

References

[1] Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. "Network Motifs:

Simple Building Blocks of Complex Networks." Science 298, no. 5594 (2002): 824|827.

[2] Alon, U. "Collection of Complex Networks." Uri Alon Homepage 2007.

http://www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html

[3] Milo, R., S. Itzkovitz, N. Kashtan, et al. "Superfamilies of Designed and Evolved Networks."

Science 303, no. 5663 (2004): 1538|1542.

[4] Alon, U. "1AORInter." network Motifs 2007.

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/1AORInter_st.txt

[5] National Institute of Standards and Technology. "DWA512: Square Dielectric Waveguide."

Matrix Market 2007. http://math.nist.gov/MatrixMarket/data/NEP/dwave/dwa512.html

[6] Freivalds, K., U. Dogrusoz, and P. Kikusts, "Disconnected Graph Layout and the Polyomino

Packing Approach." Lecture Notes in Computer Science: Revised Papers from the 9th

International Symposium on Graph Drawing 2265 (2001): 378|391.

[7] Hu, Y. F. "Graph Drawing of Square Matrices from University of Florida Sparse Matrix

Collection." (2007). http://members.wolfram.com/~yifanhu/UFMatrixGraphPlot

[8] Hu, Y. F. "Efficient, High-Quality Force-Directed Graph Drawing." The Mathematica Journal

10, no. 1 (2006): 37|71.

66 Graph Drawing

Hierarchical Drawing of Directed Graphs

LayeredGraphPlot attempts to draw the vertices of a graph in a series of layers, placing domi-

nant vertices at the top, and vertices lower in the hierarchy progressively further down.

LayeredGraphPlotA9vi 1->v j 1,vi 2->v j 2,…=E

generate a layered plot of the graph in which vertex vik is
connected to vertex v jk

LayeredGraphPlotA99vi 1->v j 1,lbl1=,…=E

associate labels lblk with edges in the graph

LayeredGraphPlot@g,posD place the dominant vertices in the plot at position pos

LayeredGraphPlot@mD generate a layered plot of the graph represented by the
adjacency matrix m

Hierarchical graph drawing.

LayeredGraphPlot draws a graph so that the edges point predominantly downward. The sec-

ond argument of LayeredGraphPlot specifies the position of the root. Possible values for this

argument are Right, Left, Top, and Bottom.

This plots a directed graph.

In[1]:= LayeredGraphPlot@
84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<, VertexLabeling -> TrueD

Out[1]=

4

3

5

6

1 2

Graph Drawing 67

This is the same graph, with edges pointing from left to right.

In[2]:= LayeredGraphPlot@84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<,
Left, VertexLabeling -> TrueD

Out[2]=

LayeredGraphPlot may produce slightly different output on different platforms, due to floating-

point differences.

Options for LayeredGraphPlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

MultiedgeStyle Automatic how to draw multiple edges between
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for LayeredGraphPlot.

DirectedEdges

68 Graph Drawing

4

35

6

1

2

DirectedEdges

The option DirectedEdges specifies whether to draw edges as arrows. Possible values for this

option are True or False. The default value for this option is True.

This shows a graph with edges represented by lines instead of arrows.

In[3]:= LayeredGraphPlot@84 Ø 3, 5 Ø 2, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4<,
DirectedEdges Ø False, VertexLabeling Ø TrueD

Out[3]= 4

3

5

2

6

1

EdgeLabeling

The option EdgeLabeling specifies whether and how to display labels given for the edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is True, which displays the supplied edge labels on the graph. With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[4]:= LayeredGraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4,
3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[4]= edge 3->6

1

5

6

2

4

3

Graph Drawing 69

This displays the labels as tooltips. Place the cursor over the edge between vertices 3 and 6 to
see the tooltip.

In[5]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[5]=

1

5

6

2

4

3

Alternatively, use Tooltip@vi -> v j, lblD to specify a tooltip for an edge. Place the cursor over
the edge between vertices 3 and 6, as well as the edge label on the edge between vertices 3
and 5, to see the tooltips.

