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Chapter 1

Motivation, Motivation, Motivation ..........

In this book we will develop a theory, which is deeply rooted in experiment
and can only be understood using a new mathematical language. It not only
describes how nature works in all microscopic physical systems, but also in
macroscopic physical systems.

It is most important, however, when the characteristic length scale of the phys-
ical system is smaller than 10−4m.

This theory is called quantum mechanics.

The physical world we will discover in our studies is a strange and fascinating
place where nature operates in a way that seems to defy the intuition we have
built up living among macroscopic systems. We will not endeavor to explain
why nature works in this particular way since it is my strong belief, as we will
see in this book, that it is not possible to do so within the context of this theory.
We will, however, be able to correctly predict the outcomes of an amazingly wide
range of experiments in many different fields of physics, chemistry and biology.

Let me emphasize my strong belief that theories in physics should only endeavor
to make predictions about experimental measurements and not attempt to pro-
vide reasons for why nature works in these particular ways, that is, why we must
choose to start with certain postulates.

Feynman put it best......

We know how the electrons and light behave. But what can I call it?
If I say they behave like particles I give the wrong impression; also
if I say they behave like waves. They behave in their own inimitable
way, which technically could be called a quantum mechanical way.
They behave in a way that is like nothing that you have seen before.
Your experience with things that you have seen before is incomplete.

1



The behavior of things on a very small scale is simply different. An
atom does not behave like a miniature representation of the solar
system with little planets going around in orbits. Nor does it ap-
pear like a cloud or fog of some sort surrounding the nucleus. It
behaves like nothing you have ever seen before.

There is one simplification at least. Electrons behave in this respect
exactly the same way as photons; they are both screwy, but in ex-
actly the same way.

The difficulty really is psychological and exists in the perpetual tor-
ment that results from your saying to yourself “but how can it really
be like that?”, which is a reflection of an uncontrolled but vain de-
sire to see it in terms of something familiar. I will not describe it in
terms of an analogy with something familiar; I will simply describe
it...

I am going to tell you what nature behaves like. If you will simply
admit that maybe she does behave like this, you will find her a de-
lightful and entrancing thing. Do not keep saying to yourself, if you
can avoid it, “but how can it really be like that?” because you will
get “down the drain”, into a blind alley from which nobody has yet
escaped.

Nobody knows how it can be like that.

and we can add an addendum ........

and “nobody knows why it is like that”

We will not be able to reduce the quantum universe to everyday ways of think-
ing(usually called common sense). In fact, in order to understand the ideas and
implications of the theory we will have to adjust all of our ways of thinking at
the most fundamental level.

Imagine, for a moment, that you are attempting to understand a new culture.
If you are serious about it, the first thing you would do is to learn the language
appropriate to that culture so that you can put your experiences in the proper
context. Understanding the universe of quantum phenomena is much like a un-
derstanding a new culture where the appropriate language is mathematics and
the experiences we are attempting to put into context are experiments.

As we shall see, we will have to use a mathematical language to describe the
quantum world since ordinary language, which was developed to explain every-
day occurrences(experiments on macroscopic objects), will turn out to be totally
inadequate.

Since it makes no sense to attempt any understanding of the nature of quantum
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phenomena without first learning to speak and use the language of the quantum
world, we will spend the first several chapters of this book learning the appro-
priate mathematics, in particular, the subject of linear vector spaces.

The adjustment of our ways of thinking at the fundamental level that will be
needed is not simply a mathematical matter, however. The development of the
necessary mathematical language will not come into conflict with our everyday
modes of thinking in any major way. Although, the mathematics of linear vector
spaces is very elegant, you will be able to understand it without much difficulty
and without having your basic view of the world changed at any fundamental
level.

You will be troubled, however, when we apply the mathematics to physical sys-
tems that develop according to quantum ideas. We will attach physical mean-
ing to the mathematical formalism in ways that will conflict with your well-
developed views(I will call these classical views) about how the world works.

After studying wave mechanics, we will rethink the mathematics and the quan-
tum theory using the Dirac language, which, as we shall see, incorporates the
very nature of the quantum world in an intrinsic and natural way. Since we
are attempting to develop a physical theory, we will link all the mathematical
concepts that we introduce to physical concepts as we proceed.

Dirac was able to link the physical structure of quantum mechanics with the
mathematical structure in a unique way. His mathematical language incorpo-
rates the physical meaning directly into the formalism and the calculational
methods. The language explicitly exhibits the physics and clearly exposes the
internal logic of quantum mechanics. Once we understand the language, every
equation will directly convey its physical meaning without the need for further
explanation or any need for inadequate models.

It is very important to understand that the Dirac language is not simply a new
notation for quantum mechanics(as many physicists seem to think). It is a way
of thinking about quantum mechanics. It will allow us to use the physical ideas
of quantum mechanics to develop the appropriate mathematical language rather
than the other way around. This will allow the very mathematical quantum the-
ory to be more closely connected to experiment than any other physical theory.

These statements about the importance of understanding the mathematical lan-
guage appropriate to the physics under consideration do not only apply to the
quantum world. It is true for all areas of physics and other sciences. One should
always learn the appropriate language before studying any field that relies on
that language for its understanding.

The first part of this book will cover various aspects of the original formulations
of quantum mechanics. We will concentrate on the development of the theory
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in terms of the position and the momentum, namely, wave mechanics.

1.1. Basic Principles and Concepts of Quantum The-
ory

There are many equivalent formulations of quantum mechanics, namely,

1. Schrödinger wave mechanics

2. Heisenberg matrix mechanics

Dirac developed a general formalism for the quantum theory, which includes
wave mechanics, matrix mechanics, and other formulations as special cases. We
shall first develop Schrödinger wave mechanics and then generalize it to the
Dirac formalism, which is very abstract, in later chapters of this book.

In these notes, the quantum formalism will be applied mainly to non-relativistic
systems (v ≪ c = 3 × 1010 cm/s).

1.1.1. Mathematical Methods

We will have to use various mathematical techniques in order to formulate quan-
tum mechanics and in order to solve the resulting equations. Some of these tech-
niques you have learned in a Mathematical Methods in Physics course, some you
have learned in Mathematics courses such as Linear Algebra, and Multivariable
Calculus and some we will develop in this book.

The techniques we will need are linear operators in Hilbert space (an extension of
linear algebra), partial differential equations, special functions of mathematical
physics (Legendre polynomials, spherical harmonics, Bessel functions), Fourier
transforms, use of Green’s functions, integral equations, contour integration in
the complex plane, group theory and group representations, etc. We will cover
many of these techniques in detail as we proceed.

As we proceed we will cover many applications of quantum theory to physical
systems in the areas of atomic and molecular physics.

We will use the following two definitions:

1. macroscopic phenomena - observable with the naked eye or with an ordi-
nary microscope; length scale ≥ 10−4 cm(1 micron).

2. microscopic phenomena - atomic and subatomic; length scale ≤ 10−8 cm =
0.1nm.
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1.1.2. Classical Concepts
We cannot throw out all of classical physics for it works well when dealing
with macroscopic phenomena. Furthermore, quantum theory relies on various
formulations of classical physics, namely,

1. Classical mechanics (action principle, Lagrangian formulation, Hamilto-
nian formulation)

2. Classical electromagnetism (Maxwell’s equations, Lorentz force law

3. Thermodynamics and Statistical Mechanics

4. Special Relativity (important when speed comparable to c)

Classical physics accurately describes macroscopic phenomena.

1. Classical mechanics:

p⃗ = linear momentum , p⃗ =mv⃗ , non-relativistic

F⃗ = dp⃗
dt

(1.1)

p⃗ = mv⃗
√

1 − v2

c2

, relativistically correct

2. Types of forces and how they are produced:

(a) Electromagnetism (Maxwell’s equations, Lorentz force law)

(b) Gravitation (Newton’s law of gravitation for weak gravitational fields,
Einstein’s general theory of relativity)

3. Thermodynamics and Statistical Mechanics - describes average properties
of systems containing many particles.

There are no logical inconsistencies in classical physics. However, it turns out,
as we will see, that microscopic phenomena do not obey the laws of classical
physics.

Quantum physics is the theory describing microscopic phenomena and macro-
scopic phenomena. It approximates the laws of classical physics for non-quantum
macroscopic phenomena.

1. Quantum mechanics - gives the equations of motion for a system (new
non-classical concepts are needed).

2. Types of interactions among microscopic particles:

(a) range of interaction extends to macroscopic distances

i. electromagnetism
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ii. gravitation
(b) interactions that are negligible at macroscopic distances or they act

only when particles are microscopically separated
i. strong interactions (holds the protons and neutrons of a nucleus

together)
ii. weak interactions (responsible for the beta-decay of nuclei)

These are the only interactions known today. In the 1970s electromag-
netism and weak interactions were unified into the electroweak interac-
tions. In the 1980s, the electroweak interaction and the strong interaction
were unified as part of the standard model.

3. Quantum Statistical Mechanics - approaches classical statistical mechanics
at sufficiently high temperatures.

1.1.3. The Fundamental Principle of Quantum Mechanics
To introduce this principle, let us consider the experimentally observed alpha-
decay of certain nuclei. We crudely describe an atom in this way:

1. radius of volume occupied by orbiting electrons = 10−8 cm

2. radius of volume occupied by nucleus = 10−13 cm

where 1Å= 10−8 cm and 1 fermi = 10−13 cm.

As we shall see, we have no idea what is meant by the words orbiting in this
context. Such occurrences will be in the emphasis font.

The nucleus contains nucleons (protons and neutrons) bound together by the
strong interaction, which overcomes the electrostatic repulsion of the protons
(the gravitational attraction is negligible).

We also have the following data and definitions:

electron charge = −1.60 × 10−19 coul = −4.80 × 10−10 esu

proton charge = -(electron charge)
neutron charge = 0
electron mass = 9.11 × 10−28 gm

proton mass ≈ neutron mass = 1.67 × 10−24 gm

(the neutron is slightly more massive than the proton)
Z = atomic number of the nucleus = number of protons
= number of electrons in a neutral atom

A = mass number of the nucleus = number of nucleons

Notation:

Z (chemical symbol)A ↔ 92U
232 = uranium232 90Th

228 = thorium228
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An α-particle is a helium-4 nucleus or 2He
4. Certain unstable nuclei sponta-

neously emit an α-particle (α-decay)

92U
232 → 90Th

228 + α or A = 232 = 228 + 4 and Z = 92 = 90 + 2 (1.2)

or we have the setup(classical model) shown in Figure 1.1 below.

before decay after decay

at rest or zero
linear momentum

total linear momentum
must remain zero

Figure 1.1: Decay Picture 1

Experimental Observation: Let N0 (very large number ≈ 1023) identical
U235 nuclei be observed at t = 0. Then, the α-decays of these nuclei will not
occur at the same time. Furthermore, the alpha particles emitted in the decays
will not go in the same direction as in Figure 1.2 below.

Figure 1.2: Decay Picture 2

Let N(t) be the number of U235 nuclei (not yet decayed) present at time t. It
is observed that

N(t) = N0e
−γt , γ = constant(dimensions 1/time) (1.3)

as shown in Figure 1.3 below.
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half-life (τ     )1/2

τ     = 70 years for U1/2
235

Figure 1.3: Decay Data

Therefore,

dN(t)
dt

= −γN0e
−γt = −γN(t) (1.4)

(−dN)
N

= γdt (1.5)

→ # decays in dt
# present at time t

= probability of a decay between t and t + dt

Therefore, γ = probability of decay per unit time. Note that

N(τ1/2) =
N0

2
= N0e

−γτ1/2 (1.6)

⇒ 1

2
= e−γτ1/2 ⇒ τ1/2 =

`n(2)
γ

(1.7)

Thus, systems in the same initial state will, in general, develop differently in
time, that is, U235 nuclei live for different lengths of time. Since the initial
states are identical (there does not exist any way to distinguish the initial
states), it is impossible to predict when a given nucleus will decay.

However, there does exist a definite probability of a decay per unit time. This
means that we should be able to predict how many decays will occur in a given
time interval when we observe a sample of many U235 nuclei.

This decay process may be viewed in another way. Before the decay, the
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α−particle is located in the U235 nucleus. After the decay, the α−particle is
separated from the residual nucleus and is traveling in a certain direction. It is
impossible to predict the α−particle’s position (inside U235 or separated from
Th228 as a function of time, and it is impossible to predict the α−particle’s ve-
locity direction as a function of time. One may only hope to find the probability
that the α−particle will be at a given position at a given time and the probability
that the α−particle will be traveling at a given velocity at a given time.

This leads us to the Basic Principle of Quantum Mechanics:

One can only predict the probability of finding a particle at a given
position at a given time and the probability of finding a particle with
given momentum (momentum is easier to deal with than velocity)
at a given time. The result of measuring a given particle’s position
or momentum at a certain time cannot be predicted in general -
only the results of measuring the position or momentum of many
identically-prepared particles at a certain time can be predicted.

Note that this is contrary to the Classical Doctrine, which states that a particle’s
position and momentum at any time is completely determined by the particle’s
initial state (specified by the initial position and momentum). In quantum me-
chanics, a complete specification of the particle’s initial state (we will discuss
later exactly what must be given for a complete quantum mechanical specifica-
tion of a state) does not determine a particle’s position and momentum at all
later times - only the probability that the particle will have a certain position
and momentum can be predicted for observations made at later times.

Note (1): You might argue that if the U235 nuclei (which we have stated to
be in identical initial states so that there does not exist any way to distin-
guish the states) decay at different times, then there must be some difference
in the initial states. You might argue that there exists some hidden variable
(which we have not as yet succeeded in determining) which has different values
in the different nuclei and which determine when a given nucleus will decay.
This certainly a possibility. However, no one has ever found such a variable so
that the time at which the decay will occur can be predicted with certainty.
In these notes, we will take the point of view (standard quantum theory) that
such hidden variables do not exist. In fact, there now exists much experimental
evidence that hidden variables cannot exist (more about this later).

Note (2): How does classical physics fit into this description? How is classical
determinism (observed in macroscopic phenomena) compatible with this prob-
abilistic interpretation of nature? This is easy to deal with. For macroscopic
objects, the probability of observing the classical trajectory (position and momen-
tum as a function of time) to an accuracy of better than ≈ 10−4 cm is almost
unity (negligible uncertainty). This is known as the Correspondence Principle,
which implies that quantum physics approaches classical physics for macroscopic
objects (more about this later).
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The central problem in quantum mechanics is therefore the following:

Given a particle with known interactions: in terms of the initial
state of the particle, find the probability of observing the particle
at a given position as a function of time and find the probability of
observing the particle with a given momentum as a function of time
Before giving rules for determining these probabilities for physical
systems, let us review some simple probability concepts.

1.2. Simple Ideas about Probability

1.2.1. Discrete Distributions

Let a variable take on certain discrete values u1, u2, u3, . . .. Suppose N measure-
ments of the variable are made. Let Ni = of measurements in which the result
ui was obtained.

Definition

The probability of observing ui is

℘(ui) =
Ni
N

(1.8)

in the limit as N → ∞ (Ni also → ∞ unless wp(ui) = 0). We must also have
℘(ui) ≥ 0.

The probability of observing uk or uk+1 or ......... or uk+` = ∑k+`i=k ℘(ui). The
probability of observing some value (from the set of all possible values) is given
by

∑
all i

℘(ui) = ∑
all i

Ni
N

= 1

N
∑
all i

Ni =
N

N
= 1 (1.9)

which is called the normalization condition.

1.2.2. Continuous Distributions

Let the variable u be capable of taking on any value in the interval [a, b]. Sup-
pose N measurements of the variable are made. Let dN(u) = # of measure-
ments in which the variable was in the interval [u,u+ du]. dN(u) is not meant
to represent the differential of some function N(u).
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Definition

The probability of observing the variable in the interval [u,u + du] is given by

lim
N→∞

℘(u)du = dN(u)
N

(1.10)

℘(u) = probability
unit interval of u

= probability density (1.11)

The probability of measuring u in the interval [u1, u2] is

prob ([u1, u2]) =
u2

∫
u1

℘(u)du (1.12)

Since all measurements yield values in [a, b], we have the normalization condi-
tion

b

∫
a

℘(u)du = 1 (1.13)

Example A

It is equally probable to measure u anywhere in the interval [0, a]. Therefore,

℘(u)du = Adu for u ∈ [0, a] , A = constant

But
a

∫
0

℘(u)du = 1 = A
a

∫
0

du = Aa→ A = 1

a
→ ℘(u) = 1

a
for u ∈ [0, a]

Figure 1.4: Example A - Probability Distribution

Example B

Consider the Gaussian distribution in the interval (u ∈ [−∞,∞]) given by

℘(u) = Ae−(u−u0)2/2σ2

(1.14)

where u0, σ,A are constants and σ > 0. This looks like Figure 1.5 below.
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measures the spread 
in u values

Figure 1.5: Example B - Probability Distribution

We then have ∞

∫
−∞

℘(u)du = 1 = A
∞

∫
−∞

e−(u−u0)2/2σ2

du (1.15)

If we let
v = u − u0√

2σ
→ dv = du√

2σ
(1.16)

we get

1 = Aσ
√

2

∞

∫
−∞

e−v
2

dv (1.17)

Trick for doing the integral:

⎛
⎝

∞

∫
−∞

e−v
2

dv
⎞
⎠

2

=
∞

∫
−∞

e−x
2

dx

∞

∫
−∞

e−y
2

dy =
∞

∫
−∞

dx

∞

∫
−∞

dye−(x
2+y2)

=
∞

∫
0

2πre−r
2

dr = −π
∞

∫
0

d(e−r
2

) = π

⇒
∞

∫
−∞

e−v
2

dv =
√
π (1.18)

where we have done the integral by integrating over the entire x− y plane using
circular rings r2 = x2 + y2 as shown in Figure 1.6 below:

Therefore,

1 = Aσ
√

2π → A = 1√
2πσ

(1.19)

℘(u) = 1√
2πσ

e−(u−u0)2/2σ2

(1.20)
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Figure 1.6: Integration Region

The probability of measuring u between a and b is

b

∫
a

℘(u)du = area under Gaussian curve between a and b (1.21)

This can be evaluated numerically.

We now return to considerations of general distributions ℘(u).

Definition

The average value (or expectation value) of u = ⟨u⟩:

Discrete Continuous

⟨u⟩ = 1

N
∑
all i

uiNi = ∑
all i

ui℘(ui) ⟨u⟩ = 1

N
∫
all u

udN(u) = ∫
all u

u℘(u)du

In general, the average value (expectation value) of some function of u, f(u), is
given by

Discrete Continuous

⟨f(u)⟩ = ∑
all i

f(ui)℘(ui) ⟨f(u)⟩ = ∫
all u

f(u)℘(u)du

The values measured for u will, of course, not all be equal to ⟨u⟩. One would
like a measure of the spread in observed u values around ⟨u⟩. Such a measure
is the root-mean-square (rms) or standard deviation given by

∆u =
√

⟨(u − ⟨u⟩)2⟩

⇒ (∆u)2 = ⟨u2⟩ − 2 ⟨(u ⟨u⟩⟩ + ⟨⟨u⟩2⟩ − ⟨u2⟩ − ⟨u⟩2
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Clearly, if ∆u = 0, then the only value measurements of u will yield is u = ⟨u⟩
since we have

(∆u)2 = ⟨(u − ⟨u⟩)2⟩ =∑
i

℘(ui) (ui − ⟨u⟩)2 = 0

which, because every term in the sum is positive, says that ui = ⟨u⟩ for all i.

Example A

Equally probable anywhere in [0, a].

℘(u) = 1

a
for u ∈ [0, a] , ℘(u) = 0 elsewhere

⟨u⟩ =
a

∫
0

u
1

a
du = a

2
, ⟨u2⟩ =

a

∫
0

u2 1

a
du = a

2

3

∆u =
√

⟨u2⟩ − ⟨u⟩2 = a√
12

Example B

Gaussian distribution.

⟨u⟩ =
∞

∫
−∞

u
1√
2πσ

e−(u−u0)2/2σ2

du =
∞

∫
−∞

(v + u0)
1√
2πσ

e−v
2/2σ2

dv

=
∞

∫
−∞

v
1√
2πσ

e−v
2/2σ2

dv + u0

∞

∫
−∞

1√
2πσ

e−v
2/2σ2

dv = 0 + u0 = u0

(∆u)2 =
∞

∫
−∞

(u − u0)2 1√
2πσ

e−(u−u0)2/2σ2

du =
∞

∫
−∞

v2 1√
2πσ

e−v
2/2σ2

dv

= 2σ2

√
π

∞

∫
−∞

w2e−w
2

dw

Another trick:

I =
∞

∫
−∞

e−λw
2

dw = 1√
λ

∞

∫
−∞

e−u
2

du =
√
π√
λ

dI

dλ
= −1

2

√
π

λ3/2 =
∞

∫
−∞

d

dλ
e−λw

2

dw = −
∞

∫
−∞

w2e−λw
2

dw

∞

∫
−∞

w2e−λw
2

dw = 1

2

√
π

λ3/2
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Putting λ = 1 we get
∞

∫
−∞

w2e−w
2

dw =
√
π

2
⇒ (∆u)2 = 2σ2

√
π

∞

∫
−∞

w2e−w
2

dw = σ2

These probability distributions can be generalized to several variables.

In quantum mechanics (where we will focus on one particle systems) we want
to find expressions for the following:

1. ℘(x, y, z; t)d3x = ℘(x, y, z; t)dxdydz = probability of observing particle
with coordinates in (x,x + dx), (y, y + dy), (z, z + dz) at time t

2. ℘̃(px, py, pz; t)d3p = ℘̃(px, py, pz; t)dpxdpydpz = probability of observing
particle with momentum in (px, px + dpx), (py, py + dpy), (pz, pz + dpz) at
time t

Finding these expressions is the central problem of quantum (wave) mechanics.

Additional note

We use continuous distributions for definiteness. The nth (n = 0,1,2,3, . . .)
moment of the probability distribution ℘(u) is defined to be

⟨un⟩ = ∫ duun℘(u) (1.22)

Theorem (without proof)

If two distributions ℘1(u) and ℘2(u) have the same moments for all n, then
℘1(u) = ℘2(u), that is, the moments uniquely determine the distribution.

Experimental evidence of the so-called Wave-Particle Duality suggests how to
calculate these probabilities. This duality refers to the observation that what
we usually regard as a wave phenomenon (for example, the propagation of light)
sometimes exhibits wave properties and sometimes exhibits particle properties
while what we usually regard as a particle(for example, an electron) sometimes
exhibits particle properties and sometimes exhibits wave properties!!!

1.2.3. Review of Waves and Diffraction

Let x⃗ = (x, y, z), ∣x⃗∣ = r =
√
x2 + y2 + z2 locate a point in space with respect to

some origin (its position vector) (see Figure 1.7 below). Let n̂ = a unit vector
(∣n̂∣ = 1 pointing in a fixed direction. n̂ is dimensionless (it has no units). Let
η(x⃗, t) be some physical quantity defined at each point x⃗ at some time t. We
refer to η(x⃗, t) as a disturbance. In this discussion, we will generalize slightly
and let η(x⃗, t) take on complex values. For example, η(x⃗, t) can refer to one
of the Cartesian components of the electric field E⃗(x⃗, t) or the magnetic field
B⃗(x⃗, t).
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plane surface of constant

Figure 1.7: Plane Wave Relationships

Definition

η(x⃗, t) is called a plane wave if it can be written in the form

η(x⃗, t) = F (x⃗ ⋅ n̂ − vt) (1.23)

where F is some arbitrary function of one variable, where n̂ is some fixed unit
vector and v = a real constant, v > 0. Clearly, v has units

x⃗ ⋅ n̂
t
→ units of velocity (1.24)

Consider the points in space for which x⃗ ⋅ n̂ − vt = a constant (η has the same
value at these points). Therefore

x⃗ ⋅ n̂ = constant + vt = projection of x⃗ onto the n̂ direction - see figure (1.25)

This plane of constant η moves with constant speed v. All points on the plane
perpendicular to n̂ have the same value of x⃗ ⋅ n̂. These relationships are shown
in Figure 1.7 above.

Thus, the surfaces on which η(x⃗, t) has a fixed value are plane surfaces perpen-
dicular to n̂ which move at speed v in the n̂ direction (hence the name plane
wave).

v = phase velocity of the plane wave, i.e., the velocity
of the planes of constant phase(x⃗ ⋅ n̂)

n̂ = direction of propagation

That is the correct and proper definition of a wave!!
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Now
∂η

∂t
= F ′ ∂(x⃗ ⋅ n̂ − vt)

∂t
= −vF ′

Similarly,

∂η

∂x
= F ′ ∂(x⃗ ⋅ n̂ − vt)

∂x
= F ′ ∂(xnx + yny + znz − vt)

∂x
= nxF ′

∂2η

∂x2
= nxF ′′ ∂(x⃗ ⋅ n̂ − vt)

∂x
= n2

xF
′′

and
∂2η

∂y2
= n2

yF
′′ ,

∂2η

∂z2
= n2

zF
′′

Therefore,

∂2η

∂x2
+ ∂

2η

∂y2
+ ∂

2η

∂z2
= (n2

x + n2
y + n2

z)F ′′ = (n̂ ⋅ n̂)F ′′ = F ′′ = 1

v2

∂2η

∂t2

( ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

v2

∂2

∂t2
)η = (∇2 − 1

v2

∂2

∂t2
)η = 0

which is the classical wave equation. It is obeyed by any plane wave of the form
η(x⃗, t) = F (x⃗ ⋅ n̂ − vt) where v = phase velocity of the plane wave.

Note that:

1. The classical wave equation is linear, that is, if η1(x⃗, t) and η2(x⃗, t) are
separately solutions of the wave equation, then any linear superposition
(combination)

a1η1(x⃗, t) + a2η2(x⃗, t) (1.26)

where a1 and a2 are constants, is also a solution.

2. If η(x⃗, t) is a complex solution of the wave equation, then Real(η(x⃗, t))
and Imag(η(x⃗, t)) separately satisfy the wave equation (because 1/v2 is
real).

3. The classical wave equation has solutions other than plane wave solutions,
for example, the linear superposition of 2 plane waves traveling in different
directions

η(x⃗, t) = F1(x⃗ ⋅ n̂1 − vt) + F2(x⃗ ⋅ n̂2 − vt) (1.27)

is a solution.

Definition

η(x⃗, t) is a spherical wave if it can be written in the form

η(x⃗, t) =
⎧⎪⎪⎨⎪⎪⎩

1
r
G(r − vt) → spherical outgoing wave

1
r
G(r + vt) → spherical incoming wave

(1.28)
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where, r = ∣x⃗∣, G is some arbitrary function of one variable and where v is a real
constant (v > 0) with the dimensions of velocity.

Now consider the points in space for which r ∓ vt = constant (G has the same
value at these points). We consider r−vt and r+vt as 2 separate cases. Therefore,
r = constant ± vt→ a sphere(centered at r = 0 that moves (outward or inward)
with speed v. Thus the constant phase surfaces on which (η(x⃗, t)) has a fixed
value are spheres (with center at the origin) which move (outward or inward)
with speed v. v = phase velocity of the spherical wave. The 1/r factor was used
in the definition of η(x⃗, t) so that η(x⃗, t) obeys the classical wave equation for
r ≠ 0.

We prove this as follows. First consider a function f(r). We need to calculate
∇2f(r) where r = ∣x⃗∣ =

√
x2 + y2 + z2. We have

∂r

∂x
= x
r

,
∂r

∂y
= y
r

,
∂r

∂z
= z
r

∂f

∂x
= df
dr

∂r

∂x
= df
dr

x

r
∂f

∂y
= df
dr

∂r

∂y
= df
dr

y

r

∂f

∂z
= df
dr

∂r

∂z
= df
dr

z

r

and

∂2f

∂x2
= ∂

∂x
(df
dr

x

r
) = df

dr

1

r
+ xdf

dr

∂

∂x
(1

r
) + ∂

∂x
(df
dr

) x
r

= df
dr

1

r
+ xdf

dr

∂

∂r
(1

r
) ∂r
∂x

+ x
r

∂

∂r
(df
dr

) ∂r
∂x

= df
dr

1

r
+ xdf

dr
(− 1

r2
) x
r
+ x
r

∂

∂r
(d

2f

dr2
) x
r

and similarly for ∂2f/∂y2 and ∂2f/∂z2. We then obtain

∇2f = d
2f

dr2
(x

2

r2
+ y

2

r2
+ z

2

r2
) + df

dr
(3

r
− x

2

r3
− y

2

r3
− z

2

r3
)

= d
2f

dr2
+ 2

r

df

dr
(1.29)

But
1

r

d2

dr2
(rf(r)) = 1

r

d

dr
(f + r df

dr
) = 1

r
(r d

2f

dr2
+ 2

df

dr
) (1.30)

Therefore,

∇2f = 1

r

d2

dr2
(rf(r)) (1.31)
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for r ≠ 0 since things are not defined at r = 0. Now for

η(x⃗, t) = 1

r
G(r ∓ vt) (1.32)

we have

∂η

∂t
= 1

r
G ′ (∓v)→ ∂2η

∂t2
= 1

r
G ′′ (∓v)2 = v2 1

r
G ′′

∇2η = 1

r

∂2

∂r2
(rη(r)) = 1

r

∂2

∂r2
(G(r ∓ vt)) = 1

r
G ′′

∇2η − 1

v2

∂2η

∂t2
= 0 (1.33)

so that spherical waves also obey the classical wave equation (for r ≠ 0). The
1/r factor is required physically of course to account for the 1/r2 decrease in the
intensity of the spherical wave with distance.

Definition

A function η(x⃗, t) has a definite frequency if it is of the form

η(x⃗, t) = f+(x⃗)eiωt + f−(x⃗)e−iωt (1.34)

where f±(x⃗) are arbitrary functions of x⃗ and where ω is a real number such that
ω ≥ 0. ω = an angular frequency. Now

e±iωt = cosωt ± i sinωt (1.35)

so that this η(x⃗, t) is a linear superposition of cosωt and sinωt.

In addition, since e±2πi = +1, at any point x⃗, this function η(x⃗, t) repeats itself
in time after a time interval T (period of η(x⃗, t)), where ωT = 2π or

T = 2π

ω
(1.36)

independent of x⃗. The frequency of η(x⃗, t) is then

f = 1

T
= ω

2π
(1.37)

Plane Wave of Definite Frequency

We have
η(x⃗, t) = f+(x⃗)eiωt + f−(x⃗)e−iωt = F (x⃗ ⋅ n̂ − vt) (1.38)

Therefore, we can write

f±(x⃗)e±iωt = f±(x⃗)e±i
ω
v vt = A±e

±iωv (vt−x⃗⋅n̂) = A±e
±i(ωt−ωv x⃗⋅n̂) (1.39)
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where A± are constants so that it fits the standard functional form. If we let
ω/v = k and k⃗ = kn̂ = propagation vector so that k⃗ is parallel to n̂ = direction of
wave propagation, then

η(x⃗, t) = A+e
+i(ωt−k⃗⋅x⃗) +A−e

−i(ωt−k⃗⋅x⃗) (1.40)

Now let n̂ = ẑ (propagation in the z−direction) for definiteness. Therefore,

η(x⃗, t) = A+e
+i(ωt−kz) +A−e

−i(ωt−kz) (1.41)

At a given time, η(x⃗, t) repeats itself in z after a distance λ (wavelength of
η(x⃗, t)) where kλ = 2π or

k = 2π

λ
, λ independent of t (1.42)

Now
k = 2π

λ
= ω
v
= 2πf

v
→ λf = v (1.43)

or
wavelength × frequency = phase velocity (1.44)

Note: e±i(ωt−kz) has phase (ωt − kz). This phase is constant when

ωt − kz = constant (1.45)

or when
z = −constant

k
+ ω
k
t = −constant

k
+ vt (1.46)

Therefore, the planes of constant phase move with velocity ω/k = v in the +z
direction; hence the name phase velocity for v that we have been using.

Spherical Waves of Definite Frequency

Spherical waves of definite frequency are given by

η(x⃗, t) = f+(x⃗)eiωt + f−(x⃗)e−iωt =
1

r
G(r ∓ vt)

= 1

r
[A+e

+iωv (vt∓r) +A−e
−iωv (vt∓r)]

= A+
e+i(ωt∓kr)

r
+A−

e−i(ωt∓kr)

r
(1.47)

where
ω

v
= k = 2π

λ
(1.48)

as in the plane wave case.

There exists a relationship between plane waves of definite frequency and spher-
ical waves of definite frequency.
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Consider the functions defined by the integrals

I± = ∫
infinite
plane

dA
e±ikR

R
e−εR (a definition!) (1.49)

where e−εR is a convergence factor and we will take the limit ε → 0+ after the
integration has been done. If we were to take ε → 0+ inside the integral, then
e−εR → 1 and the resulting integral is undefined or so it seems (as will be seen
below).

Since all area elements on the circular ring shown in Figure 1.8 below have the
same R

Figure 1.8: Integration Details

we can write (using Figure 1.8)

I± =
r=∞

∫
r=0

2πrdr
e±ikR

R
e−εR (1.50)

which is just integrating over the rings.

Now R =
√
x2 + y2 with z fixed during the integration. Therefore,

dR = ∂R
∂r

dr = 1

R
rdr (1.51)

with R going from R = z (when r = 0) to R =∞ (when r =∞). Therefore

I± =
r=∞

∫
r=0

2πdRe(±ik−ε)R = 2π

±ik − ε
e(±ik−ε)R∣

R=∞

R=z
(1.52)
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The value at the upper limit vanishes because e±ik(∞)e−ε(∞) = 0 v for ε > 0. If
we had let ε = 0 at the beginning of the calculation, then the value at the upper
limit would have been e±ik(∞), which is undefined (it just keeps on oscillating).
Thus,

I± = lim
ε→0+

2π

±ik − ε
e(±ik−ε)z = ±2πi

k
e±ikz (1.53)

so that we get the amazing result (limit ε→ 0+ understood)

e±ikz = ± k

2πi
∫

infinite
plane

dA
e±ikR

R
e−εR (1.54)

where R = distance from dA to a fixed point located a distance z from the plane.
This then implies that

C+e
+i(ωt−kz) +C−e−i(ωt−kz)

= k

2πi
∫
entireplane
� to z−axis
at z=0

dAe−εR [C+
e+i(ωt−kR)

R
+C−

e−i(ωt−kR)

R
] (1.55)

Thus, a plane wave propagating in the +z direction is equal to a linear su-
perposition of spherical outgoing waves emanating from each point on a plane
perpendicular to the z−axis, that is,

e+i(ωt−kz) = k

2πi
∫
entireplane
� to z−axis
at z=0

dAe−εR [e
+i(ωt−kR)

R
] (1.56)

Note A

A classical physical quantity(for example, E⃗ or B⃗) is a real quantity. Therefore,
ηphysical(x⃗, t) = real linear superposition of cos(ωt− k⃗ ⋅ x⃗) and sin(ωt− k⃗ ⋅ x⃗) is a
plane wave of definite frequency, and ηphysical(x⃗, t) = real linear superposition of
cos (ωt − k⃗ ⋅ x⃗)/r and sin (ωt − k⃗ ⋅ x⃗)/r is a spherical wave of definite frequency.

For definiteness, let us consider plane waves (similar results hold for spherical
waves).

A real linear superposition of cos(ωt− k⃗ ⋅ x⃗) and sin(ωt− k⃗ ⋅ x⃗) can be written as

ηphysical(x⃗, t) = A cos(k⃗ ⋅ x⃗ − ωt + φ) , A,φ real (1.57)

We let

η(x⃗, t) = Aeiφei(k⃗⋅x⃗−ωt) = Zei(k⃗⋅x⃗−ωt) , Z = complex number (1.58)
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so that
ηphysical(x⃗, t) = A cos(k⃗ ⋅ x⃗ − ωt + φ) = Real(η(x⃗, t)) (1.59)

Therefore, it is sufficient that we consider η(x⃗, t) = Zei(k⃗⋅x⃗−ωt) in our discussions.
When ηphysical(x⃗, t) is required, we need only take the real part of η(x⃗, t). We do
this because η(x⃗, t) is simpler than ηphysical(x⃗, t) to manipulate in calculations.

The analogous result for a spherical wave is obvious:

η(x⃗, t) = Z e
i(kr−ωt)

r
outgoing wave (1.60)

η(x⃗, t) = Z e
−i(kr−ωt)

r
incoming wave (1.61)

with
ηphysical = Real(η) (1.62)

The linear superposition of spherical outgoing waves which gives a plane wave
can therefore be used in the earlier form(1.55) with C+ = 1 and C− = 0

e+i(ωt−kz) = k

2πi
∫
entireplane
� to z−axis
at z=0

dAe−εR [e
+i(ωt−kR)

R
] (1.63)

As I said, we shall do our calculations with η(x⃗, t) and ηphysical(x⃗, t) is recovered
at any stage of the calculation simply by taking the real part.

Note B

If η(x⃗, t) = F (x⃗)e−iωt has definite frequency, where F (x⃗) = A(x⃗)eiψ(x⃗) and A,ψ
are real, then we have

ηphysical(x⃗, t) = Real(η(x⃗, t)) = A(x⃗) cos (ωt − ψ(x⃗)) (1.64)

The intensity of a wave = magnitude of energy flow per unit time per unit area.
This means that

intensity ∝ (ηphysical(x⃗, t))2 = intensity at x⃗ and t (1.65)

For example, the Poynting vector S⃗ = c (E⃗ × B⃗) /4π gives the energy flow per
unit time per unit area or the intensity. For a plane wave of definite frequency
propagating in free space (vacuum), ∣E⃗∣ = ∣B⃗∣ and E⃗�B⃗ with E⃗×B⃗ n the direction
of propagation.
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Therefore,

intensity ∝ 1

T

T

∫
0

dt (ηphysical(x⃗, t))2 = 1

T

T

∫
0

dt (A(x⃗) cos (ωt − ψ(x⃗)))2

= 1

ωT
(A(x⃗))2

ωT

∫
0

d(ωt) cos2 (ωt − ψ(x⃗))

= (A(x⃗))2

2π

2π

∫
0

du cos2 (u − ψ(x⃗)) = (A(x⃗))2

2
= 1

2
∣η(x⃗, t)∣2 (1.66)

Thus,

(ηphysical(x⃗, t))2 = 1

2
∣η(x⃗, t)∣2 (1.67)

which is independent of t since η ∝ e−iωt. Clearly we have the result

intensity ∝ ∣η(x⃗, t)∣2 (1.68)

1.2.4. Diffraction of Waves

Referring to Figure 1.9 below, we choose the origin of the coordinate system to
lie in the region containing the aperture.

Figure 1.9: Opaque Screen with Holes

We assume a wave incident from the z < 0 region given by

ηincident(x⃗, t) = ei(kz−ωt) (1.69)

In general, the screen will affect the incident wave so that there will be scattered
waves (back into the z < 0 region) and diffracted waves (waves in the z > 0
region).
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Now

ηincident(x⃗, t) = e+i(ωt−kz) =
k

2πi
∫

entire
z=0plane

dAe−εR [e
+i(ωt−kR)

R
] (1.70)

This would be the wave for z > 0 if no screen were present. This plane wave is a
linear superposition of spherical outgoing waves emanating from each point in
the z = 0 plane. The Kirchhoff approximation for the diffracted wave is simply
a linear superposition of spherical outgoing waves emanating from each point in
the openings in the screen with each of these spherical waves having a coefficient
equal to the coefficient in the expansion of ηincident(x⃗, t) = ei(kz−ωt). Note that
the diffracted wave contains no spherical waves emanating from points on the
opaque screen itself.

ηdiffracted(x⃗, t) =
k

2πi
∫
openings
in the
opaque
screen

dAe−εR [e
+i(ωt−kR)

R
] (1.71)

where R is the distance from dA to the point x⃗.

This result seems reasonable, but note that we have proved nothing!!! To prove
that this gives a good approximation for ηdiffracted(x⃗, t) requires an analysis of
the solutions to the classical wave equation and the boundary values of these
solutions at the screen and in the openings. The Kirchhoff approximation is a
good one under the following conditions:

1. r >> λ → kr >> 1 and r >> linear dimensions of the region containing
the apertures. Thus, we must be far from the apertures for the above
expression for ηdiffracted(x⃗, t) to be valid.

2. θ << 1, that is ηdiffracted(x⃗, t) should be evaluated with the above expres-
sions only when x⃗ makes a small angle with the z−axis.

3. λ << linear dimensions of the region containing the apertures (high fre-
quency limit). We will apply the above expression to situations in which
this condition is sometimes violated - in such cases our results will only
be qualitatively accurate.

4. If the wave is described by a vector field (E⃗ and B⃗), then there exist
relationships among the various components. These relationships have
not been taken into account in the Kirchhoff approximation and therefore
this approximation has neglected all polarization effects.

Note: When the apertures on the screen are finite, the integral is over a finite
area and the limit ε → 0+ may be taken inside the integral (with e−εR → 1)
because the resulting integral will be well-defined and exist.

One must do the integral before letting ε→ 0+ only when the integration extends
over an infinite area(which is unphysical anyway!).
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Application

We now discuss diffraction by two small holes in the opaque screen. The exper-
imental configuration is shown in Figure 1.10 below.

screen for viewingopaque screen with 2 very
very small holes of area

We shall calculate      only on this line (the
line through the geometrical projection of the
two given holes as shown by the arrow) in order
to simplify the calculation

Figure 1.10: Two Small Holes

Looking from the side we get the diagram in Figure 1.11:

Figure 1.11: Side View
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We have

ηdiffracted(x⃗, t) = +
k

2πi
∫

openings

dAe−εR
ei(kR−ωt)

R

= + k

2πi
∫

openings

dA
ei(kR−ωt)

R
(1.72)

where we have taken the limit inside the integral. For small openings this gives

ηdiffracted(x⃗, t) = +
k

2πi
[e

i(kR−ωt)

r
∆A + e

i(k(r+a sin θ)−ωt)

r + a sin θ
∆A]

= k

2πi
∆A

ei(kR−ωt)

r
[1 + eika sin θ

1 + a
r

sin θ
] (1.73)

Since r >> a sin θ we have

∣ηdiff∣ =
k

2π

∆A

r
∣1 + eika sin θ ∣ (1.74)

and

intensity ∝ ∣ηdiff ∣2 =
k2

4π2

(∆A)2

r2
(2 + 2 cos (ka sin θ)

intensity ∝ 1 + cos (ka sin θ) (1.75)

A typical interference pattern is shown below in Figure 1.12.

Figure 1.12: Interference Pattern
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Note(as shown) that the first zero of the intensity occurs at sin θ = π/ka. There-
fore,

ka sin θ = 2π

λ
a sin θ = π → a sin θ = λ

2
(1.76)

for the first zero.

1.3. Review of Particle Dynamics

The following discussion is relativistically valid, that is, it holds for particles
traveling at any speed v < c.

1.3.1. Relativistic Dynamics

F⃗ = dp⃗
dt

with p⃗ =mγv⃗ and γ = 1√
1 − v2/c2

(1.77)

where m = particle’s rest mass (it is constant and does not change with v).

Non-relativistically (v ≪ c) implies that γ ≈ 1 and p⃗ ≈ mv⃗. The kinetic energy
(KE) of a particle is defined such that the work done by F⃗ on the particle equals
the change in KE. Thus, the definition of kinetic energy is

∆K =K −K0 =
r⃗

∫
r⃗0

F⃗ ⋅ dr⃗ =
r⃗

∫
r⃗0

dp⃗

dt
⋅ dr⃗ (1.78)

Now, we have that p⃗ =mγ(v)v⃗ where γ(v) = (1−β2)−1/2, β = v/c. Therefore we
have

K −K0 =
r⃗

∫
r⃗0

d

dt
(m0γ(v)v⃗) ⋅ v⃗dt =m0

v

∫
0

v⃗ ⋅ d(γ(v)v⃗) (1.79)

Since the kinetic energy is zero when the velocity is zero we finally have

K =m0

v

∫
0

v⃗ ⋅ d(γ(v)v⃗) (1.80)

Now since

d(γv2) = d(γv⃗ ⋅ v⃗) = v⃗ ⋅ d(γv⃗) + γv⃗ ⋅ dv⃗ (1.81)
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we can write

K =m0

v

∫
0

(d(γv2) − γv⃗ ⋅ dv⃗) =m0

v

∫
0

d(γv2) − 1

2
m0

v

∫
0

γd(v2)

=m0γv
2 − 1

2
m0c

2

v2/c2

∫
0

γdu
du√
1 − u

=m0γv
2 +m0c

2 ( 1

γ
− 1) =m0c

2 (γβ2 + 1

γ
) −m0c

2

=m0c
2(γ − 1) (1.82)

The first thing we should do is check that this makes sense. What is the low
velocity limit of this expression?

Using

γ = (1 − β2)−1/2 → 1 + 1

2
β2 = 1 + 1

2

v2

c2
(1.83)

we have

K =m0c
2(γ − 1)→m0c

2 1

2

v2

c2
= 1

2
m0v

2 (1.84)

as expected.

If we rearrange this result we have

γm0c
2 =K +m0c

2 (1.85)
= Energy(motion) + Energy(rest)
= Total Energy = E

The total energy is conserved.

What is the connection to momentum? Some algebra gives the following results:

pc

E
= γm0vc

γm0c2
= v
c
= β (1.86)

and

(E
c
)

2

− p⃗2 =m2
0c

2 = invariant (1.87)

We now turn our attention to the so-called wave-particle duality exhibited by
physical systems - a given physical system sometimes exhibits wave-like prop-
erties and sometime exhibits particle-like properties. This experimentally ob-
served duality will suggest how to calculate the probabilities ℘(x⃗, t)d3x and
℘̃(p⃗, t)d3p.
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1.4. Wave-Particle Duality of Light

These results actually apply to all electromagnetic radiation.

1. The wave nature of light is manifest in the diffraction (interference) pat-
terns observed when light passes through apertures in an opaque screen.

2. The particle nature of light is exhibited in the photoelectric effect (as well
as many other experiments).

In the experiment shown in Figure 1.13 below, the incident light causes pho-
toelectrons to be emitted at the cathode (alkali metal plate held at negative
potential). The voltage V gives rise to a current I as the photoelectrons are
collected at the surrounding anode.

Figure 1.13: Experimental Setup

For a given metal and fixed frequency ν, the dependence of I on V is observed
to be as shown in Figure 1.14 below:

Figure 1.14: Experimental Data

The photoelectrons leaving the metal have different kinetic energies. When V
is sufficiently high, all electrons leaving the metal will be collected at the anode.
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A further increase in V will not, therefore, increase I because the number of
electrons leaving the metal per unit time is determined by the incident inten-
sity.

As V is lowered (but still positive), the slower electrons emitted from the metal
will not reach the anode (ordinarily all the electrons would be attracted to the
anode for V > 0, however, the electrons already traveling to the anode tend to
repel newly emitted photoelectrons.

As V is made negative, still fewer photoelectrons reach the surrounding conduc-
tor. However, a non-zero current can still flow because those electrons emitted
with very high kinetic energy can overcome the negative potential difference.

At V = −V0, those electrons emitted with the maximum kinetic energy will
barely be able to overcome the negative potential difference and then V < −V0

will therefore give zero current.

Thus, V0 is a measure of the maximum kinetic energy of the emitted photoelec-
trons (charge q = −e, e > 0) so that

(KE)atmetal + qVatmetal = (KE)at surrounding conductor + qVat surrounding conductor
(KE)atmetal = (KE)at surrounding conductor + q(Vat surrounding conductor − Vatmetal)
(KE)atmetal = (KE)at surrounding conductor + qV

When photoelectrons barely get to anode (KE)at surrounding conductor = 0 so that

(KE)atmetal = −eV (1.88)

and we have
(KE)max = eV0 (1.89)

V0 versus frequency ν (for a given metal) is shown in Figure 1.15 below.

Figure 1.15: V0 versus ν
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For ν < ν0, no current flows (regardless of how intense the incident light beam
is).

The classical wave theory of light cannot explain these observations. Indeed, the
classical theory requires that the electric field ∣E⃗∣ increases as the intensity of
the light increases (intensity ∝ ∣E⃗∣2). Since the light’s electric force on an elec-
tron in the metal is qE⃗, the maximum kinetic energy of emitted photoelectrons
should increase as the light beam is made more intense. Furthermore, since
∣E⃗∣ is independent of ν, the photoelectron’s maximum kinetic energy should
not depend on ν. In particular, a current should flow for any frequency of the
light, provided the light beam is intense enough. But the observations show
that (KE)max = eV0 is independent of the intensity but depends on ν current
flowing for ν < ν0!

One additional point: Since the energy of the classical wave is distributed over
the entire wave front, a single localized electron in the metal should absorb
only a small part of this energy (the energy incident on the effective area of the
electron). Thus, for a beam of very low intensity, there should be a time lag
between the time the light first impinges on the metal and the time the pho-
toelectrons are emitted (a time interval during which an electron in the metal
can absorb enough energy to escape from the metal). No such time lag has ever
been observed!

To explain the photoelectric effect, Einstein, in 1905, proposed the photon con-
cept - a concept which attributes particle-like properties to light.

1.4.1. Einstein’s Photon Hypothesis

1. The energy in a light beam is not continuously distributed over space but
is localized in small bundles called photons. The energy of each photon is
proportional to the light wave’s frequency

Ephoton = hν (1.90)

where h is a proportionality constant, called Planck’s constant (introduced
in 1900 by Planck to describe black body radiation).

2. The intensity of the light beam is proportional to the mean number of
photons traveling per unit area per unit time.

3. An electron bound in the metal can absorb a photon and thereby gain
its energy. The probability that a single electron absorb 2 photons is
negligible, and an electron bound in the metal can only absorb a whole
photon, never part of a photon.

It is easy to see that these 3 assumptions explain the photoelectric effect com-
pletely.
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{ energy absorbed
by one electron

}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hν

= { energy for electron
to get to metal surface

}

+ { energy for electron
to leave metal surface

}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
W0(work function of metal)>0

+{ electron′s KE
after leaving metal

}

The electrons which absorb a photon at the metal’s surface(none wasted) have
the maximum possible kinetic energy

hν =W0 + (KE)max → eV0 = (KE)max = hν −W0 (1.91)

This gives the required linear relationship between (KE)max and ν. It also
shows that (KE)max is independent of the incident intensity. Note that for
ν < W0/h̵ no electron will absorb enough energy to leave the surface. Thus,
the cutoff frequency ν0 = W0/h̵ and ν < ν0 imply that no photoelectrons will
be emitted. When the light beam’s intensity is increased, more photons hit the
surface of the metal per unit time and therefore more electrons will leave the
surface per unit time when ν > ν0.

Also note that the emission of photoelectrons with no time delay is an immediate
consequence of the localization of the photon and its energy.

By measuring the slope of the V0 versus ν curve and by knowing the electron
charge q = −e one finds the experimental result

h = 6.63 × 10−27erg − sec (1.92)

It is interesting to note that the human eye can detect a single photon in the
visible range (ν ≈ 1015sec−1) or

E = hν ≈ 7 × 10−12erg = 4.4 eV (1.93)

Now since light waves propagate at c, photons must travel at speed c. Two
relations we wrote down earlier, namely,

pc

E
= v
c

, (E
c
)

2

− p2 =m2
0c

2 (1.94)

then say that the rest mass of the photon is zero and E = pc. We then have

p = E
c
= hν
c

= h
λ

(1.95)

where p is the magnitude of photon momentum.
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E = hν and p = h/λ relate the particle properties E and p⃗ to the wave properties
ν and λ.

There are situations in which the wave properties and the particle properties of
light are manifest in different aspects of the same experiment.

Consider the double slit experiment in Figure 1.16 below.

Figure 1.16: Double Slit Experiment

If the incident beam is of very low intensity (say 1 photon per minute), then
one can observe individual photoelectrons being emitted from different points
on the screen. Each photoelectron is emitted at a point where the photon has
struck the screen.

The number of photoelectrons emitted over a period of time at various points
on the viewing screen is observed to be given by the wave diffraction pattern.
Thus, the probability of a given photon hitting the viewing screen at a given
point (this probability is proportional to the number of photons which hit the
screen at the given point over some time interval) is given by the wave diffraction
pattern.

This is the key point!

The probability of observing the particle(photon) in a
given region is given by the intensity of the wave
(diffraction pattern) in that region.
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Thus, we have a statistical connection between the wave properties and the
particle properties!

Is light a wave or a particle? It is really neither! It is a physical system in
which the probability of observing a photon is determined by the intensity of a
wave. Indeed, if light propagation were just a wave phenomenon, then one could
not explain the photoelectric effect. On the other hand, if a light beam were
actually composed of well-defined localized particles (photons), one could not
explain diffraction patterns. For example, consider the two experiments shown
in Figure 1.17 below:

Figure 1.17: Which Slit?

If the light beam were actually composed of localized photons, one could not
explain why one opening leads to a uniform distribution while adding another
opening (which increases the number of ways a photon can get to any point on
the viewing screen) yields certain regions of the screen in which the probability
of observing a photon decreases.

1.4.2. Wave-Particle Duality of Electrons
1. The particle-like properties of an electron are well-known. For example,

one can view the trajectory of an electron in a bubble chamber. If the
chamber is placed in E⃗ and B⃗ fields, then the observed trajectory is just
the one determined by Newton’s second law with the Lorentz force

dp⃗

dt
= F⃗ = q(E⃗ + v⃗

c
× B⃗) , p⃗ =mγv⃗ (1.96)

2. The wave-like properties of an electron are exhibited in the diffraction of
electrons by a crystal (Davisson and Germer, Phys Rev. 30, 705 (1927)).
The experiment is shown in Figure 1.18 below:
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Figure 1.18: Electron Diffraction

The experimental distribution of electrons )shown on the right) is a typical
diffraction pattern of a wave having wavelength

λ = h
p

(1.97)

which is called the deBroglie wavelength . The probability of observing
the particle (electron) is determined (in this experiment) by the intensity
distribution of a wave.

This relationship λ = h/p or matter waves (whatever they might be!) was
predicted in 1923 by Louis deBroglie. He argued that matter should exhibit a
wave-particle duality just the way light exhibits such a duality - he argued that
the relation λ = h/p should relate the wave and particle properties for matter as
well as for light.

Davisson and Germer confirmed this hypothesis in 1927 when they scattered
electrons from a nickel crystal and observed a diffraction pattern distribution.

Why isn’t the diffraction of macroscopic objects observed?

Consider the experiment shown in Figure 1.19 below. The first minimum occurs
for

d sin θ = λ
2
→ sin θ = 1

2

λ

d
(1.98)
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Figure 1.19: Macroscopic Diffraction?

Assume that the incident particles are macroscopic, that is,

m = 1 gm , v = 1 cm/ sec

→ p = 1 gm ⋅ cm/ sec→ λ = h
p
≈ 7 × 10−27cm

so that the first minimum occurs at

sin θ = 1

2

λ

d
≈ 7

2

10−27cm

d
(1.99)

For any realistic d, this yields a θ so small that the oscillations in the diffraction
pattern cannot be observed. Thus, λ << d for macroscopic objects and diffrac-
tion patterns cannot be resolved - in this short deBroglie wavelength limit, one
obtains classical mechanics. The wave-particle duality is present. It is just that
the wave patterns are too fine to be resolved.

In addition, if v were as small as 10−8 cm/sec (an atomic distance per second)
for macroscopic particles,

m ≈ 1 gm, p ≈ 10−8gm ⋅ cm/ sec, λ ≈ 7 × 10−19cm (1.100)

Again, for any realistic d, the diffraction pattern still cannot be seen.

All physical systems (light, electrons, neutrons, baseballs, etc) exhibit a so-
called wave-particle duality ! The connection between the wave properties and
the particle properties is statistical - the intensity of the wave in a given region
determines the probability of observing the particle in that region. Wave and
particle properties are related by the de Broglie relation λ = h/p.
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Chapter 2

Formulation of Wave Mechanics - Part 1

Using the ideas from Chapter 1, we can now set up a version of quantum theory
called Wave Mechanics.

2.1. Basic Theory

2.1.1. Postulate 1a

Motivation: probability ∝ ∣η∣2

Given the initial conditions (to be specified later) and the particle interactions
(forces acting on the particle), there exists a complex-valued function ψ(x⃗, t),
called the wave function or the probability amplitude, such that

1. The quantity

∫
all space

d3x ∣ψ(x⃗, t)∣2 (2.1)

is finite and non-zero.

2. The probability is given by

℘(x⃗, t) = ∣ψ(x⃗, t)∣2

∫
all space

d3x ∣ψ(x⃗, t)∣2
(2.2)

Note that no time averages are taken.

From now on ∫
all space

d3x(.......) means an integration over all space.
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Additional Notes

1. The condition

∫ d3x ∣ψ(x⃗, t)∣2 is finite and non-zero

is referred to by saying that ψ(x⃗, t) is normalizable.

2. ℘(x⃗, t) = probability of observing the particle in (x,x+dx), (y, y+dy) and
(z, z + dz) at time t.

3.

℘(x⃗, t) = ∣ψ(x⃗, t)∣2

∫
all space

d3x ∣ψ(x⃗, t)∣2

satisfies the required conditions for a probability density:

℘(x⃗, t) ≥ 0

∫ d3x℘(x⃗, t) = 1 for all t

4. ψ(x⃗, t) need not be a continuous function of x⃗. The only requirement is
that it be normalizable. We will, however, assume continuity for physical
reasons.

5. A plane wave of definite frequency is not normalizable.

ψ(x⃗, t) = ei(k⃗⋅x⃗−ωt) ⇒ ∣ψ(x⃗, t)∣2 = 1

⇒ ∫ d3x ∣ψ(x⃗, t)∣2 =∞

6. ψ(x⃗, t) must be allowed to take on complex values. If ψ(x⃗, t = 0) is real,
then the time dependence that will be postulated later will usually yield
a ψ(x⃗, t > 0) that is complex.

7. ψ(x⃗, t) and ψ̄(x⃗, t) = Zψ(x⃗, t), Z complex, determines the same ℘(x⃗, t).

℘̃(x⃗, t) =
∣ψ̃(x⃗, t)∣

2

∫
all space

d3x ∣ψ̃(x⃗, t)∣
2

= ∣Z ∣2

∣Z ∣2
∣ψ(x⃗, t)∣2

∫
all space

d3x ∣ψ(x⃗, t)∣2
= ℘(x⃗, t)

8. ψ(x⃗, t) should be thought of as a construct of the mind to facilitate the
prediction of probabilities. It is meaningless to ask whether ψ(x⃗, t) re-
ally exists as a physical quantity. ℘(x⃗, t) is the measurable quantity, and
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ψ(x⃗, t) only helps us to calculate ℘(x⃗, t). It is analogous to the situation
with E⃗ and B⃗ fields - E⃗ and B⃗ are mental concepts which allow us to
calculate the force exerted on one charge by another charge (we think of
one charge producing E⃗ and B⃗ fields which propagate to another charge
and which then give rise to a force on the other charge).

9. One wave function ψ(x⃗, t) is adequate to describe certain particles, called
spinless particles (for example, an alpha particle). However, other parti-
cles (particles with spin, for example, electrons, photons) require a wave
function with several components for an accurate description (for exam-
ple, a photon requires a vector wave function [3 components] to describe it
because of its various modes of polarization). For non-relativistic speeds,
an electron is approximately described by one wave function [one compo-
nent]. We shall restrict our attention to one-component wave functions
during most of chapters 2 and 3.

Let f(x⃗) be an arbitrary function of x⃗. Then the average (or expectation) value
of f(x⃗) is defined by

⟨f(x⃗)⟩ = ∫ d3x℘(x⃗, t)f(x⃗) = ∫
d3x ∣ψ(x⃗, t)∣2 f(x⃗)

∫ d3x ∣ψ(x⃗, t)∣2
(2.3)

which may change with time. Therefore,

⟨f(x⃗)⟩ = ∫
d3xψ∗(x⃗, t)f(x⃗)ψ(x⃗, t)
∫ d3xψ∗(x⃗, t)ψ(x⃗, t)

(2.4)

Definition

ψ(x⃗, t) is said to be normalized if

∫ d3x ∣ψ(x⃗, t)∣2 = 1 (2.5)

Let ψ̃(x⃗, t) be a normalizable wave function. Then

ψ(x⃗, t) = ψ̃(x⃗, t)
√

∣ψ̃(x⃗, t)∣
2

(2.6)

is obviously normalized and determines the same ℘(x⃗, t) as ψ̃(x⃗, t).

If ψ(x⃗, t) is normalized, then

℘(x⃗, t) = ∣ψ(x⃗, t)∣2 and ⟨f(x⃗)⟩ = ∫ d3xψ∗(x⃗, t)f(x⃗)ψ(x⃗, t) (2.7)
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Definition

A function φ(x⃗) (may also depend on t) is square-integrable if ∫ d3x ∣φ(x⃗)∣2 is
finite.

A normalizable function is square-integrable and satisfies ∫ d3x ∣φ(x⃗)∣2 ≠ 0.

Theorem

If φ1(x⃗) and φ2(x⃗) are square-integrable, then λ1φ1(x⃗)+λ2φ2(x⃗) is also square-
integrable for any complex λ1 and λ2.

Proof:

∫ d3x ∣λ1φ1(x⃗) + λ2φ2(x⃗)∣2

= ∫ d3x [∣λ1∣2 ∣φ1(x⃗)∣2 + ∣λ2∣2 ∣φ2(x⃗)∣2 + λ∗1λ2φ
∗
1(x⃗)φ2(x⃗) + λ1λ

∗
2φ1(x⃗)φ∗2(x⃗)]

= ∫ d3x [∣λ1∣2 ∣φ1(x⃗)∣2 + ∣λ2∣2 ∣φ2(x⃗)∣2 + 2Re (λ∗1λ2φ
∗
1(x⃗)φ2(x⃗))]

Now let u∗1 = λ∗1φ∗1(x⃗) and u2 = λ2φ2(x⃗). Then

∣u∗1u2∣ =
√

[Re (u∗1u2)]2 + [Im (u∗1u2)]2 ≥ Re (u∗1u2)

Also,

[∣u∗1 ∣ − ∣u2∣]
2 = ∣u1∣2 + ∣u2∣2 − 2 ∣u∗1u2∣ ≥ 0→ ∣u∗1u2∣ ≤

1

2
[∣u1∣2 + ∣u2∣2]

Therefore,

Re (u∗1u2) ≤ ∣u∗1u2∣ ≤
1

2
[∣u1∣2 + ∣u2∣2]

and

∫ d3xRe (λ∗1λ2φ
∗
1(x⃗)φ2(x⃗)) ≤ ∫ d3x{∣λ1∣2 ∣φ1(x⃗)∣2 + ∣λ2∣2 ∣φ2(x⃗)∣2}

so that

∫ d3x ∣λ1φ1(x⃗) + λ2φ2(x⃗)∣2 ≤ ∫ d3x{∣λ1∣2 ∣φ1(x⃗)∣2 + ∣λ2∣2 ∣φ2(x⃗)∣2} = finite

Therefore, ∫ d3x ∣λ1φ1(x⃗) + λ2φ2(x⃗)∣2 is finite and λ1φ1(x⃗)+λ2φ2(x⃗) is square-
integrable.

This theorem implies that the set of all square-integrable functions forms a linear
vector space (with the usual addition of functions and the usual multiplication
of a function by a complex constant) - this space is designated L2.
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2.1.2. Postulate 1b

Motivation: Linear superposition of classical waves.

If ψ1(x⃗, t) and ψ2(x⃗, t) are possible wave functions for a particle under the
influence of given forces, that is, ψ1(x⃗, t) and ψ2(x⃗, t) could correspond to dif-
ferent initial conditions), then, for any complex constants λ1 and λ2, λ1φ1(x⃗)+
λ2φ2(x⃗), which is necessarily square-integrable by the previous theorem, is a
possible wave function for the particle under the influence of the given forces,
provided that λ1φ1(x⃗) + λ2φ2(x⃗) is not identically zero at any time, where a
function f(x⃗, t) is identically zero at time t if f(x⃗, t) = 0 for all x⃗.

Let φ1(x⃗) and φ2(x⃗) ∈ L2, that is, they are square-integrable. Then,

∣∫ d3xφ∗1(x⃗)φ2(x⃗)∣ ≤ ∫ d3x ∣φ∗1(x⃗)φ2(x⃗)∣

≤ 1

2
∫ d3x [∣φ1(x⃗)∣2 + ∣φ2(x⃗)∣2] = finite

so that ∫ d3x φ∗1(x⃗)φ2(x⃗) is finite.

Definition

Let φ1(x⃗) and φ2(x⃗) ∈ L2. The scalar product(inner product) of φ1(x⃗) and
φ2(x⃗) is defined to be

⟨φ1 ∣ φ2⟩ ≡ ⟨φ1, φ2⟩ = ∫ d3xφ∗1(x⃗)φ2(x⃗) (2.8)

where the 2nd expression is the standard scalar product notation, the 1st ex-
pression is a different notation (due to Dirac) for the same thing and the 3rd

expression is the actual definition. The scalar product is finite for φ1(x⃗) and
φ2(x⃗) ∈ L2.

Properties of this Inner Product

(obvious by inspection)

1. ⟨φ1 ∣ φ2⟩∗ = ⟨φ2 ∣ φ1⟩

2.

⟨φ1 ∣ λ2φ2 + λ3φ3⟩ = λ2 ⟨φ1 ∣ φ2⟩ + λ3 ⟨φ1 ∣ φ3⟩
⟨λ2φ2 + λ3φ3 ∣ φ1⟩ = λ∗2 ⟨φ2 ∣ φ1⟩ + λ∗3 ⟨φ3 ∣ φ1⟩

3. ⟨φ ∣φ⟩ is real with ⟨φ ∣φ⟩ ≥ 0, where equality occurs if and only if φ(x⃗ = 0
almost everywhere(a.e.), that is, φ(x⃗ at all x⃗ with the possible exception
of some isolated points.
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Definition: φ(x⃗ is normalized if ⟨φ ∣φ⟩ = 1

Definition: φ1(x⃗) and φ2(x⃗) are orthogonal if ⟨φ1 ∣φ2⟩ = 0

Definition: Let f(x⃗) be an arbitrary function of x⃗. The matrix element of
f(x⃗) between φ1(x⃗) and φ2(x⃗) is defined to be:

⟨φ1∣ f(x⃗) ∣φ2⟩ ≡ ⟨φ1, f(x⃗)φ2⟩ ≡ ∫ d3xφ∗1(x⃗)f(x⃗)φ2(x⃗) (2.9)

where the 2nd expression is the standard scalar product notation, the 1st ex-
pression is a different notation (due to Dirac) for the same thing and the 3rd

expression is the actual definition.

In the Dirac notation, we have ⟨φ1∣ f(x⃗) ∣φ2⟩, where

⟨φ1∣ = bra vector , ∣φ2⟩ = ket vector (2.10)

and
⟨φ1∣ f(x⃗) ∣φ2⟩ = bracket f(x⃗) (2.11)

In Dirac notation, Postulate 1a takes the following form:

1. ⟨φ ∣φ⟩ is finite and non-zero

2. ℘(x⃗, t) = ∣ψ(x⃗,t)∣2
⟨φ ∣φ⟩

Also
⟨f(x⃗)⟩ = ⟨ψ∣ f(x⃗) ∣ψ⟩

⟨ψ ∣ ψ⟩
(2.12)

If ψ(x⃗, t) is normalized, then we have

⟨ψ ∣ ψ⟩ = 1 , ℘(x⃗, t) = ∣ψ(x⃗, t)∣2 , ⟨f(x⃗)⟩ = ⟨ψ∣ f(x⃗) ∣ψ⟩ (2.13)

Theorem: Schwarz Inequality

Let φ1(x⃗) and φ2(x⃗) ∈ L2. Then

∣⟨φ1 ∣ φ2⟩∣2 ≤ ⟨φ1 ∣ φ1⟩ ⟨φ2 ∣ φ2⟩ (2.14)

where the equality occurs if and only if φ2(x⃗) = λφ1(x⃗) a.e. for λ a complex
constant.

Proof

Consider φ2(x⃗)−λφ1(x⃗) with λ arbitrary. Then we must have ⟨φ2 − λφ1 ∣ φ2 − λφ1⟩ ≥
0 for any λ. Again, equality occurs if and only if φ2(x⃗) = λφ1(x⃗) a.e. We then
find

⟨φ2 − λφ1 ∣ φ2 − λφ1⟩ = ⟨φ2 ∣ φ2⟩ + ∣λ∣2 ⟨φ1 ∣ φ1⟩ − λ ⟨φ2 ∣ φ1⟩ − λ∗ ⟨φ1 ∣ φ2⟩ ≥ 0
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This must be true for all λ. In particular, it is true for

λ = ⟨φ1 ∣ φ2⟩
⟨φ1 ∣ φ1⟩

(2.15)

Note that if ⟨φ1 ∣φ1⟩ = 0, then the theorem is trivially true since

∣⟨φ1 ∣ φ2⟩∣2 = 0 = ⟨φ1 ∣ φ1⟩ ⟨φ2 ∣ φ2⟩

Using the choice for λ in (2.15) we have

⟨φ2 ∣ φ2⟩ + ∣ ⟨φ1 ∣ φ2⟩
⟨φ1 ∣ φ1⟩

∣
2

⟨φ1 ∣ φ1⟩ −
⟨φ1 ∣ φ2⟩
⟨φ1 ∣ φ1⟩

⟨φ2 ∣ φ1⟩ −
⟨φ1 ∣ φ2⟩
⟨φ1 ∣ φ1⟩

∗
⟨φ1 ∣ φ2⟩ ≥ 0

⟨φ2 ∣ φ2⟩ −
∣⟨φ1 ∣ φ2⟩∣2

⟨φ1 ∣ φ1⟩
≥ 0⇒ ∣⟨φ1 ∣ φ2⟩∣2 ≤ ⟨φ1 ∣ φ1⟩ ⟨φ2 ∣ φ2⟩

with equality if and only if φ2(x⃗) = λφ1(x⃗) a.e.

Note: The above inner product, its properties, and the Schwarz inequality can
be generalized in an obvious manner to functions of n variables as shown below:

1. φ(x1, ............, xn) is square-integrable if ∫ dnxφ∗(x1, ....., xn)φ(x1, ............, xn)
is finite, where dnx = dx1dx2.........dxn.

2. ⟨φ1 ∣ φ2⟩ = ∫ dnxφ∗1(x1, ....., xn)φ2(x1, ....., xn)

3. ⟨φ1∣ f(x1, ....., xn) ∣φ2⟩ = ∫ dnxφ∗1(x1, ....., xn)f(x1, ....., xn)φ2(x1, ....., xn)

Examples

Let φ1(x⃗) = e−r/2 and φ2(x⃗) = re−r/2, then

⟨φ1 ∣ φ1⟩ = ∫ d3xφ∗1(r, θ,ϕ)φ1(r, θ,ϕ)

=
∞

∫
0

r2e−rdr

π

∫
0

sin θdθ

2π

∫
0

dϕ = 4π

∞

∫
0

r2e−rdr = 8π

where we have used
∞

∫
0

duune−u = n! for n = 0,1,2, ..... (2.16)

Similarly,

⟨φ2 ∣ φ2⟩ = ∫ d3xφ∗2(r, θ,ϕ)φ2(r, θ,ϕ)

=
∞

∫
0

r4e−rdr

π

∫
0

sin θdθ

2π

∫
0

dϕ = 4π

∞

∫
0

r4e−rdr = 96π
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and

⟨φ1 ∣ φ2⟩ = ∫ d3xφ∗1(r, θ,ϕ)φ2(r, θ,ϕ)

=
∞

∫
0

r3e−rdr

π

∫
0

sin θdθ

2π

∫
0

dϕ = 4π

∞

∫
0

r3e−rdr = 24π

We then have

∣⟨φ1 ∣ φ2⟩∣2 = 576π2 , ⟨φ1 ∣ φ1⟩ ⟨φ2 ∣ φ2⟩ = 768π2 (2.17)

so that
∣⟨φ1 ∣ φ2⟩∣2 < ⟨φ1 ∣ φ1⟩ ⟨φ2 ∣ φ2⟩ (2.18)

as required by the Schwarz inequality.

Now let k⃗ be some fixed vector. Then we have

⟨φ2∣ k⃗ ⋅ x⃗ ∣φ1⟩ = ∫ d3xφ∗2(x⃗)(k⃗ ⋅ x⃗)φ1(x⃗) (2.19)

Now we are free to choose our coordinate system for specifying the spherical
polar coordinates of x⃗ so that the z−axis is along k⃗ (remember that k⃗ is fixed
during the integration) as shown in Figure 2.1 below.

Figure 2.1: Vector Orientations

We then have

k⃗ ⋅ x⃗ = kz = kr cos θ , d3x = r2 sin θdrdθdϕ

and we get

⟨φ2∣ k⃗ ⋅ x⃗ ∣φ1⟩ = ∫ d3xφ∗2(x⃗)(k⃗ ⋅ x⃗)φ1(x⃗)

=
∞

∫
0

r2dr

π

∫
0

sin θdθ

2π

∫
0

dϕ (kr cos θ)(re−r)

= k
⎛
⎝

∞

∫
0

r4e−rdr
⎞
⎠
⎛
⎝

π

∫
0

sin θ cos θdθ
⎞
⎠

⎛
⎜
⎝

2π

∫
0

dϕ
⎞
⎟
⎠

= k(4!)(0)(2π) = 0
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Now let φ(x⃗) = 1/r, then we have

⟨φ ∣ φ⟩ = ∫ d3xφ∗(r, θ,ϕ)φ(r, θ,ϕ)

=
∞

∫
0

r2dr

π

∫
0

sin θdθ

2π

∫
0

dϕ
1

r2
= 4π

∞

∫
0

dr =∞

The integrand diverges at r =∞. Therefore, φ(x⃗) = 1/r is not in L2.

Now let φ(x⃗) = 1/r2, then we have

⟨φ ∣ φ⟩ = ∫ d3xφ∗(r, θ,ϕ)φ(r, θ,ϕ)

=
∞

∫
0

r2dr

π

∫
0

sin θdθ

2π

∫
0

dϕ
1

r4
= 4π

∞

∫
0

dr

r2
=∞

The integrand diverges at r = 0. Therefore, φ(x⃗) = 1/r2 is not in L2.

Note: Now

⟨φ ∣ φ⟩ =
∞

∫
0

r2dr

π

∫
0

sin θdθ

2π

∫
0

dϕ ∣φ(x⃗)∣2 (2.20)

Therefore, for the integration over r to converge, it is clearly necessary for
∣φ(x⃗)∣ → 0 sufficiently fast as r → ∞. Thus, square-integrable functions must
vanish as r →∞.

If the wave function ψ(x⃗, t) for a particle is given, we can calculate ℘(x⃗, t) from
postulate 1. Postulate 2 will tell us how to calculate ℘̃(p⃗, t) (the momentum
probability distribution) from ψ(x⃗, t). For this, we must introduce the Fourier
transform of ψ(x⃗, t).

2.1.3. Fourier Series and Transforms and Dirac Delta Func-
tion

Fourier Series

Let f(x⃗) be a square-integrable function of one variable on the interval [−a/2, a/2],
that is,

a/2

∫
−a/2

dx ∣f(x)∣2 is finite (2.21)

Then

f(x) =
∞
∑
n=−∞

cn
ei

2πnx
a

√
a

(2.22)

with convergence a.e.
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Let

un(x) =
ei

2πnx
a

√
a

= 1√
a
(cos

2πnx

a
+ i sin 2πnx

a
) (2.23)

→ f(x) =
∞
∑
n=−∞

cnun(x) (2.24)

Now,

⟨un ∣ um⟩ =
a/2

∫
−a/2

dxu∗n(x)um(x) = 1

a

a/2

∫
−a/2

dxei
2πx
a (m−n)

= 1

ai 2π
a
(m − n)

(eiπ(m−n) − e−iπ(m−n))

= 1

2πi(m − n)
((−1)(m−n) − (−1)(m−n))

= δnm = { 1 for n =m
0 for n ≠m ⇒ Kronecker delta

Therefore, multiplying

f(x) =
∞
∑
n=−∞

cnun(x) (2.25)

by u∗m(x) and integrating over x, we get

a/2

∫
−a/2

dxu∗m(x)f(x) =
∞
∑
n=−∞

cn

a/2

∫
−a/2

dxu∗m(x)un(x)

=
∞
∑
n=−∞

cnδnm = cm

cm = 1√
a

a/2

∫
−a/2

dxf(x)e−i
2πmx
a (2.26)

Note that the Fourier series gives rise to an expansion of f(x) on [−a/2, a/2] in
terms of the functions ei2πnx/a = eikx where

k = 2πn

a
= 2π

λ
→ λ = a

n
(2.27)

We are therefore expanding f(x) in terms of sines and cosines with wavelengths
a, a/2, a/3, .......

Now we let a → ∞, which will give us a heuristic proof of the Fourier integral
theorem. We have

f(x) =
∞
∑
n=−∞

cn
ei

2πnx
a

√
a

, cn =
1√
a

a/2

∫
−a/2

dxf(x)e−i
2πnx
a (2.28)
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Let

k = 2πn

a
→ k (2.29)

varies from −∞ to +∞ in steps of ∆k = 2π/a , (∆n = 1). Then a→∞⇒∆k →
0. Therefore,

f(x) =
∞
∑
k=−∞

cn
eikx√
a

[a(∆k)
2π

] since [a(∆k)
2π

] = 1 (2.30)

Now let

F (k) = cn
√

a

2π
(2.31)

so that

f(x) =
∞
∑
k=−∞

eikxF (k) ∆k√
2π

(2.32)

Then as a→∞⇒∆k → 0, we have

f(x) =
∞

∫
−∞

dk√
2π
eikxF (k) (2.33)

and

F (k) = cn
√

a

2π
=

a/2

∫
−a/2

dx√
2π
f(x)e−ikx (2.34)

which is the Fourier Transform of f(x). Thus, we have the Fourier Integral
Theorem (heuristically proved):

If f(x) is square-integrable, the Fourier transform

F (k) =
a/2

∫
−a/2

dx√
2π
f(x)e−ikx (2.35)

exists a.e. and is also square-integrable. Furthermore,

f(x) =
∞

∫
−∞

dk√
2π
eikxF (k) (2.36)

For a more rigorous derivation see Physics 50 (Mathematical Methods) notes
http://www.johnboccio.com/courses/Physics50_2010/006_FourierTransform.
pdf.
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Example

Let f(x) be a Gaussian f(x) = Ne−(x−x0)2/4σ2

, where x0, σ and N are real and
σ > 0,N > 0. First we determine N so that f(x) is normalized.

1 =
∞

∫
−∞

dx ∣f(x)∣2 = N2

∞

∫
−∞

dxe−(x−x0)2/2σ2

= N2

∞

∫
−∞

due−u
2/2σ2

= N2σ
√

2

∞

∫
−∞

dv e−v
2

1 = N2σ
√

2π → N =
√

1√
2πσ

so that the normalized f(x) is

f(x) =
√

1√
2πσ

e−(x−x0)2/4σ2

(2.37)

as shown in Figure 2.2 below.

Figure 2.2: Gaussian Function
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Now let us calculate the Fourier transform. We have

F (k) =
∞

∫
−∞

dx√
2π

√
1√
2πσ

e−(x−x0)2/4σ2

e−ikx

= 1√
2π

√
1√
2πσ

∞

∫
−∞

dxe−(x−x0)2/4σ2

e−ikx

= 1√
2π

√
1√
2πσ

∞

∫
−∞

due−u
2/4σ2

e−ik(u+x0)

= 1√
2π

√
1√
2πσ

e−ikx0

∞

∫
−∞

due−(u+2ikσ2)2/4σ2

e−4σ4k2/4σ2

= 1√
2π

√
1√
2πσ

e−ikx0e−σ
2k2

∞

∫
−∞

due−(u+2ikσ2)2/4σ2

where the last two steps follow from completing the square. We then have

F (k) = 2σ√
2π

√
1√
2πσ

e−ikx0e−σ
2k2

∞+iσk

∫
−∞+iσk

dZ e−Z
2

(2.38)

This last integral can be done using complex integration methods (again see
Physics 50 (Mathematical Methods) notes), which would show that it does not
matter whether we integrate over the path in the complex plane as indicated
(k0) or along the real axis (k = 0).

