
Wolfram Mathematica ® Tutorial Collection

RANDOM NUMBER GENERATION

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Darren Glosemeyer and Rob Knapp

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Random Number Generation . 1

Introduction . 1

Random Generation Functions . 3
Random Numbers . 3
Arbitrary-Precision Reals and Complexes . 9
Random Elements . 11

Seeding and Localization . 14

Methods . 16
Congruential . 16
ExtendedCA . 18
Legacy . 19
MersenneTwister . 20
MKL . 20
Rule30CA . 22
Defining Your Own Generator . 23
Example: Multiplicative Congruential Generator . 24
Example: Blum|Blum|Shub Generator . 25

Statistical Distributions . 27
Continuous Distributions . 29
Discrete Distributions . 31
Defining Distributions . 32
Example: Normal Distribution by Inversion . 34
Example: Uniform Distribution on a Disk . 35
Example: Dirichlet Distribution . 36
Example: Gibbs Sampler . 37

References . 37

Random Number Generation

Introduction

The ability to generate pseudorandom numbers is important for simulating events, estimating

probabilities and other quantities, making randomized assignments or selections, and numeri-

cally testing symbolic results. Such applications may require uniformly distributed numbers,

nonuniformly distributed numbers, elements sampled with replacement, or elements sampled

without replacement.

The functions RandomReal, RandomInteger, and RandomComplex generate uniformly distributed

random numbers. RandomReal and RandomInteger also generate numbers for built-in distribu-

tions. RandomPrime generates primes within a range. The functions RandomChoice and

RandomSample sample from a list of values with or without replacement. The elements may

have equal or unequal weights. A framework is also included for defining additional methods

and distributions for random number generation.

A sequence of nonrecurring events can be simulated via RandomSample. For instance, the proba-

bility of randomly sampling the integers 1 through n in order might be simulated.

This estimates the probability of getting n elements in order for n from 2 to 8.

In[1]:= Block@8trials = 10^5, count, rn<,
Table@
count = 0;
rn = Range@nD;
Do@If@RandomSample@rnD == rn, count++D, 8trials<D;
8n, N@count ê trialsD<,
8n, 2, 8<DD

Out[1]= 882, 0.50127<, 83, 0.1656<, 84, 0.04225<, 85, 0.00824<, 86, 0.00144<, 87, 0.0002<, 88, 0.00002<<

The results can be compared with the theoretical probabilities.

In[2]:= Table@8i, N@1 ê i!D<, 8i, 2, 8<D

Out[2]= 882, 0.5<, 83, 0.166667<, 84, 0.0416667<,
85, 0.00833333<, 86, 0.00138889<, 87, 0.000198413<, 88, 0.0000248016<<

Random number generation is at the heart of Monte Carlo estimates. An estimate of an

expected value of a function f can be obtained by generating values from the desired distribu-

tion and finding the mean of f applied to those values.

This estimates the 6th raw moment for a normal distribution.

This estimates the 6th raw moment for a normal distribution.

In[3]:= Mean@RandomReal@NormalDistribution@0, 2D, 10^6D^6D

Out[3]= 961.612

In this case, the estimate can be compared with an exact result.

In[4]:= ExpectedValue@x^6, NormalDistribution@0, 2D, xD

Out[4]= 960

Random processes can be simulated by generating a series of numbers with the desired proper-

ties. A random walk can be created by recursively summing pseudorandom numbers.

Here a random walk starting at 0 is created.

In[5]:= ListLinePlot@Join@80.<, Accumulate@RandomReal@8-1, 1<, 8100<DDDD

Out[5]=

20 40 60 80 100

-1

1

2

3

4

5

6

Substitution of random numbers can be used to test the equivalence of symbolic expressions.

For instance, the absolute difference between two expressions could be evaluated at randomly

generated points to test for inequality of the expressions.

This provides no evidence that x2 and †x§ are different for real values.

In[6]:= Max@Abs@Sqrt@x^2D - Abs@xD ê. x Ø RandomReal@8-10, 10<, 10000DDD

Out[6]= 4.44089µ10-16

This provides evidence that x2 and †x§ differ for at least some complex values.

In[7]:= Max@Abs@Sqrt@x^2D - Abs@xD ê. x Ø RandomComplex@8-10 + 10 I, 10 + 10 I<, 10000DDD

Out[7]= 14.1415

RandomPrime chooses prime numbers with equal probability, which can be useful~for instance,

to generate large primes for RSA encryption. The prime numbers are uniformly distributed on

the primes in the range but are not uniformly distributed on the entire range because primes

are in general not uniformly distributed over ranges of positive integers.

2 Random Number Generation

RandomPrime chooses prime numbers with equal probability, which can be useful~for instance,

to generate large primes for RSA encryption. The prime numbers are uniformly distributed on

the primes in the range but are not uniformly distributed on the entire range because primes

are in general not uniformly distributed over ranges of positive integers.

Primes in a given range are generated with equal probability.

In[8]:= ListPlot@Tally@RandomPrime@50, 10^5DD, Filling Ø Axis, PlotRange Ø 80, Automatic<D

Out[8]=

Random Generation Functions

The main functions are RandomReal, RandomInteger, RandomComplex, RandomChoice, and

RandomSample. RandomReal, RandomInteger, and RandomComplex generate numbers given

some range of numeric values. RandomChoice and RandomSample generate elements from finite

sets that may include non-numeric values.

Random Numbers

RandomReal generates pseudorandom real numbers over a specified range of real values.

RandomInteger generates pseudorandom integer numbers over a specified range of integer

values. RandomComplex generates pseudorandom complex numbers over a specified rectangular

region in the complex plane. RandomPrime generates prime numbers with equal probability

within a range.

Random Number Generation 3

RandomReal@D give a pseudorandom real number in the range 0 to 1

RandomReal@8xmin,xmax<D give a pseudorandom real number in the range xmin to xmax

RandomReal@xmaxD give a pseudorandom real number in the range 0 to xmax

RandomReal@distD give a random number from the continuous distribution dist

RandomReal@domain,nD give a list of n pseudorandom reals

RandomReal@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom reals

Generation of random reals.

RandomInteger@8imin,imax<D give a pseudorandom integer in the range 8imin, …, imax<

RandomInteger@imaxD give a pseudorandom integer in the range 80, …, imax<

RandomInteger@D pseudorandomly give 0 or 1 with probability 1
2

RandomInteger@distD give a pseudorandom integer from the discrete distribution
dist

RandomInteger@domain,nD give a list of n pseudorandom integers

RandomInteger@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom integers

Generation of random integers.

RandomComplex@D give a pseudorandom complex number in the unit square

RandomComplex@8zmin,zmax<D give a pseudorandom complex number in the rectangle
bounded by zmin and zmax

RandomComplex@zmaxD give a pseudorandom complex number in the rectangle
bounded by 0 and zmax

RandomComplex@domain,nD give a list of n pseudorandom complex numbers

RandomComplex@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom complex numbers

Generation of random complex numbers.

RandomPrime@8imin,imax<D give a pseudorandom prime in the range 8imin, …, imax<

RandomPrime@imaxD give a pseudorandom prime in the range 2 to imax

RandomPrime@domain,nD give a list of n pseudorandom primes

RandomPrime@domain,8n1,n2,…<D give an n1×n2×… array of pseudorandom primes

Generation of random primes.

When the domain is specified in terms of xmin and xmax, RandomReal and RandomInteger gener-

ate uniformly distributed numbers over the specified range. When the domain is specified as a

distribution, rules defined for the distribution are used. Additionally, mechanisms are included

for defining new methods and distributions.

4 Random Number Generation

When the domain is specified in terms of xmin and xmax, RandomReal and RandomInteger gener-

ate uniformly distributed numbers over the specified range. When the domain is specified as a

distribution, rules defined for the distribution are used. Additionally, mechanisms are included

for defining new methods and distributions.

The two-argument interface provides a convenient way to obtain multiple random numbers at

once. Even more importantly, there is a significant efficiency advantage to generating a large

number of pseudorandom numbers at once.

Generating 107 numbers between 0 and 1 takes a fraction of a second.
In[9]:= Timing@RandomReal@1, 10^7D;D

Out[9]= 80.791, Null<

Generating 107 numbers one at a time takes roughly five times as long.
In[10]:= Timing@Table@RandomReal@1D, 810^7<D;D

Out[10]= 82.835, Null<

For multidimensional arrays with dimensions n1 through nk, the total number of required pseudo-

random numbers ntotal =¤i=1
k ni is generated and then partitioned. This makes the multidimen-

sional array generation as efficient as possible because the total number of random values is

generated as efficiently as possible and the time required for partitioning is negligible.

The time required for a 100×100×100×10 array is about the same as for a vector of 107
numbers.

In[11]:= Timing@RandomInteger@100, 8100, 100, 100, 10<D;D

Out[11]= 80.22, Null<

In[12]:= Timing@RandomInteger@100, 10^7D;D

Out[12]= 80.23, Null<

An array of the same dimensions generated 10 numbers at a time takes several times as long.

