" Ø TrueD;
FindInstanceA-11 - 909 y z - 462 y2 z + I657 - 471 y3 + 501 z - 48 x zM t + t2 ã 0 &&

258 + 223 x2 y - 544 y3 + 571 z2 + 38 y z2 + I-798 + 79 x2 y + 214 y2 - 828 x2 z - 392 z2M t + t2 ¥

0, 8x, y, z, t<, RealsE êê Timing

Out[180]= :0.07, ::x Ø 0, y Ø
1

308
-303 +

282203

3
, z Ø -1, t Ø 0>>>

This uses CAD to show that there are no solutions. With QVSPreprocessor -> True this
example does not finish in 1000 seconds, due to complexity of computing LogicalExpand for
the generated large logical formulas.

In[181]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QVSPreprocessor" Ø FalseD;
f =.; FindInstanceA! Ia < 0 »» b < 0 »» c < 0 »» d < 0 »» e < 0 »» f < 0 »» a2 + b2 > e2 »»

c2 + d2 > f2 »» a c + b d § e fM, 8a, b, c, d, e, f<, RealsE êê Timing

Out[181]= 80.071, 8<<

Advanced Algebra 65

ReducePowers

For any variable x in the input to the CAD algorithm, if all powers of x appearing in the system

are integer multiples of an integer k, Mathematica replaces xk in the input system with a new

variable, runs the CAD on the new system, and then resolves the answer so that it is expressed

in terms of the original variables. Setting ReducePowers -> False turns off this shortcut. With

ReducePowers -> False, the algebraic functions appearing as cell bounds in the output of the

CAD algorithm are always rational functions, quadratic radical expressions, or Root objects.

With the default setting ReducePowers -> True, they may in addition be e1ên for any of the

previous expressions e, or Root@a Òn - e &, 1D for some integer a, and a rational function or a

quadratic radical expression e.

With the default setting ReducePowers -> True, the CAD algorithm solves a quadratic equa-
tion in variables replacing x7 and y5, and then the result is represented in terms of x and y. The
result contains Root objects with quadratic radical expressions inside.

In[182]:= ReduceAx14 + 3 x7 y5 - 5 y10 ã 1, 8x, y<, RealsE êê Timing

Out[182]= :0.02, x < -
5

29

1ë14

21ë7 &&

y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» y ã RootB-3 x7 - -20 + 29 x14 + 10 Ò15 &, 1F »»

x ã -
5

29

1ë14

21ë7 && y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »»

x ã
5

29

1ë14

21ë7 && y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» x >
5

29

1ë14

21ë7 &&

y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» y ã RootB-3 x7 - -20 + 29 x14 + 10 Ò15 &, 1F >

With ReducePowers -> True, the CAD algorithm solves the original 14th degree equation that
takes several times longer. The result contains only Root objects with polynomial expressions
inside.

In[183]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ReducePowers" Ø FalseD;
ReduceAx14 + 3 x7 y5 - 5 y10 ã 1, 8x, y<, RealsE êê Timing

Out[184]= 90.07, Ix < RootA-20 + 29 Ò114 &, 1E &&

Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM »»

Ix ã RootA-20 + 29 Ò114 &, 1E && y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1EM »»

Ix ã RootA-20 + 29 Ò114 &, 2E && y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1EM »»

IRootA-20 + 29 Ò114 &, 2E < x < 1 &&

Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM »»

Ix ã 1 && Iy ã 0 »» y ã RootA-3 + 5 Ò15 &, 1EMM »»

Ix > 1 && Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM=

66 Advanced Algebra

RootReduced

For systems with equational constraints generating a zero-dimensional ideal I, Mathematica

uses a variant of the CAD algorithm that finds projection polynomials using Gröbner basis

methods. If the lexicographic order Gröbner basis of I contains linear polynomials with constant

coefficients in every variable but the last one (which is true “generically”), then all coordinates

of solutions are easily represented as polynomials in the last coordinate. Setting RootReduced

to True causes Mathematica to represent each coordinate as a single numeric Root object.

Computing this reduced representation often takes much longer than solving the system.

By default, we get the value of y expressed in terms of x.

In[185]:= ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0, 8x, y<, RealsE êê Timing

Out[185]= :0.011,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&

y ã
106736486

182019
+
1296051 x

1462
+
66665810 x2

182019
-
969563 x3

8466
-
24035081 x4

364038
+
96373723 x5

364038
+

54920533 x6

182019
+
25145123 x7

364038
-
10853975 x8

182019
-
1489646 x9

182019
+
8836411 x10

182019
+

4385547 x11

121346
+
93708 x12

60673
-
530532 x13

60673
+
69480 x14

60673
+
85501 x15

21414
+
305971 x16

182019
-

3130 x17

10707
-
5092 x18

10707
+
2072 x19

10707
+
43705 x20

364038
+
3719 x21

182019
-
2194 x22

182019
-
1492 x23

182019
+
1208 x24

182019
>

With Backsubstitution -> True, we get a numeric value of y, but the representation of the
value is large.

In[186]:= ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0,
8x, y<, Reals, Backsubstitution Ø TrueE êê Timing

Out[186]= :0.02,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&

y ã
1

364038
J213472972 + 322716699 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 +

4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 +

2970 Ò112 + 270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E +

133331620 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
2
-

41691209 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

+ + + + + + Ò125 &, 1E
3
-

Advanced Algebra 67

Out[186]=

6 7 8 9 10 11 12

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
3
-

24035081 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
4
+

96373723 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
5
+

109841066 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
6
+

25145123 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
7
-

21707950 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
8
-

2979292 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
9
+

17672822 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
10

+

13156641 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
11

+

562248 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
12

-

3183192 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
13

+

416880 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
14

+

1453517 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
15

+

611942 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
16

-

106420 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
17

-

173128 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
18

+

70448 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
19

+

43705 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

+ + + + + + +
20

68 Advanced Algebra

Out[186]=

2 3 4 5

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
20

+

7438 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
21

-

4388 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
22

-

2984 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
23

+

2416 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
24
N>

Setting RootReduced -> True causes Mathematica to represent the value of y as a single
Root object. However, the computation takes ten times longer.

In[187]:= SetSystemOptions@"InequalitySolvingOptions" Ø "RootReduced" Ø TrueD;
ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0, 8x, y<, RealsE êê Timing

Out[188]= 90.09,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&
y ã RootA-33 447 + 39343 Ò1 - 55392 Ò12 + 54390 Ò13 - 43015 Ò14 + 38216 Ò15 - 32870 Ò16 +

31390 Ò17 - 22700 Ò18 + 14085 Ò19 - 9582 Ò110 + 6610 Ò111 - 5310 Ò112 + 2870 Ò113 - 1380 Ò114 +

850 Ò115 - 500 Ò116 + 370 Ò117 - 120 Ò118 + 40 Ò119 - 35 Ò120 + 15 Ò121 - 10 Ò122 + Ò125 &, 1E=

In[189]:= SetSystemOptions@"InequalitySolvingOptions" Ø "RootReduced" Ø FalseD;

ThreadOr

The ThreadOr option specifies how the identity

(8)$x1,…,xn HF1 Í … Í FkLó$x1,…,xn F1 Í … Í $x1,…,xn Fk

should be used in the decision algorithm (Reduce and Resolve for systems containing no free

variables or parameters), FindInstance, and quantifier elimination (Resolve with no variables

specified). With the default setting ThreadOr -> True, the identity (8) is used before attempting

any solution algorithms. With ThreadOr -> False, the identity (8) may be used by algorithms

that require using it (for instance, the Simplex algorithm), but will not be used by algorithms

that do not require using it (for instance, the CAD algorithm).

Advanced Algebra 69

Here Reduce finds an instance satisfying the first simpler term of Or, and hence avoids dealing
with the second, more complicated, term.

In[190]:= ReduceA$8x,y,z< Ix + y + z ¥ 0 »» Ix5 - 3 x y4 z + 17 x3 z2 - 11 y ã 0 && x2 + y2 + z2 § 1MM,
RealsE êê Timing

Out[190]= 92.17604µ10-14, True=

With ThreadOr -> False, Reduce needs to run a CAD-based decision algorithm on the whole
system.

In[191]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø FalseD;
ReduceA$8x,y,z< Ix + y + z ¥ 0 »» Ix5 - 3 x y4 z + 17 x3 z2 - 11 y ã 0 && x2 + y2 + z2 § 1MM,

RealsE êê Timing

Out[192]= 80.801, True<

This system has no solutions and so with ThreadOr -> True Reduce needs to run a CAD-
based decision algorithm on each of the terms.

In[193]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø TrueD;
ReduceA

$8x,y,z< IIx2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 ¥

1M »» Ix2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 < 1 &&
x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 < 1 &&
Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 < 1M »»

Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 &&
x2 + y2 + Hz - 2L2 < 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 ¥ 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 < 1MM, RealsE êê Timing

Out[194]= 81.512, False<

Since all six terms of Or involve exactly the same polynomials, running a CAD-based decision
algorithm on the whole expression and running a CAD-based decision algorithm on one of
the terms consist of very similar computations. In this case the computation with
ThreadOr -> False is faster.

In[195]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø FalseD;
ReduceA

$8x,y,z< IIx2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 ¥

1M »» Ix2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 < 1 &&
x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 < 1 &&
Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 < 1M »»

Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 &&
x2 + y2 + Hz - 2L2 < 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 ¥ 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 < 1MM, RealsE êê Timing

Out[196]= 80.341, False<

In[197]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø TrueD;

ZengDecision

70 Advanced Algebra

ZengDecision

The option ZengDecision specifies whether Mathematica should use the algorithm by G. X.
Zeng and X. N. Zeng [18]. The algorithm applies to decision problems with systems that consist
of a single strict inequality. There are examples for which the algorithm performs better than
the strict inequality variant of the CAD algorithm described in [13]. However, for randomly
chosen inequalities, it seems to perform worse; therefore, it is not used by default. Here is an
example from [18] that runs faster with ZengDecision -> True.

In[198]:= FindInstanceAx4 + y4 + z4 + w4 - 5 x y z w + x2 + y2 + z2 + w2 + 1 < 0,
8x, y, z, w<, RealsE êê Timing

Out[198]= 87.17, 88x Ø -5, y Ø -5, z Ø -6, w Ø -4<<<

In[199]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ZengDecision" Ø TrueD;
FindInstanceAx4 + y4 + z4 + w4 - 5 x y z w + x2 + y2 + z2 + w2 + 1 < 0,

8x, y, z, w<, RealsE êê Timing

Out[200]= 80.43, 88x Ø -5, y Ø -5, z Ø -6, w Ø -4<<<

In[201]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ZengDecision" Ø FalseD;

References

[1] Caviness, B. F. and J. R. Johnson, eds. Quantifier Elimination and Cylindrical Algebraic

Decomposition: Texts and Monographs in Symbolic Computation. Springer-Verlag, 1998.

[2] Tarski, A. A Decision Method for Elementary Algebra and Geometry. University of California

Press, 1951.

[3] Łojasiewicz, S. Ensembles Semi-Analytiques. Inst. Hautes Études Sci., 1964.

[4] Collins, G. E. "Quantifier Elimination for the Elementary Theory of Real Closed Fields by

Cylindrical Algebraic Decomposition." Lecture Notes in Computer Science 33 (1975): 134|183.

[5] Hong, H. "An Improvement of the Projection Operator in Cylindrical Algebraic

Decomposition." In Issac ’90: Proceedings of the International Symposium on Symbolic and

Algebraic Computation (M. Nagata, ed.), 261|264, 1990.

[6] McCallum, S. "An Improved Projection for Cylindrical Algebraic Decomposition of Three

Dimensional Space." J. Symb. Comput. 5, no. 1/2 (1988): 141|161.

[7] McCallum, S. "An Improved Projection for Cylindrical Algebraic Decomposition." In Quantifier

Elimination and Cylindrical Algebraic Decomposition: Texts and Monographs in Symbolic

Computation (B. F. Caviness and J. R. Johnson, eds.). Springer-Verlag, 1998.

[8] Brown C. W. "Improved Projection for Cylindrical Algebraic Decomposition" J. Symb.

Comput. 32, no. 5 (2001): 447|465

Advanced Algebra 71

[8] Brown, C. W. "Improved Projection for Cylindrical Algebraic Decomposition." J. Symb.

Comput. 32, no. 5 (2001): 447|465.

[9] Collins, G. E. "Quantifier Elimination by Cylindrical Algebraic Decomposition~Twenty Years of

Progress." In Quantifier Elimination and Cylindrical Algebraic Decomposition: Texts and

Monographs in Symbolic Computation (B. F. Caviness and J. R. Johnson, eds.). Springer-Verlag,

1998.

[10] McCallum, S. "On Projection in CAD-Based Quantifier Elimination with Equational

Constraint." In Issac ’99: Proceedings of the International Symposium on Symbolic and

Algebraic Computation (Sam Dooley, ed.), 1999.

[11] McCallum, S. "On Propagation of Equational Constraints in CAD-Based Quantifier

Elimination." In Issac 2001: Proceedings of the International Symposium on Symbolic and

Algebraic Computation, 2001.

[12] Strzebonski, A. "An Algorithm for Systems of Strong Polynomial Inequalities." The

Mathematica Journal 4, no. 4 (1994): 74|77.

[13] Strzebonski, A. "Solving Systems of Strict Polynomial Inequalities." J. Symb. Comput. 29,

no. 3 (2000): 471|480.

[14] Strzebonski, A. "Cylindrical Algebraic Decomposition Using Validated Numerics." Paper

presented at the ACA 2002 Session on Symbolic-Numerical Methods in Computational Science,

Volos, Greece, 2002. (Notebook with the conference talk available at

members.wolfram.com/adams).

[15] Loos, R. and V. Weispfenning. "Applying Linear Quantifier Elimination." Comput. J. 36, no. 5

(1993): 450|461.

[16] Strzebonski, A. "A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating

Point Arithmetic." Reliable Comput. 5, no. 3 (1999): 337|346; Developments in Reliable

Computing (Tibor Csendes, ed.). Kluwer Academic Publishers (1999): 337|346.

[17] Aubry, P., F. Rouillier, and M. Safey El Din. "Real Solving for Positive Dimensional Systems."

J. Symb. Comput. 34, no. 6 (2002): 543|560.

[18] Zeng, G. X. and X. N. Zeng. "An Effective Decision Method for Semidefinite Polynomials." J.

Symb. Comput. 37, no. 1 (2004): 83|99.

[19] Akritas, A. G. and A. Strzebonski. "A Comparative Study of Two Real Root Isolation

Methods." Nonlinear Analysis: Modelling and Control 10, no. 4 (2005): 297|304.