In[6]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 83 Ø 5, Tooltip@ "edge 3->5", "3->5"D<,
Tooltip@3 Ø 6, "3->6"D, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[6]=

edge 3->5

1

5

6

2

4

3

EdgeRenderingFunction

The option EdgeRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

70 Graph Drawing

This draws vertices only.

In[7]:= LayeredGraphPlot@Table@1, 810<, 810<D,
EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[7]=

With EdgeRenderingFunction -> g, each edge is rendered with the graphics primitives and

directives given by the function g. It can take three or more arguments in the form

g@8ri, …, r j<, 8vi, v j<, lblij, …D, where ri, r j are the coordinates of the beginning and ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the edge or None. Explicit settings for EdgeRenderingFunction -> g override settings for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance of 0.3 (in the
graph's coordinate system).

In[8]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 1, 11 Ø 12, 12 Ø 13, 13 Ø 14, 14 Ø 15,
15 Ø 16, 16 Ø 17, 17 Ø 11, 1 Ø 11, 2 Ø 12, 3 Ø 13, 4 Ø 14, 5 Ø 15, 6 Ø 16, 7 Ø 17<,

EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[8]=

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.

Graph Drawing 71

1

2

3

4

5

6

7

8

9

10

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.

In[9]:= << GraphUtilities`

In[10]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 5 Ø 1, 5 Ø 2, 5 Ø 3, 5 Ø 4, 1 Ø 4, 3 Ø 5, 3 Ø 3<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .7D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[10]=

MultiedgeStyle

The option MultiedgeStyle specifies whether to draw multiple edges between two vertices.

Possible values for MultiedgeStyle are Automatic (the default), True, False, or a positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if the graph is specified by an adjacency

matrix. With MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

By default, multiple edges are shown if a graph is given as a list of rules.

In[11]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<, VertexLabeling Ø TrueD

Out[11]=

But multiple edges are not shown for graphs specified by an adjacency matrix.

72 Graph Drawing

81, 2<

81, 4<

82, 3<

83, 4<

83, 5<

83, 3<

85, 1<

85, 2<

85, 3<

85, 4<

1

2

3

4

5

1

2

3

5

4

6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[12]:= LayeredGraphPlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[12]=

1

2

3 4

5

6

This spreads multiple edges by the specified amount.

In[13]:= LayeredGraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[13]=

Graph Drawing 73

1

2

3

5

4

6

PackingMethod

The option PackingMethod specifies the method used for packing disconnected components.

Possible values for the option are Automatic (the default), "ClosestPacking",

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from top left.

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are

packed in layers starting from the top/left respectively. With PackingMethod -> "NestedGrid",

components are arranged in a nested grid. The typical effective default setting is

PackingMethod -> "Layered", and the packing starts with components of the largest bounding

box area.

This shows the packing of disconnected components by the default method.

In[14]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[14]=

This shows the packing of disconnected components using the "ClosestPackingCenter"
method.

In[15]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[15]=

PlotRangePadding

74 Graph Drawing

PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by LayeredGraphPlot.

PlotStyle

PlotStyle is a common option for graphics functions inherited by LayeredGraphPlot. The

option PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker arrows, and both edges and vertices' labels in red.

In[16]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8, 10 Ø 8, 8 Ø 3,
12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<, VertexLabeling Ø True,

PlotStyle Ø 8Red, Arrowheads@880.1, 0.8<<D, Thickness@0.02D<D

Out[16]=

SelfLoopStyle

The option SelfLoopStyle specifies whether and how to draw loops for vertices that are linked

to themselves. Possible values of the option are Automatic (the default), True, False, or a

positive real number. With SelfLoopStyle -> Automatic, self-loops are shown if the graph is

specified by a list of rules, but not by an adjacency matrix. With SelfLoopStyle -> d, the self-

loops are drawn with a diameter of d (relative to the average edge length).

Graph Drawing 75

1

2

3

4

6

5

7

9

8

10

12

11

13

15

14

16

By default, self-loops are displayed for a graph specified by a list of rules.

In[17]:= LayeredGraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1,
6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø TrueD

Out[17]=

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[18]:= LayeredGraphPlotB

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
1 1 1 1 1 0

, VertexLabeling Ø TrueF

Out[18]=

This shows self-loops with diameter equal to 0.3 times the average length of the edges.

