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Complex Polynomial Systems

Introduction

The  Mathematica  functions  Reduce,  Resolve,  and  FindInstance  allow  you  to  solve  a  wide

variety of problems that can be expressed in terms of equations and inequalities. The functions

use a collection of algorithms applicable to classes of problems satisfying particular properties,

as well as a set of heuristics that attempt to reduce the given problem to a sequence of prob-

lems  that  can  be  solved  using  the  algorithms.  This  tutorial  describes  the  algorithms  used  to

solve the class of  problems known as complex polynomial  systems. It  characterizes the struc-

ture of the returned answers and describes the options that affect various aspects of the meth-

ods involved.

A  complex  polynomial  system  is  an  expression  constructed  with  polynomial  equations  and

inequations

f Hx1, …, xnLã gHx1, …, xnL and f Hx1, …, xnL ≠ gHx1, …, xnL

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F, and $x F.

An  occurrence  of  a  variable  x  inside  "x F  or  $x F  is  called  a  bound  occurrence,  and  any  other

occurrence of  x  is  called  a  free  occurrence.  A  variable  x  is  called  a  free  variable  of  a  complex

polynomial system if the system contains a free occurrence of x. A complex polynomial system

is quantifier-free if it contains no quantifiers.

Here is an example of a complex polynomial system with free variables x, y, and z.

(1)x2 + y2 ã z2 Ì $t J"u t x ≠ u y z + 7 Î x2 tã 2 z + 1N

In Mathematica, quantifiers are represented using the functions Exists ($) and ForAll (").

Any complex polynomial system can be transformed to the prenex normal form

Q1 x1 Q2 x2 …Qn xn FHx1, …, xn; y1, …, ymL,

where each Qi is a quantifier " or $, and FHx1, …, xn; y1, …, ymL is quantifier-free.

Any  quantifier-free  complex  polynomial  system  can  be  transformed  to  the  disjunctive  normal

form



Any  quantifier-free  complex  polynomial  system  can  be  transformed  to  the  disjunctive  normal

form

Ij1,1 Ï … Ï j1,n1 M Í … Í Ijm,1 Ï … Ï jm,nm M,

where each ji, j is a polynomial equation or inequation. 

Reduce,  Resolve,  and  FindInstance  always  put  complex  polynomial  systems  in  the  prenex

normal form, with quantifier-free parts in the disjunctive normal form, and subtract the sides of

the equations and inequations to put them in the form

f Hx1, …, xnLã 0 and f Hx1, …, xnL ≠ 0.

In  all  the  tutorials  for  complex  polynomial  system solving,  assume  that  the  system has  been

transformed to this form.

Reduce can solve arbitrary complex polynomial systems. The solution (possibly after expanding

fl with respect to fi) is a disjunction of terms of the form

(2)
x1 = r1 Ï g1Hx1L ≠ 0 Ï x2 = r2Hx1L Ï g2Hx1, x2L ≠ 0 Ï …

g -1Hx1, …, xn-1L ≠ 0 Ï xn = rnHx1, …, xn-1L Ï gnHx1, …, xnL ≠ 0,

where x1, …, xn  are the free variables of the system, each gi  is a polynomial, each ri  is an alge-

braic  function  expressed using  radicals  or  Root  objects,  and any terms of  the  conjunction  (2)

may be absent. Each riHx1, …, xi-1L  is well  defined, that is,  no denominators or leading terms of

Root objects in ri become zero for any Hx1, …, xi-1L satisfying the preceding terms of the conjunc-

tion (2).

This solves the system (1).

In[1]:= ReduceAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<E

Out[1]= Hy ã 0 && z ã -xL »» Hy ã 0 && z ã xL »» HHy ã -Â x »» y ã Â xL && z ã 0L »»

z ã - x2 + y2 »» z ã x2 + y2 && x ≠ 0 »» x ã 0 && y ã -
1

2
&& z ã -

1

2
»» x ã 0 && y ã

1

2
&& z ã -

1

2

Resolve  can  eliminate  quantifiers  from arbitrary  complex  polynomial  systems.  If  no  variables

are specified, the result is a logical combination of terms

f Hx1, …, xnLã 0 and gHx1, …, xnL ≠ 0,

where  f  and  g  are  polynomials,  and  each  xi  is  a  free  variable  of  the  system.  With  variables

specified in the input, Resolve gives the same answer as Reduce. 

This eliminates quantifiers from the system (1).
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This eliminates quantifiers from the system (1).

In[2]:= ResolveAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1ME

Out[2]= Hy ã 0 && x - z ã 0L »» Hy ã 0 && x + z ã 0L »» Ix2 + y2 ã 0 && z ã 0M »» Hx ã 0 && -1 + 2 y ã 0 && 1 + 2 z ã 0L »»

Hx ã 0 && 1 + 2 y ã 0 && 1 + 2 z ã 0L »» Ix2 + y2 - z2 ã 0 && y - z ≠ 0 && y + z ≠ 0M

FindInstance  can  handle  arbitrary  complex  polynomial  systems  giving  instances  of  complex

solutions,  or  an  empty  list  for  systems  that  have  no  solutions.  If  the  number  of  instances

requested is more than one, the instances are randomly generated from the full solution of the

system, and therefore they may depend on the value of the RandomSeed option. If one instance

is requested, a faster algorithm that produces one instance is used, and the instance returned

is always the same.

This finds a solution for the system (1).

In[3]:= FindInstanceAx2 + y2 ã z2 && $t I"u t x ≠ u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<E

Out[3]= 88x Ø 0, y Ø 0, z Ø 0<<

The main tool used in solving complex polynomial systems is the Gröbner basis algorithm [1],

which is available in Mathematica as the GroebnerBasis function.

Gröbner Bases

Theory

This section gives a very brief introduction to the theory of Gröbner bases. It presents only the

properties that are necessary to describe the algorithms used by Mathematica  in solving com-

plex polynomial systems. For a more complete presentation see, for example, [1, 2]. Note that

what [2] calls a monomial, [1] calls a term, and vice versa. This tutorial uses the terminology of

[1].

A monomial in x1, …, xn is an expression of the form x1e1 …xnen with non-negative integers ei.

Let M =MHx1, …, xnL be the set of all monomials in x1, …, xn. A monomial order is a linear order Ç

on M, such that 1 Ç t for all t œM, and t1 Ç t2 implies t1 s Ç t2 s for all t1, t2, s œ M.

Let  R  be a field,  the domain of  integers,  or  the domain of  univariate polynomials  over a field.

Let  Quot  and  Rem  be  functions  R2öR  defined  as  follows.  If  R  is  a  field,  QuotHa, bL = a êb,  and

RemHa, bL = 0. If R is the domain of integers, Quot and Rem are the integer quotient and remainder

functions,  with  - b ê2 < RemHa, bL § b ê2.  If  R  is  the  domain  of  univariate  polynomials  over  a

field, Quot and Rem are the polynomial quotient and remainder functions.
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Let  R  be a field,  the domain of  integers,  or  the domain of  univariate polynomials  over a field.

Let  Quot  and  Rem  be  functions  R2öR  defined  as  follows.  If  R  is  a  field,  QuotHa, bL = a êb,  and

RemHa, bL = 0. If R is the domain of integers, Quot and Rem are the integer quotient and remainder

functions,  with  - b ê2 < RemHa, bL § b ê2.  If  R  is  the  domain  of  univariate  polynomials  over  a

field, Quot and Rem are the polynomial quotient and remainder functions.

A product t = a m, where a is a nonzero element of R and m is a monomial, is called a term.

Let Ç be a monomial order on M, and let f œ R@x1, …, xnD \ 80<. The leading monomial LMH f L of f  is

the  Ç-largest  monomial  appearing  in  f ,  the  leading  coefficient  LCH f L  of  f  is  the  coefficient  at

LMH f L in f , and the leading term LTH f L of f  is the product LCH f L LMH f L.

A Gröbner basis of an ideal I in R@x1, …, xnD, with respect to a monomial order Ç, is a finite set G

of  polynomials,  such that  for  each f œ I,  there exists  g œG,  such that  LTHgL  divides LTH f L.  Every

ideal I has a Gröbner basis (see [1] for a proof).

Let p œ R@x1, …, xnD \ 80<, and let m œ R@x1, …, xnD be a monomial. A term t = a m is reducible modulo p,

if LMHpL divides m, and a ≠ RemHa, LCHpLL. If t is reducible modulo p, the reduction of t modulo p is

the polynomial

RedHt, pL = t - QuotHa, LCHpLL
m

LMHpL
p.

Note that if RemHa, LCHpLL ≠ 0, then LTHRedHt, pLL = RemHa, LCHpLLm; otherwise, LM HRed Ht, pLL Çm.

Let f œ R@x1, …, xnD, and let P be an ordered finite subset of R@x1, …, xnD \ 80<. f  is reducible modulo

P if f  contains a term reducible modulo an element of P. The reduction RedH f , PL of f  modulo P is

defined by the following procedure. While the set RT  of terms of f  reducible modulo an element

of  P  is  not  empty,  take the term t œ RT  with  the Ç-largest  monomial,  take the first  p œ P,  such

that t is reducible modulo p, and replace the term t in f  with RedHt, pL. Note that the monomials

of  terms t  chosen in  subsequent  steps  of  the  procedure  form a  Ç-descending  chain,  and each

monomial can appear at most k times, where k is the number of elements of P, hence the proce-

dure terminates.

A Gröbner basis G is semi-reduced if for all g œG, g is not reducible modulo G \ 8g<, and if R is the

domain of integers, LCHgL > 0.

The  Mathematica  function  GroebnerBasis  returns  semi-reduced Gröbner  bases.  In  the  follow-

ing  discussion,  all  Gröbner  bases  are  assumed  to  be  semi-reduced.  Note  that  this  is  not  the

same as reduced Gröbner bases defined in the literature, since here the basis polynomials are

not required to be monic. For a fixed monomial order, every ideal has a unique reduced Gröb-

ner  basis.  Semi-reduced  Gröbner  bases  defined  here  are  only  unique  up  to  multiplication  by

invertible elements of R (see Property 2). 
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The Mathematica  function  GroebnerBasis  returns  semi-reduced Gröbner  bases.  In  the  follow-

ing  discussion,  all  Gröbner  bases  are  assumed  to  be  semi-reduced.  Note  that  this  is  not  the

same as reduced Gröbner bases defined in the literature, since here the basis polynomials are

not required to be monic. For a fixed monomial order, every ideal has a unique reduced Gröb-

ner  basis.  Semi-reduced  Gröbner  bases  defined  here  are  only  unique  up  to  multiplication  by

invertible elements of R (see Property 2). 

Property 1: Let G  be a Gröbner basis of  an ideal  I  in R@x1, …, xnD,  and let  f œ R@x1, …, xnD.  Then

f œ I iff RedH f , GL = 0.

This is a simple consequence of the definitions.

Property 2: Let G = 9g1, …gk=  and H = 8h1, …hm<  be two Gröbner bases of an ideal I  with respect

to  the  same  monomial  order  Ç,  and  suppose  that  elements  of  G  and  H  are  ordered  by  their

leading monomials. Then k =m,  and for all  1 § i § k,  if  R  is the domain of integers, gi = hi; other-

wise, gi = ci hi for some invertible element ci of R. 

Proof: If LMH f L = LMHgL, then LTH f L is reducible modulo g or LTHgL is reducible modulo f . Hence the

leading monomials of the elements of a Gröbner basis are all different. Without loss of general-

ity, assume k §m. For induction, fix j § k and suppose that for all i < j, gi = ci hi for some invertible

element  ci  of  R.  If  R  is  the  domain  of  integers,  ci = 1.  Without  loss  of  generality,  assume

LMIg jM Ç LMIh jM.  Since  g j  belongs  to  I,  there  exists  i  such  that  LTHhiL  divides  LTIg jM.  Then

LMHhiL Ç LMIg jM, and so i § j. If i < j, then g j would be reducible modulo hi and also modulo gi = ci hi,

which is impossible, since G  is semi-reduced. Hence i = j, and LMIg jM = LMIh jM, and LTIh jM  divides

LTIg jM. Similarly, LTIg jM divides LTIh jM. Therefore, there exists an invertible element c j  of R, such

that LTIg jM = c j LTIh jM.  If  R  is the domain of integers, LCIg jM  and LCIh jM  are positive, and so c j = 1.

Let  r = c j h j - g j.  Suppose  r ≠ 0.  Since  r  belongs  to  I,  LT HrL  must  be  divisible  by  LTHgiL,  for  some

i < j. Let a and b be the coefficients at LMHrL in g j  and h j. If R is a field, the term a LMHrL of g j  is

reducible  modulo  gi,  which  contradicts  the  assumption  that  G  is  semi-reduced.  If  R  is  the

domain of univariate polynomials over a field,

degHLCHgiLL § degHLCHrLL §maxHdegHaL, degHbLL

and so either g j  is reducible modulo gi, or h j  is reducible modulo hi = ci gi, which contradicts the

assumption  that  G  and  H  are  semi-reduced.  Finally,  let  R  be  the  domain  of  integers.  Since

neither  g j  is  reducible  modulo  gi  nor  h j  is  reducible  modulo  hi = gi,  -LCHgiL ê2 < a § LCHgiL ê2  and

-LCHgiL ê2 < b § LCHgiL ê2.  Hence  -LCHgiL < LCHrL = b - a < LCHgiL,  which  is  impossible,  since  LTHrL  is

divisible  by  LTHgiL.  Therefore  r = 0,  and  so  g j = c j h j.  By  induction  on  j,  for  all  j § k,  g j = c j h j.  If

k <m, then hk+1 would be reducible modulo some g j, with j § k, and hence hk+1 would be reducible

modulo h j = c j-1 g j. Therefore k =m, which completes the proof of Property 2.
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and so either g j  is reducible modulo gi, or h j  is reducible modulo hi = ci gi, which contradicts the

assumption  that  G  and  H  are  semi-reduced.  Finally,  let  R  be  the  domain  of  integers.  Since

neither  g j  is  reducible  modulo  gi  nor  h j  is  reducible  modulo  hi = gi,  -LCHgiL ê2 < a § LCHgiL ê2  and

-LCHgiL ê2 < b § LCHgiL ê2.  Hence  -LCHgiL < LCHrL = b - a < LCHgiL,  which  is  impossible,  since  LTHrL  is

divisible  by  LTHgiL.  Therefore  r = 0,  and  so  g j = c j h j.  By  induction  on  j,  for  all  j § k,  g j = c j h j.  If

k <m, then hk+1 would be reducible modulo some g j, with j § k, and hence hk+1 would be reducible

modulo h j = c j-1 g j. Therefore k =m, which completes the proof of Property 2.

Property 3: Let I  be an ideal in R@x1, …, xnD, let f œ R@x1, …, xnD, and let G be a Gröbner basis of

the ideal < I, 1 - y f > in R@x1, …, xn, yD. Then f  belongs to the radical of I iff G = 8c< for an invertible

element c of R.

If an ideal contains invertible elements of R, GroebnerBasis always returns 81<.

Proof: Note first that

1 - y2
k
f 2

k
= H1 - y f L H1 + y f L …J1 + y2

k-1
f 2

k-1
N

belongs  to  the  ideal  J = < I, 1 - y f >  for  any  non-negative  integer  k.  Hence,  if  f  belongs  to  the

radical of I, then 1 belongs to J. Since G is a Gröbner basis of J, it must contain an element c

whose  leading  coefficient  divides  1.  Hence  c  is  an  invertible  element  of  R.  Since  G  is  semi-

reduced and c divides any term, G = 8c<. Now suppose that G = 8c< for an invertible element c of R.

Then 1 belongs to J, and so 

1 = a0 + a1 y + … + am ym + H1 - y f L Ib0 + b1 y + … + bm-1 ym-1M,

where each ai  belongs to I, and each bi  belongs to R@x1, …, xnD. Hence comparing coefficients at

powers  of  y  leads  to  the  following  equations  modulo  I:  b0 ª 1,  bi ª bi-1 f ,  for  1 § i §m - 1,  and

bm-1 f ª 0. Then, bi ª f i, for 0 § i §m - 1, and fm ª 0 modulo I. Therefore, f  belongs to the radical of

I, which completes the proof of Property 3.

The following more technical property is important for solving complex polynomial systems.

Property 4: Let G be a Gröbner basis of an ideal I  in @x1, …, xn, yD with a monomial order that

makes monomials containing y greater than monomials not containing y, let h be the element of

G with the lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let

8h1, …, hs< be all elements of G that do not depend on y. Then for any polynomial p œ I  and any

point  Ha1, …, an, bL  if  cHa1, …, anL ≠ 0,  hiHa1, …, anL = 0,  for  1 § i § s,  and  hHa1, …, an, bL = 0,  then

pHa1, …, an, bL = 0.
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Property 4: Let G be a Gröbner basis of an ideal I  in @x1, …, xn, yD with a monomial order that

makes monomials containing y greater than monomials not containing y, let h be the element of

G with the lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let

8h1, …, hs< be all elements of G that do not depend on y. Then for any polynomial p œ I  and any

point  Ha1, …, an, bL  if  cHa1, …, anL ≠ 0,  hiHa1, …, anL = 0,  for  1 § i § s,  and  hHa1, …, an, bL = 0,  then

pHa1, …, an, bL = 0.

Proof: Consider the pseudoremainder r of the division of p by h as polynomials in y. 

(1)cHx1, …, xnLe pHx1, …, xn, yL = qHx1, …, xn, yL hHx1, …, xn, yL + rHx1, …, xn, yL

Since p and h belong to I, so does r. By Property 1, reduction of r by G must yield zero. Since

the degree of r in y is less than d, r cannot be reduced by any of the elements of G that depend

on y. Hence

rHx1, …, xn, yL = p1Hx1, …, xn, yL h1Hx1, …, xnL + … + psHx1, …, xn, yL hsHx1, …, xnL

and so rHa1, …, an, bL = 0.  Since cHa1, …, anL ≠ 0,  (1)  implies  that  pHa1, …, an, bL = 0,  which completes

the proof of Property 4.

Mathematica Function GroebnerBasis

The  Mathematica  function  GroebnerBasis  finds  semi-reduced  Gröbner  bases.  This  section

describes GroebnerBasis options used in the solving of complex polynomial systems.

option name default value

CoefficientDomain Automatic the type of objects assumed to be 
coefficients

Method Automatic the method used to compute the basis

MonomialOrder Lexicographic the criterion used for ordering monomials

GroebnerBasis options used in the solving of complex polynomial systems. 

CoefficientDomain

This  option  specifies  the  domain  R  of  coefficients.  With  the  default  Automatic  setting,  the

coefficient domain is the field generated by numeric coefficients present in the input. 
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Integers the domain of integers

InexactNumbers@precD inexact numbers with precision prec

Polynomials@xD the domain of polynomials in x

RationalFunctions the field of rational functions in variables not on the vari- 
able list given to GroebnerBasis

Rationals the field of rational numbers

Available settings for CoefficientDomain.

Note  that  the  coefficient  domain  R  also  depends  on  the  setting  of  the  Modulus  option  of

GroebnerBasis.  With  Modulus -> p,  for  a  prime  number  p,  the  coefficient  domain  is  the  field

p, or the field of rational functions over p if CoefficientDomain -> RationalFunctions.

Method

With  the  default  setting  Method -> Automatic,  GroebnerBasis  normally  uses  a  variant  of  the

Buchberger  algorithm.  Another  algorithm  available  is  the  Gröbner  walk,  which  computes  a

Gröbner basis in an easier monomial order and then transforms it to the required harder mono-

mial  order.  This  is  often faster  than directly  computing a Gröbner basis  in  the required order,

especially  if  the input polynomials are known to be a Gröbner basis  for  the easier order.  With

the  Method -> Automatic  setting,  GroebnerBasis  uses  the  Gröbner  walk  for  the  default

CoefficientDomain -> Rationals and MonomialOrder -> Lexicographic.

GroebnerBasisApolys,vars,
Method->8"GroebnerWalk","InitialMonomialOrder"->order1<,MonomialOrder->order2E

find a Gröbner basis in order1 and use the Gröbner walk 
algorithm to transform it to a Gröbner basis in order2

Transforming Gröbner bases using the Gröbner walk algorithm.

MonomialOrder

This option specifies the monomial order. The value can be either one of the named monomial

orders or a weight matrix. The following table gives conditions for x1d1 …xndnÇ x1e1 …xnen.

8     Advanced Algebra



Lexicographic d1 ã e1 Ï … Ï di-1 ã ei-1 Ï di < ei

DegreeLexicographic d1 + … + dn < e1 + … + en Í
Hd1 + … + dn ã e1 + … + en Ï d1 ã e1 Ï

… Ï di-1 ã ei-1 Ï di < eiL

DegreeReverseLexicographic d1 + … + dn < e1 + … + en Í
Hd1 + … + dn ã e1 + … + en Ï dn ã en Ï

… Ï di+1 ã ei+1 Ï di > eiL

Monomial orders. 

Quantifier  elimination  needs  an  order  in  which  monomials  containing  quantifier  variables  are

greater than monomials not containing quantifier variables. The Lexicographic  order satisfies

this condition, but the following EliminationOrder usually leads to faster computations.

m1HXL n1HYL Çm2HXL n2HYLó dHn1HYLL < dHn2HYLL Í HdHn1HYLLã dHn2HYLL Ïm1HXL n1HYL ÇDRL m2HXL n2HYL,

where d denotes total degree, X denotes free variables, Y  denotes quantifier variables, mi and ni

are monomials, and ÇDRL denotes the DegreeReverseLexicographic order.

Using  EliminationOrder  requires  the  GroebnerBasis  syntax  with  elimination  variables

specified.

GroebnerBasis@polys,xvars,yvars,MonomialOrder->EliminationOrderD

find a Gröbner basis in 

Gröbner basis in elimination order.

By  default,  GroebnerBasis  with  MonomialOrder -> EliminationOrder  drops  the  polynomials

that  contain  yvars  from  the  result,  returning  only  basis  polynomials  in  xvars.  To  get  all  basis

polynomials,  the  value  of  the  system  option  EliminateFromGroebnerBasis  from  the

GroebnerBasisOptions group must be changed. (Mathematica changes the option locally in the

quantifier elimination algorithm.) The option value can be changed with

SetSystemOptions@
"GroebnerBasisOptions" -> 8"EliminateFromGroebnerBasis" -> False<D

. 
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option name default value

"EliminateFromGroebnerBasÖ
is"

True whether GroebnerBasis with 
MonomialOrder -> EliminationOrder 
should remove polynomials containing 
elimination variables

System option EliminateFromGroebnerBasis.

This eliminates y from $y Ix12 + x22 - x1 x2 yã 1 Ï x12 + x22 + x1 x2 y + 1 ã 0M. The answer is a polyno-
mial whose zeros are the Zariski closure of the projection of the solution set of the two original 
equations on the Hx1, x2L plane.

In[4]:= GroebnerBasisA9x1
2 + x2

2 - x1 x2 y - 1, x1
2 + x2

2 + x1 x2 y + 1=,
8x1, x2<, 8y<, MonomialOrder Ø EliminationOrderE

Out[4]= 9x1
2 + x2

2=

The exact description of the projection of the solution set on the Hx1, x2L plane depends on all 
basis polynomials. Note that the second basis polynomial cannot be zero if x1 or x2 is zero.

In[5]:= SetSystemOptions@
"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø False<D;

GroebnerBasisA9x1
2 + x2

2 - x1 x2 y - 1, x1
2 + x2

2 + x1 x2 y + 1=,
8x1, x2<, 8y<, MonomialOrder Ø EliminationOrderE

Out[6]= :x1
2 + x2

2, 1 + y x1 x2, -x1 + y x2
3>

This resets the system option to its default value.

In[7]:= SetSystemOptions@"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø True<D;

Resolve gives the exact description of the projection of the solution set on the Hx1, x2L plane.

In[8]:= ResolveA$y Ix1
2 + x2

2 - x1 x2 y ã 1Ï x1
2 + x2

2 + x1 x2 y + 1 ã 0ME

Out[8]= x1
2 + x2

2 ã 0 && x2 ≠ 0

Decision Problems

A decision problem is a system with all variables existentially quantified, that is, a system of the

form

$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn  are  all  variables  in  F.  Solving a  decision problem means deciding whether  it  is

equivalent to True  or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequations FHx1, …, xnL has solutions.
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where x1, …, xn  are  all  variables  in  F.  Solving a  decision problem means deciding whether  it  is

equivalent to True  or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequations FHx1, …, xnL has solutions.

Solving this decision problem proves that a quadratic equation with a zero determinant cannot 
have two different roots.

In[9]:= ReduceA$8a,b,c,x,y< Ia x2 + b x + c ã 0 && a y2 + b y + c ã 0 && x ≠ y && b2 - 4 a c ã 0 && a ≠ 0ME

Out[9]= False

Given the identities

$x HF1 Í … Í Fn L ó $x F1 Í … Í $x Fn
g1 ≠ 0 Ï … Ï gk ≠ 0 ó g1 ÿ… ÿgk ≠ 0

solving any decision problem can be reduced to solving a finite number of decision problems of

the form

$x1 $x2 … $xn f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

By Hilbert's Nullstellensatz and Property 3 of Gröbner bases

f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0

has complex solutions iff 

GroebnerBasis@8 f1, …, fk, 1 - g z<, 8x1, …, xn, z<D

with an arbitrary monomial order, is different than {1}. 

This shows that x2 + y2 == 2 Ï x == y Ï x ≠ -1 has complex solutions.

In[10]:= GroebnerBasisA9x2 + y2 - 2, x - y, 1 - Hx + 1L z=, 8x, y, z<E

Out[10]= 8-1 + 2 z, -1 + y, -1 + x<

This shows that x2 + y2 == 2 Ï x == y Ï x2 ≠ 1 has no complex solutions.

In[11]:= GroebnerBasisA9x2 + y2 - 2, x - y, 1 - Ix2 - 1M z=, 8x, y, z<E

Out[11]= 81<

When Mathematica solves a decision problem, the monomial order used by the GroebnerBasis

computation  is  MonomialOrder -> EliminationOrder,  with  8z<  specified  as  the  elimination

variable list. This setting corresponds to the monomial ordering in which monomials containing z

are greater than those that do not contain z, and the ordering of monomials not containing z is

degree reverse lexicographic. If there is no inequation condition, there is no need to introduce

z, and Mathematica uses MonomialOrder -> DegreeReverseLexicographic.
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When Mathematica solves a decision problem, the monomial order used by the GroebnerBasis

computation  is  MonomialOrder -> EliminationOrder,  with  8z<  specified  as  the  elimination

variable list. This setting corresponds to the monomial ordering in which monomials containing z

are greater than those that do not contain z, and the ordering of monomials not containing z is

degree reverse lexicographic. If there is no inequation condition, there is no need to introduce

z, and Mathematica uses MonomialOrder -> DegreeReverseLexicographic.

Quantifier Elimination

For any complex polynomial system there exists an equivalent quantifier-free complex polyno-

mial  system. This follows from Chevalley's theorem, which states that a projection of a quasi-

algebraically  constructible  set  (a  solution  set  of  a  quantifier-free  system  of  polynomial  equa-

tions and inequations) is a quasi-algebraically constructible set [3]. Quantifier elimination is the

procedure of finding a quantifier-free complex polynomial system equivalent to a given complex

polynomial  system.  In  Mathematica,  quantifier  elimination  for  complex  polynomial  systems  is

done  by  Resolve.  It  is  also  used  by  Reduce  and  FindInstance  as  the  first  step  in  solving  or

finding instances of solutions of complex polynomial systems.

Eliminating quantifiers from this system gives a condition for quadratic equations to have at 
least two different zeros.

In[12]:= ResolveA$8x,y< Ia x2 + b x + c ã 0 && a y2 + b y + c ã 0 && x ≠ yME

Out[12]= Ia ≠ 0 && -b2 + 4 a c ≠ 0M »» Ha ã 0 && b ã 0 && c ã 0L

For complex polynomial systems Mathematica uses the following quantifier elimination method.

Given the identities

"x F ó Ÿ H$x Ÿ FL
$x HF1 Í … Í Fn L ó $x F1 Í … Í $x Fn
g1 ≠ 0 Ï … Ï gk ≠ 0 ó g1 ÿ… ÿgk ≠ 0,

eliminating quantifiers from any complex polynomial system can be reduced to a finite number

of single existential quantifier eliminations from systems of the form

(1)$y f1Hx1, …, xn, yLã 0 Ï … Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0.

To eliminate the quantifier from (1), Mathematica first computes the Gröbner basis of equations

G = GroebnerBasis@8 f1, …, fk<, 8x1, …, xn, y<D

with a monomial order that makes monomials containing y greater than monomials not contain-

ing y. 
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with a monomial order that makes monomials containing y greater than monomials not contain-

ing y. 

The monomial order used is EliminationOrder, with 8y< specified as the elimination variable list

and all basis polynomials kept.

If G contains no polynomials that depend on y, then a quantifier-free system equivalent to (1)

can be obtained by equating all  elements  of  G  to  zero,  and asserting that  at  least  one coeffi-

cient of g as a polynomial in y is not equal to zero. Otherwise let h be the element of G with the

lowest positive degree d in y, let cHx1, …, xnL be the leading coefficient of h in y, and let 8h1, …, hs<

be  all  elements  of  G  that  do  not  depend  on  y.  Now (1)  can  be  split  into  a  disjunction  of  two

systems

(2)
$y cHx1, …, xnLã 0 Ï f1Hx1, …, xn, yLã 0 Ï

… Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0

and

(3)
$y cHx1, …, xnL ≠ 0 Ï f1Hx1, …, xn, yLã 0 Ï

… Ï fkHx1, …, xn, yLã 0 Ï gHx1, …, xn, yL ≠ 0.

To eliminate  the  quantifier  from (2),  the  quantifier  elimination  procedure  is  called  recursively.

Since the ideal generated by 8c, f1, …, fk< strictly contains the ideal generated by 8 f1, …, fk<, the

Noetherian property of polynomial rings guarantees finiteness of the recursion.

If c belongs to the radical of the ideal generated by 8 f1, …, fk<, which is exactly when 1 belongs

to

GroebnerBasis@8h1, …, hs, 1 - c z<, 8x1, …, xn, z<D,

(3) is equivalent to False. Otherwise let

r = rd-1Hx1, …, xnL yd-1 + … + r0Hx1, …, xnLã cHx1, …, xnLe gHx1, …, xn, yLd - qHx1, …, xn, yL hHx1, …, xn, yL

be the pseudoremainder of the division of gd  by h as polynomials in y. Then (3) is equivalent to

the quantifier-free system

(4)
cHx1, …, xnL ≠ 0 Ï h1Hx1, …, xnLã 0 Ï … Ï

hsHx1, …, xnLã 0 Ï Hrd-1Hx1, …, xnL ≠ 0 Í … Í r0Hx1, …, xnL ≠ 0L.

To show that (3) implies (4), suppose that Ha1, …, anL satisfies (3). Then cHa1, …, anL ≠ 0 and there

exists b, such that
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f1Ha1, …, an, bLã 0 Ï … Ï fkHa1, …, an, bLã 0 Ï gHa1, …, an, bL ≠ 0.

Since 8h1, …, hs< and h belong to the ideal generated by 8 f1, …, fk<,

h1Ha1, …, anLã 0 Ï … Ï hsHa1, …, anLã 0

and hHa1, …, an, bLã 0. Hence

rHa1, …, an, bLã rd-1Ha1, …, anL bd-1 + … + r0Ha1, …, anLã cHa1, …, anLe gHa1, …, an, bLd ≠ 0,

which implies that

rd-1Ha1, …, anL ≠ 0 Í … Í r0Ha1, …, anL ≠ 0.

To show that (4) implies (3), suppose that Ha1, …, anL satisfies (4). Then

rHa1, …, an, yLã rd-1Ha1, …, anL yd-1 + … + r0Ha1, …, anLã
cHa1, …, anLe gHa1, …, an, yLd - qHa1, …, an, yL hHa1, …, an, yL.

Since  hHa1, …, an, yL  is  a  polynomial  of  degree  d,  and  rHa1, …, an, yL  is  a  nonzero  polynomial  of

degree  less  than d,  there  is  a  root  b  of  hHa1, …, an, yL  such  that  Hy - bLm  divides  hHa1, …, an, yL  but

not  rHa1, …, an, yL  for  some  1 §m § d.  If  gHa1, …, an, bL  were  zero,  then  Hy - bLm would  divide

gHa1, …, an, yLd,  which  is  impossible  because  it  would  imply  that  Hy - bLm  divides  rHa1, …, an, yL.

Therefore  gHa1, …, an, bL ≠ 0.  Property  4  shows  that  pHa1, …, an, bLã 0  for  any  polynomial  p œG.

Since G is a Gröbner basis of the ideal generated by 8 f1, …, fk<,

f1Ha1, …, an, bLã 0 Ï … Ï fkHa1, …, an, bLã 0,

which completes the proof of correctness of the quantifier elimination algorithm.

This eliminates the quantifier from $y x12 + x22 + y2 == 1 Ï x1 + x2 == y. Here g = 1, h = -y + x1 + x2, 
and c = -1. Since c is a nonzero constant, (2) is False and the equivalent quantifier-free 
system is given by (4). Since g is a nonzero constant, (4) becomes 1 - 2 x12 - 2 x1 x2 - 2 x22 ã 0.

In[13]:= SetSystemOptions@
"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø False<D;

GroebnerBasisA9x1
2 + x2

2 + y2 - 1, x1 + x2 - y=, 8x1, x2<, 8y<,
MonomialOrder Ø EliminationOrderE

Out[14]= 9-1 + 2 x1
2 + 2 x1 x2 + 2 x2

2, y - x1 - x2=

This resets the system option to its default value.

