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Random Number Generation

Introduction

The  ability  to  generate  pseudorandom numbers  is  important  for  simulating  events,  estimating

probabilities  and  other  quantities,  making  randomized  assignments  or  selections,  and  numeri-

cally  testing  symbolic  results.  Such  applications  may  require  uniformly  distributed  numbers,

nonuniformly  distributed  numbers,  elements  sampled  with  replacement,  or  elements  sampled

without replacement. 

The functions RandomReal, RandomInteger, and RandomComplex  generate uniformly distributed

random numbers. RandomReal  and RandomInteger  also generate numbers for built-in distribu-

tions.  RandomPrime  generates  primes  within  a  range.  The  functions  RandomChoice  and

RandomSample  sample  from  a  list  of  values  with  or  without  replacement.  The  elements  may

have  equal  or  unequal  weights.  A  framework  is  also  included  for  defining  additional  methods

and distributions for random number generation.

A sequence of nonrecurring events can be simulated via RandomSample. For instance, the proba-

bility of randomly sampling the integers 1 through n in order might be simulated.

This estimates the probability of getting n elements in order for n from 2 to 8.

In[1]:= Block@8trials = 10^5, count, rn<,
Table@
count = 0;
rn = Range@nD;
Do@If@RandomSample@rnD == rn, count++D, 8trials<D;
8n, N@count ê trialsD<,
8n, 2, 8<DD

Out[1]= 882, 0.50127<, 83, 0.1656<, 84, 0.04225<, 85, 0.00824<, 86, 0.00144<, 87, 0.0002<, 88, 0.00002<<

The results can be compared with the theoretical probabilities.

In[2]:= Table@8i, N@1 ê i!D<, 8i, 2, 8<D

Out[2]= 882, 0.5<, 83, 0.166667<, 84, 0.0416667<,
85, 0.00833333<, 86, 0.00138889<, 87, 0.000198413<, 88, 0.0000248016<<

Random  number  generation  is  at  the  heart  of  Monte  Carlo  estimates.  An  estimate  of  an

expected value of a function f  can be obtained by generating values from the desired distribu-

tion and finding the mean of f  applied to those values.

This estimates the 6th raw moment for a normal distribution.



This estimates the 6th raw moment for a normal distribution.

In[3]:= Mean@RandomReal@NormalDistribution@0, 2D, 10^6D^6D

Out[3]= 961.612

In this case, the estimate can be compared with an exact result.

In[4]:= ExpectedValue@x^6, NormalDistribution@0, 2D, xD

Out[4]= 960

Random processes can be simulated by generating a series of numbers with the desired proper-

ties. A random walk can be created by recursively summing pseudorandom numbers.

Here a random walk starting at 0 is created.

In[5]:= ListLinePlot@Join@80.<, Accumulate@RandomReal@8-1, 1<, 8100<DDDD

Out[5]=
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Substitution of  random numbers can be used to test  the equivalence of  symbolic  expressions.

For instance, the absolute difference between two expressions could be evaluated at randomly

generated points to test for inequality of the expressions.

This provides no evidence that x2  and †x§ are different for real values.

In[6]:= Max@Abs@Sqrt@x^2D - Abs@xD ê. x Ø RandomReal@8-10, 10<, 10000DDD

Out[6]= 4.44089µ10-16

This provides evidence that x2  and †x§ differ for at least some complex values.

In[7]:= Max@Abs@Sqrt@x^2D - Abs@xD ê. x Ø RandomComplex@8-10 + 10 I, 10 + 10 I<, 10000DDD

Out[7]= 14.1415

RandomPrime  chooses prime numbers with equal probability, which can be useful~for instance,

to  generate large primes for  RSA encryption.  The prime numbers are uniformly distributed on

the primes in  the range but  are  not  uniformly distributed on the entire  range because primes

are in general not uniformly distributed over ranges of positive integers.
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RandomPrime  chooses prime numbers with equal probability, which can be useful~for instance,

to  generate large primes for  RSA encryption.  The prime numbers are uniformly distributed on

the primes in  the range but  are  not  uniformly distributed on the entire  range because primes

are in general not uniformly distributed over ranges of positive integers.

Primes in a given range are generated with equal probability.

In[8]:= ListPlot@Tally@RandomPrime@50, 10^5DD, Filling Ø Axis, PlotRange Ø 80, Automatic<D

Out[8]=

Random Generation Functions

The  main  functions  are  RandomReal,  RandomInteger,  RandomComplex,  RandomChoice,  and

RandomSample.  RandomReal,  RandomInteger,  and  RandomComplex  generate  numbers  given

some range of numeric values. RandomChoice and RandomSample generate elements from finite

sets that may include non-numeric values.

Random Numbers

RandomReal  generates  pseudorandom  real  numbers  over  a  specified  range  of  real  values.

RandomInteger  generates  pseudorandom  integer  numbers  over  a  specified  range  of  integer

values. RandomComplex  generates pseudorandom complex numbers over a specified rectangular

region  in  the  complex  plane.  RandomPrime  generates  prime  numbers  with  equal  probability

within a range.
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RandomReal@D give a pseudorandom real number in the range 0 to 1

RandomReal@8xmin,xmax<D give a pseudorandom real number in the range xmin to xmax 

RandomReal@xmaxD give a pseudorandom real number in the range 0 to xmax

RandomReal@distD give a random number from the continuous distribution dist

RandomReal@domain,nD give a list of n pseudorandom reals

RandomReal@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom reals

Generation of random reals.

RandomInteger@8imin,imax<D give a pseudorandom integer in the range 8imin, …, imax<

RandomInteger@imaxD give a pseudorandom integer in the range 80, …, imax<

RandomInteger@D pseudorandomly give 0 or 1 with probability 1
2

RandomInteger@distD give a pseudorandom integer from the discrete distribution 
dist

RandomInteger@domain,nD give a list of n pseudorandom integers

RandomInteger@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom integers

Generation of random integers.

RandomComplex@D give a pseudorandom complex number in the unit square 

RandomComplex@8zmin,zmax<D give a pseudorandom complex number in the rectangle 
bounded by zmin and zmax 

RandomComplex@zmaxD give a pseudorandom complex number in the rectangle 
bounded by 0 and zmax

RandomComplex@domain,nD give a list of n pseudorandom complex numbers

RandomComplex@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom complex numbers

Generation of random complex numbers.

RandomPrime@8imin,imax<D give a pseudorandom prime in the range 8imin, …, imax<

RandomPrime@imaxD give a pseudorandom prime in the range 2 to imax

RandomPrime@domain,nD give a list of n pseudorandom primes

RandomPrime@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom primes

Generation of random primes.

When the domain is specified in terms of xmin  and xmax, RandomReal  and RandomInteger  gener-

ate uniformly distributed numbers over the specified range. When the domain is specified as a

distribution,  rules  defined  for  the  distribution  are  used.  Additionally,  mechanisms are  included

for defining new methods and distributions.
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When the domain is specified in terms of xmin  and xmax, RandomReal  and RandomInteger  gener-

ate uniformly distributed numbers over the specified range. When the domain is specified as a

distribution,  rules  defined  for  the  distribution  are  used.  Additionally,  mechanisms are  included

for defining new methods and distributions.

The two-argument interface provides a convenient  way to obtain multiple  random numbers at

once.  Even more  importantly,  there  is  a  significant  efficiency  advantage to  generating  a  large

number of pseudorandom numbers at once.

Generating 107 numbers between 0 and 1 takes a fraction of a second.
In[9]:= Timing@RandomReal@1, 10^7D;D

Out[9]= 80.791, Null<

Generating 107 numbers one at a time takes roughly five times as long.
In[10]:= Timing@Table@RandomReal@1D, 810^7<D;D

Out[10]= 82.835, Null<

For multidimensional arrays with dimensions n1 through nk, the total number of required pseudo-

random  numbers  ntotal =¤i=1
k ni  is  generated  and  then  partitioned.  This  makes  the  multidimen-

sional  array  generation  as  efficient  as  possible  because  the  total  number  of  random values  is

generated as efficiently as possible and the time required for partitioning is negligible.

The time required for a 100×100×100×10 array is about the same as for a vector of 107 
numbers.

In[11]:= Timing@RandomInteger@100, 8100, 100, 100, 10<D;D

Out[11]= 80.22, Null<

In[12]:= Timing@RandomInteger@100, 10^7D;D

Out[12]= 80.23, Null<

An array of the same dimensions generated 10 numbers at a time takes several times as long.

In[13]:= Timing@Table@RandomInteger@100, 810<D, 8100<, 8100<, 8100<D;D

Out[13]= 80.541, Null<

For  statistical  distributions,  the speed advantage of  generating many numbers at  once can be

even greater. In addition to the efficiency benefit inherited from the uniform number generators

used,  many  statistical  distributions  also  benefit  from  vectorized  evaluation  of  elementary  and

special  functions.  For  instance,  WeibullDistribution  benefits  from  vector  evaluations  of  the

elementary functions Power, Times, and Log.

Random Number Generation     5



For  statistical  distributions,  the speed advantage of  generating many numbers at  once can be

even greater. In addition to the efficiency benefit inherited from the uniform number generators

used,  many  statistical  distributions  also  benefit  from  vectorized  evaluation  of  elementary  and

special  functions.  For  instance,  WeibullDistribution  benefits  from  vector  evaluations  of  the

elementary functions Power, Times, and Log.