In[19]:= LayeredGraphPlot@
83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1, 6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[19]=

76 Graph Drawing

3

2

4

1

5

6

1

2

3

4

5

6

3

2

4

1

5

6

VertexCoordinateRules

The option VertexCoordinateRules specifies the coordinates of the vertices. Possible values

are None, or a list of coordinates. Coordinates specified by a list of rules are not currently sup-

ported by LayeredGraphPlot.

This draws the Petersen graph using known coordinates.

In[20]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[20]=

This draws with the default method.

In[21]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[21]=

VertexLabeling

Graph Drawing 77

VertexLabeling

The option VertexLabeling specifies whether to show vertex names as labels. Possible values

for this option are True, False, Automatic (the default) and Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified by a list of rules, labels are the expressions used in the rules.

VertexLabeling -> False displays each vertex as a point. VertexLabeling -> Tooltip dis-

plays each vertex as a point, but gives its name in a tooltip. VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD anywhere in the list of rules to specify an alternative

tooltip for a vertex vk.

This draws the graph with labels given as indices of the adjacency matrix.

In[22]:= LayeredGraphPlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[22]= 1

2

3

4 5

This uses the labels specified in the list of rules.

In[23]:= LayeredGraphPlot@8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[23]=

A

B a

C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

78 Graph Drawing

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

In[24]:= LayeredGraphPlot@
8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[24]=

VertexRenderingFunction

The option VertexRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, vertices are

displayed as points, with their names given in tooltips.

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

In[22]:= g = 85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<;

In[23]:= LayeredGraphPlot@gD

Out[23]=

Graph Drawing 79

This draws the same graph, but without the vertices.

In[24]:= LayeredGraphPlot@g, VertexRenderingFunction Ø NoneD

Out[24]=

With VertexRenderingFunction -> g, each vertex is rendered with the graphics primitives

given by g@ri, vi, …D, where ri is the coordinate of the vertex and vi is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[27]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 8, 8 Ø 1, 1 Ø 9, 2 Ø 9,
3 Ø 10, 4 Ø 10, 6 Ø 11, 5 Ø 11, 7 Ø 12, 8 Ø 12<, Left, VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[27]=

80 Graph Drawing

1 2 3 4 5 6

78

9 10 11

12

Example Gallery

Flow Chart

LayeredGraphPlot helps visualize flow charts, for example for business, economic, or technical

presentations.

This shows a flow chart.

In[28]:= LayeredGraphPlot@8"total" Ø "TotalDispatch", "TotalList" Ø "CheckThreading",
"TotalList" Ø "TotalDispatch", "TotalSparse" Ø "TotalDispatch",
"TotalSparse" Ø "TotalDispatch", "TotalDispatch" Ø "TotalDispatch",
"TotalDispatch" Ø "TotalList", "TotalDispatch" Ø "TotalPacked",
"TotalDispatch" Ø "TotalSparse"<, VertexLabeling Ø TrueD

Out[28]=

total

TotalDispatch

TotalList

CheckThreading

TotalSparse TotalPacked

Graph Drawing 81

This shows a flow chart that flows from left to right.

In[29]:= LayeredGraphPlot@
8"ratiotest" Ø "ratiolimit", "getdata" Ø "dir_inf _bad", "getdata" Ø "evalderiv",
"NSPpreliminaries" Ø "getdata", "findsp" Ø "termlimit", "findsp" Ø "ratiotest",
"findsp" Ø "nSumW", "findsp" Ø "nSumEM", "findsp" Ø "nProductEM",
"findsp" Ø "nProductW", "nSumW" Ø "nSumFinite", "nSumW" Ø "nSumWtail",
"nSumEM" Ø "evalterm", "nSumEM" Ø "nSumFinite", "nSumEM" Ø "evalderiv",
"nProductEM" Ø "nPFinite", "nProductW" Ø "nPFinite", "nProductW" Ø "nPWtail",
"oNSum" Ø "CleanOptionList", "oNSum" Ø "multidim", "oNSum" Ø "NSPpreliminaries",
"oNSum" Ø "findsp", "nSumFinite" Ø "evalterm", "nSumWtail" Ø "evalterm",
"nSumWtail" Ø "epsalg", "oNProduct" Ø "CleanOptionList",
"oNProduct" Ø "multidim", "oNProduct" Ø "NSPpreliminaries",
"oNProduct" Ø "findsp", "nPFinite" Ø "evalterm", "nPWtail" Ø "evalterm",
"nPWtail" Ø "epsalg", "oSequenceLimit" Ø "epsalg"<, Left,