We will now show this property another way. We define

I(k) =
∞+iσk

∫
−∞+iσk

dZ e−Z
2

(2.39)

We now show that dI/dk = 0, so that I(k) is independent of k. Let Z = v + iσk.
Then

I(k) =
∞

∫
−∞

dve−(v+iσk)
2

(2.40)

so that

dI

dk
=

∞

∫
−∞

dv
d

dk
(e−(v+iσk)

2

) = iσ
∞

∫
−∞

dv
d

d(iσk)
(e−(v+iσk)

2

)

= iσ
∞

∫
−∞

dv
d

dv
(e−(v+iσk)

2

) = iσ
∞

∫
−∞

d (e−(v+iσk)
2

)

= iσ [e−(v+iσk)
2

]
v=+∞

v=−∞
= 0
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Therefore, I(k) = constant = I(0) and

I(0) =
∞

∫
−∞

dve−v
2

=
√
π (2.41)

Therefore,

F (k) = 2σ√
2π

√
1√
2πσ

e−ikx0e−σ
2k2√

π

=

¿
ÁÁÀ

√
2

π
σe−ikx0e−σ

2k2

(2.42)

as shown in Figure 2.3 below.

Figure 2.3: Gaussian Fourier Transform

Note that
∞

∫
−∞

dk ∣F (k)∣2 =
√

2

π
σ

∞

∫
−∞

dke−2σ2k2

=
√

2

π
σ

√
π

2

1

σ
= 1 =

∞

∫
−∞

dx ∣f(x)∣2

This will be seen to be Parseval’s relation, which we derive shortly.

Now we generalize to 3 dimensions. Let f(x⃗) = f(x, y, z) be a square-integrable
function of 3 variables. We can Fourier transform in z first, then in y and finally
in x.

F (k⃗) = F (kx, ky, kz)

=
∞

∫
−∞

dx√
2π
e−ikxx

∞

∫
−∞

dy√
2π
e−ikyy

∞

∫
−∞

dz√
2π
e−ikzzf(x, y, z)

=
∞

∫
−∞

d3x

(2π)3/2 e
−ik⃗⋅x⃗f(x⃗) (2.43)
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where d3x = dxdydz and k⃗ ⋅ x⃗ = kxx + kyy + kzz. Similarly, we have

f(x⃗) = f(x, y, z)

=
∞

∫
−∞

dkx√
2π
eikxx

∞

∫
−∞

dky√
2π
eikyy

∞

∫
−∞

dkz√
2π
eikzzF (kx, ky, kz)

=
∞

∫
−∞

d3k

(2π)3/2 e
ik⃗⋅x⃗F (k⃗) (2.44)

which is obtained by Fourier inverting first in x, then in y and finally in z. It is
the inverse Fourier transform.

Thus, if f(x⃗) is square-integrable, the Fourier transform

F (k⃗) =
∞

∫
−∞

d3x

(2π)3/2 e
−ik⃗⋅x⃗f(x⃗) (2.45)

exists a.e. and is also square-integrable. Furthermore

f(x⃗) =
∞

∫
−∞

d3k

(2π)3/2 e
ik⃗⋅x⃗F (k⃗) (2.46)

Parseval’s Relation

Let F (k⃗) and G(k⃗) be the Fourier transforms of f(x⃗) and g(x⃗) respectively.
Then

⟨f ∣ g⟩ = ⟨F ∣ G⟩ (2.47)

that is,

∫ d3xf∗(x⃗)g(x⃗) = ∫ d3k F ∗(k⃗)G(k⃗) (2.48)

Proof

∫ d3xf∗(x⃗)g(x⃗) = ∫ d3x

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

d3k

(2π)3/2 e
−ik⃗⋅x⃗F ∗(k⃗)

⎤⎥⎥⎥⎥⎦
g(x⃗)

= ∫ d3kF ∗(k⃗)
⎡⎢⎢⎢⎢⎣

∞

∫
−∞

d3x

(2π)3/2 e
−ik⃗⋅x⃗g(x⃗)

⎤⎥⎥⎥⎥⎦
= ∫ d3k F ∗(k⃗)G(k⃗) (2.49)

Note: For f = g we obtain ⟨f ∣ f⟩ = ⟨F ∣F ⟩, that is,

∫ d3x ∣f(x⃗)∣2 = ∫ d3k ∣F (k⃗)∣
2

(2.50)

which will be very useful.
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The Dirac Delta Function(a generalized function)

We define the function δε(x) as shown in Figure 2.4 below.

Figure 2.4: Delta Function Definition

by the relation

δε(x) =
⎧⎪⎪⎨⎪⎪⎩

0 for ∣x∣ > ε/2
1/ε for ∣x∣ < ε/2

(2.51)

Taking the limit ε→ 0+ we get

lim
ε→0+

δε(x) =
⎧⎪⎪⎨⎪⎪⎩

0 for x ≠ 0

∞ for x = 0
(2.52)

such that the area under curve remains = 1.

The problem is that such a limit does not exist as an ordinary function. Instead,
consider

lim
ε→0+

∞

∫
−∞

dxf(x)δε(x − x0) (2.53)

where the function δε(x − x0) is as shown in Figure 2.5 below:

Figure 2.5: Another Delta Function Definition
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and f(x) is some arbitrary function continuous at x = x0. One takes the limit
after the integral has been done. We then have the result (which is the correct
defining relation)

lim
ε→0+

∞

∫
−∞

dxf(x)δε(x − x0) = lim
ε→0+

1

ε

+ ε2+x0

∫
− ε2+x0

dxf(x)

= lim
ε→0+

1

ε
f(x0)

+ ε2+x0

∫
− ε2+x0

dx

= lim
ε→0+

1

ε
f(x0)ε = f(x0) (2.54)

where we have used the continuity of f(x) at x = x0 to take the term f(x0)
outside the integral.

Definition

Let δε(x − x0) be any function of the type described above and depending on
some parameter ε. Then, lim

ε→0+
δε(x − x0) = δ(x − x0), which is the Dirac delta

function, means, for any function f(x) continuous at x0,

lim
ε→0+

∞

∫
−∞

dxf(x)δε(x − x0) = f(x0) =
∞

∫
−∞

dxf(x)δ(x − x0) (2.55)

where the last form is just a notation because lim
ε→0+

cannot be brought inside
the integral to give

∞

∫
−∞

dxf(x) [ lim
ε→0+

δε(x − x0)] (2.56)

since
[ lim
ε→0+

δε(x − x0)] (2.57)

does not exist.

Note: Compare the delta function with the Kronecker delta:

∑
j

cjδij = ci picks out j = i

∞

∫
−∞

dxf(x)δ(x − x0) = f(x0) picks out x = x0

There are many different functions δε(x−x0) such that lim
ε→0+

δε(x−x0) = δ(x−x0)
in the above sense.
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Properties of the Delta Function

1. In a non-rigorous way,

lim
ε→0+

δε(x) =
⎧⎪⎪⎨⎪⎪⎩

0 for x ≠ 0

∞ for x = 0
(2.58)

2. For f(x) continuous at x = 0

∞

∫
−∞

dxf(x)δ(x) = f(0) (2.59)

3. In particular
∞

∫
−∞

dxδ(x − x0) = 1 (2.60)

4. Let

g(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x) for x ∈ (a, b)
0 for x ∉ [a, b]

then

b

∫
a

dxf(x)δ(x − x0) =
∞

∫
−∞

dxg(x)δ(x − x0)

= g(x0) =
⎧⎪⎪⎨⎪⎪⎩

f(x) for x ∈ (a, b)
0 for x ∉ [a, b]

(2.61)

5. For any real constant a

δ(ax) = 1

∣a∣
δ(x) (2.62)

Proof

For a > 0

∞

∫
−∞

dxf(x)δ(ax) = 1

∣a∣

∞

∫
−∞

duf(u/a)δ(u) = 1

∣a∣
f(0)

For a < 0

∞

∫
−∞

dxf(x)δ(ax) = 1

a

−∞

∫
∞

duf(u/a)δ(u)

= 1

∣a∣

∞

∫
−∞

duf(u/a)δ(u) = 1

∣a∣
f(0)
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But,
∞

∫
−∞

dxf(x)δ(x)
∣a∣

= 1

∣a∣
f(0)

Therefore,

δ(ax) = 1

∣a∣
δ(x)

6. It follows from (5) that

δ(−x) = δ(x) (2.63)

Fourier Transform of a δ-function

Heuristic: Fourier transform(this is well-defined)

∆(k) =
∞

∫
−∞

dx√
2π
e−ikxδ(x) = 1√

2π
(2.64)

Therefore,

δ(x) =
∞

∫
−∞

dk√
2π
eikx∆(k) =

∞

∫
−∞

dk

2π
eikx (2.65)

where this integral is really not defined!

Rigorous: Let

δε(x) =
∞

∫
−∞

dk

2π
e±ikxe−εk

2

(2.66)

where e−εk
2

is a convergence factor which gives a well-defined integral for ε ≠ 0.
We ask the question: does lim

ε→0+
δε(x) = δ(x) in the same sense as the earlier

definition?

lim
ε→0+

∞

∫
−∞

dxf(x)δε(x) = lim
ε→0+

∞

∫
−∞

dxf(x)
∞

∫
−∞

dk

2π
e±ikxe−εk

2

= lim
ε→0+

∞

∫
−∞

dk√
2π
e−εk

2

∞

∫
−∞

dx√
2π
e±ikx f(x)

= lim
ε→0+

∞

∫
−∞

dk√
2π
e−εk

2

F (∓k)
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We can now take the limit inside the integral if and only if the resulting integral
is well-defined. We have

lim
ε→0+

∞

∫
−∞

dxf(x)δε(x) = lim
ε→0+

∞

∫
−∞

dk√
2π
e−εk

2

F (∓k)

=
∞

∫
−∞

dk√
2π
F (∓k) =

∞

∫
−∞

dk′√
2π
F (k′) = f(0)

Therefore,

δ(x) = lim
ε→0+

∞

∫
−∞

dk

2π
e±ikxe−εk

2

(2.67)

which we will write as

δ(x) =
∞

∫
−∞

dk

2π
e±ikx (2.68)

with the above limit in mind.

Derivatives of a δ-function

Let lim
ε→0+

δε(x) = δ(x). Then

lim
ε→0+

dδε(x − x0)
dx

= dδ(x − x0)
dx

(2.69)

which means

∞

∫
−∞

dxf(x)dδ(x − x0)
dx

= lim
ε→0+

∞

∫
−∞

dxf(x)dδε(x − x0)
dx

= lim
ε→0+

[f(x)δ(x − x0)]∞−∞ − lim
ε→0+

∞

∫
−∞

dx
df(x)
dx

δε(x − x0)

= − lim
ε→0+

∞

∫
−∞

dx
df(x)
dx

δε(x − x0) = −
df(x0)
dx

where we have used integration by parts and δε(±∞) = 0. Therefore,

∞

∫
−∞

dxf(x)dδ(x − x0)
dx

= −df(x0)
dx

(2.70)

when df(x)/dx is continuous at x = x0. Similar results hold for higher derivatives
of δ(x − x0) (just keep on integrating by parts).

58



Three-Dimensional Delta Function

We will write all integrals with the limiting process understood where appropri-
ate.

∫ d3xf(x⃗)δ3(x⃗ − x⃗0) = f(x⃗0) = lim
ε→0+
∫ d3xf(x⃗)δ3

ε(x⃗ − x⃗0) (2.71)

for all functions f(x⃗) continuous at x⃗ = x⃗0. But

f(x⃗0) = ∫ dxdydz f(x, y, z)δ(x − x0)δ(y − y0)δ(z − z0) (2.72)

or

δ3(x⃗ − x⃗0) = δ(x − x0)δ(y − y0)δ(z − z0)

= ∫
d3k

(2π)3
e±ik⃗⋅(x⃗−x⃗0) (2.73)

2.1.4. Postulate 2

Motivation

ψ(x⃗, t) is square-integrable which implies that we can Fourier analyze it in x⃗ (t
fixed)

ψ(x⃗, t) = ∫
d3k

(2π)3/2 e
+ik⃗⋅x⃗φ(k⃗, t) (2.74)

This is just a superposition of sines and cosines with wavelengths λ = 2π/k. But
λ = h/p (deBroglie) relates this wave property (λ) to the particle property (p)
by

k = 2π

λ
= 2π

h
p = p

h̵
(2.75)

where we have defined h̵ = h/2π. Then we have p = h̵k. Since the spatial
variation of e+ik⃗⋅x⃗ occurs in the k⃗ direction, we expect p⃗ to be along k⃗’s direction,
that is, p⃗ = h̵k⃗, that is, ψ(x⃗, t) is a weighted (weighted by something related to
probabilities) superposition of states of different momentum. Now, Parseval’s
relation gives

⟨ψ ∣ ψ⟩ = ⟨φ ∣ φ⟩ = ∫ d3k ∣φ(k⃗, t)∣
2

(2.76)

Therefore,

∫ d3k ∣φ(k⃗, t)∣
2
= 1 = ∫

d3p

h̵3

∣φ(k⃗, t)∣
2

⟨ψ ∣ ψ⟩
(2.77)

But ℘̃(p⃗, t) must satisfy

∫ d3p ℘̃(p⃗, t) = 1 (2.78)

We are therefore led to the conjecture that

℘̃(p⃗, t) = 1

h̵3

∣φ(k⃗, t)∣
2

⟨ψ ∣ ψ⟩
(2.79)
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Let
ψ̃(p⃗, t) = 1

h̵3/2φ(k⃗, t) (2.80)

with p⃗ = h̵k⃗. Therefore

℘̃(p⃗, t) =
∣ψ̃(p⃗, t)∣

2

⟨ψ ∣ ψ⟩
(2.81)

where

ψ̃(p⃗, t) = 1

h̵3/2 ∫
d3x

(2π)3/2 e
−ik⃗⋅x⃗ψ(x⃗, t)

= ∫
d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ψ(x⃗, t) (2.82)

which is the Fourier transform of ψ(x⃗, t) in momentum space. We also have

ψ(x⃗, t) = ∫
d3k

(2π)3/2 e
+ik⃗⋅x⃗φ(k⃗, t) = ∫

d3p

(2π)3/2h̵3
e+i

p⃗
h̵ ⋅x⃗h̵3/2ψ̃(p⃗, t)

ψ̃(x⃗, t) = ∫
d3p

(2πh̵)3/2 e
+i p⃗h̵ ⋅x⃗ψ̃(p⃗, t) (2.83)

Note that Parseval’s relation becomes:

⟨ψ1 ∣ ψ2⟩ = ⟨ψ1, ψ2⟩ = ⟨v1, φ2⟩ = ⟨φ1 ∣ φ2⟩

= ∫ d3kφ∗1(k⃗, t)φ2(k⃗, t) = ∫ d3pψ̃∗1(k⃗, t)ψ̃2(k⃗, t)

= ⟨ψ̃1 ∣ ψ̃2⟩ = ⟨ψ̃1, ψ̃2⟩

Therefore,
⟨ψ1 ∣ ψ2⟩ = ⟨ψ̃1 ∣ ψ̃2⟩⇒ ⟨ψ ∣ ψ⟩ = ⟨ψ̃ ∣ ψ̃⟩ (2.84)

Postulate 2

Let ψ(x⃗, t) be the wave function for a particle under the influence of given forces.
Then,

℘̃(p⃗, t) =
∣ψ̃(p⃗, t)∣

2

⟨ψ ∣ ψ⟩
(2.85)

where ψ(x⃗, t) and ψ̃(p⃗, t) are related as in (2.83).

Recall that postulate 1 says that

℘(x⃗, t) = ∣ψ(x⃗, t)∣2

⟨ψ ∣ ψ⟩
(2.86)

Thus, the position distribution and the momentum distribution are related!!!
The relationship is somewhat complicated because ψ(x⃗, t) and ψ̃(p⃗, t) are related
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by Fourier transformation in momentum space.

We recall that the average value of f(x⃗) is given by

⟨f(x⃗)⟩ = 1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t)f(x⃗)ψ(x⃗, t)

= 1

⟨ψ ∣ ψ⟩
⟨ψ∣ f(x⃗) ∣ψ⟩ (2.87)

Now consider the function g(p⃗). We have for the average value of g(p⃗)

⟨g(p⃗)⟩ = ∫ d3p℘̃(p⃗, t)g(p⃗) = ∫ d3p
∣ψ̃(p⃗, t)∣

2

⟨ψ ∣ ψ⟩
g(p⃗)

= 1

⟨ψ ∣ ψ⟩ ∫
d3pψ̃∗(p⃗, t)g(p⃗)ψ̃(p⃗, t) = 1

⟨ψ ∣ ψ⟩
⟨ψ̃∣ g(p⃗) ∣ψ̃⟩

It would be somewhat simpler if we could calculate ⟨g(p⃗)⟩ in terms of ψ(x⃗, t),
so that we would not have to Fourier transform ψ(x⃗, t) explicitly.

Consider ⟨pi⟩ where

p1 = px, p2 = py, p3 = pz, x1 = x, x2 = y, x3 = z

We have

⟨pi⟩ =
1

⟨ψ ∣ ψ⟩ ∫
d3pψ̃∗(p⃗, t)piψ̃(p⃗, t)

= 1

⟨ψ ∣ ψ⟩ ∫
d3pψ̃∗(p⃗, t)[piψ̃(p⃗, t)] (2.88)

Using Parseval’s relation we have

⟨pi⟩ =
1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t) (InverseFourierTransform[piψ̃(p⃗, t)]) (2.89)

Now

[piψ̃(p⃗, t)] = pi ∫
d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ψ(x⃗, t)

= ∫
d3x

(2πh̵)3/2 {− h̵
i

∂

∂xi
e−i

p⃗
h̵ ⋅x⃗}ψ(x⃗, t)

= − h̵
i
[e−i

p⃗
h̵ ⋅x⃗ψ(x⃗, t)]

surface at∞
+ h̵
i
∫

d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ ∂ψ(x⃗, t)

∂xi

= h̵
i
∫

d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ ∂ψ(x⃗, t)

∂xi
(2.90)
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where we have integrated by parts in dxi and used the fact that ψ(x⃗, t) = 0 at
r =∞ so that all surface terms vanish. Therefore,

⟨pi⟩ =
1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t) h̵

i

∂

∂xi
ψ(x⃗, t) (2.91)

Consider now

⟨pLxpMy pNz ⟩ = 1

⟨ψ ∣ ψ⟩ ∫
d3pψ̃∗(p⃗, t)pLxpMy pNz ψ̃(p⃗, t)

= 1

⟨ψ ∣ ψ⟩ ∫
d3pψ̃∗(p⃗, t)[pLxpMy pNz ψ̃(p⃗, t)]

= 1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t) (InverseFourierTransform[pLxpMy pNz ψ̃(p⃗, t)])

As before

pLxp
M
y p

N
z ψ̃(p⃗, t) = ∫

d3x

(2πh̵)3/2 {(− h̵
i

∂

∂x
)
L

(− h̵
i

∂

∂y
)
M

(− h̵
i

∂

∂z
)
N

e−i
p⃗
h̵ ⋅x⃗}ψ(x⃗, t)

Integrating by parts L +M +N times where all surface terms vanish, we get

pLxp
M
y p

N
z ψ̃(p⃗, t) = ∫

d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ {( h̵

i

∂

∂x
)
L

( h̵
i

∂

∂y
)
M

( h̵
i

∂

∂z
)
N

ψ(x⃗, t)}

Therefore InverseFourierTransform[pLxpMy pNz ψ̃(p⃗, t)] is

( h̵
i

∂

∂x
)
L

( h̵
i

∂

∂y
)
M

( h̵
i

∂

∂z
)
N

ψ(x⃗, t)

and we obtain

⟨pLxpMy pNz ⟩ = 1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t) ( h̵

i

∂

∂x
)
L

( h̵
i

∂

∂y
)
M

( h̵
i

∂

∂z
)
N

ψ(x⃗, t)

Thus, if g(p⃗) has a Taylor expansion about p⃗ = 0, g(p⃗) = a sum of terms of the
form pLxp

M
y p

N
z . Since the average of a sum is the sum of the averages, we have

⟨g(p⃗)⟩ = 1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t)g ( h̵

i

∂

∂x
,
h̵

i

∂

∂y
,
h̵

i

∂

∂z
)ψ(x⃗, t) (2.92)

where

g ( h̵
i

∂

∂x
,
h̵

i

∂

∂y
,
h̵

i

∂

∂z
) (2.93)

acts on ψ(x⃗, t). If we use

∇ = ( ∂

∂x
,
∂

∂y
,
∂

∂z
) (2.94)
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we have

⟨g(p⃗)⟩ = 1

⟨ψ ∣ ψ⟩ ∫
d3xψ∗(x⃗, t)g ( h̵

i
∇)ψ(x⃗, t)

= 1

⟨ψ ∣ ψ⟩
⟨ψ∣ g ( h̵

i
∇) ∣ψ⟩ (2.95)

We now define the momentum operator

p⃗op =
h̵

i
∇ (2.96)

that is,

pj,op =
h̵

i

∂

∂xi
(2.97)

Then

⟨g(p⃗)⟩ = 1

⟨ψ ∣ ψ⟩
⟨ψ∣ g(p⃗op) ∣ψ⟩ (2.98)

and

⟨f(x⃗)⟩ = 1

⟨ψ ∣ ψ⟩
⟨ψ∣ f(x⃗) ∣ψ⟩ (2.99)

and we are able to do everything using ψ(x⃗, t).

Example: Kinetic Energy

kinetic energy = 1

2
m (v2

x + v2
y + v2

z)

= 1

2m
(p2
x + p2

y + p2
z) =

1

2m
(p⃗ ⋅ p⃗) (2.100)

Therefore, the operator for the non-relativistic kinetic energy is

(KE)op =
1

2m
(−h̵2 ∂

2

∂x2
− h̵2 ∂

2

∂y2
− h̵2 ∂

2

∂z2
)

= − h̵
2

2m
∇2 (2.101)

and

⟨KE⟩ = 1

⟨ψ ∣ ψ⟩
⟨ψ∣ − h̵2

2m
∇2 ∣ψ⟩

= − 1

⟨ψ ∣ ψ⟩
h̵2

2m
∫ d3xψ∗(x⃗, t)∇2ψ(x⃗, t) (2.102)

Operators will play a fundamental role in our development of quantum theory.
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2.1.5. Operator Formalism

An operator maps functions into functions. Consider an operator Â (ˆsignifies
an operator). We have

Âφ1(x⃗) = φ2(x⃗)⇒ Âφ1 = φ2 (2.103)

where the last form is standard and the variable(position) dependence is under-
stood.

In words, the operator Â acts on the function φ1(x⃗) to produce the function
φ2(x⃗).

Examples

1. Âφ = xjφ⇒ multiplication by xj

2. Âφ = h̵
i
∂
∂xj

φ⇒ momentum operator

3. Âφ = xjφ + h̵
i
∂
∂xj

φ or Â = xj + h̵
i
∂
∂xj

4. Âφ(x⃗) = ∫ d3yK(x⃗, y⃗)φ(y⃗) or Â⇒ an integral operator

5. Âφ = φ ∂φ
∂xj

Definition: An operator is linear if Â(λ1φ1 + λ2φ2) = λ1Âφ1 + λ2Âφ2 for all
complex constants λ1 and λ2 and for all φ1 and φ2.

In the examples above (1), (2), (3) and (4) are linear operators and (5) is not
linear. From now on, all our operators will be linear.

The momentum operator and the kinetic energy operator are both linear!

Example

Consider
Â = ∂

∂x
, B̂ = x

First
ÂB̂ ≠ ∂

∂x
x = 1 (2.104)

To calculate ÂB̂ correctly, we must compute (ÂB̂)φ = Â(B̂φ) with an arbitrary
φ. We have

(ÂB̂)φ = Â(B̂φ) = ∂

∂x
(xφ)

= φ + x∂φ
∂x

= (1 + x ∂

∂x
)φ = Â(B̂φ) (2.105)
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so that
ÂB̂ = 1 + x ∂

∂x
(2.106)

Definition: The commutator of 2 linear operators Â and B̂ is defined to be
[Â, B̂] = ÂB̂ − B̂Â (unlike numbers, operators do not necessarily commute).

Example

[xi, pj,op]φ

= h̵
i
xi
∂φ

∂xj
− h̵
i

∂(xiφ)
∂xj

h̵

i
xi
∂φ

∂xj
− h̵
i
xi
∂φ

∂xj
− h̵
i

∂xi
∂xj

φ

= − h̵
i

∂xi
∂xj

φ = − h̵
i
δijφ

so that
[xi, pj,op] = ih̵δij (2.107)

Using similar algebra, we find

[xi, xj] = 0 , [pi,op, pj,op] = 0 using
∂2

∂xi∂xj
= ∂2

∂xj∂xi
(2.108)

These commutators will be of fundamental importance in our development of
quantum theory.

Now, recall the definition of the inner product

⟨φ1 ∣ φ2⟩ = ∫ d3x φ∗1(x⃗)φ2(x⃗) (2.109)

Thus,

⟨φ1 ∣ Âφ2⟩ = ⟨φ1 ∣ ψ⟩ = ∫ d3xφ∗1(x⃗)ψ(x⃗) = ∫ d3xφ∗1(x⃗)Âφ2(x⃗) (2.110)

⟨Âφ1 ∣ φ2⟩ = ⟨ς ∣ φ2⟩ = ∫ d3xς∗(x⃗)φ2(x⃗) = ∫ d3x [Âφ1]
∗
φ2(x⃗) (2.111)

where [Âφ1]
∗
means that the operator Â acts on φ1 to produce ξ and then it is

complex-conjugated.

Definition: A linear operator is hermitian if

⟨φ ∣ Âφ⟩ = ⟨Âφ ∣ φ⟩ (2.112)

for all φ(x⃗) on which Â is defined. Note that

⟨φ ∣ Âφ⟩ = ⟨Âφ ∣ φ⟩
∗

(2.113)

implies that an operator Â is hermitian if ⟨φ ∣ Âφ⟩ is real for all φ(x⃗) . xj and
pi,op = −ih̵∂/∂xj are hermitian. If ÂB̂ is hermitian, then B̂Â is hermitian only
if [Â, B̂] = 0.
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2.1.6. Heisenberg’s Uncertainty Principle
We have seen that the probability distribution in x⃗ (position) and the probability
distribution in p⃗ (momentum) are related, The relationship involves the Fourier
transform. For p⃗ = h̵k⃗ we found earlier that

ψ(x⃗, t) = ∫
d3k

(2π)3/2 e
+ik⃗⋅x⃗φ(k⃗, t)↔ φ(k⃗, t) = ∫

d3x

(2π)3/2 e
−ik⃗⋅x⃗ψ(x⃗, t)

ψ(x⃗, t) = ∫
d3p

(2πh̵)3/2 e
+i p⃗h̵ ⋅x⃗ψ̃(p⃗, t)↔ ψ̃(p⃗, t) = ∫

d3x

(2πh̵)3/2 e
−i p⃗h̵ ⋅x⃗ψ(x⃗, t)

℘(x⃗, t) = ∣ψ(x⃗, t)∣2

⟨ψ ∣ ψ⟩
↔ ℘̃(p⃗, t) =

∣ψ̃(p⃗, t)∣
2

⟨ψ ∣ ψ⟩
= 1

h̵3

∣φ(k⃗, t)∣
2

⟨ψ ∣ ψ⟩

In wave mechanics, Heisenberg’s Uncertainty Principle relates the rms deviation
of the position distribution to the rms deviation of the momentum distribution.
Such a relationship follows from the above Fourier transform relationship.

Heuristic Argument: We have

ψ(x⃗, t) = ∫
d3k

(2π)3/2 e
+ik⃗⋅x⃗φ(k⃗, t) (2.114)

Let y = z = 0 and consider the dependence on the x−coordinate. Let φ(k⃗, t) be
real for simplicity and consider Real(ψ(x⃗, t)). Therefore,

Re(ψ(x⃗, t)) = ∫
d3k

(2π)3/2 cos(kxx)φ(k⃗, t) (2.115)

that is, Real(ψ(x⃗, t)) = sum of cosine terms, each with a different wavelength
λx = 2π/kx. As shown in Figure 2.6 below for two such cosine terms with
different wavelengths, we have regions where the waves are in phase and regions
where the waves are out of phase.

waves in phase → constructive interference

waves out of phase → destructive interference

Real(ψ(x⃗, t)) will be negligible in the regions where the cosine terms interfere
destructively. In the x−region where the cosine terms interfere constructively,
Real(ψ(x⃗, t)) will be non-negligible (similarly for Imag(ψ(x⃗, t))).
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Figure 2.6: Wave Interference

Now consider the more general case: φ(k⃗, t) is complex and x, y, and z are
arbitrary. Let ∆x be the x−region in which ψ(x⃗, t) is non-negligible (t fixed, y
and z fixed). Let ∆kx be the kx integration region over which φ(k⃗, t) is non-
negligible. ψ(x⃗, t) is a superposition of terms eikxx of wavelength λx = 2π/kx.
For ψ(x⃗, t) to a certain region ∆x, there must be constructive interference of
the eikxx terms in this region and destructive interference everywhere else. Let
φ(k⃗, t) be non-negligible only when ka < kx < kb (t, ky, kz fixed) so that ∆kx =
kb − ka. There are

∆x

λa
= ka∆x

2π
(2.116)

number of wavelengths in the region ∆x when kx = ka and

∆x

λb
= kb∆x

2π
(2.117)

number of wavelengths in the region ∆x when kx = kb. For the eikxx terms
(ka < kx < kb) to interfere destructively at the limits of (and beyond) the interval
∆x

kb∆x

2π
− ka∆x

2π
(2.118)

must be at least one, that is,
∆kx∆x

2π
≥ 1 (2.119)

(similar arguments hold for the localization in the y and z directions). Therefore
we have

∆kx∆x ≥ 2π , ∆ky∆y ≥ 2π , ∆kz∆z ≥ 2π (2.120)
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or using k⃗ = p⃗/h̵, h̵ = h/2π we have

∆px∆x ≥ h , ∆py∆y ≥ h , ∆pz∆z ≥ h (2.121)

These are the so-called Heisenberg Uncertainty Relations. If a particle has non-
negligible probability to be found in a region (∆x,∆y,∆z) of x⃗, that is, the par-
ticle is said to be localized within this region, then the probability of measuring
the particle’s linear momentum is non-negligible in the range (∆px,∆py,∆pz)
of p⃗ with the Heisenberg Uncertainty Relations a necessary constraint on the
position spread and the momentum range. For example, if we prepare a particle
at t0 so that it has non-negligible probability to be found with x-coordinate
in the interval (x0, x0 + ∆x) and negligible probability to be found elsewhere,
then any measurement of px at t0 will yield a value somewhere in the range
(px0, px0 +∆px) where ∆px ≥ h/∆x (x0 and p0 are arbitrary).

Classically, one specifies the precise position and momentum (or velocity) of
a particle at some initial time. One then finds the position of the particle as
a function of time by solving the classical equations of motion with the above
initial conditions. We now see that this formulation of a particle’s time develop-
ment is impossible quantum mechanically : the Uncertainty Principle prohibits
the precise specification of both the particle’s position and its momentum at
some initial time.

Indeed, ∆x = 0 (particle localized at a point) → ∆px =∞, in some sense, (par-
ticle’s momentum is completely uncertain).

The spread in momentum necessitated by a spatial localization can be illus-
trated in an electron diffraction experiment as shown Figure 2.7 below.

Figure 2.7: Electron Diffraction

Electrons which pass through the slit have a y−localization ∆y at the first screen.
Most of these electrons arrive at the second screen with θ < θ0 where θ0 locates
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the first diffraction minimum

d sin θ0 = (∆y) sin θ0 = λ =
h

p
⇒ (∆y)(p sin θ0) = h (2.122)

But p sin θ0 = y−component of momentum of an electron (with total momentum
of magnitude p) arriving very near the first diffraction minimum. Of course,
no electrons arrive exactly at θ0. Thus, most of the electrons(in first or central
bump) arriving at the second screen have a y−component of momentum in
the range [−p sin θ0,+p sin θ0] so that ∆py ≈ p sin θ0 and thus ∆py∆y ≥ h in
agreement with the Uncertainty Principle.

Discussion

When electrons are to the left of the first screen, (∆py)incident = 0. Therefore,
(∆y)incident =∞ (so that ∆py∆y ≈ h) and the incident beam is uniformly dis-
tributed over all y. Thus, the wave function ψincident(x⃗, t) for an electron to
the left of the first screen is independent of y (so that ℘incident(x⃗, t) is indepen-
dent of y). That is the meaning of an infinite plane wave. An electron which
passes through the slit (and eventually reaches the second screen) necessarily
has a new ∆y = linear dimension of the slit. The electron’s passage through
the slit constitutes a measurement of the electron’s coordinate to an accuracy
∆y. This measurement has necessarily changed the electron’s wave function
because (∆y)incident ≠ (∆y)slit. In general, a measurement made on a particle
will change the particle’s wave function. In this example, ψincident(x⃗, t) is in-
dependent of y. Right after the electron passes through the slit (corresponding
to a measurement of the electron’s y−coordinate), the electron has a new wave
function ψnew(x⃗, t) which is non-negligible only in a δy range (the slit’s width).
Detection of the electron at the second screen allows us to determine py of the
electron which passed through the slit. As we have seen, the spread in such py
values is ∆py ≈ h/∆y. It seems at this point that The HUP is implied by the
fundamental properties of the x and p bases and also the Fourier transform.
This latter dependence is deceiving and only appears to be true when using the
x and p bases.

Rigorous Argument

Let Â and B̂ be two hermitian operators. For example, Â and B̂ can be chosen
from the operators x, y, z, px,op, py,op, pz,op. Let ψ(x⃗, t) be the wave function
at time t and let ∆A and ∆B be the rms deviations of measurements of Â and
B̂ at time t, defined by

(∆A)2 = ⟨(Â − ⟨Â⟩)
2
⟩ = ⟨Â2⟩ − ⟨Â⟩

2
(2.123)

(∆B)2 = ⟨(B̂ − ⟨B̂⟩)
2
⟩ = ⟨B̂2⟩ − ⟨B̂⟩

2
(2.124)

Now let Ĉ = Â−⟨Â⟩ and D̂ = B̂−⟨B̂⟩. Because ⟨Â⟩ and ⟨B̂⟩ are real (hermiticity),
Ĉ and D̂ are also hermitian. Now we assume that ψ(x⃗, t) is normalized so that
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⟨ψ ∣ψ⟩ = 1. Then

(∆A)2(∆B)2 = ⟨Ĉ2⟩ ⟨D̂2⟩

= ⟨ψ ∣ ĈĈψ⟩ ⟨ψ ∣ D̂D̂ψ⟩ = ⟨Ĉψ ∣ Ĉψ⟩ ⟨D̂ψ ∣ D̂ψ⟩

where we have used hermiticity in the last step. Then using the Schwarz in-
equality we have

(∆A)2(∆B)2 ≥ ∣⟨Ĉψ ∣ D̂ψ⟩∣
2
= ∣⟨ψ ∣ ĈD̂ψ⟩∣

2
(2.125)

where equality holds if and only if (Ĉψ) = λ(D̂ψ) where λ = some constant.

Now we can always write

ĈD̂ = 1

2
(ĈD̂ + D̂Ĉ) + 1

2
(ĈD̂ − D̂Ĉ) (2.126)

and since Ĉ and D̂ are hermitian, we have

1

2
(ĈD̂ + D̂Ĉ)⇒ hermitian (2.127)

1

2
(ĈD̂ − D̂Ĉ)⇒ anti − hermitian (2.128)

so that

⟨ψ ∣ 1

2
(ĈD̂ + D̂Ĉ)ψ⟩⇒ pure real (2.129)

⟨ψ ∣ 1

2
(ĈD̂ − D̂Ĉ)ψ⟩⇒ pure imaginary (2.130)

Proof

⟨ψ ∣ 1

2
(ĈD̂ ± D̂Ĉ)ψ⟩ = 1

2
⟨ψ ∣ ĈD̂ψ⟩ ± 1

2
⟨ψ ∣ D̂Ĉψ⟩

= 1

2
⟨Ĉψ ∣ D̂ψ⟩ ± 1

2
⟨D̂ψ ∣ Ĉψ⟩

= 1

2
⟨D̂Ĉψ ∣ ψ⟩ ± 1

2
⟨ĈD̂ψ ∣ ψ⟩

= 1

2
⟨ψ ∣ D̂Ĉψ⟩

∗
± 1

2
⟨ψ ∣ ĈD̂ψ⟩

∗

= ± ⟨ψ ∣ 1

2
(ĈD̂ ± D̂Ĉ)ψ⟩

∗
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Continuing, we then have

(∆A)2(∆B)2 ≥

RRRRRRRRRRRRRRRRRRRR

⟨ψ ∣ 1

2
(ĈD̂ + D̂Ĉ)ψ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pure real

+ ⟨ψ ∣ 1

2
(ĈD̂ − D̂Ĉ)ψ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pure imaginary

RRRRRRRRRRRRRRRRRRRR

2

≥ ∣⟨ψ ∣ 1

2
(ĈD̂ + D̂Ĉ)ψ⟩∣

2

+ ∣⟨ψ ∣ 1

2
(ĈD̂ − D̂Ĉ)ψ⟩∣

2

≥ ∣⟨ψ ∣ 1

2
(ĈD̂ − D̂Ĉ)ψ⟩∣

2

where equality holds if

⟨ψ ∣ 1

2
(ĈD̂ + D̂Ĉ)ψ⟩ = 0 (2.131)

Finally, we have

(∆A)2(∆B)2 ≥ 1

4
∣⟨ψ ∣ [Ĉ, D̂]ψ⟩∣

2
(2.132)

However,

[Ĉ, D̂] = (Â − ⟨Â⟩) (B̂ − ⟨B̂⟩) − (B̂ − ⟨B̂⟩) (Â − ⟨Â⟩)

= ÂB̂ − B̂Â = [Â, B̂]

so that
(∆A)2(∆B)2 ≥ 1

4
∣⟨ψ ∣ [Â, B̂]ψ⟩∣

2
(2.133)

or our final result is

(∆A)(∆B) ≥ 1

2
∣⟨ψ ∣ [Â, B̂]ψ⟩∣ (2.134)

where equality holds if 2 conditions are simultaneously satisfied:

1. (Ĉψ) = λ(D̂ψ) for some constant λ

2. ⟨ψ ∣ 1
2
(ĈD̂ + D̂Ĉ)ψ⟩ = 0

This result is the Uncertainty Principle. It is a necessary constraint on the rms
deviations of measurements of Â and B̂ when a particle has the wave function
ψ(x⃗, t).

This result holds for any hermitian operators Â and B̂. Â and B̂ may be chosen
from the operators x, y, z, px,op, py,op, pz,op; however, in later applications we
will use other operators.

We note that ∆A, ∆B and ⟨ψ∣ [Â, B̂] ∣ψ⟩ refer to quantities evaluated at the
same time t because each has been expressed in terms of ψ(x⃗, t) evaluated at
one fixed time t.
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Examples

Using [xi, pj,op] = ih̵δij , [xi, xj] = 0 and [pi,op, pj,op] = 0 we have

(∆xi)(∆xj) ≥ 0 , (∆pi)(∆pj) ≥ 0 (2.135)

and
(∆xi)(∆pj) ≥

h̵

2
δij (2.136)

which agree with the results of our heuristic arguments.

Let us find ψ(x⃗, t) such that the equalities hold in the equations

∆x∆px ≥
h̵

2
, ∆y∆py ≥

h̵

2
, ∆z∆pz ≥

h̵

2
(2.137)

For simplicity we work with the x equation. Similar results follow for the other
equations. Now

∆x∆px =
h̵

2
(2.138)

If

1. (Ĉψ) = λ(D̂ψ) for some constant λ

2. ⟨ψ ∣ 1
2
(ĈD̂ + D̂Ĉ)ψ⟩ = 0

where Ĉ = Â − ⟨Â⟩ = px,op − ⟨px,op⟩ and D̂ = B̂ − ⟨B̂⟩ = x − ⟨x⟩. Substituting
condition (1) into condition (2) we get

⟨ψ ∣ 1

2
(ĈD̂ + D̂Ĉ)ψ⟩ = 0 = ⟨ψ ∣ ĈD̂ψ⟩ + ⟨ψ ∣ D̂Ĉψ⟩

= ⟨Ĉψ ∣ D̂ψ⟩ + ⟨ψ ∣ D̂(Ĉψ)⟩

= ⟨λD̂ψ ∣ D̂ψ⟩ + ⟨ψ ∣ λD̂D̂ψ⟩

= λ∗ ⟨ψ ∣ D̂ψ⟩ + λ ⟨ψ ∣ λD̂D̂ψ⟩

⇒ 0 = (λ∗ + λ) ⟨ψ ∣ D̂D̂ψ⟩

Since ⟨ψ ∣ D̂D̂ψ⟩ne0, we have λ∗ + λ = 0 → λ∗ = −λ → λ = iα is pure imaginary;
α real. The case ⟨ψ ∣ D̂D̂ψ⟩ = 0 , which implies that ⟨(x − ⟨x⟩)2⟩ = 0 = ∆x, is
not considered here because ∆x = 0→∆px =∞. Now

(Ĉψ) = λ(D̂ψ)⇒ (px,op − ⟨px⟩)ψ = iα (x − ⟨x⟩)ψ

( h̵
i

∂

∂x
− ⟨px⟩)ψ = iα (x − ⟨x⟩)ψ

∂ψ

∂x
= i

h̵
⟨px⟩ψ −

α

h̵
(x − ⟨x⟩)ψ

72



This has solution

ψ(x⃗, t) = F (y, z, t)e
i
h̵ ⟨px⟩xe−

α
2h̵ (x−⟨x⟩)2

(2.139)

Note that α must be positive for ψ(x⃗, t) to be normalizable. To see the signifi-
cance of α, let us calculate

(∆x)2 =
⟨ψ ∣ (x − ⟨x⟩)2

ψ⟩
⟨ψ ∣ ψ⟩

(2.140)

We have

(∆x)2 =

∞
∫
−∞

dy
∞
∫
−∞

dz ∣F (y, z, t)∣2
∞
∫
−∞

dxe−
α
h̵ (x−⟨x⟩)2

(x − ⟨x⟩)2

∞
∫
−∞

dy
∞
∫
−∞

dz ∣F (y, z, t)∣2
∞
∫
−∞

dxe−
α
h̵ (x−⟨x⟩)2

=

∞
∫
−∞

dxe−
α
h̵ (x−⟨x⟩)2

(x − ⟨x⟩)2

∞
∫
−∞

dxe−
α
h̵ (x−⟨x⟩)2

=

∞
∫
−∞

due−
α
h̵u

2

u2

∞
∫
−∞

duxe−
α
h̵u

2

=

√
π

2
( h̵
α
)3/2

√
π

2
( h̵
α
)1/2

h̵

2α

so that

ψ(x⃗, t) = F (y, z, t)e
i
h̵ ⟨px⟩xe

− (x−⟨x⟩)
2

4(∆x)2 (2.141)

F (y, z, t) is determined similarly from ∆y∆py = h̵/2 and ∆z∆pz = h̵/2. There-
fore,

ψ(x⃗, t) = N(t)e
i
h̵ [⟨px⟩x+⟨py⟩y+⟨pz⟩z]e

−[ (x−⟨x⟩)
2

4(∆x)2
+ (y−⟨y⟩)

2

4(∆y)2
+ (z−⟨z⟩)

2

4(∆z)2
]

(2.142)

if
∆x∆px =

h̵

2
, ∆y∆py =

h̵

2
, ∆z∆pz =

h̵

2
(2.143)

In the above expression ⟨x⟩ , ⟨y⟩ , ⟨z⟩ , ⟨px⟩ , ⟨py⟩ , ⟨px⟩ , ∆x, ∆y, ∆z are arbi-
trary real numbers. The above expression gives a Gaussian distribution for

℘(x, t) = ∣ψ(x⃗, t)∣2

⟨ψ ∣ ψ⟩
(2.144)

For any arbitrary(non-Gaussian) wave function ψ(x⃗, t), we must have

(∆xi)(∆pi) ≥
h̵

2
(2.145)
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Application of the Uncertainty Principle

Consider a particle constrained to move on the x−axis (idealized one-dimensional
problem). Fx = Fx(x) is the x−component of the force acting on the particle.
This force depends on the position of the particle. Let x = 0 be an equilibrium
point, that is, Fx(x = 0) = 0. Taylor expanding Fx(x) about x = 0 we have

Fx(x) = Fx(0)
²

=0

+ [dFx
dx

]
x=0

x + 1

2!
[d

2Fx
dx2

]
x=0

x2 + .......... (2.146)

For sufficiently small x, we can use

Fx(x) ≈ [dFx
dx

]
x=0

x (2.147)

For
[dFx
dx

]
x=0

> 0 (2.148)

we have unstable equilibrium (Fx is directed away from the origin when the
particle is slightly displaced from the equilibrium position).

For
[dFx
dx

]
x=0

< 0 (2.149)

we have stable equilibrium (Fx is directed toward the origin when the particle
is slightly displaced from the equilibrium position).

Considering small displacements from a stable equilibrium point at x = 0:

Fx(x) = −kx , k = [dFx
dx

]
x=0

> 0 (2.150)

Classically, we have

m
d2x

dt2
= Fx = −kx→

d2x

dt2
+ k

m
x = 0 (2.151)

so that

x = A cosωt +B sinωt , ω =
√

k

m
(2.152)

The total energy of such a particle is given by

E = 1

2
mv2

x +
1

2
kx2 = p2

x

2m
+ 1

2
mω2x2 (2.153)

Quantum mechanically,

⟨E⟩ = 1

2m
⟨p2
x⟩ +

1

2
mω2 ⟨x2⟩ (2.154)
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when the particle is described by the wave function ψ(x⃗, t).

Note that this is really an assumption because, up to now, we have only con-
sidered ⟨f(x⃗)⟩ and ⟨g(p⃗)⟩. We have not yet discussed the quantum mechanical
computation of ⟨f(x⃗) + g(p⃗)⟩. This is not obvious since x and p cannot be si-
multaneously measured and will be discussed in detail later.

Now
(∆px)2 = ⟨p2

x⟩ − ⟨px⟩2 , (∆x)2 = ⟨x2⟩ − ⟨x⟩2 (2.155)

Therefore,

⟨E⟩ = 1

2m
⟨p2
x⟩ +

1

2
mω2 ⟨x2⟩ ≥ (∆px)2

2m
+ 1

2
mω2 (∆x)2 (2.156)

But,

∆px ≥
h̵

2

1

∆x
(2.157)

from the uncertainty principle. Therefore,

⟨E⟩ ≥ h̵2

8m

1

(∆x)2
+ 1

2
mω2 (∆x)2 = G((∆x)2) (2.158)

This result holds for any wave function ψ(x⃗, t) since ψ(x⃗, t) determines both ⟨E⟩
and ∆x. Therefore, ⟨E⟩ for any ψ(x⃗, t) is ≥ the minimum value of G((∆x)2).
A sketch of G((∆x)2) is shown in Figure 2.8 below.

Figure 2.8: G((∆x)2) versus (∆x)2

We find the minimum using

dG

d((∆x)2)
= 0 = − h̵

2

8m

1

[(∆x)2]2
+ 1

2
mω2 → (∆x)4 = h̵2

4m2ω2
(2.159)

at the minimum. Therefore,

⟨E⟩ ≥ Gmin((∆x)2) = h̵ω
2

(2.160)
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for any wave function ψ(x⃗, t).

h̵ω/2 is called the zero-point energy of the particle. Classically, the particle
could be located at x = 0 with zero velocity so that its energy would be zero.

Quantum mechanically, the uncertainty principle prohibits the particle from
having a precise position at x = 0 and, at the same time a precise momentum
of px = 0. The required spreads ∆x and ∆px satisfying ∆x∆px ≥ h̵/2 imply
that the average energy of the particle can never be zero. This has striking con-
sequences when the particle happens to be charged. Classically, an oscillating
charge would radiate energy and thereby lose energy until it had no remaining
energy. Quantum mechanically, the particle can radiate energy, but its (average)
energy can never go below h̵ω/2. Thus, if the particle has ⟨E⟩ = h̵ω/2 it cannot
radiate any energy (even though the particle will, in some sense, be oscillating
about x = 0). Clearly, the classical Maxwell equations must be modified and
reinterpreted so that an oscillating charge in its ground state (which necessarily
has ⟨E⟩ > 0 for a harmonic oscillator) will not radiate!

I should also like to mention that this zero-point energy phenomenon is re-
sponsible for the stability of matter. One may think of the hydrogen atom, for
example, as a proton with an electron circling about it. Classically, this accel-
erating electron would spiral into the proton as it continually radiated away its
energy. The hydrogen atom would collapse! Such a fate is prevented by the
uncertainty principle, which implies that the electron will have a ground-state
energy where the electron and the proton have a non-zero separation - the elec-
tron cannot be precisely at the proton’s position with precisely zero momentum.

In this case, we have

E = p⃗ ⋅ p⃗
2m

+ V (r) , V (r) = −e
2

r
(2.161)

and e = electron charge, r = distance between electron and proton. Classically,
Elowest = −∞(r = 0, p⃗ = 0). We can obtain a rough estimate of Emin quantum
mechanically. We have

⟨E⟩ = 1

2m
⟨p⃗ ⋅ p⃗⟩ − e2 ⟨1

r
⟩ (2.162)

where m = electron mass. As a rough order of magnitude estimate we use

⟨p⃗ ⋅ p⃗⟩ ≈ ⟨p2
radial⟩ ≈ (∆pradial)2

⟨1

r
⟩ ≈ 1

⟨r⟩
≈ 1

∆r

so that

⟨E⟩ ≈ (∆pradial)2

2m
− e2

∆r
, (∆pradial)∆r ≥ h̵

2
≈ h̵ (2.163)
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Therefore,

⟨E⟩ ≥ h̵2

2m

1

(∆r)2
− e2

∆r
= G(∆r)→ ⟨E⟩ ≥ Gmimimum (2.164)

Minimizing G we have

dG

d(∆r)
= 0 = − h̵

2

m

1

(∆r)3
+ e2

(∆r)2
→∆r = h̵2

me2
(2.165)

at the minimum. We get

⟨E⟩ ≥ Gmin imum = −1

2

me4

h̵2
(2.166)

and

⟨r⟩ ≈ ∆r = h̵2

me2
(2.167)

as a rough estimate of the hydrogen atom size.

Some numbers are:

⟨r⟩ ≈ ∆r = h̵2

me2
≈ 10−8cm = 1 (2.168)

or the uncertainty principle tells us that the hydrogen atom has a radius of
roughly 1 Angstrom!!! (verified experimentally). We also have

Emin = −1

2

me4

h̵2
≈ 10−11erg ≈ 6 eV (2.169)

which is very different from the classical Elowest = −∞!!

We now return to our development of the quantum theory.

So far, we have considered the average values of functions of position

⟨f(x⃗)⟩ = ⟨ψ ∣ f(x⃗)ψ⟩
⟨ψ ∣ ψ⟩

(2.170)

and the average values of functions of momentum,

⟨g(p⃗)⟩ =
⟨ψ ∣ g(p⃗op)ψ⟩

⟨ψ ∣ ψ⟩
, p⃗op =

h̵

i
∇⃗ (2.171)

Of course, there are other kinds of functions where the average values are phys-
ically important, namely, functions of both position and momentum A(x⃗, p⃗).
For example, the angular momentum of a particle is given by L⃗ = r⃗ × p⃗ and the
total energy of a particle with potential energy V (x⃗) is given by

E = p⃗ ⋅ p⃗
2m

+ V (x⃗) (2.172)

Postulate 3 is an obvious generalization of the above expressions for ⟨f(x⃗)⟩ and
⟨g(p⃗)⟩ to functions A(x⃗, p⃗).
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2.1.7. Postulate 3a

For every physical quantity A(x⃗, p⃗) where A(x⃗, p⃗) is a real function of x⃗ and p⃗,
there exists a linear operator

Aop = A(x⃗, p⃗op) , p⃗op =
h̵

i
∇⃗ (2.173)

such that for a particle with wave function ψ(x⃗, t)

⟨A(x⃗, p⃗)⟩ =
⟨ψ ∣ Aopψ⟩
⟨ψ ∣ ψ⟩

(2.174)

is the average value of A(x⃗, p⃗) at time t and

⟨f(A(x⃗, p⃗))⟩ =
⟨ψ ∣ f(Aop)ψ⟩

⟨ψ ∣ ψ⟩
(2.175)

is the average value of f(A(x⃗, p⃗)) at time t, where f(A(x⃗, p⃗)) is an arbitrary
function of A(x⃗, p⃗).

Comments

1. Postulate 3a agrees with our previous results for ⟨f(x⃗)⟩ and ⟨g(p⃗)⟩ ex-
pressed in terms of the operators f(x⃗) and g(p⃗op).

2. Consider A(x⃗, p⃗) = f(x⃗) + g(p⃗). Then ⟨A(x⃗, p⃗)⟩ is given by

⟨A(x⃗, p⃗)⟩ =
⟨ψ ∣ (f(x⃗) + g(p⃗op))ψ⟩

⟨ψ ∣ ψ⟩

=
⟨ψ ∣ f(x⃗)ψ⟩ + ⟨ψ ∣ g(p⃗op)ψ⟩

⟨ψ ∣ ψ⟩
= ⟨f(x⃗)⟩ + ⟨g(p⃗)⟩ (2.176)

which we assumed to be true earlier. This result

⟨f(x⃗) + g(p⃗op)⟩ = ⟨f(x⃗)⟩ + ⟨g(p⃗op)⟩ (2.177)

is not a trivial result. Consider an ensemble of identically-prepared parti-
cles. ⟨f(x⃗)⟩ is the average value of the measurements of f(x⃗) performed
on many of these particles, while ⟨g(p⃗op)⟩ is the average value of mea-
surements of g(p⃗op) performed on many of the particles. To measure
⟨f(x⃗) + g(p⃗op)⟩ we must do repeated measurements of the one physical
quantity f(x⃗) + g(p⃗op), that is, for each particle in the ensemble we
must somehow perform a single measurement of the physical quantity
f(x⃗) + g(p⃗op) and then we must find the average value of such measure-
ments. We cannot perform 2 measurements on each particle, the first to
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measure f(x⃗) and the second to measure g(p⃗op), because the first mea-
surement of f(x⃗) involves a position measurement which, according to the
Uncertainty Principle, will change the particle’s momentum distribution

(∆pi)after first
measurement

≥ h̵
2

1

∆xi
(2.178)

where ∆xi is the accuracy of the first position measurement, so that the
second measurement of g(p⃗op) does not measure g(p⃗op) for the particle in
its original state.

Thus, it is not a priori obvious that ⟨f(x⃗) + g(p⃗op)⟩, calculated from re-
peated measurements of the single physical quantity f(x⃗) + g(p⃗op) will
equal ⟨f(x⃗)⟩ + ⟨g(p⃗op)⟩. While postulate 3a, however, asserts that this
equality does hold - the above discussion implies that this is not a trivial
result.

3. Postulate 3a as it stands, is ambiguous. For example, consider the physical
quantities A1(x⃗, p⃗) = xpx and A2(x⃗, p⃗) = pxx. Classically, A1(x⃗, p⃗) = xpx =
pxx = A2(x⃗, p⃗) because x and px are just measured numbers. However,
the quantum operators A1 and A2 differ:

A1op = xpxop , A2op = pxopx (2.179)

where
A1op −A2op = [x, pxop] = ih̵ ≠ 0 (2.180)

We, therefore, do not know what operator is associated with the classical
quantity xpx = pxx. However, we must require that ⟨xpx⟩ be real (because
each of the repeated measurements of xpx will be real). Thus, the operator
Aop corresponding to xpx must be such that

⟨xpx⟩ =
⟨ψ ∣ Aopψ⟩
⟨ψ ∣ ψ⟩

(2.181)

is real for any ψ(x⃗, t). This means that ⟨ψ ∣Aopψ⟩ must be real for all
ψ(x⃗, t). This requires that Aop be hermitian. Neither A1op nor A2op is
hermitian, that is, we have

⟨ψ ∣ xpxψ⟩ = ⟨xψ ∣ pxψ⟩ = ⟨pxxψ ∣ ψ⟩
→ ⟨ψ ∣ A1opψ⟩ = ⟨A2opψ ∣ ψ⟩ A1op ≠ A2op

However, we can write

A(x⃗, p⃗) = xpx = pxx =
xpx + pxx

2
(2.182)

for the classical physical quantity. The operator

Aop =
xpxop + pxopx

2
(2.183)
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is hermitian and is therefore an acceptable operator to be associated with
A(x⃗, p⃗). A1op = xpxop and A2op = pxopx are not hermitian and are therefore
not acceptable. In general, we must require that the operator Aop correspond-
ing to some physical quantity A(x⃗, p⃗) be hermitian so that

⟨A⟩ =
⟨ψ ∣ Aopψ⟩
⟨ψ ∣ ψ⟩

(2.184)

is real for any ψ(x⃗, t).

2.1.8. Postulate 3b

Let A(x⃗, p⃗) be some physical quantity (a real function of x⃗ and p⃗). The order
of the classical variables xi and pj in A(x⃗, p⃗) is immaterial. The corresponding
quantum operator Aop = A(x⃗, p⃗op), however, depends on the ordering of the
non-commuting factors of xi and pj op. This ambiguity in ordering is (partially)
removed by requiring Aop to be hermitian (so that ⟨A⟩ is real).

Note: The hermiticity requirement does not completely remove the ambiguity.
Indeed, hermitian operators differing only by the ordering of xi and pj op in a
term correspond to the same classical quantity A(x⃗, p⃗) but represent different
quantum mechanical quantities. For example, let A(x⃗, p⃗) = x2p2

x classically.
Then

A1op =
1

2
(x2p2

xop + p2
xopx

2) and A2op = xp2
xopx (2.185)

are two possible hermitian operators. However, they represent different quan-
tum mechanical quantities even though they correspond to the same classical
quantity. Only experiment can determine which ordering of non-commuting fac-
tors yields the hermitian operator Aop that corresponds to a physical quantity
A(x⃗, p⃗) measured in a specified way. We will not have to worry about such
problems at this level since there will be no ordering ambiguity in the operators
we will use.

Examples

1. Energy of a particle in a conservative force field

Definition: The force on a particle is conservative if there exists a func-
tion V (x⃗), called the particle’s potential energy, such that F⃗ = −∇V .

Let W 1→2 be the work done on the particle by F⃗ as the particle moves
from x⃗1 to x⃗2 along some path

W 1→2 =
x⃗2

∫
x⃗1

F⃗ ⋅ ds⃗ , ds⃗ = dxx̂ + dyŷ + dzẑ (2.186)
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Therefore,

W 1→2 = −
x⃗2

∫
x⃗1

∇V ⋅ ds⃗ = −
x⃗2

∫
x⃗1

(∂V
∂x

dx + ∂V
∂y

dy + ∂V
∂z

dz)

= −
x⃗2

∫
x⃗1

dV = − [V (x⃗2) − V (x⃗1)] (2.187)

which is independent of the particular path connecting x⃗1 and x⃗2. We can
calculate W 1→2 in another way:

W 1→2 =
2

∫
1

F⃗ ⋅ ds⃗ =
2

∫
1

m
dv⃗

dt
⋅ ds⃗

=m
2

∫
1

ds⃗

dt
⋅ dv⃗ =m

2

∫
1

v⃗ ⋅ dv⃗

= 1

2
m

2

∫
1

d(v⃗ ⋅ v⃗) = 1

2
mv⃗2

2 −
1

2
mv⃗2

1 (2.188)

Therefore,
1

2
mv⃗2

2 −
1

2
mv⃗2

1 = − [V (x⃗2) − V (x⃗1)] (2.189)

1

2
mv⃗2

2 + V (x⃗2) =
1

2
mv⃗2

1 + V (x⃗1) (2.190)

The total energy of the particle is then defined to be

E = 1

2
mv⃗2 + V (x⃗) (2.191)

and the previous argument shows that E2 = E1 (conservation of energy).

Since p⃗ =mv⃗, we have

E = p⃗2

2m
+ V (x⃗) =H(x⃗, p⃗) = Hamiltonian (2.192)

Therefore,

Hop =
p⃗op ⋅ p⃗op

2m
+ V (x⃗) = − h̵

2

2m
∇2 + V (x⃗) (2.193)

Clearly, in this case, there is no ambiguity in the ordering of factors.

2. Angular momentum of a particle

We have

L⃗ = r⃗ × p⃗⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx

(2.194)
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Therefore,

Lxop = ypzop − zpyop =
h̵

i
(y ∂
∂z

− z ∂
∂y

) (2.195)

Lyop = zpx − xpz =
h̵

i
(z ∂
∂x

− x ∂
∂z

) (2.196)

Lzop = xpy − ypx =
h̵

i
(x ∂
∂y

− y ∂
∂x

) (2.197)

Again, there is no ambiguity in the ordering of factors because [xi, pjop] =
ih̵δij = 0 for i ≠ j.

Note: The uncertainty principle

(∆A) (∆B) ≥ 1

2
∣⟨[Aop,Bop]⟩∣ (2.198)

holds for any hermitian operators Aop and Bop. We may therefore apply
it to any physical quantities A(x⃗, p⃗) and B(x⃗, p⃗) (∆A and ∆B represent
rms deviations in the measurements of Â and B̂).

The evaluation of commutators [Aop,Bop] will be very important throughout
our discussions.

Some general rules for commutators

1. [A,A] = 0

2. [A,B] = − [B,A]

3. [A,B +C] = [A,B] + [A,C]

4. [A +B,C] = [A,C] + [B,C]

5. [A,BC] = [A,B]C +B [A,C]

6. [AB,C] = [A,C]B +A [B,C]

7. [A, [B,C]] = [B, [C,A]] + [C, [A,B]]⇒ Jacobi Identity

2.1.9. Important Question

Can we find a wave function ψ(x⃗, t) for a particle such that a measurement of
the quantity A(x⃗, p⃗) performed at time t0 on identically-prepared particles (each
particle is described by the same wave function) will always yield the value will
yield the value “a” .
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Let ψ(x⃗, t0) = ψ0(x⃗). A measurement of A at time t0 will yield the value “a”
with certainty if ∆A = 0⇒ ⟨A2⟩ = ⟨A⟩2 at t0. Now

⟨A2⟩ =
⟨ψ0 ∣ A2ψ0⟩
⟨ψ0 ∣ ψ0⟩

= ⟨Aψ0 ∣ Aψ0⟩
⟨ψ0 ∣ ψ0⟩

(hermiticity)

= ⟨Aψ0 ∣ Aψ0⟩ ⟨ψ0 ∣ ψ0⟩
⟨ψ0 ∣ ψ0⟩2

≥ ∣⟨ψ0 ∣ Aψ0⟩∣2

⟨ψ0 ∣ ψ0⟩2
(Schwarz inequality)

Therefore,

⟨A2⟩ ≥ ∣⟨ψ0 ∣ Aψ0⟩∣2

⟨ψ0 ∣ ψ0⟩2
= ⟨A⟩2 (2.199)

with ⟨ψ0 ∣ Aψ0⟩ real. The equality occurs when Aopψ0(x⃗) = λψ0(x⃗) a.e. with
λ = a constant. Therefore, (∆A)2 = ⟨A2⟩− ⟨A⟩2 = 0 if Aopψ0(x⃗) = λψ0(x⃗) where

a = ⟨A⟩ = ⟨ψ0 ∣ Aψ0⟩
⟨ψ0 ∣ ψ0⟩

= λ ⟨ψ0 ∣ ψ0⟩
⟨ψ0 ∣ ψ0⟩

= λ (2.200)

Important Result

A measurement of A(x⃗, p⃗) performed at time t0 yields the value “a” with cer-
tainty (⟨A⟩ = a and ∆A = 0) if ψ(x⃗, t0) = ψ0(x⃗) is a normalizable wave function
such that Aopψ0(x⃗) = λψ0(x⃗) for all x⃗ (a.e.).

This is an eigenvalue equation for the operator Aop. The constant a is an eigen-
value and ψ0(x⃗) is an eigenfunction belonging to the eigenvalue a.

Comments

1. The eigenvalue equation possesses solutions ψ0(x⃗) that are normalizable
(square-integrable and not identically zero) only for certain values of a.

2. ψ0(x⃗) = 0 satisfies the eigenvalue equation for any a; however, this ψ0(x⃗)
is not normalizable.

3. Aopψ0(x⃗) = λψ0(x⃗) ⇒ NAopψ0(x⃗) = Nλψ0(x⃗), N = constant. Therefore,
by linearity,

Aop(Nψ0(x⃗)) = λ(Nψ0(x⃗)) (2.201)

Therefore, any non-zero constant multiple of an eigenfunction belonging
to eigenvalue a is also an eigenfunction belonging to eigenvalue a.

4. We have A2
opψ0(x⃗) = AopAopψ0(x⃗) = aAopψ0(x⃗) = a2ψ0(x⃗) explicitly. In

general, we have ANopψ0(x⃗) = aNψ0(x⃗).

5. The wave function for a particle will develop in time according to the forces
present (we will discuss the exact time dependence later). In general, if
ψ(x⃗, t) is an eigenfunction of Aop with eigenvalue a at time t0, it will not
be an eigenfunction of Aop at some other time t1.
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Theorem

The eigenvalues of a hermitian operator are real.

Proof : We have

Aopψ0 = λψ0

⇒ ⟨ψ0 ∣ Aψ0⟩ = ⟨ψ0 ∣ aψ0⟩ = a ⟨ψ0 ∣ ψ0⟩ = ⟨Aψ0 ∣ ψ0⟩ = ⟨aψ0 ∣ ψ0⟩ = a∗ ⟨ψ0 ∣ ψ0⟩

so that a = a∗ or a is real.

2.1.10. Time-Independent Schrödinger Equation
Assume Aop = Hamiltonian operator is given by

Hop =
p⃗op ⋅ p⃗op

2m
+ V (x⃗) = − h̵

2

2m
∇2 + V (x⃗) (2.202)

for a particle in a conservative force field. The eigenvalue equation for the energy
is

Hopψ0(x⃗) = Eψ0(x⃗) (2.203)

with E the eigenvalue. This corresponds to the partial differential equation

− h̵
2

2m
∇2ψ0(x⃗) + V (x⃗)ψ0(x⃗) = Eψ0(x⃗) (2.204)

which is the time-independent Schrödinger equation.

A normalizable wave function satisfying this equation at time t0 (ψ(x⃗, t0) =
ψ0(x⃗)) describes a particle whose energy at time t0 is precisely the eigenvalue
E (∆E = 0 - there is no spread in the possible energy values). This equation
can be solved once the potential energy V (x⃗) is specified, that is, once the force
F⃗ = −∇V acting on the particle is specified.

We postpone solving this equation for various possible forces at the moment
and, instead, consider the eigenvalue equations for linear momentum, position,
and angular momentum.

2.1.11. Some Operator Eigenvalue/Eigenfunction Equations

Linear Momentum

Consider
px → pxop =

h̵

i

∂

∂x
(2.205)

The eigenvalue equation is

h̵

i

∂ψ0(x⃗)
∂x

= pxψ0(x⃗) (2.206)
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where px = eigenvalue. Therefore,

∂ψ0(x⃗)
∂x

= ipx
h̵
ψ0(x⃗) (2.207)

with px a constant to be determined. The solution is obviously

ψ0(x⃗) = N(y, z)e
ipxx
h̵ (2.208)

This is the solution for any complex px. However, we must find only those values
of px for which ψ0(x⃗) is normalizable (this condition should, at least, restrict
px to real values according to our earlier results).

Let px = α + iβ , α, β real. Then

⟨ψ0 ∣ ψ0⟩ = ∫ d3x ∣N(y, z)∣2 ∣e
ipxx
h̵ ∣

2
= ∫ d3x ∣N(y, z)∣2 e−

2βx
h̵ (2.209)

Therefore,

⟨ψ0 ∣ ψ0⟩ =
∞

∫
−∞

dy

∞

∫
−∞

dz ∣N(y, z)∣2
∞

∫
−∞

dxe−
2βx
h̵ =∞ (2.210)

that is, there exists no real β for which this integral is finite. Thus, there are
no physical (normalizable) solutions(in L2) to the eigenvalue equations for px
(and similary for py and pz). A measurement of pi on a physical system will
never yield a specified value with certainty. Measurements of linear momentum
performed on identically-prepared particles will always yield a spread in results.
Recall that ∆x∆px ≥ h̵/2. If ∆px = 0, then ∆x =∞, which is a rather unphysical
situation. However, we can make ∆px ≠ 0 as small as we want, but we cannot
make ∆px exactly zero in any physical system.

Position

Consider x3 = z, (x⃗ = (x, y, z)). Here x3 = z is the operator which multiplies
functions by z. The eigenvalue equation is

zψ0(x⃗) = Zψ0(x⃗) (2.211)

where Z = eigenvalue(constant). Therefore,

(z −Z)ψ0(x⃗) = 0→ ψ0(x⃗) = 0 (2.212)

for all z ≠ Z. We claim that ψ0(x⃗) = N(x, y)δ(z − Z)?. To prove this we must
show that (z −Z)δ(z −Z) = 0.

Let f(z) be a function continuous at z = Z. Then
∞

∫
−∞

dzf(z)(z −Z)δ(z −Z) = [f(z)(z −Z)]z=Z = 0 (2.213)
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for all f(z) continuous at z = Z. This says that (z −Z)δ(z −Z) = 0.

Is ψ0(x⃗) = N(x, y)δ(z −Z) normalizable?

⟨ψ0 ∣ ψ0⟩ =
∞

∫
−∞

dx

∞

∫
−∞

dy ∣N(x, y)∣2
∞

∫
−∞

dxδ(z −Z)δ(z −Z)

=
∞

∫
−∞

dx

∞

∫
−∞

dy ∣N(x, y)∣2 [δ(z −Z)]z=Z =∞

since δ(0) =∞.

Thus, there are no physical (normalizable) solutions (in L2) to the eigenvalue
equation for z (and similarly for x and y). This says that measurements of the
position of identically-prepared particles will always yield a spread in results.

Angular Momentum

Consider

Lz → Lzop = xpy − ypx =
h̵

i
(x ∂
∂y

− y ∂
∂x

) (2.214)

The eigenvalue equations is

h̵

i
(x ∂
∂y

− y ∂
∂x

)ψ0(x⃗) = aψ0(x⃗) (2.215)

where a = the eigenvalue.

Consider now a switch to spherical-polar coordinates as shown in Figure 2.9
below.

Figure 2.9: Spherical Polar Coordinates

86



We express ψ0(x⃗) = ψ0(r, θ, φ) and use the chain rule to find

∂ψ0

∂x
,

∂ψ0

∂y

x
∂

∂y
− y ∂

∂x
= x(∂r

∂y

∂

∂r
+ ∂θ
∂y

∂

∂θ
+ ∂φ
∂y

∂

∂φ
) − y ( ∂r

∂x

∂

∂r
+ ∂θ
∂x

∂

∂θ
+ ∂φ
∂x

∂

∂φ
)

Now
r =

√
x2 + y2 + z2 ⇒ ∂r

∂y
= y
r

,
∂r

∂x
= x
r

(2.216)

and
cos θ = z

r
= z√

x2 + y2 + z2
(2.217)

so that

− sin θ
∂θ

∂y
= − z

r2

∂r

∂y
= −zy

r3
⇒ ∂θ

∂y
= zy

r3 sin θ

− sin θ
∂θ

∂x
= − z

r2

∂r

∂x
= −zx

r3
⇒ ∂θ

∂x
= zx

r3 sin θ

and
tanφ = y

x

so that

sec2 φ
∂φ

∂y
= 1

x
⇒ ∂φ

∂y
= 1

x
cos2 φ

sec2 φ
∂φ

∂x
= − y

x2
⇒ ∂φ

∂y
= − y

x2
cos2 φ

Thus,

x
∂

∂y
− y ∂

∂x
= (xy

r

∂

∂r
+ xyz

r3 sin θ

∂

∂θ
+ cos2 φ

∂

∂φ
)

− (xy
r

∂

∂r
+ xyz

r3 sin θ

∂

∂θ
− y

2

x2
cos2 φ

∂

∂φ
)

= cos2 φ
∂

∂φ
+ y

2

x2
cos2 φ

∂

∂φ
= cos2 φ

∂

∂φ
+ tan2 φ cos2 φ

∂

∂φ

= cos2 φ
∂

∂φ
+ sin2 φ

∂

∂φ
= ∂

∂φ

Therefore,

Lz =
h̵

i

∂

∂φ
(2.218)

and the eigenvalue equation is

h̵

i

∂ψ0(x⃗)
∂φ

= aψ0(x⃗)→
∂ψ0(x⃗)
∂φ

= ia
h̵
ψ0(x⃗) (2.219)
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The solution is
ψ0(x⃗) = f(r, θ)ei

a
h̵φ (2.220)

for any complex value of the eigenvalue a.

Important observation

φ = 0 and φ = 2π for the same r and θ correspond to the same point in space. If
ψ0(r, θ, φ = 0) ≠ ψ0(r, θ, φ = 2π) then ψ0(x⃗) will be discontinuous at this point
and

Lzop =
h̵

i
(x ∂
∂y

− y ∂
∂x

) (2.221)

would not be defined on ψ0(x⃗). We must, therefore, require that

ψ0(r, θ, φ = 0) = ψ0(r, θ, φ = 2π) (2.222)

This is often called the single-valuedness assumption.

This means that

f(r, θ)e0 = f(r, θ)ei2π
a
h̵ → ei2π

a
h̵ = 1

2πa

h̵
= 2π` , ` = 0,±1,±2, ........

Therefore, a = `h̵, that is, the eigenvalues of Lzop can take on only certain
discrete values!

Lzopψ0(x⃗) = `h̵ψ0(x⃗) , ψ0(x⃗) = f(r, θ)ei`φ , ` = 0,±1,±2, ........ (2.223)

Is ψ0(x⃗) normalizable? We have

⟨ψ0 ∣ ψ0⟩ =
∞

∫
0

r2dr

π

∫
0

sin θdθ ∣f(r, θ)∣2
2π

∫
0

dφ ∣ei`φ∣
2

= 2π

∞

∫
0

r2dr

π

∫
0

sin θdθ ∣f(r, θ)∣2

Clearly, this can be made to be finite and non-zero with a suitable f(r, θ). Thus,
there are physical (normalizable) wave functions such that a measurement of Lz
will yield the value ”a” with certainty. Furthermore, the measured value of Lz in
such a system must be one of the values 0,±h̵,±2h̵, ......... Lz is said to be quan-
tized. Classically, we expect Lz to be capable of taking on any definite value.
However, we now see that Lz can only have the precise values 0,±h̵,±2h̵, ........
when this particle has a definite angular momentum (∆Lz = 0). Macroscopi-
cally, this discreteness cannot be observed because h̵ ≈ 10−27 erg−sec is so small
that Lz appears continuous with macroscopic measurements.
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Notes

1. Let ψ(x⃗, t0) be an eigenfunction of Lz with eigenvalue `h̵. What is the
probability of finding the particle in a region of space at time t0?

℘(x⃗, t0) =
∣ψ(x⃗, t0)∣2

⟨ψ0 ∣ ψ0⟩
=

∣f(r, θ)ei ah̵φ∣2

⟨ψ0 ∣ ψ0⟩
= ∣f(r, θ)∣2

⟨ψ0 ∣ ψ0⟩
(2.224)

which is independent of φ?. Thus, the particle is equally likely to be found
at any φ.

2. Let ψ(x⃗, t0) be an eigenfunction of Lz with eigenvalue `h̵. (⟨Lz⟩ = `h̵ , ∆Lz =
0). What are ⟨Lx⟩ and ⟨Ly⟩? Since

LyLz −LzLy = (zpx − xpz)(xpy − ypx) − (xpy − ypx)(zpx − xpz)
= zpypxx − zpxypx − xpzxpy + pzyxpx

− pyzxpx + xpyxpz + ypxzpx − ypzpxx
= (zpy − ypz)pxx + (pzy − pyz)xpx = Lx[x, px] = ih̵Lx

we have

ih̵ ⟨ψ0 ∣ Lxψ0⟩ = ⟨ψ0 ∣ LyLzψ0⟩ − ⟨ψ0 ∣ LzLyψ0⟩
= ⟨ψ0 ∣ Ly`h̵ψ0⟩ − ⟨Lzψ0 ∣ Lyψ0⟩
= `h̵ ⟨ψ0 ∣ Lyψ0⟩ − ⟨`h̵ψ0 ∣ Lyψ0⟩
= `h̵ (⟨ψ0 ∣ Lyψ0⟩ − ⟨ψ0 ∣ Lyψ0⟩) = 0

so that ⟨ψ0 ∣Lxψ0⟩ = ⟨Lx⟩ = 0 and similarly ⟨Lx⟩ = 0.

Our basic result was the following:

A measurement of the physical quantity A(x⃗, p⃗) performed
at the time t0 yields the value “a” with certainty if, and only
if, ψ(x⃗, t0) = ψ0(x⃗) is a normalizable wave function such that

Aopψ0(x⃗) = aψ0(x⃗)

Suppose that ψ(x⃗, t0) is not an eigenfunction of Aop. Then, a measurement of
A(x⃗, p⃗) at time t0 will necessarily have ∆A ≠ 0, that is, there will be a non-zero
spread in the possible results of the measurement. Two important questions
must then be answered:

1. If a measurement of A(x⃗, p⃗) is performed at t0 on such a particle, what
are the possible results of such a measurement?

2. What is the probability of obtaining each of these possible results?
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To answer these questions, it is necessary to develop some more operator con-
cepts. The functions used in the following discussion will be square-integrable
(they ∈ L2).

Consider the linear operator A = A(x⃗, p⃗). It need not be hermitian for this
discussion.

A = sum of terms of the form

xnymz`
∂N

∂xN
∂M

∂xM
∂L

∂xL
(2.225)

with other possible orderings of the non-commuting operators

xi and
∂

∂xi
(2.226)

also present, for example
∂

∂x
xn

∂N−1

∂xN−1
....... (2.227)

A usually cannot be defined on all square-integrable functions. For example,
∂/∂xj cannot be defined on discontinuous functions.

In the following, Aφ signifies that A can be defined on this φ. For a typical
operator term

A = xnymz` ∂
N

∂xN
∂M

∂xM
∂L

∂xL
(2.228)

we can write

⟨φ1 ∣ Aφ2⟩ = ∫ d3xφ∗1x
nymz`

∂N

∂xN
∂M

∂xM
∂L

∂xL
φ2

= ∫ d3x [xnymz`φ∗1]
∂N

∂xN
∂M

∂xM
∂L

∂xL
φ2

= (−1)N+M+L ∫ d3x{ ∂N

∂xN
∂M

∂xM
∂L

∂xL
[xnymz`φ1]}

∗

φ2 (2.229)

which defines the operator A†.

Note that a typical surface term occurring in one of the integrations by parts is
of the form

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

dy

∞

∫
−∞

dz [xnymz`φ∗1]
∂N−1

∂xN−1

∂M

∂xM
∂L

∂xL
φ2

⎤⎥⎥⎥⎥⎦

x=+∞

x=−∞

(2.230)

Even though the square-integrable φ1 → 0 and φ2 → 0 as x → ∞, this surface
term need not be zero because xnφ1 need not go to zero as x → ∞. Thus, the
above derivation holds for many but not all φ1 and φ2. We shall ignore such
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difficulties in the following discussions.

