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Introduction to Graph Drawing

Mathematica  provides  functions  for  the  aesthetic  drawing  of  graphs.  Algorithms  implemented

include  spring  embedding,  spring-electrical  embedding,  high-dimensional  embedding,  radial

drawing, random embedding, circular embedding, and spiral embedding. In addition, algorithms

for layered/hierarchical drawing of directed graphs as well as for the drawing of trees are avail-

able.  These  algorithms  are  implemented  via  four  functions:  GraphPlot,  GraphPlot3D,

LayeredGraphPlot, and TreePlot.

GraphPlot generate a plot of a graph

GraphPlot3D generate a 3D plot of a graph

LayeredGraphPlot generate a layered plot of a graph

TreePlot generate a tree plot of a graph

Functions for graph drawing.

GraphPlot  and  GraphPlot3D  are  suitable  for  straight  line  drawing  of  general  graphs.

LayeredGraphPlot  attempts to draw the vertices of a graph in a series of layers; therefore it is

most suitable for applications such as the drawing of flow charts. TreePlot  is particularly useful

for drawing trees or tree-like graphs. These functions are designed to work efficiently for very

large graphs. 

This shows a graph drawn using each of the four functions.

In[1]:= 8Map@Ò@84 Ø 2, 4 Ø 3, 5 Ø 2, 5 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 6 Ø 7, 7 Ø 8, 7 Ø 9<,
PlotRangePadding -> Automatic, ImageSize Ø 180, PlotLabel Ø ÒD &,

88GraphPlot, GraphPlot3D<, 8LayeredGraphPlot, TreePlot<<, 8-1<D< êê TableForm

Out[1]//TableForm=

GraphPlot

GraphPlot3D

LayeredGraphPlot

TreePlot

In  these  functions,  a  graph  is  represented  either  by  a  list  of  rules  of  the  form 8vi1 -> v j1, …<,

where vi1  and v j1  are vertices, or by the adjacency matrix of the graph. Graphs in the Combinator-

ica package format are also supported.



In  these  functions,  a  graph  is  represented  either  by  a  list  of  rules  of  the  form 8vi1 -> v j1, …<,

where vi1  and v j1  are vertices, or by the adjacency matrix of the graph. Graphs in the Combinator -

ica package format are also supported.

Graph Theory Notations

A graph G = 8V , E< consists of a set of vertices V  (also called nodes) and a set of edges E. Two

vertices u and v form an edge of the graph if 8u, v< œ E.

If 8u, v< œ E implies that 8v, u< œ E, then G is an undirected graph. Otherwise it is a directed graph.

The former can be drawn using line segments, while the latter can be drawn with arrows. In an

undirected graph, it is often convenient to denote that an edge exists between u and v with the

notation u¨ v.

For example, this is a directed graph.

In[2]:= GraphPlot@84 -> 3, 5 -> 3, 5 -> 4, 6 -> 1, 6 -> 2, 6 -> 4, 6 -> 5<,
DirectedEdges Ø TrueD

Out[2]=

Here is an undirected graph.

In[3]:= GraphPlot@84 -> 3, 5 -> 3, 5 -> 4, 6 -> 1, 6 -> 2, 6 -> 4, 6 -> 5<D

Out[3]=
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Input Formats

In  Mathematica,  graphs  can  be  represented  by  one  of  the  following  three  data  structures.  A

graph can be represented by a list of rules.

 For example, 81 Ø 2, 2 Ø 3, 3 Ø 1, 3 Ø 4< represents the following directed graph.

In[4]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 1, 3 Ø 4<, DirectedEdges Ø True,
VertexLabeling Ø TrueD

Out[4]=

1

2

34

A  graph  can  also  be  represented  by  its  adjacency  matrix.  Let  G = 8V , E<  be  a  directed  graph.

Assuming  that  the  vertices  are  indices  from 1  to  n,  that  is,  V = 81, 2, …, n<,  then  the  adjacency

matrix of G is an nµn matrix, with entries ai j = 1 if 8i, j< œ E and ai j = 0 otherwise.

The following adjacency matrix represents the same directed graph.

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0

An undirected graph, on the other hand, is represented by a symmetric adjacency matrix. The

matrix entries ai j = a ji = 1 if 8i, j< œ E and ai j = 0 otherwise.

This adjacency matrix represents the undirected graph that follows it.

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

Graph Drawing     3



In[5]:= GraphPlotB

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

, VertexLabeling Ø TrueF

Out[5]=

1

2

34

Because  of  the  zero  entries  in  an  adjacency  matrix,  it  is  often  convenient  to  represent  the

matrix using a SparseArray.

The previous matrix can be written as the following sparse array.

In[6]:= SparseArray@881, 2< Ø 1, 81, 3< Ø 1, 82, 1< Ø 1,
82, 3< Ø 1, 83, 1< Ø 1, 83, 2< Ø 1, 83, 4< Ø 1, 84, 3< Ø 1<, 84, 4<D;

Finally, graphs in the Combinatorica package format are also supported.

This example creates a butterfly graph using Combinatorica and shows the layout Combinator-
ica assigned.

In[7]:= << Combinatorica`;

In[8]:= g = ButterflyGraph@3D; ShowGraph@gD

Out[8]=
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This draws the same graph using GraphPlot.

In[9]:= GraphPlot@gD

Out[9]=

GraphPlot uses the algorithms described in the next section to lay out a graph. If GraphPlot is

to be used for a graph in Combinatorica format, but the drawing assigned by Combinatorica is

to be preserved, Method -> None can be specified.

Option Method -> None draws the graph using the layout from the Combinatorica package.

In[10]:= GraphPlot@g, Method Ø NoneD

Out[10]=

Graph Drawing Algorithms
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Graph Drawing Algorithms

Graphs  are  often  used  to  encapsulate  the  relationship  between  items.  Graph  drawing  enables

visualization  of  these  relationships.  The  usefulness  of  the  visual  representation  depends  upon

whether  the  drawing  is  aesthetic.  While  there  are  no  strict  criteria  for  aesthetic  drawing,  it  is

generally  agreed  that  such  a  drawing  has  minimal  edge  crossing  and  even  spacing  between

vertices. This problem has been studied extensively in the literature [1], and many approaches

have been proposed. Two popular straight-edge drawing algorithms, the spring embedding and

spring-electrical  embedding,  work  by  minimizing  the  energy  of  physical  models  of  the  graph.

The high-dimensional  embedding method,  on the other  hand,  embeds a  graph in  high-dimen-

sional space and then projects it back to two- or three-dimensional space. In addition, there are

algorithms  for  drawing  directed  graphs  in  a  hierarchical  fashion,  as  well  as  for  drawing  trees.

Random embedding,  circular  embedding,  and  spiral  embedding  do  not  utilize  any  connectivity

information for laying out a graph, and therefore are not described any further here.

Spring Embedding

The spring embedding algorithm assigns force between each pair of nodes. When two nodes are

too close together, a repelling force comes into effect. When two nodes are too far apart, they

are  subject  to  an  attractive  force.  This  scenario  can  be  illustrated  by  linking  the  vertices  with

springs~hence the name "spring embedding."

This algorithm works by adding springs to all edges and adding looser springs to all vertex pairs

that are not adjacent. Thus, in two dimensions, the total energy of the system is 

‚
i=1

†V §-1

‚
j=i+1

†V §

kij I »» xi - x j »»2 - lij M
2
.

Here, xi and x j are the coordinate vectors of nodes i and j, and »» xi - x j »» is the Euclidean distance

between them. li j  is the natural length of the spring between vertex i and vertex j, and can be

chosen as the graph distance between i and j. The parameters ki j = Rë li j2 are the strength of the

springs, where R  is  a parameter representing the strength of the springs. V  is  the number of

vertices. 

The layout  of  the  graph vertices  is  calculated  by  minimizing  this  energy function.  One way to

minimize the energy function is by iteratively moving each of the vertices along the direction of

the spring force until  an approximate equilibrium is reached. Multilevel techniques are used to

overcome local minima.
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The layout  of  the  graph vertices  is  calculated  by  minimizing  this  energy function.  One way to

minimize the energy function is by iteratively moving each of the vertices along the direction of

the spring force until  an approximate equilibrium is reached. Multilevel techniques are used to

overcome local minima.

Spring  embedding  works  particularly  well  for  problems  like  regular  grid  graphs,  in  which  it  is

possible  to  lay out  the graph so that  Euclidean distances between vertices  are proportional  to

the graph distances. 

This draws a 20×20 grid graph using the spring embedding algorithm.

In[11]:= << Combinatorica`;

In[12]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringEmbedding"D

Out[12]=

This method does, however, require more memory and CPU time. To reduce its OI V 2M complex-

ity,  vertices  that  are  far  apart  are  ignored  in  the  calculation  of  force  and  energy.  See  the

method option "InferentialDistance" of GraphPlot and GraphPlot3D for more information.

Spring-Electrical Embedding

The  disadvantage  of  the  spring  embedding  algorithm  is  that  it  requires  knowing  the  graph

distance  between  every  pair  of  vertices.  Spring-electrical  embedding  uses  two  forces.  The

attractive force, fa = di j2 ëK, is restricted to adjacent vertices and is proportional to the Euclidean

distance  between  them,  where  K  is  related  to  the  natural  spring  length.  The  electrical  force,

fr = -K2 ëdi j, on the other hand, is global and is inversely proportional to the Euclidean distance

between nodes i and j. Overall, the energy to be minimized is ⁄i=1
V f i

2, where

fi = -C‚
j≠i

K2

dij

Ix j - xiM

dij
+ ‚
iõ j

dij2

K

Ix j - xiM

dij
= -C‚

j≠i

K2

dij2
Ix j - xiM + ‚

i<Ø j

dij

K
Ix j - xiM.

Here, C is a constant that regulates the relative strength of the repulsive and attractive forces,

and di j = »» xi - x j »» is the Euclidean distance between nodes i and j. For a graph of two vertices,

the ideal Euclidean distance between the vertices is K C1ê3, which gives a total energy of zero.
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Here, C is a constant that regulates the relative strength of the repulsive and attractive forces,

and di j = »» xi - x j »» is the Euclidean distance between nodes i and j. For a graph of two vertices,

the ideal Euclidean distance between the vertices is K C1ê3, which gives a total energy of zero.

The layout of the graph vertices is calculated by minimizing the energy function. One way to do

this is by iteratively moving each of the vertices along the direction of the spring force until an

approximate equilibrium is reached. Multilevel  techniques [7] are used to overcome local  min-

ima, and an octree data structure [16] is used to reduce the computational complexity in some

cases.

In  general,  spring-electrical  embedding  works  well  for  most  problems.  With  multilevel  and

octree techniques, it is implemented very efficiently with a complexity of about OH V logH V LL. 

 This shows the drawing of a 20×20 grid graph using "SpringElectricalEmbedding".

In[13]:= << Combinatorica`;

In[14]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringElectricalEmbedding"D

Out[14]=

A side effect of this algorithm is that vertices at the periphery tend to be closer to each other

than those in the center, as seen in the previous drawing. This tendency can be alleviated with

the method option "RepulsiveForcePower", which is described in "General Graph Drawing".

High-Dimensional Embedding Algorithm

In  the  high-dimensional  embedding  method,  a  graph  is  embedded  in  high-dimensional  space,

and then projected back to two- or  three-dimensional  space.  First,  a  k-dimensional  coordinate

system is created based on k centers. The centers are a set of k vertices that are chosen to be

as far apart as possible. The first vertex is selected at random, and then each of the remaining

centers is chosen as the farthest vertex from the previously selected centers. In other words, if

j centers have been selected, c j +1 is the vertex whose shortest graph distance to the j centers is

larger than or equal to the shortest graph distance of all the other vertices to the j centers. 
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In  the  high-dimensional  embedding  method,  a  graph  is  embedded  in  high-dimensional  space,

and then projected back to two- or  three-dimensional  space.  First,  a  k-dimensional  coordinate

system is created based on k centers. The centers are a set of k vertices that are chosen to be

centers is chosen as the farthest vertex from the previously selected centers. In other words, if

j centers have been selected, c j +1 is the vertex whose shortest graph distance to the j centers is

larger than or equal to the shortest graph distance of all the other vertices to the j centers. 

With these k centers, a k-dimensional coordinate system can be established. Each vertex ui  has

the  coordinates  xi = 9dui c1 , dui c2 , …, dui ck =,  where  dui c j  is  the  graph  distance  between  the  vertex  ui

and the center ci. The nk-dimensional coordinate vectors form an nµk  matrix X, where xi  is the

ith row of X.

Since  it  is  only  possible  to  draw  in  two  and  three  dimensions,  and  since  the  coordinates  are

correlated,  the  k-dimensional  coordinates  are  projected  back  to  two  or  three  dimensions  by  a

suitable linear combination. Assume that the graph with n coordinates and k centers is projected

back to two dimensions. In order to make this projection shift-invariant, X is first normalized to

X '.

X ' = X - e eT X ên, e = 81, …, 1<

Let v1  and  v2  be  two  k -dimensional  vectors  needed  for  the  purpose  of  linear  combination. 

The  two  linear  combinations  should  be  uncorrelated,  so  they  must  be  orthogonal  to  each

other.

IX ' v1M
T X ' v2 = v1T IX ' T X 'M v2 = 0

Each must be as far away from 0 as possible. 

viT IX ' T X 'M vi ê »» vi »»2 Ø max, i = 1, 2

To achieve this, you therefore select v1 and v2 to be the two eigenvectors that correspond to the

first  two  largest  eigenvalues  of  the  kµk  symmetric  matrix  X ' T X '.  This  process  of  choosing  two

highly uncorrelated vectors is also known as principal component analysis.

In  summary,  for  two-dimensional  drawing,  the  high-dimensional  embedding  method  uses  the

coordinates of the vertices given by X ' v1 and X ' v2.
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 This shows the drawing of a 20×20 grid graph using "HighDimensionalEmbedding".

In[15]:= << Combinatorica`;

In[16]:= GraphPlot@GridGraph@20, 20D, Method Ø "HighDimensionalEmbedding"D

Out[16]=

The high-dimensional embedding method tends to be very fast but its results are often of lower

quality  than  force-directed  algorithms.  The  method  can  be  specified  with

Method -> "HighDimensionalEmbedding" in GraphPlot and GraphPlot3D.

A Hierarchical Drawing Algorithm for Directed Graphs

The algorithm for drawing directed acyclic graphs (DAGs) follows the algorithm of Sugiyama et

al. [14], and subsequent development [15]. It consists of the following stages:

1. Vertices of the DAG are first assigned a preliminary y ranking such that if there is an edge
from i  to  j,  then it  is  likely  that  yrankHiL > yrankH jL.  This  is  to  ensure that  the final  drawing
has directed edges pointing mostly downward.

2. The y coordinates are generated so that if there is an edge from i to j and yrankHiL > yrankH jL,
their y coordinates are as close as possible, but separated by a set minimum. This ensures
that the final resulting drawing does not have many long edges. This process assigns the
vertices into a finite number of  layers.  If  an edge lies across a number of  layers,  virtual
vertices are added.

3. A  preliminary  x  ranking  is  assigned  to  each  vertex  to  minimize  the  number  of  edge
crossings.

4. The  x  coordinates  are  generated  by  minimizing  ⁄iØ j xHiL - xH jL  subject  to  the  constraints
that vertices on the same layer obey the x ranking generated in step 3 and are separated
by a set minimum.

The resulting drawing lays  out  the graph in  a  hierarchical  structure,  where most  of  the edges

point downward. LayeredGraphPlot function implements this algorithm.