In[15]:= SetSystemOptions@"GroebnerBasisOptions" Ø 8"EliminateFromGroebnerBasis" Ø True<D;

Arbitrary Complex Polynomial Systems
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Arbitrary Complex Polynomial Systems

FindInstance

FindInstance  can  handle  arbitrary  complex  polynomial  systems  giving  instances  of  complex

solutions,  or  an  empty  list  for  systems  that  have  no  solutions.  If  the  number  of  instances

requested is more than one, the instances are randomly generated from the full solution of the

system  given  by  Reduce.  If  one  instance  is  requested,  a  faster  algorithm  that  produces  one

instance is used. Here is a description of the algorithm used to find a single instance, or prove

that a system has no solutions.

If  the  system  contains  general  quantifiers  ("),  the  quantifier  elimination  algorithm  is  used  to

eliminate the innermost quantifiers until  the system contains only existential  quantifiers ($) or

is quantifier-free. Note that

(1)$x1 $x2 … $xn FHx1, …, xn, y1, …, ymL

has  solutions  if  and  only  if  FHx1, …, xn, y1, …, ymL  has  solutions,  and  if  Ha1, …, an, b1, …, bmL  is  a

solution  of  FHx1, …, xn, y1, …, ymL,  then Hb1, …, bmL  is  a  solution  of  (1).  Hence to  find  instances  of

solutions  of  systems containing  only  existential  quantifiers  it  is  enough to  be  able  to  find  ins-

tances of quantifier-free systems. Moreover, Ha1, …, anL is a solution of

F1Hx1, …, xnL Í … Í FmHx1, …, xnL

if and only if it is a solution of one of the FiHx1, …, xnL, with 1 § i §m, so it is enough to show how

to find instances of solutions of

(2)f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

First  compute  the  GroebnerBasis  G  of  8 f1, …, fk, 1 - g z<  with

MonomialOrder -> EliminationOrder, eliminating the polynomials that depend on z (if there is

no  inequation  condition,  G  is  the  GroebnerBasis  of  8 f1, …, fk<  with

MonomialOrder -> DegreeReverseLexicographic).  If  G  contains  1,  there  are  no  solutions.

Otherwise,  compute  a  subset  S  of  8x1, …, xn<  of  the  highest  cardinality  among  subsets  strongly

independent modulo the ideal generated by G with respect to the degree reverse lexicographic

order  ([1],  Section  9.3).  Reorder  8x1, …, xn<  so  that  Sã 8xn-d+1, …, xn<,  and  compute  the  lexico-

graphic order GroebnerBasis  H  of the ideal generated by G. To compute H, Mathematica uses

the Gröbner walk algorithm.
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First  compute  the  GroebnerBasis  G  of  8 f1, …, fk, 1 - g z<  with

MonomialOrder -> EliminationOrder, eliminating the polynomials that depend on z (if there is

no  inequation  condition,  G  is  the  GroebnerBasis  of  8 f1, …, fk<  with

MonomialOrder -> DegreeReverseLexicographic).  If  G  contains  1,  there  are  no  solutions.

Otherwise,  compute  a  subset  S  of  8x1, …, xn<  of  the  highest  cardinality  among  subsets  strongly

order  ([1],  Section  9.3).  Reorder  8x1, …, xn<  so  that  Sã 8xn-d+1, …, xn<,  and  compute  the  lexico-

graphic order GroebnerBasis  H  of the ideal generated by G. To compute H, Mathematica uses

the Gröbner walk algorithm.

For  each  of  the  variables  xi,  1 § i § n - d,  select  the  polynomial  hi œ H  with  the  smallest  leading

monomial among elements of H  that depend on xi  and not on 8x1, …, xi-1<. Let ci  be the leading

coefficient of hi  as a polynomial in xi. If ci  depends on a variable that is not in S, replace H  with

the lexicographic order Gröbner basis of  the ideal  generated by H  and ci.  The following shows

that  this  operation  keeps  S  strongly  independent  modulo  the  ideal  generated  by  H.  Hence,

possibly after a finite (by the Noetherian property of polynomial rings) number of extensions of

H, the leading coefficient ci  of hi  depends only on 8xn-d+1, …, xn<, for all 1 § i § n - d. For the set of

polynomials P,  let  ZHPL  be the set of common zeros of elements of P.  Both ZHGL  and ZHHL  have

dimension  d,  and  ZHHL Õ ZHGL,  hence  any  d-dimensional  irreducible  component  of  ZHHL  is  also  a

component  of  ZHGL.  Since g  does not  vanish on any irreducible  component  of  ZHGL,  it  does not

vanish on any d-dimensional  irreducible component of  ZHHL.  Therefore,  the Gröbner basis  of  H

and g  contains a polynomial t  depending only on 8xn-d+1, …, xn<.  Let p = t c1 …cn-d.  To find a solu-

tion of (2),  pick its last d  coordinates 8an-d+1, …, an<  so that pHan-d+1, …, anL ≠ 0.  For all  1 § i § n - d,

ciHan-d+1, …, anL ≠ 0,  and so by Property 4 if  ai,  for  i = n - d, …, 1,  is  chosen to be the first  root  of

hiHxi, ai+1, …, anL,  then  Ha1, …, anL œ ZHHL Õ ZHGL.  Moreover,  gHa1, …, anL ≠ 0,  because  otherwise

Ha1, …, anL would belong to ZHH ‹ 8g<L, which would imply that tHan-d+1, …, anLã 0, which is impossi-

ble since t divides p.

To prove the correctness of the aforementioned algorithm, it must be shown that extending H

by ci  that  depend on a variable  not  in  S  preserves strong independence of  S  modulo  the ideal

generated by H.  Suppose for some 1 § i § n - d,  ci  depends on a variable,  which is  not in S.  Let

Ii+1 Õ @xi+1, …, xnD  denote  the  ideal  generated  by  H › @xi+1, …, xnD,  and  let  Ji+1 Õ @xi+1, …, xnD

denote  the  ideal  generated  by  Ii+1  and  ci.  Then  Ji+1  does  not  contain  nonzero  elements  of

@xn-d+1, …, xnD.  To  prove  this,  suppose  that  rã p ci + q œ Ji+1 › @xn-d+1, …, xnD \ 80<  where

p œ @xi+1, …, xnD and q œ Ii+1. Then hi ã ci xik + t, with degxi HtL < k, and

p hi ã p ci xik + p tã r xik - q xik + p t

belongs to the ideal generated by H, and so does gi = r xik + p t. This contradicts the choice of hi

since the leading monomial of gi depends on xi and is strictly smaller than the leading monomial

of hi.  Therefore, the projection of ZHJi+1L  on Ad = IdM
9xn-d+1,…, xn=

 is dense in Ad,  and so, since ZHIi+1L

has dimension d, ci  must be zero on some irreducible component Ci+1  of ZHIi+1L whose projection

on Ad  is dense in Ad. Since ZHIi+1L is the Zariski closure of the projection of the d-dimensional set

ZHHL,  Ci+1  is contained in the Zariski closure of the projection of an irreducible component C  of

ZHHL. ZHciL › C has dimension d, hence ci  is zero on C, and the projection of C on Ad  is dense in

Ad, which proves that S is strongly independent modulo the ideal generated by H and ci.
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belongs to the ideal generated by H, and so does gi = r xik + p t. This contradicts the choice of hi

since the leading monomial of gi depends on xi and is strictly smaller than the leading monomial

of hi.  Therefore, the projection of ZHJi+1L  on Ad = IdM
9xn-d+1,…, xn=

 is dense in Ad,  and so, since ZHIi+1L

has dimension d, ci  must be zero on some irreducible component Ci+1  of ZHIi+1L whose projection

on Ad  is dense in Ad. Since ZHIi+1L is the Zariski closure of the projection of the d-dimensional set

ZHHL,  Ci+1  is contained in the Zariski closure of the projection of an irreducible component C  of

ZHHL. ZHciL › C has dimension d, hence ci  is zero on C, and the projection of C on Ad  is dense in

Ad, which proves that S is strongly independent modulo the ideal generated by H and ci.

Here is an example in which H needs to be extended. Here Sã 8x3<, h1 ã Hx2 - x3L x1, c1 ã x2 - x3, 
and I2 ã < Hx2 - x3L2 Hx2 - 2 x3L >. c1 is zero on one of the two one-dimensional components of I2.

In[16]:= GroebnerBasisA9Hx2 - x3L2 Hx2 - 2 x3L, Hx2 - x3L x1, x1
2 - x1=, 8x1, x2, x3<E

Out[16]= :x2
3 - 4 x2

2 x3 + 5 x2 x3
2 - 2 x3

3, x1 x2 - x1 x3, -x1 + x1
2>

Extending H by c1  results in all ci depending on x3 only (in fact even constant) while preserving 
the strong independence of 8x3<.

In[17]:= GroebnerBasisA9x2
3 - 4 x2

2 x3 + 5 x2 x3
2 - 2 x3

3, x1 x2 - x1 x3, -x1 + x1
2, x2 - x3 =, 8x1, x2, x3<E

Out[17]= 9x2 - x3, -x1 + x1
2=

Reduce

Reduce  can  solve  arbitrary  complex  polynomial  systems.  As  the  first  step,  Reduce  uses  the

quantifier  elimination  algorithm  to  eliminate  the  quantifiers.  If  the  obtained  quantifier-free

system is  a  disjunction,  each  term of  the  disjunction  is  solved  separately,  and  the  solution  is

given  as  a  disjunction  of  the  solutions  of  the  terms.  Thus,  the  problem  is  reduced  to  solving

quantifier-free systems of the form

(3)f1Hx1, …, xnLã 0 Ï … Ï fkHx1, …, xnLã 0 Ï gHx1, …, xnL ≠ 0.

First  compute  the  GroebnerBasis  G  of  8 f1, …, fk, 1 - g z<  with  variable  order  8z, xn, …, x1<  and

MonomialOrder -> Lexicographic,  and  select  the  polynomials  that  do  not  depend  on  z.  Then

the solution set of Gã 0 Ï gHx1, …, xnL ≠ 0 is equal to the solution set of (3) and g does not vanish

on any component of the zero set ZHGL of G. If G contains 1, (3) has no solutions. Otherwise for

each 1 § i § n, such that the set Gi of elements of G depending on xi and not on any x j with j > i is

not empty, select an element hi  of Gi  with the lowest positive degree in xi. If one of the leading

coefficients ci  of hi  is zero on ZHGL, that is, it belongs to the radical of the ideal generated by G,

replace G  by the lexicographic Gröbner basis of the ideal generated by G  and ci. Now split the

system into
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First  compute  the  GroebnerBasis  G  of  8 f1, …, fk, 1 - g z<  with  variable  order  8z, xn, …, x1<  and

MonomialOrder -> Lexicographic,  and  select  the  polynomials  that  do  not  depend  on  z.  Then

the solution set of Gã 0 Ï gHx1, …, xnL ≠ 0 is equal to the solution set of (3) and g does not vanish

each 1 § i § n, such that the set Gi of elements of G depending on xi and not on any x j with j > i is

not empty, select an element hi  of Gi  with the lowest positive degree in xi. If one of the leading

coefficients ci  of hi  is zero on ZHGL, that is, it belongs to the radical of the ideal generated by G,

replace G  by the lexicographic Gröbner basis of the ideal generated by G  and ci. Now split the

system into

(4)
Ici1 ã 0 ÏGã 0 Ï g ≠ 0MÎ Ici2 ã 0 ÏGã 0 Ï ci1 g ≠ 0MÎ

… ÎJcis ã 0 ÌGã 0 Ì ci1 …cis-1 g ≠ 0NÎ IGã 0 Ï ci1 …cis g ≠ 0M.

and call  the solving procedure recursively on all  but  the last  term of  the disjunction (4).  Note

that the algebraic set ci j ã 0 ÌGã 0 is strictly contained in Gã 0, so the recursion is finite. If the

product of all the ci  and g belongs to the radical of the ideal generated by G, the last term has

no solutions. Otherwise, by Property 4, the solution set of the last term is equal to

ci1 Hx1, …, xi1-1L ≠ 0 Ï Roots@hi1 ã 0, xi1D Ï … Ï

cis Ix1, …, xis-1M ≠ 0 Ï RootsAhis ã 0, xisE Ï g Hx1, …, xnL ≠ 0.

The conditions ci j ≠ 0  guarantee that all  the solutions (represented as radicals or Root  objects)

given  by  RootsAhi j ã 0, xi j E  are  well  defined.  Reduce  performs  several  operations  in  order  to

simplify  the  inequation  conditions  returned,  like  removing  multiple  factors,  removing  factors

common with earlier inequation conditions, reducing modulo the hi j,  and removing factors that

are nonzero on ZHGL.
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Options

Options for Reduce, Resolve, and FindInstance

The Mathematica  functions  for  solving  complex  polynomial  systems have a  number  of  options

that control the way they operate. This section gives a summary of these options.

option name default value

Backsubstitution False whether the solutions given by Reduce 
and Resolve with specified variables 
should be unwound by backsubstitution

Cubics False whether the Cardano formulas should be 
used to express solutions of cubics

Quartics False whether the Cardano formulas should be 
used to express solutions of quartics

Options of Reduce and Resolve affecting the behavior of complex polynomial systems.

option name default value

WorkingPrecision ¶ the working precision to be used in computa -
tions, with the default settings of system 
options; the value of working precision 
affects only calls to Roots

Options of Reduce, Resolve, and FindInstance affecting the behavior of complex polynomial systems.

Backsubstitution

By default, Reduce may use variables appearing earlier in the variable list to express solutions 
for variables appearing later in the variable list.

In[18]:= ReduceAx2 + y2 ã 1 && x5 - 3 x + 7 ã 0, 8x, y<E

Out[18]= Ix ã RootA7 - 3 Ò1 + Ò15 &, 1E »» x ã RootA7 - 3 Ò1 + Ò15 &, 2E »» x ã RootA7 - 3 Ò1 + Ò15 &, 3E »»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E »» x ã RootA7 - 3 Ò1 + Ò15 &, 5EM && y ã - 1 - x2 »» y ã 1 - x2
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With Backsubstitution -> True, Reduce uses backsubstitution to eliminate variables from 
the right-hand sides of the equations.

In[19]:= ReduceAx2 + y2 ã 1 && x5 - 3 x + 7 ã 0, 8x, y<, Backsubstitution Ø TrueE

Out[19]= x ã RootA7 - 3 Ò1 + Ò15 &, 1E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 1E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 1E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 1E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 2E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 2E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 2E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 2E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 3E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 3E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 3E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 3E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 4E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 4E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 4E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 5E && y ã - 1 - RootA7 - 3 Ò1 + Ò15 &, 5E
2

»»

x ã RootA7 - 3 Ò1 + Ò15 &, 5E && y ã 1 - RootA7 - 3 Ò1 + Ò15 &, 5E
2

Cubics and Quartics

By default Reduce does not use the Cardano formulas for solving cubics or quartics.

In[20]:= ReduceAx3 - 3 x + 7 ã 0, xE

Out[20]= x ã RootA7 - 3 Ò1 + Ò13 &, 1E »» x ã RootA7 - 3 Ò1 + Ò13 &, 2E »» x ã RootA7 - 3 Ò1 + Ò13 &, 3E

Setting the options Cubics and Quartics to True allows Reduce to use the Cardano formu-
las for solving cubics and quartics.

In[21]:= ReduceAx3 - 3 x + 7 ã 0, x, Cubics Ø TrueE

Out[21]= x ã -
2

7 - 3 5

1ë3

-
1

2
7 - 3 5

1ë3

»» x ã
1

2
1 + Â 3

1

2
7 - 3 5

1ë3

+
1 - Â 3

22ë3 J7 - 3 5 N
1ë3

»»

x ã
1

2
1 - Â 3

1

2
7 - 3 5

1ë3

+
1 + Â 3

22ë3 J7 - 3 5 N
1ë3

WorkingPrecision
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WorkingPrecision

With WorkingPrecision set to a finite number, Reduce uses numeric methods to find polyno-
mial roots.

In[22]:= ReduceAx3 - 3 x + 7 ã 0, x, WorkingPrecision Ø 20E

Out[22]= x ã -2.4259887573616221261 »» x ã 1.2129943786808110630 - 1.1891451081065508908 Â »»
x ã 1.2129943786808110630 + 1.1891451081065508908 Â

The ReduceOptions Group of System Options

Here  are  the  system  options  from  the  ReduceOptions  group  that  may  affect  the  behavior  of

Reduce,  Resolve,  and FindInstance  for  complex polynomial  systems.  The options can be set

with

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.

This sets the option FinitePrecisionGB to True.

In[23]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø True<D;

This checks the value of FinitePrecisionGB.

In[24]:= "FinitePrecisionGB" ê. H"ReduceOptions" ê. SystemOptions@DL

Out[24]= True

This sets the option FinitePrecisionGB back to the default value False.

In[25]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø False<D;

option name default value

"FinitePrecisionGB" False whether finite values of working precision 
should be used in calls to GroebnerBasis

"ReorderVariables" False whether Reduce and Resolve are allowed 
to reorder the specified variables

ReduceOptions group options that affect the behavior of Reduce, Resolve, and FindInstance for 
complex polynomial systems.

Advanced Algebra     21



FinitePrecisionGB

By default, Reduce uses GroebnerBasis with CoefficientDomain -> Automatic. This 
means that even with WorkingPrecision set to a finite number prec, if the input is exact 
GroebnerBasis uses exact computations.

In[26]:= SeedRandom@123D;

f = ‚

i=0

2

‚

j=0

3

RandomIntegerA9-10100, 10100=E xi yj;

g = ‚

i=0

3

‚

j=0

2

RandomIntegerA9-10100, 10100=E xi yj;

Timing@a1 =
Reduce@f ã 0 && g ã 0, 8x, y<, WorkingPrecision Ø 100, Backsubstitution Ø TrueD;D

Out[28]= 80.481, Null<

Setting the system option "FinitePrecisionGB" -> True makes Reduce use 
GroebnerBasis with CoefficientDomain -> InexactNumbers@precD.

In[29]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø True<D;
Timing@a2 =

Reduce@f ã 0 && g ã 0, 8x, y<, WorkingPrecision Ø 100, Backsubstitution Ø TrueD;D
Out[30]= 80.25, Null<

Using finite precision may significantly improve the speed of GroebnerBasis computations. 
However, the numeric computations may fail due to loss of precision, or give incorrect answers. 
They usually give less precise results than exact GroebnerBasis computations followed by 
numeric root finding.

In[31]:= Precision êü 8a1, a2<

Out[31]= 890.7267, 48.2583<

This shows that the results are equal up to their precision.

In[32]:= Sort@8x, y< ê. 8ToRules@a1D<D - Sort@8x, y< ê. 8ToRules@a2D<D

Out[32]= 990.µ10-55 + 0.µ10-55 Â, 0.µ10-49 + 0.µ10-49 Â=,

90.µ10-55 + 0.µ10-55 Â, 0.µ10-49 + 0.µ10-49 Â=, 90.µ10-54, 0.µ10-49=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-55 + 0.µ10-55 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-55 + 0.µ10-55 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-53 + 0.µ10-53 Â=,

90.µ10-58 + 0.µ10-58 Â, 0.µ10-55 + 0.µ10-55 Â=, 90.µ10-58 + 0.µ10-58 Â, 0.µ10-55 + 0.µ10-55 Â=,

90.µ10-57 + 0.µ10-57 Â, 0.µ10-52 + 0.µ10-52 Â=, 90.µ10-57 + 0.µ10-57 Â, 0.µ10-52 + 0.µ10-52 Â==

In[33]:= SetSystemOptions@"ReduceOptions" Ø 8"FinitePrecisionGB" Ø False<D;
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ReorderVariables

By default, Reduce is not allowed to reorder the specified variables. Variables appearing earlier 
in the variable list may be used to express solutions for variables appearing later in the variable 
list, but not vice versa.

In[34]:= ReduceAz3 + 3 z - 2 y + 1 ã x && z2 - 7 ã y, 8x, y, z<E

Out[34]= x ã 21 && y ã -10 && z ã -Â 3 »» z ã Â 3 »» Hx ã 21 && y ã -3 && z ã 2L »»

Iy ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 1E »»

y ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 2E »»

y ã RootA699 + 2 x - x2 + H244 - 4 xL Ò1 + 23 Ò12 + Ò13 &, 3EM && -21 + x ≠ 0 && z ã
72 - 2 x + 13 y + y2

-21 + x

Setting the system option "ReorderVariables" -> True allows Reduce to pick a variable 
order that makes the equations easier to solve.

In[35]:= SetSystemOptions@"ReduceOptions" Ø 8"ReorderVariables" Ø True<D;
ReduceAz3 + 3 z - 2 y + 1 ã x && z2 - 7 ã y, 8x, y, z<E

Out[35]= y ã -7 + z2 && x ã 15 + 3 z - 2 z2 + z3

In[36]:= SetSystemOptions@"ReduceOptions" Ø 8"ReorderVariables" Ø False<D;
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Real Polynomial Systems

Introduction

A  real  polynomial  system  is  an  expression  constructed  with  polynomial  equations  and

inequalities

f Hx1, …, xnLã gHx1, …, xnL, f Hx1, …, xnL ≠ gHx1, …, xnL,
f Hx1, …, xnL ¥ gHx1, …, xnL, f Hx1, …, xnL > gHx1, …, xnL,
f Hx1, …, xnL § gHx1, …, xnL, f Hx1, …, xnL < gHx1, …, xnL

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F,  and $x F.

An occurrence of a variable x inside "x F or $x F is called a bound occurrence; any other occur-

rence of x is called a free occurrence. A variable x is called a free variable of a real polynomial

system if the system contains a free occurrence of x. A real polynomial system is quantifier free

if it contains no quantifiers.

An example of a real polynomial system with free variables x, y, and z is the following

(1)x2 + y2 § z2 Ì $t J"u t x > u y z + 7 Î x2 tã 2 z + 1N.

Any real polynomial system can be transformed to the prenex normal form

(2)Q1 y1 Q2 y2 …Qm ym FHx1, …, xn; y1, …, ymL,

where each Qi is " or $, and FHx1, …, xn; y1, …, ymL is a quantifier-free formula called the quantifier-

free part of the system.

Any quantifier-free real polynomial system can be transformed to the disjunctive normal form

(3)Ij1,1 Ï … Ï j1,n1 M Í … Í Ijm,1 Ï … Ï jm,nm M,

where each ji, j is a polynomial equation or inequality. 

Reduce, Resolve, and FindInstance  always put real polynomial systems in the prenex normal

form, with quantifier-free parts in the disjunctive normal form, and subtract sides of equations

and inequalities to put them in the form
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Reduce, Resolve, and FindInstance  always put real polynomial systems in the prenex normal

form, with quantifier-free parts in the disjunctive normal form, and subtract sides of equations

and inequalities to put them in the form

f Hx1, …, xnLã Ior ≠, ¥ , > , § , <M 0.

In  all  of  the  real  polynomial  system  solving  tutorials,  we  will  always  assume  the  system  has

been transformed to this form.

Reduce  can solve arbitrary real  polynomial  systems. For a system with free variables x1, …, xn,

the solution (possibly after expanding fl with respect to fi) is a disjunction of terms of the form

(4)BHx1;L Ï BHx2; x1L Ï BHx3; x1, x2L Ï … Ï BHxn; x1, …, xn-1L,

where BHxk; x1, …, xk-1L is one of

(5)

xk ã r1Hx1, …, xk-1L
L < Ior §M xk < Ior §M r2Hx1, …, xk-1L
< Ior §M r2Hx1, …, xk-1L
> Ior ¥M r1Hx1, …, xk-1L

True

and r1 and r2 are algebraic functions (expressed using Root objects or radicals) such that for all

x1, …, xk-1  satisfying  BHx1;L Ï BHx2; x1L Ï … Ï BHxk-1; x1, …, xk-2L,  r1and  r2  are  well  defined  (that  is,

denominators  and  leading  terms  of  Root  objects  are  nonzero),  real  valued,  continuous,  and

satisfy inequality r1 < r2.

The subset of n described by formula (4) is called a cell. The cells described by different terms

of solution of a real polynomial system are disjoint.
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This solves the system (1). The cells are represented in a nested form.

In[1]:= sol = ReduceAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<, RealsE

Out[1]= x < 0 && z § - x2 + y2 »» z ¥ x2 + y2 »» x ã 0 && -
1

2
§ y §

1

2
&& z ã -

1

2
»»

0 < x <
1

2
&& y < -

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »»

y ã -
1

2
1 - 4 x2 && z § -

1

2
»» z ¥ x2 + y2 »»

-
1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »» y ã

1

2
1 - 4 x2 &&

z § -
1

2
»» z ¥ x2 + y2 »» y >

1

2
1 - 4 x2 && z § - x2 + y2 »» z ¥ x2 + y2 »»

x ã
1

2
&& y < 0 && z § -

1

4
+ y2 »» z ¥

1

4
+ y2 »» y ã 0 && z § -

1

2
»» z ¥

1

2
»»

y > 0 && z § -
1

4
+ y2 »» z ¥

1

4
+ y2 »» x >

1

2
&& z § - x2 + y2 »» z ¥ x2 + y2

This defines a function expanding fl with respect to fi.

In[2]:= lexp@e_OrD := lexp êü e
lexp@And@a___, b_Or, c___DD := lexp@And@a, Ò, cDD & êü b
lexp@other_D := other
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Here is the solution of the system (1) written explicitly as a union of disjoint cells.

In[5]:= lexp@solD

Out[5]= x < 0 && z § - x2 + y2 »» x < 0 && z ¥ x2 + y2 »» x ã 0 && -
1

2
§ y §

1

2
&& z ã -

1

2
»»

0 < x <
1

2
&& y < -

1

2
1 - 4 x2 && z § - x2 + y2 »» 0 < x <

1

2
&& y < -

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y ã -

1

2
1 - 4 x2 && z § -

1

2
»» 0 < x <

1

2
&& y ã -

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& -

1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z § - x2 + y2 »»

0 < x <
1

2
&& -

1

2
1 - 4 x2 < y <

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y ã

1

2
1 - 4 x2 && z § -

1

2
»» 0 < x <

1

2
&& y ã

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

0 < x <
1

2
&& y >

1

2
1 - 4 x2 && z § - x2 + y2 »» 0 < x <

1

2
&& y >

1

2
1 - 4 x2 && z ¥ x2 + y2 »»

x ã
1

2
&& y < 0 && z § -

1

4
+ y2 »» x ã

1

2
&& y < 0 && z ¥

1

4
+ y2 »»

x ã
1

2
&& y ã 0 && z § -

1

2
»» x ã

1

2
&& y ã 0 && z ¥

1

2
»» x ã

1

2
&& y > 0 && z § -

1

4
+ y2 »»

x ã
1

2
&& y > 0 && z ¥

1

4
+ y2 »» x >

1

2
&& z § - x2 + y2 »» x >

1

2
&& z ¥ x2 + y2

Resolve  can  eliminate  quantifiers  from  arbitrary  real  polynomial  systems.  If  no  variables  are

specified  in  the  input  and  all  input  polynomials  are  at  most  linear  in  the  bound  variables,

Resolve  may be able to eliminate the quantifiers without solving the resulting system. Other-

wise, Resolve uses the same algorithm and gives the same answer as Reduce. 

This eliminates quantifiers from the system (1).

In[6]:= ResolveAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, RealsE

Out[6]=
1

2
+ z ã 0 && x2 + y2 - z2 § 0 »» Ix2 ≠ 0 && x2 + y2 - z2 § 0M »»

I-x < 0 && y z ã 0 && x2 + y2 - z2 § 0M »» Ix < 0 && y z ã 0 && x2 + y2 - z2 § 0M

FindInstance  can handle  arbitrary  real  polynomial  systems,  giving  instances  of  real  solutions

or  an  empty  list  for  systems  that  have  no  solutions.  If  the  number  of  instances  requested  is

more than one, the instances are randomly generated from the full solution of the system and

therefore may depend on the value of the RandomSeed option. If one instance is requested and

the system does not contain general (") quantifiers, a faster algorithm producing one instance

is used and the instance returned is always the same.

This finds a solution of the system (1).
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This finds a solution of the system (1).

In[7]:= FindInstanceAx2 + y2 § z2 && $t I"u t x > u y z + 7 »» x2 t ã 2 z + 1M, 8x, y, z<, RealsE

Out[7]= ::x Ø -18, y Ø
8

5
, z Ø -115>>

The main general tool used in solving real polynomial systems is the Cylindrical Algebraic Decom-

position (CAD) algorithm (see, for example, [1]). CAD for quantifier-free systems is available in 

Mathematica  directly  as  CylindricalDecomposition.  There  are  also  several  other  algorithms

used to solve special case problems.

Cylindrical Algebraic Decomposition

Semi-Algebraic Sets and Cell Decomposition

A subset of n is semi-algebraic if it is a solution set of a quantifier-free real polynomial system.

According  to  Tarski's  theorem  [2],  solution  sets  of  arbitrary  (quantified)  real  polynomial

systems are semi-algebraic.

Every semi-algebraic set can be represented as a finite union of disjoint cells [3] defined recur-

sively as follows:

† A cell in  is a point or an open interval

† A cell in k has one of the two forms

(6)
8Ha1, …, ak, ak+1L : Ha1, …, akL œ CkÔak+1 = rHa1, …, akL<
8Ha1, …, ak, ak+1L : Ha1, …, akL œ CkÔr1 Ha1, …, akL < ak+1 < r2Ha1, …, akL<,

where Ck  is a cell in k, r is a continuous algebraic function, r1  and r2  are continuous algebraic

functions or -¶ or ¶, and r1 < r2 on Ck.

By an algebraic function we mean a function r : Ckö for which there is a polynomial

f = c0 xk+1m + c1 xk+1m-1 + …cm œ@x1, …, xk, xk+1D

such that 

c0Ha1, …, akL ≠ 0Ô f Ha1, …, ak, rHa1, …, akLL = 0.

In Mathematica algebraic functions can be represented as Root objects or radicals.
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In Mathematica algebraic functions can be represented as Root objects or radicals.

The CAD algorithm, introduced by Collins [4], computes a cell decomposition of solution sets of

arbitrary real  polynomial  systems. The objective of  the original  Collins algorithm was to elimi-

nate quantifiers from a quantified real polynomial system and to produce an equivalent quanti-

fier-free  polynomial  system.  After  finding  a  cell  decomposition,  the  algorithm  performed  an

additional step of finding an implicit representation of the semi-algebraic set in terms of polyno-

mial  equations  and  inequalities  in  the  free  variables.  The  objective  of  Reduce  is  somewhat

different. Given a semi-algebraic set presented by a real polynomial system, quantified or not,

Reduce finds a cell decomposition of the set, explicitly written in terms of algebraic functions.

While Reduce may use other methods to solve the system, CylindricalDecomposition  gives a

direct  access  to  the  CAD  algorithm.  For  a  quantifier-free  real  polynomial  system,

CylindricalDecomposition  gives  a  nested  formula  representing  disjunction  of  cells  in  the

solved form (4).  As  in  the output  of  Reduce,  the cells  are disjoint  and additionally  are always

ordered lexicographically with respect to ranges of the subsequent variables.

This finds a cell decomposition of an annulus.

In[8]:= CylindricalDecomposition@1 § x^2 + y^2 < 2, 8x, y<D

Out[8]= - 2 < x < -1 && - 2 - x2 < y < 2 - x2 »»

-1 § x § 1 && - 2 - x2 < y § - 1 - x2 »» 1 - x2 § y < 2 - x2 »»

1 < x < 2 && - 2 - x2 < y < 2 - x2

The Projection Phase of the CAD Algorithm

Finding  a  cell  decomposition  of  a  semi-algebraic  set  using  the  CAD  algorithm  consists  of  two

phases,  projection and lifting.  In the projection phase,  we start  with the set  An+m  of  factors of

the  polynomials  present  in  the  quantifier-free  part  FHx1, …, xn; y1, …, ymL  of  the  system  (2)  and

eliminate variables one by one using a projection operator P such that

Pk+1 : @t1, …, tk, tk+1D ⊃ Ak+1öAk Õ@t1, …, tkD.

Generally speaking, if all polynomials of Ak have constant signs on a cell C Õk, then all polynomi -

als of Ak+1 are delineable over C, that is, each has a fixed number of real roots on C as a polyno-

tk+1, the roots are continuous functions on C, they have constant multiplicities, and two

roots  of  two  of  the  polynomials  are  equal  either  everywhere  or  nowhere  in  C.  Variables  are

ordered so that
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Generally speaking, if all polynomials of Ak have constant signs on a cell C Õk, then all polynomi-

als of +  are delineable over C, that is, each has a fixed number of real roots on C as a polyno-

mial in tk+1, the roots are continuous functions on C, they have constant multiplicities, and two

roots  of  two  of  the  polynomials  are  equal  either  everywhere  or  nowhere  in  C.  Variables  are

ordered so that

Ht1, …, tn+mL = Hx1, …, xn, y1, …, ymL.

This way the roots of polynomials of A1, …, An are the algebraic functions needed in the construc-

tion of the cell decomposition of the semi-algebraic set.

