
Wolfram Mathematica ® Tutorial Collection

UNCONSTRAINED OPTIMIZATION

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Rob Knapp

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction . 1

Methods for Local Minimization
Introduction . 7

Newton's Method . 8

Quasi-Newton Methods . 15

Gauss-Newton Methods . 18

Nonlinear Conjugate Gradient Methods . 21

Principal Axis Method . 23

Methods for Solving Nonlinear Equations
Introduction . 25

Newton’s Method . 25

The Secant Method . 28

Brent’s Method . 29

Step Control
Introduction . 31

Line Search Methods . 32

Trust Region Methods . 39

Setting Up Optimization Problems in Mathematica
Specifying Derivatives . 44

Variables and Starting Conditions . 49

Termination Conditions . 53

Symbolic Evaluation . 59

UnconstrainedProblems Package
Plotting Search Data . 62

Test Problems . 65

References . 71

Introduction to Unconstrained
Optimization

Mathematica has a collection of commands that do unconstrained optimization (FindMinimum

and FindMaximum) and solve nonlinear equations (FindRoot) and nonlinear fitting problems

(FindFit). All these functions work, in general, by doing a search, starting at some initial

values and taking steps that decrease (or for FindMaximum, increase) an objective or merit

function.

The search process for FindMaximum is somewhat analogous to a climber trying to reach a

mountain peak in a thick fog; at any given point, basically all that climbers know is their posi-

tion, how steep the slope is, and the direction of the fall line. One approach is always to go

uphill. As long as climbers go uphill steeply enough, they will eventually reach a peak, though it

may not be the highest one. Similarly, in a search for a maximum, most methods are ascent

methods where every step increases the height and stops when it reaches any peak, whether it

is the highest one or not.

The analogy with hill climbing can be reversed to consider descent methods for finding local

minima. For the most part, the literature in optimization considers the problem of finding min-

ima, and since this applies to most of the Mathematica commands, from here on, this documen-

tation will follow that convention.

For example, the function x sinHx + 1L is not bounded from below, so it has no global minimum,

but it has an infinite number of local minima.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the function x Sin@x + 1D.

In[2]:= Plot@x Sin@x + 1D, 8x, -10, 10<D

Out[2]=
-10 -5 5 10

-10

-5

5

This shows the steps taken by FindMinimum for the function x Sin@x + 1D starting at x = 0.

In[3]:= FindMinimumPlot@x Sin@x + 1D, 8x, 0<D

Out[3]= :8-0.240125, 8x Ø -0.520269<<, 8Steps Ø 5, Function Ø 6, Gradient Ø 6<,

-0.5 -0.4 -0.3 -0.2 -0.1

-0.20

-0.15

-0.10

-0.05

>

The FindMinimumPlot command is defined in the Optimization`UnconstrainedProblems`

package loaded automatically by this notebook. It runs FindMinimum, keeps track of the func-

tion and gradient evaluations and steps taken during the search (using the EvaluationMonitor

and StepMonitor options), and shows them superimposed on a plot of the function. Steps are

indicated with blue lines, function evaluations are shown with green points, and gradient evalua-

tions are shown with red points. The minimum found is shown with a large black point. From

the plot, it is clear that FindMinimum has found a local minimum point.

This shows the steps taken by FindMinimum for the function x Sin@x + 1D starting at x = 2.

In[4]:= FindMinimumPlot@x Sin@x + 1D, 8x, 2<D

Out[4]=

Starting at 2, FindMinimum heads to different local minima, at which the function is smaller

than at the first minimum found.

From these two plots, you might come to the conclusion that if you start at a point where the

function is sloping downward, you will always head toward the next minimum in that direction.

However, this is not always the case; the steps FindMinimum takes are typically determined

using the value of the function and its derivatives, so if the derivative is quite small,

FindMinimum may think it has to go quite a long way to find a minimum point.

2 Unconstrained Optimization

:8-3.83922, 8x Ø 3.95976<<, 8Steps Ø 4, Function Ø 9, Gradient Ø 9<,

3 4 5 6 7

-4

-2

2

4

6

>

This shows the steps taken by FindMinimum for the function x Sin@x + 1D starting at x = 7.

In[5]:= FindMinimumPlot@x Sin@x + 1D, 8x, 7<D

Out[5]=

When starting at x = 7, which is near a local maximum, the first step is quite large, so

FindMinimum returns a completely different local minimum.

All these commands have "find" in their name because, in general, their design is to search to

find any point where the desired condition is satisfied. The point found may not be the only one

(in the case of roots) or even the best one (in the case of fits, minima, or maxima), or, as you

have seen, not even the closest one to the starting condition. In other words, the goal is to find

any point at which there is a root or a local maximum or minimum. In contrast, the function

NMinimize tries harder to find the global minimum for the function, but NMinimize is also

generally given constraints to bound the problem domain. However, there is a price to pay for

this generality~NMinimize has to do much more work and, in fact, may call one of the "Find"

functions to polish a result at the end of its process, so it generally takes much more time than

the "Find" functions.

In two dimensions, the minimization problem is more complicated because both a step direction

and step length need to be determined.

This shows the steps taken by FindMinimum to find a local minimum of the function
cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<.

In[6]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[6]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 9, Function Ø 13, Gradient Ø 13<,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>

Unconstrained Optimization 3

:8-41.4236, 8x Ø 41.4356<<, 8Steps Ø 3, Function Ø 14, Gradient Ø 14<,
15 20 25 30 35 40

-40

-20

20

40

>

The FindMinimumPlot command for two dimensions is similar to the one-dimensional case, but

it shows the steps and evaluations superimposed on a contour plot of the function. In this

example, it is apparent that FindMinimum needed to change direction several times to get to

the local minimum. You may notice that the first step starts in the direction of steepest descent

(i.e., perpendicular to the contour or parallel to the gradient). Steepest descent is indeed a

possible strategy for local minimization, but it often does not converge quickly. In subsequent

steps in this example, you may notice that the search direction is not exactly perpendicular to

the contours. The search is using information from past steps to try to get information about

the curvature of the function, which typically gives it a better direction to go. Another strategy,

which usually converges faster, but can be more expensive, is to use the second derivative of

the function. This is usually referred to as "Newton's" method.

This shows the steps taken using Newton's method.

In[7]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[7]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

In this example, it is clear that the extra information that "Newton's" method uses about the

curvature of the function makes a big difference in how many steps it takes to get to the mini-

mum. Even though Newton's method takes fewer steps, it may take more total execution time

since the symbolic Hessian has to be computed once and then evaluated numerically at each

step.

Usually there are tradeoffs between the rate of convergence or total number of steps taken and

cost per step. Depending on the size of the problems you want to solve, you may want to pick a

particular method to best match that tradeoff for a particular problem. This documentation is

intended to help you understand those choices as well as some ways to get the best results

from the functions in Mathematica. For the most part, examples will be used to illustrate the

ideas, but a limited exposition on the mathematical theory behind the methods will be given so

that you can better understand how the examples work.

4 Unconstrained Optimization

For the most part, local minimization methods for a function f are based on a quadratic model

(1)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p.

The subscript k refers to the kth iterative step. In Newton's method, the model is based on the

exact Hessian matrix, Bk = “2 f HxkL , but other methods use approximations to “2 f HxkL, which are

typically less expensive to compute. A trial step sk is typically computed to be the minimizer of

the model, which satisfies the system of linear equations.

Bk sk = -“ f HxkL

If f is sufficiently smooth and xk is sufficiently close to a local minimum, then with Bk = “2 f HxkL,

the sequence of steps xk+1 = sk + xk is guaranteed to converge to the local minimum. However, in

a typical search, the starting value is rarely close enough to give the desired convergence.

Furthermore, Bk is often an approximation to the actual Hessian and, at the beginning of a

search, the approximation is frequently quite inaccurate. Thus, it is necessary to provide addi-

tional control to the step sequence to improve the chance and rate of convergence. There are

two frequently used methods for controlling the steps: line search and trust region methods.

In a "line search" method, for each trial step sk found, a one-dimensional search is done along

the direction of sk so that xk+1 = xk + ak sk. You could choose ak so that it minimizes f Hxk+1L in this

direction, but this is excessive, and with conditions that require that f Hxk+1L decreases suffi-

ciently in value and slope, convergence for reasonable approximations Bk can be proven. Mathe-

matica uses a formulation of these conditions called the Wolfe conditions.

In a "trust region" method, a radius Dk within which the quadratic model qkHpL in equation (1) is

“trusted” to be reasonably representative of the function. Then, instead of solving for the uncon-

strained minimum of (1), the trust region method tries to find the constrained minimum of (1)

with °p¥ § Dk. If the xk are sufficiently close to a minimum and the model is good, then often the

minimum lies within the circle, and convergence is quite rapid. However, near the start of a

search, the minimum will lie on the boundary, and there are a number of techniques to find an

approximate solution to the constrained problem. Once an approximate solution is found, the

actual reduction of the function value is compared to the predicted reduction in the function

value and, depending on how close the actual value is to the predicted, an adjustment is made

for Dk+1.

Unconstrained Optimization 5

For symbolic minimization of a univariate smooth function, all that is necessary is to find a point

at which the derivative is zero and the second derivative is positive. In multiple dimensions,

this means that the gradient vanishes and the Hessian needs to be positive definite. (If the

Hessian is positive semidefinite, the point is a minimizer, but is not necessarily a strict one.) As

a numerical algorithm converges, it is necessary to keep track of the convergence and make

some judgment as to when a minimum has been approached closely enough. This is based on

the sequence of steps taken and the values of the function, its gradient, and possibly its Hes-

sian at these points. Usually, the Mathematica Find… functions will issue a message if they

cannot be fairly certain that this judgment is correct. However, keep in mind that discontinuous

functions or functions with rapid changes of scale can fool any numerical algorithm.

When solving "nonlinear equations", many of the same issues arise as when finding a "local

minimum". In fact, by considering a so-called merit function, which is zero at the root of the

equations, it is possible to use many of the same techniques as for minimization, but with the

advantage of knowing that the minimum value of the function is 0. It is not always advanta-

geous to use this approach, and there are some methods specialized for nonlinear equations.

Most examples shown will be from one and two dimensions. This is by no means because Mathe-

matica is restricted to computing with such small examples, but because it is much easier to

visually illustrate the main principles behind the theory and methods with such examples.

6 Unconstrained Optimization

Methods for Local Minimization

Introduction to Local Minimization

The essence of most methods is in the local quadratic model

qkHpL = f HxkL + “ f HxkLT p +
1

2
pT Bk p

that is used to determine the next step. The FindMinimum function in Mathematica has five

essentially different ways of choosing this model, controlled by the method option. These meth-

ods are similarly used by FindMaximum and FindFit.

"Newton" use the exact Hessian or a finite difference approximation
if the symbolic derivative cannot be computed

"QuasiNewton" use the quasi-Newton BFGS approximation to the Hessian
built up by updates based on past steps

"LevenbergMarquardt" a Gauss|Newton method for least-squares problems; the
Hessian is approximated by JT J, where J is the Jacobian of
the residual function

"ConjugateGradient" a nonlinear version of the conjugate gradient method for
solving linear systems; a model Hessian is never formed
explicitly

"PrincipalAxis" works without using any derivatives, not even the gradi -
ent, by keeping values from past steps; it requires two
starting conditions in each variable

Basic method choices for FindMinimum .

With Method -> Automatic, Mathematica uses the "quasi-Newton" method unless the problem

is structurally a sum of squares, in which case the Levenberg|Marquardt variant of the "Gauss|

Newton" method is used. When given two starting conditions in each variable, the "principal

axis" method is used.

Unconstrained Optimization 7

Newton's Method

One significant advantage Mathematica provides is that it can symbolically compute derivatives.

This means that when you specify Method -> "Newton" and the function is explicitly differen-

tiable, the symbolic derivative will be computed automatically. On the other hand, if the func-

tion is not in a form that can be explicitly differentiated, Mathematica will use finite difference

approximations to compute the Hessian, using structural information to minimize the number of

evaluations required. Alternatively you can specify a Mathematica expression, which will give

the Hessian with numerical values of the variables.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In this example, FindMinimum computes the Hessian symbolically and substitutes numerical
values for x and y when needed.

In[2]:= FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method -> "Newton"D

Out[2]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

This defines a function that is only intended to evaluate for numerical values of the variables.

In[3]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

The derivative of this function cannot be found symbolically since the function has been defined

only to evaluate with numerical values of the variables.

This shows the steps taken by FindMinimum when it has to use finite differences to compute
the gradient and Hessian.

In[4]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67867<<,

8Steps Ø 4, Function Ø 89, Gradient Ø 26, Hessian Ø 5<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

8 Unconstrained Optimization

When the gradient and Hessian are both computed using finite differences, the error in the

Hessian may be quite large and it may be better to use a different method. In this case,

FindMinimum does find the minimum quite accurately, but cannot be sure because of inade-

quate derivative information. Also, the number of function and gradient evaluations is much

greater than in the example with the symbolic derivatives computed automatically because

extra evaluations are required to approximate the gradient and Hessian, respectively.

If it is possible to supply the gradient (or the function is such that it can be computed automati-

cally), the method will typically work much better. You can give the gradient using the

Gradient option, which has several ways you can "specify derivatives".

This defines a function that returns the gradient for numerical values of x and y.

In[5]:= g@x_?NumberQ, y_?NumberQD = Map@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒD &, 8x, y<D

Out[5]= 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=

This tells FindMinimum to use the supplied gradient. The Hessian is computed using finite
differences of the gradient.

In[6]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<, Gradient Ø g@x, yD, Method Ø "Newton"D

Out[6]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

If you can provide a program that gives the Hessian, you can provide this also. Because the

Hessian is only used by Newton's method, it is given as a method option of Newton.

This defines a function that returns the Hessian for numerical values of x and y.

In[7]:= h@x_?NumberQ, y_?NumberQD =
Outer@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒÒD &, 8x, y<, 8x, y<D

Out[7]= 99-4 x2 CosAx2 - 3 yE + 2 CosAx2 + y2E - 2 SinAx2 - 3 yE - 4 x2 SinAx2 + y2E,

6 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E=,

96 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E, -9 CosAx2 - 3 yE + 2 CosAx2 + y2E - 4 y2 SinAx2 + y2E==

This tells FindMinimum to use the supplied gradient and Hessian.