Algorithms for Drawing Trees
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Algorithms for Drawing Trees

Two  algorithms  for  drawing  trees  are  the  radial  drawing  algorithm  and  the  layered  drawing

algorithm [1].  In  the  radial  drawing algorithm,  a  reasonable  root  of  the  tree  is  chosen.  Then,

starting from that root of the tree, each subtree is drawn inside a wedge, with the angle of the

wedge proportional to the number of leaves in that subtree. In the layered drawing algorithm, a

reasonable  root  of  the  tree  is  chosen.  Then,  starting  from that  root,  subtrees  of  the  root  are

recursively  drawn  such  that  vertices  on  the  same  level  have  the  same  y  coordinate,  and  the

horizontally closest vertices of adjacent subtrees are of unit  distance apart.  The root is  placed

at the center of  the x  coordinates of  its  subtrees and its  y  coordinate is  one unit  above them.

TreePlot  function chooses between these two algorithms, depending on the second argument

of this function.

Selecting the Appropriate Graph Drawing Function

For  general  graph  drawing,  consider  using  GraphPlot  or  GraphPlot3D.  GraphPlot  or

GraphPlot3D  calculates a visually appealing 2D/3D layout and plots the graph using this layout.

See "General Graph Drawing" for these functions, and [17] for algorithmic details.

To  get  a  layered/hierarchical  drawing  of  a  directed  graph,  use  LayeredGraphPlot.

LayeredGraphPlot  attempts to draw the vertices of a graph in a series of layers, with dominant

vertices at the top, and vertices lower in the hierarchy progressively farther down. This function

is  most  suitable  for  applications  such  as  flow  chart  drawing.  See  "Hierarchical  Drawing  of

Directed Graphs" for this function.

TreePlot  is  specifically  designed  to  draw  trees  and  tree-like  graphs.  See  "Tree  Drawing"  for

this function.
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General Graph Drawing

GraphPlot  and GraphPlot3D  calculate  and plot  a  visually  appealing  2D/3D layout  of  a  graph.

The  functions  are  designed  to  work  with  very  large  graphs  and  handle  both  connected  and

disconnected graphs. 

GraphPlotA9vi 1->v j 1,vi 2->v j 2,…=E generate a plot of the graph in which vertex vik is con -
nected to vertex v jk

GraphPlotA99vi 1->v j 1,lbl1=,…=E associate labels lblk with edges in the graph

GraphPlot@mD generate a plot of the graph represented by the adjacency 
matrix m

GraphPlot3DA
9vi 1->v j 1,vi 2->v j 2,…=E

generate a 3D plot of the graph in which vertex vik is 
connected to vertex v jk

GraphPlot3DA99vi 1->v j 1,lbl1=,…=E associate labels lblk with edges in the graph

GraphPlot3D@mD generate a 3D plot of the graph represented by the adja -
cency matrix m

Graph drawing functions.

This plots a graph specified by a rule list.

In[1]:= GraphPlot@8"d" Ø "c", "e" Ø "b", "e" Ø "c", "e" Ø "d", "f" Ø "a", "f" Ø "b", "f" Ø "d",
"f" Ø "e", "g" Ø "a", "g" Ø "b", "g" Ø "c", "g" Ø "e"<, VertexLabeling Ø TrueD

Out[1]=

d

c

e b

f

a

g
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For disconnected graphs, individual components are laid out in a visually appealing way and 
assembled.

In[2]:= GraphPlot@Table@i Ø Mod@i^2, 129D, 8i, 0, 128<DD

Out[2]=

This is a larger graph defined by a sparse adjacency matrix from a structural engineering 
application. The matrix comes from the Harwell|Boeing Collection.

In[3]:= a = Import@"LinearAlgebraExamplesêDataêdwt_1005.psa", "HarwellBoeing"D;

In[4]:= GraphPlot3D@a, VertexRenderingFunction Ø NoneD

Out[4]=

GraphPlot  may  produce  slightly  different  output  on  different  platforms,  due  to  floating-point

differences.
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Options for GraphPlot and GraphPlot3D

The  following  options  are  accepted  for  GraphPlot  and  GraphPlot3D  (DirectedEdges  and

EdgeLabeling  options  are  only  valid  for  GraphPlot);  in  addition,  options  for  Graphics  and

Graphics3D are accepted.

option name default value

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

Method Automatic the method used to lay out the graph

MultiedgeStyle Automatic how to draw multiple edges between 
vertices

PlotRangePadding Automatic how much padding to put around the plot

PackingMethod Automatic method to use for packing components

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for GraphPlot and GraphPlot3D .

DirectedEdges

The option DirectedEdges  specifies whether to draw edges as arrows. Possible values for this

option are True or False. The default value for this option is False.
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This shows a graph with edges represented by arrows.

In[5]:= GraphPlot@81 Ø 6, 2 Ø 6, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[5]=

1

6

2

3

4

5

This makes the arrowheads larger.

In[3]:= Table@
GraphPlot@81 Ø 6, 2 Ø 6, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
ImageSize Ø 100, DirectedEdges Ø 8True, "ArrowheadsSize" Ø asize<,
VertexLabeling Ø TrueD, 8asize, 80.05, 0.1, 0.15<<D

Out[3]=

EdgeLabeling

The  option  EdgeLabeling  specifies  whether  and  how  to  display  labels  given  for  the  edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is  True,  which  displays  the  supplied  edge  labels  on  the  graph.  With

EdgeLabeling -> Automatic, the labels are shown as tooltips.
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By default, GraphPlot displays the supplied label for the edge between vertices 3 and 6.

In[6]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
VertexLabeling Ø TrueD

Out[6]=

edge 3->6

1

5

6

2

4

3

This displays the edge label as a tooltip. Place the cursor over the edge between vertices 3 and 
6 to see the tooltip.

In[7]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[7]=

1

5

6

2

4

3

Alternatively, use Tooltip@vi -> v j, lblD to specify a tooltip for an edge. Place the cursor over 
the edge between vertices 3 and 6, as well as over the edge label on the edge between vertices 
3 and 5, to see the tooltips.

In[8]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 83 Ø 5, Tooltip@ "edge 3->5", "3->5"D<,
Tooltip@3 Ø 6, "3->6"D, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[8]=

edge 3->5

1

5

6

2

4

3

To  display  the  supplied  label  for  the  edge  in  3D,  EdgeRenderingFunction  needs  to  be  used.

This is described in "Edge Rendering Function".

EdgeRenderingFunction
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EdgeRenderingFunction

The  option  EdgeRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

This draws vertices only.

In[9]:= GraphPlot@Table@1, 830<, 830<D, EdgeRenderingFunction Ø NoneD

Out[9]=

With  EdgeRenderingFunction -> g,  each  edge  is  rendered  with  the  graphics  primitives  and

directives  given  by  the  function  g  that  can  take  three  or  more  arguments,  in  the  form

g@8ri, …, r j<, 8vi, v j<, lblij, …D,  where  ri,  r j  are  the  coordinates  of  the  beginning  and  ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the  edge  or  None.  Explicit  settings  for  EdgeRenderingFunction -> g  override  settings  for

EdgeLabeling and DirectedEdges.
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This plots the edges as gray arrows with ends set back from vertices by a distance 0.1 (in the 
graph's coordinate system).

In[10]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7,
7 Ø 1, 11 Ø 12, 12 Ø 13, 13 Ø 14, 14 Ø 15, 15 Ø 16, 16 Ø 17,
17 Ø 11, 1 Ø 11, 2 Ø 12, 3 Ø 13, 4 Ø 14, 5 Ø 15, 6 Ø 16, 7 Ø 17<,

EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.1D< &LD

Out[10]=

This generates edge labels or displays the ones supplied in the description of the graph.

In[11]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeRenderingFunction Ø H88Red, Line@Ò1D<, Text@If@Ò3 === None, Ò2, Ò3D,

Total@Ò1D ê 2., Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[11]=
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This draws straight edges in black and other edges (two multiedges and a self-loop) in red. The 
function LineScaledCoordinate from the package GraphUtilities is used to place labels 
at 70% of the length of the edge.

In[12]:= << GraphUtilities`

In[13]:= GraphPlot3D@81 Ø 2, 2 Ø 3, 3 Ø 4, 5 Ø 1, 5 Ø 2, 5 Ø 3, 5 Ø 4, 1 Ø 4, 3 Ø 5, 3 Ø 3<,
EdgeRenderingFunction Ø
HIf @Length@Ò1D > 2, 8Red, Line@Ò1D, Text@If@First@Ò1D === Last@Ò1D,

"loop", "multiedge"D, LineScaledCoordinate@Ò1, .7D,
Background Ø WhiteD<, Line@Ò1DD &L, VertexLabeling Ø TrueD

Out[13]=

This plots a 3D graph using spheres for vertices and cylinders for edges.

In[14]:= GraphPlot3D@82 Ø 1, 5 Ø 1, 6 Ø 1, 3 Ø 2, 11 Ø 2, 4 Ø 3, 16 Ø 3, 5 Ø 4, 21 Ø 4,
26 Ø 5, 7 Ø 6, 10 Ø 6, 8 Ø 7, 30 Ø 7, 9 Ø 8, 42 Ø 8, 10 Ø 9, 38 Ø 9, 12 Ø 10,
12 Ø 11, 15 Ø 11, 13 Ø 12, 14 Ø 13, 37 Ø 13, 15 Ø 14, 33 Ø 14, 17 Ø 15, 17 Ø 16,
20 Ø 16, 18 Ø 17, 19 Ø 18, 32 Ø 18, 20 Ø 19, 53 Ø 19, 22 Ø 20, 22 Ø 21, 25 Ø 21,
23 Ø 22, 24 Ø 23, 52 Ø 23, 25 Ø 24, 48 Ø 24, 27 Ø 25, 27 Ø 26, 30 Ø 26, 28 Ø 27,
29 Ø 28, 47 Ø 28, 30 Ø 29, 43 Ø 29, 32 Ø 31, 35 Ø 31, 54 Ø 31, 33 Ø 32, 34 Ø 33,
35 Ø 34, 36 Ø 34, 56 Ø 35, 37 Ø 36, 40 Ø 36, 38 Ø 37, 39 Ø 38, 40 Ø 39, 41 Ø 39,
57 Ø 40, 42 Ø 41, 45 Ø 41, 43 Ø 42, 44 Ø 43, 45 Ø 44, 46 Ø 44, 58 Ø 45, 47 Ø 46,
50 Ø 46, 48 Ø 47, 49 Ø 48, 50 Ø 49, 51 Ø 49, 59 Ø 50, 52 Ø 51, 55 Ø 51, 53 Ø 52,
54 Ø 53, 55 Ø 54, 60 Ø 55, 57 Ø 56, 60 Ø 56, 58 Ø 57, 59 Ø 58, 60 Ø 59<,

EdgeRenderingFunction Ø H8Cylinder@Ò1, .1D< &L,
VertexRenderingFunction Ø H8Sphere@Ò, .25D< &LD

Out[14]=

This plots a graph with edges displayed as springs and vertices as spheres.
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This plots a graph with edges displayed as springs and vertices as spheres.

In[15]:= Spring@8x0_, y0_<, n_: 10D :=
Module@8x = x0 + Hy0 - x0L * 0.05, y = y0 + Hx0 - y0L * 0.1, theta, t<,
theta = If@Hy0 - x0L@@1DD ã 0., Pi ê 2., ArcTan@Hy0 - x0L@@2DD ê HHy0 - x0L@@1DDLDD;
Line@Join@8x0<, Table@x + Hy - xL * t + 0.05

8Cos@ 2 Pi n t + thetaD, Sin@2 Pi n t + thetaD, 0<, 8t, 0, 1, .005<D, 8y0<DDD;
GraphPlot3D@81 Ø 2, 2 Ø 3, 3 Ø 1, 1 Ø 4, 2 Ø 4, 3 Ø 4<, EdgeRenderingFunction Ø

H8Blue, Spring@Ò1D< &L, VertexRenderingFunction Ø HSphere@Ò1, 0.1D &LD

Out[16]=

This plots the benzene molecule.

In[17]:= normal@8x_, y_<D := 0.03 * 8-y, x< ê Norm@8x, y<D;
GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1, 1 Ø 2, 3 Ø 4, 5 Ø 6,

1 Ø 7, 2 Ø 8, 3 Ø 9, 4 Ø 10, 5 Ø 11, 6 Ø 12<, VertexRenderingFunction Ø
HText@Style@If@Ò2 § 6, "C", "H"D, BoldD, Ò1, Background Ø WhiteD &L,

EdgeRenderingFunction Ø HIf@Length@Ò1D > 2, norm = normal@First@Ò1D - Last@Ò1DD;
8Line@8First@Ò1D + norm, Last@Ò1D + norm<D,
Line@8First@Ò1D - norm, Last@Ò1D - norm<D<, Line@Ò1DD &LD

Out[18]=
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Draw text along the edges.

In[11]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
EdgeRenderingFunction Ø H8Arrow@ÒD, Inset@"Mathematica", Mean@Ò1D,

Automatic, Automatic, Ò@@1DD - Ò@@2DD, Background Ø WhiteD< &LD

Out[11]=

M
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Mathematica

Draw graphics on each edge.

In[5]:= arrow = ;

In[10]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
EdgeRenderingFunction Ø H8Line@ÒD, Inset@arrow, Mean@Ò1D,

Automatic, Automatic, Ò@@1DD - Ò@@2DD, Background Ø WhiteD< &LD

Out[10]=
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Method

Algorithms to be used in GraphPlot and GraphPlot3D  can be specified using the Method option,

either  as  Method -> "name"  or  Method -> 8"name", opt1 -> val1, …<,  where  opti -> vali  are

method-specific  options,  described  in  separate  sections.  Method -> Automatic  uses  the

"RadialDrawing" method for trees and "SpringElectricalEmbedding" otherwise.

Automatic a method suitable for the problem is chosen automatically

"CircularEmbedding" lay out the vertices in a circle

"HighDimensionalEmbedding" invoke the high-dimensional embedding method, in which 
the graph is first laid out in a high-dimensional space 
based on the graph distances of the vertices to k centers; 
this layout is then projected to 2D or 3D space by linear 
combination of the high-dimensional coordinates using 
principal component analysis

"RadialDrawing" invoke the radial drawing method, which is most suitable 
for tree or tree-like graphs; if the graph is not a tree, a 
spanning tree is first constructed, and a radial drawing of 
the spanning tree is used to derive the drawing for the 
graph

"RandomEmbedding" lay out vertices randomly

"SpiralEmbedding" lay out the vertices in a spiral; in 3D, this distributes 
vertices uniformly on a sphere

"SpringElectricalEmbedding" invoke the spring-electrical embedding method, in which 
neighboring vertices are subject to an attractive spring 
force that is proportional to their physical distance, and all 
vertices are subject to a repulsive electrical force that is 
inversely proportional to their distance; the overall energy 
is minimized

"SpringEmbedding" invoke the spring embedding method, in which a vertex is 
subject to either attractive or repulsive force from another 
vertex, as though they are connected by a spring; the 
spring has an ideal length equal to the graph distance 
between the vertices; the total spring energy is minimized

Valid values of the Method option.
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This draws the Petersen graph using the default method.

In[19]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9,
9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, VertexLabeling Ø TrueD

Out[19]=

1

3

42

5

6
7

8

9

10

This draws the graph using the "SpringEmbedding" algorithm.

In[20]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6,
2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, Method Ø "SpringEmbedding", VertexLabeling Ø TrueD

Out[20]=

1 3

4

2

5
6

7

8

9

10
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This draws the graph using the "HighDimensionalEmbedding" algorithm.

In[21]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

Method Ø "HighDimensionalEmbedding", VertexLabeling Ø TrueD

Out[21]=

1
3

42

5

6

7
8

9

10

This draws the complete graph of 30 vertices using the "CircularEmbedding" method.

In[22]:= GraphPlot@Table@1, 830<, 830<D,
Method Ø "CircularEmbedding", VertexLabeling Ø TrueD

Out[22]= 1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
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22 23 24 25
26

27

28

29

30
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This draws the complete graph of 30 vertices using the "SpiralEmbedding" method in 3D.