VertexLabeling Ø True, AspectRatio Ø 1, PlotRangePadding Ø 0.02D

Out[29]=

82 Graph Drawing

ratiotest ratiolimit

getdata

dir_inf _bad

evalderiv

NSPpreliminaries

findsp

termlimit

nSumW

nSumEM

nProductEM

nProductW

nSumFinite

nSumWtail

evalterm

nPFinite

nPWtail

oNSum

CleanOptionList

multidim

epsalg

oNProduct

oSequenceLimit

Food Chains

Food chains can be visualized with LayeredGraphPlot.

This shows a small food chain.

In[30]:= LayeredGraphPlot@8"John" -> "plants",
"lion" -> "John", "tiger" -> "John",
"tiger" Ø "deer", "lion" Ø "deer", "deer" Ø "plants",

"mosquito" -> "lion", "frog" -> "mosquito", "mosquito" Ø "tiger",
"John" Ø "cow", "cow" Ø "plants", "mosquito" Ø "deer",
"mosquito" Ø "John", "snake" -> "frog", "vulture" -> "snake"<, Left,

VertexLabeling -> TrueD

Out[30]=

John plantslion

tiger deer

mosquitofrog

cow

snakevulture

This shows another food chain.

In[2]:= LayeredGraphPlot@ 8"Raccoon" Ø "Bird", "Raccoon" Ø "Insect",
"Wildcat" Ø "Bird", "Wildcat" Ø "Rodent", "Fox" Ø "Bird",
"Fox" Ø "Garter snake", "Fox" Ø "Salamander", "Fox" Ø "Rabbit",
"Fox" Ø "Rodent", "Wolf" Ø "Rabbit", "Wolf" Ø "Rodent", "Wolf" Ø "Skunk",
"Wolf" Ø "Deer", "Bear" Ø "Deer", "Bear" Ø "Rodent", "Bear" Ø "Plant",
"Bird" Ø "Plant", "Garter snake" Ø "Insect", "Garter snake" Ø "Toad",
"Salamander" Ø "Insect", "Rabbit" Ø "Plant", "Skunk" Ø "Rodent",
"Skunk" Ø "Insect", "Deer" Ø "Plant", "Toad" Ø "Insect", "Insect" Ø "Plant"<,

VertexLabeling Ø True, PlotRangePadding Ø AutomaticD

Out[2]= Raccoon

Bird Insect

Wildcat

Rodent

Fox

Garter snake

Salamander Rabbit

Wolf

Skunk

Deer

Bear

Plant

Toad

Graph Drawing 83

History of Unix

LayeredGraphPlot is suitable for visualizing historical events.

This shows a history of Unix.