In[8]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø g@x, yD, Method Ø 8"Newton", "Hessian" Ø h@x, yD<D

Out[8]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

In principle, Newton's method uses the Hessian computed either by evaluating the symbolic

derivative or by using finite differences. However, the convergence for the method computed

Unconstrained Optimization 9

this way depends on the function being convex, in which case the Hessian is always positive

definite. It is common that a search will start at a location where this condition is violated, so

the algorithm needs to take this possibility into account.

Here is an example where the search starts near a local maximum.

In[9]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.2<, 8y, .5<<, Method -> "Newton"D

Out[9]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 4, Function Ø 11, Gradient Ø 11, Hessian Ø 5<,

1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55
0.5

1.0

1.5

2.0

>

When sufficiently near a local maximum, the Hessian is actually negative definite.

This computes the eigenvalues of the Hessian near the local maximum.

In[10]:= Eigenvalues@h@1.2, .5DD

Out[10]= 8-15.7534, -6.0478<

If you were to only apply the Newton step formula in cases where the Hessian is not positive

definite, it is possible to get a step direction that does not lead to a decrease in the function

value.

This computes the directional derivative for the direction found by solving “2 f HxkL s0 = -“ f HxkL.
Since it is positive, moving in this direction will locally increase the function value.

In[11]:= LinearSolve@h@1.2, .5D, -g@1.2, .5DD.g@1.2, .5D

Out[11]= 0.0172695

It is crucial for the convergence of line search methods that the direction be computed using a

positive definite quadratic model Bk since the search process and convergence results derived

from it depend on a direction with sufficient descent. See "Line Search Methods". Mathematica

10 Unconstrained Optimization

modifies the Hessian by a diagonal matrix Ek with entries large enough so that Bk = “2 f HxkL + Ek is

positive definite. Such methods are sometimes referred to as modified Newton methods. The

modification to Bk is done during the process of computing a Cholesky decomposition somewhat

along the lines described in [GMW81], both for dense and sparse Hessians. The modification is

only done if “2 f HxkL is not positive definite. This decomposition method is accessible through

LinearSolve if you want to use it independently.

This computes the step using B0 s0 = -“ f HxkL, where B0 is determined as the Cholesky factors of
the Hessian are being computed.

In[12]:= LinearSolve@h@1.2, .5D, -g@1.2, .5D,
Method Ø 8"Cholesky", "Modification" Ø "Minimal"<D

Out[12]= 80.00405502, 0.0196737<

The computed step is in a descent direction.

In[13]:= %.g@1.2, .5D

Out[13]= -0.00645255

Besides the robustness of the (modified) Newton method, another key aspect is its convergence

rate. Once a search is close enough to a local minimum, the convergence is said to be q-

quadratic, which means that if x* is the local minimum point, then

°xk+1 - x*¥ § b °xk - x*¥2

for some constant b > 0.

At machine precision, this does not always make a substantial difference since it is typical that

most of the steps are spent getting near to the local minimum. However, if you want a root to

extremely high precision, Newton's method is usually the best choice because of the rapid

convergence.

This computes a very high-precision solution using Newton's method. The precision is adap-
tively increased from machine precision (the precision of the starting point) to the maximal
working precision of 100000 digits. Reap is used with Sow to save the steps taken. Counters
are used to track and print the number of function evaluations and steps used.

In[14]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1.<, 8y, 1.<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 27 evaluations
Out[14]= 4.56134

Unconstrained Optimization 11

When the option WorkingPrecision -> prec is used, the default for the AccuracyGoal and

PrecisionGoal is prec ê 2. Thus, this example should find the minimum to at least 50000 digits.

This computes a symbolic solution for the position of the minimum which the search approaches.

In[15]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD

Out[15]= : -
9

2
- p +

3

2
9 + 10 p ,

1

2
-3 + 9 + 10 p >

This computes the norm of the distance from the search points at the end of each step to the
exact minimum.

In[16]:= N@Map@Norm@exact - ÒD &, pointsDD

Out[16]= 90.140411, 0.0156607, 0.000236558, 6.09444µ10-8, 3.8255µ10-15, 1.59653µ10-29, 3.24619µ10-58,

4.8604µ10-108, 1.26122µ10-212, 5.865676867279906µ10-406, 1.755647053247051µ10-791,
4.345222958143836µ10-1581, 1.099183429735576µ10-3141, 1.614858677992596µ10-6262,
5.998002325828813µ10-12514, 1.543301971989607µ10-25010, 1.131416408748486µ10-50010=

The reason that more function evaluations were required than the number of steps is that

Mathematica adaptively increases the precision from the precision of the initial value to the

requested maximum WorkingPrecision. The sequence of precisions used is chosen so that as

few computations are done at the most expensive final precision as possible under the assump-

tion that the points are converging to the minimum. Sometimes when Mathematica changes

precision, it is necessary to reevaluate the function at the higher precision.

This shows a table with the precision of each of the points with the norm of their errors.

In[17]:= TableForm@Transpose@8Map@Precision, pointsD, N@Map@Norm@exact - ÒD &, pointsDD<DD

Out[17]//TableForm=

MachinePrecision 0.140411
MachinePrecision 0.0156607
MachinePrecision 0.000236558

MachinePrecision 6.09444µ10-8

24.4141 3.8255µ10-15

48.8283 1.59653µ10-29

97.6565 3.24619µ10-58

195.313 4.8604µ10-108

390.626 1.26122µ10-212

781.252 5.865676867279906µ10-406

1562.5 1.755647053247051µ10-791

3125.01 4.345222958143836µ10-1581

6250.02 1.099183429735576µ10-3141

12500. 1.614858677992596µ10-6262

25000.1 5.998002325828813µ10-12514

50000.2 1.543301971989607µ10-25010

100000. 1.131416408748486µ10-50010

12 Unconstrained Optimization

Note that typically the precision is roughly double the scale Ilog10M of the error. For Newton's

method this is appropriate since when the step is computed, the scale of the error will effec-

tively double according to the quadratic convergence.

FindMinimum always starts with the precision of the starting values you gave it. Thus, if you do

not want it to use adaptive precision control, you can start with values, which are exact or have

at least the maximum WorkingPrecision.

This computes the solution using only precision 100000 throughout the computation. (Warning:
this takes a very long time to complete.)

In[18]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1<, 8y, 1<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 18 evaluations
Out[18]= 1259.84 Second

Even though this may use fewer function evaluations, they are all done at the highest precision,

so typically adaptive precision saves a lot of time. For example, the previous command without

adaptive precision takes more than 50 times as long as when starting from machine precision.

With Newton’s method, both "line search" and "trust region" step control are implemented. The

default, which is used in the preceding examples, is the line search. However, any of them may

be done with the trust region approach. The approach typically requires more numerical linear

algebra computations per step, but because steps are better controlled, may converge in fewer

iterations.

This uses the unconstrained problems package to set up the classic Rosenbrock function, which
has a narrow curved valley.

In[19]:= p = GetFindMinimumProblem@RosenbrockD

Out[19]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

Unconstrained Optimization 13

This shows the steps taken by FindMinimum with a trust region Newton method for a Rosen-
brock function.

In[20]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" -> "TrustRegion"<D

Out[20]= :92.14681µ10-26, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 22, Gradient Ø 22, Hessian Ø 22<,

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

>

This shows the steps taken by FindMinimum with a line search Newton method for the same
function.

In[21]:= FindMinimumPlot@p, Method Ø "Newton"D

Out[21]= :94.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

You can see from the comparison of the two plots that the trust region method has kept the

steps within better control as the search follows the valley and consequently converges with

fewer function evaluations.

The following table summarizes the options you can use with Newton's method.

option name default value

"Hessian" Automatic an expression to use for computing the
Hessian matrix

"StepControl" "LineSearch" how to control steps; options include
"LineSearch", "TrustRegion", or None

Method options for Method -> "Newton".

14 Unconstrained Optimization

Quasi-Newton Methods

There are many variants of quasi-Newton methods. In all of them, the idea is to base the

matrix Bk in the quadratic model

qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

on an approximation of the Hessian matrix built up from the function and gradient values from

some or all steps previously taken.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the quasi-Newton method. The path is much less direct
than for Newton’s method. The quasi-Newton method is used by default by FindMinimum for
problems that are not sums of squares.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 13, Gradient Ø 13<,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>

The first thing to notice about the path taken in this example is that it starts in the wrong

direction. This direction is chosen because at the first step all the method has to go by is the

gradient, and so it takes the direction of steepest descent. However, in subsequent steps, it

incorporates information from the values of the function and gradient at the steps taken to

build up an approximate model of the Hessian.

The methods used by Mathematica are the Broyden|Fletcher|Goldfarb|Shanno (BFGS) updates

and, for large systems, the limited-memory BFGS (L-BFGS) methods, in which the model Bk is

not stored explicitly, but rather Bk-1 “ f HxkL is calculated by gradients and step directions stored

from past steps.

Unconstrained Optimization 15

The BFGS method is implemented such that instead of forming the model Hessian Bk at each

step, Cholesky factors Lk such that Lk.LkT= Bk are computed so that only OIn2M operations are

needed to solve the system Bk sk = -“ f HxkL [DS96] for a problem with n variables.

For large-scale sparse problems, the BFGS method can be problematic because, in general, the

Cholesky factors (or the Hessian approximation Bk or its inverse) are dense, so the OIn2M mem-

ory and operations requirements become prohibitive compared to algorithms that take advan-

tage of sparseness. The L-BFGS algorithm [NW99] forms an approximation to the inverse

Hessian based on the last m past steps, which are stored. The Hessian approximation may not

be as complete, but the memory and order of operations are limited to OHn mL for a problem with

n variables. In Mathematica 5, for problems over 250 variables, the algorithm is switched auto-

matically to L-BFGS. You can control this with the method option "StepMemory" -> m. With

m = ¶, the full BFGS method will always be used. Choosing an appropriate value of m is a trade-

off between speed of convergence and the work done per step. With m < 3, you are most likely

better off using a "conjugate gradient" algorithm.

This shows the same example function with the minimum computed using L-BFGS with m = 5.

In[3]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method Ø 8"QuasiNewton", "StepMemory" Ø 5<D

0.8 1 1.2 1.4 1.6
1

1.2

1.4

1.6

1.8

Out[3]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 10, Function Ø 13, Gradient Ø 13<, Ü ContourGraphics Ü<

Quasi-Newton methods are chosen as the default in Mathematica because they are typically

quite fast and do not require computation of the Hessian matrix, which can be quite expensive

both in terms of the symbolic computation and numerical evaluation. With an adequate "line

search", they can be shown to converge superlinearly [NW99] to a local minimum where the

Hessian is positive definite. This means that

16 Unconstrained Optimization

lim
kØ¶

°xk+1 - x*¥

°xk - x*¥
= 0

or, in other words, the steps keep getting smaller. However, for very high precision, this does

not compare to the q-quadratic convergence rate of "Newton's" method.

This shows the number of steps and function evaluations required to find the minimum to high
precision for the problem shown.

In[4]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1.<, 8y, 1.<<,

Method -> "QuasiNewton", WorkingPrecision Ø 10000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

95 steps and 106 evaluations
Out[4]= 2.79623

Newton's method is able to find ten times as many digits with far fewer steps because of its

quadratic convergence rate. However, the convergence with the quasi-Newton method is still

superlinear since the ratio of the errors is clearly going to zero.

This makes a plot showing the ratios of the errors in the computation. The ratios of the errors
are shown on a logarithmic scale so that the trend can clearly be seen over a large range of
magnitudes.

In[5]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD;
errs = Map@Norm@N@exact - ÒDD &, pointsD;
ListPlot@Log@10, Drop@errs, 1D ê Drop@errs, -1DDD

Out[5]=

20 40 60 80

-100

-80

-60

-40

-20

The following table summarizes the options you can use with quasi-Newton methods.

option name default value

"StepMemory" Automatic the effective number of steps to
"remember" in the Hessian approximation;
can be a positive integer or Automatic

"StepControl" "LineSearch" how to control steps; can be
"LineSearch" or None

Method options for Method -> "QuasiNewton".

Unconstrained Optimization 17

Gauss|Newton Methods

For minimization problems for which the objective function is a sum of squares,

f HxL =
1

2
‚
j=1

m

r jHxL2 =
1

2
rHxL.rHxL,

it is often advantageous to use the special structure of the problem. Time and effort can be

saved by computing the residual function rHxL, and its derivative, the Jacobian JHxL. The Gauss|

Newton method is an elegant way to do this. Rather than using the complete second-order

Hessian matrix for the quadratic model, the Gauss|Newton method uses Bk = JkT Jk in (1) such

that the step pk is computed from the formula

JkT Jk pk = -“ fk = - JkT rk,

where Jk = JHxkL, and so on. Note that this is an approximation to the full Hessian, which is

JT J +⁄j=1
m r j “2 r j. In the zero residual case, where r = 0 is the minimum, or when r varies nearly

as a linear function near the minimum point, the approximation to the Hessian is quite good

and the quadratic convergence of "Newton’s method" is commonly observed.

Objective functions, which are sums of squares, are quite common, and, in fact, this is the form

of the objective function when FindFit is used with the default value of the NormFunction

option. One way to view the Gauss|Newton method is in terms of least-squares problems.

Solving the Gauss|Newton step is the same as solving a linear least-squares problem, so apply-

ing a Gauss|Newton method is in effect applying a sequence of linear least-squares fits to a

nonlinear function. With this view, it makes sense that this method is particularly appropriate

for the sort of nonlinear fitting that FindFit does.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which
has a narrow curved valley.

In[2]:= p = GetFindMinimumProblem@RosenbrockD

Out[2]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

18 Unconstrained Optimization

When Mathematica encounters a problem that is expressly a sum of squares, such as the

Rosenbrock example, or a function that is the dot product of a vector with itself, the Gauss|

Newton method will be used automatically.

This shows the steps taken by FindMinimum with the Gauss|Newton method for Rosenbrock’s
function using a trust region method for step control.

In[3]:= FindMinimumPlot@p, Method Ø AutomaticD

Out[3]= :80., 8X1 Ø 1., X2 Ø 1.<<, 8Steps Ø 15, Residual Ø 21, Jacobian Ø 16<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

If you compare this with the same example done with "Newton’s method", you can see that it

was done with fewer steps and evaluations because the Gauss|Newton method is taking

advantage of the special structure of the problem. The convergence rate near the minimum is

just as good as for Newton’s method because the residual is zero at the minimum.