Thus, if A is a linear operator, there exists an operator A† (is read A-dagger)
called the adjoint operator of A, such that

⟨φ1 ∣ Aφ2⟩ = ⟨A+φ1 ∣ φ2⟩ (2.231)

Notes

1. ⟨Aφ1 ∣ φ2⟩ = ⟨φ1 ∣ Aφ2⟩∗ = ⟨A+φ1 ∣ φ2⟩∗ = ⟨φ1 ∣ A+φ2⟩

2. The operator A† is unique, that is, there exists only one operator A†

satisfying ⟨φ1 ∣ Aφ2⟩ = ⟨A+φ1 ∣ φ2⟩.
Proof : Suppose the operator B also satisfies ⟨φ1 ∣ Aφ2⟩ = ⟨Bφ1 ∣ φ2⟩.
Then

⟨A+φ1 ∣ φ2⟩ = ⟨Bφ1 ∣ φ2⟩
⟨(B −A+)φ1 ∣ φ2⟩ = 0 for all φ2

Let φ2 = Bφ1 −A+φ1, then

⟨(B −A+)φ1 ∣ (B −A+)φ1⟩ = 0→ (B −A+)φ1 = 0

Bφ1 = A+φ1 for all φ1 ⇒ B = A+

3. A† is linear.

4. (A+)+ = A

5. (A +B)+ = A+ +B+

6. (λA)+ = λ∗A+

7. (AB)+ = B+A+

Definition

A is hermitian if ⟨φ1 ∣ Aφ2⟩ = ⟨Aφ1 ∣ φ2⟩ for φ1 and φ2 on which A is defined.
This means that A is hermitian if A† = A.

Definition

The N functions φ1, φ2, φ3, ...., φN are linearly independent if

N

∑
i=1

λiφi = 0 (2.232)

a.e. implies that λi = 0 for i = 1,2, ....,N , that is,

N

∑
i=1

λiφi = 0 (2.233)
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a.e. can be satisfied only if λ1 = λ2 = .......... = λN = 0.

Notes

1. The functions φ1, φ2, φ3, ...., φN are linearly dependent if one of the func-
tions φj(x⃗) = 0 a.e. because

N

∑
i=1

λiφi = 0 (2.234)

can have λjφj = 0 with λj arbitrary.

2. If φ1, φ2, φ3, ...., φN are linearly dependent, then one of these functions can
be expressed as a linear superposition of the others. Proof :

N

∑
i=1

λiφi = 0 with some λj ≠ 0

⇒ λjφj +∑
i≠j
λiφi = 0⇒ φj = −

1

λj
∑
i≠j
λiφi

3. If φ1, φ2, φ3, ...., φN are mutually orthogonal (⟨φi ∣ φj⟩ = 0fori ≠ j) and if
no φi is identically zero, then these N functions are linearly independent.
Proof : Let

N

∑
i=1

λiφi = 0 (2.235)

Therefore,

0 = ⟨φj ∣
N

∑
i=1

λiφi⟩ =
N

∑
i=1

λi ⟨φj ∣ φi⟩

= λj ⟨φj ∣ φj⟩⇒ λj = 0

since φi is not identically zero.

Definition

φ1, φ2, φ3, ...., φN are orthonormal (ON) if they are mutually orthogonal and
normalized: ⟨φi ∣ φj⟩ = δji.

Theorem

We now define the so-called Gram-Schmidt Orthogonalization Procedure.

Given the linearly independent functions φ1, φ2, ....... (finite or infinite number
of functions), one can construct an orthogonal set of non-zero (not identically
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zero) functions v1, v2, ....... where vN is a linear superposition of φ1, φ2, ......., φN
( vN does not depend on φN+1, φN+2, .......).

Furthermore,
un =

vn
⟨vn ∣ vn⟩

(2.236)

gives an ON set of u1, u2, ........

Construction

1. v1 = φ1 (φ1 is not identically zero).

2. Let v2 = φ2 + α21φ1 where α21 is determined by requiring that

⟨v1 ∣ v2⟩ = 0 = ⟨v1 ∣ φ2 + α21φ1⟩ = ⟨v1 ∣ φ2⟩ + α21 ⟨v1 ∣ φ1⟩

α21 = −
⟨v1 ∣ φ2⟩
⟨v1 ∣ φ1⟩

(2.237)

(v2 is not identically zero because 0 = φ2 + α21v1 is impossible when φ2

and v1 = φ1 are linearly independent).

3. Let v3 = φ3+α32v2+α31v1 where α32 and α31 are determined by requiring
that

⟨v1 ∣ v3⟩ = 0 = ⟨v1 ∣ φ3 + α32v2 + α31v1⟩
= ⟨v1 ∣ φ3⟩ + α32 ⟨v1 ∣ v2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0

+α31 ⟨v1 ∣ v1⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

≠0

so that
0 = ⟨v1 ∣ φ3⟩ + α31 ⟨v1 ∣ v1⟩⇒ α31 = −

⟨v1 ∣ φ3⟩
⟨v1 ∣ v1⟩

(2.238)

and

⟨v2 ∣ v3⟩ = 0 = ⟨v2 ∣ φ3 + α32v2 + α31v1⟩
= ⟨v2 ∣ φ3⟩ + α32 ⟨v2 ∣ v2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
≠0

+α31 ⟨v2 ∣ v1⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=0

so that
0 = ⟨v2 ∣ φ3⟩ + α32 ⟨v2 ∣ v2⟩⇒ α32 = −

⟨v2 ∣ φ3⟩
⟨v2 ∣ v2⟩

(2.239)

4. The construction of v4, v5, ..... proceeds in a similar manner.

Note

anun =
vn

⟨vn ∣ vn⟩
⇒ ⟨un ∣ un⟩ =

⟨vn ∣ vn⟩
⟨vn ∣ vn⟩

= 1 (2.240)

implies that un is normalized.
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Example

Consider functions of one variable φn(x) = xn, n = 0,1,2, ....... defined on [−1,1]
so that

⟨φ1 ∣ φ2⟩ =
1

∫
−1

dx φ∗1(x)φ2(x) (2.241)

These functions are linearly independent by the properties of a power series,
that is,

∑
n

anφn(x) =∑
n

anx
n = 0 (2.242)

implies that all an are zero. If we designate the orthogonal polynomials that
result from the Gram-Schmidt process, applied to φn(x) = xn, n = 0,1,2, .......
by P0(x), P1(x), P2(x), ...... and require that Pn(x = +1) = +1 instead of the
standard normalization given by

⟨Pn ∣ Pn⟩ =
1

∫
−1

dxPn(x)Pn(x) = 1 (2.243)

then the resulting functions are the standard Legendre polynomials

P0(x) = 1 , P1(x) = x , P2(x) =
1

2
(3x2 − 1) , etc (2.244)

with

⟨Pn ∣ Pn⟩ =
1

∫
−1

dxPn(x)Pn(x) =
2

2n + 1
(2.245)

Definition

φ1, φ2, ........ is a complete orthonormal (CON) set in L2 if it is an ON set
(⟨φi ∣φj⟩ = δij) and any φ ∈ L2 can be expanded in terms of the φi:

φ(x⃗) =
∞
∑
i=1

λiφi(x⃗) (2.246)

with convergence a.e.

The λi ’s can be found explicitly:

⟨φj ∣ φ⟩ = ⟨φj ∣
∞
∑
i=1

λiφi(x⃗)⟩

=
∞
∑
i=1

λi ⟨φj ∣ φi⟩ =
∞
∑
i=1

λiδij = λj , j = 1,2,3, .........
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Theorem

Let φλ ∈ L2 and φµ ∈ L2 so that we can write

φλ =
∞
∑
i=1

λiφi , φµ =
∞
∑
i=1

µiφi (2.247)

with φ1, φ2, ....... a CON set. Then,

⟨φλ ∣ φµ⟩ =∑
i

λ∗i µi (2.248)

Proof :

⟨φλ ∣ φµ⟩ = ⟨
∞
∑
i=1

λiφi

RRRRRRRRRRR

∞
∑
j=1

µjφj⟩ =
∞
∑
i=1

∞
∑
j=1

λ∗i µj ⟨φi ∣ φj⟩

=
∞
∑
i=1

∞
∑
j=1

λ∗i µjδij =∑
i

λ∗i µi

Note

If φ ∈ L2 with φ =
∞
∑
i=1
λiφi where {φi} is a CON set, then an immediate conse-

quence of the previous theorem is

⟨φ ∣ φ⟩ =
∞
∑
i=1

λ∗i λi =
∞
∑
i=1

∣λi∣2 (2.249)

Now let A be a linear operator (acting on functions in L2). The eigenvalue
equation for A in L2 is Aφ(x⃗) = aφ(x⃗) for all x⃗, where the eigenfunction φ(x⃗) is
normalizable (square-integrable and not identically zero) and where the eigen-
value a is a constant. Since φ(x⃗) is normalizable, the equation can be satisfied
for only certain values of a.

Theorem

The eigenvalues of a hermitian operator are real.

Proof : Let Aφ = aφ. Therefore,

⟨φ ∣ Aφ⟩ = ⟨φ ∣ aφ⟩ = a ⟨φ ∣ φ⟩
= ⟨Aφ ∣ φ⟩ = ⟨aφ ∣ φ⟩
= a∗ ⟨φ ∣ φ⟩⇒ a = a∗ ⇒ a is real

where we have used A = A† and ⟨φ ∣φ⟩ ≠ 0.

For a given eigenvalue a, there may exist several linearly independent eigenfunc-
tions: Aφ1 = aφ1 , Aφ2 = aφ2 , ......... with φ1, φ2, .... linearly independent but
having the same eigenvalue a.
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Definition

The eigenvalue a is g−fold degenerate if there exist g linearly independent eigen-
functions belonging to the eigenvalue a and any (g+1) eigenfunctions belonging
to a are linearly dependent. The eigenvalue a is non-degenerate if there exists
only one linearly independent eigenfunction belonging to a.

Some of the eigenvalues of A may be non-degenerate while other eigenvalues of
A may have differing orders of degeneracy.

Note that Aφ = aφ⇒ A(Nφ) = a(Nφ) for any constant N . However, φ and Nφ
are linearly dependent and therefore, the eigenfunction Nφ does not add to the
degeneracy of the eigenvalue a.

Theorem

Let φ1, φ2, φ3, ...., φN be eigenfunctions of A belonging to the same eigenvalue
a. These eigenfunctions need not be linearly independent. Then, any linear
superposition

n

∑
i=1

ciφi (2.250)

which is not identically zero is also an eigenfunction belonging to the eigenvalue
a.

Proof :

Aφi = aφi , i = 1,2,3, ....., n

A(
n

∑
i=1

ciφi) =
n

∑
i=1

ciAφi =
n

∑
i=1

ciaφi = a(
n

∑
i=1

ciφi)

where we have used the linearity of A.

Theorem

Let the eigenvalue a be g−fold degenerate. Then, there exists g orthonormal
eigenfunctions (u1, u2, ...., ug) all belonging to the eigenvalue a such that any
eigenfunction φ belonging to the eigenvalue a can be written

φ =
g

∑
i=1

ciui , ⟨ui ∣ uj⟩ = δij (2.251)

that is, {u1, u2, ...., ug} forms a CON set of eigenfunctions for the eigenvalue a.

Proof : g−fold degeneracy implies there exists linearly independent eigenfunc-
tions φ1, φ2, φ3, ...., φg all belonging to the eigenvalue a. One can perform the
Gram-Schmidt procedure on these eigenfunctions to obtain {u1, u2, ...., ug}, an
ON set of (non-zero) eigenfunctions belonging to the eigenvalue a (since un is a
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linear superposition of φ1, φ2, φ3, ...., φg, un must be an eigenfunction belonging
to the eigenvalue a). To show completeness for the eigenfunctions belonging to
a, let φ be an arbitrary eigenfunction belonging to a. g−fold degeneracy implies

(g+1) eigenfunctions
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u1, u2, ...., ug, φ

must be linearly dependent. Therefore,

g

∑
i=1

diui + dφ = 0 (2.252)

with a non-zero d is possible. If d is zero, the all di = 0 by the linear independence
of {u1, u2, ...., ug}. Therefore,

φ = −1

d

g

∑
i=1

diui (2.253)

Theorem

Let A be hermitian. The eigenfunctions of A belonging to different eigenvalues
are orthogonal.

Proof : Let Aφ1 = a1φ1 , Aφ2 = a2φ2 , a1 ≠ a2. Then

⟨φ2 ∣ Aφ1⟩ = ⟨φ2 ∣ a1φ1⟩ = a1 ⟨φ2 ∣ φ1⟩
= ⟨Aφ2 ∣ φ1⟩ = ⟨a2φ2 ∣ φ1⟩
= a∗2 ⟨φ2 ∣ φ1⟩ = a2 ⟨φ2 ∣ φ1⟩

(a1 − a2) ⟨φ2 ∣ φ1⟩ = 0 , a1 − a2 ≠ 0

⟨φ2 ∣ φ1⟩ = 0

Let A be a hermitian operator with eigenvalues a1, a2, a3, .......an, ......

Let the eigenvalue an be gn−fold degenerate (gn = 1 if an is non-degenerate).

Let {u(1)n , u
(2)
n , ....., u

(gn)
n } be a CON set of eigenfunctions for the eigenvalue

an. Note that the eigenvalues an are countable, that is, they do not take on
a continuum of values. This property (called separability) will be discussed
further later. Now we have

Au(α)n = anu(α)n , α = 1,2, ...., gn (2.254)

so α labels each member of the set of degenerate functions which belong to the
eigenvalue an and n labels the eigenvalue an.
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Since eigenfunctions belonging to different eigenvalues are necessarily orthogo-
nal, we have

⟨u(α)n ∣ u(β)m ⟩ = δnmδαβ (2.255)

Let {u(α)n } be an ON set of eigenfunctions of A with n taking on all possible
values, that is, with an going through all eigenvalues of A, and with α go-
ing through a CON set of eigenfunctions for each eigenvalue an, that is, any
eigenfunction belonging to an can be expressed as a linear superposition of
{u(1)n , u

(2)
n , ....., u

(gn)
n }. We will call such a set {u(α)n } a maximal ON set of

eigenfunctions of A.

{u(α)n } contains the following eigenfunctions:

u
(1)
1 , u

(2)
1 , ....., u

(g1)
1 = CON set for eigenvalue a1 (g1−fold degenerate)

u
(1)
2 , u

(2)
2 , ....., u

(g2)
2 = CON set for eigenvalue a2 (g2−fold degenerate)

...........................

...........................

(going through all eigenvalues of A)

The set {u(α)n } may or may not be a complete orthonormal set for all square-
integrable functions, that is, an arbitrary square-integrable function φ(x⃗) may
or may not be expressible in the form

φ(x⃗) =∑
n

gn

∑
α=1

c(α)n u(α)n (x⃗) (2.256)

Example

Consider
A = pxop =

h̵

i

∂

∂xi
(2.257)

As we showed earlier, there are no normalizable eigenfunctions of pxop. Thus,
{u(α)n } contains no functions - it is not a CON set in L2.

Example

Consider
A = Lzop =

h̵

i

∂

∂φ
(2.258)

As we showed earlier, the eigenfunctions of Lzop are f(r, θ)ei`φ with ` = 0,±1,±2, ....
and

∞

∫
0

r2dr

π

∫
0

sin θdθ

2π

∫
0

dφ ∣f(r, θ)ei`φ∣
2

(2.259)
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is finite and non-zero. Let {fα(r, θ)}α=1,2,.... be any CON set for square-integrable
functions of r and θ so that

∞

∫
0

r2dr

π

∫
0

sin θdθ f∗α(r, θ)fβ(r, θ) = δαβ (2.260)

and
f(r, θ) =∑

α

dαfα(r, θ) (2.261)

for any square-integrable function f(r, θ). Now

u
(α)
` (x⃗) = 1√

2π
fα(r, θ)ei`φ (2.262)

is an eigenfunction of Lzop with eigenvalue `h̵ for any α.

Since u(1)` , u
(2)
` , ......... are linearly independent, the eigenvalues `h̵ have infinite

order (all r and θ values) of degeneracy. We also have

⟨u(α)` ∣ u(α
′)

`′ ⟩ =
∞

∫
0

r2dr

π

∫
0

sin θdθ f∗α(r, θ)fβ(r, θ)
2π

∫
0

dφ

2π
eiφ(`−`

′) = δαα′δ``′

(2.263)
Let Φ(x⃗) be an arbitrary square-integrable function. The we have

Φ(r, θ, φ) =
∞
∑
`=−∞

b`(r, θ)
ei`φ√

2π
(2.264)

which is just the Fourier series expansion of a function of Φ(r, θfixed) in the
interval [0,2π]. But, we can always write

b`(r, θ) =∑
α

c
(α)
` fα(r, θ) (2.265)

since {fα(r, θ)}α=1,2,... is a CON set. Therefore,

Φ(r, θ, φ) =
∞
∑
`=−∞

∑
α

c
(α)
` fα(r, θ)

ei`φ√
2π

=
∞
∑
`=−∞

∑
α

c
(α)
` u

(α)
` (x⃗) (2.266)

that is, {u(α)` (x⃗)} is a CON set in L2.

Let Aop = A(x⃗, p⃗op) be the hermitian operator corresponding to some physical
quantity A = A(x⃗, p⃗). Then, as we have stated earlier, a measurement of A
performed at time t0 will yield the value a with certainty if ψ(x⃗, t0) = ψ0(x⃗) is
a (normalizable) eigenfunction of Aop with eigenvalue a.

Suppose ψ(x⃗, t0) = ψ0(x⃗) is normalizable but it is not an eigenfunction of A.
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Then, as we stated earlier, a measurement of A at time t0 will necessarily have
∆A ≠ 0.

We first consider physical quantities A such that the maximal set of ON eigen-
functions {u(α)n } of Aop is complete in L2.

Therefore,
ψ0(x⃗) =∑

n
∑
α

c(α)n u(α)n (x⃗) (2.267)

a.e. We then have

⟨u(β)m ∣ ψ0⟩ = ⟨u(β)m ∣∑
n
∑
α

c(α)n u(α)n ⟩ =∑
n
∑
α

c(α)n ⟨u(β)m ∣ u(α)n ⟩

=∑
n
∑
α

c(α)n δαβδnm = c(β)m

or
c(α)n = ⟨u(α)n ∣ ψ0⟩ = expansion coefficients (2.268)

Also,

⟨ψ0 ∣ ψ0⟩ = ⟨∑
m
∑
β

c(β)m u(β)m

RRRRRRRRRRR
∑
n
∑
α

c(α)n u(α)n ⟩

=∑
m
∑
β

∑
n
∑
α

c(α)n c(β)∗m ⟨u(β)m ∣ u(α)n ⟩

=∑
m
∑
β

∑
n
∑
α

c(α)n c(β)∗m δαβδnm =∑
n
∑
α

∣c(α)n ∣
2

(2.269)

Let us now calculate ⟨AN ⟩, the so-called N th moment of the probability distri-
bution of measurements of A (N = 01,2, ........). We have

⟨AN ⟩ =
⟨ψ0 ∣ ANopψ0⟩
⟨ψ0 ∣ ψ0⟩

= 1

⟨ψ0 ∣ ψ0⟩
⟨∑
m
∑
β

c(β)m u(β)m

RRRRRRRRRRR
ANop∑

n
∑
α

c(α)n u(α)n ⟩

= 1

⟨ψ0 ∣ ψ0⟩
⟨∑
m
∑
β

c(β)m u(β)m

RRRRRRRRRRR
∑
n
∑
α

c(α)n ANopu
(α)
n ⟩

= 1

⟨ψ0 ∣ ψ0⟩
⟨∑
m
∑
β

c(β)m u(β)m

RRRRRRRRRRR
∑
n
∑
α

c(α)n (an)Nu(α)n ⟩

= 1

⟨ψ0 ∣ ψ0⟩
∑
m
∑
β

∑
n
∑
α

c(β)∗m c(α)n (an)N ⟨u(β)m ∣ u(α)n ⟩ =∑
n
∑
α

∣c(α)n ∣
2
(an)N

Therefore, the N th moment of the probability distribution of measurements of
A is

⟨AN ⟩ = 1

⟨ψ0 ∣ ψ0⟩
∑
n
∑
α

∣c(α)n ∣
2
(an)N =∑

n

(an)N
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gn

∑
α=1

∣c(α)n ∣
2

⟨ψ0 ∣ ψ0⟩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(2.270)
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Let ℘(a, t0) be the probability that a measurement of A will yield the value a
at time t0. Therefore, from our earlier definition,

⟨AN ⟩ = ∑
all measured
values of a

aN℘(a, t0) (2.271)

As we showed earlier, the ⟨AN ⟩ for N = 0,1,2, ...... uniquely determine the
probability distribution of measurements of A. Therefore, comparing (calcula-
tion versus definition) the above expressions for ⟨AN ⟩ we have a most important
result

℘(a, t0) =
⎧⎪⎪⎨⎪⎪⎩

∑gnα=1
∣c(α)n ∣2

⟨ψ0 ∣ψ0⟩ for a = an [an eigenvalue of Aop]
0 for a not an eigenvalue of Aop

(2.272)

Any measurement of A will yield a value which must be an eigenvalue of Aop.
The probability of observing a given eigenvalue is given by the above expression
(2.272).

Now
c(α)n = ⟨u(α)n ∣ ψ0⟩ , c(α)∗n = ⟨ψ0 ∣ u(α)n ⟩ (2.273)

Therefore,

℘(a, t0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑gnα=1

⟨ψ0 ∣u(α)n ⟩⟨u(α)n ∣ψ0⟩
⟨ψ0 ∣ψ0⟩ for a = an [an eigenvalue of Aop]

0 for a not an eigenvalue of Aop
(2.274)

Thus, the only possible results of a measurement of some operator are its eigen-
values!

Notes

1. Let ψ(x⃗, t0) = ψ0(x⃗) be an eigenfunction of Aop with eigenvalue ar so that
Aopψ0(x⃗) = arψ0(x⃗). We should find that a measurement of A will yield
the result ar with certainty. Let us check this. {u(1)r , u

(2)
r , ....., u

(gr)
r } is a

CON set of eigenfunctions for the eigenvalue ar. Therefore,

ψ0(x⃗) =
gr

∑
α=1

dαu
(α)
r (2.275)

that is, only eigenfunctions for ar occur in the expansion. Therefore,

⟨ψ0 ∣ ψ0⟩ =
gr

∑
α=1

∣dα∣2 (2.276)

and

℘(a, t0) =
⎧⎪⎪⎨⎪⎪⎩

∑gnα=1
∣dα∣2

⟨ψ0 ∣ψ0⟩ = 1 for a = ar
0 for a ≠ ar

(2.277)
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2. If the eigenvalues are non-degenerate, then α = 1 is the only value and we
need not write α at all

ψ0(x⃗) =∑
n

cnun(x⃗) , Aopun(x⃗) = anun(x⃗)

cn = ⟨un ∣ ψ0⟩ , ⟨un ∣ um⟩ = δnm
⟨ψ0 ∣ ψ0⟩ =∑

n

∣cn∣2

℘(a, t0) =
⎧⎪⎪⎨⎪⎪⎩

∣cn∣2
⟨ψ0 ∣ψ0⟩ for a = ar
0 for a ≠ eigenvalue of Aop

(2.278)

3. A required condition on ℘(a, t0) is

∑
all values
of a

℘(a, t0) = 1 (2.279)

Let us check this. Recall that

⟨ψ0 ∣ ψ0⟩ = ∑
n,α

∣c(α)n ∣
2

(2.280)

so that

∑
all values
of a

℘(a, t0) =∑
n

1

⟨ψ0 ∣ ψ0⟩

gn

∑
α=1

∣c(α)n ∣
2

= 1

⟨ψ0 ∣ ψ0⟩
∑
n,α

∣c(α)n ∣
2
= 1

as required.

Example

Let Aop = Lzop. We have shown that the eigenvalues are `h̵ (` = 0,±1, ...) and
that the maximal ON set of eigenfunctions {u(α)` (x⃗)} is complete in L2. Thus, a
measurement of Lz at any time will yield a value which must be 0,±h̵,±2h̵, .......
Lz is said to be quantized. If ψ(x⃗, t0) is not an eigenfunction, then there will
be a spread in possible values of Lz and the previous discussion tells us how to
calculate ℘(`h̵, t0).

2.2. Energy Measurements

Let us now turn our attention to energy measurements. We must therefore con-
sider the eigenvalue equation for energy (called the time-independent Schrödinger
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equation). Assume that the particle has conservative forces acting on it so that
F⃗ = −∇V (x⃗) where V (x⃗) is the potential energy. Then

H =Hamiltonian(energy) = p⃗ ⋅ p⃗
2m

+ V (x⃗) (2.281)

and

Hop =
p⃗op ⋅ p⃗op

2m
+ V (x⃗) = − h̵

2

2m
∇2 + V (x⃗) (2.282)

We must solve the eigenvalue equation

Hopφ(x⃗) = Eφ(x⃗)⇒ − h̵
2

2m
∇2φ(x⃗) + V (x⃗)φ(x⃗) = Eφ(x⃗) (2.283)

The eigenvalue E is a constant (independent of x⃗). Only for certain values of
E will the equation have a solution φ(x⃗) which is normalizable.

These normalizable eigenfunctions of Hop are said to represent bound states.
If ψ(x⃗, t0) is a normalizable eigenfunction of Hop then it has a precise energy
(∆E = 0) and

℘(x⃗, t0) =
1

⟨ψ ∣ ψ⟩
∣ψ(x⃗, t0)∣2 → 0 as r →∞ (2.284)

which is required for normalizability. Thus, the probability of observing the
particle at a certain position is confined (non-negligible probability) to some
finite (bounded) region of space - the particle has definite energy and is bound
in this region.

As an example, consider the classical motion of a charge (−q) about a fixed
charge (+q) as shown in Figure 2.10 below.

Figure 2.10: Classical Orbits

Quantum mechanically, the orbit trajectories are not well-defined (even though
the energies are precise). However, one would expect the classical bound orbit
to correspond to a normalizable quantum eigenfunction (℘(x⃗, t0) non-zero for
r →∞). The non-normalizable eigenfunctions are therefore physically interest-
ing and should play a role in the theory. Indeed, we expect that the normalizable
eigenfunctions of Hop for the above charge will not be complete in L2 because
unbound motion is also possible. We will postpone discussing non-normalizable
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eigenfunctions of Hop and concentrate on the normalizable eigenfunctions. Re-
member only normalizable wave functions have been incorporated in our theory
so far. We expect that the normalizable eigenfunctions of Hop will be complete
in L2 if there are no unbound orbits possible for the classical H.

Note

For the differential equation

− h̵
2

2m
∇2φ(x⃗) + V (x⃗)φ(x⃗) = Eφ(x⃗) (2.285)

if V (x⃗) is finite in some region (V (x⃗) may, however, contain discontinuities in
this region), then φ(x⃗) and ∂φ(x⃗)/∂xi must be continuous in this region (so
that ∇2φ(x⃗) is finite, as required by the above equation for finite V (x⃗).

Example

We consider a particle (mass m) constrained to move along a frictionless hor-
izontal wire (dashed line in top part of Figure 2.11 below) between two rigid
(impenetrable) walls. This is one-dimensional motion. We then have

H = p2

2m
+ V (x) , Fx = −

dV

dx
(2.286)

with
V (x) = 0 for x ∈ (0, L) so that Fx = 0 for x ∈ (0, L)

and
V (x) = V0 →∞ for x < 0 and for x > L

as shown in the lower part of Figure 2.11 below.

Figure 2.11: Particle in a Rigid Box
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We have Fx = −∞ at x = L and Fx = +∞ at x = 0. Therefore, the (classical)
particle cannot get into the regions x < 0 and x > L no matter how energetic it
is (the kinetic energy p2/2m would have to be negative to obtain a finite total
energy).

Classical Motion: The particle moves back and forth between the two walls
with constant speed. The reflections at each wall just reverses the particle’s
direction of motion. Eclassical =mv2/2 can take on any value from 0 to ∞. All
motion is bound between 0 and L.

The eigenvalue equation for energy(time-independent Schrödinger equation) is

Hopφ(x) = Eφ(x)⇒ − h̵
2

2m

d2φ(x)
dx2

+ V (x)φ(x) = Eφ(x) (2.287)

with E = constant and φ(x⃗) normalizable.

Note: Because V0 → ∞, it is not clear whether or not φ(x⃗) and dφ(x⃗)/dx are
continuous at x = 0, L (φ(x⃗) and dφ(x⃗)/dx must be continuous in regions where
V (x⃗) is finite).

Let us look at this issue of boundary conditions in two ways, first for this specific
problem and then in general using the Schrödinger equation (this last approach
will then apply to all potential energy functions)

Boundary Condition for this Particular System

Claims:

1. φ(x⃗) = 0 for x < 0 (region (a)) and for x > L (region (c)).

2. φ(x⃗ in region (b) (0 < x < L) goes to zero as x → 0 and as x → L so that
φ(x⃗ is continuous for all x.

Conditions (1) and (2) will determine φ(x⃗) and we will then see that dφ(x⃗)/dx
is discontinuous at x = 0 and at x = L.

Proof of conditions (1) and (2)

Let V0 be finite. Then φ(x⃗ and dφ(x⃗)/dx are are necessarily continuous every-
where - in particular at x = 0 and x = L. After obtaining the conditions on φ(x⃗
for finite V0 we now let V0 →∞.

Let E < V0 (this is no restriction since V0 →∞).

Region (a):

− h̵
2

2m

d2φa

dx2
+ V0φ

a = Eφa (2.288)
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Region (b):

− h̵
2

2m

d2φb

dx2
= Eφb (2.289)

Region (c):

− h̵
2

2m

d2φc

dx2
+ V0φ

c = Eφc (2.290)

where E is the same in regions (a), (b), and (c) because the eigenvalue is inde-
pendent of x.

Now, let

k =
√

2mE

h̵
, K =

√
2m(V0 −E)

h̵
(2.291)

Note that K is a positive real number for E < V0. Therefore,

Region (a):
d2φa

dx2
−K2φa = 0→ φa = αeKx + βe−Kx (2.292)

Since x < 0 the term e−Kx diverges as x→ −∞.

Thus, φ is normalizable only if β = 0.

Therefore, φa = αeKx.

Region (b):
d2φb

dx2
= −k2φb → φb = A sinkx +B coskx (2.293)

Region (c):
d2φc

dx2
−K2φc = 0→ φc = γeKx + δe−Kx (2.294)

Since x > L the term e−Kx diverges as x→ +∞.

Thus, φ is normalizable only if γ = 0.

Therefore, φc = δe−Kx.

We note that α,A,B, δ may depend on V0.

For finite V0, φ(x⃗) and dφ(x⃗)/dx are continuous at x = 0 and x = L.

x = 0:

φa(0) = φb(0)⇒ α = β
dφa(0)
dx

= dφ
b(0)
dx

⇒ αK = Ak
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x = L:

φc(L) = φb(L)⇒ A sinkL +B coskL = δe−KL

dφa(0)
dx

= dφ
b(0)
dx

⇒ Ak coskL −Bk sinkL = −Kδe−KL

The two conditions at x = 0 give

K = kA
B

(2.295)

The two conditions at x = L give

−K = k(A coskL −B sinkL)
A sinkL +B coskL

(2.296)

Now let V0 → ∞. This corresponds to K → ∞ while k, A and B stay finite.
Note also that φb = A sinkx +B coskx must stay continuous with a continuous
derivative as V0 →∞ because

− h̵
2

2m

d2φb

dx2
= Eφb (2.297)

in region (b) for any V0. Now

K = kA
B

=∞ with kA finite ⇒ B → 0

−K = k(A coskL −B sinkL)
A sinkL +B coskL

= −∞ = k coskL

sinkL
with B = 0⇒ sinkL→ 0

Therefore,
φb = A sinkx with sinkL→ 0 (2.298)

so that at φa → 0 x = 0 and x = L when V0 →∞.

Furthermore, φa = αeKx → 0 as K → ∞ (x > L) because A sinkL +B coskL =
δe−KL → 0 requires δe−KL → 0 for x > L.

This completes the proof of claims (1) and (2). Notice that φb(0) = φb(L) = 0
with φa(x) = φc(x) = 0 means that φ(x) is continuous at x = 0 and at x = L as
V0 →∞.

General Discussion of Boundary Conditions

The Schrödinger equation in 1−dimension is

− h̵
2

2m

d2ψE(x)
dx2

+ V (x)ψE(x) = EψE(x) (2.299)
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The solutions ψE(x) are the energy eigenstates (eigenfunctions). We are thus
faced with solving an ordinary differential equation with boundary conditions.

Since ψE(x) is physically related to a probability amplitude and hence to a
measurable probability, we assume that ψE(x) is continuous since a measurable
probability should not be discontinuous. This is the way physics is supposed to
interact with the mathematics.

Using this fact, we can determine the general continuity properties of dψE(x)/dx.
The continuity property at a particular point, say x = x0, is derived as follows.
Integrating the equation across the point x = x0 we get

x0+ε

∫
x0−ε

d2ψE(x)
dx2

dx =
x0+ε

∫
x0−ε

d(dψE(x)
dx

)

= −2m

h̵2

⎡⎢⎢⎢⎢⎣
E

x0+ε

∫
x0−ε

ψE(x)dx −
x0+ε

∫
x0−ε

V (x)ψE(x)dx
⎤⎥⎥⎥⎥⎦

Taking the limit as ε→ 0 we have

lim
ε→0

⎛
⎝
dψE(x)
dx

∣
x=x0+ε

− dψE(x)
dx

∣
x=x0−ε

⎞
⎠

= −2m

h̵2

⎡⎢⎢⎢⎢⎣
E lim
ε→0

x0+ε

∫
x0−ε

ψE(x)dx − lim
ε→0

x0+ε

∫
x0−ε

V (x)ψE(x)dx
⎤⎥⎥⎥⎥⎦

or the discontinuity in the derivative is given by

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)ψE(x)dx (2.300)

where we have used the continuity of ψE(x) to set

lim
ε→0

x0+ε

∫
x0−ε

ψE(x)dx = 0 (2.301)

This makes it clear that whether or not dψE(x)/dx has a discontinuity at some
point depends directly on the potential energy function at that point.

If V (x) is continuous at x = x0 (harmonic oscillator example), i.e., if

lim
ε→0

[V (x0 + ε) − V (x0 − ε)] = 0 (2.302)

then

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)ψE(x)dx = 0 (2.303)
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and dψE(x)/dx is continuous.

Finally, if V (x) has an infinite jump at x = x0(infinite square well and delta-
function examples), then we have two choices

1. if the potential is infinite over an extended range of x (the infinite well),
then we must force ψE(x) = 0 in that region and use only the continuity
of ψE(x) as a boundary condition at the edge of the region.

2. if the potential is infinite at a single point, i.e., V (x) = δ(x − x0) then

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)ψE(x)dx

= 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

δ(x − x0)ψE(x)dx

= 2m

h̵2
lim
ε→0

ψE(x0) =
2m

h̵2
ψE(x0) (2.304)

and thus dψE(x)/dx is discontinuous by an amount proportional to the
value of the wave function at that point.

These general results work for all potential energy functions, as we shall see.

One-Dimensional Infinite Square Well

Now let us start from the beginning and solve the Schrödinger equation for
V0 = ∞, the so-called one-dimensional infinite square well, with the following
given:

1. for 0 < x < L
− h̵

2

2m

d2φ

dx2
= Eφ

2. for x ≥ L and x ≤ 0

φ = 0

3. φ is continuous for all x; dφ(x)/dx need not be continuous for V0 =∞.

(2) and (3) are the conditions we just proved to be required when V0 =∞.

For 0 < x < L, we have

d2φ

dx2
= −k2φ , k2 = 2mE

h̵2
(2.305)

so that
φ = A sinkx +B coskx (2.306)
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Then

φ(0) = 0⇒ B = 0⇒ φ = A sinkx

φ(L) = 0⇒ A sinkL = 0

Assuming that A ≠ 0 (or the solution would be identically zero everywhere) we
have the condition

sinkL = 0⇒ knL = nπ , n = 1,2,3, .... (2.307)

Note that the case n = 0⇒ k = 0⇒ φ = 0 and is not normalizable and the case n
negative implies k negative. With φ = A sinkx, positive and negative k do not
lead to independent solutions. Therefore, we need only consider positive k.

We have

k2
n =

2mEn
h̵2

= n
2π2

L2
⇒ En =

n2π2h̵2

2mL2
, n = 1,2,3, .... (2.308)

These are the energy eigenvalues. The corresponding energy eigenfunctions are

φn(x) = An sinknx = An sin
nπ

L
x (2.309)

Notice that each energy eigenvalue is non-degenerate

sin
nπ

L
x and sin

n′ π

L
x (2.310)

are linearly independent for n ≠ n′).

The energy levels are quantized, that is, they take on only certain discrete values.
This is to be contrasted with the classical situation, in which the particle can
have any energy in the range [0,∞).

The ground-state energy

E1 =
π2h̵2

2mL2
≠ 0 (2.311)

This is consistent with the uncertainty principle. The localization of the particle
within a range

L⇒∆px ≥
h̵

L
⇒ E ≈ (∆px)2

2m
≥ h̵2

2mL2
⇒ Emin = h̵2

2mL2
(2.312)

The spacing between low-lying energy levels is of the order h̵2/mL2.

1. Macroscopic object

m ≈ 1 gm , L ≈ 10 cm or
h̵2

mL2
≈ 10−56erg (2.313)
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2. Electron confined to an atomic distance

m ≈ 10−27 gm , L ≈ 1 Å = 10−8 cm or
h̵2

mL2
≈ 10−11erg ≈ 10 eV (2.314)

3. Proton confined to an nuclear distance

m ≈ 10−24 gm , L ≈ 10−12 or 10−13cm or
h̵2

mL2
≈ 10−6erg ≈ 1MeV (2.315)

Note: An electron-volt (eV ) is the energy obtained by an electron when it is
accelerated through a potential difference of one volt:

1 eV = (1.60 × 10−19coul)(1 volt) = 1.60 × 10−19joule = .60 × 10−12erg (2.316)

and
1MeV = 106eV (2.317)

Also, visible light typically has ν ≈ 1015 sec−1 so that

E1photon = hν ≈ 10−12erg ≈ 1 eV (2.318)

Let us check that the eigenfunctions corresponding to different eigenvalues are
orthogonal. We have

⟨φn ∣ φ`⟩ =
L

∫
0

dxA∗
n sin

nπx

L
A` sin

`πx

L

= A
∗
nA`

(2i)2

L

∫
0

dx (ei
nπx
L − e−i

nπx
L ) (ei

`πx
L − e−i

`πx
L )

= A
∗
nA`
−4

L

∫
0

dx (ei
(n+`)πx

L + e−i
(n+`)πx

L − ei
(n−`)πx

L − e−i
(n−`)πx

L )

= −A
∗
nA`
2

L

∫
0

dx(cos((n + `)πx
L

) − cos((n − `)πx
L

))

so that

−A
∗
nAn
2

L

∫
0

dx(cos(2nπx

L
) − 1) = −A

∗
nAn
2

([ L

2nπ
sin(2nπx

L
) −L]

L

0
−L)

= −L , n = ` (2.319)

and

− A
∗
nA`
2

L

∫
0

dx(cos((n + `)πx
L

) − cos((n − `)πx
L

))

= −A
∗
nA`
2

⎛
⎝
[ L

(n + `)π
sin((n + `)πx

L
)]
L

0

− [ L

(n − `)π
sin((n − `)πx

L
)]
L

0

⎞
⎠

= 0 , n ≠ ` (2.320)

111



or
⟨φn ∣ φ`⟩ =

L

2
∣An∣2 δn` (2.321)

Letting

An =
√

2

L
, φn = un (2.322)

where {un} is an ON set of eigenfunctions, we have

un(x) =
√

2

L
sin

nπx

L
, ⟨un ∣ um⟩ = δnm (2.323)

We note that dun/dx is discontinuous at x = 0 and x = L. Some plots of the
first three wave functions (n = 1,2,3) are shown in Figure 2.12 below:

Figure 2.12: n = 1,2,3 wave functions

Since the eigenfunctions vanish for x < 0 and x > L, the probability of find-
ing the particle (whose wave function is an energy eigenfunction) outside the
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region [0, L] is zero. For a particle whose wave function is un(x), the proba-
bility of finding the particle in [x,x + dx] is not uniform over the region [0, L]
since ℘(x, t) = ∣un(x)∣2. This should be contrasted with the classical motion at
constant speed - classically the particle spends equal amounts of time in each
interval [x,x + dx] throughout the region [0, L].

Consider the ON set of all eigenfunctions {un}. Is this complete in L2? Because
all the eigenfunctions un(x) vanish for x < 0 and x > L, a square-integrable func-
tion which is non-zero outside [0, L] cannot be expanded in terms of the un(x).
However, if ψ0(x) is square-integrable and non-zero outside [0, L], then

⟨H⟩ = ⟨ψ0 ∣Hψ0⟩
⟨ψ0 ∣ ψ0⟩

= 1

⟨ψ0 ∣ ψ0⟩

∞

∫
−∞

dxψ∗0(x) [−
h̵2

2m

d2

dx2
+ V (x)]ψ0(x) (2.324)

would be infinite because V (x) = V0 = ∞ outside [0, L]. Thus, a necessary
condition for ⟨H⟩ to be finite is for ψ0(x) to vanish outside [0, L].

It is true, however, that the set

⎧⎪⎪⎨⎪⎪⎩
un(x) =

√
2

L
sin

nπx

L

⎫⎪⎪⎬⎪⎪⎭
(2.325)

is complete for square-integrable functions which vanish outside [0, L]. The
reasoning goes as follows. We know that

{ei
2πnx
2L }

n=0,±1,±2,...
(2.326)

is complete on [−L,L] (just Fourier transform stuff). We have

ei
πnx
L = cos

πnx

L
+ i sin πnx

L
→ {cos

πnx

L
, sin

πnx

L
} (2.327)

for n = 0,1,2, .... is complete on [−L,L].

Let f(x) be an arbitrary function on [0, L]. Let

g(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x) for x ∈ [0, l]
−f(x) for x ∈ [−L,0]

(2.328)

g(x) can be expanded in terms of

{cos
πnx

L
, sin

πnx

L
} (2.329)

that is,

g(x) =
∞
∑
n=0

An cos
πnx

L
+

∞
∑
n=1

Bn sin
πnx

L
(2.330)
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But,

An ∝
L

∫
−L

dx cos
πnx

L
g(x) = 0 (2.331)

because g(x) is an odd function of x. Thus, g(x) can be expanded in terms of

{sin
πnx

L
} (2.332)

But this expansion must be valid in the subinterval [0, L], where g(x) = f(x).
Therefore,

{sin
πnx

L
} (2.333)

is complete on [0, L].

Note: a.e. on [0, L]

f(x) =
∞
∑
n=1

Bn sin
πnx

L
(2.334)

For example, if f(0) ≠ 0, then the endpoint x = 0 must be one of the points at
which the expansion doesn’t work (because each sinπnx/L = 0 at x = 0). It is
of no consequence, however, that the expansion does not hold on such a set of
measure zero!

Let ψ(x, t0) = ψ0(x) be an arbitrary wave function describing the particle con-
strained to move along a frictionless horizontal wire between two rigid walls.
Assume that ψ0(x) = 0 for x < 0 and x > L. Then we have

ψ0(x) =
∞
∑
n=1

cnun(x)

un(x) =
√

2

L
sin

nπx

L
(non - degenerate)

En = n2 π
2h̵2

2mL2
, ⟨un ∣ um⟩ = δnm

which gives expansion coefficients

cn = ⟨un ∣ ψ0⟩ =
L

∫
0

dx

√
2

L
sin

nπx

L
ψ0(x) (2.335)

and

℘(En, t0) =
∣cn∣2

⟨ψ0 ∣ ψ0⟩
(2.336)

is the probability that an energy measurement at t0 will yield the value En.
Only eigenvalues of Hop can be obtained when an energy measurement is made.
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Figure 2.13: Wave Function

Example

Consider the wave function shown in Figure 2.13 above. We have

ψ0(x) =
⎧⎪⎪⎨⎪⎪⎩

1/
√
L for 0 ≤ x ≤ L

0 otherwise
(2.337)

A particle described by such a wave function can be found anywhere between
0 and L with equal probability. Note that ψ0(x) is discontinuous at x = 0 and
x = L. That is fine since we only require that the energy eigenfunctions un(x)
have to be continuous!

We then have

⟨ψ0 ∣ ψ0⟩ =
L

∫
0

dx
1√
L

1√
L
= 1 (2.338)

or it is normalized. Then using

ψ0(x) =
∞
∑
n=1

cnun(x) (2.339)

we have

cn = ⟨un ∣ ψ0⟩ =
L

∫
0

dx

√
2

L
sin

nπx

L
ψ0(x)

=
L

∫
0

dx

√
2

L
sin

nπx

L

√
1

L
=

√
2

L

L

nπ
[− cos

nπx

L
]
L

0

=
√

2

nπ
[− cosnπ + 1] =

⎧⎪⎪⎨⎪⎪⎩

0 for n even
2
√

2
nπ

for n odd
(2.340)

Therefore

℘(En, t0) =
∣cn∣2

⟨ψ0 ∣ ψ0⟩
=
⎧⎪⎪⎨⎪⎪⎩

0 for n even
8

n2π2 for n odd
(2.341)
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which is the probability of measuring the energy eigenvalue EN when we are
in the state described by ψ0(x) at t0. Note that it is essentially the absolute
square of the expansion coefficient ∣cn∣2.

Note: Since
∑
all n

℘(En, t0) = 1 (2.342)

we have

∑
n=1,3,5,....

8

n2π2
= 1⇒ ∑

n=1,3,5,....

1

n2
= π

2

8
(2.343)

which is a rather interesting mathematical result.

Suppose that we want to calculate ⟨H⟩ for the above state. We cannot use

⟨H⟩ = ⟨ψ0 ∣Hψ0⟩
⟨ψ0 ∣ ψ0⟩

= 1

⟨ψ0 ∣ ψ0⟩

∞

∫
−∞

dxψ∗0(x) [−
h̵2

2m

d2

dx2
+ V (x)]ψ0(x)

because ψ0(x) is discontinuous at x = 0 and x = L and therefore d2ψ0(x)/dx2

is not defined at these points. These two isolated points cannot be omitted
from the integral because d2ψ0(x)/dx2 is infinite at these points and can give a
non-zero contribution to the integral. The correct way to proceed in this case
is to use the definition of the average value:

⟨H⟩ = ∑
all n

℘(En, t0)En = ∑
n=1,3,5,....

8

n2π2

n2π2h̵2

2mL2
=∞ (2.344)

We must now consider those physical quantities whose maximal set of ON eigen-
functions {u(α)n } is not complete in L2. An arbitrary square-integrable wave

function cannot be expanded in terms of the {u(α)n } and therefore, the results
of previous discussions cannot be used to calculate the probability distribution
of measurements.

Let A be the hermitian operator corresponding to some physical quantity. A
must satisfy some additional, technical assumptions for the following discussion
to be valid. We will not go into such technicalities here.

Let us generalize the eigenvalue equation for A:

Aφ(x⃗) = aφ(x⃗) (2.345)

where we now require

1. φ(x⃗) is not identically zero
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2.
⟨φ ∣ ψ⟩ = ∫ d3xφ∗(x⃗)ψ(x⃗)

is finite for almost every square-integrable function ψ(x⃗).

Note: If φ(x⃗) is normalizable, then ⟨φ ∣ψ⟩ is finite for every square-integrable
function ψ(x⃗). Thus, our generalized eigenvalue equation has all the normaliz-
able eigenfunctions we considered before. However, there exist non-normalizable
functions obeying condition (2). For example, f(x⃗) = eik⃗⋅x⃗ has:

⟨f ∣ f⟩ = ∫ d3x ∣eik⃗⋅x⃗∣
2
=∞

and
⟨f ∣ ψ⟩ = ∫ d3xe−ik⃗⋅x⃗ψ(x⃗)

exists a.e. by the Fourier transform theorem.

We have thus enlarged the space of functions (called a rigged Hilbert space) to
which an eigenfunction can belong. However, the wave function for a particle
must still be normalizable.

Note: φ(x⃗) does not obey condition (2) if ∣φ(x⃗)∣→∞ as ∣x∣→∞ or ∣y∣→∞ or
∣z∣ → ∞. For simplicity, let us demonstrate this for a function of one variable
φ(x). There are square-integrable functions ψ(x) which go as 1/x as ∣x∣ → ∞
and ∞

∫
−∞

dx ∣ψ(x)∣2

converges at the limits of integration
∞

∫
−∞

dx
1

x2
= − 1

x
→ 0

For such functions,
⟨φ ∣ ψ⟩ = ∫ d3xφ∗(x⃗)ψ(x⃗) (2.346)

does not converge at the limits of integration,
∞

∫
−∞

dx
1

x
φ∗ → (∞) × (`n∞)→∞ (2.347)

The spectrum of A is the set of all eigenvalues of A , where the eigenfunctions
must obey conditions (1) and (2). The following results are from the spectral
theory of self-adjoint operators discussed in Chapter 4 of this book. Some of the
results we have already proved, others require detailed mathematical discussions
because the inner product of two eigenfunctions, each obeying condition (2),
may not exist, that is, ⟨φ1 ∣φ2⟩ does not necessarily exist for non-normalizable
φ1 and φ2.
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Discrete Part of the Spectrum

In this case, the corresponding eigenfunctions are normalizable. Now

Aφ(α)
n (x⃗) = anφ(α)

n (x⃗) (2.348)

where α labels linearly independent eigenfunctions having the same eigenvalue.
The eigenvalues an are countable (n = 1,2,3, .....), that is, the eigenvalues do
not vary over a continuous range of values. This is the separability property of
L2.

1. Each an is real.

2. Eigenfunctions belonging to different eigenvalues are orthogonal.

3. an may be degenerate. gn−fold degeneracy implies one can construct gn
orthogonal eigenfunctions belonging to an, (φ(1)

n , ..., φ
(gn)
n ), such that any

eigenfunction corresponding to the eigenvalue an can be expressed as a
linear superposition of the (φ(1)

n , ..., φ
(gn)
n ).

4. ⟨φ(α)
m ∣ φ(α)

m ⟩ = N (α)
m , which is a finite, non-zero constant (this follows from

the normalizability of the φ(α)
n . Therefore,

⟨φ(α)
m ∣ φ(β)

n ⟩ = N (α)
m δmnδαβ (2.349)

Let
u(α)m = 1

√
N

(α)
m

φ(α)
m (2.350)

Therefore, ⟨u(α)m ∣ u(β)n ⟩ = δmnδαβ , that is, the {u(α)m } are ON eigenfunc-
tions (normalizable) and we have

Au(α)m = amu(α)m (2.351)

Continuous Part of the Spectrum

In this case, the corresponding eigenfunctions are not normalizable, but obey
the conditions (1) and (2) stated earlier. Now

Aφ(α)
cν (x⃗) = acνφ(α)

cν (x⃗) (2.352)

where the subscript c stands for continuum. α labels linearly independent eigen-
functions having the same eigenvalue. The eigenvalues acν vary over a continu-
ous range of values (ν s a continuous variable).

1. Each acν is real.

2. Eigenfunctions belonging to different eigenvalues are orthogonal.
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3. acν may be degenerate. gν−fold degeneracy implies one can construct gν
orthogonal eigenfunctions belonging to acν , (φ(1)

cν , ..., φ
(gν)
cν ), such that any

eigenfunction corresponding to the eigenvalue acν can be expressed as a
linear superposition of the (φ(1)

cν , ..., φ
(gν)
cν ).

4. ⟨φ(α)
cν ∣ φ(α)

cν ⟩ = ∞ because φ(α)
cν is not normalizable. We therefore expect

⟨φ(α)
cµ ∣ φ(β)

cν ⟩ to be proportional to the Dirac delta function δ(µ − ν)δαβ .

⟨φ(α)
cµ ∣ φ(β)

cν ⟩ = N (α)
µ δ(µ − ν)δαβ =

⎧⎪⎪⎨⎪⎪⎩

0 for µ ≠ ν , α ≠ β
∞ for µ = ν , andα = β

(2.353)

Let
u(α)cµ = 1

√
N

(α)
µ

φ(α)
cµ (2.354)

Therefore, ⟨u(α)cµ ∣ u(β)cν ⟩ = δ(µ − ν)δαβ where Au(α)cµ = acµu(α)cµ .

5. Continuum eigenfunctions are orthogonal to discrete eigenfunctions

⟨u(α)n ∣ u(β)cν ⟩ = 0 (2.355)

Theorem(proof omitted)

Let {u(α)n , u
(β)
cν } be a maximal ON set of discrete and continuum eigenfunctions

of the hermitian operator A. Here, maximal means that the set contains eigen-
functions for all eigenvalues with α and β going through their full set of values for
each eigenvalue (α = 1, .., gn for an and β = 1, ..., gν for acν). Then {u(α)n , u

(β)
cν }

is complete in L2, that is, any square-integrable ψ(x⃗) can be written:

ψ(x⃗) =∑
n

gn

∑
α=1

c(α)n u(α)n (x⃗) + ∫
entire
continuum

dν
gν

∑
β=1

d(β)ν u(β)cν (x⃗) (2.356)

Note: The continuum eigenvalues may require labeling by more than one con-
tinuous index ν = (ν1, ν2, ....). In such a case, dν = dν1 dν2...... and

δ(ν − µ) = δ(ν1 − µ1)δ(ν2 − µ2)..... (2.357)

One can easily solve for the coefficients in the expansion.

⟨u(γ)m ∣ ψ⟩ =∑
n

gn

∑
α=1

c(α)n ⟨u(γ)m ∣ u(α)n ⟩ + ∫
entire
continuum

dν
gν

∑
β=1

d(β)ν ⟨u(γ)m ∣ u(β)cν ⟩

=∑
n

gn

∑
α=1

c(α)n δmnδγα + ∫
entire
continuum

dν
gν

∑
β=1

d(β)ν (0) = c(γ)m (2.358)
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which is finite by earlier condition (2) and

⟨u(γ)cµ ∣ ψ⟩ =∑
n

gn

∑
α=1

c(α)n ⟨u(γ)cµ ∣ u(α)n ⟩ + ∫
entire
continuum

dν
gν

∑
β=1

d(β)ν ⟨u(γ)cµ ∣ u(β)cν ⟩

=∑
n

gn

∑
α=1

c(α)n (0) + ∫
entire
continuum

dν
gν

∑
β=1

d(β)ν δ(µ − ν)δγβ = d(γ)µ (2.359)

which is finite by earlier condition (2).

Note: The wave function for a particle must be normalizable (so that a prob-
ability interpretation is possible). However, the CON set {u(α)n , u

(β)
cν }, in terms

of which the wave function can be expanded, may contain non-normalizable
eigenfunctions. Let ψ(x⃗, t0) be the wave function for the particle at t0.

ψ(x⃗, t0) = u(α)n (x⃗) is possible (u(α)n normalizable)

ψ(x⃗, t0) = u(α)cν (x⃗) is not allowed (u(α)cν not normalizable)

However,

ψ(x⃗, t0) = ( 1

∆ν
)

1/2

∫
∆ν
region

dν u(α)cν (x⃗) (2.360)

with α fixed and ∆ν some region in the continuum, is a normalizable wave
function for any ∆ν ≠ 0 (no matter how small but non-zero). Then

⟨ψ ∣ ψ⟩ = ( 1

∆ν
)∫
∆ν

dν ∫
∆ν

dν′ ⟨u(α)cν ∣ u(α)cν′ ⟩

= ( 1

∆ν
)∫
∆ν

dν ∫
∆ν

dν′δ(ν − ν′)

= ( 1

∆ν
)∫
∆ν

dν = 1

which is thus normalizable. The spread of values produces a normalizable wave
function.

Basic Problem

Suppose we are given a physical quantity A (hermitian). We then solve the
eigenvalue equation as described earlier and form the CON set of eigenfunctions
{u(α)n , u

(β)
cν }. Let ψ(x⃗, t0) = ψ0(x⃗) be the wave function for the particle at time

t0. A measurement of A is made at time t0.

What values can be obtained from the measurement and with what probability?

120



We have
ψ0(x⃗) = ∑

n,α

c(α)n u(α)n (x⃗) + ∫ dν∑
β

d(β)ν u(β)cν (x⃗) (2.361)

so that

⟨ψ0 ∣ ANψ0⟩ = ⟨
∑
n,α

c
(α)
n u

(α)
n (x⃗)

+ ∫ dν∑
β
d
(β)
ν u

(β)
cν (x⃗)

RRRRRRRRRRRRRRR

AN
⎛
⎜⎜
⎝

∑
n,α

c
(α)
n u

(α)
n (x⃗)

+ ∫ dν∑
β
d
(β)
ν u

(β)
cν (x⃗)

⎞
⎟⎟
⎠
⟩

= ⟨
∑
n,α

c
(α)
n u

(α)
n (x⃗)

+ ∫ dν∑
β
d
(β)
ν u

(β)
cν (x⃗)

RRRRRRRRRRRRRRR

∑
n,α

c
(α)
n aNn u

(α)
n (x⃗)

+ ∫ dν∑
β
d
(β)
ν aNcνu

(β)
cν (x⃗)

⟩

= ∑
n,α

aNn ∣c(α)n ∣
2
+ ∫ dν∑

β

aNcν ∣d(β)ν ∣
2

(2.362)

where we have used orthonormality. Therefore, the N th moment of the proba-
bility distribution of measurements of A is:

⟨AN ⟩ =
⟨ψ0 ∣ ANψ0⟩
⟨ψ0 ∣ ψ0⟩

=∑
n

aNn

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
α
∣c(α)n ∣

2

⟨ψ0 ∣ ψ0⟩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+ ∫ dν aNcν

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
β
∣d(β)ν ∣

2

⟨ψ0 ∣ ψ0⟩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(2.363)

The moments ⟨AN ⟩ for N = 0,1,2, .......uniquely determine the probability dis-
tribution of measurements of A. Therefore, we need only construct a probability
distribution which gives the above moments.

1. Let ℘(an, t0) be the probability that a measurement of A at t0 will yield
the discrete eigenvalue an.

℘(an, t0) =
1

⟨ψ0 ∣ ψ0⟩
∑
α

∣c(α)n ∣
2

(2.364)

2. Let ℘̃(acν , t0) be the probability that a measurement of A at t0 will yield
a value in the continuum between acν and acν+dν . (℘̃(acν , t0) is actually
the probability density).

℘̃(acν , t0) =
1

⟨ψ0 ∣ ψ0⟩
∑
β

∣d(β)ν ∣
2

(2.365)

3. The probability a measurement of A at t0 will yield a value not in the
spectrum of A is zero.
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For non-degenerate eigenvalues, the sums over α and β do not appear.

Example: Consider one-dimensional motion (x−axis). Let

A = pxop =
h̵

i

d

dx
(2.366)

Then
Aφp = pxopφp =

h̵

i

dφp

dx
= pφp (2.367)

where p = constant eigenvalue. Therefore,

dφp

dx
= ip
h̵
φp ⇒ φp(x) = Npei

px
h̵ (2.368)

First we show that p must be real. Let p = α + iβ. Then

φp(x) = Npei
αx
h̵ e−

βx
h̵ (2.369)

The term e−βx/h̵ goes to ∞ for x → +∞ when β < 0 and goes to ∞ for x → −∞
when β > 0. Therefore, we must have β = 0 for condition (2) to be satisfied.
Thus,

φp(x) = Npei
px
h̵ (2.370)

with p any real number in the interval [−∞,+∞], which is therefore the spectrum
of p. Note that the spectrum of p is entirely a continuum. Contrast this with
the spectrum of Lzop, which is entirely discrete.
12pt] Now,

⟨φp′ ∣ φp⟩ = N∗
p′Np

∞

∫
−∞

dxe−i
p′x
h̵ ei

px
h̵ = N∗

p′Nph̵

∞

∫
−∞

dyeiy(p−p
′)

= N∗
p′Nph̵(2π)δ(p − p′) = (2πh̵) ∣Np∣2 δ(p − p′) (2.371)

since the expression vanishes for p ≠ p ′. Letting Np = 1/
√

2πh̵, we obtain ON
eigenfunctions

up(x) =
1√
2πh̵

ei
px
h̵ with ⟨up′ ∣ up⟩ = δ(p − p′) (2.372)

Notice that we are using p for the eigenvalue acν as well as for the continuous
index ν.

Now let ψ(x⃗, t0) be a square-integrable wave function. The completeness of
{up(x)} implies that

ψ(x, t0) =
∞

∫
−∞

dp ψ̃(p, t0)up(x) (2.373)
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so that

ψ(x, t0) =
∞

∫
−∞

dp√
2πh̵

ei
px
h̵ ψ̃(p, t0) (2.374)

ON implies that the expansion coefficient is

ψ̃(p, t0) = ⟨up ∣ ψ⟩ =
∞

∫
−∞

dx√
2πh̵

e−i
px
h̵ ψ(x, t0) (2.375)

which agrees with the Fourier transform theorem. Furthermore,

℘̃(p, t0) =
1

⟨ψ0 ∣ ψ0⟩
∣ψ̃(p, t0)∣

2
(2.376)

using the recipe we developed earlier for ℘̃(p, t0). This result agrees with Postu-
late 2 with ℘̃(p, t0) a new notation for the momentum probability distribution.

Notes

1. Let me stress that the above derivations of ℘(an, t0) and ℘̃(acν , t0) are
valid only if the eigenfunctions {u(α)n , u

(β)
cν } are orthonormal :

⟨u(α
′)

n′ ∣ u(α)n ⟩ = δn′nδα′α , ⟨u(β
′)

cν′ ∣ u(β)cν ⟩ = δ(ν′ − ν)δβ′β , ⟨u(α)n ∣ u(β)cν ⟩ = 0

Although the eigenfunctions {u(α)n , u
(β)
cν } must be normalized (the contin-

uum eigenfunctions are normalized to a Dirac delta function), ψ(x⃗, t0) =
ψ0(x⃗) need not be normalized (⟨ψ0 ∣ψ0⟩ is only required to be finite and
non-zero).

2. Consider the two wave functions ψ0(x⃗) and ψ̂0(x⃗) = Zψ0(x⃗), where Z is
some complex constant. ψ0(x⃗) and ψ̂0(x⃗) determine the same probability
distributions ℘(an, t0) and ℘̃(acν , t0).

Proof

⟨ψ̂0 ∣ ψ̂0⟩ = ∣Z ∣2 ⟨ψ0 ∣ ψ0⟩

ĉ(α)n = ⟨u(α)n ∣ ψ̂0⟩ = Z ⟨u(α)n ∣ ψ0⟩ = Zc(α)n

Similarly,
d̂(β)ν = Zd(β)ν (2.377)

Therefore,

℘̂(an, t0) =
1

⟨ψ̂0 ∣ ψ̂0⟩
∣ĉ(α)n ∣

2
= 1

⟨ψ0 ∣ ψ0⟩
∣c(α)n ∣

2
= ℘(an, t0) (2.378)

If the wave function at t0 is known, then the probability distribution of
measurements of any physical quantity at time t0 can be determined.
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2.3. Collapse

A Question

A natural question now arises: How can one prepare a particle so that its wave
function at t0 is completely determined (up to an arbitrary multiplicative con-
stant, which has no physical significance according to note (2) above)?

Experimental Result: If a measurement of A at time t yields the value an (or
a continuum value in the range acν to acν+dν), then a subsequent measurement
of A performed immediately after the first measurement will yield the value an
(or a continuum value in the same range as before) with certainty. The second
measurement must be made immediately after the first so that the forces acting
on the particle do not have time enough to alter the state of the particle. Thus,
a measurement tells us something about a particle right after the measurement
- an immediate repetition of the measurement will yield the same result as did
the first measurement. We note here that this assumption of repeatable mea-
surements is an assumption which is it is not always possible to accomplish in
the laboratory.

This experimental result motivates the following postulate.

2.3.1. Postulate 4: Collapse of the Wave Function

Let {u(α)n , u
(β)
cν } be a CON set of eigenfunctions of the physical quantity A. Let

ψ(x⃗, t0) = ψ0(x⃗) so that

ψ0(x⃗) = ∑
n,α

c(α)n u(α)n (x⃗) + ∫ dν∑
β

d(β)ν u(β)cν (x⃗) (2.379)

1. If a measurement of A at t0 yields the value an (we are assuming that this
measurement is made with sufficient accuracy so that no other discrete
eigenvalue lies within the experimental uncertainty), then the particle’s
wave function right after this measurement is

ψ′0(x⃗) =∑
α

c(α)n u(α)n (x⃗) (2.380)

that is, the wave function collapses to that part of ψ0(x⃗) which is an
eigenfunction of A with eigenvalue an (linear superposition of degenerate
states or a single state if eigenvalue is non-degenerate). A measurement
of A for the state ψ′0(x⃗) will yield the result an with certainty. Note that
ψ′0(x⃗) cannot be identically zero because an can be obtained from the
measurement only if

℘(an, t0) =
1

⟨ψ0 ∣ ψ0⟩
∑
α

∣c(α)n ∣
2
≠ 0 (2.381)
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2. If a measurement of A at t0 yields a continuum value measured to an
accuracy such that this value lies in the range acν to acν+dν , then the
particle’s wave function right after this measurement is

ψ′0(x⃗) =
ν+dν

∫
ν

dν∑
β

d(β)ν u(β)cν (x⃗) (2.382)

that is, the wave function collapses to that part of ψ0(x⃗) which is an eigen-
function of A with eigenvalues in the range acν to acν+dν (with certainty).
Note that ψ′0(x⃗) cannot be identically zero because a measurement will
yield a value in the range acν to acν+dν only if

ν+dν

∫
ν

dν℘̃(acν , t0) =
1

⟨ψ0 ∣ ψ0⟩

ν+dν

∫
ν

dν∑
β

∣d(β)ν ∣
2
≠ 0 (2.383)

The collapse of the wave function has a simple geometric interpretation when
the spectrum of A is entirely discrete, that is

ψ0(x⃗) = ∑
n,α

c(α)n u(α)n (x⃗) (2.384)

with no continuum eigenfunctions present. ψ0 belongs to the vector space of
square-integrable functions and {u(α)n } is a CON set of basis vectors in this
infinite-dimensional vector space. I will draw only three of the orthogonal basis
vectors - the other basis vectors are in orthogonal directions. In general, the
coefficients c(α)n are complex; however, my diagrams below are necessarily of a
real vector space, c(α)n real. The superscript α is not needed for eigenfunctions
corresponding to non-degenerate eigenvalues.

Case #1: All non-degenerate eigenvalues. Eigenfunctions and corresponding
eigenvalues are:

u1 ↔ a1 , u2 ↔ a2 , u3 ↔ a3 (2.385)

as shown in Figure 2.14 below.

Let ⟨ψ0 ∣ ψ0⟩ = 1 and ψ0 = c1u1+c2u2+c3u3+ ...... as shown above. We then have
℘(a1, t0) = ∣c1∣2. If a measurement of A yields a1, the wave function collapses
to the vector c1u1, which is physically equivalent to u1 and similarly for a2 and
a3.
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Figure 2.14: Vectors in Hilbert Space

Case #2: 2-fold degenerate eigenvalue and non-degenerate eigenvalue. Eigen-
functions and corresponding eigenvalues are:

u
(1)
1 ↔ a1 , u

(2)
1 ↔ a1 , u2 ↔ a2 (2.386)

as shown in Figure 2.15 below:

Figure 2.15: Vectors in Hilbert Space

Let ⟨ψ0 ∣ ψ0⟩ = 1 and ψ0 = c(1)1 u
(1)
1 + c(2)1 u

(2)
1 + c2u2 + ...... as shown above. We

then have ℘(a1, t0) = ∣c(1)1 ∣
2
+ ∣c(2)1 ∣

2
. If a measurement of A yields a1, the wave

function collapses to the vector c(1)1 u
(1)
1 +c(2)1 u

(2)
1 . We also have ℘(a2, t0) = ∣c2∣2.

If a measurement of A yields a2, the wave function collapses to the vector c2u2,
which is physically equivalent to u2.

This simple geometrical picture does not hold when the spectrum of A has a
continuum part because the continuum eigenfunctions are not square-integrable
and therefore do not belong to L2, the space in which ψ0 lies. The collapse of
the wave function onto continuum eigenfunctions cannot be pictured as a simple
projection onto basis vectors in L2.
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For the following discussion, I will assume that the spectrum of A is entirely
discrete so that {u(α)n } is a CON set of eigenfunctions. This is done only for
simplicity of notation; all of the following results generalize in an obvious manner
when A has both discrete and continuum parts to its spectrum.

I would like to make a set of measurements on a particle so that, from the results
of these measurements, I will know what the particle’s wave function is (up to
an unimportant multiplicative constant) immediately after the measurements,
that is, I would like to prepare the particle (by making certain measurements)
so that its wave function is known at a specified time.

Suppose we write
ψ(x⃗, t0) = ψ0(x⃗) = ∑

n,α

c(α)n u(α)n (x⃗) (2.387)

In this situation, the eigenfunctions {u(α)n } are known from solving the eigen-

value equation forA. However, ψ0(x⃗) and the c(α)n have not yet been determined.

A measurement of A at t0 yields the value aN . If aN is non-degenerate (eigen-
function u

(1)
N ), the wave function collapses to ψ′0(x⃗) = c

(1)
N u

(1)
N and the wave

function right after the measurement is known up to the multiplicative constant
c
(1)
N . If aN is degenerate (eigenfunctions u(1)N , u

(2)
N , ...., u

(g)
N ), the wave function

collapses to

ψ′0(x⃗) =
g

∑
α=1

c
(α)
N u

(α)
N (x⃗) (2.388)

and the wave function right after the measurement is not known up to a multi-
plicative constant because just knowing the eigenvalue aN does not tell us the
particular linear superposition of u(1)N , u

(2)
N , ...., u

(g)
N that results, that is, the co-

efficients c(1)N , c
(2)
N , ...., c

(g)
N have not yet been determined. More measurements

must be performed on the particle in order to collapse the wave function fur-
ther.

However, one must be careful in choosing which subsequent measurements to
make. A measurement of another physical quantity B will usually disturb the
wave function ψ′0(x⃗), that is, collapse ψ′0(x⃗) to ψ′′0 (x⃗), an eigenfunction of B
such that the wave function ψ′′0 (x⃗) after this second measurement is no longer
an eigenfunction of A with eigenvalue aN . That means that the subsequent
measurement of B will usually disturb the particle so that we destroy any prepa-
ration of the particle accomplished by the first measurement (of A).
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An outline of this argument is as follows:

ψ(x⃗, t0) = ψ0(x⃗)
Measurement of A yields aN
Wave function collapses to ψ′0(x⃗) where Aψ′0(x⃗) = aNψ′0(x⃗)
Subsequent measurement of B yields bM
Wave function collapses to ψ′′0 (x⃗) where Bψ′′0 (x⃗) = bMψ′′0 (x⃗)
Is ψ′′0 (x⃗) still an eigenfunction of A with eigenvalue aN?

Assume that it is. Then we have

Aψ′′0 (x⃗) = aNψ′′0 (x⃗)
BAψ′′0 (x⃗) = BaNψ′′0 (x⃗) = aNBψ′′0 (x⃗) = aNbMψ′′0 (x⃗)
ABψ′′0 (x⃗) = AbMψ′′0 (x⃗) = bMAψ′′0 (x⃗) = bMaNψ′′0 (x⃗)
[A,B]ψ′′0 (x⃗) = 0

Therefore, for ψ′′0 (x⃗) to be an eigenfunction of both A and B, we must have
[A,B]ψ′′0 (x⃗) = 0 or [A,B] = 0. For arbitrary observable quantities A and B,
this is usually not true, because [A,B] is not necessarily zero. Thus, ψ′′0 (x⃗) will
usually not remain an eigenfunction of A.

Definition: Let A and B be the hermitian operators corresponding to two
physical quantities. A and B are said to be compatible if one can find a CON
set of functions which are simultaneously eigenfunctions of A and B. We say
there exists a CON set of simultaneous eigenfunctions of A and B if A and B
are compatible.

Note that two operators need not be compatible for them to possess some simul-
taneous eigenfunctions. Compatibility requires that the two operators possess
a complete set of simultaneous eigenfunctions.

Therefore, if {v(α)m,n(x⃗)} = CON set of simultaneous eigenfunction of A and B,
then

Av(α)m,n(x⃗) = amv(α)m,n(x⃗) , Bv(α)m,n(x⃗) = bnv(α)m,n(x⃗) (2.389)

where α labels the linearly independent eigenfunctions having the same aN and
bM .

Comments

1. {v(α)m,n(x⃗)} is a CON set of wave functions for which both A and B have

precise values, that is, ∆A = 0 = ∆B for each wave function v(α)m,n(x⃗).
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2. Let
ψ(x⃗, t0) = ψ0(x⃗) = ∑

m,n,α

c(α)m,nv
(α)
m,n(x⃗) (2.390)

Note that the eigenfunctions {v(α)m,n(x⃗)} are known from solving the eigen-

value equations for A and B. However, ψ0(x⃗) and c(α)m,n have not yet been
determined.

Suppose that we measure A and obtain the value aM . The wave function
collapses to

ψ′0(x⃗) = ∑
n,α

c
(α)
M,nv

(α)
M,n(x⃗) (2.391)

Suppose that we measure B and obtain the value bN . The wave function
collapses to

ψ′′0 (x⃗) =∑
α

c
(α)
M,Nv

(α)
M,N(x⃗) (2.392)

Notice that ψ′′0 (x⃗) is still an eigenfunction of A with eigenvalue aM . The
measurement of B has not disturbed the value of A (when A and B are
compatible). In this sense A and B are truly compatible.

3. Let A and B be compatible. Let {u(β)m (x⃗)} be any CON set of eigenfunc-
tions of A. This is not the only CON set of eigenfunctions of A if some of
the eigenvalues are degenerate - there are different possible choices for the
linearly independent eigenfunctions belonging to a degenerate eigenvalue.
The given eigenfunctions {u(β)m (x⃗)} need not be simultaneous eigenfunc-
tions of B. The compatibility of A and B implies only that there exists
some CON set of eigenfunctions of both A and B simultaneously.

Suppose A and B are compatible. Suppose we measure A (obtaining the value
aM ) and then B (obtaining the value bN ). As in comment (2) above, the wave
function right after these compatible measurements is

ψ′′0 (x⃗) =∑
α

c
(α)
M,Nv

(α)
M,N(x⃗) (2.393)

If there are two or more ON eigenfunctions corresponding to aM and bN , ψ′′0 (x⃗)
is still not completely known (up to a multiplicative constant) because we do
not yet know the individual coefficients c(1)M,N , c

(2)
M,N , ...... For such a case, other

compatible measurements must be made on the particle until the wave function
has collapsed to a function that is completely known (up to a multiplicative
constant).

Definition: Let A, B, C, ....., Q be the hermitian operators corresponding
to some physical quantities. A, B, C, ....., Q are said to from a complete
set of compatible observables if there exists one, and only one, CON set of
simultaneous eigenfunctions of A, B, C, ....., Q. (2 CON sets are not considered
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different if the functions of one set differ from the functions of the other set
by multiplicative constants of modulus unity). One can prove the existence of
complete sets of compatible observables, but we will not do that here.

Therefore, if {v`mn....(x⃗)} = CON set of simultaneous eigenfunction of A, B, C,
....., Q, then

Av`mn....(x⃗) = a`v`mn....(x⃗)
Bv`mn....(x⃗) = bmv`mn....(x⃗)
Cv`mn....(x⃗) = cnv`mn....(x⃗)
.............................

.............................

Note that we have used the fact that if A, B, C, ....., Q form a complete set of
compatible observables, then that implies that there is only one eigenfunction
(determined up to an arbitrary multiplicative constant) corresponding to given
eigenvalues a`, bm, cn, ........

1. It is possible for a single operator A by itself to form a complete set of
compatible observables. The operator A need only have eigenvalues which
are all non-degenerate: if the eigenvalues of A are all non-degenerate,
then a given eigenvalue has only one linearly independent corresponding
eigenfunction and there exists only one CON set of eigenfunctions of A.

Two different complete sets of compatible observables A, B, C, ..... and
A′, B′, C ′, ..... need not have the same number of operators.

2. For
ψ(x⃗, t0) = ψ0(x⃗) = ∑

`,m,n,....

K`mn...v`mn...(x⃗) (2.394)

Note that the eigenfunctions {v`mn...(x⃗)} are known from solving the
eigenvalue equations for A, B, C, ..... However, ψ0(x⃗) and the expan-
sion coefficients K`mn... have not yet been determined.

Suppose we measure A and obtain aL. The wave function then collapses
to

ψ′0(x⃗) = ∑
m,n,....

KLmn...vLmn...(x⃗) (2.395)

Suppose we measure B and obtain bM . The wave function then collapses
to

ψ′′0 (x⃗) = ∑
n,....

KLMn...vLMn...(x⃗) (2.396)

Suppose we measure all the remaining quantities C,.... in the complete
set of compatible observables A, B, C, .... and obtain the values cN , ........
The wave function will finally collapse to

ψ′′′....0 (x⃗) =KLMN...vLMN...(x⃗) (2.397)
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where no sum is present now.

Notice that ψ′′′....0 (x⃗) is now completely known (up to a multiplicative constant
KLMN.....). Thus, measurements made of a complete set of compatible observ-
ables collapse the wave function to a simultaneous eigenfunction of all these
observables - the experimental results aL, bM , cN , ...... completely determine this
simultaneous eigenfunction vLMN...(x⃗). Thus, the wave function of the particle
immediately after the measurements has been experimentally determined (up to
a multiplicative constant), that is, the measurements have prepared the particle
so that its wave function is known at a specified time.
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Chapter 3

Formulation of Wave Mechanics - Part 2

3.1. Complete Orthonormal Sets

Our earlier discussions give a simple criterion for observables to be compatible.
In particular, we showed that

A and B are compatible implies that [A,B] = 0

In addition we have the following theorem:

[A,B] = 0 implies that A and B are compatible

The proof of this theorem provides a practical way to construct a CON set of
simultaneous eigenfunctions of two compatible observables.

Proof : Let {u(β)n (x⃗)} be any CON set of eigenfunctions of A.

Au(β)n (x⃗) = anu(β)n (x⃗) (3.1)

and assume that [A,B] = 0. The above eigenfunctions of A need not be eigen-
functions of B. We will now show how to construct from the {u(β)n (x⃗)} a CON
set of simultaneous eigenfunctions of A and B - this will prove that A and B
are compatible.

(a) Consider a particular eigenvalue an. If it is non-degenerate, then the follow-
ing is valid:

u
(1)
n is the only linearly independent

eigenfunction corresponding to an

Claim: u(1)n is necessarily an eigenfunction of B also.

133



Proof : We have

ABu(1)n = BAu(1)n = Banu(1)n = anBu(1)n (3.2)

Therefore, Bu(1)n is an eigenfunction of A with eigenvalue an and since an is
non-degenerate, we must have Bu(1)n = (constant)u(1)n . But this says that u(1)n
is an eigenfunction of B.

Therefore, eigenfunctions of A corresponding to non-degenerate eigenvalues are
necessarily eigenfunctions of B also.

(b) Consider a particular eigenvalue an. If it is degenerate, then the following
is valid:

g-fold degeneracy implies that u(1)n , u
(2)
n , ...., u

(g)
n

are ON eigenfunctions of A with eigenvalue an
and any eigenfunction of A with eigenvalue an
can be expressed as a linear superposition of
these g eigenfucntions.

Now, consider the case where u(β)n is not necessarily an eigenfunction of B. We
have

ABu(β)n = BAu(β)n = Banu(β)n = anBu(β)n (3.3)

so that Bu(β)n is an eigenfunction of A with eigenvalue an and can be expressed
as a linear superposition of u(1)n , u

(2)
n , ...., u

(g)
n :

Bu(β)n (x⃗) =
g

∑
α=1

b
(n)
αβ u

(α)
n (x⃗)forβ = 1,2, ...., g (3.4)

Relabeling indices: b(n)αβ = ⟨u(α)n ∣ Bu(β)n ⟩. Note that α is the first index and β is
the second index on both sides of this equation.

b(n) is a g × g matrix where the matrix elements of b(n) are computed from the
given ON eigenfunctions of A corresponding to the eigenvalue an.

b(n) =

⎛
⎜⎜⎜⎜
⎝

b
(n)
11 b

(n)
12 . .

b
(n)
21 b

(n)
22 . .