In[13]:= Timing@Table@RandomInteger@100, 810<D, 8100<, 8100<, 8100<D;D

Out[13]= 80.541, Null<

For statistical distributions, the speed advantage of generating many numbers at once can be

even greater. In addition to the efficiency benefit inherited from the uniform number generators

used, many statistical distributions also benefit from vectorized evaluation of elementary and

special functions. For instance, WeibullDistribution benefits from vector evaluations of the

elementary functions Power, Times, and Log.

Random Number Generation 5

For statistical distributions, the speed advantage of generating many numbers at once can be

even greater. In addition to the efficiency benefit inherited from the uniform number generators

used, many statistical distributions also benefit from vectorized evaluation of elementary and

special functions. For instance, WeibullDistribution benefits from vector evaluations of the

elementary functions Power, Times, and Log.

Generation of 105 Weibull numbers takes virtually no time.
In[14]:= Timing@RandomReal@WeibullDistribution@2, 1D, 10^5D êê LengthD

Out[14]= 80.02, 100000<

Several seconds are required when 105 Weibulls are generated one at a time.
In[15]:= Timing@Table@RandomReal@WeibullDistribution@2, 1DD, 810^5<D êê LengthD

Out[15]= 84.737, 100000<

Random number generation can be useful in exploratory investigations. For instance, you might

look for occurrences of a random sequence of digits in a longer sequence of digits.

This converts a list of 5 random decimal digits to a string.

In[16]:= digits = Apply@StringJoin, Map@ToString, RandomInteger@9, 5DDD

Out[16]= 64141

The following converts the first million digits of p to a string of integers.

In[17]:= pistring = StringJoin@Map@ToString, RealDigits@N@Pi, 10^6DD@@1DDDD;

This gives the positions where the string of five digits appears in the first million digits of p.

In[18]:= StringPosition@pistring, digitsD

Out[18]= 88157 883, 157887<, 8516599, 516603<, 8883250, 883254<, 8901136, 901140<<

Random number generation is also highly useful in estimating distributions for which closed-

form results are not known or known to be computationally difficult. Properties of random

matrices provide one example.

This estimates the probability that a 5×5 matrix of uniform reals will have real eigenvalues.

In[19]:= Block@8count = 0, ev<,
Do@ev = Eigenvalues@RandomReal@80, 1<, 85, 5<DD;
If@Re@evD == ev, count++D, 810^5<D;

N@count ê 10^5DD
Out[19]= 0.11925

The following does the same for a matrix of standard normal numbers.

6 Random Number Generation

The following does the same for a matrix of standard normal numbers.

In[20]:= Block@8count = 0, ev<,
Do@ev = Eigenvalues@RandomReal@NormalDistribution@0, 1D, 85, 5<DD;
If@Re@evD == ev, count++D, 810^5<D;

N@count ê 10^5DD
Out[20]= 0.03186

An example of simulating a multivariate distribution is the Gibbs sampler used in Bayesian

statistics [1]. The Gibbs sampler provides a means by which to simulate values from multivari-

ate distributions provided the distributions of each coordinate conditional on the other coordi-

nates are known. Under some restrictions, the distribution of random vectors constructed by

iteratively sampling from the conditional distributions will converge to the true multivariate

distribution.

The following example will construct a Gibbs sampler for an example given by Casella and

George [2]. The distribution of interest is bivariate. The conditional distribution of x given y is a

binomial, and the conditional distribution of y given x is a beta. As Casella and George mention,

various strategies for detecting convergence and sampling using the Gibbs sampler have been

suggested. For simplicity, assume that convergence will occur within 1000 iterations. A sample

of size n from the distribution will be taken as the n values following the 1000th iteration. It

should be noted that these n values will, however, be dependent.

This defines the sampler with a binomial and a beta conditional distribution.

In[21]:= sampler@len_D := Block@8y0, dist1, dist2, x0<,
y0 = .5;
dist1@y_D := RandomInteger@BinomialDistribution@16, yDD;
dist2@x_D := RandomReal@BetaDistribution@x + 2, 16 - x + 4DD;
Do@8x0 = dist1@y0D, y0 = dist2@x0D<, 81000<D;
Table@8x0 = dist1@y0D, y0 = dist2@x0D<, 8len<DD

A Gibbs sampler could also be defined as a distribution object within the distribution framework

for random number generation. An example of this particular Gibbs sampler as a distribution

object is provided in the section "Defining Distributions".

data is a sample of length 104.
In[22]:= data = sampler@10^4D;

Random Number Generation 7

The following bar chart shows the marginal distribution of the first dimension.

In[23]:= frqs = Sort@Tally@data@@All, 1DDDD;
BarChart@frqs@@All, 2DD ê 10^4, ChartLabels Ø frqs@@All, 1DDD

Out[24]=

The marginal distribution of the second coordinate can be visualized with a histogram.

In[25]:= Histogram@data@@All, -1DD, Automatic, "ProbabilityDensity"D

Out[25]=

Conditional distributions should closely match the assumed binomial and beta distributions

provided there is enough data for the conditional distribution. The greatest amount of data

occurs when the densities of the marginal distributions are highest, so those values can be used

for comparisons. The following graphics compare the empirical and assumed conditional distribu-

tions, using bins of width .05 for estimating probabilities of continuous values.

8 Random Number Generation

This compares the empirical and theoretical distributions of x for 0.3 § y < 0.35.

In[28]:= Block@8y = .3, bcounts, probs, cdata<,
cdata = Select@data, y <= Ò@@2DD < y + .05 &D@@All, 1DD;
bcounts = BinCounts@cdata, 80, 17<D ê Length@cdataD;
probs = Table@8x - .025, PDF@BinomialDistribution@16, yD, xD<, 8x, 0, 16<D;
ListPlot@8Transpose@8Range@0, 16D, bcounts<D, probs<, Filling Ø AxisDD

Out[28]=

This compares the empirical and theoretical distributions of y for x = 1.

In[29]:= Block@8x = 1, bcounts, probs, cdata<,
cdata = Select@data, Ò@@1DD ã x &D@@All, -1DD;
bcounts = BinCounts@cdata, 80, 1, .05<D ê Length@cdataD;
probs = Table@8y - .025, CDF@BetaDistribution@x + 2, 16 - x + 4D, yD -

CDF@BetaDistribution@x + 2, 16 - x + 4D, y - .05D<, 8y, 0, 1, .05<D;
ListPlot@8Transpose@8Range@.025, .975, .05D, bcounts<D, probs<,
Filling Ø Axis, PlotRange Ø AllDD

Out[29]=

Arbitrary-Precision Reals and Complexes

By default, RandomReal and RandomComplex generate machine-precision numbers. Arbitrary-

precision numbers can be obtained by setting the WorkingPrecision option.

option name default value

WorkingPrecision MachinePrecisÖ
ion

precision of the arithmetic to use in
calculations

Option for RandomReal and RandomComplex.

The option is valid for uniformly distributed reals, complexes, and reals from built-in distribu-

tions. WorkingPrecision can also be incorporated into user-defined distributions.

Random Number Generation 9

The option is valid for uniformly distributed reals, complexes, and reals from built-in distribu-

tions. WorkingPrecision can also be incorporated into user-defined distributions.

Here is a precision-25 real number between 5 and 50.

In[30]:= RandomReal@85, 50<, WorkingPrecision -> 25D

Out[30]= 47.91955298232309007697519

This gives a precision-50 t-distributed number.

In[31]:= RandomReal@StudentTDistribution@10D, WorkingPrecision -> 50D

Out[31]= 0.63657271131856066162015538159023906378836566000722

Increased WorkingPrecision can be useful in simulations where loss of precision can be

expected and highly accurate results are necessary. Increased precision can also be used to

estimate the precision loss in computations.

This estimates the worst precision loss in computing J1 on the interval @0, 1000D.

In[32]:= 100 - Precision@BesselJ@1, RandomReal@80, 1000<, 1000, WorkingPrecision Ø 100DDD

Out[32]= 5.56284

If the precision of the input is less than the specified WorkingPrecision, the function will warn

of the problem. The precision of the input will then be artificially increased to generate a pseudo-

random number of the desired precision.

A warning is generated because the machine number 7.5 has precision less than 50.

In[33]:= RandomComplex@7.5 + I, WorkingPrecision -> 50D

RandomComplex::precw:
The precision of the argument function H80, 7.5+Â<L is less than WorkingPrecision H50.`L. à

Out[33]= 6.3710920570099177598371192096170516471502712289510 +
0.34151554408746740924954028235202796686840490009223 Â

WorkingPrecision is not an option for RandomInteger. Integers have infinite precision, so the

precision is completely specified by the function name.

WorkingPrecision is not meaningful for pseudorandom integers.

In[34]:= RandomInteger@10, WorkingPrecision -> 50D

RandomInteger::array : The array dimensions WorkingPrecision Ø 50
given in position 2 of RandomInteger@10, WorkingPrecision Ø 50D should be a
list of non-negative machine-sized integers giving the dimensions for the result.

Out[34]= RandomInteger@10, WorkingPrecision Ø 50D

Random Elements

10 Random Number Generation

Random Elements

RandomChoice and RandomSample generate pseudorandom selections from a list of possible

elements. The elements can be numeric or non-numeric.