Generation of 105 Weibull numbers takes virtually no time.
In[14]:= Timing@RandomReal@WeibullDistribution@2, 1D, 10^5D êê LengthD

Out[14]= 80.02, 100000<

Several seconds are required when 105 Weibulls are generated one at a time.
In[15]:= Timing@Table@RandomReal@WeibullDistribution@2, 1DD, 810^5<D êê LengthD

Out[15]= 84.737, 100000<

Random number generation can be useful in exploratory investigations. For instance, you might

look for occurrences of a random sequence of digits in a longer sequence of digits.

This converts a list of 5 random decimal digits to a string.

In[16]:= digits = Apply@StringJoin, Map@ToString, RandomInteger@9, 5DDD

Out[16]= 64141

The following converts the first million digits of p to a string of integers.

In[17]:= pistring = StringJoin@Map@ToString, RealDigits@N@Pi, 10^6DD@@1DDDD;

This gives the positions where the string of five digits appears in the first million digits of p.

In[18]:= StringPosition@pistring, digitsD

Out[18]= 88157 883, 157887<, 8516599, 516603<, 8883250, 883254<, 8901136, 901140<<

Random  number  generation  is  also  highly  useful  in  estimating  distributions  for  which  closed-

form  results  are  not  known  or  known  to  be  computationally  difficult.  Properties  of  random

matrices provide one example.

This estimates the probability that a 5×5 matrix of uniform reals will have real eigenvalues.

In[19]:= Block@8count = 0, ev<,
Do@ev = Eigenvalues@RandomReal@80, 1<, 85, 5<DD;
If@Re@evD == ev, count++D, 810^5<D;

N@count ê 10^5DD
Out[19]= 0.11925

The following does the same for a matrix of standard normal numbers.
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The following does the same for a matrix of standard normal numbers.

In[20]:= Block@8count = 0, ev<,
Do@ev = Eigenvalues@RandomReal@NormalDistribution@0, 1D, 85, 5<DD;
If@Re@evD == ev, count++D, 810^5<D;

N@count ê 10^5DD
Out[20]= 0.03186

An  example  of  simulating  a  multivariate  distribution  is  the  Gibbs  sampler  used  in  Bayesian

statistics [1]. The Gibbs sampler provides a means by which to simulate values from multivari-

ate  distributions  provided the  distributions  of  each  coordinate  conditional  on  the  other  coordi-

nates  are  known.  Under  some  restrictions,  the  distribution  of  random  vectors  constructed  by

iteratively  sampling  from  the  conditional  distributions  will  converge  to  the  true  multivariate

distribution.

The  following  example  will  construct  a  Gibbs  sampler  for  an  example  given  by  Casella  and

George [2]. The distribution of interest is bivariate. The conditional distribution of x given y is a

binomial, and the conditional distribution of y given x is a beta. As Casella and George mention,

various strategies for detecting convergence and sampling using the Gibbs sampler have been

suggested. For simplicity, assume that convergence will occur within 1000 iterations. A sample

of  size  n  from  the  distribution  will  be  taken  as  the  n  values  following  the  1000th  iteration.  It

should be noted that these n values will, however, be dependent.

This defines the sampler with a binomial and a beta conditional distribution.

In[21]:= sampler@len_D := Block@8y0, dist1, dist2, x0<,
y0 = .5;
dist1@y_D := RandomInteger@BinomialDistribution@16, yDD;
dist2@x_D := RandomReal@BetaDistribution@x + 2, 16 - x + 4DD;
Do@8x0 = dist1@y0D, y0 = dist2@x0D<, 81000<D;
Table@8x0 = dist1@y0D, y0 = dist2@x0D<, 8len<DD

A Gibbs sampler could also be defined as a distribution object within the distribution framework

for  random number  generation.  An  example  of  this  particular  Gibbs  sampler  as  a  distribution

object is provided in the section "Defining Distributions".

data is a sample of length 104.
In[22]:= data = sampler@10^4D;
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The following bar chart shows the marginal distribution of the first dimension.

In[23]:= frqs = Sort@Tally@data@@All, 1DDDD;
BarChart@frqs@@All, 2DD ê 10^4, ChartLabels Ø frqs@@All, 1DDD

Out[24]=

The marginal distribution of the second coordinate can be visualized with a histogram.

In[25]:= Histogram@data@@All, -1DD, Automatic, "ProbabilityDensity"D

Out[25]=

Conditional  distributions  should  closely  match  the  assumed  binomial  and  beta  distributions

provided  there  is  enough  data  for  the  conditional  distribution.  The  greatest  amount  of  data

occurs when the densities of the marginal distributions are highest, so those values can be used

for comparisons. The following graphics compare the empirical and assumed conditional distribu-

tions, using bins of width .05 for estimating probabilities of continuous values.
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This compares the empirical and theoretical distributions of x for 0.3 § y < 0.35.

In[28]:= Block@8y = .3, bcounts, probs, cdata<,
cdata = Select@data, y <= Ò@@2DD < y + .05 &D@@All, 1DD;
bcounts = BinCounts@cdata, 80, 17<D ê Length@cdataD;
probs = Table@8x - .025, PDF@BinomialDistribution@16, yD, xD<, 8x, 0, 16<D;
ListPlot@8Transpose@8Range@0, 16D, bcounts<D, probs<, Filling Ø AxisDD

Out[28]=

This compares the empirical and theoretical distributions of y for x = 1.

In[29]:= Block@8x = 1, bcounts, probs, cdata<,
cdata = Select@data, Ò@@1DD ã x &D@@All, -1DD;
bcounts = BinCounts@cdata, 80, 1, .05<D ê Length@cdataD;
probs = Table@8y - .025, CDF@BetaDistribution@x + 2, 16 - x + 4D, yD -

CDF@BetaDistribution@x + 2, 16 - x + 4D, y - .05D<, 8y, 0, 1, .05<D;
ListPlot@8Transpose@8Range@.025, .975, .05D, bcounts<D, probs<,
Filling Ø Axis, PlotRange Ø AllDD

Out[29]=

Arbitrary-Precision Reals and Complexes

By  default,  RandomReal  and  RandomComplex  generate  machine-precision  numbers.  Arbitrary-

precision numbers can be obtained by setting the WorkingPrecision option.

option name default value

WorkingPrecision MachinePrecisÖ
ion

precision of the arithmetic to use in 
calculations

Option for RandomReal and RandomComplex.

The option  is  valid  for  uniformly  distributed  reals,  complexes,  and reals  from built-in  distribu-

tions. WorkingPrecision can also be incorporated into user-defined distributions.
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The option  is  valid  for  uniformly  distributed  reals,  complexes,  and reals  from built-in  distribu-

tions. WorkingPrecision can also be incorporated into user-defined distributions.

Here is a precision-25 real number between 5 and 50.

In[30]:= RandomReal@85, 50<, WorkingPrecision -> 25D

Out[30]= 47.91955298232309007697519

This gives a precision-50 t-distributed number.

In[31]:= RandomReal@StudentTDistribution@10D, WorkingPrecision -> 50D

Out[31]= 0.63657271131856066162015538159023906378836566000722

Increased  WorkingPrecision  can  be  useful  in  simulations  where  loss  of  precision  can  be

expected  and  highly  accurate  results  are  necessary.  Increased  precision  can  also  be  used  to

estimate the precision loss in computations.

This estimates the worst precision loss in computing J1 on the interval @0, 1000D.

In[32]:= 100 - Precision@BesselJ@1, RandomReal@80, 1000<, 1000, WorkingPrecision Ø 100DDD

Out[32]= 5.56284

If the precision of the input is less than the specified WorkingPrecision, the function will warn

of the problem. The precision of the input will then be artificially increased to generate a pseudo-

random number of the desired precision.

A warning is generated because the machine number 7.5 has precision less than 50.

In[33]:= RandomComplex@7.5 + I, WorkingPrecision -> 50D

RandomComplex::precw:
The precision of the argument function H80, 7.5+Â<L is less than WorkingPrecision H50.`L. à

Out[33]= 6.3710920570099177598371192096170516471502712289510 +
0.34151554408746740924954028235202796686840490009223 Â

WorkingPrecision  is not an option for RandomInteger. Integers have infinite precision, so the

precision is completely specified by the function name.

WorkingPrecision is not meaningful for pseudorandom integers.

In[34]:= RandomInteger@10, WorkingPrecision -> 50D

RandomInteger::array : The array dimensions WorkingPrecision Ø 50
given in position 2 of RandomInteger@10, WorkingPrecision Ø 50D should be a
list of non-negative machine-sized integers giving the dimensions for the result.

Out[34]= RandomInteger@10, WorkingPrecision Ø 50D

Random Elements
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Random Elements

RandomChoice  and  RandomSample  generate  pseudorandom  selections  from  a  list  of  possible

elements. The elements can be numeric or non-numeric. 

RandomChoice@8e1,e2,…<D give a pseudorandom choice of one of the ei

RandomChoice@list,nD give a list of n pseudorandom choices from list

RandomChoice@list,8n1,n2,…<D give n1×n2×… pseudorandom choices from list

RandomChoice@8w1,w2,…<->8e1,e2,…<D

give a pseudorandom choice weighted by the wi

RandomChoice@wlist->elist,nD give a list of n weighted choices

RandomChoice@wlist->elist,8n1,n2,…<D

give an array of n1×n2×… array of weighted choices

Random choice from a list.