. . . .

. . . .

⎞
⎟⎟⎟⎟
⎠

(3.5)

The matrix b(n) is hermitian, that is, the matrix is equal to the complex conju-
gate of its transposed matrix:

b
(n)
αβ = ⟨u(α)n ∣ Bu(β)n ⟩ = ⟨Bu(α)n ∣ u(β)n ⟩ = ⟨u(β)n ∣ Bu(α)n ⟩

∗
= b(n)∗βα (3.6)
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Claim: We can find g linearly independent functions, each of the form

g

∑
α=1

cαu
(α)
n (3.7)

which are eigenfunctions of B (they are obviously eigenfunctions of A corre-
sponding to eigenvalue an).

Proof : Let us show how to find the cα such that

g

∑
α=1

cαu
(α)
n

is an eigenfunction of B. We have

B
g

∑
α=1

cαu
(α)
n = b

g

∑
α=1

cαu
(α)
n where b = yet to be determined eigenvalue

B
g

∑
α=1

cαu
(α)
n =

g

∑
α=1

cαBu
(α)
n =

g

∑
α=1

cα
g

∑
β=1

b
(n)
βα u

(β)
n = b

g

∑
α=1

cαu
(α)
n = b

g

∑
β=1

cβu
(β)
n

g

∑
α=1

g

∑
β=1

cαb
(n)
βα u

(β)
n = b

g

∑
β=1

cβu
(β)
n

g

∑
β=1

u(β)n (
g

∑
α=1

b
(n)
βα cα − bcβ) = 0⇒ (

g

∑
α=1

b
(n)
βα cα) − bcβ = 0

for β = 1,2, ...., g. This result is true because the u(1)n , u
(2)
n , ...., u

(g)
n are linearly

independent.

Using the notation

c⃗ =
⎛
⎜⎜⎜
⎝

c1
c2
.
cg

⎞
⎟⎟⎟
⎠
= column vector (3.8)

this equation becomes
b(n)c⃗ = bc⃗ (3.9)

which is an eigenvalue equation for the g×g hermitian matrix b(n). Now (b(n) −
b)c⃗ = 0 has a non-trivial solution for c⃗ provided that (b(n) − b) is not invertible,
that is,

det(b(n) − b) = 0 (3.10)

or

det

⎛
⎜⎜⎜⎜
⎝

b
(n)
11 − b b

(n)
12 . .

b
(n)
21 b

(n)
22 − b . .

. . . .

. . . .

⎞
⎟⎟⎟⎟
⎠

= 0 (3.11)
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The various possible eigenvalues b can be found by solving this algebraic equa-
tion for b. For each b found, we can then find at least one non-trivial c⃗ satisfying
b(n)c⃗ = bc⃗ (just solve this equation for c⃗ with b given). It is a basic result of
linear algebra that the eigenfunctions of a hermitian matrix are complete (the
spectral theorem we stated in Chapter 2 is a generalization of this theorem to
hermitian operators on the infinite-dimensional space L2). This means that,
for the g × g hermitian matrix b(n), one can find g linearly independent column
vectors c⃗,

c⃗(1) =

⎛
⎜⎜⎜⎜
⎝

c
(1)
1

c
(1)
2

.

c
(1)
g

⎞
⎟⎟⎟⎟
⎠

, c⃗(2) =

⎛
⎜⎜⎜⎜
⎝

c
(2)
1

c
(2)
2

.

c
(2)
g

⎞
⎟⎟⎟⎟
⎠

, ......., c⃗(g) =

⎛
⎜⎜⎜⎜
⎝

c
(g)
1

c
(g)
2

.

c
(g)
g

⎞
⎟⎟⎟⎟
⎠

Several of these column vectors may correspond to the same eigenvalue b, while
others correspond to different eigenvalues. We have thus shown how to find g
linearly independent functions, each of the form

g

∑
α=1

cαu
(α)
n (3.12)

which are eigenfunctions of B (the eigenvalue is the value of b which determined
this c⃗) and of A (the eigenvalue is an).

Let me summarize the results (a) and (b) obtained so far in the proof of the
theorem.

[A,B] = 0 and {u(β)n (x⃗)} is any CON set of eigenfunctions of A

(a) If an is non-degenerate, then the only eigenfunction corresponding to an
is u(1)n and u(1)n is automatically a simultaneous eigenfunction of B.

(b) If an is degenerate(g-fold degeneracy), then u(1)n , u
(2)
n , ...., u

(g)
n are the cor-

responding ON eigenfunctions and u(β)n is not necessarily an eigenfunction
of B. Now form the g × g hermitian matrix b(n), whose matrix elements
are b(n)αβ = ⟨u(α)n ∣ Bu(β)n ⟩, α,β = 1,2, ...., g. Solve the equation b(n)c⃗ = bc⃗.
The eigenvalues b are obtained by solving det(b(n) − b) = 0. Knowing
the eigenvalues b, we can then find g linearly independent column vec-
tors c⃗(1), c⃗(2), ......, c⃗(g) which solve the eigenvalue equation. The g linearly
independent functions

φ(β)
n (x⃗) =

g

∑
α=1

c(β)α u(α)n (x⃗) , β = 1,2, ...., g (3.13)

are eigenfunctions of B (the eigenvalue is the value of b which determined
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this

c⃗(β) =

⎛
⎜⎜⎜⎜
⎝

c
(β)
1

c
(β)
2

.

c
(β)
g

⎞
⎟⎟⎟⎟
⎠

(3.14)

and of A (the eigenvalue is an). The φ(β)
n ’s which correspond to differ-

ent eigenvalues b are necessarily orthogonal; the φ(β)
n ’s which belong to

the same eigenvalue b can be constructed to be orthogonal by the Gram-
Schmidt process. All the φ(β)

n ’s can be normalized. Thus, one can always
find φ(β)

n ’s satisfying ⟨φ(α)
n ∣ φ(β)

n ⟩ = δαβ .

We now have a method for constructing a CON set of simultaneous eigenfunc-
tions of A and B. For each eigenvalue of A, we can find g CON simultaneous
eigenfunctions of A and B when the eigenvalue is g-fold degenerate (g = 1 means
a non-degenerate eigenvalue). Doing this for all the eigenvalues of A yields a
CON set of simultaneous eigenfunctions of A and B. The existence of a CON
set of simultaneous eigenfunctions implies that A and B are compatible.

Example: Construction of a CON set of simultaneous eigenfunctions of two
commuting hermitian operators.

Let the functions u(1)1 (x⃗), u(2)1 (x⃗), u2(x⃗), u3(x⃗), u4(x⃗), ...... be a CON set in L2.
Define the linear operators A and B by their action on this CON set:

A B

Au
(1)
1 = u(1)1 Bu

(1)
1 = u(2)1

Au
(2)
1 = u(2)1 Bu

(2)
1 = u(1)1

Au2 = 2u2 Bu2 = 2u2

Au3 = 3u3 Bu3 = 3u3

........................... .........................
Aun = nun Bun = nun

........................... .........................

Table 3.1: Definition of A and B

Note that u2(x⃗), u3(x⃗), u4(x⃗), ...... are simultaneous eigenfunctions of A and B,
while u(1)1 (x⃗), u(2)1 (x⃗) are degenerate eigenfunctions of A (eigenvalue = +1), but
are not eigenfunctions of B.

Notes:

1. A linear operator A is completely defined by specifying its action on some
CON set {v(α)n (x⃗)}: Av(α)n (x⃗) given for all n,α. This is true because an
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arbitrary φ(x⃗) can be written as

φ(x⃗) = ∑
n,α

c(α)n v(α)n (x⃗) (3.15)

Therefore,
Aφ(x⃗) = ∑

n,α

c(α)n Av(α)n (x⃗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
given

(3.16)

and thus, the action of A on any φ(x⃗) is determined. For example,

[A,B] = 0 if [A,B] v(α)n (x⃗) = 0 for all n,α

2. A linear operator A is hermitian if ⟨φ ∣ Aφ⟩ = ⟨Aφ ∣ φ⟩ for all φ(x⃗). But an
arbitrary φ(x⃗) can be written

φ(x⃗) = ∑
n,α

c(α)n v(α)n (x⃗) (3.17)

when {v(α)n (x⃗)} is some CON set. Therefore, A is hermitian if

⟨∑
n,α

c(α)n v(α)n (x⃗)
RRRRRRRRRRR
A ∑
m,β

c(β)m v(β)m (x⃗)⟩ = ⟨A∑
n,α

c(α)n v(α)n (x⃗)
RRRRRRRRRRR
∑
m,β

c(β)m v(β)m (x⃗)⟩

∑
n,α

c(α)∗n ∑
m,β

c(β)m ⟨v(α)n (x⃗) ∣ Av(β)m (x⃗)⟩ = ∑
n,α

c(α)∗n ∑
m,β

c(β)m ⟨Av(α)n (x⃗) ∣ v(β)m (x⃗)⟩

Because this must hold for arbitrary coefficients c(α)n , we conclude that A is
hermitian if ⟨v(α)n (x⃗) ∣ Av(β)m (x⃗)⟩ = ⟨Av(α)n (x⃗) ∣ v(β)m (x⃗)⟩ for all n,m.α, β. This
is a simple test for hermiticity when the action of A on a CON set is known.

Because A and B commute, we can find a CON set of simultaneous eigenfunc-
tions.

A’s eigenvalues 2,3,4, .... are non-degenerate and therefore the corresponding
eigenfunctions u2(x⃗), u3(x⃗), u4(x⃗), ...... are necessarily eigenfunctions of B also.

A’s eigenvalue 1 is 2−fold degenerate. u(1)1 (x⃗), u(2)1 (x⃗) are not eigenfunctions of
B. We form the 2 × 2 matrix b(n=1) where

b
(1)
αβ = ⟨u(α)1 ∣ Bu(β)1 ⟩ (3.18)

so that

b
(1)
11 = ⟨u(1)1 ∣ Bu(1)1 ⟩ = ⟨u(1)1 ∣ u(2)1 ⟩ = 0

b
(1)
22 = ⟨u(2)1 ∣ Bu(2)1 ⟩ = ⟨u(2)1 ∣ u(1)1 ⟩ = 0

b
(1)
12 = ⟨u(1)1 ∣ Bu(2)1 ⟩ = ⟨u(1)1 ∣ u(1)1 ⟩ = 1

b
(1)
21 = ⟨u(2)1 ∣ Bu(1)1 ⟩ = ⟨u(2)1 ∣ u(2)1 ⟩ = 1
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Therefore

b(n=1) = ( 0 1
1 0

) (3.19)

and we have

det(b(1) − b) = 0⇒ det( −b 1
1 −b ) = 0 = b2 − 1⇒ b = ±1 (3.20)

Case #1: b = +1

b(1)c⃗ + = c⃗ + ⇒ ( 0 1
1 0

)( c+1
c+2

) = ( c+1
c+2

)⇒ c+2 = c+1 (3.21)

Case #2: b = −1

b(1)c⃗ − = c⃗ − ⇒ ( 0 1
1 0

)( c−1
c−2

) = −( c−1
c−2

)⇒ c−2 = −c−1 (3.22)

Therefore, c+1u
(1)
1 + c+2u

(2)
1 = c+1(u

(1)
1 + u(2)1 ) is a simultaneous eigenfunction of A

(eigenvalue = +1) and of B (eigenvalue = +1) and c−1u
(1)
1 +c−2u

(2)
1 = c−1(u

(1)
1 −u(2)1 )

is a simultaneous eigenfunction of A (eigenvalue = +1) and of B (eigenvalue
= −1).

To normalize these functions we note that

⟨u(1)1 ± u(2)1 ∣ u(1)1 ± u(2)1 ⟩ = 2⇒ c±1 = 1√
2

(3.23)

Thus,
1√
2
(u(1)1 + u(2)1 ), 1√

2
(u(1)1 − u(2)1 ), u2, u3, u4, ........ (3.24)

with eigenvalues

+1(A),+1(B) + 1(A),−1(B) 2(A,B) 3(A,B) 4(A,B) ......... (3.25)

form a CON set of simultaneous eigenfunctions of A and B.

Summarizing our results: Two hermitian operators are compatible if, and
only if, they commute: compatibility is equivalent to commutativity. Compatible
physical quantities are important when one wants to prepare a particle so that
its wave function is known (up to a multiplicative constant) at a specified time:
measurements made of a complete set of compatible observables collapse the
wave function to a simultaneous eigenfunction of all these observables and the
experimental results from these measurements uniquely determine the simulta-
neous eigenfunction to which the wave function collapsed.

There is another important use of commuting observables. Suppose we want
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to find the eigenfunctions and eigenvalues of some physical quantity A. If we
already know the eigenfunctions of a physical quantity B which commutes with
A, then our task is greatly simplified because there must exist a CON set of
eigenfunctions of B which are simultaneous eigenfunctions of A.

Example: Free Particle in Three Dimensions(no forces present): We
have

Hop =
p2
xop + p2

yop + p2
zop

2m
(3.26)

Let us find the eigenfunctions and eigenvalues of Hop (discrete and continuum
parts) using the eigenvalue equation

Hopφ(x⃗) = Eφ(x⃗) (3.27)

Method #1: pxop, pyop, pzop,Hop are obviously mutually commuting operators,
that is, any pair of these operators commute. Therefore, we can find a CON set
of simultaneous eigenfunctions of these 4 operators. Now, the eigenfunctions of
pxop, pyop, pzop have already been derived.

eigenfunctions of pxop → Nx(y, z)e
ipxx
h̵ with eigenvalues px ∈ (−∞,+∞)

eigenfunctions of pyop → Ny(x, z)e
ipyy

h̵ with eigenvalues py ∈ (−∞,+∞)

eigenfunctions of pzop → Nz(x, y)e
ipzz
h̵ with eigenvalues pz ∈ (−∞,+∞)

Clearly, the simultaneous eigenfunctions of pxop, pyop, pzop are

upxpypz(x⃗) = Ne
ipxx
h̵ e

ipyy

h̵ e
ipzz
h̵ = Ne

i
h̵ (pxx+pyy+pzz) (3.28)

where N is independent of x, y, z, form a complete set. Given px, py, pz, there
exists (no degeneracy remains after px, py, pz given) only one linearly indepen-
dent eigenfunction. Therefore, the functions upxpypz(x⃗) are also eigenfunctions
of Hop. Finding the eigenvalues of Hop is simple:

Hopupxpypz = (
p2
xop + p2

yop + p2
zop

2m
)upxpypz

= (
p2
x + p2

y + p2
z

2m
)upxpypz = Eupxpypz (3.29)

so that

E = (
p2
x + p2

y + p2
z

2m
) , px, py, pz ∈ (−∞,+∞) (3.30)

Thus, the spectrum of Hop has only a continuum part, with the eigenvalue E
anywhere in [0,+∞].

Method #2: Separation of variables(SOV): This is the method used to
solve certain partial differential equations. We have

Hopφ(x⃗) = Eφ(x⃗) (3.31)
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We look for eigenfunctions satisfying earlier conditions (a) and (b) so that the
eigenfunctions must not become infinite as ∣x⃗∣→∞.

Now, inserting differential operators, the eigenvalue equation becomes

Hopφ(x⃗) = (
p2
xop + p2

yop + p2
zop

2m
)φ(x⃗)

= − h̵
2

2m
(∂

2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂x2
) = Eφ (3.32)

for fixed E. The allowed values of E are then determined by requiring that φ(x⃗)
does not become infinite as ∣x⃗∣→∞. This is called a boundary condition.

In this SOV method, we look for solutions of the form φ(x⃗) = X(x)Y (y)Z(z),
i.e., separated variables. Substituting into the partial differential equation we
have

− h̵
2

2m
(Y Z ∂

2X

∂x2
+XZ∂

2Y

∂y2
+XY ∂

2Z

∂x2
) = E(XY Z) (3.33)

Dividing by XY Z (recall that φ(x⃗) is not identically zero) we get

(− h̵
2

2m

1

X

∂2X

∂x2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
function of x only

=F1(x)

+ (− h̵
2

2m

1

Y

∂2Y

∂y2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
function of y only

=F2(y)

+ (− h̵
2

2m

1

Z

∂2Z

∂x2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
function of z only

=F3(z)

= E = constant (3.34)

This equation must be true for all x, y, z where x, y, z are independent variables.
In particular, the equation must be valid as x varies while y and z are kept fixed.
Thus, F1(x) must be independent of x. In a similar manner, we arrive at the
conclusion that F2(y) must be independent of y and F3(z) must be independent
of z. Therefore,

F1(x) = constant , F2(y) = constant , F3(z) = constant (3.35)

We let

F1(x) =
h̵2k2

1

2m
, F2(y) =

h̵2k2
2

2m
, F3(z) =

h̵2k2
3

2m
(3.36)

where k1, k2, k3 are constants (in principle, complex constants). The quantities

h̵2k2
1

2m
,
h̵2k2

2

2m
,
h̵2k2

3

2m
(3.37)

are called separation constants. We then obtain the eigenvalues in terms of these
three unknown constants as

E = h̵
2k2

1

2m
+ h̵

2k2
2

2m
+ h̵

2k2
3

2m
(3.38)
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and the three equations

∂2X

∂x2
= −k2

1X →X = e±ik1x (3.39)

∂2Y

∂x2
= −k2

2Y → Y = e±ik2y (3.40)

∂2Z

∂x2
= −k2

3Z → Z = e±ik3z (3.41)

Since X,Y,Z must not become infinite as ∣x∣ → ∞, ∣y∣ → ∞, ∣z∣ → ∞, the con-
stants k1, k2, k3 must be pure real (positive or negative).

It is sufficient to write

X = e+ik1x , Y = e+ik2y , Z = e+ik3z (3.42)

because k1, k2, k3 may be positive or negative.

Therefore,

φ(x⃗) = Ne+i(k1x+k2y+k3z)

E = h̵2

2m
(k2

1 + k2
2 + k2

3) ∈ [0,+∞]

k1, k2, k3 pure real

With ki = pi/h̵ these results agree with those from Method #1. One might ask
how we know that the eigenfunctions of the form φ(x⃗) =X(x)Y (y)Z(z) give a
complete set of eigenfunctions. Method #2 does not tell us. Only Method #1
really shows that the eigenfunctions we have obtained are complete.

3.2. Time Development

We have discussed in detail how a measurement collapses the wave function in
Chapter 2. By measuring a complete set of compatible observables, one prepares
a particle so that its wave function immediately after the measurements (at time
t0) is known (up to a multiplicative constant). ψ(x⃗, t0) is therefore known (up
to a normalization factor). Suppose another measurement is made at some later
time t1 (t1 > t0). The probability distribution of results of such a measurement
can be determined if one knows the wave function ψ(x⃗, t1) right before this
measurement is made. We must therefore specify the time-development of the
wave function between measurements, that is, between t0 and t1, so that ψ(x⃗, t1)
can be calculated in terms of ψ(x⃗, t0). Naturally, the time-development depends
on the forces acting on the particle.

3.2.1. Mathematical Preliminaries
1. Let A and B be linear operators. If ⟨φ1 ∣ Aφ2⟩ = ⟨φ1 ∣ Bφ2⟩ for all φ1, φ2,

then A = B.

142



Proof : We have 0 = ⟨φ1 ∣ Aφ2⟩−⟨φ1 ∣ Bφ2⟩ = ⟨φ1 ∣ (A −B)φ2⟩. Now choose
φ1 = (A−B)φ2. Then 0 = ⟨(A −B)φ2 ∣ (A −B)φ2⟩⇒ (A−B)φ2 for all φ2

or A −B = 0.

2. Let A and B be linear operators. If ⟨φ ∣ Aφ⟩ = ⟨φ ∣ Bφ⟩ for all φ, that is,
if ⟨A⟩ = ⟨B⟩ for all states, then A = B.

Proof : Let φ = φ1 + λφ2, where λ is an arbitrary complex constant.
Therefore,

⟨φ ∣ Aφ⟩ = ⟨φ1 + λφ2 ∣ A(φ1 + λφ2)⟩

= ⟨φ1 ∣ Aφ1⟩ + ∣λ∣2 ⟨φ2 ∣ Aφ2⟩ + λ ⟨φ1 ∣ Aφ2⟩ + λ∗ ⟨φ2 ∣ Aφ1⟩
⟨φ ∣ Bφ⟩ = ⟨φ1 + λφ2 ∣ B(φ1 + λφ2)⟩

= ⟨φ1 ∣ Bφ1⟩ + ∣λ∣2 ⟨φ2 ∣ Bφ2⟩ + λ ⟨φ1 ∣ Bφ2⟩ + λ∗ ⟨φ2 ∣ Bφ1⟩

But ⟨φ1 ∣ Aφ1⟩ = ⟨φ1 ∣ Bφ1⟩ and ⟨φ2 ∣ Aφ2⟩ = ⟨φ2 ∣ Bφ2⟩. Therefore,

λ ⟨φ1 ∣ Aφ2⟩ + λ∗ ⟨φ2 ∣ Aφ1⟩ = λ ⟨φ1 ∣ Bφ2⟩ + λ∗ ⟨φ2 ∣ Bφ1⟩ for all λ (3.43)

and

λ = 1→ ⟨φ1 ∣ Aφ2⟩ + ⟨φ2 ∣ Aφ1⟩ = ⟨φ1 ∣ Bφ2⟩ + ⟨φ2 ∣ Bφ1⟩ (3.44)
λ = i→ ⟨φ1 ∣ Aφ2⟩ − ⟨φ2 ∣ Aφ1⟩ = ⟨φ1 ∣ Bφ2⟩ − ⟨φ2 ∣ Bφ1⟩ (3.45)

Therefore, ⟨φ1 ∣ Aφ2⟩ = ⟨φ1 ∣ Bφ2⟩ for all φ1, φ2 so that A = B.

3. We have

[xi, pj] = ih̵δij , [xi, xj] = 0 , [pi, pj] = 0 (3.46)

We can cleverly rewrite these equations by letting A be one of the operators
x, y, z, px, py or pz:

[xi,A] = ih̵ ∂A
∂pi

, [A,pj] = ih̵
∂A

∂xj
(3.47)

where
∂xi
∂pj

= 0 ,
∂pj

∂pi
= δij ,

∂pi
∂xj

= 0 ,
∂pi
∂xj

= 0 (3.48)

Let f = f(x⃗, p⃗) = ∑ (ABCD...) = sum of terms of the form (ABCD...),
where each operator A,B,C.D, ..... is one of the operators x, y, z, px, py or
pz. For example,

f(x⃗, p⃗) = xpxxz + p2
yx (3.49)
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Now,

[xi, f(x⃗, p⃗)] = [xi,∑ (ABCD...)] =∑ [xi,ABCD...]
=∑ ([xi,A]BCD... +A [xi,B]CD... +AB [xi,C]D...+)

=∑(ih̵ ∂A
∂pi

BCD... +Aih̵∂B
∂pi

CD... +ABih̵ ∂C
∂pi

D...+)

= ih̵∑( ∂A
∂pi

BCD... +A∂B
∂pi

CD... +AB ∂C
∂pi

D...+)

= ih̵ ∂

∂pi
∑ (ABCD...) = ih̵∂f(x⃗, p⃗)

∂pi
(3.50)

and in a similar manner we have

[f(x⃗, p⃗), pj] = ih̵
∂f(x⃗, p⃗)
∂xj

(3.51)

Note: When differentiating an operator of the form ABCD...., one must
maintain the order of the operators A,B,C,D, ... because the operators
do not necessarily commute.

Example: Let
f(x⃗, p⃗) = xpxxz + p2

yx (3.52)

Then
[x, f(x⃗, p⃗)] = ih̵ ∂f

∂px
= ih̵ (x(1)xz + 0) = ih̵x2z (3.53)

We now proceed to consider the time-development of the wave function between
measurements. This time-development will be our final postulate. We will mo-
tivate this postulate by deriving it from several rather reasonable assumptions.

Consider a particle under the influence of a conservative force:

H = p⃗ ⋅ p⃗
2m

+ V (x⃗) (3.54)

Let us try to obtain a differential equation which will determine the behavior
of ψ(x⃗, t) with time.

Assumption (a) - ψ(x⃗, t) is completely determined by knowing the wave
function at some initial time t0, that is, ψ(x⃗, t0) at all x⃗ determines ψ(x⃗, t)
for all time t. In particular, we are assuming that ∂ψ(x⃗, t0)/∂t need not
be given as an initial condition. Thus, the differential equation obeyed by
ψ(x⃗, t) must be first order in time:

∂ψ

∂t
= 1

ih̵
[θ(x⃗, p⃗, t)]ψ , p⃗ = h̵

i
∇ (3.55)

where θ(x⃗, p⃗, t) is some complicated operator which, in principle, might be
non-linear. The factor 1/ih̵ has been separated out for later convenience.
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Assumption (b) - If ψ1(x⃗, t) and ψ2(x⃗, t) are solutions of (3.55), then
any linear superposition λ1ψ1(x⃗, t) + λ2ψ2(x⃗, t) is also a solution. This is
essentially Postulate (1b) from earlier (linear superposition). Therefore, if
we have

∂ψ1

∂t
= 1

ih̵
θψ1 and

∂ψ2

∂t
= 1

ih̵
θψ2 (3.56)

then this implies that

∂

∂t
(λ1ψ1 + λ2ψ2) =

1

ih̵
θ(λ1ψ1 + λ2ψ2) (3.57)

for all constants λ1, λ2. Therefore,

1

ih̵
θ(λ1ψ1 + λ2ψ2) =

∂

∂t
(λ1ψ1 + λ2ψ2)

= λ1
∂ψ1

∂t
+ λ2

∂ψ2

∂t
= 1

ih̵
λ1θψ1 +

1

ih̵
λ2θψ2

or
θ(λ1ψ1 + λ2ψ2) = λ1θψ1 + λ2θψ2 (3.58)

which says that θ = θ(x⃗, p⃗, t) must be linear.

Assumption (c) - ψ(x⃗, t) must be normalizable for all t in order to be a
physical wave function (Postulate (1a) from earlier). The simplest way to
guarantee this is to require

∫ d3xψ∗(x⃗, t)ψ(x⃗, t) = ∫ d3xψ∗(x⃗, t0)ψ(x⃗, t0) (3.59)

where the initial wave function ψ(x⃗, t0) is assumed to be normalizable.
This should be regarded as a convenient choice for preserving normaliza-
tion. We note that this property fails if we were considering relativistic
quantum mechanics!

Notation: We have

⟨ψ1(t) ∣ ψ2(t)⟩ = ∫ d3xψ∗(x⃗, t)ψ(x⃗, t) (3.60)

where the variable x⃗ has been omitted on the left hand side because it is
integrated over so that the resulting inner product depends only on t.

Therefore, assumption (c) can be written

⟨ψ(t) ∣ ψ(t)⟩ = ⟨ψ(t0) ∣ ψ(t0)⟩ (3.61)

or
d

dt
⟨ψ(t) ∣ ψ(t)⟩ = 0 (3.62)
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which gives

0 = d

dt
∫ d3xψ∗(x⃗, t)ψ(x⃗, t)

= ∫ d3x [∂ψ
∗(x⃗, t)
∂t

ψ(x⃗, t) + ψ∗(x⃗, t)∂ψ(x⃗, t)
∂t

]

= ⟨∂ψ(t)
∂t

∣ ψ(t)⟩ + ⟨ψ(t) ∣ ∂ψ(t)
∂t

⟩

= − 1

ih̵
⟨θψ(t) ∣ ψ(t)⟩ + 1

ih̵
⟨ψ(t) ∣ θψ(t)⟩ (3.63)

or
⟨θψ(t) ∣ ψ(t)⟩ = ⟨ψ(t) ∣ θψ(t)⟩ for arbitrary ψ(x⃗, t) (3.64)

Note that ψ(x⃗, t) can be practically any square-integrable function because
ψ(x⃗, t0) may be chosen arbitrarily.

This result says that θ = θ(x⃗, p⃗, t) must be hermitian.

Assumption (d) - This is the important assumption. We must construct
a quantum theory which, for macroscopic phenomena, reduces to the equa-
tions of classical physics (Newton’s laws of motion). This constraint on
the quantum theory is called the correspondence principle, and we will im-
pose it on our theory by assuming the following, which is experimentally
verified for microscopic and macroscopic phenomena:

Even though the results if individual measurements do
not obey the equations of classical physics in detail,
the average values of measurements obey the classical
equations of motion

Basic Assumption (will determine θ = θ(x⃗, p⃗, t)):

d

dt
⟨pi⟩ = + ⟨Fi⟩ = ⟨−∂V (x⃗)

∂xi
⟩ where

d

dt
⟨xi⟩ = ⟨pi

m
⟩ (3.65)

These equations correspond (are the quantum analogues) to the classical
equations of motion:

dpi
dt

= Fi = −
∂V (x⃗)
∂xi

and
dxi
dt

= pi
m

(3.66)

The average values

⟨pi⟩ =
⟨ψ(t) ∣ piψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

and ⟨xi⟩ =
⟨ψ(t) ∣ xiψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.67)
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depend on time because ψ(x⃗, t) depends on time. The operators xi and
pi = −ih̵∂/∂xi do not change with time. Now we can write

d

dt

⟨ψ(t) ∣ piψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

= −
⟨ψ(t) ∣ ∂V (x⃗)

∂xi
ψ(t)⟩

⟨ψ(t) ∣ ψ(t)⟩
(3.68)

d

dt

⟨ψ(t) ∣ xiψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

= 1

m

⟨ψ(t) ∣ piψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.69)

But
d

dt
⟨ψ(t) ∣ ψ(t)⟩ = 0 since ⟨ψ(t) ∣ ψ(t)⟩ is constant (3.70)

implies that we cancel the factor

1

⟨ψ(t) ∣ ψ(t)⟩
(3.71)

in these equations. Therefore

d

dt
⟨ψ(t) ∣ piψ(t)⟩ = − ⟨ψ(t) ∣ ∂V (x⃗)

∂xi
ψ(t)⟩ (3.72)

d

dt
⟨ψ(t) ∣ xiψ(t)⟩ =

1

m
⟨ψ(t) ∣ piψ(t)⟩ (3.73)

so that

− ⟨ψ(t) ∣ ∂V (x⃗)
∂xi

ψ(t)⟩ = d

dt
⟨ψ(t) ∣ piψ(t)⟩

= ⟨∂ψ
∂t

∣ piψ⟩ + ⟨ψ ∣ pi
∂ψ

∂t
⟩

= − 1

ih̵
⟨θψ ∣ piψ⟩ +

1

ih̵
⟨ψ ∣ piθψ⟩

= − 1

ih̵
⟨ψ ∣ θpiψ⟩ +

1

ih̵
⟨ψ ∣ piθψ⟩

= − 1

ih̵
⟨ψ ∣ [θ, pi]ψ⟩ = −

1

ih̵
⟨ψ ∣ ih̵ ∂θ

∂xi
ψ⟩

= − ⟨ψ ∣ ∂θ
∂xi

ψ⟩ (3.74)

Since the above equation is true for any ψ(x⃗, t) we have

∂θ(x⃗, p⃗, t)
∂xi

= ∂V (x⃗)
∂xi

(3.75)
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In a similar manner we can also show the following:

1

m
⟨ψ(t) ∣ piψ(t)⟩ =

d

dt
⟨ψ(t) ∣ xiψ(t)⟩

= ⟨∂ψ
∂t

∣ xiψ⟩ + ⟨ψ ∣ xi
∂ψ

∂t
⟩

= − 1

ih̵
⟨θψ ∣ xiψ⟩ +

1

ih̵
⟨ψ ∣ xiθψ⟩

= − 1

ih̵
⟨ψ ∣ θxiψ⟩ +

1

ih̵
⟨ψ ∣ xiθψ⟩

= − 1

ih̵
⟨ψ ∣ [θ, xi]ψ⟩ =

1

ih̵
⟨ψ ∣ ih̵ ∂θ

∂pi
ψ⟩

= ⟨ψ ∣ ∂θ
∂pi

ψ⟩ (3.76)

Since the above equation is true for any ψ(x⃗, t) we have

∂θ(x⃗, p⃗, t)
∂pi

= pi
m

(3.77)

We can now determine the operator θ(x⃗, p⃗, t):

∂θ(x⃗, p⃗, t)
∂px

= px
m
→ θ(x⃗, p⃗, t) = p2

x

2m
+ θ1(py, pz, x, y, z, t) (3.78)

∂θ(x⃗, p⃗, t)
∂py

= ∂θ1(x⃗, p⃗, t)
∂py

=
py

m
→ θ1(x⃗, p⃗, t) =

p2
y

2m
+ θ2(pz, x, y, z, t) (3.79)

∂θ(x⃗, p⃗, t)
∂pz

= ∂θ1(x⃗, p⃗, t)
∂pz

= pz
m
→ θ2(x⃗, p⃗, t) =

p2
z

2m
+ θ3(x, y, z, t) (3.80)

∂θ(x⃗, p⃗, t)
∂xi

= ∂θ3(x, y, z, t)
∂xi

= ∂V (x⃗)
∂xi

→ θ3(x, y, z, t) = V (x⃗) + c(t) (3.81)

where c(t) is an arbitrary function of t; i.e., it is independent of x⃗ and p⃗.
Therefore,

θ(x⃗, p⃗, t) = p⃗ ⋅ p⃗
2m

+ V (x⃗) + c(t) (3.82)

is the solution of the partial differential equations which θ(x⃗, p⃗, t) must
obey. Note that θ(x⃗, p⃗, t) being hermitian implies that c(t) must be a real
function of t.

Claim: c(t) has no physical significance and can be chosen to be zero.

Proof : For c(t) any arbitrary function, the wave function obeys

∂ψc(x⃗, t)
∂t

= 1

ih̵
[ p⃗ ⋅ p⃗

2m
+ V (x⃗) + c(t)]ψc(x⃗, t) (3.83)
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subject to the initial condition ψc(x⃗, t0) = ψ(x⃗, t0), which is a given square-
integrable function. Consider the function Nc(t)ψc(x⃗, t) with

Nc(t) = e
+ ih̵

t

∫
t0

c(t′)dt′

(3.84)

where c(t) real implies that ∣Nc(t)∣ = 1. Therefore Nc(t = t0) = e0 = 1. This
means that Nc(t)ψc(x⃗, t) and ψc(x⃗, t) obey the same initial conditions at
t = t0.

Because Nc(t) is just a multiplicative factor independent of x⃗ (it happens
to depend on time), Nc(t)ψc(x⃗, t) and ψc(x⃗, t) determine exactly the same
probability distribution and average values.

Thus, we can use Nc(t)ψc(x⃗, t) as the wave function rather than ψc(x⃗, t)
and no physical values will be altered.

The differential equation obeyed by Nc(t)ψc(x⃗, t) is

∂(Ncψc)
∂t

= ∂Nc
∂t

ψc +Nc
∂ψc
∂t

= i

h̵
c(t)Ncψc +

1

ih̵
θNcψc

= 1

ih̵
(θ − c(t))Ncψc =

1

ih̵
[ p⃗ ⋅ p⃗

2m
+ V (x⃗)]Ncψc (3.85)

Letting Nc(t)ψc(x⃗, t) = ψ(x⃗, t) we have

∂ψ(x⃗, t)
∂t

= 1

ih̵
[ p⃗ ⋅ p⃗

2m
+ V (x⃗)]ψ(x⃗, t) (3.86)

which proves that no physical values will be altered if we use

θ(x⃗, p⃗, t) = p⃗ ⋅ p⃗
2m

+ V (x⃗) (3.87)

with no c(t) present. Thus,

θ(x⃗, p⃗, t) = p⃗ ⋅ p⃗
2m

+ V (x⃗) =H(x⃗, p⃗) (3.88)

It is the Hamiltonian operator!

The partial differential equation just obtained determines the time-development
of the wave function between measurements.

Rather than postulate assumptions (a),(b),(c),(d), which went into the
above derivation, we will just postulate the result.
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3.2.2. Postulate 5: Time Development of the Wave Func-
tion

For a particle in a conservative force field, the wave function obeys the time-
dependent Schrodinger equation:

ih̵
∂ψ(x⃗, t)
∂t

=H(x⃗, p⃗)ψ(x⃗, t) = [ p⃗ ⋅ p⃗
2m

+ V (x⃗)]ψ(x⃗, t)

= − h̵
2

2m
∇2ψ(x⃗, t) + V (x⃗)ψ(x⃗, t) (3.89)

From this equation, one can determine ψ(x⃗, t) at any time t by knowing ψ(x⃗, t0),
the wave function at some initial time t0.

We note the important fact that the wave function’s time-development is com-
pletely determined by the time-dependent Schrodinger equation during periods
of time when no measurements are made. While a measurement is being made,
the wave function does not obey the time-dependent Schrodinger equation -
instead, the wave function emphcollapses to an eigenfunction of the observable
being measured. The eigenfunction to which the wave function collapses is,
in general, unpredictable - only the probabilities for specific results of a mea-
surement can be determined. Contrast this with the completely predictable
time-development during periods of time when no measurements are made - a
time-development determined by the time-dependent Schrodinger equation.

3.3. Structure of Quantum Theory

3.3.1. Initial preparation of the wave function at t0

Measuring a complete set of compatible observables at t0 determines ψ(x⃗, t0)
immediately after these measurements (up to a multiplicative constant).

Then time development is governed by

Hψ = ih̵∂ψ
∂t

(3.90)

which takes ψ(x⃗, t0) (given) into ψ(x⃗, t) (determined).

Measurement of A at time t (A need not be related to the observables measured
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at t0) gives

℘(an, t) =
1

⟨ψ(t) ∣ ψ(t)⟩∑α
∣c(α)n (t)∣

2
=∑

α

⟨ψ(t) ∣ u(α)n ⟩ ⟨u(α)n ∣ ψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.91)

℘̃(acν , t0) =
1

⟨ψ(t) ∣ ψ(t)⟩∑β
∣d(β)ν ∣

2
=∑

β

⟨ψ(t) ∣ u(β)cν ⟩ ⟨u(β)cν ∣ ψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.92)

⟨AN ⟩ =
⟨ψ(t) ∣ ANψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.93)

Immediately after the measurement, the wave function collapses to a function
which depends on the result of the measurement.

Notice the conceptual difference between the time-dependent Schrodinger equa-
tion

Hψ = ih̵∂ψ
∂t

(3.94)

and the time-independent Schrodinger equation Hψ = Eψ. The time-dependent
Schrodinger equation determines the time-development of any wave function
between measurements. The time-independent Schrodinger equation is just one
of many eigenvalue equations - it is the eigenvalue equation for energy and
determines the possible results of an energy measurement.

The time-dependent Schrodinger equation is motivated by the correspondence
principle - average values obey the classical equations of motion.

One can reverse our previous arguments and show that the time-dependent
Schrodinger equation implies that average values obey the classical equations of
motion.

3.3.2. Basic Problem of Quantum Mechanics

Given ψ(x⃗,0), find ψ(x⃗, t).

Let {u(α)n (x⃗)} be a CON set of eigenfunctions of H (Hu(α)n = Enu
(α)
n ). For

simplicity of notation, we will assume that the spectrum ofH is entirely discrete.
Our results generalize in an obvious manner when a continuum is also present.

Now we can expand ψ(x⃗, t) at fixed time t in terms of a CON set as

ψ(x⃗, t) = ∑
n,α

c(α)n (t)u(α)n (x⃗) (3.95)
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Therefore, we have

ih̵
∂ψ

∂t
= ∑
n,α

ih̵
∂c

(α)
n (t)
∂t

u(α)n (x⃗) =Hψ

= ∑
n,α

c(α)n (t)Hu(α)n (x⃗) = ∑
n,α

c(α)n (t)Enu(α)n (x⃗) (3.96)

The linear independence of the {u(α)n (x⃗)} implies that we can equate coefficients
in the expansions:

ih̵
∂c

(α)
n (t)
∂t

= Enc(α)n (t) for all α,n (3.97)

This equation is easily solved:

c(α)n (t) = c(α)n (0)e−
i
h̵Ent (3.98)

so that
ψ(x⃗, t) = ∑

n,α

c(α)n (0)e−
i
h̵Entu(α)n (x⃗) (3.99)

This is a very important result. It represents the general result for expan-
sion of an arbitrary wave function in terms of energy eigenfunctions.

The coefficients c(α)n (0) can be found from the given ψ(x⃗,0) since

ψ(x⃗,0) = ∑
n,α

c(α)n (0)u(α)n (x⃗) (3.100)

so that
c(α)n (0) = ⟨u(α)n ∣ ψ(t = 0)⟩ (3.101)

Therefore, we have determined ψ(x⃗, t) in terms of ψ(x⃗,0).

We note that the solution just obtained for ψ(x⃗, t) can also be obtained by
solving the time-dependent Schrodinger equation by the method of separation
of variables. We have

ih̵
∂ψ

∂t
= − h̵

2

2m
∇2ψ + V (x⃗)ψ (3.102)

Trying a solution of the form ψ(x⃗, t) = U(x⃗)T (t) we get

ih̵
dT

dt
U = (− h̵

2

2m
∇2U + V (x⃗)U)T

⇒ ih̵
1

T

dT

dt
= 1

U
(− h̵

2

2m
∇2U + V (x⃗)U)
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We thus have function of t = function of x⃗. Because x⃗ and t are independent
variables, each side of this equation must equal a constant λ (the separation
constant). We then have

ih̵
1

T

dT

dt
= λ = 1

U
(− h̵

2

2m
∇2U + V (x⃗)U) = 1

U
HU (3.103)

or HU = λU so that U must be an energy eigenfunction with energy eigenvalue
λ = E and

ih̵
dT

dt
= λT → T (t) = T (0)e−

i
h̵λt (3.104)

Therefore, for a particular value of E (one of the eigenvalues) we have

ψ(x⃗, t) = TE(0)e−
i
h̵EtUE(x⃗) (= c(α)n (0)e−

i
h̵Entu(α)n (x⃗)) (3.105)

which represents a complete set when we use all linearly independent solu-
tions for all possible E values. The general solution to the time-dependent
Schrodinger equation is obtained by summing over all such particular solutions:

ψ(x⃗, t) =∑
E

TE(0)e−
i
h̵EtUE(x⃗) = ∑

n,α

c(α)n (0)e−
i
h̵Entu(α)n (x⃗) (3.106)

as obtained earlier.

Some Notes:

(a) Let ψ(x⃗, t) be an arbitrary wave function. Its expansion in terms of energy
eigenfunctions is:

ψ(x⃗, t) = ∑
n,α

c(α)n (t)u(α)n (x⃗) (3.107)

where
c(α)n (t) = c(α)n (0)e−

i
h̵Ent (3.108)

The probability of measuring En at time t is:

℘(En, t) =
∑
α
∣c(α)n (t)∣

2

⟨ψ(t) ∣ ψ(t)⟩
(3.109)

But ⟨ψ(t) ∣ ψ(t)⟩ = ⟨ψ(0) ∣ ψ(0)⟩ and ∣c(α)n (t)∣ = ∣c(α)n (0)∣. Therefore,

℘(En, t) =
∑
α
∣c(α)n (0)∣

2

⟨ψ(0) ∣ ψ(0)⟩
= ℘(En,0) (3.110)

Therefore, ℘(En, t) is independent of time for any wave function (corresponds
to energy conservation).
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(b) Let ψ(x⃗,0) = u(α)n (x⃗), that is, the particle is in an eigenfunction of energy
at t = 0. Therefore,

ψ(x⃗, t) = u(α)n (x⃗)e−
i
h̵Ent (3.111)

for any time t, that is, we just get multiplication by a phase factor! The particle
therefore remains in the same eigenfunction of energy for all t if it is initially
in an eigenfunction of energy. Eigenfunctions of energy are therefore called
stationary states. In general, if ψ(x⃗,0) is an eigenfunction of some operator
other than energy, then ψ(x⃗, t) will not remain an eigenfunction of this operator
for t ≠ 0.

Properties of Stationary States

In a stationary state we have

ψ(x⃗, t) = u(α)n (x⃗)e−
i
h̵Ent , Hu(α)n = Enu(α)n (3.112)

1. The probability density (probability per unit volume) for position mea-
surements is given by

℘(x⃗, t) = ∣ψ(x⃗, t)∣2

⟨ψ(t) ∣ ψ(t)⟩
(3.113)

and

℘(x⃗, t) =
∣u(α)n (x⃗)e− ih̵Ent∣

2

⟨ψ(t) ∣ ψ(t)⟩
=

∣u(α)n (x⃗)∣
2

⟨ψ(0) ∣ ψ(0)⟩
= ∣ψ(x⃗,0)∣2

⟨ψ(0) ∣ ψ(0)⟩
= ℘(x⃗,0)

Therefore, ℘(x⃗, t) is independent of time for a stationary state.

2. Let A be any physical observable. For simplicity of notation, we will
assume that the spectrum of A is entirely discrete. Let {v(β)m (x⃗)} be a
CON set of eigenfunctions of A:

Av(β)m (x⃗) = amv(β)m (x⃗) (3.114)

Therefore,

℘(am, t)

=∑
β

⟨ψ(t) ∣ v(β)m ⟩ ⟨v(β)m ∣ ψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

=∑
β

⟨u(α)n e−
i
h̵Ent ∣ v(β)m ⟩ ⟨v(β)m ∣ u(α)n e−

i
h̵Ent⟩

⟨ψ(0) ∣ ψ(0)⟩

=∑
β

⟨u(α)n ∣ v(β)m ⟩ ⟨v(β)m ∣ u(α)n ⟩ e ih̵Ente− ih̵Ent

⟨ψ(0) ∣ ψ(0)⟩
=∑

β

⟨u(α)n ∣ v(β)m ⟩ ⟨v(β)m ∣ u(α)n ⟩
⟨ψ(t) ∣ ψ(t)⟩

=∑
β

⟨ψ(0) ∣ v(β)m ⟩ ⟨v(β)m ∣ ψ(0)⟩
⟨ψ(t) ∣ ψ(t)⟩

= ℘(am,0)

Thus, ℘(am, t) is independent of time for a stationary state.

154



3. Let A be any physical observable. Then

⟨A⟩t =
⟨ψ(t) ∣ Aψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

=
⟨u(α)n e−

i
h̵Ent ∣ Au(α)n e−

i
h̵Ent⟩

⟨ψ(0) ∣ ψ(0)⟩

=
⟨u(α)n ∣ Au(α)n ⟩
⟨ψ(0) ∣ ψ(0)⟩

= ⟨ψ(0) ∣ Aψ(0)⟩
⟨ψ(0) ∣ ψ(0)⟩

= ⟨A⟩t=0

Therefore, ⟨A⟩ is independent of time for a stationary state.

Example of a Non-Stationary State

Let ψ(x⃗,0) be a linear combination of two non-degenerate energy eigenfunctions

ψ(x⃗,0) = c1u1(x⃗) + c2u2(x⃗) (3.115)

where

Hui = Eiui for i = 1,2,E2 > E1 , ⟨ui ∣ uj⟩ = δij for i = 1,2 (ON) (3.116)

We have the energy level diagram as shown in Figure 3.1 below.

Figure 3.1: Energy Levels

Therefore,

ψ(x⃗, t) = c1u1(x⃗)e−
iE1t

h̵ + c2u2(x⃗)e−
iE2t

h̵ (3.117)

with

⟨ψ(t) ∣ ψ(t)⟩ = ⟨ψ(0) ∣ ψ(0)⟩ = ∣c1∣2 + ∣c2∣2 (3.118)

and

℘(E1, t) =
∣c1∣2

∣c1∣2 + ∣c2∣2
, ℘(E2, t) =

∣c2∣2

∣c1∣2 + ∣c2∣2
(3.119)

independent of t.

Let A be any physical observable, and let us calculate the time dependence of
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⟨A⟩ for the above state.

⟨A⟩ = ⟨ψ(t) ∣ Aψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

=
⟨c1u1(x⃗)e−

iE1t

h̵ + c2u2(x⃗)e−
iE2t

h̵ ∣ A (c1u1(x⃗)e−
iE1t

h̵ + c2u2(x⃗)e−
iE2t

h̵ )⟩

∣c1∣2 + ∣c2∣2

= 1

∣c1∣2 + ∣c2∣2
⎛
⎝

∣c1∣2 ⟨u1 ∣ Au1⟩ + ∣c2∣2 ⟨u2 ∣ Au2⟩
+c∗2c1e

i(E2−E1)t

h̵ ⟨u2 ∣ Au1⟩ + c∗1c2e−
i(E2−E1)t

h̵ ⟨u1 ∣ Au2⟩
⎞
⎠

= 1

∣c1∣2 + ∣c2∣2
⎛
⎝

∣c1∣2 ⟨u1 ∣ Au1⟩ + ∣c2∣2 ⟨u2 ∣ Au2⟩
+c∗2c1e

i(E2−E1)t

h̵ ⟨u2 ∣ Au1⟩ + c∗1c2e−
i(E2−E1)t

h̵ ⟨Au2 ∣ u1⟩∗
⎞
⎠

= 1

∣c1∣2 + ∣c2∣2
⎛
⎝

∣c1∣2 ⟨u1 ∣ Au1⟩ + ∣c2∣2 ⟨u2 ∣ Au2⟩
+c∗2c1e

i(E2−E1)t

h̵ ⟨u2 ∣ Au1⟩ + c∗1c2e−
i(E2−E1)t

h̵ ⟨u2 ∣ Au1⟩∗
⎞
⎠

Now let

R = ∣c1∣2 ⟨u1 ∣ Au1⟩ + ∣c2∣2 ⟨u2 ∣ Au2⟩
∣c1∣2 + ∣c2∣2

(3.120)

(this is a real number (because A is hermitian)) and

Z = c
∗
2c1 ⟨u2 ∣ Au1⟩
∣c1∣2 + ∣c2∣2

= ∣Z ∣ eiξ (3.121)

which is a complex number. Therefore,

⟨A⟩ = R +Ze
i(E2−E1)t

h̵ +Z∗e−
i(E2−E1)t

h̵

= R + ∣Z ∣ [ei[
(E2−E1)t

h̵ +ξ] + e−i[
(E2−E1)t

h̵ +ξ]]

= R + 2 ∣Z ∣ cos [(E2 −E1)t
h̵

+ ξ] (3.122)

so that ⟨A⟩ oscillates in time with a frequency ω = (E2 − E1)/h̵ when ∣Z ∣ ≠ 0,
which requires ⟨u2 ∣ Au1⟩ ≠ 0.

If A = x⃗ (position operator), then ⟨x⃗⟩ is harmonic in time with frequency ω =
(E2−E1)/h̵. If the particle is charged (for example, an electron), then its average
position will oscillate harmonically in time and the particle will therefore radiate
at angular frequency ω = (E2 − E1)/h̵ when c∗2c1 ⟨u2 ∣ Au1⟩ ≠ 0. Suppose an
electron in an atom makes a transition from energy level E2 to energy level
E1. We will show later in this chapter that the wave function for such an
electron is a linear combination of u2 and u1 with neither c2 or c1 zero. Thus,
the electron will radiate at angular frequency ω such that h̵ω = (E2 −E1) when
⟨u2 ∣ x⃗u1⟩ ≠ 0.This requirement for the radiation to occur is known as a selection
rule - it is a condition on the states u2 and u1 for a radiative transition to be
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possible.

Of course, the electron does not radiate forever as it goes from level E2 to
level E1. We will show later in this chapter that c2 eventually becomes zero
so that the electron is eventually in the lower energy state completely and no
radiation is emitted thereafter (the transition is then over). If we assume one
photon is emitted during the transition, energy conservation implies E1photon =
E2−E1 = h̵ω where ω = angular frequency of the radiation. We therefore obtain
the Einstein relation Ephoton = h̵ω!

3.4. Free Particle in One Dimension (motion along
the x-axis)

We have

H =
p2
xop

2m
(3.123)

We will use p to denote the eigenvalues of the operator pxop.

Now, [H,pxop] = 0 implies that there exists a CON set of simultaneous eigen-
functions of H and pxop. The eigenfunctions of pxop are (from earlier)

up(x) =
1√
2πh̵

ei
px
h̵ , p ∈ [−∞,+∞] (3.124)

Thus, {up(x)} is a CON set of simultaneous eigenfunctions of H and pxop.

Suppose we are given ψ(x⃗,0). The problem is then to find ψ(x⃗, t) for all t. We
may expand ψ(x⃗, t) in terms of {up(x)}:

ψ(x, t) =
∞

∫
−∞

dp ψ̃(p, t)up(x) (3.125)

where the ψ̃(p, t) are expansion coefficients which depend on the time at which
the expansion is made.

Because up(x) is an energy eigenfunction, the time dependence of ψ̃(p, t) is
given by

ψ̃(p, t) = ψ̃(p,0)e−i
p2t
2mh̵ , E = p2

2m
(3.126)

Therefore,

ψ(x, t) =
∞

∫
−∞

dp√
2πh̵

ψ̃(p,0)ei(
px
h̵ − p2t

2mh̵)
(3.127)
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ψ̃(p,0) may be expressed in terms of the given ψ(x,0) as

ψ(x,0) =
∞

∫
−∞

dp ψ̃(p,0)up(x) (3.128)

so that

⟨up′ ∣ ψ(t = 0)⟩ =
∞

∫
−∞

dpψ̃(p,0) ⟨up′ ∣ up⟩

=
∞

∫
−∞

dpψ̃(p,0)δ(p′ − p) = ψ̃(p′,0) (3.129)

Thus,

ψ̃(p,0) = ⟨up ∣ ψ(t = 0)⟩ =
∞

∫
−∞

dxu∗p(x)ψ(x,0) (3.130)

that is,

ψ̃(p,0) =
∞

∫
−∞

dx√
2πh̵

e−i
px
h̵ ψ(x,0) (3.131)

Thus, given ψ(x,0) we can calculate ψ̃(p,0) and then ψ(x, t).

The probability distribution of momentum measurements is given by:

℘̃(p, t) =
⟨ψ(t) ∣ up⟩ ⟨up ∣ ψ(t)⟩

⟨ψ(t) ∣ ψ(t)⟩
(3.132)

where

⟨up ∣ ψ(t)⟩ = ψ̃(p, t) = ψ̃(p,0)e−i
p2t
2mh̵

= ψ̃(p,0) × (a phase factor) (3.133)

Therefore,

℘̃(p, t) =
∣ψ̃(p, t)∣

2

⟨ψ(t) ∣ ψ(t)⟩
=

∣ψ̃(p,0)∣
2

⟨ψ(t) ∣ ψ(t)⟩
= ℘̃(p,0) (3.134)

For a free particle, the momentum probability distribution does not change with
time. This is momentum conservation for a particle with no forces acting on it.
In general, the spatial probability distribution changes with time.

Now,

ψ(x, t) =
∞

∫
−∞

dp√
2πh̵

ψ̃(p,0)ei(
px
h̵ − p2t

2mh̵)
(3.135)
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where

e
i( pxh̵ − p2t

2mh̵) = ei(kx−ωt) = plane wave with k = p
h̵

and ω = p2

2mh̵
(3.136)

ψ(x, t) is a superposition of plane waves and is called a wave packet.

For each plane wave:

2π

λ
= k = p

h̵
⇒ λ = 2πh̵

p
= h
p

(3.137)

2πν = ω = p2

2mh̵
⇒ ν = p2

4πmh̵
= p2

2mh
(3.138)

The planes of constant phase move at the phase velocity

vphase = λν =
p

2m
(3.139)

The phase velocity has a different value for each p in the superposition. The
factor 1/2 in the expression

vphase =
p

2m
(3.140)

may seem surprising because, for classical particles,

vclassical =
pclassical

m
(3.141)

However, one must remember that the entire wave packet ψ(x, t) describes
the particle. The pertinent quantity is the so-called group velocity of the wave
packet :

vgroup =
d

dt
⟨x⟩ = ⟨ p

m
⟩ (3.142)

where the averages are for the entire wave packet. The group velocity character-
izes the entire wave function and is the quantity that corresponds to vclassical.

Often, one would like to estimate the behavior of ψ(x, t) without explicitly do-
ing the integral over the plane waves. The following very general method of
approximation is useful for such estimates.

3.4.1. The Method of Stationary Phase
Let

ψ(x, t) =
∞

∫
−∞

dpg(p, x, t) (3.143)

where g(p, x, t) is a complex function such that

g(p, x, t) = G(p, x, t)eiγ(p,x,t) (3.144)
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with

0 ≤ G(p, x, t) = real amplitude of g(p, x, t)
γ(p, x, t) = phase angle of g(p, x, t)

Therefore,

ψ(x, t) =
∞

∫
−∞

dpG(p, x, t)eiγ(p,x,t) (3.145)

Now we assume that G(p, x, t) is sharply peaked at p = p0 and is appreciable
only in a small range ∆p about p0 as shown in Figure 3.2 below.

Figure 3.2: Weight Function

We assume that ∆p and p0 do not depend on x and t. However, the value of G
at p0 and the detailed behavior of G depend on x and t.

(a) Estimate of of (x, t) values for which ∣ψ(x, t)∣ is a maximum

For given x and t, ψ(x, t) ≈ 0 if γ(p, x, t) changes quite a bit as p varies over the
∆p range (for such a case, cosγ(p, x, t) and sinγ(p, x, t) oscillate a great deal
over ∆p and the integral ≈ 0 because of cancellations - recall that G(p, x, t) ≥ 0.

∣ψ(x, t)∣ will be a maximum if γ(p, x, t) changes a negligible amount over the
∆p range (for such a case, the entire integrand does not change sign over ∆p
and there are no cancellations). Therefore we want

[dγ(p, x, t)
dp

]
p=p0

= 0 (3.146)

as the condition for (x, t) values for which ∣ψ(x, t)∣ is a maximum. This just
says that the integrand’s phase is stationary at p0.

Estimate of (x,t) values for which ∣ψ(x, t)∣ is appreciable

∣ψ(x, t)∣ will be appreciable, that is, non-negligible, for all (x, t) values for which
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eiγ(p,x,t) does not vary over more than one cycle in the ∆p range. If eiγ(p,x,t)

varied over much more than one cycle in the ∆p range, the integral would be ≈ 0
because of cancellations. Therefore, for appreciable or non-negligible ∣ψ(x, t)∣
we must have

∣[change in γ(p, x, t) over ∆p]∣ = ∆p [dγ(p, x, t)
dp

]
p=p0

≤ 2π (3.147)

Comment: ψ(x, t) is certainly non-negligible when ∣ψ(x, t)∣ is a maximum.
This is consistent with the above conditions because ∣ψ(x, t)∣ is a maximum
when

[dγ(p, x, t)
dp

]
p=p0

= 0 (3.148)

and this clearly satisfies the condition for ψ(x, t) to be non-negligible.

3.4.2. Application to a Free-Particle Wave Packet

We have

ψ(x, t) =
∞

∫
−∞

dp√
2πh̵

ψ̃(p,0)ei(
px
h̵ − p2t

2mh̵)
(3.149)

Let ψ̃(p,0) = ∣ψ̃(p,0)∣ eiα(p)/h̵ be non-negligible in a ∆p range about p = p0. For
convenience, the phase of ψ̃(p,0) is written as α(p)/h̵. ∆p measures the spread
in the momentum probability distribution. We have

ψ(x, t) =
∞

∫
−∞

dp√
2πh̵

∣ψ̃(p,0)∣ ei(
px
h̵ − p2t

2mh̵+
α(p)
h̵ )

(3.150)

We have separated the integrand into an amplitude and a phase factor. The
values of (x, t) for which ∣ψ(x, t)∣ is a maximum are given by the stationary
phase condition

d

dp
(px
h̵
− p2t

2mh̵
+ α(p)

h̵
)
p=p0

= x
h̵
− pt

mh̵
+ 1

h̵

dα(p)
dp

= 0

Therefore, ψ(x, t) is peaked at x = xpeak(t) where

xpeak(t) =
p0t

m
− [dα(p)

dp
]
p=p0

(3.151)

that is, the peak of the wave packet moves at constant velocity

vpacket =
p0

m
(3.152)
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Notice that the phase angle of ψ̃(p,0) determines the position of the peak at
t = 0. ψ(x, t) is appreciable at all (x, t) satisfying

∆p
RRRRRRRRRRR

d

dp
(px
h̵
− p2t

2mh̵
+ α(p)

h̵
)
p=p0

RRRRRRRRRRR
≤ 2π

∆p
RRRRRRRRRRR

⎛
⎝
x

h̵
− p0t

mh̵
+ 1

h̵
[dα(p)

dp
]
p=p0

⎞
⎠

RRRRRRRRRRR
≤ 2π

∆p ∣x − xpeak(t)∣ ≤ 2πh̵

or we must have

∣x − xpeak(t)∣ ≤
2πh̵

∆p
= h

∆p
(3.153)

for ψ(x, t) appreciable as shown in Figure 3.3 below.

Figure 3.3: ψ(x, t) appreciable

The maximum value of ∣x − xpeak(t)∣ (with x such that ψ(x, t) is apprecia-
ble) is ≈ h/∆p. But ∆x, the spread of ψ(x, t) is not less (see figure) than
max ∣x − xpeak(t)∣ for ψ(x, t) appreciable. Therefore, ∆x ≥ h/∆p, which is con-
sistent with uncertainty principle.

3.5. Constants of the Motion

The time-development of the wave function is determined by the time-dependent
Schrodinger equation:

Hψ = ih̵∂ψ
∂t

(3.154)

Let A = A(x⃗, p⃗) be the hermitian operator corresponding to some physical quan-
tity. We will assume that this operator does not change with time (A is inde-
pendent of t).
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The average value of A,

⟨A⟩ = ⟨ψ(t) ∣ Aψ(t)⟩
⟨ψ(t) ∣ ψ(t)⟩

(3.155)

depends on time through the time dependence of ψ(x, t). Recall that ⟨ψ(t) ∣ ψ(t)⟩ =
⟨ψ(0) ∣ ψ(0)⟩ is independent of time. Thus,

d

dt
⟨A⟩ = 1

⟨ψ(t) ∣ ψ(t)⟩
d

dt
(⟨ψ(t) ∣ Aψ(t)⟩)

= 1

⟨ψ(t) ∣ ψ(t)⟩
(⟨∂ψ
∂t

∣ Aψ⟩ + ⟨ψ ∣ A∂ψ
∂t

⟩)

= 1

⟨ψ(t) ∣ ψ(t)⟩
(⟨ 1

ih̵
Hψ ∣ Aψ⟩ + ⟨ψ ∣ A 1

ih̵
Hψ⟩)

= 1

⟨ψ(t) ∣ ψ(t)⟩
1

ih̵
(− ⟨Hψ ∣ Aψ⟩ + ⟨ψ ∣ AHψ⟩)

= 1

⟨ψ(t) ∣ ψ(t)⟩
1

ih̵
(− ⟨ψ ∣HAψ⟩ + ⟨ψ ∣ AHψ⟩)

= 1

⟨ψ(t) ∣ ψ(t)⟩
⟨ψ ∣ 1

ih̵
[A,H]ψ⟩ (3.156)

or

d

dt
⟨A⟩ = ⟨ 1

ih̵
[A,H]⟩

d

dt
⟨ψ(t) ∣ Aψ(t)⟩ = ⟨ψ(t) ∣ 1

ih̵
[A,H]ψ(t)⟩ (3.157)

Definition: The physical observable A is conserved, that is, A is a constant of
the motion, if

d

dt
⟨A⟩ = 0 for any ψ(x⃗, t) (3.158)

Recall that d ⟨B⟩ /dt = 0 for any observable B if the average value is taken in a
stationary state. B is conserved if d ⟨B⟩ /dt = 0 for all possible non-stationary
states as well.

Notes

1. A is conserved if [A,H] = 0, which follows immediately from the definition
and the preceding results.

2. A is conserved if A and H have a CON set of simultaneous eigenfunctions.
This follows from (1) and the fact that commutativity is equivalent to
compatibility.

3. If A is conserved, then the probability distribution of measurements of A
(℘(an, t) and ℘(acν , t)) is constant in time for any ψ(x⃗, t). Recall that the
probability distribution of measurements for any observable is constant in
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time for a stationary state.

Proof : A andH possess a CON set of simultaneous eigenfunctions {u(α)nm(x⃗)}.
For simplicity of notation, we assume that the spectra are entirely discrete.
Then

Au(α)nm(x⃗) = anu(α)nm(x⃗)

Hu(α)nm(x⃗) = Emu(α)nm(x⃗)

and
ψ(x⃗, t) = ∑

nmα

c(α)nm(0)e−i
Emt
h̵

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c
(α)
nm(t)

u(α)nm(x⃗) (3.159)

Thus,

℘(an, t) =
∣c(α)nm(t)∣

2

⟨ψ(t) ∣ ψ(t)⟩
=

∣c(α)nm(0)∣
2

⟨ψ(0) ∣ ψ(0)⟩
= ℘(an,0) (3.160)

4. Let A be conserved. If ψ(x⃗,0) is an eigenfunction of A with eigenvalue an,
then ψ(x⃗, t) remains an eigenfunction of A with eigenvalue an for all time.
This follows immediately from note (3) and the fact that ℘(an, t) = 1 if
ψ(x⃗, t) = an eigenfunction of A with eigenvalue an.

Example

Particle in a conservative force field

H = p⃗ ⋅ p⃗
2m

+ V (x⃗) (3.161)

[H,H] = 0⇒H conserved (energy conservation) (3.162)

Example

Free particle (no forces present)

H = p⃗ ⋅ p⃗
2m

(3.163)

[pi,H] = 0⇒ pi conserved (linear momentum conservation) (3.164)

Example

Particle in a central force field

H = p⃗ ⋅ p⃗
2m

+ V (r) where r = ∣x⃗∣ (3.165)
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Consider Lz = xpy − ypx. We have

[Lz,H] = [xpy − ypx,
p2
x

2m
+
p2
y

2m
+ p2

z

2m
+ V (r)]

= [xpy,
p2
x

2m
] + [xpy, V (r)] − [ypx,

p2
y

2m
]

− [ypx, V (r)] + othertermswhicharezero

= 1

2m
[x, p2

x]py + x [py, V (r)]

− 1

2m
[y, p2

y]px − y [px, V (r)]

= 1

2m
(ih̵px

m
)py + x(−ih̵

∂V

∂y
)

− 1

2m
(ih̵

py

m
)px − y(−ih̵

∂V

∂x
)

= ih̵x(y ∂V
∂x

− x∂V
∂y

) = ih̵x(y ∂r
∂x

− x∂r
∂y

)∂V
∂r

= ih̵x(yx
r
− xy

r
)∂V
∂r

= 0

Thus, [Lz,H] = 0. Because

H = p⃗ ⋅ p⃗
2m

+ V (r) (3.166)

is unchanged when z and x are interchanged or when z and y are interchanged,
we conclude that [Lx,H] = 0 and [Ly,H] = 0. Therefore, [Lz,H] = 0 or Lz is
conserved (angular momentum conservation for a central force).

We now consider a particular (solvable)physical system in great detail.

3.6. Harmonic Oscillator in One Dimension

We have

−dV (x)
dx

= Fx = −kx , k > 0 , V (x) = 1

2
kx2 (3.167)

Therefore,

H = p2
x

2m
+ 1

2
kx2 (3.168)

Classical

d2x

dt2
= − k

m
x⇒ x = A sinωt +B cosωt , ω =

√
k

m
(3.169)
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Let x = 0 and dx/dt = v0 at t = 0. Then B = 0 and A = v0/ω so that

x = v0

ω
sinωt (3.170)

The classical motion is therefore bounded x ∈ [−xmax,+xmax] where xmax = A =
v0/ω. We therefore expect the spectrum of H to be entirely discrete when we
do the quantum mechanical problem.

Quantum Mechanical: We have

d

dt
⟨x⟩ = 1

ih̵
⟨[x,H]⟩ = 1

i2mh̵
⟨[x, p2

x]⟩ =
1

i2mh̵

ih̵

m
⟨px⟩ =

1

m
⟨px⟩ (3.171)

d

dt
⟨px⟩ =

1

ih̵
⟨[px,H]⟩ = 1

ih̵

1

2
k ⟨[px, x2]⟩ = 1

ih̵

1

2
(−ih̵)k2 ⟨x⟩ = −k ⟨x⟩ (3.172)

The time dependence of ⟨x⟩ is easily found:

d2

dt2
⟨x⟩ = 1

m

d

dt
⟨px⟩ = −

k

m
⟨x⟩ (3.173)

Therefore

⟨x⟩ = A sinωt +B cosωt with ω =
√

k

m
(3.174)

so that ⟨x⟩ follows the classical trajectory!

Let us now look for the stationary states of the harmonic oscillator. These are
the energy eigenfunctions and are important for two reasons:

1. The corresponding energy eigenvalues are the only possible results from
an energy measurement.

2. The time dependence of any ψ(x, t) describing a particle in the presence
of a harmonic oscillator force can be obtained easily.

We will find the energy eigenfunctions and eigenvalues by two very different
methods:

(a) Differential equation method

(b) Operator algebra method

Let us express the Hamiltonian in terms of the classical (angular) frequency
ω =

√
k/m:

H = p2
x

2m
+ 1

2
mω2x2 , Hφ(x) = Eφ(x) (3.175)
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3.6.1. Differential Equation Method

We have

Hφ(x) = Eφ(x)⇒ − h̵
2

2m

d2φ(x)
dx2

+ 1

2
mω2x2φ(x) = Eφ(x) (3.176)

We solve the differential equation for φ(x) with E an arbitrary constant and
find allowed values of E by requiring that φ(x) not become infinite as ∣x∣→∞.
This will give us the entire spectrum of H - discrete and continuum parts.

Step 1: Introduce dimensionless variables and parameters.

− h̵2

2m

d2φ(x)
dx2

+ 1

2
mω2x2φ(x) = Eφ(x)

⇒ 1

(mω
h̵

)
d2φ(x)
dx2

− mω
h̵
x2φ(x) = −2mE

h̵2
φ(x)

Define

y =
√
mω

h̵
x and ε = 2E

h̵ω
(3.177)

(both dimensionless). Therefore, we get

d2φ

dy2
+ (ε − y2)φ = 0 (3.178)

Step 2: Factor out the asymptotic (y → ±∞) behavior of φ. Let y →∞. Then
ε − y2 ≈ −y2 so that we have the equation

d2φ

dy2
− y2φ = 0 (3.179)

As can be easily seen by direct substitution, this asymptotic equation is solved
by

φ = yαe±
1
2y

2

(3.180)

for arbitrary constant α. But φ cannot be infinite as y → ∞. Therefore, the
asymptotic solution

yαe+
1
2y

2

(3.181)

must be discarded. Therefore, asymptotically the solution is

φ = yαe−
1
2y

2

(3.182)

We now try to find an exact solution of the form

φ(x) = φ(
√
mω

h̵
x) = e−

1
2y

2

F (y) (3.183)
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This form is motivated by the form of the asymptotic solution. The equation
which F (y) obeys is obtained by substituting this form into

d2φ

dy2
+ (ε − y2)φ = 0 (3.184)

We have

dφ

dy
= −ye−

1
2y

2

F + e−
1
2y

2 dF

dy
(3.185)

d2φ

dy2
= −e−

1
2y

2

F + y2e−
1
2y

2

F − ye−
1
2y

2 dF

dy

− ye−
1
2y

2 dF

dy
+ e−

1
2y

2 d2F

dy2
(3.186)

so that the equation for F (y) becomes

d2F

dy2
− 2y

dF

dy
+ (ε − 1)F = 0 (3.187)

which is Hermite’s differential equation. Step 3: Solve Hermite’s differential
equation by the power series method Taylor where we expand F (y) about y = 0.
Let

F (y) =
∞
∑
k=0

Aky
k (3.188)

and substitute into the differential equation. We have

0 =
∞
∑
k=0

k(k − 1)Akyk−2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Series begins atk=2.
Relabeling index (k→k+2)
→

∞

∑
k=0

(k+2)(k+1)Ak+2y
k

−2y
∞
∑
k=0

kAky
k−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∞

∑
k=0

2kAkyk

+ (ε − 1)
∞
∑
k=0

Aky
k (3.189)

or

0 =
∞
∑
k=0

yk {(k + 2)(k + 1)Ak+2 − 2kAk + (ε − 1)Ak}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Each of these coefficients must therefore be zero

for all y (3.190)

Therefore

Ak+2 =
(2k − ε + 1)

(k + 2)(k + 1)
Ak for k = 0,1,2,3, ....... (3.191)

this is called a recursion relation. Using the recursion relation

A0 given ⇒ A2,A4,A6, ...... all determined
A1 given ⇒ A3,A5,A7, ...... all determined
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A0 and A1 are arbitrary. These are the two arbitrary constants which always
appear in the most general solution of a second-order differential equation. Thus,

F (y) = ∑
k=0,2,4,6,....

Aky
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Feven(y)
(determined byA0)

+ ∑
k=1,3,5,....

Aky
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Fodd(y)
(determined byA1)

(3.192)

Note: If AN = 0 for some N , then AN+2 = AN+4 = AN+6 = ..... = 0.

Step 4: F (y) given above solves Hermite’s differential equation for any given
value of ε. The allowed values of

E = ε h̵ω
2

(3.193)

are determined by requiring that φ not become infinite as y →∞. Now

φ(x) = φ(
√
mω

h̵
x) = e−

1
2y

2

F (y)

(i) If F (y) is a polynomial of finite degree (the series terminates after some
term), then φ(x) asymptotically goes as

e−
1
2y

2

[yfinite power]→ 0 (3.194)

This is an acceptable φ(x).

(ii) Suppose the series for F (y) does not terminate. Then as y →∞, the terms
with large k dominate in

F (y) =
∞
∑
k=0

Aky
k (3.195)

For k →∞
Ak+2

Ak
= (2k − ε + 1)

(k + 2)(k + 1)
→
k→∞

2k

k2
= 2

k
(3.196)

Therefore,

Feven(y) = ∑
k=0,2,4,..

Aky
k ⇒ Ak+2

Ak
→
k→∞

2

k

Fodd(y) = ∑
k=1,3,5,....

Aky
k ⇒ Ak+2

Ak
→
k→∞

2

k

But,

e+y
2

=
∞
∑
n=0

y2n

n!
= ∑
k=0,2,4,..

yk

(k
2
)!

→ ∑
large even
k

Bky
kwith

Bk+2

Bk
=

1/ (k+2
2

)!

1/ (k
2
)!

= 1
k
2
+ 1

≈ 2

k
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and

ye+y
2

=
∞
∑
n=0

y2n+1

n!
= ∑
k=1,3,5,..

yk

(k−1
2

)!

→ ∑
largeodd
k

Cky
kwith

Ck+2

Ck
=

1/ (k+1
2

)!

1/ (k−1
2

)!
= 1
k+1
2

≈ 2

k

Therefore, as y →∞

Feven(y)→ e+y
2

, Fodd(y)→ ye+y
2

(3.197)

if the series does not terminate. Therefore,

φ = e−
1
2y

2

F (y)⇒ φeven → e+
1
2y

2

and φodd → ye+
1
2y

2

(3.198)

These solutions diverge as y →∞ and therefore are unacceptable.

Conclusion: F (y) must be a polynomial of finite degree, that is, the series for
F (y) must terminate after some term! This gives us the allow values of ε. We
have

Ak+2 =
(2k − ε + 1)

(k + 2)(k + 1)
Ak (3.199)

Therefore, Feven terminates if A0 = 0 (→ Feven ≡ 0) or 2N1 − ε + 1 = 0 for some
even N1. Therefore

Feven = A0 +A2y
2 + ..... +AN1y

N1 (3.200)

Therefore, Fodd terminates if A1 = 0 (→ Fodd ≡ 0) or 2N2 − ε + 1 = 0 for some
odd N2. Therefore

Fodd = A1 +A3y
2 + ..... +AN2y

N2 (3.201)

Now F = Feven+Fodd. Therefore F terminates if both Feven and Fodd terminate.

This means we need

2N1 − ε + 1 = 0, even N1 AND 2N2 − ε + 1 = 0, odd N2 (3.202)

which CANNOT be satisfied simultaneously. Therefore

(1) A0 = 0 and 2N2 − ε + 1 = 0 for some odd N2 ⇒ ε = 2N2 + 1

(2) A1 = 0 and 2N1 − ε + 1 = 0 for some even N1 ⇒ ε = 2N1 + 1

The allowed values of ε are therefore

εN = 2N + 1 , N = 0,1,2,3, .... (3.203)

and
εN = 2EN

h̵ω
→ EN = h̵ω

2
(2N + 1) for N = 0,1,2,3, .... (3.204)
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The corresponding FN(y) is obtained from

FN(y) =
∞
∑
k=0

A
(N)
k yk (3.205)

where

A
(N)
k+2 = (2k − εN + 1)

(k + 2)(k + 1)
A

(N)
k = 2(k −N)

(k + 2)(k + 1)
A

(N)
k

A
(evenN)
oddk = 0 = A(oddN)

evenk

Therefore,

N even:

FN(y) = A(N)
0

⎧⎪⎪⎨⎪⎪⎩

1 + y2 2(0−N)
2!

+ y4 22(0−N)(2−N)
4!

+y6 23(0−N)(2−N)(4−N)
6!

+ ... + yN term

⎫⎪⎪⎬⎪⎪⎭
(3.206)

N odd:

FN(y) = A(N)
1

⎧⎪⎪⎨⎪⎪⎩

y + y3 2(1−N)
3!

+ y5 22(1−N)(3−N)
5!

+y7 23(1−N)(3−N)(5−N)
7!

+ ... + yN term

⎫⎪⎪⎬⎪⎪⎭
(3.207)

The energy eigenfunctions are

φN(x) = e−
1
2y

2

FN(y) (3.208)

where

y =
√
mω

h̵
x (3.209)

Then

HφN = ENφN with EN = h̵ω(N + 1/2) , N = 0,1,2,3, .... (3.210)

Notes

1. The energy spectrum is entirely discrete and there is no degeneracy.

2. FN(y) is a polynomial in y of degree N . N even means only even powers
of y occur and N odd means only odd powers of y occur.

3. FN(y) obeys the differential equation

d2FN
dy2

− 2y
dFN
dy

+ 2NFN = 0

which is Hermite’s differential equation.
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4. FN(y) = HN(y) = Hermite polynomial of order N , when the arbitrary
constants A0 and A1 are chosen such that the coefficient of yN is 2N .

Examples

H0(y) = A(N=0)
0 {1}: y0 coefficient is 20 = 1 so that A(N=0)

0 = 1 and thus
H0(y) = 1.

H1(y) = A(N=1)
1 {y}: y1 coefficient is 21 = 2 so that A(N=1)

1 = 2 and thus
H1(y) = 2y.

H2(y) = A(
0N = 2) {1 + y2 2(−2)

2!
} = A(N=2)

0 {1 − 2y2}: y2 coefficient is 22 = 4

so that A(N=2)
0 = −2 and thus H2(y) = 4y2 − 2.

Note that the Hermite polynomials are real functions of y.

5. The normalized eigenfunctions of H are

uN(x) = CNHN(y)e−
1
2y

2

(3.211)

where ∣CN ∣ is determined from ⟨uN ∣uN ⟩ = 1. We have

1 = ⟨uN ∣ uN ⟩ =
∞

∫
−∞

dxu∗N(x)uN(x) = ∣CN ∣2
∞

∫
−∞

dx [HN(y)]2 e−y
2

y =
√
mω

h̵
x⇒ dy =

√
mω

h̵
dx⇒ 1 = ∣CN ∣2

√
h̵

mω

∞

∫
−∞

dy [HN(y)]2 e−y
2

6. {uN(x)}N=0,1,2,... is a CON set with ⟨uN ′ ∣uN ⟩ = δ′N N

δN ′N = ⟨uN ′ ∣ uN ⟩ =
∞

∫
−∞

dxC∗
N ′HN ′(y)e−

1
2y

2

CNHN(y)e−
1
2y

2

=
√

h̵

mω
C∗
N ′CN

∞

∫
−∞

dyHN ′(y)HN(y)e−y
2

In particular,
∞

∫
−∞

dyHN ′(y)HN(y)e−y
2

= 0 (3.212)

for N ′ ≠ N . Thus, the Hermite polynomials are orthogonal with respect
to the weighting factor e−y

2

.