RandomChoice@8e1,e2,…<D give a pseudorandom choice of one of the ei

RandomChoice@list,nD give a list of n pseudorandom choices from list

RandomChoice@list,8n1,n2,…<D give n1×n2×… pseudorandom choices from list

RandomChoice@8w1,w2,…<->8e1,e2,…<D

give a pseudorandom choice weighted by the wi

RandomChoice@wlist->elist,nD give a list of n weighted choices

RandomChoice@wlist->elist,8n1,n2,…<D

give an array of n1×n2×… array of weighted choices

Random choice from a list.

RandomSample@8e1,e2,…<,nD give a pseudorandom sample of n of the ei

RandomSample@8w1,w2,…<->8e1,e2,…<,nD

give a pseudorandom sample of n of the ei chosen using
weights wi

RandomSample@8e1,e2,…<D give a pseudorandom permutation of the ei

RandomSample@wlist->elistD give a pseudorandom permutation of elist using initial
weights wlist

Random sample from a list.

The main difference between RandomChoice and RandomSample is that RandomChoice selects

from the ei with replacement, while RandomSample samples without replacement. The number of

elements chosen by RandomChoice is not limited by the number of elements in elist, and an

element ei may be chosen more than once. The size of a sample returned by RandomSample is

limited by the number of elements in elist, and the number of occurrences of a distinct element

in that sample is limited by the number of occurrences of that element in elist.

If the first argument to RandomChoice or RandomSample is a list, elements are selected with

equal probability. The weight specification defines a distribution on the set of the ei. The

weights must be positive, but need not sum to 1. For weights 8w1, …, wn< the probability of ei

in the initial distribution is wi ë⁄j=1
n w j. Since RandomSample samples without replacement,

weights are updated internally based on the total remaining weight after each selection.

Random Number Generation 11

If the first argument to RandomChoice or RandomSample is a list, elements are selected with

equal probability. The weight specification defines a distribution on the set of the ei. The

weights must be positive, but need not sum to 1. For weights 8w1, …, wn< the probability of ei

in the initial distribution is wi ë⁄j=1
n w j. Since RandomSample samples without replacement,

weights are updated internally based on the total remaining weight after each selection.

RandomChoice can be used for simulation of independent identically distributed events with a

finite list of possible outcomes.

This gives 15 simulated fair coin tosses.

In[35]:= RandomChoice@8"heads", "tails"<, 15D

Out[35]= 8heads, heads, heads, heads, tails, heads,
tails, tails, tails, tails, heads, tails, heads, heads, tails<

This gives 20 rolls of a die loaded toward 5s.

In[36]:= RandomChoice@8.15, .1, .15, .15, .3, .15< -> Range@6D, 20D

Out[36]= 81, 3, 5, 5, 5, 1, 3, 4, 5, 5, 1, 6, 3, 2, 4, 6, 6, 1, 6, 5<

RandomChoice can be used to generate observations from any discrete distribution with finite

support.

The following generates a random observation from a discrete analog of a
TriangularDistribution.

In[37]:= RandomChoice@81, 3, 5, 3, 1< -> Range@4, 8DD

Out[37]= 5

Here is the empirical PDF for 1000 simulated points.

In[26]:= frqs = Tally@RandomChoice@81, 3, 5, 3, 1< -> Range@4, 8D, 1000DD;
BarChart@frqs@@All, 2DD ê 100, ChartLabels Ø frqs@@All, 1DDD

Out[27]=

RandomSample can be used to simulate observations from a finite set of outcomes in which each

element in the list of outcomes can only be observed once. There may be more than one occur-

rence of distinct values in the list.

This simulates 7 draws from a container of 80 blue and 45 red objects.

12 Random Number Generation

This simulates 7 draws from a container of 80 blue and 45 red objects.

In[41]:= RandomSample@Join@Table@"blue", 880<D, Table@"red", 845<DD, 7D

Out[41]= 8blue, blue, blue, blue, blue, blue, blue<

Randomly sampling all elements in the list results in a random permutation.

The following is a random permutation of the integers from 1 to 10.

In[42]:= RandomSample@Range@10DD

Out[42]= 84, 2, 10, 1, 6, 3, 8, 9, 7, 5<

Assigning weights to the elements results in a random permutation in which values with greater

weight tend to appear earlier in the permutation than values with lesser weight.

Here is a random permutation weighted by the squares of the data values.

In[43]:= RandomSample@Range@10D^2 -> Range@10DD

Out[43]= 89, 10, 6, 7, 5, 4, 8, 2, 3, 1<

For the same list of weighted or unweighted elements, RandomSample@Ò, 1D & is distributionally

equivalent to RandomChoice.

This gives an empirical PDF for 105 random samples of size 1.
In[44]:= data = Range@10D;

In[45]:= tallies = Tally@Table@RandomSample@data^2 -> data, 1D, 810^5<DD

Out[45]= 8883<, 2420<, 884<, 4314<, 8810<, 26091<, 887<, 12508<,
889<, 21109<, 888<, 16509<, 882<, 1029<, 885<, 6336<, 886<, 9406<, 881<, 278<<

In[46]:= Sort@talliesD@@All, 2DD ê 10^5.

Out[46]= 80.00278, 0.01029, 0.0242, 0.04314, 0.06336, 0.09406, 0.12508, 0.16509, 0.21109, 0.26091<

Here is an empirical distribution for a distributionally equivalent RandomChoice.

In[47]:= Sort@Tally@RandomChoice@data^2 -> data, 10^5DDD@@All, 2DD ê 10^5.

Out[47]= 80.00258, 0.01011, 0.02324, 0.0411, 0.06343, 0.09369, 0.12762, 0.16485, 0.21333, 0.26005<

The probabilities for the two examples are very close to each other and to the theoretical values.

These are the theoretical probabilities.

In[48]:= N@data^2 ê Total@data^2DD

Out[48]= 80.0025974, 0.0103896, 0.0233766, 0.0415584,
0.0649351, 0.0935065, 0.127273, 0.166234, 0.21039, 0.25974<

RandomSample can also be used for random assignments to groups, such as in clinical trials. The

following uses integers, but other identifying values such as name or identification number

could be used instead.

Random Number Generation 13

RandomSample can also be used for random assignments to groups, such as in clinical trials. The

following uses integers, but other identifying values such as name or identification number

could be used instead.

The following randomly places 20 elements into four groups of equal size.

In[49]:= Partition@RandomSample@Range@20DD, 5D

Out[49]= 882, 11, 14, 9, 18<, 819, 10, 15, 3, 16<, 817, 7, 4, 6, 8<, 820, 1, 13, 5, 12<<

RandomChoice and RandomSample can be affected by changes to the Method option to

SeedRandom. Built-in methods are described in "Methods". Additionally, mechanisms for defining

new methods are described in "Defining Your Own Generator".

Seeding and Localization

Pseudorandom number generators algorithmically create numbers that have some apparent

level of randomness. Methods for pseudorandom number generation typically use a recurrence

relation to generate a number from the current state and to establish a new state from which

the next number will be generated. The state can be set by seeding the generator with an

integer that will be used to initialize the recurrence relation in the algorithm.

Given an initial starting point, called a seed, pseudorandom number generators are completely

deterministic. In many cases it is desirable to locally or globally set the seed for a random

number generator to obtain a constant sequence of "random" values. If set globally, the seed

will affect future pseudorandom numbers unless a new seed is explicitly set. If set locally, the

seed will only affect random number and element generation within the localized code.

BlockRandom@exprD evaluate expr with all pseudorandom generators localized

SeedRandom@nD reset the pseudorandom generator using n as a seed

SeedRandom@D reset the generator using as a seed the time of day and
certain attributes of the current Mathematica session

Localization and seeding functions.

14 Random Number Generation

The SeedRandom function provides a means by which to seed the random generator. Used on its

own, SeedRandom will globally set the seed for random generators. The BlockRandom function

provides a means by which to locally set or change the seed for random generators without

affecting the global state.

The following seeds the random generator globally.

In[50]:= 8SeedRandom@1D; RandomReal@D, SeedRandom@1D; RandomReal@D<

Out[50]= 80.817389, 0.817389<

The following gives two different numbers because the first RandomReal is generated within

BlockRandom, while the second is generated outside of BlockRandom.

The second RandomReal is not generated using the seed 1.

In[51]:= 8BlockRandom@SeedRandom@1D; RandomReal@DD,
BlockRandom@SeedRandom@1DD; RandomReal@D<

Out[51]= 80.817389, 0.11142<

SeedRandom also provides the mechanism for switching the random generator.

option name default value
Method Automatic method to be seeded and used

Option for SeedRandom.

An individual generator can be seeded directly by specifying that generator via the Method

option. All generators can be seeded by setting Method -> All.

Here the default generator is seeded with 1, but the "Rule30CA" generator is not.

In[52]:= BlockRandom@SeedRandom@1D;
SeedRandom@Method -> "Rule30CA"D;
RandomReal@DD

Out[52]= 0.164277

Seeding the "Rule30CA" generator with 1 gives a different random number.

In[53]:= BlockRandom@SeedRandom@1, Method -> "Rule30CA"D;
RandomReal@DD

Out[53]= 0.46345

Random Number Generation 15

Methods

Five pseudorandom generator methods are available on all systems. A sixth platform-depen-

dent method is available on Intel-based systems. A framework for defining new methods,

described in the section "Defining Your Own Generator", is also included.