In[23]:= GraphPlot3D@Table@1, 830<, 830<D,
Method Ø "SpiralEmbedding", VertexLabeling Ø TrueD

Out[23]=

1
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This draws the complete graph using the "RandomEmbedding" method.

In[24]:= GraphPlot@Table@1, 830<, 830<D, Method Ø "RandomEmbedding", VertexLabeling Ø TrueD

Out[24]=
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This draws a graph specified in the Combinatorica Package format using coordinates that come 
with it.

In[25]:= Needs@"Combinatorica`"D

In[26]:= GraphPlot@PetersenGraph, Method Ø NoneD

Out[26]=

MultiedgeStyle

The  option  MultiedgeStyle  specifies  whether  to  draw  multiple  edges  between  two  vertices.

Possible  values  for  MultiedgeStyle  are  Automatic  (the  default),  True,  False,  or  a  positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if specified by an adjacency matrix. With

MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d. 
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By default, multiple edges are shown if a graph is given as a list of rules.

In[27]:= GraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[27]=

1

2

34

5

6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[28]:= GraphPlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[28]=

1

2

34

5

6
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This spreads multiple edges by the specified amount.

In[29]:= GraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
MultiedgeStyle Ø 1, DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[29]=

1

2

34

5

6

PackingMethod

The  option  PackingMethod  specifies  the  method  used  for  packing  disconnected  components.

Possible  values  for  the  option  are  Automatic  (the  default),  "ClosestPacking",

"ClosestPackingCenter",  "Layered",  "LayeredLeft",  "LayeredTop",  and  "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble  using  a  polyomino  method  [6],  starting  from  the  top  left.  With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With  PackingMethod -> "Layered",  components  are  packed  in  layers  starting  from  top  left.

With  PackingMethod -> "LayeredLeft"  or  PackingMethod -> "LayeredTop",  components  are

packed in layers starting from the top/left respectively. With PackingMethod -> "NestedGrid",

components  are  arranged  in  a  nested  grid.  The  typical  effective  default  setting  is

PackingMethod -> "Layered", and the packing starts with the components of the largest bound-

ing box area.
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This shows the packing of disconnected components by the default method.

In[30]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[31]:= GraphPlot@gD

Out[31]=

This shows the packing of disconnected components using the "ClosestPackingCenter" 
method.

In[32]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[33]:= GraphPlot@g, PackingMethod Ø "ClosestPackingCenter"D

Out[33]=

Users can adjust the packing by suboptions of PackingMethod. The suboption "Padding" speci-

fies  the  amount  of  space  to  allow  between  components;  possible  values  are  Automatic  (the

default),  or  a  non-negative  number.  The  suboption  "PaddingFunction",  which  overrides

"Padding", also specifies the amount of space to allow between components. It takes a list of

the  form  88w1, h1<, …<,  which  are  the  width  and  height  of  the  bounding  box  of  the  compo-

nents,  and returns a non-negative number.  Options PackingMethod -> "ClosestPacking"  and

PackingMethod -> "ClosestPackingCenter"  also  accept  a  "PolyominoNumber"  suboption,

which  specifies  the  average  number  of  polyominos  used  to  approximate  each  disconnected

component. Possible values for the "PolyominoNumber"  suboption are Automatic  (the default,

which  usually  sets  "PolyominoNumber"  to  100),  or  a  positive  integer.  A  smaller

"PolyominoNumber"  typically  has  the  effect  of  not  allowing  smaller  components  to  embed  in

between large components.
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Users can adjust the packing by suboptions of PackingMethod. The suboption "Padding" speci-

fies  the  amount  of  space  to  allow  between  components;  possible  values  are  Automatic  (the

default),  or  a  non-negative  number.  The  suboption  "PaddingFunction",  which  overrides

"Padding", also specifies the amount of space to allow between components. It takes a list of

the  form  88w1, h1<, …<,  which  are  the  width  and  height  of  the  bounding  box  of  the  compo-

nents,  and returns a non-negative number.  Options PackingMethod -> "ClosestPacking"  and

PackingMethod -> "ClosestPackingCenter"  also  accept  a  "PolyominoNumber"  suboption,

which  specifies  the  average  number  of  polyominos  used  to  approximate  each  disconnected

component. Possible values for the "PolyominoNumber"  suboption are Automatic  (the default,

which  usually  sets  "PolyominoNumber"  to  100),  or  a  positive  integer.  A  smaller

"PolyominoNumber"  typically  has  the  effect  of  not  allowing  smaller  components  to  embed  in

between large components.

This specifies a space of one polyomino between components.

In[34]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[35]:= GraphPlot@g, PackingMethod Ø 8"ClosestPackingCenter", "Padding" Ø 1<D

Out[35]=

This specifies that an average of five polyominos be used to approximate each component.

In[36]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[37]:= GraphPlot@g,
PackingMethod Ø 8"ClosestPackingCenter", "PolyominoNumber" Ø 5, "Padding" Ø 1<D

Out[37]=
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PlotRangePadding

PlotRangePadding  is  a  common  option  for  graphics  functions  inherited  by  GraphPlot  and

GraphPlot3D.

PlotStyle

PlotStyle  is  a  common  option  for  graphics  functions  inherited  by  GraphPlot  and

GraphPlot3D. The option PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker lines, and both edges and vertex labels in red.

In[38]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8,
10 Ø 8, 8 Ø 3, 12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<,

VertexLabeling Ø True, PlotStyle Ø 8Red, Thickness@0.02D<D

Out[38]=

SelfLoopStyle

The option SelfLoopStyle  specifies whether and how to draw loops for vertices that are linked

to  themselves.  Possible  values  of  the  option  are  Automatic  (the  default),  True,  False,  or  a

positive  real  number.  With  SelfLoopStyle -> Automatic,  self-loops  are  shown if  the  graph  is

specified by a list of rules, but not by an adjacency matrix. With SelfLoopStyle -> d, the self-

loops are drawn with a diameter of d (relative to the average edge length). 
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By default, self-loops are displayed for a graph specified by a list of rules.

In[39]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1,
6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø TrueD

Out[39]=
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Self-loops are not shown if the graph is specified by an adjacency matrix.

In[40]:= GraphPlotB

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
1 1 1 1 1 0

, VertexLabeling Ø TrueF

Out[40]=
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This shows self-loops with the diameter as big as the average length of the edges.

In[41]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1, 6 Ø 2, 6 Ø 3,
6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø True, SelfLoopStyle Ø 1D

Out[41]=
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VertexCoordinateRules

The  option  VertexCoordinateRules  specifies  the  coordinates  of  the  vertices.  Possible  values

are  None,  a  list  of  coordinates,  or  a  list  of  rules  specifying  the  coordinates  of  selected  or  all

vertices.

This draws the Petersen graph using known coordinates.

In[42]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10,
6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, VertexCoordinateRules Ø
880.309, 0.951<, 8-0.809, -0.587<, 80.309, -0.951<, 8-0.809, 0.587<, 81.`, 0<,
80.618, 1.902<, 8-1.618, 1.175<, 8-1.618, -1.175<, 80.618, -1.902<, 82.`, 0<<D

Out[42]=

This computes vertex coordinates of the same graph using the "SpringEmbedding" algorithm.
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This computes vertex coordinates of the same graph using the "SpringEmbedding" algorithm.

In[43]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10,
6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, Method Ø "SpringEmbedding"D

Out[43]=

This specifies coordinates for two vertices.

In[44]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1<,
VertexCoordinateRules Ø 81 Ø 81, 1<, 2 Ø 82, 3<<,
Frame Ø True, FrameTicks Ø True, VertexLabeling Ø TrueD

Out[44]=
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This specifies only y coordinates.

In[12]:= GraphPlot@81 Ø 4, 2 Ø 3, 2 Ø 5, 1 Ø 3<,
VertexCoordinateRules Ø 81 Ø 8Automatic, 1<, 2 Ø 8Automatic, 1<,

3 Ø 8Automatic, 2<, 4 Ø 8Automatic, 2<, 5 Ø 8Automatic, 2<<,
Frame Ø True, FrameTicks Ø True, VertexLabeling Ø TrueD

Out[12]=
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This draws a bipartite graph by fixing x coordinates. "Anchors" are added to connect discon-
nected components.

In[1]:= bipartite = 81 Ø b, 2 Ø a, 3 Ø a, 3 Ø d, 4 Ø c, 4 Ø a, 4 Ø b<;
g = Join@bipartite,

Map@HLeft Ø Ò@@1DDL &, bipartiteD, Map@HRight Ø Ò@@2DDL &, bipartiteDD;

In[3]:= GraphPlot@g,
VertexCoordinateRules Ø 8left Ø 8-2, 0<, right Ø 82, 0<, Sequence üü Flatten@

Map@H8Ò@@1DD Ø 8-1, Automatic<, Ò@@2DD Ø 81, Automatic<<L &, bipartiteDD<,
VertexLabeling Ø True, VertexRenderingFunction Ø
HIf@Ò2 =!= Left && Ò2 =!= Right, Text@Ò2, Ò1, Background Ø WhiteD, 8<D &L,

EdgeRenderingFunction Ø HIf@! MemberQ@8Left, Right<, Ò2@@1DDD &&
! MemberQ@8Left, Right<, Ò2@@2DDD, Line@Ò1D, 8<D &LD

Out[3]=
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When the bipartite graph is connected, it works even better without augmenting it with "Left" 
and "Right" anchors.

In[4]:= GraphPlot@bipartite, VertexCoordinateRules Ø
Flatten@Map@H8Ò@@1DD Ø 8-1, Automatic<, Ò@@2DD Ø 81, Automatic<<L &, bipartiteDD,

VertexLabeling Ø TrueD

Out[4]=
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VertexLabeling
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VertexLabeling

The option VertexLabeling  specifies whether to show vertex names as labels. Possible values

for  this  option  are  True,  False,  Automatic  (the  default)  and  Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified  by  a  list  of  rules,  labels  are  the  expressions  used  in  the  rules.

VertexLabeling -> False  displays  each  vertex  as  a  point.  VertexLabeling -> Tooltip  dis-

plays  each  vertex  as  a  point,  but  gives  its  name  in  a  tooltip.  VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD  anywhere in the list of rules to specify an alternative

tooltip for a vertex vk. 

This draws the graph with labels given as indices of the adjacency matrix.

In[45]:= GraphPlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[45]=
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4
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Graph Drawing     39



This uses the labels specified in the list of rules.

In[46]:= GraphPlot@8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[46]= A

B

a

C

This specifies alternative labels for vertices 3 and 5. Place the cursor above the vertices to see 
the labels.

In[47]:= GraphPlot@85 Ø 4, 6 Ø 2, 6 Ø Tooltip@3, "number 3"D, 6 Ø 5, 7 Ø 1, 7 Ø 3, 7 Ø 4, 7 Ø 6<,
VertexLabeling Ø TrueD

Out[47]=
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This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the 
vertices to see the labels.

In[48]:= GraphPlot@85 Ø 4, 6 Ø 2, 6 Ø 3, 6 Ø 5, 7 Ø 1, 7 Ø 3, 7 Ø 4, 7 Ø 6<,
VertexLabeling Ø TooltipD

Out[48]=

VertexRenderingFunction

The  option  VertexRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion  of  graphics  primitives  and  directives.  With  the  default  setting  of  Automatic,  vertices  are

displayed as points, with their names given in tooltips. 

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the 
cursor at a vertex to see the tooltip.
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By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the 
cursor at a vertex to see the tooltip.

In[49]:= GraphPlot@85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<D

Out[49]=

This draws no vertices at all.

In[50]:= GraphPlot@85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<,
VertexRenderingFunction Ø NoneD

Out[50]=

With  VertexRenderingFunction -> g,  each  vertex  is  rendered  with  the  graphics  primitives

given by g@ri, vi, …D, where ri  is the coordinate of the vertex and vi  is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[51]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 8, 8 Ø 1, 1 Ø 9, 2 Ø 9,
3 Ø 10, 4 Ø 10, 6 Ø 11, 5 Ø 11, 7 Ø 12, 8 Ø 12<, VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[51]=
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This renders vertices using a predefined graphic.
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This renders vertices using a predefined graphic.

In[52]:= gr = ;

In[53]:= GraphPlot@84 Ø 2, 4 Ø 3, 5 Ø 1, 5 Ø 3, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5<,
VertexRenderingFunction Ø HInset@gr, Ò1D &LD

Out[53]=

A Common Suboption of All Methods 

All  graph  drawing  methods  accept  the  method  suboption  "Rotation",  which  specifies  the

desired amount  of  clockwise rotation in  radians from the default  orientation.  The option takes

any numeric values, or False. The default is 0. 

For GraphPlot and GraphPlot3D, the default orientation is derived by an alignment step where

the principal  axis  is  found and the graph drawing is  aligned with  the x  coordinate.  However  if

"Rotation" -> False is specified, this step is skipped.

option name default value

"Rotation" 0 amount of clockwise rotation to apply to 
the drawing

A common suboption for all methods.

This rotates a plot of a graph by p ê2, 0, and -p ê2 clockwise.

In[3]:= GraphicsRow@Table@GraphPlot@
84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 3, 6 Ø 4, 6 Ø 5, 7 Ø 1, 7 Ø 2, 7 Ø 3, 7 Ø 4, 7 Ø 5, 7 Ø 6<,
Method Ø 8"Automatic", "Rotation" Ø rot<D, 8rot, 8-Pi ê 2, 0, Pi ê 2<<DD

Out[2]=
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This shows the evolution of a graph layout process.

In[4]:= Grid@Partition@
Table@GraphPlot@84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 3, 6 Ø 4, 6 Ø 5, 7 Ø 1, 7 Ø 2, 7 Ø 3, 7 Ø 4,

7 Ø 5, 7 Ø 6<, Method Ø 8"SpringElectricalEmbedding", "Rotation" Ø False,
"RecursionMethod" Ø None, MaxIterations Ø i<, ImageSize Ø 50D, 8i, 15<D, 85<DD

Out[1]=

Common Suboptions of the "SpringEmbedding" and 
"SpringElectricalEmbedding" Methods

Both the SpringEmbedding  and SpringElectricalEmbedding  methods belong to the family  of

so-called force-directed methods. These methods work by calculating the force on each vertex,

and iteratively moving the vertex along the force in an effort to minimize the overall  system's

energy. See [8] for algorithmic details. These two methods have the following common options. 

option name default value

"EnergyControl" Automatic how the energy function is controlled 
during minimization 

"InferentialDistance" Automatic cutoff distance beyond which the force 
calculation ignores inference from faraway 
vertices 

MaxIterations Automatic maximum number of iterations to be used 
in attempting to minimize the energy 

"RandomSeed" Automatic seed to use in the random generator for 
initial vertex placement

"RecursionMethod" Automatic whether a multilevel algorithm is used to 
lay out the graph
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"StepControl" Automatic how step lengths are modified during 
energy minimization 

"StepLength" Automatic initial step length used in moving the 
vertices

"Tolerance" Automatic tolerance used in terminating the energy 
minimization process 

Common suboptions for "SpringEmbedding" and "SpringElectricalEmbedding" methods. 

"EnergyControl"

The suboption "EnergyControl"  specifies limitations on the total  energy of  the system during

minimization.  Possible  values  are  Automatic  (the  default),  "Monotonic",  or  "NonMonotonic".

When the  value  is  "Monotonic",  a  step  along  the  force  will  only  be  accepted  if  the  energy  is

lowered. When the value is "NonMonotonic", a step along the force will be accepted even if the

energy is not lowered.