RandomSample@8e1,e2,…<,nD give a pseudorandom sample of n of the ei

RandomSample@8w1,w2,…<->8e1,e2,…<,nD

give a pseudorandom sample of n of the ei chosen using 
weights wi

RandomSample@8e1,e2,…<D give a pseudorandom permutation of the ei

RandomSample@wlist->elistD give a pseudorandom permutation of elist using initial 
weights wlist

Random sample from a list.

The  main  difference  between  RandomChoice  and  RandomSample  is  that  RandomChoice  selects

from the ei with replacement, while RandomSample samples without replacement. The number of

elements  chosen  by  RandomChoice  is  not  limited  by  the  number  of  elements  in  elist,  and  an

element ei  may be chosen more than once. The size of a sample returned by RandomSample  is

limited by the number of elements in elist, and the number of occurrences of a distinct element

in that sample is limited by the number of occurrences of that element in elist.

If  the  first  argument  to  RandomChoice  or  RandomSample  is  a  list,  elements  are  selected  with

equal  probability.  The  weight  specification  defines  a  distribution  on  the  set  of  the  ei.  The

weights must be positive, but need not sum to 1. For weights 8w1, …, wn< the probability of ei

in  the  initial  distribution  is  wi ë⁄j=1
n w j.  Since  RandomSample  samples  without  replacement,

weights are updated internally based on the total remaining weight after each selection.
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If  the  first  argument  to  RandomChoice  or  RandomSample  is  a  list,  elements  are  selected  with

equal  probability.  The  weight  specification  defines  a  distribution  on  the  set  of  the  ei.  The

weights must be positive, but need not sum to 1. For weights 8w1, …, wn< the probability of ei 

in  the  initial  distribution  is  wi ë⁄j=1
n w j.  Since  RandomSample  samples  without  replacement,

weights are updated internally based on the total remaining weight after each selection.

RandomChoice  can  be  used  for  simulation  of  independent  identically  distributed  events  with  a

finite list of possible outcomes.

This gives 15 simulated fair coin tosses.

In[35]:= RandomChoice@8"heads", "tails"<, 15D

Out[35]= 8heads, heads, heads, heads, tails, heads,
tails, tails, tails, tails, heads, tails, heads, heads, tails<

This gives 20 rolls of a die loaded toward 5s.

In[36]:= RandomChoice@8.15, .1, .15, .15, .3, .15< -> Range@6D, 20D

Out[36]= 81, 3, 5, 5, 5, 1, 3, 4, 5, 5, 1, 6, 3, 2, 4, 6, 6, 1, 6, 5<

RandomChoice  can  be  used  to  generate  observations  from any  discrete  distribution  with  finite

support.

The following generates a random observation from a discrete analog of a 
TriangularDistribution.

In[37]:= RandomChoice@81, 3, 5, 3, 1< -> Range@4, 8DD

Out[37]= 5

Here is the empirical PDF for 1000 simulated points.

In[26]:= frqs = Tally@RandomChoice@81, 3, 5, 3, 1< -> Range@4, 8D, 1000DD;
BarChart@frqs@@All, 2DD ê 100, ChartLabels Ø frqs@@All, 1DDD

Out[27]=

RandomSample can be used to simulate observations from a finite set of outcomes in which each

element in the list of outcomes can only be observed once. There may be more than one occur-

rence of distinct values in the list.

This simulates 7 draws from a container of 80 blue and 45 red objects.
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This simulates 7 draws from a container of 80 blue and 45 red objects.

In[41]:= RandomSample@Join@Table@"blue", 880<D, Table@"red", 845<DD, 7D

Out[41]= 8blue, blue, blue, blue, blue, blue, blue<

Randomly sampling all elements in the list results in a random permutation.

The following is a random permutation of the integers from 1 to 10.

In[42]:= RandomSample@Range@10DD

Out[42]= 84, 2, 10, 1, 6, 3, 8, 9, 7, 5<

Assigning weights to the elements results in a random permutation in which values with greater

weight tend to appear earlier in the permutation than values with lesser weight.

Here is a random permutation weighted by the squares of the data values.

In[43]:= RandomSample@Range@10D^2 -> Range@10DD

Out[43]= 89, 10, 6, 7, 5, 4, 8, 2, 3, 1<

For the same list of weighted or unweighted elements, RandomSample@Ò, 1D & is distributionally

equivalent to RandomChoice.

This gives an empirical PDF for 105 random samples of size 1.
In[44]:= data = Range@10D;

In[45]:= tallies = Tally@Table@RandomSample@data^2 -> data, 1D, 810^5<DD

Out[45]= 8883<, 2420<, 884<, 4314<, 8810<, 26091<, 887<, 12508<,
889<, 21109<, 888<, 16509<, 882<, 1029<, 885<, 6336<, 886<, 9406<, 881<, 278<<

In[46]:= Sort@talliesD@@All, 2DD ê 10^5.

Out[46]= 80.00278, 0.01029, 0.0242, 0.04314, 0.06336, 0.09406, 0.12508, 0.16509, 0.21109, 0.26091<

Here is an empirical distribution for a distributionally equivalent RandomChoice.

In[47]:= Sort@Tally@RandomChoice@data^2 -> data, 10^5DDD@@All, 2DD ê 10^5.

Out[47]= 80.00258, 0.01011, 0.02324, 0.0411, 0.06343, 0.09369, 0.12762, 0.16485, 0.21333, 0.26005<

The probabilities for the two examples are very close to each other and to the theoretical values.

These are the theoretical probabilities.

In[48]:= N@data^2 ê Total@data^2DD

Out[48]= 80.0025974, 0.0103896, 0.0233766, 0.0415584,
0.0649351, 0.0935065, 0.127273, 0.166234, 0.21039, 0.25974<

RandomSample can also be used for random assignments to groups, such as in clinical trials. The

following  uses  integers,  but  other  identifying  values  such  as  name  or  identification  number

could be used instead.
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RandomSample can also be used for random assignments to groups, such as in clinical trials. The

following  uses  integers,  but  other  identifying  values  such  as  name  or  identification  number

could be used instead.

The following randomly places 20 elements into four groups of equal size.

In[49]:= Partition@RandomSample@Range@20DD, 5D

Out[49]= 882, 11, 14, 9, 18<, 819, 10, 15, 3, 16<, 817, 7, 4, 6, 8<, 820, 1, 13, 5, 12<<

RandomChoice  and  RandomSample  can  be  affected  by  changes  to  the  Method  option  to

SeedRandom. Built-in methods are described in "Methods". Additionally, mechanisms for defining

new methods are described in "Defining Your Own Generator".

Seeding and Localization

Pseudorandom  number  generators  algorithmically  create  numbers  that  have  some  apparent

level of randomness. Methods for pseudorandom number generation typically use a recurrence

relation to generate a number from the current state and to establish a new state from which

the  next  number  will  be  generated.  The  state  can  be  set  by  seeding  the  generator  with  an

integer that will be used to initialize the recurrence relation in the algorithm.

Given an initial starting point, called a seed, pseudorandom number generators are completely

deterministic.  In  many  cases  it  is  desirable  to  locally  or  globally  set  the  seed  for  a  random

number generator to obtain a constant sequence of  "random" values.  If  set globally,  the seed

will  affect future pseudorandom numbers unless a new seed is explicitly set. If  set locally, the

seed will only affect random number and element generation within the localized code.

BlockRandom@exprD evaluate expr with all pseudorandom generators localized

SeedRandom@nD reset the pseudorandom generator using n as a seed

SeedRandom@D reset the generator using as a seed the time of day and 
certain attributes of the current Mathematica session

Localization and seeding functions.
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The SeedRandom function provides a means by which to seed the random generator. Used on its

own,  SeedRandom  will  globally  set  the  seed for  random generators.  The BlockRandom  function

provides  a  means  by  which  to  locally  set  or  change  the  seed  for  random  generators  without

affecting the global state.

The following seeds the random generator globally.

In[50]:= 8SeedRandom@1D; RandomReal@D, SeedRandom@1D; RandomReal@D<

Out[50]= 80.817389, 0.817389<

The  following  gives  two  different  numbers  because  the  first  RandomReal  is  generated  within

BlockRandom, while the second is generated outside of BlockRandom.

The second RandomReal is not generated using the seed 1.

In[51]:= 8BlockRandom@SeedRandom@1D; RandomReal@DD,
BlockRandom@SeedRandom@1DD; RandomReal@D<

Out[51]= 80.817389, 0.11142<

SeedRandom also provides the mechanism for switching the random generator.

option name default value
Method Automatic method to be seeded and used

Option for SeedRandom.

An  individual  generator  can  be  seeded  directly  by  specifying  that  generator  via  the  Method

option. All generators can be seeded by setting Method -> All.

Here the default generator is seeded with 1, but the "Rule30CA" generator is not.

In[52]:= BlockRandom@SeedRandom@1D;
SeedRandom@Method -> "Rule30CA"D;
RandomReal@DD

Out[52]= 0.164277

Seeding the "Rule30CA" generator with 1 gives a different random number.

