
Wolfram Mathematica ® Tutorial Collection

GRAPH DRAWING

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction . 1

Graph Theory Notations . 2

Input Formats . 3

Graph Drawing Algorithms . 6

Selecting the Appropriate Graph Drawing Function . 11

References . 12

General Graph Drawing . 14

Options for GraphPlot and GraphPlot3D . 16

Common Suboptions of All Methods . 42

Common Suboptions of the "SpringEmbedding" and "SpringElectricalEmbedding"
Methods . 43
Method Suboptions of the "SpringElectricalEmbedding" Method 49

Method Suboption of "HighDimensionalEmbedding" . 50

Advanced Topics . 51

Example Gallery . 57

References . 66

Hierarchical Drawing of Directed Graphs . 67

Options for LayeredGraphPlot . 68

Example Gallery . 81

Tree Drawing . 85

Options for TreePlot . 87

Example Gallery . 101

Introduction to Graph Drawing

Mathematica provides functions for the aesthetic drawing of graphs. Algorithms implemented

include spring embedding, spring-electrical embedding, high-dimensional embedding, radial

drawing, random embedding, circular embedding, and spiral embedding. In addition, algorithms

for layered/hierarchical drawing of directed graphs as well as for the drawing of trees are avail-

able. These algorithms are implemented via four functions: GraphPlot, GraphPlot3D,

LayeredGraphPlot, and TreePlot.

GraphPlot generate a plot of a graph

GraphPlot3D generate a 3D plot of a graph

LayeredGraphPlot generate a layered plot of a graph

TreePlot generate a tree plot of a graph

Functions for graph drawing.

GraphPlot and GraphPlot3D are suitable for straight line drawing of general graphs.

LayeredGraphPlot attempts to draw the vertices of a graph in a series of layers; therefore it is

most suitable for applications such as the drawing of flow charts. TreePlot is particularly useful

for drawing trees or tree-like graphs. These functions are designed to work efficiently for very

large graphs.

This shows a graph drawn using each of the four functions.

In[1]:= 8Map@Ò@84 Ø 2, 4 Ø 3, 5 Ø 2, 5 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 6 Ø 7, 7 Ø 8, 7 Ø 9<,
PlotRangePadding -> Automatic, ImageSize Ø 180, PlotLabel Ø ÒD &,

88GraphPlot, GraphPlot3D<, 8LayeredGraphPlot, TreePlot<<, 8-1<D< êê TableForm

Out[1]//TableForm=

GraphPlot

GraphPlot3D

LayeredGraphPlot

TreePlot

In these functions, a graph is represented either by a list of rules of the form 8vi1 -> v j1, …<,

where vi1 and v j1 are vertices, or by the adjacency matrix of the graph. Graphs in the Combinator-

ica package format are also supported.

In these functions, a graph is represented either by a list of rules of the form 8vi1 -> v j1, …<,

where vi1 and v j1 are vertices, or by the adjacency matrix of the graph. Graphs in the Combinator -

ica package format are also supported.

Graph Theory Notations

A graph G = 8V , E< consists of a set of vertices V (also called nodes) and a set of edges E. Two

vertices u and v form an edge of the graph if 8u, v< œ E.

If 8u, v< œ E implies that 8v, u< œ E, then G is an undirected graph. Otherwise it is a directed graph.

The former can be drawn using line segments, while the latter can be drawn with arrows. In an

undirected graph, it is often convenient to denote that an edge exists between u and v with the

notation u¨ v.

For example, this is a directed graph.

In[2]:= GraphPlot@84 -> 3, 5 -> 3, 5 -> 4, 6 -> 1, 6 -> 2, 6 -> 4, 6 -> 5<,
DirectedEdges Ø TrueD

Out[2]=

Here is an undirected graph.

In[3]:= GraphPlot@84 -> 3, 5 -> 3, 5 -> 4, 6 -> 1, 6 -> 2, 6 -> 4, 6 -> 5<D

Out[3]=

2 Graph Drawing

Input Formats

In Mathematica, graphs can be represented by one of the following three data structures. A

graph can be represented by a list of rules.

 For example, 81 Ø 2, 2 Ø 3, 3 Ø 1, 3 Ø 4< represents the following directed graph.

In[4]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 1, 3 Ø 4<, DirectedEdges Ø True,
VertexLabeling Ø TrueD

Out[4]=

1

2

34

A graph can also be represented by its adjacency matrix. Let G = 8V , E< be a directed graph.

Assuming that the vertices are indices from 1 to n, that is, V = 81, 2, …, n<, then the adjacency

matrix of G is an nµn matrix, with entries ai j = 1 if 8i, j< œ E and ai j = 0 otherwise.

The following adjacency matrix represents the same directed graph.

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0

An undirected graph, on the other hand, is represented by a symmetric adjacency matrix. The

matrix entries ai j = a ji = 1 if 8i, j< œ E and ai j = 0 otherwise.

This adjacency matrix represents the undirected graph that follows it.

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

Graph Drawing 3

In[5]:= GraphPlotB

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

, VertexLabeling Ø TrueF

Out[5]=

1

2

34

Because of the zero entries in an adjacency matrix, it is often convenient to represent the

matrix using a SparseArray.

The previous matrix can be written as the following sparse array.

In[6]:= SparseArray@881, 2< Ø 1, 81, 3< Ø 1, 82, 1< Ø 1,
82, 3< Ø 1, 83, 1< Ø 1, 83, 2< Ø 1, 83, 4< Ø 1, 84, 3< Ø 1<, 84, 4<D;

Finally, graphs in the Combinatorica package format are also supported.

This example creates a butterfly graph using Combinatorica and shows the layout Combinator-
ica assigned.

In[7]:= << Combinatorica`;

In[8]:= g = ButterflyGraph@3D; ShowGraph@gD

Out[8]=

4 Graph Drawing

This draws the same graph using GraphPlot.

In[9]:= GraphPlot@gD

Out[9]=

GraphPlot uses the algorithms described in the next section to lay out a graph. If GraphPlot is

to be used for a graph in Combinatorica format, but the drawing assigned by Combinatorica is

to be preserved, Method -> None can be specified.

Option Method -> None draws the graph using the layout from the Combinatorica package.

In[10]:= GraphPlot@g, Method Ø NoneD

Out[10]=

Graph Drawing Algorithms

Graph Drawing 5

Graph Drawing Algorithms

Graphs are often used to encapsulate the relationship between items. Graph drawing enables

visualization of these relationships. The usefulness of the visual representation depends upon

whether the drawing is aesthetic. While there are no strict criteria for aesthetic drawing, it is

generally agreed that such a drawing has minimal edge crossing and even spacing between

vertices. This problem has been studied extensively in the literature [1], and many approaches

have been proposed. Two popular straight-edge drawing algorithms, the spring embedding and

spring-electrical embedding, work by minimizing the energy of physical models of the graph.

The high-dimensional embedding method, on the other hand, embeds a graph in high-dimen-

sional space and then projects it back to two- or three-dimensional space. In addition, there are

algorithms for drawing directed graphs in a hierarchical fashion, as well as for drawing trees.

Random embedding, circular embedding, and spiral embedding do not utilize any connectivity

information for laying out a graph, and therefore are not described any further here.

Spring Embedding

The spring embedding algorithm assigns force between each pair of nodes. When two nodes are

too close together, a repelling force comes into effect. When two nodes are too far apart, they

are subject to an attractive force. This scenario can be illustrated by linking the vertices with

springs~hence the name "spring embedding."

This algorithm works by adding springs to all edges and adding looser springs to all vertex pairs

that are not adjacent. Thus, in two dimensions, the total energy of the system is

‚
i=1

†V §-1

‚
j=i+1

†V §

kij I »» xi - x j »»2 - lij M
2
.

Here, xi and x j are the coordinate vectors of nodes i and j, and »» xi - x j »» is the Euclidean distance

between them. li j is the natural length of the spring between vertex i and vertex j, and can be

chosen as the graph distance between i and j. The parameters ki j = Rë li j2 are the strength of the

springs, where R is a parameter representing the strength of the springs. V is the number of

vertices.

The layout of the graph vertices is calculated by minimizing this energy function. One way to

minimize the energy function is by iteratively moving each of the vertices along the direction of

the spring force until an approximate equilibrium is reached. Multilevel techniques are used to

overcome local minima.

6 Graph Drawing

The layout of the graph vertices is calculated by minimizing this energy function. One way to

minimize the energy function is by iteratively moving each of the vertices along the direction of

the spring force until an approximate equilibrium is reached. Multilevel techniques are used to

overcome local minima.

Spring embedding works particularly well for problems like regular grid graphs, in which it is

possible to lay out the graph so that Euclidean distances between vertices are proportional to

the graph distances.

This draws a 20×20 grid graph using the spring embedding algorithm.

In[11]:= << Combinatorica`;

In[12]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringEmbedding"D

Out[12]=

This method does, however, require more memory and CPU time. To reduce its OI V 2M complex-

ity, vertices that are far apart are ignored in the calculation of force and energy. See the

method option "InferentialDistance" of GraphPlot and GraphPlot3D for more information.

Spring-Electrical Embedding

The disadvantage of the spring embedding algorithm is that it requires knowing the graph

distance between every pair of vertices. Spring-electrical embedding uses two forces. The

attractive force, fa = di j2 ëK, is restricted to adjacent vertices and is proportional to the Euclidean

distance between them, where K is related to the natural spring length. The electrical force,

fr = -K2 ëdi j, on the other hand, is global and is inversely proportional to the Euclidean distance

between nodes i and j. Overall, the energy to be minimized is ⁄i=1
V f i

2, where

fi = -C‚
j≠i

K2

dij

Ix j - xiM

dij
+ ‚
iõ j

dij2

K

Ix j - xiM

dij
= -C‚

j≠i

K2

dij2
Ix j - xiM + ‚

i<Ø j

dij

K
Ix j - xiM.

Here, C is a constant that regulates the relative strength of the repulsive and attractive forces,

and di j = »» xi - x j »» is the Euclidean distance between nodes i and j. For a graph of two vertices,

the ideal Euclidean distance between the vertices is K C1ê3, which gives a total energy of zero.

Graph Drawing 7

Here, C is a constant that regulates the relative strength of the repulsive and attractive forces,

and di j = »» xi - x j »» is the Euclidean distance between nodes i and j. For a graph of two vertices,

the ideal Euclidean distance between the vertices is K C1ê3, which gives a total energy of zero.

The layout of the graph vertices is calculated by minimizing the energy function. One way to do

this is by iteratively moving each of the vertices along the direction of the spring force until an

approximate equilibrium is reached. Multilevel techniques [7] are used to overcome local min-

ima, and an octree data structure [16] is used to reduce the computational complexity in some

cases.

In general, spring-electrical embedding works well for most problems. With multilevel and

octree techniques, it is implemented very efficiently with a complexity of about OH V logH V LL.

 This shows the drawing of a 20×20 grid graph using "SpringElectricalEmbedding".

In[13]:= << Combinatorica`;

In[14]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringElectricalEmbedding"D

Out[14]=

A side effect of this algorithm is that vertices at the periphery tend to be closer to each other

than those in the center, as seen in the previous drawing. This tendency can be alleviated with

the method option "RepulsiveForcePower", which is described in "General Graph Drawing".

High-Dimensional Embedding Algorithm

In the high-dimensional embedding method, a graph is embedded in high-dimensional space,

and then projected back to two- or three-dimensional space. First, a k-dimensional coordinate

system is created based on k centers. The centers are a set of k vertices that are chosen to be

as far apart as possible. The first vertex is selected at random, and then each of the remaining

centers is chosen as the farthest vertex from the previously selected centers. In other words, if

j centers have been selected, c j +1 is the vertex whose shortest graph distance to the j centers is

larger than or equal to the shortest graph distance of all the other vertices to the j centers.

8 Graph Drawing

In the high-dimensional embedding method, a graph is embedded in high-dimensional space,

and then projected back to two- or three-dimensional space. First, a k-dimensional coordinate

system is created based on k centers. The centers are a set of k vertices that are chosen to be

centers is chosen as the farthest vertex from the previously selected centers. In other words, if

j centers have been selected, c j +1 is the vertex whose shortest graph distance to the j centers is

larger than or equal to the shortest graph distance of all the other vertices to the j centers.

With these k centers, a k-dimensional coordinate system can be established. Each vertex ui has

the coordinates xi = 9dui c1 , dui c2 , …, dui ck =, where dui c j is the graph distance between the vertex ui

and the center ci. The nk-dimensional coordinate vectors form an nµk matrix X, where xi is the

ith row of X.

Since it is only possible to draw in two and three dimensions, and since the coordinates are

correlated, the k-dimensional coordinates are projected back to two or three dimensions by a

suitable linear combination. Assume that the graph with n coordinates and k centers is projected

back to two dimensions. In order to make this projection shift-invariant, X is first normalized to

X '.

X ' = X - e eT X ên, e = 81, …, 1<

Let v1 and v2 be two k -dimensional vectors needed for the purpose of linear combination.

The two linear combinations should be uncorrelated, so they must be orthogonal to each

other.

IX ' v1M
T X ' v2 = v1T IX ' T X 'M v2 = 0

Each must be as far away from 0 as possible.

viT IX ' T X 'M vi ê »» vi »»2 Ø max, i = 1, 2

To achieve this, you therefore select v1 and v2 to be the two eigenvectors that correspond to the

first two largest eigenvalues of the kµk symmetric matrix X ' T X '. This process of choosing two

highly uncorrelated vectors is also known as principal component analysis.

In summary, for two-dimensional drawing, the high-dimensional embedding method uses the

coordinates of the vertices given by X ' v1 and X ' v2.

Graph Drawing 9

 This shows the drawing of a 20×20 grid graph using "HighDimensionalEmbedding".

In[15]:= << Combinatorica`;

In[16]:= GraphPlot@GridGraph@20, 20D, Method Ø "HighDimensionalEmbedding"D

Out[16]=

The high-dimensional embedding method tends to be very fast but its results are often of lower

quality than force-directed algorithms. The method can be specified with

Method -> "HighDimensionalEmbedding" in GraphPlot and GraphPlot3D.

A Hierarchical Drawing Algorithm for Directed Graphs

The algorithm for drawing directed acyclic graphs (DAGs) follows the algorithm of Sugiyama et

al. [14], and subsequent development [15]. It consists of the following stages:

1. Vertices of the DAG are first assigned a preliminary y ranking such that if there is an edge
from i to j, then it is likely that yrankHiL > yrankH jL. This is to ensure that the final drawing
has directed edges pointing mostly downward.

2. The y coordinates are generated so that if there is an edge from i to j and yrankHiL > yrankH jL,
their y coordinates are as close as possible, but separated by a set minimum. This ensures
that the final resulting drawing does not have many long edges. This process assigns the
vertices into a finite number of layers. If an edge lies across a number of layers, virtual
vertices are added.

3. A preliminary x ranking is assigned to each vertex to minimize the number of edge
crossings.

4. The x coordinates are generated by minimizing ⁄iØ j xHiL - xH jL subject to the constraints
that vertices on the same layer obey the x ranking generated in step 3 and are separated
by a set minimum.

The resulting drawing lays out the graph in a hierarchical structure, where most of the edges

point downward. LayeredGraphPlot function implements this algorithm.

Algorithms for Drawing Trees

10 Graph Drawing

Algorithms for Drawing Trees

Two algorithms for drawing trees are the radial drawing algorithm and the layered drawing

algorithm [1]. In the radial drawing algorithm, a reasonable root of the tree is chosen. Then,

starting from that root of the tree, each subtree is drawn inside a wedge, with the angle of the

wedge proportional to the number of leaves in that subtree. In the layered drawing algorithm, a

reasonable root of the tree is chosen. Then, starting from that root, subtrees of the root are

recursively drawn such that vertices on the same level have the same y coordinate, and the

horizontally closest vertices of adjacent subtrees are of unit distance apart. The root is placed

at the center of the x coordinates of its subtrees and its y coordinate is one unit above them.

TreePlot function chooses between these two algorithms, depending on the second argument

of this function.

Selecting the Appropriate Graph Drawing Function

For general graph drawing, consider using GraphPlot or GraphPlot3D. GraphPlot or

GraphPlot3D calculates a visually appealing 2D/3D layout and plots the graph using this layout.

See "General Graph Drawing" for these functions, and [17] for algorithmic details.

To get a layered/hierarchical drawing of a directed graph, use LayeredGraphPlot.

LayeredGraphPlot attempts to draw the vertices of a graph in a series of layers, with dominant

vertices at the top, and vertices lower in the hierarchy progressively farther down. This function

is most suitable for applications such as flow chart drawing. See "Hierarchical Drawing of

Directed Graphs" for this function.

TreePlot is specifically designed to draw trees and tree-like graphs. See "Tree Drawing" for

this function.

Graph Drawing 11

References

[1] Di Battista, G., P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, 1999.

[2] Fruchterman, T. M. J. and E. M. Reingold. "Graph Drawing by Force-Directed Placement."

Software~Practice and Experience 21, no. 11 (1991): 1129|1164.

[3] Eades, P. "A Heuristic for Graph Drawing." Congressus Numerantium 42 (1984): 149|160.

[4] Quinn, N. and M. Breuer. "A Force Directed Component Placement Procedure for Printed

Circuit Boards." IEEE Trans. on Circuits and Systems 26, no. 6 (1979): 377|388.

[5] Kamada, T. and S. Kawai. "An Algorithm for Drawing General Undirected Graphs."