Several  improvements  have  reduced  the  size  of  the  original  Collins  projection.  The  currently

best projection operator applicable in all cases is due to Hong [5]; however, in most situations

we  can  use  a  smaller  projection  operator  given  by  McCallum [6,  7],  with  an  improvement  by

Brown  [8].  There  are  even  smaller  projection  operators  that  can  be  applied  in  some  special

cases. When equational constraints are present, we can use the projection operator suggested

by Collins [9], and developed and proven by McCallum [10, 11]. When there are no equations

and only strict inequalities, and there are no free variables or we are interested only in the full-

dimensional  part  of  the  semi-algebraic  set,  we  can  use  an  even  smaller  projection  operator

described  in  [12,  13].  For  systems  containing  equational  constraints  that  generate  a  zero-

dimensional ideal, Gröbner bases are used to find projection polynomials. 

Mathematica  uses  the  smallest  of  the  previously  mentioned projections  that  is  appropriate  for

the  given  example.  Whenever  applicable,  we  use  the  equational  constraints;  otherwise,  we

attempt  to  use  McCallum’s  projection  with  Brown’s  improvement.  When  the  system  does  not

turn out to be well oriented, we compute Hong’s projection.
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The Lifting Phase of the CAD Algorithm

In the lifting phase, we find a cell decomposition of the semi-algebraic set. Generally speaking,

although  the  actual  details  depend  on  the  projection  operator  used,  we  start  with  cells  in  1

consisting of all distinct roots of A1  and the open intervals between the roots. We find a sample

point in each of the cells and remove the cells whose sample points do not satisfy the system

describing  the  semi-algebraic  set  (the  system  may  contain  conditions  involving  only  t1).  Next

we lift the cells to cells in n, one dimension at a time. Suppose we have lifted the cells to k.

To lift  a cell  C Õk  to k+1,  we find the real roots of Ak+1  with t1, …, tk  replaced with the coordi-

nates of the sample point c in C. Since the polynomials of Ak+1 are delineable on C, each root r is

a  value  of  a  continuous  algebraic  function  at  c,  and  the  function  can  be  represented  as  a  pth

root of a polynomial f œ Ak+1 such that r is the pth root of f Hc, tk+1L. Now the lifting of the cell C to

k+1  will  consist  of  graphs  of  these  algebraic  functions  and  of  the  slices  of  C×  between  the

subsequent graphs. The sample points in each of the new cells will  be obtained by adding the

k + 1st coordinate to c, equal to one of the roots, or to a number between two subsequent roots.

As in the first step, we remove those lifted cells whose sample points do not satisfy the system

describing the semi-algebraic set. 

If k ¥ n, tk+1 = yl  is a quantifier variable and we may not need to construct all the lifted cells. All

we need is to find the (necessarily constant) truth value of Ql yl Ql+1 yl+1 …Qm ym F on C. If Ql ã $, we

know that  the value is  True  as  soon as  the truth  value of  Ql+1 yl+1 …Qm ym F  on one of  the lifted

cells  is  True.  If  Ql ã ",  we  know  that  the  value  is  False  as  soon  as  the  truth  value  of

Ql+1 yl+1 …Qm ym F on one of the lifted cells is False.

The coefficients of sample points computed this way are in general algebraic numbers. To save

costly  algebraic  number  computations,  Mathematica  uses  arbitrary-precision  floating-point

number  (Mathematica  "bignum")  approximations  of  the  coefficients,  whenever  the  results  can

be validated. Note that using approximate arithmetic may be enough to prove that two roots of

a polynomial or a pair of polynomials are distinct, and to find a nonzero sign of a polynomial at

a sample point. What we cannot prove with approximate arithmetic is that two roots of a polyno-

mial or a pair of polynomials are equal, or that a polynomial is zero at a sample point. However,

we can often use information about  the origins  of  the cell  to  resolve these problems.  For  ins-

tance,  if  we  know  that  the  resultant  of  two  polynomials  vanishes  on  the  cell,  and  these  two

polynomials  have  exactly  one  pair  of  complex  roots  that  can  be  equal  within  the  precision

bounds, we can conclude that these roots are equal. Similarly, if the last coordinate of a sample

point was a root of a factor of the given polynomial, we know that this polynomial is zero at the

sample  point.  If  we  cannot  resolve  all  the  uncertainties  using  the  collected  information  about

the  cell,  we  compute  the  exact  algebraic  number  values  of  the  coordinates.  For  more  details,

see [14, 24].
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The coefficients of sample points computed this way are in general algebraic numbers. To save

costly  algebraic  number  computations,  Mathematica  uses  arbitrary-precision  floating-point

number  (Mathematica  "bignum")  approximations  of  the  coefficients,  whenever  the  results  can

be validated. Note that using approximate arithmetic may be enough to prove that two roots of

a polynomial or a pair of polynomials are distinct, and to find a nonzero sign of a polynomial at

a sample point. What we cannot prove with approximate arithmetic is that two roots of a polyno-

mial or a pair of polynomials are equal, or that a polynomial is zero at a sample point. However,

tance,  if  we  know  that  the  resultant  of  two  polynomials  vanishes  on  the  cell,  and  these  two

polynomials  have  exactly  one  pair  of  complex  roots  that  can  be  equal  within  the  precision

bounds, we can conclude that these roots are equal. Similarly, if the last coordinate of a sample

point was a root of a factor of the given polynomial, we know that this polynomial is zero at the

sample  point.  If  we  cannot  resolve  all  the  uncertainties  using  the  collected  information  about

the  cell,  we  compute  the  exact  algebraic  number  values  of  the  coordinates.  For  more  details,

see [14, 24].

Decision Problems, FindInstance, and Assumptions 

A decision problem is a system with all variables existentially quantified, that is, a system of the

form

$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn  are  all  variables  in  F.  Solving a  decision problem means deciding whether  it  is

equivalent to True  or to False, that is, deciding whether the quantifier-free system of polyno-

mial equations and inequalities FHx1, …, xnL has solutions.

All  algorithms used by Mathematica  to  solve real  polynomial  decision problems are capable  of

producing  a  point  satisfying  FHx1, …, xnL  if  the  system  has  solutions.  Therefore  the  algorithms

discussed in  this  section  are  used not  only  in  Reduce  and Resolve  for  decision  problems,  but

also in FindInstance, whenever a single instance is requested and the system is quantifier free

or  contains  only  existential  quantifiers.  The  algorithms discussed  here  are  also  used  for  infer-

ence  testing  by  Mathematica  functions  using  assumptions  such  as  Simplify,  Refine,

Integrate, and so forth.

Solving this decision problem proves that the set S = 9Hx, yL œ2 : x4 + y4 - 2 x y § 1= contains the 
disk of radius 4/5 centered at the origin.

In[9]:= ReduceB$8x,y< x2 + y2 §
16

25
&& x4 + y4 - 2 x y > 1 , RealsF

Out[9]= False
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This shows that S does not contain the unit disk and provides a counterexample: a point in the 
unit disk that does not belong to S.

In[10]:= FindInstanceAx2 + y2 § 1 && x4 + y4 - 2 x y > 1, 8x, y<, RealsE

Out[10]= ::x Ø
3

4
, y Ø -

1

2
>>

The primary method that  allows Mathematica  to solve arbitrary real  polynomial  decision prob-

lems  is  the  Cylindrical  Algebraic  Decomposition  (CAD)  algorithm.  There  are,  however,  several

other special case algorithms that provide much better performance in cases in which they are

applicable.

When  all  polynomials  are  linear  with  rational  number  or  floating-point  number  coefficients,

Mathematica uses a method based on the Simplex linear programming method. For other linear

systems,  Mathematica  uses  a  variant  of  the  Loos|Weispfenning  linear  quantifier  elimination

algorithm  [15].  When  the  system  contains  no  equations  and  only  strict  inequalities,  a  faster

“generic”  version  of  CAD is  used  [12,  13].  For  systems  containing  equational  constraints  that

generate  a  zero-dimensional  ideal,  Mathematica  uses  Gröbner  bases  to  find  a  solution.  For

nonlinear systems with floating-point number coefficients, an inexact coefficient version of CAD

[16] is used.

There are also some special case methods that can be used as preprocessors to other decision

methods. When the system contains an equational constraint linear with a constant coefficient

in  one  of  the  variables,  the  constraint  is  used  to  eliminate  the  linear  variable.  If  there  is  a

variable  that  appears  in  the  system  only  linearly  with  constant  coefficients,  the  variable  is

eliminated using the Loos|Weispfenning linear quantifier elimination algorithm [15]. If there is a

variable  that  appears  in  the  system  only  quadratically,  the  quadratic  case  of  Weispfenning's

quantifier  elimination by virtual  substitution algorithm [22, 23] could be used to eliminate the

variable. For some examples this gives a substantial speedup; however, quite often it results in

a  significant  slowdown.  By  default,  the  algorithm  is  not  used  as  a  preprocessor.  Setting  the

system  option  QVSPreprocessor  in  the  InequalitySolvingOptions  group  to  True  makes

Mathematica use it. 

There  are  two  other  special  cases  of  real  decision  algorithms  available  in  Mathematica.  An

algorithm by  Aubry,  Rouillier,  and  Safey  El  Din  [17]  applies  to  systems containing  only  equa-

tions.  There  are  examples  for  which  the  algorithm performs much better  than CAD;  however,

for randomly chosen systems of equations, it seems to perform significantly worse; therefore, it

is  not  used  by  default.  Setting  the  system  option  ARSDecision  in  the

InequalitySolvingOptions  group to  True  causes Mathematica  to  use the algorithm. Another

algorithm by G. X. Zeng and X. N. Zeng [18] applies to systems that consist of a single strict

inequality.  Again,  the algorithm is  faster  than CAD for  some examples,  but  slower  in  general;

therefore,  it  is  not  used  by  default.  Setting  the  system  option  ZengDecision  in  the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm. 
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There  are  two  other  special  cases  of  real  decision  algorithms  available  in  Mathematica.  An

algorithm by  Aubry,  Rouillier,  and  Safey  El  Din  [17]  applies  to  systems containing  only  equa-

tions.  There  are  examples  for  which  the  algorithm performs much better  than CAD;  however,

is  not  used  by  default.  Setting  the  system  option  ARSDecision  in  the

InequalitySolvingOptions  group to  True  causes Mathematica  to  use the algorithm. Another

algorithm by G. X. Zeng and X. N. Zeng [18] applies to systems that consist of a single strict

inequality.  Again,  the algorithm is  faster  than CAD for  some examples,  but  slower  in  general;

therefore,  it  is  not  used  by  default.  Setting  the  system  option  ZengDecision  in  the

InequalitySolvingOptions group to True causes Mathematica to use the algorithm. 

Arbitrary Real Polynomial Systems

Solving Real Polynomial Systems

According to Tarski's  theorem [2],  the solution set  of  an arbitrary (quantified) real  polynomial

system is a semi-algebraic set. Reduce gives a description of this set in the solved form (4). 

This shows for what r > 0 the set S = 9Hx, yL œ2 : x4 + y4 - 2 x y § 1= contains the disk of radius r 
centered at the origin.

In[11]:= ReduceA"8x,y<,r>0&&x2+y2§r2 x
4 + y4 - 2 x y § 1, r, RealsE

Out[11]= r § RootA-2 + 2 Ò12 + Ò14 &, 2E

This gives the projection of x2 + y2 + z2 - x y z § 1 on the Hx, yL plane along the z axis.

In[12]:= ReduceA$z x2 + y2 + z2 - x y z § 1, 8x, y<E

Out[12]= x < -2 && y § -
-4 + 4 x2

-4 + x2
»» y ¥

-4 + 4 x2

-4 + x2
»»

Hx ã -1 && y ã 0L »» -1 < x < 1 && -
-4 + 4 x2

-4 + x2
§ y §

-4 + 4 x2

-4 + x2
»»

Hx ã 1 && y ã 0L »» x > 2 && y § -
-4 + 4 x2

-4 + x2
»» y ¥

-4 + 4 x2

-4 + x2

This finds the projection of Whitney's umbrella x2 - y2 zã 0 on the Hy, zL plane along the x axis.

In[13]:= ReduceA$x x2 - y2 z ã 0, 8y, z<, RealsE

Out[13]= Hy < 0 && z ¥ 0L »» y ã 0 »» Hy > 0 && z ¥ 0L
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Here we find the interior of the previous projection set by directly using the definition.

In[14]:= ReduceA$d,d>0 I"8v,w<,Hv-yL2+Hw-zL2§d I$u u2 - v2 w ã 0MM, 8y, z<, RealsE

Out[14]= z > 0

Quantifier Elimination

The objective of Resolve  with no variables specified is to eliminate quantifiers and produce an

equivalent quantifier-free formula. The formula may or may not be in a solved form, depending

on the algorithm used.

Producing a fully solved quantifier-free formula here is difficult because of the complexity of 
polynomials in a, b, and c appearing in the input. However, since x appears in the input polynomi-
als only linearly, the quantifier can be quickly eliminated using the Loos|Weispfenning linear 
quantifier elimination algorithm, which depends very little on the complexity of coefficients.

In[15]:= ResolveA$x Ia x ¥ b3 - 3 a c2 - 5 a3 b c + 9 && b c2 x - 3 x § 11 a2 b - 3 c3 + 4 a b2 c + 9ME

Out[15]= Ha b cL œ Reals &&
II-a < 0 && -27 - 9 a - 11 a3 b - 3 b3 + 15 a3 b c - 4 a2 b2 c + 9 a c2 + 9 b c2 + b4 c2 + 3 a c3 - 5 a3 b2 c3 - 3 a b c4 §

0M »» Ia < 0 &&

27 + 9 a + 11 a3 b + 3 b3 - 15 a3 b c + 4 a2 b2 c - 9 a c2 - 9 b c2 - b4 c2 - 3 a c3 + 5 a3 b2 c3 + 3 a b c4 § 0M »»

I3 - b c2 < 0 && -27 - 9 a - 11 a3 b - 3 b3 + 15 a3 b c - 4 a2 b2 c + 9 a c2 + 9 b c2 +

b4 c2 + 3 a c3 - 5 a3 b2 c3 - 3 a b c4 § 0M »» I-3 + b c2 < 0 &&

27 + 9 a + 11 a3 b + 3 b3 - 15 a3 b c + 4 a2 b2 c - 9 a c2 - 9 b c2 - b4 c2 - 3 a c3 + 5 a3 b2 c3 + 3 a b c4 § 0M »»

Ia ã 0 && 9 + b3 - 5 a3 b c - 3 a c2 § 0 && -9 - 11 a2 b - 4 a b2 c + 3 c3 § 0M »»

I-3 + b c2 ã 0 && 9 + b3 - 5 a3 b c - 3 a c2 § 0 && -9 - 11 a2 b - 4 a b2 c + 3 c3 § 0MM

Algorithms

The primary method used by Mathematica for solving real polynomial systems and real quanti-

fier elimination is the CAD algorithm. There are, however, simpler methods applicable in special

cases. 

If the system contains an equational constraint in a variable from the innermost quantifier, the

constraint is used to simplify the system using the identity

$y a yã bÔFHx1, …, xn; yLóa ≠ 0ÔFHx1, …, xn; b êaLÓ$y aã 0Ôbã 0ÔFHx1, …, xn; yL.

Note that if a or b is a nonzero constant, this eliminates the variable y. 

If all polynomials in the system are linear in a variable from the innermost quantifier, the vari-

able is eliminated using the Loos|Weispfenning linear quantifier elimination algorithm [15].

If all polynomials in the system are at most quadratic in a variable from the innermost quanti-

fier, the variable is eliminated using the quadratic case of Weispfenning's quantifier elimination

by  virtual  substitution  algorithm  [22,  23].  With  the  default  setting  of  the  system  option

QuadraticQE,  the  algorithm is  used  for  Resolve  with  no  variables  specified  and  with  at  least

two parameters present,  and for  Reduce  and Resolve  with at  least  three variables as long as

elimination of one variable at most doubles the LeafCount of the system.
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If all polynomials in the system are at most quadratic in a variable from the innermost quanti-

fier, the variable is eliminated using the quadratic case of Weispfenning's quantifier elimination

by  virtual  substitution  algorithm  [22,  23].  With  the  default  setting  of  the  system  option

QuadraticQE,  the  algorithm is  used  for  Resolve  with  no  variables  specified  and  with  at  least

two parameters present,  and for  Reduce  and Resolve  with at  least  three variables as long as

elimination of one variable at most doubles the LeafCount of the system.

The CAD algorithm is used when the previous three special case methods are no longer applica-

ble, but there are still quantifiers left to eliminate or a solution is required.

For systems containing equational constraints that generate a zero-dimensional ideal, Mathemat- 

ica uses Gröbner bases to find the solution set. 

Options

The Mathematica  functions for  solving real  polynomial  systems have a number of  options that

control the way that they operate. This section gives a summary of these options.

option name default value

Cubics False whether the Cardano formulas should be 
used to express numeric solutions of cubics

Quartics False whether the Cardano formulas should be 
used to express numeric solutions of 
quartics

WorkingPrecision ¶ the working precision to be used in 
computations

Reduce, Resolve, and FindInstance options affecting the behavior for real polynomial systems.

Cubics and Quartics

By default, Reduce does not use the Cardano formulas for solving cubics or quartics over the 
reals.

In[16]:= ReduceAx3 - 3 x + 7 ã 0, x, RealsE

Out[16]= x ã RootA7 - 3 Ò1 + Ò13 &, 1E
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Setting options Cubics and Quartics to True makes Reduce use the Cardano formulas to 
represent numeric solutions of cubics and quartics. 

In[17]:= ReduceAx3 - 3 x + 7 ã 0, x, Reals, Cubics Ø TrueE

Out[17]= x ã -
2

7 - 3 5

1ë3

-
1

2
7 - 3 5

1ë3

Solutions of cubics and quartics involving parameters will still be represented using Root 
objects.

In[18]:= ReduceAx3 ã a, x, Reals, Cubics Ø TrueE

Out[18]= x ã RootA-a + Ò13 &, 1E

This is because the Cardano formulas do not separate real solutions from nonreal ones. For 
instance, in this case, for a = -1 the third radical solution is real, but for a = 1 the first radical 
solution is real.

In[19]:= sol = ReduceAx3 ã a, x, Cubics Ø TrueE

Out[19]= x ã a1ë3 »» x ã -H-1L1ë3 a1ë3 »» x ã H-1L2ë3 a1ë3

In[20]:= sol ê. 88a Ø -1<, 8a Ø 1<<

Out[20]= 9x ã H-1L1ë3 »» x ã -H-1L2ë3 »» x ã -1, x ã 1 »» x ã -H-1L1ë3 »» x ã H-1L2ë3=

WorkingPrecision

The  setting  of  WorkingPrecision  affects  the  lifting  phase  of  the  CAD algorithm.  With  a  finite

working  precision  prec,  sample  points  in  the  first  variable  lifted  are  represented  as  arbitrary-

precision floating-point numbers with prec  digits of precision. When we compute sample points

for  subsequent  variables,  we  find  roots  of  polynomials  whose  coefficients  depend  on  already

computed sample point coordinates and therefore may be inexact. Hence coordinates of sample

points will have precision prec or lower. Determining the sign of polynomials at sample points is

simply  done  by  evaluating  Sign  of  the  floating-point  number  obtained  after  the  substitution.

Using  a  finite  WorkingPrecision  may  allow  getting  the  answer  faster;  however,  the  answer

may be incorrect or the computation may fail due to loss of precision.
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This problem is too hard for Reduce working in infinite WorkingPrecision, due to the high 
degrees of the algebraic numbers involved. Using sample points with 30 digits of precision gives 
a solution in under two seconds.

In[21]:= ReduceA$8y,z< Ix4 + 2 y4 + 3 z4 § 1 && x3 - 9 y3 + 7 z3 ¥ 2M,
x, Reals, WorkingPrecision Ø 30E êê Timing

Out[21]= 90.821, RootA-192 899 - 6912 Ò13 + 589065 Ò14 + 5184 Ò16 - 589065 Ò18 - 1728 Ò19 + 196571 Ò112 &, 1E § x §

RootA-192 899 - 6912 Ò13 + 589065 Ò14 + 5184 Ò16 - 589065 Ò18 - 1728 Ò19 + 196571 Ò112 &, 2E=

ReduceOptions Group of System Options

Here  are  the  system  options  from  the  ReduceOptions  group  that  may  affect  the  behavior  of

Reduce, Resolve, and FindInstance for real polynomial systems. The options can be set with 

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.

option name default value

"FactorInequalities" False whether inequalities should be factored at 
the input preprocessing stage

"ReorderVariables" False whether Reduce and Resolve are allowed 
to reorder the specified variables

ReduceOptions group options affecting the behavior of Reduce, Resolve, and FindInstance for real 
polynomial systems.

FactorInequalities

Using transformations

(7)
f g < 0ö f < 0 Ï g > 0 Í f > 0 Ï g < 0
f g § 0ö f § 0 Ï g ¥ 0 Í f ¥ 0 Ï g § 0

at  the  input  preprocessing  stage  may  speed  up  the  computations  in  some  cases.  In  general,

however,  it  does not make the problem easier to solve, and, in some cases, it  may make the

problem significantly harder. By default, these transformations are not used.

38     Advanced Algebra



Here Reduce does not use transformations (7).

In[22]:= t1 =
TimingAReduceAIx3 - 5 x y2 - 3 y2 + 7 z2 - 1M Ix2 - 3 x y + 5 y2 + 3 y z - 2M Ix2 - 2 z + y - 3M § 0,

8x, y, z<, RealsEEP1T;

t2 = TimingBReduceB‰
i=1

10

Hx - y iL § 0, 8x, y<, RealsFFP1T;

t3 = TimingAReduceA
y21 - x y7 + z - 1 < 0 && y14 + 3 x2 y7 - 11 z + 7 > 0 && y7 ¥ 0, 8x, y, z<, RealsEEP1T;

8t1,
t2,
t3<

Out[25]= 88.152, 0.02, 0.04<

Using transformations (7) speeds up the first example; however, it makes the other two exam-
ples significantly slower. The second example suffers from exponential growth of the number of 
inequalities. By replacing y7 ¥ 0 with y ¥ 0 in the third example, we get a degree-21 system in y 
instead of a degree-3 system in y7.

In[26]:= SetSystemOptions@"ReduceOptions" Ø "FactorInequalities" Ø TrueD;
t1 = TimingAReduceAIx3 - 5 x y2 - 3 y2 + 7 z2 - 1M

Ix2 - 3 x y + 5 y2 + 3 y z - 2M Ix2 - 2 z + y - 3M § 0, 8x, y, z<, RealsEEP1T;

t2 = TimingBReduceB‰
i=1

10

Hx - y iL § 0, 8x, y<, RealsFFP1T;

t3 = TimingAReduceAy21 - x y7 + z - 1 < 0 && y14 + 3 x2 y7 - 11 z + 7 > 0 && y7 ¥ 0,
8x, y, z<, RealsEEP1T;

8t1,
t2,
t3<

Out[28]= 87.861, 8.833, 0.411<

In[29]:= SetSystemOptions@"ReduceOptions" Ø "FactorInequalities" Ø FalseD;

ReorderVariables

By default, Reduce is not allowed to reorder the specified variables. Variables appearing earlier 
in the variable list may be used to express solutions for variables appearing later in the variable 
list, but not vice versa.

In[30]:= ReduceAx > y3 + 7 y - 1, 8x, y<, RealsE

Out[30]= y < RootA-1 - x + 7 Ò1 + Ò13 &, 1E

Setting the system option ReorderVariables -> True allows Reduce to pick a variable order 
that makes the system easier to solve.

In[31]:= SetSystemOptions@"ReduceOptions" Ø "ReorderVariables" Ø TrueD;
ReduceAx > y3 + 7 y - 1, 8x, y<, RealsE

Out[32]= x > -1 + 7 y + y3
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In[33]:= SetSystemOptions@"ReduceOptions" Ø "ReorderVariables" Ø FalseD;

InequalitySolvingOptions Group of System Options

Here  are  the  system options  from the  InequalitySolvingOptions  group  that  may  affect  the

behavior of Reduce, Resolve, and FindInstance  for real polynomial systems. The options can

be set with

SetSystemOptions@"InequalitySolvingOptions" -> 8"option name" -> value<D.

option name default value

"ARSDecision" False whether to use the decision algorithm 
given in [17]

"BrownProjection" True whether the CAD algorithm should use the 
improved projection operator given in [8]

"CAD" True whether to use the CAD algorithm

"CADDefaultPrecision" 30.103 the precision to which nonrational roots are 
computed in the lifting phase of the CAD 
algorithm; if computation with approximate 
roots cannot be validated, the algorithm 
reverts to exact algebraic number 
computation

"CADSortVariables" True whether the CAD algorithm should use 
variable reordering heuristics for quantifier 
variables within a single quantifier or in 
decision problems

"CADZeroTest" 80,¶< determines the zero testing method used 
by the CAD algorithm for expressions 
obtained by evaluating polynomials at 
points with algebraic number coordinates

"ContinuedFractionRootIsolation"

True whether the CAD algorithm should use a 
real root isolation method based on contin-
ued fractions rather than on interval 
bisection [19]
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"EquationalConstraintsCAD" Automatic whether the projection phase of the CAD 
algorithm should use equational con-
straints; with the default Automatic 
setting the operator proven correct in [11] 
is used; if True the unproven projection 
operator using multiple equational con-
straints suggested in [4] is used

"FGLMBasisConversion" False whether the CAD algorithm should use a 
Gröbner basis conversion algorithm based 
on [20] to find univariate polynomials in 
zero-dimensional Gröbner bases; other-
wise, GroebnerWalk is used

"FGLMElimination" Automatic whether the decision and quantifier elimina-
tion algorithms for systems with equational  
constraints forming a zero-dimensional 
ideal should use an algorithm based on 
[20] to look for linear equation constraints 
(with constant leading coefficients) in one 
of the variables to be used for elimination

"GenericCAD" True whether to use the variant of the CAD 
algorithm described in [13] for decision 
and optimization problems

"GroebnerCAD" True whether the CAD algorithm for systems 
with equational constraints forming a zero-
dimensional ideal should use Gröbner 
bases as projection

"LinearDecisionMethodCrossovers"

80,30,20< determines methods used to find solutions  
of systems of linear equations and inequali-
ties with rational number coefficients

"LinearEquations" True whether to use linear equation constraints 
(with constant leading coefficients) to 
eliminate variables in decision problems

"LinearQE" True whether to use the Loos|Weispfenning 
linear quantifier elimination algorithm [15] 
for quantifier elimination problems

"LWDecision" True whether to use the Loos|Weispfenning 
linear quantifier elimination algorithm [15] 
for decision problems with linear inequality 
systems
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"LWPreprocessor" Automatic whether to use the Loos|Weispfenning 
linear quantifier elimination algorithm [15] 
as a preprocessor for the decision problems

"ProjectAlgebraic" Automatic whether the CAD algorithm should com-
pute projections with respect to variables 
replacing algebraic number coefficients or 
use their minimal polynomials instead

"ProveMultiplicities" True determines the way in which the lifting 
phase of the CAD algorithm validates 
multiple roots and zero leading coefficients 
of projection polynomials

"QuadraticQE" Automatic whether to use the quadratic case of 
Weispfenning's quantifier elimination by 
virtual substitution algorithm in quantifier 
elimination

"QVSPreprocessor" False whether to use the quadratic case of 
Weispfenning's quantifier elimination by 
virtual substitution algorithm as a preproces-
sor for the decision problems

"ReducePowers" True whether to replace xd with x in the input to 
the CAD, where d is the GCD of all expo-
nents of x in the system

"RootReduced" False whether the coordinates of solutions of 
systems with equational constraints form-
ing a zero-dimensional ideal should be 
reduced to single Root objects

"Simplex" True whether to use the Simplex algorithm in 
the decision algorithm for linear inequality 
systems

"ThreadOr" True whether to solve each case of disjunction 
separately in decision problems, optimiza-
tion, and in quantifier elimination of existen-
tial quantifiers when the quantifier-free 
system does not need to be solved

"ZengDecision" False whether to use the decision algorithm 
given in [18]

InequalitySolvingOptions group options affecting the behavior of Reduce, Resolve, and 
FindInstance for real polynomial systems.
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ARSDecision

The option ARSDecision specifies whether Mathematica should use the algorithm by Aubry, 
Rouillier, and Safey El Din [17]. The algorithm applies to decision problems containing only 
equations. There are examples for which the algorithm performs much better than the CAD 
algorithm; however, for randomly chosen systems of equations it seems to perform significantly 
worse. Therefore it is not used by default. Here is a decision problem (referred to as butcher8 in 
the literature), which is not done by CAD in 1000 seconds, but which can be done quite fast by 
the algorithm given in [17].

In[34]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ARSDecision" Ø TrueD;

FindInstanceB-a - b + b1 + b2 + b3 ã 0 && -
1

2
-
b

2
+ a b - b2 + b2 c2 + b3 c3 ã 0 &&

4 b

3
+ b2 + b3 - a

1

3
+ b2 + b2 c2

2 + b3 c3
2 ã 0 &&

2 b

3
+ b2 + b3 - a

1

6
+
b

2
+ b2 + b3 c2 a3,2 ã

0 && -
1

4
-
b

4
-
5 b2

2
-
3 b3

2
- b4 + a Ib + b3M + b2 c2

3 + b3 c3
3 ã 0 &&

-
1

8
-
3 b

8
-
7 b2

4
-
3 b3

2
- b4 + a

b

2
+
b2

2
+ b3 + b3 c2 c3 a3,2 ã 0 &&

-
1

12
-

b

12
-
7 b2

6
-
3 b3

2
- b4 + a

2 b

3
+ b2 + b3 + b3 c2

2 a3,2 ã 0 &&

1

24
+
7 b

24
+
13 b2

12
+
3 b3

2
+ b4 - a

b

3
+ b2 + b3 ã 0,

8a, b, a3,2, b1, b2, b3, c2, c3<, RealsF êê Timing

Out[34]= :0.46, ::a Ø RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E, b Ø -1 + RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E, a3,2 Ø

1

356
J-93 + 630 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 684 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

b1 Ø
1

2916
J-3959 + 3954 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E +

2028 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E
2
N, b2 Ø

1

2916

J-1381 + 4542 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 3144 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E
2
N,

b3 Ø
1

243
J202 - 222 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E + 93 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

c2 Ø
1

3
J-4 + 17 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E - 12 RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E

2
N,

c3 Ø 2 - RootA-8 + 25 Ò1 - 30 Ò12 + 12 Ò13 &, 1E>>>

In[35]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ARSDecision" Ø FalseD;
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BrownProjection

By default, the Mathematica implementation of the CAD algorithm uses Brown’s improved 
projection operator [8]. The improvement usually speeds up computations substantially. There 
are some cases where using Brown’s projection operator results in a slight slowdown. The 
option BrownProjection specifies whether Brown’s improvement should be used. In the first 
example [21], using Brown’s improved projection operator results in a speedup by a factor of 3; 
in the second, it results in a 40% slowdown.

In[36]:= t1 = TimingAReduceA$8q1,q2<,q1>1&&q2>0 I"w,wœReals II4 - q12M w4 +
I4 IH1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0 &&

I4 - q12M w4 + I4 IH-1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0MMEEP1T;
f = x3 - 5 x y - 3 y2 + 7;
g = x4 - 4 x2 y - y3 - 1;
t2 = TimingAReduceAf z2 < f + g, 8x, y, z<, RealsEEP1T;
8t1, t2<

Out[40]= 80.301, 0.24<

In[41]:= SetSystemOptions@"InequalitySolvingOptions" Ø "BrownProjection" Ø FalseD;

In[42]:= t1 = TimingAReduceA$8q1,q2<,q1>1&&q2>0 I"w,wœReals II4 - q12M w4 +
I4 IH1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0 &&

I4 - q12M w4 + I4 IH-1 + q1L2 - 2 q2M - Iq22 + q12MM w2 + 3 q22 ¥ 0MMEEP1T;
t2 = TimingAReduceAf z2 < f + g, 8x, y, z<, RealsEEP1T;
8t1, t2<

Out[44]= 80.611, 0.17<

In[45]:= SetSystemOptions@"InequalitySolvingOptions" Ø "BrownProjection" Ø TrueD;

CAD

The option CAD specifies whether Mathematica is allowed to use the CAD algorithm. With CAD 
set to False, computations that require CAD will fail immediately instead of attempting the 
high complexity CAD computation. With CAD enabled, this computation is not done in 1000 
seconds. 

In[46]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CAD" Ø FalseD;
ReduceAx12 + 2 x7 y5 z3 - 21 z4 t2 y7 + 19 § 0 && t7 - 24 x5 y4 z - 32 z11 ã 0,

8x, y, z, t<, RealsE êê Timing

Reduce::nsmet :
This system cannot be solved with the methods available to Reduce. à

Out[47]= 90.641, ReduceA19 + x12 + 2 x7 y5 z3 - 21 t2 y7 z4 § 0 && t7 - 24 x5 y4 z - 32 z11 ã 0, 8x, y, z, t<, RealsE=

In[48]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CAD" Ø TrueD;
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CADDefaultPrecision

By default, Mathematica uses validated numeric computations in the lifting phase of the CAD 
algorithm, reverting to exact algebraic number computations only if the numeric computations 
cannot be validated [14]. The option CADDefaultPrecision specifies the initial precision with 
which the sample point coordinates are computed. Choosing the value of 
CADDefaultPrecision is a trade-off between speed of numeric computations and the number 
of points where the algorithm reverts to exact computations due to precision loss. With the 
default value of 100 bits, the cases where the algorithm needs to revert to exact computations 
due to precision loss seem quite rare. Setting CADDefaultPrecision to Infinity causes 
Mathematica to use exact algebraic number computations in the lifting phase of CAD. Here is an 
example that runs fastest with the lowest CADDefaultPrecision setting. (Specifying values 
lower than 16.2556 (54 bits) results in CADDefaultPrecision being set to 16.2556.) With 
CADDefaultPrecision -> Infinity, the example did not finish in 1000 seconds.