In[53]:= BlockRandom@SeedRandom@1, Method -> "Rule30CA"D;
RandomReal@DD

Out[53]= 0.46345
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Methods

Five  pseudorandom  generator  methods  are  available  on  all  systems.  A  sixth  platform-depen-

dent  method  is  available  on  Intel-based  systems.  A  framework  for  defining  new  methods,

described in the section "Defining Your Own Generator", is also included.

"Congruential" linear congruential generator (low-quality randomness)

"ExtendedCA" extended cellular automaton generator (default)

"Legacy" default generators prior to Mathematica 6.0

"MersenneTwister" Mersenne Twister shift register generator

"MKL" Intel MKL generator (Intel-based systems)

"Rule30CA" Wolfram rule 30 generator

Built-in methods.

This gives pseudorandom integers from each method with seed 2020.

In[54]:= Map@BlockRandom@SeedRandom@2020, Method -> ÒD; RandomInteger@10^20DD &,
8"Congruential", "ExtendedCA", "Legacy", "MersenneTwister", "MKL", "Rule30CA"<D

Out[54]= 855649265348960921658, 459120772313493841, 50876346696796959169,
77391724740010742551, 58128025990681059425, 74027343124503736203<

This gives pseudorandom reals from the same seed.

In[55]:= Map@BlockRandom@SeedRandom@2020, Method -> ÒD; RandomReal@DD &,
8"Congruential", "ExtendedCA", "Legacy", "MersenneTwister", "MKL", "Rule30CA"<D

Out[55]= 80.688547, 0.00311112, 0.874893, 0.524427, 0.393891, 0.501629<

Congruential

"Congruential"  uses  a  linear  congruential  generator.  This  is  one  of  the  simplest  types  of

pseudorandom  number  generators,  with  pseudorandom  numbers  between  0  and  1  obtained

from xi êm, where xi is given by the modular recurrence relation

xi ª Hbxi-1 + cL modm

for some fixed integers b, c, and m called the multiplier, increment, and modulus respectively. If

the increment is 0, the generator is a multiplicative congruential generator. The values of b, c,

and m can be set via options to the "Congruential" method.

16     Random Number Generation



option name default value
"Bits" Automatic specify range of bits to use for 

numbers constructed from bits
"Multiplier" 1283839219676404755 multiplier value
"Increment" 0 increment value
"Modulus" 2305843009213693951 modulus value
"ConvertToRealsDirectly" True whether reals should be con-

structed directly from the congru -
ence relation

Options for Method "Congruential".

Linear  congruential  generators  are  periodic  and  tend  to  give  a  lower  quality  of  randomness,

especially  when  a  large  number  of  random  values  is  needed.  If  reals  are  generated  directly

from the congruence relation, the period is less than or equal to m.

The default option values are chosen to have a large period and for 64-bit efficiency. With the

default  options,  the  "Congruential"  generator  passes  many  standard  tests  of  randomness

despite the inherent issues with congruential number generators.

This generates 40 numbers from a multiplicative congruential generator.

In[56]:= lcdata = BlockRandom@SeedRandom@1, Method -> 8"Congruential", "Multiplier" -> 11,
"Increment" -> 0, "Modulus" -> 63<D; RandomReal@1, 40DD;

The period of a multiplicative congruential generator is bounded above by the number of posi-

tive  integers  less  than or  equal  to  the modulus  that  are  relatively  prime to  the modulus.  This

upper bound is Euler's totient function of the modulus.

With a modulus of 63, the period of the cycle is at most 36.

In[57]:= EulerPhi@63D

Out[57]= 36

The actual period can be determined by finding the smallest integer i such that i ª bi mod m.

The period with multiplier 11 and modulus 63 is 6.

In[58]:= First@Select@Range@36D, HMod@11^Ò, 63D === 1 &LDD

Out[58]= 6
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Partitioning the data into sets of 6 elements shows the recursion.

In[59]:= Partition@lcdata, 6D

Out[59]= 880.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<<

The distinct numbers can also be seen graphically by plotting a sequence of generated numbers.

Here is a plot of 1000 values from the congruential generator.

In[60]:= ListPlot@BlockRandom@SeedRandom@1, Method -> 8"Congruential", "Multiplier" -> 11,
"Increment" -> 0, "Modulus" -> 63<D; RandomReal@1, 1000DDD

Out[60]=

If  "ConvertToRealsDirectly"  is  set  to  False,  reals  are  generated  by  taking  eight  bits  at  a

time from elements of the sequence to construct a 52-bit machine-precision number. Congruen-

tial numbers generated in this fashion will still cycle, but cycling will depend on repetition in the

bit pattern rather than in the initial congruence relation.

The "Bits" option can be Automatic, a nonzero integer, or a list of two nonzero integers specify -

ing the range of bits in the modulus m used for constructing numbers from bits. Automatic uses

82, -1< unless m is a power of 2, in which case 81, -1< is used.

ExtendedCA

The  default  "ExtendedCA"  method  makes  use  of  cellular  automata  to  generate  high-quality

pseudorandom numbers.  This  generator  uses  a  particular  five-neighbor  rule,  so  each  new cell

depends on five nonadjacent cells from the previous step.

Cellular-automata-based random number generators evolve a state vector of 0s and 1s accord-

ing to a deterministic rule. For a given cellular automaton, an element (or cell) at a given posi-

tion  in  the  new  state  vector  is  determined  by  certain  neighboring  cells  of  that  cell  in  the  old

state vector. A subset of cells in the state vectors is then output as random bits from which the

pseudorandom numbers are generated.

The  cellular  automaton  used  by  "ExtendedCA"  produces  an  extremely  high  level  of  random-

ness.  It  is  so  high  that  even  using  every  single  cell  in  output  will  give  a  stream  of  bits  that

passes  many  randomness  tests,  in  spite  of  the  obvious  correlation  between  one  cell  and  five

previous ones.
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The  cellular  automaton  used  by  "ExtendedCA"  produces  an  extremely  high  level  of  random- 

ness.  It  is  so  high  that  even  using  every  single  cell  in  output  will  give  a  stream  of  bits  that

passes  many  randomness  tests,  in  spite  of  the  obvious  correlation  between  one  cell  and  five

previous ones.

Two options are included for  modifying the size of  the state vector and the cells  skipped. The

defaults are chosen for quality and speed and there is typically no need to modify these options.

option name default value
"Size" 80 state vector size as a multiplier of 64
"Skip" 4 number of cells to skip

Options for Method "ExtendedCA".

The length of the state vectors used is by default set to 80×64=5120 cells. The multiple of 64

can be controlled by the "Size" option. 

In  practice  using  every  fourth  cell  in  each  state  vector  proves  to  be  sufficient  to  pass  very

stringent  randomness  tests.  This  is  the  default  used  for  the  "Skip"  option.  For  even  faster

random number generation, a "Skip"  setting of 2 or even 1 could be used, but the quality of

the random numbers will then decline. 

"ExtendedCA" is the default number generator.

In[61]:= BlockRandom@SeedRandom@1D; RandomReal@1, 5DD

Out[61]= 80.817389, 0.11142, 0.789526, 0.187803, 0.241361<

In[62]:= BlockRandom@SeedRandom@1, Method -> "ExtendedCA"D; RandomReal@1, 5DD

Out[62]= 80.817389, 0.11142, 0.789526, 0.187803, 0.241361<

Legacy

The "Legacy" method uses the generator called by Random in versions of Mathematica prior to

Version  6.0.  A  Marsaglia|Zaman  subtract-with-borrow  generator  is  used  for  reals.  The  integer

generator is based on a Wolfram rule 30 cellular automaton generator. The rule 30 generator is

used directly for small integers and used to generate certain bits for large integers.

Here are RandomReal and RandomInteger values obtained via the "Legacy" method.

In[63]:= BlockRandom@SeedRandom@31, Method -> "Legacy"D; 8RandomReal@D, RandomInteger@50D<D

Out[63]= 80.210596, 8<

The same values are given by equivalent Random calls.
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The same values are given by equivalent Random calls.

In[64]:= BlockRandom@SeedRandom@31D; 8Random@D, Random@Integer, 80, 50<D<D

Out[64]= 80.210596, 8<

To  guarantee  consistency  with  sequences  generated  prior  to  Version  6.0,  seeds  set  for  the

Automatic method are also applied to the "Legacy" method.

The "Legacy" method has no options.

MersenneTwister

"MersenneTwister"  uses  the  Mersenne  Twister  generator  due  to  Matsumoto  and  Nishimura

[3][4].  The  Mersenne  Twister  is  a  generalized  feedback  shift  register  generator  with  period

219937 - 1.

This gives 5 random numbers from a Mersenne Twister generator.

In[65]:= BlockRandom@SeedRandom@1, Method -> "MersenneTwister"D; RandomReal@1, 5DD

Out[65]= 80.393562, 0.701033, 0.966231, 0.221456, 0.436768<

The "MersenneTwister" method has no options.