"InferentialDistance"

The suboption "InferentialDistance" specifies a cutoff distance beyond which the interaction

between vertices is assumed to be nonexistent. Possible values are Automatic  (the default) or

a positive numeric value. For the "SpringEmbedding" method, if the graph distance between a

vertex i and a vertex j is greater than the option value of "InferentialDistance", the repul-

sive  and  attractive  spring  force  between  i  and  j  is  ignored.  For  the

"SpringElectricalEmbedding"  method,  if  the  Euclidean  distance  between  a  vertex  i  and  a

vertex  j  is  greater  than  the  option  value  of  "InferentialDistance",  the  repulsive  force

between i and j is ignored. 

This draws a random tree using the "SpringElectricalEmbedding" method.

In[1]:= g = RandomInteger@ÒD Ø Ò + 1 & êü Range@0, 1000D;
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In[2]:= GraphPlot@g, Method Ø "SpringElectricalEmbedding"D

Out[2]=

Using a smaller (more negative) "RepulsiveForcePower" option value (see the next sec-
tion), the graph now fills more space.

In[22]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<D

Out[22]=

A similar effect can be achieved using a small "InferentialDistance" option value.

In[21]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø .5<D

Out[21]=

MaxIterations
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MaxIterations

The option MaxIterations  specifies the maximum number of iterations to be used in attempt-

ing to minimize the energy. Possible values are Automatic (the default) or a positive integer.

"RandomSeed"

The option "RandomSeed" specifies a seed for the random number generator that computes the

initial  vertex placement.  Changing this  option usually  affects  the orientation of  the drawing of

the graph, but it can also change the layout. Possible values are Automatic or an integer.

This shows the effect of different random seed values on drawing the Petersen graph.

In[60]:= g = 81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<;

In[61]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RandomSeed" Ø Automatic<,
VertexLabeling Ø TrueD

Out[61]=
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In[62]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RandomSeed" Ø 4321<,
VertexLabeling Ø TrueD

Out[62]=
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"RecursionMethod"
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"RecursionMethod"

The  option  "RecursionMethod"  specifies  whether  the  graph  layout  should  be  produced  by  a

recursive procedure. Possible values are Automatic  (the default), "Multilevel", or None. In a

"Multilevel"  algorithm,  the  graph  is  successively  coarsened  into  graphs  with  a  smaller  and

smaller number of vertices. The coarser graphs are laid out first, and those layouts are interpo-

lated into the finer graphs and then further refined. 

suboption name default value

"Randomization" Automatic whether to inspect vertices in random order

"MinSize" Automatic minimal number of vertices in a coarsened 
graph

"CoarseningScheme" Automatic how graphs are coarsened

Suboptions for "Multilevel".

For the option "Randomize", possible values are Automatic, True, and False. For "MinSize",

possible  values  are  Automatic  or  a  positive  number.  For  "CoarseningScheme",  the  imple-

mented  algorithms  are  based  on  either  a  maximal  independent  vertex  set,  which  forms  the

coarse vertices, or a maximal independent edge set, also called a matching. In a matching, two

vertices that form an edge are merged to form a coarse graph vertex. The following are possi-

ble values for "CoarseningScheme".

"MaximalIndependentVertexSet" link vertices in the maximal independent set if their graph 
distance is 3 or less

"MaximalIndependentVertexSetInjection"

link vertices in the maximal independent set if their graph 
distance is 1 or 2

"MaximalIndependentVertexSetRugeStuben"

generate the maximal independent vertex set, giving 
priority to vertices with more neighbors not in the set, then 
link vertices in the set if their graph distance is 3 or less

"MaximalIndependentVertexSetRugeStubenInjection"

link vertices if their graph distance is 1 or 2, giving priority 
to vertices with more neighbors

"MaximalIndependentEdgeSet" consider edges in their natural order when matching
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"MaximalIndependentEdgeSetHeavyEdge"

give priority to edges with higher edge weight (i.e., edges 
that represent a larger number of edges in the original 
graph) when matching

"MaximalIndependentEdgeSetSmallestVertexWeight"

give priority to matchings of vertices with neighbors that 
have the smallest vertex weight

"StepControl"

The option "StepControl"  defines  how step length is  modified during energy minimization.  It

can  be  Automatic  (the  default),  "Monotonic"  (where  step  length  can  only  be  decreased),

"NonMonotonic"  (where step length can be made larger or smaller), or "StrictlyMonotonic"

(where step length is strictly reduced between iterations).

"StepLength"

The  option  "StepLength"  gives  the  initial  step  length  used  in  moving  the  vertices  around.

Possible values are Automatic (the default) or a positive real number.

Tolerance

The  option  Tolerance  specifies  the  tolerance  used  in  terminating  the  energy  minimization

process.  If  the  average  change  of  coordinates  of  each  vertex  is  less  than  the  tolerance,  the

energy  minimization  process  is  terminated  and  the  current  coordinates  are  given  as  output.

Possible values are Automatic or a positive real number.
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Method Suboptions of the 
"SpringElectricalEmbedding" Method

option name value

"Octree" Automatic whether to use an octree data structure (in 
three dimensions) or a quadtree data 
structure (in two dimensions) in the calcula -
tion of repulsive force

"RepulsiveForcePower" -1 how fast the repulsive force decays over 
distance

Method options for "SpringElectricalEmbedding".

"Octree"

The "Octree" option specifies whether to use an octree data structure (in three dimensions) or

a  quadtree  data  structure  (in  two  dimensions)  in  the  calculation  of  repulsive  force.  Possible

values are Automatic  (the default),  True,  or False.  Use of  an octree/quadtree data structure

minimizes  the  complexity  of  computation  by  approximating  the  long-range  repulsive  force.

However, it introduces an approximation to the force calculation. Therefore, in a few cases the

result may not be as good.

"RepulsiveForcePower"

Possible values are negative real numbers, with -1 as the default. In the spring-electrical embed -

ding,  the  repulsive  force  between  two  vertices  i  and  j  is  K2 ëdi j  by  default.  If  the  value  of

RepulsiveForcePower is r (with r < 0), then the repulsive force is defined as K1-r di jr, where di j is

the distance between the vertices and K is a constant coefficient.

A strong long-range repulsive force over long distance often has the boundary effect that ver-

tices in the periphery are closer to each other than those in the center are. Specifying a weaker

long-range repulsive force can sometimes alleviate this effect. This option can also be useful in

drawing a graph so that it fills up more space. (See the "InferentialDistance" method option

for details.) 

With a repulsive force power of -2, the boundary vertices are not as close to each other as they 
are with the default value of -1.
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With a repulsive force power of -2, the boundary vertices are not as close to each other as they 
are with the default value of -1.

In[63]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringElectricalEmbedding"D

Out[63]=

In[64]:= GraphPlot@GridGraph@20, 20D,
Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<D

Out[64]=

Method Suboption of "HighDimensionalEmbedding" 

option name default value

"RefinementMethod" None whether the result should be further 
refined, and which method should be used 
for refinement

Method option for "HighDimensionalEmbedding".

"RefinementMethod"

The  option  "RefinementMethod"  specifies  whether  the  result  should  be  further  refined,  and

which  method  should  be  used  to  refine  it.  Possible  values  are  None  (the  default),

"SpringEmbedding", or "SpringElectricalEmbedding".

This shows a case where the "HighDimensionalEmbedding" method placed vertices 5 and 6 
at the same position. Specifying a "RefinementMethod" option helps to draw the graph 
better.
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This shows a case where the "HighDimensionalEmbedding" method placed vertices 5 and 6 
at the same position. Specifying a "RefinementMethod" option helps to draw the graph 
better.

In[65]:= g = 81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 1 Ø 5, 1 Ø 6, 1 Ø 7, 4 Ø 7<;

In[66]:= GraphPlot@g, Method -> "HighDimensionalEmbedding", VertexLabeling Ø TrueD

Out[66]=
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In[67]:= GraphPlot@g, Method Ø 8"HighDimensionalEmbedding",
"RefinementMethod" Ø "SpringElectricalEmbedding"<, VertexLabeling Ø TrueD

Out[67]= 1
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4 5

6

7

Advanced Topics

Drawing a Graph to Fill Up More Space

While  the  default  setting  for  GraphPlot  works  well  in  general,  for  graphs  that  have  a  wide

range  of  values  for  the  vertex  degree,  it  is  often  necessary  to  use  a  setting  that  helps  the

vertices to occupy less space.
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The default method usually works well.

In[18]:= SeedRandom@321D;

In[19]:= g = Table@i Ø RandomInteger@81, 52<D, 8i, 52<D

Out[19]= 81 Ø 11, 2 Ø 27, 3 Ø 15, 4 Ø 18, 5 Ø 11, 6 Ø 44, 7 Ø 11, 8 Ø 50, 9 Ø 51, 10 Ø 6, 11 Ø 52,
12 Ø 31, 13 Ø 23, 14 Ø 50, 15 Ø 37, 16 Ø 6, 17 Ø 31, 18 Ø 19, 19 Ø 40, 20 Ø 21, 21 Ø 43,
22 Ø 49, 23 Ø 11, 24 Ø 16, 25 Ø 27, 26 Ø 46, 27 Ø 16, 28 Ø 4, 29 Ø 11, 30 Ø 17, 31 Ø 3,
32 Ø 25, 33 Ø 44, 34 Ø 51, 35 Ø 27, 36 Ø 29, 37 Ø 22, 38 Ø 42, 39 Ø 8, 40 Ø 21, 41 Ø 46,
42 Ø 2, 43 Ø 23, 44 Ø 45, 45 Ø 23, 46 Ø 4, 47 Ø 14, 48 Ø 8, 49 Ø 52, 50 Ø 30, 51 Ø 8, 52 Ø 19<

In[20]:= GraphPlot@gD

Out[20]=

However, sometimes "SpringEmbedding" produces a drawing that occupies more space.

In[21]:= GraphPlot@g, Method Ø "SpringEmbedding"D

Out[21]=

A similar effect can be achieved with a repulsive force power smaller than the default (-1), so 
that the repulsive force decays more quickly over distance.

In[23]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -1.8<D

Out[23]=
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Alternatively, specify a cutoff distance.

In[24]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 4<D

Out[24]=

For such tree-like graphs, a tree-drawing algorithm may be preferable. See "Tree Drawing" for 
greater control over tree layout.

In[25]:= GraphPlot@g, Method Ø "RadialDrawing"D

Out[25]=

This draws a graph from power network modeling.

In[23]:= GraphPlot@ExampleData@8"Matrix", "HBê1138_bus"<, "Matrix"D,
Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 4,

"RepulsiveForcePower" Ø -1.8<, PlotRangePadding Ø 0D

Out[23]=
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Improving Performance for Drawing Very Large Graphs

Although the default option set usually ensures a very good performance, it is often possible to

further increase drawing speed and reduce memory usage by selecting specific option combina-

tions for a particular task. For example, speed and/or memory usage can be improved using a

smaller number of iterations, a smaller inferential distance, or a lower tolerance. These settings

tend to reduce quality, but still frequently offer an acceptable compromise.

This is a drawing with default option settings.

In[75]:= g = Import@"LinearAlgebraExamplesêDataênos6.mtx"D;

In[76]:= GraphPlot@gD êê Timing

Out[76]=

A coarsening scheme based on the maximal independent vertex set is often faster and uses less 
memory, and yet offers a comparable layout quality.

In[77]:= GraphPlot@g,
Method Ø 8"SpringElectricalEmbedding", "RecursionMethod" Ø 8"Multilevel",

"CoarseningScheme" Ø "MaximalIndependentVertexSetRugeStuben"<<D êê Timing

Out[77]=

By reducing the number of iterations to 30, you can get a result still faster.

In[78]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", MaxIterations Ø 30<D êê Timing

Out[78]=
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Setting the inferential distance to 2 and the number of iterations to 40 is also faster than the 
default.

In[79]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding",
"InferentialDistance" Ø 2, MaxIterations Ø 40<D êê Timing

Out[79]=

By further reducing the number of iterations to 20, you get a result much faster.

In[80]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding",
"InferentialDistance" Ø 2, MaxIterations Ø 20<D êê Timing

Out[80]=

A combination of the previous options is still faster.

In[81]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 2,
MaxIterations Ø 20, "RecursionMethod" Ø 8"Multilevel",

"CoarseningScheme" Ø "MaximalIndependentVertexSetRugeStuben"<<D êê Timing

Out[81]=

"HighDimensionalEmbedding" tends to be the fastest method, but the quality of the draw-
ing often suffers.

In[82]:= GraphPlot@g, Method Ø "HighDimensionalEmbedding"D êê Timing

Out[82]=
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For comparison, "SpringEmbedding" is the slowest method, but it is the only one that draws 
the mesh using orthogonal lines.

In[83]:= GraphPlot@g, Method Ø "SpringEmbedding"D êê Timing

Out[83]=

Extracting Vertex Coordinates from Output

In most cases, you will deal with the output of GraphPlot and GraphPlot3D  just as with a usual

Graphics  expression.  However,  you may sometimes want to take advantage of  the additional

information  encapsulated  in  the  output  expression,  which  has  the  form

Graphics@Annotation@data, VertexCoordinateRules -> rulesDD.  Particularly,  it  is  sometimes

useful to extract coordinates of graph vertices.

Here is a simple graph.

In[84]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 3<D

Out[84]=

This extracts the coordinates of vertices.

In[85]:= VertexCoordinateRules ê. Cases@%, _Rule, InfinityD

Out[85]= 880.578783, 1.17222<, 80.578837, 0.<, 81.71796, 1.11836<,
81.15021, 0.585401<, 81.71821, 0.0540483<, 80., 0.585946<<
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Example Gallery

E. coli Transcription Networks

In a graph representation of a transcriptional regulation network that controls gene expression

in  cells,  nodes  (vertices)  are  operons,  which  are  one  or  more  genes  transcribed  on  the  same

messenger  ribonucleic  acid  (mRNA).  Edges  of  the  graph  are  directed  from  an  operon  that

encodes a transcription factor to an operon that it directly regulates [1]. 

Data

This is the network [2] described as rules.