Information Processing Letters 31 (1989): 7|15.

[6] Harel, D. and Y. Koren. "Graph Drawing by High-Dimensional Embedding." In Proceedings

of 10th Int. Symp. Graph Drawing (GD'02), 207|219, 2002.

[7] Walshaw, C. "A Multilevel Algorithm for Force-Directed Graph-Drawing." J. Graph Algorithms

Appl. 7, no. 3 (2003): 253|285.

[8] Cuthill, E. and J. McKee. "Reducing the Bandwidth of Sparse Symmetric Matrices." In

Proceedings, 24th National Conference of ACM, 157|172, 1969.

[9] Lim, A., B. Rodrigues, and F. Xiao. "A Centroid-Based Approach to Solve the Bandwidth

Minimization Problem." In Proceedings of the 37th Annual Hawaii International Conference on

System Sciences (HICSS'04), 30075.1, 2004.

[10] Barnard, S. T., A. Pothen, and H. D. Simon. "A Spectral Algorithm for Envelope Reduction

of Sparse Matrices." Journal of Numerical Linear Algebra with Applications 2, no. 4 (1995):

317|334.

[11] Sloan, S. "A Fortran Program for Profile and Wavefront Reduction." International Journal

for Numerical Methods in Engineering 28, no. 11 (1989): 2651|2679.

[12] Reid, J. K. and J. A. Scott. "Ordering Symmetric Sparse Matrices for Small Profile and

Wavefront." International Journal for Numerical Methods in Engineering 45, no. 12 (1999):

1737|1755.

[13] George, J. A. "Computer Implementation of the Finite-Element Method." Report STAN

CS-71-208, PhD Thesis, Department of Computer Science, Stanford University, Stanford,

California, 1971.

12 Graph Drawing

[13] George, J. A. "Computer Implementation of the Finite-Element Method." Report STAN

CS-71-208, PhD Thesis, Department of Computer Science, Stanford University, Stanford,

California, 1971.

[14] Sugiyama, K., S. Tagawa, and M. Toda. "Methods for Visual Understanding of Hierarchical

Systems." IEEE Trans. Syst. Man, Cybern. 11, no. 2 (1981): 109|125.

[15] Gansner, E. R., E. Koutsofios, S. C. North, and K. P. Vo. "A Technique for Drawing Directed

Graphs." IEEE Trans. Software Engineering 19, no. 3 (1993): 214|230.

[16] Quigley, A. "Large Scale Relational Information Visualization, Clustering, and Abstraction."

PhD Thesis, Department of Computer Science and Software Engineering, University of

Newcastle, Australia, 2001.

[17] Hu, Y. F. "Efficient, High-Quality Force-Directed Graph Drawing." The Mathematica Journal

10, no. 1 (2006): 37|71.

Graph Drawing 13

General Graph Drawing

GraphPlot and GraphPlot3D calculate and plot a visually appealing 2D/3D layout of a graph.

The functions are designed to work with very large graphs and handle both connected and

disconnected graphs.

GraphPlotA9vi 1->v j 1,vi 2->v j 2,…=E generate a plot of the graph in which vertex vik is con -
nected to vertex v jk

GraphPlotA99vi 1->v j 1,lbl1=,…=E associate labels lblk with edges in the graph

GraphPlot@mD generate a plot of the graph represented by the adjacency
matrix m

GraphPlot3DA
9vi 1->v j 1,vi 2->v j 2,…=E

generate a 3D plot of the graph in which vertex vik is
connected to vertex v jk

GraphPlot3DA99vi 1->v j 1,lbl1=,…=E associate labels lblk with edges in the graph

GraphPlot3D@mD generate a 3D plot of the graph represented by the adja -
cency matrix m

Graph drawing functions.

This plots a graph specified by a rule list.

In[1]:= GraphPlot@8"d" Ø "c", "e" Ø "b", "e" Ø "c", "e" Ø "d", "f" Ø "a", "f" Ø "b", "f" Ø "d",
"f" Ø "e", "g" Ø "a", "g" Ø "b", "g" Ø "c", "g" Ø "e"<, VertexLabeling Ø TrueD

Out[1]=

d

c

e b

f

a

g

14 Graph Drawing

For disconnected graphs, individual components are laid out in a visually appealing way and
assembled.

In[2]:= GraphPlot@Table@i Ø Mod@i^2, 129D, 8i, 0, 128<DD

Out[2]=

This is a larger graph defined by a sparse adjacency matrix from a structural engineering
application. The matrix comes from the Harwell|Boeing Collection.

In[3]:= a = Import@"LinearAlgebraExamplesêDataêdwt_1005.psa", "HarwellBoeing"D;

In[4]:= GraphPlot3D@a, VertexRenderingFunction Ø NoneD

Out[4]=

GraphPlot may produce slightly different output on different platforms, due to floating-point

differences.

Graph Drawing 15

Options for GraphPlot and GraphPlot3D

The following options are accepted for GraphPlot and GraphPlot3D (DirectedEdges and

EdgeLabeling options are only valid for GraphPlot); in addition, options for Graphics and

Graphics3D are accepted.

option name default value

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

Method Automatic the method used to lay out the graph

MultiedgeStyle Automatic how to draw multiple edges between
vertices

PlotRangePadding Automatic how much padding to put around the plot

PackingMethod Automatic method to use for packing components

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for GraphPlot and GraphPlot3D .

DirectedEdges

The option DirectedEdges specifies whether to draw edges as arrows. Possible values for this

option are True or False. The default value for this option is False.

16 Graph Drawing

This shows a graph with edges represented by arrows.

In[5]:= GraphPlot@81 Ø 6, 2 Ø 6, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[5]=

1

6

2

3

4

5

This makes the arrowheads larger.

In[3]:= Table@
GraphPlot@81 Ø 6, 2 Ø 6, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
ImageSize Ø 100, DirectedEdges Ø 8True, "ArrowheadsSize" Ø asize<,
VertexLabeling Ø TrueD, 8asize, 80.05, 0.1, 0.15<<D

Out[3]=

EdgeLabeling

The option EdgeLabeling specifies whether and how to display labels given for the edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is True, which displays the supplied edge labels on the graph. With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

Graph Drawing 17

1

6
2

3

4

5

,

1

6
2

3

4

5

,

1

6
2

3

4

5

�

By default, GraphPlot displays the supplied label for the edge between vertices 3 and 6.

In[6]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
VertexLabeling Ø TrueD

Out[6]=

edge 3->6

1

5

6

2

4

3

This displays the edge label as a tooltip. Place the cursor over the edge between vertices 3 and
6 to see the tooltip.

In[7]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[7]=

1

5

6

2

4

3

Alternatively, use Tooltip@vi -> v j, lblD to specify a tooltip for an edge. Place the cursor over
the edge between vertices 3 and 6, as well as over the edge label on the edge between vertices
3 and 5, to see the tooltips.

In[8]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 83 Ø 5, Tooltip@ "edge 3->5", "3->5"D<,
Tooltip@3 Ø 6, "3->6"D, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[8]=

edge 3->5

1

5

6

2

4

3

To display the supplied label for the edge in 3D, EdgeRenderingFunction needs to be used.

This is described in "Edge Rendering Function".

EdgeRenderingFunction

18 Graph Drawing

EdgeRenderingFunction

The option EdgeRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

This draws vertices only.

In[9]:= GraphPlot@Table@1, 830<, 830<D, EdgeRenderingFunction Ø NoneD

Out[9]=

With EdgeRenderingFunction -> g, each edge is rendered with the graphics primitives and

directives given by the function g that can take three or more arguments, in the form

g@8ri, …, r j<, 8vi, v j<, lblij, …D, where ri, r j are the coordinates of the beginning and ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the edge or None. Explicit settings for EdgeRenderingFunction -> g override settings for

EdgeLabeling and DirectedEdges.

Graph Drawing 19

This plots the edges as gray arrows with ends set back from vertices by a distance 0.1 (in the
graph's coordinate system).

In[10]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7,
7 Ø 1, 11 Ø 12, 12 Ø 13, 13 Ø 14, 14 Ø 15, 15 Ø 16, 16 Ø 17,
17 Ø 11, 1 Ø 11, 2 Ø 12, 3 Ø 13, 4 Ø 14, 5 Ø 15, 6 Ø 16, 7 Ø 17<,

EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.1D< &LD

Out[10]=

This generates edge labels or displays the ones supplied in the description of the graph.

In[11]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeRenderingFunction Ø H88Red, Line@Ò1D<, Text@If@Ò3 === None, Ò2, Ò3D,

Total@Ò1D ê 2., Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[11]=

20 Graph Drawing

�1, 5�

�1, 6�

�5, 6�
�2, 4�

�2, 6�

�4, 6�

�3, 4� �3, 5�

edge 3��6

1

5

6

2

4

3

This draws straight edges in black and other edges (two multiedges and a self-loop) in red. The
function LineScaledCoordinate from the package GraphUtilities is used to place labels
at 70% of the length of the edge.

In[12]:= << GraphUtilities`

In[13]:= GraphPlot3D@81 Ø 2, 2 Ø 3, 3 Ø 4, 5 Ø 1, 5 Ø 2, 5 Ø 3, 5 Ø 4, 1 Ø 4, 3 Ø 5, 3 Ø 3<,
EdgeRenderingFunction Ø
HIf @Length@Ò1D > 2, 8Red, Line@Ò1D, Text@If@First@Ò1D === Last@Ò1D,

"loop", "multiedge"D, LineScaledCoordinate@Ò1, .7D,
Background Ø WhiteD<, Line@Ò1DD &L, VertexLabeling Ø TrueD

Out[13]=

This plots a 3D graph using spheres for vertices and cylinders for edges.

In[14]:= GraphPlot3D@82 Ø 1, 5 Ø 1, 6 Ø 1, 3 Ø 2, 11 Ø 2, 4 Ø 3, 16 Ø 3, 5 Ø 4, 21 Ø 4,
26 Ø 5, 7 Ø 6, 10 Ø 6, 8 Ø 7, 30 Ø 7, 9 Ø 8, 42 Ø 8, 10 Ø 9, 38 Ø 9, 12 Ø 10,
12 Ø 11, 15 Ø 11, 13 Ø 12, 14 Ø 13, 37 Ø 13, 15 Ø 14, 33 Ø 14, 17 Ø 15, 17 Ø 16,
20 Ø 16, 18 Ø 17, 19 Ø 18, 32 Ø 18, 20 Ø 19, 53 Ø 19, 22 Ø 20, 22 Ø 21, 25 Ø 21,
23 Ø 22, 24 Ø 23, 52 Ø 23, 25 Ø 24, 48 Ø 24, 27 Ø 25, 27 Ø 26, 30 Ø 26, 28 Ø 27,
29 Ø 28, 47 Ø 28, 30 Ø 29, 43 Ø 29, 32 Ø 31, 35 Ø 31, 54 Ø 31, 33 Ø 32, 34 Ø 33,
35 Ø 34, 36 Ø 34, 56 Ø 35, 37 Ø 36, 40 Ø 36, 38 Ø 37, 39 Ø 38, 40 Ø 39, 41 Ø 39,
57 Ø 40, 42 Ø 41, 45 Ø 41, 43 Ø 42, 44 Ø 43, 45 Ø 44, 46 Ø 44, 58 Ø 45, 47 Ø 46,
50 Ø 46, 48 Ø 47, 49 Ø 48, 50 Ø 49, 51 Ø 49, 59 Ø 50, 52 Ø 51, 55 Ø 51, 53 Ø 52,
54 Ø 53, 55 Ø 54, 60 Ø 55, 57 Ø 56, 60 Ø 56, 58 Ø 57, 59 Ø 58, 60 Ø 59<,

EdgeRenderingFunction Ø H8Cylinder@Ò1, .1D< &L,
VertexRenderingFunction Ø H8Sphere@Ò, .25D< &LD

Out[14]=

This plots a graph with edges displayed as springs and vertices as spheres.

Graph Drawing 21

multiedge

loop

multiedge

1

2

3

4

5

This plots a graph with edges displayed as springs and vertices as spheres.

In[15]:= Spring@8x0_, y0_<, n_: 10D :=
Module@8x = x0 + Hy0 - x0L * 0.05, y = y0 + Hx0 - y0L * 0.1, theta, t<,
theta = If@Hy0 - x0L@@1DD ã 0., Pi ê 2., ArcTan@Hy0 - x0L@@2DD ê HHy0 - x0L@@1DDLDD;
Line@Join@8x0<, Table@x + Hy - xL * t + 0.05

8Cos@ 2 Pi n t + thetaD, Sin@2 Pi n t + thetaD, 0<, 8t, 0, 1, .005<D, 8y0<DDD;
GraphPlot3D@81 Ø 2, 2 Ø 3, 3 Ø 1, 1 Ø 4, 2 Ø 4, 3 Ø 4<, EdgeRenderingFunction Ø

H8Blue, Spring@Ò1D< &L, VertexRenderingFunction Ø HSphere@Ò1, 0.1D &LD

Out[16]=

This plots the benzene molecule.

In[17]:= normal@8x_, y_<D := 0.03 * 8-y, x< ê Norm@8x, y<D;
GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1, 1 Ø 2, 3 Ø 4, 5 Ø 6,

1 Ø 7, 2 Ø 8, 3 Ø 9, 4 Ø 10, 5 Ø 11, 6 Ø 12<, VertexRenderingFunction Ø
HText@Style@If@Ò2 § 6, "C", "H"D, BoldD, Ò1, Background Ø WhiteD &L,

EdgeRenderingFunction Ø HIf@Length@Ò1D > 2, norm = normal@First@Ò1D - Last@Ò1DD;
8Line@8First@Ò1D + norm, Last@Ò1D + norm<D,
Line@8First@Ò1D - norm, Last@Ò1D - norm<D<, Line@Ò1DD &LD

Out[18]=

22 Graph Drawing

C C

C

CC

C

H H

H

HH

H

Draw text along the edges.

In[11]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
EdgeRenderingFunction Ø H8Arrow@ÒD, Inset@"Mathematica", Mean@Ò1D,

Automatic, Automatic, Ò@@1DD - Ò@@2DD, Background Ø WhiteD< &LD

Out[11]=

M
ath
em
ati
ca

M
ath
em
ati
ca

Mathematica

M
athematica

M
athem

atica

Mathematica

Draw graphics on each edge.

In[5]:= arrow = ;

In[10]:= GraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 3 Ø 6, 4 Ø 6, 5 Ø 6<,
EdgeRenderingFunction Ø H8Line@ÒD, Inset@arrow, Mean@Ò1D,

Automatic, Automatic, Ò@@1DD - Ò@@2DD, Background Ø WhiteD< &LD

Out[10]=

Graph Drawing 23

Method

Algorithms to be used in GraphPlot and GraphPlot3D can be specified using the Method option,

either as Method -> "name" or Method -> 8"name", opt1 -> val1, …<, where opti -> vali are

method-specific options, described in separate sections. Method -> Automatic uses the

"RadialDrawing" method for trees and "SpringElectricalEmbedding" otherwise.

Automatic a method suitable for the problem is chosen automatically

"CircularEmbedding" lay out the vertices in a circle

"HighDimensionalEmbedding" invoke the high-dimensional embedding method, in which
the graph is first laid out in a high-dimensional space
based on the graph distances of the vertices to k centers;
this layout is then projected to 2D or 3D space by linear
combination of the high-dimensional coordinates using
principal component analysis

"RadialDrawing" invoke the radial drawing method, which is most suitable
for tree or tree-like graphs; if the graph is not a tree, a
spanning tree is first constructed, and a radial drawing of
the spanning tree is used to derive the drawing for the
graph

"RandomEmbedding" lay out vertices randomly

"SpiralEmbedding" lay out the vertices in a spiral; in 3D, this distributes
vertices uniformly on a sphere

"SpringElectricalEmbedding" invoke the spring-electrical embedding method, in which
neighboring vertices are subject to an attractive spring
force that is proportional to their physical distance, and all
vertices are subject to a repulsive electrical force that is
inversely proportional to their distance; the overall energy
is minimized

"SpringEmbedding" invoke the spring embedding method, in which a vertex is
subject to either attractive or repulsive force from another
vertex, as though they are connected by a spring; the
spring has an ideal length equal to the graph distance
between the vertices; the total spring energy is minimized

Valid values of the Method option.

24 Graph Drawing

This draws the Petersen graph using the default method.

In[19]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9,
9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, VertexLabeling Ø TrueD

Out[19]=

1

3

42

5

6
7

8

9

10

This draws the graph using the "SpringEmbedding" algorithm.

In[20]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6,
2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, Method Ø "SpringEmbedding", VertexLabeling Ø TrueD

Out[20]=

1 3

4

2

5
6

7

8

9

10

Graph Drawing 25

This draws the graph using the "HighDimensionalEmbedding" algorithm.

In[21]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

Method Ø "HighDimensionalEmbedding", VertexLabeling Ø TrueD

Out[21]=

1
3

42

5

6

7
8

9

10

This draws the complete graph of 30 vertices using the "CircularEmbedding" method.

In[22]:= GraphPlot@Table@1, 830<, 830<D,
Method Ø "CircularEmbedding", VertexLabeling Ø TrueD

Out[22]= 1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

26 Graph Drawing

This draws the complete graph of 30 vertices using the "SpiralEmbedding" method in 3D.

In[23]:= GraphPlot3D@Table@1, 830<, 830<D,
Method Ø "SpiralEmbedding", VertexLabeling Ø TrueD

Out[23]=

1

23

4

5
6

7

8

910

11

12

13 14

15

16

17

1819

20

21

22 23

24

25

2627

28 29

30

This draws the complete graph using the "RandomEmbedding" method.