"Congruential" linear congruential generator (low-quality randomness)

"ExtendedCA" extended cellular automaton generator (default)

"Legacy" default generators prior to Mathematica 6.0

"MersenneTwister" Mersenne Twister shift register generator

"MKL" Intel MKL generator (Intel-based systems)

"Rule30CA" Wolfram rule 30 generator

Built-in methods.

This gives pseudorandom integers from each method with seed 2020.

In[54]:= Map@BlockRandom@SeedRandom@2020, Method -> ÒD; RandomInteger@10^20DD &,
8"Congruential", "ExtendedCA", "Legacy", "MersenneTwister", "MKL", "Rule30CA"<D

Out[54]= 855649265348960921658, 459120772313493841, 50876346696796959169,
77391724740010742551, 58128025990681059425, 74027343124503736203<

This gives pseudorandom reals from the same seed.

In[55]:= Map@BlockRandom@SeedRandom@2020, Method -> ÒD; RandomReal@DD &,
8"Congruential", "ExtendedCA", "Legacy", "MersenneTwister", "MKL", "Rule30CA"<D

Out[55]= 80.688547, 0.00311112, 0.874893, 0.524427, 0.393891, 0.501629<

Congruential

"Congruential" uses a linear congruential generator. This is one of the simplest types of

pseudorandom number generators, with pseudorandom numbers between 0 and 1 obtained

from xi êm, where xi is given by the modular recurrence relation

xi ª Hbxi-1 + cL modm

for some fixed integers b, c, and m called the multiplier, increment, and modulus respectively. If

the increment is 0, the generator is a multiplicative congruential generator. The values of b, c,

and m can be set via options to the "Congruential" method.

16 Random Number Generation

option name default value
"Bits" Automatic specify range of bits to use for

numbers constructed from bits
"Multiplier" 1283839219676404755 multiplier value
"Increment" 0 increment value
"Modulus" 2305843009213693951 modulus value
"ConvertToRealsDirectly" True whether reals should be con-

structed directly from the congru -
ence relation

Options for Method "Congruential".

Linear congruential generators are periodic and tend to give a lower quality of randomness,

especially when a large number of random values is needed. If reals are generated directly

from the congruence relation, the period is less than or equal to m.

The default option values are chosen to have a large period and for 64-bit efficiency. With the

default options, the "Congruential" generator passes many standard tests of randomness

despite the inherent issues with congruential number generators.

This generates 40 numbers from a multiplicative congruential generator.

In[56]:= lcdata = BlockRandom@SeedRandom@1, Method -> 8"Congruential", "Multiplier" -> 11,
"Increment" -> 0, "Modulus" -> 63<D; RandomReal@1, 40DD;

The period of a multiplicative congruential generator is bounded above by the number of posi-

tive integers less than or equal to the modulus that are relatively prime to the modulus. This

upper bound is Euler's totient function of the modulus.

With a modulus of 63, the period of the cycle is at most 36.

In[57]:= EulerPhi@63D

Out[57]= 36

The actual period can be determined by finding the smallest integer i such that i ª bi mod m.

The period with multiplier 11 and modulus 63 is 6.

In[58]:= First@Select@Range@36D, HMod@11^Ò, 63D === 1 &LDD

Out[58]= 6

Random Number Generation 17

Partitioning the data into sets of 6 elements shows the recursion.

In[59]:= Partition@lcdata, 6D

Out[59]= 880.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<,
80.174603, 0.920635, 0.126984, 0.396825, 0.365079, 0.015873<<

The distinct numbers can also be seen graphically by plotting a sequence of generated numbers.

Here is a plot of 1000 values from the congruential generator.

In[60]:= ListPlot@BlockRandom@SeedRandom@1, Method -> 8"Congruential", "Multiplier" -> 11,
"Increment" -> 0, "Modulus" -> 63<D; RandomReal@1, 1000DDD

Out[60]=

If "ConvertToRealsDirectly" is set to False, reals are generated by taking eight bits at a

time from elements of the sequence to construct a 52-bit machine-precision number. Congruen-

tial numbers generated in this fashion will still cycle, but cycling will depend on repetition in the

bit pattern rather than in the initial congruence relation.

The "Bits" option can be Automatic, a nonzero integer, or a list of two nonzero integers specify -

ing the range of bits in the modulus m used for constructing numbers from bits. Automatic uses

82, -1< unless m is a power of 2, in which case 81, -1< is used.

ExtendedCA

The default "ExtendedCA" method makes use of cellular automata to generate high-quality

pseudorandom numbers. This generator uses a particular five-neighbor rule, so each new cell

depends on five nonadjacent cells from the previous step.

Cellular-automata-based random number generators evolve a state vector of 0s and 1s accord-

ing to a deterministic rule. For a given cellular automaton, an element (or cell) at a given posi-

tion in the new state vector is determined by certain neighboring cells of that cell in the old

state vector. A subset of cells in the state vectors is then output as random bits from which the

pseudorandom numbers are generated.

The cellular automaton used by "ExtendedCA" produces an extremely high level of random-

ness. It is so high that even using every single cell in output will give a stream of bits that

passes many randomness tests, in spite of the obvious correlation between one cell and five

previous ones.

18 Random Number Generation

The cellular automaton used by "ExtendedCA" produces an extremely high level of random-

ness. It is so high that even using every single cell in output will give a stream of bits that

passes many randomness tests, in spite of the obvious correlation between one cell and five

previous ones.

Two options are included for modifying the size of the state vector and the cells skipped. The

defaults are chosen for quality and speed and there is typically no need to modify these options.

option name default value
"Size" 80 state vector size as a multiplier of 64
"Skip" 4 number of cells to skip

Options for Method "ExtendedCA".

The length of the state vectors used is by default set to 80×64=5120 cells. The multiple of 64

can be controlled by the "Size" option.

In practice using every fourth cell in each state vector proves to be sufficient to pass very

stringent randomness tests. This is the default used for the "Skip" option. For even faster

random number generation, a "Skip" setting of 2 or even 1 could be used, but the quality of

the random numbers will then decline.

"ExtendedCA" is the default number generator.

In[61]:= BlockRandom@SeedRandom@1D; RandomReal@1, 5DD

Out[61]= 80.817389, 0.11142, 0.789526, 0.187803, 0.241361<

In[62]:= BlockRandom@SeedRandom@1, Method -> "ExtendedCA"D; RandomReal@1, 5DD

Out[62]= 80.817389, 0.11142, 0.789526, 0.187803, 0.241361<

Legacy

The "Legacy" method uses the generator called by Random in versions of Mathematica prior to

Version 6.0. A Marsaglia|Zaman subtract-with-borrow generator is used for reals. The integer

generator is based on a Wolfram rule 30 cellular automaton generator. The rule 30 generator is

used directly for small integers and used to generate certain bits for large integers.

Here are RandomReal and RandomInteger values obtained via the "Legacy" method.

In[63]:= BlockRandom@SeedRandom@31, Method -> "Legacy"D; 8RandomReal@D, RandomInteger@50D<D

Out[63]= 80.210596, 8<

The same values are given by equivalent Random calls.

Random Number Generation 19

The same values are given by equivalent Random calls.

In[64]:= BlockRandom@SeedRandom@31D; 8Random@D, Random@Integer, 80, 50<D<D

Out[64]= 80.210596, 8<

To guarantee consistency with sequences generated prior to Version 6.0, seeds set for the

Automatic method are also applied to the "Legacy" method.

The "Legacy" method has no options.

MersenneTwister

"MersenneTwister" uses the Mersenne Twister generator due to Matsumoto and Nishimura

[3][4]. The Mersenne Twister is a generalized feedback shift register generator with period

219937 - 1.

This gives 5 random numbers from a Mersenne Twister generator.

In[65]:= BlockRandom@SeedRandom@1, Method -> "MersenneTwister"D; RandomReal@1, 5DD

Out[65]= 80.393562, 0.701033, 0.966231, 0.221456, 0.436768<

The "MersenneTwister" method has no options.

MKL

The "MKL" method uses the random number generators provided in Intel's MKL libraries. The

MKL libraries are platform dependent. The "MKL" method is available on Microsoft Windows (32-

bit, 64-bit), Linux x86 (32-bit, 64-bit), and Linux Itanium systems.

option name default value
Method Automatic MKL generator to use

Option for Method "MKL".

20 Random Number Generation

"MCG31" 31-bit multiplicative congruential generator

"MCG59" 59-bit multiplicative congruential generator

"MRG32K3A" combined multiple recursive generators with two compo -
nents of order 3

"MersenneTwister" Mersenne Twister shift register generator

"R250" generalized feedback shift register generator

"WichmannHill" Wichmann|Hill combined multiplicative congruential
generators

"Niederreiter" Niederreiter low-discrepancy sequence

"Sobol" Sobol low-discrepancy sequence

"MKL" methods.

The first six methods are uniform generators. "Niederreiter" and "Sobol" generate

Niederreiter and Sobol sequences. These sequences are nonuniform and have underlying

structure which is sometimes useful in numerical methods. For instance, these sequences

typically provide faster convergence in multidimensional Monte Carlo integration.

The following shows the structure of a Niederreiter sequence in dimension 2.