In[86]:= g = 88"acrR" Ø "acrAB", 2<, 8"ada_alkB" Ø "aidB", 1<, 8"ada_alkB" Ø "alkA", 1<,
8"adiA_adiY" Ø "adiA", 1<, 8"alpA" Ø "slp", 1<, 8"appY" Ø "appCBA", 1<,
8"araC" Ø "araBAD", 3<, 8"araC" Ø "araE", 3<, 8"araC" Ø "araFG_araH_1H_2", 3<,
8"araC" Ø "araJ", 1<, 8"arcA" Ø "aceBAK", 2<, 8"arcA" Ø "appCBA", 1<,
8"arcA" Ø "appY", 1<, 8"arcA" Ø "betIBA", 2<, 8"arcA" Ø "cydAB", 1<,
8"arcA" Ø "cyoABCDE", 2<, 8"arcA" Ø "dctA", 2<, 8"arcA" Ø "fadBA", 2<,
8"arcA" Ø "focA_pflB", 1<, 8"arcA" Ø "fumA", 2<, 8"arcA" Ø "fumC", 2<,
8"arcA" Ø "glcDEFGB", 2<, 8"arcA" Ø "glpACB", 2<, 8"arcA" Ø "gltA", 2<,
8"arcA" Ø "icdA", 2<, 8"arcA" Ø "lctPRD", 2<, 8"arcA" Ø "mdh", 2<,
8"arcA" Ø "nuoABCEFGHIJKLMN", 2<, 8"arcA" Ø "sdhCDAB_b0725_sucABCD", 2<,
8"arcA" Ø "sodA", 2<, 8"argR" Ø "argCBH", 2<, 8"argR" Ø "argD", 2<,
8"argR" Ø "argE", 2<, 8"argR" Ø "argF", 2<, 8"argR" Ø "argI", 2<,
8"argR" Ø "carAB", 2<, 8"arsR" Ø "arsEFG", 2<, 8"asnC" Ø "asnA", 1<,
8"atoC" Ø "atoDAB", 1<, 8"atoC" Ø "atoDAE", 1<, 8"betIBA" Ø "betT", 2<,
8"birA_murA" Ø "bioA", 2<, 8"birA_murA" Ø "bioBFCD", 2<, 8"cadC" Ø "cadBA", 1<,
8"caiF" Ø "caiTABCDE", 1<, 8"caiF" Ø "fixABCX", 1<, 8"cbl" Ø "ssuEADCB", 1<,
8"cbl" Ø "tauABCD", 1<, 8"cpxAR" Ø "cpxP", 1<, 8"cpxAR" Ø "dsbA", 1<,
8"cpxAR" Ø "ecfI", 1<, 8"cpxAR" Ø "htrA", 1<, 8"cpxAR" Ø "motABcheAW", 2<,
8"cpxAR" Ø "rotA", 1<, 8"cpxAR" Ø "skp_lpxDA_fabZ", 1<, 8"cpxAR" Ø "tsr", 2<,
8"cpxAR" Ø "xprB_dsbC_recJ", 1<, 8"crp" Ø "acs", 1<, 8"crp" Ø "aldB", 1<,
8"crp" Ø "ansB", 1<, 8"crp" Ø "araBAD", 1<, 8"crp" Ø "araC", 1<,
8"crp" Ø "araE", 1<, 8"crp" Ø "araFG_araH_1H_2", 1<, 8"crp" Ø "araJ", 1<,
8"crp" Ø "caiF", 1<, 8"crp" Ø "caiTABCDE", 1<, 8"crp" Ø "cirA", 1<,
8"crp" Ø "cpdB", 1<, 8"crp" Ø "cyaA", 2<, 8"crp" Ø "dadAX", 1<,
8"crp" Ø "dctA", 2<, 8"crp" Ø "dcuB_fumB", 2<, 8"crp" Ø "deoCABD", 3<,
8"crp" Ø "dsdXA", 1<, 8"crp" Ø "ebgAC", 1<, 8"crp" Ø "epd_pgk", 1<,
8"crp" Ø "fadL", 2<, 8"crp" Ø "fixABCX", 1<, 8"crp" Ø "flhDC", 1<,
8"crp" Ø "focA_pflB", 1<, 8"crp" Ø "fucAO", 1<, 8"crp" Ø "fucPIKUR", 1<,
8"crp" Ø "fur", 1<, 8"crp" Ø "galETKM", 3<, 8"crp" Ø "galS", 1<,
8"crp" Ø "glgCAP", 1<, 8"crp" Ø "glgS", 1<, 8"crp" Ø "glnALG", 1<,
8"crp" Ø "glpACB", 1<, 8"crp" Ø "glpD", 1<, 8"crp" Ø "glpFK", 1<,
8"crp" Ø "glpTQ", 1<, 8"crp" Ø "gltA", 1<, 8"crp" Ø "gntKU", 1<,
8"crp" Ø "gntT", 1<, 8"crp" Ø "ivbL_ilvBN", 1<, 8"crp" Ø "lacZYA", 1<,
8"crp" Ø "malEFG", 1<, 8"crp" Ø "malI", 2<, 8"crp" Ø "malK_lamB_malM", 1<,
8"crp" Ø "malS", 1<, 8"crp" Ø "malT", 1<, 8"crp" Ø "malXY", 3<,
8"crp" Ø "manXYZ", 1<, 8"crp" Ø "melAB", 1<, 8"crp" Ø "melR", 1<,
8"crp" Ø "mglBAC", 1<, 8"crp" Ø "nagBACD", 1<, 8"crp" Ø "nagE", 1<,
8"crp" Ø "nupG", 3<, 8"crp" Ø "ompA", 2<, 8"crp" Ø "ppiA", 3<, 8"crp" Ø "proP", 3<,
8"crp" Ø "ptsHI_crr", 3<, 8"crp" Ø "rhaBAD", 3<, 8"crp" Ø "rhaT", 1<,
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8"crp" Ø "rpoH", 3<, 8"crp" Ø "sdhCDAB_b0725_sucABCD", 1<, 8"crp" Ø "speC", 2<,
8"crp" Ø "srlAEBD_gutM_srlR_gutQ", 1<, 8"crp" Ø "tdcABCDEFG", 1<,
8"crp" Ø "tnaLAB", 1<, 8"crp" Ø "tsx", 3<, 8"crp" Ø "ubiG", 1<, 8"crp" Ø "udp", 1<,
8"crp" Ø "uhpT", 1<, 8"crp" Ø "yhfA", 3<, 8"crp" Ø "yiaKLMNOPQRS", 1<,
8"csgDEFG" Ø "csgBA", 1<, 8"cspA" Ø "gyrA", 1<, 8"cspA" Ø "hns", 1<,
8"cynR" Ø "cynTSX", 1<, 8"cysB" Ø "cysDNC", 1<, 8"cysB" Ø "cysJIH", 1<,
8"cysB" Ø "cysK", 1<, 8"cysB" Ø "cysPUWAM", 1<, 8"cysB" Ø "tauABCD", 1<,
8"cytR" Ø "deoCABD", 2<, 8"cytR" Ø "nupC", 2<, 8"cytR" Ø "nupG", 2<,
8"cytR" Ø "ppiA", 2<, 8"cytR" Ø "rpoH", 2<, 8"cytR" Ø "tsx", 3<,
8"cytR" Ø "udp", 2<, 8"deoR" Ø "deoCABD", 2<, 8"deoR" Ø "nupG", 2<,
8"deoR" Ø "tsx", 2<, 8"dnaA" Ø "nrdAB", 1<, 8"dnaA" Ø "rpoH", 2<,
8"dsdC" Ø "dsdXA", 1<, 8"ebgR" Ø "ebgAC", 2<, 8"envY_ompT" Ø "ompC", 1<,
8"envY_ompT" Ø "ompF", 1<, 8"evgA" Ø "ompC", 1<, 8"exuR" Ø "exuT", 2<,
8"exuR" Ø "uxaCA", 2<, 8"exuR" Ø "uxuABR", 2<, 8"fadR" Ø "fabA", 1<,
8"fadR" Ø "fadBA", 2<, 8"fadR" Ø "fadL", 2<, 8"fadR" Ø "iclMR", 2<,
8"fadR" Ø "uspA", 2<, 8"fecIR" Ø "fecABCDE", 1<, 8"fhlA" Ø "fdhF", 1<,
8"fhlA" Ø "hycABCDEFGH", 1<, 8"fhlA" Ø "hypABCDE", 1<, 8"flhDC" Ø "flgAMN", 1<,
8"flhDC" Ø "flgBCDEFGHIJK", 1<, 8"flhDC" Ø "flhBAE", 1<, 8"flhDC" Ø "fliAZY", 1<,
8"flhDC" Ø "fliE", 1<, 8"flhDC" Ø "fliFGHIJK", 1<, 8"flhDC" Ø "fliLMNOPQR", 1<,
8"fliAZY" Ø "flgBCDEFGHIJK", 1<, 8"fliAZY" Ø "flgKL", 1<,
8"fliAZY" Ø "flgMN", 1<, 8"fliAZY" Ø "flhBAE", 1<, 8"fliAZY" Ø "fliC", 1<,
8"fliAZY" Ø "fliDST", 1<, 8"fliAZY" Ø "fliE", 1<, 8"fliAZY" Ø "fliFGHIJK", 1<,
8"fliAZY" Ø "fliLMNOPQR", 1<, 8"fliAZY" Ø "motABcheAW", 1<,
8"fliAZY" Ø "tarTapcheRBYZ", 1<, 8"fliAZY" Ø "tsr", 1<, 8"fnr" Ø "acs", 1<,
8"fnr" Ø "ansB", 1<, 8"fnr" Ø "arcA", 1<, 8"fnr" Ø "aspA", 1<,
8"fnr" Ø "caiF", 1<, 8"fnr" Ø "cydAB", 2<, 8"fnr" Ø "cyoABCDE", 2<,
8"fnr" Ø "dcuB_fumB", 1<, 8"fnr" Ø "dmsABC", 1<, 8"fnr" Ø "fdnGHI", 1<,
8"fnr" Ø "focA_pflB", 1<, 8"fnr" Ø "frdABCD", 1<, 8"fnr" Ø "glpACB", 1<,
8"fnr" Ø "hypABCDE", 1<, 8"fnr" Ø "icdA", 2<, 8"fnr" Ø "narGHJI", 1<,
8"fnr" Ø "narK", 1<, 8"fnr" Ø "ndh", 2<, 8"fnr" Ø "nirBDC_cysG", 1<,
8"fnr" Ø "nuoABCEFGHIJKLMN", 2<, 8"fnr" Ø "sdhCDAB_b0725_sucABCD", 2<,
8"fnr" Ø "tdcABCDEFG", 1<, 8"FruR" Ø "aceBAK", 2<, 8"FruR" Ø "adhE", 2<,
8"FruR" Ø "fruBKA", 2<, 8"FruR" Ø "icdA", 1<, 8"FruR" Ø "ppsA", 1<,
8"FruR" Ø "ptsHI_crr", 3<, 8"FruR" Ø "pykF", 2<, 8"fucPIKUR" Ø "fucAO", 1<,
8"fur" Ø "cirA", 2<, 8"fur" Ø "entCEBA", 2<, 8"fur" Ø "fecIR", 2<,
8"fur" Ø "fepA_entD", 2<, 8"fur" Ø "fepB", 2<, 8"fur" Ø "fepDGC", 2<,
8"fur" Ø "fhuACDB", 2<, 8"fur" Ø "sodA", 2<, 8"fur" Ø "tonB", 2<,
8"GalR" Ø "galETKM", 2<, 8"GalR" Ø "galS", 2<, 8"galS" Ø "mglBAC", 2<,
8"gatR_1" Ø "gatYZABCDR_2", 2<, 8"gcvA" Ø "gcvTHP", 3<, 8"gcvR" Ø "gcvTHP", 2<,
8"glcC" Ø "glcDEFGB", 1<, 8"glnALG" Ø "glnHPQ", 3<, 8"glnALG" Ø "nac", 1<,
8"glpR" Ø "glpACB", 2<, 8"glpR" Ø "glpD", 2<, 8"glpR" Ø "glpFK", 2<,
8"glpR" Ø "glpTQ", 2<, 8"gntR" Ø "edd_eda", 2<, 8"gntR" Ø "gntKU", 2<,
8"gntR" Ø "gntT", 2<, 8"hcaR" Ø "hcaA1A2CBD_yphA", 1<, 8"himA" Ø "aceBAK", 1<,
8"himA" Ø "caiTABCDE", 2<, 8"himA" Ø "carAB", 3<, 8"himA" Ø "dps", 1<,
8"himA" Ø "ecpD_htrE", 1<, 8"himA" Ø "focA_pflB", 1<, 8"himA" Ø "glcDEFGB", 1<,
8"himA" Ø "glnHPQ", 3<, 8"himA" Ø "himD", 2<, 8"himA" Ø "hycABCDEFGH", 1<,
8"himA" Ø "hypABCDE", 1<, 8"himA" Ø "narGHJI", 1<, 8"himA" Ø "narK", 1<,
8"himA" Ø "nuoABCEFGHIJKLMN", 2<, 8"himA" Ø "ompC", 2<, 8"himA" Ø "ompF", 3<,
8"himA" Ø "ompR_envZ", 2<, 8"himA" Ø "osmE", 2<, 8"himA" Ø "pspABCDE", 1<,
8"himA" Ø "sodA", 2<, 8"himA" Ø "tdcABCDEFG", 1<, 8"hns" Ø "caiF", 2<,
8"hns" Ø "flhDC", 1<, 8"hns" Ø "fliAZY", 1<, 8"hns" Ø "nhaA", 1<,
8"hns" Ø "osmC", 1<, 8"hns" Ø "rcsAB", 1<, 8"hns" Ø "stpA", 2<,
8"hydHG" Ø "zraP", 1<, 8"iclMR" Ø "aceBAK", 2<, 8"iclMR" Ø "acs", 2<,
8"ilvY" Ø "ilvC", 1<, 8"kdpDE" Ø "kdpABC", 1<, 8"lacI" Ø "lacZYA", 2<,
8"leuO" Ø "leuLABCD", 1<, 8"lexA_dinF" Ø "polB", 2<, 8"lexA_dinF" Ø "recA", 2<,
8"lexA_dinF" Ø "recN", 2<, 8"lexA_dinF" Ø "rpsU_dnaG_rpoD", 2<,
8"lexA_dinF" Ø "ssb", 2<, 8"lexA_dinF" Ø "sulA", 2<, 8"lexA_dinF" Ø "umuDC", 2<,
8"lexA_dinF" Ø "uvrA", 2<, 8"lexA_dinF" Ø "uvrB", 2<, 8"lexA_dinF" Ø "uvrC", 2<,
8"lexA_dinF" Ø "uvrD", 2<, 8"lrp" Ø "gcvTHP", 1<, 8"lrp" Ø "gltBDF", 1<,
8"lrp" Ø "ilvIH", 1<, 8"lrp" Ø "kbl_tdh", 3<, 8"lrp" Ø "livJ", 2<,
8"lrp" Ø "livKHMGF", 2<, 8"lrp" Ø "lysU", 2<, 8"lrp" Ø "ompC", 2<,
8"lrp" Ø "ompF", 1<, 8"lrp" Ø "oppABCDF", 2<, 8"lrp" Ø "osmC", 1<,
8"lrp" Ø "sdaA", 2<, 8"lrp" Ø "serA", 1<, 8"lrp" Ø "stpA", 1<,
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8"lysR" Ø "lysA", 1<, 8"lysR" Ø "tdcABCDEFG", 1<, 8"malI" Ø "malXY", 2<,
8"malT" Ø "malEFG", 1<, 8"malT" Ø "malK_lamB_malM", 1<, 8"malT" Ø "malPQ", 1<,
8"malT" Ø "malS", 1<, 8"malT" Ø "malZ", 1<, 8"marRAB" Ø "fpr", 1<,
8"marRAB" Ø "fumC", 1<, 8"marRAB" Ø "nfo", 1<, 8"marRAB" Ø "sodA", 1<,
8"marRAB" Ø "zwf", 1<, 8"melR" Ø "melAB", 1<, 8"metJ" Ø "metA", 2<,
8"metJ" Ø "metC", 2<, 8"metJ" Ø "metF", 2<, 8"metJ" Ø "metR", 2<,
8"metR" Ø "glyA", 1<, 8"metR" Ø "metA", 1<, 8"metR" Ø "metH", 1<,
8"mhpR" Ø "mhpABCDFE", 1<, 8"mlc" Ø "malT", 2<, 8"mlc" Ø "manXYZ", 2<,
8"mlc" Ø "ptsG", 2<, 8"mlc" Ø "ptsHI_crr", 2<, 8"modE" Ø "modABC", 2<,
8"nac" Ø "gdhA", 2<, 8"nac" Ø "putAP", 1<, 8"nadR" Ø "nadB", 2<,
8"nadR" Ø "pncB", 2<, 8"nagBACD" Ø "glmUS", 3<, 8"nagBACD" Ø "manXYZ", 2<,
8"nagBACD" Ø "nagE", 2<, 8"narL" Ø "adhE", 2<, 8"narL" Ø "caiF", 2<,
8"narL" Ø "dcuB_fumB", 2<, 8"narL" Ø "dmsABC", 2<, 8"narL" Ø "fdnGHI", 1<,
8"narL" Ø "focA_pflB", 2<, 8"narL" Ø "frdABCD", 2<, 8"narL" Ø "narGHJI", 1<,
8"narL" Ø "narK", 1<, 8"narL" Ø "nirBDC_cysG", 1<, 8"narL" Ø "nrfABCDEFG", 1<,
8"narL" Ø "nuoABCEFGHIJKLMN", 1<, 8"narL" Ø "torCAD", 2<, 8"nhaR" Ø "nhaA", 1<,
8"nlpD_rpoS" Ø "acs", 1<, 8"nlpD_rpoS" Ø "adhE", 1<, 8"nlpD_rpoS" Ø "aldB", 1<,
8"nlpD_rpoS" Ø "alkA", 1<, 8"nlpD_rpoS" Ø "appY", 1<, 8"nlpD_rpoS" Ø "cpxAR", 1<,
8"nlpD_rpoS" Ø "dps", 1<, 8"nlpD_rpoS" Ø "ftsQAZ", 1<, 8"nlpD_rpoS" Ø "katG", 1<,
8"nlpD_rpoS" Ø "narZYWV", 1<, 8"nlpD_rpoS" Ø "nhaA", 1<,
8"nlpD_rpoS" Ø "osmC", 1<, 8"nlpD_rpoS" Ø "osmY", 1<, 8"nlpD_rpoS" Ø "proP", 1<,
8"ompR_envZ" Ø "csgBA", 1<, 8"ompR_envZ" Ø "csgDEFG", 1<,
8"ompR_envZ" Ø "fadL", 2<, 8"ompR_envZ" Ø "flhDC", 2<,
8"ompR_envZ" Ø "ompC", 1<, 8"ompR_envZ" Ø "ompF", 3<, 8"oxyR" Ø "ahpCF", 1<,
8"oxyR" Ø "dps", 1<, 8"oxyR" Ø "gorA", 1<, 8"oxyR" Ø "katG", 1<,
8"phoBR" Ø "phnCDE_f73_phnFGHIJKLMNOP", 1<, 8"phoBR" Ø "phoA", 1<,
8"phoBR" Ø "phoE", 1<, 8"phoBR" Ø "pstSCAB_phoU", 1<, 8"pspF" Ø "pspABCDE", 1<,
8"purR" Ø "codBA", 2<, 8"purR" Ø "cvpA_purF_ubiX", 2<,
8"purR" Ø "gcvTHP", 2<, 8"purR" Ø "glnB", 2<, 8"purR" Ø "glyA", 2<,
8"purR" Ø "guaBA", 2<, 8"purR" Ø "prsA", 2<, 8"purR" Ø "purC", 2<,
8"purR" Ø "purEK", 2<, 8"purR" Ø "purHD", 2<, 8"purR" Ø "purL", 2<,
8"purR" Ø "purMN", 2<, 8"purR" Ø "pyrC", 2<, 8"purR" Ø "pyrD", 2<,
8"purR" Ø "speA", 2<, 8"purR" Ø "ycfC_purB", 2<, 8"rbsR" Ø "rbsDACBK", 2<,
8"rcsA" Ø "ftsQAZ", 1<, 8"rcsA" Ø "wza_wzb_b2060_wcaA_wcaB", 1<,
8"rhaSR" Ø "rhaBAD", 1<, 8"rhaSR" Ø "rhaT", 1<, 8"rob" Ø "aslB", 1<,
8"rob" Ø "fumC", 1<, 8"rob" Ø "galETKM", 2<, 8"rob" Ø "inaA", 1<,
8"rob" Ø "marRAB", 1<, 8"rob" Ø "mdlA", 1<, 8"rob" Ø "nfo", 1<,
8"rob" Ø "sodA", 1<, 8"rob" Ø "ybaO", 1<, 8"rob" Ø "ybiS", 1<,
8"rob" Ø "yfhD", 1<, 8"rob" Ø "zwf", 1<, 8"rpiR_alsBACEK" Ø "rpiB", 2<,
8"rpoE_rseABC" Ø "cutC", 1<, 8"rpoE_rseABC" Ø "dapA_nlpB_purA", 1<,
8"rpoE_rseABC" Ø "ecfABC", 1<, 8"rpoE_rseABC" Ø "ecfD", 1<,
8"rpoE_rseABC" Ø "ecfF", 1<, 8"rpoE_rseABC" Ø "ecfG", 1<,
8"rpoE_rseABC" Ø "ecfH", 1<, 8"rpoE_rseABC" Ø "ecfI", 1<,
8"rpoE_rseABC" Ø "ecfJ", 1<, 8"rpoE_rseABC" Ø "ecfK", 1<,
8"rpoE_rseABC" Ø "ecfLM", 1<, 8"rpoE_rseABC" Ø "fkpA", 1<,
8"rpoE_rseABC" Ø "htrA", 1<, 8"rpoE_rseABC" Ø "ksgA_epaG_epaH", 1<,
8"rpoE_rseABC" Ø "lpxDA_fabZ", 1<, 8"rpoE_rseABC" Ø "mdoGH", 1<,
8"rpoE_rseABC" Ø "nlpB_purA", 1<, 8"rpoE_rseABC" Ø "ostA_surA_pdxA", 1<,
8"rpoE_rseABC" Ø "rfaDFCL", 1<, 8"rpoE_rseABC" Ø "rpoD", 1<,
8"rpoE_rseABC" Ø "rpoH", 1<, 8"rpoE_rseABC" Ø "skp_lpxDA_fabZ", 1<,
8"rpoE_rseABC" Ø "uppS_cdsA_ecfE", 1<, 8"rpoE_rseABC" Ø "xprB_dsbC_recJ", 1<,
8"rpoH" Ø "clpP", 1<, 8"rpoH" Ø "dnaKJ", 1<, 8"rpoH" Ø "grpE", 1<,
8"rpoH" Ø "hflB", 1<, 8"rpoH" Ø "htpG", 1<, 8"rpoH" Ø "htpY", 1<,
8"rpoH" Ø "ibpAB", 1<, 8"rpoH" Ø "lon", 1<, 8"rpoH" Ø "mopA", 1<,
8"rpoH" Ø "mopB", 1<, 8"rpoN" Ø "atoC", 1<, 8"rpoN" Ø "dctA", 1<,
8"rpoN" Ø "fdhF", 1<, 8"rpoN" Ø "fhlA", 1<, 8"rpoN" Ø "glnALG", 1<,
8"rpoN" Ø "glnHPQ", 1<, 8"rpoN" Ø "hycABCDEFGH", 1<, 8"rpoN" Ø "hypA", 1<,
8"rpoN" Ø "nac", 1<, 8"rpoN" Ø "nycA", 1<, 8"rpoN" Ø "pspABCDE", 1<,
8"rpoN" Ø "rtcR", 1<, 8"rpoN" Ø "zraP", 1<, 8"rtcR" Ø "rtcAB", 2<,
8"soxR" Ø "soxS", 1<, 8"soxS" Ø "acnA", 1<, 8"soxS" Ø "fpr", 1<,
8"soxS" Ø "fumC", 1<, 8"soxS" Ø "nfo", 1<, 8"soxS" Ø "sodA", 1<,
8"soxS" Ø "zwf", 1<, 8"tdcAR" Ø "tdcABCDEFG", 1<, 8"torR" Ø "torCAD", 1<,
8"treR" Ø "treBC", 2<, 8"trpR" Ø "aroH", 2<, 8"trpR" Ø "aroL_yaiA_aroM", 2<,
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In[86]:=