[20] Faugere J. C., P. Gianni, D. Lazard, and T. Mora. "Efficient Computation of Zero-

Dimensional Gröbner Bases by Change of Ordering" J. Symb. Comput. 16, no. 4 (1993):

329|344

72 Advanced Algebra

[20] Faugere, J. C., P. Gianni, D. Lazard, and T. Mora. "Efficient Computation of Zero-

Dimensional Gröbner Bases by Change of Ordering." J. Symb. Comput. 16, no. 4 (1993):

329|344.

[21] Dorato, P., W. Yang, and C. Abdallah. "Robust Multi-Objective Feedback Design by

Quantifier Elimination." J. Symb. Comput. 24, no. 2 (1997): 153|159.

[22] Weispfenning, V. "Quantifier Elimination for Real Algebra~The Cubic Case." In Issac 1994:

Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1994.

[23] Weispfenning, V. "Quantifier Elimination for Real Algebra~The Quadratic Case and Beyond."

Appl. Algebra Eng. Commun. Comput. 8, no. 2 (1997): 85|101.

[24] Strzebonski, A. "Cylindrical Algebraic Decomposition Using Validated Numerics." J. Symb.

Comput. 41, no. 9 (2006): 1021|1038.

Advanced Algebra 73

Diophantine Polynomial Systems

Introduction

A Diophantine polynomial system is an expression constructed with polynomial equations and

inequalities

f Hx1, …, xnLã gHx1, …, xnL, f Hx1, …, xnL ≠ gHx1, …, xnL,
f Hx1, …, xnL ¥ gHx1, …, xnL, f Hx1, …, xnL > gHx1, …, xnL,
f Hx1, …, xnL § gHx1, …, xnL, f Hx1, …, xnL < gHx1, …, xnL,

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F, and $x F,

where the variables represent integer quantities.

An occurrence of a variable x inside "x F or $x F is called a bound occurrence; any other occur-

rence of x is called a free occurrence. A variable x is called a free variable of a polynomial

system if the system contains a free occurrence of x. A Diophantine polynomial system is quanti-

fier-free if it contains no quantifiers. A decision problem is a system with all variables existen-

tially quantified, that is, a system of the form

(1)$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn are all variables in F. The decision problem (1) is equivalent to True or False,

depending on whether the quantifier-free system of polynomial equations and inequalities

FHx1, …, xnL has integer solutions.

An example of a Diophantine polynomial system is

(2)"n, n¥2 $p, p>1 $q, q>1 "a, a>1 "b, b>1 a b ≠ pÏ a b ≠ qÏ p + q = 2 n.

Goldbach's conjecture [1], formulated in 1742 and still unproven, asserts that system (2) is

equivalent to True. This suggests that Mathematica may not be able to solve arbitrary Diophan-

tine polynomial systems. In fact, Matiyasevich's solution of Hilbert's tenth problem [2] shows

that no algorithm can be constructed that would solve arbitrary Diophantine polynomial

systems, not even quantifier-free systems or decision problems. Nevertheless, Mathematica

functions Reduce, Resolve, and FindInstance are able to solve several reasonably large

classes of Diophantine systems. This tutorial describes these classes of systems and methods

used by Mathematica to solve them. The methods are presented in the order in which they are

used. The tutorial also covers options affecting the methods used and how they operate.

74 Advanced Algebra

Goldbach's conjecture [1], formulated in 1742 and still unproven, asserts that system (2) is

equivalent to True. This suggests that Mathematica may not be able to solve arbitrary Diophan-

that no algorithm can be constructed that would solve arbitrary Diophantine polynomial

systems, not even quantifier-free systems or decision problems. Nevertheless, Mathematica

functions Reduce, Resolve, and FindInstance are able to solve several reasonably large

classes of Diophantine systems. This tutorial describes these classes of systems and methods

used by Mathematica to solve them. The methods are presented in the order in which they are

used. The tutorial also covers options affecting the methods used and how they operate.

Linear Systems

Systems of Linear Equations

Conjunctions of linear Diophantine equations are solvable for an arbitrary number of variables.

Mathematica uses a method based on the computation Hermite normal form of matrices, avail-

able in Mathematica directly as HermiteDecomposition. The result may contain new unre-

stricted integer parameters. If the equations are independent, the number of parameters is

equal to the difference between the number of variables and the number of equations.

This system has four variables and two independent equations, hence the result is expressed in
terms of two integer parameters.

In[1]:= Reduce@3 a + 4 b + 18 c + 24 d ã 30 && 27 a + 16 b + 28 c + 24 d ã 30, 8a, b, c, d<, IntegersD

Out[1]= HC@1D C@2DL œ Integers && a ã 2 + 8 C@1D &&
b ã 6 - 6 C@1D + 15 C@2D && c ã -12 - 12 C@1D - 18 C@2D && d ã 9 + 9 C@1D + 11 C@2D

Frobenius Equations

A Frobenius equation is an equation of the form

a1 x1 + … + an xn ã m,

where a1, …, an are positive integers, m is an integer, and the coordinates x1, …, xn of solutions

are required to be non-negative integers.

For finding solution instances of Frobenius equations Mathematica uses a fast algorithm based

on the computation of the critical tree in the Frobenius graph [11]. The algorithm applies when

the smallest of a1, …, an does not exceed the value of the MaxFrobeniusGraph system option

(the default is 1,000,000). Otherwise the more general methods for solving bounded linear

systems are used. Functions FrobeniusSolve and FrobeniusNumber provide specialized function-

ality for solving Frobenius equations and computing Frobenius numbers.

Advanced Algebra 75

For finding solution instances of Frobenius equations Mathematica uses a fast algorithm based

on the computation of the critical tree in the Frobenius graph [11]. The algorithm applies when

the smallest of does not exceed the value of the MaxFrobeniusGraph system option

(the default is 1,000,000). Otherwise the more general methods for solving bounded linear

systems are used. Functions FrobeniusSolve and FrobeniusNumber provide specialized function-

ality for solving Frobenius equations and computing Frobenius numbers.

This finds a solution of a Frobenius equation.

In[2]:= FindInstance@
123456 x + 234567 y + 345678 z + 456789 u + 567890 v + 678901 w + 789012 r + 890123 s +

901234 t ã 123456789 && x ¥ 0 && y ¥ 0 && z ¥ 0 && u ¥ 0 && v ¥ 0 &&
w ¥ 0 && r ¥ 0 && s ¥ 0 && t ¥ 0, 8x, y, z, u, v, w, r, s, t<, IntegersD

Out[2]= 88x Ø 5, y Ø 8, z Ø 12, u Ø 17, v Ø 24, w Ø 29, r Ø 29, s Ø 29, t Ø 30<<

Bounded Systems of Linear Equations and Inequalities

If a real solution set of a system of linear equations and inequalities is a bounded polyhedron,

the system has finitely many integer solutions. To find the solutions, Mathematica uses the

following procedure.

You may assume the system has the form Meq.xã beq Ï Mineq.x ¥ bineq, where Meq is a kµn integer

matrix, beq is a length k integer vector, Mineq is an lµn integer matrix, and bineq is a length l inte-

ger vector. First, the method for solving systems of linear equations is used to find an integer

vector s such that Meq.sã beq and a pµn integer matrix N whose rows generate the nullspace of

Meq.xã 0. The integer solution set of Meq.xã beq is equal to 8s + i.N : i œp<. Put Mmult =Mineq.NT and

bmult = bineq -Mineq.s. The integer solution set of Meq.xã beq Ï Mineq.x ¥ bineq is equal to 8s + i.N : i œ <,

where  is the integer solution set of Mmult.i ¥ bmult. To improve efficiency of finding the set ,

Mathematica simplifies Mmult
T using LatticeReduce, obtaining Mred

T. Note that if the columns of

Mmult are linearly dependent, Mmult.i ¥ bmult has no solutions (otherwise it would have infinitely

many solutions, which contradicts the assumptions). Hence you may assume that Mmult has

linearly independent columns and so Mred has p columns. Put R = IMmult
T .MmultM

-1
IMmult

T MredM. Lat-

tice reduction techniques are also used to find a small vector bred in the lattice bmult +Mred.v. Let v0

be such that bred = bmult +Mred.v0. The set  can be computed from the set red of all i œp such

that Mred.i ¥ bred using the formula  = 8R.Hi - v0L : i œ red<.

To find the set red a simple recursive algorithm can be used. The algorithm finds the bounds on

the first variable using LinearProgramming and, for each integer value a1 between the bounds,

calls itself recursively with the first variable set to a1. This algorithm is used when the system

option BranchLinearDiophantine is set to False. With the default setting True a hybrid algo-

rithm combining the recursive algorithm and a branch-and-bound type algorithm is used. At

each level of the recursion, the recursion is continued for the "middle" values of the first vari-

able (defined as a projection of the set of points contained in the real solution set together with

a unit cube) while the remaining parts of the real solution set are searched for integer solutions

using the branch-and-bound type algorithm. FindInstance finds the single element of red it

needs using a branch-and-bound type algorithm.

76 Advanced Algebra

To find the set red a simple recursive algorithm can be used. The algorithm finds the bounds on

calls itself recursively with the first variable set to a1. This algorithm is used when the system

option BranchLinearDiophantine is set to False. With the default setting True a hybrid algo-

rithm combining the recursive algorithm and a branch-and-bound type algorithm is used. At

each level of the recursion, the recursion is continued for the "middle" values of the first vari-

able (defined as a projection of the set of points contained in the real solution set together with

a unit cube) while the remaining parts of the real solution set are searched for integer solutions

using the branch-and-bound type algorithm. FindInstance finds the single element of red it

needs using a branch-and-bound type algorithm.

There are two system options, BranchLinearDiophantine and LatticeReduceDiophantine,

that allow you to control the exact algorithm used. In some cases changing the values of these

options may greatly improve the performance of Reduce.

This finds all integer points in a triangle.

In[3]:= Reduce@7 x + y ¥ 3 && 3 x - 33 y + 333 ¥ 0 && x < y, 8x, y<, IntegersD

Out[3]= Hx ã -1 && y ã 10L »» Hx ã 0 && y ã 3L »» Hx ã 0 && y ã 4L »» Hx ã 0 && y ã 5L »» Hx ã 0 && y ã 6L »»
Hx ã 0 && y ã 7L »» Hx ã 0 && y ã 8L »» Hx ã 0 && y ã 9L »» Hx ã 0 && y ã 10L »» Hx ã 1 && y ã 2L »»
Hx ã 1 && y ã 3L »» Hx ã 1 && y ã 4L »» Hx ã 1 && y ã 5L »» Hx ã 1 && y ã 6L »» Hx ã 1 && y ã 7L »»
Hx ã 1 && y ã 8L »» Hx ã 1 && y ã 9L »» Hx ã 1 && y ã 10L »» Hx ã 2 && y ã 3L »» Hx ã 2 && y ã 4L »»
Hx ã 2 && y ã 5L »» Hx ã 2 && y ã 6L »» Hx ã 2 && y ã 7L »» Hx ã 2 && y ã 8L »» Hx ã 2 && y ã 9L »»
Hx ã 2 && y ã 10L »» Hx ã 3 && y ã 4L »» Hx ã 3 && y ã 5L »» Hx ã 3 && y ã 6L »» Hx ã 3 && y ã 7L »»
Hx ã 3 && y ã 8L »» Hx ã 3 && y ã 9L »» Hx ã 3 && y ã 10L »» Hx ã 4 && y ã 5L »» Hx ã 4 && y ã 6L »»
Hx ã 4 && y ã 7L »» Hx ã 4 && y ã 8L »» Hx ã 4 && y ã 9L »» Hx ã 4 && y ã 10L »» Hx ã 5 && y ã 6L »»
Hx ã 5 && y ã 7L »» Hx ã 5 && y ã 8L »» Hx ã 5 && y ã 9L »» Hx ã 5 && y ã 10L »» Hx ã 6 && y ã 7L »»
Hx ã 6 && y ã 8L »» Hx ã 6 && y ã 9L »» Hx ã 6 && y ã 10L »» Hx ã 7 && y ã 8L »» Hx ã 7 && y ã 9L »»
Hx ã 7 && y ã 10L »» Hx ã 8 && y ã 9L »» Hx ã 8 && y ã 10L »» Hx ã 9 && y ã 10L »» Hx ã 10 && y ã 11L

Mathematica enumerates the solutions explicitly only if the number of integer solutions of the

system does not exceed the maximum of the pth power of the value of the system option

DiscreteSolutionBound, where p is the dimension of the solution lattice of the equations, and

the second element of the value of the system option ExhaustiveSearchMaxPoints.

Here Reduce does not give explicit solutions because their number would exceed the default
limit of 10000.

In[4]:= Reduce@x ¥ 0 && y ¥ 0 && x + y § 200, 8x, y<, IntegersD

Out[4]= Hx yL œ Integers && HH0 § x § 199 && 0 § y § 200 - xL »» Hx ã 200 && y ã 0LL

This increases the value of the system option DiscreteSolutionBound to 1000.

In[5]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 1000<D;

Advanced Algebra 77

Since there are two variables and no equations, the limit on the number of solutions is now
10002, and Reduce can enumerate the solutions explicitly.

In[6]:= Reduce@x ¥ 0 && y ¥ 0 && x + y § 200, 8x, y<, IntegersD êê Length

Out[6]= 20301

This resets DiscreteSolutionBound to the default value.

In[7]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

Arbitrary Systems of Linear Equations and Inequalities

Quantifier-free systems of linear Diophantine equations and inequalities are solvable for an

arbitrary number of variables. The system is written in the disjunctive normal form, that is, as a

disjunction of conjunctions, and each conjunction is solved separately. If a conjunction contains

only equations, the method for solving systems of linear equations is used. If the difference

between the number of variables and the number of equations is at most one, Mathematica

solves the equations using the method for solving systems of linear equations, and if the solu-

tion contains at most one free parameter (which is true in the generic case), back substitutes

the solution into the inequalities to determine inequality restrictions for the parameter. For all

other quantifier-free systems of linear Diophantine equations and inequalities Mathematica uses

the algorithm described in [3], with some linear-programming-based improvements for han-

dling bounded variables. The result may contain new non-negative integer parameters, and the

number of new parameters may be larger than the number of variables.

This system has three variables; however, to express the solution set, you need eight non-
negative integer parameters.