7. EN = h̵ω(N + 1/2)
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(a) E0 = h̵ω/2 = ground state energy. Classically, the oscillator could
stay at x = 0 with zero velocity, which would be the minimum energy
state (energy = 0). Quantum mechanically, the uncertainty princi-
ple implies that the oscillator cannot be precisely at x = 0 with px
precisely zero. Thus, the minimum energy > 0.

(b) EN+1 − EN = h̵ω independent of N . The energy levels are evenly
spaced.

8. Ground State (N = 0):

u0(x) = C0H0(y)e−
1
2y

2

= C0e
− 1

2y
2

, y =
√
mω

h̵
x (3.213)

C0 is found as in note (5):

1 = ∣C0∣2
√

h̵

mω

∞

∫
−∞

dy [H0(y)]2 e−y
2

= ∣C0∣2
√

h̵

mω

∞

∫
−∞

dye−y
2

= ∣C0∣2
√

h̵

mω

√
π

⇒ ∣C0∣2 =
√
mω

πh̵
(3.214)

Choosing C0 to be a positive real number, we have

u0(x) = (mω
πh̵

)
1/4

e−
mω
2h̵ x

2

(3.215)

Let ψ(x,0) = u0(x)⇒ ψ(x, t) = u0(x)e−i
E0t

h̵ = u0(x)e−i
ωt
2 for a particle in

the ground state for all t. Therefore,

℘(x, t) = ∣ψ(x, t)∣2

⟨ψ(t) ∣ ψ(t)⟩
= ∣u0(x)∣2 = (mω

πh̵
)

1/2
e−

mω
h̵ x2

(3.216)

This is independent of time, as expected for a stationary state. Classically,
xmax occurs when px = 0 (a turning point). Therefore,

E = p2
x

2m
+ 1

2
mω2x2 = 1

2
mω2x2

max ⇒ x2
max =

2E

mω2
(3.217)

For E = E0 = h̵ω/2 we have x2
max = h̵/mω. Therefore,

℘(x, t) = (mω
πh̵

)
1/2

e
−( x

xmax
)
2

(3.218)

for the ground state as shown in Figure 3.4 below.
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Figure 3.4: Probability Function

Now the classical motion is confined to the region x ∈ [−xmax,+xmax].
Notice that there is a non-zero probability to find the particle outside the
classically allowed region! This may seem strange because x > xmax ⇒
V (x) > EN=0 ⇒KE < 0!

However, if a measurement tells us that the particle is not in the classical
region (shine light over the classical region and look for the particle), then
the wave function will collapse to the wave function shown in Figure 3.5
below (measurement is made at t0).

Figure 3.5: Wave Function After Measurement

This is no longer an eigenfunction of energy. Therefore, if the particle is
known to be somewhere outside the classical region, the particle does not
have a definite energy (∆E ≠ 0) and the statement V (x) > EN=0 is no
longer applicable.

9. Let ψ(x,0) be arbitrarily given. It need not be an energy eigenfunction
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of H. What is ψ(x, t) for a harmonic oscillator?

ψ(x, t) =
∞
∑
N=0

CN(0)e−i
ENt

h̵ uN(x)

= e−i
ωt
2

∞
∑
N=0

CN(0)e−iNωtuN(x) (3.219)

where EN = h̵ω(N + 1/2) and the CN(0) are determined from

ψ(x,0) =
∞
∑
N=0

CN(0)uN(x)⇒ CN(0)

= ⟨uN ∣ ψ(t = 0)⟩ =
∞

∫
−∞

dxu∗N(x)ψ(x,0) (3.220)

3.6.2. Algebraic Method

Given

H = p2
x

2m
+ 1

2
mω2x2 (3.221)

where x and px are hermitian operators satisfying [x, px] = ih̵. We will now
solve the energy eigenvalue problem HφE = EφE by using only

(1) the hermiticity of x and px

and

(2) the above commutation relation

We will not need the explicit representation

px =
h̵

i

∂

∂x
(3.222)

required by working in the x − p representations.

Because H is a sum of a p2
x and an x2 term, we will try to write H as the

product of two factors, each of which is linear in x and px. We have

⎛
⎝

√
mω2

2
x − i

√
1

2m
px

⎞
⎠
⎛
⎝

√
mω2

2
x + i

√
1

2m
px

⎞
⎠
= mω

2

2
x2 + 1

2m
p2
x + i

ω

2
xpx − i

ω

2
pxx

=H + iω
2
[x, px] =H − h̵ω

2
(3.223)
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where we must be careful to preserve the ordering of the non-commuting oper-
ators x and px. Therefore

H =
⎛
⎝

√
mω2

2
x − i

√
1

2m
px

⎞
⎠
⎛
⎝

√
mω2

2
x + i

√
1

2m
px

⎞
⎠
+ h̵ω

2

= h̵ω
⎡⎢⎢⎢⎢⎣

⎛
⎝

√
mω

2h̵
x − i

√
1

2mh̵ω
px

⎞
⎠
⎛
⎝

√
mω

2h̵
x + i

√
1

2mh̵ω
px

⎞
⎠
+ 1

2

⎤⎥⎥⎥⎥⎦
(3.224)

We now define a new operator

a =
√
mω

2h̵
x + i

√
1

2mh̵ω
px (3.225)

Because x and px are are hermitian, we have

a+ =
√
mω

2h̵
x − i

√
1

2mh̵ω
px (3.226)

The Hamiltonian then becomes the simple expression

H = h̵ω(a+a + 1/2) (3.227)

The following commutators will be important in our discussion:

[a, a+] =
⎡⎢⎢⎢⎢⎣

√
mω

2h̵
x + i

√
1

2mh̵ω
px,

√
mω

2h̵
x − i

√
1

2mh̵ω
px

⎤⎥⎥⎥⎥⎦

= i

2h̵
[px, x] −

i

2h̵
[x, px] =

i

2h̵
(−ih̵) − i

2h̵
(ih̵) = 1 (3.228)

or [a, a+] = 1.

[a,H] = [a, h̵ω(a+a + 1/2)] = h̵ω [a, a+a]
= h̵ω (aa+a − a+aa) = h̵ω ((a+a + 1)a − a+aa) = h̵ω a (3.229)

or [a,H] = h̵ω a.

[a+,H] = [a+, h̵ω(a+a + 1/2)] = h̵ω [a+, a+a]
= h̵ω (a+a+a − a+aa+) = h̵ω (a+a+a − a+(a+a + 1)) = −h̵ω a+ (3.230)

or [a+,H] = −h̵ω a+.

These commutation relations imply the following:

1. E ≥ h̵ω/2 with equality if aφE = 0

Proof : we have

0 ≤ ⟨aφE ∣ aφE⟩ = ⟨φE ∣ a+aφE⟩ = ⟨φE ∣ ( H
h̵ω

− 1

2
)φE⟩

= ( E
h̵ω

− 1

2
) ⟨φE ∣ φE⟩ (3.231)
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But ⟨φE ∣ φE⟩ > 0 (φE not identically zero). Therefore,

( E
h̵ω

− 1

2
) ≥ 0⇒ E ≥ h̵ω

2
with equality if aφE = 0 (3.232)

2. a+φE ≠ 0 for any E

Proof : we have

⟨a+φE ∣ a+φE⟩ = ⟨φE ∣ aa+φE⟩ = ⟨φE ∣ (1 + a+a)φE⟩

= ⟨φE ∣ ( H
h̵ω

+ 1

2
)φE⟩ = ( E

h̵ω
+ 1

2
) ⟨φE ∣ φE⟩ (3.233)

Now

( E
h̵ω

+ 1

2
) ≥ 1 , ⟨φE ∣ φE⟩ > 0

⇒ ⟨a+φE ∣ a+φE⟩ ≠ 0, thatisa+φE ≠ 0

3. a+φE is an energy eigenfunction (a+φE ≠ 0) of H with eigenvalue E + h̵ω

Proof : we have

H(a+φE) = ([H,a+] + a+H)φE
= (h̵ωa+ + a+E)φE = (E + h̵ω)(a+φE)

4. aφE = 0 or aφE is an energy eigenfunction (aφE ≠ 0) of H with eigenvalue
E − h̵ω

Proof : we have

H(aφE) = ([H,a] + aH)φE
= (−h̵ωa + aE)φE = (E − h̵ω)(a+φE) (3.234)

If aφE ≠ 0, then this equation implies that aφE is an energy eigenfunction
of H.

Note: Because a+ increases the eigenvalue E by an increment h̵ω (it creates
added energy h̵ω), a+ is called a raising operator or a creation operator. Because
a decreases the eigenvalue E by an increment h̵ω (it annihilates added energy
h̵ω), a is called a lowering operator or a annihilation operator.

Given a specific φE , we can form the sequences:

φE
°
E

, aφE
±
E−h̵ω

, a2φE
²
E−3h̵ω

, a3φE
²
E−5h̵ω

, ..............

E
«
φE ,

E+h̵ω

a+φE ,

E+3h̵ω
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a+)2φE ,

E+5h̵ω
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(a+)3φE , ............
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But the energy eigenvalues must be ≥ h̵ω/2. Therefore, the first of the above
sequences (E,E−h̵ω,E−2h̵ω,E−3h̵ω, ....) must terminate (otherwise, we would
eventually obtain eigenvalues less than h̵ω/2. This termination occurs if there
exists an n (0,1,2, ...) such that anφE is an energy eigenfunction (and therefore
non-zero) with eigenvalue E − nh̵ω and

an+1φE = 0 , an+2φE = 0 , an+3φE = 0 , .... (3.235)

Result (1) above then implies that

E − nh̵ω = h̵ω
2
⇒ E = h̵ω(n + 1/2) (3.236)

This shows that if one is given an eigenvalue E, then it can be written E =
h̵ω(n + 1/2) for some non-negative integer n. It remains to be shown that
h̵ω(N + 1/2) for any N = 0,1,2, .... is an eigenvalue. But this is easy since from
above we have

E = h̵ω(n + 1/2) (3.237)

for some non-negative integer n. Forming the two sequences above, we find that

h̵ω(n − 1/2), h̵ω(n − 3/2), ....., h̵ω
2

(3.238)

and
h̵ω(n + 3/2), h̵ω(n + 5/2), h̵ω(n + 7/2), ..... (3.239)

are also allowed energy eigenvalues. Thus,

EN = h̵ω(N + 1/2)withN = 0,1,2, ... (3.240)

yields the entire spectrum of H. The spectrum has now been obtained without
using the explicit representation

px =
h̵

i

∂

∂x
(3.241)

Let φE(x) = uN(x) with ⟨uN ′ ∣ uN ⟩ = δN ′N .

Claim: All the energy eigenvalues are non-degenerate if the N = 0 eigenvalue
(E0 = h̵ω/2) is non-degenerate.

Proof : It is sufficient to show the following: If EN for some N > 0 is degenerate,
then EN−1 is also degenerate, that is, EN−1 non-degenerate implies that EN is
non-degenerate.

If EN is degenerate, one can find at least two orthogonal eigenfunctions (u(1)N and u
(2)
N )

with eigenvalue EN and ⟨u(1)N ∣ u(2)N ⟩ = 0. However,

⟨u(1)N ∣ a+au(2)N ⟩ = ⟨u(1)N ∣ ( H
h̵ω

− 1

2
)u(2)N ⟩ = (EN

h̵ω
− 1

2
) ⟨u(1)N ∣ u(2)N ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 0
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Therefore 0 = ⟨u(1)N ∣ a+au(2)N ⟩ = ⟨au(1)N ∣ au(2)N ⟩. But N > 0 implies that EN >

h̵ω/2 which implies au(1)N ≠ 0 and au
(2)
N ≠ 0. Therefore, au(1)N and au

(2)
N are

orthogonal eigenfunctions (not identically zero) corresponding to the eigenvalue
EN−1, which is therefore degenerate.

Let us show by explicit construction that EN=0 = h̵ω/2 is non-degenerate. We
can then conclude that the entire spectrum of H is non-degenerate.

Ground State: N = 0 , E0 = h̵ω/2. We have

E0 =
h̵ω

2
⇔ au0 = 0 (3.242)

which gives all eigenfunctions for N = 0. Now

a =
√
mω

2h̵
x + i√

2mh̵ω
px =

√
h̵

2mω
( d

dx
+ mω

h̵
x) (3.243)

using

px =
h̵

i

d

dx
(3.244)

Therefore,

√
h̵

2mω
( d

dx
+ mω

h̵
x)u0 = 0⇒ ( d

dx
+ mω

h̵
x)u0 = 0 (3.245)

so that
u0(x) = C0e

−mω2h̵ x
2

where C0 = any constant (3.246)

All eigenfunctions for N = 0 have this form. Thus, the N = 0 level is non-
degenerate. This implies that the entire spectrum of H is non-degenerate. Now
from an earlier result

⟨u0 ∣ u0⟩ = 1⇒ ∣C0∣ = (mω
πh̵

)
1/4

(3.247)

Choosing C0 to be positive real we have

u0(x) = (mω
πh̵

)
1/4

e−
mω
2h̵ x

2

(3.248)

One can easily obtain any energy state (uN for N > 0) by applying the raising
operator a+ a sufficient number of times to the ground state.

Note: a+uN has energy EN + h̵ω = EN+1 where uN has energy EN = h̵ω(N +
1/2). But EN+1 is non-degenerate. Therefore, a+uN = ANuN+1 where AN is
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some constant. ∣AN ∣ can be determined from the fact that uN and uN+1 are
normalized.

⟨a+uN ∣ a+uN ⟩ = ∣AN ∣2 ⟨uN+1 ∣ uN+1⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= ∣AN ∣2 (3.249)

⟨uN ∣ aa+uN ⟩ = ⟨uN ∣ ([a, a+] + a+a)uN ⟩

= ⟨uN ∣ ( H
h̵ω

+ 1

2
)uN⟩

= (N + 1) ⟨uN ∣ uN ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= ∣AN ∣2 (3.250)

so that
∣AN ∣ =

√
N + 1⇒ a+uN =

√
N + 1uN+1 (3.251)

which specifies uN+1 in terms of uN . Therefore,

aa+uN =
√
N + 1auN+1 (3.252)

and

([a, a+] + a+a)uN = ( H
h̵ω

+ 1

2
)uN = (EN

h̵ω
+ 1

2
)

= (N + 1)uN =
√
N + 1auN+1 (3.253)

so that
auN+1 =

√
N + 1uN ⇒ auN =

√
NuN−1 (3.254)

and, in particular, au0 = 0.

Note that a+auN =
√
Na+uN−1 =

√
N

√
NuN = NuN so that uN is also an

eigenfunction of a+a (which only differs from H by an additive constant).

We can now find uN(x) in terms of the ground state u0(x). We use

a+uN =
√
N + 1uN+1 ⇒ a+uN−1 =

√
NuN (3.255)

Thus,

uN = 1√
N
a+uN−1 =

1√
N
a+ ( 1√

N − 1
a+uN−2)

= 1√
N
a+ ( 1√

N − 1
a+ ( 1√

N − 2
a+uN−3)) = .......

or
uN = 1√

N !
(a+)Nu0 (3.256)

Now
a+ =

√
mω

2h̵
x − i√

2mh̵ω
px
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so that

uN = 1√
N !

(
√
mω

2h̵
x − i√

2mh̵ω
px)

N

u0

= 1√
N !

⎛
⎝

√
mω

2h̵
x −

√
h̵

2mω

d

dx

⎞
⎠

N

(mω
πh̵

)
1/4

e−
mω
2h̵ x

2

Now, as earlier, let

y =
√
mω

h̵
x (3.257)

(a dimensionless variable). Therefore,

uN(x) = 1√
N !

(mω
πh̵

)
1/4 1

2N/2 (y − d

dy
)
N

e−
1
2y

2

(3.258)

which is an explicit formula for uN .

Note:

(y − d

dy
)
N

e−
1
2y

2

= (y − d

dy
)(y − d

dy
) .....(y − d

dy
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N factors− each d

dy acts on everything which

appears to the right o it

e−
1
2y

2

= e−
1
2y

2

(polynomial of degree N) (3.259)

The coefficient of yN in this polynomial is 2N .

Proof : To obtain yN a factor of y must come from each (y − d/dy) term. For
each term, the y can come from one of two places (from y or from −d(e− 1

2y
2

)/dy.
There are therefore, 2N possible ways to obtain yN .

We can use this result for uN(x) to obtain an explicit expression for the Hermite
polynomials HN(y). From the differential equation method we found that

uN(x) = CNHN(y)e−
1
2y

2

(3.260)

Comparing our two expressions for uN(x)

CNHN(y)e−
1
2y

2

= 1√
N !

(mω
πh̵

)
1/4 1

2N/2 (y − d

dy
)
N

e−
1
2y

2

(3.261)

We can avoid doing the integral ⟨uN ∣ uN ⟩ = 1 to evaluate CN by recalling that
HN(y) = polynomial of degree N with 2N as the coefficient of yN . But

(y − d

dy
)
N

e−
1
2y

2

= e−
1
2y

2

(3.262)
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(polynomial of degree N with 2N as the coefficient of yN ). Therefore,

HN(y) = e+
1
2y

2

(y − d

dy
)
N

e−
1
2y

2

(3.263)

and

uN(x) = 1√
N !

(mω
πh̵

)
1/4 1

2N/2HN(y)e−
1
2y

2

(3.264)

Comment on Parity: uN(x) is an even function of x for N even and an
odd function of x for N odd (because HN(y) has this property). Thus, the
eigenfunctions of H are either even or odd functions. We could have anticipated
this result from the following discussion.

The parity operator Π is defined by its action on the wave function:

Πψ(x⃗, t) = ψ(−x⃗, t) (3.265)

The parity operator Π is linear and hermitian. Since

Π2ψ(x⃗, t) = Πψ(−x⃗, t) = ψ(x⃗, t) (3.266)

we have
Π2 = I (3.267)

and since its eigenvalue equation

Πψ = λψ (3.268)

implies
Π2ψ = λΠψ = λ2ψ = Iψ = ψ⇒ λ2 = 1→ λ = ±1

or the eigenvalues of Π are ±1. We then have

Πψeven(x⃗, t) = ψeven(−x⃗, t) = ψeven(x⃗, t) (3.269)
Πψodd(x⃗, t) = ψodd(−x⃗, t) = −ψodd(x⃗, t) (3.270)

so that any even function of x⃗ is an eigenfunction of Π with eigenvalue +1 and
any odd function of x⃗ is an eigenfunction of Π with eigenvalue −1.

Let us apply this result to the one-dimensional harmonic oscillator:

ΠHψ(x, t) = Π [− h̵
2

2m

d2

dx2
+ 1

2
mω2x2]ψ(x, t)

= [− h̵
2

2m

d2

dx2
+ 1

2
mω2x2]ψ(−x, t)

=HΠψ(x, t)
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so that (since ψ(x, t) is arbitrary)

ΠH =HΠ⇒ [Π,H] = 0 (3.271)

Therefore, we can find a CON set of simultaneous eigenfunctions of H and Π.
But the eigenfunctions of H are non-degenerate, and therefore, each uN(x) is an
eigenfunction of Π also. This means that each uN(x) obeys ΠuN(x) = ±uN(x)
or that each uN(x) is either an even function of x or an odd function of x.

3.6.3. Use of Raising and Lowering Operators

One can compute inner products of the form ⟨uN ′ ∣ A(x, px)uN ⟩ without doing
any cumbersome integrals. Now

a =
√
mω

2h̵
x + i√

2mh̵ω
px and a+ =

√
mω

2h̵
x − i√

2mh̵ω
px

imply that

x =
√

h̵

2mω
(a + a+) and px =

1

i

√
mh̵ω

2
(a − a+) (3.272)

Thus, A(x, px) can be expressed in terms of the raising and lowering operators,
where

auN =
√
NuN−1 and a+uN =

√
N + 1uN+1 (3.273)

Example: Consider the stationary state

ψ(x, t) = uN(x)e−i
ENt

h̵ (3.274)

We have

⟨ψ(t) ∣ ψ(t)⟩ = 1 (3.275)

and

⟨x⟩ = ⟨ψ(t) ∣ xψ(t)⟩ = ⟨uNe−i
ENt

h̵ ∣ xuNe−i
ENt

h̵ ⟩ = ⟨uN ∣ xuN ⟩

=
√

h̵

2mω
⟨uN ∣ (a + a+)uN ⟩ =

√
h̵

2mω
(⟨uN ∣ auN ⟩ + ⟨uN ∣ a+uN ⟩)

=
√

h̵

2mω

⎛
⎜⎜
⎝

√
N ⟨uN ∣ uN−1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+
√
N + 1 ⟨uN ∣ uN+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎞
⎟⎟
⎠
= 0
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so that ⟨x⟩ = 0 for the given stationary state. Now

⟨x2⟩ = ⟨ψ(t) ∣ x2ψ(t)⟩ = ⟨uNe−i
ENt

h̵ ∣ x2uNe
−iENth̵ ⟩ = ⟨uN ∣ x2uN ⟩

= h̵

2mω
⟨uN ∣ (a + a+)2uN ⟩ = h̵

2mω
⟨uN ∣ (aa + aa+ + a+a + a+a+)uN ⟩

= h̵

2mω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
√
N

√
N − 1) ⟨uN ∣ uN−2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ (
√
N + 1

√
N + 1) ⟨uN ∣ uN ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+ (
√
N

√
N) ⟨uN ∣ uN ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+ (
√
N + 1

√
N + 2) ⟨uN ∣ uN+2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h̵

mω
(N + 1

2
) = EN

mω2
(3.276)

Therefore,

(∆x)2 = ⟨x2⟩ − ⟨x⟩2 = EN
mω2

⇒∆x =
√

EN
mω2

(3.277)

It is quite reasonable for ∆x to increase with EN . Classically,

E = 1

2
mω2x2

max (3.278)

Therefore,

xmax =
√

2E

mω2
(3.279)

which increases with E. Quantum mechanically, one has ⟨x⟩ = 0 with a spread
in positions of the order of xmax.

Example: Consider the non-stationary state

ψ(x,0) = 1√
3
u0(x) +

√
2

3
u1(x) (3.280)

We use HuN = ENuN , EN = h̵ω(N + 1/2), ⟨uN ′ ∣ uN ⟩ = δN ′N . These two wave
functions are shown in Figure 3.6 below.

u0(x)∝ e−
mω
2h̵ x

2

u1(x)∝ xe−
mω
2h̵ x

2

(3.281)
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Figure 3.6: Two wave functions making up the state

Therefore,

ψ(x, t) = 1√
3
u0(x)e−i

ωt
2 +

√
2

3
u1(x)e−i

3ωt
2 (3.282)

so that

⟨ψ(t) ∣ ψ(t)⟩ = 1

3
+ 2

3
= 1

℘(E0 = 3h̵ω/2, t) = 2

3
, ℘(EN>1, t) = 0

⟨H⟩ = ⟨ψ(t) ∣Hψ(t)⟩ =
∞
∑
N=0

℘(EN , t)EN = 1

3
( h̵ω

2
) + 2

3
(3h̵ω

2
) = 7h̵ω

6

and

⟨x⟩ = ⟨
1√
3
u0(x)e−i

ωt
2

+
√

2
3
u1(x)e−i

3ωt
2

RRRRRRRRRRRR
x
⎛
⎝

1√
3
u0(x)e−i

ωt
2

+
√

2
3
u1(x)e−i

3ωt
2

⎞
⎠
⟩

= 1

3
⟨u0(x) ∣ xu0(x)⟩ +

2

3
⟨u0(x) ∣ xu1(x)⟩

+
√

2

3
eiωt ⟨u1(x) ∣ xu0(x)⟩ +

√
2

3
e−iωt ⟨u0(x) ∣ xu1(x)⟩

We must calculate ⟨uN ′ ∣ xuN ⟩.

⟨uN ′ ∣ xuN ⟩ =
√

h̵

2mω
⟨uN ′ ∣ (a + a+)uN ⟩

=
√

h̵

2mω
(⟨uN ′ ∣ auN ⟩ + ⟨uN ′ ∣ a+uN ⟩)

=
√

h̵

2mω
(
√
N ⟨uN ′ ∣ uN−1⟩ +

√
N + 1 ⟨uN ′ ∣ uN+1⟩)

=
√

h̵

2mω
(
√
NδN ′,N−1 +

√
N + 1δN ′,N+1) (3.283)
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This gives

⟨x⟩ = 0 + 0 +
√

h̵

2mω

√
2

3
(eiωt + e−iωt) = 2

3

√
h̵

mω
cosωt (3.284)

We have the probability distribution as shown in Figure 3.7 below.

Figure 3.7: Probability distribution

Now an energy measurement is made at t = 0 and the value h̵ω/2 is obtained.
The wave function collapses to

ψ′(x,0) = 1√
3
u0(x) (3.285)

and we now have the probability distribution as shown in Figure 3.8 below.

Figure 3.8: Probability distribution

Immediately after the energy measurement, a position measurement indicates
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that the particle is not on the negative portion of the x−axis at t = 0 (for
example, one shines light on the region x < 0 at t = 0 and does not see the
particle). The wave function then collapses to ψ′′(x,0). To calculate this new
wave function, one must expand ψ′(x,0) in terms of position eigenfunctions.

We have xvX(x) =XvX(x), where X = constant eigenvalue of position or

(x −X)vX(x) = 0 (3.286)

This implies that vX(x) ∼ δ(x −X) is the position eigenfunction where

⟨vX′ ∣ vX⟩ =
∞

∫
−∞

dxδ(x −X ′)δ(x −X) = δ(X ′ −X) (3.287)

and

ψ′(x,0) =
∞

∫
−∞

dXCXvX(x) (3.288)

which is an expansion in terms of CON set {vX(x)} with

CX = ⟨vX ∣ ψ′(t = 0)⟩ =
∞

∫
−∞

dxδ(x −X)ψ′(x,0) = ψ′(X,0) (3.289)

Because the position measurement indicates that the particle is not in the x < 0
region, the wave function collapses to

ψ′′(x,0) =
∞

∫
0

dXCXvX(x) (3.290)

which is the part of the wave function with position eigenfunctions for X > 0.
Therefore,

ψ′′(x,0) =
∞

∫
0

dXψ′(X,0)δ(x −X) =
⎧⎪⎪⎨⎪⎪⎩

0 for x < 0

ψ′(x,0) for x > 0
(3.291)

where
ψ′(x,0) = 1√

3
u0(x) (3.292)

We get the probability distribution shown in Figure 3.9 below.
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Figure 3.9: After the position measurement

A position measurement just collapses the wave function to zero in those regions
where the particle is known not to be!

Note that

⟨ψ′′(t = 0) ∣ ψ′′(t = 0)⟩ =
∞

∫
−∞

dxψ′′∗(x,0)ψ′′(x,0)

=
∞

∫
0

dxψ′∗(x,0)ψ′(x,0) = 1

3

∞

∫
0

dxu∗0(x)u0(x)

= 1

3

⎛
⎝

1

2

∞

∫
−∞

dxu∗0(x)u0(x)
⎞
⎠
= 1

6
⟨u0 ∣ u0⟩ =

1

6

ψ′′(x,0) is no longer an eigenfunction of energy. The probability of now mea-
suring the energy to be E0 = h̵ω/2 is given by

℘′′(E0 = h̵ω/2,0) =
⟨ψ′′(t = 0) ∣ u0⟩ ⟨u0 ∣ ψ′′(t = 0)⟩

⟨ψ′′(t = 0) ∣ ψ′′(t = 0)⟩
= 1

1/6

RRRRRRRRRRRR

∞

∫
−∞

dxu∗0(x)ψ′′(x,0)
RRRRRRRRRRRR

2

= 6

RRRRRRRRRRRR

∞

∫
0

dxu∗0(x)ψ′(x,0)
RRRRRRRRRRRR

2

= 6

RRRRRRRRRRRR

∞

∫
0

dxu∗0(x)
1√
3
u0(x)

RRRRRRRRRRRR

2

= 2

RRRRRRRRRRRR

1

2

∞

∫
−∞

dxu∗0(x)u0(x)
RRRRRRRRRRRR

2

= 2
1

4
(1) = 1

2

Suppose that we make no measurements after the wave function has collapsed
to ψ′′(x,0). The wave function will then develop in time under the action of the
harmonic oscillator force. Let us find ψ′′(x, τ/2) where τ = 2πω is the classical
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period of the oscillator. We have

ψ′′(x,0) =
∞
∑
N=0

CNuN(x) (3.293)

⇒ ψ′′(x, t) =
∞
∑
N=0

CNuN(x)e−i
ENt

h̵ = e−i
ωt
2

∞
∑
N=0

CNuN(x)e−iNωt (3.294)

and

CN = ⟨uN ∣ ψ′′(t = 0)⟩ =
∞

∫
−∞

dxu∗N(x)ψ′′(x,0)

=
∞

∫
0

dxu∗N(x)ψ′(x,0) = 1√
3

∞

∫
0

dxu∗N(x)u0(x) (3.295)

This is very complicated in general (we cannot use orthogonality since that
requires the integration range [−∞,+∞]. We can do the following however.

For N even we can write

CN = 1√
3

∞

∫
0

dxu∗N(x)u0(x) =
1√
3

1

2

∞

∫
−∞

dxu∗N(x)u0(x) =
1

2
√

3
δN0 (3.296)

so that C0 = 1/2
√

3 and for all other even N the CN are zero. We will not need
an explicit formula for odd N values of CN .

We then have

ψ′′(x, t) = e−i
ωt
2

∞
∑
N=0

CNuN(x)e−iNωt = e−i
ωt
2

⎡⎢⎢⎢⎢⎣
C0u0 + ∑

N=1,3,5,....

CNuN(x)e−iNωt
⎤⎥⎥⎥⎥⎦

(3.297)

ψ′′(x, τ/2) = e−i
π
2

⎡⎢⎢⎢⎢⎢⎣

1

2
√

3
u0 + ∑

N=1,3,5,....

CNuN(x) e−iNπ
²

=1foroddN

⎤⎥⎥⎥⎥⎥⎦

= −i
⎡⎢⎢⎢⎢⎣

1√
3
u0 −

⎛
⎝

1

2
√

3
u0 + ∑

N=1,3,5,....

CNuN(x)
⎞
⎠

⎤⎥⎥⎥⎥⎦

= −i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
3
u0 −

⎛
⎝
C0u0 + ∑

N=1,3,5,....

CNuN(x)
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψ′′(x,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −i [ 1√
3
u0 − ψ′′(x,0)]

(3.298)
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Therefore,

ψ′′(x, τ/2) = −i [ i√
3
u0 − ψ′′(x,0)] =

⎧⎪⎪⎨⎪⎪⎩

i√
3
u0 for x < 0

0 for x > 0
(3.299)

Therefore at τ/2, the probability distribution has oscillated to the x < 0 region
as shown in Figure 3.10 below.

Figure 3.10: After the position measurement

as we might expect for an oscillator!

We now discuss general potential functions.

3.7. General Potential Functions

Consider a particle with potential energy V (x⃗) so that

H = p⃗ ⋅ p⃗
2m

+ V (x⃗) = − h̵
2

2m
∇2 + V (x⃗) (3.300)

The particle is completely described by a wave function ψ(x⃗, t), where ⟨ψ(t) ∣ ψ(t)⟩
is finite and non-zero and where the time-development of the wave function be-
tween measurements is determined by the time-dependent Schrodinger equation

Hψ(x⃗, t) = ih̵∂ψ(x⃗, t)
∂t

(3.301)

To study the behavior of such a particle, one begins by finding the energy
eigenfunctions and eigenvalues:

{u(α)n (x), u(α)cν (x)} - CON set of eigenfunctions of H

Hu(α)n (x) = Enu(α)n (x) - discrete part of the spectrum

Hu(α)cν (x) = Ecνu(α)cν (x) - continuum part of the spectrum
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Knowledge of {u(α)n (x), u(α)cν (x),En,Ecν} not only gives the possible results
of an energy measurement but also gives a simple expression for the time-
dependence of any wave function for the particle:

ψ(x⃗, t) =∑
nα

c(α)n u(α)n (x)e−i
Ent
h̵ + ∫ dν∑

β

d(β)ν u(β)cν (x)e−i
Ecνt
h̵ (3.302)

where

c(α)n = ⟨u(α)n ∣ ψ(t = 0)⟩ and d(β)ν = ⟨u(β)cν (x) ∣ ψ(t = 0)⟩ (3.303)

This explicitly gives ψ(x⃗, t) in terms of ψ(x⃗,0).

Let us first consider a particle constrained to move along the x−axis (one-
dimensional problem). We have already discussed the one-dimensional harmonic
oscillator. Now, we want to discuss a particle whose potential energy is given
by:

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

VL(constant) for x < xL
VR(constant) for x > xR
V (x)(arbitrary) for xL < x < xR

(3.304)

as shown in Figure 3.11 below.

Figure 3.11: General Potential Function

We have the energy eigenfunction/eigenvalue equation:

Hφ = − h̵
2

2m

d2

dx2
φ + V (x⃗)φ = Eφ (3.305)

⇒ d2φ(x)
dx2

= 2m

h̵2
(V (x) −E)φ(x) (3.306)

3.7.1. Method for Solving this Eigenvalue Equation
1. Solve the differential equation with E any arbitrary constant.
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2. Determine the allowed values of E by requiring that the solution φ does
not become infinite as ∣x∣ →∞. This is a necessary condition for φ to be
an acceptable energy eigenfunction - the inner product of φ with almost
every square-integrable function must be finite. For some values of E, the
solution to the differential equation will become infinite as ∣x∣→∞. Such
a solution is not an acceptable energy eigenfunction and, therefore, the
corresponding value of E is not an allowed eigenvalue.

Notes:

(a) The given differential equation implies that φ and dφ/dx must be continu-
ous in regions where V (x) is finite (however, V (x) need not be continuous
in such regions). These are necessary conditions for d2φ(x)/dx2 to be fi-
nite, where the given differential equation implies that d2φ(x)/dx2 must
be finite for finite V (x) and finite E.

More General Discussion (from Chapter 2)

Since φ(x) is physically related to a probability amplitude and hence to a
measurable probability, we assume that φ(x) is continuous.

Using this fact, we can determine the general continuity properties of
dφ(x)/dx. The continuity property at a particular point, say x = x0, is
derived as follows:

x0+ε

∫
x0−ε

d2φ(x)
dx2

dx =
x0+ε

∫
x0−ε

d(dφ(x)
dx

)

= −2m

h̵2

⎡⎢⎢⎢⎢⎣
E

x0+ε

∫
x0−ε

φ(x)dx −
x0+ε

∫
x0−ε

V (x)φ(x)dx
⎤⎥⎥⎥⎥⎦

Taking the limit as ε→ 0

lim
ε→0

⎛
⎝
dφ(x)
dx

∣
x=x0+ε

− dφ(x)
dx

∣
x=x0−ε

⎞
⎠

= −2m

h̵2

⎡⎢⎢⎢⎢⎣
E lim
ε→0

x0+ε

∫
x0−ε

φ(x)dx − lim
ε→0

x0+ε

∫
x0−ε

V (x)φ(x)dx
⎤⎥⎥⎥⎥⎦

or

∆(dφ(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)φ(x)dx (3.307)

where we have used the continuity of φ(x) to set

lim
ε→0

x0+ε

∫
x0−ε

φ(x)dx = 0
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This make it clear that whether or not dφ(x)/dx has a discontinuity de-
pends directly on the potential energy function.

If V (x) is continuous at x = x0 (harmonic oscillator example), i.e.,

lim
ε→0

[V (x0 + ε) − V (x0 − ε)] = 0 (3.308)

then

∆(dφ(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)φ(x)dx = 0 (3.309)

and dφ(x)/dx is continuous.

If V (x) has a finite discontinuity (jump) at x = x0 (finite square well and
square barrier examples later), i.e.,

lim
ε→0

[V (x0 + ε) − V (x0 − ε)] = finite (3.310)

and dφ(x)/dx is continuous.

Finally, if V (x) has an infinite jump at x = x0 (infinite square well and
delta-function examples later), then we have two choices

(a) if the potential is infinite over an extended range of x (the infinite
well), then we must force φ(x) = 0 in that region and use only the
continuity of φ(x) as a boundary condition at the edge of the region

(b) if the potential is infinite at a single point, i.e., V (x) = δ(x−x0), then

∆(dφ(x)
dx

) = 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

V (x)φ(x)dx

= 2m

h̵2
lim
ε→0

x0+ε

∫
x0−ε

δ(x − x0)φ(x)dx

= 2m

h̵2
lim
ε→0

φ(x0) =
2m

h̵2
φ(x0) (3.311)

and, thus,dφ(x)/dx is discontinuous.

We will use these rules later.

(b) Because V (x) is a real function of x and because the allowed values of E
must be real (they are eigenvalues of the hermitian operator H), Reφ and
Imφ obey the same differential equation as does φ = Reφ + iImφ, i.e.,

d2 (Reφ + iImφ)
dx2

= 2m

h̵2
(V (x) −E) (Reφ + iImφ)
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implies that

d2

dx2
{ Reφ

Imφ
} = 2m

h̵2
(V (x) −E){ Reφ

Imφ
}

(c) In any region where V (x) > E, {Reφ, Imφ} and d2 {Reφ, Imφ} /dx2 have
the same sign. Thus, {Reφ, Imφ} must be concave upward if {Reφ, Imφ}
is positive and concave downward if {Reφ, Imφ} is negative - {Reφ, Imφ}
must curve away from the x-axis (non-oscillatory) as shown in Figure 3.12
below.

Figure 3.12: Behavior for V (x) > E

Note that V (x) > E is the classically forbidden region where the kinetic
energy would be negative.

In any region where V (x) < E, {Reφ, Imφ} and d2 {Reφ, Imφ} /dx2 have
the opposite signs. Thus, {Reφ, Imφ}must be concave upward if {Reφ, Imφ}
is negative and concave downward if {Reφ, Imφ} is positive - {Reφ, Imφ}
must curve toward the x-axis (oscillatory) as shown ib Figure 3.13 below.

Figure 3.13: Behavior for V (x) < E
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Note that V (x) < E is the classically allowed region where the kinetic
energy would be positive.

(d) If V (x) is equal to some constant value V0 in a region, then phi(x) can
easily be found in that region:

E > V0 (oscillatory)

d2φ(x)
dx2

= 2m

h̵2
(V0 −E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−k2 (negative)

φ(x) , k = +
√

2m

h̵2
(V0 −E)

φ(x) = Aeikx +Be−ikx = C sinkx +D coskx

E < V0 (non − oscillatory)

d2φ(x)
dx2

= 2m

h̵2
(V0 −E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
+k2 (positive)

φ(x) , k = +
√

2m

h̵2
(V0 −E)

φ(x) = Aekx +Be−kx = C sinhkx +D coshkx

E = V0

d2φ(x)
dx2

= 2m

h̵2
(V0 −E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

φ(x)

φ(x) = Ax +B

Let us now consider some properties of the spectrum of H when the potential
energy V (x) has the general form given earlier

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

VL(constant) for x < xL
VR(constant) for x > xR
V (x)(arbitrary) for xL < x < xR

For definiteness, let VL ≤ VR. For any constant E, the differential equation for
φ(x) has two linearly independent solutions (because the differential equation
is second order). However, the extra condition that φ(x) not become infinite as
∣x∣→∞ may limit the number of acceptable solutions for that E - for a given E,
there may exist two linearly independent acceptable solutions, only one linearly
independent acceptable solution, or no non-zero acceptable solution.
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For E > VR ≥ VL we have

x < xL ⇒ V (x) = VL

⇒ φ(x) = AeikLx +Be−ikLx where kL = +
√

2m

h̵2
(E − VL) (3.312)

x > xR ⇒ V (x) = VR

⇒ φ(x) = CeikRx +De−ikRx where kR = +
√

2m

h̵2
(E − VR) (3.313)

That the given differential equation has two linearly independent solutions
means that φ(x), x ∈ (−∞,+∞) has two arbitrary constants. Choose these con-
stants to be C and D. Then A(C,D) and B(C,D) will be functions of C and
D, which are found by solving the differential equation. The extra condition,
φ(x) does not become infinite as ∣x∣ → ∞ puts no restrictions on the solutions
we have written. Thus, C and D can still be arbitrary. Therefore, there ex-
ists an acceptable φ(x) for any E > VR ≥ VL and it depends on two arbitrary
constants - there is 2-fold degeneracy for any E > VR ≥ VL. The corresponding
eigenfunctions are clearly non-normalizable (continuum eigenfunctions).

For VR > E > VL we have

x < xL ⇒ V (x) = VL

⇒ φ(x) = AekLx +Be−kLx where kL = +
√

2m

h̵2
(VL −E) (3.314)

x > xR ⇒ V (x) = VR

⇒ φ(x) = CekRx +De−kRx where kR = +
√

2m

h̵2
(VR −E) (3.315)

Choose C and D as the two arbitrary constants which enter into the solution
of the given second-order differential equation. A(C,D) and B(C,D) will be
functions of C and D. The extra condition, φ(x) does not become infinite as
∣x∣ → ∞ requires that C = 0 and B = 0. If a non-trivial, acceptable solution to
the differential equation exists, then D must be able to take on any arbitrary
value. This follows from the fact that the given differential equation is homo-
geneous: if φ(x) is an acceptable solution, then any constant times φ(x) is also
an acceptable solution. Thus, C = 0 and B(C = 0,D) = 0 with D arbitrary can
be satisfied. These would correspond to the allowed values of E, and the cor-
responding eigenfunctions would be non-degenerate (one arbitrary constant D)
and normalizable since ∣φ(x)∣ decreases exponentially as x→ ±∞, which implies
that ⟨φ ∣ φ⟩ is finite. Whether or not these allowed values of E exist depends on
the V (x) considered.

Note: E is not allowed if E < V (x) for all x ∈ (−∞,+∞).
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Proof : We have

d2

dx2
{ Reφ

Imφ
} = 2m

h̵2
(V (x) −E)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positive for all x

{ Reφ
Imφ

} (3.316)

Therefore, d2 {Reφ, Imφ} /dx2 and {Reφ, Imφ} have the same sign for all x,
which implies that {Reφ, Imφ} always curves away from the x−axis. The ac-
ceptable solutions have

E < VL ⇒ { Reφ
Imφ

} and φ(x)∝ ekLx for x < xL (3.317)

E < VR ⇒ { Reφ
Imφ

} and φ(x)∝ e−kRx for x > xR (3.318)

As can be seen from Figure 3.14 below, it is clearly impossible to join the 2 parts
of {Reφ, Imφ} at xR such that the function is continuous and has a continu-
ous first derivative. Thus, such values of E are unacceptable. For an allowed
value of E, it is therefore necessary to have some region of x in which E > V (x).

Figure 3.14: Impossible to join

Summary: (these degeneracy statements apply only to one-dimensional
motion along a straight line)

E > VR ≥ VL

All such E values are allowed.
Each E is 2−fold degenerate
φ(x) is oscillatory for x < xL and for x > xR
φ(x) is non-normalizable (continuum)
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VR > E > VL

All such E values are allowed.
Each E is non-degenerate
φ(x) is oscillatory for x < xL and exponentially decreasing for x > xR
φ(x) is non-normalizable (continuum)

E < VL ≤ VR

Only certain E values are allowed(it is possible for no E values to be allowed
in this range)

Each E is non-degenerate
φ(x) is exponentially decreasing for x < xL and for x > xR
φ(x) is is normalizable (discrete)
Eigenfunctions in this energy range are called bound states

Examples: Examples are shown in Figures 3.15 and 3.16 below.

Figure 3.15: Example #1
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Figure 3.16: Example #2

Piecewise Constant Potential Energies

In one-dimension these are particularly simple to analyze. Consider the poten-
tial shown in Figure 3.17 below.

Figure 3.17: Piecewise Constant Potential Energy

Given the differential equation

d2φ(x)
dx2

= 2m

h̵2
(V (x) −E)φ(x) (3.319)

we have the following method :

1. Solve the differential equation with E any arbitrary constant. This is most
easily accomplished as follows:

(a) Solve the differential equation in each region for which V (x) is a
constant (discussed earlier). Special case: φ = 0 in a region where
V (x) =∞.
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(b) Match the solutions across each boundary: φ and dφ/dx are contin-
uous. Special case: only φ is continuous across a boundary with an
infinite jump in V (x).

2. Determine the allowed values of E by requiring that the solution φ to not
become infinite as ∣x∣→∞.

The following example will illustrate the method. We consider the potential
function shown in Figure 3.18 below.

Figure 3.18: Step Function Potential - Infinite Barrier

Our general results completely determine the spectrum (see earlier discussion).
However, let us calculate it explicitly.

We have Fx = −dV /dx = 0 except at x = 0. Classically, E < 0 is not allowed.
0 < E < V0 has unbound motion confined to x < 0. E > V0 has unbound motion
over the entire x−axis.

E < 0

x < 0⇒ φ = φ2 = Aek2x +Be−k2x (3.320)

x > 0⇒ φ = φ1 = Cek1x +De−k1x (3.321)

where

k2 =
√

−2mE

h̵2
and k1 =

√
2m(V0 −E)

h̵2
(3.322)

φ must not become infinite as ∣x∣→∞, which implies that B = C = 0 so that

φ2‘ = Aek2xandφ1 =De−k1x (3.323)

Then

φ1(0) = φ2(0)⇒D = A
dφ1(0)
dx

= dφ2(0)
dx

⇒ −k1D = k2A⇒ −k1 = k2
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which is impossible. Therefore, there are no allowed values for E < 0.

0 < E < V0

x < 0⇒ φ = φ2 = Aeik2x +Be−ik2x (3.324)

x > 0⇒ φ = φ1 = Cek1x +De−k1x (3.325)

where

k2 =
√

2mE

h̵2
and k1 =

√
2m(V0 −E)

h̵2
(3.326)

φ must not become infinite as ∣x∣→∞, which implies that C = 0 so that

φ2 = Aeik2x +Be−ik2x and φ1 =De−k1x (3.327)

Then

φ1(0) = φ2(0)⇒D = A +B
dφ1(0)
dx

= dφ2(0)
dx

⇒ −k1D = ik2A − ik2B

These two equations determine A and B in terms of D, which is arbitrary. This
is possible for any E. Therefore, all E values for 0 < E < V0 are allowed and
they are non-degenerate (one arbitrary constant D).

E > V0

x < 0⇒ φ = φ2 = Aeik2x +Be−ik2x (3.328)

x > 0⇒ φ = φ1 = Ceik1x +De−ik1x (3.329)

where

k2 =
√

2mE

h̵2
and k1 =

√
2m(E − V0)

h̵2
(3.330)

φ must not become infinite as ∣x∣ → ∞ places no restrictions on A, B, C, D.
Then

φ1(0) = φ2(0)⇒ C +D = A +B
dφ1(0)
dx

= dφ2(0)
dx

⇒ −ik1(C −D) = ik2(A −B)

These two equations determine A and B in terms of C and D, which are both
arbitrary. This is possible for any E. Therefore, all E values for E > V0 are
allowed and there is 2−fold degeneracy (two arbitrary constants C and D).

These results agree with our analysis of the general V (x).

Notice that the potential energy just considered has some physical significance:
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Figure 3.19: End of a wire

(a) Consider an electron constrained to move along the x−axis. See Figure
3.19 above.

The electron has no force acting on it when it is in the vacuum region.
Furthermore, the electron is essentially free in its motion through the
metal. However, an energy V0 (the metal’s work function) is needed for
the electron to leave the metal’s surface and enter the vacuum region.
Thus,

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 for x < 0

V0 for x > 0
(3.331)

as in the example above.

(b) Consider an electron constrained to move along the x−axis. The electron
moves within 2 conducting cylindrical tubes which are separated by a
small gap and which are maintained at different potentials (the x > 0 tube
is at electrical potential −Φ with respect to the x > 0 tube). See Figure
3.20 below.

Figure 3.20: Gap between tubes

The potential energy is

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 for x < 0

V0 for x > 0
(3.332)

where V0 = −eΦ where e = the electron’s charge. Again, this is the same
as in the example above.

3.7.2. Symmetrical Potential Well (finite depth)
We consider the potential energy function shown in Figure 3.21 below:
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Figure 3.21: Finite square well

so that

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V0 for x > a/2
0 for −a/2 < x < a/2
V0 for x < −a/2

(3.333)

The energy spectrum has a 2−fold degenerate continuum for all E > V0. There
are no energy eigenvalues for E < 0. The question is whether or not there are
bound states in the region 0 < E < V0.

Note: We have V (x) = V (−x). Recall that the parity operator Π is defined by
Πf(x) = f(−x). The eigenvalues of Π are ±1 and the corresponding eigenfunc-
tions are (even, odd) functions of x.

Notice also that [Π,H] = 0.

Proof : We have

ΠHf(x) = Π(− h̵
2

2m

d2

dx2
+ V (x)) f(x)

= (− h̵
2

2m

d2

d(−x)2
+ V (−x)) f(−x)

= (− h̵
2

2m

d2

dx2
+ V (x))Πf(x)

so that ΠHf(x) =HΠf(x) for any f(x) or [Π,H] = 0.

Thus, we can find a CON set of simultaneous eigenfunctions of Π and H - each
eigenfunction in this set will be either an even function of x or an odd function
of x. This observation will simplify our calculation - we need to match φ and
dφ/dx at x = a/2 only. An even or odd function of x will then automatically
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have φ and dφ/dx at x = −a/2.

0 < E < V0: we define

k2 =
√

2mE

h̵2
and k1 = k3 =

√
2m(V0 −E)

h̵2
(3.334)

φeven: we have

x > a/2⇒ φ = φ1 = Ae+k1x

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
A=0 forφ
not infinite
as ∣x∣→∞

+Be−k1x (3.335)

− a/2 < x < a/2⇒ φ = φ2 = C sink2x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C=0 for an
even function

+D cosk2x (3.336)

φ1(a/2) = φ2(a/2)⇒ Be−k1a/2 =D cos
k2a

2
(3.337)

dφ1(a/2)
dx

= dφ2(a/2)
dx

⇒ −k1Be
−k1a/2 = −k2D sin

k2a

2
(3.338)

Therefore, B,D ≠ 0 implies that we can divide (3.338) by (3.337) and get

k1 = k2 tan
k2a

2
(3.339)

E must obey the above transcendental equation for φeven to be an eigenfunction.

φodd: we have

x > a/2⇒ φ = φ1 = Ae+k1x

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
A=0 forφ
not infinite
as ∣x∣→∞

+Be−k1x (3.340)

− a/2 < x < a/2⇒ φ = φ2 = C sink2x + D cosk2x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D=0 for an
odd function

(3.341)

φ1(a/2) = φ2(a/2)⇒ Be−k1a/2 = C sin
k2a

2
(3.342)

dφ1(a/2)
dx

= dφ2(a/2)
dx

⇒ −k1Be
−k1a/2 = k2C cos

k2a

2
(3.343)

Therefore, B,C ≠ 0 implies that we can divide (3.343) by (3.342) and get

−k1 = k2 cot
k2a

2
(3.344)

E must obey the above transcendental equation for φodd to be an eigenfunction.
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Therefore we have

φeven ∶ k1
a

2
= k2

a

2
tan

k2a

2
(3.345)

φodd ∶ −k1
a

2
= k2

a

2
cot

k2a

2
(3.346)

We let

η = k2
a

2
=
√

2mE

h̵2

a

2
(3.347)

and then

k1
a

2
= a

2

√
2m(V0 −E)

h̵2
=
√

Γ − η2 (3.348)

where

Γ = mV0a
2

2h̵2
(3.349)

Thus,

φeven ∶
√

Γ − η2 = η tanη (3.350)

φodd ∶
√

Γ − η2 = −η cotη (3.351)

These equations determine the allowed values of E for the two types of solutions.
We can solve these transcendental equations graphically. We plot y = η tanη
and y = −η cotη. The intersections of these curves with the curve y =

√
Γ − η2

yields the allowed values of

η =
√

2mE

h̵2

a

2
(3.352)

and thus the allowed E values for the even and odd solutions. Now E < V0 ⇒
η2 < Γ so that y = +

√
Γ − η2 is one quadrant of a circle of radius Γ. Note also

that η is always positive. The graphical solutionis shown in Figure 3.22 below.

Comments:

1. There always exists at least one bound state for the symmetric potential
well, regardless of the value of Γ. Asymmetric wells need not have any
bound states.

2. The bound state energies are indeed discrete (separated).

3. Γ finite implies that there are a finite number of bound states.

4. Let V0 → ∞ (a fixed). Therefore, Γ → ∞ and the circle y = +
√

Γ − η2

has an infinite radius. In this case, the circle intersects y = η tanη and
y = −η cotη at the asymptotes (dotted vertical lines in Figure 3.22). Thus,
the allowed values of η are

π

2
, π,

3π

2
,2π,

5π

2
,3π,

7π

2
, .....
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Figure 3.22: Graphical Solution

(infinite number of bound states). Therefore,

η =
√

2mE

h̵2

a

2
= nπ

2
⇒ E = n

2π2h̵2

2ma2
(3.353)

which agrees with our earlier result for the potential well with impenetra-
ble walls(infinite square well).

5. Let N be the number of bound states present. We then have

(N − 1)π
2
<
√

Γ < N π

2
(3.354)

is the condition for exactly N bound states to exist. Note that the number
of bound states present depends on the combination V0a

2 - a wide and
shallow well can have as many bound states as a narrow and deep well.

6. The ground state is an even function of x. The first excited state (if it
exists) is an odd function of x. The second excited state (if it exists) is
an even function of x. Obviously, this alternation between even and odd
functions of x continues to hold for all bound states.

7. The ground state is always present for 0 < E < V0. We have, for the ground
state

k2
a

2
=
√

2mE

h̵2

a

2
= η < π

2
⇒ E0 =

π2h̵2

2ma2
(3.355)
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and

x < −a/2⇒ φ = φ3 ∝ e+k1x (3.356)
− a/2 < x < a/2⇒ φ = φ2 ∝ cosk2x (3.357)

x > a/2⇒ φ = φ1 ∝ e−k1x (3.358)

Therefore, φ has no zeroes. The wave function is shown in Figure 3.23:

Figure 3.23: Ground state wave function

3.8. General One-Dimensional Motion

We again consider the potential

Figure 3.24: General potential function
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with

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

VL(constant) for x < xL
V (x)(arbitrary) for xL < x < xR
VR(constant) for x > xR

(3.359)

and we choose VR > VL for definiteness. We found earlier that

E > VR > VL - 2 - fold degenerate continuum (3.360)
VR > E > VL - non - degenerate continuum (3.361)
VR > VL > E - non - degenerate discrete states (if they exist) (3.362)

The following eigenfunctions ofH form a CON set, where the constantsA(α)
L ,B

(α)
L ,A

(α)
R ,B

(α)
R

and AL,BL,AR,BR depend on E.

E > VR > VL ∶ u(1)CE(x) with α = 1,2 are 2 linearly independent eigenfunctions
with same E (subscript C stands for continuum). With

kL =
√

2m

h̵2
(E − VL) and kR =

√
2m

h̵2
(E − VR) (3.363)

we have

u
(1)
CE(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A
(1)
L eikLx +B(1)

L e−ikLx for x < xL
A

(1)
R eikRx for x > xR

complicated for xL < x < xR
(3.364)

u
(2)
CE(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B
(2)
L e−ikLx for x < xL

A
(2)
R eikRx +B(2)

R e−ikRx for x > xR
complicated for xL < x < xR

(3.365)

These particular linearly independent eigenfunctions have a simple interpreta-
tion (see Figure 3.25 and Figure 3.26 below).

AL
(1)eikL x

AR
(1)eikR xBL

(1)e− ikL x

uCE
(1) (x) :

Figure 3.25: u(1)CE(x)
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and

BR
(2)e− ikR xBL

(2)e− ikL x

AR
(2)eikR x

uCE
(2) (x) :

Figure 3.26: u(2)CE(x)

VR > E > VL ∶ uCE(x) - no degeneracy. With

kL =
√

2m

h̵2
(E − VL) and kR =

√
2m

h̵2
(VR −E) (3.366)

we have

uCE(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ALe
ikLx +BLe−ikLx for x < xL

BRe
−kRx for x > xR

complicated for xL < x < xR
(3.367)

This eigenfunction has a simple interpretation (see Figure 3.27 below).

BRe
−kR x

ALe
ikL x

BLe
− ikL x

uCE (x) :

Figure 3.27: uCE(x)
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VR > E > VL ∶ uCE(x) - non-degenerate bound states (En). With

kL =
√

2m

h̵2
(VL −E) and kR =

√
2m

h̵2
(VR −E) (3.368)

we have

un(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ALe
kLx for x < xL

BRe
−kRx for x > xR

complicated for xL < x < xR
(3.369)

This eigenfunction has a simple interpretation (see Figure 3.28 below).

BRe
−kR x

ALe
kL x

un (x) :

Figure 3.28: un(x)

Note: Solving the time-independent Schrodinger equation for all x will relate
the A and B coefficients appearing in a given eigenfunction.

Normalization: The following normalizations are chosen:

⟨un′ ∣ un⟩ = δn′n
⟨uCE′ ∣ uCE⟩ = δ(E′ −E)

⟨u(α)CE′ ∣ u(α)CE⟩ = δ(E′ −E) (3.370)

that is, the continuum eigenfunctions are chosen to be normalized to δ−functions
of the energy.

Let ψ(x, t) be the wave function for a particle (ψ(x, t) must be normalizable).
Now

ψ(x, t) = un(x)e−i
Ent
h̵ (3.371)

is a possible wave function for a bound state (we must have ⟨ψ(t) ∣ ψ(t)⟩ = 1).
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However,

ψ(x, t) = {
uCE(x)
u
(α)
CE(x)

} e−i
Et
h̵ (3.372)

is not a possible wave function because uCE and u(α)CE are not normalizable.

Consider, however, the wave function constructed as follows:

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE {
uCE(x)
u
(α)
CE(x)

} e−i
Et
h̵ (3.373)

where we assume that ∆ is small. For uCE we have VR > E0 > VL and for
u
(α)
CE we have E0 > VR > VL. The integral corresponds to equal weighting of the

energies in the range [E0,E0 +∆].

This ψ(x, t) (using uCE , u
(1)
CE or u(2)CE) is normalizable and therefore a possible

wave function. Considering uCE for definiteness, we have

⟨ψ(t) ∣ ψ(t)⟩ =
∞

∫
−∞

dx
1√
∆

E0+∆

∫
E0

dE u∗CE(x)e+i
Et
h̵

1√
∆

E0+∆

∫
E0

dE′ uCE′(x)e−i
E′t
h̵

= 1

∆

E0+∆

∫
E0

dE e+i
Et
h̵

E0+∆

∫
E0

dE′ e−i
E′t
h̵

∞

∫
−∞

dxu∗CE(x)uCE′(x)

= 1

∆

E0+∆

∫
E0

dE e+i
Et
h̵

E0+∆

∫
E0

dE′ e−i
E′t
h̵ ⟨uCE ∣ uCE′⟩

= 1

∆

E0+∆

∫
E0

dE e+i
Et
h̵

E0+∆

∫
E0

dE′ e−i
E′t
h̵ δ(E′ −E)

= 1

∆

E0+∆

∫
E0

dE e+i
Et
h̵ e−i

Et
h̵ = 1

∆

E0+∆

∫
E0

dE = ∆

∆
= 1

for all time.

Of course, there are other possible wave functions. However, these particular
wave functions have a simple physical significance and can be prepared experi-
mentally (as we will shortly see).

Note: We have

lim
t→±∞

1√
∆

E0+∆

∫
E0

dE {
uCE(x)
u
(α)
CE(x)

} e−i
Et
h̵

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψ(x,t)

= 0 for any x (3.374)
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The reason for obtaining zero is that

e−i
Et
h̵ = cos

Et

h̵
− i sin Et

h̵
(3.375)

oscillates very rapidly as E varies over [E0,E0 +∆] when t is infinite. These
oscillations of the integrand as we integrate from E0 to E0+∆ lead to alternating
positive and negative values which cancel. In addition, ⟨ψ(t) ∣ ψ(t)⟩ = 1 or all
t (including t → ±∞). Thus, in some sense, ψ(x, t = ±∞) must be non-zero
somewhere. The only possibility is limt→±∞ ψ(x, t) ≠ 0 when ∣x∣ → ∞. Thus,
this ψ(x, t) represents an unbound state - the only place there is a non-zero
probability of finding the particle when t→ ±∞ is ∣x∣→∞. Now for definiteness,
let us consider u(1)CE . We have

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE u
(1)
CE(x)e−i

Et
h̵ , E0 > VR > VL (3.376)

For x < xL:

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE {A(1)
L (E)eikLx +B(1)

L (E)e−ikLx} e−i
Et
h̵ (3.377)

For x > xR:

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE {A(1)
R eikRx} e−i

Et
h̵ (3.378)

For xL < x < xR, ψ(x, t) is complicated and depends on the detailed form of
V (x).

Now define the following functions (the earlier Figure motivates these defini-
tions):

ψincident(x, t) =
1√
∆

E0+∆

∫
E0

dE {A(1)
L (E)eikLx} e−i

Et
h̵ (3.379)

ψreflected(x, t) =
1√
∆

E0+∆

∫
E0

dE {B(1)
L (E)e−ikLx} e−i

Et
h̵ (3.380)

ψtransmitted(x, t) =
1√
∆

E0+∆

∫
E0

dE {A(1)
R eikRx} e−i

Et
h̵ (3.381)

We let the above equations define the functions ψinc, ψrefl, ψtrans for all x and
t.
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Then, for x < xL, ψ(x, t) = ψinc(x, t) + ψrefl(x, t) and for x > xR, ψ(x, t) =
ψtrans(x, t). Now let

A
(1)
L = ∣A(1)

L ∣ eiα
(1)
L , B

(1)
L = ∣B(1)

L ∣ eiβ
(1)
L , A

(1)
R = ∣A(1)

R ∣ eiα
(1)
R (3.382)

so that

ψinc(x, t) =
1√
∆

E0+∆

∫
E0

dE ∣A(1)
L (E)∣ ei[α

(1)
L

(E)+kLx−Eth̵ ] (3.383)

ψrefl(x, t) =
1√
∆

E0+∆

∫
E0

dE ∣B(1)
L (E)∣ ei[β

(1)
L

(E)−kLx−Eth̵ ] (3.384)

ψtrans(x, t) =
1√
∆

E0+∆

∫
E0

dE ∣A(1)
R (E)∣ ei[α

(1)
R

(E)+kRx−Eth̵ ] (3.385)

Using the method of stationary phase we discussed earlier we have

ψinc(x, t) ≠ 0 for
d

dE
[α(1)

L (E) + kLx −
Et

h̵
]
E0

≈ 0 (3.386)

ψrefl(x, t) ≠ 0 for
d

dE
[β(1)
L (E) − kLx −

Et

h̵
]
E0

≈ 0 (3.387)

ψtrans(x, t) ≠ 0 for
d

dE
[α(1)

R (E) + kRx −
Et

h̵
]
E0

≈ 0 (3.388)

Now

kL,R =
√

2m

h̵2
(E − VL,R) (3.389)

so that
dkL,R

dE
= m/h̵2

√
2m
h̵2 (E − VL,R)

= 1

h̵

m

h̵kL,R
(3.390)

Now let
pL,R = h̵kL,R and vL,R =

h̵kL,R

m
=
pL,R

m
(3.391)

so that
dkL,R

dE
= 1

h̵vL,R
(3.392)

Also define
vL0 = (vL)E=E0

and vR0 = (vR)E=E0
(3.393)

Thus,

ψinc(x, t) ≠ 0for

⎡⎢⎢⎢⎢⎣

dα
(1)
L

dE
+ 1

h̵vL
x − t

h̵

⎤⎥⎥⎥⎥⎦E0

≈ 0 (3.394)
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that is, for

x ≈ vL0

⎡⎢⎢⎢⎢⎣
t − h̵

⎛
⎝
dα

(1)
L

dE

⎞
⎠
E0

⎤⎥⎥⎥⎥⎦
(3.395)

or the associated particle moves in the +x direction with speed vL0.

Similarly,

ψrefl(x, t) ≠ 0 for
⎡⎢⎢⎢⎢⎣

dβ
(1)
L

dE
− 1

h̵vL
x − t

h̵

⎤⎥⎥⎥⎥⎦E0

≈ 0 (3.396)

that is, for

x ≈ −vL0

⎡⎢⎢⎢⎢⎣
t − h̵

⎛
⎝
dβ

(1)
L

dE

⎞
⎠
E0

⎤⎥⎥⎥⎥⎦
(3.397)

or the particle moves in the −x direction with speed vL0.

Finally,

ψtrans(x, t) ≠ 0 for
⎡⎢⎢⎢⎢⎣

dα
(1)
R

dE
+ 1

h̵vR
x − t

h̵

⎤⎥⎥⎥⎥⎦E0

≈ 0 (3.398)

that is, for

x ≈ vR0

⎡⎢⎢⎢⎢⎣
t − h̵

⎛
⎝
dα

(1)
R

dE

⎞
⎠
E0

⎤⎥⎥⎥⎥⎦
(3.399)

or the particle moves in the +x direction with speed vL0.

3.8.1. Physical Significance of form of ψ(x, t)

(a) The wave function has energy approximately equal to E0 with a small
spread ∆.

(b) Let t→ −∞. Then

ψinc ≠ 0 for x→ −∞
ψrefl ≠ 0 for x→ +∞
ψtrans ≠ 0 for x→ −∞

which implies that

for x < xL ψ(x, t) = ψinc(x, t) + ψrefl(x, t) →
t→−∞

ψinc(x, t)

for x > xR ψ(x, t) = ψtrans(x, t) →
t→−∞

0

Thus, limt→−∞ ψ(x, t) is a localized wave function located far to the left of
xL and traveling to the right at speed vL0 (the incident wave).

214



(c) Let t→ +∞. Then

ψinc ≠ 0 for x→ +∞
ψrefl ≠ 0 for x→ −∞
ψtrans ≠ 0 for x→ +∞

which implies that

for x < xL ψ(x, t) = ψinc(x, t) + ψrefl(x, t) →
t→+∞

ψrefl(x, t)

for x > xR ψ(x, t) = ψinc(x, t) + ψrefl(x, t) →
t→+∞

ψrefl(x, t)

Thus, limt→+∞ ψ(x, t) is two localized wave functions one located far to
the left of xL and traveling to the left at speed vL0 (the reflected wave)
and the other located far to the right of xR and traveling to the left at
speed vR0 (the transmitted wave).

As noted earlier, limt→±∞ ψ(x, t) = 0 for xL < x < xR. Figure 3.29 below shows
ψ(x, t) for t→ ±∞.

Figure 3.29: Wave Packet Evolution

The particle does not break into 2 particles when it reaches the region [xL, xR].
Rather, the particle, incident from the left at t → −∞, can be found at x = +∞
or at x = −∞ when t → +∞; ψtrans determines the probability of transmission
to x = +∞ while ψrefl determines the probability of reflection back to x = −∞.

The transmission coefficient I = the probability of finding the particle at
x = +∞ (x > xR) as t→ +∞.
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The reflection coefficient R = the probability of finding the particle at x = −∞
(x < xL) as t→ +∞.

I =

∞
∫
xR

dxψ∗(x, t)ψ(x, t)

⟨ψ(t) ∣ ψ(t)⟩
, R =

xL

∫
−∞

dxψ∗(x, t)ψ(x, t)

⟨ψ(t) ∣ ψ(t)⟩
(3.400)

Before calculating R and I, let us note the following useful relations:

(a) We have
∞

∫
−∞

dx

2π
e±i(k

′−k)x = δ(k′ − k) (3.401)

(b) Let

g(x, t) = 1√
∆

E0+∆

∫
E0

dE e±ikxe−i
Et
h̵ C(E) (3.402)

where ∆ is small and
dk

dE
= 1

h̵v
(3.403)

We will encounter integrals of the form

∞

∫
−∞

dxg∗(x, t)g(x, t) (3.404)

We have
∞

∫
−∞

dxg∗(x, t)g(x, t)

=
∞

∫
−∞

dx

⎡⎢⎢⎢⎢⎢⎣

1√
∆

E0+∆

∫
E0

dE e∓ikxei
Et
h̵ C∗(E)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1√
∆

E0+∆

∫
E0

dE′ e±ik
′xe−i

E′t
h̵ C(E′)

⎤⎥⎥⎥⎥⎥⎦

= 1

∆

E0+∆

∫
E0

dE

E0+∆

∫
E0

dE′C∗(E)C(E′)ei
Et
h̵ e−i

E′t
h̵

∞

∫
−∞

dxe±i(k
′−k)x

= 1

∆

E0+∆

∫
E0

dE

E0+∆

∫
E0

dE′C∗(E)C(E′)ei
Et
h̵ e−i

E′t
h̵ 2πδ(k′ − k)

Note that

∫ dE′F (E,E′)δ(k′ − k) = ∫ dk′ (dE
′

dk′
)F (E,E′)δ(k′ − k)

= [(dE
′

dk′
)F (E,E′)]

k′=k
= (dE

dk′
)F (E,E)
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so that
∞

∫
−∞

dxg∗(x, t)g(x, t) = 1

∆

E0+∆

∫
E0

dE

E0+∆

∫
E0

dE′C∗(E)C(E′)ei
Et
h̵ e−i

E′t
h̵ 2πδ(k′ − k)

= 2π

∆

E0+∆

∫
E0

dE

E0+∆

∫
E0

dk′ (dE
′

dk′
)C∗(E)C(E′)ei

Et
h̵ e−i

E′t
h̵ δ(k′ − k)

= 2π

∆

E0+∆

∫
E0

dE (dE
dk

)C∗(E)C(E)ei
Et
h̵ e−i

Et
h̵

= 2πh̵

∆

E0+∆

∫
E0

dE v ∣C(E)∣2 ≈ 2πh̵

∆
(v0 ∣C(E0)∣2 ∆) = 2πh̵v0 ∣C(E0)∣2

(3.405)

Now we can calculate R and I directly

1 = ⟨ψ(t) ∣ ψ(t)⟩ =
∞

∫
−∞

dxψ∗(x, t)ψ(x, t) (3.406)

R = lim
t→+∞

xL

∫
−∞

dx ψ∗(x, t)ψ(x, t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψ∗
refl

(x,t)ψrefl(x,t)

= lim
t→+∞

xL

∫
−∞

dxψ∗refl(x, t)ψrefl(x, t) = lim
t→+∞

∞

∫
−∞

dxψ∗refl(x, t)ψrefl(x, t)

where the last limit replacement xL → +∞ is valid because ψrefl ≠ 0 only for
x→ −∞(as t→ +∞). Therefore

R = lim
t→+∞

∞

∫
−∞

dxψ∗refl(x, t)ψrefl(x, t) = 2πh̵vL0 ∣B(1)
L (E0)∣

2
(3.407)

Similarly,

I = lim
t→+∞

∞

∫
xR

dx ψ∗(x, t)ψ(x, t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ∗trans(x,t)ψtrans(x,t)

= lim
t→+∞

∞

∫
xR

dxψ∗trans(x, t)ψtrans(x, t) = lim
t→+∞

∞

∫
−∞

dxψ∗trans(x, t)ψtrans(x, t)

where the last limit replacement xR → −∞ is valid because ψtrans ≠ 0 only for
x→ +∞(as t→ +∞). Therefore

I = lim
t→+∞

∞

∫
−∞

dxψ∗trans(x, t)ψtrans(x, t) = 2πh̵vR0 ∣A(1)
R (E0)∣

2
(3.408)
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Note that (3.406) is valid for any t. We can evaluate this integral at t = −∞ and
at t = +∞ to obtain relationships obeyed by A(1)

L ,A
(1)
R ,B

(1)
L .

1 =
∞

∫
−∞

dxψ∗(x, t)ψ(x, t) =
t→−∞

xL

∫
−∞

dxψ∗inc(x, t)ψinc(x, t)

=
∞

∫
−∞

dxψ∗inc(x, t)ψinc(x, t) = 2πh̵vL0 ∣A(1)
L (E0)∣

2
(3.409)

where the last limit replacement xR → +∞ is valid because ψinc ≠ 0 only for
x→ −∞(as t→ −∞).

1 =
∞

∫
−∞

dxψ∗(x, t)ψ(x, t) =
t→∞

xL

∫
−∞

dxψ∗refl(x, t)ψrefl(x, t) +
∞

∫
xR

dxψ∗trans(x, t)ψtrans(x, t)

=
∞

∫
−∞

dxψ∗refl(x, t)ψrefl(x, t) +
∞

∫
−∞

dxψ∗trans(x, t)ψtrans(x, t)

= 2πh̵vL0 ∣B(1)
L (E0)∣

2
+ 2πh̵vR0 ∣A(1)

R (E0)∣
2

(3.410)

where the last limit replacement xR → −∞ is valid because ψtrans ≠ 0 only for
x → +∞(as t → +∞) and the last limit replacement xL → +∞ is valid because
ψrefl ≠ 0 only for x→ −∞(as t→ +∞).

Summarizing we have:

R = 2πh̵vL0 ∣B(1)
L (E0)∣

2
(3.411)

I = 2πh̵vR0 ∣A(1)
R (E0)∣

2
(3.412)

1 = 2πh̵vL0 ∣A(1)
L (E0)∣

2
(3.413)

1 = 2πh̵vL0 ∣B(1)
L (E0)∣

2
+ 2πh̵vR0 ∣A(1)

R (E0)∣
2

(3.414)

When one invokes the time-independent Schrodinger equation for u(1)CE , one
obtains B(1)

L and A(1)
R in terms of A(1)

L . A(1)
L is usually chosen as the arbitrary

constant one gets when solving the differential equation for u(1)CE .

We then impose

∣A(1)
L ∣

2
= 1

2πh̵vL0
(3.415)

by requiring that ⟨ψ(t) ∣ ψ(t)⟩ = 1. Then we have

R = 2πh̵vL0 ∣B(1)
L (E0)∣

2
=
RRRRRRRRRRR

B
(1)
L (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

(3.416)
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and

I = 2πh̵vR0 ∣A(1)
R (E0)∣

2
= vR0

vL0

RRRRRRRRRRR

A
(1)
R (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

(3.417)

where
vR0

vL0
= kR0

kL0
because v = h̵k

m
(3.418)

Thus,

R =
RRRRRRRRRRR

B
(1)
L (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

, I = kR0

kL0

RRRRRRRRRRR

A
(1)
R (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

(3.419)

where

u
(1)
CE = { A

(1)
L eikLx +B(1)

L e−ikLx for x < xL
A

(1)
R eikRx for x > xR

} (3.420)

We also have that

1 = 2πh̵vL0 ∣B(1)
L (E0)∣

2
+ 2πh̵vR0 ∣A(1)

R (E0)∣
2

=
RRRRRRRRRRR

B
(1)
L (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

+ vR0

vL0

RRRRRRRRRRR

A
(1)
R (E0)

A
(1)
L (E0)

RRRRRRRRRRR

2

=R + I (3.421)

which simply says that the probability of finding the particle somewhere when
t→ +∞ is unity.

One can show that R + I = 1 directly from the time-independent Schrodinger
equation.

Proof : Let u = u(1)CE . Then

− h̵
2

2m

d2u

dx2
+ V (x)u = Eu (3.422)

Multiplying by u∗ we have

− h̵
2

2m
u∗
d2u

dx2
+ V (x)u∗u = Eu∗u (3.423)

The complex conjugate of this equation (V and E are real) is

− h̵
2

2m
u
d2u∗

dx2
+ V (x)u∗u = Eu∗u (3.424)

Subtracting (3.424) from (3.423) we get:

− h̵
2

2m
[u∗ d

2u

dx2
− ud

2u∗

dx2
] = 0 = − h̵

2

2m

d

dx
[u∗ du

dx
− udu

∗

dx
]
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so that
u∗
du

dx
− udu

∗

dx
=W = constant (3.425)

for all x.

For x > xR , u = A(1)
R eikRx ⇒W = 2ikR ∣A(1)

R ∣
2

For x < xL , u = A(1)
L eikLx +B(1)

L e−ikLx ⇒W = 2ikL ∣A(1)
L ∣

2
− 2ikL ∣B(1)

L ∣
2

Equating these two expressions for the constant W we get

2ikR ∣A(1)
R ∣

2
= 2ikL ∣A(1)

L ∣
2
− 2ikL ∣B(1)

L ∣
2

1 = kR
kL

∣A(1)
R ∣

2

∣A(1)
L ∣

2
+

∣B(1)
L ∣

2

∣A(1)
L ∣

2
= I +R

as we found earlier.

Summary of Important Results

u
(1)
CE(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A
(1)
L eikLx +B(1)

L e−ikLx for x < xL
A

(1)
R eikRx for x > xR

complicated for xL < x < xR
(3.426)

This solution is represented by Figure 3.30 below.

AL
(1)eikL x AR

(1)eikR x

BL
(1)e− ikL x

Figure 3.30: u(1)CE(x)

Now

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE u
(1)
CE(x)e−i

Et
h̵ (3.427)

represents a particle at t = −∞ with the following properties:
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1. It is localized at x = −∞ at t = −∞.

2. It has energy approximately equal to E (previously called E0) with a small
spread ∆ in energy values.

3. It is traveling in the +x direction with speed vL at t = −∞.

The transmission and reflection coefficients (I and R) are functions of energy
E and can be determined directly from u

(1)
CE(x):

kR = k for transmitted wave = ktrans (3.428)
kL = k for incident and reflected waves = kinc = krefl (3.429)

I = ktrans
kinc

∣transmitted wave coefficient∣2

∣incident wave coefficient∣2
= kR
kL

∣A(1)
R ∣

2

∣A(1)
L ∣

2
(3.430)

R = ∣reflected wave coefficient∣2

∣incident wave coefficient∣2
=

∣B(1)
L ∣

2

∣A(1)
L ∣

2
(3.431)

R + I = 1 (3.432)

Given a potential energy V (x), it is simple to find the transmission and reflection
coefficients as a function of the energy E. For a particle incident from the left
with E > VR > VL, solve the time-independent Schrodinger equation for u(1)CE(x).
This will give B(1)

L and A
(1)
R in terms of A(1)

L and E. I(1) and R(1) can then
be calculated using the results just derived. For a particle incident from the
right with E > VR > VL, solve the time-independent Schrodinger equation for
u
(2)
CE(x). This will give B(2)

L and A
(2)
R in terms of B(2)

R and E. I(2) and R(2)

can then be measured experimentally in the following way:

1. I(1) andR(1): Send a beam ofN particles of approximate energy E toward
the interaction region [xL, xR] from the far left. If NR are reflected and
NI particles are transmitted, then

R(1) = NR

N
and I(1) = NI

N
for large N (3.433)

2. I(2) andR(2): Send a beam ofN particles of approximate energy E toward
the interaction region [xL, xR] from the far right. If NR are reflected and
NI particles are transmitted, then

R(2) = NR

N
and I(2) = NI

N
for large N (3.434)

3.8.2. General Comments
1. Consider the potential energy function in Figure 3.31 below. Let E > VR ≥
VL and let E < Vmax
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Figure 3.31: General Potential Energy Function

Classically, no particles can be transmitted because a transmitted particle
would have to pass through a region in which E < V (x), that is, kinetic
energy < 0. This is classically impossible!

Note: A(1)
R ≠ 0: The proof is simple: If A(1)

R = 0, then u
(1)
CE = 0 for all

x > xR. Therefore, at a given point x > xR, u(1)CE = 0 and du
(1)
CE/dx = 0.

But these two values uniquely determine u(1)CE(x) for all x ∈ [−∞,+∞]
because the Schrodinger equation is a second-order differential equation.
Thus, u(1)CE = 0 for all x ∈ [−∞,+∞]. But an eigenfunction must not be
identically zero.