In[24]:= GraphPlot@Table@1, 830<, 830<D, Method Ø "RandomEmbedding", VertexLabeling Ø TrueD

Out[24]=

Graph Drawing 27

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

This draws a graph specified in the Combinatorica Package format using coordinates that come
with it.

In[25]:= Needs@"Combinatorica`"D

In[26]:= GraphPlot@PetersenGraph, Method Ø NoneD

Out[26]=

MultiedgeStyle

The option MultiedgeStyle specifies whether to draw multiple edges between two vertices.

Possible values for MultiedgeStyle are Automatic (the default), True, False, or a positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if specified by an adjacency matrix. With

MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

28 Graph Drawing

By default, multiple edges are shown if a graph is given as a list of rules.

In[27]:= GraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[27]=

1

2

34

5

6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[28]:= GraphPlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[28]=

1

2

34

5

6

Graph Drawing 29

This spreads multiple edges by the specified amount.

In[29]:= GraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1<,
MultiedgeStyle Ø 1, DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[29]=

1

2

34

5

6

PackingMethod

The option PackingMethod specifies the method used for packing disconnected components.

Possible values for the option are Automatic (the default), "ClosestPacking",

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from top left.

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are

packed in layers starting from the top/left respectively. With PackingMethod -> "NestedGrid",

components are arranged in a nested grid. The typical effective default setting is

PackingMethod -> "Layered", and the packing starts with the components of the largest bound-

ing box area.

30 Graph Drawing

This shows the packing of disconnected components by the default method.

In[30]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[31]:= GraphPlot@gD

Out[31]=

This shows the packing of disconnected components using the "ClosestPackingCenter"
method.

In[32]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[33]:= GraphPlot@g, PackingMethod Ø "ClosestPackingCenter"D

Out[33]=

Users can adjust the packing by suboptions of PackingMethod. The suboption "Padding" speci-

fies the amount of space to allow between components; possible values are Automatic (the

default), or a non-negative number. The suboption "PaddingFunction", which overrides

"Padding", also specifies the amount of space to allow between components. It takes a list of

the form 88w1, h1<, …<, which are the width and height of the bounding box of the compo-

nents, and returns a non-negative number. Options PackingMethod -> "ClosestPacking" and

PackingMethod -> "ClosestPackingCenter" also accept a "PolyominoNumber" suboption,

which specifies the average number of polyominos used to approximate each disconnected

component. Possible values for the "PolyominoNumber" suboption are Automatic (the default,

which usually sets "PolyominoNumber" to 100), or a positive integer. A smaller

"PolyominoNumber" typically has the effect of not allowing smaller components to embed in

between large components.

Graph Drawing 31

Users can adjust the packing by suboptions of PackingMethod. The suboption "Padding" speci-

fies the amount of space to allow between components; possible values are Automatic (the

default), or a non-negative number. The suboption "PaddingFunction", which overrides

"Padding", also specifies the amount of space to allow between components. It takes a list of

the form 88w1, h1<, …<, which are the width and height of the bounding box of the compo-

nents, and returns a non-negative number. Options PackingMethod -> "ClosestPacking" and

PackingMethod -> "ClosestPackingCenter" also accept a "PolyominoNumber" suboption,

which specifies the average number of polyominos used to approximate each disconnected

component. Possible values for the "PolyominoNumber" suboption are Automatic (the default,

which usually sets "PolyominoNumber" to 100), or a positive integer. A smaller

"PolyominoNumber" typically has the effect of not allowing smaller components to embed in

between large components.

This specifies a space of one polyomino between components.

In[34]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[35]:= GraphPlot@g, PackingMethod Ø 8"ClosestPackingCenter", "Padding" Ø 1<D

Out[35]=

This specifies that an average of five polyominos be used to approximate each component.

In[36]:= g = Flatten@Table@x = RandomReal@1, 850 + 1<D;
Table@x@@i + 1DD -> x@@Mod@i^2, 50D + 1DD, 8i, 0, 50<D, 810<DD;

In[37]:= GraphPlot@g,
PackingMethod Ø 8"ClosestPackingCenter", "PolyominoNumber" Ø 5, "Padding" Ø 1<D

Out[37]=

32 Graph Drawing

PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by GraphPlot and

GraphPlot3D.

PlotStyle

PlotStyle is a common option for graphics functions inherited by GraphPlot and

GraphPlot3D. The option PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker lines, and both edges and vertex labels in red.

In[38]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8,
10 Ø 8, 8 Ø 3, 12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<,

VertexLabeling Ø True, PlotStyle Ø 8Red, Thickness@0.02D<D

Out[38]=

SelfLoopStyle

The option SelfLoopStyle specifies whether and how to draw loops for vertices that are linked

to themselves. Possible values of the option are Automatic (the default), True, False, or a

positive real number. With SelfLoopStyle -> Automatic, self-loops are shown if the graph is

specified by a list of rules, but not by an adjacency matrix. With SelfLoopStyle -> d, the self-

loops are drawn with a diameter of d (relative to the average edge length).

Graph Drawing 33

12

3 4

6
5

7
9

8

10

12

11
13

15

14
16

By default, self-loops are displayed for a graph specified by a list of rules.

In[39]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1,
6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø TrueD

Out[39]=

3

2

4

1

5

6

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[40]:= GraphPlotB

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
1 1 1 1 1 0

, VertexLabeling Ø TrueF

Out[40]=

1

2

3

4

5

6

34 Graph Drawing

This shows self-loops with the diameter as big as the average length of the edges.

In[41]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1, 6 Ø 2, 6 Ø 3,
6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø True, SelfLoopStyle Ø 1D

Out[41]=

3

2

4

1

5

6

VertexCoordinateRules

The option VertexCoordinateRules specifies the coordinates of the vertices. Possible values

are None, a list of coordinates, or a list of rules specifying the coordinates of selected or all

vertices.

This draws the Petersen graph using known coordinates.

In[42]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10,
6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, VertexCoordinateRules Ø
880.309, 0.951<, 8-0.809, -0.587<, 80.309, -0.951<, 8-0.809, 0.587<, 81.`, 0<,
80.618, 1.902<, 8-1.618, 1.175<, 8-1.618, -1.175<, 80.618, -1.902<, 82.`, 0<<D

Out[42]=

This computes vertex coordinates of the same graph using the "SpringEmbedding" algorithm.

Graph Drawing 35

This computes vertex coordinates of the same graph using the "SpringEmbedding" algorithm.

In[43]:= GraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7, 7 Ø 8, 8 Ø 9, 9 Ø 10,
6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<, Method Ø "SpringEmbedding"D

Out[43]=

This specifies coordinates for two vertices.

In[44]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1<,
VertexCoordinateRules Ø 81 Ø 81, 1<, 2 Ø 82, 3<<,
Frame Ø True, FrameTicks Ø True, VertexLabeling Ø TrueD

Out[44]=

1

2

3

4

0.5 1.0 1.5 2.0

1.0

1.5

2.0

2.5

3.0

36 Graph Drawing

This specifies only y coordinates.

In[12]:= GraphPlot@81 Ø 4, 2 Ø 3, 2 Ø 5, 1 Ø 3<,
VertexCoordinateRules Ø 81 Ø 8Automatic, 1<, 2 Ø 8Automatic, 1<,

3 Ø 8Automatic, 2<, 4 Ø 8Automatic, 2<, 5 Ø 8Automatic, 2<<,
Frame Ø True, FrameTicks Ø True, VertexLabeling Ø TrueD

Out[12]=

1

4

2

35

1.0 1.5 2.0 2.5 3.0 3.5

1.0

1.2

1.4

1.6

1.8

2.0

This draws a bipartite graph by fixing x coordinates. "Anchors" are added to connect discon-
nected components.

In[1]:= bipartite = 81 Ø b, 2 Ø a, 3 Ø a, 3 Ø d, 4 Ø c, 4 Ø a, 4 Ø b<;
g = Join@bipartite,

Map@HLeft Ø Ò@@1DDL &, bipartiteD, Map@HRight Ø Ò@@2DDL &, bipartiteDD;

In[3]:= GraphPlot@g,
VertexCoordinateRules Ø 8left Ø 8-2, 0<, right Ø 82, 0<, Sequence üü Flatten@

Map@H8Ò@@1DD Ø 8-1, Automatic<, Ò@@2DD Ø 81, Automatic<<L &, bipartiteDD<,
VertexLabeling Ø True, VertexRenderingFunction Ø
HIf@Ò2 =!= Left && Ò2 =!= Right, Text@Ò2, Ò1, Background Ø WhiteD, 8<D &L,

EdgeRenderingFunction Ø HIf@! MemberQ@8Left, Right<, Ò2@@1DDD &&
! MemberQ@8Left, Right<, Ò2@@2DDD, Line@Ò1D, 8<D &LD

Out[3]=

1

b

2

a

3

d4

c

Graph Drawing 37

When the bipartite graph is connected, it works even better without augmenting it with "Left"
and "Right" anchors.

In[4]:= GraphPlot@bipartite, VertexCoordinateRules Ø
Flatten@Map@H8Ò@@1DD Ø 8-1, Automatic<, Ò@@2DD Ø 81, Automatic<<L &, bipartiteDD,

VertexLabeling Ø TrueD

Out[4]=

1

b

2

a

3

d

4

c

VertexLabeling

38 Graph Drawing

VertexLabeling

The option VertexLabeling specifies whether to show vertex names as labels. Possible values

for this option are True, False, Automatic (the default) and Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified by a list of rules, labels are the expressions used in the rules.

VertexLabeling -> False displays each vertex as a point. VertexLabeling -> Tooltip dis-

plays each vertex as a point, but gives its name in a tooltip. VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD anywhere in the list of rules to specify an alternative

tooltip for a vertex vk.

This draws the graph with labels given as indices of the adjacency matrix.

In[45]:= GraphPlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[45]=

1

2

3

4

5

Graph Drawing 39

This uses the labels specified in the list of rules.

In[46]:= GraphPlot@8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[46]= A

B

a

C

This specifies alternative labels for vertices 3 and 5. Place the cursor above the vertices to see
the labels.

In[47]:= GraphPlot@85 Ø 4, 6 Ø 2, 6 Ø Tooltip@3, "number 3"D, 6 Ø 5, 7 Ø 1, 7 Ø 3, 7 Ø 4, 7 Ø 6<,
VertexLabeling Ø TrueD

Out[47]=

54

6

2

3

7

1

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

In[48]:= GraphPlot@85 Ø 4, 6 Ø 2, 6 Ø 3, 6 Ø 5, 7 Ø 1, 7 Ø 3, 7 Ø 4, 7 Ø 6<,
VertexLabeling Ø TooltipD

Out[48]=

VertexRenderingFunction

The option VertexRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, vertices are

displayed as points, with their names given in tooltips.

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

40 Graph Drawing

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

In[49]:= GraphPlot@85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<D

Out[49]=

This draws no vertices at all.

In[50]:= GraphPlot@85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<,
VertexRenderingFunction Ø NoneD

Out[50]=

With VertexRenderingFunction -> g, each vertex is rendered with the graphics primitives

given by g@ri, vi, …D, where ri is the coordinate of the vertex and vi is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[51]:= GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 8, 8 Ø 1, 1 Ø 9, 2 Ø 9,
3 Ø 10, 4 Ø 10, 6 Ø 11, 5 Ø 11, 7 Ø 12, 8 Ø 12<, VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[51]=

1

2

3

4 5

6

7

8
9

10 11

12

This renders vertices using a predefined graphic.

Graph Drawing 41

This renders vertices using a predefined graphic.

In[52]:= gr = ;

In[53]:= GraphPlot@84 Ø 2, 4 Ø 3, 5 Ø 1, 5 Ø 3, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5<,
VertexRenderingFunction Ø HInset@gr, Ò1D &LD

Out[53]=

A Common Suboption of All Methods

All graph drawing methods accept the method suboption "Rotation", which specifies the

desired amount of clockwise rotation in radians from the default orientation. The option takes

any numeric values, or False. The default is 0.

For GraphPlot and GraphPlot3D, the default orientation is derived by an alignment step where

the principal axis is found and the graph drawing is aligned with the x coordinate. However if

"Rotation" -> False is specified, this step is skipped.

option name default value

"Rotation" 0 amount of clockwise rotation to apply to
the drawing

A common suboption for all methods.

This rotates a plot of a graph by p ê2, 0, and -p ê2 clockwise.

In[3]:= GraphicsRow@Table@GraphPlot@
84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 3, 6 Ø 4, 6 Ø 5, 7 Ø 1, 7 Ø 2, 7 Ø 3, 7 Ø 4, 7 Ø 5, 7 Ø 6<,
Method Ø 8"Automatic", "Rotation" Ø rot<D, 8rot, 8-Pi ê 2, 0, Pi ê 2<<DD

Out[2]=

42 Graph Drawing

This shows the evolution of a graph layout process.

In[4]:= Grid@Partition@
Table@GraphPlot@84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 3, 6 Ø 4, 6 Ø 5, 7 Ø 1, 7 Ø 2, 7 Ø 3, 7 Ø 4,

7 Ø 5, 7 Ø 6<, Method Ø 8"SpringElectricalEmbedding", "Rotation" Ø False,
"RecursionMethod" Ø None, MaxIterations Ø i<, ImageSize Ø 50D, 8i, 15<D, 85<DD

Out[1]=

Common Suboptions of the "SpringEmbedding" and
"SpringElectricalEmbedding" Methods

Both the SpringEmbedding and SpringElectricalEmbedding methods belong to the family of

so-called force-directed methods. These methods work by calculating the force on each vertex,

and iteratively moving the vertex along the force in an effort to minimize the overall system's

energy. See [8] for algorithmic details. These two methods have the following common options.

option name default value

"EnergyControl" Automatic how the energy function is controlled
during minimization

"InferentialDistance" Automatic cutoff distance beyond which the force
calculation ignores inference from faraway
vertices

MaxIterations Automatic maximum number of iterations to be used
in attempting to minimize the energy

"RandomSeed" Automatic seed to use in the random generator for
initial vertex placement

"RecursionMethod" Automatic whether a multilevel algorithm is used to
lay out the graph

Graph Drawing 43

"StepControl" Automatic how step lengths are modified during
energy minimization

"StepLength" Automatic initial step length used in moving the
vertices

"Tolerance" Automatic tolerance used in terminating the energy
minimization process

Common suboptions for "SpringEmbedding" and "SpringElectricalEmbedding" methods.

"EnergyControl"

The suboption "EnergyControl" specifies limitations on the total energy of the system during

minimization. Possible values are Automatic (the default), "Monotonic", or "NonMonotonic".

When the value is "Monotonic", a step along the force will only be accepted if the energy is

lowered. When the value is "NonMonotonic", a step along the force will be accepted even if the

energy is not lowered.

"InferentialDistance"

The suboption "InferentialDistance" specifies a cutoff distance beyond which the interaction

between vertices is assumed to be nonexistent. Possible values are Automatic (the default) or

a positive numeric value. For the "SpringEmbedding" method, if the graph distance between a

vertex i and a vertex j is greater than the option value of "InferentialDistance", the repul-

sive and attractive spring force between i and j is ignored. For the

"SpringElectricalEmbedding" method, if the Euclidean distance between a vertex i and a

vertex j is greater than the option value of "InferentialDistance", the repulsive force

between i and j is ignored.

This draws a random tree using the "SpringElectricalEmbedding" method.

In[1]:= g = RandomInteger@ÒD Ø Ò + 1 & êü Range@0, 1000D;

44 Graph Drawing

In[2]:= GraphPlot@g, Method Ø "SpringElectricalEmbedding"D

Out[2]=

Using a smaller (more negative) "RepulsiveForcePower" option value (see the next sec-
tion), the graph now fills more space.

In[22]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<D

Out[22]=

A similar effect can be achieved using a small "InferentialDistance" option value.

In[21]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø .5<D

Out[21]=

MaxIterations

Graph Drawing 45

MaxIterations

The option MaxIterations specifies the maximum number of iterations to be used in attempt-

ing to minimize the energy. Possible values are Automatic (the default) or a positive integer.

"RandomSeed"

The option "RandomSeed" specifies a seed for the random number generator that computes the

initial vertex placement. Changing this option usually affects the orientation of the drawing of

the graph, but it can also change the layout. Possible values are Automatic or an integer.

This shows the effect of different random seed values on drawing the Petersen graph.

In[60]:= g = 81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<;

In[61]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RandomSeed" Ø Automatic<,
VertexLabeling Ø TrueD

Out[61]=

1

3

42

5

6
7

8

9

10

In[62]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RandomSeed" Ø 4321<,
VertexLabeling Ø TrueD

Out[62]=

1

3

4

2

5

6

7
8

9

10

"RecursionMethod"

46 Graph Drawing

"RecursionMethod"

The option "RecursionMethod" specifies whether the graph layout should be produced by a

recursive procedure. Possible values are Automatic (the default), "Multilevel", or None. In a

"Multilevel" algorithm, the graph is successively coarsened into graphs with a smaller and

smaller number of vertices. The coarser graphs are laid out first, and those layouts are interpo-

lated into the finer graphs and then further refined.

suboption name default value

"Randomization" Automatic whether to inspect vertices in random order

"MinSize" Automatic minimal number of vertices in a coarsened
graph

"CoarseningScheme" Automatic how graphs are coarsened

Suboptions for "Multilevel".