In[49]:= ReduceA$8x,y< I931 + 576 y3 + 626 x2 y - 564 y z - 750 z2 < 0 && -535 + 961 y + 578 z § 0 &&
-410 + 528 y2 - 905 x § 0 && z2 - 71 x y + 4 y2 - 81 § 0M, z, RealsE êê Timing

Out[49]= 90.611, RootA
-39135557564264692223468097 + 70369504018854614821499160 Ò1 - 7499740633203604239774740

Ò12 - 91567784348961473370737040 Ò13 + 10948550214483020279449920 Ò14 -

1313704439523340062769800 Ò15 - 47035179704857006865939040 Ò16 -

18217590707582813495520 Ò17 + 23290773235831759680 Ò18 + 9309551043209472 Ò110 &, 1E < z §

RootA-55 420506053355 + 915537370820 Ò1 - 18135837359975 Ò12 + 7238953493376 Ò13 &, 1E=

In[50]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADDefaultPrecision" Ø 16D;
ReduceA$8x,y< I931 + 576 y3 + 626 x2 y - 564 y z - 750 z2 < 0 && -535 + 961 y + 578 z § 0 &&

-410 + 528 y2 - 905 x § 0 && z2 - 71 x y + 4 y2 - 81 § 0M, z, RealsE êê Timing

Out[51]= 90.551, RootA
-39135557564264692223468097 + 70369504018854614821499160 Ò1 - 7499740633203604239774740

Ò12 - 91567784348961473370737040 Ò13 + 10948550214483020279449920 Ò14 -

1313704439523340062769800 Ò15 - 47035179704857006865939040 Ò16 -

18217590707582813495520 Ò17 + 23290773235831759680 Ò18 + 9309551043209472 Ò110 &, 1E < z §

RootA-55 420506053355 + 915537370820 Ò1 - 18135837359975 Ò12 + 7238953493376 Ò13 &, 1E=

In[52]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADDefaultPrecision" Ø 30.103D;
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CADSortVariables

The performance of the CAD algorithm often depends quite strongly on the order of variables 
used. Some aspects of the variable ordering are fixed by the problem we are solving: quantifier 
variables need to be projected before free variables, and variables from innermost quantifiers 
need to be projected first. Variables specified in Reduce and Resolve cannot be reordered 
unless ReorderVariables is set to True. This, however, still leaves some freedom in order-
ing of variables: variables from the same quantifier can be reordered, and so can be variables 
given to FindInstance. By default, Mathematica uses a variable ordering heuristic to deter-
mine the order of these variables. In most cases the heuristic improves the performance of 
CAD; in some examples, however, the heuristic does not pick the best ordering. Setting 
CADSortVariables to False disables the heuristic and the order of variables used is as given 
in the quantifier variable list or in the variable list argument to FindInstance. Here is an 
example [21] that without reordering of quantified variables does not finish in 1000 seconds.

In[53]:= TimingAReduceA
"8p1,p2,w1,w2<,16§20 p1§25&&16§20 p2§25&&0§w1§2 Ip2 H1 + p1 q1L < 0 && -24 w1

2 + p2
2 IH1 + p1 q1L2 - 25M >

0 && I400 - q1
2M w2

2 + p2
2 I400 H1 + p1 q1L2 - q1

2M > 0M, q1, RealsEE

Out[53]= :0.521, -20 § q1 <
5

4
-1 - 5 7 >

This shows the optimal variable ordering for the example.

In[54]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADSortVariables" Ø FalseD;

In[55]:= TimingAReduceA
"8w1,w2,p2,p1<,16§20 p1§25&&16§20 p2§25&&0§w1§2 Ip2 H1 + p1 q1L < 0 && -24 w1

2 + p2
2 IH1 + p1 q1L2 - 25M >

0 && I400 - q1
2M w2

2 + p2
2 I400 H1 + p1 q1L2 - q1

2M > 0M, q1, RealsEE

Out[55]= :0.47, -20 § q1 <
5

4
-1 - 5 7 >

In[56]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADSortVariables" Ø TrueD;
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CADZeroTest

One of the most time-consuming operations in the lifting phase of the CAD algorithm is determin -

ing the sign of a polynomial evaluated at a sample point with algebraic number coordinates. We

try to avoid the problem by using sample points with arbitrary-precision floating-point number

coordinates and keeping track of  the “genealogy” of  projection polynomials  and sample points

in order to validate the results. However, if some of the results cannot be validated, we have to

revert  to  computations  with  exact  algebraic  number  coordinates.  To  determine  the  sign  of  a

polynomial  evaluated  at  a  sample  point  with  algebraic  number  coordinates,  we  first  evaluate

the  polynomial  at  numeric  approximations  of  the  algebraic  numbers.  If  the  result  is  nonzero

(that is, zero is not within the error bounds of the resulting bignum), we know the sign. Other-

wise, we need to test whether a polynomial expression in algebraic numbers is zero. The value

of the CADZeroTest option specifies what zero testing method should be used at this moment.

The value should be a pair 8t, acc<. With the default value tã 0, Mathematica computes an accu-

racy eacc such that if the expression is zero up to this accuracy, it must be zero. If eacc § acc, the

value of the expression is computed up to accuracy eacc and its sign is checked. Otherwise, the

expression is  represented as  a  single  Root  object  using RootReduce  and the sign of  the Root

object  is  found.  With  the  default  value  accã¶,  we  revert  to  RootReduce  if

eacc > $MaxPrecision. If tã 1, RootReduce  is always used. If tã 2, expressions that are zero up

to  accuracy  acc  are  considered  zero.  This  is  the  fastest  method,  but,  unlike  the  other  two,  it

may  give  incorrect  results  because  expressions  that  are  nonzero  but  close  to  zero  may  be

treated as zero.

This example runs faster with the CAD algorithm using the 30 digits of accuracy numeric zero 
test. The result in this example is correct; however, this setting of CADZeroTest may lead to 
incorrect results. 

In[57]:= t1 = TimingAReduceA$z Iz3 - a2 z + b ã 0 && z3 - b2 z + a ã 0M, 8a, b<, RealsEE@@1DD;
SetSystemOptions@"InequalitySolvingOptions" Ø "CADZeroTest" Ø 82, 30<D;
t2 = TimingAReduceA$z Iz3 - a2 z + b ã 0 && z3 - b2 z + a ã 0M, 8a, b<, RealsEE@@1DD;
8t1, t2<

Out[60]= 80.271, 0.23<

In[61]:= SetSystemOptions@"InequalitySolvingOptions" Ø "CADZeroTest" Ø 80, Infinity<D;
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ContinuedFractionRootIsolation

To  isolate  real  roots  of  polynomials,  Mathematica  uses  methods  based  on  Descartes’  rule  of

sign. There are two interval subdivision strategies implemented, one based on interval bisection

and another based on continued fractions (see [19] for details). The variant based on continued

fractions is generally faster and is used by default.  Setting ContinuedFractionRootIsolation

to False causes Mathematica to use the interval bisection variant.

Here is an example where the speed difference between the two root isolation methods affects 
Reduce timing. We need to clear the Root cache between the Reduce calls; otherwise, the 
second call would save time on factoring the 400th degree polynomial when Root objects are 
created.

In[62]:= SeedRandom@1234D;

f = ‚

i=0

399

RandomInteger@8-1000, 1000<D xi + x400;

t1 = Timing@Reduce@f § 0, x, RealsDD;
ClearSystemCache@"Root"D;
SetSystemOptions@

"InequalitySolvingOptions" Ø "ContinuedFractionRootIsolation" Ø FalseD;
t2 = Timing@Reduce@f § 0, x, RealsDD;
8t1P1T, t2P1T, t1P2T === t2P2T<

Out[68]= 83.705, 4.607, True<

In[69]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "ContinuedFractionRootIsolation" Ø TrueD;

EquationalConstraintsCAD

The  EquationalConstraintsCAD  option  specifies  whether  the  projection  phase  of  the  CAD

algorithm should  use  equational  constraints.  With  the  default  setting  Automatic,  Mathematica

uses the projection operator proven correct in [11]. With EquationalConstraintsCAD -> True,

the smaller but unproven projection operator suggested in [4] is used. 

Here we find an instance satisfying the system using the CAD algorithm with 
EquationalConstraintsCAD -> True. Even though the method used to find the solution 
was based on an unproven conjecture, the solution is proven to be correct, that is, it satisfies 
the input system.

In[70]:= SetSystemOptions@"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø TrueD;
FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&

1 + a - v2
2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3

2 ã 0 &&
18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -

2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[71]= :0.18, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

With the default setting EquationalConstraintsCAD -> Automatic, finding a solution of 
this system takes more than twice as long.
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With the default setting EquationalConstraintsCAD -> Automatic, finding a solution of 
this system takes more than twice as long.

In[72]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø AutomaticD;

FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[73]= :0.491, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

With EquationalConstraintsCAD -> False, finding a solution of this system again takes 
almost twice as long.

In[74]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø FalseD;

FindInstanceA-1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[75]= :0.921, ::v1 Ø 2 , k Ø 1, a Ø -
7

16
, v2 Ø

3

4
, v3 Ø

41

4
, v4 Ø 2 >>>

Here FindInstance shows that the system has no solutions. Since it is using the CAD algo-
rithm with EquationalConstraintsCAD -> True, the correctness of the answer depends on 
an unproven conjecture.

In[76]:= SetSystemOptions@"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø TrueD;
FindInstanceAk ≠ 1 && -1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&

1 + a - v2
2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3

2 ã 0 &&
18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -

2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[77]= 80.301, 8<<
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With the default setting EquationalConstraintsCAD -> Automatic, proving that the 
system has no solutions takes longer, but the answer is known to be correct.

In[78]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "EquationalConstraintsCAD" Ø AutomaticD;

FindInstanceAk ≠ 1 && -1 + a § 0 && -1 - a < 0 && -3 - a + k2 + a k2 § 0 && v12 ã 2 &&
1 + a - v2

2 ã 0 && k + a k - v2 v3 § 0 && -k - a k - v2 v3 § 0 && 3 + a - v3
2 ã 0 &&

18 + 6 a + 6 a2 + 2 a3 - 21 k - 27 a k - 7 a2 k - a3 k + 6 k2 + 10 a k2 + 2 a2 k2 -
2 a3 k2 + k3 + 3 a k3 + 3 a2 k3 + a3 k3 - 3 v1 v4 + 6 a v1 v4 + a2 v1 v4 - 4 a k v1 v4 -
4 a2 k v1 v4 + k2 v1 v4 + 2 a k2 v1 v4 + a2 k2 v1 v4 ã 0 && -3 - a + k2 + a k2 + v4

2 ã 0 &&
v1 > 0 && v2 ¥ 0 && v3 ¥ 0 && v4 ¥ 0, 8v1, k, a, v2, v3, v4<, RealsE êê Timing

Out[79]= 80.911, 8<<

FGLMBasisConversion

For  systems  with  equational  constraints  generating  a  zero-dimensional  ideal  I,  Mathematica

uses  a  variant  of  the  CAD  algorithm  that  finds  projection  polynomials  using  Gröbner  basis

methods. If the lexicographic order Gröbner basis of I  does not contain linear polynomials with

constant  coefficients  in  every  variable  but  the  last  one,  then  for  every  variable  xi  we  find  a

univariate polynomial in xi that belongs to I. Mathematica can do this in two ways. By default, it

uses  a  method  based  on  GroebnerWalk  computations.  Setting  FGLMBasisConversion  to  True

causes Mathematica to use a method based on [20].

The method based on [20] seems to be slightly slower in general.

In[80]:= t1 = TimingAReduceAx10 + 3 x4 - 5 x3 + 7 x2 - 9 x ã 11 &&
y3 - y2 + x ã 1 && z3 + 2 z - 3 x ã 4, 8x, y, z<, RealsEE;

SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMBasisConversion" Ø TrueD;
t2 = TimingAReduceAx10 + 3 x4 - 5 x3 + 7 x2 - 9 x ã 11 &&

y3 - y2 + x ã 1 && z3 + 2 z - 3 x ã 4, 8x, y, z<, RealsEE;
8t1P1T, t2P1T, t1P2T === t2P2T<

Out[83]= 80.15, 0.181, True<

In[84]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMBasisConversion" Ø FalseD;

FGLMElimination

The FGLMElimination option specifies whether Mathematica should use a special case heuristic

applicable  to  systems  with  equational  constraints  generating  a  zero-dimensional  ideal  I.  The

heuristic uses a method based on [20] to find in I  polynomials that are linear (with a constant

coefficient)  in  one  of  the  quantified  variables  and  uses  such  polynomials  for  elimination.  The

method  can  be  used  both  in  the  decision  algorithm  and  in  quantifier  elimination.  With  the

default Automatic setting, it is used only in Resolve  with no “solve” variables specified and for

systems with at least two free variables.

This by default uses the elimination method based on [20], and returns a quantifier-free system 
in an unsolved form.
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This by default uses the elimination method based on [20], and returns a quantifier-free system 
in an unsolved form.

In[85]:= ResolveA
$z Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 && y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M,
RealsE êê Timing

Out[85]= 90.05,

-387703943456010 + 836307322497954 x + 94016672514000 x2 + 42483692361858 x3 + 48951449972226
x4 + 592457191920 x5 + 6111106822080 x6 - 682099934085412 y + 2386910531381715 x y -

33458557021065 x2 y + 179029980402448 x3 y + 23352969127806 x4 y - 10673134807104 x5 y +

1298614472640 x6 y - 6165373996350 y2 + 1787681183046234 x y2 - 463516345125783 x2 y2 +

1221461511750 x3 y2 + 7275931779870 x4 y2 - 3220021226880 x5 y2 + 453968712000 x6 y2 -

1333886745639423 y3 - 2629577891362724 y4 - 20449871823375 y5 + 473314204852983 y6 ã 0 &&
-567795134 + 1059962112 x + 430480332 x2 + 309282350 x3 - 11545182 x4 + 23721822 x5 -

7231680 x6 + 2099520 x7 + 320591520 y + 927840621 x y - 389548395 x2 y - 209188980 x3 y -

29695086 x4 y + 15536448 x5 y - 3779136 x6 y - 40678200 y2 - 761836590 x y2 +

158630400 x2 y2 + 30508650 x3 y2 - 2255020201 y3 + 1242292140 y4 - 157628025 y5 ã 0 &&
-394500 + 962118 x - 153630 x2 + 43806 x3 + 17982 x4 + 5760 x6 - 578624 y + 2180295 x y -

352890 x2 y + 291671 x3 y + 12492 x4 y - 10368 x5 y + 168480 y2 + 1168968 x y2 - 445266 x2 y2 -

50220 x3 y2 - 1370121 y3 - 2271328 y4 + 652860 y5 + 445266 y6 - 112995 y7 ã 0 &&
-8 + 18 x + 2 x3 + 21 x y - 9 x2 y - 31 y3 + 9 x y3 ã 0=

With FGLMElimination set to False, the example takes longer to compute and the answer is 
in a solved form. (We show N of the answer for better readability.)

In[86]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø FalseD;
ResolveA

$z Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 && y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M,
RealsE êê Timing êê N

Out[87]= 90.11,

Iy ã -0.616811 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 + 7185.17 y5 + 10827. y6 -

17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 + 90884.3 y12 +

9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã -0.510025 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 +

7185.17 y5 + 10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã -0.0897985 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 +

7185.17 y5 + 10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M »»

Iy ã 0.664342 && x ã -5.18103 - 137.347 y - 1010.78 y2 - 2069.96 y3 + 92.7062 y4 + 7185.17 y5 +

10827. y6 - 17208. y7 - 25441. y8 + 59919.3 y9 + 5428.35 y10 - 87974.4 y11 +

90884.3 y12 + 9563.19 y13 - 65852.1 y14 + 61525.6 y15 - 51406.5 y16 + 51634.3 y17 -

27621.2 y18 + 1364.5 y19 + 5842.54 y20 - 1836.15 y21 - 216.104 y22 + 162.853 y23M=
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If there is only one free variable, Resolve by default does not use the elimination method 
based on [20]. (We show N of the answer for better readability.)

In[88]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø AutomaticD;
ResolveA$8y,z< Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 &&

y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M, RealsE êê Timing êê N

Out[89]= 80.13, x ã -1.05088 »» x ã 0.452835 »» x ã 0.47114 »» x ã 0.534627<

With FGLMElimination set to True, the example takes longer to compute and the answer is 
given in an unsolved form.

In[90]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø TrueD;
ResolveA$8y,z< Ix2 + 2 y3 - 3 x y + 4 x z + 2 z3 ã 1 &&

y3 - 2 x2 z + 5 x - 7 z3 ã 2 && 3 x y + 4 z3 - 5 y3 ã 0M, RealsE êê Timing

Out[91]= 90.2,

-27206534396294947 + 328914818820879210 x - 1654010622073883961 x2 + 4186250649401504955 x3 -

4131264062314837638 x4 - 5359613482785909285 x5 + 20455887169340134671 x6 -

18111422036067816735 x7 - 14851799572578604767 x8 + 46025930760201888392 x9 -

33951750015320895222 x10 - 3130213891174116318 x11 + 18846711211560897036 x12 -

13729694750794525104 x13 + 8758251556584250005 x14 - 4917731156959045278 x15 +

2285701226953461792 x16 - 895869248032870029 x17 + 304502137753065983 x18 -

88547080320192096 x19 + 21286381859013600 x20 - 4017686252055552 x21 +

554267616334848 x22 - 49218499805184 x23 + 2176782336000 x24 ã 0=

In[92]:= SetSystemOptions@"InequalitySolvingOptions" Ø "FGLMElimination" Ø AutomaticD;

GenericCAD

Mathematica uses a simplified version of the CAD algorithm described in [13] to solve decision

problems  or  find  solutions  of  real  polynomial  systems  that  do  not  contain  equations.  The

method finds a solution or proves that there are no solutions if all inequalities in the system are

strict (< or >). The method is also used for systems containing weak (<= or >=) inequalities. In

this case, if it finds a solution of the strict inequality version of the system, it is also a solution

of the original system. However, if it proves that the strict inequality version of the system has

no  solutions,  the  full  version  of  the  CAD  algorithm  is  needed  to  decide  whether  the  original

system has solutions. The system option GenericCAD specifies whether Mathematica should use

the method.

Here the GenericCAD method finds a solution of the strict inequality version of the system.

In[93]:= FindInstanceA
x4 + y4 + z4 § 12 && x2 y2 - 3 x2 z2 ¥ 1 && x y § 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[93]= :0.191, ::x Ø
145

128
, y Ø -

113

64
, z Ø -

113

128
>>>
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Without GenericCAD, finding a solution of the system takes much longer.

In[94]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceA

x4 + y4 + z4 § 12 && x2 y2 - 3 x2 z2 ¥ 1 && x y § 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[95]= :0.961, ::x Ø
309

256
, y Ø -

223

128
, z Ø -

1809

2048
>>>

In[96]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

This system has no solutions and contains weak inequalities. After the GenericCAD method 
finds no solutions of the strict inequality version of the system, Mathematica needs to run the 
full CAD to prove that there are no solutions.

In[97]:= FindInstanceAx4 + y4 + z4 § 12 && x3 + y3 - z3 ¥ 9, 8x, y, z<, RealsE êê Timing

Out[97]= 81.122, 8<<

Running the same example with GenericCAD -> False allows you to save the time previously 
used by the GenericCAD computation.

In[98]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceAx4 + y4 + z4 § 12 && x3 + y3 - z3 ¥ 9, 8x, y, z<, RealsE êê Timing

Out[99]= 80.611, 8<<

In[100]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

This system contains only strict inequalities, so GenericCAD can prove that it has no solutions.

In[101]:= FindInstanceA
x4 + y4 + z4 < 12 && x2 y2 - 3 x2 z2 > 7 && x y < 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[101]= 80.18, 8<<

Without GenericCAD, it takes much longer to prove that the system has no solutions.

In[102]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø FalseD;
FindInstanceA

x4 + y4 + z4 < 12 && x2 y2 - 3 x2 z2 > 7 && x y < 3 z3 + 4, 8x, y, z<, RealsE êê Timing

Out[103]= 82.393, 8<<

In[104]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GenericCAD" Ø TrueD;

GroebnerCAD

For  systems  with  equational  constraints  generating  a  zero-dimensional  ideal  I,  Mathematica

uses  a  variant  of  the  CAD  algorithm  that  finds  projection  polynomials  using  Gröbner  basis

methods.  Setting  GroebnerCAD  to  False  causes Mathematica to use the standard CAD projec-

tion instead.

With GroebnerCAD -> False, this example runs three orders of magnitude slower.
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With GroebnerCAD -> False, this example runs three orders of magnitude slower.

In[105]:= a1 = ReduceAx2 + y2 + z2 ã 12 && x2 y2 - 3 x2 z2 ã 1 && x y ã 3 z3 + 4, 8x, y, z<, RealsE; êê
Timing

Out[105]= 80.03, Null<

In[106]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GroebnerCAD" Ø FalseD;

In[107]:= a2 = ReduceAx2 + y2 + z2 ã 12 && x2 y2 - 3 x2 z2 ã 1 && x y ã 3 z3 + 4, 8x, y, z<, RealsE; êê
Timing

Out[107]= 82.043, Null<

This checks that the solutions are equivalent.

In[108]:= Chop@H8x, y, z< êê. N@8ToRules@a1D<, 30DL - H8x, y, z< êê. N@8ToRules@a2D<, 30DLD

Out[108]= 880, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<<

In[109]:= SetSystemOptions@"InequalitySolvingOptions" Ø "GroebnerCAD" Ø TrueD;

LinearDecisionMethodCrossovers, LWDecision, and Simplex

These three options specify methods used to solve decision problems or find solution instances

for systems of linear equations and inequalities. The available methods are the Loos|Weispfen-

ning algorithm [15], the Simplex algorithm, and the Revised Simplex algorithm. All three meth-

ods  can  handle  systems  with  rational  or  floating-point  number  coefficients.  For  systems  with

exact  numeric  nonrational  coefficients,  only  the  Loos|Weispfenning  algorithm  is  implemented.

LWDecision  specifies  whether  the  Loos|Weispfenning  algorithm  is  available.  Simplex  specifies

whether  the  Simplex  and  Revised  Simplex  algorithms  can  be  used.

LinearDecisionMethodCrossovers  determines  which  method  is  used  if  all  are  available  and

applicable.  The value of  the option should be a triple 8m, n, p<.  For linear systems with up to m

variables,  Mathematica  uses  the  Loos|Weispfenning  method  [15];  for  systems  with  m + 1  to  n

variables, the Simplex algorithm; and for more than n variables, the Revised Simplex algorithm.

If the Simplex algorithm is used, the slack variables are used if the number of inequalities is no

more than p times the number of variables. The default values are m = 0, n = 30, and p = 20. 

By default, the Simplex algorithm is used to find a solution of a linear system with three 
variables.

In[110]:= FindInstance@
x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12, 8x, y, z<, RealsD êê Timing

Out[110]= :0., ::x Ø
199

138
, y Ø

149

276
, z Ø

34

69
>>>

Here the Revised Simplex algorithm is used.
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Here the Revised Simplex algorithm is used.

In[111]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 80, 0, 20<D;

FindInstance@x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12,
8x, y, z<, RealsD êê Timing

Out[112]= :0.081, ::x Ø 0, y Ø
5

52
, z Ø

33

26
>>>

Here the Loos|Weispfenning algorithm is used.

In[113]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 810, 0, 20<D;

FindInstance@x + 2 y + 3 z ã 4 && 5 x + 6 y - 7 z § 8 && 9 x - 10 y + 11 z > 12,
8x, y, z<, RealsD êê Timing

Out[114]= :3.17801µ10-15, ::x Ø
34

23
, y Ø

5

46
, z Ø

53

69
>>>

In[115]:= SetSystemOptions@
"InequalitySolvingOptions" Ø "LinearDecisionMethodCrossovers" Ø 80, 30, 20<D;

Here the Loos|Weispfenning algorithm is used because the Simplex and Revised Simplex algo-
rithms are not implemented for systems with exact nonrational coefficients.

In[116]:= FindInstanceB

x + p y + ‰ z > Sin@1D && Log@2D x + p‰ y - 7p z ã
8

‰
, 8x, y, z<, RealsF êê Timing

Out[116]= :0.01, ::x Ø 0, y Ø 2, z Ø -
8 7-p

‰
+ 2 7-p p‰>>>

With LWDecision set to False, and Simplex and Revised Simplex not applicable, 
FindInstance has to use the CAD algorithm here.

In[117]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWDecision" Ø FalseD;
FindInstanceB

x + p y + ‰ z > Sin@1D && Log@2D x + p‰ y - 7p z ã
8

‰
, 8x, y, z<, RealsF êê Timing

Out[118]= :0.03, ::x Ø
33

10
, y Ø 66, z Ø

7-p H-80 + 660 ‰ p‰ + 33 ‰ Log@2DL

10 ‰
>>>

In[119]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWDecision" Ø TrueD;

LinearEquations

The LinearEquations  option  specifies  whether  linear  equation  constraints  with  constant  lead-

ing coefficients should be used to eliminate variables. This generally improves the performance

of  the  algorithm.  The  option  is  provided  to  allow  experimentation  with  the  “pure”  CAD-based

decision algorithm.

Here Mathematica uses the first equation to eliminate x before using CAD to find a solution of 
the resulting system with two variables.
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Here Mathematica uses the first equation to eliminate x before using CAD to find a solution of 
the resulting system with two variables.

In[120]:= FindInstanceAx + 2 y2 + z3 ã 7 && 2 x2 y3 - 3 x z3 + 5 x y z - x3 + x + y - z ¥ 3 &&
4 x y3 + 5 y4 z2 + 11 y z2 § 3 z3 + 7 && x2 + y2 + z2 § 4, 8x, y, z<, RealsE êê Timing

Out[120]= :0.15, ::x Ø -
17411

55296
, y Ø

123

64
, z Ø -

5

12
>>>

Here Mathematica uses CAD to find a solution of the original system with three variables.

In[121]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearEquations" Ø FalseD;
FindInstanceAx + 2 y2 + z3 ã 7 && 2 x2 y3 - 3 x z3 + 5 x y z - x3 + x + y - z ¥ 3 &&

4 x y3 + 5 y4 z2 + 11 y z2 § 3 z3 + 7 && x2 + y2 + z2 § 4, 8x, y, z<, RealsE êê Timing

Out[122]= :0.31, ::x Ø -
78015

262144
, y Ø

491

256
, z Ø -

25

64
>>>

In[123]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearEquations" Ø TrueD;

LinearQE

The LinearQE  option specifies  methods used to  handle systems containing at  least  one inner-

most  quantifier  variable  that  appears  at  most  linearly  in  all  equations  and  inequalities  in  the

system. The option setting does not affect solving of decision problems. With the default setting

True,  Mathematica  uses  the  Loos|Weispfenning  algorithm [15]  to  eliminate  all  quantifier  vari-

ables that  appear only linearly  in  the system, and then if  there are any quantifiers  left  or  the

result  needs  to  be  solved  for  the  free  variables,  the  CAD  algorithm  is  used.  With

LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only for variables that appear

in  the  system  only  linearly  with  constant  coefficients.  With  LinearQE -> False,  the  Loos|

Weispfenning algorithm is not used.

With the default setting LinearQE -> True, the Loos|Weispfenning algorithm is used to elimi-
nate both x and y, and CAD is used to solve the remaining quantifier-free system with two 
variables.

In[124]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;

In[125]:= a1 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&
3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[125]= 810.205, Null<

In[126]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;
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With LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only to eliminate x, 
and CAD is used to solve the remaining system with three variables. For this example, the 
default method is much faster.

In[127]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;
a2 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[128]= 848.81, Null<

With LinearQE -> False, the Loos|Weispfenning algorithm is not used. Reduce uses CAD to 
solve the original system with four variables, which for this example takes much longer.

In[129]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø FalseD;
a3 = ReduceA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 - x § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t3 + z3 § z2 y - 3 y + 5 xM, 8z, t<E; êê Timing

Out[130]= 897.881, Null<

All three methods give the same answer.

In[131]:= a1 === a2 === a3

Out[131]= True

Here is an example where the default method is not the fastest. With the default setting 
LinearQE -> True, the Loos|Weispfenning algorithm is used to eliminate both x and y, and 
CAD is used to solve the remaining system with one quantified and one free variable. 

In[132]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[133]= 90.421,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=

With LinearQE -> Automatic, the Loos|Weispfenning algorithm is used only to eliminate x, 
and then CAD is used to solve the remaining system with two quantified variables and one free 
variable. This is the fastest method for this example.

In[134]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø AutomaticD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[135]= 90.31,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=
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With LinearQE -> False, the CAD algorithm is used to solve the system.

In[136]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø FalseD;
ReduceA$8x,y,z< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z yM, tE êê Timing

Out[137]= 90.401,

t § RootA55 696 + 611712 Ò1 + 3248544 Ò12 + 13500064 Ò13 + 41178060 Ò14 + 72638592 Ò15 + 76002697 Ò16 +

88447680 Ò17 + 181305153 Ò18 + 201350948 Ò19 + 88499331 Ò110 + 68427618 Ò111 +

155219660 Ò112 + 20594160 Ò113 + 99572016 Ò114 + 167324192 Ò115 &, 1E=

The default setting LinearQE -> True is definitely advantageous for quantifier elimination 
problems where all quantified variables appear only linearly in the system and the quantifier-
free version of the system does not need to be given in a solved form. This is because the 
complexity of the Loos|Weispfenning algorithm depends very little on the number of free vari-
ables, unlike the complexity of the CAD algorithm that is doubly exponential in the number of 
all variables. With LinearQE -> False, this example does not finish in 1000 seconds.

In[138]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LinearQE" Ø TrueD;
ResolveA$8x,y< I2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 u + v^7 - 6 w^4 t § 3 &&

3 x - 5 t z2 - 3 t2 - y z t - 5 y w z ¥ 2M, RealsE êê Timing

Out[139]= :0.01,

I-t3 < 0 && 5 t3 + 30 t5 + 27 z + 6 t z + 36 t3 z + 8 t4 z - 9 v7 z - 2 t v7 z + 30 w z + 40 t3 w z - 10 v7 w z + 54 t w4 z +

12 t2 w4 z + 60 t w5 z + 110 t4 z2 - 36 t2 u z3 - 8 t3 u z3 - 40 t2 u w z3 - 63 z5 - 14 t z5 - 70 w z5 § 0M »»

It3 < 0 && -5 t3 - 30 t5 - 27 z - 6 t z - 36 t3 z - 8 t4 z + 9 v7 z + 2 t v7 z - 30 w z - 40 t3 w z + 10 v7 w z - 54 t w4

z - 12 t2 w4 z - 60 t w5 z - 110 t4 z2 + 36 t2 u z3 + 8 t3 u z3 + 40 t2 u w z3 + 63 z5 + 14 t z5 + 70 w z5 § 0M »»

I-9 z - 2 t z - 10 w z < 0 && -5 t3 - 30 t5 - 27 z - 6 t z - 36 t3 z - 8 t4 z + 9 v7 z + 2 t v7 z -

30 w z - 40 t3 w z + 10 v7 w z - 54 t w4 z - 12 t2 w4 z - 60 t w5 z - 110 t4 z2 + 36 t2 u z3 +

8 t3 u z3 + 40 t2 u w z3 + 63 z5 + 14 t z5 + 70 w z5 § 0M »» I9 z + 2 t z + 10 w z < 0 &&

5 t3 + 30 t5 + 27 z + 6 t z + 36 t3 z + 8 t4 z - 9 v7 z - 2 t v7 z + 30 w z + 40 t3 w z - 10 v7 w z + 54 t w4 z +

12 t2 w4 z + 60 t w5 z + 110 t4 z2 - 36 t2 u z3 - 8 t3 u z3 - 40 t2 u w z3 - 63 z5 - 14 t z5 - 70 w z5 § 0M »»

t3 ã 0 &&
1

2
+ 3 t2 + 11 t z2 § 0 && -3 - 4 t3 + v7 - 6 t w4 + 4 t2 u z2 + 7 z4 § 0 »»

9 z + 2 t z + 10 w z ã 0 &&
1

2
+ 3 t2 + 11 t z2 § 0 && -3 - 4 t3 + v7 - 6 t w4 + 4 t2 u z2 + 7 z4 § 0 >

LWPreprocessor

The LWPreprocessor option setting affects solving decision problems and instance finding. The

option  specifies  whether  the  Loos|Weispfenning  algorithm  [8]  should  be  used  to  eliminate

variables that appear at most linearly in all equations and inequalities before applying the CAD

algorithm  to  the  resulting  system.  With  the  default  setting  Automatic,  Mathematica  uses  the

Loos|Weispfenning  algorithm  to  eliminate  variables  that  appear  only  linearly  with  constant

coefficients.  With  LWPreprocessor -> True,  the  Loos|Weispfenning  algorithm  is  used  for  all

variables  that  appear  only  linearly.  With  LWPreprocessor -> False,  the  Loos|Weispfenning

algorithm is not used as a preprocessor to the CAD-based decision algorithm.

With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning algorithm is 
used only to eliminate x, and CAD is used to find a solution of the remaining system with three 
variables. 
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With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning algorithm is 
used only to eliminate x, and CAD is used to find a solution of the remaining system with three 
variables. 