Quantum mechanically, I ≠ 0 because A(1)
R ≠ 0. Thus, there is a non-

zero probability for a particle to be transmitted through the classically
forbidden region. This phenomenon is called tunneling.

2. Suppose that E > Vmax for the potential energy shown in Figure 3.31.
Classically, all particles will be transmitted - there cannot be any reflec-
tion. Classically, a particle is reflected at a turning point, where v = 0 (v
can change sign) or where E = V (x). For E > Vmax, kinetic energy > 0
everywhere and there is no point where v = 0.

Quantum mechanically, B(1)
L can be non-zero (although at certain energies

B
(1)
L can be zero) and there is a non-zero probability of reflection!

3. Consider the potential energy function shown in Figure 3.32 below.
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Figure 3.32: A potential energy function

Classically, a particle of energy E0 and initially located between a and b
will remain bound within this region for all t.

Quantum mechanically, we can form a wave function

ψ(x, t) = 1√
∆

E0+∆

∫
E0

dE e−i
Et
h̵ {C(1)(E)u(1)CE(x) +C(2)(E)u(2)CE(x)}

(3.435)
with ∆ small and such that ψ(x, t) is negligible outside the region [a, b]
at t = 0. However, limt→∞ ψ(x, t) = 0 for any fixed (finite) x (see earlier
discussion). Thus, the particle (the probability actually) eventually leaks
out (tunnels out) of the bound region [a, b]. At t→∞, the probability of
finding the particle inside the bound region [a, b] is zero!

One might refer to the state described by the wave function as an unstable
bound state - at t = 0 the particle is bound within [a, b]; however, after
a sufficiently long time, the particle will have completely tunneled out of
the bound region. Contrast this situation with the case of a true bound
state (well potential already discussed). This particular potential energy
function has no bound states. A bound state un(x) is normalizable.

Thus,

ψ(x, t) = un(x)e−i
Ent
h̵ (3.436)

is a possible wave function (with no integration over energies occurring).
∣ψ(x, t)∣ = ∣un(x)∣ for all t. In particular,

lim
t→+∞

∣ψ(x, t)∣ = ∣un(x)∣ (3.437)

223



which approaches zero as ∣x∣ → ∞ and which is non-negligible in some
bounded region of the x−axis - the particle stays bound for all time!

3.9. The Symmetrical Finite Potential Well

We now consider the potential energy function shown in Figure 3.33 below.

Figure 3.33: A potential energy function

We found the bound states for this potential earlier. In this case, we have added
a constant potential energy −V0 everywhere in space to the previous symmetrical
well in order to obtain this symmetrical well.

We have

VR = VL = 0 , E > 0 (3.438)

kR = kL = k =
√

2mE

h̵2
, k2 =

√
2m(E + V0)

h̵2
(3.439)

Let a particle of energy E > 0 be incident from the left. We therefore look for
the eigenfunction u(x) of the form:

u(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u3(x) = Aeikx +Be−ikx for x < −a/2
u1(x) = Ceikx for x > a/2
u2(x) = αeik2x + βe−ik2x for −a/2 < x < a/2

(3.440)

so that

I = k
k

∣C ∣2

∣A∣2
= ∣C ∣2

∣A∣2
and R = ∣B∣2

∣A∣2
= 1 − I (3.441)

To find I we must find C in terms of A.
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Note: V (x) = V (−x) which implies that [Π,H] = 0. However, the particular
u(x) we are looking for (a particle incident from the left) is not a parity eigen-
function. This does not contradict the compatibility ofH and parity because the
eigenfunctions of H for E > 0 are 2−fold degenerate and a given eigenfunction of
H for E > 0 need not be a simultaneous eigenfunction of parity. Compatibility
only implies that there exists 2 linearly independent simultaneous eigenfunctions
of H and parity for E > 0. For a bound state, En < 0, there is non-degeneracy
and the corresponding eigenfunction of H must be an eigenfunction of parity
also.

Matching u(x) at the boundaries a/2 and −a/2 we have:

u1(a/2) = u2(a/2)⇒ Cei
ka
2 = αei

k2a

2 + βe−i
k2a

2 (3.442)
du1(a/2)

dx
= du2(a/2)

dx
⇒ ikCei

ka
2 = ik2αe

i
k2a

2 − ik2βe
−i k2a

2 (3.443)

u2(−a/2) = u3(−a/2)⇒ αe−i
k2a

2 + βei
k2a

2 = Ae−i
ka
2 +Bei

ka
2 (3.444)

du2(−a/2)
dx

= du3(−a/2)
dx

⇒ ik2αe
−i k2a

2 − ik2βe
i
k2a

2

= ikAe−i
ka
2 − ikBei

ka
2 (3.445)

We have 4 linear equation in the 5 unknowns A,B,C,α, β. We can solve for
B,C,α, β in terms of A. A straightforward calculation gives:

C

A
= 4e−ika

4 cos(k2a) − 2i (k2

k
+ k
k2

) sin(k2a)
(3.446)

Thus,

I = ∣C ∣2

∣A∣2
= 16

16 cos2(k2a) + 4 (k2

k
+ k
k2

)
2

sin2(k2a)

= 16

16(1 − sin2(k2a)) + 4 (k2

k
+ k
k2

)
2

sin2(k2a)

= 16

16 + 4((k2

k
+ k
k2

)
2
− 4) sin2(k2a)

= 16

16 + 4 (k2

k
− k
k2

)
2

sin2(k2a)

= 1

1 + 1
4
(k2

k
− k
k2

)
2

sin2(k2a)
(3.447)

with

k =
√

2mE

h̵2
, k2 =

√
2m(E + V0)

h̵2
(3.448)

Notes:
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1. E = 0⇒ k = 0, k2 ≠ 0⇒ I = 0

2. E →∞⇒ k → k2 ≠ 0⇒ I→ 1

3. I = 1 for k2a = Nπ , N = 0,1,2, ....., where we must accept only energies
E ≥ 0, which further restricts N .

k2 =
2π

λ2
⇒ N = a

(λ2/2)
for I = 1 (3.449)

N = a/(λ2/2) corresponds to the number of half-wavelengths in the well
and implies that this must be an integer for I = 1. The energies at which
I = 1 are called resonances.

I = 1forN2π2 = k2
2a

2 = 2m(E + V0)a2

h̵2
(3.450)

Therefore,

Eresonance = −V0 +
h̵2π2N2

2ma2
forN = 1,2,3, ..... (3.451)

with the restriction that only N values occur for which Eres ≥ 0 (N = 0 is
clearly not allowed). It is interesting to note that the resonance energies
occur at the bound-state energies of the well

V (x) =
⎧⎪⎪⎨⎪⎪⎩

−V0 for −a/2 < x < −a/2
∞ for ∣x∣ > a/2

(3.452)

A plot of of I(E) is shown in Figure 3.34 below.

Figure 3.34: Transmission coefficient showing resonances

3.10. The Complex Energy Plane

Let

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for x < xL
0 for x > xR
arbitrary V (x) for xL < x < xR

(3.453)
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where VL = VR = 0 and V (x) is a real function of x.

We want to define a transmission coefficient I(E) for all complex values of E.
Such an object has physical significance only for E real and positive (where
the physical continuum states are); however, it has interesting properties for
complex E.

The equation
d2φ

dx2
= 2m

h̵2
[V (x) −E]φ (3.454)

has 2 linearly independent solutions for any complex E. The additional require-
ment that ∣φ∣ does not become infinite as ∣x∣→∞ restricts the allowed values of
E to the real energies in the spectrum of the hermitian H.

To define I(E) for complex E, we simply drop this additional requirement and
look at solutions to the differential equation for complex E.

We have

for x < xL
d2φ

dx2
= −2mE

h̵2
φ (3.455)

for x > xR
d2φ

dx2
= −2mE

h̵2
φ (3.456)

Let

k =
√

2mE

h̵2
(3.457)

Because E is complex, we must define
√
E carefully. Let E = ∣E∣ eiε. Therefore,√

E = ∣E∣1/2 eiε/2.

Now, if ε → ε + 2πN , then E → E, that is, E does not change when we change
its phase by a multiple of 2π, but

√
E →

√
EeiπN = (−1)N

√
E. Thus,

√
E is

not well-defined unless we specify the range in which ε lies. Let ε be in [0,2π].
Then

√
E is well-defined except when E is positive real, that is,

ε = 0⇒
√
E = ∣E∣1/2 (3.458)

but
ε = 2π⇒

√
E = ∣E∣1/2 eiπ = − ∣E∣1/2 (3.459)

Thus, there is a line of discontinuity in
√
E along the positive real axis (called

a cut). This situation is shown in Figure 3.35 below in a plot of complex energy
plane
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ε → 0

E → E 1/2

ε → 2π

E → − E 1/2

Figure 3.35: Cut in Complex E Plane

For E not on the cut,

√
E = ∣E∣1/2 [cos

ε

2
+ i sin ε

2
] (3.460)

with ε in [0,2π] implying that Im(
√
E) > 0. Now if

k =
√

2mE

h̵2
= α + iβ (3.461)

then β > 0 for E not positive real. We note that k → positive real if we approach
the cut from above (ε→ 0).

Now,

for x < xL φ = Aeikx +Be−ikx (3.462)

for x > xR φ = Ceikx +De−ikx (3.463)

with E and k complex.

C and D may be chosen as the 2 arbitrary constants in the solution of the
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2nd−order differential equation. A and B will then depend on C and D as well
as E. Consider the solution for D = 0 and C = 1.

for x < xL φ = A(E)eikx +B(E)e−ikx (3.464)

for x > xR φ = eikx (3.465)

Define
I(E) = 1

∣A(E)∣2
(3.466)

for complex E.

For E positive real, this is the physical transmission coefficient if k > 0, that is,

A(E)eikx is the incident wave in the + x direction (3.467)

B(E)e−ikx is the wave reflected toward the − x direction (3.468)

eikx is the transmitted wave in the + x direction (3.469)

Thus, the physical I(E) is obtained as we approach the cut from above (ε→ 0).

For positive, real E and k > 0, we have I +R = 1 with I and R non-negative
(this is not true for complex E). Thus, I ≠ ∞ as we approach the cut from
above.

Does I = ∞ at any complex value of E? Equivalently, does A(E) = 0 at any
complex value of E? We have

φ(x) =
⎧⎪⎪⎨⎪⎪⎩

A(E)eiαxe−βx +B(E)e−iαxe+βx for x < xL
eiαxe−βx for x > xR

(3.470)

with β > 0 except on the cut (E positive real).

For β > 0, A(E) = 0 if and only if φ is normalizable because

e−βx →∞ for x→ −∞
e+βx → 0 for x→ −∞
e−βx → 0 for x→ +∞

But φ is normalizable if and only if E is a bound state energy eigenvalue.
Furthermore, the hermiticity of H implies that these energy eigenvalues occur
only for real E. For VR = VL = 0, the bound states (if they exist) have energy E
real and negative. Thus, in the cut complex energy plane (β > 0).

Thus, I(E) =∞ (called poles in complex E plane) if and only if E = a bound-
state energy as shown in Figure 3.36 above.
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Figure 3.36: Cut and Poles in Complex E Plane

We have also shown that I(E) is finite as we approach the cut from above
(ε→ 0).

As a check, consider the symmetrical potential well above. We have

I(E) = ∣C
A

∣
2

=
RRRRRRRRRRRRRR

4e−ika

4 cos(k2a) − 2i (k2

k
+ k
k2

) sin(k2a)

RRRRRRRRRRRRRR

2

=∞ (3.471)

if
4 cos(k2a) = 2i(k2

k
+ k

k2
) sin(k2a) (3.472)

or

4 = 2i(k2

k
+ k

k2
) sin(k2a)

cos(k2a)

= 2i(k2

k
+ k

k2
) 2 sin(k2a/2) cos(k2a/2)

cos2(k2a/2) − sin2(k2a/2)

= 2i(k2

k
+ k

k2
) 2

cot(k2a/2) − tan(k2a/2)

Therefore, I(E) =∞ if

cot(k2a/2) − tan(k2a/2) = i(
k2

k
+ k

k2
) (3.473)

or
cot(k2a/2) = −

k2

ik
and tan(k2a/2) = −

ik

k2
(3.474)

Now let k = ik̃. We then have

cot(k2a/2) = −
k2a/2
k̃a/2

and tan(k2a/2) = −
k̃a/2
k2a/2

(3.475)
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for I(E) =∞. These are just the transcendental equations which determine the
bound states (look at our earlier solution and recall that −V0 must be added to
V (x).

3.11. Problems

3.11.1. Free Particle in One-Dimension - Wave Functions
Consider a free particle in one-dimension. Let

ψ(x,0) = Ne−
(x−x0)

2

4σ2 ei
p0x

h̵

where x0, p0 and σ are real constants and N is a normalization constant.

(a) Find ψ̃(p,0)

(b) Find ψ̃(p, t)

(c) Find ψ(x, t)

(d) Show that the spread in the spatial probability distribution

℘(x, t) = ∣ψ(x, t)∣2

⟨ψ(t) ∣ ψ(t)⟩

increases with time.

3.11.2. Free Particle in One-Dimension - Expectation Val-
ues

For a free particle in one-dimension

H = p2

2m

(a) Show ⟨px⟩ = ⟨px⟩t=0

(b) Show ⟨x⟩ = [ ⟨px⟩t=0
m

] t + ⟨x⟩t=0

(c) Show (∆px)2 = (∆px)2
t=0

(d) Find (∆x)2 as a function of time and initial conditions. HINT: Find

d

dt
⟨x2⟩

To solve the resulting differential equation, one needs to know the time
dependence of ⟨xpx + pxx⟩. Find this by considering

d

dt
⟨xpx + pxx⟩
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3.11.3. Time Dependence

Given
Hψ = ih̵∂ψ

∂t

with
H = p⃗ ⋅ p⃗

2m
+ V (x⃗)

(a) Show that d
dt

⟨ψ(t) ∣ ψ(t)⟩ = 0

(b) Show that d
dt

⟨x⟩ = ⟨px
m

⟩

(c) Show that d
dt

⟨px⟩ = ⟨−∂V
∂x

⟩

(d) Find d
dt

⟨H⟩

(e) Find d
dt

⟨Lz⟩ and compare with the corresponding classical equation (L⃗ = x⃗ × p⃗)

3.11.4. Continuous Probability

If p(x) = xe−x/λ is the probability density function over the interval 0 < x <∞,
find the mean, standard deviation and most probable value(where probability
density is maximum) of x.

3.11.5. Square Wave Packet

Consider a free particle, initially with a well-defined momentum p0, whose wave
function is well approximated by a plane wave. At t = 0, the particle is localized
in a region −a/2 ≤ x ≤ a/2, so that its wave function is

ψ(x) =
⎧⎪⎪⎨⎪⎪⎩

Aeip0x/h̵ −a/2 ≤ x ≤ a/2
0 otherwise

(a) Find the normalization constant A and sketch Re(ψ(x)), Im(ψ(x)) and
∣ψ(x)∣2

(b) Find the momentum space wave function ψ̃(p) and show that it too is
normalized.

(c) Find the uncertainties ∆x and ∆p at this time. How close is this to the
minimum uncertainty wave function.

3.11.6. Uncertain Dart

A dart of mass 1kg is dropped from a height of 1m, with the intention to hit
a certain point on the ground. Estimate the limitation set by the uncertainty
principle of the accuracy that can be achieved.
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3.11.7. Find the Potential and the Energy

Suppose that the wave function of a (spinless) particle of mass m is

ψ(r, θ, φ) = Ae
−αr − e−βr

r

where A, α and β are constants such that 0 < α < β. Find the potential V (r, θ, φ)
and the energy E of the particle.

3.11.8. Harmonic Oscillator wave Function

In a harmonic oscillator a particle of mass m and frequency ω is subject to a
parabolic potential V (x) = mω2x2/2. One of the energy eigenstates is un(x) =
Axexp(−x2/x2

0), as sketched below.

Figure 3.37: A Wave Function

(a) Is this the ground state, the first excited state, second excited state, or
third?

(b) Is this an eigenstate of parity?

(c) Write an integral expression for the constant A that makes un(x) a nor-
malized state. Evaluate the integral.

3.11.9. Spreading of a Wave Packet

A localized wave packet in free space will spread due to its initial distribution of
momenta. This wave phenomenon is known as dispersion, arising because the
relation between frequency ω and wavenumber k is not linear. Let us look at
this in detail.

Consider a general wave packet in free space at time t = 0, ψ(x,0).

(a) Show that the wave function at a later time is

ψ(x, t) = ∫
∞

−∞
dx′K(x,x′; t)ψ(x′)
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where

K(x,x′; t) =
√

m

2πih̵t
exp [ im(x − x′)2

2h̵t
]

is known as the propagator. [HINT: Solve the initial value problem in the
usual way - Decompose ψ(x,0) into stationary states (here plane waves),
add the time dependence and then re-superpose].

(b) Suppose the initial wave packet is a Gaussian

ψ(x,0) = 1

(2πa2)1/4 e
ik0xe−x

2/4a2

Show that it is normalized.

(c) Given the characteristic width a, find the characteristic momentum pc,
energy Ec and the time scale tc associated with the packet. The time tc
sets the scale at which the packet will spread. Find this for a macroscopic
object of mass 1 g and width a = 1 cm. Comment.

(d) Show that the wave packet probability density remains Gaussian with the
solution

P (x, t) = ∣ψ(x, t)∣2 = 1√
2πa(t)2

exp [−(x − h̵k0/m)2

2a(t)2
]

with a(t) = a
√

1 + t2/t2c .

3.11.10. The Uncertainty Principle says ...
Show that, for the 1-dimensional wavefunction

ψ(x) =
⎧⎪⎪⎨⎪⎪⎩

(2a)−1/2 ∣x∣ < a
0 ∣x∣ > a

the rms uncertainty in momentum is infinite (HINT: you need to Fourier trans-
form ψ). Comment on the relation of this result to the uncertainty principle.

3.11.11. Free Particle Schrodinger Equation
The time-independent Schrodinger equation for a free particle is given by

1

2m
( h̵
i

∂

∂x⃗
)

2

ψ(x⃗) = Eψ(x⃗)

It is customary to write E = h̵2k2/2m to simplify the equation to

(∇2 + k2)ψ(x⃗) = 0

Show that
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(a) a plane wave ψ(x⃗) = eikz

and

(b) a spherical wave ψ(x⃗) = eikr/r (r =
√
x2 + y2 + z2)

satisfy the equation. Note that in either case, the wavelength of the solution is
given by λ = 2π/k and the momentum by the de Broglie relation p = h̵k.

3.11.12. Double Pinhole Experiment
The double-slit experiment is often used to demonstrate how different quantum
mechanics is from its classical counterpart. To avoid mathematical complica-
tions with Bessel functions, we will discuss two pinholes rather than two slits.
Consider the setup shown below

Figure 3.38: The Double Pinhole Setup
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Suppose you send in an electron along the z−axis onto a screen at z = 0 with two
pinholes at x = 0, y = ±d/2. At a point (x, y) on another screen at z = L≫ d, λ

the distance from each pinhole is given by r± =
√
x2 + (y ∓ d/2)2 +L2.

The spherical waves from each pinhole are added at the point on the screen and
hence the wave function is

ψ(x, y) = e
ikr+

r+
+ e

ikr−

r−

where k = 2π/λ. Answer the following questions.

(a) Considering just the exponential factors, show that constructive interfer-
ence appears approximately at

y

r
= nλ

d
(n ∈ Z) (3.476)

where r =
√
c2 + y2 +L2.

(b) Make a plot of the intensity ∣ψ(0, y)∣2 as a function of y, by choosing k = 1,
d = 20 and L = 1000, Use the Mathematica Plot function. The intensity
∣ψ(0, y)∣2 is interpreted as the probability distribution for the electron to
be detected on the screen, after repeating the same experiment many,
many times.

(c) Make a contour plot of the intensity ∣ψ(x, y)∣2 as a function of x and y,
for the same parameters, using the Mathematica ContourPlot function.

(d) If you place a counter at both pinholes to see if the electron has passed
one of them, all of a sudden the wave function collapses. If the electron
is observed to pass through the pinhole at y = +d/2, the wave function
becomes

ψ+(x, y) =
eikr+

r+

If it is oberved to pass through the pinhole at y = −d/2, the wave function
becomes

ψ−(x, y) =
eikr−

r−

After repeating this experiment many times with a 50:50 probability for
each of the pinholes, the probability on the screen will be given by

∣ψ+(x, y)∣2 + ∣ψ−(x, y)∣2

instead. Plot this function on the y−axis and also show the contour plot
to compare its pattern to the case when you do not place a counter. What
is the difference from the case without the counter?
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3.11.13. A Falling Pencil
Using the uncertainty principle estimate how long a time a pencil can be bal-
anced on its point.
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Chapter 4

The Mathematics of Quantum Physics:

Dirac Language

Our study of the mathematics of quantum mechanics assumes that you have a
good background in the following areas:

• Calculus
Differentiation and integration

• Infinite series
Taylor and power series

• Linear Algebra
Linear vector spaces and matrices

• Multivariable Calculus
Partial derivatives
Gradient, divergence, curl and Laplacian

• Mathematical Methods
Ordinary and partial differential equations
Fourier series and Fourier transforms

This study of the mathematical formalism of quantum theory will center around
the subject of linear vector spaces. We will present this subject using Dirac
language and connect it to the physics as we proceed. At the start of our
discussion, we will mix standard mathematical notation and the Dirac language
so that the transition to using only the Dirac language will be easier. We will
see parallels to the mathematics used in our study of wave mechanics in earlier
chapters; we will repeat many ideas from earlier in this new formalism.

Quantum systems cannot be described in terms of our everyday experience. To
understand them it is necessary to use the abstract language provided by the
algebra of linear operators on Hilbert space.
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When we present the mathematical formalism appropriate to a physical theory
we have two choices. We can approach the subject abstractly and deal directly
with mathematical quantities of fundamental importance or we can choose a
particular a particular representation (abstract coordinate system) and work
with the numbers (functions) that correspond to the fundamental quantities in
that coordinate representation.

We will follow the abstract approach in most cases since it will allow us to delve
more deeply into the fundamental nature of the physical theory and, in addition,
enable us to treat the physical laws in a precise and efficient manner.

4.1. Mappings

Given two sets A and B, let a ∈ A, b ∈ B. A mapping T from A to B:

a↦ b = Ta (4.1)

can be of the following types:

1. T is a mapping of A into B if to each a ∈ A there corresponds a definite
element Ta ∈ B(there may be elements of B that do not correspond to
any element of A and different elements of A may correspond to the same
element of B). The range of the mapping is the subset TA ⊂ B (TA
is a subset set of B but not equal to B) formed by those elements that
correspond to some elements of A.

2. T is a mapping of A onto B if to each element of A there corresponds a
definite element Ta ∈ B and to every element of B there corresponds at
least one element of A (in this case Ta = B).

3. A one-to-one mapping is where distinct elements of A correspond to dis-
tinct elements of B: Ta ≠ Tb if a ≠ b.

4. It follows that if T is a one-to-one mapping from A onto B, there exists
an inverse one-to-one mapping T −1 from B onto A. Such an inverse does
not exist if T is a one-to-one mapping A into B.

4.2. Linear Vector Spaces

The mathematical formalism of quantum mechanics is based on the theory of
linear vector spaces. In this chapter we shall present a complete exposition of
the mathematics of linear vector spaces. We shall state theorems without proofs
(excellent proofs are available in a variety of texts and equivalent proofs often
have been given in Chapters 2 and 3 of this text). Instead of proofs, we shall re-
late the theorems where appropriate to the physics of quantum mechanics using
the Dirac language and provide concrete examples that will help us understand

240



the physical content in our later discussions.

The number of configurations experimental instruments can exhibit is finite.
This implies that, in principle, only the language of finite-dimensional vector
spaces will be needed to explain experimental results and to understand the
theoretical structure of quantum mechanics. However, if we want to embed
the theory in a spacetime continuum, then it will be necessary to consider ide-
alized instruments capable of an infinite number of configurations. This will
require a description using the language of infinite-dimensional spaces, in par-
ticular the use of a vector space called a non-separable or rigged Hilbert space.
Because these idealized infinite instruments are approximations of the actual
finite ones, physicists usually ignore those properties of the infinite-dimensional
Hilbert space that cannot be derived from the properties of finite-dimensional
spaces by some, not necessarily unique, physically based limiting procedure. We
already saw some of these problems discussed for continuum wave function in
wave mechanics in Chapters 2 and 3.

A working knowledge of the mathematical description that results from the
adopted limiting procedure is necessary to understand many of the develop-
ments of quantum mechanics. The following mathematical presentation reflects
these considerations. The results pertaining to finite-dimensional spaces, neces-
sary for the understanding of the structure of quantum mechanics, are presented
with thoroughness. The generalization to infinite-dimensional spaces, which is
a very difficult task, is discussed in less detail.

These mathematical details are usually ignored in most textbooks, which I be-
lieve makes it very difficult to understand the fundamental ideas underlying
quantum mechanics.

In most of our discussions we can assume we are in a finite-dimensional vector
space and the results will generalize without change to the Hilbert space case.
We will deal with the special problems associated with the infinite dimension-
ality of Hilbert space as they arise.

4.3. Linear Spaces and Linear Functionals

A vector space is defined with reference to a field. We consider the case where
the field is the field C of complex numbers because this is the case of interest
in quantum mechanics.

Ket Vectors
The mathematical vectors that will allow us to describe physical states will
be called ket vectors or kets and be represented by the symbol ∣. . .⟩ (due to
Dirac). We will label different vectors(states) according to their associated
physical(measurable) properties and these will be inserted inside the ket symbol
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∣a, b, ...⟩. The ket vectors will form the basis for the Dirac language of the
associated vector space defined below.

These simple mathematical objects will turn out to have sufficient mathematical
structure to allow us to represent all of the important features of quantum
theory in terms of them. Whether these mathematical objects have any objective
physical content themselves must be discussed later as we develop the theory.

At this point, however, let us state a couple of the basic properties of the ket
vectors and their connection to physics to help set the stage for the discussion
that will follow.

As with any other vectors, kets can be multiplied by complex numbers and can
be added together to get another ket vector

∣q⟩ = c1 ∣a⟩ + c2 ∣b⟩ (4.2)

where c1 and c2 are complex numbers.

The crucial assumptions we will make later as we connect the Dirac language,
the mathematical formalism and the physics are:

• Each state of a physical system at a given time can be mathematically
described by a definite ket vector. There is some correspondence!

• If a physical state is a superposition(sum) of other physical states, its
corresponding ket vector is a linear sum(combination) of the ket vectors
corresponding to the other states

The state ∣q⟩ in (4.2) is a superposition of the states ∣a⟩ and ∣b⟩ with the math-
ematical properties of this superposition defined precisely by the two complex
numbers c1 and c2. For example, the state of a photon passing through a
double-slit apparatus might be described by the superposition

∣photon in 2-slit apparatus⟩ = a ∣slit 1⟩ + b ∣slit 2⟩ (4.3)

where ∣slit 1⟩ is the state of a photon that passes through slit 1 and so on.

With these tantalizing thoughts rambling about in your minds, let us turn to
the mathematical formalism.

Definition:

A linear vector space V is a set of abstract elements, called vectors,

∣1⟩ , ∣2⟩ , . . . , ∣M⟩ , . . . , ∣N⟩ , . . . (4.4)

for which there exists two rules:
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1. a rule for creating a vector sum or vector addition,

∣7⟩ + ∣12⟩

2. a rule for multiplication of a vector by a complex scalar c,

c ∣13⟩

The following properties hold:

1. the result of applying either or both of these rules is another vector in the
same space; this is called closure

c1 ∣7⟩ + c2 ∣12⟩ ∈ V

2. scalar multiplication is distributive with respect to the vectors

c(∣7⟩ + ∣12⟩) = c ∣7⟩ + c ∣12⟩

3. scalar multiplication is associative

c1(c2 ∣7⟩) = c1c2 ∣7⟩

4. addition is commutative

∣7⟩ + ∣12⟩ = ∣12⟩ + ∣7⟩

5. addition is associative

∣6⟩ + (∣7⟩ + ∣12⟩) = (∣6⟩ + ∣7⟩) + ∣12⟩

6. there exists a unique zero or null vector ∣∅⟩ such that

∣7⟩ + ∣∅⟩ = ∣7⟩ and 0 ∣M⟩ = ∣∅⟩

7. for every vector ∣M⟩ there exists a unique additive inverse vector ∣−M⟩
where

∣M⟩ + ∣−M⟩ = ∣∅⟩ and ∣−M⟩ = − ∣M⟩

Example: Consider the set of all 3-tuples, which is a particular example of a
finite-dimensional vector space

∣i⟩ =
⎛
⎜
⎝

ai
bi
ci

⎞
⎟
⎠

(4.5)

243



Addition is defined by

∣i⟩ + ∣i⟩ =
⎛
⎜
⎝

ai
bi
ci

⎞
⎟
⎠
+
⎛
⎜
⎝

aj
bj
cj

⎞
⎟
⎠
=
⎛
⎜
⎝

ai + aj
bi + bj
ci + cj

⎞
⎟
⎠

(4.6)

Multiplication by a scalar q is defined by

q ∣i⟩ =
⎛
⎜
⎝

qai
qbi
qci

⎞
⎟
⎠

(4.7)

The null vector is defined by

∣∅⟩ =
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

(4.8)

We must emphasize that use of the word “vector” here is not meant to imply
that we are talking about a mathematical object that in any way needs to
possess properties such as magnitude and direction. These “vectors” are abstract
mathematical objects whose properties are defined above.

Other examples are:

1. the set of all functions f(x) of a real variable x for which

∫ ∣ f(x) ∣2 dx <∞

with addition and multiplication by a scalar defined by

(f + g)(x) = f(x) + g(x) and (af)(x) = af(x)

This space is called L2.

2. the set of all infinite sequences of numbers x = (x1, x2, x3, . . . , xi, . . .) such
that

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . , xk + yk, . . .)

with addition and multiplication by a scalar defined by

(f + g)(x) = f(x) + g(x) (af)(x) = af(x)

ax = (ax1, ax2, ax3, . . . , axk, . . .)

3. the set of all 2x2 matrices

A = (a11 a12

a21 a22
)
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with addition and multiplication by a scalar defined by

A +B = (a11 a12

a21 a22
) + (b11 b12

b21 b22
) = (a11 + b11 a12 + b12

a21 + b21 a22 + b22
)

cA = c(a11 a12

a21 a22
) = (ca11 ca12

ca21 ca22
)

These examples should make it clear that it is important, as we have
emphasized already, not to think about magnitudes and directions as being
the defining properties of “vectors” in any way. We must be very careful
not to attribute any specific properties derived from special examples as
general properties of vectors in any abstract vector space.

Isomorphism -Two vector spaces U and V (defined over the same field) are said
to be isomorphic if there exists a one-to-one and onto correspondence u ↔ v
between every vector u ∈ U and every other vector v ∈ V that preserves the
linear operations, that is, αu1+βu2 ↔ αv1+βv2 whenever u1 ↔ v1 and u2 ↔ v2

for u1, u2 ∈ U and v1, v2 ∈ V . Such a correspondence is called an isomorphism.
If one is only interested in linear operations on vectors, then two isomorphic
spaces are indistinguishable from each other.

Definition: A set of vectors is said to be linearly independent if a linear relation
of the form

n

∑
k=1

ck ∣k⟩ = ∣∅⟩ (4.9)

implies that ck = 0 for all k; otherwise the set of vectors is linearly dependent.

If a set of vectors is linearly dependent, then we can express a member of the
set as a linear combination of the other members of the set.

Examples:

1. Consider the set of vectors(3-tuples in this case)

∣1⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

This set is linearly independent since

a1 ∣1⟩ + a2 ∣2⟩ + a3 ∣3⟩ =
⎛
⎜
⎝

a1

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
a2

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

a1

a2

a3

⎞
⎟
⎠
= ∣∅⟩ =

⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

implies that the only solution is

a1 = a2 = a3 = 0
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2. Consider the set of vectors(3-tuples in this case)

∣1⟩ =
⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

This set is linearly independent since

a1 ∣1⟩ + a2 ∣2⟩ + a3 ∣3⟩ =
⎛
⎜
⎝

a1

a1

0

⎞
⎟
⎠
+
⎛
⎜
⎝

a2

−a2

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

a1 + a2

a1 − a2

a3

⎞
⎟
⎠
= ∣∅⟩ =

⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

implies that the only solution is

a1 + a2 = a1 − a2 = a3 = 0 or a1 = a2 = a3 = 0

3. Consider the set of vectors(3-tuples in this case)

∣1⟩ =
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

2
0
1

⎞
⎟
⎠

This set is linearly independent since

a1 ∣1⟩ + a2 ∣2⟩ + a3 ∣3⟩ =
⎛
⎜
⎝

a1

a1

a1

⎞
⎟
⎠
+
⎛
⎜
⎝

a2

−a2

0

⎞
⎟
⎠
+
⎛
⎜
⎝

2a3

0
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

a1 + a2 + 2a3

a1 − a2

a1 + a3

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠

implies that the solution is

a1 + a2 + 2a3 = a1 − a2 = a1 + a3 = 0 or a2 = a1, a3 = −a1

Note: For simplicity and in all cases where there no ambiguity will arise, we
will simplify the notation for the "null" vector from now on. We will write

n

∑
k=1

ck ∣k⟩ = 0 instead of
n

∑
k=1

ck ∣k⟩ = ∣∅⟩ (4.10)

We say that an infinite set of vectors is linearly independent if every finite
subset is linearly independent. Alternatively, we can use this method: if the
determinant of the matrix formed by using the vectors as columns is equal to
zero, then the vectors are linearly dependent.

Definition: The maximum number of linearly independent vectors in a space
V is called the dimension of the space dim(V ).

Definition: A set of vectors ∣k⟩ , k = 1,2,3, . . . , n spans the space if every vector
∣Q⟩ in the space can be written as a linear combination of vectors in the set

∣Q⟩ =
n

∑
k=1

qk ∣k⟩ (4.11)

246



This linear combination, which is given by the coefficients qk, k = 1,2, . . . , n is
unique.

Definition: A set of vectors is a basis for the space if it is a linearly independent
set and spans the space, that is, if dim(V ) =m, a set of m linearly independent
vectors is called a basis on V .

The set of vectors

∣1⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(4.12)

is the maximal set of linearly independent vectors since any other vector ∣g⟩ in
the space can always be written as a linear combination of them as

∣g⟩ = a1 ∣1⟩ + a2 ∣2⟩ + a3 ∣3⟩ =
⎛
⎜
⎝

a1

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
a2

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

a1

a2

a3

⎞
⎟
⎠

(4.13)

Therefore the dimension of this vector space is 3. This set of vectors is also a
basis. The basis is not unique since the set of linearly independent vectors

∣1⟩ =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(4.14)

also spans the space, i.e.,

∣g⟩ = c1 ∣1⟩ + c2 ∣2⟩ + c3 ∣3⟩ =
⎛
⎜
⎝

a1

a2

a3

⎞
⎟
⎠
=
⎛
⎜
⎝

c1 + c2
c1 + c2
c3

⎞
⎟
⎠

(4.15)

implies that
2c1 = a1 + a2 2c2 = a1 − a2 c3 = a3 (4.16)

and, thus, this set is also a basis. Clearly, a basis spans the whole of V .

Definition: The coefficients in the expansion of an arbitrary vector ∣Q⟩ in terms
of a basis set ∣k⟩ , k = 1,2,3, . . . , n

∣Q⟩ =
n

∑
k=1

qk ∣k⟩ (4.17)

are called the components of the vector ∣Q⟩ in that basis.

Example: In the space of 3-tuples, a basis is represented by the three vectors

∣1⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(4.18)
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so that an arbitrary vector in the space can be written

∣g⟩ = a1 ∣1⟩ + a2 ∣2⟩ + a3 ∣3⟩ =
⎛
⎜
⎝

a1

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
a2

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

a1

a2

a3

⎞
⎟
⎠

(4.19)

so that a1, a2 and a3 are the components.

When we add vectors(must be defined with respect to the same basis) we simply
add their components

∣Q⟩ + ∣R⟩ =
n

∑
k=1

qk ∣k⟩ +
n

∑
k=1

rk ∣k⟩ =
n

∑
k=1

(qk + rk) ∣k⟩ (4.20)

Subspaces - A subset of a vector space V , which is also a vector space, is a
subspace, that is, it contains all the linear combinations of any number of its
vectors - it said to be closed. The smallest subspace that contains the set S of
vectors is said to be spanned by S. We note that the intersectionM ∩N - in the
sense of set theory - of two subspaces M and N is a subspace, but, in general,
their union M ∪N is not.

4.4. Inner Products

The vector spaces we have been discussing do not need to contain vectors that
have a well-defined length or direction in the ordinary sense (remember the
example of the 2x2 matrices). We can, however, define generalizations of length
and direction in an arbitrary space using a mathematical object called the inner
product. The inner product is a generalization of the standard dot product. I
will first discuss the inner product using standard mathematical notation and
then return to the Dirac language.

Definition: An inner product for a linear vector space associates a scalar (f, g)
with every ordered pair of vectors f, g. It satisfies these properties:

1.
(f, g) = complex number

2.
(f, g) = (g, f)∗

3.
(f, c1g1 + c2g2) = c1(f, g1) + c2(f, g2)

4.
(f, f) ≥ 0 with equality if and only if f = null vector
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Now(2) and (3) above imply that

(c1g1 + c2g2, f) = c∗1(f, g1) + c∗2(f, g2) (4.21)

Hence, the inner product is said to be linear in its second argument and anti-
linear in its first argument.

Definition: The non-negative number ∥f∥ = (f, f)1/2 is called the norm or
length of the vector f . Clearly, ∥f∥ = 0 if and only if f = 0.

Definition: If the inner product of two vectors is zero, then the vectors are
orthogonal.

Definition: A set of vectors {fi} is said to be orthonormal if the vectors are
pairwise orthogonal and of unit norm. We can summarize this property by the
equation

(fi, fj) = δij = { 1 i = j
0 i ≠ j (4.22)

where the symbol δij is called the Kronecker delta.

Schwarz’s Inequality: scalar products satisfy

∣ (f, g) ∣2≤ (f, f)(g, g) (4.23)

Triangle Inequality: scalar products satisfy

∥(f + g)∥ ≤ ∥f∥ + ∥g∥ (4.24)

Equality holds in both cases only if one vector is a scalar multiple of the other,
i.e., f = cg where the scalar c is real and positive.

An inner product space is simply one in which an inner product is defined. A
unitary space is a finite-dimensional inner product vector space. In fact, every
finite-dimensional space can be made into a unitary space.

Examples:

1. For the case of n-tuples(an n-dimensional vector space)

f = (x1, x2, x3, . . . , xn), , g = (y1, y2, y3, . . . , yn)

(f, g) =
n

∑
k=1

x∗kyk

2. For the case of square integrable functions

(f, g) = ∫ f∗(x)g(x)w(x)dx

where w(x) is a nonnegative weight function.
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We used these weight functions in our earlier wave mechanics discussions (we
will see why later).

When a vector Q is expanded as a linear combination

Q =∑
k

qkfk (4.25)

of orthonormal basis vectors fk, the coefficients or components are given by the
inner product, i.e.,

(fj ,Q) =∑
k

qk(fj , fk) =∑
k

δkj = qj (4.26)

or
Q =∑

k

(fk,Q)fk (4.27)

Of the two basis vector sets for the 3-dimensional vectors we looked at earlier:

∣1⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(4.28)

is an orthonormal basis and

∣1⟩ =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

∣2⟩ =
⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(4.29)

is orthogonal but not orthonormal.

For later use we note the following.

Given two unitary spaces U and V , their direct sum W = U ⊕ V is the unitary
space consisting of the pairs {f, g} written f⊕g, f ∈ U, g ∈ V with the operations
defined by

α1f1 ⊕ g1 + α2f2 ⊕ g2 = (α1f1 + α2f2)⊕ (α1g1 + α2g2) (4.30)

(f1 ⊕ g1, f2 ⊕ g2) = (f1, f2) + (g1, g2) (4.31)

This is a definition that can clearly be extended to any finite number of spaces.

4.5. Linear Functionals

Linear complex-valued functions of vectors are called linear functionals on V .
A linear functional Γ assigns a scalar value Γ(f) to each vector f in the vector
space V , such that linearity holds

Γ(c1f1 + c2f2) = c1Γ(f1) + c2Γ(f2) (4.32)
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for any vectors f1 and f2 and any scalars c1 and c2.

The set of linear functionals on V form a linear space V ′ where we define addition
and scalar multiplication by

(Γ1 + Γ2)(f) = Γ1(f) + Γ2(f) (4.33)

(cΓ)(f) = cΓ(f) (4.34)

The vector space V ′ is called the dual space of the vector space V .

There is a one-to-one correspondence between linear functionals Γ in V ′ and the
vectors f in V , such that the linear functional associated with f has the form

Γf(g) = (f, g) (4.35)

where f is a fixed vector and g is an arbitrary vector. This is called the Riesz
theorem.

Using the properties of the inner product we can show that

Γf + Γg = Γf+g and aΓf = Γa∗f (4.36)

or
Γf(h) + Γg(h) = Γ(f+g)(h) (4.37)

(f, h) + (g, h) = (f + g, h) (4.38)

and
aΓf(h) = a(f, h) = (a∗f, h) = Γa∗f (4.39)

The scalar product is clearly antilinear in Γ and linear in f .

The vector f that corresponds to a given linear functional Γf is easily found by
direct construction.

Let {αi} be a set of orthonormal basis vectors in V (this means that (αi, αj) =
δij), and let

φ =∑
n

cnαn (4.40)

be an arbitrary vector in V . Then we have from its definition

Γf(φ) = Γf (∑
n

cnαn) =∑
n

cnΓf(αn) (4.41)

We now choose
f =∑

n

[Γf(αn)]∗αn (4.42)
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Its inner product with the arbitrary vector φ is

(f, φ) = (∑
n

[Γf(αn)]∗αn,∑
m

cmαm) = ∑
n,m

[Γf(αn)]cm(αn, αm) (4.43)

= ∑
n,m

[Γf(αn)]cmδnm =∑
n

[Γf(αn)]cn = Γf(φ) (4.44)

So the vector f corresponding to Γf is given by

f =∑
n

[Γf(αn)]∗αn (4.45)

4.6. The Dirac language of Kets and Bras

Let us rewrite everything we have done so far in the Dirac language.

Vectors in the linear space V are called kets or ket vectors and denoted by ∣a⟩.
Linear functionals Γb in the dual linear space V ′ are called a bras or bra vectors
and are denoted by ⟨b∣.

There is a one-to-one correspondence between kets in V and bras in V ′ or
between vectors and linear functionals. We will use the same label to denote
these corresponding quantities

∣a⟩↔ ⟨a∣ (4.46)

The inner product between two vectors ∣a⟩ and ∣b⟩ in V corresponds to the
linear functional of the left-hand vector assigning a scalar value to the right-
hand vector

Γa(b) = (a, b) = ⟨a ∣ b⟩ = complex number (4.47)

The orthonormality property of a basis set {αi} is expressed by the linear func-
tional relation

⟨αi ∣αj⟩ = δij (4.48)

The expansion of an arbitrary state in an orthonormal basis is given by

∣q⟩ =∑
n

an ∣αn⟩ (4.49)

and the expansion coefficients are

⟨αm ∣ q⟩ =∑
n

an ⟨αm ∣αn⟩ =∑
n

anδmn = am (4.50)

or am is the linear functional Γαm(q) of the state ∣q⟩ with respect to the corre-
sponding basis vector ∣αm⟩.

If we have two vectors ∣a⟩ and ∣b⟩ and we expand them in an orthonormal basis
set {αi} as

∣a⟩ =∑
n

an ∣αn⟩ and ∣b⟩ =∑
n

bn ∣αn⟩ (4.51)
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→ ⟨a ∣ b⟩ =∑
n

a∗nbn = ⟨b ∣a⟩∗ = (∑
n

b∗nan)
∗

(4.52)

where we have used the antilinear property of inner products that says that we
have the correspondence

c ∣a⟩↔ c∗ ⟨a∣ (4.53)

The linear functional itself is directly represented by the bra vector, i.e.,

⟨q∣⋯ = Γq(⋯) = (q,⋯) (4.54)

In Dirac language, there is nothing to distinguish between the value of the linear
functional ⟨q∣ for the vector ∣p⟩ and the inner product of the vectors ∣q⟩ and ∣p⟩.
They are both ⟨q ∣p⟩.

4.7. Gram-Schmidt Orthogonalization Process

An orthonormal basis set for an n-dimensional vector space can always be con-
structed from any set of n linearly independent vectors using the Gram-Schmidt
orthogonalization method.

Suppose that we have a set of n linearly independent vectors ∣αi⟩ , i = 1,2, . . . , n
that are not a mutually orthonormal set. We can construct a mutually orthonor-
mal set ∣βi⟩ , i = 1,2, . . . , n using the following steps:

1. let
∣β1⟩ = ∣α1⟩

2. let

∣β2⟩ = ∣α2⟩ + a1 ∣β1⟩ where we choose a1 such that ⟨β1 ∣β2⟩ = 0

3. this gives
⟨β1 ∣β2⟩ = 0 = ⟨β1 ∣α2⟩ + a1 ⟨β1 ∣β1⟩

a1 = −
⟨β1 ∣α2⟩
⟨β1 ∣β1⟩

Now proceed by induction.

Suppose we have constructed k mutually orthogonal vectors ∣βi⟩ , i = 1,2, . . . , k.
If we let

∣βk+1⟩ = ∣αk+1⟩ +
k

∑
j=1

aj ∣βj⟩ (4.55)

with

aj = −
⟨βj ∣αk+1⟩
⟨βj ∣βj⟩

(4.56)
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then we have ⟨βj ∣βk+1⟩ = 0 for j = 1,2, . . . , k. These steps are repeated until we
have n mutually orthogonal vectors. We then normalize them to 1 and create
an orthonormal set.

For example, suppose we have the set

∣α1⟩ =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

∣α2⟩ =
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠

∣α3⟩ =
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠

(4.57)

These vectors are not orthonormal.

1. let

∣β1⟩ = ∣α1⟩ =
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

⟨β1 ∣β1⟩ = 2

2. let
∣β2⟩ = ∣α2⟩ + a1 ∣β1⟩

with
a1 = −

⟨β1 ∣α2⟩
⟨β1 ∣β1⟩

= −1

2

and thus

∣β2⟩ = ∣α2⟩ −
1

2
∣α1⟩ =

1

2

⎛
⎜
⎝

−1
1
2

⎞
⎟
⎠

⟨β2 ∣β2⟩ =
3

2
⟨β1 ∣β2⟩ = 0

3. let
∣β3⟩ = ∣α3⟩ + a1 ∣β1⟩ + a2 ∣β2⟩

with
a1 = −

⟨β1 ∣α3⟩
⟨β1 ∣β1⟩

= −1

2
a2 = −

⟨β2 ∣α3⟩
⟨β2 ∣β2⟩

= −1

3

and thus

∣β3⟩ =
2

3

⎛
⎜
⎝

1
−1
1

⎞
⎟
⎠

⟨β3 ∣β3⟩ =
4

3
⟨β1 ∣β3⟩ = 0 ⟨β2 ∣β3⟩ = 0

We normalize the vectors by dividing by their respective norms,

∣γi⟩ =
∣βi⟩

∥ ∣βi⟩ ∥
= ∣βi⟩

∣ ⟨βi ∣βi⟩ ∣1/2

The orthonormal set is then

∣γ1⟩ =
1√
2

⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

∣γ2⟩ =
1√
6

⎛
⎜
⎝

−1
1
2

⎞
⎟
⎠

∣γ3⟩ =
1√
3

⎛
⎜
⎝

1
−1
1

⎞
⎟
⎠
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4.8. Linear Operators

In general, an operator defined on a vector space maps vectors into vectors
Q̂ ∶ V → V , i.e., if Q̂ = operator and ∣k⟩ = a vector, then Q̂ ∣k⟩ = ∣q⟩ = a vector(we
will use the ^ symbol on top to signify operators). We say that ∣q⟩ is the image
of ∣k⟩ under the mapping Q̂. An operator is fully defined if we specify its action
on all vectors in its domain, which is the set of all vectors {∣k⟩} for which Q̂ ∣k⟩
is defined. Its range is the set of all vectors of the form Q̂ ∣k⟩ for all ∣k⟩.

In the special case of a linear operator, the operator also satisfies the linearity
relation

Q̂(a1 ∣k1⟩ + a2 ∣k2⟩) = Q̂(a1 ∣k1⟩) + Q̂(a2 ∣k2⟩) (4.58)

In general, the operator Â is linear if, for all ∣f⟩ , ∣g⟩ ∈ V , Â(∣f⟩+∣g⟩) = Â ∣f⟩+Â ∣g⟩,
(αÂ) ∣f⟩ = (αÂ ∣f⟩ and Â = 0 if and only if Â ∣f⟩ = 0 for all ∣f⟩. The norm ∥Â∥
of the linear operator Â is defined as the maximum of ∥Â ∣f⟩ ∥ for all ∣f⟩ such
that ∥ ∣f⟩ ∥ ≤ 1. The identity operator Î is defined by Î ∣f⟩ = ∣f⟩ for all ∣f⟩.

Since any vector in the space can be written as a linear combination of a basis
set of vectors, we need only define a linear operator on the basis set and then
its operation on all vectors is known.

Quantum mechanics works exclusively with linear operators so we will just call
them operators from now on.

When are two operators equal?

In general, we say that two operators are equal, i.e., Q̂1 = Q̂2, when Q̂1 ∣p⟩ =
Q̂2 ∣p⟩ for all vectors ∣p⟩ in the intersection of the domains of Q̂1 and Q̂2.

Using this equality idea we can define the sum and product of operators by

(Q̂1 + Q̂2) ∣k⟩ = Q̂1 ∣k⟩ + Q̂2 ∣k⟩ (4.59)

(Q̂1Q̂2) ∣k⟩ = Q̂1(Q̂2 ∣k⟩) (4.60)

for all vectors ∣k⟩. It is clear that these relations imply that

(Q̂1Q̂2Q̂3) ∣k⟩ = (Q̂1Q̂2)Q̂3 ∣k⟩ = Q̂1(Q̂2Q̂3) ∣k⟩ (4.61)

or
(Q̂1Q̂2)Q̂3 = Q̂1(Q̂2Q̂3) (4.62)

which corresponds to associativity. Now

(Q̂1Q̂2) ∣k⟩ = Q̂1(Q̂2) ∣k⟩) = Q̂1 ∣k2⟩ = ∣k12⟩ (4.63)

(Q̂2Q̂1) ∣k⟩ = Q̂2(Q̂1) ∣k⟩) = Q̂2 ∣k1⟩ = ∣k21⟩ (4.64)
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does not imply that ∣k12⟩ = ∣k21⟩. Therefore, in general we have Q̂1Q̂2 ≠ Q̂2Q̂1,
which corresponds to the noncommutivity of the two operators.

We define the commutator of two operators by

[Q̂1, Q̂2] = Q̂1Q̂2 − Q̂2Q̂1 (4.65)

Two operators are said to commute if their corresponding commutator is zero
(the null vector).

The commutator will be a fundamental quantity in our discussions of quantum
mechanics.

4.9. An Aside: The Connection to Matrices

Now suppose that we have an N -dimensional vector space and we choose an
orthonormal basis set

{∣qi⟩ , i = 1,2, . . . ,N} (4.66)

In an N -dimensional space, we can always represent any vector as an N -element
column of numbers or as a column vector.

If we expand some arbitrary state ∣α⟩ in terms of this basis set and operate on
it with an operator Q̂, then we have

∣β⟩ = Q̂ ∣α⟩ = Q̂
N

∑
i=1

ci ∣qi⟩ =
N

∑
i=1

ciQ̂ ∣qi⟩ (4.67)

where ∣β⟩ is another vector in the same space since Q̂ is a linear operator.

Now expanding the vector ∣β⟩ in the same basis set as

∣β⟩ =
N

∑
i=1

di ∣qi⟩ (4.68)

and constructing the linear functional (inner product) of ∣β⟩ = Q̂ ∣α⟩ with respect
to ∣qi⟩ we get

⟨qk ∣ Q̂ ∣α⟩ = ⟨qk ∣ Q̂
N

∑
i=1

ci ∣qi⟩ =
N

∑
i=1

ci ⟨qk ∣ Q̂ ∣qi⟩ = ⟨qk ∣β⟩ =
N

∑
j=1

dj ⟨qk ∣ qj⟩ (4.69)

Using the orthonormality property of the basis set

⟨qk ∣ qj⟩ = δkj (4.70)

we get

⟨qk ∣ Q̂ ∣qi⟩ =
N

∑
j=1

djδkj = dk (4.71)
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If we define the numbers Q̂ki = ⟨qk ∣ Q̂ ∣qi⟩ we get the relation

N

∑
j=1

Q̂kici = dk (4.72)

Clearly, this has the form of a matrix equation where Q̂ki = ⟨qk ∣ Q̂ ∣qi⟩ is defined
as the (ki)-matrix element of the operator Q̂. In this case, we would have the
representation

(Q̂ij) = N ×N matrix (4.73)

(ci) = N × 1 columnmatrix (4.74)

(di) = N × 1 columnmatrix (4.75)

and the matrix equation (using matrix multiplication) represented above is Qc =
d.

All finite dimensional vector space operator equations can be turned into matrix
equations in this manner.

4.10. More about Vectors, Linear Functionals, Op-
erators

We have discussed what happens when an operator acts to the right on a ket
vector. What about acting to the left on a bra vector, i.e., what is the meaning
of the quantity

⟨q∣ Q̂ (4.76)

Since the bra vector is really a linear functional we must be careful and look
very closely at the mathematical content of the above quantity. Remember that
the definition of the linear functional was

⟨q ∣p⟩ = Γq(p) = (q, p) (4.77)

The standard definition (in terms of inner products) of the adjoint operator Q̂†,
of the operator Q̂, in a linear vector space is

(Q̂†q, p) = (q, Q̂p) (4.78)

The adjoint obeys the following properties:

∥Â†∥ = ∥Â∥ (Â†)† = Â (Â + B̂)† = Â† + B̂† (4.79)

(αÂ)† = α∗Â† (ÂB̂)† = B̂†Â† (Â−1)† = (Â†)−1 (4.80)

If we define a new vector φ by the operation Q̂†q = φ, then using the definition
of the adjoint operator we have

Γφ(p) = (φ, p) = (Q̂†q, p) = (q, Q̂p) = Γq(Q̂p) (4.81)
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We want the action of an operator on the bra space of linear functionals or bra
vectors to create a new linear functional or bra vector in the same way that
it does for ket vectors. We can guarantee this by defining the operation of an
operator on the bra space of linear functionals by

Q̂Γq(p) = Γq(Q̂p) (4.82)

Using this new definition and the definition of a linear functional, we then have

Q̂Γq(c1p1 + c2p2) = Γq(Q̂(c1p1 + c2p2)) (4.83)

= c1Γq(Q̂p1) + c2Γq(Q̂p2) (4.84)

= c1Q̂Γq(p1) + c2Q̂Γq(p2) (4.85)

which says that Q̂Γq(. . .) itself is also a linear functional.

Thus, our definition of how an operator acts on the bra space of linear functionals
simply says that it creates a new functional as we desired.

With this definition, we then have

Q̂Γq(p) = Γφ(p) = (φ, p) = (Q̂†q, p) = (q, Q̂p) = Γq(Q̂p) (4.86)

or, since (Q̂†q, p) = ΓQ̂†q(p), the relationship among linear functionals is

Q̂Γq(. . .) = ΓQ̂†q(p) (4.87)

In terms of bra and ket vectors, this says that if ⟨q∣ and ∣q⟩ are corresponding
bra and ket vectors(remember, the Riesz theorem says there is a unique bra
vector for each ket vector), then

Q̂ ∣q⟩ = ∣β⟩ and ⟨q∣ Q̂† = ⟨β∣ (4.88)

should also be emphcorresponding bra and ket vectors.

Since ⟨β ∣p⟩∗ = ⟨p ∣β⟩ we then have that

⟨q∣ Q̂† ∣p⟩∗ = ⟨p∣ Q̂ ∣q⟩ (4.89)

for all p and q. This relation is equivalent to the original inner product relation

(Q̂†q, p) = (q, Q̂p) (4.90)

The end result of this discussion is that ⟨q∣ Q̂† = ⟨β∣ is the bra vector(linear func-
tional) corresponding to the ket vector Q̂ ∣q⟩ = ∣β⟩. Since the adjoint operator
satisfies the relations

(cQ̂)† = c∗Q̂† (Q̂R̂)† = R̂†Q̂† (Q̂ + R̂)† = Q̂† + R̂† (4.91)
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we can define another product among the bra and ket vectors, which is an
operator rather than a scalar as in the case of the inner product. It is called the
outer product and, in the Dirac language, has the form

∣q⟩ ⟨p∣ (4.92)

It is clear that the outer product is an operator since its action on any other
vector always results in a vector

(∣q⟩ ⟨p∣) ∣s⟩ = ∣q⟩ ⟨p ∣ s⟩ (4.93)

We also have that

(⟨q∣ (∣q⟩ ⟨p∣)† ∣p⟩)∗ = ⟨p∣ (∣q⟩ ⟨p∣) ∣q⟩ = ⟨p ∣ q⟩ ⟨p ∣ q⟩ = (⟨q ∣p⟩ ⟨q ∣p⟩)∗ (4.94)

or
(⟨q∣ (∣q⟩ ⟨p∣)† ∣p⟩) = ⟨p ∣ q⟩ ⟨p ∣ q⟩ (4.95)

which implies that
(∣q⟩ ⟨p∣)† = ∣q⟩ ⟨p∣ (4.96)

This type of operator will be very important in our later discussions. The special
case

∣p⟩ ⟨p∣ (4.97)

is called a projection operator because it picks out the component of an arbi-
trary state vector in the "direction" of the vector ∣p⟩.

Projections operators (and linear combinations) will be the mathematical ob-
ject with a direct connection to physical states and measurements in our later
discussions.

Example in a Finite Dimensional Vector Space

Let us consider the 2-dimensional vector space spanned by the orthonormal
basis set

∣1⟩ = (1
0
) ∣2⟩ = (0

1
) (4.98)

We can define two projection operators as

P̂1 = ∣1⟩ ⟨1∣ P̂2 = ∣2⟩ ⟨2∣ (4.99)

The matrix representation of these two projection operator is easily found using
⟨1 ∣1⟩ = ⟨2 ∣2⟩ = 1 and ⟨1 ∣2⟩ = ⟨2 ∣1⟩ = 0 and Q̂ki = ⟨k∣ Q̂ ∣i⟩. We have

(P̂1) = (⟨1∣ P̂1 ∣1⟩ ⟨1∣ P̂1 ∣2⟩
⟨2∣ P̂1 ∣1⟩ ⟨2∣ P̂1 ∣2⟩

) (4.100)

= (⟨1 ∣1⟩ ⟨1 ∣1⟩ ⟨1 ∣1⟩ ⟨1 ∣2⟩
⟨2 ∣1⟩ ⟨1 ∣1⟩ ⟨2 ∣1⟩ ⟨1 ∣2⟩) = (1 0

0 0
)
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(P̂2) = (⟨1∣ P̂2 ∣1⟩ ⟨1∣ P̂2 ∣2⟩
⟨2∣ P̂2 ∣1⟩ ⟨2∣ P̂2 ∣2⟩

) (4.101)

= (⟨1 ∣2⟩ ⟨2 ∣1⟩ ⟨1 ∣2⟩ ⟨2 ∣2⟩
⟨2 ∣2⟩ ⟨2 ∣1⟩ ⟨2 ∣2⟩ ⟨2 ∣2⟩) = (0 0

0 1
)

Now consider an arbitrary vector in this space

∣a⟩ = (a1

a2
) = a1 ∣1⟩ + a2 ∣2⟩ (4.102)

We then have (using both Dirac and matrix languages)

P̂1 ∣a⟩ = a1 ∣1⟩ ⟨1 ∣1⟩ + a2 ∣1⟩ ⟨1 ∣2⟩ = a1 ∣1⟩ (4.103)

or

(P̂1)(
a1

a2
) = (1 0

0 0
)(a1

a2
) = (a1

0
) = a1 (1

0
) (4.104)

and the projection operator performs as advertised.

We note that (at least in this special case)

(P̂1) + (P̂2) = (1 0
0 0

) + (0 0
0 1

) = (1 0
0 1

) (4.105)

= Î = identity operator

or

(P̂1) + (P̂2) ∣a⟩ = (⟨1 ∣1⟩ + ⟨2 ∣2⟩) ∣a⟩ (4.106)

=
2

∑
j=1

∣j⟩ ⟨j ∣a⟩ = ∣a⟩ = Î ∣a⟩

where we have made use of the expansion formula for an arbitrary state in an
orthonormal basis.

Return to Gram-Schmidt

As before, suppose we have a set of linearly independent, but non-orthogonal
vectors ∣i⟩ in an n-dimensional linear vector space, we can construct a set of
orthogonal vectors ∣αi⟩ as follows:

∣α1⟩ = ∣1⟩ ∣α2⟩ = ∣2⟩ − ∣α1⟩ ⟨α1 ∣2⟩ (4.107)

where
∣α1⟩ ⟨α1∣ = P̂α1 = projection operator (4.108)

Then
∣α2⟩ = ∣2⟩ − P̂α1 ∣2⟩ (4.109)
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As earlier, the fact that this type of operator is a projection operator is shown
clearly by considering its effect on an arbitrary vector

∣Q⟩ = q1 ∣1⟩ + q2 ∣2⟩ + q3 ∣3⟩ + . . . =∑
i

qi ∣i⟩ (4.110)

Then using
P̂αn = ∣αn⟩ ⟨αn∣ (4.111)

we get

P̂αn ∣Q⟩ =∑
i

qiP̂αn ∣i⟩ =∑
i

qi ∣αn⟩ ⟨αn ∣ i⟩ =∑
i

qi ∣αn⟩ δni = qn ∣αn⟩ (4.112)

or
∑
n

∣αn⟩ ⟨αn∣ = Î = identity operator (4.113)

which makes perfect sense since if you project out all components of a vector
you just get the vector back! This generalizes the earlier result we found in the
2-dimensional space. This Dirac language is very interesting!

We can then write a general Gram-Schmidt procedure as

∣α1⟩ = ∣1⟩ ∣α2⟩ = (1 − P̂α1) ∣2⟩ ∣α3⟩ = (1 − P̂α1 − P̂α2) ∣3⟩

⋯⋯⋯⋯⋯⋯

∣αn⟩ = (1 −
n−1

∑
k=1

P̂αk) ∣n⟩

which is rather neat. This shows the power of these projection operators and of
the Dirac language.

Important Point - Looking at the equations

Q̂ ∣q⟩ = ∣β⟩ and ⟨q∣ Q̂† = ⟨β∣ (4.114)

we might be tempted(as is the case in many textbooks) at this point to write

(∣q⟩)† = ⟨q∣ (4.115)

This might seem to make sense in a finite dimensional vector space where we
can always treat kets as column vectors and bras as row vectors. However, the
adjoint symbol is really only defined for operators and not for vectors, so one
should exercise great care before generalizing this result, especially in infinite
dimensional spaces!

Finally, we define a property of an operator called the trace as

TrQ̂ =∑
j

⟨qj ∣ Q̂ ∣qj⟩ = sum of diagonal elements =∑
j

(Q̂)jj (4.116)
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4.11. Self-Adjoint Operators

If we have an operator Q̂ where the adjoint satisfies the relation

⟨q∣ Q̂† ∣p⟩ = (⟨p∣ Q̂ ∣q⟩)∗ (4.117)

then Q̂ is a Hermitian or self-adjoint operator.

In a finite-dimensional space, we can look at the matrix elements corresponding
to a Hermitian operator. Let

∣p⟩ =
N

∑
i=1

ai ∣qi⟩ (4.118)

We have
⟨qk ∣ Q̂ ∣p⟩∗ = ⟨p∣ Q̂ ∣qk⟩ (4.119)

⟨qk ∣ Q̂
N

∑
i=1

ai ∣qi⟩∗ =
N

∑
i=1

a∗i ⟨qi∣ Q̂ ∣qk⟩ (4.120)

N

∑
i=1

a∗i ⟨qk ∣ Q̂ ∣qi⟩ =
N

∑
i=1

a∗i ⟨qi∣ Q̂ ∣qk⟩ (4.121)

N

∑
i=1

a∗i [⟨qk ∣ Q̂ ∣qi⟩∗ − ⟨qi∣ Q̂ ∣qk⟩] = 0 (4.122)

where we have used the antilinear property.

This says that the matrix elements of a Hermitian operator satisfy

Q̂∗
ki = Q̂ik or Q̂† = Q̂ (4.123)

as we saw above.

If Ĥ, K̂ are Hermitian, then so are Ĥ + K̂, i[Ĥ, K̂], and αĤ for all real α, and
Â†ĤÂ for any operator Â, but ĤK̂ is Hermitian if and only if the commutator
[Ĥ, K̂] = 0.

The Hermitian operator Ĥ is positive if (f, Ĥf) = ⟨f ∣ Ĥ ∣f⟩ ≥ 0 for all ∣f⟩; note
that if the equality holds for all ∣f⟩, then Ĥ = 0. If Ĥ is positive, then it obeys
the inequality

∣(f, Ĥg)∣2 ≥ (f, Ĥf)(g, Ĥg) (4.124)

called the Schwarz inequality for positive operators.

If K̂† = −K̂, then the operator K̂ is called antihermitian; clearly, iK̂ is Hermi-
tian. An arbitrary operator Â can always be written as the sum Â = ĤA + K̂A

of its Hermitian part

ĤA = 1

2
(Â + Â†) (4.125)
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and its antihermitian part

K̂A = 1

2
(Â − Â†) (4.126)

Hermitian operators will be very important in our discussions because they will
represent measurable quantities or observables.

4.12. Eigenvalues and Eigenvectors

Suppose that an operator Q̂ acting on a particular vector ∣β⟩ returns a scalar
multiple of that vector

Q̂ ∣β⟩ = b ∣β⟩ (4.127)

The vector ∣β⟩ is then called an eigenvector and the scalar b an eigenvalue
of the operator Q̂. Using the definition of the adjoint Q̂† operator and the
antilinear correspondence between bras and kets, we then also must have (using
any arbitrary vector ∣α⟩)

⟨α∣ Q̂ ∣β⟩∗ = b∗ ⟨α ∣β⟩∗ (4.128)

⟨β∣ Q̂† ∣α⟩ = b∗ ⟨β ∣α⟩ (4.129)

⟨β∣ Q̂† = b∗ ⟨β∣ (4.130)

Now we assume that Q̂ is a Hermitian operator and that Q̂ ∣β⟩ = b ∣β⟩ again.
The Hermitian property says that

⟨β∣ Q̂† ∣β⟩ = ⟨β∣ Q̂ ∣β⟩ = ⟨β∣ Q̂ ∣β⟩∗ (4.131)

⟨β∣ b ∣β⟩ = ⟨β∣ b ∣β⟩∗ (4.132)

(b − b∗) ⟨β ∣β⟩ = 0 (4.133)

b = b∗ (4.134)

where we have assumed that ⟨β ∣β⟩ ≠ 0. This means that all of the eigenvalues
of a Hermitian operator are real. Following this up, if Q̂ is a Hermitian operator
which satisfies

Q̂ ∣β⟩ = b ∣β⟩ with Q̂ = Q̂† (4.135)

then
⟨β∣ Q̂ = b ⟨β∣ (4.136)

or the ket vector and its corresponding bra vector are eigenvectors with the
same eigenvalue.

Suppose that we have two eigenvectors ∣α⟩ and ∣β⟩ of a Hermitian operator Q̂
with eigenvalues a and b, respectively. We then have

Q̂ ∣α⟩ = a ∣α⟩ and Q̂ ∣β⟩ = b ∣β⟩ (4.137)
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0 = ⟨α∣ Q̂ ∣β⟩ − ⟨β∣ Q̂† ∣α⟩∗ = ⟨α∣ Q̂ ∣β⟩ − ⟨β∣ Q̂ ∣α⟩∗ (4.138)

0 = b ⟨α ∣β⟩ − a∗ ⟨β ∣α⟩∗ = (b − a) ⟨α ∣β⟩ (4.139)

This implies that eigenvectors corresponding to distinct(different) eigenvalues
(a ≠ b) are orthogonal, i.e., ⟨α ∣β⟩ = 0.

If a = b, that is, the two eigenvectors correspond to the same eigenvalue, then
they are called degenerate eigenvectors. In this case, we have that

Q̂ ∣α⟩ = a ∣α⟩ and Q̂ ∣β⟩ = a ∣β⟩ (4.140)

Now, any linear combination of the degenerate eigenvectors is also an eigenvector
with the same eigenvalue as can be seen below

Q̂(c1 ∣α⟩ + c2 ∣β⟩) = c1Q̂ ∣α⟩ + c2Q̂ ∣β⟩ (4.141)
= c1a ∣α⟩ + c2a ∣β⟩ = a(c1 ∣α⟩ + c2 ∣β⟩)

It is, therefore, always possible to replace a nonorthogonal but linearly indepen-
dent set of degenerate eigenvectors by linear combinations of themselves that
are orthogonal (using the Gram-Schmidt process). For the case of two states
above, the orthogonal set is easy to find, namely

∣1⟩ = ∣α⟩ + ∣β⟩ ∣2⟩ = ∣α⟩ − ∣β⟩ (4.142)

The number of distinct vectors corresponding to a given eigenvalue is called the
multiplicity of that eigenvalue. Non-degenerate eigenvalues are called simple.

We will always assume that we have already carried out this orthogonalization
process and that the set of eigenvectors(for both non-degenerate and degenerate
eigenvalues) of any Hermitian operator is an orthogonal set.

If the norms are all finite, then we can always construct an orthonormal set
where

⟨αi ∣αj⟩ = δij (4.143)

The set of eigenvalues of an operator Â is called the spectrum of Â.

In an m-dimensional space H choose a matrix representation in which Â =
(Aij), g = (γi). Written in this representation, the eigenvalue equation Âg = λg
becomes a system of m homogeneous linear equations in the γi. The eigenvalues
λ are the roots of the algebraic equation of degree m

det(Aij − λδij) = 0 (4.144)

known as the secular equation, which expresses the condition for the homoge-
neous system of equations to have non-trivial solutions. In an m-dimensional
space every operator has at least one and at most m distinct eigenvalues. If
all the eigenvalues of an arbitrary operator Â are simple, then there are m lin-
early independent eigenvectors of Â but there may be fewer if Â has multiple
eigenvalues.
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4.13. Completeness

A set of orthonormal vectors {∣αk⟩ , k = 1,2,3, . . . ,N} is complete if we can
expand an arbitrary vector ∣η⟩ in terms of that set, i.e.,

∣η⟩ =∑
j

aj ∣αj⟩ (4.145)

The orthonormality condition then allows us to calculate the expansion coeffi-
cients aj as

⟨αk ∣η⟩ =∑
j

aj ⟨αk ∣αj⟩ =∑
j

ajδkj = ak (4.146)

This implies that(remember the 2-dimensional example earlier)

∣η⟩ =∑
j

∣αj⟩ ⟨αj ∣η⟩ =
⎛
⎝∑j

∣αj⟩ ⟨αj ∣
⎞
⎠
∣η⟩ (4.147)

or
∑
j

∣αj⟩ ⟨αj ∣ = Î = identity operator (4.148)

This result is quite general.

For any complete set of vectors {∣qk⟩ , k = 1,2,3, . . . ,N} the sum over all of the
projection operators ∣qk⟩ ⟨qk ∣ is the identity operator. This is one of the most
important results we will derive. It will enable us to perform very clever tricks
during algebraic manipulations. It is fundamentally linked to the probability
interpretation of quantum mechanics as we shall see later.

If a set of vectors {∣qk⟩ , k = 1,2,3, . . . ,N} are eigenvectors of a Hermitian oper-
ator Q̂, then we will always assume that they are a complete set. Thus, if

Q̂ ∣qk⟩ = qk ∣qk⟩ (4.149)

then we can always write

Q̂ = Q̂Î = Q̂∑
j

∣qj⟩ ⟨qj ∣ =∑
j

qj ∣qj⟩ ⟨qj ∣ (4.150)

which completely expresses an operator in terms of its eigenvectors and eigen-
values.

Since we can use the same argument to show that

Q̂n = Q̂nÎ = Q̂n∑
j

∣qj⟩ ⟨qj ∣ =∑
j

qnj ∣qj⟩ ⟨qj ∣ (4.151)

we then have for any function f(x) that has a power series expansion of the
form

f(x) =∑
k

ckx
k (4.152)
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that

f(Q̂) = f(Q̂)Î = f(Q̂)∑
j

∣qj⟩ ⟨qj ∣ =∑
j

∑
k

ckQ̂
k ∣qj⟩ ⟨qj ∣

=∑
j

∑
k

ckq
k
j ∣qj⟩ ⟨qj ∣ =∑

j

f(qj) ∣qj⟩ ⟨qj ∣ (4.153)

For a finite dimensional space, it can be shown that the eigenvectors of a Her-
mitian operator always form a complete set and all of the above relations hold.
For infinite dimensional spaces the proof is not easily carried out in general (it
is usually true however).

Before proceeding to a general discussion of the eigenvalue spectrum, the spec-
tral theorem and the problem of continuous eigenvalues let us expand our knowl-
edge of some of the objects we have already defined and add a few definitions
that will be useful.

4.14. Expand Our Knowledge - Selected Topics

4.14.1. Hilbert Space
In an infinite dimensional space, we must determine whether the sums involved
in many of our definitions converge. If they do not converge in some expressions,
then the corresponding definitions are not valid. In addition, we must clearly
state what is meant by a linear combination of an infinite number of vectors?

We assume that an infinite linear combination

∣α⟩ =
∞
∑
k=1

ak ∣qk⟩ (4.154)

is defined if the sequence of partial sums

∣αn⟩ =
n

∑
k=1

ak ∣qk⟩ (4.155)

converges as n → ∞ or, equivalently, that ∣αn⟩ → ∣α⟩ as n → ∞, where this
convergence is defined by the norm relation

∥ ∣α⟩ − ∣αn⟩ ∥→ 0 as n→∞ (4.156)

The vector ∣α⟩ is called the limit vector of the sequence. A sequence of vectors
∣αn⟩ is called a Cauchy sequence if

∥ ∣αm⟩ − ∣αn⟩ ∥→ 0 as m,n→∞ (4.157)

A space is complete if every Cauchy sequence of vectors converges to a limit
vector in the space.
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If a linear space with an inner product defined is complete, then it is called a
Hilbert space.

A Hilbert space is separable if it has an orthonormal basis consisting of a count-
able (finite or infinite) number of vectors. Note that every finite-dimensional
space is complete(as we assumed earlier).

If a set of n vectors {∣qk⟩ is such that every sequence of vectors in the set

∣αn⟩ =
n

∑
k=1

ak ∣qk⟩ (4.158)

has a limit vector also in the set, then the set is closed.

Some examples are:

Space `2: this is the space of infinite sequences

(x1, x2, x3, . . . . . .)

such that
∞
∑
k=1

∣xk ∣2 is finite

This space is a separable Hilbert space. It has an orthonormal basis consisting
of

∣q1⟩ = (1,0,0,0, . . .) ∣q2⟩ = (0,1,0,0, . . .) ∣q3⟩ = (0,0,1,0, . . .) . . .

since

(x1, x2, x3, . . . . . .) =
∞
∑
k=1

xk ∣qk⟩

Space L2(a, b): this is the space of square integrable functions on the interval
(a, b). It is a separable Hilbert space. If we choose the interval (0,1), then
we have the space L2(0,1) of square integrable functions f(x) on the interval
0 ≤ x ≤ 1.

Another example comes from the theory of Fourier series, which says that the
set of orthonormal vectors (or functions in this case)

1,
√

2 cos 2πkx and sin 2πkx for k = 1,2,3, . . .

form an orthonormal basis.

If a set of vectors within a larger set is closed and both the larger set and the
smaller set both form linear vector spaces, the smaller set is called a subspace
of the larger set.
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A subspace of a separable Hilbert space is also a separable Hilbert space.

If R is a subspace of a separable Hilbert space, then the set of all vectors which
are orthogonal to every vector in R is called the orthogonal complement R⊥ of
R. R⊥is also a subspace.

A Hilbert space preserves the one-to-one correspondence between the kets in
the space and the bras or linear functionals in its dual space.

4.14.2. Bounded Operators

A linear operator Q̂ is continuous if

Q̂ ∣αn⟩→ Q̂ ∣α⟩ (4.159)

for any sequence of vectors ∣αn⟩ which converge to the limit vector ∣α⟩.

A linear operator is bounded if there exists a positive number a such that

∥Q̂ ∣α⟩ ∥ ≤ a∥ ∣α⟩ ∥ (4.160)

for every vector ∣α⟩ in the space. The smallest a is called the norm ∥Q̂∥ of Q̂.

A linear operator is continuous if and only if it is bounded. Every operator
on a finite-dimensional space is bounded. A bounded linear operator on an
infinite-dimensional space can be represented by an infinite matrix.

4.14.3. Inverses

A linear operator Q̂ has an inverse if there exists a linear operator M̂ such that

M̂Q̂ = Î = Q̂M̂ (4.161)

We denote the inverse of Q̂ by M̂ = Q̂−1.

In an n-dimensional vector space with a basis set {∣qk⟩ , k = 1,2,3, . . . , n} , a
necessary and sufficient condition for a linear operator Q̂ to have an inverse is
any one of the following (all are equivalent):

1. there is no vector ∣χ⟩ (except null vector) such that Q̂ ∣χ⟩ = 0.

2. the set of vectors {Q̂ ∣qk⟩ , k = 1,2,3, . . . , n} is linearly independent.

3. there exists a linear operator M̂ such that M̂Q̂ = Î = Q̂M̂

4. the matrix corresponding to Q̂ has a nonzero determinant.
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We defined the matrix elements with respect to a basis set by Q̂ij = ⟨qi∣ Q̂ ∣qj⟩.
The determinant of a matrix is defined by

det(Q̂) = ∑
i1i2...in

εi1i2...inQ̂i11Q̂i22 . . . Q̂inn (4.162)

where εi1i2...in is the permutation symbol of order n (n indices) which is defined
by

εi1i2...in =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1 if i1i2 . . . in is an even permutation of 123 . . . n

−1 if i1i2 . . . in is an odd permutation of 123 . . . n

0 if any index is repeated
(4.163)

Example: in the 3 × 3 case:

det
⎛
⎜
⎝

A11 A12 A13

A21 A32 A23

A31 A32 A33

⎞
⎟
⎠
=

3

∑
i,j,k=1

εijkAi1Aj2Ak3

= ε123A11A22A33 + ε132A11A32A23 + ε213A21A12A33

+ ε231A21A32A13 + ε312A31A12A23 + ε321A31A22A13

= A11A22A33 −A11A32A23 −A21A12A33

+A21A32A13 +A31A12A23 −A31A22A13

where we have only included the nonzero terms(no repeated indices).

We note that Rules (1), (2), (3) are not sufficient conditions in the infinite-
dimensional case.

Finally, if two linear operators have inverses, then the inverse of their product
is

(M̂N̂)−1 = N̂−1M̂−1 (4.164)

4.14.4. Unitary Operators

A linear operator Ĝ is unitary (orthogonal if we have a real linear space) if it
has an inverse and if ∥Ĝ ∣α⟩ ∥ = ∥ ∣α⟩ ∥ for every vector ∣α⟩, i.e., unitary operators
preserve norms or lengths of vectors.

If Ĝ is a unitary operator, then a more general result is

∣α1⟩ = Ĝ ∣β1⟩ and ∣α2⟩ = Ĝ ∣β2⟩ implies ⟨α1 ∣α2⟩ = ⟨β1 ∣β2⟩ (4.165)

or unitary operators preserve inner products and not just norms. Using the fact
that ⟨α1∣ = ⟨β1∣ Ĝ, we then have, for a unitary operator Ĝ

⟨α1 ∣α2⟩ = ⟨β1∣ Ĝ†Ĝ ∣β2⟩ or Ĝ†Ĝ = Î or Ĝ† = Ĝ−1 (4.166)
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i.e., the inverse is the Hermitian conjugate or adjoint.