The Levenberg|Marquardt method is a Gauss|Newton method with "trust region" step control

(though it was originally proposed before the general notion of trust regions had been devel-

oped). You can request this method specifically by using the FindMinimum option

Method -> "LevenbergMarquardt" or equivalently Method -> "GaussNewton".

Sometimes it is awkward to express a function so that it will explicitly be a sum of squares or a

dot product of a vector with itself. In these cases, it is possible to use the "Residual" method

option to specify the residual directly. Similarly, you can specify the derivative of the residual

with the "Jacobian" method option. Note that when the residual is specified through the

"Residual" method option, it is not checked for consistency with the first argument of

FindMinimum. The values returned will depend on the value given through the option.

This finds the minimum of Rosenbrock’s function using the specification of the residual.

In[4]:= FindMinimumB
1

2
JH1 - X1L2 + 100 I-X1

2 + X2M
2
N, 88X1, -1.2`<, 8X2, 1.`<<,

Method Ø 9"LevenbergMarquardt", "Residual" Ø 91 - X1, 10 I-X1
2 + X2M==F

Out[4]= 80., 8X1 Ø 1., X2 Ø 1.<<

Unconstrained Optimization 19

option name default value

"Residual" Automatic allows you to directly specify the residual r
such that f = 1 ê2 r.r

"EvaluationMonitor" Automatic an expression that is evaluated each time
the residual is evaluated

"Jacobian" Automatic allows you to specify the (matrix) deriva -
tive of the residual

"StepControl" "TrustRegion" must be "TrustRegion", but allows you
to change control parameters through
method options

Method options for Method -> "LevenbergMarquardt".

Another natural way of setting up sums of squares problems in Mathematica is with FindFit,

which computes nonlinear fits to data. A simple example follows.

Here is a model function.

In[5]:= fm@a_, b_, c_, x_D := a If@x > 0, Cos@b xD, Exp@c xDD

Here is some data generated by the function with some random perturbations added.

In[6]:= Block@8e = 0.1, a = 1.2, b = 3.4, c = 0.98<,
data = Table@8x, fm@a, b, c, xD + e RandomReal@ 8-.5, .5<D<, 8x, -5, 5, .1<DD;

This finds a nonlinear least-squares fit to the model function.

In[7]:= fit = FindFit@data, fm@a, b, c, xD, 88a, 1<, 8b, 3<, 8c, 1<<, xD

Out[7]= 8a Ø 1.20826, b Ø 3.40018, c Ø 1.0048<

This shows the fit model with the data.

In[8]:= Show@8ListPlot@dataD,
Plot@fm@a, b, c, xD ê. fit, 8x, -5, 5<, PlotStyle Ø RGBColor@0, 1, 0DD<D

Out[8]=

In the example, FindFit internally constructs a residual function and Jacobian, which are in

turn used by the Gauss|Newton method to find the minimum of the sum of squares, or the

20 Unconstrained Optimization

-4 -2 2 4

-1.0

-0.5

0.5

1.0

nonlinear least-squares fit. Of course, FindFit can be used with other methods, but because a

residual function that evaluates rapidly can be constructed, it is often faster than the other

methods.

Nonlinear Conjugate Gradient Methods

The basis for a nonlinear conjugate gradient method is to effectively apply the linear conjugate

gradient method, where the residual is replaced by the gradient. A model quadratic function is

never explicitly formed, so it is always combined with a "line search" method.

The first nonlinear conjugate gradient method was proposed by Fletcher and Reeves as follows.

Given a step direction pk, use the line search to find ak such that xk+1 = xk + ak pk. Then compute

(1)bk+1 =
“ f Ixk+1M.“ f Ixk+1M

“ f IxkM.“ f IxkM

pk+1 = bk+1 pk - “ f Hxk+1L.

It is essential that the line search for choosing ak satisfies the strong Wolfe conditions; this is

necessary to ensure that the directions pk are descent directions [NW99]].

An alternate method, which generally (but not always) works better in practice, is that of Polak

and Ribiere, where equation (2) is replaced with

(2)bk+1 =
“ f Ixk+1M.(“ f Ixk+1M-“ f IxkMM

“ f IxkM.“ f IxkM
.

In formula (3), it is possible that bk+1 can become negative, in which case Mathematica uses the

algorithm modified by using pk+1 = maxHbk+1, 0L pk - “ f Hxk+1L. In Mathematica, the default conjugate

gradient method is Polak|Ribiere, but the Fletcher|Reeves method can be chosen by using the

method option

Method Ø 8"ConjugateGradient", Method -> "FletcherReeves"<.

The advantage of conjugate gradient methods is that they use relatively little memory for large-

scale problems and require no numerical linear algebra, so each step is quite fast. The disadvan-

tage is that they typically converge much more slowly than "Newton" or "quasi-Newton" meth-

ods. Also, steps are typically poorly scaled for length, so the "line search" algorithm may

require more iterations each time to find an acceptable step.

Unconstrained Optimization 21

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the nonlinear conjugate gradient method. The path is
much less direct than for Newton’s method.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method -> "ConjugateGradient"D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 22, Gradient Ø 22<,

0.8 1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

>

One issue that arises with nonlinear conjugate gradient methods is when to restart them. As

the search moves, the nature of the local quadratic approximation to the function may change

substantially. The local convergence of the method depends on that of the linear conjugate

gradient method, where the quadratic function is constant. With a constant quadratic function

for n variables and an exact line search, the linear algorithm will converge in n or fewer itera-

tions. By restarting (taking a steepest descent step with bk+1 = 0) every so often, it is possible

to eliminate information from previous points, which may not be relevant to the local quadratic

model at the current search point. If you look carefully at the example, you can see where the

method was restarted and a steepest descent step was taken. One option is to simply restart

after every k iterations, where k <= n. You can specify this using the method option

"RestartIterations" -> k. An alternative is to restart when consecutive gradients are not

sufficiently orthogonal according to the test

“ f HxkL.“ f Hxk-1L

“ f HxkL.“ f HxkL
< n,

with a threshold n between 0 and 1. You can specify this using the method option

"RestartThreshold" -> n.

22 Unconstrained Optimization

The table summarizes the options you can use with the conjugate gradient methods.

option name default value

"Method" "PolakRibiere" nonlinear conjugate gradient method can
be "PolakRibiere" or
"FletcherReeves"

"RestartThreshold" 1ê10 threshold n for gradient orthogonality
below which a restart will be done

"RestartIterations" ¶ number of iterations after which to restart

"StepControl" "LineSearch" must be "LineSearch", but you can use
this to specify line search methods

Method options for Method -> "ConjugateGradient".

It should be noted that the default method for FindMinimum in Mathematica 4 was a conjugate

gradient method with a near exact line search. This has been maintained for legacy reasons and

can be accessed by using the FindMinimum option Method -> "Gradient". Typically, this will

use more function and gradient evaluations than the newer Method -> "ConjugateGradient",

which itself often uses far more than the methods that Mathematica currently uses as defaults.

Principal Axis Method

"Gauss|Newton" and "conjugate gradient" methods use derivatives. When Mathematica cannot

compute symbolic derivatives, finite differences will be used. Computing derivatives with finite

differences can impose a significant cost in some cases and certainly affects the reliability of

derivatives, ultimately having an effect on how good an approximation to the minimum is

achievable. For functions where symbolic derivatives are not available, an alternative is to use a

derivative-free algorithm, where an approximate model is built up using only values from

function evaluations.

Mathematica uses the principal axis method of Brent [Br02] as a derivative-free algorithm. For

an n-variable problem, take a set of search directions u1, u2, …, un and a point x0. Take xi to be

the point that minimizes f along the direction ui from xi-1 (i.e., do a "line search" from xi-1),

then replace ui with ui+1. At the end, replace un with xn - x0. Ideally, the new ui should be linearly

independent, so that a new iteration could be undertaken, but in practice, they are not. Brent's

algorithm involves using the singular value decomposition (SVD) on the matrix U = Hu1, u2, ... unL

Unconstrained Optimization 23

to realign them to the principal directions for the local quadratic model. (An eigen decomposi-

tion could be used, but Brent shows that the SVD is more efficient.) With the new set of ui

obtained, another iteration can be done.

Two distinct starting conditions in each variable are required for this method because these are

used to define the magnitudes of the vectors ui. In fact, whenever you specify two starting

conditions in each variable, FindMinimum, FindMaximum, and FindFit will use the principal axis

algorithm by default.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the search path and function evaluations for FindMinimum to find a local minimum
of the function cosIx2 - 3 yM + sinIx2 + y2M.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.4, 1.5<, 8y, 1, 1.1<<, Method Ø "PrincipalAxis"D

Out[2]= :8-2., 8x Ø 2.12265, y Ø 0.454686<<, 8Steps Ø 4, Function Ø 148<,

1.4 1.6 1.8 2.0 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

>

The basics of the search algorithm can be seen quite well from the plot since the derivative-free

line search algorithm requires a substantial number of function evaluations. First a line search is

done in the x direction, then from that point, a line search is done in the y direction, determin-

ing the step direction. Once the step is taken, the vectors ui are realigned appropriately to the

principal directions of the local quadratic approximation and the next step is similarly com-

puted.

The algorithm is efficient in terms of convergence rate; it has quadratic convergence in terms of

steps. However, in terms of function evaluations, it is quite expensive because of the derivative-

free line search required. Note that since the directions given to the line search (especially at

the beginning) are not necessarily descent directions, the line search has to be able to search in

both directions. For problems with many variables, the individual linear searches in all direc-

tions become very expensive, so this method is typically better suited to problems without too

many variables.

24 Unconstrained Optimization

Methods for Solving Nonlinear Equations

Introduction to Solving Nonlinear Equations

There are some close connections between finding a "local minimum" and solving a set of

nonlinear equations. Given a set of n equations in n unknowns, seeking a solution rHxL ã 0 is

equivalent to minimizing the sum of squares rHxL. rHxL when the residual is zero at the minimum,

so there is a particularly close connection to the "Gauss|Newton" methods. In fact, the Gauss|

Newton step for local minimization and the "Newton" step for nonlinear equations are exactly

the same. Also, for a smooth function, "Newton’s method" for local minimization is the same as

Newton’s method for the nonlinear equations “ f = 0. Not surprisingly, many aspects of the

algorithms are similar; however, there are also important differences.

Another thing in common with minimization algorithms is the need for some kind of "step

control". Typically, step control is based on the same methods as minimization except that it is

applied to a merit function, usually the smooth 2-norm squared, rHxL. rHxL.

"Newton" use the exact Jacobian or a finite difference approximation
to solve for the step based on a locally linear model

"Secant" work without derivatives by constructing a secant approxi -
mation to the Jacobian using n past steps; requires two
starting conditions in each dimension

"Brent" method in one dimension that maintains bracketing of
roots; requires two starting conditions that bracket a root

Basic method choices for FindRoot.

Newton's Method

Newton's method for nonlinear equations is based on a linear approximation

rHxL =MkHpL = rHxkL + JHxkL p, p = Hx - xkL,

so the Newton step is found simply by setting MkHpL = 0,

JHxkL pk = -rHxkL.

Unconstrained Optimization 25

Near a root of the equations, Newton's method has q-quadratic convergence, similar to

"Newton's" method for minimization. Newton's method is used as the default method for

FindRoot.

Newton's method can be used with either "line search" or "trust region" step control. When it

works, the line search control is typically faster, but the trust region approach is usually more

robust.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Here is the Rosenbrock problem as a FindRoot problem.

In[2]:= p = GetFindRootProblem@RosenbrockD

Out[2]= FindRootProblemA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<E

This finds the solution of the nonlinear system using the default line search approach. (Newton's
method is the default method for FindRoot.)

In[3]:= FindRootPlot@pD

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 15, Residual Ø 27, Jacobian Ø 15<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

Note that each of the line searches started along the line x == 1. This is a particular property of

the Newton step for this particular problem.

This computes the Jacobian and the Newton step symbolically for the Rosenbrock problem.

In[4]:= J = OuterAD, 910 I-X1
2 + X2M, 1 - X1=, 8X1, X2<E;

LinearSolveAJ, -910 I-X1
2 + X2M, 1 - X1=E

Out[4]= 91 - X1, 2 X1 - X1
2 - X2=

When this step is added to the point, 8X1, X2<, it is easy to see why the steps go to the line

X1 = 1. This is a particular feature of this problem, which is not typical for most functions.

26 Unconstrained Optimization

Because the "trust region" approach does not try the Newton step unless it lies within the

region bound, this feature does not show up so strongly when the trust region step control is

used.

This finds the solution of the nonlinear system using the trust region approach. The search is
almost identical to the search with the "Gauss|Newton" method for the Rosenbrock objective
function in FindMinimum .

In[5]:= FindRootPlot@p, Method Ø 8"Newton", "StepControl" Ø "TrustRegion"<D

Out[5]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 16, Residual Ø 21, Jacobian Ø 16<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

When the structure of the Jacobian matrix is sparse, Mathematica will use SparseArray objects

both to compute the Jacobian and to handle the necessary numerical linear algebra.

When solving nonlinear equations is used as a part of a more general numerical procedure,

such as solving differential equations with implicit methods, often starting values are quite

good, and complete convergence is not absolutely necessary. Often the most expensive part of

computing a Newton step is finding the Jacobian and computing a matrix factorization. How-

ever, when close enough to a root, it is possible to leave the Jacobian frozen for a few steps

(though this does certainly affect the convergence rate). You can do this in Mathematica using

the method option "UpdateJacobian", which gives the number of steps to go before updating

the Jacobian. The default is "UpdateJacobian" -> 1, so the Jacobian is updated every step.

This shows the number of steps, function evaluations, and Jacobian evaluations required to find
a simple square root when the Jacobian is only updated every three steps.

In[6]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, Method Ø 8"Newton", "UpdateJacobian" Ø 3<,

EvaluationMonitor ß e++, StepMonitor ß s++,
Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D

Out[6]= 88x Ø 1.41421<, 5, 9, 2<

This shows the number of steps, function evaluations, and Jacobian evaluations required to find
a simple square root when the Jacobian is updated every step.