In[32]:= LayeredGraphPlot@8"5th Edition" -> "6th Edition", "5th Edition" -> "PWB 1.0",
"6th Edition" -> "1 BSD", "6th Edition" -> "Interdata",
"6th Edition" -> "LSX", "6th Edition" -> "Mini Unix",
"6th Edition" -> "Wollongong", "PWB 1.0" -> "PWB 1.2",
"PWB 1.0" -> "USG 1.0", "1 BSD" -> "2 BSD", "Interdata" -> "PWB 2.0",
"Interdata" -> "UnixêTS 3.0", "Interdata" -> "7th Edition",
"PWB 1.2" -> "PWB 2.0", "USG 1.0" -> "USG 2.0", "USG 1.0" -> "CB Unix 1",
"7th Edition" -> "2 BSD", "7th Edition" -> "32V", "7th Edition" -> "Xenix",
"7th Edition" -> "Ultrix-11", "7th Edition" -> "UniPlus+",
"7th Edition" -> "V7M", "PWB 2.0" -> "UnixêTS 3.0", "USG 2.0" -> "USG 3.0",
"CB Unix 1" -> "CB Unix 2", "32V" -> "3 BSD",
"UnixêTS 1.0" -> "UnixêTS 3.0", "USG 3.0" -> "UnixêTS 3.0",
"CB Unix 2" -> "CB Unix 3", "3 BSD" -> "4 BSD", "V7M" -> "Ultrix-11",
"UnixêTS 3.0" -> "TS 4.0", "CB Unix 3" -> "UnixêTS++",
"CB Unix 3" -> "PDP-11 Sys V", "4 BSD" -> "4.1 BSD",
"UnixêTS++" -> "TS 4.0", "4.1 BSD" -> "8th Edition", "4.1 BSD" -> "4.2 BSD",
"4.1 BSD" -> "2.8 BSD", "2 BSD" -> "2.8 BSD", "TS 4.0" -> "System V.0",
"4.2 BSD" -> "4.3 BSD", "4.2 BSD" -> "Ultrix-32", "2.8 BSD" -> "2.9 BSD",
"2.8 BSD" -> "Ultrix-11", "System V.0" -> "System V.2",
"8th Edition" -> "9th Edition", "System V.2" -> "System V.3"<,
VertexLabeling Ø True, AspectRatio Ø 0.7, PlotRangePadding Ø AutomaticD

Out[32]=

84 Graph Drawing

5th Edition

6th Edition

PWB 1.0

1 BSD

InterdataLSX Mini Unix Wollongong

PWB 1.2USG 1.0

2 BSD

PWB 2.0

Unix�TS 3.0

7th Edition

USG 2.0 CB Unix 1

32VXenix

Ultrix-11

UniPlus+

V7M

USG 3.0 CB Unix 2

3 BSD

Unix�TS 1.0

CB Unix 3

4 BSD TS 4.0

Unix�TS++PDP-11 Sys V

4.1 BSD

8th Edition4.2 BSD2.8 BSD

System V.0

4.3 BSD Ultrix-322.9 BSD

System V.2

9th Edition System V.3

Tree Drawing

TreePlot lays out the vertices of a graph in a tree of successive layers, or a collection of trees.

If the graph g is not a tree, TreePlot lays out its vertices on the basis of a spanning tree of

each component of the graph.

TreePlotA9vi1->v j1,vi2->v j2,…=E generate a tree plot of the graph in which vertex vik is
connected to vertex v jk

TreePlotA99vi1->v j1,lbl1=,…=E associate labels lblk with edges in the graph

TreePlot@g,posD place roots of trees in the plot at position pos

TreePlot@g,pos,vkD use vertex vk as the root node in the tree plot

TreePlot@mD generate a layered plot of the graph represented by the
adjacency matrix m

Tree drawing.

A simple graph and its tree plot.

In[1]:= g = 81 Ø 2, 2 Ø 4, 3 Ø 6, 4 Ø 8, 5 Ø 10, 6 Ø 12, 1 Ø 3, 2 Ø 5, 3 Ø 7, 4 Ø 9, 5 Ø 11, 6 Ø 13<;

In[2]:= TreePlot@g, VertexLabeling -> TrueD

Out[2]=

1

2

4

3

6

8

5

10 12

7

9 11 13

By default, TreePlot places each tree root at the top. TreePlot@g, posD places the roots at

position pos. Possible positions are: Top, Bottom, Left, Right, and Center.

Graph Drawing 85

This plots the tree by placing the root left.

In[3]:= TreePlot@g, Left, VertexLabeling -> TrueD

Out[3]=

1

2

4

3

6

8

5

10

12

7

9

11

13

This places the root at the center.

In[4]:= TreePlot@g, Center, VertexLabeling -> TrueD

Out[4]= 1
2

4

3

6

8

510 12

7

9

11

13

86 Graph Drawing

Options for TreePlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

LayerSizeFunction 1& the height to allow for each layer

MultiedgeStyle Automatic how to draw multiple edges between
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for TreePlot.

DirectedEdges

The option DirectedEdges specifies whether to draw edges as directed arrows. Possible values

for this option are True or False. The default value for this option is False.