In[66]:= ListPlot@BlockRandom@
SeedRandom@Method -> 8"MKL", Method -> 8"Niederreiter", "Dimension" -> 2<<D;
RandomReal@1, 81000, 2<DD,

AspectRatio -> 1D

Out[66]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Random Number Generation 21

This shows the structure of a Sobol sequence in dimension 2.

In[67]:= ListPlot@BlockRandom@
SeedRandom@Method -> 8"MKL", Method -> 8"Sobol", "Dimension" -> 2<<D;
RandomReal@1, 81000, 2<DD,

AspectRatio -> 1D

Out[67]=

Rule30CA

The "Rule30CA" method uses a Wolfram rule 30 cellular automaton generator. Bits are

obtained by evolving a state vector of 0s and 1s using the relation

f Hi, t + 1L = f Hi - 1, tL H f Hi, tL Í f Hi + 1, tLL,

where f Hi, tL is the value of cell i at time t.

option name default value
"Size" 9 state vector size as a multiplier of 29

Option for Method "Rule30CA".

The length of the state vectors used is by default set to 9µ29 = 261 cells. The multiplier for 29

can be controlled by the "Size" option.

This gives a 2×3×4 tensor of random integers using "Rule30CA".

In[68]:= BlockRandom@SeedRandom@1, Method -> "Rule30CA"D; RandomInteger@10^5, 82, 3, 4<DD

Out[68]= 88860 745, 40991, 22336, 76623<, 857042, 92146, 91746, 18972<, 870251, 62829, 78488, 82331<<,
8893628, 53079, 11476, 55013<, 87702, 96543, 99411, 79327<, 842137, 83772, 56154, 6410<<<

The "Rule30CA" method uses only the first bit from each state vector, making it slower than

the "ExtendedCA" method, which uses multiple bits from each state vector.

22 Random Number Generation

Defining Your Own Generator

Methods can be plugged into the random framework as long as they follow the correct

template. A generator object is of the form gsym@dataD where gsym is the symbol that identifies

the generator and to which rules are attached. data is effectively private to the top-level evalua-

tions associated with the generator definitions.

Generator initialization is handled by a call to Random`InitializeGenerator.

Random`InitializeGenerator@gsym,optsD

initializes the generator gsym with options opts

Generator initialization function.

Random`InitializeGenerator is expected to return a generator object gobj of the form

gsym@dataD.

Generators can support generation of random bit streams, random integers, and random reals.

If the generator supports bit streams, reals and integers can be generated by conversion of the

bit stream. At method setup time, properties are queried to determine what is supported and

how.

GeneratesBitsQ set to True if the method generates bits

GeneratesIntegersQ set to True if the method generates integers for a given
range

GeneratesRealsQ set to True if the method generates reals for a given
range and precision

Generator properties.

If bit streams are supported, then gobj@"GenerateBits"@nbitsDD is expected to return an integer

comprised of n random bits or a list of length nbits with entries that are 0 or 1.

If random integers are supported, then gobj@"GenerateIntegers"@n, 8a, b<DD is expected to

return a list of n random integers in the range @a, bD. A warning message will be issued when

results are out of range.

If random reals are supported, then gobj@"GenerateReals"@a, 8a, b<, precDD is expected to

return a list of n random reals with precision prec in the range @a, bD. A warning message will be

issued when results are out of range or of the wrong precision.

For any of the generation functions, the return can be 8res, gobj<, where res is the result of the

correct type and gobj is a new generator object (reflecting any state change).

Random Number Generation 23

For any of the generation functions, the return can be 8res, gobj<, where res is the result of the

correct type and gobj is a new generator object (reflecting any state change).

Seeding is done by gobj@"SeedGenerator"@seedDD for an integer seed.

gobj@"SeedGenerator"@seedDD is expected to return a new generator object.

Example: Multiplicative Congruential Generator

In the following example a multiplicative congruential generator will be defined. A multiplicative

congruential generator follows the recurrence relation

xi ª bxi-1 modm.

The generator, as defined below, will allow only for generation of real numbers.

This sets default options for the generator MultiplicativeCongruential.

In[69]:= Options@MultiplicativeCongruentialD =
8"Multiplier" Ø 123456789, "Modulus" Ø 2^35 - 1<;

Initialization of the generator will extract the values of the multiplier and modulus. Initialization

will fail if either of these values is not a positive integer.

The following initializes the generator.

In[70]:= MultiplicativeCongruential ê:
Random`InitializeGenerator@MultiplicativeCongruential, opts___D := Module@
8mult, mod, flops = Flatten@8opts, Options@MultiplicativeCongruentialD<D<,
mult = "Multiplier" ê. flops;
If@! HIntegerQ@multD && Positive@multDL,
Throw@$FailedD

D;
mod = "Modulus" ê. flops;
If@! HIntegerQ@modD && Positive@multDL,
Throw@$FailedD

D;
MultiplicativeCongruential@mult, mod, 1DD;

Calls from the kernel to Random`IntializeGenerator are effectively wrapped in Catch. Throw

can be used in the initialization code to easily exit in case of problems.

This establishes that MultiplicativeCongruential generates reals.

In[71]:= MultiplicativeCongruential@___D@"GeneratesRealsQ"D := True;

The following seeds the generator using the recurrence relation.

In[72]:= MultiplicativeCongruential@mult_, mod_, ___D@"SeedGenerator"@seed_DD :=
MultiplicativeCongruential@mult, mod, Mod@Hmult * seedL, modDD;

The real number generator will return the desired number of reals n and a new

MultiplicativeCongruential generator. The seed for the new generator is updated based on

the recurrence relation.

24 Random Number Generation

The real number generator will return the desired number of reals n and a new

MultiplicativeCongruential generator. The seed for the new generator is updated based on

the recurrence relation.

This defines the real number generator.

In[73]:= MultiplicativeCongruential@mult_, mod_, s_D@
"GenerateReals"@n_, 8a_, b_<, prec_DD :=

Module@8x = s<,
8a + Hb - aL Table@x = mult * x; Mod@x, modD, 8n<D ê mod,
MultiplicativeCongruential@mult, mod, xD<

D

This generates 10 reals using the MultiplicativeCongruential generator.

In[74]:= BlockRandom@
SeedRandom@Method -> MultiplicativeCongruentialD;
RandomReal@85, 50<, 10DD

Out[74]= 833.1547, 47.5694, 45.0011, 31.632, 25.1043, 37.7568, 16.2839, 48.1744, 17.5352, 48.7686<

The generator is not defined for integers.

In[75]:= BlockRandom@
SeedRandom@Method -> MultiplicativeCongruentialD;
RandomInteger@85, 50<DD

RandomInteger::unstyp :
The current random generator does not support generation of random integers in the given range.

Out[75]= RandomInteger@85, 50<D

Example: Blum|Blum|Shub Generator

The Blum|Blum|Shub generator is a quadratic congruential method for generating pseudoran-

dom bits for cryptographic purposes [5]. The congruence is mod p×q for specified primes p and

q.

This sets default options for the generator BlumBlumShub.

In[76]:= Options@BlumBlumShubD = 8"BlumPrimes" Ø 81267650600228229401496703981519,
1267650600228229401496704318359<, "BitWidth" Ø Automatic<;

The following define an auxiliary function and error messages for the generator.

In[77]:= SpecialBlumPrimeQ@x_D := HPositive@xD && HMod@x, 4D ã 3L && PrimeQ@xDL

In[78]:= BlumBlumShub::bprime = "`1` is not a list of two distinct special Blum primes.";

In[79]:= BlumBlumShub::bw =
"Warning: the value of the option BitWidth->`1` exceeds the number

`2` that has been proved cyptographically secure.";

In[80]:= BlumBlumShub::bw1 = "The value of the option BitWidth->`1`
should be a positive machine-sized integer or Automatic.";

The generator initialization will extract option values and issue error messages if necessary

before calling the actual generator.

Random Number Generation 25

The generator initialization will extract option values and issue error messages if necessary

before calling the actual generator.

The following initializes the generator.

In[81]:= BlumBlumShub ê: Random`InitializeGenerator@BlumBlumShub, opts___D :=
Module@8n, abw, bw, flops = Flatten@8opts, Options@BlumBlumShubD<D<,
n = "BlumPrimes" ê. flops;
If@
! And@VectorQ@n, SpecialBlumPrimeQD, Length@nD ã 2, Not@Apply@Equal, nDDD,
Message@BlumBlumShub::"bprime", nD;
Throw@$FailedD

D;
n = Apply@Times, nD;
abw = Max@1, Floor@Log@2., Log@2., nDDDD;
bw = "BitWidth" ê. flops;
If@bw === Automatic,
bw = abw,
If@! HIntegerQ@bwD && Positive@bwDL,
Message@BlumBlumShub::bwi, bwD;
Throw@$FailedDD;

If@bw > abw,
Message@BlumBlumShub::bw, bw, abwDD;

D;
BlumBlumShub@n, bw, 2^bw - 1, 2DD;

This establishes that BlumBlumShub is a bit generator and determines the bit width.

In[82]:= BlumBlumShub@___D@"GeneratesBitsQ"D := True;

In[83]:= BlumBlumShub@n_, bw_, __D@"BitWidth"D := bw;

The following seeds the generator.