MKL

The  "MKL"  method  uses  the  random number  generators  provided  in  Intel's  MKL  libraries.  The

MKL libraries are platform dependent. The "MKL" method is available on Microsoft Windows (32-

bit, 64-bit), Linux x86 (32-bit, 64-bit), and Linux Itanium systems.

option name default value
Method Automatic MKL generator to use

Option for Method "MKL".
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"MCG31" 31-bit multiplicative congruential generator

"MCG59" 59-bit multiplicative congruential generator

"MRG32K3A" combined multiple recursive generators with two compo -
nents of order 3

"MersenneTwister" Mersenne Twister shift register generator

"R250" generalized feedback shift register generator

"WichmannHill" Wichmann|Hill combined multiplicative congruential 
generators

"Niederreiter" Niederreiter low-discrepancy sequence

"Sobol" Sobol low-discrepancy sequence

"MKL" methods.

The  first  six  methods  are  uniform  generators.  "Niederreiter"  and  "Sobol"  generate 

Niederreiter  and  Sobol  sequences.  These  sequences  are  nonuniform  and  have  underlying

structure which  is  sometimes  useful  in  numerical  methods.  For  instance,  these  sequences

typically  provide faster convergence in multidimensional Monte Carlo integration. 

The following shows the structure of a Niederreiter sequence in dimension 2.

In[66]:= ListPlot@BlockRandom@
SeedRandom@Method -> 8"MKL", Method -> 8"Niederreiter", "Dimension" -> 2<<D;
RandomReal@1, 81000, 2<DD,

AspectRatio -> 1D

Out[66]=
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This shows the structure of a Sobol sequence in dimension 2.

In[67]:= ListPlot@BlockRandom@
SeedRandom@Method -> 8"MKL", Method -> 8"Sobol", "Dimension" -> 2<<D;
RandomReal@1, 81000, 2<DD,

AspectRatio -> 1D

Out[67]=

Rule30CA

The  "Rule30CA"  method  uses  a  Wolfram  rule  30  cellular  automaton  generator.  Bits  are

obtained by evolving a state vector of 0s and 1s using the relation

f Hi, t + 1L = f Hi - 1, tL  H f Hi, tL Í f Hi + 1, tLL,

where f Hi, tL is the value of cell i at time t.

option name default value
"Size" 9 state vector size as a multiplier of 29

Option for Method "Rule30CA".

The length of the state vectors used is by default set to 9µ29 = 261 cells. The multiplier for 29

can be controlled by the "Size" option.

This gives a 2×3×4 tensor of random integers using "Rule30CA".

In[68]:= BlockRandom@SeedRandom@1, Method -> "Rule30CA"D; RandomInteger@10^5, 82, 3, 4<DD

Out[68]= 88860 745, 40991, 22336, 76623<, 857042, 92146, 91746, 18972<, 870251, 62829, 78488, 82331<<,
8893628, 53079, 11476, 55013<, 87702, 96543, 99411, 79327<, 842137, 83772, 56154, 6410<<<

The  "Rule30CA"  method  uses  only  the  first  bit  from each  state  vector,  making  it  slower  than

the "ExtendedCA" method, which uses multiple bits from each state vector.
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Defining Your Own Generator

Methods  can  be  plugged  into  the  random  framework  as  long  as  they  follow  the  correct

template. A generator object is of the form gsym@dataD  where gsym  is  the symbol that identifies

the generator and to which rules are attached. data is effectively private to the top-level evalua-

tions associated with the generator definitions.

Generator initialization is handled by a call to Random`InitializeGenerator. 

Random`InitializeGenerator@gsym,optsD

initializes the generator gsym with options opts

Generator initialization function.

Random`InitializeGenerator  is  expected  to  return  a  generator  object  gobj  of  the  form

gsym@dataD.

Generators can support generation of random bit streams, random integers, and random reals.

If the generator supports bit streams, reals and integers can be generated by conversion of the

bit  stream. At  method setup time,  properties  are queried to  determine what  is  supported and

how.

GeneratesBitsQ set to True if the method generates bits

GeneratesIntegersQ set to True if the method generates integers for a given 
range

GeneratesRealsQ set to True if the method generates reals for a given 
range and precision

Generator properties.

If bit streams are supported, then gobj@"GenerateBits"@nbitsDD is expected to return an integer

comprised of n random bits or a list of length nbits with entries that are 0 or 1.

If  random  integers  are  supported,  then  gobj@"GenerateIntegers"@n, 8a, b<DD  is  expected  to

return  a  list  of  n  random integers  in  the  range  @a, bD.  A  warning  message  will  be  issued  when

results are out of range.

If  random  reals  are  supported,  then  gobj@"GenerateReals"@a, 8a, b<, precDD  is  expected  to

return a list of n random reals with precision prec in the range @a, bD. A warning message will be

issued when results are out of range or of the wrong precision.

For any of the generation functions, the return can be 8res, gobj<, where res is the result of the

correct type and gobj is a new generator object (reflecting any state change).
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For any of the generation functions, the return can be 8res, gobj<, where res is the result of the

correct type and gobj is a new generator object (reflecting any state change).

Seeding  is  done  by  gobj@"SeedGenerator"@seedDD  for  an  integer  seed.

gobj@"SeedGenerator"@seedDD is expected to return a new generator object.

Example: Multiplicative Congruential Generator

In the following example a multiplicative congruential generator will be defined. A multiplicative

congruential generator follows the recurrence relation

xi ª bxi-1 modm.

The generator, as defined below, will allow only for generation of real numbers.

This sets default options for the generator MultiplicativeCongruential.

In[69]:= Options@MultiplicativeCongruentialD =
8"Multiplier" Ø 123456789, "Modulus" Ø 2^35 - 1<;

Initialization of the generator will extract the values of the multiplier and modulus. Initialization

will fail if either of these values is not a positive integer.

The following initializes the generator.

In[70]:= MultiplicativeCongruential ê:
Random`InitializeGenerator@MultiplicativeCongruential, opts___D := Module@
8mult, mod, flops = Flatten@8opts, Options@MultiplicativeCongruentialD<D<,
mult = "Multiplier" ê. flops;
If@! HIntegerQ@multD && Positive@multDL,
Throw@$FailedD

D;
mod = "Modulus" ê. flops;
If@! HIntegerQ@modD && Positive@multDL,
Throw@$FailedD

D;
MultiplicativeCongruential@mult, mod, 1DD;

Calls from the kernel to Random`IntializeGenerator are effectively wrapped in Catch. Throw

can be used in the initialization code to easily exit in case of problems.

This establishes that MultiplicativeCongruential generates reals.

In[71]:= MultiplicativeCongruential@___D@"GeneratesRealsQ"D := True;

The following seeds the generator using the recurrence relation.

In[72]:= MultiplicativeCongruential@mult_, mod_, ___D@"SeedGenerator"@seed_DD :=
MultiplicativeCongruential@mult, mod, Mod@Hmult * seedL, modDD;

The  real  number  generator  will  return  the  desired  number  of  reals  n  and  a  new

MultiplicativeCongruential generator. The seed for the new generator is updated based on

the recurrence relation.
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The  real  number  generator  will  return  the  desired  number  of  reals  n  and  a  new

MultiplicativeCongruential generator. The seed for the new generator is updated based on

the recurrence relation.

This defines the real number generator.

In[73]:= MultiplicativeCongruential@mult_, mod_, s_D@
"GenerateReals"@n_, 8a_, b_<, prec_DD :=

Module@8x = s<,
8a + Hb - aL Table@x = mult * x; Mod@x, modD, 8n<D ê mod,
MultiplicativeCongruential@mult, mod, xD<

D

This generates 10 reals using the MultiplicativeCongruential generator.

In[74]:= BlockRandom@
SeedRandom@Method -> MultiplicativeCongruentialD;
RandomReal@85, 50<, 10DD

Out[74]= 833.1547, 47.5694, 45.0011, 31.632, 25.1043, 37.7568, 16.2839, 48.1744, 17.5352, 48.7686<

The generator is not defined for integers.

In[75]:= BlockRandom@
SeedRandom@Method -> MultiplicativeCongruentialD;
RandomInteger@85, 50<DD

RandomInteger::unstyp :
The current random generator does not support generation of random integers in the given range.

Out[75]= RandomInteger@85, 50<D

Example: Blum|Blum|Shub Generator

The  Blum|Blum|Shub  generator  is  a  quadratic  congruential  method  for  generating  pseudoran-

dom bits for cryptographic purposes [5]. The congruence is mod p×q for specified primes p and

q.

This sets default options for the generator BlumBlumShub.

In[76]:= Options@BlumBlumShubD = 8"BlumPrimes" Ø 81267650600228229401496703981519,
1267650600228229401496704318359<, "BitWidth" Ø Automatic<;

The following define an auxiliary function and error messages for the generator.

In[77]:= SpecialBlumPrimeQ@x_D := HPositive@xD && HMod@x, 4D ã 3L && PrimeQ@xDL

In[78]:= BlumBlumShub::bprime = "`1` is not a list of two distinct special Blum primes.";

In[79]:= BlumBlumShub::bw =
"Warning: the value of the option BitWidth->`1` exceeds the number

`2` that has been proved cyptographically secure.";

In[80]:= BlumBlumShub::bw1 = "The value of the option BitWidth->`1`
should be a positive machine-sized integer or Automatic.";

The  generator  initialization  will  extract  option  values  and  issue  error  messages  if  necessary

before calling the actual generator.
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The  generator  initialization  will  extract  option  values  and  issue  error  messages  if  necessary

before calling the actual generator.