In[8]:= Reduce@a + 2 b - 3 c ã 4 && 3 a - 2 b + c ¥ 1, 8a, b, c<, IntegersD

Out[8]= HC@1D C@2D C@3D C@4D C@5D C@6D C@7D C@8DL œ Integers && C@1D ¥ 0 &&
C@2D ¥ 0 && C@3D ¥ 0 && C@4D ¥ 0 && C@5D ¥ 0 && C@6D ¥ 0 && C@7D ¥ 0 && C@8D ¥ 0 &&
HHa ã 3 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 + 5 C@1D + C@2D - 2 C@4D - C@5D -

5 C@6D - 4 C@7D - 3 C@8D && c ã 3 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 2 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 1 + 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 4 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 1 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã -1 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã -1 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D &&

b ã -5 + 5 C@1D + C@2D - 2 C@4D - C@5D - 5 C@6D - 4 C@7D - 3 C@8D &&
c ã -5 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»

Ha ã 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D &&
b ã -4 + 5 C@1D + C@2D - 2 C@4D - C@5D - 5 C@6D - 4 C@7D - 3 C@8D &&
c ã -4 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DLL

Univariate Systems

78 Advanced Algebra

Univariate Systems

Univariate Equations

To find integer solutions of univariate equations Mathematica uses a variant of the algorithm

given in [4] with improvements described in [5]. The algorithm can find integer solutions of

polynomials of much higher degrees than can be handled by real root isolation algorithms and

with much larger free terms than can be handled by integer factorization algorithms.

Here Reduce finds integer solutions of a sparse polynomial of degree 100,000.

In[9]:= poly = x100000 + 1234 x77777 - 2121 x12345 + 7890 x999 - x11;
freeterm = poly ê. x Ø 1234567;
Timing@Reduce@poly - freeterm ã 0, x, IntegersDD

Out[11]= 85.698, x ã 1234567<

The free term of this polynomial has 609,152 digits and cannot be easily factored.

In[12]:= N@freetermD

Out[12]= 2.926904998127343µ10609151

In[13]:= TimeConstrained@FactorInteger@freetermD êê Timing, 1000D

Out[13]= $Aborted

Systems of Univariate Equations and Inequalities

Systems of univariate Diophantine equations and inequalities are written in the disjunctive

normal form, and each conjunction is solved separately. If a conjunction contains an equation,

the method for solving univariate equations is used, and the solutions satisfying the remaining

equations and inequalities are selected.

Here Reduce finds integer solutions of x4 - 25 x2  -144 and selects the ones that satisfy the
inequality x100001 - 27 x + 5 ¥ 0.

In[14]:= ReduceAx4 - 25 x2 ã -144 && x100001 - 27 x + 5 ¥ 0, x, IntegersE

Out[14]= x ã 3 »» x ã 4

Conjunctions containing only inequalities are solved over the reals. Integer solutions in the

resulting real intervals are given explicitly if their number in the given interval does not exceed

the value of the system option DiscreteSolutionBound. The default value of the option is 10.

For intervals containing more integer solutions, the solutions are represented implicitly.

Advanced Algebra 79

Conjunctions containing only inequalities are solved over the reals. Integer solutions in the

resulting real intervals are given explicitly if their number in the given interval does not exceed

the value of the system option DiscreteSolutionBound. The default value of the option is 10.

For intervals containing more integer solutions, the solutions are represented implicitly.

Bivariate Systems

Quadratic Equations

Mathematica can solve arbitrary quadratic Diophantine equations in two variables. The general

form of such an equation is

(1)FHx, yL = a x2 + b x y + c y2 + d x + e y + f ã 0.

If FHx, yL = F1Hx, yLF2Hx, yL, whereF1Hx, yL and F2Hx, yL are linear polynomials, the equation (1) is

equivalent to F1Hx, yL = 0 Í F2Hx, yL = 0, and methods for solving linear Diophantine equations are

used. For irreducible polynomials FHx, yL, the algorithms used and the form of the result depend

on the determinant D = b2 - 4 a c of the quadratic form. The algorithms may use integer factoriza-

tion and hence the correctness of the results depends on the correctness of the probabilistic

primality test used by PrimeQ.

Hyperbolic Type Equations with Square Determinants

If D > 0 and D is an integer, then DFHx, yL - g = F1Hx, yLF2Hx, yL, whereF1Hx, yL and F2Hx, yL are

linear polynomials and g = c d2 + a e2 + b2 f - b d e - 4 a c f . In this case, the equation (1) is equiva-

lent to the disjunction of linear systems F1Hx, yL = d Ï F2Hx, yL = -g êd, for all divisors d of g. Each of

the linear systems has one solution over the rationals, hence the equation (1) has a finite

number of integer solutions.

Here is a binary quadratic equation with D = 9.

In[15]:= ReduceA1 + 12 x + 2 x2 + 7 y + 5 x y + 2 y2 ã 0, 8x, y<, IntegersE

Out[15]= Hx ã -4 && y ã -1L »» Hx ã 2 && y ã -3L »» Hx ã 4 && y ã -9L

80 Advanced Algebra

Hyperbolic Type Equations with Nonsquare Determinants

If D > 0 and D is not an integer, then the equation (1) is a Pell-type equation. Methods for

solving such equations have been developed since the 18th century and can be constructed

based on [6] and [7] (though these books do not contain a complete description of the algo-

rithm). The solution set is empty or infinite, parametrized by an integer parameter appearing in

the exponent.

A Pell equation is an equation of the form x2 - D y2 ã 1, where D is not a square. Solutions to
Pell equations with small coefficients can be quite complicated.

In[16]:= ReduceAx2 - 61 y2 ã 1, 8x, y<, IntegersE

Out[16]= C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
- 1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

&&

y ã -
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
- 1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

&&

y ã
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
1766319049 - 226153980 61

C@1D

+ 1766319049 + 226153980 61
C@1D

&&

y ã -
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
1766319049 - 226153980 61

C@1D

+ 1766319049 + 226153980 61
C@1D

&&

y ã
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

Here is the solution of a Pell-type equation with D = 5.

In[17]:= sol = ReduceA7 + 5 x + x2 + 7 y + 3 x y + y2 ã 0, 8x, y<, IntegersE

Out[17]=

Advanced Algebra 81

Out[17]= C@1D œ Integers && C@1D ¥ 0 && x ã
1

10
5 -5 -

2 J9 - 4 5 N
1+2 C@1D

- J9 + 4 5 N
1+2 C@1D

5
+

3 1 - 2 9 - 4 5
1+2 C@1D

+ 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 + 2 9 - 4 5

1+2 C@1D

+ 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã
1

10
5 -5 +

2 J9 - 4 5 N
1+2 C@1D

- J9 + 4 5 N
1+2 C@1D

5
+

3 1 - 2 9 - 4 5
1+2 C@1D

+ 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 + 2 9 - 4 5

1+2 C@1D

+ 9 + 4 5
1+2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
5 -5 -

2 J9 - 4 5 N
2 C@1D

- J9 + 4 5 N
2 C@1D

5
+ 3 1 + 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 - 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
5 -5 +

2 J9 - 4 5 N
2 C@1D

- J9 + 4 5 N
2 C@1D

5
+ 3 1 + 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 - 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
-5 9 - 4 5

2 C@1D

+ 3 5 9 - 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

- 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
5 9 - 4 5

2 C@1D

- 3 5 9 - 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 3 5 9 + 4 5
2 C@1D

&&

»»

82 Advanced Algebra

Out[17]=

5 9 - 4 5 - 3 5 9 - 4 5 + 5 9 + 4 5 + 3 5 9 + 4 5 &&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
5 9 - 4 5

1+2 C@1D

+ 3 5 9 - 4 5
1+2 C@1D

+

5 9 + 4 5
1+2 C@1D

- 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
-5 9 - 4 5

1+2 C@1D

- 3 5 9 - 4 5
1+2 C@1D

-

5 9 + 4 5
1+2 C@1D

+ 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
5 9 - 4 5

2 C@1D

+ 3 5 9 - 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

- 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
-5 9 - 4 5

2 C@1D

- 3 5 9 - 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
-5 9 - 4 5

1+2 C@1D

+ 3 5 9 - 4 5
1+2 C@1D

-

5 9 + 4 5
1+2 C@1D

- 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

Advanced Algebra 83

Out[17]=

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
5 9 - 4 5

1+2 C@1D

- 3 5 9 - 4 5
1+2 C@1D

+

5 9 + 4 5
1+2 C@1D

+ 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

Even though the solutions are expressed using nonrational numbers, they are in fact integers,
as they should be.

In[18]:= Simplify@sol ê. C@1D Ø 7D

Out[18]= Hy ã -143556140002351233 && Hx ã 375834853819893935 »» x ã 54833566187159759LL »»
Hy ã 375834853819893937 && Hx ã -983948421457330581 »» x ã -143556140002351235LL »»
Hy ã 54833566187159761 && Hx ã -143556140002351235 »» x ã -20944558559128053LL »»
Hy ã 2576010410552097799 && Hx ã -983948421457330581 »» x ã -6744082810198962821LL »»
Hy ã -6744082810198962819 && Hx ã 2576010410552097797 »» x ã 17656238020044790655LL »»
Hy ã -983948421457330579 && Hx ã 375834853819893935 »» x ã 2576010410552097797LL

Reduce can solve systems consisting of a Pell-type equation and inequalities giving simple
bounds on variables.

In[19]:= Reduce@x^2 - 3 y^2 ã 22 && 0 § y § 1000000, 8x, y<, IntegersD

Out[19]= Hx ã -856487 && y ã 494493L »» Hx ã -472765 && y ã 272951L »» Hx ã -229495 && y ã 132499L »»
Hx ã -126677 && y ã 73137L »» Hx ã -61493 && y ã 35503L »» Hx ã -33943 && y ã 19597L »»
Hx ã -16477 && y ã 9513L »» Hx ã -9095 && y ã 5251L »» Hx ã -4415 && y ã 2549L »»
Hx ã -2437 && y ã 1407L »» Hx ã -1183 && y ã 683L »» Hx ã -653 && y ã 377L »» Hx ã -317 && y ã 183L »»
Hx ã -175 && y ã 101L »» Hx ã -85 && y ã 49L »» Hx ã -47 && y ã 27L »» Hx ã -23 && y ã 13L »»
Hx ã -13 && y ã 7L »» Hx ã -7 && y ã 3L »» Hx ã -5 && y ã 1L »» Hx ã 5 && y ã 1L »» Hx ã 7 && y ã 3L »»
Hx ã 13 && y ã 7L »» Hx ã 23 && y ã 13L »» Hx ã 47 && y ã 27L »» Hx ã 85 && y ã 49L »»
Hx ã 175 && y ã 101L »» Hx ã 317 && y ã 183L »» Hx ã 653 && y ã 377L »» Hx ã 1183 && y ã 683L »»
Hx ã 2437 && y ã 1407L »» Hx ã 4415 && y ã 2549L »» Hx ã 9095 && y ã 5251L »» Hx ã 16477 && y ã 9513L »»
Hx ã 33943 && y ã 19597L »» Hx ã 61493 && y ã 35503L »» Hx ã 126677 && y ã 73137L »»
Hx ã 229495 && y ã 132499L »» Hx ã 472765 && y ã 272951L »» Hx ã 856487 && y ã 494493L

Parabolic Type Equations

If D = 0, set g = signHaL gcdHa, cL, a1 = a êg , and c1 = signHb êgL c êg . Since b2 = 4 g2Ha êgL Hc êgL, a1 and c1
are nonzero integers, and b = 2 g a1 c1. Then

FHx, yL = gHa1 x + c1 yL2 + d x + e y + f .

Set m = c1 d - a1 e and t = a1 x + c1 y. Then the equation (1) is equivalent to

(2)a1 FHx, yL = a1 gHa1 x + c1 yL2 + dHa1 x + c1 yL -m y + a1 f = a1 g t2 + d t -m y + a1 f ã 0.

Suppose m = 0. If the equation (1) had integer solutions, a1 g t2 + d t + a1 f = 0 would have integer

solutions in t, and so FHx, yL would be a product of two linear polynomials. Since here FHx, yL is

irreducible, the equation (1) has no integer solutions.

If m ≠ 0, then the equation (2) implies

84 Advanced Algebra

(3)a1 g t2 + d t + a1 f ª 0 Hmod m L.

If the modular equation (3) has no solutions in t, the equation (1) has no integer solutions. (If

m = 1, the modular equation (3) has one solution, t = 0.) Otherwise t = u + k m, for some solution

0 § u < m of the modular equation (3). Replacing tØ u + k m in the equation (2) and solving the

resulting linear equation for y gives

(4)yã a1 g m k2 + Hd + 2 a1 g uL k + Ia1 g u2 + d u + a1 f Mëm.

Note that since u satisfies the modular equation (3), the division in the last term of (4) gives an

integer result. Since t = a1 x + c1 y and t = u + k m, x = Hu + k m - c1 yL êa1. Taking the equation (4) and

the fact that m = c1 d - a1 e into account gives

(5)xã-c1 g m k2 - He + 2 c1 g uL k - Ic1 g u2 + e u + c1 f Mëm.

Therefore, the full solution of the equation (1) of parabolic type consists of one-parameter

solution families given by equations (4) and (5) for each solution u of the modular equation (3),

for which Ic1 g u2 + e u + c1 f Mëm is an integer.

Here Reduce finds integer solutions of a quadratic equation of the parabolic type.

In[20]:= ReduceAx2 - 2 x y + y2 + 5 x - 7 y ã 22, 8x, y<, IntegersE

Out[20]= IC@1D œ Integers && x ã -11 + 7 C@1D + 2 C@1D2 && y ã -11 + 5 C@1D + 2 C@1D2M »»

IC@1D œ Integers && x ã -7 + 9 C@1D + 2 C@1D2 && y ã -8 + 7 C@1D + 2 C@1D2M

Elliptic Type Equations

If D < 0, the solutions of equation (1) are integer points on an ellipse. Since an ellipse is a

bounded set, the number of solutions must be finite. An obvious algorithm for finding integer

points would be to compute the solutions for y for each of the finite number of possible integer

values of x. This, however, would be prohibitively slow for larger ellipses. Mathematica uses a

faster algorithm described in [8].

Advanced Algebra 85

Here Reduce finds positive integer solutions of a quadratic equation of the elliptic type. There
are more than 8µ1018 possible positive integer values of x, so the obvious algorithm would not
be practical for this ellipse.

In[21]:= ReduceA23 x2 + 17 y2 ã 1693339429465935072912802926367922572800 && x > 0 && y > 0,
8x, y<, IntegersE

Out[21]= Hx ã 1234567890987654321 && y ã 9876543210123456789L »»
Hx ã 2394388915976549628 && y ã 9583927013507483052L »»
Hx ã 3587688774846621081 && y ã 9066079904941225629L »»
Hx ã 4628858032573225308 && y ã 8403549375095756172L »»
Hx ã 4730542803202013073 && y ã 8326586121887736693L »»
Hx ã 6448688263945408950 && y ã 6583719143723572530L »»
Hx ã 6563464511756847993 && y ã 6428433631978684413L »»
Hx ã 7787179624084878150 && y ã 4191136305399154530L

Thue Equations

A Thue equation is a Diophantine equation of the form

F(x, y) = m,

where FHx, yL is an irreducible homogenous form of degree ¥ 3.