In[84]:= BlumBlumShub@n_, bw_, mask_, ___D@"SeedGenerator"@seed_DD :=
Module@8x , i = 0, state = 8<<,
While@Length@Union@stateDD < 10,
x = seed + i;
state = NestList@PowerMod@Ò, 2, nD &, x, 9D;

D;
BlumBlumShub@n, bw, mask, Last@stateDDD

This defines the bit generator.

In[85]:= BlumBlumShub@n_, bw_, mask_, s_D@"GenerateBits"@bits_DD :=
Module@8x = PowerMod@s, 2, nD<,
8BitAnd@x, maskD, BlumBlumShub@n, bw, mask, xD<D

This generates 5 integers and 5 reals using the BlumBlumShub generator.

In[86]:= BlockRandom@
SeedRandom@Method -> BlumBlumShubD;
8RandomInteger@80, 10<, 5D, RandomReal@4, 5D<D

Out[86]= 881, 5, 7, 3, 5<, 82.37406, 1.59922, 1.11636, 3.70079, 0.29338<<

26 Random Number Generation

Statistical Distributions

The general idea behind generating random variates from a nonuniform statistical distribution is

to generate a random uniform variate between 0 and 1 and then compute the inverse CDF of

that random value in the desired distribution. In practice, however, following this recipe directly

can be very computationally intensive if a large number of random variates is desired, particu-

larly when the inverse CDF is complicated or cannot be expressed in a closed form.

In such cases, table lookups, direct construction based on distributional relationships, or accep-

tance-rejection methods are often more efficient alternatives to direct inversion of the CDF. On

some level, these methodologies will all still rely on uniformly distributed RandomReal values,

uniformly distributed RandomInteger values, observations from a weighted RandomChoice, or a

combination of these values. As a result, methods set via SeedRandom will have an effect on

random observations from statistical distributions.

The methods used by RandomReal and RandomInteger for many of the distributions in Mathe-

matica follow methods suggested or described in Gentle [6], and are not necessarily the same

methods used by Random and RandomArray in the standard add-ons included with versions of

Mathematica prior to Version 6.0.

Random observations from all built-in statistical distributions can be generated using either

RandomReal or RandomInteger.

RandomReal@distD give a random number from the continuous distribution dist

RandomReal@dist,nD give a list of n pseudorandom reals from dist

RandomReal@dist,8n1,n2,…<D give an n1×n2×… array of pseudorandom reals from dist

Generation of random values from continuous distributions.

RandomInteger@distD give a random number from the discrete distribution dist

RandomInteger@dist,nD give a list of n pseudorandom integers from dist

RandomInteger@dist,8n1,n2,…<D give an n1×n2×… array of pseudorandom integers from dist

Generation of random values from discrete distributions.

Observations from continuous univariate and multivariate distributions are obtained via

RandomReal, while discrete univariate and multivariate distributions are obtained via

RandomInteger. If RandomInteger is used on a continuous distribution, or RandomReal on a

discrete distribution, an error is generated and the input is returned unevaluated.

Random Number Generation 27

Observations from continuous univariate and multivariate distributions are obtained via

RandomReal, while discrete univariate and multivariate distributions are obtained via

RandomInteger. If RandomInteger is used on a continuous distribution, or RandomReal on a

discrete distribution, an error is generated and the input is returned unevaluated.

This fails because the c2 distribution is continuous.

In[87]:= RandomInteger@ChiSquareDistribution@8DD

RandomInteger::unsdst :
The distribution ChiSquareDistribution@8D is defined on a set of real values. Use RandomReal instead.

Out[87]= RandomInteger@ChiSquareDistribution@8DD

WorkingPrecision is an option to RandomReal for continuous distributions just as it is for

uniform numbers over ranges.

Here is a precision-30 beta-distributed variate.

In[88]:= RandomReal@BetaDistribution@3, 7D, WorkingPrecision -> 30D

Out[88]= 0.453568522862231707895720399466

Multivariate distributions and distributions derived from the multivariate normal distribution are

included in the Multivariate Statistics Package. Generators for those distributions can be

accessed by loading the package.

This loads the package.

In[89]:= Needs@"MultivariateStatistics`"D

Here is a random vector from a bivariate normal distribution.

In[90]:= RandomReal@MultinormalDistribution@81, 2<, 882, .5<, 8.5, 3<<DD

Out[90]= 81.8453, 3.59417<

This is a random vector from a multinomial distribution.

In[91]:= RandomInteger@MultinomialDistribution@20, 81 ê 3, 1 ê 2, 1 ê 6<DD

Out[91]= 88, 9, 3<

28 Random Number Generation

Continuous Distributions

For distributions whose inverse CDFs contain only elementary functions, direct computation of

the inverse CDF for a random uniform is generally used. This can be seen as a direct construc-

tion from a uniformly distributed random variable. Continuous distributions falling in this cate-

gory include CauchyDistribution, ExponentialDistribution, ExtremeValueDistribution,

GumbelDistribution, LaplaceDistribution, LogisticDistribution, ParetoDistribution,

RayleighDistribution, TriangularDistribution, and WeibullDistribution.

Direct construction of a single random variate from multiple uniform variates, or from variates

other than the uniform distribution are also employed. Normal variates are generated in pairs

from pairs of random uniforms using the Box|Müller method. HalfNormalDistribution and

LogNormalDistribution variates are obtained by direct transformation of normal variates.

MultinormalDistribution and QuadraticFormDistribution from the Multivariate Statistics

Package also use direct construction from normal variates.

InverseGaussianDistribution uses an acceptance-complement method involving normal and

uniform variates. The method is due to Michael, Schucany and Haas and described in Gentle

[6]. MaxwellDistribution variates are constructed from ChiDistribution variates. The chi

variates themselves are obtained from ChiSquareDistribution variates, which are special

cases of GammaDistribution variates.

In most cases FRatioDistribution constructs each random value from a single random beta

variate. For small degrees of freedom, FRatioDistribution variates are instead generated

from pairs of gamma variates to avoid possible divisions by 0 that may arise in the beta

construction.

NoncentralChiSquareDistribution@n, lD, cn2HlL, variate generation uses additive properties of

c2 distributions to avoid expensive inverse CDF computations for nonintegral n. The additive

properties are given in, for instance, Johnson, Kotz, and Balakrishnan [7]. For n = 1 a noncentral

c2 variate can be generated as the square of a normal variate with mean l and variance 1.

For n ≠ 1 noncentral c2 variates are obtained as the sum of a central and a noncentral c2 random

variable. For n > 1, X + Y is distributed cn2HlL if X~ c1
2HlL and Y ~ cn-1

2 . This relationship cannot be

used for n < 1. In that case the construction is X + Y with X~ c0
2HlL and Y ~ cn-1

2 , where c02HlL is the

limiting noncentral c2 distribution as n goes to 0. The limiting distribution c02HlL is a mixture of

Poisson and c2 variables, which has a nonzero probability mass at 0 and a continuous density

for positive values. NoncentralFRatioDistribution variates are obtained from one central

and one noncentral c2 variate.

Random Number Generation 29

NoncentralChiSquareDistribution@n, lD, cn2HlL, variate generation uses additive properties of

c2 distributions to avoid expensive inverse CDF computations for nonintegral n. The additive

properties are given in, for instance, Johnson, Kotz, and Balakrishnan [7]. For n = 1 a noncentral

c2 variate can be generated as the square of a normal variate with mean l and variance 1.

For n ≠ 1 noncentral c2 variates are obtained as the sum of a central and a noncentral c2 random

variable. For n > 1, X + Y is distributed cn2HlL if X~ c1
2HlL and Y ~ cn-1

2 . This relationship cannot be

used for n < 1. In that case the construction is X + Y with X~ c0
2HlL and Y ~ cn-1

2 , where c02HlL is the

limiting noncentral c2 distribution as n goes to 0. The limiting distribution c02HlL is a mixture of

Poisson and c2 variables, which has a nonzero probability mass at 0 and a continuous density

for positive values. NoncentralFRatioDistribution variates are obtained from one central

and one noncentral c2 variate.

For the WishartDistribution from the Multivariate Statistics Package, matrices are generated

via Smith and Hocking's method [8]. This method constructs Wishart matrices from matrices

with chi-distributed diagonal entries and normally distributed off-diagonal entries.

NoncentralStudentTDistribution, and the HotellingTSquareDistribution and

MultivariateTDistribution from the Multivariate Statistics Package each use direct construc-

tion from univariate random variates.

GammaDistribution, BetaDistribution, and StudentTDistribution use acceptance-rejection

methods to some extent.

For GammaDistribution@a, bD exponential variates are generated when a = 1. Otherwise, meth-

ods due to Cheng and Feast [9] and Ahrens and Dieter [10] are used.

Beta variates are constructed by switching between multiple methods depending on the values

of the beta parameters a and b. If both parameters are 1, uniform random variates will be

generated. If one of the beta parameters is 1, then a closed-form inverse CDF evaluation is

used. Otherwise, RandomReal switches between acceptance-rejection methods due to Jöhnk

[11], Cheng [12], and Atkinson [13]. An example of the advantage of using an acceptance-

rejection method over construction from two gammas can be seen in the following. The direct

acceptance-rejection method is nearly twice as fast as the gamma-pair construction.

This shows a comparison of direct construction and acceptance-rejection methods for beta
variates.