The following initializes the generator.

In[81]:= BlumBlumShub ê: Random`InitializeGenerator@BlumBlumShub, opts___D :=
Module@8n, abw, bw, flops = Flatten@8opts, Options@BlumBlumShubD<D<,
n = "BlumPrimes" ê. flops;
If@
! And@VectorQ@n, SpecialBlumPrimeQD, Length@nD ã 2, Not@Apply@Equal, nDDD,
Message@BlumBlumShub::"bprime", nD;
Throw@$FailedD

D;
n = Apply@Times, nD;
abw = Max@1, Floor@Log@2., Log@2., nDDDD;
bw = "BitWidth" ê. flops;
If@bw === Automatic,
bw = abw,
If@! HIntegerQ@bwD && Positive@bwDL,
Message@BlumBlumShub::bwi, bwD;
Throw@$FailedDD;

If@bw > abw,
Message@BlumBlumShub::bw, bw, abwDD;

D;
BlumBlumShub@n, bw, 2^bw - 1, 2DD;

This establishes that BlumBlumShub is a bit generator and determines the bit width.

In[82]:= BlumBlumShub@___D@"GeneratesBitsQ"D := True;

In[83]:= BlumBlumShub@n_, bw_, __D@"BitWidth"D := bw;

The following seeds the generator.

In[84]:= BlumBlumShub@n_, bw_, mask_, ___D@"SeedGenerator"@seed_DD :=
Module@8x , i = 0, state = 8<<,
While@Length@Union@stateDD < 10,
x = seed + i;
state = NestList@PowerMod@Ò, 2, nD &, x, 9D;

D;
BlumBlumShub@n, bw, mask, Last@stateDDD

This defines the bit generator.

In[85]:= BlumBlumShub@n_, bw_, mask_, s_D@"GenerateBits"@bits_DD :=
Module@8x = PowerMod@s, 2, nD<,
8BitAnd@x, maskD, BlumBlumShub@n, bw, mask, xD<D

This generates 5 integers and 5 reals using the BlumBlumShub generator.

In[86]:= BlockRandom@
SeedRandom@Method -> BlumBlumShubD;
8RandomInteger@80, 10<, 5D, RandomReal@4, 5D<D

Out[86]= 881, 5, 7, 3, 5<, 82.37406, 1.59922, 1.11636, 3.70079, 0.29338<<
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Statistical Distributions

The general idea behind generating random variates from a nonuniform statistical distribution is

to generate a random uniform variate between 0 and 1 and then compute the inverse CDF of

that random value in the desired distribution. In practice, however, following this recipe directly

can be very computationally intensive if a large number of random variates is desired, particu-

larly when the inverse CDF is complicated or cannot be expressed in a closed form.

In such cases, table lookups, direct construction based on distributional relationships, or accep-

tance-rejection methods are often more efficient alternatives to direct inversion of the CDF. On

some level,  these  methodologies  will  all  still  rely  on  uniformly  distributed  RandomReal  values,

uniformly distributed RandomInteger  values, observations from a weighted RandomChoice, or a

combination  of  these  values.  As  a  result,  methods  set  via  SeedRandom  will  have  an  effect  on

random observations from statistical distributions.

The methods used by RandomReal  and RandomInteger  for many of the distributions in Mathe-

matica follow methods suggested or described in Gentle [6], and are not necessarily the same

methods  used  by  Random  and  RandomArray  in  the  standard  add-ons  included  with  versions  of

Mathematica prior to Version 6.0.

Random  observations  from  all  built-in  statistical  distributions  can  be  generated  using  either

RandomReal or RandomInteger.

RandomReal@distD give a random number from the continuous distribution dist

RandomReal@dist,nD give a list of n pseudorandom reals from dist

RandomReal@dist,8n1,n2,…<D give an n1×n2×… array of pseudorandom reals from dist

Generation of random values from continuous distributions.

RandomInteger@distD give a random number from the discrete distribution dist

RandomInteger@dist,nD give a list of n pseudorandom integers from dist

RandomInteger@dist,8n1,n2,…<D give an n1×n2×… array of pseudorandom integers from dist

Generation of random values from discrete distributions.

Observations  from  continuous  univariate  and  multivariate  distributions  are  obtained  via

RandomReal,  while  discrete  univariate  and  multivariate  distributions  are  obtained  via

RandomInteger.  If  RandomInteger  is  used  on  a  continuous  distribution,  or  RandomReal  on  a

discrete distribution, an error is generated and the input is returned unevaluated.
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Observations  from  continuous  univariate  and  multivariate  distributions  are  obtained  via

RandomReal,  while  discrete  univariate  and  multivariate  distributions  are  obtained  via

RandomInteger.  If  RandomInteger  is  used  on  a  continuous  distribution,  or  RandomReal  on  a

discrete distribution, an error is generated and the input is returned unevaluated.

This fails because the c2 distribution is continuous.

In[87]:= RandomInteger@ChiSquareDistribution@8DD

RandomInteger::unsdst :
The distribution ChiSquareDistribution@8D is defined on a set of real values. Use RandomReal instead.

Out[87]= RandomInteger@ChiSquareDistribution@8DD

WorkingPrecision  is  an  option  to  RandomReal  for  continuous  distributions  just  as  it  is  for

uniform numbers over ranges.

Here is a precision-30 beta-distributed variate. 

In[88]:= RandomReal@BetaDistribution@3, 7D, WorkingPrecision -> 30D

Out[88]= 0.453568522862231707895720399466

Multivariate distributions and distributions derived from the multivariate normal distribution are

included  in  the  Multivariate  Statistics  Package.  Generators  for  those  distributions  can  be

accessed by loading the package.

This loads the package.

In[89]:= Needs@"MultivariateStatistics`"D

Here is a random vector from a bivariate normal distribution. 

In[90]:= RandomReal@MultinormalDistribution@81, 2<, 882, .5<, 8.5, 3<<DD

Out[90]= 81.8453, 3.59417<

This is a random vector from a multinomial distribution. 

In[91]:= RandomInteger@MultinomialDistribution@20, 81 ê 3, 1 ê 2, 1 ê 6<DD

Out[91]= 88, 9, 3<
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Continuous Distributions

For  distributions  whose inverse CDFs contain  only  elementary functions,  direct  computation of

the inverse CDF for a random uniform is generally used. This can be seen as a direct construc-

tion from a uniformly distributed random variable. Continuous distributions falling in this cate-

gory  include  CauchyDistribution,  ExponentialDistribution,  ExtremeValueDistribution,

GumbelDistribution,  LaplaceDistribution,  LogisticDistribution,  ParetoDistribution,

RayleighDistribution, TriangularDistribution, and WeibullDistribution.

Direct construction of a single random variate from multiple uniform variates, or from variates

other  than the uniform distribution are also employed.  Normal  variates are generated in  pairs

from  pairs  of  random  uniforms  using  the  Box|Müller  method.  HalfNormalDistribution  and

LogNormalDistribution  variates  are  obtained  by  direct  transformation  of  normal  variates.

MultinormalDistribution  and  QuadraticFormDistribution  from  the  Multivariate  Statistics

Package also use direct construction from normal variates. 

InverseGaussianDistribution  uses an acceptance-complement method involving normal and

uniform  variates.  The  method  is  due  to  Michael,  Schucany  and  Haas  and  described  in  Gentle

[6].  MaxwellDistribution  variates  are  constructed  from  ChiDistribution  variates.  The  chi 

variates  themselves  are  obtained  from  ChiSquareDistribution  variates,  which  are  special

cases of GammaDistribution variates.

In most  cases FRatioDistribution  constructs  each random value from a single  random beta

variate.  For  small  degrees  of  freedom,  FRatioDistribution  variates  are  instead  generated

from  pairs  of  gamma  variates  to  avoid  possible  divisions  by  0  that  may  arise  in  the  beta

construction.

NoncentralChiSquareDistribution@n, lD, cn2HlL, variate generation uses additive properties of

c2  distributions  to  avoid  expensive  inverse  CDF  computations  for  nonintegral  n.  The  additive

properties are given in, for instance, Johnson, Kotz, and Balakrishnan [7]. For n = 1 a noncentral

c2  variate can be generated as the square of a normal variate with mean l  and variance 1.

For n ≠ 1 noncentral c2 variates are obtained as the sum of a central and a noncentral c2 random

variable.  For  n > 1,  X + Y  is  distributed  cn2HlL  if  X~ c1
2HlL  and  Y ~ cn-1

2 .  This  relationship  cannot  be

used for n < 1. In that case the construction is X + Y  with X~ c0
2HlL and Y ~ cn-1

2 , where c02HlL is the

limiting noncentral  c2  distribution as n  goes to 0. The limiting distribution c02HlL  is  a mixture of

Poisson and c2  variables, which has a nonzero probability mass at 0 and a continuous density

for  positive  values.  NoncentralFRatioDistribution  variates  are  obtained  from  one  central

and one noncentral c2 variate.
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NoncentralChiSquareDistribution@n, lD, cn2HlL, variate generation uses additive properties of

c2  distributions  to  avoid  expensive  inverse  CDF  computations  for  nonintegral  n.  The  additive

properties are given in, for instance, Johnson, Kotz, and Balakrishnan [7]. For n = 1 a noncentral

c2  variate can be generated as the square of a normal variate with mean l  and variance 1.