Graph Drawing 87

This shows a graph with edges represented by arrows instead of lines.

In[5]:= TreePlot@81 Ø 8, 2 Ø 4, 3 Ø 7, 4 Ø 10, 5 Ø 7, 5 Ø 8, 6 Ø 10, 7 Ø 10, 8 Ø 9<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[5]=

1

8

2

4

3

7

10 5

6

9

EdgeLabeling

The option EdgeLabeling specifies whether and how to display labels given for the edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is True, which displays the supplied edge labels on the graph. With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[6]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
84 Ø 7, "edge 84,7<"<, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[6]=

88 Graph Drawing

edge 84,7<

1

7

2

5

63

8

4

10

9

This displays the edge label as a tooltip. Place the cursor over the edge between vertices 4 and
7 to see the tooltip.

In[7]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5, 84 Ø 7, "edge 84,7<"<, 7 Ø 8,
7 Ø 10, 9 Ø 10<, EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[7]=

1

7

2

5

63

8

4

10

9

This displays the labels as tooltips. Place the cursor over the edge between vertices 4 and 7 to
see the tooltip.

In[8]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
Tooltip@4 Ø 7, "edge 84,7<"D, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[8]=

1

7

2

5

63

8

4

10

9

Graph Drawing 89

EdgeRenderingFunction

The option EdgeRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

This draws vertices only.

In[9]:= TreePlot@Table@1, 810<, 810<D, EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[9]=

With EdgeRenderingFunction -> g, each edge is rendered with the graphics primitives and

directives given by the function g that can take three or more arguments, in the form

g@8ri, …, r j<, 8vi, v j<, lblij, …D, where ri, r j are the coordinates of the beginning and ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the edge or None. Explicit settings for EdgeRenderingFunction -> g override settings for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance 0.3 (in the
graph's coordinate system).

In[10]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[10]=

90 Graph Drawing

1

2 3 4 5 6 7 8 9 10

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 50% along arrows.

In[11]:= << GraphUtilities`

In[12]:= TreePlot@81 Ø 4, 1 Ø 1, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .5D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[12]=

LayerSizeFunction

The LayerSizeFunction option specifies the relative height to allow for each layer. By default

the height is 1. Possible values include a function that gives real machine numbers.

This defines and plots a tree.

In[13]:= g = 81 Ø 4, 2 Ø 6, 2 Ø 7, 2 Ø 8, 3 Ø 8, 4 Ø 5, 5 Ø 6<;

In[14]:= TreePlot@gD

Out[14]=

This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.

Graph Drawing 91

81, 4<
81, 1<

81, 5<

84, 8<

84, 10<82, 4<

83, 6<

83, 9<

86, 7<

88, 9<

1

4

5

2 3

6

9

8

10

7

This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.

In[15]:= TreePlot@g, LayerSizeFunction Ø HÒ &LD

Out[15]=

MultiedgeStyle

The option MultiedgeStyle specifies whether to draw multiple edges between two vertices.

Possible values for MultiedgeStyle are Automatic (the default), True, False, or a positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if specified by an adjacency matrix. With

MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

By default, multiple edges are shown if a graph is given as a list of rules.

In[16]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
VertexLabeling Ø TrueD

Out[16]=

92 Graph Drawing

1

2

3

5

4 6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[17]:= TreePlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[17]=

1

2

3 4

5

6

This spreads multiple edges by the specified amount.

In[18]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[18]=

Graph Drawing 93

1

2

3

5

4 6

PackingMethod

The option PackingMethod specifies the method used for packing disconnected components.

Possible values for the option are Automatic (the default), "ClosestPacking",

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from the top left.

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are

packed in layers starting from the top or left respectively. With

PackingMethod -> "NestedGrid", components are arranged in a nested grid. The typical effec-

tive default setting is PackingMethod -> "Layered", and the packing starts with components of

the largest bounding box area.

This shows the packing of disconnected components by the default method.

In[19]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[19]=

This shows the packing of disconnected components using the "ClosestPackingCenter"
method.

In[20]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[20]=

PlotRangePadding

94 Graph Drawing

PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by TreePlot.