In[92]:= Timing@With@8x1 = RandomReal@GammaDistribution@7, 1D, 10^6D<,
x1 ê Hx1 + RandomReal@GammaDistribution@3, 1D, 10^6DLD;D

Out[92]= 81.422, Null<

In[93]:= Timing@RandomReal@BetaDistribution@7, 3D, 10^6D;D

Out[93]= 81.021, Null<

For StudentTDistribution the method used by RandomReal is a polar rejection method due to

Bailey [14]. This method is more efficient than direct construction from normal and c2 variates

as can be seen in the following. The direct construction takes roughly 1.5 times as long as the

polar method for a million Student t variates.

This shows a comparison of direct construction and Bailey's polar rejection method for Student t.

30 Random Number Generation

This shows a comparison of direct construction and Bailey's polar rejection method for Student t.

In[94]:= Timing@RandomReal@NormalDistribution@0, 1D, 10^6D ê
Sqrt@RandomReal@ChiSquareDistribution@6D, 10^6D ê 6D;D

Out[94]= 81.282, Null<

In[95]:= Timing@RandomReal@StudentTDistribution@6D, 10^6D;D

Out[95]= 80.611, Null<

Discrete Distributions

GeometricDistribution, BetaBinomialDistribution, and BetaNegativeBinomialÖ

Distribution use direct construction. GeometricDistribution variates are generated as

f
logHUL
logH1-pL

v where U follows UniformDistribution@0, 1D. BetaBinomialDistribution and

BetaNegativeBinomialDistribution are constructed from BinomialDistribution and

NegativeBinomialDistribution variates with probability parameters taken as random

BetaDistribution variates.

When used, table lookups for random integer generation are implemented via RandomChoice

using the distribution's probability mass function for the weights. Most discrete distributions

switch to other methods whenever construction of the list of weights is expected to be expen-

sive given the desired sampled size. For example, as p approaches 1

LogSeriesDistribution@pD switches to the direct construction g1 +
logHVL

logI1-H1-pLU M
w, where U and V

are uniformly distributed on the interval @0, 1D [15]. Depending on parameters and sample size

NegativeBinomialDistribution@n, pD may switch to construction as a Poisson-gamma mix-

ture, which is a Poisson variable with mean following a gamma distribution [6].

BinomialDistribution, HypergeometricDistribution, and PoissonDistribution rely on

direct sampling from the density function if the computational overhead of computing the PDF

values is small relative to the number of desired random values. Otherwise they switch to

acceptance-rejection methods. The acceptance-rejection methods also allow for generation of

variates when overflows or underflows would occur in directly computing the PDF values, thus

extending the range of parameter values for which random numbers can be generated.

The binomial and hypergeometric distributions switch to acceptance-rejection methods due to

Kachitvichyanukul and Schmeiser with small modifications. The binomial method, based on the

acceptance-rejection portion of their BTPE (Binomial, Triangle, Parallelogram, Exponential)

algorithm [16], effectively uses a piecewise majorizing function with three regions and a triangu-

lar minorizing function for a quick acceptance test. The majorizing and minorizing functions

create a two-parallelogram envelope around the center of the rescaled binomial density, and

the tails of the majorizing function form exponential envelopes on the tails of the scaled bino-

mial distribution. One case where it is clearly better to use BTPE rather than to construct a

lookup table is when few observations are desired and the lookup table would be large.

Random Number Generation 31

The binomial and hypergeometric distributions switch to acceptance-rejection methods due to

Kachitvichyanukul and Schmeiser with small modifications. The binomial method, based on the

acceptance-rejection portion of their BTPE (Binomial, Triangle, Parallelogram, Exponential)

algorithm [16], effectively uses a piecewise majorizing function with three regions and a triangu-

lar minorizing function for a quick acceptance test. The majorizing and minorizing functions

create a two-parallelogram envelope around the center of the rescaled binomial density, and

the tails of the majorizing function form exponential envelopes on the tails of the scaled bino-

mial distribution. One case where it is clearly better to use BTPE rather than to construct a

lookup table is when few observations are desired and the lookup table would be large.

The hypergeometric method, based on the acceptance-rejection portion of Kachitvichyanukul

and Schmeiser's H2PE algorithm [17], uses a majorizing function with three regions around a

scaled hypergeometric density. The middle portion of the density is enveloped by a rectangular

region and the tails of the distribution are bounded by exponentials.

The acceptance-rejection method used by PoissonDistribution is due to Ahrens and Dieter

[18]. The acceptance and rejection is carried out using discrete normal variates, taking advan-

tage of the tendency of PoissonDistribution@mD toward NormalDistribution@m, m Das m

increases.

Random values from the ZipfDistribution are generated via an acceptance-rejection method

described by Devroye [15]. The method uses pairs of uniform variates and a test involving only

a Floor and noninteger powers, aside from basic arithmetic, to efficiently obtain Zipf-dis-

tributed values.

Defining Distributions

Definitions for distributions are supported through rules for Random`DistributionVector.

DistributionVector is expected to return a vector of the given length with numbers of the

given precision.

Random`DistributionVector@dist,n,precD

defines rules for generating n observations from dist with
precision prec

Function for defining random generation from distributions.

Rules for generating random values from distributions are generally defined via a TagSet on the

head of the distribution. The distribution itself may contain parameters. As a simple example,

the following defines rules for NegativeOfUniform@a, bD, which represents a uniform distribu-

tion on the interval @-b, -aD.

32 Random Number Generation

Rules for generating random values from distributions are generally defined via a TagSet on the

head of the distribution. The distribution itself may contain parameters. As a simple example,

the following defines rules for NegativeOfUniform@a, bD, which represents a uniform distribu-

tion on the interval @-b, -aD.

In[96]:= NegativeOfUniform ê:
Random`DistributionVector@NegativeOfUniform@a_, b_D, n_Integer,
prec_?PositiveD := -RandomReal@8a, b<, n, WorkingPrecision -> precD ê;
VectorQ@8a, b<, NumericQD && Element@8a, b<, RealsD

Random numbers from NegativeOfUniform can now be generated via RandomReal just like any

built-in continuous distribution.

The following gives a machine-precision number and a precision-20 number from
NegativeOfUniform.

In[97]:= 8RandomReal@NegativeOfUniform@1, 3DD,
RandomReal@NegativeOfUniform@1, 3D, WorkingPrecision -> 20D<

Out[97]= 8-2.90662, -2.0231113301407817182<

Matrices and higher-dimensional tensors can also be generated directly via RandomReal.

RandomReal uses the definition given to Random`DistributionVector to generate the total

number of random values desired, and partitions that total number into the specified

dimensions.

Here is a 3×4 array of NegativeOfUniform numbers.

In[98]:= RandomReal@NegativeOfUniform@7, 21D, 83, 4<D

Out[98]= 88-7.44952, -7.12576, -15.6616, -13.9985<,
8-18.3775, -11.6597, -17.3955, -15.4164<, 8-13.2334, -17.4337, -20.5442, -15.0836<<

Discrete distributions can be defined in a similar way. The main difference is that the precision

argument to Random`DistributionVector will now be Infinity. The discrete version of

NegativeOfUniform provides a simple example.

In[99]:= NegativeOfDiscreteUniform ê:
Random`DistributionVector@NegativeOfDiscreteUniform@a_Integer, b_IntegerD,
n_Integer, InfinityD := -RandomInteger@8a, b<, nD

Random values from NegativeOfDiscreteUniform can now be obtained from RandomInteger.

Here are 10 NegativeOfDiscreteUniform numbers.

In[100]:= RandomInteger@NegativeOfDiscreteUniform@1, 3D, 10D

Out[100]= 8-2, -3, -2, -3, -3, -3, -1, -3, -3, -1<

While the previous examples show the basic framework for defining distributions, the distribu-

tions themselves are not particularly interesting. In fact, it would have been easier in these two

cases to just generate values from RandomReal and RandomInteger and multiply the end result

by -1 instead of attaching definitions to a new distribution symbol. The following examples will

demonstrate slightly more complicated distributions, in which case attaching definitions to a

distribution will be more useful.

Random Number Generation 33

While the previous examples show the basic framework for defining distributions, the distribu-

tions themselves are not particularly interesting. In fact, it would have been easier in these two

cases to just generate values from RandomReal and RandomInteger and multiply the end result

by -1 instead of attaching definitions to a new distribution symbol. The following examples will

demonstrate slightly more complicated distributions, in which case attaching definitions to a

distribution will be more useful.

Example: Normal Distribution by Inversion

The textbook definition for generating random values from a generic univariate statistical distri-

bution involves two steps:

† generate a uniform random number q on the interval @0, 1D

† compute the inverse cumulative distribution function of q for the distribution of interest

To demonstrate the process, use the normal distribution. To generate random normal variates

using this method, start with the Quantile for the normal distribution at a point q and replace q

with a random uniform between 0 and 1.

Here is the Quantile function for a normal with mean m and standard deviation s.

In[101]:= Quantile@NormalDistribution@m, sD, qD

Out[101]= m + 2 s InverseErf@-1 + 2 qD

A new distribution object can now be used to define a normal random number generator that

uses inversion of the cumulative distribution function.

This defines generation of normals by inversion.