The number of solutions of Thue equations is always finite. Mathematica can in principle solve

arbitrary Thue equations, though the time necessary to find the solutions lengthens very fast

with degree and coefficient size. The hardest part of the algorithm is computing a bound on the

size of solutions. Mathematica uses an algorithm based on the Baker|Wustholz theorem to find

the bound [9]. If the input contains inequalities that provide a reasonable size bound on solu-

tions, Mathematica can compute the solutions much faster.

This finds integer solutions of a cubic Thue equation.

In[22]:= ReduceAx3 - 4 x y2 + y3 == 1, 8x, y<, IntegersE êê Timing

Out[22]= 80.621, Hx ã -2 && y ã 1L »» Hx ã 0 && y ã 1L »»
Hx ã 1 && y ã 0L »» Hx ã 1 && y ã 4L »» Hx ã 2 && y ã 1L »» Hx ã 508 && y ã 273L<

If we give Reduce a bound on the size of solutions, it can solve the equation much faster.

In[23]:= ReduceAx3 - 4 x y2 + y3 == 1 && -10^10 < x < 10^10, 8x, y<, IntegersE êê Timing

Out[23]= 80.05, Hx ã -2 && y ã 1L »» Hx ã 0 && y ã 1L »»
Hx ã 1 && y ã 0L »» Hx ã 1 && y ã 4L »» Hx ã 2 && y ã 1L »» Hx ã 508 && y ã 273L<

86 Advanced Algebra

Here Reduce finds the only solution of a degree 15 Thue equation with at most a 100-digit x
coordinate. Without the bound on the solution size, Reduce did not finish in 1000 seconds.

In[24]:= ReduceA
x15 - 4 x 12 y3 + 7 x7 y8 - 2 y15 ã 23058325506004605670097246320963935108919550 &&
-10^100 < x < 10^100, 8x, y<, IntegersE êê Timing

Out[24]= 812.36, x ã 777 && y ã -121<

Multivariate Nonlinear Systems

Systems Solvable with the Modular Sieve Method

Mathematica uses a variant of the modular sieve method (see e.g. [9]). The method may prove

that a system has no solutions in integers modulo an integer m, and therefore, it has no integer

solutions. Otherwise, it may find a solution with small integer coordinates or prove that the

system has no integer solutions with all coordinates between -b and b. The number of candi-

date solution points that the sieve method is allowed to test is controlled by the system option

SieveMaxPoints.

This equation has no solutions modulo 2.

In[25]:= ReduceA-2 x3 y9 + 6 x5 y5 z2 + 6 x8 y2 z5 + 4 x7 y6 z7 ã 7, 8x, y, z<, IntegersE

Out[25]= False

Here FindInstance finds a small solution using the modular sieve.

In[26]:= FindInstanceA9 x6 y8 z - 81 x2 y9 z - 5 x9 y5 z5 + 2 x6 y2 z9 ã 1080, 8x, y, z<, IntegersE

Out[26]= 88x Ø 1, y Ø 2, z Ø 3<<

Systems with More Than One Equation

If a Diophantine polynomial system contains more than one equation, Mathematica uses

GroebnerBasis in an attempt to reduce the problem to a sequence of simpler problems.

Advanced Algebra 87

Systems Solvable by Recursion over Finitely Many Partial Solutions

Mathematica attempts to solve an element of the Gröbner basis that depends on the minimal

number of the initial variables. If the number of solutions is finite, then for each solution Mathe-

matica substitutes the computed values and attempts to solve the obtained system for the

remaining variables.

Here the first equation has four integer solutions for x and y. For each of the solutions, the
second equation becomes a univariate equation in z. The four univariate equations have a total
of two integer solutions.

In[27]:= ReduceAx4 - x y + y2 ã 7 && z4 - x z + y2 + y ã 2400, 8x, y, z<, IntegersE

Out[27]= Hx ã -1 && y ã -3 && z ã -7L »» Hx ã -1 && y ã 2 && z ã -7L

Here the first equation is a Thue equation with one solution. After replacing x and y with the
values computed from the first equation, the second equation becomes a Pell equation.

In[28]:= ReduceAx3 - 2 y3 ã 11 && z2 - x y w2 ã 1 && z > 0 && w > 0, 8x, y, z, w<, IntegersE

Out[28]= x ã 3 && y ã 2 && C@1D œ Integers && C@1D ¥ 1 &&

z ã
1

2
5 - 2 6

C@1D

+ 5 + 2 6
C@1D

&& w ã -

J5 - 2 6 N
C@1D

- J5 + 2 6 N
C@1D

2 6

Systems with Linear-Triangular Gröbner Bases

This heuristic applies to systems with Gröbner bases of the form

8c1 x1 - f1HYL, …, ck xk - fkHYL, gHYL<.

In this case, Mathematica solves the system of congruences

(1)f1HYL ª 0 mod c1 Ï … Ï fkHYL ª 0 mod ck.

The solutions are represented using new integer parameters. These are substituted into the

equation gHYLã 0 and the inequalities present in the original system, and Mathematica attempts

to solve the so-obtained systems for the new parameters.

88 Advanced Algebra

This system reduces to solving a congruence and a Pell equation.

In[29]:= ReduceAx2 - 7 y2 ã 1 && 2 z ã x3 - 1 && t - 4 z2 + y ã 7 && x > 0 && y > 0,
8x, y, z, t<, IntegersE

Out[29]= C@1D œ Integers && C@1D ¥ 1 && x ã 1 +
1

4
-4 + 2 127 - 48 7

C@1D

+ 127 + 48 7
C@1D

&&

y ã -

J127 - 48 7 N
C@1D

- J127 + 48 7 N
C@1D

2 7
&&

z ã
1

2
-1 + 1 +

1

4
-4 + 2 127 - 48 7

C@1D

+ 127 + 48 7
C@1D 3

&& t ã 8 - 2 x3 + x6 - y

This system reduces to solving a system of two congruences and a quadratic Diophantine
equation of the parabolic type for each family of congruence solutions.

In[30]:= ReduceA3 z ã x2 - 2 x y && 2 t ã x3 + 96 z2 - 1 && Hx - 2 yL2 - 3 x ã 18, 8x, y, z, t<, IntegersE

Out[30]= C@1D œ Integers && x ã 3 + 6 I-1 + 4 C@1D + 8 C@1D2M && y ã 3 + 6 I-1 + C@1D + 4 C@1D2M &&

z ã
1

3
J-2 I3 + 6 I-1 + C@1D + 4 C@1D2MM I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM + I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

2
N &&

t ã
1

2
J-1 + 192 I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

2
+ 33 I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

3
N »»

C@1D œ Integers && x ã 3 + 6 I3 + 12 C@1D + 8 C@1D2M && y ã 6 I1 + 5 C@1D + 4 C@1D2M &&

z ã
1

3
J-12 I1 + 5 C@1D + 4 C@1D2M I3 + 6 I3 + 12 C@1D + 8 C@1D2MM + I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

2
N &&

t ã
1

2
J-1 + 192 I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

2
+ 33 I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

3
N

Sums of Squares

Mathematica can solve equations of the form

(2)x12 + x22 + … + xn2 ãm

using the algorithm described in [10]. For multivariate quadratic equations, Mathematica

attempts to find an affine transformation that puts the equation in the form (2). A heuristic

method based on CholeskyDecomposition is used for this purpose. However, the method may

fail for some equations that can be represented in the form (2).

Advanced Algebra 89

This solves a sum-of-squares equation in three variables.

In[31]:= ReduceAHx - 2 y + 3 zL2 + H4 y + 5 zL2 + z2 ã 14, 8x, y, z<, IntegersE

Out[31]= Hx ã -19 && y ã -4 && z ã 3L »» Hx ã -15 && y ã -4 && z ã 3L »»
Hx ã -9 && y ã -2 && z ã 1L »» Hx ã -5 && y ã -2 && z ã 1L »» Hx ã 5 && y ã 2 && z ã -1L »»
Hx ã 9 && y ã 2 && z ã -1L »» Hx ã 15 && y ã 4 && z ã -3L »» Hx ã 19 && y ã 4 && z ã -3L

To find a single solution of (2) FindInstance uses an algorithm based on [12].

This finds a decomposition of a 10000-digit integer into a sum of seven squares. N is applied to
make the printed result smaller.

In[32]:= SeedRandom@10D; a = RandomIntegerA90, 1010000=E;
NAs7 = FindInstanceAx2 + y2 + z2 + t2 + u2 + v2 + w2 ã a, 8x, y, z, t, u, v, w<, IntegersEE êê
Timing

Out[32]= 96.529, 99x Ø 4.654783993889879µ104999, y Ø 2.728258415849877µ102499,

z Ø 3.456850125804598µ101249, t Ø 4.532687928125587µ10624, u Ø 3.523387016717428µ10624,
v Ø 3.170130382788626µ10624, w Ø 1.713114815166737µ10624===

This proves that the decomposition found is correct.

In[33]:= x^2 + y^2 + z^2 + t^2 + u^2 + v^2 + w^2 - a ê. s7

Out[33]= 80<

Pythagorean Equation

Mathematica knows the solution to the Pythagorean equation

x2 + y2 ã z2.

This gives the general solution of the Pythagorean equation.

In[34]:= ReduceAx2 + y2 == z2, 8x, y, z<, IntegersE

Out[34]= HC@1D C@2D C@3DL œ Integers && C@3D ¥ 0 &&
IIx ã C@1D IC@2D2 - C@3D2M && y ã 2 C@1D C@2D C@3D && z ã C@1D IC@2D2 + C@3D2MM »»

Ix ã 2 C@1D C@2D C@3D && y ã C@1D IC@2D2 - C@3D2M && z ã C@1D IC@2D2 + C@3D2MMM

For quadratic equations in three variables, Mathematica attempts to find a transformation of

the form

x1 = x + a y + b z + c,
y1 = y + d z + e,
z1 = z + f ,

transforming the equation to the Pythagorean equation.

This equation can be transformed to the Pythagorean equation.

90 Advanced Algebra

This equation can be transformed to the Pythagorean equation.

In[35]:= ReduceA-4 x + 5 x2 - 2 y + 4 x y + y2 + 28 x z + 6 y z + 72 z2 ã 8, 8x, y, z<, IntegersE

Out[35]= HC@1D C@2D C@3DL œ Integers && C@3D ¥ 0 &&
IIx ã 2 C@1D C@2D C@3D - 8 I3 + C@1D IC@2D2 + C@3D2MM && y ã 1 + C@1D IC@2D2 - C@3D2M -

3 I3 + C@1D IC@2D2 + C@3D2MM - 2 I2 C@1D C@2D C@3D - 8 I3 + C@1D IC@2D2 + C@3D2MMM &&

z ã 3 + C@1D IC@2D2 + C@3D2MM »» Ix ã C@1D IC@2D2 - C@3D2M - 8 I3 + C@1D IC@2D2 + C@3D2MM &&

y ã 1 + 2 C@1D C@2D C@3D - 3 I3 + C@1D IC@2D2 + C@3D2MM -

2 IC@1D IC@2D2 - C@3D2M - 8 I3 + C@1D IC@2D2 + C@3D2MMM && z ã 3 + C@1D IC@2D2 + C@3D2MMM

Equations with Reducible Nonconstant Parts

If the sum of nonconstant terms in an equation factors, Mathematica uses the formula

f g = có fid c f = d Ï g = c êd

to reduce the equation to a disjunction of pairs of equations with lower degrees. Note that this

reduction depends on the ability to find all divisors of c, hence the correctness of the results

depends on the correctness of the probabilistic primality test used by PrimeQ.

This cubic equation reduces to 12 pairs of quadratic and linear equations.

In[36]:= ReduceAHx - 2 y + 3 zL x2 - Hx - 2 y + 3 zL y z ã 18, 8x, y, z<, IntegersE

Out[36]= Hx ã -71 && y ã -112 && z ã -45L »» Hx ã -55 && y ã -82 && z ã -37L »»
Hx ã -53 && y ã -80 && z ã -35L »» Hx ã -11 && y ã 8 && z ã 15L »»
Hx ã -9 && y ã -12 && z ã -7L »» Hx ã -9 && y ã 8 && z ã 9L »» Hx ã -9 && y ã 10 && z ã 9L »»
Hx ã -3 && y ã -6 && z ã -1L »» Hx ã -1 && y ã -2 && z ã 1L »» Hx ã -1 && y ã 4 && z ã 1L »»
Hx ã 6 && y ã -6 && z ã -7L »» Hx ã 6 && y ã -6 && z ã -5L »» Hx ã 13 && y ã -10 && z ã -17L »»
Hx ã 34 && y ã 50 && z ã 23L »» Hx ã 38 && y ã 58 && z ã 25L »» Hx ã 83 && y ã 130 && z ã 53L

Equations with a Linear Variable

Mathematica attempts to solve Diophantine systems of the form

f Hx1, …, xnL y + gHx1, …, xnLã 0 Ï FHx1, …, xn, yL,

where FHx1, …, xn, yL is a conjunction of inequalities or True, by reducing them to

(3)
f Hx1, …, xnLã 0 Ï gHx1, …, xnLã 0 Ï FHx1, …, xn, yL Í
yã-gHx1, …, xnL ê f Hx1, …, xnL Ï FHx1, …, xn, -gHx1, …, xnL ê f Hx1, …, xnLL.

The first part of the system (3) is solved using the method for solving systems with more than

one equation. Mathematica recognizes three cases when the second part of the system (3) is

solvable. If f Hx1, …, xnL ª 1, the solution is given by yã-gHx1, …, xnL and by the restrictions on

x1, …, xn obtained by solving the inequalities FHx1, …, xn, -gHx1, …, xnLL. Nonlinear systems of

inequalities are solved using CylindricalDecomposition. If f Hx1, …, xnL ªm for an integer con-

stant m ¥ 2, the solution of the second part of the system (3) is given by yã-gHx1, …, xnL êm and

by the restrictions on x1, …, xn obtained by solving the congruence gHx1, …, xnL ª 0 modm and then

solving the inequalities FHx1, …, xn, -gHx1, …, xnL êmL for each solution of the congruence. If

f Hx1, …, xnL is nonconstant, Mathematica can solve the second part of the system (3) if n = 1.