In[7]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, EvaluationMonitor ß e++, StepMonitor ß s++,

Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D
Out[7]= 88x Ø 1.41421<, 4, 5, 4<

Unconstrained Optimization 27

Of course for a simple one-dimensional root, updating the Jacobian is trivial in cost, so holding

the update is only of use here to demonstrate the idea.

option name default value

"UpdateJacobian" 1 number of steps to take before updating
the Jacobian

"StepControl" "LineSearch" method for step control, can be
"LineSearch", "TrustRegion", or
None (which is not recommended)

Method options for Method -> "Newton" in FindRoot.

The Secant Method

When derivatives cannot be computed symbolically, "Newton’s" method will be used, but with a

finite difference approximation to the Jacobian. This can have cost in terms of both time and

reliability. Just as for minimization, an alternative is to use an algorithm specifically designed to

work without derivatives.

In one dimension, the idea of the secant method is to use the slope of the line between two

consecutive search points to compute the step instead of the derivative at the latest point.

Similarly in n dimensions, differences between the residuals at n points are used to construct an

approximation of sorts to the Jacobian. Note that this is similar to finite differences, but rather

than trying to make the difference interval small in order to get as good a Jacobian approxima-

tion as possible, it effectively uses an average derivative just like the one-dimensional secant

method. Initially, the n points are constructed from two starting points that are distinct in all n

dimensions. Subsequently, as steps are taken, only the n points with the smallest merit function

value are kept. It is rare, but possible, that steps are collinear and the secant approximation to

the Jacobian becomes singular. In this case, the algorithm is restarted with distinct points.

The method requires two starting points in each dimension. In fact, if two starting points are

given in each dimension, the secant method is the default method except in one dimension,

where "Brent’s" method may be chosen.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

28 Unconstrained Optimization

This shows the solution of the Rosenbrock problem with the secant method.

In[2]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2, -1.<, 8X2, 1., .9<<E

Out[2]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 21, Residual Ø 70<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

Note that, as compared to "Newton’s" method, many more residual function evaluations are

required. However, the method is able to follow the relatively narrow valley without directly

using derivative information.

This shows the solution of the Rosenbrock problem with Newton’s method using finite differ-
ences to compute the Jacobian.

In[3]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<,

Method Ø 8"Newton", StepControl -> "TrustRegion"<, Jacobian -> "FiniteDifference"E

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 17, Residual Ø 70, Jacobian Ø 16<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

However, when compared to Newton’s method with finite differences, the number of residual

function evaluations is comparable. For sparse Jacobian matrices with larger problems, the

finite difference Newton method will usually be more efficient since the secant method does not

take advantage of sparsity in any way.

Brent’s Method

When searching for a real simple root of a real valued function, it is possible to take advantage

of the special geometry of the problem, where the function crosses the axis from negative to

Unconstrained Optimization 29

positive or vice versa. Brent’s method [Br02] is effectively a safeguarded secant method that

always keeps a point where the function is positive and one where it is negative so that the root

is always bracketed. At any given step, a choice is made between an interpolated (secant) step

and a bisection in such a way that eventual convergence is guaranteed.

If FindRoot is given two real starting conditions that bracket a root of a real function, then

Brent’s method will be used. Thus, if you are working in one dimension and can determine

initial conditions that will bracket a root, it is often a good idea to do so since Brent’s method is

the most robust algorithm available for FindRoot.

Even though essentially all the theory for solving nonlinear equations and local minimization is

based on smooth functions, Brent’s method is sufficiently robust that you can even get a good

estimate for a zero crossing for discontinuous functions.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and function evaluations used in an attempt to find the root of a discontinu-
ous function.

In[2]:= FindRootPlot@2 UnitStep@Sin@xDD - 1, 8x, 3, 4<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]= :8x Ø 3.14159<, 8Steps Ø 50, Residual Ø 51<,
3.2 3.4 3.6 3.8 4.0

-1.0

-0.5

0.5

1.0

>

The method gives up and issues a message when the root is bracketed very closely, but it is

not able to find a value of the function, which is zero. This robustness carries over very well to

continuous functions that are very steep.

This shows the steps and function evaluations used to find the root of a function that varies
rapidly near its root.

In[3]:= FindRootPlot@ArcTan@10000 Sin@xD D, 8x, 3, 4<, PlotRange Ø AllD

Out[3]= :8x Ø 3.14159<, 8Steps Ø 18, Residual Ø 19<,
3.2 3.4 3.6 3.8 4.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

>

30 Unconstrained Optimization

Step Control

Introduction to Step Control

Even with "Newton methods" where the local model is based on the actual Hessian, unless you

are close to a root or minimum, the model step may not bring you any closer to the solution. A

simple example is given by the following problem.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a simple example for root finding with step control disabled where the iteration
alternates between two points and does not converge. Note: On some platforms, you may see
convergence. This is due to slight variations in machine-number arithmetic, which may be
sufficient to break the oscillation.

In[2]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<,
Method Ø 8Newton, StepControl Ø None<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]=

This shows the same example problem with step control enabled. Since the first evaluation
point has not reduced the size of the function, the line search restricts the step and so the
iteration converges to the solution.

In[3]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<, Method Ø "Newton"D

Out[3]= :8x Ø 0.<, 8Steps Ø 2, Residual Ø 3, Jacobian Ø 2<,
-1.0 -0.5 0.5 1.0

-0.5

0.5

>

Unconstrained Optimization 31

:8x Ø 21.9911<, 8Steps Ø 27, Residual Ø 27, Jacobian Ø 26<,
5 10 15 20

-1.0

-0.5

0.5

1.0

>

A good step-size control algorithm will prevent repetition or escape from areas near roots or

minima from happening. At the same time, however, when steps based on the model function

are appropriate, the step-size control algorithm should not restrict them, otherwise the conver-

gence rate of the algorithm would be compromised. Two commonly used step-size control

algorithms are "line search" and "trust region" methods. In a line search method, the model

function gives a step direction, and a search is done along that direction to find an adequate

point that will lead to convergence. In a trust region method, a distance in which the model

function will be trusted is updated at each step. If the model step lies within that distance, it is

used; otherwise, an approximate minimum for the model function on the boundary of the trust

region is used. Generally the trust region methods are more robust, but they require more

numerical linear algebra.

Both step control methods were developed originally with minimization in mind. However, they

apply well to finding roots for nonlinear equations when used with a merit function. In Mathemat -

ica, the 2-norm merit function rHxL.rHxL is used.

Line Search Methods

A method like "Newton’s" method chooses a step, but the validity of that step only goes as far

as the Newton quadratic model for the function really reflects the function. The idea of a line

search is to use the direction of the chosen step, but to control the length, by solving a one-

dimensional problem of minimizing

f HaLã f Ha pk + xkL,

where pk is the search direction chosen from the position xk. Note that

f ' HaLã“ f Ha pk + xkL.pk,

so if you can compute the gradient, you can effectively do a one-dimensional search with deriva-

tives.

Typically, an effective line search only looks toward a > 0 since a reasonable method should

guarantee that the search direction is a descent direction, which can be expressed as f£ a < 0.

It is typically not worth the effort to find an exact minimum of f since the search direction is

rarely exactly the right direction. Usually it is enough to move closer.

32 Unconstrained Optimization

One condition that measures progress is called the Armijo or sufficient decrease condition for a

candidate a*.

fHa*L § fH0L + m f ' H0L, 0 < m < 1

Often with this condition, methods will converge, but for some methods, Armijo alone does not

guarantee convergence for smooth functions. With the additional curvature condition,

†f ' Ha*L§ § h †f ' H0L§, 0 < m § h < 1,

many methods can be proven to converge for smooth functions. Together these conditions are

known as the strong Wolfe conditions. You can control the parameters m and h with the

"DecreaseFactor" -> m and "CurvatureFactor" -> h options of "LineSearch".

The default value for "CurvatureFactor" -> h is h 0.9, except for

Method -> "ConjugateGradient" where h = 0.1 is used since the algorithm typically works better

with a closer-to-exact line search. The smaller h is, the closer to exact the line search is.

If you look at graphs showing iterative searches in two dimensions, you can see the evaluations

spread out along the directions of the line searches. Typically, it only takes a few iterations to

find a point satisfying the conditions. However, the line search is not always able to find a point

that satisfies the conditions. Usually this is because there is insufficient precision to compute

the points closely enough to satisfy the conditions, but it can also be caused by functions that

are not completely smooth or vary extremely slowly in the neighborhood of a minimum.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In[2]:= FindMinimum@x^2 ê 2 + Cos@xD, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[2]= 81., 8x Ø 0.000182658<<

Unconstrained Optimization 33

This runs into problems because the real differences in the function are negligible compared to

evaluation differences around the point, as can be seen from the plot.

In[24]:= Plot@x^2 ê 2 + Cos@xD, 8x, 0, .0004<, PlotRange Ø 81 - 10^-15, 1 + 10^-15<D

Out[24]=

0.0001 0.0002 0.0003 0.0004

0.5

1.0

1.5

2.0

Sometimes it can help to subtract out the constants so that small changes in the function are

more significant.

In[18]:= FindMinimum@x^2 ê 2 + Cos@xD - 1, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[18]= 91.11022µ10-16, 8x Ø 0.00024197<=

In this case, however, the approximation is only slightly closer because the function is quite

noisy near 0, as can be seen from the plot.

In[19]:= Plot@x^2 ê 2 + Cos@xD - 1, 8x, 0, .0004<D

Out[19]=

0.0001 0.0002 0.0003 0.0004

2.µ 10-16

4.µ 10-16

6.µ 10-16

8.µ 10-16

1.µ 10-15

Thus, to get closer to the correct value of zero, higher precision is required to compute the

function more accurately.

For some problems, particularly where you may be starting far from a root or a local minimum,

it may be desirable to restrict steps. With line searches, it is possible to do this by using the

"MaxRelativeStepSize" method option. The default value picked for this is designed to keep

searches from going wildly out of control, yet at the same time not prevent a search from using

reasonably large steps if appropriate.

34 Unconstrained Optimization

This is an example of a problem where the Newton step is very large because the starting point
is at a position where the Jacobian (derivative) is nearly singular. The step size is (not severely)
limited by the option.

In[3]:= FindRootPlot@Cos@x PiD, 88x, -5<<D

Out[3]=

This shows the same example but with a more rigorous step-size limitation, which finds the root
near the starting condition.

In[4]:= FindRootPlot@Cos@x PiD, 88x, -5<<,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", "MaxRelativeStepSize" Ø .1<<D

Out[4]= :8x Ø -4.5<, 8Steps Ø 5, Residual Ø 5, Jacobian Ø 5<,

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

>

Note that you need to be careful not to set the "MaxRelativeStepSize" option too small, or it

will affect convergence, especially for minima and roots near zero.

The following table shows a summary of the options, which can be used to control line searches.

option name default value

"Method" Automatic method to use for executing the line
search; can be Automatic,
"MoreThuente", "Backtracking", or
"Brent"

"CurvatureFactor" Automatic factor h in the Wolfe conditions, between 0
and 1; smaller values of h result in a more
exact line search

"DecreaseFactor" 1ê10000 factor m in the Wolfe conditions, between 0
and h

"MaxRelativeStepSize" 10 largest step that will be taken relative to
the norm of the current search point, can
be any positive number or ¶ for no
restriction

Method options for "StepControl" Ø "LineSearch".

Unconstrained Optimization 35

:8x Ø 2.5<, 8Steps Ø 2, Residual Ø 5, Jacobian Ø 2<, 10 20 30 40 50

0.5

1.0

>

The following sections will describe the three line search algorithms implemented in Mathemat-

ica. Comparisons will be made using the Rosenbrock function.

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which
has a narrow curved valley.

In[5]:= p = GetFindMinimumProblem@RosenbrockD

Out[5]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

MoreThuente

The default line search used by FindMinimum, FindMaximum, and FindFit is one described by

More and Thuente in [MT94]. It tries to find a point that satisfies both the decrease and curva-

ture conditions by using bracketing and quadratic and cubic interpolation.

This shows the steps and evaluations done with Newton’s method with the default line search
parameters. Points with just red and green are where the function and gradient were evaluated
in the line search, but the Wolfe conditions were not satisfied so as to take a step.

In[10]:= FindMinimumPlot@p, Method Ø NewtonD

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

Out[10]= 994.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,
8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<, Ü ContourGraphics Ü=

The points at which only the function and gradient were evaluated were the ones attempted in

the line search phase that did not satisfy both conditions. Unless restricted by

"MaxRelativeStepSize", the line search always starts with the full step length (a = 1), so that

if the full (in this case Newton) step satisfies the line search criteria, it will be taken, ensuring a

full convergence rate close to a minimum.

Decreasing the curvature factor, which means that the line search ends nearer to the exact

minimum, decreases the number of steps taken by Newton’s method but increases the total

number of function and gradient evaluations.

36 Unconstrained Optimization

This shows the steps and evaluations done with Newton’s method with a curvature factor in the
line search parameters that is smaller than the default. Points with just red and green are
where the function and gradient were evaluated in the line search, but the Wolfe conditions
were not satisfied so as to take a step.

In[31]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", CurvatureFactor Ø .1<<D

Out[31]= :95.54946µ10-22, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 14, Function Ø 61, Gradient Ø 61, Hessian Ø 15<,

0 2 4 6 8 10 12

-10

0

10

20

>

This example demonstrates why a more exact line search is not necessarily better. When the

line search takes the step to the right at the bottom of the narrow valley, the Newton step is

based on moving along the valley without seeing its curvature (the curvature of the valley is

beyond quadratic order), so the Newton steps end up being far too long, even though the

direction is better. On the other hand, some methods, such as the conjugate gradient method,

need a better line search to improve convergence.

Backtracking

This is a simple line search that starts from the given step size and backtracks toward a step

size of 0, stopping when the sufficient decrease condition is met. In general with only backtrack-

ing, there is no guarantee that you can satisfy the curvature condition, even for nice functions,

so the convergence properties of the methods are not assured. However, the backtracking line

search also does not need to evaluate the gradient at each point, so if gradient evaluations are

relatively expensive, this may be a good choice. It is used as the default line search in

FindRoot because evaluating the gradient of the merit function involves computing the Jaco-

bian, which is relatively expensive.