In addition, the action of a unitary operator on a basis set preserves the fact
that it is a basis set.

The evolution of quantum systems in time will be given by a unitary operator.
The inner product preserving property will be connected to the probability
interpretation of quantum mechanics.

4.14.5. More on Matrix Representations
Let {∣bi⟩} be an orthonormal basis on an m-dimensional space. An arbitrary
vector ∣g⟩ can be written in terms of its components γi = ⟨bi ∣ g⟩ , i = 1,2, . . . ,m
as

∣g⟩ =∑
i

γi ∣bi⟩ (4.167)

Given an operator Â, the vector ∣h⟩ = Â ∣g⟩ has the components

ηi = ⟨bi∣ (Â ∣g⟩) = ⟨bi∣ Â ∣g⟩ =∑
i

γj ⟨bi∣ Â ∣bj⟩ (4.168)

One can identify the vectors ∣g⟩ and ∣h⟩ with column matrices formed by their
components

∣g⟩ =
⎛
⎜⎜⎜
⎝

γ1

γ2

⋯
γm

⎞
⎟⎟⎟
⎠

∣h⟩ =
⎛
⎜⎜⎜
⎝

η1

η2

⋯
ηm

⎞
⎟⎟⎟
⎠

(4.169)

In fact, the vector space of column matrices with the usual definitions of addi-
tion of matrices and multiplication by a number is isomorphic with H. With
these definitions, the operator Â can be identified with the square matrix whose
elements are the m2 numbers Âij = ⟨bi∣ Â ∣bj⟩

Â =
⎛
⎜⎜⎜
⎝

A11 A12 . . . A1m

A21 A22 . . . A23m

. . . . . . . . . . . .
Am1 Am2 . . . Amm

⎞
⎟⎟⎟
⎠

(4.170)

With these identifications, the components ηi can be rewritten as

ηi =∑
j

Aijbj (4.171)

This is an expression which is identical to the matrix equation

⎛
⎜⎜⎜
⎝

η1

η2

⋯
ηm

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

A11 A12 . . . A1m

A21 A22 . . . A23m

. . . . . . . . . . . .
Am1 Am2 . . . Amm

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

γ1

γ2

⋯
γm

⎞
⎟⎟⎟
⎠

(4.172)
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or more succinctly (ηi) = (Aij)(bj).

When the above identifications are made we speak of the matrix representation
of H with respect to the basis {bi}, or simply the {bi}-representation of H.

If in a given representation Â ⇒ (Aij) and Â† ⇒ (A†
ij), then A

†
ij = A

∗
ji; thus,

if Â is hermitian, Aij = A∗
ji. The representation of the identity operator with

respect to any orthonormal basis is the identity matrix (δij). The inverse Â−1

exists if and only if the determinant det(Aij) ≠ 0; then A−1
ij = cof(Aij)/det(Aij)

(cofactors). The matrix elements of a unitary operator Û satisfy the relation .

Change of Representation - Let {∣bi⟩},{∣̄bi⟩} be two bases on H. What is
the relationship between the representations of a vector ∣g⟩ and an operator Â
with respect to the bases {∣bi⟩} and {∣̄bi⟩}?

Consider first the vector ∣g⟩ and let γi = ⟨bi ∣ g⟩ and γ̄i = ⟨b̄i ∣ g⟩ be its components
along ∣bi⟩ and ∣̄bi⟩ respectively. Since

∣̄bi⟩ =∑
j

⟨bj ∣ b̄i⟩ ∣bj⟩ (4.173)

we have
γ̄i = ⟨b̄i ∣ g⟩ =∑

j

⟨bj ∣ b̄i⟩ ⟨bj ∣ g⟩ (4.174)

Defining the matrix S ⇒ (Sij) = ⟨bj ∣ b̄i⟩ we can write γ̄i = (Sij)(γj).

The matrix S is unitary in the sense that

∑
k

SikS
∗
jk = δij (4.175)

Instead of thinking of S as a matrix performing a change of bases we can think
of it as a unitary operator that generates a unitary transformation of mathcalH
onto itself given by the correspondence

∣f̄⟩ = S ∣f⟩ ˆ̄A = ŜÂŜ† (4.176)

For any vectors ∣f⟩ , ∣g⟩ and any operator Â we then have

⟨f̄ ∣ ḡ⟩ = ⟨f ∣ g⟩ ⟨f̄ ∣ ˆ̄A ∣ḡ⟩ = ⟨f ∣ Â ∣g⟩ (4.177)

4.14.6. Projection Operators

Suppose we have a vector ∣α⟩ in a separable Hilbert space. The associated
projection operator P̂α is a linear operator in Hilbert space whose action on
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any other arbitrary vector in the space is to project out the component of that
arbitrary vector along the vector ∣α⟩, i.e.,

P̂α ∣β⟩ = a ∣α⟩ (4.178)

where a is a scalar and ∣β⟩ is any arbitrary vector. This is a projection operator
of the entire Hilbert space onto a one-dimensional subspace, namely, the single
vector ∣α⟩.

Since, by definition, P̂α ∣α⟩ = ∣α⟩, all projection operators satisfy the following
property:

P̂αP̂α ∣β⟩ = aP̂α ∣α⟩ = a ∣α⟩ = P̂α ∣β⟩ (4.179)

(P̂ 2
α − P̂α) ∣β⟩ = 0 or P̂ 2

α = P̂α (4.180)

If ∣r⟩ is an eigenvector of P̂α, such that P̂α ∣r⟩ = r ∣r⟩, then we have

P̂ 2
α ∣r⟩ = rP̂α ∣r⟩ = r2 ∣r⟩ (4.181)

(P̂ 2
α − P̂α) ∣r⟩ = (r2 − r) ∣r⟩ = 0 (4.182)

r2 − r = 0 → r = 0,1 (4.183)

The eigenvalues of any projection operator are 0,1.

In general, any operator that satisfies the relation Â2 = Â is called idempotent
and has eigenvalues 0,1.

Two projection operators P̂α1 and P̂α2 are orthogonal if, for any arbitrary vector
∣beta⟩

∣η⟩ = P̂α1 ∣β⟩ and ∣σ⟩ = P̂α2 ∣β⟩ implies that ⟨η ∣σ⟩ = 0 (4.184)

The scalar constant in the equation P̂α ∣β⟩ = a ∣α⟩, since it is the component of
the arbitrary vector along ∣α⟩, is related to the inner product of the arbitrary
vector with ∣α⟩ by a = ⟨α ∣β⟩, which implies that

P̂α ∣β⟩ = ⟨α ∣β⟩ ∣α⟩ = (∣α⟩ ⟨α∣) ∣β⟩ (4.185)

or
P̂α = ∣α⟩ ⟨α∣ (4.186)

For an orthonormal basis set {∣qi⟩}, where ⟨qi ∣ qj⟩ = δij , we can define a set of
projection operators {P̂i}, where each projection operator is given by

P̂k = ∣qk⟩ ⟨qk ∣ (4.187)

We then have

P̂iP̂j = δijP̂j or ∣qi⟩ ⟨qi⟩ ∣qj ⟨qj ∣ = δij ∣qj⟩ ⟨qj ∣ (4.188)
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so the projection operators are mutually orthogonal in this case.

As we stated earlier, the set of projection operators satisfies a completeness
property, i.e., for any vector we can write

∣ψ⟩ =∑
k

⟨qk ∣ψ⟩ ∣qk⟩ =∑
k

∣qk⟩ ⟨qk ∣ψ⟩ =∑
k

P̂k ∣ψ⟩ = (∑
k

P̂k) ∣ψ⟩ (4.189)

This implies
∑
k

P̂k = Î =∑
k

∣qk⟩ ⟨qk ∣ (4.190)

This relation is very powerful and allows us to easily do algebra using the Dirac
language by judicious insertion of Î operators.

Some examples are:

1.
⟨α ∣β⟩ = ⟨α∣ Î ∣β⟩ =∑

k

⟨α∣ (∣qk⟩ ⟨qk ∣) ∣β⟩ =∑
k

⟨α ∣ qk⟩ ⟨qk ∣β⟩

2.

⟨α∣ Q̂ ∣β⟩ = ⟨α∣ ÎQ̂Î ∣β⟩

= ⟨α∣ (∑
k

∣qk⟩ ⟨qk ∣) Q̂
⎛
⎝∑j

∣qj⟩ ⟨qj ∣
⎞
⎠
∣β⟩

=∑
k

∑
j

⟨α ∣ qk⟩ ⟨qk ∣ Q̂ ∣qj⟩ ⟨qj ∣β⟩

3.

Q̂ ∣β⟩ = ÎQ̂ ∣β⟩ = (∑
k

∣qk⟩ ⟨qk ∣) Q̂ ∣β⟩ =∑
k

⟨qk ∣ Q̂ ∣β⟩ ∣qk⟩

4.

⟨α∣ Q̂R̂ ∣β⟩ = ⟨α∣ ÎQ̂ÎR̂Î ∣β⟩

= ⟨α∣ (∑
k

∣qk⟩ ⟨qk ∣) Q̂(∑
k

∣qi⟩ ⟨qi∣) R̂
⎛
⎝∑j

∣qj⟩ ⟨qj ∣
⎞
⎠
∣β⟩

=∑
k

∑
j

∑
i

⟨α ∣ qk⟩ ⟨qk ∣ Q̂ ∣qi⟩ ⟨qi∣ R̂ ∣qj⟩ ⟨qj ∣β⟩

4.14.7. Unbounded Operators

Many of the operators we shall deal with in quantummechanics are not bounded.

An example is easily constructed in the space L2(−∞,∞) of square-integrable
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functions f(x) for −∞ < x < ∞. Let X̂ be a linear operator defined by the
equation

X̂f(x) = xf(x) (4.191)

where x is real. This is a Hermitian operator since

(g, X̂f) = ∫
∞

−∞
g∗(x)X̂f(x))dx = ∫

∞

−∞
g∗(x)xf(x)dx = ∫

∞

−∞
xg∗(x)f(x))dx

= ∫
∞

−∞
[xg(x)]∗f(x))dx = ∫

∞

−∞
[X̂g(x)]∗f(x))dx = (X̂g, f) (4.192)

provided that all the integrals converge. It is not bounded since

∥X̂f∥2 = ∫
∞

−∞
∣xf(x)∣2)dx (4.193)

is not necessarily finite even if

∥f∥2 = ∫
∞

−∞
∣f(x)∣2)dx <∞ (4.194)

4.15. Eigenvalues and Eigenvectors of Unitary Op-
erators

We need to cover a few more details in this area. If Û is a linear operator which
has an inverse Û−1, then the operators ÛQ̂Û−1 and Q̂ have the same eigenvalues,
that is, if Q̂ ∣α⟩ = α ∣α⟩, then

ÛQ̂Û−1(Û ∣α⟩) = ÛQ̂ ∣α⟩ = αÛ ∣α⟩ (4.195)

which says that ÛQ̂Û−1 has the same eigenvalues as Q̂ and its eigenvectors are
Û ∣α⟩.

The eigenvectors and eigenvalues of unitary operators have these properties:

1. the eigenvalues are complex numbers of absolute value one

2. two eigenvectors are orthogonal if they correspond to different eigenvalues

3. in a complex finite-dimensional space, the eigenvectors span the space

4.16. Eigenvalue Decomposition

Let us now look deeper into the representation of operators in terms of their
eigenvalues and eigenvectors.

As we stated earlier, for a finite-dimensional vector space, the eigenvectors of a
Hermitian operator always form an orthonormal basis set or they always span
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the space.

Suppose we have a Hermitian operator B̂ with eigenvectors {∣bk⟩ , k = 1,2,3, . . . , n}
and eigenvalues bk where

B̂{∣bk⟩ = bk{∣bk⟩ (4.196)

Labeling the states by the eigenvalues as above will become a standard practice
as we get into quantum mechanics.

We showed earlier that we could represent an operator by the expression

B̂ =∑
j

bj ∣bj⟩ ⟨bj ∣ (4.197)

in terms of its eigenvalues and the projection operators constructed from the
basis set (its eigenvectors).

4.17. Extension to Infinite-Dimensional Spaces

We now extend the properties we have been discussing to infinite-dimensional
spaces. First, we extend the properties of projection operators. The projection
operators we have been considering are a special case of a more general defini-
tion. In particular, the projection operator we have been discussing P̂α = ∣α⟩ ⟨α∣
projects the vector space onto the 1-dimensional subspace spanned by the vector
∣α⟩.

We extend the definition by defining a projection operator onto larger subspaces.

Let ÊM be a projection operator onto the subspace M (not necessarily 1-
dimensional). This means that for any vector ∣η⟩ in the space, there are unique
vectors ∣η⟩M⊥

in M⊥ which is called the orthogonal complement of M , such that
we can always write

ÊM ∣η⟩ = ∣η⟩M (4.198)

and
∣η⟩ = ∣η⟩M + ∣η⟩M⊥

(4.199)

for every ∣η⟩ in the space. The operator P̂α = ∣α⟩ ⟨α∣ is clearly a special case
where the subspace M contains only one vector, namely, ∣α⟩.

The more general projection operators ÊM satisfy all the same properties listed
earlier for the single-state projection operators P̂α.

If ÊM is the projection on the n-dimensional subspace N , one can select an
orthonormal basis {∣bi⟩} on H, n of whose vectors ∣b1⟩ , . . . , ∣bn⟩ form a basis on
N . In the corresponding representation ÊN has the n diagonal matrix elements
(ÊN)kk, k = 1, . . . , n equal to one and all the others equal to zero.
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Example: Given the 2-dimensional space C spanned by the basis

∣b1⟩ = (1
0
) ∣b2⟩ = (0

1
)

The projection operator onto the 1-dimensional space A (∣b1⟩) is

Ê1 = ∣b1⟩ ⟨b1∣ = (1 0
0 0

)

The projection operator onto the 1-dimensional space B (∣b2⟩) is

Ê2 = ∣b2⟩ ⟨b2∣ = (0 0
0 1

)

Note that A⊕B = C, B = A⊥, A = B⊥.

Before proceeding further let us look at the properties of projections and expand
on our earlier discussions.

Let M ⊂ H be a subspace and M⊥ its orthogonal complement. Every vector
∣h⟩ can be written in a unique manner as ∣h⟩ = ∣f⟩ + ∣g⟩, with ∣f⟩ ∈M, ∣g⟩ ∈M⊥.
∣f⟩ is called the orthogonal projection of ∣h⟩ on M . The linear operator ÊM
defined by ∣f⟩ = ÊM ∣h⟩ is called the projection operator on M . Its domain is
the whole space and its range is the subspace M . We say that ÊM projects
on M . In general, an operator which projects on some subspace is called a
projection operator. An operator Ê is a projection operator if and only if
Ê2 = Ê and Ê† = Ê. Let ÊM and ÊN be the projections on the subspaces M
and N respectively. The product ÊM ÊN is a projection if and only if both
operators commute, in which case ÊM ÊN projects on the intersection ofM and
N . The sum ÊM + ÊN is a projection if and only if ÊM ÊN = 0 , which means
that M and N are orthogonal. In that case, ÊM + ÊN projects on M ⊕N . The
difference ÊM − ÊN is a projection operator if and only if ÊM ÊN = ÊN , which
is equivalent to M ⊆ N , i.e., N is a subset of M or N is contained in M . In this
case ∥ÊN ∣f⟩ ∥ ≤ ∥ÊM ∣f⟩ ∥ for all ∣f⟩ ∈H and we write ÊN ≤ ÊM .

The dimension of a projection operator ÊM is the dimension of the range M .

Any two vectors ∣f⟩ , ∣g⟩ determine the operator ∣f⟩ ⟨g∣ defined by (∣f⟩ ⟨g∣) ∣h⟩ =
⟨g ∣h⟩ ∣f⟩. We have (∣f⟩ ⟨g∣)† = ∣g⟩ ⟨f ∣. In particular, ∣f⟩ ⟨f ∣ is Hermitian and, if
∣f⟩ is normalized, it is the one-dimensional projection whose range is ∣f⟩.

A subspace M is invariant under an operator Â if for all vectors ∣f⟩ ∈ M we
have Â ∣f⟩ ∈ M . If, furthermore, Â ∣g⟩ ∈ M⊥ for all ∣g⟩ ∈ M⊥, that is, if both
M and M⊥ are invariant under Â, then the subspace M is said to reduce the
operator Â. The statements "M reduces Â" and "Â commutes with ÊM" are
equivalent.
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Let M be invariant under Â. With ∣f⟩ and ∣g⟩ given as above, we have

(Â† ∣g⟩)† ∣f⟩) = (⟨g∣ Â) ∣f⟩) = ⟨g∣ (Â ∣f⟩) = ⟨g∣ Â ∣f⟩ = 0 (4.200)

Therefore, Â† ∣g⟩ ∈M⊥ or, equivalently, M⊥ is invariant under Â†.

From this result, one sees immediately that ifM is invariant under the hermitian
operator B̂, then M reduces B̂. The same is true if Û is unitary because then,
from

(Û ∣f⟩)†(Û ∣g⟩) = ⟨f ∣ Û †Û ∣g⟩ = ⟨f ∣ g⟩ = 0 (4.201)
we conclude that Û ∣g⟩, being orthogonal to Û ∣f⟩ , must be in M⊥. If no
subspaces other than H (the entire space itself) and {0} = ∅ reduce every
member of a set of operators, then the set is called irreducible. It follows that
a set of operators is irreducible if and only if the only operators that commute
with every member of the set are multiples of the identity. If there is a subspace
that reduces every operator of the set, then the set is said to be reducible. Now
let Ŵ be a hermitian operator with r distinct eigenvalues λi, i = 1, . . . , r. In
addition, let Mi and Êi be the eigensubspace and eigenprojection belonging to
the eigenvalue λi. Mi is invariant under H and reduces Ŵ or, equivalently,
ÊiŴ = Ŵ Êi. The subspace M = ⊕iMi spanned by all the eigenvectors of Ŵ
also reduces Ŵ and the corresponding projection operator

Ê =∑
i

Êi (4.202)

commutes with Ŵ .

This result has the following important consequence: the eigenvectors of a Her-
mitian operator span the whole space, that is, Ê = Î or M = entire vector space,
which generalizes the ideas we found earlier.

Regarded as an operator on Mi, the operator Ŵ multiplies every vector by the
number λi. Therefore, it is equal to λiÎ and the multiplicity λi equals its de-
generacy. One can write Ŵ as the direct sum ⊕iλiÎi or equivalently, as the
sum

∑
i

λiÊi (4.203)

in terms of the eigenprojections on the vector space.

Collecting together all these results, we have the simplest form of the spectral
theorem in a unitary space.

To every Hermitian operator Ŵ on an m-dimensional unitary space there cor-
responds a unique family of non-zero projection operators, the eigenprojections
of the space, Êi, i = 1, . . . , r, r ≤m with the following properties:

1. The projections Êi are pairwise orthogonal

ÊiÊj = Êiδij (4.204)
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2. The family of projections is complete

∑
i

Êi = Î (4.205)

3. There exists a unique set of r distinct real numbers λi, the eigenvalues of
Ŵ , such that

Ŵ =
r

∑
i=1

λiÊi (4.206)

This expression is the spectral resolution of Ŵ .

The range of Êi is the eigensubspace Mi belonging to λi. Its dimension is the
degeneracy or multiplicity si of λi. On it one can construct an orthonormal
basis {∣bri ⟩ , r = 1, . . . , si. It follows from the completeness of the family Êi
that the union of all those bases {∣bri ⟩ , r = 1, . . . , si, i = 1, . . . ,m constitutes an
orthonormal basis on the vector space One often expresses this fact by saying
that Ŵ possesses a complete set of eigenvectors.

It is an immediate consequence of (1) and (2) above that for every vector ∣f⟩
we have ⟨f ∣ Êi ∣f⟩ ≥ 0 and

∑
i

⟨f ∣ Êi ∣f⟩ = 1 (4.207)

that is, for each vector and each family of projections, the set of numbers Pi =
⟨f ∣ Êi ∣f⟩ constitutes a so-called discrete probability distribution. This will be of
fundamental importance in quantum theory as we shall see later.

Two hermitian operators

∑
i

αiÊi and ∑
i

βiF̂i (4.208)

commute if and only if every pair Êi, F̂i of their eigenprojections commute.

From the orthogonality of the projections in the spectral resolution of Ŵ we
have for every normalized vector ∣f⟩

∥Ŵ ∣f⟩ ∥2 = ⟨f ∣ Ŵ 2 ∣f⟩ =∑
i

λ2
i ⟨f ∣ Êi ∣f⟩ ≤ λ2

m (4.209)

where λm is the largest eigenvalue and the equality holds for ∣f⟩ in the range of
Êm. It follows that the norm of Ŵ is ∣λm∣.

Functions of a Hermitian Operator - Using the spectral resolution of a
Hermitian operator

Q̂ =
r

∑
i=1

λiÊi (4.210)
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one can verify that for a non-negative integer n one has

Q̂n =
r

∑
i=1

λni Êi (4.211)

(also valid for negative n if all λi are non-zero). This property suggests the
following definition of a function of a Hermitian operator.

If F (x) is a complex-valued function of the real variable x, then
the function F (Q̂) of the Hermitian operator Q̂ is the operator

F (Q̂) =∑
i

F (λi)Êi (4.212)

Now, as we saw above, for every vector ∣f⟩ the family of projections Êi belonging
to a Hermitian operator determines a probability distribution on a discrete finite
sample space with the probabilities given by Pi = ⟨f ∣ Êi ∣f⟩.

In probability theory, the passage to a discrete but infinite sample space offers
no difficulty; the sums that yield averages are simply replaced by convergent
series. The difficulties appear in the case where the sample space is continuous.
One cannot then construct the probabilities for every possible set of outcomes
from the probabilities of the points of the space (it is in general zero). Instead,
one must consider the probabilities of appropriate elementary sets which, in the
one-dimensional sample space in which we are interested here, can be taken to
be intervals of the real line. To discuss such a case it is convenient to introduce
the probability distribution function D(α) defined as the probability that the
outcome of a trial is less than α.

In the discrete case, let Pi be the probability that the outcome of a trial yields
the value ξi and let us order the indices in such a way ξi < ξj for i < j. Written
in terms of the Pi the distribution function is

D(α) =
α

∑
i=−∞

Pi (4.213)

where iα is the largest index such that ξi < α (we are assuming that the sample
space is infinite, but the finite case is included if we put the appropriate Pi =
0). The function D(α) is clearly a non-decreasing ladder function with the
properties D(−∞) = 0, D(∞) = 1. We have chosen the upper limit in the
summation so as to satisfy the convention that D(α) is continuous on the right.

One can imagine a pure continuous sample space as the limit of a discrete
one when the differences ξi+1 − ξi tend to zero. The distribution function then
becomes the limit of a ladder function with the properties just mentioned. It
is, therefore, a continuous non-decreasing function D(α) such that D(−∞) =
0, D(∞) = 1. In the case where D(α) is everywhere differentiable, as is the case
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in most physical problems, the probability density π(α) is defined by D′(α) =
dD(α)/dα and the average of the random variable f(α) is given by

⟨f(α)⟩ = ∫ f(α)π(α)dα (4.214)

In the general case, the sample space is continuous but includes non-zero proba-
bility Pi concentrated at a countable number of points αi. In this case D(α) will
have a countable number of discontinuities of size Pi. If D(α) is differentiable
everywhere else and π(α) is the corresponding probability density, then we have

⟨f(α)⟩ = ∫
∞

−∞
f(α)π(α)dα +∑

i

f(αi)Pi (4.215)

Alternatively, using the Dirac δ-function we can write

⟨f(α)⟩ = ∫
∞

−∞
f(α)πd(α)dα (4.216)

where πd(α) is the derivative of D(α), that is,

πd(α) = π(α) +∑
i

Piδ(α − αi) (4.217)

The average can also be conveniently written by using the Stieltjes integral
defined for a function g(α) with a countable number of discontinuities by

∫
b

a
f(α)dg(α) =

n

∑
i=1

f(αi)[g(αi) − g(αi−1)] (4.218)

where the αi, (a = α0 ≤ α1 ≤ α2 ≤ . . . ≤ αn = b) form a subdivision of the interval
(a, b) and the limit is taken over a sequence of ever finer subdivisions. In terms
of the Stieltjes integral we then have

⟨f(α)⟩ = ∫
∞

−∞
f(α)dD(α) (4.219)

Now let us consider a Hermitian operator B̂ in an infinite-dimensional space. We
label its discrete eigenvalues in order of increasing eigenvalue where we assume

b1 < b2 < b3 < . . . < bm−1 < bm and B̂ ∣bj⟩ = bj ∣bj⟩ (4.220)

For each real number x we define the operator

Êx = ∑
bj<x

P̂j = ∑
bj<x

∣bj⟩ ⟨bj ∣ (4.221)

With this definition, Êx is the projection operator onto the subspace spanned
by all eigenvectors with eigenvalues bk < x. If x < b1 (the smallest eigenvalue),
then Êx is zero (no terms in the sum) and if x > bm (the largest eigenvalue),
then Êx = Î because of the completeness property

m

∑
k=1

P̂k = Î (4.222)
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Êx increases from zero to one as x increases through the spectrum of eigenvalues.
In fact, Êx increases(jumps) by an amount P̂k when x reaches the eigenvalue
bk.

For each x let us define dÊx = Êx − Êx−ε where ε is positive and small enough
so that there is no eigenvalue bj such that (x− ε) ≤ bj < x. This means that dÊx
is not zero only when x is an eigenvalue bk and dÊx = P̂k for x = bk.

Let us say this very important stuff in still another way.

In a unitary space, the family of projections Êi belonging to a hermitian operator

Â =∑
i

ξiÊi (4.223)

can be thought of as constituting a probability distribution on a finite sample
space of operators. We shall take the eigenvalues to be ordered in ascending
order. For every vector ∣f⟩ the operator valued probability Êi generates the
ordinary probability distribution Pi = ⟨f ∣ Êi ∣f⟩, which in quantum mechanics
will give the probability of the outcome ξi upon measurement of Â on a system
in the state ∣f⟩ as we shall see.

In analogy with ordinary probability ideas one can construct a corresponding
operator valued probability distribution function

Ê(α) =
iα

∑
−∞

Êi (4.224)

A formula that one would expect to also be applicable in the case of the infinite-
dimensional Hilbert space if the operator Â corresponds to an observable which
yields upon measurement a countable set of possible values. From the prop-
erties of the family Êi it follows that Ê(α) is a projection operator, that
Ê(α) and Ê(α′) commute, that we have Ê(α′) ≥ Ê(α) for α′ > α and that
Ê(−∞) = 0, Ê(∞) = Î. Ê(α) is an operator valued ladder function whose jumps
at the discontinuities are given by Ê(ξi) − Ê(ξi−) = Êi.

Quantum mechanics will require that we consider operators on the Hilbert space
that will correspond to observables that yield upon measurement a continuous
range of possible values. Such operators are associated with operator valued
probability distribution functions analogous to the continuous distribution func-
tions of ordinary probability, that is, with a family of projections Ê(α) depend-
ing continuously on the parameter α such that Ê(α′) ≥ Ê(α) for α′ > α and that
Ê(−∞) = 0, Ê(∞) = Î. In the most general case corresponding to the contin-
uous sample space with points ξi of concentrated probability we would expect
the family Ê(α) to have discontinuities at ξi of the form Ê(ξi) − Ê(ξi−) = Êi
where Êi is the operator valued probability concentrated at the point ξi.

A spectral family is a one parameter family of commuting projection operators
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Ê(α) depending on the real parameter α that satisfies the following properties:

1. Ê(α) is increasing: Ê(α′) ≥ Ê(α) for α′ > α

2. Ê(α) is continuous on the right: Ê(α′)→ Ê(α) for α′ → α and α′ > α

3. Ê(α) is complete: Ê(−∞) = 0, Ê(∞) = Î

It follows that Ê(α)Ê(α′) = Ê(α′)Ê(α) = Ê(α) for α′ > α.

The tentative conclusions of this intuitive discussion can, in fact, be proven to
be correct. We now formulate them precisely.

In place of
m

∑
k=1

∣bk⟩ ⟨bk ∣ =
m

∑
k=1

P̂k = Î (4.225)

we can now formally write

∫
∞

−∞
dÊx = Î (4.226)

and in place of

B̂ =
m

∑
j=1

bj ∣bj⟩ ⟨bj ∣ (4.227)

we can now formally write
B̂ = ∫

∞

−∞
xdÊx (4.228)

Additionally, we have

⟨α ∣β⟩ = ∫
∞

−∞
d ⟨α∣ Êx ∣β⟩ ⟨α∣ B̂ ∣β⟩ = ∫

∞

−∞
xd ⟨α∣ Êx ∣β⟩ (4.229)

We can easily show the validity of these expressions in the case of a finite-
dimensional space with discrete eigenvalues. In this case, we can satisfy all of
the properties of Êx by writing

Êx =∑
k

P̂kθ(x − bk) (4.230)

where

θ(x − bk) =
⎧⎪⎪⎨⎪⎪⎩

+1 if x > bk
0 if x < bk

(4.231)

This is called the Heaviside step function.

Then

dÊx =∑
k

P̂k dθ(x − bk) =∑
k

P̂k
d

dx
θ(x − bk)dx =∑

k

P̂kδ(x − bk)dx (4.232)

where
δ(x − c) = Dirac δ − function = 0 if x ≠ c (4.233)
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and satisfies
∫

∞

−∞
δ(x − c)dx = 1 (4.234)

In addition, we have used

∫
∞

−∞
g(x)δ(x − c)dx = g(c) (4.235)

In the finite-dimensional case, we then have

∫
∞

−∞
dÊx = ∫

∞

−∞
∑
k

P̂kδ(x − bk)dx =∑
k

P̂k = Î (4.236)

∫
∞

−∞
xdÊx = ∫

∞

−∞
x∑
k

P̂kδ(x − bk)dx =∑
k

bkP̂k = B̂ (4.237)

∫
∞

−∞
d ⟨α∣ Êx ∣β⟩ = ∫

∞

−∞
∑
k

⟨α∣ P̂k ∣β⟩ δ(x − bk)dx (4.238)

=∑
k

⟨α∣ P̂k ∣β⟩ = ⟨α∣ (∑
k

P̂k) ∣β⟩ = ⟨α ∣β⟩

∫
∞

−∞
xd ⟨α∣ Êx ∣β⟩ = ∫

∞

−∞
x∑
k

⟨α∣ P̂k ∣β⟩ δ(x − bk)dx (4.239)

=∑
k

bk ⟨α∣ P̂k ∣β⟩ = ⟨α∣ (∑
k

bkP̂k) ∣β⟩ = ⟨α∣ B̂ ∣β⟩

where we have used the fact that ⟨α∣ Êx ∣β⟩ is a complex function of x which
jumps in value by the amount ⟨α∣ P̂k ∣β⟩ at x = bk.

So, we see that result
Êx =∑

k

P̂kθ(x − bk) (4.240)

works in the finite-dimensional case!!!

Unitary operators can be handled in the same manner. We label the eigenvalues
(absolute value = 1) of the unitary operator Û by uk = eiθk with the θ-values
labeled in order

0 < θ1 < θ2 < . . . < θm−1 < θm,2π (4.241)

As before we define
Êx = ∑

θj<x
P̂j = ∑

θj<x
∣uj⟩ ⟨uj ∣ (4.242)

This operator now projects onto the subspace spanned by all eigenvectors for
eigenvalues uk = eiθk with θk < x. If x ≤ 0, then Êx = 0. If x ≥ 2π, then Êx = Î.
Êx increments by P̂k (the same as for a Hermitian operator) at the eigenvalues
uk = eiθk .
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We can then write

Û =
m

∑
k=1

ukP̂k =
m

∑
k=1

eiθk P̂k → ∫
2π

0
eix dÊx (4.243)

and
⟨α∣ Û ∣β⟩ = ∫

2π

0
eix d ⟨α∣ Êx ∣β⟩ (4.244)

Summarizing, for every Hermitian operator Ĥ there corresponds a unique spec-
tral family ÊH(α) that commutes with Ĥ such that for every ∣f⟩ and every ∣g⟩
in the domain of Ĥ

⟨f ∣ Ĥ ∣g⟩ = ∫
∞

−∞
αd ⟨f ∣ ÊH(α) ∣g⟩ (4.245)

where the integral is a Riemann-Stieltjes integral. This expression can be written
in short as

Ĥ = ∫
∞

−∞
αdÊH(α) (4.246)

and is called the spectral resolution of Ĥ. We have

ÊH(α) = ∫
α

−∞
dÊH(α′) (4.247)

and therefore
Î = ∫

∞

−∞
dÊH(α) (4.248)

Now to every interval ∆ = (α1, α2) of the real line, there corresponds a projection
operator

ÊH[∆] = ∫
α2

α1

dÊH(α) = ÊH(α2) − ÊH(α1) (4.249)

This is a definition that can be extended to a set of intervals. It follows from
the properties of the spectral family ÊH(α) that

ÊH[∆]ÊH[∆′] = ÊH[∆ ∩∆′] (4.250)

and
ÊH[∆] + ÊH[∆′] = ÊH[∆ ∪∆′] (4.251)

The quantity dÊH(α) can be thought of as the projection ÊH(dα) corresponding
to an infinitesimal interval of length dα centered at α.

By definition of the Stieltjes integral one has

Ĥ = lim
n→∞

∑
∆j∈Sn

αjÊH[∆j] (4.252)

where {Sn} is a sequence of subdivisions of the real line, such that Sn becomes
infinitely fine as n→∞. The sum runs over all the intervals ∆

(n)
j = α(n)

j − α(n)
j−1
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of the subdivision Sn. If the spectral family ÊK(α) belonging to a Hermitian
operator K̂ is constant except for a countable number of isolated discontinuities
at the points αi of size ÊK(αi)−ÊK(αi−) = Êi, then K̂ has a spectral resolution
entirely similar to the one in unitary space

K̂ =∑
i

αiÊi (4.253)

although in this case the number of terms in the sum may be infinite.

A general operator Ĥ can be regarded as the limit of a sequence

Ĥn = ∑
∆j∈Sn

αjÊH[∆j] (4.254)

of operators of type K̂.

Let Â and B̂ be two operators with spectral families ÊA(α), ÊB(α). Suppose
that Â and B̂ commute in the sense that [Â, B̂] ∣g⟩ = 0 for every ∣g⟩ in the
domain of [Â, B̂], then one can show that

[ÊA(α), ÊB(α)] ∣g⟩ = 0 (4.255)

However, unless the domain of [Â, B̂] coincides with the whole space, this rela-
tion does not imply that the spectral families commute. For this reason, when
we deal with two operators Â and B̂ that possess a spectral family we shall use
a stronger definition of commutativity:

Â and B̂ commute if their spectral families commute.

4.18. Spectral Decomposition - More Details

It turns out that for infinite-dimensional vector spaces there exist Hermitian
and unitary operators that have no eigenvectors and eigenvalues.

Consider the eigenvalue equation

−i d
dx
ψ(x) = D̂ψ(x) = βψ(x) (4.256)

This is a differential equation whose solution is

ψ(x) = ceiβx c = constant (4.257)

Suppose the operator

D̂ = −i d
dx

(4.258)

is defined on the interval a ≤ x ≤ b. Then its adjoint operator D̂† is defined by
the relation

⟨φ∣ D̂† ∣ψ⟩ = ⟨ψ∣ D̂ ∣φ⟩∗ (4.259)
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or for function spaces

∫
b

a
φ∗(x)D̂†ψ(x)dx = {∫

b

a
ψ∗(x)D̂φ(x)dx}

∗

(4.260)

= ∫
b

a
φ∗(x)D̂ψ(x)dx + i [ψ(x)φ∗(x)] ∣ba

where the last step follows from an integration by parts. If boundary conditions
are imposed so that the last term(called the surface term) vanishes, then D̂ will
be a Hermitian operator; otherwise it is not Hermitian.

Now let us try to find the eigenvectors (eigenfunctions in this case) within a
particular vector space. It turns out that we can define several different vector
spaces depending on the boundary conditions that we impose.

Case 1: No boundary conditions

In this case, all complex β are eigenvalues and D̂ is not Hermitian. In quantum
mechanics we will be interested in Hermitian operators, so we are not really
interested in this case.

Case 2: a = −∞, b = +∞ with ∣ψ(x)∣ bounded as ∣x∣→∞

All real values of β are eigenvalues. The eigenfunctions ψ(x) are not normaliz-
able since

∫
∞

−∞
∣ψ(x)∣2 dx = ∣c∣2 ∫

∞

−∞
dx =∞ (4.261)

They do, however, form a complete set in the sense that an arbitrary function
can be represented as a the Fourier integral

q(x) = ∫
∞

−∞
F (β)eiβx dβ (4.262)

which may be regarded as a continuous linear combination of the eigenfunctions.
In this case, F (β) is the Fourier transform of q(x).

Case 3: a = −L
2
, b = +L

2
with periodic boundary conditions ψ(−L

2
) = ψ(L

2
)

The eigenvalues form a discrete set, βn, satisfying

e−iβn
L
2 = eiβn

L
2 → eiβnL = 1 (4.263)

which implies

βnL = 2nπ → βn =
2nπ

L
(4.264)

where n = integers such that −∞ ≤ n ≤∞. These eigenfunctions form a complete
orthonormal set (normalize by choosing the constant c appropriately) and D̂ is
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Hermitian. The completeness of the eigenfunction set follows from the theory
of Fourier series.

Case 4: a = −∞, b = +∞ with ψ(x)→ 0 as ∣x∣→∞

In this case, the operator D̂ is Hermitian (the surface term vanishes), but it has
no eigenfunctions within the space.

So, a Hermitian operator on an infinite-dimensional space may or may not
possess a complete set of eigenfunctions, depending on the precise nature of
the operator and the vector space.

It turns out, however, that the decomposition into projection operators can be
reformulated in a way that does not rely on the existence of eigenfunctions.
This alternative formulation uses the integral form of the projection operators
derived earlier.

We need, however, to remind ourselves of some ideas we stated above(since it
never hurts to repeat important stuff).

Let Ê1 and Ê2 be projection operators onto subspacesM1 andM2, respectively.
We say that Ê1 and Ê2 are orthogonal ifM1 andM2 are orthogonal (every vector
in M1 is orthogonal to every vector in M2). We can express this orthogonality,
in general, using the relation

ÊjÊk = δjkÊk (4.265)

If M1 is contained in M2, we write Ê1 ≤ Ê2. This means that either Ê1Ê2 = Ê1

or Ê2Ê1 = Ê1. If Ê1 ≤ Ê2, then ∥Ê1 ∣α⟩ ∥ ≤ ∥Ê2 ∣α⟩ ∥ for any vector ∣α⟩. If Ê1Ê2 =
Ê2Ê1, then Ê1Ê2 is a projection operator that projects onto the subspace which
is the intersection of M1 and M2 , that is, the set of all vectors that are in both
M1 and M2.

If Ê1 and Ê2 are orthogonal, then Ê1+Ê2 is the projection operator ontoM1⊕M2

(the direct sum).

If Ê1 ≤ Ê2, Ê1 − Ê2 is the projection operator onto the subspace which is the
orthogonal complement of M1 in M2, that is, the set of vectors in M2 which are
orthogonal to every vector in M1.

Definition: A family of projection operators Êx depending on a real parameter
x is a spectral family if it has the following properties:

1. if x ≤ y then Êx ≤ Êy or ÊxÊy = Êx = ÊyÊx – this means that Êx projects
onto the subspace corresponding to eigenvalues ≤ x.

2. if ε is positive, then Êx+ε ∣η⟩ → Êx ∣η⟩ as ε → 0 for any vector ∣η⟩ and any
x.
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3. Êx ∣η⟩ → ∣0⟩ (the null vector) as x → −∞ and Êx ∣η⟩ → ∣η⟩ as x → ∞ for
any vector ∣η⟩.

For each self-adjoint operator B̂ there is a unique spectral family of projection
operators Êx such that

⟨γ∣ B̂ ∣η⟩ = ∫
∞

−∞
xd ⟨γ∣ Êx ∣η⟩ (4.266)

for all vectors ∣η⟩ and ∣γ⟩. We then write

B̂ = ∫
∞

−∞
xdÊx (4.267)

This is called the spectral decomposition or spectral resolution of B̂.

The same results hold for unitary operators. For each unitary operator Û there
is a unique spectral family of projection operators Êx such that Êx = 0 for x ≤ 0
and Êx = 1 for x ≥ 2π and

⟨γ∣ Û ∣η⟩ = ∫
2π

0
eix d ⟨γ∣ Êx ∣η⟩ (4.268)

for all vectors ∣η⟩ and ∣γ⟩. We then write

Û = ∫
2π

0
eix dÊx (4.269)

This is called the spectral decomposition or spectral resolution of Û .

Both of these results generalize for functions of an operator, i.e.,

g(B̂) = ∫
∞

−∞
g(x)dÊx (4.270)

We considered the case of a discrete spectrum of eigenvalues earlier and found
that when the operator B̂ has the eigenvalue equation

B̂ ∣bk⟩ = bk ∣bk⟩ (4.271)

we then have
Êx =∑

k

P̂kθ(x − bk) =∑
k

∣bk⟩ ⟨bk ∣ θ(x − bk) (4.272)

so that
dÊx =∑

k

∣bk⟩ ⟨bk ∣ δ(x − bk)dx (4.273)

which implies that the only contributions to the integral occur at the eigenval-
ues bk.

We can state all of this stuff even more formally once again.
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The Eigenvalue Problem and the Spectrum

Based on our previous discussion, we can now say that the eigenvalue problem
Ĥ ∣f⟩ = λ ∣f⟩ has solutions if and only if the spectral family ÊH(α) is discon-
tinuous. The eigenvalues λi are the points of discontinuity of ÊH(α). The
eigenprojection Êi belonging to λi is the discontinuity of ÊH(α) at λi:

Êi = ÊH(λi) − ÊH(λi−) (4.274)

It follows that the eigenprojections are orthogonal and that (for hermitian Ĥ)
the eigenvalues are real.

The spectrum of Ĥ consists of the set Σ of points of the real axis where the
spectral family ÊH(α) is increasing. If the spectral family is constant except
for a (necessarily countable) number of discontinuities Ĥ is said to have a pure
discrete spectrum. If the spectral family is everywhere continuous Ĥ is said to
have a pure continuous spectrum. Otherwise the spectrum is said to be mixed.
If and only if Ĥ is bounded (positive) is its spectrum bounded (positive). Since
the points of constancy of ÊH(α) do not contribute to the integral in

Ĥ = ∫
∞

−∞
αdÊH(α) (4.275)

the region of integration can be restricted to the spectrum and we can write

Ĥ = ∫
Σ
αdÊH(α) (4.276)

Suppose that an operator Ĥ has a mixed spectrum Σ. The subspaceM spanned
by its eigenvectors reduces Ĥ so that we can write Ĥ = Ĥd ⊕ Ĥc where Ĥd and
Ĥc are operators on M and M⊥, respectively. The spectrum Σd of Ĥd is pure
discrete and is called the discrete spectrum of Ĥ while the spectrum Σc of
Ĥc is pure continuous and is called the continuous spectrum of Ĥ. Note that
Σ = Σd ∪ Σc , but that Σd and Σc may have points in common, that is, there
may be eigenvalues embedded in the continuous spectrum. Separating out the
discrete spectrum, the spectral resolution of Ĥ can be written

Ĥ =∑
i

αiÊi + ∫
Σc
αdÊH(α) , αi ∈ Σd (4.277)

Clearly, the terms on the RHS are, respectively Ĥd and Ĥc, and when regarded
as operators on the vector space.

Now let us consider the case of a continuous spectrum of eigenvalues. In partic-
ular, consider the multiplicative operator Q̂ defined on L2(−∞,∞) by

Q̂g(x) = xg(x) (4.278)
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for all functions g(x) in L2(−∞,∞). This is a Hermitian operator since

∫
b

a
φ∗(x)Q̂†ψ(x)dx = {∫

b

a
ψ∗(x)Q̂φ(x)dx}

∗

= {∫
b

a
ψ∗(x)xφ(x)dx}

∗

= ∫
b

a
φ∗(x)xψ(x)dx = ∫

b

a
φ∗(x)Q̂ψ(x)dx (4.279)

Now suppose that Q̂ has an eigenvalue equation with eigenfunctions q(x) in
L2(−∞,∞) of the form

Q̂q(x) = βq(x) (4.280)

Since all functions in L2(−∞,∞), including q(x), must also satisfy Q̂g(x) =
xg(x), we then have

Q̂q(x) = xq(x) = βq(x) or (x − β)q(x) = 0 for all x (4.281)

The formal solution to this equation is the Dirac δ-function

q(x) = δ(x − β) (4.282)

The spectral theorem still applies to this operator. The projection operators for
Q̂, in this case, are given by

Êβg(x) = θ(β − x)g(x) (4.283)

This is equal to g(x) if x < β and is 0 for x > β. We then have

Q̂ = ∫
∞

−∞
β dÊβ (4.284)

which can be easily verified by

Q̂g(x) = ∫
∞

−∞
β dÊβg(x) = ∫

∞

−∞
β d[θ(β − x)g(x)] (4.285)

= ∫
∞

−∞
β
d

dβ
[θ(β − x)g(x)]dβ = ∫

∞

−∞
βδ(β − x)g(x)]dβ = xg(x)

So the decomposition into projection operators can still be defined in the case
of a continuous spectrum.

Saying it still another way. Let ÊQ(x) be its spectral family and let us put
(ÊQ(α)f)(x) = g(α,x). The spectral resolution of Q̂ requires that

xf(x) = (Q̂f)(x) = ∫
∞

−∞
αdÊQ(α)f)(x) = ∫

∞

−∞
αdg(α,x) (4.286)

A solution of this equation is obtained if we set dg(α,x) = δ(α−x)f(x)dα. We
then get

ÊQ(α)f)(x) = g(α,x) = ∫
α

−∞
dg(α′, x) (4.287)

= ∫
α

−∞
δ(α′ − x)f(x)dα′ = χ(α − x)f(x)
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where χ(α − x) is the Heaviside function

χ(x) =
⎧⎪⎪⎨⎪⎪⎩

+1 if 0 ≤ x
0 if 0 > x

(4.288)

According to this calculation ÊQ(α) is the multiplicative operator χ(α − x) as
above. We now need to verify that the solution we have constructed gives the
unique spectral family belonging to Q̂.

First we show that the solution is a spectral family, that is, that it has the
properties required by the definitions given earlier. Since the ÊQ(α) are mul-
tiplicative operators, it is clear that they commute. Property (1) is equivalent
to

Ê(α)Ê(α′) = Ê(α) , α ≤ α′ (4.289)

a property that is clearly satisfied by the multiplicative operator χ(α−x). Prop-
erty (2) holds because χ(x) was defined to be continuous on the right, while
properties (3) are clear.

Next we have to verify that the spectral family found does in fact belong to Q̂.
According to the spectral theorem we must have

⟨f ∣ Q̂ ∣g⟩ = ∫
∞

−∞
αd ⟨f ∣ ÊQ(α) ∣g⟩ (4.290)

or
∫

∞

−∞
f∗(x)xg(x)dx = ∫

∞

−∞
dx∫

∞

−∞
dαf∗(x)δ(α − x)g(x) (4.291)

which is clearly true by definition of the δ-function.

The spectral family ÊQ(α) is continuous everywhere and increasing in (−∞,∞).
The spectrum of Q̂ consists therefore of the whole of the real axis and is pure
continuous. The projection ÊQ[∆] is the characteristic function χ(∆) of the
interval ∆, that is, a function of x equal to one if x ∈ ∆ and zero otherwise.

Some final thoughts about these ideas........

Projection Operators and Continuous Spectra - An Example

In the macroscopic world, if we want to locate the position of an object, we use a
calibrated ruler. Formally, the physical position x is a continuous variable. The
ruler, however, only has a finite resolution. An outcome anywhere within the
jth interval is said to correspond to the value xj . Thus, effectively, the result of
the position measurement is not the original continuous variable x, but rather
a staircase function,

x′ = f(x) = xj , ∀ xj ≤ x ≤ xj+1 (4.292)
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Figure 4.1: Staircase Function

as illustrated in Figure 4.1 above.

These considerations are easily translated in quantum language.

In the x-representation, an operator x′ is defined as multiplication by the stair-
case function f(x). This operator has a finite number of discrete eigenvalues
xj . Each one of the eigenvalues is infinitely degenerate, that is, any state vector
with domain between xj and xj+1 falls entirely within the jth interval of the
ruler (see Figure 4.1), and therefore corresponds to the degenerate eigenvalue
xj .

Orthogonal resolution of the Identity

An experimental setup for a quantum test described by the above formalism
could have, at its final stage, an array of closely packed detectors, labeled by
the real numbers xj . Such a quantum test thus asks, simultaneously, a set of
questions

′′Is xj ≤ x ≤ xj+1 ?′′ (4.293)

(one question for each j). The answers, yes and no, can be give numerical
values 0 and 1, respectively. Each of these questions therefore corresponds to
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the operator P̂j , which is itself a function of x:

P̂j(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if xj ≤ x ≤ xj+1

0 otherwise
(4.294)

Clearly, these operators satisfy

P̂jP̂k = δjkP̂k and ∑
j

P̂j = Î (4.295)

This implies that they are projection operators (or projectors) and the questions
will correspond to the measurement of the projection operators.

The staircase function x′ = f(x) defined above can then be written as

x′ =∑
j

sjP̂ (4.296)

This operator x′ approximates the operator x as well as is allowed by the finite
resolution of the ruler.

How do we proceed to the continuum limit? Let us define a spectral family of
operators

Ê(xj) =
j−1

∑
k=0

P̂k (4.297)

They obey the recursion relations

Ê(xj+1) = Ê(xj) + P̂j (4.298)

and the boundary conditions

Ê(xmin) = 0 , Ê(xmax) = Î (4.299)

The physical meaning of the operator Ê(xj) is the question

′′Is x ≤ xj ?′′ (4.300)

with answers yes = 1 and no = 0.

We then have

Ê(xj)Ê(xm) =
j−1

∑
k=0

P̂k
m−1

∑
n=0

P̂n =
j−1

∑
k=0

m−1

∑
n=0

P̂kP̂n (4.301)

=
j−1

∑
k=0

m−1

∑
n=0

δknP̂n =
⎧⎪⎪⎨⎪⎪⎩

Ê(xj) if xj ≤ xm
Ê(xm) if xm ≤ xj

so that the Ê(xj) are projectors.
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We can now pass to the continuum limit. We define Ê(ξ) as the projector which
represents the question

′′Is x ≤ ξ ?′′ (4.302)

and which returns, as the answer, a numerical value(yes = 1, no = 0). We
then consider two neighboring values, ξ and ξ + dξ , and define an infinitesimal
projector,

dÊ(ξ) = Ê(ξ + dξ) − Ê(ξ) (4.303)

which represents the question ”Is ξ ≤ x ≤ ξ + dξ ?”. This dÊ(ξ) thus behaves
as an infinitesimal increment P̂j in the equation

Ê(xj+1) = Ê(xj) + P̂j (4.304)

We then have, instead of the staircase approximation, the exact result

x = ∫
1

0
ξ dÊ(ξ) (4.305)

Note that the integration limits are actually operators, namely, Ê(xmin) = 0
and Ê(xmax) = 1.

This equation is the spectral decomposition or spectral resolution of the operator
x and the operators Ê(ξ) are the spectral family (or resolution of the identity)
generated by x. We can now define any function of the operator x

f(x) = ∫
1

0
f(ξ)dÊ(ξ) (4.306)

Note that the right hand sides of the last two equations are Stieltjes integrals.

If we consider a small increment dξ → 0, then the limit dÊ(ξ)/dξ exists and the
integration step can be taken as the c-number dξ rather than dÊ(ξ), which is
an operator. We then have an operator valued Riemann integral

∫
1

0
f(ξ)dÊ(ξ) = ∫

xmax

xmin
f(ξ)dÊ(ξ)

dξ
dξ (4.307)

This type of spectral decomposition applies not only to operators with contin-
uous spectra, but also to those having discrete spectra, or even mixed spectra.

For a discrete spectrum, dÊ(ξ) = 0 if ξ lies between consecutive eigenvalues, and
dÊ(ξ) = P̂k, that is, the projector on the kth eigenstate, if the kth eigenvalue
lies between ξ and ξ + dξ.

The projector Ê(ξ) is a bounded operator, which depends on the parameter ξ.
It may be a discontinuous function of ξ, but it never is infinite, and we never
actually need dÊ(ξ)/dξ. This is the advantage of the Stieltjes integral over the
more familiar Riemann integral: the left-hand side of the last equation is always
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meaningful, even if the the right-hand side is not.

Some Useful Properties

If f(ξ) is a real function, then f(x) is given by

f(x) = ∫
1

0
f(ξ)dÊ(ξ) (4.308)

is a self-adjoint operator.

We also have

∫ f(ξ)dÊ(ξ)∫ g(η)dÊ(η) = ∫ f(ζ)g(ζ)dÊ(ζ) (4.309)

eif(x) = ∫ eif(ξ) dÊ(ξ) (4.310)

The spectral decomposition of a self-adjoint operator will allow us to give a rigor-
ous definition of the measurement of a continuous variable. It will be equivalent
to an infinite set of yes-no questions where each question is represented by a
bounded(but infinitely degenerate) projection operator.

Looking ahead to quantum mechanics .......

An operator such as Q̂ that has a continuous spectrum is said to have a formal
eigenvalue equation in Dirac language

Q̂ ∣q⟩ = q ∣q⟩ (4.311)

In the development of the theory, we will make assumptions that will lead to
the orthonormality condition for the continuous case taking the form

⟨q′ ∣ q′′⟩ = δ(q′ − q′′) (4.312)

Since this implies that ⟨q ∣ q⟩ =∞, these formal eigenvectors have infinite norm.
Thus, the Dirac formulation that we will construct for operators with a contin-
uous spectrum will not fit into the mathematical theory of Hilbert space, which
admits only vectors of finite norm.

Operators will take the form

Q̂ = ∫
∞

−∞
q ∣q⟩ ⟨q∣ dq (4.313)

which is the continuous analog of our earlier expressions.

The projection operator will be formally given by

Êβ = ∫
β

−∞
∣q⟩ ⟨q∣ dq (4.314)
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It is well-defined in Hilbert space, but its derivative

dÊβ

dq
= ∣q⟩ ⟨q∣ (4.315)

does not exist within the Hilbert space framework.

There are two alternative methods for making quantum mechanics fit within a
mathematically rigorous Hilbert space framework. The first would be to restrict
or revise the formalism to make it fit(still not admit states of infinite norm).
The second would be to extend the Hilbert space so that vectors of infinite norm
are allowed. We will discuss these ideas later and make appropriate choices.

We saw earlier in the finite-dimensional case, where we have a discrete spectrum
of eigenvalues, that the value of the projection operator Êx for the operator B̂
jumped by P̂k = ∣bk⟩ ⟨bk ∣ as x passed through the kth eigenvalue bk.

For the infinite dimensional case, where we can have both a discrete and a
continuous spectrum of eigenvalues, the projection operator behaves in the same
way as we move about the discrete part of the spectrum. In the continuous part
of the spectrum, however, it is possible for the projection operator to exhibit a
continuous increase in value.

In a more formal manner we state: if B̂ is a self-adjoint operator and Êx is the
projection operator of its spectral decomposition, then

1. the set of points x on which Êx increases is called the spectrum of B̂;
alternatively, a point is in the spectrum if it is not in an interval on which
Êx is constant.

2. the set of points x on which Êx jumps is called the point spectrum of B̂;
the point spectrum is the set of all eigenvalues.

3. the set of points x on which Êx increases continuously is called the con-
tinuous spectrum of B̂.

4. the point spectrum and the continuous spectrum comprise the total spec-
trum.

In quantum mechanics, as we shall see, a real physical, measurable quantity will
be represented by a self-adjoint operator. The spectrum of the operator will be
the set of real numbers that correspond to the possible measured values of the
physical quantity. The projection operators in the spectral decomposition will
be used to describe the probability distributions of these values and the state
operators. We will get discrete probability distributions over the point spectrum
and continuous probability distributions over the continuous spectrum.

All of these new mathematical quantities will have direct and important physical
meaning!
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4.19. Functions of Operators (general case); Stone’s
Theorem

We mentioned earlier that functions of operators also have a decomposition into
projection operators. In fact, we wrote

g(B̂) = ∫
∞

−∞
g(x)dÊx (4.316)

The ability to deal with functions of operators will be very important in quan-
tum mechanics, so let us spend more time looking at the mathematical details
involved.

For any self-adjoint operator we have the spectral decomposition

B̂ = ∫
∞

−∞
xdÊx (4.317)

If f(x) is a complex function of a real variable x, then we can define the same
function of an operator by

⟨α∣ f(B̂) ∣β⟩ = ∫
∞

−∞
f(x)d ⟨α∣ Êx ∣β⟩ (4.318)

for all vectors ∣α⟩ and ∣β⟩. Now a self-adjoint operator is bounded if and only if
its spectrum is bounded. If f(B̂) is a bounded operator on the spectrum of B̂,
then it turns out that the above equation for all ∣α⟩ and ∣β⟩ defines f(B̂) ∣η⟩ for
all vectors ∣η⟩.

Is the above definition reasonable? We can see that it is by looking at some
properties and some simple examples.

Let f(x) = x. This implies that f(B̂) = B̂ since we must have

⟨α∣ B̂ ∣β⟩ = ∫
∞

−∞
xd ⟨α∣ Êx ∣β⟩ (4.319)

⟨α∣ Î ∣β⟩ = ∫
∞

−∞
d ⟨α∣ Êx ∣β⟩ = ⟨α ∣β⟩ (4.320)

If we let
(f + g)(x) = f(x) + g(x) (4.321)

(cf)(x) = cf(x) (4.322)

we then have
(f + g)(B̂) = f(B̂) + g(B̂) (4.323)

(cf)(B̂) = cf(B̂) (4.324)

so that sums and multiples of functions of operators are defined in a standard
way.
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If we let
(fg)(x) = f(x)g(x) (4.325)

we then have

⟨α∣ f(B̂)g(B̂) ∣β⟩ = ∫
∞

−∞
f(x)d ⟨α∣ Êxg(B̂) ∣β⟩ (4.326)

= ∫
∞

−∞
f(x)dx ∫

∞

−∞
g(y)dy ⟨α∣ ÊxÊy ∣β⟩

= ∫
∞

−∞
f(x)d∫

x

−∞
g(y)d ⟨α∣ Êy ∣β⟩

= ∫
∞

−∞
f(x)g(x)d ⟨α∣ Êx ∣β⟩

= ∫
∞

−∞
(fg)(x)d ⟨α∣ Êx ∣β⟩ = ⟨α∣ (fg)(B̂) ∣β⟩

so that
(fg)(B̂) = f(B̂)g(B̂) (4.327)

as it should. We can also show that f(B̂)g(B̂) = g(B̂)f(B̂) so that all functions
of the operator B̂ commute.

With these properties, we can then define a polynomial function of an operator
by

f(x) = c0 + c1x + c2x2 + . . . + cnxn (4.328)

f(B̂) = c0 + c1B̂ + c2B̂2 + . . . + cnB̂n (4.329)

for any vectors ∣α⟩ and ∣β⟩.

Thus, products of functions of operators are also defined in the standard way.

If we let (f∗)(x) = f∗(x), then for any vectors ∣α⟩ and ∣β⟩ we have

⟨α∣ [f(B̂)]
∗
∣β⟩ = ⟨β∣ f(B̂) ∣α⟩∗ (4.330)

= ∫
∞

−∞
f∗(x)d ⟨α∣ Êx ∣β⟩ = ∫

∞

−∞
(f∗)(x)d ⟨α∣ Êx ∣β⟩

or
[f(B̂)]

∗
= (f∗)(B̂) (4.331)

If f(x) is a real function, this implies that f(B̂) is also a self-adjoint operator.

If f∗f = 1, then f(B̂) is a unitary operator since

[f(B̂)]
†
f(B̂) = Î = f(B̂) [f(B̂)]

†
(4.332)

Now for any vector ∣α⟩ we have

⟨α∣ f(B̂) ∣α⟩ = ∫
∞

−∞
f(x)d ⟨α∣ Êx ∣α⟩ (4.333)

= ∫
∞

−∞
f(x)d ⟨α∣ ÊxÊx ∣α⟩ = ∫

∞

−∞
f(x)d∥Êx ∣α⟩ ∥2
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If we define a self-adjoint operator to be positive if and only if it spectrum is
non-negative, then f(B̂) is positive if f(x) is non-negative over the spectrum
of B̂ and f(B̂) is bounded if ∣f(x)∣ is bounded over the spectrum of B̂.

In the special case where B̂ has only a point spectrum, we have

B̂ =∑
k

bkP̂k (4.334)

and then for any vectors ∣α⟩ and ∣β⟩

⟨α∣ f(B̂) ∣β⟩ = ⟨α∣ f (∑
k

bkP̂k) ∣β⟩ =∑
k

⟨α∣ f(bkP̂k) ∣β⟩ (4.335)

=∑
k

f(bk) ⟨α∣ P̂k ∣β⟩ = ⟨α∣∑
k

f(bk)P̂k ∣β⟩

or
f(B̂) =∑

k

f(bk)P̂k (4.336)

as we expected.

We define the same properties for unitary operator. Let

Û = ∫
2π

0
eix dÊx (4.337)

and also let
⟨α∣ B̂ ∣β⟩ = ∫

2π

0
xd ⟨α∣ Êx ∣β⟩ (4.338)

for all vectors in the space.

This defines a bounded self-adjoint operator B̂ with spectral decomposition

B̂ = ∫
2π

0
xdÊx (4.339)

We then have

⟨α∣ Û ∣β⟩ = ∫
2π

0
eix d ⟨α∣ Êx ∣β⟩ = ∫

2π

0
f(x)d ⟨α∣ Êx ∣β⟩ = ⟨α∣ f(B̂) ∣β⟩ (4.340)

which implies that Û , in this case, must be a particular function of B̂, namely
Û = eiB̂ . In addition, any function of Û is clearly a function of B̂.

There exists another relation between Hermitian and unitary operators that is a
fundamental property in quantum mechanics. Let Ĥ be a self-adjoint operator
with the spectral decomposition

Ĥ = ∫
∞

−∞
xdÊx (4.341)
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For every real number t let

⟨α∣ Ût ∣β⟩ = ∫
2π

0
eitx d ⟨α∣ Êx ∣β⟩ (4.342)

This then defines an operator Ût = eitĤ which is unitary since (eitx)∗eitx = 1.
We also have Û0 = Î.

Now since
eitxeit

′x = ei(t+t
′)x (4.343)

we must have
ÛtÛt′ = Ût+t′ (4.344)

for all real numbers t and t′.

The converse of this property is called Stone’s theorem:

For each real number t let Ût be a unitary operator. Assume that ⟨α∣ Ût ∣β⟩ is a
continuous function of t for all vectors ∣α⟩ and ∣β⟩. If Û0 = Î and ÛtÛt′ = Ût+t′
for all real numbers t and t′, then there is a unique self-adjoint operator Ĥ such
that Ût = eitĤ for all t. A vector ∣β⟩ is in the domain of Ĥ if and only if the
vectors

1

it
(Ût − Î) ∣β⟩ (4.345)

converge to a limit as t → 0. The limit vector is Ĥ ∣β⟩. If a bounded operator
commutes with Ût, then it commutes with Ĥ.

This theorem leads to the following very important result.

If Ût ∣β⟩ is in the domain of Ĥ, then

1

i∆t
(Û∆t − Î)Ût ∣β⟩→ ĤÛt ∣β⟩ (4.346)

or
1

i∆t
(Û∆tÛt − Ût) ∣β⟩ =

1

i∆t
(Ût+∆t − Ût) ∣β⟩→ −i d

dt
Ût ∣β⟩ (4.347)

as ∆t→ 0. We can then write

−i d
dt
Ût ∣β⟩ = ĤÛt ∣β⟩ (4.348)

This equation will eventually tell us how the physical states(ket vectors) and
state operators that will represent physical systems evolve in time (it will lead
to the Schrödinger equation, which is the time evolution equation in one repre-
sentation of quantum mechanics).
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Examples - Functions of Operators

Suppose that we have the eigenvector/eigenvalue equations for a self-adjoint
operator

Â ∣k⟩ = ak ∣k⟩ , k = 1,2, . . . ,N (4.349)

We then assume that

f(Â) ∣k⟩ = f(ak) ∣k⟩ , k = 1,2, . . . ,N (4.350)

for the eigenvectors.

We can show that this works for polynomials and power series as follows:

∣ψ⟩ =
N

∑
k=1

∣k⟩ ⟨k ∣ψ⟩ (4.351)

Â ∣ψ⟩ = Â
N

∑
k=1

∣k⟩ ⟨k ∣ψ⟩ =
N

∑
k=1

Â ∣k⟩ ⟨k ∣ψ⟩

=
N

∑
k=1

ak ∣k⟩ ⟨k ∣ψ⟩ = (
N

∑
k=1

ak ∣k⟩ ⟨k∣) ∣ψ⟩ (4.352)

→ Â =
N

∑
k=1

ak ∣k⟩ ⟨k∣→ spectral resolution of the operator (4.353)

Now define the projection operator

P̂k = ∣k⟩ ⟨k∣→ P̂kP̂j = P̂kδkj (4.354)

We then have

Â =
N

∑
k=1

ak ∣k⟩ ⟨k∣ =
N

∑
k=1

akP̂k (4.355)

or any operator is represented by a sum over its eigenvalues and corresponding
projection operators.

We then have

Â2 = (
N

∑
k=1

akP̂k)
⎛
⎝

N

∑
j=1

ajP̂j
⎞
⎠
=

N

∑
k,j=1

akajP̂kP̂j (4.356)

=
N

∑
k,j=1

akajP̂kδkj =
N

∑
k=1

a2
kP̂k → Ân =

N

∑
k=1

ank P̂k

Therefore, for

f(x) =
N

∑
n=1

qnx
n (4.357)
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we have

f(Â) =
N

∑
n=1

qnÂ
n =

N

∑
n=1

qn
N

∑
k=1

ank P̂k (4.358)

=
N

∑
k=1

(
N

∑
n=1

qna
n
k) P̂k =

N

∑
k=1

f(ak)P̂k

This says that, in general, we have

f(Â) ∣ψ⟩ = f(Â)
N

∑
k=1

∣k⟩ ⟨k ∣ψ⟩ =
N

∑
k=1

f(Â) ∣k⟩ ⟨k ∣ψ⟩ (4.359)

=
N

∑
k=1

f(ak) ∣k⟩ ⟨k ∣ψ⟩ = (
N

∑
k=1

f(ak) ∣k⟩ ⟨k∣) ∣ψ⟩

→ f(Â) =
N

∑
k=1

f(ak)n ∣k⟩ ⟨k∣→ spectral resolution of the operator (4.360)

Numerical example: consider the operator

Â = (4 3
3 4

)

which has eigenvalues 7 and 1 with eigenvectors

∣7⟩ = 1√
2
(1

1
) , ∣1⟩ = 1√

2
( 1
−1

)

This gives

P̂7 = ∣7⟩ ⟨7∣ = 1

2
(1 1

1 1
) , P̂1 = ∣1⟩ ⟨1∣ = 1

2
( 1 −1
−1 1

)

and therefore

Â = 7P̂7 + P̂1 =
7

2
(1 1

1 1
) + 1

2
( 1 −1
−1 1

) = (4 3
3 4

)

Â2 = 72P̂7 + P̂1 =
49

2
(1 1

1 1
) + 1

2
( 1 −1
−1 1

) = (25 24
24 25

) = (4 3
3 4

)(4 3
3 4

)

log (Â) = log (7)P̂7 + log (1)P̂1 =
log (7)

2
(1 1

1 1
)

√
Â =

√
7P̂7 + P̂1 =

√
7

2
(1 1

1 1
) + 1

2
( 1 −1
−1 1

) = 1

2
(
√

7 + 1
√

7 − 1√
7 − 1

√
7 + 1

)

Clearly we then have

log (Â) ∣7⟩ = log (7)
2
√

2
(1 1

1 1
)(1

1
) = log (7)√

2
(1

1
) = log (7) ∣7⟩
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log (Â) ∣1⟩ = log (7)
2
√

2
(1 1

1 1
)( 1

−1
) = log (7)

2
√

2
(0

0
) = 0 = log (1) ∣1⟩

as expected.

The big question that remains is then

′′Is f̂(Â) = f(Â) ?′′ (4.361)

no proof exists!

4.20. Commuting Operators

As we stated earlier, the commutator of two operators is given by

[Â, B̂] = ÂB̂ − B̂Â (4.362)

If Â and B̂ are self-adjoint operators, each possessing a complete set of eigen-
vectors, and if they commute, then there exists a complete set of vectors which
are eigenvectors of both Â and B̂, that is, they possess a common set of eigen-
vectors.

This theorem extends to any number of commuting operators. If we have a
set of N mutually commuting operators, then they all have a common set of
eigenvectors.

The reverse is also true. If two operators possess a common set of eigenvectors,
then they commute.

Let {Â, B̂, Ĉ, . . .} be a set of mutually commuting operators that possess a com-
plete set of common eigenvectors. Corresponding to a particular eigenvalue for
each operator, there may be more than one eigenvector. If, however, there is no
more than one eigenvector for each set of eigenvalues (ak, bk, ck, . . .), then the
operators {Â, B̂, Ĉ, . . .} are said to be a complete commuting set of operators.

Any operator that commutes with all members of a complete commuting set
must be a function of the operators in that set.

Let us now think about these ideas in terms of projection operators.

Let Q̂ be a Hermitian operator with a pure point spectrum so that we can write

Q̂ =∑
k

qkP̂k (4.363)

where each qk is a different eigenvalue of Q̂ and P̂k is the projection operator
onto the subspace corresponding to eigenvalue qk.
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Let R̂ be a bounded Hermitian operator that commutes with Q̂. For each k and
for any arbitrary vector ∣η⟩ we then have

Q̂R̂P̂k ∣η⟩ = R̂Q̂P̂k ∣η⟩ = R̂
⎛
⎝∑j

qjP̂j
⎞
⎠
P̂k ∣η⟩ (4.364)

= R̂∑
j

qjδjkP̂k ∣η⟩ = qkR̂P̂k ∣η⟩

where we have used the relation

P̂jP̂k = δjkP̂k (4.365)

for any vector ∣η⟩. Thus, R̂P̂k ∣η⟩ is an eigenvector of Q̂ with eigenvalue qk.
Therefore, P̂kR̂P̂k ∣η⟩ = R̂P̂k ∣η⟩ for all ∣η⟩ and we have

R̂P̂k = P̂kR̂P̂k (4.366)

Taking the adjoint of both sides we get

(R̂P̂k)
†
= (P̂kR̂P̂k)

†
(4.367)

R̂P̂k = P̂kR̂P̂k (4.368)

Thus,
R̂P̂k = P̂kR̂ (4.369)

or each P̂k commutes with every bounded Hermitian operator which commutes
with Q̂.

We can extend this result to operators possessing both a point and continuous
spectrum. If Q̂ is a self-adjoint operator with the spectral decomposition

Q̂ = ∫
∞

−∞
xdÊx (4.370)

and if R̂ is a bounded self-adjoint operator that commutes with Q̂, then

ÊxR̂ = R̂Êx (4.371)

for every x.

Let us now express the ideas of complete commuting sets in terms of projection
operators.

Let {B̂1, B̂2, . . . , B̂N} be a set of mutually commuting Hermitian operators with
pure point spectra. For each we then have

B̂r =∑
k

b
(r)
k P̂

(r)
k , r = 1,2, . . . ,N (4.372)
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where each b(r)k is a different eigenvalue of B̂r and P̂
(r)
k is the projection operator

onto the subspace spanned by the eigenvectors of B̂r corresponding to b(r)k .

By definition then, the projection operators P̂ (r)
k commute with each other for

all different r and k
P̂

(r)
j P̂

(s)
k = P̂ (s)

k P̂
(r)
j (4.373)

This implies that
P̂

(1)
i P̂

(2)
j . . . P̂

(N)
l (4.374)

is the projection operator for any i, j, . . . ,N , that is, it projects onto the subspace
of all vectors ∣α⟩ such that

B̂1 ∣α⟩ = b(1)i ∣α⟩ , B̂2 ∣α⟩ = b(2)j ∣α⟩ , . . . , B̂N ∣α⟩ = b(N)
l ∣α⟩ (4.375)

These projection operators are mutually orthogonal

P̂
(1)
i P̂

(2)
j . . . P̂

(N)
l P̂

(1)
i′ P̂

(2)
j′ . . . P̂

(N)
l′ = δii′δjj′ . . . δll′ P̂ (1)

i P̂
(2)
j . . . P̂

(N)
l (4.376)

and they have the completeness property that

∑
i

∑
j

. . .∑
l

P̂
(1)
i P̂

(2)
j . . . P̂

(N)
l = Î (4.377)

Note that some of these projection operators might be zero.

Suppose that none of them projects onto a subspace of dimension larger than
one. In this case, we say that the set of operators {B̂1, B̂2, . . . , B̂N} is a complete
set of commuting operators.

Now let us return to the study of a continuous spectrum.

First, we repeat some earlier material to set the stage.

Let us start with a very simple example so we can figure out how to proceed and
then generalize to a more complicated case. We consider the space L2(−∞,∞)
and a single Hermitian operator Q̂ defined by

(Q̂g)(x) = xg(x) (4.378)

It turns out that every bounded operator which commutes with Q̂ is a function
of Q̂.

Now, there exists a theorem: Suppose we have a set of mutually commuting op-
erators {Âi}. This is a complete set of commuting operators if an only if every
bounded operator which commutes with all {Âi} is a function of the {Âi}.

In the previous discussion, we had the case of a complete commuting set con-
sisting of a single operator.
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The spectrum of Q̂ is purely continuous and consists of all real numbers x. Each
vector g is a function g(x) on the spectrum of Q̂.

We connect this to the case of a complete set of commuting operators with a
pure point spectra as follows.

We define two abstract vectors ∣x⟩ and ∣g⟩ such that

⟨x ∣ g⟩ = g(x) (4.379)

We then have
(Q̂g)(x) = ⟨x ∣ Q̂g⟩ = x ⟨x ∣ g⟩ = xg(x) (4.380)

which is the spectral representation of Q̂ . We can generalize to a function of Q̂
with

⟨x ∣ f(Q̂)g⟩ = f(x) ⟨x ∣ g⟩ = f(x)g(x) (4.381)

In Dirac language, we write an abstract equation like

Q̂ ∣x⟩ = x ∣x⟩ (4.382)

We then have
x∗ ⟨x∣ = x ⟨x∣ = ⟨x∣ Q̂† = ⟨x∣ Q̂ (4.383)

and
⟨x∣ Q̂ ∣g⟩ = x ⟨x ∣ g⟩ = xg(x) (4.384)

which again gives the spectral representation of Q̂.

Finally we have
⟨x∣ f(Q̂) ∣g⟩ = f(x) ⟨x ∣ g⟩ = f(x)g(x) (4.385)

The problem with defining an abstract Hermitian operator Q̂ by

Q̂ ∣x⟩ = x ∣x⟩ (4.386)

is that Q̂ has no eigenvectors in the Hilbert space L2 of square-integrable func-
tions. In order for there to be eigenvectors we must have

(Q̂g)(x) = Q̂g(x) = xg(x) = ag(x) (4.387)

for a real number a. This implies that g(x) is zero for all points x ≠ a and

∥g∥2 = ∫
∞

−∞
∣g∣2 = 0 (4.388)

because the standard integral is not changed by the value of the integrand at a
single point.

Now we have
⟨x∣ Q̂ ∣a⟩ = x ⟨x ∣a⟩ = a ⟨x ∣a⟩ (4.389)
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If we replace the inner product by

⟨x ∣a⟩ = ⟨a ∣x⟩ = δ(x − a) (4.390)

or, in general,
⟨x ∣x′⟩ = ⟨x′ ∣x⟩ = δ(x − x′) (4.391)

We then have for each real number a

xδ(x − a) = aδ(x − a) (4.392)

which is a valid mathematical relation for delta functions.

Thus, we can formally use Dirac delta functions for eigenfunctions of Q̂ as
follows: for each real number a we have

xδ(x − a) = aδ(x − a) (4.393)

If we write ∣a⟩ for δ(x − a), we then have

Q̂ ∣a⟩ = a ∣a⟩ (4.394)

We must not consider δ(x− a) as a standard integrable function and we cannot
think of ∣a⟩ as a vector in the Hilbert space L2. We must do all mathematics
using the standard delta function rules.

In this way we have

⟨a ∣ g⟩ = g(a) = ∫
∞

−∞
δ(x − a)g(x)dx (4.395)

as the components of a vector ∣g⟩ in the spectral representation of Q̂. Note the
shift from a function g(x) to the ket vector ∣g⟩ and the relationship between the
two mathematical objects. In fact, we can write

g(x) = ∫
∞

−∞
δ(x − a)g(a)da = ⟨x ∣ g⟩ = ⟨x∣ Î ∣g⟩ (4.396)

= ⟨x∣ (∫
∞

−∞
∣a⟩ ⟨a∣ da) ∣g⟩ = ⟨x∣∫

∞

−∞
⟨a ∣ g⟩ ∣a⟩ da

or
∣g⟩ = ∫

∞

−∞
⟨a ∣ g⟩ ∣a⟩ da (4.397)

In addition, we have (using the properties of projection operators derived earlier)

⟨a ∣ g⟩ = ⟨a∣ Î ∣g⟩ = ⟨a∣∫ ∣x⟩ ⟨x∣ dx ∣g⟩ (4.398)

= ∫ ⟨a ∣x⟩ ⟨x ∣ g⟩ dx = ∫ δ(x − a)g(x)dx

= g(a)
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as expected.

Thus, formally, we can think of any eigenfunction g(x) as a linear combination
of delta functions, where the delta functions are analogous to an orthonormal
basis of eigenvectors with the symbol ∣x⟩. We the have

∣g⟩ = ∫
∞

−∞
⟨x ∣ g⟩ ∣x⟩ dx , Î = ∫

∞

−∞
∣x⟩ ⟨x∣ dx (4.399)

Thus, for each real number a, we define the operator ∣a⟩ ⟨a∣ by

(∣a⟩ ⟨a∣ g)(x) = ⟨x ∣a⟩ ⟨a ∣ g⟩ = g(a)δ(x − a) (4.400)

∣a⟩ ⟨a∣ g = ⟨a ∣ g⟩ ∣a⟩ = g(a) ∣a⟩ (4.401)

In a similar manner, the projection operator Êx in the spectral decomposition
of Q̂ is given by

(Êxg)(y) = ∫
x

−∞
g(a)δ(y − a)da (4.402)

which we can write as

(Êxg)(y) = ∫
x

−∞
(∣a⟩ ⟨a∣ g)(y)da (4.403)

This says that
Êx = ∫

x

−∞
∣a⟩ ⟨a∣ da (4.404)

Finally, we have
Q̂ = ∫

∞

−∞
xdÊx (4.405)

which we write as
Q̂ = ∫

∞

−∞
x ∣x⟩ ⟨x∣ dx (4.406)

This is analogous to a sum of eigenvalues multiplying projection operators onto
eigenvector subspaces. We will return to this discussion when we introduce the
position operator.