In[102]:= NormalByInversion ê:
Random`DistributionVector@
NormalByInversion@mu_?HNumericQ@ÒD && Im@ÒD === 0 &L, sigma_?PositiveD,
n_Integer, prec_?PositiveD :=

mu + 2 sigma InverseErf@-1 + 2 RandomReal@1, n, WorkingPrecision -> precDD

Here are 10 random normals generated by inversion.

In[103]:= RandomReal@NormalByInversion@1, 2D, 10D

Out[103]= 8-0.457637, -1.59854, 1.53492, 1.85251, 5.06223, -0.765828, -2.86778, -0.512359, 1.55514, 4.64143<

Here is a sample of 104 random normals along with the sample mean and standard deviation.
In[104]:= Hninv = RandomReal@NormalByInversion@1, 2D, 10^4DL; êê Timing

Out[104]= 83.385, Null<

34 Random Number Generation

In[105]:= 8Mean@ninvD, StandardDeviation@ninvD<

Out[105]= 80.989365, 2.01145<

The normal distribution is one example where methods other than direct inversion are generally

preferred. While inversion of the CDF is a perfectly valid method for generating pseudorandom

normal numbers, it is not particularly efficient. Numeric evaluation of InverseErf is computa-

tionally much more expensive than the sinusoid and logarithmic evaluations required by the

Box|Müller method used by NormalDistribution.

The built-in method takes almost no time for the same number of values.

In[106]:= Hndist = RandomReal@NormalDistribution@1, 2D, 10^4DL; êê Timing

Out[106]= 80., Null<

In[107]:= 8Mean@ndistD, StandardDeviation@ndistD<

Out[107]= 81.02922, 1.99552<

In[108]:= Clear@ninv, ndistD

Example: Uniform Distribution on a Disk

Random`DistributionVector can also be used to define generators for multidimensional distri-

butions. For instance, suppose a random point from a uniform distribution on the unit disk, the

set of real points 8x, y< with x2 + y2 § 1, is desired. Such a random point can be constructed as

follows:

† generate a random angle f uniformly distributed on @0, 2 pL

† generate a random vector u uniformly distributed on @0, 1D

† return 9 u sin f, u cos f=

The returned ordered pair can be multiplied by r to generate points uniformly distributed on a

disk of radius r.

The following defines a generator for a uniform disk of radius r.

In[109]:= UniformDisk ê:
Random`DistributionVector@
UniformDisk@r_?PositiveD, n_Integer, prec_?PositiveD :=

r * Sqrt@RandomReal@1, n, WorkingPrecision Ø precDD *
Transpose@8Cos@ÒD, Sin@ÒD< &@RandomReal@2 Pi, n, WorkingPrecision Ø precDDD

Random Number Generation 35

Here is one random ordered pair from a disk of radius 2.

In[110]:= RandomReal@UniformDisk@2DD

Out[110]= 80.232325, 0.660046<

The following visualizes the distribution of 104 generated points on this disk.
In[111]:= ListPlot@RandomReal@UniformDisk@2D, 1000D, AspectRatio Ø 1D

Out[111]=

Example: Dirichlet Distribution

The n-dimensional Dirichlet distribution is parameterized by a vector of positive values

8a1, …, an< and has support on the set of vectors 8x1, …, xn< such that ⁄i=1
n xi = 1 and xi œ @0, 1D for i

from 1 to n. Thus, the Dirichlet distribution is defined on an n - 1-dimensional subspace of the n-

dimensional unit hypercube @0, 1Dn. The Dirichlet distribution is the multivariate extension of the

beta distribution. If y follows BetaDistribution@a, bD, then 8y, 1 - y< follows a Dirichlet distribu-

tion with parameter vector 8a, b<.

An n-dimensional Dirichlet variate can be generated from n gamma variates. With parameter

vector 8a1, …, an<, the process is as follows:

† generate a random number gi from GammaDistribution@ai, 1D for i from 1 to n

† return 8g1, …, gn<ë⁄i=1
n gi

This defines a Dirichlet generator attached to the symbol DirichletDistribution.

In[112]:= DirichletDistribution ê: Random`DistributionVector@
DirichletDistribution@alpha_?HVectorQ@Ò, PositiveD &LD,
n_Integer, prec_?PositiveD :=

Block@8gammas<,
gammas =
Map@RandomReal@GammaDistribution@Ò, 1D, n, WorkingPrecision Ø precD &, alphaD;

Transpose@gammasD ê Total@gammasDD

36 Random Number Generation

Here is a three-dimensional Dirichlet vector with precision 25.

In[113]:= RandomReal@DirichletDistribution@81, 3, 5 ê 2<D, WorkingPrecision -> 25D

Out[113]= 80.01839604137321369637771129, 0.6997948901744933898460560, 0.2818090684522929137762327<

Example: Gibbs Sampler

Gibbs samplers can also be defined as distributions. As an example consider a Gibbs sampler

that mixes beta and binomial distributions. A specific case of this sampler was explored in a

previous example. Here, the distribution will be defined with two parameters m and a.

This defines a Gibbs sampler BinomialBetaSampler.

In[114]:= BinomialBetaSampler ê: Random`DistributionVector@
BinomialBetaSampler@m_Integer, a_?PositiveD, n_Integer, prec_?PositiveD :=

Block@8y0, dist1, dist2, x0<,
y0 = .5;
dist1@y_D := RandomInteger@BinomialDistribution@m, yDD; dist2@x_D :=
RandomReal@BetaDistribution@x + a, m - x + 4D, WorkingPrecision Ø precD;

Do@8x0 = dist1@y0D, y0 = dist2@x0D<, 81000<D;
Table@8x0 = dist1@y0D, y0 = dist2@x0D<, 8n<DD

For the specific Gibbs sampler constructed earlier, m was 16 and a was 2.

Here are 5 vectors from the sampler with m = 16 and a = 2.

In[115]:= RandomReal@BinomialBetaSampler@16, 2D, 5D

Out[115]= 882, 0.0474404<, 81, 0.192054<, 86, 0.299769<, 83, 0.113683<, 81, 0.0480714<<

References

[1] Geman, S. and D. Geman. "Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images." IEEE Transactions on Pattern Analysis and Machine Intelligence 6, no. 6

(1984): 721|741.

[2] Casella, G. and E. I. George. "Explaining the Gibbs Sampler." The American Statistician 46,

no. 3 (1992): 167|174.

[3] Matsumoto, M. and T. Nishimura. "Mersenne Twister: A 623-Dimensionally Equidistributed

Uniform Pseudorandom Number Generator." ACM Transactions on Modeling and Computer

Simulation 8, no. 1 (1998): 3|30.

[4] Nishimura, T. "Tables of 64-Bit Mersenne Twisters." ACM Transactions on Modeling and

Computer Simulation 10, no. 4 (2000): 348|357.

Random Number Generation 37

[4] Nishimura, T. "Tables of 64-Bit Mersenne Twisters." ACM Transactions on Modeling and

Computer Simulation 10, no. 4 (2000): 348|357.

[5] Junod, P. "Cryptographic Secure Pseudo-Random Bits Generation: The Blum|Blum|Shub

Generator." August 1999. http://crypto.junod.info/bbs.pdf

[6] Gentle, J. E. Random Number Generation and Monte Carlo Methods, (2nd ed.) Springer-

Verlag, 2003.

[7] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions, Volume

2, (2nd ed.) John Wiley & Sons, 1995.

[8] Smith, W. B. and R. R. Hocking. "Algorithm AS 53: Wishart Variate Generator." Applied

Statistics 21, no. 3 (1972): 341|345.

[9] Cheng, R. C. H. and G. M. Feast. "Some Simple Gamma Variate Generators." Applied

Statistics 28, no. 3 (1979): 290|295.

[10] Johnson, M. E. Multivariate Statistical Simulation. John Wiley & Sons, 1987.

[11] Jöhnk, M. D. "Erzeugung von Betaverteilten und Gammaverteilten Zufallszahlen." Metrika 8

(1964): 5|15.

[12] Cheng, R. C. H. "Generating Beta Variables with Nonintegral Shape Parameters."

Communications of the ACM 21, no. 4 (1978): 317|322.

[13] Atkinson, A. C. "A Family of Switching Algorithms for the Computer Generation of Beta

Random Variables." Biometrika 66, no. 1 (1979): 141|145.

[14] Bailey, R. W. "Polar Generation of Random Variates with the t-Distribution." Mathematics

of Computation 62, no. 206 (1994): 779|781.

[15] Devroye, L. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[16] Kachitvichyanukul, V. and B. W. Schmeiser. "Binomial Random Variate Generation."

Communications of the ACM 31, no. 2 (1988): 216|223.

[17] Kachitvichyanukul, V. and B. W. Schmeiser. "Computer Generation of Hypergeometric

Random Variates." Journal of Statistical Computation and Simulation 22, no. 2 (1985): 127|145.

38 Random Number Generation

[17] Kachitvichyanukul, V. and B. W. Schmeiser. "Computer Generation of Hypergeometric

Random Variates." Journal of Statistical Computation and Simulation 22, no. 2 (1985): 127|145.

[18] Ahrens, J. H. and U. Dieter "Computer Generation of Poisson Deviates from Modified

Normal Distributions." ACM Transactions on Mathematical Software 8, no. 2 (1982): 163|179.

Random Number Generation 39