In[140]:= FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&
3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[140]= :0.06, ::x Ø -
44923

48
, y Ø 306, z Ø

3

4
, t Ø -15>>>

With LWPreprocessor -> True, the Loos|Weispfenning algorithm is used to eliminate both x 
and y, and CAD is used to find a solution of the remaining system with two variables. For this 
example, this method is slower than the default one.

In[141]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø TrueD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[142]= :0.17, ::x Ø -
845057

1109760
, y Ø

54532

24565
, z Ø 1, t Ø -

17

16
>>>

With LWPreprocessor -> False, the CAD algorithm is used to find a solution of the original 
system with four variables. For this example, this method is as fast as the default.

In[143]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø FalseD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 § z y, 8x, y, z, t<E êê Timing

Out[144]= :0.06, ::x Ø -332, y Ø 306, z Ø
3

4
, t Ø -15>>>

This example differs from the previous one only in that the last inequality was turned into an 
equation. With the default setting LWPreprocessor -> Automatic, the Loos|Weispfenning 
algorithm is only used to eliminate x, and CAD is used to find a solution of the remaining 
system with three variables. 

In[145]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø AutomaticD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[146]= :0.2, ::x Ø
1

3

3341

256
-
4117 943

4096
, y Ø 4, z Ø

23

16
, t Ø -

943

16
>>>
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With LWPreprocessor -> True, the Loos|Weispfenning algorithm is used to eliminate both x 
and y, and CAD is used to find a solution of the remaining system with two variables. For the 
revised example, this method is faster than the default one.

In[147]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø TrueD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[148]= :0.08, ::x Ø
1

3
J2 + 5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E + 3 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

2
+

J-4 - 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
+ 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

3
Ní

J5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
NN,

y Ø J-4 - 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
2
+ 4 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E

3
Ní

J5 RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E
3
N, z Ø 1, t Ø RootA4 + 4 Ò12 + Ò13 + 5 Ò15 &, 1E>>>

With LWPreprocessor -> False, the CAD algorithm is used to find a solution of the original 
system with four variables. For the revised example, this is seven times slower than the default 
method.

In[149]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø FalseD;
FindInstanceA2 x + 3 y z + 4 z2 t § 1 && 5 t3 y + 7 z4 - 4 t3 + 4 z2 t2 § 3 &&

3 x - 5 t z2 - 3 t2 - y z t ¥ 2 && t2 + z2 == z y, 8x, y, z, t<E êê Timing

Out[150]= :1.432, ::x Ø 0, y Ø 11, z Ø 3, t Ø -2 6 >>>

In[151]:= SetSystemOptions@"InequalitySolvingOptions" Ø "LWPreprocessor" Ø AutomaticD;

ProjectAlgebraic

The setting of the ProjectAlgebraic option affects handling of algebraic number coefficients in

the CAD algorithm. 

Algebraic  numbers  found  in  coefficients  of  the  input  system  are  replaced  with  new  variables.

The new variables are always put first in the variable ordering so that in the projection phase of

the  CAD  algorithm  they  are  eliminated  last.  When  the  current  projection  polynomials  contain

k + 1  variables with at least k  first  variables replacing algebraic number coefficients, we have a

choice of whether or not to continue the projection phase. If we do not continue the projection

phase, we can start the lifting phase extending the zero-dimensional cell in the first k variables

on which each of the variables is equal to the corresponding algebraic number coefficient. If we

choose  to  compute  the  last  k  projections,  we  may  find  in  the  lifting  phase  that  the  algebraic

number coefficient corresponding to a variable being lifted lies between the roots of the projec-

tion  polynomials.  Hence  for  this  variable  we  will  be  extending  a  one-dimensional  cell  with  a

rational  number  sample  point.  Thus  there  is  a  trade-off  between  avoiding  computation  of  the

last k projections and avoiding algebraic number coordinates in sample points.

With  ProjectAlgebraic -> True,  the  projection  phase  is  continued  for  variables  replacing

algebraic number coefficients until there is one variable left. With ProjectAlgebraic -> False,

the projection phase is  stopped as soon as there is  one variable  left  that  does not  replace an

algebraic  number  coefficient.  With  the  default  setting  ProjectAlgebraic -> Automatic,  the

projection phase is stopped if there is at most one variable left that does not replace an alge-

braic number coefficient and there are at least three projection polynomials, or there is a projec-

tion polynomial of degree more than two in the projection variable.
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With  ProjectAlgebraic -> True,  the  projection  phase  is  continued  for  variables  replacing

algebraic number coefficients until there is one variable left. With ProjectAlgebraic -> False,

the projection phase is  stopped as soon as there is  one variable  left  that  does not  replace an

algebraic  number  coefficient.  With  the  default  setting  ProjectAlgebraic -> Automatic,  the

projection phase is stopped if there is at most one variable left that does not replace an alge-

braic number coefficient and there are at least three projection polynomials, or there is a projec-

tion polynomial of degree more than two in the projection variable.

With few high-degree algebraic number coefficients, equations, and inequalities in the system, 
ProjectAlgebraics -> True tends to be a better choice. (N is applied to the output for 
better readability.)

In[152]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø TrueD;
FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,

8x, y<, RealsE êê Timing êê N

Out[153]= 80.011, 88x Ø -1., y Ø -1.72698<<<

In[154]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø FalseD;
FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,

8x, y<, RealsE êê Timing êê N

Out[155]= 80.39, 88x Ø -1., y Ø -1.72698<<<

With many low-degree algebraic number coefficients, equations, and inequalities in the system, 
ProjectAlgebraics -> False tends to be faster.

In[156]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø TrueD;

FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[157]= :6.509, ::x Ø
3

4
, y Ø -

57

64
>>>

In[158]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø FalseD;

FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[159]= :0.01, ::x Ø
3

4
, y Ø -

57

64
>>>

With ProjectAlgebraics -> Automatic, Mathematica picks the faster method in the second 
example, but fails to pick the faster method in the first example.

In[160]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProjectAlgebraic" Ø AutomaticD;

In[161]:= FindInstanceARootAÒ19 - 11 Ò1 + 7 &, 1E x2 - RootAÒ17 - 5 Ò1 + 3 &, 1E y2 - x y ã 1,
8x, y<, RealsE êê Timing êê N

Out[161]= 80.291, 88x Ø -1., y Ø -1.72698<<<
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In[162]:= FindInstanceBx2 + y2 - 2 x - 3 y - 5 < 0 && x < 7 y^2, 8x, y<, RealsF êê Timing

Out[162]= :0.01, ::x Ø
3

4
, y Ø -

57

64
>>>

ProveMultiplicities

The setting of ProveMultiplicities determines the way in which the lifting phase of the CAD

algorithm  validates  multiple  roots  and  zero  leading  coefficients  of  projection  polynomials

obtained using arbitrary-precision floating-point number (Mathematica "bignum") computations

(for more details, see [14, 24]). With the default setting ProveMultiplicities -> True, Mathe-

matica  uses  information  about  the  origins  of  the  cell,  if  this  is  not  sufficient  computes  exact

values  of  cell  coordinates  and  uses  principal  subresultant  coefficients  and  exact  zero  testing,

and only if  this  fails  reverts  to  exact  computations.  With ProveMultiplicities -> Automatic,

Mathematica uses information about the origins of the cell  and, if this is not sufficient, reverts

to  exact  computation.  With  ProveMultiplicities -> False,  Mathematica  reverts  to  exact

computation each time bignum computations fail to separate all roots or prove that the leading

coefficients of projection polynomials are nonzero. 

Generally, using all available methods of validating results obtained with arbitrary-precision 
floating-point number computations leads to better performance.

In[163]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø TrueD;
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing

Out[164]= 90.17,

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 1E § x §

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 2E=

In[165]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø AutomaticD;
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing

Out[166]= 99.314,

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 1E § x §

RootA-5 915760 + 39370017 Ò12 - 148378932 Ò14 + 577876048 Ò16 - 2081150580 Ò18 + 5343033030 Ò110 -

9257957588 Ò112 + 10980806064 Ò114 - 9088500912 Ò116 + 5325466813 Ò118 - 2232144792 Ò120 +

671693097 Ò122 - 143343788 Ò124 + 20981862 Ò126 - 1920672 Ò128 + 88209 Ò130 &, 2E=
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In[167]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø FalseD;
TimeConstrained@
Reduce@Exists@8y, z<, x^4 + y^4 + z^4 ã 1 && 2 + x y + z § x^2 + y^2 + z^2D, x, RealsD êê
Timing, 60D

Out[168]= $Aborted

In[169]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ProveMultiplicities" Ø TrueD;

QuadraticQE

The  QuadraticQE  option  specifies  whether  the  quadratic  case  of  Weispfenning's  quantifier

elimination  by  virtual  substitution  algorithm  [22,  23]  should  be  used  to  eliminate  quantified

variables that appear at most quadratically in all equations and inequalities in the system. The

complexity  of  Weispfenning's  algorithm  depends  very  little  on  the  number  of  free  variables,

unlike  the  complexity  of  the  CAD  algorithm  that  is  doubly  exponential  in  the  number  of  all

variables.  Hence,  it  is  definitely  advantageous to use it  when all  quantifiers  can be eliminated

using  the  algorithm,  there  are  many free  variables  present,  and  the  quantifier-free  version  of

the system does not need to be given in a solved form. On the other hand, eliminating a vari-

able  using Weispfenning's  algorithm often significantly  increases  the size  of  the formula.  So if

Mathematica  needs  to  apply  CAD  to  the  result  or  if  the  system  contains  few  free  variables,

using CAD on the original system may be faster. With the default setting Automatic, Mathemat-

ica uses the algorithm for Resolve  with no variables specified and with at least two parameters

present, and for Reduce and Resolve  with at least three variables as long as elimination of one

variable at most doubles the LeafCount of the system. This criterion seems to work reasonably

well; however, for some examples it does not give the optimal choice of the algorithm. Chang-

ing the option value may allow problems to be solved which otherwise take a very long time.

With  LinearQE -> True,  Weispfenning's  algorithm  is  used  whenever  there  is  a  quadratic  vari-

able to eliminate, with LinearQE -> False, Weispfenning's algorithm is not used.

Resolve with no variables specified and with at least two parameters present uses Weispfen-
ning's algorithm to eliminate x. The result is not solved for the parameters a, b, and c.

In[170]:= ResolveA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, RealsE êê Timing

Out[170]= 90.03, a c < 0 »» Ha ã 0 && a b + b c > 0L »» Hc ã 0 && a b + b c > 0L »» Ia ≠ 0 && -b2 + 4 a c § 0M »»

Ic ≠ 0 && -b2 + 4 a c § 0M »» Ia ã 0 && b ã 0 && a2 + b2 + c2 § 0M »» Ia ã 0 && a + c ã 0 && a2 + b2 + c2 § 0M »»

Ia ã 0 && b ≠ 0 && a2 b2 c2 - a b2 c3 + a c5 § 0M »» Ib ã 0 && c ã 0 && a2 + b2 + c2 § 0M »»

Ic ã 0 && a + c ã 0 && a2 + b2 + c2 § 0M »» Ib ≠ 0 && c ã 0 && a5 c - a3 b2 c + a2 b2 c2 § 0M=
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Reduce by default uses CAD for this example. The result is solved for the parameters a, b, and 
c.

In[171]:= ReduceA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, 8a, b, c<, RealsE êê Timing

Out[171]= :0.291, a < 0 && c ¥
b2

4 a
»» a ã 0 »» a > 0 && c §

b2

4 a
>

With QuadraticQE -> True, Reduce uses Weispfenning's algorithm to eliminate x and then 
CAD to solve the quantifier-free formula for the parameters a, b, and c. In this example this is 
faster than the default method of using CAD from the beginning.

In[172]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø TrueD;
ReduceA$x Ia x2 + b x + cM Ic x2 + b x + aM <= 0, 8a, b, c<, RealsE êê Timing

Out[173]= :0.17, a < 0 && c ¥
b2

4 a
»» a ã 0 »» a > 0 && c §

b2

4 a
>

For this system with three free variables Weispfenning's algorithm works much better than CAD. 
With QuadraticQE -> False, Resolve does not finish in 1000 seconds.

In[174]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø AutomaticD;
ResolveA

$t I-602 + 528 z - 222 z2 - 410 t - 685 z t + 427 t2 + 422 x + 5 z x - 279 t x - 188 x2 + 1000 y -

704 z y + 879 t y - 179 x y - 689 y2 ã 0 &&
-723 - 380 z + 323 z2 - 964 t - 749 z t - 9 t2 + 497 x - 191 z x + 147 t x +

815 x2 + 935 y - 536 z y - 558 t y - 152 x y + 400 y2 ¥ 0M, RealsE êê Timing

Out[175]= 90.02,

I93310576 x + 312563284 x2 + 619260202 y - 174039637 x y + 343049591 y2 - 552659742 z - 119285170

x z - 72117355 y z - 107223538 z2 ¥ 438555086 && -491996 x + 398945 x2 - 2428780 y -

184750 x y + 1949453 y2 - 340124 z + 373690 x z - 1798 y z + 848401 z2 ¥ -1196316M »»

I-491 996 x + 398945 x2 - 2428780 y - 184750 x y + 1949453 y2 - 340124 z +

373690 x z - 1798 y z + 848401 z2 ¥ -1196316 &&
86243585140 x - 498040191089 x2 + 109809123842 x3 + 131969169211 x4 - 484187889894 y +

419393624593 x y + 362278042647 x2 y - 133070811401 x3 y + 202349297280 y2 - 82166879722 x y2 +

289809046115 x2 y2 + 247824969889 y3 - 76078568059 x y3 + 19522904791 y4 + 300933814382 z +

137426763740 x z - 651512554048 x2 z - 82614322010 x3 z - 106739496711 y z -

29291657121 x y z - 82755933843 x2 y z - 840794940583 y2 z + 38003381704 x y2 z -

469158313975 y3 z + 299057381894 z2 + 126196261244 x z2 - 114619700688 x2 z2 +

129231867162 y z2 + 56929552463 x y z2 - 439149714263 y2 z2 - 102928178270 z3 +

26325949198 x z3 - 153241487043 y z3 - 107856045675 z4 § 19224638243M=

For this system with only one free variable Resolve uses CAD.

In[176]:= ResolveA"8x,y< ImpliesAx > r && y > r, x2 H1 + 2 yL2 > y2 I1 + 2 x2ME, RealsE êê Timing

Out[176]= :0.06, r ¥
1

2
>
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Weispfenning's algorithm is slower here and gives a more complicated result.

In[177]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø TrueD;
ResolveA"8x,y< ImpliesAx > r && y > r, x2 H1 + 2 yL2 > y2 I1 + 2 x2ME, RealsE êê LeafCount êê
Timing

Out[177]= 80.27, 2711<

In[178]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QuadraticQE" Ø AutomaticD;

QVSPreprocessor

The QVSPreprocessor option setting affects solving decision problems and instance finding. The

option  specifies  whether  the  quadratic  case  of  Weispfenning's  quantifier  elimination  by  virtual

substitution  algorithm  [22,  23]  should  be  used  to  eliminate  variables  that  appear  at  most

quadratically in all equations and inequalities before applying the CAD algorithm to the resulting

system. The default setting is False  and the algorithm is not used. There are examples where

using Weispfenning's algorithm as a preprocessor significantly helps the performance, and there

are examples where using the preprocessor significantly  hurts  the performance. It  seems that

the  preprocessor  tends  to  help  in  examples  with  many  variables  and  where  instances  exist.

With  QVSPreprocessor -> True,  Weispfenning's  algorithm  is  used  each  time  there  is  a

quadratic  variable.  With  QVSPreprocessor -> Automatic,  Mathematica  uses  the  algorithm  for

systems with at least four variables. 

Here Mathematica finds a solution using Weispfenning's algorithm as a preprocessor. Without 
the preprocessor this example takes 470 seconds.

In[179]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QVSPreprocessor" Ø TrueD;
FindInstanceA-11 - 909 y z - 462 y2 z + I657 - 471 y3 + 501 z - 48 x zM t + t2 ã 0 &&

258 + 223 x2 y - 544 y3 + 571 z2 + 38 y z2 + I-798 + 79 x2 y + 214 y2 - 828 x2 z - 392 z2M t + t2 ¥

0, 8x, y, z, t<, RealsE êê Timing

Out[180]= :0.07, ::x Ø 0, y Ø
1

308
-303 +

282203

3
, z Ø -1, t Ø 0>>>

This uses CAD to show that there are no solutions. With QVSPreprocessor -> True this 
example does not finish in 1000 seconds, due to complexity of computing LogicalExpand for 
the generated large logical formulas.

In[181]:= SetSystemOptions@"InequalitySolvingOptions" Ø "QVSPreprocessor" Ø FalseD;
f =.; FindInstanceA! Ia < 0 »» b < 0 »» c < 0 »» d < 0 »» e < 0 »» f < 0 »» a2 + b2 > e2 »»

c2 + d2 > f2 »» a c + b d § e fM, 8a, b, c, d, e, f<, RealsE êê Timing

Out[181]= 80.071, 8<<
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ReducePowers

For any variable x in the input to the CAD algorithm, if all powers of x appearing in the system

are integer  multiples  of  an integer  k,  Mathematica  replaces  xk  in  the input  system with  a  new

variable, runs the CAD on the new system, and then resolves the answer so that it is expressed

in terms of  the original  variables.  Setting ReducePowers -> False  turns off  this  shortcut.  With

ReducePowers -> False,  the  algebraic  functions  appearing  as  cell  bounds  in  the  output  of  the

CAD  algorithm  are  always  rational  functions,  quadratic  radical  expressions,  or  Root  objects.

With  the  default  setting  ReducePowers -> True,  they  may  in  addition  be  e1ên  for  any  of  the

previous  expressions  e,  or  Root@a Òn - e &, 1D  for  some  integer  a,  and  a  rational  function  or  a

quadratic radical expression e.

With the default setting ReducePowers -> True, the CAD algorithm solves a quadratic equa-
tion in variables replacing x7 and y5, and then the result is represented in terms of x and y. The 
result contains Root objects with quadratic radical expressions inside.

In[182]:= ReduceAx14 + 3 x7 y5 - 5 y10 ã 1, 8x, y<, RealsE êê Timing

Out[182]= :0.02, x < -
5

29

1ë14

21ë7 &&

y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» y ã RootB-3 x7 - -20 + 29 x14 + 10 Ò15 &, 1F »»

x ã -
5

29

1ë14

21ë7 && y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »»

x ã
5

29

1ë14

21ë7 && y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» x >
5

29

1ë14

21ë7 &&

y ã RootB-3 x7 + -20 + 29 x14 + 10 Ò15 &, 1F »» y ã RootB-3 x7 - -20 + 29 x14 + 10 Ò15 &, 1F >

With ReducePowers -> True, the CAD algorithm solves the original 14th degree equation that 
takes several times longer. The result contains only Root objects with polynomial expressions 
inside.

In[183]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ReducePowers" Ø FalseD;
ReduceAx14 + 3 x7 y5 - 5 y10 ã 1, 8x, y<, RealsE êê Timing

Out[184]= 90.07, Ix < RootA-20 + 29 Ò114 &, 1E &&

Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM »»

Ix ã RootA-20 + 29 Ò114 &, 1E && y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1EM »»

Ix ã RootA-20 + 29 Ò114 &, 2E && y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1EM »»

IRootA-20 + 29 Ò114 &, 2E < x < 1 &&

Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM »»

Ix ã 1 && Iy ã 0 »» y ã RootA-3 + 5 Ò15 &, 1EMM »»

Ix > 1 && Iy ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 1E »» y ã RootA1 - x14 - 3 x7 Ò15 + 5 Ò110 &, 2EMM=
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RootReduced

For  systems  with  equational  constraints  generating  a  zero-dimensional  ideal  I,  Mathematica

uses  a  variant  of  the  CAD  algorithm  that  finds  projection  polynomials  using  Gröbner  basis

methods. If the lexicographic order Gröbner basis of I contains linear polynomials with constant

coefficients in every variable but the last one (which is true “generically”), then all coordinates

of  solutions are easily  represented as polynomials  in  the last  coordinate.  Setting RootReduced

to  True  causes  Mathematica  to  represent  each  coordinate  as  a  single  numeric  Root  object.

Computing this reduced representation often takes much longer than solving the system.

By default, we get the value of y expressed in terms of x.

In[185]:= ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0, 8x, y<, RealsE êê Timing

Out[185]= :0.011,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&

y ã
106736486

182019
+
1296051 x

1462
+
66665810 x2

182019
-
969563 x3

8466
-
24035081 x4

364038
+
96373723 x5

364038
+

54920533 x6

182019
+
25145123 x7

364038
-
10853975 x8

182019
-
1489646 x9

182019
+
8836411 x10

182019
+

4385547 x11

121346
+
93708 x12

60673
-
530532 x13

60673
+
69480 x14

60673
+
85501 x15

21414
+
305971 x16

182019
-

3130 x17

10707
-
5092 x18

10707
+
2072 x19

10707
+
43705 x20

364038
+
3719 x21

182019
-
2194 x22

182019
-
1492 x23

182019
+
1208 x24

182019
>

With Backsubstitution -> True, we get a numeric value of y, but the representation of the 
value is large.

In[186]:= ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0,
8x, y<, Reals, Backsubstitution Ø TrueE êê Timing

Out[186]= :0.02,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&

y ã
1

364038
J213472972 + 322716699 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 +

4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 +

2970 Ò112 + 270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E +

133331620 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
2
-

41691209 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

+ + + + + + Ò125 &, 1E
3
-
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Out[186]=

6 7 8 9 10 11 12

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
3
-

24035081 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
4
+

96373723 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
5
+

109841066 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
6
+

25145123 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
7
-

21707950 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
8
-

2979292 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
9
+

17672822 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
10

+

13156641 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
11

+

562248 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
12

-

3183192 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
13

+

416880 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
14

+

1453517 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
15

+

611942 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
16

-

106420 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
17

-

173128 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
18

+

70448 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
19

+

43705 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

+ + + + + + +
20
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Out[186]=

2 3 4 5

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
20

+

7438 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
21

-

4388 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
22

-

2984 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
23

+

2416 RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 +

80162 Ò16 + 32790 Ò17 + 5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 +

270 Ò113 + 1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E
24
N>

Setting RootReduced -> True causes Mathematica to represent the value of y as a single 
Root object. However, the computation takes ten times longer.

In[187]:= SetSystemOptions@"InequalitySolvingOptions" Ø "RootReduced" Ø TrueD;
ReduceAy5 - 3 y2 + 2 y + x5 + 7 x + 4 ã 0 && y2 + y - x5 - 3 x - 11 ã 0, 8x, y<, RealsE êê Timing

Out[188]= 90.09,

x ã RootA156 956 + 220462 Ò1 + 120941 Ò12 + 32850 Ò13 + 4455 Ò14 + 72765 Ò15 + 80162 Ò16 + 32790 Ò17 +

5940 Ò18 + 405 Ò19 + 13281 Ò110 + 10910 Ò111 + 2970 Ò112 + 270 Ò113 +

1210 Ò115 + 660 Ò116 + 90 Ò117 + 55 Ò120 + 15 Ò121 + Ò125 &, 1E &&
y ã RootA-33 447 + 39343 Ò1 - 55392 Ò12 + 54390 Ò13 - 43015 Ò14 + 38216 Ò15 - 32870 Ò16 +

31390 Ò17 - 22700 Ò18 + 14085 Ò19 - 9582 Ò110 + 6610 Ò111 - 5310 Ò112 + 2870 Ò113 - 1380 Ò114 +

850 Ò115 - 500 Ò116 + 370 Ò117 - 120 Ò118 + 40 Ò119 - 35 Ò120 + 15 Ò121 - 10 Ò122 + Ò125 &, 1E=

In[189]:= SetSystemOptions@"InequalitySolvingOptions" Ø "RootReduced" Ø FalseD;

ThreadOr

The ThreadOr option specifies how the identity

(8)$x1,…,xn HF1 Í … Í FkLó$x1,…,xn F1 Í … Í $x1,…,xn Fk

should be used in the decision algorithm (Reduce  and Resolve  for systems containing no free

variables or parameters), FindInstance, and quantifier elimination (Resolve  with no variables

specified). With the default setting ThreadOr -> True, the identity (8) is used before attempting

any solution  algorithms.  With  ThreadOr -> False,  the  identity  (8)  may be used by algorithms

that  require  using it  (for  instance,  the Simplex algorithm),  but  will  not  be used by algorithms

that do not require using it (for instance, the CAD algorithm).
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Here Reduce finds an instance satisfying the first simpler term of Or, and hence avoids dealing 
with the second, more complicated, term.

In[190]:= ReduceA$8x,y,z< Ix + y + z ¥ 0 »» Ix5 - 3 x y4 z + 17 x3 z2 - 11 y ã 0 && x2 + y2 + z2 § 1MM,
RealsE êê Timing

Out[190]= 92.17604µ10-14, True=

With ThreadOr -> False, Reduce needs to run a CAD-based decision algorithm on the whole 
system.

In[191]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø FalseD;
ReduceA$8x,y,z< Ix + y + z ¥ 0 »» Ix5 - 3 x y4 z + 17 x3 z2 - 11 y ã 0 && x2 + y2 + z2 § 1MM,

RealsE êê Timing

Out[192]= 80.801, True<

This system has no solutions and so with ThreadOr -> True Reduce needs to run a CAD-
based decision algorithm on each of the terms. 

In[193]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø TrueD;
ReduceA

$8x,y,z< IIx2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 ¥

1M »» Ix2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 < 1 &&
x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 < 1 &&
Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 < 1M »»

Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 &&
x2 + y2 + Hz - 2L2 < 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 ¥ 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 < 1MM, RealsE êê Timing

Out[194]= 81.512, False<

Since all six terms of Or involve exactly the same polynomials, running a CAD-based decision 
algorithm  on  the  whole expression  and running a CAD-based decision algorithm on one of
the  terms  consist  of  very  similar  computations.  In  this  case  the  computation  with
ThreadOr -> False is faster.

In[195]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø FalseD;
ReduceA

$8x,y,z< IIx2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 ¥

1M »» Ix2 + y2 + z2 < 1 && Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 < 1 &&
x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 ¥ 1M »» Ix2 + y2 + z2 < 1 &&
Hx - 2L2 + y2 + z2 ¥ 1 && x2 + Hy - 2L2 + z2 ¥ 1 && x2 + y2 + Hz - 2L2 < 1M »»

Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 < 1 && x2 + Hy - 2L2 + z2 ¥ 1 &&
x2 + y2 + Hz - 2L2 < 1M »» Ix2 + y2 + z2 ¥ 1 && Hx - 2L2 + y2 + z2 ¥ 1 &&
x2 + Hy - 2L2 + z2 < 1 && x2 + y2 + Hz - 2L2 < 1MM, RealsE êê Timing

Out[196]= 80.341, False<

In[197]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ThreadOr" Ø TrueD;

ZengDecision
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ZengDecision

The option ZengDecision specifies whether Mathematica should use the algorithm by G. X. 
Zeng and X. N. Zeng [18]. The algorithm applies to decision problems with systems that consist 
of a single strict inequality. There are examples for which the algorithm performs better than 
the strict inequality variant of the CAD algorithm described in [13]. However, for randomly 
chosen inequalities, it seems to perform worse; therefore, it is not used by default. Here is an 
example from [18] that runs faster with ZengDecision -> True.

In[198]:= FindInstanceAx4 + y4 + z4 + w4 - 5 x y z w + x2 + y2 + z2 + w2 + 1 < 0,
8x, y, z, w<, RealsE êê Timing

Out[198]= 87.17, 88x Ø -5, y Ø -5, z Ø -6, w Ø -4<<<

In[199]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ZengDecision" Ø TrueD;
FindInstanceAx4 + y4 + z4 + w4 - 5 x y z w + x2 + y2 + z2 + w2 + 1 < 0,

8x, y, z, w<, RealsE êê Timing

Out[200]= 80.43, 88x Ø -5, y Ø -5, z Ø -6, w Ø -4<<<

In[201]:= SetSystemOptions@"InequalitySolvingOptions" Ø "ZengDecision" Ø FalseD;
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Diophantine Polynomial Systems

Introduction

A  Diophantine  polynomial  system  is  an  expression  constructed  with  polynomial  equations  and

inequalities

f Hx1, …, xnLã gHx1, …, xnL, f Hx1, …, xnL ≠ gHx1, …, xnL,
f Hx1, …, xnL ¥ gHx1, …, xnL, f Hx1, …, xnL > gHx1, …, xnL,
f Hx1, …, xnL § gHx1, …, xnL, f Hx1, …, xnL < gHx1, …, xnL,

combined using logical connectives and quantifiers

F1 Ï F2, F1 Í F2, F1 flF2, Ÿ F, "x F, and $x F,

where the variables represent integer quantities.

An occurrence of a variable x inside "x F or $x F is called a bound occurrence; any other occur-

rence  of  x  is  called  a  free  occurrence.  A  variable  x  is  called  a  free  variable  of  a  polynomial

system if the system contains a free occurrence of x. A Diophantine polynomial system is quanti-

fier-free if it contains no quantifiers. A decision problem is a system with all variables existen-

tially quantified, that is, a system of the form

(1)$x1 $x2 … $xn FHx1, …, xnL,

where x1, …, xn  are all  variables in F. The decision problem (1) is equivalent to True  or False,

depending  on  whether  the  quantifier-free  system  of  polynomial  equations  and  inequalities

FHx1, …, xnL has integer solutions.

An example of a Diophantine polynomial system is

(2)"n, n¥2 $p, p>1 $q, q>1 "a, a>1 "b, b>1 a b ≠ pÏ a b ≠ qÏ p + q = 2 n.

Goldbach's  conjecture  [1],  formulated  in  1742  and  still  unproven,  asserts  that  system  (2)  is

equivalent to True. This suggests that Mathematica may not be able to solve arbitrary Diophan-

tine  polynomial  systems.  In  fact,  Matiyasevich's  solution  of  Hilbert's  tenth  problem [2]  shows

that  no  algorithm  can  be  constructed  that  would  solve  arbitrary  Diophantine  polynomial

systems,  not  even  quantifier-free  systems  or  decision  problems.  Nevertheless,  Mathematica

functions  Reduce,  Resolve,  and  FindInstance  are  able  to  solve  several  reasonably  large

classes  of  Diophantine  systems.  This  tutorial  describes  these  classes  of  systems and  methods

used by Mathematica to solve them. The methods are presented in the order in which they are

used. The tutorial also covers options affecting the methods used and how they operate.
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Goldbach's  conjecture  [1],  formulated  in  1742  and  still  unproven,  asserts  that  system  (2)  is

equivalent to True. This suggests that Mathematica may not be able to solve arbitrary Diophan-

that  no  algorithm  can  be  constructed  that  would  solve  arbitrary  Diophantine  polynomial

systems,  not  even  quantifier-free  systems  or  decision  problems.  Nevertheless,  Mathematica

functions  Reduce,  Resolve,  and  FindInstance  are  able  to  solve  several  reasonably  large

classes  of  Diophantine  systems.  This  tutorial  describes  these  classes  of  systems and  methods

used by Mathematica to solve them. The methods are presented in the order in which they are

used. The tutorial also covers options affecting the methods used and how they operate.

Linear Systems

Systems of Linear Equations

Conjunctions of linear Diophantine equations are solvable for an arbitrary number of variables.

Mathematica uses a method based on the computation Hermite normal form of matrices, avail-

able  in  Mathematica  directly  as  HermiteDecomposition.  The  result  may  contain  new  unre-

stricted  integer  parameters.  If  the  equations  are  independent,  the  number  of  parameters  is

equal to the difference between the number of variables and the number of equations.

This system has four variables and two independent equations, hence the result is expressed in 
terms of two integer parameters.

In[1]:= Reduce@3 a + 4 b + 18 c + 24 d ã 30 && 27 a + 16 b + 28 c + 24 d ã 30, 8a, b, c, d<, IntegersD

Out[1]= HC@1D C@2DL œ Integers && a ã 2 + 8 C@1D &&
b ã 6 - 6 C@1D + 15 C@2D && c ã -12 - 12 C@1D - 18 C@2D && d ã 9 + 9 C@1D + 11 C@2D

Frobenius Equations

A Frobenius equation is an equation of the form

a1 x1 + … + an xn ã m,

where a1, …, an  are positive integers, m is an integer, and the coordinates x1, …, xn  of solutions

are required to be non-negative integers.

For finding solution instances of Frobenius equations Mathematica  uses a fast algorithm based

on the computation of the critical tree in the Frobenius graph [11]. The algorithm applies when

the  smallest  of  a1, …, an  does  not  exceed  the  value  of  the  MaxFrobeniusGraph  system  option

(the  default  is  1,000,000).  Otherwise  the  more  general  methods  for  solving  bounded  linear

systems are used. Functions FrobeniusSolve and FrobeniusNumber provide specialized function-

ality for solving Frobenius equations and computing Frobenius numbers.
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For finding solution instances of Frobenius equations Mathematica  uses a fast algorithm based

on the computation of the critical tree in the Frobenius graph [11]. The algorithm applies when

the  smallest  of   does  not  exceed  the  value  of  the  MaxFrobeniusGraph  system  option

(the  default  is  1,000,000).  Otherwise  the  more  general  methods  for  solving  bounded  linear

systems are used. Functions FrobeniusSolve and FrobeniusNumber provide specialized function-

ality for solving Frobenius equations and computing Frobenius numbers.