Since Mathematica factors all equations at the preprocessing stage, f Hx1L and gHx1L can be ass-

umed to be relatively prime. Then

Advanced Algebra 91

The first part of the system (3) is solved using the method for solving systems with more than

one equation. Mathematica recognizes three cases when the second part of the system (3) is

solvable. If f Hx1, …, xnL ª 1, the solution is given by yã-gHx1, …, xnL and by the restrictions on

x1, …, xn obtained by solving the inequalities FHx1, …, xn, -gHx1, …, xnLL. Nonlinear systems of

inequalities are solved using CylindricalDecomposition. If f Hx1, …, xnL ªm for an integer con-

stant m ¥ 2, the solution of the second part of the system (3) is given by yã-gHx1, …, xnL êm and

by the restrictions on x1, …, xn obtained by solving the congruence gHx1, …, xnL ª 0 modm and then

solving the inequalities FHx1, …, xn, -gHx1, …, xnL êmL for each solution of the congruence. If

f Hx1, …, xnL is nonconstant, Mathematica can solve the second part of the system (3) if n = 1.

Since Mathematica factors all equations at the preprocessing stage, f Hx1L and gHx1L can be ass-

umed to be relatively prime. Then

d gHx1L = qHx1L f Hx1L + rHx1L

for an integer d and polynomials qHx1L and rHx1L with integer coefficients and degHrL < degH f L. If

-gHx1L ê f Hx1L is an integer, then rHx1L ê f Hx1L is an integer, and so rHx1Lã 0 or rHx1L ¥ f Hx1L . Since

degHrL < degH f L, the last condition is satisfied only by a finite number of integers x1. Hence the

solutions of the second part of the system (3) can be selected from a finite number of solution

candidates.

Additionally, Mathematica uses the following heuristic to detect cases when the system (3) has

no solutions. If there is an integer m ¥ 2, such that f Hx1, …, xnL is always divisible by m, and

gHx1, …, xnL is never divisible by m, then the system (3) has no solutions. Candidates for m are

found by computing the GCD of the values of f at several points.

The last two methods use exhaustive search over finite sets of points. The allowed number of

search points is controlled by the system option SieveMaxPoints.

This reduces to (3) with f Hx1, …, xnL ª 1.

In[37]:= ReduceAx3 - 7 x y + 5 y4 - z ã 3 && 2 x - y > 1, 8x, y, z<, IntegersE

Out[37]= HC@1D C@2D C@3D C@4D C@5DL œ Integers && C@1D ¥ 0 && C@2D ¥ 0 && C@3D ¥ 0 && C@4D ¥ 0 &&
C@5D ¥ 0 && HHx ã 1 + C@1D + C@2D + C@3D - C@4D && y ã C@1D + 2 C@2D - 2 C@4D - C@5DL »»

Hx ã C@1D + C@2D + C@3D - C@4D && y ã -2 + C@1D + 2 C@2D - 2 C@4D - C@5DLL && z ã -3 + x3 - 7 x y + 5 y4

92 Advanced Algebra

This reduces to (3) with f Hx1, …, xnL ª 3.

In[38]:= ReduceAx3 - 2 x2 y + 9 x y4 - 3 z ã 8, 8x, y, z<, IntegersE

Out[38]= HC@1D C@2DL œ Integers &&

HHx ã 1 + 3 C@1D && y ã 1 + 3 C@2DL »» Hx ã 2 + 3 C@1D && y ã 3 C@2DLL && z ã
1

3
I-8 + x3 - 2 x2 y + 9 x y4M

This reduces to the nã 1 case of system (3).

In[39]:= ReduceAx5 + 7 x - 271 + y Ix3 + 21 x2 - 17M ã 0, 8x, y<, IntegersE

Out[39]= Hx ã -1 && y ã 93L »» Hx ã 2 && y ã 3L

Here Reduce detects that the equation has no solutions, because
9 x6 y3 z4 - 9 x2 y3 z8 - 5 y8 z9 - 10 is always divisible by 5, and 7 - 5 x4 y z4 + 7 x8 y2 z4 - 9 z8 - 4 x6 y z8
is never divisible by 5.

In[40]:= ReduceAI9 x6 y3 z4 - 9 x2 y3 z8 - 5 y8 z9 - 10M t + 7 - 5 x4 y z4 + 7 x8 y2 z4 - 9 z8 - 4 x6 y z8 ã 0,
8x, y, z, t<, IntegersE

Out[40]= False

Systems with Empty or Bounded Real Solution Sets

If a Diophantine polynomial system is not solved by any other methods, Mathematica solves the

system over the reals using the Cylindrical Algebraic Decomposition (CAD) algorithm. If the

system has no real solutions, then clearly it has no integer solutions. If the real solution set is

bounded, then the number of integer solutions is finite. In principle, all the integer solutions can

be found in this case from a cylindrical decomposition. Namely, for each cylinder, you enumer-

ate all possible integer values of the first coordinate, then for each value of the first coordinate,

you enumerate all possible integer values of the second coordinate, and so on. However, for

large bounded solution sets this method could lead to a huge number of points to try. There-

fore, Mathematica has a bound on the number of explicitly enumerated integer solutions in a

real interval. By default this bound is equal to 10. It can be changed using the system option

DiscreteSolutionBound. For systems for which the real solution set is unbounded or bounded

but large, the solution is represented implicitly by returning the CAD and a condition that all

variables are integers. Note that for multivariate systems such an implicit representation may

not even be enough to tell whether integer solutions exist. This should be expected, given

Matiyasevich's solution of Hilbert's tenth problem [2].

Advanced Algebra 93

Here the real solution set is bounded, but Reduce gives some cylinders in an implicit form. This
is because some of the intervals bounding y contain more than 10 integers.

In[41]:= Reduce@x^5 + y^2 + z^3 - x y z ã 8 && x^2 + y^2 § 30, 8x, y, z<, IntegersD

Out[41]= Hy zL œ Integers && IIx ã -2 && -5 § y § 5 && z ã RootA-40 + y2 + 2 y Ò1 + Ò13 &, 1EM »»

Hx ã -1 && HHy ã -3 && z ã 0L »» Hy ã 3 && z ã 0LLL »» Ix ã 0 && -5 § y § 5 && z ã RootA-8 + y2 + Ò13 &, 1EM »»
Hx ã 1 && HHy ã -5 && z ã -2L »» Hy ã -2 && z ã 1L »» Hy ã 1 && z ã 2L »» Hy ã 3 && Hz ã -2 »» z ã 1LLLL »»

Ix ã 2 && -5 § y § 5 && z ã RootA24 + y2 - 2 y Ò1 + Ò13 &, 1EMM

Increasing the value of the system option DiscreteSolutionBound allows Reduce to find all
integer solutions explicitly.

In[42]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 11<D;
Reduce@x^5 + y^2 + z^3 - x y z ã 8 && x^2 + y^2 § 30, 8x, y, z<, IntegersD

Out[43]= Hx ã -1 && HHy ã -3 && z ã 0L »» Hy ã 3 && z ã 0LLL »» Hx ã 0 &&
HHy ã -4 && z ã -2L »» Hy ã -3 && z ã -1L »» Hy ã 0 && z ã 2L »» Hy ã 3 && z ã -1L »» Hy ã 4 && z ã -2LLL »»

Hx ã 1 && HHy ã -5 && z ã -2L »» Hy ã -2 && z ã 1L »» Hy ã 1 && z ã 2L »» Hy ã 3 && Hz ã -2 »» z ã 1LLLL »»
Hx ã -2 && y ã 4 && z ã 2L

This resets DiscreteSolutionBound to the default value.

In[44]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

Here the modular sieve method shows that there are no solutions in H-15, 15D3. After adding
inequalities to eliminate this cube, Reduce then recognizes that this equation has no solutions
anywhere.

In[45]:= ReduceA9 x2 y2 + 7 x2 z2 + 5 y2 z2 ã x y z + 10, 8x, y, z<, IntegersE

Out[45]= False

Equations of the Form x gHx, y, z1, …, znL + yä c

Mathematica attempts to solve Diophantine systems of the form

x gHx, y, z1, …, znL + yã cÏ FHx, y, z1, …, znL,

where FHx, y, z1, …, znL is a conjunction of inequalities or True, by transforming them to

(4)xã 0 Ï yã cÏ FH0, c, z1, …, znL Í yã c + t xÏ gHx, c + t x, z1, …, znL + tã 0 Ï FHx, c + t x, z1, …, znL.

The resulting system (4) may, or may not, be easier to solve. Systems exist for which this

transformation could be applied recursively arbitrarily many times; therefore, Mathematica uses

a recursion bound to ensure the heuristic terminates.

94 Advanced Algebra

This transforms to a system (4) with no real solutions.

In[46]:= ReduceA-x2 + y + x y + x z ã 0 && x > 0 && y > 0 && z > 0, 8x, y, z<, IntegersE

Out[46]= False

Here the system (4) obtained after three recursive transformations has a reducible nonconstant
part.

In[47]:= ReduceAx3 - 2 x y2 + 20 x y + y ã 5, 8x, y<, IntegersE

Out[47]= Hx ã -7 && y ã 12L »» Hx ã 0 && y ã 5L »» Hx ã 7 && y ã -2L

Systems Solvable by Exhaustive Search

For systems containing explicit lower and upper bounds on all variables, Mathematica uses

exhaustive search to find solutions. The bounds of the search are specified by the value of the

system option ExhaustiveSearchMaxPoints. The option value should be a pair of integers (the

default is 81000, 10 000<). If the number of integer points within the bounds does not exceed the

first integer, the exhaustive search is used instead of any solution methods other than univari-

ate polynomial solving. Otherwise, if the number of integer points within the bounds does not

exceed the second integer, the exhaustive search is performed after all other methods fail.

This transcendental Diophantine equation with bounded variable values is solved by exhaustive
search.

In[48]:= ReduceBSinB
p x y

2
F
2

ã Gamma@21 x - 37 yD && 0 < x < 100 && 1 § y § 100, x, IntegersF

Out[48]= Hy ã 13 && x ã 23L »» Hy ã 55 && x ã 97L

Options

The Mathematica functions for solving Diophantine polynomial systems have a number of

options that control the way they operate. This tutorial gives a summary of these options.

option name default value

GeneratedParameters C specifies how the new parameters gener-
ated to represent solutions should be
named

Reduce options affecting the behavior for Diophantine polynomial systems.

GeneratedParameters

Advanced Algebra 95

GeneratedParameters

To represent infinite solutions of some Diophantine systems, Reduce needs to introduce new

integer parameters. The names of the new parameters are specified by the option

GeneratedParameters. With GeneratedParameters -> f , the new parameters are named

f@1D, f@2D, ….

By default, the new parameters generated by Reduce are named C@1D, C@2D, ….

In[49]:= Reduce@x + y + z ã 2 && x > y + 1, 8x, y, z<, IntegersD

Out[49]= HC@1D C@2D C@3D C@4D C@5DL œ Integers && C@1D ¥ 0 && C@2D ¥ 0 &&
C@3D ¥ 0 && C@4D ¥ 0 && C@5D ¥ 0 && HHx ã 1 + C@1D + C@2D + C@3D - C@4D &&

y ã -1 + C@1D - C@3D - C@4D - C@5D && z ã 2 - 2 C@1D - C@2D + 2 C@4D + C@5DL »»
Hx ã 2 + C@1D + C@2D + C@3D - C@4D && y ã C@1D - C@3D - C@4D - C@5D && z ã -2 C@1D - C@2D + 2 C@4D + C@5DL »»
Hx ã C@1D + C@2D + C@3D - C@4D &&

y ã -2 + C@1D - C@3D - C@4D - C@5D && z ã 4 - 2 C@1D - C@2D + 2 C@4D + C@5DLL

The option GeneratedParameters allows users to customize the parameter names.

In[50]:= Reduce@x + y + z ã 2 && x > y + 1, 8x, y, z<,
Integers, GeneratedParameters Ø HSubscript@k, ÒD &LD

Out[50]= Hk1 k2 k3 k4 k5L œ Integers && k1 ¥ 0 && k2 ¥ 0 && k3 ¥ 0 && k4 ¥ 0 && k5 ¥ 0 &&
HHx ã 1 + k1 + k2 + k3 - k4 && y ã -1 + k1 - k3 - k4 - k5 && z ã 2 - 2 k1 - k2 + 2 k4 + k5L »»

Hx ã 2 + k1 + k2 + k3 - k4 && y ã k1 - k3 - k4 - k5 && z ã -2 k1 - k2 + 2 k4 + k5L »»
Hx ã k1 + k2 + k3 - k4 && y ã -2 + k1 - k3 - k4 - k5 && z ã 4 - 2 k1 - k2 + 2 k4 + k5LL

ReduceOptions Group of System Options

Here are the system options from the ReduceOptions group that may affect the behavior of

Reduce, Resolve, and FindInstance for Diophantine polynomial systems. The options can be

set with

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.

96 Advanced Algebra

option name default value

"BranchLinearDiophantine" True whether Reduce should use a branch-and-
bound type algorithm to compute solutions
of bounded systems of linear Diophantine
inequalities

"DiscreteSolutionBound" 10 the bound on the number of explicitly
enumerated integer solutions in a real
interval

"ExhaustiveSearchMaxPoints
"

81000,10 000< the maximal number of integer points
within variable bounds for which the
exhaustive search is used before and after
all other solution methods

"LatticeReduceDiophantine" True whether LatticeReduce should be used
to preprocess bounded systems of linear
Diophantine inequalities

"MaxFrobeniusGraph" 1000000 the maximal size of the smallest coefficient
in a Frobenius equation for which
FindInstance computes the critical tree
in the Frobenius graph

"SieveMaxPoints" 10000 the maximal number of points at which the
modular sieve method evaluates the system

ReduceOptions group options affecting the behavior of Reduce, Resolve, and FindInstance for
Diophantine polynomial systems.

BranchLinearDiophantine

The value of the system option BranchLinearDiophantine specifies which variant of the algo-

rithm should be used in the final stage of solving bounded linear systems. Neither variant

seems to be clearly better. For some examples the hybrid method combining a branch-and-

bound type algorithm and a simple recursive enumeration is faster; for other examples the

simple recursive enumeration alone is faster. The hybrid method seems to be more robust for

badly conditioned problems, hence it is the default method.

This finds integer points in a long, narrow four-dimensional simplex using the default hybrid
method.

In[51]:= a = 10000;
Reduce@a x + a y + a z - 3 Ha - 1L t § 3 a && a x + a y + a t - 3 Ha - 1L z § 3 a &&

a x + a z + a t - 3 Ha - 1L y § 3 a && a y + a z + a t - 3 Ha - 1L x § 3 a &&
x + y + z + t ¥ 1 && x < y && z < t, 8x, y, z, t<, IntegersD êê Length êê Timing

Out[52]= 80.671, 3336<

Advanced Algebra 97

This sets the value of the system option BranchLinearDiophantine to False.

In[53]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;

Here the simple recursive enumeration method is used, and for this badly conditioned problem
it is several times slower.