8"trpR" Ø "mtr", 2<, 8"trpR" Ø "trpLEDCBA", 2<, 8"tyrR" Ø "aroF_tyrA", 2<,
8"tyrR" Ø "aroG", 2<, 8"tyrR" Ø "aroL_yaiA_aroM", 2<, 8"tyrR" Ø "aroP", 2<,
8"tyrR" Ø "mtr", 1<, 8"tyrR" Ø "tyrB", 2<, 8"tyrR" Ø "tyrP", 3<,
8"uhpA" Ø "uhpT", 1<, 8"uidR" Ø "uidRABC", 2<, 8"uxuABR" Ø "uidRABC", 2<,
8"xapR" Ø "xapAB", 1<, 8"xylFGHR" Ø "xylAB", 1<, 8"yhdG_fis" Ø "adhE", 1<,
8"yhdG_fis" Ø "alaWX", 1<, 8"yhdG_fis" Ø "aldB", 3<, 8"yhdG_fis" Ø "argU", 1<,
8"yhdG_fis" Ø "argW", 1<, 8"yhdG_fis" Ø "argX_hisR_leuT_proM", 1<,
8"yhdG_fis" Ø "aspV", 1<, 8"yhdG_fis" Ø "leuQPV", 1<,
8"yhdG_fis" Ø "leuX", 1<, 8"yhdG_fis" Ø "lysT_valT_lysW", 1<,
8"yhdG_fis" Ø "metT_leuW_glnUW_metU_glnVX", 1<,
8"yhdG_fis" Ø "metY_yhbC_nusA_infB", 1<, 8"yhdG_fis" Ø "nrdAB", 1<,
8"yhdG_fis" Ø "pdhR_aceEF_lpdA", 1<, 8"yhdG_fis" Ø "pheU", 1<,
8"yhdG_fis" Ø "pheV", 1<, 8"yhdG_fis" Ø "proK", 1<, 8"yhdG_fis" Ø "proL", 1<,
8"yhdG_fis" Ø "proP", 1<, 8"yhdG_fis" Ø "sdhCDAB_b0725_sucABCD", 1<,
8"yhdG_fis" Ø "serT", 1<, 8"yhdG_fis" Ø "serX", 1<,
8"yhdG_fis" Ø "thrU_tyrU_glyT_thrT", 1<, 8"yhdG_fis" Ø "thrW", 1<,
8"yhdG_fis" Ø "tyrTV", 1<, 8"yhdG_fis" Ø "valUXY_lysV", 1<,
8"yiaJ" Ø "yiaKLMNOPQRS", 2<, 8"yjbK" Ø "znuABC", 2<, 8"yjdHG" Ø "dctA", 1<,
8"yjdHG" Ø "dcuB_fumB", 1<, 8"yjdHG" Ø "frdABCD", 1<, 8"zntR" Ø "zntA", 1<<;

Drawing the Network

The network consists of many components. Mouse over vertices to see the labels.

In[87]:= GraphPlot@g, EdgeLabeling Ø Automatic, VertexLabeling Ø TooltipD

Out[87]=
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Use a different component packing method.

In[88]:= GraphPlot@g, EdgeLabeling Ø Automatic,
VertexLabeling Ø Tooltip, PackingMethod Ø "ClosestPackingCenter"D

Out[88]=

This spreads out the vertices.

In[89]:= GraphPlot@g, Method -> 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<,
EdgeLabeling Ø Automatic, VertexLabeling Ø Tooltip,
PackingMethod Ø "ClosestPackingCenter"D

Out[89]=
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An alternative way of spreading out the vertices.

In[90]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø Tooltip,
PackingMethod Ø "ClosestPackingCenter"D

Out[90]=

Protein: An Oxidoreductase

This plots an oxidoreductase protein [3] using the data from [4].

In[91]:= GraphPlot@881 Ø 2, 1<, 81 Ø 9, 2<, 81 Ø 17, 2<, 82 Ø 3, 1<, 82 Ø 9, 2<, 83 Ø 49, 2<,
84 Ø 5, 2<, 84 Ø 42, 2<, 85 Ø 6, 2<, 85 Ø 9, 2<, 85 Ø 17, 2<, 85 Ø 42, 1<, 86 Ø 7, 1<,
86 Ø 8, 2<, 86 Ø 17, 2<, 86 Ø 28, 2<, 86 Ø 42, 2<, 87 Ø 8, 2<, 87 Ø 16, 2<, 87 Ø 28, 2<,
87 Ø 44, 2<, 88 Ø 10, 2<, 88 Ø 11, 2<, 88 Ø 14, 2<, 88 Ø 16, 2<, 88 Ø 18, 2<,
88 Ø 19, 2<, 88 Ø 28, 2<, 89 Ø 17, 2<, 810 Ø 11, 1<, 810 Ø 12, 2<, 810 Ø 13, 2<,
810 Ø 14, 2<, 810 Ø 17, 2<, 810 Ø 18, 2<, 811 Ø 12, 2<, 811 Ø 18, 2<, 812 Ø 13, 2<,
812 Ø 14, 2<, 812 Ø 18, 2<, 813 Ø 14, 2<, 813 Ø 15, 2<, 813 Ø 16, 2<, 813 Ø 18, 2<,
813 Ø 32, 2<, 814 Ø 15, 1<, 814 Ø 16, 2<, 814 Ø 18, 2<, 814 Ø 32, 1<, 814 Ø 36, 2<,
815 Ø 16, 2<, 815 Ø 32, 2<, 815 Ø 36, 2<, 815 Ø 37, 2<, 816 Ø 17, 2<, 816 Ø 18, 2<,
816 Ø 32, 2<, 816 Ø 33, 2<, 816 Ø 37, 2<, 818 Ø 19, 2<, 819 Ø 20, 2<, 819 Ø 43, 2<,
820 Ø 21, 2<, 820 Ø 43, 2<, 821 Ø 22, 2<, 822 Ø 27, 2<, 822 Ø 28, 2<, 822 Ø 29, 2<,
823 Ø 24, 2<, 823 Ø 25, 2<, 823 Ø 26, 2<, 823 Ø 27, 2<, 823 Ø 30, 2<, 823 Ø 31, 2<,
823 Ø 39, 2<, 824 Ø 25, 2<, 824 Ø 31, 2<, 824 Ø 39, 2<, 825 Ø 26, 2<, 825 Ø 31, 2<,
826 Ø 27, 2<, 826 Ø 30, 2<, 826 Ø 31, 2<, 826 Ø 32, 2<, 827 Ø 30, 2<, 828 Ø 29, 2<,
829 Ø 85, 2<, 830 Ø 31, 2<, 830 Ø 32, 2<, 830 Ø 33, 2<, 832 Ø 36, 2<, 832 Ø 85, 2<,
833 Ø 36, 2<, 835 Ø 36, 2<, 835 Ø 79, 2<, 835 Ø 82, 2<, 836 Ø 37, 2<, 837 Ø 38, 2<,
839 Ø 40, 2<, 839 Ø 41, 2<, 839 Ø 47, 2<, 840 Ø 41, 2<, 840 Ø 46, 2<, 840 Ø 48, 2<,
843 Ø 44, 2<, 844 Ø 45, 1<, 845 Ø 46, 1<, 847 Ø 48, 2<, 850 Ø 51, 1<, 850 Ø 52, 2<,
850 Ø 59, 1<, 850 Ø 67, 2<, 851 Ø 52, 2<, 851 Ø 59, 2<, 851 Ø 67, 2<, 852 Ø 53, 1<,
853 Ø 93, 2<, 853 Ø 99, 2<, 854 Ø 55, 2<, 854 Ø 92, 2<, 855 Ø 56, 2<, 855 Ø 59, 2<,
855 Ø 67, 2<, 855 Ø 92, 1<, 856 Ø 57, 1<, 856 Ø 58, 2<, 856 Ø 67, 2<, 856 Ø 78, 2<,
856 Ø 92, 2<, 857 Ø 58, 2<, 857 Ø 66, 2<, 857 Ø 78, 2<, 857 Ø 94, 2<, 858 Ø 60, 2<,
858 Ø 61, 2<, 858 Ø 64, 2<, 858 Ø 66, 2<, 858 Ø 68, 2<, 858 Ø 69, 2<, 858 Ø 78, 2<,
859 Ø 67, 2<, 860 Ø 61, 2<, 860 Ø 62, 2<, 860 Ø 64, 2<, 860 Ø 67, 2<, 860 Ø 68, 2<,
861 Ø 62, 2<, 861 Ø 68, 2<, 862 Ø 63, 2<, 862 Ø 68, 2<, 863 Ø 64, 2<, 863 Ø 65, 2<,
863 Ø 66, 2<, 863 Ø 68, 2<, 863 Ø 82, 2<, 864 Ø 65, 1<, 864 Ø 66, 2<, 864 Ø 68, 2<,
864 Ø 82, 1<, 864 Ø 86, 2<, 865 Ø 66, 2<, 865 Ø 82, 2<, 865 Ø 86, 2<, 865 Ø 87, 2<,
866 Ø 67, 2<, 866 Ø 68, 2<, 866 Ø 82, 2<, 866 Ø 83, 2<, 866 Ø 87, 2<, 868 Ø 69, 2<,
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In[91]:=

869 Ø 70, 2<, 869 Ø 93, 2<, 870 Ø 71, 2 , 71 Ø 72, 2 , 72 Ø 77, 2<, 872 Ø 78, 2<,
872 Ø 79, 2<, 873 Ø 74, 2<, 873 Ø 75, 2<, 873 Ø 76, 2<, 873 Ø 77, 2<, 873 Ø 80, 2<,
873 Ø 81, 2<, 873 Ø 89, 2<, 874 Ø 75, 2<, 874 Ø 81, 2<, 874 Ø 89, 2<, 875 Ø 76, 2<,
875 Ø 81, 2<, 876 Ø 77, 2<, 876 Ø 80, 2<, 876 Ø 81, 2<, 876 Ø 82, 2<, 877 Ø 80, 2<,
878 Ø 79, 2<, 880 Ø 81, 2<, 880 Ø 82, 2<, 880 Ø 83, 2<, 882 Ø 86, 2<, 885 Ø 86, 2<,
886 Ø 87, 2<, 887 Ø 88, 2<, 889 Ø 90, 2<, 889 Ø 91, 2<, 889 Ø 97, 2<, 890 Ø 91, 2<,
890 Ø 96, 2<, 890 Ø 98, 2<, 893 Ø 94, 2<, 894 Ø 95, 1<, 895 Ø 96, 1<, 897 Ø 98, 2<<,

EdgeLabeling Ø Automatic, MultiedgeStyle Ø FalseD

Out[91]=

Square Dielectric Waveguide

A square sparse matrix can be viewed as an adjacency matrix of a graph; therefore it is often

instructive  to  "draw" the sparse matrix  using GraphPlot.  An example is  given below,  and the

graph drawing of over one thousand matrices can be found at [7].