For the option "Randomize", possible values are Automatic, True, and False. For "MinSize",

possible values are Automatic or a positive number. For "CoarseningScheme", the imple-

mented algorithms are based on either a maximal independent vertex set, which forms the

coarse vertices, or a maximal independent edge set, also called a matching. In a matching, two

vertices that form an edge are merged to form a coarse graph vertex. The following are possi-

ble values for "CoarseningScheme".

"MaximalIndependentVertexSet" link vertices in the maximal independent set if their graph
distance is 3 or less

"MaximalIndependentVertexSetInjection"

link vertices in the maximal independent set if their graph
distance is 1 or 2

"MaximalIndependentVertexSetRugeStuben"

generate the maximal independent vertex set, giving
priority to vertices with more neighbors not in the set, then
link vertices in the set if their graph distance is 3 or less

"MaximalIndependentVertexSetRugeStubenInjection"

link vertices if their graph distance is 1 or 2, giving priority
to vertices with more neighbors

"MaximalIndependentEdgeSet" consider edges in their natural order when matching

Graph Drawing 47

"MaximalIndependentEdgeSetHeavyEdge"

give priority to edges with higher edge weight (i.e., edges
that represent a larger number of edges in the original
graph) when matching

"MaximalIndependentEdgeSetSmallestVertexWeight"

give priority to matchings of vertices with neighbors that
have the smallest vertex weight

"StepControl"

The option "StepControl" defines how step length is modified during energy minimization. It

can be Automatic (the default), "Monotonic" (where step length can only be decreased),

"NonMonotonic" (where step length can be made larger or smaller), or "StrictlyMonotonic"

(where step length is strictly reduced between iterations).

"StepLength"

The option "StepLength" gives the initial step length used in moving the vertices around.

Possible values are Automatic (the default) or a positive real number.

Tolerance

The option Tolerance specifies the tolerance used in terminating the energy minimization

process. If the average change of coordinates of each vertex is less than the tolerance, the

energy minimization process is terminated and the current coordinates are given as output.

Possible values are Automatic or a positive real number.

48 Graph Drawing

Method Suboptions of the
"SpringElectricalEmbedding" Method

option name value

"Octree" Automatic whether to use an octree data structure (in
three dimensions) or a quadtree data
structure (in two dimensions) in the calcula -
tion of repulsive force

"RepulsiveForcePower" -1 how fast the repulsive force decays over
distance

Method options for "SpringElectricalEmbedding".

"Octree"

The "Octree" option specifies whether to use an octree data structure (in three dimensions) or

a quadtree data structure (in two dimensions) in the calculation of repulsive force. Possible

values are Automatic (the default), True, or False. Use of an octree/quadtree data structure

minimizes the complexity of computation by approximating the long-range repulsive force.

However, it introduces an approximation to the force calculation. Therefore, in a few cases the

result may not be as good.

"RepulsiveForcePower"

Possible values are negative real numbers, with -1 as the default. In the spring-electrical embed -

ding, the repulsive force between two vertices i and j is K2 ëdi j by default. If the value of

RepulsiveForcePower is r (with r < 0), then the repulsive force is defined as K1-r di jr, where di j is

the distance between the vertices and K is a constant coefficient.

A strong long-range repulsive force over long distance often has the boundary effect that ver-

tices in the periphery are closer to each other than those in the center are. Specifying a weaker

long-range repulsive force can sometimes alleviate this effect. This option can also be useful in

drawing a graph so that it fills up more space. (See the "InferentialDistance" method option

for details.)

With a repulsive force power of -2, the boundary vertices are not as close to each other as they
are with the default value of -1.

Graph Drawing 49

With a repulsive force power of -2, the boundary vertices are not as close to each other as they
are with the default value of -1.

In[63]:= GraphPlot@GridGraph@20, 20D, Method Ø "SpringElectricalEmbedding"D

Out[63]=

In[64]:= GraphPlot@GridGraph@20, 20D,
Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<D

Out[64]=

Method Suboption of "HighDimensionalEmbedding"

option name default value

"RefinementMethod" None whether the result should be further
refined, and which method should be used
for refinement

Method option for "HighDimensionalEmbedding".

"RefinementMethod"

The option "RefinementMethod" specifies whether the result should be further refined, and

which method should be used to refine it. Possible values are None (the default),

"SpringEmbedding", or "SpringElectricalEmbedding".

This shows a case where the "HighDimensionalEmbedding" method placed vertices 5 and 6
at the same position. Specifying a "RefinementMethod" option helps to draw the graph
better.

50 Graph Drawing

This shows a case where the "HighDimensionalEmbedding" method placed vertices 5 and 6
at the same position. Specifying a "RefinementMethod" option helps to draw the graph
better.

In[65]:= g = 81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 1 Ø 5, 1 Ø 6, 1 Ø 7, 4 Ø 7<;

In[66]:= GraphPlot@g, Method -> "HighDimensionalEmbedding", VertexLabeling Ø TrueD

Out[66]=

1

2

3

4

56

7

In[67]:= GraphPlot@g, Method Ø 8"HighDimensionalEmbedding",
"RefinementMethod" Ø "SpringElectricalEmbedding"<, VertexLabeling Ø TrueD

Out[67]= 1

2

3

4 5

6

7

Advanced Topics

Drawing a Graph to Fill Up More Space

While the default setting for GraphPlot works well in general, for graphs that have a wide

range of values for the vertex degree, it is often necessary to use a setting that helps the

vertices to occupy less space.

Graph Drawing 51

The default method usually works well.

In[18]:= SeedRandom@321D;

In[19]:= g = Table@i Ø RandomInteger@81, 52<D, 8i, 52<D

Out[19]= 81 Ø 11, 2 Ø 27, 3 Ø 15, 4 Ø 18, 5 Ø 11, 6 Ø 44, 7 Ø 11, 8 Ø 50, 9 Ø 51, 10 Ø 6, 11 Ø 52,
12 Ø 31, 13 Ø 23, 14 Ø 50, 15 Ø 37, 16 Ø 6, 17 Ø 31, 18 Ø 19, 19 Ø 40, 20 Ø 21, 21 Ø 43,
22 Ø 49, 23 Ø 11, 24 Ø 16, 25 Ø 27, 26 Ø 46, 27 Ø 16, 28 Ø 4, 29 Ø 11, 30 Ø 17, 31 Ø 3,
32 Ø 25, 33 Ø 44, 34 Ø 51, 35 Ø 27, 36 Ø 29, 37 Ø 22, 38 Ø 42, 39 Ø 8, 40 Ø 21, 41 Ø 46,
42 Ø 2, 43 Ø 23, 44 Ø 45, 45 Ø 23, 46 Ø 4, 47 Ø 14, 48 Ø 8, 49 Ø 52, 50 Ø 30, 51 Ø 8, 52 Ø 19<

In[20]:= GraphPlot@gD

Out[20]=

However, sometimes "SpringEmbedding" produces a drawing that occupies more space.

In[21]:= GraphPlot@g, Method Ø "SpringEmbedding"D

Out[21]=

A similar effect can be achieved with a repulsive force power smaller than the default (-1), so
that the repulsive force decays more quickly over distance.

In[23]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -1.8<D

Out[23]=

52 Graph Drawing

Alternatively, specify a cutoff distance.

In[24]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 4<D

Out[24]=

For such tree-like graphs, a tree-drawing algorithm may be preferable. See "Tree Drawing" for
greater control over tree layout.

In[25]:= GraphPlot@g, Method Ø "RadialDrawing"D

Out[25]=

This draws a graph from power network modeling.

In[23]:= GraphPlot@ExampleData@8"Matrix", "HBê1138_bus"<, "Matrix"D,
Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 4,

"RepulsiveForcePower" Ø -1.8<, PlotRangePadding Ø 0D

Out[23]=

Graph Drawing 53

Improving Performance for Drawing Very Large Graphs

Although the default option set usually ensures a very good performance, it is often possible to

further increase drawing speed and reduce memory usage by selecting specific option combina-

tions for a particular task. For example, speed and/or memory usage can be improved using a

smaller number of iterations, a smaller inferential distance, or a lower tolerance. These settings

tend to reduce quality, but still frequently offer an acceptable compromise.

This is a drawing with default option settings.

In[75]:= g = Import@"LinearAlgebraExamplesêDataênos6.mtx"D;

In[76]:= GraphPlot@gD êê Timing

Out[76]=

A coarsening scheme based on the maximal independent vertex set is often faster and uses less
memory, and yet offers a comparable layout quality.

In[77]:= GraphPlot@g,
Method Ø 8"SpringElectricalEmbedding", "RecursionMethod" Ø 8"Multilevel",

"CoarseningScheme" Ø "MaximalIndependentVertexSetRugeStuben"<<D êê Timing

Out[77]=

By reducing the number of iterations to 30, you can get a result still faster.

In[78]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", MaxIterations Ø 30<D êê Timing

Out[78]=

54 Graph Drawing

:0.325451, >

:0.270455, >

:0.154644, >

Setting the inferential distance to 2 and the number of iterations to 40 is also faster than the
default.

In[79]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding",
"InferentialDistance" Ø 2, MaxIterations Ø 40<D êê Timing

Out[79]=

By further reducing the number of iterations to 20, you get a result much faster.

In[80]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding",
"InferentialDistance" Ø 2, MaxIterations Ø 20<D êê Timing

Out[80]=

A combination of the previous options is still faster.

In[81]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 2,
MaxIterations Ø 20, "RecursionMethod" Ø 8"Multilevel",

"CoarseningScheme" Ø "MaximalIndependentVertexSetRugeStuben"<<D êê Timing

Out[81]=

"HighDimensionalEmbedding" tends to be the fastest method, but the quality of the draw-
ing often suffers.

In[82]:= GraphPlot@g, Method Ø "HighDimensionalEmbedding"D êê Timing

Out[82]=

Graph Drawing 55

:0.17386, >

:0.090956, >

:0.076418, >

:0.013691, >

For comparison, "SpringEmbedding" is the slowest method, but it is the only one that draws
the mesh using orthogonal lines.

In[83]:= GraphPlot@g, Method Ø "SpringEmbedding"D êê Timing

Out[83]=

Extracting Vertex Coordinates from Output

In most cases, you will deal with the output of GraphPlot and GraphPlot3D just as with a usual

Graphics expression. However, you may sometimes want to take advantage of the additional

information encapsulated in the output expression, which has the form

Graphics@Annotation@data, VertexCoordinateRules -> rulesDD. Particularly, it is sometimes

useful to extract coordinates of graph vertices.

Here is a simple graph.

In[84]:= GraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 3<D

Out[84]=

This extracts the coordinates of vertices.

In[85]:= VertexCoordinateRules ê. Cases@%, _Rule, InfinityD

Out[85]= 880.578783, 1.17222<, 80.578837, 0.<, 81.71796, 1.11836<,
81.15021, 0.585401<, 81.71821, 0.0540483<, 80., 0.585946<<

56 Graph Drawing

:1.47127, >

Example Gallery

E. coli Transcription Networks

In a graph representation of a transcriptional regulation network that controls gene expression

in cells, nodes (vertices) are operons, which are one or more genes transcribed on the same

messenger ribonucleic acid (mRNA). Edges of the graph are directed from an operon that

encodes a transcription factor to an operon that it directly regulates [1].

Data

This is the network [2] described as rules.

In[86]:= g = 88"acrR" Ø "acrAB", 2<, 8"ada_alkB" Ø "aidB", 1<, 8"ada_alkB" Ø "alkA", 1<,
8"adiA_adiY" Ø "adiA", 1<, 8"alpA" Ø "slp", 1<, 8"appY" Ø "appCBA", 1<,
8"araC" Ø "araBAD", 3<, 8"araC" Ø "araE", 3<, 8"araC" Ø "araFG_araH_1H_2", 3<,
8"araC" Ø "araJ", 1<, 8"arcA" Ø "aceBAK", 2<, 8"arcA" Ø "appCBA", 1<,
8"arcA" Ø "appY", 1<, 8"arcA" Ø "betIBA", 2<, 8"arcA" Ø "cydAB", 1<,
8"arcA" Ø "cyoABCDE", 2<, 8"arcA" Ø "dctA", 2<, 8"arcA" Ø "fadBA", 2<,
8"arcA" Ø "focA_pflB", 1<, 8"arcA" Ø "fumA", 2<, 8"arcA" Ø "fumC", 2<,
8"arcA" Ø "glcDEFGB", 2<, 8"arcA" Ø "glpACB", 2<, 8"arcA" Ø "gltA", 2<,
8"arcA" Ø "icdA", 2<, 8"arcA" Ø "lctPRD", 2<, 8"arcA" Ø "mdh", 2<,
8"arcA" Ø "nuoABCEFGHIJKLMN", 2<, 8"arcA" Ø "sdhCDAB_b0725_sucABCD", 2<,
8"arcA" Ø "sodA", 2<, 8"argR" Ø "argCBH", 2<, 8"argR" Ø "argD", 2<,
8"argR" Ø "argE", 2<, 8"argR" Ø "argF", 2<, 8"argR" Ø "argI", 2<,
8"argR" Ø "carAB", 2<, 8"arsR" Ø "arsEFG", 2<, 8"asnC" Ø "asnA", 1<,
8"atoC" Ø "atoDAB", 1<, 8"atoC" Ø "atoDAE", 1<, 8"betIBA" Ø "betT", 2<,
8"birA_murA" Ø "bioA", 2<, 8"birA_murA" Ø "bioBFCD", 2<, 8"cadC" Ø "cadBA", 1<,
8"caiF" Ø "caiTABCDE", 1<, 8"caiF" Ø "fixABCX", 1<, 8"cbl" Ø "ssuEADCB", 1<,
8"cbl" Ø "tauABCD", 1<, 8"cpxAR" Ø "cpxP", 1<, 8"cpxAR" Ø "dsbA", 1<,
8"cpxAR" Ø "ecfI", 1<, 8"cpxAR" Ø "htrA", 1<, 8"cpxAR" Ø "motABcheAW", 2<,
8"cpxAR" Ø "rotA", 1<, 8"cpxAR" Ø "skp_lpxDA_fabZ", 1<, 8"cpxAR" Ø "tsr", 2<,
8"cpxAR" Ø "xprB_dsbC_recJ", 1<, 8"crp" Ø "acs", 1<, 8"crp" Ø "aldB", 1<,
8"crp" Ø "ansB", 1<, 8"crp" Ø "araBAD", 1<, 8"crp" Ø "araC", 1<,
8"crp" Ø "araE", 1<, 8"crp" Ø "araFG_araH_1H_2", 1<, 8"crp" Ø "araJ", 1<,
8"crp" Ø "caiF", 1<, 8"crp" Ø "caiTABCDE", 1<, 8"crp" Ø "cirA", 1<,
8"crp" Ø "cpdB", 1<, 8"crp" Ø "cyaA", 2<, 8"crp" Ø "dadAX", 1<,
8"crp" Ø "dctA", 2<, 8"crp" Ø "dcuB_fumB", 2<, 8"crp" Ø "deoCABD", 3<,
8"crp" Ø "dsdXA", 1<, 8"crp" Ø "ebgAC", 1<, 8"crp" Ø "epd_pgk", 1<,
8"crp" Ø "fadL", 2<, 8"crp" Ø "fixABCX", 1<, 8"crp" Ø "flhDC", 1<,
8"crp" Ø "focA_pflB", 1<, 8"crp" Ø "fucAO", 1<, 8"crp" Ø "fucPIKUR", 1<,
8"crp" Ø "fur", 1<, 8"crp" Ø "galETKM", 3<, 8"crp" Ø "galS", 1<,
8"crp" Ø "glgCAP", 1<, 8"crp" Ø "glgS", 1<, 8"crp" Ø "glnALG", 1<,
8"crp" Ø "glpACB", 1<, 8"crp" Ø "glpD", 1<, 8"crp" Ø "glpFK", 1<,
8"crp" Ø "glpTQ", 1<, 8"crp" Ø "gltA", 1<, 8"crp" Ø "gntKU", 1<,
8"crp" Ø "gntT", 1<, 8"crp" Ø "ivbL_ilvBN", 1<, 8"crp" Ø "lacZYA", 1<,
8"crp" Ø "malEFG", 1<, 8"crp" Ø "malI", 2<, 8"crp" Ø "malK_lamB_malM", 1<,
8"crp" Ø "malS", 1<, 8"crp" Ø "malT", 1<, 8"crp" Ø "malXY", 3<,
8"crp" Ø "manXYZ", 1<, 8"crp" Ø "melAB", 1<, 8"crp" Ø "melR", 1<,
8"crp" Ø "mglBAC", 1<, 8"crp" Ø "nagBACD", 1<, 8"crp" Ø "nagE", 1<,
8"crp" Ø "nupG", 3<, 8"crp" Ø "ompA", 2<, 8"crp" Ø "ppiA", 3<, 8"crp" Ø "proP", 3<,
8"crp" Ø "ptsHI_crr", 3<, 8"crp" Ø "rhaBAD", 3<, 8"crp" Ø "rhaT", 1<,