In[54]:= Reduce@a x + a y + a z - 3 Ha - 1L t § 3 a && a x + a y + a t - 3 Ha - 1L z § 3 a &&
a x + a z + a t - 3 Ha - 1L y § 3 a && a y + a z + a t - 3 Ha - 1L x § 3 a &&
x + y + z + t ¥ 1 && x < y && z < t, 8x, y, z, t<, IntegersD êê Length êê Timing

Out[54]= 84.447, 3336<

This resets the value of the system option BranchLinearDiophantine to the default value.

In[55]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;

Here are solutions of a system of two randomly generated equations eqns and three randomly
generated inequalities ineqs in seven variables inside a simplex bounded by bds.

In[56]:= SeedRandom@1D;
A = Table@RandomInteger@8-1000, 1000<D, 82<, 87<D;
a = Table@RandomInteger@8-1000, 1000<D, 82<D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 87<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@7D;
eqns = And üü Thread@A.X ã aD;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 100;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[64]= 87.32, Hx@1D ã 9 && x@2D ã 8 && x@3D ã 2 && x@4D ã 14 && x@5D ã 20 && x@6D ã 22 && x@7D ã 13L »»
Hx@1D ã 12 && x@2D ã 15 && x@3D ã 0 && x@4D ã 12 && x@5D ã 11 && x@6D ã 22 && x@7D ã 18L<

For this system the nondefault simple recursion method is faster.

In[65]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[66]= 81.643, Hx@1D ã 9 && x@2D ã 8 && x@3D ã 2 && x@4D ã 14 && x@5D ã 20 && x@6D ã 22 && x@7D ã 13L »»
Hx@1D ã 12 && x@2D ã 15 && x@3D ã 0 && x@4D ã 12 && x@5D ã 11 && x@6D ã 22 && x@7D ã 18L<

Here is a random system very similar to the previous one, except that it contains one more
variable and the right-hand side of the last of bds is changed from 100 to 200. However, for
this system the default method is faster.

In[67]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;
SeedRandom@1D;
A = Table@RandomInteger@8-1000, 1000<D, 82<, 88<D;
a = Table@RandomInteger@8-1000, 1000<D, 82<D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 88<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@8D;
eqns = And üü Thread@A.X ã aD;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 200;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[76]= 816.093, Hx@1D ã 2 && x@2D ã 6 && x@3D ã 27 && x@4D ã 35 && x@5D ã 0 && x@6D ã 6 && x@7D ã 0 && x@8D ã 38L »»
Hx@1D ã 10 && x@2D ã 1 && x@3D ã 48 && x@4D ã 54 && x@5D ã 1 && x@6D ã 1 && x@7D ã 1 && x@8D ã 55L<

The nondefault method is slower for this system.

98 Advanced Algebra

The nondefault method is slower for this system.

In[77]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[78]= 847.789, Hx@1D ã 2 && x@2D ã 6 && x@3D ã 27 && x@4D ã 35 && x@5D ã 0 && x@6D ã 6 && x@7D ã 0 && x@8D ã 38L »»
Hx@1D ã 10 && x@2D ã 1 && x@3D ã 48 && x@4D ã 54 && x@5D ã 1 && x@6D ã 1 && x@7D ã 1 && x@8D ã 55L<

This resets the value of the system option BranchLinearDiophantine to the default value.

In[79]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;

DiscreteSolutionBound

The value of the system option DiscreteSolutionBound specifies whether integer solutions in a

real interval a § x § b should be enumerated explicitly or represented implicitly as x œ Ï a § x § b.

With DiscreteSolutionBound -> n, the integer solutions in the given real interval are enumer-

ated explicitly if their number does not exceed n. The default value of the option is 10.

There are 10 integers in the real interval 0 § x < 10. Reduce writes them out explicitly.

In[80]:= ReduceA0 § x3 < 1000, IntegersE

Out[80]= x ã 0 »» x ã 1 »» x ã 2 »» x ã 3 »» x ã 4 »» x ã 5 »» x ã 6 »» x ã 7 »» x ã 8 »» x ã 9

There are 11 integers in the real interval 0 § x < 10011ê3. Reduce represents them implicitly.

In[81]:= ReduceA0 § x3 < 1001, IntegersE

Out[81]= x œ Integers && 0 § x § 10

This increases the DiscreteSolutionBound to 11.

In[82]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 11<D;

Now Reduce represents the solutions explicitly.

In[83]:= ReduceA0 § x3 < 1001, IntegersE

Out[83]= x ã 0 »» x ã 1 »» x ã 2 »» x ã 3 »» x ã 4 »» x ã 5 »» x ã 6 »» x ã 7 »» x ã 8 »» x ã 9 »» x ã 10

This resets DiscreteSolutionBound to the default value.

In[84]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

The value of DiscreteSolutionBound also affects the solving of bounded linear systems.

Advanced Algebra 99

ExhaustiveSearchMaxPoints

The system option ExhaustiveSearchMaxPoints specifies the maximal number of search points

used by the exhaustive search method. The option value should be a pair of integers (the

default is 81000, 10 000<). If the number of integer points within the bounds does not exceed the

first integer, the exhaustive search is used instead of any solution methods other than univari-

ate polynomial solving. Otherwise, if the number of integer points within the bounds does not

exceed the second integer, the exhaustive search is performed after all other methods fail.

With the default setting of ExhaustiveSearchMaxPoints, Reduce is unable to solve this
equation.

In[85]:= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

Reduce::nsmet :
This system cannot be solved with the methods available to Reduce. à

Out[85]= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

This increases the value of the second element of ExhaustiveSearchMaxPoints to 100 000.

In[86]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 100000<<D;

Now Reduce can solve the equation.

In[87]:= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

Out[87]= Hx ã 1 && y ã 1L »» Hx ã 2 && y ã 1L

With the default setting of ExhaustiveSearchMaxPoints, Reduce solves this equation using
the method for solving Pell equations.

In[88]:= SetSystemOptions@"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;
ReduceAx2 - 2 y2 ã 1 && 1 § x § 1000 && 1 § y § 1000, 8x, y<, IntegersE êê Timing

Out[88]= 80.06, Hx ã 3 && y ã 2L »» Hx ã 17 && y ã 12L »» Hx ã 99 && y ã 70L »» Hx ã 577 && y ã 408L<

Increasing the first element of ExhaustiveSearchMaxPoints to 106 makes Reduce use the
exhaustive search first. In this example the search is much slower than the Pell equation solver.

In[89]:= SetSystemOptionsA"ReduceOptions" Ø 9"ExhaustiveSearchMaxPoints" Ø 9106, 106==E;
ReduceAx2 - 2 y2 ã 1 && 1 § x § 1000 && 1 § y § 1000, 8x, y<, IntegersE êê Timing

Out[90]= 85.538, Hx ã 3 && y ã 2L »» Hx ã 17 && y ã 12L »» Hx ã 99 && y ã 70L »» Hx ã 577 && y ã 408L<

100 Advanced Algebra

For this equation the Pell equation solver is slower than the exhaustive search.

In[91]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;

ReduceAx2 - 21 y2 ã 2004 && 1 § x § 100 && 1 § y § 100, 8x, y<, IntegersE êê Timing

Out[92]= 80.381, x ã 45 && y ã 1<

The exhaustive search is faster here.

In[93]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 810000, 10000<<D;

ReduceAx2 - 21 y2 ã 2004 && 1 § x § 100 && 1 § y § 100, 8x, y<, IntegersE êê Timing

Out[93]= 80.12, x ã 45 && y ã 1<

This resets ExhaustiveSearchMaxPoints to the default value.

In[94]:= SetSystemOptions@"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;

LatticeReduceDiophantine

The value of the system option LatticeReduceDiophantine specifies whether LatticeReduce

should be used to preprocess systems of bounded linear inequalities. The use of

LatticeReduce is important for systems of inequalities describing polyhedra whose projections

on some nonaxial lines are much smaller than their projections on the axes. However, there are

systems for which LatticeReduce, instead of simplifying the problem, makes it significantly

harder.

This finds the only two integer points in a triangle whose projections on both axes have sizes
greater than a but whose projection on the line x + 5000 yã 0 has size one.

In[95]:= a = 104;
Reduce@a x § Ha + 1L y && Ha + 1L x ¥ Ha + 2L y && 0 § x § a + 1, 8x, y<, IntegersD êê Timing

Out[96]= 80., Hx ã 0 && y ã 0L »» Hx ã 10001 && y ã 10000L<

This sets the value of the system option LatticeReduceDiophantine to False.

In[97]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø False<D;

The nondefault method is much slower for this system, and the speed difference grows with a.

In[98]:= Reduce@a x § Ha + 1L y && Ha + 1L x ¥ Ha + 2L y && 0 § x § a + 1, 8x, y<, IntegersD êê Timing

Out[98]= 83.875, Hx ã 0 && y ã 0L »» Hx ã 10001 && y ã 10000L<

Advanced Algebra 101

Here is a system that contains a set of simple inequalities bds, which bound solutions to a
reasonably small size polyhedron, combined with a set of relatively complicated inequalities
ineqs. For such systems, using LatticeReduce tends to increase the timing.

In[99]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø True<D;
SeedRandom@1D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 85<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@5D;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 10;
Reduce@ineqs && bds, X, IntegersD êê Length êê Timing

Out[105]= 81.773, 35<

The nondefault method is faster for this system.

In[106]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø False<D;
Reduce@ineqs && bds, X, IntegersD êê Length êê Timing

Out[107]= 80.09, 35<

This resets LatticeReduceDiophantine to the default value.

In[108]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø True<D;

MaxFrobeniusGraph

The system option MaxFrobeniusGraph specifies the maximal size of the smallest coefficient in

a Frobenius equation for which FindInstance uses an algorithm based on the computation of

the critical tree in the Frobenius graph [11]. Otherwise, the more general methods for solving

bounded linear systems are used. Unlike the general method for solving bounded linear

systems, the method based on the computation of the Frobenius graph depends very little on

the number of variables, hence it is the faster choice for equations with many variables. On the

other hand, the method requires storing a graph of the size of the smallest coefficient, so for

large coefficients it may run out of memory.

To find a solution of a Frobenius equation with the smallest coefficient larger than 106,
FindInstance by default uses the general method for solving bounded linear systems. For
this example the method is relatively slow but uses little memory. The kernel has been
restarted to show the memory usage by the current example.

In[1]:= SeedRandom@1D;
A = TableARandomIntegerA95 106, 107=E, 825<E;
X = x êü Range@25D;
FindInstance@A.X ã 123456789 && And üü Thread@X ¥ 0D, X, IntegersD êê Timing

Out[4]= 842.952, 88x@1D Ø 1, x@2D Ø 0, x@3D Ø 0, x@4D Ø 0, x@5D Ø 2, x@6D Ø 3, x@7D Ø 0, x@8D Ø 0, x@9D Ø 0,
x@10D Ø 7, x@11D Ø 0, x@12D Ø 0, x@13D Ø 0, x@14D Ø 0, x@15D Ø 0, x@16D Ø 2, x@17D Ø 1,
x@18D Ø 0, x@19D Ø 0, x@20D Ø 3, x@21D Ø 0, x@22D Ø 0, x@23D Ø 0, x@24D Ø 0, x@25D Ø 0<<<

102 Advanced Algebra

In[5]:= MaxMemoryUsed@D

Out[5]= 10288400

This increases the value of MaxFrobeniusGraph to 107.

In[6]:= SetSystemOptionsA"ReduceOptions" Ø 9"MaxFrobeniusGraph" Ø 107=E;

Now FindInstance uses the method based on the computation of the Frobenius graph. It
finds the solution faster, but it uses more memory.

In[7]:= FindInstance@A.X ã 123456789 && And üü Thread@X ¥ 0D, X, IntegersD êê Timing

Out[7]= 82.213, 88x@1D Ø 0, x@2D Ø 14, x@3D Ø 0, x@4D Ø 0, x@5D Ø 1, x@6D Ø 0, x@7D Ø 0, x@8D Ø 0, x@9D Ø 0,
x@10D Ø 0, x@11D Ø 0, x@12D Ø 0, x@13D Ø 0, x@14D Ø 0, x@15D Ø 0, x@16D Ø 2, x@17D Ø 1,
x@18D Ø 1, x@19D Ø 1, x@20D Ø 0, x@21D Ø 0, x@22D Ø 1, x@23D Ø 1, x@24D Ø 0, x@25D Ø 0<<<

In[8]:= MaxMemoryUsed@D

Out[8]= 77722760

This resets MaxFrobeniusGraph to the default value.

In[9]:= SetSystemOptionsA"ReduceOptions" Ø 9"MaxFrobeniusGraph" Ø 106=E;

SieveMaxPoints

The system option SieveMaxPoints specifies the maximal number of search points used by the

modular sieve method and by searches used in solving equations with a linear variable. The

default value of the option is 10,000.

With the default setting of SieveMaxPoints, FindInstance is unable to find a solution for
this equation.

In[10]:= FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

FindInstance::nsmet :
The methods available to FindInstance are insufficient to find the

requested instances or prove they do not exist. à
Out[10]= FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

Increasing the number of SieveMaxPoints to one million allows FindInstance to find a
solution.

In[11]:= SetSystemOptions@"ReduceOptions" Ø 8"SieveMaxPoints" Ø 1000000<D;
FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

Out[12]= 88x Ø -29, y Ø -2, z Ø -2<<

This resets SieveMaxPoints to the default value.

In[13]:= SetSystemOptions@"ReduceOptions" Ø 8"SieveMaxPoints" Ø 10000<D;

References

Advanced Algebra 103

References

[1] Goldbach, C. Letter to L. Euler, June 7, 1742.

http://mathworld.wolfram.com/GoldbachConjecture.html.

[2] Matiyasevich, Yu. V. "The Diophantineness of Enumerable Sets (Russian)" Dokl. Akad. Nauk

SSSR 191 (1970): 279|282. English translation: Soviet Math. Dokl. 11 (1970): 354|358.

[3] Contejean, E. and H. Devie. "An Efficient Incremental Algorithm for Solving Systems of

Linear Diophantine Equations." Information and Computation 113 (1994): 143|172.

[4] Cucker, F., P. Koiran, and S. Smale. "A Polynomial Time Algorithm for Diophantine

Equations in One Variable." Journal of Symbolic Computation 27, no. 1 (1999): 21|30.

[5] Strzebonski, A. "An Improved Algorithm for Diophantine Equations in One Variable." Paper

presented at the ACA 2002 Session on Symbolic-Numerical Methods in Computational Science,

Volos, Greece. Notebook with the conference talk available at members.wolfram.com/adams

[6] Dickson, L. E. History of the Theory of Numbers. Chelsea, 1952.

[7] Nagell, T. Introduction to Number Theory. Wiley, 1951.

[8] Hardy, K., J. B. Muskat and K. S. Williams. "A Deterministic Algorithm for Solving

n = f u2 + g v2 in Coprime Integers u and v." Mathematics of Computation 55 (1990): 327|343.