Unconstrained Optimization 37

In[32]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Backtracking"<<D

Out[32]= :91.2326µ10-30, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 25, Function Ø 34, Gradient Ø 26, Hessian Ø 25<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

Each backtracking step is taken by doing a polynomial interpolation and finding the minimum

point for the interpolant. This point ak is used as long as it lies between c1 ak-1 and c2 ak-1, where

ak-1 is the previous value of the parameter a and 0 < c1 § c2 < 1. By default, c1 = 0.1 and c2 = 0.5,

but they can be controlled by the method option "BacktrackFactors" -> 8c1, c2<. If you give a

single value for the factors, this sets c1 = c2, and no interpolation is used. The value 1/2 gives

bisection.

In this example, the effect of the relatively large backtrack factor is quite apparent.

In[33]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" Ø
8"LineSearch", Method Ø 8"Backtracking", "BacktrackFactors" Ø 1 ê 2<<<D

Out[33]= :93.74398µ10-21, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 29, Gradient Ø 22, Hessian Ø 22<,

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

>

option name default value

"BacktrackFactors" 81ê10, 1ê2< determine the minimum and maximum
factor by which the attempted step length
must shrink between backtracking steps

Method option for line search Method -> "Backtracking".

38 Unconstrained Optimization

Brent

This uses the derivative-free univariate method of Brent [Br02] for the line search. It attempts

to find the minimum of f a to within tolerances, regardless of the decrease and curvature fac-

tors. In effect, it has two phases. First, it tries to bracket the root, then it uses "Brent’s" com-

bined interpolation/golden section method to find the minimum. The advantage of this line

search is that it does not require, as the other two methods do, that the step be in a descent

direction, since it will look in both directions in an attempt to bracket the minimum. As such it is

very appropriate for the derivative-free "principal axis" method. The downside of this line

search is that it typically uses many function evaluations, so it is usually less efficient than the

other two methods.

This example shows the effect of using the Brent method for line search. Note that in the phase
of bracketing the root, it may use negative values of a. Even though the number of Newton
steps is relatively small in this example, the total number of function evaluations is much larger
than for other line search methods.

In[34]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Brent"<<D

Out[34]= :91.01471µ10-23, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 13, Function Ø 188, Gradient Ø 14, Hessian Ø 14<,

-3 -2 -1 0 1

-4

-2

0

2

4

>

Trust Region Methods

A trust region method has a region around the current search point, where the quadratic model

(3)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

for "local minimization" is "trusted" to be correct and steps are chosen to stay within this

region. The size of the region is modified during the search, based on how well the model

agrees with actual function evaluations.

Unconstrained Optimization 39

Very typically, the trust region is taken to be an ellipse such that °D p¥ § D. D is a diagonal

scaling (often taken from the diagonal of the approximate Hessian) and D is the trust region

radius, which is updated at each step.

When the step based on the quadratic model alone lies within the trust region, then, assuming

the function value gets smaller, that step will be chosen. Thus, just as with "line search" meth-

ods, the step control does not interfere with the convergence of the algorithm near to a mini-

mum where the quadratic model is good. When the step based on the quadratic model lies

outside the trust region, a step just up to the boundary of the trust region is chosen, such that

the step is an approximate minimizer of the quadratic model on the boundary of the trust

region.

Once a step pk is chosen, the function is evaluated at the new point, and the actual function

value is checked against the value predicted by the quadratic model. What is actually computed

is the ratio of actual to predicted reduction.

rk =
f HxkL - f Hxk+ pkL

qkH0L - qkHpkL
=

actual reduction of f

predicted model reduction of f

If rk is close to 1, then the quadratic model is quite a good predictor and the region can be

increased in size. On the other hand, if rk is too small, the region is decreased in size. When rk

is below a threshold, h, the step is rejected and recomputed. You can control this threshold with

the method option "AcceptableStepRatio" -> h. Typically the value of h is quite small to avoid

rejecting steps that would be progress toward a minimum. However, if obtaining the quadratic

model at a point is quite expensive (e.g., evaluating the Hessian takes a relatively long time), a

larger value of h will reduce the number of Hessian evaluations, but it may increase the number

of function evaluations.

To start the trust region algorithm, an initial radius D needs to be determined. By default Mathe-

matica uses the size of the step based on the model (1) restricted by a fairly loose relative step

size limit. However, in some cases, this may take you out of the region you are primarily inter-

ested in, so you can specify a starting radius D0 using the option

"StartingScaledStepSize" -> D0. The option contains Scaled in its name because the trust

region radius works through the diagonal scaling D, so this is not an absolute step size.

40 Unconstrained Optimization

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and evaluations taken during a search for a local minimum of a function
similar to Rosenbrock's function, using Newton's method with trust region step control.

In[2]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<,
Method Ø 8"Newton", "StepControl" -> "TrustRegion"<, MaxRecursion Ø 0D

Out[2]= :8-100., 8x Ø 1., y Ø 178.5<<,

8Steps Ø 16, Function Ø 20, Gradient Ø 17, Hessian Ø 16<,

-1.0 -0.5 0.0 0.5 1.0
0

200

400

600

800

1000

1200

1400

>

The plot looks quite bad because the search has extended over such a large region that the fine

structure of the function cannot really be seen on that scale.

This shows the steps and evaluations for the same function, but with a restricted initial trust
region radius D0. Here the search stays much closer to the initial condition and follows the
narrow valley.

In[3]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<, Method Ø
8"Newton", "StepControl" Ø 8"TrustRegion", "StartingScaledStepSize" Ø 1<<D

Out[3]= :8-100., 8x Ø 1., y Ø 2.5708<<,

8Steps Ø 18, Function Ø 20, Gradient Ø 19, Hessian Ø 19<,

-1.0 -0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

>

It is also possible to set an overall maximum bound for the trust region radius by using the

option "MaxScaledStepSize" -> Dmax so that for any step, Dk § Dmax.

Unconstrained Optimization 41

Trust region methods can also have difficulties with functions which are not smooth due to

problems with numerical roundoff in the function computation. When the function is not suffi-

ciently smooth, the radius of the trust region will keep getting reduced. Eventually, it will get to

the point at which it is effectively zero.

This gets the Freudenstein|Roth test problem from the Optimization

`Unconstrained Problems`package in a form where it can be solved by FindMinimum .
(See "Test Problems".)

In[4]:= pfr = GetFindMinimumProblem@FreudensteinRothD

Out[4]= FindMinimumProblemAH-13 + X1 + X2 H-2 + H5 - X2L X2LL
2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL

2,
88X1, 0.5<, 8X2, -2.<<, 8<, FreudensteinRoth, 82, 2<E

This finds a local minimum for the function using the default method. The default method in this
case is the (trust region) Levenberg|Marquardt method since the function is a sum of squares.

In[5]:= FindMinimumPlot@pfrD

FindMinimum::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified
by the AccuracyGoal option. There is a possibility that the
method has stalled at a point which is not a local minimum. à

Out[5]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 16, Residual Ø 35, Jacobian Ø 17<,

0 5 10 15 20 25 30
-2.0

-1.5

-1.0

-0.5

0.0

0.5

>

The message means that the size of the trust region has become effectively zero relative to the

size of the search point, so steps taken would have negligible effect. Note: On some platforms,

due to subtle differences in machine arithmetic, the message may not show up. This is because

the reasons leading to the message have to do with numerical uncertainty, which can vary

between different platforms.

42 Unconstrained Optimization

This makes a plot of the variation function along the X1 direction at the final point found.

In[6]:= BlockA8e = 10^-7, x1f = 11.412778991937346, x2f = -0.8968052550911878, min<,
min = H-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2 ê.

8X1 Ø x1f, X2 Ø x2f<;
PlotAIH-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2M - min ê.

X2 Ø x2f, 8X1, x1f - e, x1f + e<EE

Out[6]=

11.4128 11.4128 11.4128

-2.µ 10-14
-1.µ 10-14

1.µ 10-14
2.µ 10-14
3.µ 10-14
4.µ 10-14
5.µ 10-14

The plot along one direction makes it fairly clear why no more improvement is possible. Part of

the reason the Levenberg|Marquardt method gets into trouble in this situation is that conver-

gence is relatively slow because the residual is nonzero at the minimum. With "Newton's"

method, the convergence is faster, and the full quadratic model allows for a better estimate of

step size, so that FindMinimum can have more confidence that the default tolerances have been

satisfied.

In[52]:= FindMinimumPlot@pfr, Method Ø 8"Newton", StepControl Ø "TrustRegion"<D

Out[52]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 6, Function Ø 7, Gradient Ø 7, Hessian Ø 7<,

2 4 6 8 10
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

>

The following table summarizes the options for controlling trust region step control.

option name default value

"AcceptableStepRatio" 1ê10000 the threshold h, such that when the actual
to prediction reduction rk ¥ h, the search is
moved to the computed step

"MaxScaledStepSize" ¶ the value Dmax, such that the trust region
size Dk < Dmax for all steps

"StartingScaledStepSize" Automatic the initial trust region size D0

Method options for "StepControl" -> "TrustRegion".

Unconstrained Optimization 43

Setting Up Optimization Problems in
Mathematica

Specifying Derivatives

The function FindRoot has a Jacobian option; the functions FindMinimum, FindMaximum, and

FindFit have a Gradient option; and the "Newton" method has a method option Hessian. All

these derivatives are specified with the same basic structure. Here is a summary of ways to

specify derivative computation methods.

Automatic find a symbolic derivative for the function and use finite
difference approximations if a symbolic derivative cannot
be found

Symbolic same as Automatic, but gives a warning message if finite
differences are to be used

FiniteDifference use finite differences to approximate the derivative

expression use the given expression with local numerical values of the
variables to evaluate the derivative

Methods for computing gradient, Jacobian, and Hessian derivatives.

The basic specification for a derivative is just the method for computing it. However, all of the

derivatives take options as well. These can be specified by using a list 8method, opts<. Here is a

summary of the options for the derivatives.

option name default value

"EvaluationMonitor" None expression to evaluate with local values of
the variables every time the derivative is
evaluated, usually specified with :> instead
of -> to prevent symbolic evaluation

"Sparse" Automatic sparse structure for the derivative; can be
Automatic, True, False, or a pattern
SparseArray giving the nonzero structure

"DifferenceOrder" 1 difference order to use when finite differ-
ences are used to compute the derivative

Options for computing gradient, Jacobian, and Hessian derivatives.

44 Unconstrained Optimization

A few examples will help illustrate how these fit together.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This defines a function that is only intended to evaluate for numerical values of the variables.

In[2]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

With just Method Ø "Newton", FindMinimum issues an lstol message because it was not able

to resolve the minimum well enough due to lack of good derivative information.

This shows the steps taken by FindMinimum when it has to use finite differences to compute
the gradient and Hessian.

In[3]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::symd:
Unable to automatically compute the symbolic derivative of f@x, yD with respect to the arguments

8x, y<. Numerical approximations to derivatives will be used instead. à

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[3]=

>

Unconstrained Optimization 45

:8-2., 8x Ø 1.37638, y Ø 1.67867<<,

8Steps Ø 4, Function Ø 89, Gradient Ø 26<, >

 The following describes how you can use the gradient option to specify the derivative.

This computes the minimum of f@x, yD using a symbolic expression for its gradient.

In[4]:= FindMinimumPlotAf@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=,
Method Ø "Newton"E

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

Symbolic derivatives are not always available. If you need extra accuracy from finite differ-

ences, you can increase the difference order from the default of 1 at the cost of extra function

evaluations.

This computes the minimum of f@x, yD using a second-order finite difference to compute the
gradient.

In[5]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 8Automatic, "DifferenceOrder" Ø 2<, Method Ø "Newton"D

Out[5]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 102, Gradient Ø 24, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

Note that the number of function evaluations is much higher because function evaluations are

used to compute the gradient, which is used to approximate the Hessian in turn. (The Hessian

is computed with finite differences since no symbolic expression for it can be computed from

the information given.)

46 Unconstrained Optimization

The information given from FindMinimumPlot about the number of function, gradient, and

Hessian evaluations is quite useful. The EvaluationMonitor options are what make this possi-

ble. Here is an example that simply counts the number of each type of evaluation. (The plot is

made using Reap and Sow to collect the values at which the evaluations are done.)

This computes the minimum with counters to keep track of the number of steps and the num-
ber of function, gradient, and Hessian evaluations.

In[6]:= Block@8s = 0, e = 0, g = 0, h = 0<,
8FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88 x, 1<, 8y, 1<<, StepMonitor ß s++, EvaluationMonitor ß e++,
Gradient Ø 8Automatic, EvaluationMonitor ß g++<, Method Ø
8"Newton", "Hessian" Ø 8Automatic, EvaluationMonitor ß h++<<D, s, e, g, h<D

Out[6]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 5, 6, 6, 6<

Using such diagnostics can be quite useful for determining what methods and/or method param-

eters may be most successful for a class of problems with similar characteristics.

When Mathematica can access the symbolic structure of the function, it automatically does a

structural analysis of the function and its derivatives and uses SparseArray objects to repre-

sent the derivatives when appropriate. Since subsequent numerical linear algebra can then use

the sparse structures, this can have a profound effect on the overall efficiency of the search.

When Mathematica cannot do a structural analysis, it has to assume, in general, that the struc-

ture is dense. However, if you know what the sparse structure of the derivative is, you can

specify this with the "Sparse" method option and gain huge efficiency advantages, both in

computing derivatives (with finite differences, the number of evaluations can be reduced signifi-

cantly) and in subsequent linear algebra. This issue is particularly important when working with

vector-valued variables. A good example for illustrating this aspect is the extended Rosenbrock

problem, which has a very simple sparse structure.

This gets the extended Rosenbrock function with 1000 variables in symbolic form ready to be
solved with FindRoot using the UnconstrainedProblems` package.

In[7]:= n = 1000; Short@ pex = GetFindRootProblem@ExtendedRosenbrock, nD, 20D

Out[7]//Short= FindRootProblemA910 I-X1
2 + X2M, 1 - X1, á997à, 1 - X999=, 8á1à<, 8<, á18à, 81000, 1000<E

This solves the problem using the symbolic form of the function.

In[8]:= Timing@Norm@1 - H Array@XÒ &, nD ê. ProblemSolve@pexDLDD

Out[8]= 80.321984, 0.<

Unconstrained Optimization 47

For a function with simple form like this, it is easy to write a vector form of the function, which

can be evaluated much more quickly than the symbolic form can, even with automatic

compilation.