Graph Drawing 57

In[86]:=

8"crp" Ø "rpoH", 3<, 8"crp" Ø "sdhCDAB_b0725_sucABCD", 1<, 8"crp" Ø "speC", 2<,
8"crp" Ø "srlAEBD_gutM_srlR_gutQ", 1<, 8"crp" Ø "tdcABCDEFG", 1<,
8"crp" Ø "tnaLAB", 1<, 8"crp" Ø "tsx", 3<, 8"crp" Ø "ubiG", 1<, 8"crp" Ø "udp", 1<,
8"crp" Ø "uhpT", 1<, 8"crp" Ø "yhfA", 3<, 8"crp" Ø "yiaKLMNOPQRS", 1<,
8"csgDEFG" Ø "csgBA", 1<, 8"cspA" Ø "gyrA", 1<, 8"cspA" Ø "hns", 1<,
8"cynR" Ø "cynTSX", 1<, 8"cysB" Ø "cysDNC", 1<, 8"cysB" Ø "cysJIH", 1<,
8"cysB" Ø "cysK", 1<, 8"cysB" Ø "cysPUWAM", 1<, 8"cysB" Ø "tauABCD", 1<,
8"cytR" Ø "deoCABD", 2<, 8"cytR" Ø "nupC", 2<, 8"cytR" Ø "nupG", 2<,
8"cytR" Ø "ppiA", 2<, 8"cytR" Ø "rpoH", 2<, 8"cytR" Ø "tsx", 3<,
8"cytR" Ø "udp", 2<, 8"deoR" Ø "deoCABD", 2<, 8"deoR" Ø "nupG", 2<,
8"deoR" Ø "tsx", 2<, 8"dnaA" Ø "nrdAB", 1<, 8"dnaA" Ø "rpoH", 2<,
8"dsdC" Ø "dsdXA", 1<, 8"ebgR" Ø "ebgAC", 2<, 8"envY_ompT" Ø "ompC", 1<,
8"envY_ompT" Ø "ompF", 1<, 8"evgA" Ø "ompC", 1<, 8"exuR" Ø "exuT", 2<,
8"exuR" Ø "uxaCA", 2<, 8"exuR" Ø "uxuABR", 2<, 8"fadR" Ø "fabA", 1<,
8"fadR" Ø "fadBA", 2<, 8"fadR" Ø "fadL", 2<, 8"fadR" Ø "iclMR", 2<,
8"fadR" Ø "uspA", 2<, 8"fecIR" Ø "fecABCDE", 1<, 8"fhlA" Ø "fdhF", 1<,
8"fhlA" Ø "hycABCDEFGH", 1<, 8"fhlA" Ø "hypABCDE", 1<, 8"flhDC" Ø "flgAMN", 1<,
8"flhDC" Ø "flgBCDEFGHIJK", 1<, 8"flhDC" Ø "flhBAE", 1<, 8"flhDC" Ø "fliAZY", 1<,
8"flhDC" Ø "fliE", 1<, 8"flhDC" Ø "fliFGHIJK", 1<, 8"flhDC" Ø "fliLMNOPQR", 1<,
8"fliAZY" Ø "flgBCDEFGHIJK", 1<, 8"fliAZY" Ø "flgKL", 1<,
8"fliAZY" Ø "flgMN", 1<, 8"fliAZY" Ø "flhBAE", 1<, 8"fliAZY" Ø "fliC", 1<,
8"fliAZY" Ø "fliDST", 1<, 8"fliAZY" Ø "fliE", 1<, 8"fliAZY" Ø "fliFGHIJK", 1<,
8"fliAZY" Ø "fliLMNOPQR", 1<, 8"fliAZY" Ø "motABcheAW", 1<,
8"fliAZY" Ø "tarTapcheRBYZ", 1<, 8"fliAZY" Ø "tsr", 1<, 8"fnr" Ø "acs", 1<,
8"fnr" Ø "ansB", 1<, 8"fnr" Ø "arcA", 1<, 8"fnr" Ø "aspA", 1<,
8"fnr" Ø "caiF", 1<, 8"fnr" Ø "cydAB", 2<, 8"fnr" Ø "cyoABCDE", 2<,
8"fnr" Ø "dcuB_fumB", 1<, 8"fnr" Ø "dmsABC", 1<, 8"fnr" Ø "fdnGHI", 1<,
8"fnr" Ø "focA_pflB", 1<, 8"fnr" Ø "frdABCD", 1<, 8"fnr" Ø "glpACB", 1<,
8"fnr" Ø "hypABCDE", 1<, 8"fnr" Ø "icdA", 2<, 8"fnr" Ø "narGHJI", 1<,
8"fnr" Ø "narK", 1<, 8"fnr" Ø "ndh", 2<, 8"fnr" Ø "nirBDC_cysG", 1<,
8"fnr" Ø "nuoABCEFGHIJKLMN", 2<, 8"fnr" Ø "sdhCDAB_b0725_sucABCD", 2<,
8"fnr" Ø "tdcABCDEFG", 1<, 8"FruR" Ø "aceBAK", 2<, 8"FruR" Ø "adhE", 2<,
8"FruR" Ø "fruBKA", 2<, 8"FruR" Ø "icdA", 1<, 8"FruR" Ø "ppsA", 1<,
8"FruR" Ø "ptsHI_crr", 3<, 8"FruR" Ø "pykF", 2<, 8"fucPIKUR" Ø "fucAO", 1<,
8"fur" Ø "cirA", 2<, 8"fur" Ø "entCEBA", 2<, 8"fur" Ø "fecIR", 2<,
8"fur" Ø "fepA_entD", 2<, 8"fur" Ø "fepB", 2<, 8"fur" Ø "fepDGC", 2<,
8"fur" Ø "fhuACDB", 2<, 8"fur" Ø "sodA", 2<, 8"fur" Ø "tonB", 2<,
8"GalR" Ø "galETKM", 2<, 8"GalR" Ø "galS", 2<, 8"galS" Ø "mglBAC", 2<,
8"gatR_1" Ø "gatYZABCDR_2", 2<, 8"gcvA" Ø "gcvTHP", 3<, 8"gcvR" Ø "gcvTHP", 2<,
8"glcC" Ø "glcDEFGB", 1<, 8"glnALG" Ø "glnHPQ", 3<, 8"glnALG" Ø "nac", 1<,
8"glpR" Ø "glpACB", 2<, 8"glpR" Ø "glpD", 2<, 8"glpR" Ø "glpFK", 2<,
8"glpR" Ø "glpTQ", 2<, 8"gntR" Ø "edd_eda", 2<, 8"gntR" Ø "gntKU", 2<,
8"gntR" Ø "gntT", 2<, 8"hcaR" Ø "hcaA1A2CBD_yphA", 1<, 8"himA" Ø "aceBAK", 1<,
8"himA" Ø "caiTABCDE", 2<, 8"himA" Ø "carAB", 3<, 8"himA" Ø "dps", 1<,
8"himA" Ø "ecpD_htrE", 1<, 8"himA" Ø "focA_pflB", 1<, 8"himA" Ø "glcDEFGB", 1<,
8"himA" Ø "glnHPQ", 3<, 8"himA" Ø "himD", 2<, 8"himA" Ø "hycABCDEFGH", 1<,
8"himA" Ø "hypABCDE", 1<, 8"himA" Ø "narGHJI", 1<, 8"himA" Ø "narK", 1<,
8"himA" Ø "nuoABCEFGHIJKLMN", 2<, 8"himA" Ø "ompC", 2<, 8"himA" Ø "ompF", 3<,
8"himA" Ø "ompR_envZ", 2<, 8"himA" Ø "osmE", 2<, 8"himA" Ø "pspABCDE", 1<,
8"himA" Ø "sodA", 2<, 8"himA" Ø "tdcABCDEFG", 1<, 8"hns" Ø "caiF", 2<,
8"hns" Ø "flhDC", 1<, 8"hns" Ø "fliAZY", 1<, 8"hns" Ø "nhaA", 1<,
8"hns" Ø "osmC", 1<, 8"hns" Ø "rcsAB", 1<, 8"hns" Ø "stpA", 2<,
8"hydHG" Ø "zraP", 1<, 8"iclMR" Ø "aceBAK", 2<, 8"iclMR" Ø "acs", 2<,
8"ilvY" Ø "ilvC", 1<, 8"kdpDE" Ø "kdpABC", 1<, 8"lacI" Ø "lacZYA", 2<,
8"leuO" Ø "leuLABCD", 1<, 8"lexA_dinF" Ø "polB", 2<, 8"lexA_dinF" Ø "recA", 2<,
8"lexA_dinF" Ø "recN", 2<, 8"lexA_dinF" Ø "rpsU_dnaG_rpoD", 2<,
8"lexA_dinF" Ø "ssb", 2<, 8"lexA_dinF" Ø "sulA", 2<, 8"lexA_dinF" Ø "umuDC", 2<,
8"lexA_dinF" Ø "uvrA", 2<, 8"lexA_dinF" Ø "uvrB", 2<, 8"lexA_dinF" Ø "uvrC", 2<,
8"lexA_dinF" Ø "uvrD", 2<, 8"lrp" Ø "gcvTHP", 1<, 8"lrp" Ø "gltBDF", 1<,
8"lrp" Ø "ilvIH", 1<, 8"lrp" Ø "kbl_tdh", 3<, 8"lrp" Ø "livJ", 2<,
8"lrp" Ø "livKHMGF", 2<, 8"lrp" Ø "lysU", 2<, 8"lrp" Ø "ompC", 2<,
8"lrp" Ø "ompF", 1<, 8"lrp" Ø "oppABCDF", 2<, 8"lrp" Ø "osmC", 1<,
8"lrp" Ø "sdaA", 2<, 8"lrp" Ø "serA", 1<, 8"lrp" Ø "stpA", 1<,

58 Graph Drawing

In[86]:=

8"lysR" Ø "lysA", 1<, 8"lysR" Ø "tdcABCDEFG", 1<, 8"malI" Ø "malXY", 2<,
8"malT" Ø "malEFG", 1<, 8"malT" Ø "malK_lamB_malM", 1<, 8"malT" Ø "malPQ", 1<,
8"malT" Ø "malS", 1<, 8"malT" Ø "malZ", 1<, 8"marRAB" Ø "fpr", 1<,
8"marRAB" Ø "fumC", 1<, 8"marRAB" Ø "nfo", 1<, 8"marRAB" Ø "sodA", 1<,
8"marRAB" Ø "zwf", 1<, 8"melR" Ø "melAB", 1<, 8"metJ" Ø "metA", 2<,
8"metJ" Ø "metC", 2<, 8"metJ" Ø "metF", 2<, 8"metJ" Ø "metR", 2<,
8"metR" Ø "glyA", 1<, 8"metR" Ø "metA", 1<, 8"metR" Ø "metH", 1<,
8"mhpR" Ø "mhpABCDFE", 1<, 8"mlc" Ø "malT", 2<, 8"mlc" Ø "manXYZ", 2<,
8"mlc" Ø "ptsG", 2<, 8"mlc" Ø "ptsHI_crr", 2<, 8"modE" Ø "modABC", 2<,
8"nac" Ø "gdhA", 2<, 8"nac" Ø "putAP", 1<, 8"nadR" Ø "nadB", 2<,
8"nadR" Ø "pncB", 2<, 8"nagBACD" Ø "glmUS", 3<, 8"nagBACD" Ø "manXYZ", 2<,
8"nagBACD" Ø "nagE", 2<, 8"narL" Ø "adhE", 2<, 8"narL" Ø "caiF", 2<,
8"narL" Ø "dcuB_fumB", 2<, 8"narL" Ø "dmsABC", 2<, 8"narL" Ø "fdnGHI", 1<,
8"narL" Ø "focA_pflB", 2<, 8"narL" Ø "frdABCD", 2<, 8"narL" Ø "narGHJI", 1<,
8"narL" Ø "narK", 1<, 8"narL" Ø "nirBDC_cysG", 1<, 8"narL" Ø "nrfABCDEFG", 1<,
8"narL" Ø "nuoABCEFGHIJKLMN", 1<, 8"narL" Ø "torCAD", 2<, 8"nhaR" Ø "nhaA", 1<,
8"nlpD_rpoS" Ø "acs", 1<, 8"nlpD_rpoS" Ø "adhE", 1<, 8"nlpD_rpoS" Ø "aldB", 1<,
8"nlpD_rpoS" Ø "alkA", 1<, 8"nlpD_rpoS" Ø "appY", 1<, 8"nlpD_rpoS" Ø "cpxAR", 1<,
8"nlpD_rpoS" Ø "dps", 1<, 8"nlpD_rpoS" Ø "ftsQAZ", 1<, 8"nlpD_rpoS" Ø "katG", 1<,
8"nlpD_rpoS" Ø "narZYWV", 1<, 8"nlpD_rpoS" Ø "nhaA", 1<,
8"nlpD_rpoS" Ø "osmC", 1<, 8"nlpD_rpoS" Ø "osmY", 1<, 8"nlpD_rpoS" Ø "proP", 1<,
8"ompR_envZ" Ø "csgBA", 1<, 8"ompR_envZ" Ø "csgDEFG", 1<,
8"ompR_envZ" Ø "fadL", 2<, 8"ompR_envZ" Ø "flhDC", 2<,
8"ompR_envZ" Ø "ompC", 1<, 8"ompR_envZ" Ø "ompF", 3<, 8"oxyR" Ø "ahpCF", 1<,
8"oxyR" Ø "dps", 1<, 8"oxyR" Ø "gorA", 1<, 8"oxyR" Ø "katG", 1<,
8"phoBR" Ø "phnCDE_f73_phnFGHIJKLMNOP", 1<, 8"phoBR" Ø "phoA", 1<,
8"phoBR" Ø "phoE", 1<, 8"phoBR" Ø "pstSCAB_phoU", 1<, 8"pspF" Ø "pspABCDE", 1<,
8"purR" Ø "codBA", 2<, 8"purR" Ø "cvpA_purF_ubiX", 2<,
8"purR" Ø "gcvTHP", 2<, 8"purR" Ø "glnB", 2<, 8"purR" Ø "glyA", 2<,
8"purR" Ø "guaBA", 2<, 8"purR" Ø "prsA", 2<, 8"purR" Ø "purC", 2<,
8"purR" Ø "purEK", 2<, 8"purR" Ø "purHD", 2<, 8"purR" Ø "purL", 2<,
8"purR" Ø "purMN", 2<, 8"purR" Ø "pyrC", 2<, 8"purR" Ø "pyrD", 2<,
8"purR" Ø "speA", 2<, 8"purR" Ø "ycfC_purB", 2<, 8"rbsR" Ø "rbsDACBK", 2<,
8"rcsA" Ø "ftsQAZ", 1<, 8"rcsA" Ø "wza_wzb_b2060_wcaA_wcaB", 1<,
8"rhaSR" Ø "rhaBAD", 1<, 8"rhaSR" Ø "rhaT", 1<, 8"rob" Ø "aslB", 1<,
8"rob" Ø "fumC", 1<, 8"rob" Ø "galETKM", 2<, 8"rob" Ø "inaA", 1<,
8"rob" Ø "marRAB", 1<, 8"rob" Ø "mdlA", 1<, 8"rob" Ø "nfo", 1<,
8"rob" Ø "sodA", 1<, 8"rob" Ø "ybaO", 1<, 8"rob" Ø "ybiS", 1<,
8"rob" Ø "yfhD", 1<, 8"rob" Ø "zwf", 1<, 8"rpiR_alsBACEK" Ø "rpiB", 2<,
8"rpoE_rseABC" Ø "cutC", 1<, 8"rpoE_rseABC" Ø "dapA_nlpB_purA", 1<,
8"rpoE_rseABC" Ø "ecfABC", 1<, 8"rpoE_rseABC" Ø "ecfD", 1<,
8"rpoE_rseABC" Ø "ecfF", 1<, 8"rpoE_rseABC" Ø "ecfG", 1<,
8"rpoE_rseABC" Ø "ecfH", 1<, 8"rpoE_rseABC" Ø "ecfI", 1<,
8"rpoE_rseABC" Ø "ecfJ", 1<, 8"rpoE_rseABC" Ø "ecfK", 1<,
8"rpoE_rseABC" Ø "ecfLM", 1<, 8"rpoE_rseABC" Ø "fkpA", 1<,
8"rpoE_rseABC" Ø "htrA", 1<, 8"rpoE_rseABC" Ø "ksgA_epaG_epaH", 1<,
8"rpoE_rseABC" Ø "lpxDA_fabZ", 1<, 8"rpoE_rseABC" Ø "mdoGH", 1<,
8"rpoE_rseABC" Ø "nlpB_purA", 1<, 8"rpoE_rseABC" Ø "ostA_surA_pdxA", 1<,
8"rpoE_rseABC" Ø "rfaDFCL", 1<, 8"rpoE_rseABC" Ø "rpoD", 1<,
8"rpoE_rseABC" Ø "rpoH", 1<, 8"rpoE_rseABC" Ø "skp_lpxDA_fabZ", 1<,
8"rpoE_rseABC" Ø "uppS_cdsA_ecfE", 1<, 8"rpoE_rseABC" Ø "xprB_dsbC_recJ", 1<,
8"rpoH" Ø "clpP", 1<, 8"rpoH" Ø "dnaKJ", 1<, 8"rpoH" Ø "grpE", 1<,
8"rpoH" Ø "hflB", 1<, 8"rpoH" Ø "htpG", 1<, 8"rpoH" Ø "htpY", 1<,
8"rpoH" Ø "ibpAB", 1<, 8"rpoH" Ø "lon", 1<, 8"rpoH" Ø "mopA", 1<,
8"rpoH" Ø "mopB", 1<, 8"rpoN" Ø "atoC", 1<, 8"rpoN" Ø "dctA", 1<,
8"rpoN" Ø "fdhF", 1<, 8"rpoN" Ø "fhlA", 1<, 8"rpoN" Ø "glnALG", 1<,
8"rpoN" Ø "glnHPQ", 1<, 8"rpoN" Ø "hycABCDEFGH", 1<, 8"rpoN" Ø "hypA", 1<,
8"rpoN" Ø "nac", 1<, 8"rpoN" Ø "nycA", 1<, 8"rpoN" Ø "pspABCDE", 1<,
8"rpoN" Ø "rtcR", 1<, 8"rpoN" Ø "zraP", 1<, 8"rtcR" Ø "rtcAB", 2<,
8"soxR" Ø "soxS", 1<, 8"soxS" Ø "acnA", 1<, 8"soxS" Ø "fpr", 1<,
8"soxS" Ø "fumC", 1<, 8"soxS" Ø "nfo", 1<, 8"soxS" Ø "sodA", 1<,
8"soxS" Ø "zwf", 1<, 8"tdcAR" Ø "tdcABCDEFG", 1<, 8"torR" Ø "torCAD", 1<,
8"treR" Ø "treBC", 2<, 8"trpR" Ø "aroH", 2<, 8"trpR" Ø "aroL_yaiA_aroM", 2<,