[9] Smart, N. The Algorithmic Resolution of Diophantine Equations. Cambridge University Press,

1998.

[10] Bressoud, D. M. and S. Wagon. A Course in Computational Number Theory. Key College

Publishing, 2000.

[11] Beihoffer, D. E., J. Hendry, A. Nijenhuis, and S. Wagon. "Faster Algorithms for Frobenius

Numbers." to appear in The Electronic Journal of Combinatorics.

[12] Rabin, M. O. and J. O. Shallit. "Randomized Algorithms in Number Theory."

Communications on Pure and Applied Mathematics 39 (1986): 239|256.

104 Advanced Algebra

Algebraic Number Fields

Mathematica provides representation of algebraic numbers as Root objects. A Root object

contains the minimal polynomial of the algebraic number and the root number~an integer

indicating which of the roots of the minimal polynomial the Root object represents. This allows

for unique representation of arbitrary complex algebraic numbers. A disadvantage is that per-

forming arithmetic operations in this representation is quite costly. That is why Mathematica

requires the use of an additional function, RootReduce, in order to simplify arithmetic expres-

sions. Restricting computations to be within a fixed finite algebraic extension of the rationals,

@qD, allows a more convenient representation of its elements as polynomials in q.

AlgebraicNumber@q,8c0,c1,…,cn<D represent the algebraic number c0 + c1 q + … + cn qn in @qD

Representation of algebraic numbers as elements of a finite extension of rationals.

If q is an algebraic integer with a MinimalPolynomial of degree l, and 8c0, …, cl< are rational
numbers, then AlgebraicNumber@q, 8c0, …, cl<D is an inert numeric object.

In[1]:= a = AlgebraicNumberARootAÒ3 - Ò + 1 &, 1E, 81, 2, 3<E

Out[1]= AlgebraicNumberARootA1 - Ò1 + Ò13 &, 1E, 81, 2, 3<E

N can be used to find a numeric approximation of an AlgebraicNumber object.

In[2]:= N@a, 20D

Out[2]= 3.6151970842505862282

For any algebraic number q and any list of rational numbers 8c0, …, cl< ,

AlgebraicNumber@q, 8c0, …, cl<D evaluates to AlgebraicNumber@x, 8d0, …, dm<D, such that

x = dq, d is a factor of the leading coefficient of MinimalPolynomial of q, such that x is an alge-

braic integer, m is the degree of MinimalPolynomial of q, and

c0 + c1 q + … + cl ql ã d0 + d1 x + … + dm xm.

Advanced Algebra 105

AlgebraicNumber automatically makes the generator of the extension an algebraic integer
and the coefficient list equal in length to the degree of the extension.

In[3]:= AlgebraicNumberARootA2 Ò4 - 3 Ò + 2 &, 1E, 81, 2, 3, 4, 5, 6<E

Out[3]= AlgebraicNumberBRootA16 - 12 Ò1 + Ò14 &, 1E, :-4,
7

4
, 3,

1

2
>F

AlgebraicNumber objects representing rational numbers reduce automatically to numbers.

In[4]:= AlgebraicNumberARootAÒ5 - 7 Ò + 1 &, 1E, 80, 7, 0, 0, 0, -1<E

Out[4]= 1

Adding or multiplying AlgebraicNumber objects that explicitly belong to the same field (i.e.,
have the same first elements), adding or multiplying a rational number and an
AlgebraicNumber object, or raising an AlgebraicNumber object to an integer power yields
an AlgebraicNumber object.

In[5]:= a = AlgebraicNumberARootAÒ4 + 7 Ò - 21 &, 1E, 81, 2, 3, 4<E;
b = AlgebraicNumberARootAÒ4 + 7 Ò - 21 &, 1E, 89, 8, 7, 5<E;
2 a2 - 3 a b + 5 b5 - 3

a8 - b4 + 1

2

+ 9

Out[5]= AlgebraicNumberBRootA-21 + 7 Ò1 + Ò14 &, 1E,

:
41286695899369558776723710439212189982056327290172063

4586375026009762651263976115838375027468985058462049
,

6520802026300441952691134470541521717177617572114

13759125078029287953791928347515125082406955175386147
,

3688721281596550115065494536738395724701865336152

13759125078029287953791928347515125082406955175386147
,

2274021184276897634212701763901059483341282983762

13759125078029287953791928347515125082406955175386147
>F

RootReduce transforms AlgebraicNumber objects to Root objects.

In[6]:= RootReduce@aD

Out[6]= RootA-3 062597 - 82303 Ò1 + 1182 Ò12 + 80 Ò13 + Ò14 &, 1E

ToNumberField@a,qD express the algebraic number a in the number field gener-
ated by q

ToNumberField@8a1,a2,…<,qD express the ai in the field generated by q

ToNumberField@8a1,a2,…<D express the ai in a common extension field generated by a
single algebraic number

Representing arbitrary algebraic numbers as elements of algebraic number fields.

ToNumberField can be used to find a common finite extension of rationals containing the
given algebraic numbers.

106 Advanced Algebra

ToNumberField can be used to find a common finite extension of rationals containing the
given algebraic numbers.

In[7]:= ToNumberFieldB: 2 , 3 >F

Out[7]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :0, -
9

2
, 0,

1

2
>F,

AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :0,
11

2
, 0, -

1

2
>F>

This represents 6 as an element of the field generated by Root@1 - 10 Ò12 + Ò14 &, 4D.

In[8]:= ToNumberFieldB 6 , RootA1 - 10 Ò2 + Ò4 &, 4EF

Out[8]= AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :-
5

2
, 0,

1

2
, 0>F

Arithmetic within a fixed finite extension of rationals is much faster than arithmetic within the

field of all complex algebraic numbers.

Suppose you need to find the value of rational function f with 8x, y, z< replaced by algebraic
numbers 8a, b, c<.

In[9]:= 8a, b, c< = :Â, 2 , RootAÒ3 - 2 Ò + 3 &, 1E>;

f =
-2 y z I7 + x - y + z2M + I6 + x2 + 2 yM I-11 + x y + z2M

2 y z H-4 - x + 3 y zL - I6 + x2 + 2 yM I2 - 2 x + z3M
;

A direct computation of the value of f at 8a, b, c< using RootReduce takes a rather long time.

In[10]:= RootReduce@f ê. 8x Ø a, y Ø b, z Ø c<D êê Timing

Out[10]= 934.3301, RootA127 463137729603858692 + 15069520316552576640 Ò1 +

3151085417830482145156 Ò12 - 10938243534840099267928 Ò13 +

14492589303525156688533 Ò14 - 7171605298335082808820 Ò15 - 947445370794828405814 Ò16 +

2510661531113587622448 Ò17 - 606316032776880635517 Ò18 - 100899537810316084288 Ò19 +

74049398920051042942 Ò110 - 12985018306589245140 Ò111 + 879298673075259913 Ò112 &, 4E=

Advanced Algebra 107

A faster alternative is to do the computation in a common algebraic number field containing
8a, b, c<.

In[11]:= H8aa, bb, cc< = ToNumberField@8a, b, c<DL êê Timing

Out[11]= :0.048003,

:AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 +

12 Ò19 - 14 Ò110 + Ò112 &, 4E, :
244141

94827
,
12086198

1991367
,
7515071

3982734
,
42845617

35844606
, -

26501665

11948202
,

1373087

17922303
, -

718309

3982734
,

890062

5974101
,

8969

284481
, -

926321

35844606
, -

3503

5974101
,

34196

17922303
>F,

AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 +

87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &, 4E, :-
196718

94827
, -

688153

284481
, -

1293697

568962
,
3857569

5120658
,

3032287

5120658
,
1444985

7680987
,

4897

1706886
, -

224722

2560329
,

2477

853443
,

55031

5120658
, -

2143

2560329
, -

5212

7680987
>F,

AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 -

1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &, 4E,

:-
47423

94827
, -

5277760

1991367
,

770404

1991367
, -

34924300

17922303
,
29139493

17922303
, -

14234156

53766909
,
1060324

5974101
,

-
1097132

17922303
, -

29384

853443
,

90184

5974101
,

25510

17922303
, -

66104

53766909
>F>>

Arithmetic within the common number field is much faster.

In[12]:= d =
-2 y z I7 + x - y + z2M + I6 + x2 + 2 yM I-11 + x y + z2M

2 y z H-4 - x + 3 y zL - I6 + x2 + 2 yM I2 - 2 x + z3M
ê. 8x Ø aa, y Ø bb, z Ø cc< êê

Timing

Out[12]= :0.036002, AlgebraicNumberBRootA

648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &,

4E, :-
3860776239867194137278

3970535965319412941431
, -

53260812035714120989033

11911607895958238824293
, -

109038458622656664030115

71469647375749432945758
,

-
192381933793750243587991

107204471063624149418637
,

70556676211663475835676

35734823687874716472879
, -

106803727028468004471691

964840239572617344767733
,

7665080170226573969564

35734823687874716472879
, -

36535823424460554318055

321613413190872448255911
, -

124880404825784359957

3403316541702353949798
,

7067040798332263363508

321613413190872448255911
,

7357016108927986451

5104974812553530924697
, -

1522619721558874444783

964840239572617344767733
>F>

Converting the resulting AlgebraicNumber object to a Root object is fast as well.

In[13]:= RootReduce@dD êê Timing

Out[13]= 90.044003, RootA127 463137729603858692 + 15069520316552576640 Ò1 +

3151085417830482145156 Ò12 - 10938243534840099267928 Ò13 +

14492589303525156688533 Ò14 - 7171605298335082808820 Ò15 - 947445370794828405814 Ò16 +

2510661531113587622448 Ò17 - 606316032776880635517 Ò18 - 100899537810316084288 Ò19 +

74049398920051042942 Ò110 - 12985018306589245140 Ò111 + 879298673075259913 Ò112 &, 4E=

ToNumberField@8a1, a2, …<D is equivalent to ToNumberField@8a1, a2, …<, AutomaticD, and

does not necessarily use the smallest common field extension.

ToNumberField@8a1, a2, …<, AllD always uses the smallest common field extension.

108 Advanced Algebra

ToNumberField@8a1, a2, …<D is equivalent to ToNumberField@8a1, a2, …<, AutomaticD, and

does not necessarily use the smallest common field extension.

ToNumberField@8a1, a2, …<, AllD always uses the smallest common field extension.

Here the first AlgebraicNumber object is equal to 2 so it does not generate the 4th-degree
field  (Root@1 - 10 Ò12 + Ò14 &, 4D) it is represented in. However, the common field found
by ToNumberField contains the whole field  (Root@1 - 10 Ò12 + Ò14 &, 4D).

In[14]:= ToNumberFieldB:AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F, 5 >F

Out[14]= :AlgebraicNumberBRootA576 - 960 Ò12 + 352 Ò14 - 40 Ò16 + Ò18 &, 8E, :0,
5

3
, 0, -

7

72
, 0, -

7

144
, 0,

1

576
>F,

AlgebraicNumberBRootA576 - 960 Ò12 + 352 Ò14 - 40 Ò16 + Ò18 &, 8E, :0, -
53

12
, 0,

95

36
, 0, -

97

288
, 0,

5

576
>F>

Specifying the second argument All makes ToNumberField find the smallest field possible.

In[15]:= ToNumberFieldB:AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F, 5 >, AllF

Out[15]= :AlgebraicNumberBRootA9 - 14 Ò12 + Ò14 &, 4E, :0, -
11

6
, 0,

1

6
>F,

AlgebraicNumberBRootA9 - 14 Ò12 + Ò14 &, 4E, :0,
17

6
, 0, -

1

6
>F>

MinimalPolynomial@aD give a pure function representation of the minimal polyno -
mial over the integers of the algebraic number a

MinimalPolynomial@a,xD give the minimal polynomial of the algebraic number a as a
polynomial in x

AlgebraicIntegerQ@aD give True if the algebraic number a is an algebraic integer
and False otherwise

AlgebraicNumberDenominator@aD give the smallest positive integer n such that na is an
algebraic integer

AlgebraicNumberTrace@aD give the trace of the algebraic number a

AlgebraicNumberNorm@aD give the norm of the algebraic number a

AlgebraicUnitQ@aD give True if the algebraic number a is an algebraic unit
and False otherwise

RootOfUnityQ@aD give True if the algebraic number a is a root of unity and
False otherwise

Functions for computing algebraic number properties.

The minimal polynomial of an algebraic number a is the lowest-degree polynomial f with integer

coefficients and the smallest positive leading coefficient, such that f HaLã 0.

This gives the minimal polynomial of 2 + 3 expressed as a pure function.

Advanced Algebra 109

This gives the minimal polynomial of 2 + 3 expressed as a pure function.

In[16]:= MinimalPolynomialB 2 + 3 F

Out[16]= 1 - 10 Ò12 + Ò14 &

This gives the minimal polynomial of Root@Ò15 - 2 Ò1 + 7 &, 1D
2
+ 1 expressed as a polynomial

in x.

In[17]:= MinimalPolynomialBRootAÒ5 - 2 Ò + 7 &, 1E2 + 1, xF

Out[17]= -50 - 3 x + 2 x2 + 6 x3 - 5 x4 + x5

An algebraic number is an algebraic integer if and only if its MinimalPolynomial is monic.

This shows that 1
2
J1 + 5 N is an algebraic integer.

In[18]:= AlgebraicIntegerQB
1

2
J1 + 5 NF

Out[18]= True

This shows that 1
4
J1 + 5 N is not an algebraic integer.

In[19]:= AlgebraicIntegerQB
1

4
J1 + 5 NF

Out[19]= False

This gives the smallest positive integer n for which n J1 + 5 Ní4 is an algebraic integer.

In[20]:= AlgebraicNumberDenominatorB
1

4
J1 + 5 NF

Out[20]= 2

The trace of an algebraic number a is the sum of all roots of MinimalPolynomial@aD.

This gives the trace of H-1L1ê7.

In[21]:= AlgebraicNumberTraceAH-1L1ê7E

Out[21]= 1

The norm of an algebraic number a is the product of all roots of MinimalPolynomial@aD.

110 Advanced Algebra

This gives the norm of 3 + 5 .

In[22]:= AlgebraicNumberNormB 3 + 5 F

Out[22]= 4

An algebraic number a is an algebraic unit if and only if both a and 1 êa are algebraic integers, or

equivalently, if and only if AlgebraicNumberNorm@aD is 1 or -1.

This shows that GoldenRatio is an algebraic unit.

In[23]:= AlgebraicUnitQ@GoldenRatioD

Out[23]= True

This shows that AlgebraicNumber@Root@Ò13 - 4 Ò1 + 17 &, 1D, 81, 2, 3<D is not an
algebraic unit.