This defines a vector form of the extended Rosenbrock function, which evaluates very efficiently.

In[9]:= ExtendedRosenbrockResidual@X_ListD := Module@8x1, x2<,
x1 = Take@X, 81, -1, 2<D;
x2 = Take@X, 82, -1, 2<D;
Flatten@Transpose@810 Hx2 - x1^2L, 1 - x1<DDD

This extracts the starting point as a vector from the problem structure.

In[10]:= Short@start = pex@@2, All, 2DDD

Out[10]//Short= 8-1.2, 1., -1.2, 1., -1.2, 1., -1.2, á986à, 1., -1.2, 1., -1.2, 1., -1.2, 1.<

This solves the problem using a vector variable and the vector function for evaluation.

In[11]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<DLDD

Out[11]= 812.2235, 0.<

The solution with the function, which is faster to evaluate, winds up being slower overall

because the Jacobian has to be computed with finite differences since the x_List pattern

makes it opaque to symbolic analysis. It is not so much the finite differences that are slow as

the fact that it needs to do 100 function evaluations to get all the columns of the Jacobian. With

knowledge of the structure, this can be reduced to two evaluations to get the Jacobian. For this

function, the structure of the Jacobian is quite simple.

This defines a pattern SparseArray , which has the structure of nonzeros for the Jacobian of
the extended Rosenbrock function. (By specifying _ for the values in the rules, the
SparseArray is taken to be a template of the Pattern type as indicated in the output form.)

In[12]:= sparsity = SparseArray@
Flatten@Table@88i, i< Ø _, 8i, i + 1< Ø _, 8i + 1, i< Ø _<, 8i, 1, n - 1, 2<DDD

Out[12]= SparseArray@<1500>, 81000, 1000<, PatternD

This solves the problem with the knowledge of the actual Jacobian structure, showing a signifi-
cant cost savings.

In[13]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8Automatic, Sparse Ø sparsity<DLDD

Out[13]= 80.031138, 0.<

48 Unconstrained Optimization

When a sparse structure is given, it is also possible to have the value computed by a symbolic

expression that evaluates to the values corresponding to the positions given in the sparse

structure template. Note that the values must correspond directly to the positions as ordered in

the SparseArray (the ordering can be seen using ArrayRules). One way to get a consistent

ordering of indices is to transpose the matrix twice, which results in a SparseArray with indices

in lexicographic order.

This transposes the nonzero structure matrix twice to get the indices sorted.

In[14]:= sparsity = Transpose@Transpose@sparsityDD

Out[14]= SparseArray@<1500>, 81000, 1000<, PatternD

This defines a function that will return the nonzero values in the Jacobian corresponding to the
index positions in the nonzero structure matrix.

In[15]:= ERJValues@X_ListD := Module@8x1, zero<,
x1 = Take@X, 81, -1, 2<D;
zero = 0. x1;
Flatten@Transpose@8-20 x1, 10. + zero, -1. + zero<DDD

This solves the problem with the resulting sparse symbolic Jacobian.

In[16]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8ERJValues@XD, Sparse Ø sparsity<DLDD

Out[16]= 80.025614, 0.<

In this case, using the sparse Jacobian is not significantly faster because the Jacobian is so

sparse that a finite difference approximation can be found for it in only two function evaluations

and because the problem is well enough defined near the minimum that the extra accuracy in

the Jacobian does not make any significant difference.

Variables and Starting Conditions

All the functions FindMinimum, FindMaximum, and FindRoot take variable specifications of the

same form. The function FindFit uses the same form for its parameter specifications.

Unconstrained Optimization 49

FindMinimum@ f,varsD find a local minimum of f with respect to the variables
given in vars

FindMinimum@ f,varsD find a local maximum of f with respect to the variables
given in vars

FindRoot@ f,varsD find a root f = 0 with respect to the variables given in vars

FindRoot@eqns,varsD find a root of the equations eqns with respect to the vari -
ables given in vars

FindFit@data,expr,pars,varsD find values of the parameters pars that make expr give a
best fit to data as a function of vars

Variables and parameters in the "Find" functions.

The list vars (pars for FindFit) should be a list of individual variable specifications. Each variable

specification should be of the following form.

8var,st< variable var has starting value st

8var,st1,st2< variable var has two starting values st1 and st2; the second
starting condition is only used with the principal axis and
secant methods

8var,st,rl,ru< variable var has starting value st; the search will be termi -
nated when the value of var goes outside of the interval
@rl, ruD

8var,st1,st2,rl,ru< variable var has two starting values st1 and st2; the search
will be terminated when the value of var goes outside of
the interval @rl, ruD

Individual variable specifications in the "Find" functions.

The specifications in vars all need to have the same number of starting values. When region

bounds are not specified, they are taken to be unbounded, that is, rl = -¶, ru =¶.

Vector- and Matrix-Valued Variables

The most common use of variables is to represent numbers. However, the variable input syntax

supports variables that are treated as vectors, matrices, or higher-rank tensors. In general, the

"Find" commands, with the exception of FindFit, which currently only works with scalar

variables, will consider a variable to take on values with the same rectangular structure as the

starting conditions given for it.

50 Unconstrained Optimization

Here is a matrix.

In[1]:= A =
0 1 2
3 4 5
6 7 8

;

This uses FindRoot to find an eigenvalue and corresponding normalized eigenvector for A.

In[2]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, 1<, 8x, 81, 2, 3<<<D

Out[2]= 8l Ø 13.3485, x Ø 80.164764, 0.505774, 0.846785<<

Of course, this is not the best way to compute the eigenvalue, but it does show how the vari-

able dimensions are picked up from the starting values. Since l has a starting value of 1, it is

taken to be a scalar. On the other hand, x is given a starting value, which is a vector of length

3, so it is always taken to be a vector of length 3.

If you use multiple starting values for variables, it is necessary that the values have consistent

dimensions and that each component of the starting values is distinct.

This finds a different eigenvalue using two starting conditions for each variable.

In[3]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, -2, -1<, 8x, 8-1, 0, 0<, 80, 1, 1<<<D

Out[3]= 8l Ø -1.34847, x Ø 8-0.7997, -0.104206, 0.591288<<

One advantage of variables that can take on vector and matrix values is that they allow you to

write functions, which can be very efficient for larger problems and/or handle problems of

different sizes automatically.

This defines a function that gives an objective function equivalent to the
ExtendedRosenbrock problem in the UnconstrainedProblems package. The function
expects a value of x which is a matrix with two rows.

In[4]:= ExtendedRosenbrockObjective@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
x1 -= 1;
x1.x1 + 100 x2.x2D

Note that since the value of the function would be meaningless unless x had the correct struc-

ture, the definition is restricted to arguments with that structure. For example, if you defined

the function for any pattern x_, then evaluating with an undefined symbol x (which is what

FindMinimum does) gives meaningless unintended results. It is often the case that when work-

ing with functions for vector-valued variables, you will have to restrict the definitions. Note that

the definition above does not rule out symbolic values with the right structure. For example,

Unconstrained Optimization 51

 does) gives meaningless unintended results. It is often the case that when work-

the definition above does not rule out symbolic values with the right structure. For example,

ExtendedRosenbrockObjective@88x11, x12<, 8x21, x22<<D gives a symbolic representation of the

function for scalar x11, ….

This uses FindMinimum to solve the problem given a generic value for the problem size. You
can change the value of n without changing anything else to solve problems of different size.

In[5]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD, 8x, start<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[7]= 92.00081µ10-10,
8x Ø 880.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996,

0.999996, 0.999996<, 80.999991, 0.999991, 0.999991, 0.999991,
0.999991, 0.999991, 0.999991, 0.999991, 0.999991, 0.999991<<<=

The solution did not achieve the default tolerances due to the fact that Mathematica was not

able to get symbolic derivatives for the function, so it had to fall back on finite differences that

are not as accurate.

A disadvantage of using vector- and matrix-valued variables is that Mathematica cannot cur-

rently compute symbolic derivatives for them. Sometimes it is not difficult to develop a function

that gives the correct derivative. (Failing that, if you really need greater accuracy, you can use

higher-order finite differences.)

This defines a function that returns the gradient for the ExtendedRosenbrockObjective
function. Note that the gradient is a vector obtained by flattening the matrix corresponding to
the variable positions.

In[8]:= ExtendedRosenbrockGradient@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
Flatten@82 Hx1 - 1L - 400 x1 x2, 200 x2<DD

This solves the problem using the symbolic value of the gradient.

In[9]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD,
8x, start<, Gradient Ø ExtendedRosenbrockGradient@xDD

Out[11]= 93.00886µ10-20,
8x Ø 881., 1., 1., 1., 1., 1., 1., 1., 1., 1.<, 81., 1., 1., 1., 1., 1., 1., 1., 1., 1.<<<=

52 Unconstrained Optimization

Jacobian and Hessian derivatives are often sparse. You can also specify the structural sparsity

of these derivatives when appropriate, which can reduce overall solution complexity by quite a

bit.

Termination Conditions

Mathematically, sufficient conditions for a local minimum of a smooth function are quite straight-

forward: x* is a local minimum if “ f Hx*L = 0 and the Hessian “2 f Hx*L is positive definite. (It is a

necessary condition that the Hessian be positive semidefinite.) The conditions for a root are

even simpler. However, when the function f is being evaluated on a computer where its value is

only known, at best, to a certain precision, and practically only a limited number of function

evaluations are possible, it is necessary to use error estimates to decide when a search has

become close enough to a minimum or a root, and to compute the solution only to a finite

tolerance. For the most part, these estimates suffice quite well, but in some cases, they can be

in error, usually due to unresolved fine scale behavior of the function.

Tolerances affect how close a search will try to get to a root or local minimum before terminat-

ing the search. Assuming that the function itself has some error (as is typical when it is com-

puted with numerical values), it is not typically possible to locate the position of a minimum

much better than to half of the precision of the numbers being worked with. This is because of

the quadratic nature of local minima. Near the bottom of a parabola, the height varies quite

slowly as you move across from the minimum. Thus, if there is any error noise in the function,

it will typically mask the actual rise of the parabola over a width roughly equal to the square

root of the noise. This is best seen with an example.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Unconstrained Optimization 53

The following command displays a sequence of plots showing the minimum of the function

sinHxL - cos HxL + 2 over successively smaller ranges. The curve computed with machine num-
bers is shown in black; the actual curve (computed with 100 digits of precision) is shown in blue.

In[2]:= Table@Block@8e = 10.^-k<,
Show@8Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø BlackD,

Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø Blue,
WorkingPrecision Ø 100D<, PlotLabel Ø Row@8"Width ", e<DDD, 8k, 5, 9<D

Out[2]=

From the sequence of plots, it is clear that for changes of order 10-8, which is about half of

machine precision and smaller, errors in the function are masking the actual shape of the curve

near the minimum. With just sampling of the function at that precision, there is no way to be

sure if a given point gives the smallest local value of the function or not to any closer tolerance.

The value of the derivative, if it is computed symbolically, is much more reliable, but for the

general case, it is not sufficient to rely only on the value of the derivative; the search needs to

find a local minimal value of the function where the derivative is small to satisfy the tolerances

in general. Note also that if symbolic derivatives of your function cannot be computed and finite

differences or a derivative-free method is used, the accuracy of the solution may degrade

further.

Root finding can suffer from the same inaccuracies in the function. While it is typically not as

severe, some of the error estimates are based on a merit function, which does have a quadratic

shape.

For the reason of this limitation, the default tolerances for the Find functions are all set to be

half of the final working precision. Depending on how much error the function has, this may or

may not be achievable, but in most cases it is a reasonable goal. You can adjust the tolerances

using the AccuracyGoal and PrecisionGoal options. When AccuracyGoal -> ag and

PrecisionGoal -> pg, this defines tolerances tola = 10-ag and tolr = 10-pg.

54 Unconstrained Optimization

:

-0.785400 -0.785390

1.µ10-11

3.µ10-11

5.µ10-11

7.µ10-11
Width 0.00001

,

-0.785398 -0.785397

1.µ10-13

3.µ10-13

5.µ10-13

7.µ10-13
Width 1.µ10-6

,

-0.785398 -0.785398

1.µ10-15

3.µ10-15

5.µ10-15

7.µ10-15
Width 1.µ10-7

,

-0.785398 -0.785398

5.µ10-17
1.µ10-16
1.5µ10-16
2.µ10-16

Width 1.µ10-8

,

-0.785398 -0.785398

5.µ10-17
1.µ10-16
1.5µ10-16
2.µ10-16

Width 1.µ10-9

>

Given tola and tolr FindMinimum tries to find a value xk such that °xk - x*¥ § maxHtola, °xk¥ tolrL. Of

course, since the exact position of the minimum, x*, is not known, the quantity °xk - x*¥ is esti-

mated. This is usually done based on past steps and derivative values. To match the derivative

condition at a minimum, the additional requirement °“ f HxkL¥ § tola is imposed. For FindRoot, the

corresponding condition is that just the residual be small at the root: ° f ¥ § tola.

This finds the 2 to at least 12 digits of accuracy, or within a tolerance of 10-12. The precision
goal of ¶ means that tolr = 0, so it does not have any effect in the formula. (Note: you cannot
similarly set the accuracy goal to ¶ since that is always used for the size of the residual.)

In[3]:= FindRoot@x^2 - 2, 8x, 1<, AccuracyGoal Ø 12, PrecisionGoal Ø ¶D

Out[3]= 8x Ø 1.41421<

This shows that the result satisfied the requested error tolerances.

In[4]:= 8x - Sqrt@2D, x^2 - 2< ê. %

Out[4]= 90., 4.44089µ10-16=

This tries to find the minimum of the function sinHxL - cosHxL to 8 digits of accuracy.
FindMinimum gives a warning message because of the error in the function as seen in the
plots.

In[5]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<,
Method -> "Newton", AccuracyGoal Ø 8, PrecisionGoal Ø ¶D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[5]= 8-1.41421, 8x Ø -0.785398<<

This shows that though the value at the minimum was found to be basically machine epsilon,
the position was only found to the order of 10-8 or so.

In[6]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[6]= 92.22045µ10-16, -1.26022µ10-8=

In multiple dimensions, the situation is even more complicated since there can be more error in

some directions than others, such as when a minimum is found along a relatively narrow valley,

as in the Freudenstein|Roth problem. For searches such as this, often the search parameters

are scaled, which in turn affects the error estimates. Nonetheless, it is still typical that the

quadratic shape of the minimum affects the realistically achievable tolerances.