Graph Drawing 59

In[86]:=

8"trpR" Ø "mtr", 2<, 8"trpR" Ø "trpLEDCBA", 2<, 8"tyrR" Ø "aroF_tyrA", 2<,
8"tyrR" Ø "aroG", 2<, 8"tyrR" Ø "aroL_yaiA_aroM", 2<, 8"tyrR" Ø "aroP", 2<,
8"tyrR" Ø "mtr", 1<, 8"tyrR" Ø "tyrB", 2<, 8"tyrR" Ø "tyrP", 3<,
8"uhpA" Ø "uhpT", 1<, 8"uidR" Ø "uidRABC", 2<, 8"uxuABR" Ø "uidRABC", 2<,
8"xapR" Ø "xapAB", 1<, 8"xylFGHR" Ø "xylAB", 1<, 8"yhdG_fis" Ø "adhE", 1<,
8"yhdG_fis" Ø "alaWX", 1<, 8"yhdG_fis" Ø "aldB", 3<, 8"yhdG_fis" Ø "argU", 1<,
8"yhdG_fis" Ø "argW", 1<, 8"yhdG_fis" Ø "argX_hisR_leuT_proM", 1<,
8"yhdG_fis" Ø "aspV", 1<, 8"yhdG_fis" Ø "leuQPV", 1<,
8"yhdG_fis" Ø "leuX", 1<, 8"yhdG_fis" Ø "lysT_valT_lysW", 1<,
8"yhdG_fis" Ø "metT_leuW_glnUW_metU_glnVX", 1<,
8"yhdG_fis" Ø "metY_yhbC_nusA_infB", 1<, 8"yhdG_fis" Ø "nrdAB", 1<,
8"yhdG_fis" Ø "pdhR_aceEF_lpdA", 1<, 8"yhdG_fis" Ø "pheU", 1<,
8"yhdG_fis" Ø "pheV", 1<, 8"yhdG_fis" Ø "proK", 1<, 8"yhdG_fis" Ø "proL", 1<,
8"yhdG_fis" Ø "proP", 1<, 8"yhdG_fis" Ø "sdhCDAB_b0725_sucABCD", 1<,
8"yhdG_fis" Ø "serT", 1<, 8"yhdG_fis" Ø "serX", 1<,
8"yhdG_fis" Ø "thrU_tyrU_glyT_thrT", 1<, 8"yhdG_fis" Ø "thrW", 1<,
8"yhdG_fis" Ø "tyrTV", 1<, 8"yhdG_fis" Ø "valUXY_lysV", 1<,
8"yiaJ" Ø "yiaKLMNOPQRS", 2<, 8"yjbK" Ø "znuABC", 2<, 8"yjdHG" Ø "dctA", 1<,
8"yjdHG" Ø "dcuB_fumB", 1<, 8"yjdHG" Ø "frdABCD", 1<, 8"zntR" Ø "zntA", 1<<;

Drawing the Network

The network consists of many components. Mouse over vertices to see the labels.

In[87]:= GraphPlot@g, EdgeLabeling Ø Automatic, VertexLabeling Ø TooltipD

Out[87]=

60 Graph Drawing

Use a different component packing method.

In[88]:= GraphPlot@g, EdgeLabeling Ø Automatic,
VertexLabeling Ø Tooltip, PackingMethod Ø "ClosestPackingCenter"D

Out[88]=

This spreads out the vertices.

In[89]:= GraphPlot@g, Method -> 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -2<,
EdgeLabeling Ø Automatic, VertexLabeling Ø Tooltip,
PackingMethod Ø "ClosestPackingCenter"D

Out[89]=

Graph Drawing 61

An alternative way of spreading out the vertices.

In[90]:= GraphPlot@g, Method Ø 8"SpringElectricalEmbedding", "InferentialDistance" Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø Tooltip,
PackingMethod Ø "ClosestPackingCenter"D

Out[90]=

Protein: An Oxidoreductase

This plots an oxidoreductase protein [3] using the data from [4].

In[91]:= GraphPlot@881 Ø 2, 1<, 81 Ø 9, 2<, 81 Ø 17, 2<, 82 Ø 3, 1<, 82 Ø 9, 2<, 83 Ø 49, 2<,
84 Ø 5, 2<, 84 Ø 42, 2<, 85 Ø 6, 2<, 85 Ø 9, 2<, 85 Ø 17, 2<, 85 Ø 42, 1<, 86 Ø 7, 1<,
86 Ø 8, 2<, 86 Ø 17, 2<, 86 Ø 28, 2<, 86 Ø 42, 2<, 87 Ø 8, 2<, 87 Ø 16, 2<, 87 Ø 28, 2<,
87 Ø 44, 2<, 88 Ø 10, 2<, 88 Ø 11, 2<, 88 Ø 14, 2<, 88 Ø 16, 2<, 88 Ø 18, 2<,
88 Ø 19, 2<, 88 Ø 28, 2<, 89 Ø 17, 2<, 810 Ø 11, 1<, 810 Ø 12, 2<, 810 Ø 13, 2<,
810 Ø 14, 2<, 810 Ø 17, 2<, 810 Ø 18, 2<, 811 Ø 12, 2<, 811 Ø 18, 2<, 812 Ø 13, 2<,
812 Ø 14, 2<, 812 Ø 18, 2<, 813 Ø 14, 2<, 813 Ø 15, 2<, 813 Ø 16, 2<, 813 Ø 18, 2<,
813 Ø 32, 2<, 814 Ø 15, 1<, 814 Ø 16, 2<, 814 Ø 18, 2<, 814 Ø 32, 1<, 814 Ø 36, 2<,
815 Ø 16, 2<, 815 Ø 32, 2<, 815 Ø 36, 2<, 815 Ø 37, 2<, 816 Ø 17, 2<, 816 Ø 18, 2<,
816 Ø 32, 2<, 816 Ø 33, 2<, 816 Ø 37, 2<, 818 Ø 19, 2<, 819 Ø 20, 2<, 819 Ø 43, 2<,
820 Ø 21, 2<, 820 Ø 43, 2<, 821 Ø 22, 2<, 822 Ø 27, 2<, 822 Ø 28, 2<, 822 Ø 29, 2<,
823 Ø 24, 2<, 823 Ø 25, 2<, 823 Ø 26, 2<, 823 Ø 27, 2<, 823 Ø 30, 2<, 823 Ø 31, 2<,
823 Ø 39, 2<, 824 Ø 25, 2<, 824 Ø 31, 2<, 824 Ø 39, 2<, 825 Ø 26, 2<, 825 Ø 31, 2<,
826 Ø 27, 2<, 826 Ø 30, 2<, 826 Ø 31, 2<, 826 Ø 32, 2<, 827 Ø 30, 2<, 828 Ø 29, 2<,
829 Ø 85, 2<, 830 Ø 31, 2<, 830 Ø 32, 2<, 830 Ø 33, 2<, 832 Ø 36, 2<, 832 Ø 85, 2<,
833 Ø 36, 2<, 835 Ø 36, 2<, 835 Ø 79, 2<, 835 Ø 82, 2<, 836 Ø 37, 2<, 837 Ø 38, 2<,
839 Ø 40, 2<, 839 Ø 41, 2<, 839 Ø 47, 2<, 840 Ø 41, 2<, 840 Ø 46, 2<, 840 Ø 48, 2<,
843 Ø 44, 2<, 844 Ø 45, 1<, 845 Ø 46, 1<, 847 Ø 48, 2<, 850 Ø 51, 1<, 850 Ø 52, 2<,
850 Ø 59, 1<, 850 Ø 67, 2<, 851 Ø 52, 2<, 851 Ø 59, 2<, 851 Ø 67, 2<, 852 Ø 53, 1<,
853 Ø 93, 2<, 853 Ø 99, 2<, 854 Ø 55, 2<, 854 Ø 92, 2<, 855 Ø 56, 2<, 855 Ø 59, 2<,
855 Ø 67, 2<, 855 Ø 92, 1<, 856 Ø 57, 1<, 856 Ø 58, 2<, 856 Ø 67, 2<, 856 Ø 78, 2<,
856 Ø 92, 2<, 857 Ø 58, 2<, 857 Ø 66, 2<, 857 Ø 78, 2<, 857 Ø 94, 2<, 858 Ø 60, 2<,
858 Ø 61, 2<, 858 Ø 64, 2<, 858 Ø 66, 2<, 858 Ø 68, 2<, 858 Ø 69, 2<, 858 Ø 78, 2<,
859 Ø 67, 2<, 860 Ø 61, 2<, 860 Ø 62, 2<, 860 Ø 64, 2<, 860 Ø 67, 2<, 860 Ø 68, 2<,
861 Ø 62, 2<, 861 Ø 68, 2<, 862 Ø 63, 2<, 862 Ø 68, 2<, 863 Ø 64, 2<, 863 Ø 65, 2<,
863 Ø 66, 2<, 863 Ø 68, 2<, 863 Ø 82, 2<, 864 Ø 65, 1<, 864 Ø 66, 2<, 864 Ø 68, 2<,
864 Ø 82, 1<, 864 Ø 86, 2<, 865 Ø 66, 2<, 865 Ø 82, 2<, 865 Ø 86, 2<, 865 Ø 87, 2<,
866 Ø 67, 2<, 866 Ø 68, 2<, 866 Ø 82, 2<, 866 Ø 83, 2<, 866 Ø 87, 2<, 868 Ø 69, 2<,

62 Graph Drawing

In[91]:=

869 Ø 70, 2<, 869 Ø 93, 2<, 870 Ø 71, 2 , 71 Ø 72, 2 , 72 Ø 77, 2<, 872 Ø 78, 2<,
872 Ø 79, 2<, 873 Ø 74, 2<, 873 Ø 75, 2<, 873 Ø 76, 2<, 873 Ø 77, 2<, 873 Ø 80, 2<,
873 Ø 81, 2<, 873 Ø 89, 2<, 874 Ø 75, 2<, 874 Ø 81, 2<, 874 Ø 89, 2<, 875 Ø 76, 2<,
875 Ø 81, 2<, 876 Ø 77, 2<, 876 Ø 80, 2<, 876 Ø 81, 2<, 876 Ø 82, 2<, 877 Ø 80, 2<,
878 Ø 79, 2<, 880 Ø 81, 2<, 880 Ø 82, 2<, 880 Ø 83, 2<, 882 Ø 86, 2<, 885 Ø 86, 2<,
886 Ø 87, 2<, 887 Ø 88, 2<, 889 Ø 90, 2<, 889 Ø 91, 2<, 889 Ø 97, 2<, 890 Ø 91, 2<,
890 Ø 96, 2<, 890 Ø 98, 2<, 893 Ø 94, 2<, 894 Ø 95, 1<, 895 Ø 96, 1<, 897 Ø 98, 2<<,

EdgeLabeling Ø Automatic, MultiedgeStyle Ø FalseD

Out[91]=

Square Dielectric Waveguide

A square sparse matrix can be viewed as an adjacency matrix of a graph; therefore it is often

instructive to "draw" the sparse matrix using GraphPlot. An example is given below, and the

graph drawing of over one thousand matrices can be found at [7].

This graph represents a sparse matrix used in electrical engineering [5].

In[113]:= g = Import@"ftp:êêmath.nist.govêpubêMatrixMarket2êNEPêdwaveêdwa512.mtx.gz"D

Out[115]= SparseArray@<2480>, 8512, 512<D

In[116]:= GraphPlot3D@g, VertexRenderingFunction Ø NoneD

Out[116]=

Graph Drawing 63

Social Network

Graph drawing is a powerful tool in visualizing social structures.

This plots a social network.

In[94]:= GraphPlot@8"Li" Ø "Hu", "Wang" Ø "Hu", "Li" Ø "Wang", "Carol" Ø "Andre",
"Carol" Ø "Fernando", "Carol" Ø "Diane", "Andre" Ø "Diane", "Andre" Ø "Fernando",
"Andre" Ø "Beverly", "Fernando" Ø "Diane", "Fernando" Ø "Garth",
"Fernando" Ø "Heather", "Diane" Ø "Beverly", "Diane" Ø "Garth",
"Diane" Ø "Ed", "Beverly" Ø "Garth", "Beverly" Ø "Ed", "Garth" Ø "Ed",
"Garth" Ø "Heather", "Jane" Ø "Li", "Jane" Ø "Hu", "Heather" Ø "Ike",
"Ike" Ø "Jane", "Li" Ø "Yang", "Yang" Ø "Liu", "Liu" Ø "Wang"<,

VertexLabeling Ø True, PlotRangePadding Ø AutomaticD

Out[94]=

Graphs from Words and Texts

This plots a network of words all starting with "din". Here, two nearest words are found for each
word and linked to it with an edge.

In[95]:= words = DictionaryLookup@"din*"D;

In[96]:= nearbys =
Flatten@Map@HThread@Ò -> DeleteCases@Nearest@words, Ò, 3D, ÒDDL &, wordsDD;

In[97]:= GraphPlot@nearbys,
Method Ø 8"SpringElectricalEmbedding", "RepulsiveForcePower" Ø -3<,
VertexRenderingFunction Ø HText@Ò2, Ò1, Background Ø WhiteD &LD

Out[97]=

This generates a graph by linking each letter in a word to all the letters that follow it in the word.

64 Graph Drawing

Li

HuWang

Carol

AndreFernando

Diane

BeverlyGarth

Heather

Ed

Jane Ike

Yang

Liu

din
dine

ding

dinar

dinars

diner

diners

dined
dines

dinette

dinettes

dingbat

dingbats

dinged
dinned dinghies

dingies

dingier

dinghy

dingy

dinkier

dingiest
dinkiest

dingily

dinginess

dinging

dining

dinning

dingle dingles

dingo dingos

dingoes

dings

dingus

dinguses
dinkies

dinky

dinner
dinnered

dinnering

dinners

dinnertime

dinnerware

dinosaur

dinosaurs

dins
dint

dints

This generates a graph by linking each letter in a word to all the letters that follow it in the word.

In[1]:= WordPlot@w_StringD := GraphPlot@Hx = Characters@wD;
Thread@Drop@x, -1D Ø Drop@x, 1DDL, VertexLabeling Ø True, DirectedEdges Ø TrueD;

In[2]:= WordPlot@"Shakespeare"D

Out[2]=

This generates a graph by linking words in a text with subsequent words.

In[100]:= TextPlot@w_StringD :=
GraphPlot@Hx = Map@ToLowerCase, StringCases@w, WordCharacter ..DD;

g = Thread@Drop@x, -1D Ø Drop@x, 1DD;
gL, DirectedEdges Ø True, VertexLabeling Ø TrueD;

In[101]:= TextPlot@"to be or not to be, that is the question."D

Out[101]=
to

be

or

notthatisthequestion

Torus

This defines a torus and plots it in 3D.

In[102]:= Torus@m_, n_D :=
SparseArray@
Flatten@Table@88i * n + j + 1, Mod@i + 1, mD * n + j + 1< ->

1, 8i * n + j + 1, Mod@i - 1, mD * n + j + 1< ->
1, 8i * n + j + 1, i * n + Mod@j + 1, nD + 1< ->
1, 8i * n + j + 1, i * n + Mod@j - 1, nD + 1< -> 1<, 8i, 0,
m - 1<, 8j, 0, n - 1<DD, 8m * n, m * n<D;

In[103]:= GraphPlot3D@Torus@40, 40D, VertexRenderingFunction Ø NoneD

Out[103]=

References

Graph Drawing 65

S h a

k

e
s

p
r

References

[1] Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. "Network Motifs:

Simple Building Blocks of Complex Networks." Science 298, no. 5594 (2002): 824|827.

[2] Alon, U. "Collection of Complex Networks." Uri Alon Homepage 2007.

http://www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html

[3] Milo, R., S. Itzkovitz, N. Kashtan, et al. "Superfamilies of Designed and Evolved Networks."

Science 303, no. 5663 (2004): 1538|1542.

[4] Alon, U. "1AORInter." network Motifs 2007.

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/1AORInter_st.txt

[5] National Institute of Standards and Technology. "DWA512: Square Dielectric Waveguide."

Matrix Market 2007. http://math.nist.gov/MatrixMarket/data/NEP/dwave/dwa512.html

[6] Freivalds, K., U. Dogrusoz, and P. Kikusts, "Disconnected Graph Layout and the Polyomino

Packing Approach." Lecture Notes in Computer Science: Revised Papers from the 9th

International Symposium on Graph Drawing 2265 (2001): 378|391.