This finds a solution of a Frobenius equation.

In[2]:= FindInstance@
123456 x + 234567 y + 345678 z + 456789 u + 567890 v + 678901 w + 789012 r + 890123 s +

901234 t ã 123456789 && x ¥ 0 && y ¥ 0 && z ¥ 0 && u ¥ 0 && v ¥ 0 &&
w ¥ 0 && r ¥ 0 && s ¥ 0 && t ¥ 0, 8x, y, z, u, v, w, r, s, t<, IntegersD

Out[2]= 88x Ø 5, y Ø 8, z Ø 12, u Ø 17, v Ø 24, w Ø 29, r Ø 29, s Ø 29, t Ø 30<<

Bounded Systems of Linear Equations and Inequalities

If a real solution set of a system of linear equations and inequalities is a bounded polyhedron,

the  system  has  finitely  many  integer  solutions.  To  find  the  solutions,  Mathematica  uses  the

following procedure.

You may assume the system has the form Meq.xã beq Ï Mineq.x ¥ bineq, where Meq  is a kµn integer

matrix, beq  is a length k integer vector, Mineq  is an lµn integer matrix, and bineq  is a length l inte-

ger vector. First, the method for solving systems of linear equations is used to find an integer

vector s such that Meq.sã beq  and a pµn integer matrix N whose rows generate the nullspace of

Meq.xã 0.  The integer solution set of  Meq.xã beq  is  equal  to 8s + i.N : i œp<.  Put Mmult =Mineq.NT  and

bmult = bineq -Mineq.s.  The  integer  solution  set  of  Meq.xã beq Ï Mineq.x ¥ bineq  is  equal  to  8s + i.N : i œ <,

where    is  the  integer  solution  set  of  Mmult.i ¥ bmult.  To  improve  efficiency  of  finding  the  set  ,

Mathematica simplifies Mmult
T  using LatticeReduce, obtaining Mred

T. Note that if the columns of

Mmult  are  linearly  dependent,  Mmult.i ¥ bmult  has  no  solutions  (otherwise  it  would  have  infinitely

many  solutions,  which  contradicts  the  assumptions).  Hence  you  may  assume  that  Mmult  has

linearly  independent  columns and so  Mred  has  p  columns.  Put  R = IMmult
T .MmultM

-1
IMmult

T MredM.  Lat-

tice reduction techniques are also used to find a small vector bred in the lattice bmult +Mred.v. Let v0

be  such  that  bred = bmult +Mred.v0.  The  set    can  be  computed  from the  set  red  of  all  i œp  such

that Mred.i ¥ bred using the formula  = 8R.Hi - v0L : i œ red<.

To find the set red a simple recursive algorithm can be used. The algorithm finds the bounds on

the first variable using LinearProgramming and, for each integer value a1  between the bounds,

calls  itself  recursively with the first  variable set to a1.  This algorithm is used when the system

option BranchLinearDiophantine is set to False. With the default setting True  a hybrid algo-

rithm  combining  the  recursive  algorithm  and  a  branch-and-bound  type  algorithm  is  used.  At

each level of the recursion, the recursion is continued for the "middle" values of the first vari-

able (defined as a projection of the set of points contained in the real solution set together with

a unit cube) while the remaining parts of the real solution set are searched for integer solutions

using  the  branch-and-bound  type  algorithm.  FindInstance  finds  the  single  element  of  red  it

needs using a branch-and-bound type algorithm.
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To find the set red a simple recursive algorithm can be used. The algorithm finds the bounds on

calls itself  recursively with the first  variable set to a1.  This algorithm is used when the system

option BranchLinearDiophantine is set to False. With the default setting True  a hybrid algo-

rithm  combining  the  recursive  algorithm  and  a  branch-and-bound  type  algorithm  is  used.  At

each level of the recursion, the recursion is continued for the "middle" values of the first vari-

able (defined as a projection of the set of points contained in the real solution set together with

a unit cube) while the remaining parts of the real solution set are searched for integer solutions

using  the  branch-and-bound  type  algorithm.  FindInstance  finds  the  single  element  of  red  it

needs using a branch-and-bound type algorithm.

There  are  two  system  options,  BranchLinearDiophantine  and  LatticeReduceDiophantine,

that allow you to control the exact algorithm used. In some cases changing the values of these

options may greatly improve the performance of Reduce.

This finds all integer points in a triangle.

In[3]:= Reduce@7 x + y ¥ 3 && 3 x - 33 y + 333 ¥ 0 && x < y, 8x, y<, IntegersD

Out[3]= Hx ã -1 && y ã 10L »» Hx ã 0 && y ã 3L »» Hx ã 0 && y ã 4L »» Hx ã 0 && y ã 5L »» Hx ã 0 && y ã 6L »»
Hx ã 0 && y ã 7L »» Hx ã 0 && y ã 8L »» Hx ã 0 && y ã 9L »» Hx ã 0 && y ã 10L »» Hx ã 1 && y ã 2L »»
Hx ã 1 && y ã 3L »» Hx ã 1 && y ã 4L »» Hx ã 1 && y ã 5L »» Hx ã 1 && y ã 6L »» Hx ã 1 && y ã 7L »»
Hx ã 1 && y ã 8L »» Hx ã 1 && y ã 9L »» Hx ã 1 && y ã 10L »» Hx ã 2 && y ã 3L »» Hx ã 2 && y ã 4L »»
Hx ã 2 && y ã 5L »» Hx ã 2 && y ã 6L »» Hx ã 2 && y ã 7L »» Hx ã 2 && y ã 8L »» Hx ã 2 && y ã 9L »»
Hx ã 2 && y ã 10L »» Hx ã 3 && y ã 4L »» Hx ã 3 && y ã 5L »» Hx ã 3 && y ã 6L »» Hx ã 3 && y ã 7L »»
Hx ã 3 && y ã 8L »» Hx ã 3 && y ã 9L »» Hx ã 3 && y ã 10L »» Hx ã 4 && y ã 5L »» Hx ã 4 && y ã 6L »»
Hx ã 4 && y ã 7L »» Hx ã 4 && y ã 8L »» Hx ã 4 && y ã 9L »» Hx ã 4 && y ã 10L »» Hx ã 5 && y ã 6L »»
Hx ã 5 && y ã 7L »» Hx ã 5 && y ã 8L »» Hx ã 5 && y ã 9L »» Hx ã 5 && y ã 10L »» Hx ã 6 && y ã 7L »»
Hx ã 6 && y ã 8L »» Hx ã 6 && y ã 9L »» Hx ã 6 && y ã 10L »» Hx ã 7 && y ã 8L »» Hx ã 7 && y ã 9L »»
Hx ã 7 && y ã 10L »» Hx ã 8 && y ã 9L »» Hx ã 8 && y ã 10L »» Hx ã 9 && y ã 10L »» Hx ã 10 && y ã 11L

Mathematica  enumerates the solutions explicitly  only  if  the number of  integer  solutions of  the

system  does  not  exceed  the  maximum  of  the  pth  power  of  the  value  of  the  system  option

DiscreteSolutionBound, where p is the dimension of the solution lattice of the equations, and

the second element of the value of the system option ExhaustiveSearchMaxPoints. 

Here Reduce does not give explicit solutions because their number would exceed the default 
limit of 10000.

In[4]:= Reduce@x ¥ 0 && y ¥ 0 && x + y § 200, 8x, y<, IntegersD

Out[4]= Hx yL œ Integers && HH0 § x § 199 && 0 § y § 200 - xL »» Hx ã 200 && y ã 0LL

This increases the value of the system option DiscreteSolutionBound to 1000.

In[5]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 1000<D;
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Since there are two variables and no equations, the limit on the number of solutions is now 
10002, and Reduce can enumerate the solutions explicitly.

In[6]:= Reduce@x ¥ 0 && y ¥ 0 && x + y § 200, 8x, y<, IntegersD êê Length

Out[6]= 20301

This resets DiscreteSolutionBound to the default value.

In[7]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

Arbitrary Systems of Linear Equations and Inequalities

Quantifier-free  systems  of  linear  Diophantine  equations  and  inequalities  are  solvable  for  an

arbitrary number of variables. The system is written in the disjunctive normal form, that is, as a

disjunction of conjunctions, and each conjunction is solved separately. If a conjunction contains

only  equations,  the  method  for  solving  systems  of  linear  equations  is  used.  If  the  difference

between  the  number  of  variables  and  the  number  of  equations  is  at  most  one,  Mathematica

solves the equations using the method for solving systems of linear equations, and if the solu-

tion contains at most one free parameter (which is true in the generic case), back substitutes

the solution into the inequalities to determine inequality  restrictions for  the parameter.  For all

other quantifier-free systems of linear Diophantine equations and inequalities Mathematica uses

the  algorithm  described  in  [3],  with  some  linear-programming-based  improvements  for  han-

dling bounded variables. The result may contain new non-negative integer parameters, and the

number of new parameters may be larger than the number of variables.

This system has three variables; however, to express the solution set, you need eight non-
negative integer parameters.

In[8]:= Reduce@a + 2 b - 3 c ã 4 && 3 a - 2 b + c ¥ 1, 8a, b, c<, IntegersD

Out[8]= HC@1D C@2D C@3D C@4D C@5D C@6D C@7D C@8DL œ Integers && C@1D ¥ 0 &&
C@2D ¥ 0 && C@3D ¥ 0 && C@4D ¥ 0 && C@5D ¥ 0 && C@6D ¥ 0 && C@7D ¥ 0 && C@8D ¥ 0 &&
HHa ã 3 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 + 5 C@1D + C@2D - 2 C@4D - C@5D -

5 C@6D - 4 C@7D - 3 C@8D && c ã 3 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 2 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 1 + 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 4 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã 1 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D && b ã 5 C@1D + C@2D - 2 C@4D -

C@5D - 5 C@6D - 4 C@7D - 3 C@8D && c ã -1 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»
Ha ã -1 + 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D &&

b ã -5 + 5 C@1D + C@2D - 2 C@4D - C@5D - 5 C@6D - 4 C@7D - 3 C@8D &&
c ã -5 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DL »»

Ha ã 2 C@1D + C@2D + 3 C@3D + C@4D + 2 C@5D - 2 C@6D - C@7D &&
b ã -4 + 5 C@1D + C@2D - 2 C@4D - C@5D - 5 C@6D - 4 C@7D - 3 C@8D &&
c ã -4 + 4 C@1D + C@2D + C@3D - C@4D - 4 C@6D - 3 C@7D - 2 C@8DLL

Univariate Systems

78     Advanced Algebra



Univariate Systems

Univariate Equations

To  find  integer  solutions  of  univariate  equations  Mathematica  uses  a  variant  of  the  algorithm

given  in  [4]  with  improvements  described  in  [5].  The  algorithm  can  find  integer  solutions  of

polynomials of much higher degrees than can be handled by real root isolation algorithms and

with much larger free terms than can be handled by integer factorization algorithms.

Here Reduce finds integer solutions of a sparse polynomial of degree 100,000.

In[9]:= poly = x100000 + 1234 x77777 - 2121 x12345 + 7890 x999 - x11;
freeterm = poly ê. x Ø 1234567;
Timing@Reduce@poly - freeterm ã 0, x, IntegersDD

Out[11]= 85.698, x ã 1234567<

The free term of this polynomial has 609,152 digits and cannot be easily factored.

In[12]:= N@freetermD

Out[12]= 2.926904998127343µ10609151

In[13]:= TimeConstrained@FactorInteger@freetermD êê Timing, 1000D

Out[13]= $Aborted

Systems of Univariate Equations and Inequalities

Systems  of  univariate  Diophantine  equations  and  inequalities  are  written  in  the  disjunctive

normal form, and each conjunction is solved separately. If a conjunction contains an equation,

the method for solving univariate equations is used, and the solutions satisfying the remaining

equations and inequalities are selected.

Here Reduce finds integer solutions of x4 - 25 x2  -144 and selects the ones that satisfy the 
inequality x100001 - 27 x + 5 ¥ 0.

In[14]:= ReduceAx4 - 25 x2 ã -144 && x100001 - 27 x + 5 ¥ 0, x, IntegersE

Out[14]= x ã 3 »» x ã 4

Conjunctions  containing  only  inequalities  are  solved  over  the  reals.  Integer  solutions  in  the

resulting real intervals are given explicitly if their number in the given interval does not exceed

the value of the system option DiscreteSolutionBound. The default value of the option is 10.

For intervals containing more integer solutions, the solutions are represented implicitly.
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Conjunctions  containing  only  inequalities  are  solved  over  the  reals.  Integer  solutions  in  the

resulting real intervals are given explicitly if their number in the given interval does not exceed

the value of the system option DiscreteSolutionBound. The default value of the option is 10.

For intervals containing more integer solutions, the solutions are represented implicitly.

Bivariate Systems

Quadratic Equations

Mathematica can solve arbitrary quadratic Diophantine equations in two variables. The general

form of such an equation is

(1)FHx, yL = a x2 + b x y + c y2 + d x + e y + f ã 0.

If  FHx, yL = F1Hx, yLF2Hx, yL,  whereF1Hx, yL  and  F2Hx, yL  are  linear  polynomials,  the  equation  (1)  is

equivalent  to  F1Hx, yL = 0 Í F2Hx, yL = 0,  and  methods  for  solving  linear  Diophantine  equations  are

used. For irreducible polynomials FHx, yL, the algorithms used and the form of the result depend

on the determinant D = b2 - 4 a c of the quadratic form. The algorithms may use integer factoriza-

tion  and  hence  the  correctness  of  the  results  depends  on  the  correctness  of  the  probabilistic

primality test used by PrimeQ.

Hyperbolic Type Equations with Square Determinants

If  D > 0  and  D  is  an  integer,  then  DFHx, yL - g = F1Hx, yLF2Hx, yL,  whereF1Hx, yL  and  F2Hx, yL  are

linear  polynomials  and g = c d2 + a e2 + b2 f - b d e - 4 a c f .  In  this  case,  the equation (1)  is  equiva-

lent to the disjunction of linear systems F1Hx, yL = d Ï F2Hx, yL = -g êd, for all divisors d of g. Each of

the  linear  systems  has  one  solution  over  the  rationals,  hence  the  equation  (1)  has  a  finite

number of integer solutions.

Here is a binary quadratic equation with D = 9.

In[15]:= ReduceA1 + 12 x + 2 x2 + 7 y + 5 x y + 2 y2 ã 0, 8x, y<, IntegersE

Out[15]= Hx ã -4 && y ã -1L »» Hx ã 2 && y ã -3L »» Hx ã 4 && y ã -9L
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Hyperbolic Type Equations with Nonsquare Determinants

If  D > 0  and  D  is  not  an  integer,  then  the  equation  (1)  is  a  Pell-type  equation.  Methods  for

solving  such  equations  have  been  developed  since  the  18th  century  and  can  be  constructed

based on [6]  and [7]  (though these books do not  contain  a  complete  description of  the algo-

rithm). The solution set is empty or infinite, parametrized by an integer parameter appearing in

the exponent.

A Pell equation is an equation of the form x2 - D y2 ã 1, where D is not a square. Solutions to 
Pell equations with small coefficients can be quite complicated.

In[16]:= ReduceAx2 - 61 y2 ã 1, 8x, y<, IntegersE

Out[16]= C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
- 1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

&&

y ã -
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
- 1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

&&

y ã
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
1766319049 - 226153980 61

C@1D

+ 1766319049 + 226153980 61
C@1D

&&

y ã -
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

»»

C@1D œ Integers && C@1D ¥ 0 &&

x ã
1

2
1766319049 - 226153980 61

C@1D

+ 1766319049 + 226153980 61
C@1D

&&

y ã
1

2 61
1766319049 - 226153980 61

C@1D

- 1766319049 + 226153980 61
C@1D

Here is the solution of a Pell-type equation with D = 5.

In[17]:= sol = ReduceA7 + 5 x + x2 + 7 y + 3 x y + y2 ã 0, 8x, y<, IntegersE

Out[17]=
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Out[17]= C@1D œ Integers && C@1D ¥ 0 && x ã
1

10
5 -5 -

2 J9 - 4 5 N
1+2 C@1D

- J9 + 4 5 N
1+2 C@1D

5
+

3 1 - 2 9 - 4 5
1+2 C@1D

+ 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 + 2 9 - 4 5

1+2 C@1D

+ 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã
1

10
5 -5 +

2 J9 - 4 5 N
1+2 C@1D

- J9 + 4 5 N
1+2 C@1D

5
+

3 1 - 2 9 - 4 5
1+2 C@1D

+ 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 + 2 9 - 4 5

1+2 C@1D

+ 9 + 4 5
1+2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
5 -5 -

2 J9 - 4 5 N
2 C@1D

- J9 + 4 5 N
2 C@1D

5
+ 3 1 + 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 - 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
5 -5 +

2 J9 - 4 5 N
2 C@1D

- J9 + 4 5 N
2 C@1D

5
+ 3 1 + 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 - 2 9 - 4 5

2 C@1D

+ 9 + 4 5
2 C@1D

»» C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
-5 9 - 4 5

2 C@1D

+ 3 5 9 - 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

- 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
5 9 - 4 5

2 C@1D

- 3 5 9 - 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 3 5 9 + 4 5
2 C@1D

&&

»»
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Out[17]=

5 9 - 4 5 - 3 5 9 - 4 5 + 5 9 + 4 5 + 3 5 9 + 4 5 &&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
5 9 - 4 5

1+2 C@1D

+ 3 5 9 - 4 5
1+2 C@1D

+

5 9 + 4 5
1+2 C@1D

- 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
-5 9 - 4 5

1+2 C@1D

- 3 5 9 - 4 5
1+2 C@1D

-

5 9 + 4 5
1+2 C@1D

+ 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
5 9 - 4 5

2 C@1D

+ 3 5 9 - 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

- 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 - 3 9 - 4 5

2 C@1D

- 5 9 - 4 5
2 C@1D

- 3 9 + 4 5
2 C@1D

+ 5 9 + 4 5
2 C@1D

+ 5 -5 +

1

5
-5 9 - 4 5

2 C@1D

- 3 5 9 - 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

+ 3 5 9 + 4 5
2 C@1D

&&

y ã
1

5
-1 + 3 9 - 4 5

2 C@1D

+ 5 9 - 4 5
2 C@1D

+ 3 9 + 4 5
2 C@1D

- 5 9 + 4 5
2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
-5 9 - 4 5

1+2 C@1D

+ 3 5 9 - 4 5
1+2 C@1D

-

5 9 + 4 5
1+2 C@1D

- 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

»»

C@1D œ Integers && C@1D ¥ 0 && x ã
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Out[17]=

C@1D œ Integers && C@1D ¥ 0 && x ã

1

10
3 1 + 3 9 - 4 5

1+2 C@1D

- 5 9 - 4 5
1+2 C@1D

+ 3 9 + 4 5
1+2 C@1D

+ 5 9 + 4 5
1+2 C@1D

+

5 -5 +
1

5
5 9 - 4 5

1+2 C@1D

- 3 5 9 - 4 5
1+2 C@1D

+

5 9 + 4 5
1+2 C@1D

+ 3 5 9 + 4 5
1+2 C@1D

&&

y ã
1

5
-1 - 3 9 - 4 5

1+2 C@1D

+ 5 9 - 4 5
1+2 C@1D

- 3 9 + 4 5
1+2 C@1D

- 5 9 + 4 5
1+2 C@1D

Even though the solutions are expressed using nonrational numbers, they are in fact integers, 
as they should be.

In[18]:= Simplify@sol ê. C@1D Ø 7D

Out[18]= Hy ã -143556140002351233 && Hx ã 375834853819893935 »» x ã 54833566187159759LL »»
Hy ã 375834853819893937 && Hx ã -983948421457330581 »» x ã -143556140002351235LL »»
Hy ã 54833566187159761 && Hx ã -143556140002351235 »» x ã -20944558559128053LL »»
Hy ã 2576010410552097799 && Hx ã -983948421457330581 »» x ã -6744082810198962821LL »»
Hy ã -6744082810198962819 && Hx ã 2576010410552097797 »» x ã 17656238020044790655LL »»
Hy ã -983948421457330579 && Hx ã 375834853819893935 »» x ã 2576010410552097797LL

Reduce can solve systems consisting of a Pell-type equation and inequalities giving simple 
bounds on variables.

In[19]:= Reduce@x^2 - 3 y^2 ã 22 && 0 § y § 1000000, 8x, y<, IntegersD

Out[19]= Hx ã -856487 && y ã 494493L »» Hx ã -472765 && y ã 272951L »» Hx ã -229495 && y ã 132499L »»
Hx ã -126677 && y ã 73137L »» Hx ã -61493 && y ã 35503L »» Hx ã -33943 && y ã 19597L »»
Hx ã -16477 && y ã 9513L »» Hx ã -9095 && y ã 5251L »» Hx ã -4415 && y ã 2549L »»
Hx ã -2437 && y ã 1407L »» Hx ã -1183 && y ã 683L »» Hx ã -653 && y ã 377L »» Hx ã -317 && y ã 183L »»
Hx ã -175 && y ã 101L »» Hx ã -85 && y ã 49L »» Hx ã -47 && y ã 27L »» Hx ã -23 && y ã 13L »»
Hx ã -13 && y ã 7L »» Hx ã -7 && y ã 3L »» Hx ã -5 && y ã 1L »» Hx ã 5 && y ã 1L »» Hx ã 7 && y ã 3L »»
Hx ã 13 && y ã 7L »» Hx ã 23 && y ã 13L »» Hx ã 47 && y ã 27L »» Hx ã 85 && y ã 49L »»
Hx ã 175 && y ã 101L »» Hx ã 317 && y ã 183L »» Hx ã 653 && y ã 377L »» Hx ã 1183 && y ã 683L »»
Hx ã 2437 && y ã 1407L »» Hx ã 4415 && y ã 2549L »» Hx ã 9095 && y ã 5251L »» Hx ã 16477 && y ã 9513L »»
Hx ã 33943 && y ã 19597L »» Hx ã 61493 && y ã 35503L »» Hx ã 126677 && y ã 73137L »»
Hx ã 229495 && y ã 132499L »» Hx ã 472765 && y ã 272951L »» Hx ã 856487 && y ã 494493L

Parabolic Type Equations

If D = 0, set g = signHaL gcdHa, cL, a1 = a êg , and c1 = signHb êgL c êg . Since b2 = 4 g2Ha êgL Hc êgL, a1  and c1
are nonzero integers, and b = 2 g a1 c1. Then

FHx, yL = gHa1 x + c1 yL2 + d x + e y + f .

Set m = c1 d - a1 e and t = a1 x + c1 y. Then the equation (1) is equivalent to

(2)a1 FHx, yL = a1 gHa1 x + c1 yL2 + dHa1 x + c1 yL -m y + a1 f = a1 g t2 + d t -m y + a1 f ã 0.

Suppose m = 0.  If  the equation (1) had integer solutions,  a1 g t2 + d t + a1 f = 0  would have integer

solutions in t,  and so FHx, yL  would be a product of  two linear polynomials.  Since here FHx, yL  is

irreducible, the equation (1) has no integer solutions. 

If m ≠ 0, then the equation (2) implies
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(3)a1 g t2 + d t + a1 f ª 0 Hmod m L.

If the modular equation (3) has no solutions in t, the equation (1) has no integer solutions. (If

m = 1, the modular equation (3) has one solution, t = 0.) Otherwise t = u + k m, for some solution

0 § u < m  of the modular equation (3). Replacing tØ u + k m  in the equation (2) and solving the

resulting linear equation for y gives

(4)yã a1 g m k2 + Hd + 2 a1 g uL k + Ia1 g u2 + d u + a1 f Mëm.

Note that since u satisfies the modular equation (3), the division in the last term of (4) gives an

integer result.  Since t = a1 x + c1 y  and t = u + k m,  x = Hu + k m - c1 yL êa1.  Taking the equation (4) and

the fact that m = c1 d - a1 e into account gives

(5)xã-c1 g m k2 - He + 2 c1 g uL k - Ic1 g u2 + e u + c1 f Mëm.

Therefore,  the  full  solution  of  the  equation  (1)  of  parabolic  type  consists  of  one-parameter

solution families given by equations (4) and (5) for each solution u of the modular equation (3),

for which Ic1 g u2 + e u + c1 f Mëm is an integer.

Here Reduce finds integer solutions of a quadratic equation of the parabolic type.

In[20]:= ReduceAx2 - 2 x y + y2 + 5 x - 7 y ã 22, 8x, y<, IntegersE

Out[20]= IC@1D œ Integers && x ã -11 + 7 C@1D + 2 C@1D2 && y ã -11 + 5 C@1D + 2 C@1D2M »»

IC@1D œ Integers && x ã -7 + 9 C@1D + 2 C@1D2 && y ã -8 + 7 C@1D + 2 C@1D2M

Elliptic Type Equations

If  D < 0,  the  solutions  of  equation  (1)  are  integer  points  on  an  ellipse.  Since  an  ellipse  is  a

bounded set,  the  number  of  solutions  must  be  finite.  An obvious  algorithm for  finding  integer

points would be to compute the solutions for y for each of the finite number of possible integer

values of  x.  This,  however,  would be prohibitively slow for larger ellipses.  Mathematica  uses a

faster algorithm described in [8].
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Here Reduce finds positive integer solutions of a quadratic equation of the elliptic type. There 
are more than 8µ1018 possible positive integer values of x, so the obvious algorithm would not 
be practical for this ellipse.

In[21]:= ReduceA23 x2 + 17 y2 ã 1693339429465935072912802926367922572800 && x > 0 && y > 0,
8x, y<, IntegersE

Out[21]= Hx ã 1234567890987654321 && y ã 9876543210123456789L »»
Hx ã 2394388915976549628 && y ã 9583927013507483052L »»
Hx ã 3587688774846621081 && y ã 9066079904941225629L »»
Hx ã 4628858032573225308 && y ã 8403549375095756172L »»
Hx ã 4730542803202013073 && y ã 8326586121887736693L »»
Hx ã 6448688263945408950 && y ã 6583719143723572530L »»
Hx ã 6563464511756847993 && y ã 6428433631978684413L »»
Hx ã 7787179624084878150 && y ã 4191136305399154530L

Thue Equations

A Thue equation is a Diophantine equation of the form

F(x, y) = m,

where FHx, yL is an irreducible homogenous form of degree ¥ 3. 

The number of solutions of Thue equations is always finite. Mathematica  can in principle solve

arbitrary  Thue  equations,  though  the  time  necessary  to  find  the  solutions  lengthens  very  fast

with degree and coefficient size. The hardest part of the algorithm is computing a bound on the

size of solutions. Mathematica uses an algorithm based on the Baker|Wustholz theorem to find

the bound [9]. If the input contains inequalities that provide a reasonable size bound on solu-

tions, Mathematica can compute the solutions much faster.

This finds integer solutions of a cubic Thue equation.

In[22]:= ReduceAx3 - 4 x y2 + y3 == 1, 8x, y<, IntegersE êê Timing

Out[22]= 80.621, Hx ã -2 && y ã 1L »» Hx ã 0 && y ã 1L »»
Hx ã 1 && y ã 0L »» Hx ã 1 && y ã 4L »» Hx ã 2 && y ã 1L »» Hx ã 508 && y ã 273L<

If we give Reduce a bound on the size of solutions, it can solve the equation much faster.

In[23]:= ReduceAx3 - 4 x y2 + y3 == 1 && -10^10 < x < 10^10, 8x, y<, IntegersE êê Timing

Out[23]= 80.05, Hx ã -2 && y ã 1L »» Hx ã 0 && y ã 1L »»
Hx ã 1 && y ã 0L »» Hx ã 1 && y ã 4L »» Hx ã 2 && y ã 1L »» Hx ã 508 && y ã 273L<

86     Advanced Algebra



Here Reduce finds the only solution of a degree 15 Thue equation with at most a 100-digit x 
coordinate. Without the bound on the solution size, Reduce did not finish in 1000 seconds.

In[24]:= ReduceA
x15 - 4 x 12 y3 + 7 x7 y8 - 2 y15 ã 23058325506004605670097246320963935108919550 &&
-10^100 < x < 10^100, 8x, y<, IntegersE êê Timing

Out[24]= 812.36, x ã 777 && y ã -121<

Multivariate Nonlinear Systems

Systems Solvable with the Modular Sieve Method

Mathematica uses a variant of the modular sieve method (see e.g. [9]). The method may prove

that a system has no solutions in integers modulo an integer m, and therefore, it has no integer

solutions.  Otherwise,  it  may  find  a  solution  with  small  integer  coordinates  or  prove  that  the

system has  no  integer  solutions  with  all  coordinates  between -b  and b.  The  number  of  candi-

date solution points that the sieve method is allowed to test is controlled by the system option

SieveMaxPoints. 

This equation has no solutions modulo 2.

In[25]:= ReduceA-2 x3 y9 + 6 x5 y5 z2 + 6 x8 y2 z5 + 4 x7 y6 z7 ã 7, 8x, y, z<, IntegersE

Out[25]= False

Here FindInstance finds a small solution using the modular sieve.

In[26]:= FindInstanceA9 x6 y8 z - 81 x2 y9 z - 5 x9 y5 z5 + 2 x6 y2 z9 ã 1080, 8x, y, z<, IntegersE

Out[26]= 88x Ø 1, y Ø 2, z Ø 3<<

Systems with More Than One Equation

If  a  Diophantine  polynomial  system  contains  more  than  one  equation,  Mathematica  uses

GroebnerBasis in an attempt to reduce the problem to a sequence of simpler problems.
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Systems Solvable by Recursion over Finitely Many Partial Solutions

Mathematica  attempts  to  solve  an element  of  the Gröbner  basis  that  depends on the minimal

number of the initial variables. If the number of solutions is finite, then for each solution Mathe-

matica  substitutes  the  computed  values  and  attempts  to  solve  the  obtained  system  for  the

remaining variables.

Here the first equation has four integer solutions for x and y. For each of the solutions, the 
second equation becomes a univariate equation in z. The four univariate equations have a total 
of two integer solutions. 

In[27]:= ReduceAx4 - x y + y2 ã 7 && z4 - x z + y2 + y ã 2400, 8x, y, z<, IntegersE

Out[27]= Hx ã -1 && y ã -3 && z ã -7L »» Hx ã -1 && y ã 2 && z ã -7L

Here the first equation is a Thue equation with one solution. After replacing x and y with the 
values computed from the first equation, the second equation becomes a Pell equation.

In[28]:= ReduceAx3 - 2 y3 ã 11 && z2 - x y w2 ã 1 && z > 0 && w > 0, 8x, y, z, w<, IntegersE

Out[28]= x ã 3 && y ã 2 && C@1D œ Integers && C@1D ¥ 1 &&

z ã
1

2
5 - 2 6

C@1D

+ 5 + 2 6
C@1D

&& w ã -

J5 - 2 6 N
C@1D

- J5 + 2 6 N
C@1D

2 6

Systems with Linear-Triangular Gröbner Bases

This heuristic applies to systems with Gröbner bases of the form

8c1 x1 - f1HYL, …, ck xk - fkHYL, gHYL<.

In this case, Mathematica solves the system of congruences

(1)f1HYL ª 0 mod c1 Ï … Ï fkHYL ª 0 mod ck.

The  solutions  are  represented  using  new  integer  parameters.  These  are  substituted  into  the

equation gHYLã 0 and the inequalities present in the original system, and Mathematica attempts

to solve the so-obtained systems for the new parameters.
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This system reduces to solving a congruence and a Pell equation.

In[29]:= ReduceAx2 - 7 y2 ã 1 && 2 z ã x3 - 1 && t - 4 z2 + y ã 7 && x > 0 && y > 0,
8x, y, z, t<, IntegersE

Out[29]= C@1D œ Integers && C@1D ¥ 1 && x ã 1 +
1

4
-4 + 2 127 - 48 7

C@1D

+ 127 + 48 7
C@1D

&&

y ã -

J127 - 48 7 N
C@1D

- J127 + 48 7 N
C@1D

2 7
&&

z ã
1

2
-1 + 1 +

1

4
-4 + 2 127 - 48 7

C@1D

+ 127 + 48 7
C@1D 3

&& t ã 8 - 2 x3 + x6 - y

This system reduces to solving a system of two congruences and a quadratic Diophantine 
equation of the parabolic type for each family of congruence solutions.

In[30]:= ReduceA3 z ã x2 - 2 x y && 2 t ã x3 + 96 z2 - 1 && Hx - 2 yL2 - 3 x ã 18, 8x, y, z, t<, IntegersE

Out[30]= C@1D œ Integers && x ã 3 + 6 I-1 + 4 C@1D + 8 C@1D2M && y ã 3 + 6 I-1 + C@1D + 4 C@1D2M &&

z ã
1

3
J-2 I3 + 6 I-1 + C@1D + 4 C@1D2MM I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM + I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

2
N &&

t ã
1

2
J-1 + 192 I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

2
+ 33 I3 + 6 I-1 + 4 C@1D + 8 C@1D2MM

3
N »»

C@1D œ Integers && x ã 3 + 6 I3 + 12 C@1D + 8 C@1D2M && y ã 6 I1 + 5 C@1D + 4 C@1D2M &&

z ã
1

3
J-12 I1 + 5 C@1D + 4 C@1D2M I3 + 6 I3 + 12 C@1D + 8 C@1D2MM + I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

2
N &&

t ã
1

2
J-1 + 192 I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

2
+ 33 I3 + 6 I3 + 12 C@1D + 8 C@1D2MM

3
N

Sums of Squares

Mathematica can solve equations of the form

(2)x12 + x22 + … + xn2 ãm

using  the  algorithm  described  in  [10].  For  multivariate  quadratic  equations,  Mathematica

attempts  to  find  an  affine  transformation  that  puts  the  equation  in  the  form  (2).  A  heuristic

method based on CholeskyDecomposition  is used for this purpose. However, the method may

fail for some equations that can be represented in the form (2).
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This solves a sum-of-squares equation in three variables.