Unconstrained Optimization 55

When you need to find a root or minimum beyond the default tolerances, it may be necessary

to increase the final working precision. You can do this with the WorkingPrecision option.

When you use WorkingPrecision -> prec, the search starts at the precision of the starting

values and is adaptively increased up to prec as the search converges. By default,

WorkingPrecision -> MachinePrecision, so machine numbers are used, which are usually

much faster. Going to higher precision can take significantly more time, but can get you much

more accurate results if your function is defined in an appropriate way. For very high-precision

solutions, "Newton's" method is recommended because its quadratic convergence rate signifi-

cantly reduces the number of steps ultimately required.

It is important to note that increasing the setting of the WorkingPrecision option does no

good if the function is defined with lower-precision numbers. In general, for

WorkingPrecision -> prec to be effective, the numbers used to define the function should be

exact or at least of precision prec. When possible, the precision of numbers in the function is

artificially raised to prec using SetPrecision so that convergence still works, but this is not

always possible. In any case, when the functions and derivatives are evaluated numerically, the

precision of the results is raised to prec if necessary so that the internal arithmetic can be done

with prec digit precision. Even so, the actual precision or accuracy of the root or minimum and

its position is limited by the accuracy in the function. This is especially important to keep in

mind when using FindFit, where data is usually only known up to a certain precision.

Here is a function defined using machine numbers.

In[7]:= f@x_?NumberQD := Sin@1. xD - Cos@1. xD;

Even with higher working precision, the minimum cannot be resolved better because the actual
function still has the same errors as shown in the plots. The derivatives were specified to keep
other things consistent with the computation at machine precision shown previously.

In[8]:= FindMinimum@f@xD, 8x, 0<, Gradient Ø 8Cos@1. xD + Sin@1. xD<,
Method Ø 8"Newton", Hessian Ø 88Cos@1. xD - Sin@1. xD<<<,
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the function. You may need
more than 20.` digits of working precision to meet these tolerances. à

Out[8]= 8-1.4142135623730949234, 8x Ø -0.78539817599970194669<<

56 Unconstrained Optimization

Here is the computation done with 20-digit precision when the function does not have machine
numbers.

In[9]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton",
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

Out[9]= 8-1.4142135623730950488, 8x Ø -0.78539816339744830962<<

If you specify WorkingPrecision -> prec, but do not explicitly specify the AccuracyGoal and

PrecisionGoal options, then their default settings of Automatic will be taken to be

AccuracyGoal -> prec ê 2 and PrecisionGoal -> prec ê 2. This leads to the smallest tolerances

that can realistically be expected in general, as discussed earlier.

Here is the computation done with 50-digit precision without an explicitly specified setting for
the AccuracyGoal or PrecisionGoal options.

In[10]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton", WorkingPrecision Ø 50D

Out[10]= 8-1.4142135623730950488016887242096980785696718753769,
8x Ø -0.78539816339744830961566084581987572104929234984378<<

This shows that though the value at the minimum was actually found to be even better than the
default 25-digit tolerances.

In[11]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[11]= 90.µ10-50, 0.µ10-51=

The following table shows a summary of the options affecting precision and tolerance.

option name default value

WorkingPrecision MachinePrecis-
ion

the final working precision, prec, to use;
precision is adaptively increased from the
smaller of prec and the precision of the
starting conditions to prec

AccuracyGoal Automatic setting ag determines an absolute tolerance
by tola = 10-ag; when Automatic,
ag = prec ê 2

PrecisionGoal Automatic setting pg determines an absolute toler-
ance by tolr = 10-pg; when Automatic,
pg = prec ê 2

Precision and tolerance options in the "Find" functions.

A search will sometimes converge slowly. To prevent slow searches from going on indefinitely,

the Find commands all have a maximum number of iterations (steps) that will be allowed

before terminating. This can be controlled with the option

Unconstrained Optimization 57

before terminating. This can be controlled with the option MaxIterations that has the default

value MaxIterations -> 100. When a search terminates with this condition, the command will

issue the cvmit message.

This gets the Brown|Dennis problem from the Optimization`UnconstrainedProblems`
package.

In[12]:= Short@bd = GetFindMinimumProblem@BrownDennisD, 5D

Out[12]//Short= FindMinimumProblemB -‰1ë5 + X1 +
X2

5

2

+ -CosB
1

5
F + X3 + SinB

1

5
F X4

2 2

+

-‰2ë5 + X1 +
2 X2

5

2

+ -CosB
2

5
F + X3 + SinB

2

5
F X4

2 2

+

á17à + JI-‰4 + X1 + 4 X2M
2
+ H-Cos@4D + X3 + Sin@4D X4L

2N
2
,

88X1, 25.<, 8X2, 5.<, 8X3, -5.<, 8X4, -1.<<, 8<, BrownDennis, 84, 20<F

This attempts to solve the problem with the default method, which is the Levenberg|Marquardt
method, since the function is a sum of squares.

In[13]:= ProblemSolve@bdD

FindMinimum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[13]= 8105443., 8X1 Ø -7.35071, X2 Ø 11.7365, X3 Ø -0.60436, X4 Ø 0.168396<<

The Levenberg|Marquardt method is converging slowly on this problem because the residual is

nonzero near the minimum and the second-order part of the Hessian is needed. While the

method eventually does converge in just under 400 steps, perhaps a better option is to use a

method which may converge faster.

In[44]:= ProblemSolve@bd, Method Ø QuasiNewtonD

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[44]= 885822.2, 8X1 Ø -11.5944, X2 Ø 13.2036, X3 Ø -0.403439, X4 Ø 0.236779<<

In a larger calculation, one possibility when hitting the iteration limit is to use the final search

point, which is returned, as a starting condition for continuing the search, ideally with another

method.

58 Unconstrained Optimization

Symbolic Evaluation

The functions FindMinimum, FindMaximum, and FindRoot have the HoldAll attribute and so

have special semantics for evaluation of their arguments. First, the variables are determined

from the second argument, then they are localized. Next, the function is evaluated symbolically,

then processed into an efficient form for numerical evaluation. Finally, during the execution of

the command, the function is repeatedly evaluated with different numerical values. Here is a

list showing these steps with additional description.

Determine variables process the second argument; if the second argument is
not of the correct form (a list of variables and starting
values), it will be evaluated to get the correct form

Localize variables in a manner similar to Block and Table, add rules to the
variables so that any assignments given to them will not
affect your Mathematica session beyond the scope of the
"Find" command and so that previous assignments do
not affect the value (the variable will evaluate to itself at
this stage)

Evaluate the function with the locally undefined (symbolic) values of the vari-
ables, evaluate the first argument (function or equations).
Note: this is a change which was instituted in Mathemat-
ica 5, so some adjustments may be necessary for code
that ran in previous versions. If your function is such that
symbolic evaluation will not keep the function as intended
or will be prohibitively slow, you should define your func-
tion so that it only evaluates for numerical values of the
variables. The simplest way to do this is by defining your
function using PatternTest (?), as in
f@x_?NumberQD := definition.

Preprocess the function analyze the function to help determine the algorithm to
use (e.g., sum of squares -> Levenberg|Marquardt);
optimize and compile the function for faster numerical
evaluation if possible: for FindRoot this first involves
going from equations to a function

Compute derivatives compute any needed symbolic derivatives if possible;
otherwise, do preprocessing needed to compute deriva-
tives using finite differences

Evaluate numerically repeatedly evaluate the function (and derivatives when
required) with different numerical values

Steps in processing the function for the "Find" commands.

Unconstrained Optimization 59

FindFit does not have the HoldAll attribute, so its arguments are all evaluated before the

commands begin. However, it uses all of the stages described above, except instead of evaluat-

ing the function, it constructs a function to minimize from the model function, variables, and

provided data.

You will sometimes want to prevent symbolic evaluation, most often when your function is not

an explicit formula, but a value derived through running through a program. An example of

what happens and how to prevent the symbolic evaluation is shown.

This attempts to solve a simple boundary value problem numerically using shooting.

In[1]:= FindRoot@
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, Pi<D

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

Out[1]= FindRoot@First@x@1D ê.
NDSolve@8x££@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0, x£@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, p<D

The command fails because of the symbolic evaluation of the function. You can see what hap-

pens when you evaluate it inside of Block.

This evaluates the function given to FindRoot with a local (undefined) value of xp.

In[2]:= Block@8xp<,
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DDD

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à
Out[2]= x@1D

60 Unconstrained Optimization

Of course, this is not at all what was intended for the function; it does not even depend on xp.

What happened is that without a numerical value for xp, NDSolve fails, so ReplaceAll (ê.) fails

because there are no rules. First just returns its first argument, which is x@1D. Since the

function is meaningless unless xp has numerical values, it should be properly defined.

This defines a function that returns the value x@1D as a function of a numerical value for x'@tD
at t = -1.

In[3]:= fx1@xp_?NumberQD :=
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0,

x@-1D ã 0, x'@-1D ã xp<, x, 8t, -1, 1<DD

An advantage of having a simple function definition outside of FindRoot is that it can indepen-

dently be tested to make sure that it is what you really intended.

This makes a plot of fx1.

In[4]:= Plot@fx1@xpD, 8xp, 0, 5<D

Out[4]=

From the plot, you can deduce two bracketing values for the root, so it is possible to take

advantage of "Brent's" method to quickly and accurately solve the problem.

This solves the shooting problem.

In[5]:= FindRoot@fx1@xpD, 8xp, 3, 4<D

Out[5]= 8xp Ø 3.34372<

It may seem that symbolic evaluation just creates a bother since you have to define the func-

tion specifically to prevent it. However, without symbolic evaluation, it is hard for Mathematica

to take advantage of its unique combination of numerical and symbolic power. Symbolic evalua-

tion means that the commands can consistently take advantage of benefits that come from

symbolic analysis, such as algorithm determination, automatic computation of derivatives,

automatic optimization and compilation, and structural analysis.

Unconstrained Optimization 61

1 2 3 4 5

-1.0

-0.5

0.5

UnconstrainedProblems Package

Plotting Search Data

The utility functions FindMinimumPlot and FindRootPlot show search data for FindMinimum

and FindRoot for one- and two-dimensional functions. They work with essentially the same

arguments as FindMinimum and FindRoot except that they additionally take options, which

affect the graphics functions they call to provide the plots, and they do not have the HoldAll

attribute as do FindMinimum and FindRoot.

FindMinimumPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindMinimum@ f, 8x, xst<D superimposed on a plot of f
versus x; opts may include options from both
FindMinimum and Plot

FindMinimumPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindMinimum@ f, 88x, xst<, 8y, yst<<D superimposed on
a contour plot of f as a function of x and y; opts may
include options from both FindMinimum and
ContourPlot

FindRootPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f and
any of its derivatives which were evaluated in
FindRoot@ f, 8x, xst<D superimposed on a plot of f
versus x; opts may include options from both FindRoot
and Plot

FindRootPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f and
any of its derivatives that were evaluated in
FindRoot@ f, 88x, xst<, 8y, yst<<D superimposed on a
contour plot of the merit function f as a function of x and
y; opts may include options from both FindRoot and
ContourPlot

Plotting search data.

Note that to simplify processing and reduce possible confusion about the function f ,

FindRootPlot does not accept equations; it finds a root f = 0.

62 Unconstrained Optimization

Steps and evaluation points are color coded for easy detection as follows:

† Steps are shown with blue lines and blue points.

† Function evaluations are shown with green points.

† Gradient evaluations are shown with red points.

† Hessian evaluations are shown with cyan points.

† Residual function evaluations are shown with yellow points.

† Jacobian evaluations are shown with purple points.

† The search termination is shown with a large black point.

FindMinimumPlot and FindRootPlot return a list containing 8result, summary, plot<, where:

† result is the result of FindMinimum or FindRoot.

† summary is a list of rules showing the numbers of steps and evaluations of the function and
its derivatives.

† plot is the graphics object shown.

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local
minimum of the function cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<. Options are
given to ContourPlot so that no contour lines are shown and the function value is indicated
by grayscale. Since FindMinimum by default uses the "quasi-Newton" method, there are only
evaluations of the function and gradient that occur at the same points, indicated by the red
circles with green centers.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Contours Ø 100, ContourLines Ø FalseD

Out[2]=

Unconstrained Optimization 63

:8 - 2.,8 xØ 1.37638, yØ 1.67868<< ,

8 StepsØ 9, FunctionØ 13, GradientØ 13< ,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1<. Since the
problem is a sum of squares, FindMinimum by default uses the "Gauss|Newton"/Levenberg|
Marquardt method that derives a residual function and only evaluates it and its Jacobian. Points
at which the residual function is evaluated are shown with yellow dots. The yellow dots sur-
rounded by a large purple circle are points at which the Jacobian was evaluated as well.

In[3]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2, 88x, 1<, 8y, 1<<D

Out[3]= :92.27472µ10-28, 8x Ø 2.06482, y Ø 1.42116<=,

8Steps Ø 6, Residual Ø 7, Jacobian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

1.4

1.5

>

This shows in two dimensions the steps and evaluations used by FindMinimum to find a local

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1< using
"Newton’s" method. Points at which the function, gradient, and Hessian were all evaluated are
shown by concentric green, red, and cyan circles. Note that in this example, all of the Newton
steps satisfied the Wolfe conditions, so there were no points where the function and gradient
were evaluated separately from the Hessian, which is not always the case. Note also that
Newton’s method finds a different local minimum than the default method.

In[4]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2,
88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[4]= :94.03019µ10-29, 8x Ø 1.57033, y Ø 0.82198<=,

8Steps Ø 6, Function Ø 10, Gradient Ø 10, Hessian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.7

0.8

0.9

1.0

1.1

1.2

>

64 Unconstrained Optimization

This shows the steps and evaluations used by FindMinimum to find a local minimum of the

function ex + 1
x
 with two starting values superimposed on the plot of the function. Options are

given to Plot so that the curve representing the function is thick and purple. With two starting
values, FindMinimum uses the derivative-free principal axis method, so there are only function
evaluations, indicated by the green dots.