This graph represents a sparse matrix used in electrical engineering [5].

In[113]:= g = Import@"ftp:êêmath.nist.govêpubêMatrixMarket2êNEPêdwaveêdwa512.mtx.gz"D

Out[115]= SparseArray@<2480>, 8512, 512<D

In[116]:= GraphPlot3D@g, VertexRenderingFunction Ø NoneD

Out[116]=
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Social Network

Graph drawing is a powerful tool in visualizing social structures.

This plots a social network.

In[94]:= GraphPlot@8"Li" Ø "Hu", "Wang" Ø "Hu", "Li" Ø "Wang", "Carol" Ø "Andre",
"Carol" Ø "Fernando", "Carol" Ø "Diane", "Andre" Ø "Diane", "Andre" Ø "Fernando",
"Andre" Ø "Beverly", "Fernando" Ø "Diane", "Fernando" Ø "Garth",
"Fernando" Ø "Heather", "Diane" Ø "Beverly", "Diane" Ø "Garth",
"Diane" Ø "Ed", "Beverly" Ø "Garth", "Beverly" Ø "Ed", "Garth" Ø "Ed",
"Garth" Ø "Heather", "Jane" Ø "Li", "Jane" Ø "Hu", "Heather" Ø "Ike",
"Ike" Ø "Jane", "Li" Ø "Yang", "Yang" Ø "Liu", "Liu" Ø "Wang"<,

VertexLabeling Ø True, PlotRangePadding Ø AutomaticD

Out[94]=

Graphs from Words and Texts

This plots a network of words all starting with "din". Here, two nearest words are found for each 
word and linked to it with an edge.

In[95]:= words = DictionaryLookup@"din*"D;

In[96]:= nearbys =
Flatten@Map@HThread@Ò -> DeleteCases@Nearest@words, Ò, 3D, ÒDDL &, wordsDD;

In[97]:= GraphPlot@nearbys,
Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -3<,
VertexRenderingFunction Ø HText@Ò2, Ò1, Background Ø WhiteD &LD

Out[97]=

This generates a graph by linking each letter in a word to all the letters that follow it in the word.
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This generates a graph by linking each letter in a word to all the letters that follow it in the word.

In[1]:= WordPlot@w_StringD := GraphPlot@Hx = Characters@wD;
Thread@Drop@x, -1D Ø Drop@x, 1DDL, VertexLabeling Ø True, DirectedEdges Ø TrueD;

In[2]:= WordPlot@"Shakespeare"D

Out[2]=

This generates a graph by linking words in a text with subsequent words.

In[100]:= TextPlot@w_StringD :=
GraphPlot@Hx = Map@ToLowerCase, StringCases@w, WordCharacter ..DD;

g = Thread@Drop@x, -1D Ø Drop@x, 1DD;
gL, DirectedEdges Ø True, VertexLabeling Ø TrueD;

In[101]:= TextPlot@"to be or not to be, that is the question."D

Out[101]=
to

be

or

notthatisthequestion

Torus

This defines a torus and plots it in 3D.

In[102]:= Torus@m_, n_D :=
SparseArray@
Flatten@Table@88i * n + j + 1, Mod@i + 1, mD * n + j + 1< ->

1, 8i * n + j + 1, Mod@i - 1, mD * n + j + 1< ->
1, 8i * n + j + 1, i * n + Mod@j + 1, nD + 1< ->
1, 8i * n + j + 1, i * n + Mod@j - 1, nD + 1< -> 1<, 8i, 0,
m - 1<, 8j, 0, n - 1<DD, 8m * n, m * n<D;

In[103]:= GraphPlot3D@Torus@40, 40D, VertexRenderingFunction Ø NoneD

Out[103]=

References
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Hierarchical Drawing of Directed Graphs

LayeredGraphPlot  attempts to draw the vertices of a graph in a series of layers, placing domi-

nant vertices at the top, and vertices lower in the hierarchy progressively further down.

LayeredGraphPlotA9vi 1->v j 1,vi 2->v j 2,…=E

generate a layered plot of the graph in which vertex vik is 
connected to vertex v jk

LayeredGraphPlotA99vi 1->v j 1,lbl1=,…=E

associate labels lblk with edges in the graph

LayeredGraphPlot@g,posD place the dominant vertices in the plot at position pos

LayeredGraphPlot@mD generate a layered plot of the graph represented by the 
adjacency matrix m

Hierarchical graph drawing.

LayeredGraphPlot  draws a graph so that  the edges point  predominantly  downward.  The sec-

ond argument  of  LayeredGraphPlot  specifies  the position of  the root.  Possible  values  for  this

argument are Right, Left, Top, and Bottom.

This plots a directed graph.

In[1]:= LayeredGraphPlot@
84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<, VertexLabeling -> TrueD

Out[1]=
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This is the same graph, with edges pointing from left to right.

In[2]:= LayeredGraphPlot@84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<,
Left, VertexLabeling -> TrueD

Out[2]=

LayeredGraphPlot  may produce slightly different output on different platforms, due to floating-

point differences.

Options for LayeredGraphPlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

MultiedgeStyle Automatic how to draw multiple edges between 
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for LayeredGraphPlot.

DirectedEdges
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DirectedEdges

The option DirectedEdges  specifies whether to draw edges as arrows. Possible values for this

option are True or False. The default value for this option is True.

This shows a graph with edges represented by lines instead of arrows.

In[3]:= LayeredGraphPlot@84 Ø 3, 5 Ø 2, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4<,
DirectedEdges Ø False, VertexLabeling Ø TrueD

Out[3]= 4

3

5

2

6

1

EdgeLabeling

The  option  EdgeLabeling  specifies  whether  and  how  to  display  labels  given  for  the  edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is  True,  which  displays  the  supplied  edge  labels  on  the  graph.  With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[4]:= LayeredGraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4,
3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[4]= edge 3->6
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This displays the labels as tooltips. Place the cursor over the edge between vertices 3 and 6 to 
see the tooltip.

In[5]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[5]=
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Alternatively, use Tooltip@vi -> v j, lblD to specify a tooltip for an edge. Place the cursor over 
the edge between vertices 3 and 6, as well as the edge label on the edge between vertices 3 
and 5, to see the tooltips.

In[6]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 83 Ø 5, Tooltip@ "edge 3->5", "3->5"D<,
Tooltip@3 Ø 6, "3->6"D, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[6]=

edge 3->5
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EdgeRenderingFunction

The  option  EdgeRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.
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This draws vertices only.

In[7]:= LayeredGraphPlot@Table@1, 810<, 810<D,
EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[7]=

With  EdgeRenderingFunction -> g,  each  edge  is  rendered  with  the  graphics  primitives  and

directives  given  by  the  function  g.  It  can  take  three  or  more  arguments  in  the  form

g@8ri, …, r j<, 8vi, v j<, lblij, …D,  where  ri,  r j  are  the  coordinates  of  the  beginning  and  ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the  edge  or  None.  Explicit  settings  for  EdgeRenderingFunction -> g  override  settings  for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance of 0.3 (in the 
graph's coordinate system).

In[8]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 1, 11 Ø 12, 12 Ø 13, 13 Ø 14, 14 Ø 15,
15 Ø 16, 16 Ø 17, 17 Ø 11, 1 Ø 11, 2 Ø 12, 3 Ø 13, 4 Ø 14, 5 Ø 15, 6 Ø 16, 7 Ø 17<,

EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[8]=

This displays edges and self-loops with black and red arrows, respectively. The function 
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.
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This displays edges and self-loops with black and red arrows, respectively. The function 
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.

In[9]:= << GraphUtilities`

In[10]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 5 Ø 1, 5 Ø 2, 5 Ø 3, 5 Ø 4, 1 Ø 4, 3 Ø 5, 3 Ø 3<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .7D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[10]=

MultiedgeStyle

The  option  MultiedgeStyle  specifies  whether  to  draw  multiple  edges  between  two  vertices.

Possible  values  for  MultiedgeStyle  are  Automatic  (the  default),  True,  False,  or  a  positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if the graph is specified by an adjacency

matrix. With MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d. 

By default, multiple edges are shown if a graph is given as a list of rules.

In[11]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<, VertexLabeling Ø TrueD

Out[11]=

But multiple edges are not shown for graphs specified by an adjacency matrix.
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But multiple edges are not shown for graphs specified by an adjacency matrix.

In[12]:= LayeredGraphPlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[12]=
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This spreads multiple edges by the specified amount.

In[13]:= LayeredGraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[13]=
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PackingMethod

The option PackingMethod specifies the method used for packing disconnected components. 

Possible values for the option are Automatic (the default), "ClosestPacking", 

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid". 

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With 

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center. 

With PackingMethod -> "Layered", components are packed in layers starting from the top left. 

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are 

packed in layers starting from the top/left respectively. With PackingMethod -> "NestedGrid", 

components are arranged in a nested grid. The typical effective default setting is 

PackingMethod -> "Layered", and the packing starts with components of the largest bounding 

box area.

This shows the packing of disconnected components by the default method.

In[14]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[14]=

This shows the packing of disconnected components using the "ClosestPackingCenter" 
method.

In[15]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[15]=

PlotRangePadding
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PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by LayeredGraphPlot.

PlotStyle

PlotStyle  is  a  common  option  for  graphics  functions  inherited  by  LayeredGraphPlot.  The

option PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker arrows, and both edges and vertices' labels in red.

In[16]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8, 10 Ø 8, 8 Ø 3,
12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<, VertexLabeling Ø True,

PlotStyle Ø 8Red, Arrowheads@880.1, 0.8<<D, Thickness@0.02D<D

Out[16]=

SelfLoopStyle

The option SelfLoopStyle  specifies whether and how to draw loops for vertices that are linked

to  themselves.  Possible  values  of  the  option  are  Automatic  (the  default),  True,  False,  or  a

positive  real  number.  With  SelfLoopStyle -> Automatic,  self-loops  are  shown if  the  graph  is

specified by a list of rules, but not by an adjacency matrix. With SelfLoopStyle -> d, the self-

loops are drawn with a diameter of d (relative to the average edge length). 
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By default, self-loops are displayed for a graph specified by a list of rules.

In[17]:= LayeredGraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1,
6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø TrueD

Out[17]=

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[18]:= LayeredGraphPlotB

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
1 1 1 1 1 0

, VertexLabeling Ø TrueF

Out[18]=

This shows self-loops with diameter equal to 0.3 times the average length of the edges.

In[19]:= LayeredGraphPlot@
83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1, 6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[19]=
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VertexCoordinateRules

The  option  VertexCoordinateRules  specifies  the  coordinates  of  the  vertices.  Possible  values

are None, or a list of coordinates. Coordinates specified by a list of rules are not currently sup-

ported by LayeredGraphPlot.

This draws the Petersen graph using known coordinates.

In[20]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[20]=

This draws with the default method.

In[21]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[21]=

VertexLabeling
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VertexLabeling

The option VertexLabeling  specifies whether to show vertex names as labels. Possible values

for  this  option  are  True,  False,  Automatic  (the  default)  and  Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified  by  a  list  of  rules,  labels  are  the  expressions  used  in  the  rules.

VertexLabeling -> False  displays  each  vertex  as  a  point.  VertexLabeling -> Tooltip  dis-

plays  each  vertex  as  a  point,  but  gives  its  name  in  a  tooltip.  VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD  anywhere in the list of rules to specify an alternative

tooltip for a vertex vk. 

This draws the graph with labels given as indices of the adjacency matrix.

In[22]:= LayeredGraphPlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[22]= 1

2

3

4 5

This uses the labels specified in the list of rules.

In[23]:= LayeredGraphPlot@8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[23]=

A

B a

C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the 
vertices to see the labels.
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This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the 
vertices to see the labels.

In[24]:= LayeredGraphPlot@
8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[24]=

VertexRenderingFunction

The  option  VertexRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion  of  graphics  primitives  and  directives.  With  the  default  setting  of  Automatic,  vertices  are

displayed as points, with their names given in tooltips. 

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the 
cursor at a vertex to see the tooltip.

In[22]:= g = 85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<;

In[23]:= LayeredGraphPlot@gD

Out[23]=
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This draws the same graph, but without the vertices.

In[24]:= LayeredGraphPlot@g, VertexRenderingFunction Ø NoneD

Out[24]=

With  VertexRenderingFunction -> g,  each  vertex  is  rendered  with  the  graphics  primitives

given by g@ri, vi, …D, where ri  is the coordinate of the vertex and vi  is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[27]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 8, 8 Ø 1, 1 Ø 9, 2 Ø 9,
3 Ø 10, 4 Ø 10, 6 Ø 11, 5 Ø 11, 7 Ø 12, 8 Ø 12<, Left, VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[27]=
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Example Gallery

Flow Chart

LayeredGraphPlot  helps visualize flow charts, for example for business, economic, or technical

presentations.

This shows a flow chart.

In[28]:= LayeredGraphPlot@8"total" Ø "TotalDispatch", "TotalList" Ø "CheckThreading",
"TotalList" Ø "TotalDispatch", "TotalSparse" Ø "TotalDispatch",
"TotalSparse" Ø "TotalDispatch", "TotalDispatch" Ø "TotalDispatch",
"TotalDispatch" Ø "TotalList", "TotalDispatch" Ø "TotalPacked",
"TotalDispatch" Ø "TotalSparse"<, VertexLabeling Ø TrueD

Out[28]=

total

TotalDispatch

TotalList

CheckThreading

TotalSparse TotalPacked
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This shows a flow chart that flows from left to right.