For n ≠ 1 noncentral c2 variates are obtained as the sum of a central and a noncentral c2 random

variable.  For  n > 1,  X + Y  is  distributed  cn2HlL  if  X~ c1
2HlL  and  Y ~ cn-1

2 .  This  relationship  cannot  be

used for n < 1. In that case the construction is X + Y  with X~ c0
2HlL and Y ~ cn-1

2 , where c02HlL is the

limiting noncentral  c2  distribution as n  goes to 0. The limiting distribution c02HlL  is  a mixture of

Poisson and c2  variables, which has a nonzero probability mass at 0 and a continuous density

for  positive  values.  NoncentralFRatioDistribution  variates  are  obtained  from  one  central

and one noncentral c2 variate.

For the WishartDistribution  from the Multivariate Statistics Package, matrices are generated

via  Smith  and  Hocking's  method  [8].  This  method  constructs  Wishart  matrices  from  matrices

with chi-distributed diagonal entries and normally distributed off-diagonal entries.

NoncentralStudentTDistribution,  and  the  HotellingTSquareDistribution  and

MultivariateTDistribution  from the Multivariate Statistics Package each use direct construc-

tion from univariate random variates.

GammaDistribution, BetaDistribution, and StudentTDistribution  use acceptance-rejection

methods to some extent. 

For GammaDistribution@a, bD exponential variates are generated when a = 1. Otherwise, meth-

ods due to Cheng and Feast [9] and Ahrens and Dieter [10] are used.

Beta variates are constructed by switching between multiple methods depending on the values

of  the  beta  parameters  a  and  b.  If  both  parameters  are  1,  uniform  random  variates  will  be

generated.  If  one  of  the  beta  parameters  is  1,  then  a  closed-form  inverse  CDF  evaluation  is

used.  Otherwise,  RandomReal  switches  between  acceptance-rejection  methods  due  to  Jöhnk

[11],  Cheng  [12],  and  Atkinson  [13].  An  example  of  the  advantage  of  using  an  acceptance-

rejection method over construction from two gammas can be seen in the following. The direct

acceptance-rejection method is nearly twice as fast as the gamma-pair construction.

This shows a comparison of direct construction and acceptance-rejection methods for beta 
variates.

In[92]:= Timing@With@8x1 = RandomReal@GammaDistribution@7, 1D, 10^6D<,
x1 ê Hx1 + RandomReal@GammaDistribution@3, 1D, 10^6DLD;D

Out[92]= 81.422, Null<

In[93]:= Timing@RandomReal@BetaDistribution@7, 3D, 10^6D;D

Out[93]= 81.021, Null<

For StudentTDistribution the method used by RandomReal  is a polar rejection method due to

Bailey [14]. This method is more efficient than direct construction from normal and c2  variates

as can be seen in the following. The direct construction takes roughly 1.5 times as long as the

polar method for a million Student t variates.

This shows a comparison of direct construction and Bailey's polar rejection method for Student t.
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This shows a comparison of direct construction and Bailey's polar rejection method for Student t.

In[94]:= Timing@RandomReal@NormalDistribution@0, 1D, 10^6D ê
Sqrt@RandomReal@ChiSquareDistribution@6D, 10^6D ê 6D;D

Out[94]= 81.282, Null<

In[95]:= Timing@RandomReal@StudentTDistribution@6D, 10^6D;D

Out[95]= 80.611, Null<

Discrete Distributions

GeometricDistribution,  BetaBinomialDistribution,  and  BetaNegativeBinomialÖ

Distribution  use  direct  construction.  GeometricDistribution  variates  are  generated  as

f
logHUL
logH1-pL

v  where  U  follows  UniformDistribution@0, 1D.  BetaBinomialDistribution  and

BetaNegativeBinomialDistribution  are  constructed  from  BinomialDistribution  and

NegativeBinomialDistribution  variates  with  probability  parameters  taken  as  random

BetaDistribution variates.

When  used,  table  lookups  for  random  integer  generation  are  implemented  via  RandomChoice

using  the  distribution's  probability  mass  function  for  the  weights.  Most  discrete  distributions

switch to other methods whenever construction of the list of weights is expected to be expen-

sive  given  the  desired  sampled  size.  For  example,  as  p  approaches  1

LogSeriesDistribution@pD  switches  to  the  direct  construction  g1 +
logHVL

logI1-H1-pLU M
w,  where  U  and  V

are uniformly distributed on the interval @0, 1D  [15]. Depending on parameters and sample size

NegativeBinomialDistribution@n, pD  may  switch  to  construction  as  a  Poisson-gamma  mix-

ture, which is a Poisson variable with mean following a gamma distribution [6].

BinomialDistribution,  HypergeometricDistribution,  and  PoissonDistribution  rely  on

direct sampling from the density function if  the computational overhead of computing the PDF

values  is  small  relative  to  the  number  of  desired  random  values.  Otherwise  they  switch  to

acceptance-rejection  methods.  The  acceptance-rejection  methods  also  allow  for  generation  of

variates when overflows or underflows would occur in directly computing the PDF values, thus

extending the range of parameter values for which random numbers can be generated.

The  binomial  and  hypergeometric  distributions  switch  to  acceptance-rejection  methods  due  to

Kachitvichyanukul and Schmeiser with small modifications. The binomial method, based on the

acceptance-rejection  portion  of  their  BTPE  (Binomial,  Triangle,  Parallelogram,  Exponential)

algorithm [16], effectively uses a piecewise majorizing function with three regions and a triangu-

lar  minorizing  function  for  a  quick  acceptance  test.  The  majorizing  and  minorizing  functions

create  a  two-parallelogram  envelope  around  the  center  of  the  rescaled  binomial  density,  and

the tails of the majorizing function form exponential envelopes on the tails of the scaled bino-

mial  distribution.  One  case  where  it  is  clearly  better  to  use  BTPE  rather  than  to  construct  a

lookup table is when few observations are desired and the lookup table would be large.
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The  binomial  and  hypergeometric  distributions  switch  to  acceptance-rejection  methods  due  to

Kachitvichyanukul and Schmeiser with small modifications. The binomial method, based on the

acceptance-rejection  portion  of  their  BTPE  (Binomial,  Triangle,  Parallelogram,  Exponential)

algorithm [16], effectively uses a piecewise majorizing function with three regions and a triangu-

lar  minorizing  function  for  a  quick  acceptance  test.  The  majorizing  and  minorizing  functions

create  a  two-parallelogram  envelope  around  the  center  of  the  rescaled  binomial  density,  and

the tails of the majorizing function form exponential envelopes on the tails of the scaled bino-

mial  distribution.  One  case  where  it  is  clearly  better  to  use  BTPE  rather  than  to  construct  a

lookup table is when few observations are desired and the lookup table would be large.

The  hypergeometric  method,  based  on  the  acceptance-rejection  portion  of  Kachitvichyanukul

and Schmeiser's  H2PE algorithm [17],  uses  a  majorizing  function with  three regions  around a

scaled hypergeometric density. The middle portion of the density is enveloped by a rectangular

region and the tails of the distribution are bounded by exponentials.

The  acceptance-rejection  method  used  by  PoissonDistribution  is  due  to  Ahrens  and  Dieter

[18]. The acceptance and rejection is carried out using discrete normal variates, taking advan-

tage  of  the  tendency  of  PoissonDistribution@mD  toward  NormalDistribution@m, m Das  m

increases.

Random values from the ZipfDistribution  are generated via an acceptance-rejection method

described by Devroye [15]. The method uses pairs of uniform variates and a test involving only

a  Floor  and  noninteger  powers,  aside  from  basic  arithmetic,  to  efficiently  obtain  Zipf-dis-

tributed values.

Defining Distributions

Definitions  for  distributions  are  supported  through  rules  for  Random`DistributionVector.

DistributionVector  is  expected  to  return  a  vector  of  the  given  length  with  numbers  of  the

given precision.

Random`DistributionVector@dist,n,precD

defines rules for generating n observations from dist with 
precision prec

Function for defining random generation from distributions.

Rules for generating random values from distributions are generally defined via a TagSet on the

head of  the distribution.  The distribution itself  may contain  parameters.  As  a  simple  example,

the following defines rules for  NegativeOfUniform@a, bD,  which represents a uniform distribu-

tion on the interval @-b, -aD.
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Rules for generating random values from distributions are generally defined via a TagSet on the

head of  the distribution.  The distribution itself  may contain  parameters.  As  a  simple  example,

the following defines rules for  NegativeOfUniform@a, bD,  which represents a uniform distribu-

tion on the interval @-b, -aD.

In[96]:= NegativeOfUniform ê:
Random`DistributionVector@NegativeOfUniform@a_, b_D, n_Integer,
prec_?PositiveD := -RandomReal@8a, b<, n, WorkingPrecision -> precD ê;
VectorQ@8a, b<, NumericQD && Element@8a, b<, RealsD

Random numbers from NegativeOfUniform can now be generated via RandomReal  just like any

built-in continuous distribution.

The following gives a machine-precision number and a precision-20 number from 
NegativeOfUniform.