[7] Hu, Y. F. "Graph Drawing of Square Matrices from University of Florida Sparse Matrix

Collection." (2007). http://members.wolfram.com/~yifanhu/UFMatrixGraphPlot

[8] Hu, Y. F. "Efficient, High-Quality Force-Directed Graph Drawing." The Mathematica Journal

10, no. 1 (2006): 37|71.

66 Graph Drawing

Hierarchical Drawing of Directed Graphs

LayeredGraphPlot attempts to draw the vertices of a graph in a series of layers, placing domi-

nant vertices at the top, and vertices lower in the hierarchy progressively further down.

LayeredGraphPlotA9vi 1->v j 1,vi 2->v j 2,…=E

generate a layered plot of the graph in which vertex vik is
connected to vertex v jk

LayeredGraphPlotA99vi 1->v j 1,lbl1=,…=E

associate labels lblk with edges in the graph

LayeredGraphPlot@g,posD place the dominant vertices in the plot at position pos

LayeredGraphPlot@mD generate a layered plot of the graph represented by the
adjacency matrix m

Hierarchical graph drawing.

LayeredGraphPlot draws a graph so that the edges point predominantly downward. The sec-

ond argument of LayeredGraphPlot specifies the position of the root. Possible values for this

argument are Right, Left, Top, and Bottom.

This plots a directed graph.

In[1]:= LayeredGraphPlot@
84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<, VertexLabeling -> TrueD

Out[1]=

4

3

5

6

1 2

Graph Drawing 67

This is the same graph, with edges pointing from left to right.

In[2]:= LayeredGraphPlot@84 Ø 3, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4, 6 Ø 5, 6 Ø 3<,
Left, VertexLabeling -> TrueD

Out[2]=

LayeredGraphPlot may produce slightly different output on different platforms, due to floating-

point differences.

Options for LayeredGraphPlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

MultiedgeStyle Automatic how to draw multiple edges between
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for LayeredGraphPlot.

DirectedEdges

68 Graph Drawing

4

35

6

1

2

DirectedEdges

The option DirectedEdges specifies whether to draw edges as arrows. Possible values for this

option are True or False. The default value for this option is True.

This shows a graph with edges represented by lines instead of arrows.

In[3]:= LayeredGraphPlot@84 Ø 3, 5 Ø 2, 5 Ø 3, 5 Ø 4, 6 Ø 1, 6 Ø 2, 6 Ø 4<,
DirectedEdges Ø False, VertexLabeling Ø TrueD

Out[3]= 4

3

5

2

6

1

EdgeLabeling

The option EdgeLabeling specifies whether and how to display labels given for the edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is True, which displays the supplied edge labels on the graph. With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[4]:= LayeredGraphPlot@81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4,
3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[4]= edge 3->6

1

5

6

2

4

3

Graph Drawing 69

This displays the labels as tooltips. Place the cursor over the edge between vertices 3 and 6 to
see the tooltip.

In[5]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 3 Ø 5, 83 Ø 6, "edge 3->6"<, 4 Ø 6, 5 Ø 6<,
EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[5]=

1

5

6

2

4

3

Alternatively, use Tooltip@vi -> v j, lblD to specify a tooltip for an edge. Place the cursor over
the edge between vertices 3 and 6, as well as the edge label on the edge between vertices 3
and 5, to see the tooltips.

In[6]:= LayeredGraphPlot@
81 Ø 5, 1 Ø 6, 2 Ø 4, 2 Ø 6, 3 Ø 4, 83 Ø 5, Tooltip@ "edge 3->5", "3->5"D<,
Tooltip@3 Ø 6, "3->6"D, 4 Ø 6, 5 Ø 6<, VertexLabeling Ø TrueD

Out[6]=

edge 3->5

1

5

6

2

4

3

EdgeRenderingFunction

The option EdgeRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

70 Graph Drawing

This draws vertices only.

In[7]:= LayeredGraphPlot@Table@1, 810<, 810<D,
EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[7]=

With EdgeRenderingFunction -> g, each edge is rendered with the graphics primitives and

directives given by the function g. It can take three or more arguments in the form

g@8ri, …, r j<, 8vi, v j<, lblij, …D, where ri, r j are the coordinates of the beginning and ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the edge or None. Explicit settings for EdgeRenderingFunction -> g override settings for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance of 0.3 (in the
graph's coordinate system).

In[8]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 1, 11 Ø 12, 12 Ø 13, 13 Ø 14, 14 Ø 15,
15 Ø 16, 16 Ø 17, 17 Ø 11, 1 Ø 11, 2 Ø 12, 3 Ø 13, 4 Ø 14, 5 Ø 15, 6 Ø 16, 7 Ø 17<,

EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[8]=

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.

Graph Drawing 71

1

2

3

4

5

6

7

8

9

10

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 70% along arrows.

In[9]:= << GraphUtilities`

In[10]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 5 Ø 1, 5 Ø 2, 5 Ø 3, 5 Ø 4, 1 Ø 4, 3 Ø 5, 3 Ø 3<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .7D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[10]=

MultiedgeStyle

The option MultiedgeStyle specifies whether to draw multiple edges between two vertices.

Possible values for MultiedgeStyle are Automatic (the default), True, False, or a positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if the graph is specified by an adjacency

matrix. With MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

By default, multiple edges are shown if a graph is given as a list of rules.

In[11]:= LayeredGraphPlot@
81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<, VertexLabeling Ø TrueD

Out[11]=

But multiple edges are not shown for graphs specified by an adjacency matrix.

72 Graph Drawing

81, 2<

81, 4<

82, 3<

83, 4<

83, 5<

83, 3<

85, 1<

85, 2<

85, 3<

85, 4<

1

2

3

4

5

1

2

3

5

4

6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[12]:= LayeredGraphPlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[12]=

1

2

3 4

5

6

This spreads multiple edges by the specified amount.

In[13]:= LayeredGraphPlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[13]=

Graph Drawing 73

1

2

3

5

4

6

PackingMethod

The option PackingMethod specifies the method used for packing disconnected components.

Possible values for the option are Automatic (the default), "ClosestPacking",

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from the top left.

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are

packed in layers starting from the top/left respectively. With PackingMethod -> "NestedGrid",

components are arranged in a nested grid. The typical effective default setting is

PackingMethod -> "Layered", and the packing starts with components of the largest bounding

box area.

This shows the packing of disconnected components by the default method.

In[14]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[14]=

This shows the packing of disconnected components using the "ClosestPackingCenter"
method.

In[15]:= LayeredGraphPlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[15]=

PlotRangePadding

74 Graph Drawing

PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by LayeredGraphPlot.

PlotStyle

PlotStyle is a common option for graphics functions inherited by LayeredGraphPlot. The

option PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker arrows, and both edges and vertices' labels in red.

In[16]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8, 10 Ø 8, 8 Ø 3,
12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<, VertexLabeling Ø True,

PlotStyle Ø 8Red, Arrowheads@880.1, 0.8<<D, Thickness@0.02D<D

Out[16]=

SelfLoopStyle

The option SelfLoopStyle specifies whether and how to draw loops for vertices that are linked

to themselves. Possible values of the option are Automatic (the default), True, False, or a

positive real number. With SelfLoopStyle -> Automatic, self-loops are shown if the graph is

specified by a list of rules, but not by an adjacency matrix. With SelfLoopStyle -> d, the self-

loops are drawn with a diameter of d (relative to the average edge length).

Graph Drawing 75

1

2

3

4

6

5

7

9

8

10

12

11

13

15

14

16

By default, self-loops are displayed for a graph specified by a list of rules.

In[17]:= LayeredGraphPlot@83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1,
6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<, VertexLabeling Ø TrueD

Out[17]=

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[18]:= LayeredGraphPlotB

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
1 1 1 1 1 0

, VertexLabeling Ø TrueF

Out[18]=

This shows self-loops with diameter equal to 0.3 times the average length of the edges.

In[19]:= LayeredGraphPlot@
83 Ø 2, 4 Ø 1, 4 Ø 3, 5 Ø 1, 5 Ø 2, 6 Ø 1, 6 Ø 2, 6 Ø 3, 6 Ø 4, 6 Ø 5, 1 Ø 1, 1 Ø 1<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[19]=

76 Graph Drawing

3

2

4

1

5

6

1

2

3

4

5

6

3

2

4

1

5

6

VertexCoordinateRules

The option VertexCoordinateRules specifies the coordinates of the vertices. Possible values

are None, or a list of coordinates. Coordinates specified by a list of rules are not currently sup-

ported by LayeredGraphPlot.

This draws the Petersen graph using known coordinates.

In[20]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[20]=

This draws with the default method.

In[21]:= LayeredGraphPlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[21]=

VertexLabeling

Graph Drawing 77

VertexLabeling

The option VertexLabeling specifies whether to show vertex names as labels. Possible values

for this option are True, False, Automatic (the default) and Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified by a list of rules, labels are the expressions used in the rules.

VertexLabeling -> False displays each vertex as a point. VertexLabeling -> Tooltip dis-

plays each vertex as a point, but gives its name in a tooltip. VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD anywhere in the list of rules to specify an alternative

tooltip for a vertex vk.

This draws the graph with labels given as indices of the adjacency matrix.

In[22]:= LayeredGraphPlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[22]= 1

2

3

4 5

This uses the labels specified in the list of rules.

In[23]:= LayeredGraphPlot@8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[23]=

A

B a

C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

78 Graph Drawing

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

In[24]:= LayeredGraphPlot@
8"A" Ø "B", "A" Ø "a", "B" Ø "C", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[24]=

VertexRenderingFunction

The option VertexRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, vertices are

displayed as points, with their names given in tooltips.

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

In[22]:= g = 85 Ø 3, 5 Ø 4, 6 Ø 2, 6 Ø 4, 7 Ø 1, 7 Ø 4, 7 Ø 5, 7 Ø 6<;

In[23]:= LayeredGraphPlot@gD

Out[23]=

Graph Drawing 79

This draws the same graph, but without the vertices.

In[24]:= LayeredGraphPlot@g, VertexRenderingFunction Ø NoneD

Out[24]=

With VertexRenderingFunction -> g, each vertex is rendered with the graphics primitives

given by g@ri, vi, …D, where ri is the coordinate of the vertex and vi is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[27]:= LayeredGraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 7, 7 Ø 8, 8 Ø 1, 1 Ø 9, 2 Ø 9,
3 Ø 10, 4 Ø 10, 6 Ø 11, 5 Ø 11, 7 Ø 12, 8 Ø 12<, Left, VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[27]=

80 Graph Drawing

1 2 3 4 5 6

78

9 10 11

12

Example Gallery

Flow Chart

LayeredGraphPlot helps visualize flow charts, for example for business, economic, or technical

presentations.

This shows a flow chart.

In[28]:= LayeredGraphPlot@8"total" Ø "TotalDispatch", "TotalList" Ø "CheckThreading",
"TotalList" Ø "TotalDispatch", "TotalSparse" Ø "TotalDispatch",
"TotalSparse" Ø "TotalDispatch", "TotalDispatch" Ø "TotalDispatch",
"TotalDispatch" Ø "TotalList", "TotalDispatch" Ø "TotalPacked",
"TotalDispatch" Ø "TotalSparse"<, VertexLabeling Ø TrueD

Out[28]=

total

TotalDispatch

TotalList

CheckThreading

TotalSparse TotalPacked

Graph Drawing 81

This shows a flow chart that flows from left to right.

In[29]:= LayeredGraphPlot@
8"ratiotest" Ø "ratiolimit", "getdata" Ø "dir_inf _bad", "getdata" Ø "evalderiv",
"NSPpreliminaries" Ø "getdata", "findsp" Ø "termlimit", "findsp" Ø "ratiotest",
"findsp" Ø "nSumW", "findsp" Ø "nSumEM", "findsp" Ø "nProductEM",
"findsp" Ø "nProductW", "nSumW" Ø "nSumFinite", "nSumW" Ø "nSumWtail",
"nSumEM" Ø "evalterm", "nSumEM" Ø "nSumFinite", "nSumEM" Ø "evalderiv",
"nProductEM" Ø "nPFinite", "nProductW" Ø "nPFinite", "nProductW" Ø "nPWtail",
"oNSum" Ø "CleanOptionList", "oNSum" Ø "multidim", "oNSum" Ø "NSPpreliminaries",
"oNSum" Ø "findsp", "nSumFinite" Ø "evalterm", "nSumWtail" Ø "evalterm",
"nSumWtail" Ø "epsalg", "oNProduct" Ø "CleanOptionList",
"oNProduct" Ø "multidim", "oNProduct" Ø "NSPpreliminaries",
"oNProduct" Ø "findsp", "nPFinite" Ø "evalterm", "nPWtail" Ø "evalterm",
"nPWtail" Ø "epsalg", "oSequenceLimit" Ø "epsalg"<, Left,

VertexLabeling Ø True, AspectRatio Ø 1, PlotRangePadding Ø 0.02D

Out[29]=

82 Graph Drawing

ratiotest ratiolimit

getdata

dir_inf _bad

evalderiv

NSPpreliminaries

findsp

termlimit

nSumW

nSumEM

nProductEM

nProductW

nSumFinite

nSumWtail

evalterm

nPFinite

nPWtail

oNSum

CleanOptionList

multidim

epsalg

oNProduct

oSequenceLimit

Food Chains

Food chains can be visualized with LayeredGraphPlot.

This shows a small food chain.

In[30]:= LayeredGraphPlot@8"John" -> "plants",
"lion" -> "John", "tiger" -> "John",
"tiger" Ø "deer", "lion" Ø "deer", "deer" Ø "plants",

"mosquito" -> "lion", "frog" -> "mosquito", "mosquito" Ø "tiger",
"John" Ø "cow", "cow" Ø "plants", "mosquito" Ø "deer",
"mosquito" Ø "John", "snake" -> "frog", "vulture" -> "snake"<, Left,

VertexLabeling -> TrueD

Out[30]=

John plantslion

tiger deer

mosquitofrog

cow

snakevulture

This shows another food chain.

In[2]:= LayeredGraphPlot@ 8"Raccoon" Ø "Bird", "Raccoon" Ø "Insect",
"Wildcat" Ø "Bird", "Wildcat" Ø "Rodent", "Fox" Ø "Bird",
"Fox" Ø "Garter snake", "Fox" Ø "Salamander", "Fox" Ø "Rabbit",
"Fox" Ø "Rodent", "Wolf" Ø "Rabbit", "Wolf" Ø "Rodent", "Wolf" Ø "Skunk",
"Wolf" Ø "Deer", "Bear" Ø "Deer", "Bear" Ø "Rodent", "Bear" Ø "Plant",
"Bird" Ø "Plant", "Garter snake" Ø "Insect", "Garter snake" Ø "Toad",
"Salamander" Ø "Insect", "Rabbit" Ø "Plant", "Skunk" Ø "Rodent",
"Skunk" Ø "Insect", "Deer" Ø "Plant", "Toad" Ø "Insect", "Insect" Ø "Plant"<,

VertexLabeling Ø True, PlotRangePadding Ø AutomaticD

Out[2]= Raccoon

Bird Insect

Wildcat

Rodent

Fox

Garter snake

Salamander Rabbit

Wolf

Skunk

Deer

Bear

Plant

Toad

Graph Drawing 83

History of Unix

LayeredGraphPlot is suitable for visualizing historical events.

This shows a history of Unix.

In[32]:= LayeredGraphPlot@8"5th Edition" -> "6th Edition", "5th Edition" -> "PWB 1.0",
"6th Edition" -> "1 BSD", "6th Edition" -> "Interdata",
"6th Edition" -> "LSX", "6th Edition" -> "Mini Unix",
"6th Edition" -> "Wollongong", "PWB 1.0" -> "PWB 1.2",
"PWB 1.0" -> "USG 1.0", "1 BSD" -> "2 BSD", "Interdata" -> "PWB 2.0",
"Interdata" -> "UnixêTS 3.0", "Interdata" -> "7th Edition",
"PWB 1.2" -> "PWB 2.0", "USG 1.0" -> "USG 2.0", "USG 1.0" -> "CB Unix 1",
"7th Edition" -> "2 BSD", "7th Edition" -> "32V", "7th Edition" -> "Xenix",
"7th Edition" -> "Ultrix-11", "7th Edition" -> "UniPlus+",
"7th Edition" -> "V7M", "PWB 2.0" -> "UnixêTS 3.0", "USG 2.0" -> "USG 3.0",
"CB Unix 1" -> "CB Unix 2", "32V" -> "3 BSD",
"UnixêTS 1.0" -> "UnixêTS 3.0", "USG 3.0" -> "UnixêTS 3.0",
"CB Unix 2" -> "CB Unix 3", "3 BSD" -> "4 BSD", "V7M" -> "Ultrix-11",
"UnixêTS 3.0" -> "TS 4.0", "CB Unix 3" -> "UnixêTS++",
"CB Unix 3" -> "PDP-11 Sys V", "4 BSD" -> "4.1 BSD",
"UnixêTS++" -> "TS 4.0", "4.1 BSD" -> "8th Edition", "4.1 BSD" -> "4.2 BSD",
"4.1 BSD" -> "2.8 BSD", "2 BSD" -> "2.8 BSD", "TS 4.0" -> "System V.0",
"4.2 BSD" -> "4.3 BSD", "4.2 BSD" -> "Ultrix-32", "2.8 BSD" -> "2.9 BSD",
"2.8 BSD" -> "Ultrix-11", "System V.0" -> "System V.2",
"8th Edition" -> "9th Edition", "System V.2" -> "System V.3"<,
VertexLabeling Ø True, AspectRatio Ø 0.7, PlotRangePadding Ø AutomaticD

Out[32]=

84 Graph Drawing

5th Edition

6th Edition

PWB 1.0

1 BSD

InterdataLSX Mini Unix Wollongong

PWB 1.2USG 1.0

2 BSD

PWB 2.0

Unix�TS 3.0

7th Edition

USG 2.0 CB Unix 1

32VXenix

Ultrix-11

UniPlus+

V7M

USG 3.0 CB Unix 2

3 BSD

Unix�TS 1.0

CB Unix 3

4 BSD TS 4.0

Unix�TS++PDP-11 Sys V

4.1 BSD

8th Edition4.2 BSD2.8 BSD

System V.0

4.3 BSD Ultrix-322.9 BSD

System V.2

9th Edition System V.3

Tree Drawing

TreePlot lays out the vertices of a graph in a tree of successive layers, or a collection of trees.