In[24]:= AlgebraicUnitQAAlgebraicNumberARootAÒ3 - 4 Ò + 17 &, 1E, 81, 2, 3<EE

Out[24]= False

An algebraic number a is a root of unity if and only if an ã 1 for some integer n.

This shows that 2 + 2 + Â 2 - 2 ì2 is a root of unity.

In[25]:= RootOfUnityQB
1

2
2 + 2 + Â 2 - 2 F

Out[25]= True

Advanced Algebra 111

MinimalPolynomialAs,x,Extension->aE

give the characteristic polynomial of the algebraic number
s over the field @aD

MinimalPolynomialAs,x,Extension->AutomaticE

give the characteristic polynomial of the
AlgebraicNumber object s over the number field gener -
ated by its first argument

AlgebraicNumberTraceAa,Extension->qE

give the trace of the algebraic number a over the field @qD

AlgebraicNumberTraceAa,Extension->AutomaticE

give the trace of the AlgebraicNumber object a over the
number field generated by its first argument

AlgebraicNumberNormAa,Extension->qE

give the norm of the algebraic number a over the field @qD

AlgebraicNumberNormAa,Extension->AutomaticE

give the norm of the AlgebraicNumber object a over the
number field generated by its first argument

Functions for computing properties of elements of algebraic number fields.

If a is AlgebraicNumber@q, coeffsD, then MinimalPolynomial@a, x, Extension -> AutomaticD is

equal to MinimalPolynomial@a, xDd, where d is the extension degree of HqL êHaL.

The characteristic polynomial of 2 , represented as an element of an extension of rationals of

degree 4, is the square of MinimalPolynomial of 2 .

In[26]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F;

MinimalPolynomial@a, xD
MinimalPolynomial@a, x, Extension Ø AutomaticD êê Factor

Out[26]= -2 + x2

Out[26]= I-2 + x2M
2

The trace of an algebraic number is the sum of all roots of its characteristic polynomial. If a is

AlgebraicNumber@q, coeffsD, then AlgebraicNumberTrace@a, Extension -> AutomaticD is

equal to d AlgebraicNumberTrace@aD, where d is the extension degree of  HqL ê HaL.

112 Advanced Algebra

The trace of 2 + 1, represented as an element of an extension of rationals of degree 4, is

twice the AlgebraicNumberTrace of 2 + 1.

In[27]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :1, -
9

2
, 0,

1

2
>F;

AlgebraicNumberTrace@aD
AlgebraicNumberTrace@a, Extension Ø AutomaticD

Out[27]= 2

Out[27]= 4

The norm of an algebraic number is the product of all roots of its characteristic polynomial. If a

is AlgebraicNumber@q, coeffsD, then AlgebraicNumberNorm@a, Extension -> AutomaticD is

equal to AlgebraicNumberNorm@aDd, where d is the extension degree of  HqL ê HaL.

The norm of 2 + 5, represented as an element of an extension of rationals of degree 4, is the

square of AlgebraicNumberNorm of 2 + 5.

In[28]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :5, -
9

2
, 0,

1

2
>F;

AlgebraicNumberNorm@aD
AlgebraicNumberNorm@a, Extension Ø AutomaticD

Out[28]= 23

Out[28]= 529

Advanced Algebra 113

NumberFieldIntegralBasis@aD give an integral basis for the field @aD generated by the
algebraic number a

NumberFieldRootsOfUnity@aD give the roots of unity for the field @aD generated by the
algebraic number a

NumberFieldFundamentalUnits@aD give a list of fundamental units for the field @aD gener -
ated by the algebraic number a

NumberFieldNormRepresentatives@a,mD

give a list of representatives of classes of algebraic inte-
gers of norm ±m in the field @aD generated by the alge-
braic number a

NumberFieldSignature@aD give the signature of the field @aD generated by the
algebraic number a

NumberFieldDiscriminant@aD give the discriminant of the field @aD generated by the
algebraic number a

NumberFieldRegulator@aD give the regulator of the field @aD generated by the
algebraic number a

NumberFieldClassNumber@aD gives the class number of a number field @aD generated
by an algebraic number a

Functions of computing properties of algebraic number fields.

An integral basis of an algebraic number field K is a list of algebraic numbers forming a basis of

the -module of the algebraic integers of K. The set 8a1, …, an< is an integral basis of an alge-

braic number field K if and only if ai eK are algebraic integers, and every algebraic integer z eK

can be uniquely represented as

z = k1 a1 + … + kn an

with integer coefficients ki.

Here is an integral basis of I181ê3M.

In[29]:= NumberFieldIntegralBasisA181ê3E

Out[29]= :1, AlgebraicNumberARootA-18 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA-18 + Ò13 &, 1E, :0, 0,
1

3
>F>

114 Advanced Algebra

This gives an integral basis of the field generated by the first root of
533 + 429 Ò1 + 18 Ò12 + Ò13 &.

In[30]:= NumberFieldIntegralBasisARootA533 + 429 Ò + 18 Ò2 + Ò3 &, 1EE

Out[30]= :1, AlgebraicNumberARootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, :
742

759
,

94

759
,

1

759
>F>

NumberFieldIntegralBasis allows specifying the number field by giving a polynomial and a
root number.

In[31]:= NumberFieldIntegralBasisA533 + 429 Ò + 18 Ò2 + Ò3 &, 1E

Out[31]= :1, AlgebraicNumberARootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, :
742

759
,

94

759
,

1

759
>F>

This gives the roots of unity in the field generated by RootA9 - 2 Ò2 + Ò4 &, 4E.

In[32]:= NumberFieldRootsOfUnityARootA9 - 2 Ò2 + Ò4 &, 4EE

Out[32]= :-1, 1, AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :-
1

4
, -

5

12
,
1

4
,

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :-
1

4
,

5

12
,
1

4
, -

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :0, -
1

6
, 0, -

1

6
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :0,
1

6
, 0,

1

6
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :
1

4
, -

5

12
, -

1

4
,

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :
1

4
,

5

12
, -

1

4
, -

1

12
>F>

Here are all roots of unity in the field J1 + Â 3 N.

In[33]:= NumberFieldRootsOfUnityB1 + Â 3 F

Out[33]= :-1, 1, AlgebraicNumberB1 + Â 3 , :-1,
1

2
>F, AlgebraicNumberB1 + Â 3 , :0, -

1

2
>F,

AlgebraicNumberB1 + Â 3 , :0,
1

2
>F, AlgebraicNumberB1 + Â 3 , :1, -

1

2
>F>

8u1, …, un< is a list of fundamental units of an algebraic number field K if and only if ui eK are

algebraic units, and every algebraic unit u eK can be uniquely represented as

u = x u1n1  utnt

with a root of unity x and integer exponents ni.

Here is a set of fundamental units of the field generated by the third root of Ò14 - 10 Ò12 + 1 &.

Advanced Algebra 115

Here is a set of fundamental units of the field generated by the third root of Ò14 - 10 Ò12 + 1 &.

In[34]:= NumberFieldFundamentalUnitsARootAÒ4 - 10 Ò2 + 1 &, 3EE

Out[34]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 3E, :
5

4
,
9

4
, -

1

4
, -

1

4
>F,

AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 3E, :-1,
9

2
, 0, -

1

2
>F,

AlgebraicNumberARootA1 - 10 Ò12 + Ò14 &, 3E, 80, 1, 0, 0<E>

This gives a fundamental unit of the quadratic field J 21 N.

In[35]:= NumberFieldFundamentalUnitsB 21 F

Out[35]= :AlgebraicNumberB 21 , :
5

2
,
1

2
>F>

This gives a set of representatives of classes of elements of norm 9 in the field generated by the
first root of Ò12 - 7 &.

In[36]:= NumberFieldNormRepresentativesARootAÒ2 - 7 &, 1E, 9E

Out[36]= :3, AlgebraicNumberB- 7 , 8-4, -1<F, AlgebraicNumberB- 7 , 8-4, 1<F>

Here is a set of representatives of classes of elements of norm 2 in the field J 2 + 3 N.

In[37]:= NumberFieldNormRepresentativesB 2 + 3 , 2F

Out[37]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :-
9

4
,
9

4
,
1

4
, -

1

4
>F>

This shows that the polynomial Ò5 + Ò4 + Ò3 + Ò2 + 1 & has 1 real root and 2 conjugate pairs of
complex roots.

In[38]:= NumberFieldSignatureARootAÒ5 + Ò4 + Ò3 + Ò2 + 1 &, 1EE

Out[38]= 81, 2<

This shows that the field @aD has 12 real embeddings and 6 conjugate pairs of complex
embeddings.

In[39]:= a = 2 + RootAÒ3 - 11 Ò - 2 &, 1E + AlgebraicNumberARootAÒ4 - 3 Ò + 1 &, 2E, 81, 2, 3<E;
NumberFieldSignature@aD

Out[39]= 812, 6<

The discriminant of a number field K is the discriminant of an integral basis 8a1, …, an< of K (i.e.,

the determinant of the matrix with elements

AlgebraicNumberTrace@ai a j, Extension -> AutomaticD). The value of the determinant does

not depend on the choice of integral basis.

116 Advanced Algebra

The discriminant of a number field K is the discriminant of an integral basis 8a1, …, an< of K (i.e.,

the determinant of the matrix with elements

AlgebraicNumberTrace@ai a j, Extension -> AutomaticD). The value of the determinant does

not depend on the choice of integral basis.

Here is the discriminant of J2 - 3 + 51ê4N.

In[40]:= NumberFieldDiscriminantB2 - 3 + 51ê4F

Out[40]= 5184000000

This gives the discriminant of the field generated by a root of the polynomial
Ò5 + Ò4 + Ò3 + Ò2 + 1 &. The value of the discriminant does not depend on the choice of the root;
hence, NumberFieldDiscriminant allows specifying just the polynomial.

In[41]:= NumberFieldDiscriminantAÒ5 + Ò4 + Ò3 + Ò2 + 1 &E

Out[41]= 2297

The regulator of a number field K is the lattice volume of the image of the group of units of K

under the logarithmic embedding

K \ 80< ú
xö 8Log@Abs@s1HxLDD, …, Log@Abs@ssHxLDD, 2 Log@Abs@ss+1HxLDD, …, 2 Log@Abs@ss+tHxLDD< œs+t,

where s1, …, ss are the real embeddings of K in , and ss+1, …, ss+t are one of each conjugate

pair of the complex embeddings of K in .

Here is the regulator of J 61 N.

In[42]:= NumberFieldRegulatorB 61 F

Out[42]= LogB
1

2
39 + 5 61 F

This gives the regulator of the field generated by a root of the polynomial Ò13 - 3 Ò12 + 1 &. The
value of the regulator does not depend on the choice of the root; hence,
NumberFieldRegulator allows specifying just the polynomial.

In[43]:= NumberFieldRegulatorAÒ3 - 3 Ò2 + 1 &E

Out[43]= -LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 1E, 8-1, -2, 1<EE
LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 2E, 80, 3, -1<EE +

LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 1E, 80, -3, 1<EE
LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 2E, 81, 2, -1<EE

This gives the class number of  J -71 N.

Advanced Algebra 117

This gives the class number of  J -71 N.

In[44]:= NumberFieldClassNumber@Sqrt@-71DD

Out[44]= 7

118 Advanced Algebra

Solving Frobenius Equations and
Computing Frobenius Numbers

A Frobenius equation is an equation of the form

a1 x1 + ... + an xn ã m,

where a1, ..., an are positive integers, m is an integer, and the coordinates x1, ..., xn of solutions

are required to be non-negative integers.

The Frobenius number of a1, ..., an is the largest integer m for which the Frobenius equation

a1 x1 + ... + an xn ã m has no solutions.

FrobeniusSolve@8a1,…,an<,bD give a list of all solutions of the Frobenius equation
a1 x1 + … + an xn = b

FrobeniusSolve@8a1,…,an<,b,mD give m solutions of the Frobenius equation
a1 x1 + … + an xn = b; if less than m solutions exist, give all
solutions

FrobeniusNumber@8a1,…,an<D give the Frobenius number of a1, …, an

Functions for solving Frobenius equations and computing Frobenius numbers.

This gives all solutions of the Frobenius equation 12 x + 16 y + 20 z + 27 t == 123.

In[1]:= FrobeniusSolve@812, 16, 20, 27<, 123D

Out[1]= 880, 1, 4, 1<, 80, 6, 0, 1<, 81, 4, 1, 1<,
82, 2, 2, 1<, 83, 0, 3, 1<, 84, 3, 0, 1<, 85, 1, 1, 1<, 88, 0, 0, 1<<

This gives one solution of the Frobenius equation 12 x + 16 y + 20 z + 27 t == 123.

In[2]:= FrobeniusSolve@812, 16, 20, 27<, 123, 1D

Out[2]= 888, 0, 0, 1<<

Here is the Frobenius number of 812, 16, 20, 27<, that is, the largest m for which the Frobenius
equation 12 x + 16 y + 20 z + 27 t ==m has no solutions.

In[3]:= FrobeniusNumber@812, 16, 20, 27<D

Out[3]= 89

Advanced Algebra 119

This shows that indeed, the Frobenius equation 12 x + 16 y + 20 z + 27 t == 89 has no solutions.

In[4]:= FrobeniusSolve@812, 16, 20, 27<, 89, 1D

Out[4]= 8<

Here are all the ways of making 42 cents change using 1, 5, 10, and 25 cent coins.

In[5]:= FrobeniusSolve@81, 5, 10, 25<, 42D

Out[5]= 882, 0, 4, 0<, 82, 1, 1, 1<, 82, 2, 3, 0<, 82, 3, 0, 1<, 82, 4, 2, 0<, 82, 6, 1, 0<, 82, 8, 0, 0<,
87, 0, 1, 1<, 87, 1, 3, 0<, 87, 2, 0, 1<, 87, 3, 2, 0<, 87, 5, 1, 0<, 87, 7, 0, 0<,
812, 0, 3, 0<, 812, 1, 0, 1<, 812, 2, 2, 0<, 812, 4, 1, 0<, 812, 6, 0, 0<, 817, 0, 0, 1<,
817, 1, 2, 0<, 817, 3, 1, 0<, 817, 5, 0, 0<, 822, 0, 2, 0<, 822, 2, 1, 0<, 822, 4, 0, 0<,
827, 1, 1, 0<, 827, 3, 0, 0<, 832, 0, 1, 0<, 832, 2, 0, 0<, 837, 1, 0, 0<, 842, 0, 0, 0<<

Using 24, 29, 31, 34, 37, and 39 cent stamps, you can pay arbitrary postage of more than 88
cents.

In[6]:= FrobeniusNumber@824, 29, 31, 34, 37, 39<D

Out[6]= 88

120 Advanced Algebra