In[5]:= FindMinimumPlot@Exp@xD + 1 ê x, 8x, 1, 1.1<,
PlotStyle Ø 8Thickness@.025D, RGBColor@.4, 0, .4D<D

Out[5]=

This shows in two dimensions the steps and evaluations used by FindRoot to find a root of the
function 9x2 - 3 y, sinIx2 + y2M= = 80, 0< starting at the point 8x, y< = 81, 1<. As described earlier, the
function is a residual, and the default method in FindRoot evaluates the residual and its
Jacobian as shown by the yellow dots and purple circles. Note that this plot is nearly the same
as the one produced by FindMinimumPlot with the default method for the function

Ix2 - 3 yM2 + sin2Ix2 + y2M since the residual is the same. FindRootPlot also shows the zero
contour of each component of the residual function in red and green.

In[6]:= FindRootPlot@8x^2 - 3 y, Sin@x^2 + y^2D<, 88x, 1<, 8y, 1<<D

Out[6]= :8x Ø 2.06482, y Ø 1.42116<, 8Steps Ø 7, Residual Ø 7, Jacobian Ø 7<,

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

1.4

1.5

>

Test Problems

All the test problems presented in [MGH81] have been coded into Mathematica in the

Optimization`UnconstrainedProblems` package. A data structure is used so that the prob-

lems can be processed for solution and testing with FindMinimum and FindRoot in a seamless

way. The lists of problems for FindMinimum and FindRoot are in $FindMinimumProblems and

$FindRootProblems, respectively, and a problem can be accessed using

GetFindMinimumProblem and GetFindRootProblem.

Unconstrained Optimization 65

:83.44228, 8x Ø 0.703467<<, 8Steps Ø 6, Function Ø 14<,

0.70 0.75 0.80 0.85 0.90 0.95 1.00

3.50

3.55

3.60

3.65

3.70

>

$FindMinimumProblems list of problems that are appropriate for FindMinimum

GetFindMinimumProblem@probD get the problem prob using the default size and starting
values in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,8n,m<D

get the problem prob with n variables such that it is a sum
of m squares in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,size,startD

get the problem prob with given size and starting value start
in a FindMinimumProblem data structure

FindMinimumProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to
be solved by FindMinimum

Accessing FindMinimum problems.

$FindRootProblems list of problems that are appropriate for FindRoot

GetFindRootProblem@probD get the problem prob using the default size and starting
values in a FindRootProblem data structure

GetFindRootProblem@prob,nD get the problem prob with n variables (and n equations) in
a FindRootProblem data structure

GetFindRootProblem@prob,n,startD get the problem prob with size n and starting value start in
a FindRootProblem data structure

FindRootProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to
be solved by FindRoot

Accessing FindRoot problems.

GetFindMinimumProblem and GetFindRootProblem are both pass options to be used by other

commands. They also accept the option Variables -> vars which is used to specify what vari-

ables to use for the problems.

option name default value

Variables XÒ& a function that is applied to the integers
1, … n to generate the variables for a
problem with n variables or a list of length
n containing the variables

Specifying variable names.

66 Unconstrained Optimization

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This gets the Beale problem in a FindMinimumProblem data structure.

In[2]:= beale = GetFindMinimumProblem@BealeD

Out[2]= FindMinimumProblemB
3

2
- X1 H1 - X2L

2

+
9

4
- X1 I1 - X2

2M

2

+
21

8
- X1 J1 - X2

3N

2

,

88X1, 1.<, 8X2, 1.<<, 8<, Beale, 82, 3<F

This gets the Powell singular function problem in a FindRootProblem data structure.

In[3]:= ps = GetFindRootProblem@PowellSingular, Variables Ø 8x, y, z, w<D

Out[3]= FindRootProblemB:x + 10 y, 5 H-w + zL, Hy - 2 zL2, 10 H-w + xL2>,

88x, 3.<, 8y, -1<, 8z, 0.<, 8w, 1.<<, 8<, PowellSingular, 84, 4<F

Once you have a FindMinimumProblem or FindRootProblem object, in addition to simply solv-

ing the problem, there are various tests that you can run.

ProblemSolve@p,optsD solve the problem in p, giving the same output as
FindMinimum or FindRoot

ProblemStatistics@p,optsD solve the problem, giving a list 8sol, stats<, where sol is
the output of ProblemSolve@pD and evals is a list of rules
indicating the number of steps and evaluations used

ProblemTime@p,optsD solve the problem giving a list 8sol, Time -> time<, where
sol is the output of ProblemSolve@pD and time is time
taken to solve the problem; if time is less than a second,
the problem will be solved multiple times to get an average
timing

ProblemTest@p,optsD solve the problem, giving a list of rules including the step
and evaluation statistics and time from
ProblemStatistics@pD and ProblemTime@pD along
with rules indicating the accuracy and precision of the
solution as compared with a reference solution

FindMinimumPlot@p,optsD plot the steps and evaluation points for solving a
FindMinimumProblem p

FindRootPlot@p,optsD plot the steps and evaluation points for solving a
FindRootProblem p

Operations with FindMinimumProblem and FindRootProblem data objects.

Unconstrained Optimization 67

Any of the previous commands shown can take options that are passed on directly to

FindMinimum or FindRoot and override any options for these functions which may have been

specified when the problem was set up.

This uses FindRoot to solve the Powell singular function problem and gives the root.

In[4]:= ProblemSolve@psD

Out[4]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9, w Ø 1.41916µ10-9=

This does the same as the previous example, but includes statistics on steps and evaluations
required.

In[5]:= ProblemStatistics@psD

Out[5]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9,

w Ø 1.41916µ10-9, 8Steps Ø 28, Function Ø 29, Jacobian Ø 28<=

This uses FindMinimum to solve the Beale problem and averages the timing over several trials
to get the average time it takes to solve the problem.

In[6]:= ProblemTime@bealeD

Out[6]= 992.63792µ10-19, 8X1 Ø 3., X2 Ø 0.5<=, Time Ø 0.00201428 Second=

This uses FindMinimum to solve the Beale problem, compares the result with a reference
solution, and gives a list of rules indicating the results of the test.

In[7]:= ProblemTest@bealeD

Out[7]= 8FunctionAccuracy Ø 18.5787, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 9.7438, SpatialPrecision Ø 9.85325,
Time Ø 0.00202963 Second, Steps Ø 6, Residual Ø 8, Jacobian Ø 7, Messages Ø 8<<

ProblemTest gives a way to easily compare two different methods for the same problem.

This uses FindMinimum to solve the Beale problem using "Newton’s" method, compares the
result with a reference solution, and gives a list of rules indicating the results of the test.

In[8]:= ProblemTest@beale, Method -> "Newton"D

Out[8]= 8FunctionAccuracy Ø 25.5581, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 12.384, SpatialPrecision Ø 12.6444, Time Ø 0.00297526 Second,
Steps Ø 8, Function Ø 9, Gradient Ø 9, Hessian Ø 9, Messages Ø 8<<

68 Unconstrained Optimization

Most of the rules returned by these functions are self-explanatory, but a few require some

description. Here is a table clarifying those rules.

"FunctionAccuracy" the accuracy of the function value -Log@10, °error in f¥D

"FunctionPrecision" the precision of the function value
-Log@10, °relative error in f¥D

"SpatialAccuracy" the accuracy in the position of the minimizer or root
-Log@10, °error in x¥D

"SpatialPrecision" the precision in the position of the minimizer or root
-Log@10, °relative error in x¥D

"Messages" a list of messages issued during the solution of the problem

A very useful comparison is to see how a list of methods affect a particular problem. This is easy to do by
setting up a FindMinimumProblem object and mapping a problem test over a list of methods.

This gets the Chebyquad problem. The output has been abbreviated to save space.

In[9]:= Short@cq = GetFindMinimumProblem@ChebyquadD, 5D

Out[9]//Short= FindMinimumProblemB
1

81
H-9 + 2 X1 + 2 X2 + 2 X3 + 2 X4 + 2 X5 + 2 X6 + 2 X7 + 2 X8 + 2 X9L

2 +

1

81
I-3 H-1 + 2 X1L + 4 H-1 + 2 X1L

3 - 3 H-1 + 2 X2L + á21à + 4 H-1 + 2 X9L
3M

2
+

1

81
Iá35à + 16á1à5M

2
+

1

81
Há1àL2 +

1

81
á1à2 + Há1à + á1àL2 +

1

15
+
1

9
Há1àL

2

+
1

35
+
1

9
I-9 + á35à + 32 H-1 + á1àL6M

2

+

1

63
+
1

9
I9 - 32 H-1 + 2 X1L

2 + á51à + 128 H-1 + 2 X9L
8M

2

, á3à, 89, 9<F

Here is a list of possible methods.

In[10]:= methods = 8Automatic, "QuasiNewton", 8"QuasiNewton", "StepMemory" Ø 10<,
"Newton", 8"Newton", "StepControl" -> "TrustRegion"<, "ConjugateGradient"<;

This makes a table comparing the different methods in terms of accuracy and computation time.

In[11]:= TableForm@Map@Join@8Ò<, 8"Time", "FunctionAccuracy", "SpatialAccuracy"< ê.
ProblemTest@cq, Method Ø ÒDD &, methodsDD

Out[11]//TableForm=

Automatic 0.0288897 20.0663 9.94666
QuasiNewton 0.0317216 17.1785 8.3777
QuasiNewton
StepMemory Ø 10 0.0323488 16.4119 7.47304

Newton 0.0769076 20.025 9.34314
Newton
StepControl Ø TrustRegion 0.0761128 21.8281 10.6614

ConjugateGradient 0.0388904 15.7931 7.72219

It is possible to generate tables of how a particular method affects a variety of problems by

mapping over the names in $FindMinimumProblems or $FindRootProblems.

Unconstrained Optimization 69

This sets up a function that tests a problem with FindMinimum using its default settings except
with a large setting for MaxIterations so that the default (Levenberg|Marquardt) method can
run to convergence.

In[12]:= TestDefault@problem_D := Join@8"Name" Ø problem<,
ProblemTest@GetFindMinimumProblem@problem, MaxIterations Ø 1000DDD

This makes a table showing some of the results from testing all the problems in
$FindMinimumProblems. It may take several minutes to run.

In[13]:= TableForm@Map@H8"Name", "Time", "Residual", "Jacobian", "FunctionAccuracy",
"SpatialAccuracy"< ê. TestDefault@ÒDL &, $FindMinimumProblemsDD

Out[13]//TableForm=

Rosenbrock 0.00284034 21 16 15.9546 15.9546
FreudensteinRoth 0.00442559 35 17 14.1484 8.4797
PowellBadlyScaled 0.00276841 18 17 29.9092 12.4303
BrownBadlyScaled 0.00182188 10 10 20.5345 16.2673
Beale 0.00199867 8 7 18.5787 9.7438
JennrichSampson 0.00828054 34 20 13.3703 8.87261
HelicalValley 0.00218182 11 9 32.0055 17.2046
Bard 0.00673732 7 7 16.9157 8.00751
Gauss 0.00786546 3 3 21.1019 11.0733
Meyer 0.0264677 126 116 11.5089 9.95814
Gulf 0.0120229 89 17 31.109 13.543
Box3D 0.00715045 6 6 18.9447 8.68579
PowellSingular 0.0034851 28 28 30.3044 7.73816
Wood 0.00791268 69 64 23.5366 13.0536
KowalikOsborne 0.010429 36 35 18.6639 8.33507
BrownDennis 0.0899279 412 375 9.13811 6.11409
Osborne1 0.0224698 20 17 17.4797 9.3597
BiggsExp6 0.0231614 50 36 30.2266 14.4925
Osborne2 0.121583 20 17 17.1587 7.90304
Watson 0.0736547 11 9 18.8178 6.68865
ExtendedRosenbrock 0.0954113 21 16 29.9092 15.9546
ExtendedPowell 0.123236 27 27 29.9092 7.21075
PenaltyFunctionI 0.0249084 117 94 18.1356 6.96613
PenaltyFunctionII 0.0271926 109 72 15.9546 7.62089
VariablyDimensionedFunction 0.130756 17 17 15.9546 15.9546
TrigonometricFunction 0.00774007 7 7 28.0238 14.6546
BrownAlmostLinear 0.00557332 14 13 29.1488 0.668059
DiscreteBoundaryValue 0.00547087 4 4 30.5195 14.2959
DiscreteIntegralEquation 0.0105878 4 4 29.3985 14.8825
BroydenTridiagonal 0.00479374 5 5 17.9475 9.44685
BroydenBanded 0.00825598 8 7 28.0567 15.503
LinearFullRank 0.00370734 2 2 14.7505 14.6348
LinearRank1 0.00938284 55 2 15.0515 ERROR
LinearRank1Z 0.00742234 37 2 15.0515 ERROR
Chebyquad 0.0280148 11 9 20.0663 9.94666

The two cases where the spatial accuracy is shown as ERROR are for linear problems, which do

not have an isolated minimizer. The one case, which has a spatial accuracy that is quite poor,

has multiple minimizers, and the method goes to a different minimum than the reference one.

Many of these functions have multiple local minima, so be aware that the error may be reported

as large only because a method went to a different minimum than the reference one.

70 Unconstrained Optimization

References

[AN96] Adams, L. and J. L. Nazareth, eds. Linear and Nonlinear Conjugate Gradient-Related

Methods. SIAM, 1996.

[Br02] Brent, R. P. Algorithms for Minimization without Derivatives. Dover, 2002 (Original

volume 1973).

[DS96] Dennis, J. E. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization.

SIAM, 1996 (Original volume 1983).

[GMW81] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.

[MW93] More, J. J. and S. J. Wright. Optimization Software Guide. SIAM, 1993.

[MT94] More, J. J. and D. J. Thuente. "Line Search Algorithms with Guaranteed Sufficient

Decrease." ACM Transactions on Mathematical Software 20, no. 3 (1994): 286|307.

[MGH81] More, J. J., B. S. Garbow, and K. E. Hillstrom. "Testing Unconstrained Optimization

Software." ACM Transactions on Mathematical Software 7, no. 1 (1981): 17|41.

[NW99] Nocedal, J. and S. J. Wright. Numerical Optimization. Springer, 1999.

[PTVF92] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C, 2nd ed. Cambridge University Pressn, 1992.

[Rhein98] Rheinboldt, W. C. Methods for Solving Systems of Nonlinear Equations. SIAM, 1998

(Original volume 1974).

Unconstrained Optimization 71