In[97]:= 8RandomReal@NegativeOfUniform@1, 3DD,
RandomReal@NegativeOfUniform@1, 3D, WorkingPrecision -> 20D<

Out[97]= 8-2.90662, -2.0231113301407817182<

Matrices  and  higher-dimensional  tensors  can  also  be  generated  directly  via  RandomReal.

RandomReal  uses  the  definition  given  to  Random`DistributionVector  to  generate  the  total

number  of  random  values  desired,  and  partitions  that  total  number  into  the  specified

dimensions.

Here is a 3×4 array of NegativeOfUniform numbers.

In[98]:= RandomReal@NegativeOfUniform@7, 21D, 83, 4<D

Out[98]= 88-7.44952, -7.12576, -15.6616, -13.9985<,
8-18.3775, -11.6597, -17.3955, -15.4164<, 8-13.2334, -17.4337, -20.5442, -15.0836<<

Discrete distributions can be defined in a similar way. The main difference is that the precision

argument  to  Random`DistributionVector  will  now  be  Infinity.  The  discrete  version  of

NegativeOfUniform provides a simple example.

In[99]:= NegativeOfDiscreteUniform ê:
Random`DistributionVector@NegativeOfDiscreteUniform@a_Integer, b_IntegerD,
n_Integer, InfinityD := -RandomInteger@8a, b<, nD

Random values from NegativeOfDiscreteUniform can now be obtained from RandomInteger.

Here are 10 NegativeOfDiscreteUniform numbers.

In[100]:= RandomInteger@NegativeOfDiscreteUniform@1, 3D, 10D

Out[100]= 8-2, -3, -2, -3, -3, -3, -1, -3, -3, -1<

While the previous examples show the basic framework for defining distributions, the distribu-

tions themselves are not particularly interesting. In fact, it would have been easier in these two

cases to just generate values from RandomReal  and RandomInteger  and multiply the end result

by -1 instead of attaching definitions to a new distribution symbol. The following examples will

demonstrate  slightly  more  complicated  distributions,  in  which  case  attaching  definitions  to  a

distribution will be more useful.
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While the previous examples show the basic framework for defining distributions, the distribu-

tions themselves are not particularly interesting. In fact, it would have been easier in these two

cases to just generate values from RandomReal  and RandomInteger  and multiply the end result

by -1 instead of attaching definitions to a new distribution symbol. The following examples will

demonstrate  slightly  more  complicated  distributions,  in  which  case  attaching  definitions  to  a

distribution will be more useful.

Example: Normal Distribution by Inversion

The textbook definition for generating random values from a generic univariate statistical distri-

bution involves two steps: 

† generate a uniform random number q on the interval @0, 1D

† compute the inverse cumulative distribution function of q for the distribution of interest

To demonstrate the process, use the normal distribution. To generate random normal variates

using this method, start with the Quantile  for the normal distribution at a point q and replace q

with a random uniform between 0 and 1.

Here is the Quantile function for a normal with mean m and standard deviation s.

In[101]:= Quantile@NormalDistribution@m, sD, qD

Out[101]= m + 2 s InverseErf@-1 + 2 qD

A new distribution object  can now be used to define a normal  random number generator  that

uses inversion of the cumulative distribution function.

This defines generation of normals by inversion.

In[102]:= NormalByInversion ê:
Random`DistributionVector@
NormalByInversion@mu_?HNumericQ@ÒD && Im@ÒD === 0 &L, sigma_?PositiveD,
n_Integer, prec_?PositiveD :=

mu + 2 sigma InverseErf@-1 + 2 RandomReal@1, n, WorkingPrecision -> precDD

Here are 10 random normals generated by inversion.

In[103]:= RandomReal@NormalByInversion@1, 2D, 10D

Out[103]= 8-0.457637, -1.59854, 1.53492, 1.85251, 5.06223, -0.765828, -2.86778, -0.512359, 1.55514, 4.64143<

Here is a sample of 104 random normals along with the sample mean and standard deviation.
In[104]:= Hninv = RandomReal@NormalByInversion@1, 2D, 10^4DL; êê Timing

Out[104]= 83.385, Null<
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In[105]:= 8Mean@ninvD, StandardDeviation@ninvD<

Out[105]= 80.989365, 2.01145<

The normal distribution is one example where methods other than direct inversion are generally

preferred. While inversion of the CDF is a perfectly valid method for generating pseudorandom

normal numbers, it  is not particularly efficient. Numeric evaluation of InverseErf  is computa-

tionally  much  more  expensive  than  the  sinusoid  and  logarithmic  evaluations  required  by  the

Box|Müller method used by NormalDistribution.

The built-in method takes almost no time for the same number of values.

In[106]:= Hndist = RandomReal@NormalDistribution@1, 2D, 10^4DL; êê Timing

Out[106]= 80., Null<

In[107]:= 8Mean@ndistD, StandardDeviation@ndistD<

Out[107]= 81.02922, 1.99552<

In[108]:= Clear@ninv, ndistD

Example: Uniform Distribution on a Disk

Random`DistributionVector can also be used to define generators for multidimensional distri-

butions. For instance, suppose a random point from a uniform distribution on the unit disk, the

set of real points 8x, y< with x2 + y2 § 1, is desired. Such a random point can be constructed as

follows:

† generate a random angle f uniformly distributed on @0, 2 pL

† generate a random vector u uniformly distributed on @0, 1D

† return 9 u sin f, u cos f=

The returned ordered pair can be multiplied by r  to generate points uniformly distributed on a

disk of radius r. 

The following defines a generator for a uniform disk of radius r.

In[109]:= UniformDisk ê:
Random`DistributionVector@
UniformDisk@r_?PositiveD, n_Integer, prec_?PositiveD :=

r * Sqrt@RandomReal@1, n, WorkingPrecision Ø precDD *
Transpose@8Cos@ÒD, Sin@ÒD< &@RandomReal@2 Pi, n, WorkingPrecision Ø precDDD
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Here is one random ordered pair from a disk of radius 2.

In[110]:= RandomReal@UniformDisk@2DD

Out[110]= 80.232325, 0.660046<

The following visualizes the distribution of 104 generated points on this disk. 
In[111]:= ListPlot@RandomReal@UniformDisk@2D, 1000D, AspectRatio Ø 1D

Out[111]=

Example: Dirichlet Distribution

The  n-dimensional  Dirichlet  distribution  is  parameterized  by  a  vector  of  positive  values

8a1, …, an< and has support on the set of vectors 8x1, …, xn< such that ⁄i=1
n xi = 1 and xi œ @0, 1D for i

from 1 to n. Thus, the Dirichlet distribution is defined on an n - 1-dimensional subspace of the n-

dimensional unit hypercube @0, 1Dn. The Dirichlet distribution is the multivariate extension of the

beta distribution. If y follows BetaDistribution@a, bD, then 8y, 1 - y< follows a Dirichlet distribu-

tion with parameter vector 8a, b<.

An  n-dimensional  Dirichlet  variate  can  be  generated  from  n  gamma  variates.  With  parameter

vector 8a1, …, an<, the process is as follows:

† generate a random number gi from GammaDistribution@ai, 1D for i from 1 to n

† return 8g1, …, gn<ë⁄i=1
n gi

This defines a Dirichlet generator attached to the symbol DirichletDistribution.

In[112]:= DirichletDistribution ê: Random`DistributionVector@
DirichletDistribution@alpha_?HVectorQ@Ò, PositiveD &LD,
n_Integer, prec_?PositiveD :=

Block@8gammas<,
gammas =
Map@RandomReal@GammaDistribution@Ò, 1D, n, WorkingPrecision Ø precD &, alphaD;

Transpose@gammasD ê Total@gammasDD
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Here is a three-dimensional Dirichlet vector with precision 25.

In[113]:= RandomReal@DirichletDistribution@81, 3, 5 ê 2<D, WorkingPrecision -> 25D

Out[113]= 80.01839604137321369637771129, 0.6997948901744933898460560, 0.2818090684522929137762327<

Example: Gibbs Sampler

Gibbs  samplers  can  also  be  defined  as  distributions.  As  an  example  consider  a  Gibbs  sampler

that  mixes  beta  and  binomial  distributions.  A  specific  case  of  this  sampler  was  explored  in  a

previous example. Here, the distribution will be defined with two parameters m and a.

This defines a Gibbs sampler BinomialBetaSampler.

In[114]:= BinomialBetaSampler ê: Random`DistributionVector@
BinomialBetaSampler@m_Integer, a_?PositiveD, n_Integer, prec_?PositiveD :=

Block@8y0, dist1, dist2, x0<,
y0 = .5;
dist1@y_D := RandomInteger@BinomialDistribution@m, yDD; dist2@x_D :=
RandomReal@BetaDistribution@x + a, m - x + 4D, WorkingPrecision Ø precD;

Do@8x0 = dist1@y0D, y0 = dist2@x0D<, 81000<D;
Table@8x0 = dist1@y0D, y0 = dist2@x0D<, 8n<DD

For the specific Gibbs sampler constructed earlier, m was 16 and a was 2.

Here are 5 vectors from the sampler with m = 16 and a = 2.

In[115]:= RandomReal@BinomialBetaSampler@16, 2D, 5D

Out[115]= 882, 0.0474404<, 81, 0.192054<, 86, 0.299769<, 83, 0.113683<, 81, 0.0480714<<
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