If the graph g is not a tree, TreePlot lays out its vertices on the basis of a spanning tree of

each component of the graph.

TreePlotA9vi1->v j1,vi2->v j2,…=E generate a tree plot of the graph in which vertex vik is
connected to vertex v jk

TreePlotA99vi1->v j1,lbl1=,…=E associate labels lblk with edges in the graph

TreePlot@g,posD place roots of trees in the plot at position pos

TreePlot@g,pos,vkD use vertex vk as the root node in the tree plot

TreePlot@mD generate a layered plot of the graph represented by the
adjacency matrix m

Tree drawing.

A simple graph and its tree plot.

In[1]:= g = 81 Ø 2, 2 Ø 4, 3 Ø 6, 4 Ø 8, 5 Ø 10, 6 Ø 12, 1 Ø 3, 2 Ø 5, 3 Ø 7, 4 Ø 9, 5 Ø 11, 6 Ø 13<;

In[2]:= TreePlot@g, VertexLabeling -> TrueD

Out[2]=

1

2

4

3

6

8

5

10 12

7

9 11 13

By default, TreePlot places each tree root at the top. TreePlot@g, posD places the roots at

position pos. Possible positions are: Top, Bottom, Left, Right, and Center.

Graph Drawing 85

This plots the tree by placing the root left.

In[3]:= TreePlot@g, Left, VertexLabeling -> TrueD

Out[3]=

1

2

4

3

6

8

5

10

12

7

9

11

13

This places the root at the center.

In[4]:= TreePlot@g, Center, VertexLabeling -> TrueD

Out[4]= 1
2

4

3

6

8

510 12

7

9

11

13

86 Graph Drawing

Options for TreePlot

In addition to options for Graphics, the following options are accepted for LayeredGraphPlot.

option name default value

DataRange Automatic the range of vertex coordinates to generate

DirectedEdges True whether to show edges as directed arrows

EdgeLabeling True whether to include labels given for edges

EdgeRenderingFunction Automatic function to give explicit graphics for edges

LayerSizeFunction 1& the height to allow for each layer

MultiedgeStyle Automatic how to draw multiple edges between
vertices

PackingMethod Automatic method to use for packing components

PlotRangePadding Automatic how much padding to put around the plot

PlotStyle Automatic style in which objects are drawn

SelfLoopStyle Automatic how to draw edges linking a vertex to itself

VertexCoordinateRules Automatic rules for explicit vertex coordinates

VertexLabeling Automatic whether to show vertex names as labels

VertexRenderingFunction Automatic function to give explicit graphics for vertices

Options for TreePlot.

DirectedEdges

The option DirectedEdges specifies whether to draw edges as directed arrows. Possible values

for this option are True or False. The default value for this option is False.

Graph Drawing 87

This shows a graph with edges represented by arrows instead of lines.

In[5]:= TreePlot@81 Ø 8, 2 Ø 4, 3 Ø 7, 4 Ø 10, 5 Ø 7, 5 Ø 8, 6 Ø 10, 7 Ø 10, 8 Ø 9<,
DirectedEdges Ø True, VertexLabeling Ø TrueD

Out[5]=

1

8

2

4

3

7

10 5

6

9

EdgeLabeling

The option EdgeLabeling specifies whether and how to display labels given for the edges.

Possible values for this option are True, False, or Automatic. The default value for this option

is True, which displays the supplied edge labels on the graph. With

EdgeLabeling -> Automatic, the labels are shown as tooltips.

This displays the specified edge label.

In[6]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
84 Ø 7, "edge 84,7<"<, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[6]=

88 Graph Drawing

edge 84,7<

1

7

2

5

63

8

4

10

9

This displays the edge label as a tooltip. Place the cursor over the edge between vertices 4 and
7 to see the tooltip.

In[7]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5, 84 Ø 7, "edge 84,7<"<, 7 Ø 8,
7 Ø 10, 9 Ø 10<, EdgeLabeling Ø Automatic, VertexLabeling Ø TrueD

Out[7]=

1

7

2

5

63

8

4

10

9

This displays the labels as tooltips. Place the cursor over the edge between vertices 4 and 7 to
see the tooltip.

In[8]:= TreePlot@81 Ø 7, 2 Ø 5, 2 Ø 6, 3 Ø 8, 4 Ø 5,
Tooltip@4 Ø 7, "edge 84,7<"D, 7 Ø 8, 7 Ø 10, 9 Ø 10<, VertexLabeling Ø TrueD

Out[8]=

1

7

2

5

63

8

4

10

9

Graph Drawing 89

EdgeRenderingFunction

The option EdgeRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, a dark red line

is drawn for each edge. With EdgeRenderingFunction -> None, edges are not drawn.

This draws vertices only.

In[9]:= TreePlot@Table@1, 810<, 810<D, EdgeRenderingFunction Ø None, VertexLabeling Ø TrueD

Out[9]=

With EdgeRenderingFunction -> g, each edge is rendered with the graphics primitives and

directives given by the function g that can take three or more arguments, in the form

g@8ri, …, r j<, 8vi, v j<, lblij, …D, where ri, r j are the coordinates of the beginning and ending

points of the edge, vi, v j are the beginning and ending vertices, and lblij is any label specified for

the edge or None. Explicit settings for EdgeRenderingFunction -> g override settings for

EdgeLabeling and DirectedEdges.

This plots edges as gray arrows with ends set back from vertices by a distance 0.3 (in the
graph's coordinate system).

In[10]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø H8GrayLevel@0.5D, Arrow@Ò1, 0.3D< &LD

Out[10]=

90 Graph Drawing

1

2 3 4 5 6 7 8 9 10

This displays edges and self-loops with black and red arrows, respectively. The function
LineScaledCoordinate from the Graph Utilities Package adds text at 50% along arrows.

In[11]:= << GraphUtilities`

In[12]:= TreePlot@81 Ø 4, 1 Ø 1, 1 Ø 5, 2 Ø 4, 3 Ø 6, 3 Ø 9, 4 Ø 8, 4 Ø 10, 6 Ø 7, 8 Ø 9<,
EdgeRenderingFunction Ø
H8If@First@Ò2D === Last@Ò2D, Red, BlackD, Arrow@Ò1, .1D, Text@Ò2,

LineScaledCoordinate@Ò1, .5D, Background Ø WhiteD< &L, VertexLabeling Ø TrueD

Out[12]=

LayerSizeFunction

The LayerSizeFunction option specifies the relative height to allow for each layer. By default

the height is 1. Possible values include a function that gives real machine numbers.

This defines and plots a tree.

In[13]:= g = 81 Ø 4, 2 Ø 6, 2 Ø 7, 2 Ø 8, 3 Ø 8, 4 Ø 5, 5 Ø 6<;

In[14]:= TreePlot@gD

Out[14]=

This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.

Graph Drawing 91

81, 4<
81, 1<

81, 5<

84, 8<

84, 10<82, 4<

83, 6<

83, 9<

86, 7<

88, 9<

1

4

5

2 3

6

9

8

10

7

This plots the same tree, with the first layer a relative height of 1, the second 2, and the third 3.

In[15]:= TreePlot@g, LayerSizeFunction Ø HÒ &LD

Out[15]=

MultiedgeStyle

The option MultiedgeStyle specifies whether to draw multiple edges between two vertices.

Possible values for MultiedgeStyle are Automatic (the default), True, False, or a positive

real number. With the default setting MultiedgeStyle -> Automatic, multiple edges are shown

for a graph specified by a list of rules, but not shown if specified by an adjacency matrix. With

MultiedgeStyle -> d, the multiedges are spread out to a scaled distance of d.

By default, multiple edges are shown if a graph is given as a list of rules.

In[16]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
VertexLabeling Ø TrueD

Out[16]=

92 Graph Drawing

1

2

3

5

4 6

But multiple edges are not shown for graphs specified by an adjacency matrix.

In[17]:= TreePlotB

0 3 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[17]=

1

2

3 4

5

6

This spreads multiple edges by the specified amount.

In[18]:= TreePlot@81 Ø 2, 2 Ø 1, 1 Ø 2, 1 Ø 2, 2 Ø 3, 3 Ø 5, 4 Ø 5, 5 Ø 6, 5 Ø 1<,
MultiedgeStyle Ø 0.25, VertexLabeling Ø TrueD

Out[18]=

Graph Drawing 93

1

2

3

5

4 6

PackingMethod

The option PackingMethod specifies the method used for packing disconnected components.

Possible values for the option are Automatic (the default), "ClosestPacking",

"ClosestPackingCenter", "Layered", "LayeredLeft", "LayeredTop", and "NestedGrid".

With PackingMethod -> "ClosestPacking", components are packed as close together as possi-

ble using a polyomino method [6], starting from the top left. With

PackingMethod -> "ClosestPackingCenter", components are packed starting from the center.

With PackingMethod -> "Layered", components are packed in layers starting from the top left.

With PackingMethod -> "LayeredLeft" or PackingMethod -> "LayeredTop", components are

packed in layers starting from the top or left respectively. With

PackingMethod -> "NestedGrid", components are arranged in a nested grid. The typical effec-

tive default setting is PackingMethod -> "Layered", and the packing starts with components of

the largest bounding box area.

This shows the packing of disconnected components by the default method.

In[19]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<DD

Out[19]=

This shows the packing of disconnected components using the "ClosestPackingCenter"
method.

In[20]:= TreePlot@Table@i Ø Mod@i^3, 221D, 8i, 0, 221<D,
PackingMethod Ø "ClosestPackingCenter"D

Out[20]=

PlotRangePadding

94 Graph Drawing

PlotRangePadding

PlotRangePadding is a common option for graphics functions inherited by TreePlot.

PlotStyle

PlotStyle is a common option for graphics functions inherited by TreePlot. The option

PlotStyle specifies the style in which objects are drawn.

Draw edges with thicker lines, and draw both edges and vertex labels in red.

In[21]:= TreePlot@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 6 Ø 5, 7 Ø 5, 5 Ø 4, 9 Ø 8,
10 Ø 8, 8 Ø 3, 12 Ø 11, 13 Ø 11, 11 Ø 1, 15 Ø 14, 16 Ø 14, 14 Ø 2<,

VertexLabeling Ø True, PlotStyle Ø 8Red, Thickness@0.02D<D

Out[21]=

SelfLoopStyle

The option SelfLoopStyle specifies whether and how to draw loops for vertices that are linked

to themselves. Possible values for the option are Automatic (the default), True, False, or a

positive real number. With SelfLoopStyle -> Automatic, self-loops are shown if the graph is

specified by a list of rules, but not if it is specified by an adjacency matrix. With

SelfLoopStyle -> d, the self-loops are drawn with a diameter of d (relative to the average edge

length).

Graph Drawing 95

1

2

3

4

6

5

7

9

8

10

12

11

13

15

14

16

By default, self-loops are displayed for a graph specified by a list of rules.

In[22]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<, VertexLabeling Ø TrueD

Out[22]= 1

4

5

2

3 6

Self-loops are not shown if the graph is specified by an adjacency matrix.

In[23]:= TreePlotB

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 2 1 1
0 0 0 0 0 0
0 0 0 0 0 0

, VertexLabeling Ø TrueF

Out[23]= 1

2

3

4

5 6

96 Graph Drawing

This shows self-loops whose diameters equal 0.3 times the average length of the edges.

In[24]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 3, 2 Ø 5, 2 Ø 6, 2 Ø 2, 2 Ø 2<,
VertexLabeling Ø True, SelfLoopStyle Ø 0.3D

Out[24]=

VertexCoordinateRules

The option VertexCoordinateRules specifies the coordinates of the vertices. Possible values

are None or a list of coordinates. Coordinates specified by a list of rules are not supported by

TreePlot currently.

This draws the Petersen graph using known coordinates.

In[25]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<,

VertexCoordinateRules Ø 880.30901699437494745`, 0.9510565162951535`<,
8-0.8090169943749476`, -0.587785252292473`<, 80.30901699437494723`,
-0.9510565162951536`<, 8-0.8090169943749473`, 0.5877852522924732`<,

81.`, 0<, 80.6180339887498949`, 1.902113032590307`<, 8-1.6180339887498947`,
1.1755705045849465`<, 8-1.6180339887498951`, -1.175570504584946`<,

80.6180339887498945`, -1.9021130325903073`<, 82.`, 0<<D

Out[25]=

Graph Drawing 97

1

4

5

2

3 6

This draws with the default method.

In[26]:= TreePlot@81 Ø 3, 1 Ø 4, 2 Ø 4, 2 Ø 5, 3 Ø 5, 6 Ø 7,
7 Ø 8, 8 Ø 9, 9 Ø 10, 6 Ø 10, 1 Ø 6, 2 Ø 7, 3 Ø 8, 4 Ø 9, 5 Ø 10<D

Out[26]=

VertexLabeling

The option VertexLabeling specifies whether to show vertex names as labels. Possible values

for this option are True, False, Automatic (the default) and Tooltip.

VertexLabeling -> True shows the labels. For graphs specified by an adjacency matrix, vertex

labels are taken to be successive integers 1, 2, …, n, where n is the size of the matrix. For graphs

specified by a list of rules, labels are the expressions used in the rules.

VertexLabeling -> False displays each vertex as a point. VertexLabeling -> Tooltip dis-

plays each vertex as a point, but gives its name in a tooltip. VertexLabeling -> Automatic

displays each vertex as a point, giving its name in a tooltip if the number of vertices is not too

large. You can also use Tooltip@vk, vlblD anywhere in the list of rules to specify an alternative

tooltip for a vertex vk.

This draws the graph with labels given as indices of the adjacency matrix.

In[27]:= TreePlotB

0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0

, VertexLabeling Ø TrueF

Out[27]=

1

2 3

4 5

This uses the labels specified in the list of rules.

98 Graph Drawing

This uses the labels specified in the list of rules.

In[28]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TrueD

Out[28]=

A

B a C

This plots vertices as points, and displays vertex names in tooltips. Place the cursor above the
vertices to see the labels.

In[29]:= TreePlot@8"A" Ø "B", "A" Ø "a", "C" Ø "A"<, VertexLabeling Ø TooltipD

Out[29]=

VertexRenderingFunction

The option VertexRenderingFunction specifies graphical representation of the graph edges.

Possible values for this option are Automatic, None, or a function that gives a proper combina-

tion of graphics primitives and directives. With the default setting of Automatic, vertices are

displayed as points, with their names given in tooltips.

By default, vertices are displayed as points and, for small graphs, labeled in tooltips. Point the
cursor at a vertex to see the tooltip.

In[30]:= g = 81 Ø 3, 1 Ø 4, 2 Ø 3, 2 Ø 5, 2 Ø 6, 5 Ø 7<;

In[31]:= TreePlot@gD

Out[31]=

This draws the same graph, but without the vertices.

Graph Drawing 99

This draws the same graph, but without the vertices.

In[32]:= TreePlot@g, VertexRenderingFunction Ø NoneD

Out[32]=

With VertexRenderingFunction -> g, each vertex is rendered with the graphics primitives

given by g@ri, vi, …D, where ri is the coordinate of the vertex and vi is the label of the vertex.

Explicit settings for VertexRenderingFunction -> g override settings for VertexLabeling.

This shows vertices as yellow disks.

In[33]:= TreePlot@81 Ø 4, 1 Ø 5, 2 Ø 8, 3 Ø 4, 4 Ø 8, 6 Ø 8, 7 Ø 8, 7 Ø 9<,
VertexRenderingFunction Ø
H8EdgeForm@BlackD, Yellow, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &LD

Out[33]=

1

4

5 2

8 3

6 7

9

100 Graph Drawing

Example Gallery

k-ary tree

This defines a k-ary tree.

In[34]:= KaryTree@level_, k_: 2D := Flatten@Table@Table@i Ø k * i + j, 8j, -Hk - 2L, 1, 1<D,
8i, Hk^level - 1L ê Hk - 1L<DD ê; Hlevel ¥ 1 && k > 1L;

This plots a 4-ary tree of 4 levels.

In[35]:= TreePlot@KaryTree@4, 5D, CenterD

Out[35]=

This plots the same graph, but with the height of each level i proportional to 1ë i2.

In[36]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø H1 ê Ò^2 &LD

Out[36]=

Graph Drawing 101

This sets the height of each level i proportional to H-0.5Li.
In[37]:= TreePlot@KaryTree@4, 5D, Center, LayerSizeFunction Ø HH-0.5L^Ò &LD

Out[37]=

102 Graph Drawing