PlotStyle

PlotStyle is a common option for graphics functions inherited by TreePlot. The option

PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker lines, and draw both edges and vertex labels in red.

In[21]:= TreePlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8,
10 Ø 8, 8 Ø 3, 12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<,

VertexLabeling Ø True, PlotStyle Ø 8Red, Thickness@0.02D<D

Out[21]=

SelfLoopStyle

The option SelfLoopStyle specifies whether and how to draw loops for vertices that are linked

to themselves. Possible values for the option are Automatic (the default), True, False, or a

positive real number. With SelfLoopStyle -> Automatic, self-loops are shown if the graph is

specified by a list of rules, but not if it is specified by an adjacency matrix. With

SelfLoopStyle -> d, the self-loops are drawn with a diameter of d (relative to the average edge

length).

Graph Drawing 95

1

2

3

4

6

5

7

9

8

10

12

11

13

15

14

16

By default, self-loops are displayed for a graph specified by a list of rules.

In[22]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<, VertexLabeling Ø TrueD

Out[22]= 1

4

5

2

3 6

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[23]:= TreePlotB

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 2 1 1
0 0 0 0 0 0
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[23]= 1

2

3

4

5 6

96 Graph Drawing

This shows self-loops whose diameters equal 0.3 times the average length of the edges.

In[24]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[24]=

VertexCoordinateRules

The option VertexCoordinateRules specifies the coordinates of the vertices. Possible values

are None or a list of coordinates. Coordinates specified by a list of rules are not supported by

TreePlot currently.

This draws the Petersen graph using known coordinates.

In[25]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[25]=

Graph Drawing 97

1

4

5

2

3 6

This draws with the default method.

In[26]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[26]=

VertexLabeling

The option VertexLabeling specifies whether to show vertex names as labels. Possible values

for this option are True, False, Automatic (the default) and Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified by a list of rules, labels are the expressions used in the rules.

VertexLabeling -> False displays each vertex as a point. VertexLabeling -> Tooltip dis-

plays each vertex as a point, but gives its name in a tooltip. VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD anywhere in the list of rules to specify an alternative

tooltip for a vertex vk.

This draws the graph with labels given as indices of the adjacency matrix.

In[27]:= TreePlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[27]=

1

2 3

4 5

This uses the labels specified in the list of rules.

98 Graph Drawing

This uses the labels specified in the list of rules.

In[28]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[28]=

A

B a C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

In[29]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[29]=

VertexRenderingFunction

The option VertexRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, vertices are

displayed as points, with their names given in tooltips.

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

In[30]:= g = 81 Ø 3, 1 Ø 4, 2 Ø 3, 2 Ø 5, 2 Ø 6, 5 Ø 7<;

In[31]:= TreePlot@gD

Out[31]=

This draws the same graph, but without the vertices.

Graph Drawing 99

This draws the same graph, but without the vertices.

In[32]:= TreePlot@g, VertexRenderingFunction Ø NoneD

Out[32]=

With VertexRenderingFunction -> g, each vertex is rendered with the graphics primitives

given by g@ri, vi, …D, where ri is the coordinate of the vertex and vi is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[33]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 8, 3 Ø 4, 4 Ø 8, 6 Ø 8, 7 Ø 8, 7 Ø 9<,
VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[33]=

1

4

5 2

8 3

6 7

9

100 Graph Drawing

Example Gallery

k-ary tree

This defines a k-ary tree.

In[34]:= KaryTree@level_, k_: 2D := Flatten@Table@Table@i Ø k * i + j, 8j, -Hk - 2L, 1, 1<D,
8i, Hk^level - 1L ê Hk - 1L<DD ê; Hlevel ¥ 1 && k > 1L;

This plots a 4-ary tree of 4 levels.

In[35]:= TreePlot@KaryTree@4, 5D, CenterD

Out[35]=

This plots the same graph, but with the height of each level i proportional to 1ë i2.

In[36]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø H1 ê Ò^2 &LD

Out[36]=

Graph Drawing 101

This sets the height of each level i proportional to H-0.5Li.
In[37]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø HH-0.5L^Ò &LD

Out[37]=

102 Graph Drawing