In[31]:= ReduceAHx - 2 y + 3 zL2 + H4 y + 5 zL2 + z2 ã 14, 8x, y, z<, IntegersE

Out[31]= Hx ã -19 && y ã -4 && z ã 3L »» Hx ã -15 && y ã -4 && z ã 3L »»
Hx ã -9 && y ã -2 && z ã 1L »» Hx ã -5 && y ã -2 && z ã 1L »» Hx ã 5 && y ã 2 && z ã -1L »»
Hx ã 9 && y ã 2 && z ã -1L »» Hx ã 15 && y ã 4 && z ã -3L »» Hx ã 19 && y ã 4 && z ã -3L

To find a single solution of (2) FindInstance uses an algorithm based on [12].

This finds a decomposition of a 10000-digit integer into a sum of seven squares. N is applied to 
make the printed result smaller.

In[32]:= SeedRandom@10D; a = RandomIntegerA90, 1010000=E;
NAs7 = FindInstanceAx2 + y2 + z2 + t2 + u2 + v2 + w2 ã a, 8x, y, z, t, u, v, w<, IntegersEE êê
Timing

Out[32]= 96.529, 99x Ø 4.654783993889879µ104999, y Ø 2.728258415849877µ102499,

z Ø 3.456850125804598µ101249, t Ø 4.532687928125587µ10624, u Ø 3.523387016717428µ10624,
v Ø 3.170130382788626µ10624, w Ø 1.713114815166737µ10624===

This proves that the decomposition found is correct.

In[33]:= x^2 + y^2 + z^2 + t^2 + u^2 + v^2 + w^2 - a ê. s7

Out[33]= 80<

Pythagorean Equation

Mathematica knows the solution to the Pythagorean equation

x2 + y2 ã z2.

This gives the general solution of the Pythagorean equation.

In[34]:= ReduceAx2 + y2 == z2, 8x, y, z<, IntegersE

Out[34]= HC@1D C@2D C@3DL œ Integers && C@3D ¥ 0 &&
IIx ã C@1D IC@2D2 - C@3D2M && y ã 2 C@1D C@2D C@3D && z ã C@1D IC@2D2 + C@3D2MM »»

Ix ã 2 C@1D C@2D C@3D && y ã C@1D IC@2D2 - C@3D2M && z ã C@1D IC@2D2 + C@3D2MMM

For  quadratic  equations  in  three  variables,  Mathematica  attempts  to  find  a  transformation  of

the form

x1 = x + a y + b z + c,
y1 = y + d z + e,
z1 = z + f ,

transforming the equation to the Pythagorean equation.

This equation can be transformed to the Pythagorean equation.

90     Advanced Algebra



This equation can be transformed to the Pythagorean equation.

In[35]:= ReduceA-4 x + 5 x2 - 2 y + 4 x y + y2 + 28 x z + 6 y z + 72 z2 ã 8, 8x, y, z<, IntegersE

Out[35]= HC@1D C@2D C@3DL œ Integers && C@3D ¥ 0 &&
IIx ã 2 C@1D C@2D C@3D - 8 I3 + C@1D IC@2D2 + C@3D2MM && y ã 1 + C@1D IC@2D2 - C@3D2M -

3 I3 + C@1D IC@2D2 + C@3D2MM - 2 I2 C@1D C@2D C@3D - 8 I3 + C@1D IC@2D2 + C@3D2MMM &&

z ã 3 + C@1D IC@2D2 + C@3D2MM »» Ix ã C@1D IC@2D2 - C@3D2M - 8 I3 + C@1D IC@2D2 + C@3D2MM &&

y ã 1 + 2 C@1D C@2D C@3D - 3 I3 + C@1D IC@2D2 + C@3D2MM -

2 IC@1D IC@2D2 - C@3D2M - 8 I3 + C@1D IC@2D2 + C@3D2MMM && z ã 3 + C@1D IC@2D2 + C@3D2MMM

Equations with Reducible Nonconstant Parts

If the sum of nonconstant terms in an equation factors, Mathematica uses the formula

f g = có fid c f = d Ï g = c êd

to reduce the equation to a disjunction of pairs of equations with lower degrees. Note that this

reduction  depends  on  the  ability  to  find  all  divisors  of  c,  hence  the  correctness  of  the  results

depends on the correctness of the probabilistic primality test used by PrimeQ.

This cubic equation reduces to 12 pairs of quadratic and linear equations.

In[36]:= ReduceAHx - 2 y + 3 zL x2 - Hx - 2 y + 3 zL y z ã 18, 8x, y, z<, IntegersE

Out[36]= Hx ã -71 && y ã -112 && z ã -45L »» Hx ã -55 && y ã -82 && z ã -37L »»
Hx ã -53 && y ã -80 && z ã -35L »» Hx ã -11 && y ã 8 && z ã 15L »»
Hx ã -9 && y ã -12 && z ã -7L »» Hx ã -9 && y ã 8 && z ã 9L »» Hx ã -9 && y ã 10 && z ã 9L »»
Hx ã -3 && y ã -6 && z ã -1L »» Hx ã -1 && y ã -2 && z ã 1L »» Hx ã -1 && y ã 4 && z ã 1L »»
Hx ã 6 && y ã -6 && z ã -7L »» Hx ã 6 && y ã -6 && z ã -5L »» Hx ã 13 && y ã -10 && z ã -17L »»
Hx ã 34 && y ã 50 && z ã 23L »» Hx ã 38 && y ã 58 && z ã 25L »» Hx ã 83 && y ã 130 && z ã 53L

Equations with a Linear Variable

Mathematica attempts to solve Diophantine systems of the form

f Hx1, …, xnL y + gHx1, …, xnLã 0 Ï FHx1, …, xn, yL,

where FHx1, …, xn, yL is a conjunction of inequalities or True, by reducing them to

(3)
f Hx1, …, xnLã 0 Ï gHx1, …, xnLã 0 Ï FHx1, …, xn, yL Í
yã-gHx1, …, xnL ê f Hx1, …, xnL Ï FHx1, …, xn, -gHx1, …, xnL ê f Hx1, …, xnLL.

The first part of the system (3) is solved using the method for solving systems with more than

one equation.  Mathematica  recognizes  three  cases  when the  second part  of  the  system (3)  is

solvable.  If  f Hx1, …, xnL ª 1,  the  solution  is  given  by  yã-gHx1, …, xnL  and  by  the  restrictions  on

x1, …, xn  obtained  by  solving  the  inequalities  FHx1, …, xn, -gHx1, …, xnLL.  Nonlinear  systems  of

inequalities  are  solved using CylindricalDecomposition.  If  f Hx1, …, xnL ªm  for  an integer  con-

stant m ¥ 2, the solution of the second part of the system (3) is given by yã-gHx1, …, xnL êm and

by the restrictions on x1, …, xn  obtained by solving the congruence gHx1, …, xnL ª 0 modm and then

solving  the  inequalities  FHx1, …, xn, -gHx1, …, xnL êmL  for  each  solution  of  the  congruence.  If

f Hx1, …, xnL  is  nonconstant,  Mathematica  can  solve  the  second  part  of  the  system  (3)  if  n = 1.

Since Mathematica  factors all  equations at  the preprocessing stage, f Hx1L  and gHx1L  can be ass-

umed to be relatively prime. Then
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The first part of the system (3) is solved using the method for solving systems with more than

one equation.  Mathematica  recognizes  three  cases  when the  second part  of  the  system (3)  is

solvable.  If  f Hx1, …, xnL ª 1,  the  solution  is  given  by  yã-gHx1, …, xnL  and  by  the  restrictions  on

x1, …, xn  obtained  by  solving  the  inequalities  FHx1, …, xn, -gHx1, …, xnLL.  Nonlinear  systems  of

inequalities  are  solved using CylindricalDecomposition.  If  f Hx1, …, xnL ªm  for  an integer  con-

stant m ¥ 2, the solution of the second part of the system (3) is given by yã-gHx1, …, xnL êm and

by the restrictions on x1, …, xn  obtained by solving the congruence gHx1, …, xnL ª 0 modm and then

solving  the  inequalities  FHx1, …, xn, -gHx1, …, xnL êmL  for  each  solution  of  the  congruence.  If

f Hx1, …, xnL  is  nonconstant,  Mathematica  can  solve  the  second  part  of  the  system  (3)  if  n = 1.

Since Mathematica  factors all  equations at  the preprocessing stage, f Hx1L  and gHx1L  can be ass-

umed to be relatively prime. Then

d gHx1L = qHx1L f Hx1L + rHx1L

for  an  integer  d  and  polynomials  qHx1L  and  rHx1L  with  integer  coefficients  and  degHrL < degH f L.  If

-gHx1L ê f Hx1L  is  an integer,  then rHx1L ê f Hx1L  is  an integer,  and so rHx1Lã 0  or  rHx1L ¥ f Hx1L .  Since

degHrL < degH f L,  the  last  condition  is  satisfied  only  by  a  finite  number  of  integers  x1.  Hence  the

solutions of the second part of the system (3) can be selected from a finite number of solution

candidates. 

Additionally, Mathematica uses the following heuristic to detect cases when the system (3) has

no  solutions.  If  there  is  an  integer  m ¥ 2,  such  that  f Hx1, …, xnL  is  always  divisible  by  m,  and

gHx1, …, xnL  is  never  divisible  by m,  then the system (3)  has  no solutions.  Candidates  for  m  are

found by computing the GCD of the values of f  at several points.

The last two methods use exhaustive search over finite sets of  points.  The allowed number of

search points is controlled by the system option SieveMaxPoints. 

This reduces to (3) with f Hx1, …, xnL ª 1.

In[37]:= ReduceAx3 - 7 x y + 5 y4 - z ã 3 && 2 x - y > 1, 8x, y, z<, IntegersE

Out[37]= HC@1D C@2D C@3D C@4D C@5DL œ Integers && C@1D ¥ 0 && C@2D ¥ 0 && C@3D ¥ 0 && C@4D ¥ 0 &&
C@5D ¥ 0 && HHx ã 1 + C@1D + C@2D + C@3D - C@4D && y ã C@1D + 2 C@2D - 2 C@4D - C@5DL »»

Hx ã C@1D + C@2D + C@3D - C@4D && y ã -2 + C@1D + 2 C@2D - 2 C@4D - C@5DLL && z ã -3 + x3 - 7 x y + 5 y4
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This reduces to (3) with f Hx1, …, xnL ª 3.

In[38]:= ReduceAx3 - 2 x2 y + 9 x y4 - 3 z ã 8, 8x, y, z<, IntegersE

Out[38]= HC@1D C@2DL œ Integers &&

HHx ã 1 + 3 C@1D && y ã 1 + 3 C@2DL »» Hx ã 2 + 3 C@1D && y ã 3 C@2DLL && z ã
1

3
I-8 + x3 - 2 x2 y + 9 x y4M

This reduces to the nã 1 case of system (3).

In[39]:= ReduceAx5 + 7 x - 271 + y Ix3 + 21 x2 - 17M ã 0, 8x, y<, IntegersE

Out[39]= Hx ã -1 && y ã 93L »» Hx ã 2 && y ã 3L

Here Reduce detects that the equation has no solutions, because 
9 x6 y3 z4 - 9 x2 y3 z8 - 5 y8 z9 - 10 is always divisible by 5, and 7 - 5 x4 y z4 + 7 x8 y2 z4 - 9 z8 - 4 x6 y z8 
is never divisible by 5.

In[40]:= ReduceAI9 x6 y3 z4 - 9 x2 y3 z8 - 5 y8 z9 - 10M t + 7 - 5 x4 y z4 + 7 x8 y2 z4 - 9 z8 - 4 x6 y z8 ã 0,
8x, y, z, t<, IntegersE

Out[40]= False

Systems with Empty or Bounded Real Solution Sets

If a Diophantine polynomial system is not solved by any other methods, Mathematica solves the

system  over  the  reals  using  the  Cylindrical  Algebraic  Decomposition  (CAD)  algorithm.  If  the

system has no real solutions, then clearly it has no integer solutions. If the real solution set is

bounded, then the number of integer solutions is finite. In principle, all the integer solutions can

be found in this case from a cylindrical decomposition. Namely, for each cylinder, you enumer-

ate all possible integer values of the first coordinate, then for each value of the first coordinate,

you  enumerate  all  possible  integer  values  of  the  second  coordinate,  and  so  on.  However,  for

large bounded solution sets this  method could lead to a huge number of  points to try.  There-

fore,  Mathematica  has  a  bound  on  the  number  of  explicitly  enumerated  integer  solutions  in  a

real  interval.  By default  this bound is equal to 10. It  can be changed using the system option

DiscreteSolutionBound. For systems for which the real solution set is unbounded or bounded

but  large,  the  solution  is  represented  implicitly  by  returning  the  CAD  and  a  condition  that  all

variables  are  integers.  Note  that  for  multivariate  systems such an implicit  representation may

not  even  be  enough  to  tell  whether  integer  solutions  exist.  This  should  be  expected,  given

Matiyasevich's solution of Hilbert's tenth problem [2].
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Here the real solution set is bounded, but Reduce gives some cylinders in an implicit form. This 
is because some of the intervals bounding y contain more than 10 integers.

In[41]:= Reduce@x^5 + y^2 + z^3 - x y z ã 8 && x^2 + y^2 § 30, 8x, y, z<, IntegersD

Out[41]= Hy zL œ Integers && IIx ã -2 && -5 § y § 5 && z ã RootA-40 + y2 + 2 y Ò1 + Ò13 &, 1EM »»

Hx ã -1 && HHy ã -3 && z ã 0L »» Hy ã 3 && z ã 0LLL »» Ix ã 0 && -5 § y § 5 && z ã RootA-8 + y2 + Ò13 &, 1EM »»
Hx ã 1 && HHy ã -5 && z ã -2L »» Hy ã -2 && z ã 1L »» Hy ã 1 && z ã 2L »» Hy ã 3 && Hz ã -2 »» z ã 1LLLL »»

Ix ã 2 && -5 § y § 5 && z ã RootA24 + y2 - 2 y Ò1 + Ò13 &, 1EMM

Increasing the value of the system option DiscreteSolutionBound allows Reduce to find all 
integer solutions explicitly.

In[42]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 11<D;
Reduce@x^5 + y^2 + z^3 - x y z ã 8 && x^2 + y^2 § 30, 8x, y, z<, IntegersD

Out[43]= Hx ã -1 && HHy ã -3 && z ã 0L »» Hy ã 3 && z ã 0LLL »» Hx ã 0 &&
HHy ã -4 && z ã -2L »» Hy ã -3 && z ã -1L »» Hy ã 0 && z ã 2L »» Hy ã 3 && z ã -1L »» Hy ã 4 && z ã -2LLL »»

Hx ã 1 && HHy ã -5 && z ã -2L »» Hy ã -2 && z ã 1L »» Hy ã 1 && z ã 2L »» Hy ã 3 && Hz ã -2 »» z ã 1LLLL »»
Hx ã -2 && y ã 4 && z ã 2L

This resets DiscreteSolutionBound to the default value.

In[44]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

Here the modular sieve method shows that there are no solutions in H-15, 15D3. After adding 
inequalities to eliminate this cube, Reduce then recognizes that this equation has no solutions 
anywhere.

In[45]:= ReduceA9 x2 y2 + 7 x2 z2 + 5 y2 z2 ã x y z + 10, 8x, y, z<, IntegersE

Out[45]= False

Equations of the Form x gHx, y, z1, …, znL + yä c

Mathematica attempts to solve Diophantine systems of the form

x gHx, y, z1, …, znL + yã cÏ FHx, y, z1, …, znL,

where FHx, y, z1, …, znL is a conjunction of inequalities or True, by transforming them to

(4)xã 0 Ï yã cÏ FH0, c, z1, …, znL Í yã c + t xÏ gHx, c + t x, z1, …, znL + tã 0 Ï FHx, c + t x, z1, …, znL.

The  resulting  system  (4)  may,  or  may  not,  be  easier  to  solve.  Systems  exist  for  which  this

transformation could be applied recursively arbitrarily many times; therefore, Mathematica uses

a recursion bound to ensure the heuristic terminates. 
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This transforms to a system (4) with no real solutions.

In[46]:= ReduceA-x2 + y + x y + x z ã 0 && x > 0 && y > 0 && z > 0, 8x, y, z<, IntegersE

Out[46]= False

Here the system (4) obtained after three recursive transformations has a reducible nonconstant 
part.

In[47]:= ReduceAx3 - 2 x y2 + 20 x y + y ã 5, 8x, y<, IntegersE

Out[47]= Hx ã -7 && y ã 12L »» Hx ã 0 && y ã 5L »» Hx ã 7 && y ã -2L

Systems Solvable by Exhaustive Search

For  systems  containing  explicit  lower  and  upper  bounds  on  all  variables,  Mathematica  uses

exhaustive search to find solutions. The bounds of the search are specified by the value of the

system option ExhaustiveSearchMaxPoints. The option value should be a pair of integers (the

default is 81000, 10 000<). If the number of integer points within the bounds does not exceed the

first integer, the exhaustive search is used instead of any solution methods other than univari-

ate polynomial  solving.  Otherwise,  if  the number of  integer points within the bounds does not

exceed the second integer, the exhaustive search is performed after all other methods fail.

This transcendental Diophantine equation with bounded variable values is solved by exhaustive 
search.

In[48]:= ReduceBSinB
p x y

2
F
2

ã Gamma@21 x - 37 yD && 0 < x < 100 && 1 § y § 100, x, IntegersF

Out[48]= Hy ã 13 && x ã 23L »» Hy ã 55 && x ã 97L

Options

The  Mathematica  functions  for  solving  Diophantine  polynomial  systems  have  a  number  of

options that control the way they operate. This tutorial gives a summary of these options.

option name default value

GeneratedParameters C specifies how the new parameters gener-
ated to represent solutions should be 
named

Reduce options affecting the behavior for Diophantine polynomial systems.

GeneratedParameters
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GeneratedParameters

To  represent  infinite  solutions  of  some  Diophantine  systems,  Reduce  needs  to  introduce  new

integer  parameters.  The  names  of  the  new  parameters  are  specified  by  the  option

GeneratedParameters.  With  GeneratedParameters -> f ,  the  new  parameters  are  named

f@1D, f@2D, ….

By default, the new parameters generated by Reduce are named C@1D, C@2D, ….

In[49]:= Reduce@x + y + z ã 2 && x > y + 1, 8x, y, z<, IntegersD

Out[49]= HC@1D C@2D C@3D C@4D C@5DL œ Integers && C@1D ¥ 0 && C@2D ¥ 0 &&
C@3D ¥ 0 && C@4D ¥ 0 && C@5D ¥ 0 && HHx ã 1 + C@1D + C@2D + C@3D - C@4D &&

y ã -1 + C@1D - C@3D - C@4D - C@5D && z ã 2 - 2 C@1D - C@2D + 2 C@4D + C@5DL »»
Hx ã 2 + C@1D + C@2D + C@3D - C@4D && y ã C@1D - C@3D - C@4D - C@5D && z ã -2 C@1D - C@2D + 2 C@4D + C@5DL »»
Hx ã C@1D + C@2D + C@3D - C@4D &&

y ã -2 + C@1D - C@3D - C@4D - C@5D && z ã 4 - 2 C@1D - C@2D + 2 C@4D + C@5DLL

The option GeneratedParameters allows users to customize the parameter names.

In[50]:= Reduce@x + y + z ã 2 && x > y + 1, 8x, y, z<,
Integers, GeneratedParameters Ø HSubscript@k, ÒD &LD

Out[50]= Hk1 k2 k3 k4 k5L œ Integers && k1 ¥ 0 && k2 ¥ 0 && k3 ¥ 0 && k4 ¥ 0 && k5 ¥ 0 &&
HHx ã 1 + k1 + k2 + k3 - k4 && y ã -1 + k1 - k3 - k4 - k5 && z ã 2 - 2 k1 - k2 + 2 k4 + k5L »»

Hx ã 2 + k1 + k2 + k3 - k4 && y ã k1 - k3 - k4 - k5 && z ã -2 k1 - k2 + 2 k4 + k5L »»
Hx ã k1 + k2 + k3 - k4 && y ã -2 + k1 - k3 - k4 - k5 && z ã 4 - 2 k1 - k2 + 2 k4 + k5LL

ReduceOptions Group of System Options

Here  are  the  system  options  from  the  ReduceOptions  group  that  may  affect  the  behavior  of

Reduce,  Resolve,  and FindInstance  for  Diophantine  polynomial  systems.  The  options  can  be

set with

SetSystemOptions@"ReduceOptions" -> 8"option name" -> value<D.
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option name default value

"BranchLinearDiophantine" True whether Reduce should use a branch-and-
bound type algorithm to compute solutions 
of bounded systems of linear Diophantine 
inequalities

"DiscreteSolutionBound" 10 the bound on the number of explicitly 
enumerated integer solutions in a real 
interval

"ExhaustiveSearchMaxPoints
"

81000,10 000< the maximal number of integer points 
within variable bounds for which the 
exhaustive search is used before and after 
all other solution methods

"LatticeReduceDiophantine" True whether LatticeReduce should be used 
to preprocess bounded systems of linear 
Diophantine inequalities

"MaxFrobeniusGraph" 1000000 the maximal size of the smallest coefficient 
in a Frobenius equation for which 
FindInstance computes the critical tree 
in the Frobenius graph

"SieveMaxPoints" 10000 the maximal number of points at which the 
modular sieve method evaluates the system

ReduceOptions group options affecting the behavior of Reduce, Resolve, and FindInstance for 
Diophantine polynomial systems.

BranchLinearDiophantine

The value of the system option BranchLinearDiophantine  specifies which variant of the algo-

rithm  should  be  used  in  the  final  stage  of  solving  bounded  linear  systems.  Neither  variant

seems  to  be  clearly  better.  For  some  examples  the  hybrid  method  combining  a  branch-and-

bound  type  algorithm  and  a  simple  recursive  enumeration  is  faster;  for  other  examples  the

simple recursive enumeration alone is faster. The hybrid method seems to be more robust for

badly conditioned problems, hence it is the default method.

This finds integer points in a long, narrow four-dimensional simplex using the default hybrid 
method.

In[51]:= a = 10000;
Reduce@a x + a y + a z - 3 Ha - 1L t § 3 a && a x + a y + a t - 3 Ha - 1L z § 3 a &&

a x + a z + a t - 3 Ha - 1L y § 3 a && a y + a z + a t - 3 Ha - 1L x § 3 a &&
x + y + z + t ¥ 1 && x < y && z < t, 8x, y, z, t<, IntegersD êê Length êê Timing

Out[52]= 80.671, 3336<
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This sets the value of the system option BranchLinearDiophantine to False.

In[53]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;

Here the simple recursive enumeration method is used, and for this badly conditioned problem 
it is several times slower. 

In[54]:= Reduce@a x + a y + a z - 3 Ha - 1L t § 3 a && a x + a y + a t - 3 Ha - 1L z § 3 a &&
a x + a z + a t - 3 Ha - 1L y § 3 a && a y + a z + a t - 3 Ha - 1L x § 3 a &&
x + y + z + t ¥ 1 && x < y && z < t, 8x, y, z, t<, IntegersD êê Length êê Timing

Out[54]= 84.447, 3336<

This resets the value of the system option BranchLinearDiophantine to the default value.

In[55]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;

Here are solutions of a system of two randomly generated equations eqns and three randomly 
generated inequalities ineqs in seven variables inside a simplex bounded by bds.

In[56]:= SeedRandom@1D;
A = Table@RandomInteger@8-1000, 1000<D, 82<, 87<D;
a = Table@RandomInteger@8-1000, 1000<D, 82<D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 87<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@7D;
eqns = And üü Thread@A.X ã aD;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 100;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[64]= 87.32, Hx@1D ã 9 && x@2D ã 8 && x@3D ã 2 && x@4D ã 14 && x@5D ã 20 && x@6D ã 22 && x@7D ã 13L »»
Hx@1D ã 12 && x@2D ã 15 && x@3D ã 0 && x@4D ã 12 && x@5D ã 11 && x@6D ã 22 && x@7D ã 18L<

For this system the nondefault simple recursion method is faster.

In[65]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[66]= 81.643, Hx@1D ã 9 && x@2D ã 8 && x@3D ã 2 && x@4D ã 14 && x@5D ã 20 && x@6D ã 22 && x@7D ã 13L »»
Hx@1D ã 12 && x@2D ã 15 && x@3D ã 0 && x@4D ã 12 && x@5D ã 11 && x@6D ã 22 && x@7D ã 18L<

Here is a random system very similar to the previous one, except that it contains one more 
variable and the right-hand side of the last of bds is changed from 100 to 200. However, for 
this system the default method is faster.

In[67]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;
SeedRandom@1D;
A = Table@RandomInteger@8-1000, 1000<D, 82<, 88<D;
a = Table@RandomInteger@8-1000, 1000<D, 82<D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 88<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@8D;
eqns = And üü Thread@A.X ã aD;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 200;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[76]= 816.093, Hx@1D ã 2 && x@2D ã 6 && x@3D ã 27 && x@4D ã 35 && x@5D ã 0 && x@6D ã 6 && x@7D ã 0 && x@8D ã 38L »»
Hx@1D ã 10 && x@2D ã 1 && x@3D ã 48 && x@4D ã 54 && x@5D ã 1 && x@6D ã 1 && x@7D ã 1 && x@8D ã 55L<

The nondefault method is slower for this system.
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The nondefault method is slower for this system.

In[77]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø False<D;
Reduce@eqns && ineqs && bds, X, IntegersD êê Timing

Out[78]= 847.789, Hx@1D ã 2 && x@2D ã 6 && x@3D ã 27 && x@4D ã 35 && x@5D ã 0 && x@6D ã 6 && x@7D ã 0 && x@8D ã 38L »»
Hx@1D ã 10 && x@2D ã 1 && x@3D ã 48 && x@4D ã 54 && x@5D ã 1 && x@6D ã 1 && x@7D ã 1 && x@8D ã 55L<

This resets the value of the system option BranchLinearDiophantine to the default value.

In[79]:= SetSystemOptions@"ReduceOptions" Ø 8"BranchLinearDiophantine" Ø True<D;

DiscreteSolutionBound

The value of the system option DiscreteSolutionBound specifies whether integer solutions in a

real interval a § x § b should be enumerated explicitly or represented implicitly as x œ Ï a § x § b.

With DiscreteSolutionBound -> n, the integer solutions in the given real interval are enumer-

ated explicitly if their number does not exceed n. The default value of the option is 10. 

There are 10 integers in the real interval 0 § x < 10. Reduce writes them out explicitly. 

In[80]:= ReduceA0 § x3 < 1000, IntegersE

Out[80]= x ã 0 »» x ã 1 »» x ã 2 »» x ã 3 »» x ã 4 »» x ã 5 »» x ã 6 »» x ã 7 »» x ã 8 »» x ã 9

There are 11 integers in the real interval 0 § x < 10011ê3. Reduce represents them implicitly.

In[81]:= ReduceA0 § x3 < 1001, IntegersE

Out[81]= x œ Integers && 0 § x § 10

This increases the DiscreteSolutionBound to 11.

In[82]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 11<D;

Now Reduce represents the solutions explicitly.

In[83]:= ReduceA0 § x3 < 1001, IntegersE

Out[83]= x ã 0 »» x ã 1 »» x ã 2 »» x ã 3 »» x ã 4 »» x ã 5 »» x ã 6 »» x ã 7 »» x ã 8 »» x ã 9 »» x ã 10

This resets DiscreteSolutionBound to the default value.

In[84]:= SetSystemOptions@"ReduceOptions" Ø 8"DiscreteSolutionBound" Ø 10<D;

The value of DiscreteSolutionBound also affects the solving of bounded linear systems.
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ExhaustiveSearchMaxPoints

The system option ExhaustiveSearchMaxPoints specifies the maximal number of search points

used  by  the  exhaustive  search  method.  The  option  value  should  be  a  pair  of  integers  (the

default is 81000, 10 000<). If the number of integer points within the bounds does not exceed the

first integer, the exhaustive search is used instead of any solution methods other than univari-

ate polynomial  solving.  Otherwise,  if  the number of  integer points within the bounds does not

exceed the second integer, the exhaustive search is performed after all other methods fail.

With the default setting of ExhaustiveSearchMaxPoints, Reduce is unable to solve this 
equation.

In[85]:= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

Reduce::nsmet :
This system cannot be solved with the methods available to Reduce. à

Out[85]= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

This increases the value of the second element of ExhaustiveSearchMaxPoints to 100 000.

In[86]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 100000<<D;

Now Reduce can solve the equation.

In[87]:= Reduce@Binomial@x, yD ã Gamma@x + yD && 1 § x § 200 && 1 § y § 200, 8x, y<, IntegersD

Out[87]= Hx ã 1 && y ã 1L »» Hx ã 2 && y ã 1L

With the default setting of ExhaustiveSearchMaxPoints, Reduce solves this equation using 
the method for solving Pell equations.

In[88]:= SetSystemOptions@"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;
ReduceAx2 - 2 y2 ã 1 && 1 § x § 1000 && 1 § y § 1000, 8x, y<, IntegersE êê Timing

Out[88]= 80.06, Hx ã 3 && y ã 2L »» Hx ã 17 && y ã 12L »» Hx ã 99 && y ã 70L »» Hx ã 577 && y ã 408L<

Increasing the first element of ExhaustiveSearchMaxPoints to 106 makes Reduce use the 
exhaustive search first. In this example the search is much slower than the Pell equation solver.

In[89]:= SetSystemOptionsA"ReduceOptions" Ø 9"ExhaustiveSearchMaxPoints" Ø 9106, 106==E;
ReduceAx2 - 2 y2 ã 1 && 1 § x § 1000 && 1 § y § 1000, 8x, y<, IntegersE êê Timing

Out[90]= 85.538, Hx ã 3 && y ã 2L »» Hx ã 17 && y ã 12L »» Hx ã 99 && y ã 70L »» Hx ã 577 && y ã 408L<
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For this equation the Pell equation solver is slower than the exhaustive search.

In[91]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;

ReduceAx2 - 21 y2 ã 2004 && 1 § x § 100 && 1 § y § 100, 8x, y<, IntegersE êê Timing

Out[92]= 80.381, x ã 45 && y ã 1<

The exhaustive search is faster here.

In[93]:= SetSystemOptions@
"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 810000, 10000<<D;

ReduceAx2 - 21 y2 ã 2004 && 1 § x § 100 && 1 § y § 100, 8x, y<, IntegersE êê Timing

Out[93]= 80.12, x ã 45 && y ã 1<

This resets ExhaustiveSearchMaxPoints to the default value.

In[94]:= SetSystemOptions@"ReduceOptions" Ø 8"ExhaustiveSearchMaxPoints" Ø 81000, 10000<<D;

LatticeReduceDiophantine

The value  of  the  system option  LatticeReduceDiophantine  specifies  whether  LatticeReduce

should  be  used  to  preprocess  systems  of  bounded  linear  inequalities.  The  use  of

LatticeReduce  is important for systems of inequalities describing polyhedra whose projections

on some nonaxial lines are much smaller than their projections on the axes. However, there are

systems  for  which  LatticeReduce,  instead  of  simplifying  the  problem,  makes  it  significantly

harder.

This finds the only two integer points in a triangle whose projections on both axes have sizes 
greater than a but whose projection on the line x + 5000 yã 0 has size one.

In[95]:= a = 104;
Reduce@a x § Ha + 1L y && Ha + 1L x ¥ Ha + 2L y && 0 § x § a + 1, 8x, y<, IntegersD êê Timing

Out[96]= 80., Hx ã 0 && y ã 0L »» Hx ã 10001 && y ã 10000L<

This sets the value of the system option LatticeReduceDiophantine to False.

In[97]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø False<D;

The nondefault method is much slower for this system, and the speed difference grows with a.

In[98]:= Reduce@a x § Ha + 1L y && Ha + 1L x ¥ Ha + 2L y && 0 § x § a + 1, 8x, y<, IntegersD êê Timing

Out[98]= 83.875, Hx ã 0 && y ã 0L »» Hx ã 10001 && y ã 10000L<
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Here is a system that contains a set of simple inequalities bds, which bound solutions to a 
reasonably small size polyhedron, combined with a set of relatively complicated inequalities 
ineqs. For such systems, using LatticeReduce tends to increase the timing.

In[99]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø True<D;
SeedRandom@1D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 85<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
X = x êü Range@5D;
ineqs = And üü Thread@B.X ¥ bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 10;
Reduce@ineqs && bds, X, IntegersD êê Length êê Timing

Out[105]= 81.773, 35<

The nondefault method is faster for this system.

In[106]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø False<D;
Reduce@ineqs && bds, X, IntegersD êê Length êê Timing

Out[107]= 80.09, 35<

This resets LatticeReduceDiophantine to the default value.