In[29]:= LayeredGraphPlot@
8"ratiotest" Ø "ratiolimit", "getdata" Ø "dir_inf _bad", "getdata" Ø "evalderiv",
"NSPpreliminaries" Ø "getdata", "findsp" Ø "termlimit", "findsp" Ø "ratiotest",
"findsp" Ø "nSumW", "findsp" Ø "nSumEM", "findsp" Ø "nProductEM",
"findsp" Ø "nProductW", "nSumW" Ø "nSumFinite", "nSumW" Ø "nSumWtail",
"nSumEM" Ø "evalterm", "nSumEM" Ø "nSumFinite", "nSumEM" Ø "evalderiv",
"nProductEM" Ø "nPFinite", "nProductW" Ø "nPFinite", "nProductW" Ø "nPWtail",
"oNSum" Ø "CleanOptionList", "oNSum" Ø "multidim", "oNSum" Ø "NSPpreliminaries",
"oNSum" Ø "findsp", "nSumFinite" Ø "evalterm", "nSumWtail" Ø "evalterm",
"nSumWtail" Ø "epsalg", "oNProduct" Ø "CleanOptionList",
"oNProduct" Ø "multidim", "oNProduct" Ø "NSPpreliminaries",
"oNProduct" Ø "findsp", "nPFinite" Ø "evalterm", "nPWtail" Ø "evalterm",
"nPWtail" Ø "epsalg", "oSequenceLimit" Ø "epsalg"<, Left,

VertexLabeling Ø True, AspectRatio Ø 1, PlotRangePadding Ø 0.02D

Out[29]=
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Food Chains

Food chains can be visualized with LayeredGraphPlot.

This shows a small food chain.

In[30]:= LayeredGraphPlot@8"John" -> "plants",
"lion" -> "John", "tiger" -> "John",
"tiger" Ø "deer", "lion" Ø "deer", "deer" Ø "plants",

"mosquito" -> "lion", "frog" -> "mosquito", "mosquito" Ø "tiger",
"John" Ø "cow", "cow" Ø "plants", "mosquito" Ø "deer",
"mosquito" Ø "John", "snake" -> "frog", "vulture" -> "snake"<, Left,

VertexLabeling -> TrueD

Out[30]=

John plantslion

tiger deer

mosquitofrog

cow

snakevulture

This shows another food chain.

In[2]:= LayeredGraphPlot@ 8"Raccoon" Ø "Bird", "Raccoon" Ø "Insect",
"Wildcat" Ø "Bird", "Wildcat" Ø "Rodent", "Fox" Ø "Bird",
"Fox" Ø "Garter snake", "Fox" Ø "Salamander", "Fox" Ø "Rabbit",
"Fox" Ø "Rodent", "Wolf" Ø "Rabbit", "Wolf" Ø "Rodent", "Wolf" Ø "Skunk",
"Wolf" Ø "Deer", "Bear" Ø "Deer", "Bear" Ø "Rodent", "Bear" Ø "Plant",
"Bird" Ø "Plant", "Garter snake" Ø "Insect", "Garter snake" Ø "Toad",
"Salamander" Ø "Insect", "Rabbit" Ø "Plant", "Skunk" Ø "Rodent",
"Skunk" Ø "Insect", "Deer" Ø "Plant", "Toad" Ø "Insect", "Insect" Ø "Plant"<,

VertexLabeling Ø True, PlotRangePadding Ø AutomaticD

Out[2]= Raccoon

Bird Insect

Wildcat

Rodent

Fox

Garter snake

Salamander Rabbit

Wolf

Skunk

Deer

Bear

Plant

Toad
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History of Unix

LayeredGraphPlot is suitable for visualizing historical events.

This shows a history of Unix.

In[32]:= LayeredGraphPlot@8"5th Edition" -> "6th Edition", "5th Edition" -> "PWB 1.0",
"6th Edition" -> "1 BSD", "6th Edition" -> "Interdata",
"6th Edition" -> "LSX", "6th Edition" -> "Mini Unix",
"6th Edition" -> "Wollongong", "PWB 1.0" -> "PWB 1.2",
"PWB 1.0" -> "USG 1.0", "1 BSD" -> "2 BSD", "Interdata" -> "PWB 2.0",
"Interdata" -> "UnixêTS 3.0", "Interdata" -> "7th Edition",
"PWB 1.2" -> "PWB 2.0", "USG 1.0" -> "USG 2.0", "USG 1.0" -> "CB Unix 1",
"7th Edition" -> "2 BSD", "7th Edition" -> "32V", "7th Edition" -> "Xenix",
"7th Edition" -> "Ultrix-11", "7th Edition" -> "UniPlus+",
"7th Edition" -> "V7M", "PWB 2.0" -> "UnixêTS 3.0", "USG 2.0" -> "USG 3.0",
"CB Unix 1" -> "CB Unix 2", "32V" -> "3 BSD",
"UnixêTS 1.0" -> "UnixêTS 3.0", "USG 3.0" -> "UnixêTS 3.0",
"CB Unix 2" -> "CB Unix 3", "3 BSD" -> "4 BSD", "V7M" -> "Ultrix-11",
"UnixêTS 3.0" -> "TS 4.0", "CB Unix 3" -> "UnixêTS++",
"CB Unix 3" -> "PDP-11 Sys V", "4 BSD" -> "4.1 BSD",
"UnixêTS++" -> "TS 4.0", "4.1 BSD" -> "8th Edition", "4.1 BSD" -> "4.2 BSD",
"4.1 BSD" -> "2.8 BSD", "2 BSD" -> "2.8 BSD", "TS 4.0" -> "System V.0",
"4.2 BSD" -> "4.3 BSD", "4.2 BSD" -> "Ultrix-32", "2.8 BSD" -> "2.9 BSD",
"2.8 BSD" -> "Ultrix-11", "System V.0" -> "System V.2",
"8th Edition" -> "9th Edition", "System V.2" -> "System V.3"<,
VertexLabeling Ø True, AspectRatio Ø 0.7, PlotRangePadding Ø AutomaticD

Out[32]=
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Tree Drawing

TreePlot  lays out the vertices of a graph in a tree of successive layers, or a collection of trees.

If  the graph g  is  not  a  tree,  TreePlot  lays out  its  vertices on the basis  of  a  spanning tree of

each component of the graph. 

TreePlotA9vi1->v j1,vi2->v j2,…=E generate a tree plot of the graph in which vertex vik is 
connected to vertex v jk

TreePlotA99vi1->v j1,lbl1=,…=E associate labels lblk with edges in the graph

TreePlot@g,posD place roots of trees in the plot at position pos

TreePlot@g,pos,vkD use vertex vk as the root node in the tree plot

TreePlot@mD generate a layered plot of the graph represented by the 
adjacency matrix m

Tree drawing.

A simple graph and its tree plot.

In[1]:= g = 81 Ø 2, 2 Ø 4, 3 Ø 6, 4 Ø 8, 5 Ø 10, 6 Ø 12, 1 Ø 3, 2 Ø 5, 3 Ø 7, 4 Ø 9, 5 Ø 11, 6 Ø 13<;

In[2]:= TreePlot@g, VertexLabeling -> TrueD

Out[2]=
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By  default,  TreePlot  places  each  tree  root  at  the  top.  TreePlot@g, posD  places  the  roots  at

position pos. Possible positions are: Top, Bottom, Left, Right, and Center.
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This plots the tree by placing the root left.

In[3]:= TreePlot@g, Left, VertexLabeling -> TrueD

Out[3]=

1

2

4

3

6

8

5

10

12

7

9

11

13

This places the root at the center.

In[4]:= TreePlot@g, Center, VertexLabeling -> TrueD

Out[4]= 1
2

4

3
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Options for TreePlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

LayerSizeFunction 1& the height to allow for each layer

MultiedgeStyle Automatic how to draw multiple edges between 
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for TreePlot.

DirectedEdges

The option DirectedEdges  specifies whether to draw edges as directed arrows. Possible values

for this option are True or False. The default value for this option is False.
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This shows a graph with edges represented by arrows instead of lines.

In[5]:= TreePlot@81 Ø 8, 2 Ø 4, 3 Ø 7, 4 Ø 10, 5 Ø 7, 5 Ø 8, 6 Ø 10, 7 Ø 10, 8 Ø 9<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[5]=
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EdgeLabeling

The  option  EdgeLabeling  specifies  whether  and  how  to  display  labels  given  for  the  edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is  True,  which  displays  the  supplied  edge  labels  on  the  graph.  With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[6]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
84 Ø 7, "edge 84,7<"<, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[6]=
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This displays the edge label as a tooltip. Place the cursor over the edge between vertices 4 and 
7 to see the tooltip.

In[7]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5, 84 Ø 7, "edge 84,7<"<, 7 Ø 8,
7 Ø 10, 9 Ø 10<, EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[7]=
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This displays the labels as tooltips. Place the cursor over the edge between vertices 4 and 7 to 
see the tooltip.

In[8]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
Tooltip@4 Ø 7, "edge 84,7<"D, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[8]=
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EdgeRenderingFunction

The  option  EdgeRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

This draws vertices only.

In[9]:= TreePlot@Table@1, 810<, 810<D, EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[9]=

With  EdgeRenderingFunction -> g,  each  edge  is  rendered  with  the  graphics  primitives  and

directives  given  by  the  function  g  that  can  take  three  or  more  arguments,  in  the  form

g@8ri, …, r j<, 8vi, v j<, lblij, …D,  where  ri, r j  are  the  coordinates  of  the  beginning  and  ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the  edge  or  None.  Explicit  settings  for  EdgeRenderingFunction -> g  override  settings  for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance 0.3 (in the 
graph's coordinate system).

In[10]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[10]=
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This displays edges and self-loops with black and red arrows, respectively. The function 
LineScaledCoordinate from the Graph Utilities Package adds text at 50% along arrows.

In[11]:= << GraphUtilities`

In[12]:= TreePlot@81 Ø 4, 1 Ø 1, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .5D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[12]=

LayerSizeFunction

The LayerSizeFunction  option specifies the relative height to allow for each layer. By default

the height is 1. Possible values include a function that gives real machine numbers.

This defines and plots a tree.

In[13]:= g = 81 Ø 4, 2 Ø 6, 2 Ø 7, 2 Ø 8, 3 Ø 8, 4 Ø 5, 5 Ø 6<;

In[14]:= TreePlot@gD

Out[14]=

This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.
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This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.

In[15]:= TreePlot@g, LayerSizeFunction Ø HÒ &LD

Out[15]=

MultiedgeStyle

The  option  MultiedgeStyle  specifies  whether  to  draw  multiple  edges  between  two  vertices.

Possible  values  for  MultiedgeStyle  are  Automatic  (the  default),  True,  False,  or  a  positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if specified by an adjacency matrix. With

MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

By default, multiple edges are shown if a graph is given as a list of rules.

In[16]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
VertexLabeling Ø TrueD

Out[16]=
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But multiple edges are not shown for graphs specified by an adjacency matrix.

In[17]:= TreePlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[17]=

1

2

3 4

5

6

This spreads multiple edges by the specified amount.

In[18]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[18]=
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PackingMethod

The  option  PackingMethod  specifies  the  method  used  for  packing  disconnected  components.

Possible  values  for  the  option  are  Automatic  (the  default),  "ClosestPacking",

"ClosestPackingCenter",  "Layered",  "LayeredLeft",  "LayeredTop",  and  "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble  using  a  polyomino  method  [6],  starting  from  the  top  left.  With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from the top left.

With  PackingMethod -> "LayeredLeft"  or  PackingMethod -> "LayeredTop",  components  are

packed  in  layers  starting  from  the  top  or  left  respectively.  With

PackingMethod -> "NestedGrid", components are arranged in a nested grid. The typical effec-

tive default setting is PackingMethod -> "Layered", and the packing starts with components of

the largest bounding box area.

This shows the packing of disconnected components by the default method.

In[19]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[19]=

This shows the packing of disconnected components using the "ClosestPackingCenter" 
method.

In[20]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[20]=

PlotRangePadding
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PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by TreePlot.

PlotStyle

PlotStyle  is  a  common  option  for  graphics  functions  inherited  by  TreePlot.  The  option

PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker lines, and draw both edges and vertex labels in red.

In[21]:= TreePlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8,
10 Ø 8, 8 Ø 3, 12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<,

VertexLabeling Ø True, PlotStyle Ø 8Red, Thickness@0.02D<D

Out[21]=

SelfLoopStyle

The option SelfLoopStyle  specifies whether and how to draw loops for vertices that are linked

to  themselves.  Possible  values  for  the  option  are  Automatic  (the  default),  True,  False,  or  a

positive  real  number.  With  SelfLoopStyle -> Automatic,  self-loops  are  shown if  the  graph  is

specified  by  a  list  of  rules,  but  not  if  it  is  specified  by  an  adjacency  matrix.  With

SelfLoopStyle -> d, the self-loops are drawn with a diameter of d (relative to the average edge

length). 
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By default, self-loops are displayed for a graph specified by a list of rules.

In[22]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<, VertexLabeling Ø TrueD

Out[22]= 1

4

5

2

3 6

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[23]:= TreePlotB

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 2 1 1
0 0 0 0 0 0
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[23]= 1

2

3

4

5 6
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This shows self-loops whose diameters equal 0.3 times the average length of the edges.

In[24]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[24]=

VertexCoordinateRules

The  option  VertexCoordinateRules  specifies  the  coordinates  of  the  vertices.  Possible  values

are None  or  a list  of  coordinates.  Coordinates specified by a list  of  rules are not supported by

TreePlot currently.

This draws the Petersen graph using known coordinates.

In[25]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[25]=
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This draws with the default method.

In[26]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[26]=

VertexLabeling

The option VertexLabeling  specifies whether to show vertex names as labels. Possible values

for  this  option  are  True,  False,  Automatic  (the  default)  and  Tooltip.

VertexLabeling -> True  shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified  by  a  list  of  rules,  labels  are  the  expressions  used  in  the  rules.

VertexLabeling -> False  displays  each  vertex  as  a  point.  VertexLabeling -> Tooltip  dis-

plays  each  vertex  as  a  point,  but  gives  its  name  in  a  tooltip.  VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD  anywhere in the list of rules to specify an alternative

tooltip for a vertex vk. 

This draws the graph with labels given as indices of the adjacency matrix.

In[27]:= TreePlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[27]=

1

2 3

4 5

This uses the labels specified in the list of rules.
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This uses the labels specified in the list of rules.

In[28]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[28]=

A

B a C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the 
vertices to see the labels.

In[29]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[29]=

VertexRenderingFunction

The  option  VertexRenderingFunction  specifies  graphical  representation  of  the  graph  edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion  of  graphics  primitives  and  directives.  With  the  default  setting  of  Automatic,  vertices  are

displayed as points, with their names given in tooltips. 

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the 
cursor at a vertex to see the tooltip.

In[30]:= g = 81 Ø 3, 1 Ø 4, 2 Ø 3, 2 Ø 5, 2 Ø 6, 5 Ø 7<;

In[31]:= TreePlot@gD

Out[31]=

This draws the same graph, but without the vertices.
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This draws the same graph, but without the vertices.

In[32]:= TreePlot@g, VertexRenderingFunction Ø NoneD

Out[32]=

With  VertexRenderingFunction -> g,  each  vertex  is  rendered  with  the  graphics  primitives

given by g@ri, vi, …D, where ri  is the coordinate of the vertex and vi  is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[33]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 8, 3 Ø 4, 4 Ø 8, 6 Ø 8, 7 Ø 8, 7 Ø 9<,
VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[33]=
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Example Gallery

k-ary tree

This defines a k-ary tree.

In[34]:= KaryTree@level_, k_: 2D := Flatten@Table@Table@i Ø k * i + j, 8j, -Hk - 2L, 1, 1<D,
8i, Hk^level - 1L ê Hk - 1L<DD ê; Hlevel ¥ 1 && k > 1L;

This plots a 4-ary tree of 4 levels.

In[35]:= TreePlot@KaryTree@4, 5D, CenterD

Out[35]=

This plots the same graph, but with the height of each level i proportional to 1ë i2.

In[36]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø H1 ê Ò^2 &LD

Out[36]=
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This sets the height of each level i proportional to H-0.5Li.
In[37]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø HH-0.5L^Ò &LD

Out[37]=
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