In[108]:= SetSystemOptions@"ReduceOptions" Ø 8"LatticeReduceDiophantine" Ø True<D;

MaxFrobeniusGraph

The system option MaxFrobeniusGraph specifies the maximal size of the smallest coefficient in

a Frobenius equation for  which FindInstance  uses an algorithm based on the computation of

the critical  tree in the Frobenius graph [11]. Otherwise, the more general methods for solving

bounded  linear  systems  are  used.  Unlike  the  general  method  for  solving  bounded  linear

systems, the method based on the computation of  the Frobenius graph depends very little  on

the number of variables, hence it is the faster choice for equations with many variables. On the

other  hand,  the method requires storing a graph of  the size of  the smallest  coefficient,  so for

large coefficients it may run out of memory.

To find a solution of a Frobenius equation with the smallest coefficient larger than 106, 
FindInstance by default uses the general method for solving bounded linear systems. For 
this example the method is relatively slow but uses little memory. The kernel has been 
restarted to show the memory usage by the current example.

In[1]:= SeedRandom@1D;
A = TableARandomIntegerA95 106, 107=E, 825<E;
X = x êü Range@25D;
FindInstance@A.X ã 123456789 && And üü Thread@X ¥ 0D, X, IntegersD êê Timing

Out[4]= 842.952, 88x@1D Ø 1, x@2D Ø 0, x@3D Ø 0, x@4D Ø 0, x@5D Ø 2, x@6D Ø 3, x@7D Ø 0, x@8D Ø 0, x@9D Ø 0,
x@10D Ø 7, x@11D Ø 0, x@12D Ø 0, x@13D Ø 0, x@14D Ø 0, x@15D Ø 0, x@16D Ø 2, x@17D Ø 1,
x@18D Ø 0, x@19D Ø 0, x@20D Ø 3, x@21D Ø 0, x@22D Ø 0, x@23D Ø 0, x@24D Ø 0, x@25D Ø 0<<<

102     Advanced Algebra



In[5]:= MaxMemoryUsed@D

Out[5]= 10288400

This increases the value of MaxFrobeniusGraph to 107.

In[6]:= SetSystemOptionsA"ReduceOptions" Ø 9"MaxFrobeniusGraph" Ø 107=E;

Now FindInstance uses the method based on the computation of the Frobenius graph. It 
finds the solution faster, but it uses more memory.

In[7]:= FindInstance@A.X ã 123456789 && And üü Thread@X ¥ 0D, X, IntegersD êê Timing

Out[7]= 82.213, 88x@1D Ø 0, x@2D Ø 14, x@3D Ø 0, x@4D Ø 0, x@5D Ø 1, x@6D Ø 0, x@7D Ø 0, x@8D Ø 0, x@9D Ø 0,
x@10D Ø 0, x@11D Ø 0, x@12D Ø 0, x@13D Ø 0, x@14D Ø 0, x@15D Ø 0, x@16D Ø 2, x@17D Ø 1,
x@18D Ø 1, x@19D Ø 1, x@20D Ø 0, x@21D Ø 0, x@22D Ø 1, x@23D Ø 1, x@24D Ø 0, x@25D Ø 0<<<

In[8]:= MaxMemoryUsed@D

Out[8]= 77722760

This resets MaxFrobeniusGraph to the default value.

In[9]:= SetSystemOptionsA"ReduceOptions" Ø 9"MaxFrobeniusGraph" Ø 106=E;

SieveMaxPoints

The system option SieveMaxPoints specifies the maximal number of search points used by the

modular  sieve  method  and  by  searches  used  in  solving  equations  with  a  linear  variable.  The

default value of the option is 10,000.

With the default setting of SieveMaxPoints, FindInstance is unable to find a solution for 
this equation.

In[10]:= FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

FindInstance::nsmet :
The methods available to FindInstance are insufficient to find the

requested instances or prove they do not exist. à
Out[10]= FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

Increasing the number of SieveMaxPoints to one million allows FindInstance to find a 
solution.

In[11]:= SetSystemOptions@"ReduceOptions" Ø 8"SieveMaxPoints" Ø 1000000<D;
FindInstanceAx2 + 21 y3 - 17 z4 ã 401, 8x, y, z<, IntegersE

Out[12]= 88x Ø -29, y Ø -2, z Ø -2<<

This resets SieveMaxPoints to the default value.

In[13]:= SetSystemOptions@"ReduceOptions" Ø 8"SieveMaxPoints" Ø 10000<D;

References
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Algebraic Number Fields

Mathematica  provides  representation  of  algebraic  numbers  as  Root  objects.  A  Root  object

contains  the  minimal  polynomial  of  the  algebraic  number  and  the  root  number~an  integer

indicating which of the roots of the minimal polynomial the Root  object represents. This allows

for  unique representation of  arbitrary complex algebraic  numbers.  A disadvantage is  that  per-

forming  arithmetic  operations  in  this  representation  is  quite  costly.  That  is  why  Mathematica

requires the use of  an additional  function,  RootReduce,  in  order to simplify  arithmetic  expres-

sions.  Restricting  computations  to  be  within  a  fixed  finite  algebraic  extension  of  the  rationals,

@qD, allows a more convenient representation of its elements as polynomials in q. 

AlgebraicNumber@q,8c0,c1,…,cn<D represent the algebraic number c0 + c1 q + … + cn qn in @qD

Representation of algebraic numbers as elements of a finite extension of rationals.

If q is an algebraic integer with a MinimalPolynomial of degree l, and 8c0, …, cl< are rational 
numbers, then AlgebraicNumber@q, 8c0, …, cl<D is an inert numeric object. 

In[1]:= a = AlgebraicNumberARootAÒ3 - Ò + 1 &, 1E, 81, 2, 3<E

Out[1]= AlgebraicNumberARootA1 - Ò1 + Ò13 &, 1E, 81, 2, 3<E

N can be used to find a numeric approximation of an AlgebraicNumber object.

In[2]:= N@a, 20D

Out[2]= 3.6151970842505862282

For  any  algebraic  number  q  and  any  list  of  rational  numbers  8c0, …, cl<  ,

AlgebraicNumber@q, 8c0, …, cl<D  evaluates  to  AlgebraicNumber@x, 8d0, …, dm<D,  such  that

x = dq, d is a factor of the leading coefficient of MinimalPolynomial of q, such that x is an alge-

braic integer, m is the degree of MinimalPolynomial of q, and

c0 + c1 q + … + cl ql ã d0 + d1 x + … + dm xm.
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AlgebraicNumber automatically makes the generator of the extension an algebraic integer 
and the coefficient list equal in length to the degree of the extension.

In[3]:= AlgebraicNumberARootA2 Ò4 - 3 Ò + 2 &, 1E, 81, 2, 3, 4, 5, 6<E

Out[3]= AlgebraicNumberBRootA16 - 12 Ò1 + Ò14 &, 1E, :-4,
7

4
, 3,

1

2
>F

AlgebraicNumber objects representing rational numbers reduce automatically to numbers.

In[4]:= AlgebraicNumberARootAÒ5 - 7 Ò + 1 &, 1E, 80, 7, 0, 0, 0, -1<E

Out[4]= 1

Adding or multiplying AlgebraicNumber objects that explicitly belong to the same field (i.e., 
have the same first elements), adding or multiplying a rational number and an 
AlgebraicNumber object, or raising an AlgebraicNumber object to an integer power yields 
an AlgebraicNumber object.

In[5]:= a = AlgebraicNumberARootAÒ4 + 7 Ò - 21 &, 1E, 81, 2, 3, 4<E;
b = AlgebraicNumberARootAÒ4 + 7 Ò - 21 &, 1E, 89, 8, 7, 5<E;
2 a2 - 3 a b + 5 b5 - 3

a8 - b4 + 1

2

+ 9

Out[5]= AlgebraicNumberBRootA-21 + 7 Ò1 + Ò14 &, 1E,

:
41286695899369558776723710439212189982056327290172063

4586375026009762651263976115838375027468985058462049
,

6520802026300441952691134470541521717177617572114

13759125078029287953791928347515125082406955175386147
,

3688721281596550115065494536738395724701865336152

13759125078029287953791928347515125082406955175386147
,

2274021184276897634212701763901059483341282983762

13759125078029287953791928347515125082406955175386147
>F

RootReduce transforms AlgebraicNumber objects to Root objects.

In[6]:= RootReduce@aD

Out[6]= RootA-3 062597 - 82303 Ò1 + 1182 Ò12 + 80 Ò13 + Ò14 &, 1E

ToNumberField@a,qD express the algebraic number a in the number field gener-
ated by q

ToNumberField@8a1,a2,…<,qD express the ai in the field generated by q

ToNumberField@8a1,a2,…<D express the ai in a common extension field generated by a 
single algebraic number

Representing arbitrary algebraic numbers as elements of algebraic number fields.

ToNumberField can be used to find a common finite extension of rationals containing the 
given algebraic numbers.
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ToNumberField can be used to find a common finite extension of rationals containing the 
given algebraic numbers.

In[7]:= ToNumberFieldB: 2 , 3 >F

Out[7]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :0, -
9

2
, 0,

1

2
>F,

AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :0,
11

2
, 0, -

1

2
>F>

This represents 6 as an element of the field generated by Root@1 - 10 Ò12 + Ò14 &, 4D.

In[8]:= ToNumberFieldB 6 , RootA1 - 10 Ò2 + Ò4 &, 4EF

Out[8]= AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :-
5

2
, 0,

1

2
, 0>F

Arithmetic within a fixed finite extension of  rationals is  much faster than arithmetic within the

field of all complex algebraic numbers. 

Suppose you need to find the value of rational function f  with 8x, y, z< replaced by algebraic 
numbers 8a, b, c<.

In[9]:= 8a, b, c< = :Â, 2 , RootAÒ3 - 2 Ò + 3 &, 1E>;

f =
-2 y z I7 + x - y + z2M + I6 + x2 + 2 yM I-11 + x y + z2M

2 y z H-4 - x + 3 y zL - I6 + x2 + 2 yM I2 - 2 x + z3M
;

A direct computation of the value of f  at 8a, b, c< using RootReduce takes a rather long time.

In[10]:= RootReduce@f ê. 8x Ø a, y Ø b, z Ø c<D êê Timing

Out[10]= 934.3301, RootA127 463137729603858692 + 15069520316552576640 Ò1 +

3151085417830482145156 Ò12 - 10938243534840099267928 Ò13 +

14492589303525156688533 Ò14 - 7171605298335082808820 Ò15 - 947445370794828405814 Ò16 +

2510661531113587622448 Ò17 - 606316032776880635517 Ò18 - 100899537810316084288 Ò19 +

74049398920051042942 Ò110 - 12985018306589245140 Ò111 + 879298673075259913 Ò112 &, 4E=
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A faster alternative is to do the computation in a common algebraic number field containing 
8a, b, c<.

In[11]:= H8aa, bb, cc< = ToNumberField@8a, b, c<DL êê Timing

Out[11]= :0.048003,

:AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 +

12 Ò19 - 14 Ò110 + Ò112 &, 4E, :
244141

94827
,
12086198

1991367
,
7515071

3982734
,
42845617

35844606
, -

26501665

11948202
,

1373087

17922303
, -

718309

3982734
,

890062

5974101
,

8969

284481
, -

926321

35844606
, -

3503

5974101
,

34196

17922303
>F,

AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 +

87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &, 4E, :-
196718

94827
, -

688153

284481
, -

1293697

568962
,
3857569

5120658
,

3032287

5120658
,
1444985

7680987
,

4897

1706886
, -

224722

2560329
,

2477

853443
,

55031

5120658
, -

2143

2560329
, -

5212

7680987
>F,

AlgebraicNumberBRootA648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 -

1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &, 4E,

:-
47423

94827
, -

5277760

1991367
,

770404

1991367
, -

34924300

17922303
,
29139493

17922303
, -

14234156

53766909
,
1060324

5974101
,

-
1097132

17922303
, -

29384

853443
,

90184

5974101
,

25510

17922303
, -

66104

53766909
>F>>

Arithmetic within the common number field is much faster.

In[12]:= d =
-2 y z I7 + x - y + z2M + I6 + x2 + 2 yM I-11 + x y + z2M

2 y z H-4 - x + 3 y zL - I6 + x2 + 2 yM I2 - 2 x + z3M
ê. 8x Ø aa, y Ø bb, z Ø cc< êê

Timing

Out[12]= :0.036002, AlgebraicNumberBRootA

648 + 2592 Ò1 + 3492 Ò12 + 1524 Ò13 + 217 Ò14 - 1152 Ò15 - 14 Ò16 - 72 Ò17 + 87 Ò18 + 12 Ò19 - 14 Ò110 + Ò112 &,

4E, :-
3860776239867194137278

3970535965319412941431
, -

53260812035714120989033

11911607895958238824293
, -

109038458622656664030115

71469647375749432945758
,

-
192381933793750243587991

107204471063624149418637
,

70556676211663475835676

35734823687874716472879
, -

106803727028468004471691

964840239572617344767733
,

7665080170226573969564

35734823687874716472879
, -

36535823424460554318055

321613413190872448255911
, -

124880404825784359957

3403316541702353949798
,

7067040798332263363508

321613413190872448255911
,

7357016108927986451

5104974812553530924697
, -

1522619721558874444783

964840239572617344767733
>F>

Converting the resulting AlgebraicNumber object to a Root object is fast as well.

In[13]:= RootReduce@dD êê Timing

Out[13]= 90.044003, RootA127 463137729603858692 + 15069520316552576640 Ò1 +

3151085417830482145156 Ò12 - 10938243534840099267928 Ò13 +

14492589303525156688533 Ò14 - 7171605298335082808820 Ò15 - 947445370794828405814 Ò16 +

2510661531113587622448 Ò17 - 606316032776880635517 Ò18 - 100899537810316084288 Ò19 +

74049398920051042942 Ò110 - 12985018306589245140 Ò111 + 879298673075259913 Ò112 &, 4E=

ToNumberField@8a1, a2, …<D  is  equivalent  to  ToNumberField@8a1, a2, …<, AutomaticD,  and

does  not  necessarily  use  the  smallest  common  field  extension.

ToNumberField@8a1, a2, …<, AllD always uses the smallest common field extension.
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ToNumberField@8a1, a2, …<D  is  equivalent  to  ToNumberField@8a1, a2, …<, AutomaticD,  and

does  not  necessarily  use  the  smallest  common  field  extension.

ToNumberField@8a1, a2, …<, AllD always uses the smallest common field extension.

Here the first AlgebraicNumber object is equal to 2  so it does not generate the 4th-degree 
field  (Root@1 - 10 Ò12 + Ò14 &, 4D) it is represented in. However, the common field found 
by ToNumberField contains the whole field  (Root@1 - 10 Ò12 + Ò14 &, 4D).

In[14]:= ToNumberFieldB:AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F, 5 >F

Out[14]= :AlgebraicNumberBRootA576 - 960 Ò12 + 352 Ò14 - 40 Ò16 + Ò18 &, 8E, :0,
5

3
, 0, -

7

72
, 0, -

7

144
, 0,

1

576
>F,

AlgebraicNumberBRootA576 - 960 Ò12 + 352 Ò14 - 40 Ò16 + Ò18 &, 8E, :0, -
53

12
, 0,

95

36
, 0, -

97

288
, 0,

5

576
>F>

Specifying the second argument All makes ToNumberField find the smallest field possible.

In[15]:= ToNumberFieldB:AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F, 5 >, AllF

Out[15]= :AlgebraicNumberBRootA9 - 14 Ò12 + Ò14 &, 4E, :0, -
11

6
, 0,

1

6
>F,

AlgebraicNumberBRootA9 - 14 Ò12 + Ò14 &, 4E, :0,
17

6
, 0, -

1

6
>F>

MinimalPolynomial@aD give a pure function representation of the minimal polyno -
mial over the integers of the algebraic number a

MinimalPolynomial@a,xD give the minimal polynomial of the algebraic number a as a 
polynomial in x

AlgebraicIntegerQ@aD give True if the algebraic number a is an algebraic integer 
and False otherwise

AlgebraicNumberDenominator@aD give the smallest positive integer n such that na is an 
algebraic integer

AlgebraicNumberTrace@aD give the trace of the algebraic number a

AlgebraicNumberNorm@aD give the norm of the algebraic number a

AlgebraicUnitQ@aD give True if the algebraic number a is an algebraic unit 
and False otherwise

RootOfUnityQ@aD give True if the algebraic number a is a root of unity and 
False otherwise

Functions for computing algebraic number properties.

The minimal polynomial of an algebraic number a is the lowest-degree polynomial f  with integer

coefficients and the smallest positive leading coefficient, such that f HaLã 0.

This gives the minimal polynomial of 2 + 3  expressed as a pure function.
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This gives the minimal polynomial of 2 + 3  expressed as a pure function.

In[16]:= MinimalPolynomialB 2 + 3 F

Out[16]= 1 - 10 Ò12 + Ò14 &

This gives the minimal polynomial of Root@Ò15 - 2 Ò1 + 7 &, 1D
2
+ 1 expressed as a polynomial 

in x.

In[17]:= MinimalPolynomialBRootAÒ5 - 2 Ò + 7 &, 1E2 + 1, xF

Out[17]= -50 - 3 x + 2 x2 + 6 x3 - 5 x4 + x5

An algebraic number is an algebraic integer if and only if its MinimalPolynomial is monic.

This shows that 1
2
J1 + 5 N is an algebraic integer.

In[18]:= AlgebraicIntegerQB
1

2
J1 + 5 NF

Out[18]= True

This shows that 1
4
J1 + 5 N is not an algebraic integer.

In[19]:= AlgebraicIntegerQB
1

4
J1 + 5 NF

Out[19]= False

This gives the smallest positive integer n for which n J1 + 5 Ní4 is an algebraic integer.

In[20]:= AlgebraicNumberDenominatorB
1

4
J1 + 5 NF

Out[20]= 2

The trace of an algebraic number a is the sum of all roots of MinimalPolynomial@aD.

This gives the trace of H-1L1ê7.

In[21]:= AlgebraicNumberTraceAH-1L1ê7E

Out[21]= 1

The norm of an algebraic number a is the product of all roots of MinimalPolynomial@aD.
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This gives the norm of 3 + 5 .

In[22]:= AlgebraicNumberNormB 3 + 5 F

Out[22]= 4

An algebraic number a is an algebraic unit if and only if both a and 1 êa are algebraic integers, or

equivalently, if and only if AlgebraicNumberNorm@aD is 1 or -1.

This shows that GoldenRatio  is an algebraic unit.

In[23]:= AlgebraicUnitQ@GoldenRatioD

Out[23]= True

This shows that AlgebraicNumber@Root@Ò13 - 4 Ò1 + 17 &, 1D, 81, 2, 3<D is not an 
algebraic unit.

In[24]:= AlgebraicUnitQAAlgebraicNumberARootAÒ3 - 4 Ò + 17 &, 1E, 81, 2, 3<EE

Out[24]= False

An algebraic number a is a root of unity if and only if an ã 1 for some integer n.

This shows that 2 + 2 + Â 2 - 2 ì2 is a root of unity.

In[25]:= RootOfUnityQB
1

2
2 + 2 + Â 2 - 2 F

Out[25]= True

Advanced Algebra     111



MinimalPolynomialAs,x,Extension->aE

give the characteristic polynomial of the algebraic number 
s over the field @aD

MinimalPolynomialAs,x,Extension->AutomaticE

give the characteristic polynomial of the 
AlgebraicNumber object s over the number field gener -
ated by its first argument

AlgebraicNumberTraceAa,Extension->qE

give the trace of the algebraic number a over the field @qD

AlgebraicNumberTraceAa,Extension->AutomaticE

give the trace of the AlgebraicNumber object a over the 
number field generated by its first argument

AlgebraicNumberNormAa,Extension->qE

give the norm of the algebraic number a over the field @qD

AlgebraicNumberNormAa,Extension->AutomaticE

give the norm of the AlgebraicNumber object a over the 
number field generated by its first argument

Functions for computing properties of elements of algebraic number fields. 

If a is AlgebraicNumber@q, coeffsD, then MinimalPolynomial@a, x, Extension -> AutomaticD is

equal to MinimalPolynomial@a, xDd, where d is the extension degree of HqL êHaL.

The characteristic polynomial of 2 , represented as an element of an extension of rationals of 

degree 4, is the square of MinimalPolynomial of 2 .

In[26]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :0, -
9

2
, 0,

1

2
>F;

MinimalPolynomial@a, xD
MinimalPolynomial@a, x, Extension Ø AutomaticD êê Factor

Out[26]= -2 + x2

Out[26]= I-2 + x2M
2

The trace of an algebraic number is the sum of all roots of its characteristic polynomial. If a is

AlgebraicNumber@q, coeffsD,  then  AlgebraicNumberTrace@a, Extension -> AutomaticD  is

equal to d AlgebraicNumberTrace@aD, where d is the extension degree of  HqL ê HaL.
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The trace of 2 + 1, represented as an element of an extension of rationals of degree 4, is 

twice the AlgebraicNumberTrace of 2 + 1.

In[27]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :1, -
9

2
, 0,

1

2
>F;

AlgebraicNumberTrace@aD
AlgebraicNumberTrace@a, Extension Ø AutomaticD

Out[27]= 2

Out[27]= 4

The norm of an algebraic number is the product of all roots of its characteristic polynomial. If a

is  AlgebraicNumber@q, coeffsD,  then  AlgebraicNumberNorm@a, Extension -> AutomaticD  is

equal to AlgebraicNumberNorm@aDd, where d is the extension degree of  HqL ê HaL.

The norm of 2 + 5, represented as an element of an extension of rationals of degree 4, is the 

square of AlgebraicNumberNorm of 2 + 5.

In[28]:= a = AlgebraicNumberBRootA1 - 10 Ò2 + Ò4 &, 4E, :5, -
9

2
, 0,

1

2
>F;

AlgebraicNumberNorm@aD
AlgebraicNumberNorm@a, Extension Ø AutomaticD

Out[28]= 23

Out[28]= 529
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NumberFieldIntegralBasis@aD give an integral basis for the field @aD generated by the 
algebraic number a

NumberFieldRootsOfUnity@aD give the roots of unity for the field @aD generated by the 
algebraic number a

NumberFieldFundamentalUnits@aD give a list of fundamental units for the field @aD gener -
ated by the algebraic number a

NumberFieldNormRepresentatives@a,mD

give a list of representatives of classes of algebraic inte-
gers of norm ±m in the field @aD generated by the alge- 
braic number a

NumberFieldSignature@aD give the signature of the field @aD generated by the 
algebraic number a

NumberFieldDiscriminant@aD give the discriminant of the field @aD generated by the 
algebraic number a

NumberFieldRegulator@aD give the regulator of the field @aD generated by the 
algebraic number a

NumberFieldClassNumber@aD gives the class number of a number field @aD generated 
by an algebraic number a

Functions of computing properties of algebraic number fields. 

An integral basis of an algebraic number field K is a list of algebraic numbers forming a basis of

the -module of  the algebraic  integers of  K.  The set  8a1, …, an<  is  an integral  basis  of  an alge-

braic number field K  if and only if ai eK  are algebraic integers, and every algebraic integer z eK

can be uniquely represented as

z = k1 a1 + … + kn an

with integer coefficients ki.

Here is an integral basis of I181ê3M.

In[29]:= NumberFieldIntegralBasisA181ê3E

Out[29]= :1, AlgebraicNumberARootA-18 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA-18 + Ò13 &, 1E, :0, 0,
1

3
>F>
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This gives an integral basis of the field generated by the first root of 
533 + 429 Ò1 + 18 Ò12 + Ò13 &.

In[30]:= NumberFieldIntegralBasisARootA533 + 429 Ò + 18 Ò2 + Ò3 &, 1EE

Out[30]= :1, AlgebraicNumberARootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, :
742

759
,

94

759
,

1

759
>F>

NumberFieldIntegralBasis allows specifying the number field by giving a polynomial and a 
root number.

In[31]:= NumberFieldIntegralBasisA533 + 429 Ò + 18 Ò2 + Ò3 &, 1E

Out[31]= :1, AlgebraicNumberARootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, 80, 1, 0<E,

AlgebraicNumberBRootA533 + 429 Ò1 + 18 Ò12 + Ò13 &, 1E, :
742

759
,

94

759
,

1

759
>F>

This gives the roots of unity in the field generated by RootA9 - 2 Ò2 + Ò4 &, 4E.

In[32]:= NumberFieldRootsOfUnityARootA9 - 2 Ò2 + Ò4 &, 4EE

Out[32]= :-1, 1, AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :-
1

4
, -

5

12
,
1

4
,

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :-
1

4
,

5

12
,
1

4
, -

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :0, -
1

6
, 0, -

1

6
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :0,
1

6
, 0,

1

6
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :
1

4
, -

5

12
, -

1

4
,

1

12
>F,

AlgebraicNumberBRootA9 - 2 Ò12 + Ò14 &, 4E, :
1

4
,

5

12
, -

1

4
, -

1

12
>F>

Here are all roots of unity in the field J1 + Â 3 N.

In[33]:= NumberFieldRootsOfUnityB1 + Â 3 F

Out[33]= :-1, 1, AlgebraicNumberB1 + Â 3 , :-1,
1

2
>F, AlgebraicNumberB1 + Â 3 , :0, -

1

2
>F,

AlgebraicNumberB1 + Â 3 , :0,
1

2
>F, AlgebraicNumberB1 + Â 3 , :1, -

1

2
>F>

8u1, …, un<  is  a  list  of  fundamental  units  of  an  algebraic  number  field  K  if  and  only  if  ui eK  are

algebraic units, and every algebraic unit u eK can be uniquely represented as

u = x u1n1  utnt

with a root of unity x and integer exponents ni.

Here is a set of fundamental units of the field generated by the third root of Ò14 - 10 Ò12 + 1 &.
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Here is a set of fundamental units of the field generated by the third root of Ò14 - 10 Ò12 + 1 &.

In[34]:= NumberFieldFundamentalUnitsARootAÒ4 - 10 Ò2 + 1 &, 3EE

Out[34]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 3E, :
5

4
,
9

4
, -

1

4
, -

1

4
>F,

AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 3E, :-1,
9

2
, 0, -

1

2
>F,

AlgebraicNumberARootA1 - 10 Ò12 + Ò14 &, 3E, 80, 1, 0, 0<E>

This gives a fundamental unit of the quadratic field J 21 N.

In[35]:= NumberFieldFundamentalUnitsB 21 F

Out[35]= :AlgebraicNumberB 21 , :
5

2
,
1

2
>F>

This gives a set of representatives of classes of elements of norm 9 in the field generated by the 
first root of Ò12 - 7 &.

In[36]:= NumberFieldNormRepresentativesARootAÒ2 - 7 &, 1E, 9E

Out[36]= :3, AlgebraicNumberB- 7 , 8-4, -1<F, AlgebraicNumberB- 7 , 8-4, 1<F>

Here is a set of representatives of classes of elements of norm 2 in the field J 2 + 3 N.

In[37]:= NumberFieldNormRepresentativesB 2 + 3 , 2F

Out[37]= :AlgebraicNumberBRootA1 - 10 Ò12 + Ò14 &, 4E, :-
9

4
,
9

4
,
1

4
, -

1

4
>F>

This shows that the polynomial Ò5 + Ò4 + Ò3 + Ò2 + 1 & has 1 real root and 2 conjugate pairs of 
complex roots.

In[38]:= NumberFieldSignatureARootAÒ5 + Ò4 + Ò3 + Ò2 + 1 &, 1EE

Out[38]= 81, 2<

This shows that the field @aD has 12 real embeddings and 6 conjugate pairs of complex 
embeddings.

In[39]:= a = 2 + RootAÒ3 - 11 Ò - 2 &, 1E + AlgebraicNumberARootAÒ4 - 3 Ò + 1 &, 2E, 81, 2, 3<E;
NumberFieldSignature@aD

Out[39]= 812, 6<

The discriminant of a number field K is the discriminant of an integral basis 8a1, …, an< of K (i.e.,

the  determinant  of  the  matrix  with  elements

AlgebraicNumberTrace@ai a j, Extension -> AutomaticD).  The  value  of  the  determinant  does

not depend on the choice of integral basis.
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The discriminant of a number field K is the discriminant of an integral basis 8a1, …, an< of K (i.e.,

the  determinant  of  the  matrix  with  elements

AlgebraicNumberTrace@ai a j, Extension -> AutomaticD).  The  value  of  the  determinant  does

not depend on the choice of integral basis.

Here is the discriminant of J2 - 3 + 51ê4N.

In[40]:= NumberFieldDiscriminantB2 - 3 + 51ê4F

Out[40]= 5184000000

This gives the discriminant of the field generated by a root of the polynomial 
Ò5 + Ò4 + Ò3 + Ò2 + 1 &. The value of the discriminant does not depend on the choice of the root; 
hence, NumberFieldDiscriminant allows specifying just the polynomial.

In[41]:= NumberFieldDiscriminantAÒ5 + Ò4 + Ò3 + Ò2 + 1 &E

Out[41]= 2297

The regulator of a number field K  is the lattice volume of the image of the group of units of K

under the logarithmic embedding

K \ 80< ú
xö 8Log@Abs@s1HxLDD, …, Log@Abs@ssHxLDD, 2 Log@Abs@ss+1HxLDD, …, 2 Log@Abs@ss+tHxLDD< œs+t,

where s1, …, ss  are the real  embeddings of  K  in  ,  and ss+1, …, ss+t  are one of  each conjugate

pair of the complex embeddings of K in .

Here is the regulator of J 61 N.

In[42]:= NumberFieldRegulatorB 61 F

Out[42]= LogB
1

2
39 + 5 61 F

This gives the regulator of the field generated by a root of the polynomial Ò13 - 3 Ò12 + 1 &. The 
value of the regulator does not depend on the choice of the root; hence, 
NumberFieldRegulator allows specifying just the polynomial.

In[43]:= NumberFieldRegulatorAÒ3 - 3 Ò2 + 1 &E

Out[43]= -LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 1E, 8-1, -2, 1<EE
LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 2E, 80, 3, -1<EE +

LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 1E, 80, -3, 1<EE
LogAAlgebraicNumberARootA1 - 3 Ò12 + Ò13 &, 2E, 81, 2, -1<EE

This gives the class number of  J -71 N.
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This gives the class number of  J -71 N.

In[44]:= NumberFieldClassNumber@Sqrt@-71DD

Out[44]= 7
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Solving Frobenius Equations and 
Computing Frobenius Numbers

A Frobenius equation is an equation of the form

a1 x1 + ... + an xn ã m,

where a1, ..., an  are positive integers, m  is an integer, and the coordinates x1, ..., xn  of solutions

are required to be non-negative integers.

The  Frobenius  number  of  a1, ..., an  is  the  largest  integer  m  for  which  the  Frobenius  equation

a1 x1 + ... + an xn ã m has no solutions.

FrobeniusSolve@8a1,…,an<,bD give a list of all solutions of the Frobenius equation 
a1 x1 + … + an xn = b

FrobeniusSolve@8a1,…,an<,b,mD give m  solutions of the Frobenius equation 
a1 x1 + … + an xn = b; if less than m  solutions exist, give all 
solutions

FrobeniusNumber@8a1,…,an<D give the Frobenius number of a1, …, an

Functions for solving Frobenius equations and computing Frobenius numbers.

This gives all solutions of the Frobenius equation 12 x + 16 y + 20 z + 27 t == 123.

In[1]:= FrobeniusSolve@812, 16, 20, 27<, 123D

Out[1]= 880, 1, 4, 1<, 80, 6, 0, 1<, 81, 4, 1, 1<,
82, 2, 2, 1<, 83, 0, 3, 1<, 84, 3, 0, 1<, 85, 1, 1, 1<, 88, 0, 0, 1<<

This gives one solution of the Frobenius equation 12 x + 16 y + 20 z + 27 t == 123.

In[2]:= FrobeniusSolve@812, 16, 20, 27<, 123, 1D

Out[2]= 888, 0, 0, 1<<

Here is the Frobenius number of 812, 16, 20, 27<, that is, the largest m for which the Frobenius 
equation 12 x + 16 y + 20 z + 27 t ==m has no solutions.

In[3]:= FrobeniusNumber@812, 16, 20, 27<D

Out[3]= 89
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This shows that indeed, the Frobenius equation 12 x + 16 y + 20 z + 27 t == 89 has no solutions.

In[4]:= FrobeniusSolve@812, 16, 20, 27<, 89, 1D

Out[4]= 8<

Here are all the ways of making 42 cents change using 1, 5, 10, and 25 cent coins.

In[5]:= FrobeniusSolve@81, 5, 10, 25<, 42D

Out[5]= 882, 0, 4, 0<, 82, 1, 1, 1<, 82, 2, 3, 0<, 82, 3, 0, 1<, 82, 4, 2, 0<, 82, 6, 1, 0<, 82, 8, 0, 0<,
87, 0, 1, 1<, 87, 1, 3, 0<, 87, 2, 0, 1<, 87, 3, 2, 0<, 87, 5, 1, 0<, 87, 7, 0, 0<,
812, 0, 3, 0<, 812, 1, 0, 1<, 812, 2, 2, 0<, 812, 4, 1, 0<, 812, 6, 0, 0<, 817, 0, 0, 1<,
817, 1, 2, 0<, 817, 3, 1, 0<, 817, 5, 0, 0<, 822, 0, 2, 0<, 822, 2, 1, 0<, 822, 4, 0, 0<,
827, 1, 1, 0<, 827, 3, 0, 0<, 832, 0, 1, 0<, 832, 2, 0, 0<, 837, 1, 0, 0<, 842, 0, 0, 0<<

Using 24, 29, 31, 34, 37, and 39 cent stamps, you can pay arbitrary postage of more than 88 
cents.

In[6]:= FrobeniusNumber@824, 29, 31, 34, 37, 39<D

Out[6]= 88
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