4.21. Another Continuous Spectrum Operator

We already have the relation

⟨x ∣x′⟩ = δ(x − x′) (4.407)

Let us introduce a new operator p̂ such that

p̂ ∣p⟩ = p ∣p⟩ , −∞ ≤ p ≤∞ , p real (4.408)

Thus p̂ is an operator with a continuous spectrum just like Q̂. As we found to
be true for Q̂, we can now also write

p̂ = 1

2πh̵
∫ p ∣p⟩ ⟨p∣ dp , Î = 1

2πh̵
∫ ∣p⟩ ⟨p∣ dp (4.409)
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This allows us to write

⟨x′ ∣x⟩ = δ(x′ − x) = ⟨x′∣ Î ∣x⟩ = 1

2πh̵
∫ ⟨x′∣ (∣p⟩ ⟨p∣ ∣x⟩ dp (4.410)

= 1

2πh̵
∫ ⟨x′ ∣p⟩ ⟨p ∣x⟩ dp = 1

2πh̵
∫ ⟨x′ ∣p⟩ ⟨x ∣p⟩∗ dp

Now, one of the standard representations of the delta function is

δ(x − x′) = 1

2πh̵
∫ e−ip(x−x

′)/h̵ dp (4.411)

Thus we can write

∫ ⟨x′ ∣p⟩ ⟨x ∣p⟩∗ dp = ∫ e−ip(x−x
′)/h̵ dp (4.412)

One of the most important solutions to this equation is

⟨x ∣p⟩ = eipx/h̵ → ⟨x ∣p⟩∗ = e−ipx/h̵ , ⟨x′ ∣p⟩ = eipx
′/h̵ (4.413)

As we shall see later, this choice will correspond to the new operator p̂ repre-
senting the standard linear momentum.

We can then write

⟨x∣ p̂ ∣p⟩ = p ⟨x ∣p⟩ = peipx/h̵ = −ih̵ ∂

∂x
eipx/h̵ = −ih̵ ∂

∂x
⟨x ∣p⟩ (4.414)

which, in our earlier notation, says

(p̂g)(x) = −ih̵ ∂

∂x
g(x) (4.415)

In addition we can write

⟨p∣ x̂ ∣ψ⟩ = [⟨ψ∣ x̂ ∣p⟩]∗ = [⟨ψ∣ x̂(∫ ∣x′⟩ ⟨x′∣ dx′) ∣p⟩]
∗

= [∫ ⟨ψ∣ x̂ ∣x′⟩ ⟨x′ ∣p⟩ dx′]
∗
= [∫ x′ ⟨ψ ∣x′⟩ ⟨x′ ∣p⟩ dx′]

∗

= [∫ ⟨ψ ∣x′⟩x′ ⟨x′ ∣p⟩ dx′]
∗
= [∫ ⟨ψ ∣x′⟩ (−ih̵ ∂

∂p
) ⟨x′ ∣p⟩ dx′]

∗

= [(−ih̵ ∂
∂p

)∫ ⟨ψ ∣x′⟩ ⟨x′ ∣p⟩ dx′]
∗
= ih̵ ∂

∂p
[⟨ψ∣ (∫ ∣x′⟩ ⟨x′∣ dx′) ∣p⟩]

∗

= ih̵ ∂
∂p

[⟨ψ ∣p⟩]∗ = ih̵ ∂
∂p

⟨p ∣ψ⟩

⇒ ⟨p∣ x̂ = ih̵ ∂
∂p

⟨p∣ (4.416)

since ∣ψ⟩ is arbitrary.
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Now, since the eigenvectors of p̂ form a basis, we can write any arbitrary vector
as

∣g⟩ = ∫ ⟨p ∣ g⟩ ∣p⟩ dp (4.417)

which implies

⟨x ∣ g⟩ = ∫ ⟨p ∣ g⟩ ⟨x ∣p⟩ dp = ∫ ⟨p ∣ g⟩ eipx/h̵ dp (4.418)

Now the theory of Fourier transforms says that

g(x) = ∫ G(p)eipx/h̵ dp (4.419)

where G(p) is the Fourier transform of g(x). Thus, we find that G(p) = ⟨p ∣ g⟩
is the Fourier transform of g(x).

More about Fourier Transforms (in general)

In the space L2 of square-integrable functions, let us consider a self-adjoint
operator defined by the relation we found earlier for the p̂ operator

(p̂g)(x) = −ih̵ ∂

∂x
g(x) (4.420)

As we already have seen there is a direct connection here to Fourier transforms.
Let us review some of the mathematical concepts connected with the Fourier
Transform.

If g is a function(vector) in L2, then

ψn(k) =
1

2π
∫

n

−n
e−ikxg(x)dx (4.421)

defines a sequence of functions(vectors) ψn in L2 which converges as n →∞ to
a limit function(vector) Gg such that ∥Gg∣2 = ∥g∥2 and

ψ(k) = (Gg)(k) = 1

2π
∫

∞

−∞
e−ikxg(x)dx (4.422)

We also have
gn(k) =

1

2π
∫

n

−n
eikx(Gg)(k)dk (4.423)

which defines a sequence of functions(vectors) that converges to g as n → ∞
where

g(x) = 1

2π
∫ (Gg)(k)eikx dk (4.424)

Now, this gives

(p̂g)(x) = −ih̵ ∂

∂x
g(x) = h̵

2π
∫ (Gg)(k)keikx dk (4.425)
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It is clear from this expression that a vector g is in the domain of p̂ if and only
if the quantity k(Gg)(k) is square-integrable. We then have

(Gp̂g)(k) = 1

2π
∫ (p̂g)(x)e−ikx dx = 1

2π
∫

1

2π
(∫ (Gg)(k′)h̵k′eik

′x dk′) e−ikx dx

= 1

2π
∫ (Gg)(k′)h̵k′ dk′ 1

2π
∫ ei(k

′−k)x dx

= 1

2π
∫ (Gg)(k′)h̵k′δ(k′ − k)dk′ = k(Gg)(k) (4.426)

We call G the Fourier transform of g. G is a unitary operator on L2 . Its inverse
is given by

(G−1h)(x) = 1

2π
∫ h(k)eikx dk (4.427)

which implies
(G−1h)(x) = (Gh)(−x) (4.428)

for every h. Since G is unitary, it preserves inner products as well as lengths of
vectors so we have

∫ (Gh)(k)∗(Gg)(k)dk = ∫ h∗(x)g(x)dx (4.429)

for all vectors h and g.

In terms of the operator Q̂ defined by

(Q̂g)(x) = xg(x) (4.430)

it can be shown that
Gp̂ = Q̂G (4.431)

or
p̂ = G−1Q̂G (4.432)

From the spectral decomposition

Q̂ = ∫
∞

−∞
y dÊy (4.433)

we can then obtain the spectral decomposition of p̂ . Since G is unitary and the
set of operators G−1ÊyG is a spectral family of projection operators, the set of
operators Êy is also a spectral family of projection operators.

Since G−1 = G†, we have

(h, p̂g) = (h,G†Q̂Gg) = (Gh, Q̂Gg) (4.434)

= ∫
∞

−∞
y d(Gh, ÊyGg) = ∫

∞

−∞
y d(h,G−1ÊyGg)
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for any vector h and any vector g in the domain of p̂. Thus the spectral decom-
position of p̂ is

p̂ = ∫
∞

−∞
y d(G−1ÊyG) (4.435)

Now recall that Êy is the projection operator onto the subspace of all vectors
g such that g(x) = 0 for x > y. Therefore, G−1ÊyG is the projection operator
onto the subspace of all vectors g such that (Gg)(k) = 0 for k > y.

This means that p̂r has the same spectrum as Q̂r , namely, a purely continuous
spectrum consisting of all real numbers as we already assumed at the beginning
of our discussion. These results generalize to functions of the operators.

We have been thinking of the Fourier transform as an operator G which takes
a vector g to a different vector Gg. We may also think of g(x) and (Gg)(k)
as two different ways of representing the same vector g as a function. We can
write

⟨k ∣ g⟩ = (Gg)(k) (4.436)

provided we are careful not to confuse this with

⟨x ∣ g⟩ = g(x) (4.437)

We think of ⟨k ∣ g⟩ as a function on the spectra of p̂. We then have

⟨k∣ p̂ ∣g⟩ = k ⟨k ∣ g⟩ (4.438)

which is the spectral representation of p̂.

For a function f of p̂ we have

⟨k∣ f(p̂) ∣g⟩ = f(k) ⟨k ∣ g⟩ (4.439)

The operator p̂ has no eigenvectors (as was true earlier for Q̂), It does, however,
have eigenfunctions which we can use as analogs of eigenvectors as we did earlier
for Q̂.

If we write ∣k⟩ for
1√
2π
eikx (4.440)

we have
p̂ ∣k⟩ = h̵k ∣k⟩ (4.441)

as we assumed at the beginning, since

−ih̵ ∂

∂x
( 1√

2π
eikx) = h̵k ( 1√

2π
eikx) (4.442)
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For the components of a vector g n the spectral representation of the operators
p̂ we have

⟨k ∣ g⟩ = (Gg)(k) = 1√
2π
∫ g(x)e−ikx dx (4.443)

We can think of these as the inner products of g with the eigenfunctions eikx/
√

2π.
We have also

g(x) = 1√
2π
∫ (Gg)(k)eikx dk (4.444)

which we can write as
∣k⟩ = ∫ ⟨k ∣ g⟩ ∣k⟩ dk (4.445)

so we can think of any vector g as a linear combination of the eigenfunctions.

Thus, the eigenfunctions eikx/
√

2π are analogous to an orthonormal basis of
eigenvectors. They are not vectors in the Hilbert space L2, however, because
they are not square-integrable.

We use them in the same way that we earlier used the delta functions for eigen-
functions of the operators Q̂. In fact,

1√
2π
eikx = 1√

2π
∫ δ(k′ − k)eik

′x dk′ (4.446)

is the inverse Fourier transform of the delta function.

be defined by Now let ∣k⟩ ⟨k∣

(∣k⟩ ⟨k ∣ g⟩)(x) = (Gg)k 1√
2π
eikx (4.447)

or
∣k⟩ ⟨k∣ g = ⟨k ∣ g⟩ ∣k⟩ (4.448)

Then for the projection operators G−1ÊyG in the spectral decomposition of p̂
we can write

(G−1ÊyGg)(x) = ∫
k≤y

(Gg)k 1√
2π
eikx dk = ∫

k≤y
(∣k⟩ ⟨k ∣ g⟩)(x)dk (4.449)

or
G−1ÊyG = ∫

k≤y
(∣k⟩ ⟨k∣ dk (4.450)

and for the spectral decomposition of the operators p̂ we get

p̂ = ∫ h̵k ∣k⟩ ⟨k∣ dk (4.451)

which is the same spectral decompositions in terms of eigenvalues and eigenvec-
tors that we saw earlier.
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4.22. Problems

4.22.1. Simple Basis Vectors

Given two vectors

A⃗ = 7ê1 + 6ê2 , B⃗ = −2ê1 + 16ê2

written in the {ê1, ê2} basis set and given another basis set

êq =
1

2
ê1 +

√
3

2
ê2 , êp = −

√
3

2
ê1 +

1

2
ê2

(a) Show that êq and êp are orthonormal.

(b) Determine the new components of A⃗, B⃗ in the {êq, êp} basis set.

4.22.2. Eigenvalues and Eigenvectors

Find the eigenvalues and normalized eigenvectors of the matrix

A =
⎛
⎜
⎝

1 2 4
2 3 0
5 0 3

⎞
⎟
⎠

Are the eigenvectors orthogonal? Comment on this.

4.22.3. Orthogonal Basis Vectors

Determine the eigenvalues and eigenstates of the following matrix

A =
⎛
⎜
⎝

2 2 0
1 2 1
1 2 1

⎞
⎟
⎠

Using Gram-Schmidt, construct an orthonormal basis set from the eigenvectors
of this operator.

4.22.4. Operator Matrix Representation

If the states {∣1⟩ , ∣2⟩ ∣3⟩} form an orthonormal basis and if the operator Ĝ has
the properties

Ĝ ∣1⟩ = 2 ∣1⟩ − 4 ∣2⟩ + 7 ∣3⟩
Ĝ ∣2⟩ = −2 ∣1⟩ + 3 ∣3⟩
Ĝ ∣3⟩ = 11 ∣1⟩ + 2 ∣2⟩ − 6 ∣3⟩

What is the matrix representation of Ĝ in the ∣1⟩ , ∣2⟩ ∣3⟩ basis?
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4.22.5. Matrix Representation and Expectation Value

If the states {∣1⟩ , ∣2⟩ ∣3⟩} form an orthonormal basis and if the operator K̂ has
the properties

K̂ ∣1⟩ = 2 ∣1⟩
K̂ ∣2⟩ = 3 ∣2⟩
K̂ ∣3⟩ = −6 ∣3⟩

(a) Write an expression for K̂ in terms of its eigenvalues and eigenvectors (pro-
jection operators). Use this expression to derive the matrix representing
K̂ in the ∣1⟩ , ∣2⟩ ∣3⟩ basis.

(b) What is the expectation or average value of K̂, defined as ⟨α∣ K̂ ∣α⟩, in the
state

∣α⟩ = 1√
83

(−3 ∣1⟩ + 5 ∣2⟩ + 7 ∣3⟩)

4.22.6. Projection Operator Representation

Let the states {∣1⟩ , ∣2⟩ ∣3⟩} form an orthonormal basis. We consider the operator
given by P̂2 = ∣2⟩ ⟨2∣. What is the matrix representation of this operator? What
are its eigenvalues and eigenvectors. For the arbitrary state

∣A⟩ = 1√
83

(−3 ∣1⟩ + 5 ∣2⟩ + 7 ∣3⟩)

What is the result of P̂2 ∣A⟩?

4.22.7. Operator Algebra

An operator for a two-state system is given by

Ĥ = a (∣1⟩ ⟨1∣ − ∣2⟩ ⟨2∣ + ∣1⟩ ⟨2∣ + ∣2⟩ ⟨1∣)

where a is a number. Find the eigenvalues and the corresponding eigenkets.

4.22.8. Functions of Operators

Suppose that we have some operator Q̂ such that Q̂ ∣q⟩ = q ∣q⟩, i.e., ∣q⟩ is an
eigenvector of Q̂ with eigenvalue q. Show that ∣q⟩ is also an eigenvector of the
operators Q̂2, Q̂n and eQ̂ and determine the corresponding eigenvalues.
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4.22.9. A Symmetric Matrix

Let A be a 4 × 4 symmetric matrix. Assume that the eigenvalues are given by
0, 1, 2, and 3 with the corresponding normalized eigenvectors

1√
2

⎛
⎜⎜⎜
⎝

1
0
0
1

⎞
⎟⎟⎟
⎠

,
1√
2

⎛
⎜⎜⎜
⎝

1
0
0
−1

⎞
⎟⎟⎟
⎠

,
1√
2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠

,
1√
2

⎛
⎜⎜⎜
⎝

0
1
−1
0

⎞
⎟⎟⎟
⎠

Find the matrix A.

4.22.10. Determinants and Traces

Let A be an n × n matrix. Show that

det(exp(A)) = exp(Tr(A))

4.22.11. Function of a Matrix

Let

A = ( −1 2
2 −1

)

Calculate exp(αA), α real.

4.22.12. More Gram-Schmidt

Let A be the symmetric matrix

A =
⎛
⎜
⎝

5 −2 −4
−2 2 2
−4 2 5

⎞
⎟
⎠

Determine the eigenvalues and eigenvectors of A. Are the eigenvectors orthog-
onal to each other? If not, find an orthogonal set using the Gram-Schmidt
process.

4.22.13. Infinite Dimensions

Let A be a square finite-dimensional matrix (real elements) such that AAT = I.

(a) Show that ATA = I.

(b) Does this result hold for infinite dimensional matrices?
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4.22.14. Spectral Decomposition

Find the eigenvalues and eigenvectors of the matrix

M =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦

Construct the corresponding projection operators, and verify that the matrix
can be written in terms of its eigenvalues and eigenvectors. This is the spectral
decomposition for this matrix.

4.22.15. Measurement Results

Given particles in state

∣α⟩ = 1√
83

(−3 ∣1⟩ + 5 ∣2⟩ + 7 ∣3⟩)

where {∣1⟩ , ∣2⟩ , ∣3⟩} form an orthonormal basis, what are the possible experi-
mental results for a measurement of

Ŷ =
⎛
⎜
⎝

2 0 0
0 3 0
0 0 −6

⎞
⎟
⎠

(written in this basis) and with what probabilities do they occur?

4.22.16. Expectation Values

Let

R = [ 6 −2
−2 9

]

represent an observable, and

∣Ψ⟩ = [ a
b

]

be an arbitrary state vector(with ∣a∣2 + ∣b∣2 = 1). Calculate ⟨R2⟩ in two ways:

(a) Evaluate ⟨R2⟩ = ⟨Ψ∣R2 ∣Ψ⟩ directly.

(b) Find the eigenvalues(r1 and r2) and eigenvectors(∣r1⟩ and ∣r2⟩) of R2 or
R. Expand the state vector as a linear combination of the eigenvectors
and evaluate

⟨R2⟩ = r2
1 ∣c1∣2 + r2

2 ∣c2∣2
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4.22.17. Eigenket Properties
Consider a 3−dimensional ket space. If a certain set of orthonormal kets, say
∣1⟩, ∣2⟩ and ∣3⟩ are used as the basis kets, the operators Â and B̂ are represented
by

Â→
⎛
⎜
⎝

a 0 0
0 −a 0
0 0 −a

⎞
⎟
⎠

, B̂ →
⎛
⎜
⎝

b 0 0
0 0 −ib
0 ib 0

⎞
⎟
⎠

where a and b are both real numbers.

(a) Obviously, Â has a degenerate spectrum. Does B̂ also have a degenerate
spectrum?

(b) Show that Â and B̂ commute.

(c) Find a new set of orthonormal kets which are simultaneous eigenkets of
both Â and B̂.

4.22.18. The World of Hard/Soft Particles
Let us define a state using a hardness basis {∣h⟩ , ∣s⟩}, where

ÔHARDNESS ∣h⟩ = ∣h⟩ , ÔHARDNESS ∣s⟩ = − ∣s⟩

and the hardness operator ÔHARDNESS is represented by (in this basis) by

ÔHARDNESS = ( 1 0
0 −1

)

Suppose that we are in the state

∣A⟩ = cos θ ∣h⟩ + eiϕ sin θ ∣s⟩

(a) Is this state normalized? Show your work. If not, normalize it.

(b) Find the state ∣B⟩ that is orthogonal to ∣A⟩. Make sure ∣B⟩ is normalized.

(c) Express ∣h⟩ and ∣s⟩ in the {∣A⟩ , ∣B⟩} basis.

(d) What are the possible outcomes of a hardness measurement on state ∣A⟩
and with what probability will each occur?

(e) Express the hardness operator in the {∣A⟩ , ∣B⟩} basis.

4.22.19. Things in Hilbert Space
For all parts of this problem, let H be a Hilbert space spanned by the basis kets
{∣0⟩ , ∣1⟩ , ∣2⟩ , ∣3⟩}, and let a and b be arbitrary complex constants.

(a) Which of the following are Hermitian operators on H?
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1. ∣0⟩ ⟨1∣ + i ∣1⟩ ⟨0∣
2. ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ + ∣2⟩ ⟨3∣ + ∣3⟩ ⟨2∣
3. (a ∣0⟩ + ∣1⟩)+(a ∣0⟩ + ∣1⟩)
4. ((a ∣0⟩ + b∗ ∣1⟩)+(b ∣0⟩ − a∗ ∣1⟩)) ∣2⟩ ⟨1∣ + ∣3⟩ ⟨3∣
5. ∣0⟩ ⟨0∣ + i ∣1⟩ ⟨0∣ − i ∣0⟩ ⟨1∣ + ∣1⟩ ⟨1∣

(b) Find the spectral decomposition of the following operator on H:

K̂ = ∣0⟩ ⟨0∣ + 2 ∣1⟩ ⟨2∣ + 2 ∣2⟩ ⟨1∣ − ∣3⟩ ⟨3∣

(c) Let ∣Ψ⟩ be a normalized ket in H, and let Î denote the identity operator
on H. Is the operator

B̂ = 1√
2
(Î + ∣Ψ⟩ ⟨Ψ∣)

a projection operator?

(d) Find the spectral decomposition of the operator B̂ from part (c).

4.22.20. A 2-Dimensional Hilbert Space
Consider a 2-dimensional Hilbert space spanned by an orthonormal basis {∣↑⟩ , ∣↓⟩}.
This corresponds to spin up/down for spin= 1/2 as we will see later in Chapter
9. Let us define the operators

Ŝx =
h̵

2
(∣↑⟩ ⟨↓∣ + ∣↓⟩ ⟨↑∣) , Ŝy =

h̵

2i
(∣↑⟩ ⟨↓∣ − ∣↓⟩ ⟨↑∣) , Ŝz =

h̵

2
(∣↑⟩ ⟨↑∣ − ∣↓⟩ ⟨↓∣)

(a) Show that each of these operators is Hermitian.

(b) Find the matrix representations of these operators in the {∣↑⟩ , ∣↓⟩} basis.

(c) Show that [Ŝx, Ŝy] = ih̵Ŝz, and cyclic permutations. Do this two ways:
Using the Dirac notation definitions above and the matrix representations
found in (b).

Now let
∣±⟩ = 1√

2
(∣↑⟩ ± ∣↓⟩)

(d) Show that these vectors form a new orthonormal basis.

(e) Find the matrix representations of these operators in the {∣+⟩ , ∣−⟩} basis.

(f) The matrices found in (b) and (e) are related through a similarity trans-
formation given by a unitary matrix, U , such that

Ŝ(↑↓)
x = U †Ŝ(±)

x U , Ŝ(↑↓)
y = U †Ŝ(±)

y U , Ŝ(↑↓)
z = U †Ŝ(±)

z U

where the superscript denotes the basis in which the operator is repre-
sented. Find U and show that it is unitary.
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Now let
Ŝ± =

1

2
(Ŝx ± iŜy)

(g) Express Ŝ± as outer products in the {∣↑⟩ , ∣↓⟩} basis and show that Ŝ†
+ = Ŝ−.

(h) Show that

Ŝ+ ∣↓⟩ = ∣↑⟩ , Ŝ− ∣↑⟩ = ∣↓⟩ , Ŝ− ∣↓⟩ = 0 , Ŝ+ ∣↑⟩ = 0

and find
⟨↑∣ Ŝ+ , ⟨↓∣ Ŝ+ , ⟨↑∣ Ŝ− , ⟨↓∣ Ŝ−

4.22.21. Find the Eigenvalues
The three matrices Mx, My, Mz, each with 256 rows and columns, obey the
commutation rules

[Mi,Mj] = ih̵εijkMk

The eigenvalues of Mz are ±2h̵ (each once), ±2h̵ (each once), ±3h̵/2 (each 8
times), ±h̵ (each 28 times), ±h̵/2 (each 56 times), and 0 (70 times). State the
256 eigenvalues of the matrix M2 =M2

x +M2
y +M2

z .

4.22.22. Operator Properties
(a) If O is a quantum-mechanical operator, what is the definition of the cor-

responding Hermitian conjugate operator, O+?

(b) Define what is meant by a Hermitian operator in quantum mechanics.

(c) Show that d/dx is not a Hermitian operator. What is its Hermitian con-
jugate, (d/dx)+?

(d) Prove that for any two operators A and B, (AB)+ = B+A+,

4.22.23. Ehrenfest’s Relations
Show that the following relation applies for any operator O that lacks an explicit
dependence on time:

∂

∂t
⟨O⟩ = i

h̵
⟨[H,O]⟩

HINT: Remember that the Hamiltonian, H, is a Hermitian operator, and that
H appears in the time-dependent Schrödinger equation.

Use this result to derive Ehrenfest’s relations, which show that classical me-
chanics still applies to expectation values:

m
∂

∂t
⟨x⃗⟩ = ⟨p⃗⟩ ,

∂

∂t
⟨p⃗⟩ = −⟨∇V ⟩
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4.22.24. Solution of Coupled Linear ODEs

Consider the set of coupled linear differential equations ẋ = Ax where x =
(x1, x2, x3) ∈ R3 and

A =
⎛
⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟
⎠

(a) Find the general solution x(t) in terms of x(0) by matrix exponentiation.

(b) Using the results from part (a), write the general solution x(t) by expand-
ing x(0) in eigenvectors of A. That is, write

x(t) = eλ1c1v1 + eλ2c2v2 + eλ3c3v3

where (λi, vi) are the eigenvalue-eigenvector pairs for A and the ci are
coefficients written in terms of the x(0).

4.22.25. Spectral Decomposition Practice

Find the spectral decomposition of the matrix

A =
⎛
⎜
⎝

1 0 0
0 0 i
0 −i 0

⎞
⎟
⎠

4.22.26. More on Projection Operators

The basic definition of a projection operator is that it must satisfy P 2 = P . If
P furthermore satisfies P = P + we say that P is an orthogonal projector. As
we derived in the text, the eigenvalues of an orthogonal projector are all equal
to either zero or one.

(a) Show that if P is a projection operator, then so is I − P .

(b) Show that for any orthogonal projector P and an normalized state, 0 ≤
⟨P ⟩ ≤ 1.

(c) Show that the singular values of an orthogonal projector are also equal to
zero or one. The singular values of an arbitrary matrix A are given by the
square-roots of the eigenvalues of A+A. It follows that for every singular
value σi of a matrix A there exist some unit normalized vector ui such
that

u+i A
+Aui = σ2

i

Conclude that the action of an orthogonal projection operator never length-
ens a vector (never increases its norm).

321



For the next two parts we consider the example of a non-orthogonal pro-
jection operator

N = ( 0 0
−1 1

)

(d) Find the eigenvalues and eigenvectors of N . Does the usual spectral de-
composition work as a representation of N?

(e) Find the singular values of N . Can you interpret this in terms of the
action of N on vectors in R2?
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Chapter 5

Probability

5.1. Probability Concepts

Quantum mechanics will necessarily involve probability in order for us to make
the connection with experimental measurements.

We will be interested in understanding the quantity

P (A∣B) = probability of event A given that event B is true

In essence, event B sets up the conditions or an environment and then we ask
about the (conditional) probability of event A given that those conditions exist.
All probabilities are conditional in this sense. The ∣ symbol means given so that
items to the right of this conditioning symbol are taken as being true.

In other words, we set up an experimental apparatus, which is expressed by
properties B and do a measurement with that apparatus, which is expressed
by properties A. We generate numbers (measurements) which we use to give a
value to the quantity P (A∣B).

5.1.1. Standard Thinking .......
We start with the standard mathematical formalism based on axioms. We define
these events:

1. A = occurrence of A
(denotes that proposition A is true)

2. ∼ A = NOT A = nonoccurrence of A
(denotes that proposition A is false)

3. A ∩B = A AND B = occurrence of both A and B
(denotes that proposition A AND B is true)
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4. A ∪B = A OR B =occurrence of at least A and B
(denotes that proposition A OR B is true)

and standard Boolean logic as shown below:

Boolean logic uses the basic statements AND, OR, and NOT.
Using these and a series of Boolean expressions, the final
output would be one TRUE or FALSE statement.

This is illustrated below:

1. If A is true AND B is true, then (A AND B) is true

2. If A is true AND B is false, then (A AND B) is false

3. If A is true OR B is false, then (A OR B) is true

4. If A is false OR B is false, then (A OR B) is false

or written as a truth table:

A B (A ∩B) (A ∪B)
1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

Table 5.1: Boolean Logic

where 1 = TRUE and 0 = FALSE.

Then we set up a theory of probability with these axioms:

1. P (A∣A) = 1

This is the probability of the occurrence A given the occurrence of A. This
represents a certainty and, thus, the probability must = 1. This is clearly
an obvious assumption that we must make if our probability ideas are to
make any sense at all.

In other words, if I set the experimental apparatus such that the meter
reads A, then it reads A with probability = 1.

2. 0 ≤ P (A∣B) ≤ P (B∣B) = 1

This just expresses the sensible idea that no probability is greater than
the probability of a certainty and it make no sense to have the probability
be less than 0.

3. P (A∣B) + P (∼ A∣B) = 1 or P (∼ A∣B) = 1 − P (A∣B)
This just expresses the fact that the probability of something (anything)
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happening (A or ∼ A) given B is a certainty (= 1), that is, since the set A
or ∼ A includes everything that can happen, the total probability that one
or the other occurs must be the probability of a certainty and be equal to
one.

4. P (A ∩B∣C) = P (A∣C)P (B∣A ∩C)
This says that the probability that 2 events A, B both occur given that C
occurs equals the probability of A given C multiplied by the probability
of B given (A ∩C), which makes sense which makes sense if you think of
them happening in sequence.

All other probability relationships can be derived from these axioms.

The nonoccurrence of A given that A occurs must have probability = 0. This is
expressed by

P (∼ A∣A) = 0 (5.1)

This result clearly follows from the axioms since

P (A∣B) + P (∼ A∣B) = 1 (5.2)

P (A∣A) + P (∼ A∣A) = 1 (5.3)

P (∼ A∣A) = 1 − P (A∣A) = 1 − 1 = 0 (5.4)

Example: Let us evaluate P (X ∩ Y ∣C) + P (X∩ ∼ Y ∣C).

We use axiom (4) in the 1st term with and in the 2nd term with to get

P (X ∩ Y ∣C) + P (X∩ ∼ Y ∣C) (5.5)
= P (X ∣C)P (Y ∣X ∩C) + P (X ∣C)P (∼ Y ∣X ∩C)
= P (X ∣C)[P (Y ∣X ∩C) + P (∼ Y ∣X ∩C)]
= P (X ∣C)[1] = P (X ∣C)

where we have used axiom (3). Thus we have the result

P (X ∩ Y ∣C) + P (X∩ ∼ Y ∣C) = P (X ∣C) (5.6)

Now let us use this result with X =∼ A,Y =∼ B. This gives

P (∼ A∩ ∼ B∣C) + P (∼ A∩ ∼∼ B∣C) = P (∼ A∣C) (5.7)

P (∼ A∩ ∼ B∣C) + P (∼ A ∩B∣C) = 1 − P (A∣C) (5.8)

P (∼ A∩ ∼ B∣C) = 1 − P (A∣C) − P (∼ A ∩B∣C) (5.9)

Then use the result again with X = B,Y =∼ A. This gives

P (B∩ ∼ A∣C) + P (B ∩A∣C) = P (B∣C) (5.10)
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or
P (∼ A ∩B∣C) = P (B∣C) − P (A ∩B∣C) (5.11)

which gives

P (∼ A∩ ∼ B∣C) = 1 − P (A∣C) − P (B∣C) + P (A ∩B∣C) (5.12)

Now

P (A ∪B∣C) = 1 − P (∼ (A ∪B)∣C) = 1 − P ((∼ A∩ ∼ B)∣C) (5.13)

since
∼ (A ∪B) = (∼ A∩ ∼ B) (5.14)

i.e., we can construct a truth table as shown below, which illustrates the equality
directly

A B (∼ (A ∪B)) (∼ A∩ ∼ B)
1 1 0 0
1 0 0 0
0 1 0 1
0 0 1 1

Table 5.2: Equivalent Expressions

We finally get

P (A ∪B) = P (A∣C) + P (B∣C) − P (A ∩B∣C) (5.15)

which is a very important and useful result.

If we have P (A∩B∣C)=0, then events A and B are said to be mutually exclusive
given that C is true and the relation then reduces to

P (A ∪B) = P (A∣C) + P (B∣C) (5.16)

This is the rule of addition of probabilities for exclusive events.

Some other important results are:

If A ∩B = B ∩A, ∣; then P (A∣C)P (B∣A ∩C) = P (B∣C)P (A∣B ∩C) (5.17)

If P (A∣C) ≠ 0, then P (B∣A ∩C) = P (A∣B ∩C)P (B∣C)
P (A∣C)

(5.18)

which is Baye’s theorem. It relates the probability of B given A to the proba-
bility of A given B.

When we say that B is independent of A, we will mean

P (B∣A ∩C) = P (B∣C) (5.19)
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or the occurrence of A has NO influence on the probability of B given C. Using
axiom (4) we then have the result:

If A and B are independent given C, then
P (A ∩B∣C) = P (A∣C)P (B∣C) (5.20)

This is called statistical or stochastic independence. The result generalizes to a
set of events {Ai, i = 1,2, . . . , n}. All these events are independent if and only
if

P (A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩Am∣C) = P (A1∣C)P (A2∣C) . . . P (Am∣C) (5.21)

for all m ≤ n.

Now let us think about these ideas in another way that has fundamental impor-
tance in modern approaches to quantum theory. The fundamental result in this
view will turn out to be the Bayes formula and its relationship to measurements.

5.1.2. Bayesian Thinking ........

Two Different Axioms

1. If we specify how much we believe something is true, then we must have
implicitly specified how much we believe it is false.

2. If we first specify how much we believe that proposition Y is true, and
then state how much we believe X is true given that Y is true, then we
must implicitly have specified how much we believe that both X and Y
are true.

We assign real numbers to each proposition in a manner so that the larger the
numerical value associated with a proposition, the more we believe it.

Only using the rules of Boolean logic, ordinary algebra, and the constraint that
if there are several different ways of using the same information, then we should
always arrive at the same conclusions independent of the particular analysis-
path chosen, it is then found that this consistency could only be guaranteed
if the real numbers we had attached to our beliefs in the various propositions
could be mapped (or transformed) to another set of real positive numbers which
obeyed the usual rules of probability theory:

prob(X ∣I) + prob(∼X ∣I) = 1 (same as axiom (3)) (5.22)

prob(X ∩ Y ∣I) = prob(X ∣Y ∩ I) × prob(Y ∣I)(same as axiom (4)) (5.23)

The first of these equations is called the sum rule and states (as earlier) that
the probability that X is true plus the probability that X is false is equal to
one.

The second of these equations is called the product rule. It states (as earlier)
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that the probability that both X and Y are true is equal to the probability that
X is true given that Y is true times the probability that Y is true (independent
of X).

Note all the probabilities are conditional on proposition(s) or conditioning(s) I,
which denotes the relevant background information on hand. It is important to
understand that there is no such thing as an absolute probability (one without
prior information).

Baye’s Theorem and Marginalization

As before, we can use the sum and product rules to derive other results.

First, starting with the product rule we have

prob(X ∩ Y ∣I) = prob(X ∣Y ∩ I) × prob(Y ∣I) (5.24)

We can rewrite this equation with X and Y interchanged

prob(Y ∩X ∣I) = prob(Y ∣X ∩ I) × prob(X ∣I) (5.25)

Since the probability that both X and Y are true must be logically the same as
the probability that both Y and X are true we must also have

prob(Y ∩X ∣I) = prob(X ∩ Y ∣I) (5.26)

or
prob(X ∣Y ∩ I) × prob(Y ∣I) = prob(Y ∣X ∩ I) × prob(X ∣I) (5.27)

or

prob(X ∣Y ∩ I) = prob(Y ∣X ∩ I) × prob(X ∣I)
prob(Y ∣I)

(5.28)

which is Bayes theorem (as derived earlier).

Most standard treatments of probability do not attach much importance to
Bayes’ rule.

This rule, which relates prob(A∣B∩C) to prob(B∣A∩C), allows us to turn things
around with respect to the conditioning symbol, which leads to a reorientation
of our thinking about probability.

The fundamental importance of this property to data analysis becomes apparent
if we replace A and B by hypothesis and data:

prob(A∣B ∩C)∝ prob(B∣A ∩C) × prob(A∣C) (5.29)

prob(hypothesis∣data ∩C)∝ prob(data∣hypothesis ∩C) × prob(hypothesis∣C)
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Note that the equality has been replaced with a proportionality because the
term prob(data∣I) = evidence has been omitted. The proportionality constant
can be found from the normalization requirement that the sum of the probabil-
ities for something happening must equal 1.

The power of Bayes’ theorem lies in the fact that it relates the quantity of in-
terest, the probability that the hypothesis is true given the data, to the term
that we have a better chance of being able to assign, the probability that we
would have obtained the measured data if the hypothesis was true.

The various terms in Bayes’ theorem have formal names.

The term prob(hypothesis∣C) = prior probability represents our state of knowl-
edge(or ignorance) about the truth of the hypothesis before we have analyzed
the current data. This is modified by the experimental measurements through
the term prob(data∣hypothesis ∩ C) = likelihood function. This product gives
prob(hypothesis∣data ∩ C) = posterior probability representing our state of
knowledge about the truth of the hypothesis in the light of the data(after mea-
surements).

In some sense, Bayes’ theorem encapsulates the process of learning, as we shall
see later.

Second, consider the following results from the product rule

prob(X ∩ Y ∣I) = prob(Y ∩X ∣I) = prob(Y ∣X ∩ I) × prob(X ∣I) (5.30)

prob(X∩ ∼ Y ∣I) = prob(∼ Y ∩X ∣I) = prob(∼ Y ∣X ∩ I) × prob(X ∣I) (5.31)

Adding these equations we get

prob(X ∩ Y ∣I) + prob(X∩ ∼ Y ∣I) (5.32)
= (prob(Y ∣X ∩ I) + prob(∼ Y ∣X ∩ I))prob(X ∣I)

Since prob(Y ∣X ∩ I) + prob(∼ Y ∣X ∩ I) = 1 we have

prob(X ∩ Y ∣I) + prob(X∩ ∼ Y ∣I) = prob(X ∣I) (5.33)

which, again, is the same result as earlier. If, on the other hand, Y → {Yk, k =
1,2, . . . ,M} representing a set of M alternative possibilities, then we generalize
the two-state result above as

M

∑
k=1

prob(X ∩ Yk ∣I) = prob(X ∣I) (5.34)

We can derive this result as follows

prob(X ∩ Y1∣I) = prob(Y1 ∩X ∣I) = prob(Y1∣X ∩ I) × prob(X ∣I) (5.35)
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prob(X ∩ Y2∣I) = prob(Y2 ∩X ∣I) = prob(Y2∣X ∩ I) × prob(X ∣I) (5.36)

. . . . . . . . . . . . (5.37)

prob(X ∩ YM ∣I) = prob(YM ∩X ∣I) = prob(YM ∣X ∩ I) × prob(X ∣I) (5.38)

Adding these equations we get

M

∑
k=1

prob(X ∩ Yk ∣I) = prob(X ∣I)(
M

∑
k=1

prob(Yk ∩X ∣I)) (5.39)

If we assume that the {Yk} form a mutually exclusive and exhaustive set of
possibilities, that is, if one of the Y ′

ks is true, then all the others must be false,
we then get

M

∑
k=1

prob(Yk ∩X ∣I) = Î (5.40)

which is a normalization condition. This completes the derivation.

If we go to the continuum limit where we consider an arbitrarily large number
of propositions about some result (the range in which a given result might lie),
then as long as we choose the intervals in a contiguous fashion, and cover a big
enough range of values, we will have a mutually exclusive and exhaustive set of
possibilities. In the limit of M →∞, we obtain

prob(X ∣I) = ∫
∞

−∞
prob(x ∩ Y ∣I)dY (5.41)

which is the marginalization equation. The integrand here is technically a prob-
ability density function(pdf) rather than a probability. It is defined by

pdf(X ∩ Y = y∣I) = lim
δy→0

prob(X ∩ y ≤ Y ≤ y + δy∣I)
δy

(5.42)

and the probability that the value of Y lies in a finite range between y1 and y2

(and X is also true) is given by

prob(X ∩ y1 ≤ Y ≤ y2∣I) = ∫
y2

y1

pdf(X ∩ Y ∣I)dY (5.43)

which leads directly to the marginalization equation.

In this continuum limit the normalization condition takes the form

1 = ∫
∞

−∞
pdf(Y ∣X ∩ I)dY (5.44)

Marginalization is a very powerful device in data analysis because it enables us
to deal with nuisance parameters, that is, quantities which necessarily enter the
analysis but are of no intrinsic interest. The unwanted background signal present
in many experimental measurements, and instrumental parameters which are
difficult to calibrate, are examples of nuisance parameters.

330



5.2. Probability Interpretation

In the standard way of thinking about probability in relation to experiments,
measured results are related to probabilities using the concept of a limit fre-
quency. The limit frequency is linked to probability by this definition:

If C can lead to either A or ∼ A and if in
n repetitions, A occurs m times, then

P (A∣C) = lim
n→∞

m

n
(5.45)

We must now connect the mathematical formalism with this limit frequency
concept so that we can use the formalism to make predictions for experiments
in real physical systems.

This approach depends on whether we can prove that the limit makes sense for
real physical systems. Let us see how we can understand the real meaning of
the above interpretation of probability and thus learn how to use it in quantum
mechanics, where probability will be the dominant property.

Suppose that we have an experimental measurement, M , that can yield either
A or ∼ A as results, with a probability for result A given by

P (A∣M) = p (5.46)

In general, we let any sequence of n independent measurements be labeled as
event Mn and we define nA as the number of times A occurs, where 0 ≤ nA ≤ n.

Now imagine we carry out a sequence of n independent measurements and we
find that A occurs r times. The probability for a sequence of results that includes
result A occurring r times and ∼ A occurring (n−r) times (independent of their
order in the sequence) is given by

prqn−r (5.47)

where
q = P (∼ A∣M) = 1 − P (A∣M) = 1 − p (5.48)

The different sequence orderings are mutually exclusive events and thus we have

P (nA = r∣Mn) = ∑
all possible orderings

prqn−r (5.49)

The sum
∑

all possible orderings

(5.50)

just counts the number of ways to distribute r occurences of A and (n-r) oc-
curences of ∼ A, where all the terms contain the common factor prqn−r. This
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result is given by the Binomial probability distribution (more about this later)
as

n!

r!(n − r)!
(5.51)

so that
P (nA = r∣Mn) = n!

r!(n − r)!
prqn−r (5.52)

Now to get to the heart of the problem. The frequency of A in Mn is given by

fn =
nA
n

(5.53)

This is not necessarily = p in any set of measurements.

What is the relationship between them? Consider the following:

⟨nA⟩ = average or expectation value
= sum over [possible values times probability of that value]

=
n

∑
r=0

rP (nA = r∣Mn) =
n

∑
r=0

r
n!

r!(n − r)!
prqn−r (5.54)

We now use a clever mathematical trick to evaluate this sum. For the moment
consider p and q to be two arbitrary independent variables. At the end of the
calculation we will let q = 1 − p as is appropriate for a real physical system.

From the Binomial expansion formula, we have, in general,

n

∑
r=0

n!

r!(n − r)!
prqn−r = (p + q)n (5.55)

We then have

p
∂

∂p

n

∑
r=0

n!

r!(n − r)!
prqn−r = p ∂

∂p
(p + q)n (5.56)

so that
n

∑
r=0

r
n!

r!(n − r)!
prqn−r = np(p + q)n−1 (5.57)

This gives
n

∑
r=0

rP (nA = r∣Mn) = np(p + q)n−1 (5.58)

or
⟨nA⟩ = np(p + q)n−1 (5.59)

In a real physical system, we must have p + q = 1, so that we end up with the
result

⟨nA⟩) = np (5.60)
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and
⟨fn⟩ =

⟨nA⟩
n

= p (5.61)

This says that p = the average frequency.

This does not say, however, that fn is close to p.

Now consider a more general experiment where the outcome of a measurement
is the value of some continuous variable Q, with probability density (for its
continuous spectrum) given by

P (q < Q < q + dq∣M) = h(q)dq (5.62)

If we let h(q) contain delta-functions, then this derivation is also valid for the
discrete part of the spectrum. We can now derive the following useful result. If
Q is a nonnegative variable, which means that h(q) = 0 for q < 0, then for any
ε > 0

⟨Q⟩ = ∫
∞

0
h(q)q dq ≥ ∫

∞

ε
h(q)q dq ≥ ε∫

∞

ε
h(q)dq = εP (Q ≥ ε∣M) (5.63)

This implies that

P (Q ≥ ε∣M) ≤ ⟨Q⟩
ε

(5.64)

Now we apply this result to the nonnegative variable ∣Q − c∣α where α > 0 and
c = number, to obtain

P (∣Q − c∣ ≥ ε∣M) = P (∣Q − c∣α ≥ εα∣M) ≤ ⟨∣Q − c∣α⟩
εα

(5.65)

which is called Chebyshev’s inequality.

In the special case where α = 2, c = ⟨Q⟩=mean of distribution, we have

⟨∣Q − c∣2⟩ = ⟨∣Q − ⟨Q⟩∣2⟩ = −⟨Q2⟩ − ⟨Q2⟩2 = σ2 = variance (5.66)

so that letting ε = kσ we get

P (∣Q − ⟨Q⟩∣ ≥ kσ∣M) ≤ 1

k2
(5.67)

or, the probability of Q being k or more standard deviations from the mean is
no greater than 1/k2 (independent of the form of the probability distribution).

In a similar manner, it can also be shown that

P (∣fn − p∣ ≥ δ∣M) ≤ 1

nδ2
(5.68)

which implies that the probability of fn (the relative frequency of A in n in-
dependent repetitions of M) being more than δ away from p converges to 0 as
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n →∞. This is an example of the law of large numbers in action. This DOES
NOT say fn = p at any time or that fn remains close to p as n→∞.

It DOES say that the deviation of fn from p becomes more and more improba-
ble or that the probability of any deviation approaches 0 as n→∞.

It is in this sense that one uses the limit frequency from experiment to compare
with theoretical probability predictions in physics. From probability theory one
derives only statements of probability, not of necessity.

5.3. First hints of “subversive” or “Bayesian” think-
ing.....

How do we reason in situations where it is not possible to argue with certainty?
In other words, is there a way to use the techniques of deductive logic to study
the inference problem arising when using inductive logic? No matter what sci-
entists say, this is what they are actually doing most of the time.

The answer to this last question resides in the Bayes’ rule.

To Bayes(along with Bernoulli and Laplace), a probability represented a “degree-
of-belie” or “plausibility”, that is, how much one thinks that something is true,
based on the evidence on hand.

The developers of standard probability theory(Fisher, Neyman and Pearson)
thought this seemed too vague and subjective a set of ideas to be the basis
of a “rigorous” mathematical theory. Therefore, they defined probability as
the long-run relative frequency with which an event occurred, given infinitely
many repeated experimental trials. Since such probabilities can be measured,
probability was then thought to be an objective tool for dealing with random
phenomena.

This frequency definition certainly seems to be more objective, but it turns out
that its range of validity is far more limited.

In this Bayesian view, probability represents a state of knowledge. The condi-
tional probabilities represent logical connections rather than causal ones.

Example:

Consider an urn that contains 5 red balls and 7 green balls.

If a ball is selected at random, then we would all agree that the probability of
picking a red ball would be 5/12 and of picking a green ball would be 7/12.
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If the ball is not returned to the urn, then it seems reasonable that the prob-
ability of picking a red or green ball must depend on the outcome of the first
pick (because there will be one less red or green ball in the urn).

Now suppose that we are not told the outcome of the first pick, but are given
the result of the second pick. Does the probability of the first pick being red or
green change with the knowledge of the second pick?

Initially, many observers would probably say no, that is, at the time of the first
draw, there were still 5 red balls and 7 green balls in the urn, so the proba-
bilities for picking red and green should still be 5/12 and 7/12 independent of
the outcome of the second pick. The error in this argument becomes clear if
we consider the extreme example of an urn containing only 1 red and 1 green
ball. Although, the second pick cannot affect the first pick in a physical sense,
a knowledge of the second result does influence what we can infer about the
outcome of the first pick, that is, if the second ball was green, then the first ball
must have been red, and vice versa.

We can calculate the result as shown below:

Y = pick is GREEN (2nd pick)

X = pick is RED (1st pick)

I = initial number of RED/GREEN balls = (n,m)

A Bayesian would say:

prob(X ∣Y ∩ I) = prob(Y ∣X ∩ I) × prob(X ∣I)
prob(Y ∣I)

(5.69)

prob(X ∣Y ∩ {n,m}) =
prob(Y ∣X ∩ {n,m}) × n

n+m
n

n+m
m

n+m−1
+ m
n+m

m−1
n+m−1

=
m

n+m−1
× n

nm
n+m−1

+ m(m−1)
n+m−1

= n

n +m − 1
(5.70)

n =m = 1⇒ prob(X ∣Y ∩ {1,1}) = 1

1 + 1 − 1
= 1 (5.71)

n = 5,m = 7⇒ prob(X ∣Y ∩ {5,7}) = 5

5 + 7 − 1
= 5

11
= 0.456 (5.72)

Non-Bayesian says:

prob(X ∣{5,7}) = 5

12
= 0.417 (5.73)

Clearly, the Bayesian and Non-Bayesian disagree.
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However, the non-Bayesian is just assuming that the calculated result 0.417 is
correct, whereas, the Bayesian is using the rules of probability (Bayes’ Rule) to
infer the result 0.456 correctly.

The concerns about the subjectivity of the Bayesian view of probability are un-
derstandable. I think that the presumed shortcomings of the Bayesian approach
merely reflect a confusion between subjectivity and the difficult technical ques-
tion of how probabilities(especially prior probabilities) should be assigned.

The popular argument is that if a probability represents a degree-of-belief, then
it must be subjective, because my belief could be different from yours. The
Bayesian view is that a probability does indeed represent how much we believe
that something is true, but that this belief should be based on all the relevant
information available(all prior probabilities).

While this makes the assignment of probabilities an open-ended question, be-
cause the information available to me may not be the same as that available to
you, it is not the same as subjectivity. It simply means that probabilities are
always conditional, and this conditioning must be stated explicitly.

Objectivity demands only that two people having the
same information should assign the same probability.

Cox looked at the question of plausible reasoning from the perspective of logical
consistency. He found that the only rules that worked were those of probability
theory! Although the sum and product rules of probability are straightforward
to prove for frequencies (using Venn diagrams), Cox showed that their range
of validity goes much further. Rather than being restricted to frequencies, he
showed that probability theory constitutes the basic calculus for logical and
consistent plausible reasoning, which means scientific inference!

Another Example - Is this a fair coin?

We consider a simple coin-tossing experiment. Suppose that I had found this
coin and we observed 4 heads in 11 flips.

If by the word fair we mean that we would be prepared to make a 50 ∶ 50 bet
on the outcome of a flip being a head or a tail, then do you think that it is a
fair coin?

If we ascribe fairness to the coin, then we naturally ask how sure are we that
this was so or if it was not fair, how unfair do we think it was?

A way of formulating this problem is to consider a large number of contiguous
hypotheses about the range in which the bias-weighting of the coin might lie.
If we denote bias-weighting by H, then H = 0 and H = 1 can represent a coin
which produces a tail(not a head!) or a head on every flip, respectively. There

336



is a continuum of possibilities for the value of H between these limits, with
H = 1/2 indicating a fair coin. The hypotheses might then be, for example

(a) 0.00 ≤H ≤ 0.01
(b) 0.01 ≤H ≤ 0.02
(c) 0.02 ≤H ≤ 0.03

and so on

Our state of knowledge about the fairness, or the degree of unfairness, of the
coin is then completely summarized by specifying how much we believe these
various hypotheses to be true. If we assign a high probability to one (or a closely
grouped few) of these hypotheses, compared to others, then this indicates that
we are confident in our estimate of the bias-weighting. If there was no such
distinction, then it would reflect a high level of ignorance about the nature of
the coin.

In this case, our inference about the fairness of the data is summarized by the
conditional pdf prob(H ∣{data}H∩I). This is just a representation of the limiting
case of a continuum of hypotheses for the value of H, that is, the probability
that H lies in an infinitesimally narrow range between h and h + δh is given
by prob(H = h∣{data} ∩ I)dH. To estimate this posterior pdf, we need to use
Baye’s theorem, which relates the pdf of interest to two others that are easier
to assign:

prob(H ∣{data} ∩ I)∝ prob({data}∣H ∩ I) × prob(H ∣I) (5.74)

We have omitted the denominator prob({data}∣I) since it does not involve bias-
weighting explicitly and replaced the equality by a proportionality. The omitted
constant can be determined by normalization

∫
1

0
prob(H ∣{data} ∩ I)dH = 1 (5.75)

The prior pdf, prob(H ∣I), on the right side represents what we know about
the coin given only that I found the coin. This means that we should keep an
open mind about the nature of the coin. A simple probability assignment which
reflects this is a uniform pdf

prob(H ∣I) =
⎧⎪⎪⎨⎪⎪⎩

1 0 ≤H ≤ 1

0 otherwise
(5.76)

This prior state of knowledge (or ignorance) is modified by the data through the
likelihood function, prob({data}∣H ∩ I), which is a measure of the chance that
we would have obtained the data we actually observed if the value of the bias-
weighting H was given (as known). If, in the conditioning information I, we
assume that the flips of the coin were independent events, so that the outcome
of one did not influence that of another, then the probability of obtaining the
data R heads in N tosses is given by the binomial distribution

prob({data}∣H ∩ I)∝HR(1 −H)N−R (5.77)

337



The product of these last two results then gives the posterior pdf that we require.

It represents our state of knowledge about the nature of the coin in light of the
data.

It is instructive to see how this pdf evolves as we obtain more and more data
pertaining to the coin. A computer simulation is shown below allows us to
demonstrate what happens in some typical cases.

The simulation allows for three distinct and very different prior probabilities:

(1) Uniform distribution

(2) Gaussian distribution centered around 0.5 with some spread

(3) Sum of two Gaussians with different centers

These prior probabilities represent very different initial knowledge:

(1) total ignorance-we have no idea if it is fair

(2) knowledge that mean is 0.5[with spread]-we think it is fair

(3) knowledge that it is unfair (either all tails or all heads) [with spreads]

In the simulation we can choose the true mean value (h0), which is then reflected
in the simulated coin tosses (the data).

As can be seen from the images below, the only effect that different prior prob-
abilities have is to change the period of time evolution to the final posterior pdf
(which is the same eventually in all cases)!
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(1) total ignorance - we have no idea if it is fair

(a) Prior (b) Posterior

Figure 5.1: Total Ignorance

(2) knowledge that mean is 0.5 [with spread] - we think it is fair

(a) Prior (b) Posterior

Figure 5.2: Knowledge that Mean is 0.5

(3) knowledge that it is unfair (either all tails or all heads) [with spreads]

(a) Prior (b) Posterior

Figure 5.3: Knowledge that it is Unfair
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In each case, the first figure shows the posterior pdf for H given no data (it is
the same as the prior pdf) and the second figure shows the posterior pdf after
1000 tosses and they clearly indicate that no matter what our initial knowledge,
the final posterior pdf will be the same, that is, the posterior pdf is dominated
by the likelihood function(the actual data) and is independent of the prior pdf.

5.3.1. The Problem of Prior Probabilities

We are now faced with the most difficult question. How do we assign probabil-
ities based on prior information?

The oldest idea was devised by Bernoulli - the principle of insufficient reason
or the principle of indifference. It states that if we determine a set of basic,
mutually exclusive, possibilities, and we have no reason to believe that any one
of them is more likely to be true than another, then we must assign the same
probability to each of them. Clearly, this makes sense. Think of flipping a coin
with two possibilities, heads and tails. If it is a legitimate coin, then we have
no reason to favor heads over tails and we must assign equal probability to each
possibility, that is,

prob(heads∣I) = prob(tails∣I) = 1

2
(5.78)

Let us elaborate on the idea of not having any reason to believe..... Suppose we
had ten possibilities labeled by Xi, i = 1,2, . . . ,10 and we had no reason to think
any was more likely than any other. We would then have

prob(X1∣I) = prob(X2∣I) = . . . = prob(X10∣I) =
1

10
(5.79)

Suppose that we relabel or reorder the possibilities. If the conditioning on I
truly represents gross ignorance about any details of the situation, then such a
reordering should not make any difference in the probability assignments. Any
other statement has to mean that we have other important information besides
the simple ordering of the possibilities. For example, imagine that you called a
certain side of the coin heads and therefore the other side tails. Nothing changes
if your friend switches the meaning of heads and tails. This justification of the
Bernoulli principle led Jaynes to suggest that we think of it as a consequence of
the requirement of consistency.

This principle of insufficient reason can only be applied to a limited set of
problems involving games of chance. It leads, however, to some very familiar and
very important results if combined with the product and sum rules of probability
theory.

Example 1: Assume W white balls and R red balls in an urn. We now pick
the balls out of the urn randomly. The principle of indifference says that we
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should assign a uniform prior probability (actually a pdf)

prob(j∣I) = 1

R +W
, j = 1,2,3, . . . ,R +W (5.80)

for the proposition that any particular ball, denoted by index j, will be picked.
Using the marginalization idea from earlier

prob(X ∣I) = ∫
∞

−∞
prob(X ∩ Y ∣I)dY (5.81)

we have

prob(red∣I) =
R+W
∑
j=1

prob(red ∩ j∣I) (5.82)

=
R+W
∑
j=1

prob(j∣I)prob(red∣j ∩ I) = 1

R +W

R+W
∑
j=1

prob(red∣j ∩ I)

where we have used the product rule. The term prob(red∣j ∩ I) is one if the jth

ball is red and zero if it is white. Therefore the summation equals the number
of red balls R and we get

prob(red∣I) = 1

R +W

R+W
∑
j=1

prob(red∣j ∩ I) = R

R +W
(5.83)

as expected. However, we have derived this result from the principle of indiffer-
ence and the product rule. It also follows from the basic notion of probability,
that is,

prob(red∣I) = number of cases favorable to red
total number of equally possible cases

= R

R +W
(5.84)

We now assume that after each pick the ball is returned to the urn and we ask
the question: what is the probability that N such picks (trials) will result in r
red balls?

Using marginalization and the product rule we can write

prob(r∣N∩I) =∑
k

prob(r∩Sk ∣N∩I) =∑
k

prob(r∣Sk∩N∩I)prob(Sk ∣N∩I) (5.85)

where the summation is over the 2N possible sequences of red-white outcomes
{Sk} of N picks. The term prob(r∣Sk ∩N ∩ I) equals one if Sk contains exactly
r red balls and is zero otherwise, so that we need only consider those sequences
which have exactly r red outcomes for prob(Sk ∣N ∩ I).

Now we have

prob(Sk ∣N ∩ I) = [prob(red∣I)]r [prob(white∣I)]N−r = RrWN−r

(R +W )N
(5.86)
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Hence,

prob(r∣N ∩ I) = RrWN−r

(R +W )N ∑k
prob(r∣Sk ∩N ∩ I) (5.87)

for those Sk that matter, i.e., we are only considering those Sk which contain
exactly r red balls. In this case we have

prob(r∣N ∩ I) = RrWN−r

(R +W )N
N !

r!(N − r)!
(5.88)

where the last factor just corresponds to the number of sequences (permutations)
containing r red balls. Thus,

prob(r∣N ∩ I) = N !

r!(N − r)!
pr(1 − p)N−r (5.89)

where
p = R

R +W
= probability of picking a red ball (5.90)

and
q = 1 − p = W

R +W
= probability of picking a white ball (5.91)

Note that p+q = 1 as it should since red and white balls are the only possibilities.

We can then compute the frequency r/N with which we expect to observe red
balls. We have

⟨ r
N

⟩ =
N

∑
r=0

r

N
prob(r∣N ∩ I) =

N

∑
r=0

r

N

N !

r!(N − r)!
pr(1 − p)N−r

=
N

∑
r=1

(N − 1)!
(r − 1)!(N − r)!

pr(1 − p)N−r = p
N−1

∑
j=0

(N − 1)!
j!(N − r)!

pj(1 − p)N−1−j

= p(p + q)N−1 = p = R

R +W
(5.92)

as the expected or anticipated result. Thus, the expected frequency of red balls,
in repetitions of the urn experiment, is equal to the probability of picking one
red ball in a single trial.

A similar calculation for the mean-square deviation gives the result

⟨( r
N

− ⟨ r
N

⟩)
2

⟩ = ⟨( r
N

− p)
2

⟩ = pq
N

(5.93)

Since this becomes zero in the limit of large N , it agrees with the result we
derived earlier. It also verifies that Bernoulli’s famous theorem or law of large
numbers is valid:

lim
N→∞

( r
N

) = prob(red∣I) (5.94)
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This relationship, which allows prediction of the long-run frequency of occur-
rence from the probability assignment, goes in a direction opposite to the one we
want, that is, we would like to be able to determine the probability of obtaining
a red ball, in a single pick, given a finite number of observed outcomes. This is,
in fact, exactly what Bayes theorem allows us to do!

How do we generalize Bernoulli’s principle of insufficient reason to the case of
continuous parameters, that is, when the quantity of interest is not restricted
to certain discrete values (heads/tails)?

Suppose we have a variable X which represents the position of some object. We
then define a probability as follows. Given the information I, the probability
that X lies in the infinitesimal range between x and x + dx is

prob(X = x∣I) = lim
δx→0

prob(x ≤X ≤ x + δx∣I) (5.95)

so that we are treating continuous pdfs as the limiting case of discrete ones.
Although it is still awkward to enumerate the possibilities in this case, we can
still make use of the principle of consistency which underlies the principle of
indifference.

Examples:

A Location Parameter

Suppose that we are unsure about the actual location of the origin. Should
this make any difference to the pdf assigned for X? Since I represents gross
ignorance about any details of the situation other than the knowledge that X
pertains to a location, the answer must be no; otherwise we must already have
information regarding the position of the object. Consistency then demands
that the pdf for X should not change with the location of the origin or any
offset in the position values. Mathematically, we say

prob(X ∣I)dX = prob(X + x0∣I)d(X + x0) (5.96)

Since x0 is a constant, d(X + x0) = dX so that we have

prob(X ∣I) = prob(X + x0∣I) = constant (5.97)

so that the complete ignorance about a location parameter is represented by the
assignment of a uniform pdf.

A Scale Parameter

Suppose that we have another parameter that tells us about size or magnitude, a
so-called scale parameter. If we are interested in the size L of some object and we
have no idea about the length scale involved, then the pdf should be invariant
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with respect to shrinking or stretching the length scale. Mathematically, the
requirement of consistency can be written

prob(L∣I)dL = prob(βL∣I)d(βL) (5.98)

where β is a positive constant. Then since d(βL) = β dL we must have

prob(L∣I) = βprob(βL∣I) (5.99)

which can only be satisfied if

prob(L∣I)∝ 1

L
(5.100)

which is called Jeffrey’s prior. It represents complete ignorance about the value
of a scale parameter.

Now we must have

prob(L∣I)dL = prob(f(L)∣I)df(L) (5.101)

since we are looking at the same domain of values in each case. We then have

prob(logL∣I)d(logL) = prob(L∣I)dL (5.102)

prob(logL∣I) dL
L

= prob(L∣I)dL (5.103)

prob(logL∣I) = Lprob(L∣I) = constant (5.104)

So that assignment of a uniform pdf for logL is the way to represent complete
ignorance about a scale parameter.

5.4. Testable Information:
The Principle of Maximum Entropy

Clearly, some pdfs can be assigned given only the nature of the quantities in-
volved (as we saw above). The methods employed hinge on the use of consistency
arguments along with transformation groups, which characterize the ignorance
for a given situation.

For a set of discrete probabilities(finite) the associated pdf must be invariant
with respect to any permutation of the propositions (permutation group). In
the continuous parameter case, the associated transformations are translation
(origin shift) and dilation (shrink/stretch), which are also group transforma-
tions.

Let us move on to a situation where we do not have total ignorance.
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Suppose that a die, with the usual six faces, was rolled a very large number of
times and we are only told that the average result was 4.5. What probability
should we assign for the various outcomes {Xi} that the face on top had i dots?

The information or condition I provided by the experiment is written as a simple
constraint equation

n

∑
i=1

i prob(Xi∣I) = 4.5 (5.105)

If we had assumed a uniform pdf, then we would have predicted a different
average

n

∑
i=1

i prob(Xi∣I) =
1

6

n

∑
i=1

i = 3.5 (5.106)

which means the uniform pdf is not a valid assignment.

There are many pdfs that are consistent with the experimental results. Which
one is the best?

The constraint equation above is called testable information.

With such a condition, we can either accept or reject any proposed pdf. Jaynes(one
of the most brilliant theoretical physicists ever) proposed that, in this situation,
we should make the assignment by using the principle of maximum entropy
(MaxEnt), that is, we should choose that pdf which has the most entropy S
while satisfying the available constraints.

Explicitly, for case in the die experiment above, we need to maximize

S = −
6

∑
i=1

pi loge(pi) (5.107)

where pi = prob(Xi∣I) subject to the conditions:

(1) normalization constraint

6

∑
i=1

pi = 1 (5.108)

and

(2) testable information constraint

6

∑
i=1

ipi = 4.5 (5.109)

Such a constrained optimization is done using the method of Lagrange multipli-
ers as shown below.
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Define the functions

f(pi) =
6

∑
i=1

pi − 1 = 0⇒ ∂f

∂pj
≡ 1 (5.110)

g(pi) =
6

∑
i=1

ipi − 4.5 = 0⇒ ∂g

∂pj
≡ j (5.111)

The maximization problem can then be written in the following way. Instead
we maximize the quantity

S + λff + λgg = S (by definition) (5.112)

where the constants are called undetermined or Lagrange multipliers. Thus the
maximization equation becomes

∂S

∂pj
+ λf

∂f

∂pj
+ λg

∂g

∂pj
= 0 j = 1,2,3,4,5,6 (5.113)

We get the equations

− loge(pj) − 1 + λf + jλg = 0 j = 1,2,3,4,5,6 (5.114)

and we obtain

− loge(pj+1) − 1 + λf + (j + 1)λg = − loge(pj) − 1 + λf + jλg (5.115)

This implies that

loge
pj+1

pj
= λg ⇒

pj+1

pj
= β = constant (5.116)

This gives
− loge(p1) − 1 + λf + j logβ = 0⇒ λf = 1 + loge

p1

β
(5.117)

Therefore
6

∑
i=1

pi = 1 = p1(1 + β + β2 + β3 + β4 + β5) (5.118)

6

∑
i=1

ipi = 4.5 = p1(1 + 2β + 3β2 + 4β3 + 5β4 + 6β5) (5.119)

or dividing to get rid of p1 we have

1 + 2β + 3β2 + 4β3 + 5β4 + 6β5

1 + β + β2 + β3 + β4 + β5
= 4.5 (5.120)

which gives
1.5β5 + 0.5β4 − 0.5β3 − 1.5β2 − 2.5β − 3.5 = 0 (5.121)
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Solving numerically for β we get 1.449255 so that

p1 =
1

1 + β + β2 + β3 + β4 + β5
= 0.05435

p2 = βp1 = 0.07877

p3 = βp2 = 0.11416

p4 = βp3 = 0.16545

p5 = βp4 = 0.23977

p6 = βp5 = 0.34749 (5.122)

is the MaxEnt assignment for the pdf for the outcomes of the die roll, given
only that it has the usual six faces and yields an average result of 4.5.

Why should the entropy function

S = −
6

∑
i=1

pi loge(pi) (5.123)

specified above be the choice for a selection criterion?

Let us look at two examples that suggest this criterion is highly desirable and
probably correct.

Kangaroo Problem(Gull and Skilling)

The kangaroo problem is as follows:

Information: 1/3 of all kangaroos have blue eyes and 1/3 of all kangaroos are
left-handed

Question: On the basis of this information alone, what proportion of kangaroos
are both blue-eyed and left-handed?

For any particular kangaroo, there are four distinct possibilities, namely, that
it is

(1) blue-eyed and left-handed

(2) blue-eyed and right-handed

(3) not blue-eyed but left-handed

(4) not blue-eyed but right-handed

Bernoulli’s law of large numbers says that the expected values of the frac-
tion of kangeroos with characteristics (1)-(4) will be equal to the probabilities
(p1, p2, p3, p4) we assign to each of these propositions.
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This is represented by a 2 × 2 truth or contingency table as shown below:

Left-handed True Left-handed False
Blue-Eyed True p1 p2

Blue-Eyed False p3 p4

Table 5.3: GeneralTruth Table

Although there are four possible combinations of eye-color and handedness to
be considered, the related probabilities are not completely independent of each
other. We have the standard normalization requirement

∑
i

pi = 1 (5.124)

In addition, we also have two conditions on the so-called marginal probabilities

p1 + p2 = prob(blue ∩ left∣I) + prob(blue ∩ right∣I) = 1/3 (5.125)

p1 + p3 = prob(blue ∩ left∣I) + prob(not − blue ∩ left∣I) = 1/3 (5.126)

Since any pi ≥ 0, these imply that 0 ≤ p1 ≤ 1/3. Using this result we can
characterize the contingency table by a single variable x = p1 as in the table
below:

Left-handed True Left-handed False
Blue-Eyed True 0 ≤ x ≤ 1/3 1/3 − x
Blue-Eyed False 1/3 − x 1/3 + x

Table 5.4: For Kangaroo Problem

where we have used
x = p1 (5.127)

p1 + p2 =
1

3
→ p2 =

1

3
− x (5.128)

p1 + p3 =
1

3
→ p3 =

1

3
− x (5.129)

p1 + p2 + p3 + p4 = 1→ p4 =
1

3
+ x (5.130)

All such solutions, where 0 ≤ x ≤ 1/3, satisfy the constraints of the testable
information that is available. Which one is best?

Common sense leads us towards the assignment based on independence of these
two traits, that is, any other assignment would indicate a knowledge of kangaroo
eye-color told us something about its handedness. Since we have no information
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to determine even the sign of any potential correlation, let alone its magnitude,
any choice other than independence is not justified.

The independence choice says that

x = p1 = prob(blue ∩ left∣I) = prob(blue∣I)prob(left∣I) =
1

9
(5.131)

In this particular example it was straightforward to decide the most sensible
pdf assignment in the face of the inadequate information.

We now ask whether there is some function of the {pi} which, when maximized
subject to the known constraints, yields the independence solution. The im-
portance of finding an answer to this question is that it would become a good
candidate for a general variational principle that could be used in situations
that were too complicated for our common sense.

Skilling has shown that the only function which gives x = 1/9 is the entropy S
as specified above or

S = −
4

∑
i=1

pi loge(pi) (5.132)

= −x loge(x) − 2(1

3
− x) loge (

1

3
− x) − (1

3
+ x) loge (

1

3
+ x)

The results of Skilling’s investigations, including three proposed alternatives,

S1 = −
4

∑
i=1

pi loge(pi)⇒MaxEnt

S2 = −
4

∑
i=1

p2
i S3 = −

4

∑
i=1

loge(pi) S4 = −
4

∑
i=1

√
pi (5.133)

is shown in the table below:

Function Optimal x Implied Correlation
S1 0.1111 None
S2 0.0833 Negative
S3 0.1301 Positive
S4 0.1218 Positive

Table 5.5: Skilling Results

Clearly, only the MaxEnt assumption leads to an optimal value with no corre-
lations as expected.

Let us look at another example that lends further support to the MaxEnt prin-
ciple.
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The Team of Monkeys

Suppose there are M distinct possibilities {Xi} to be considered. How can we
assign truth tables (prob(Xi∣I) = pi) to these possibilities given some testable
information I (experimental results).

What is the most honest and fair procedure?

Imagine playing the following game.

The various propositions are represented by different boxes all of the same size
into which pennies are thrown at random. The tossing job is often assigned
to a team of monkeys under the assumption that this will not introduce any
underlying bias into the process.

After a very large number of coins have been distributed into the boxes, the
fraction found in each of the boxes gives a possible assignment of the probabil-
ity for the corresponding {Xi}.

The resulting pdf may not be consistent with the constraints of I, of course, in
which case it must be rejected as a potential candidate. If it is in agreement,
then it is a viable option.

The process is then repeated by the monkeys many times. After many such
trials, some distributions will be found to come up more often than others. The
one that occurs most frequently (and satisfies I) would be a sensible choice for
prob({Xi}∣I).

This is so because the team of monkeys has no axe to grind (no underlying
bias) and thus the most frequent solution can be regarded as the one that best
represents our state of knowledge. It agrees with all the testable information
available while being as indifferent as possible to everything else.

Does this correspond to the pdf to the greatest value of S = −∑pi loge(pi) ?

After the monkeys have tossed all the pennies given to them, suppose that we
find n1 in the first box, n2 in the second box, and so on. We then have

N =
M

∑
i=1

ni = total number of coins (5.134)

which will be assumed to be very large and also much greater than the number
of boxes M .

This distribution gives rise to the candidate pdf {pi} for the possibilities {Xi}:

pi =
ni
N

, i = 1,2, . . . ,M (5.135)
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Since every penny can land in any of the boxes there are MN number of dif-
ferent ways of tossing the coins among the boxes. Each way, by assumption of
randomness and no underlying bias by the monkeys, is equally likely to occur.
All of the basic sequences, however, are not distinct, since many yield the same
distribution {ni}. The expected frequency F with which a set {pi} will arise, is
given by

F ({pi}) =
number of ways of obtaining{ni}

MN
(5.136)

The numerator is just the number of ways to distribute N coins in a distribution
{ni} which is given by

number of ways of obtaining{ni} =
N !

n1!n2! . . . nM !
(5.137)

Putting everything together we have

F ({pi}) =
number of ways of obtaining{ni}

MN
=

N !
n1!n2!...nM !

MN
(5.138)

log (F ) = −N log (M) + log (N !) −
M

∑
i=1

log (ni!) (5.139)

Using Stirling’s approximation log (ni!) ≈ n log (n) − n for large n, we find

log (F ) = −N log (M) +N log (N) −
M

∑
i=1

ni log (ni) −N +
M

∑
i=1

ni

= −N log (M) +N log (N) −
M

∑
i=1

ni log (ni) (5.140)

and thus

log (F ) = −N log (M) +N log (N) −
M

∑
i=1

piN log (piN)

= −N log (M) +N log (N) −
M

∑
i=1

piN(log (pi) + log (N))

= −N log (M) +N log (N) −N
M

∑
i=1

pi log (pi) −N log (N)
M

∑
i=1

pi

= −N log (M) +N log (N) −N
M

∑
i=1

pi log (pi) −N log (N)

= −N log (M) −N
M

∑
i=1

pi log (pi) (5.141)

Maximizing the log (F ) is equivalent to maximizing F , which is the expected
frequency with which the monkeys will come up with the candidate pdf {pi},
that is, maximizing log (F ) will give us the assignment prob({Xi}∣I) which best
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represents our state of knowledge consistent with the testable information I.
SinceM and N are constants, this is equivalent to the constrained maximization
of the entropy function

S = −∑pi loge(pi) (5.142)

and so we recover the MaxEnt procedure once again.

5.5. Discussion

In discussions of Bayesian methods, opponents often use the words subjective
probabilities to say that the methods are not as valid as normal objective prob-
ability theory.

These opponents are misguided.

The main point of concern centers around the choice of the prior pdf, that is,
what should we do if it is not known?

This is actually a very strange question. It is usually posed this way by oppo-
nents of the Bayesian methods in an attempt to prove its subjective nature.

No probability, whether prior, likelihood or whatever, is ever known. It is simply
an assignment which reflects the relevant information that is available. Thus,
prob(x∣I1) ≠ prob(x∣I2), in general, where the conditioning statements I1 and I2
are different.

Nevertheless, objectivity can, and must, be introduced by demanding the two
people with the same information I should assign the same pdf. I think that
this consistency requirement is the most important idea of all.

Invariance arguments, under transformation groups, can be used to uniquely
determine a pdf when given only the nature of the quantities involved. MaxEnt
provides a powerful extension when we have testable constraints.

While we may yet be far from knowing how to convert every piece of vague
information into a concrete probability assignment, we can deal with a wide
variety of problems with these ideas.

The important point is that nowhere in our discussion have we explicitly dif-
ferentiated between a prior and a likelihood. We have only considered how to
assign prob(X ∣I) for different types of I. If X pertains to data, then we call
prob(X ∣I) a likelihood. If neither X nor I refers to (new) measurements, then
we may say it is a prior.

The distinction between the two cases is one of nomenclature and not of objec-
tivity or subjectivity. If it appears otherwise, then this is because we are usually
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prepared to state conditioning assumptions for the likelihood function but shy
away from doing likewise for the prior pdf.

The use of Bayesian methods in quantum mechanics presents a very different
view of quantum probability than normally appears in quantum theory text-
books. It is becoming increasingly important in discussions of measurement.

5.6. Problems

5.6.1. Simple Probability Concepts

There are 14 short problems in this section. If you have not studied any prob-
ability ideas before using this book, then these are all new to you and doing
them should enable you to learn the basic ideas of probability methods. If you
have studied probability ideas before, these should all be straightforward.

(a) Two dice are rolled, one after the other. Let A be the event that the
second number if greater than the first. Find P (A).

(b) Three dice are rolled and their scores added. Are you more likely to get 9
than 10, or vice versa?

(c) Which of these two events is more likely?

1. four rolls of a die yield at least one six

2. twenty-four rolls of two dice yield at least one double six

(d) From meteorological records it is known that for a certain island at its
winter solstice, it is wet with probability 30%, windy with probability
40% and both wet and windy with probability 20%. Find

(1) Prob(dry)
(2) Prob(dry AND windy)
(3) Prob(wet OR windy)

(e) A kitchen contains two fire alarms; one is activated by smoke and the
other by heat. Experiment has shown that the probability of the smoke
alarm sounding within one minute of a fire starting is 0.95, the probability
of the heat alarm sounding within one minute of a fire starting is 0.91, and
the probability of both alarms sounding within one minute is 0.88. What
is the probability of at least one alarm sounding within a minute?

(f) Suppose you are about to roll two dice, one from each hand. What is
the probability that your right-hand die shows a larger number than your
left-hand die? Now suppose you roll the left-hand die first and it shows 5.
What is the probability that the right-hand die shows a larger number?
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(g) A coin is flipped three times. Let A be the event that the first flip gives a
head and B be the event that there are exactly two heads overall. Deter-
mine

(1) P (A∣B)
(2) P (B∣A)

(h) A box contains a double-headed coin, a double-tailed coin and a conven-
tional coin. A coin is picked at random and flipped. It shows a head.
What is the probability that it is the double-headed coin?

(i) A box contains 5 red socks and 3 blue socks. If you remove 2 socks at
random, what is the probability that you are holding a blue pair?

(j) An inexpensive electronic toy made by Acme Gadgets Inc. is defective
with probability 0.001. These toys are so popular that they are copied
and sold illegally but cheaply. Pirate versions capture 10% of the market
and any pirated copy is defective with probability 0.5. If you buy a toy,
what is the chance that it is defective?

(k) Patients may be treated with any one of a number of drugs, each of which
may give rise to side effects. A certain drug C has a 99% success rate
in the absence of side effects and side effects only arise in 5% of cases.
However, if they do arise, then C only has a 30% success rate. If C is
used, what is the probability of the event A that a cure is effected?

(l) Suppose a multiple choice question has c available choices. A student
either knows the answer with probability p or guesses at random with
probability 1 − p. Given that the answer selected is correct, what is the
probability that the student knew the answer?

(m) Common PINs do not begin with zero. They have four digits. A computer
assigns you a PIN at random. What is the probability that all four digits
are different?

(n) You are dealt a hand of 5 cards from a conventional deck(52 cards). A
full house comprises 3 cards of one value and 2 of another value. If that
hand has 4 cards of one value, this is called four of a kind. Which is more
likely?

5.6.2. Playing Cards

Two cards are drawn at random from a shuffled deck and laid aside without
being examined. Then a third card is drawn. Show that the probability that
the third card is a spade is 1/4 just as it was for the first card. HINT : Consider
all the (mutually exclusive) possibilities (two discarded cards spades, third card
spade or not spade, etc).
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5.6.3. Birthdays

What is the probability that you and a friend have different birthdays? (for
simplicity let a year have 365 days). What is the probability that three people
have different birthdays? Show that the probability that n people have different
birthdays is

p = (1 − 1

365
)(1 − 2

365
)(1 − 3

365
) .....(1 − n − 1

365
)

Estimate this for n << 365 by calculating log(p) (use the fact that log(1+x) ≈ x
for x ≪ 1). Find the smallest integer N for which p < 1/2. Hence show that
for a group of N people or more, the probability is greater than 1/2 that two of
them have the same birthday.

5.6.4. Is there life?

The number of stars in our galaxy is about N = 1011. Assume that the proba-
bility that a star has planets is p = 10−2, the probability that the conditions on
the planet are suitable for life is q = 10−2, and the probability of life evolving,
given suitable conditions, is r = 10−2. These numbers are rather arbitrary.

(a) What is the probability of life existing in an arbitrary solar system (a star
and planets, if any)?

(b) What is the probability that life exists in at least one solar system?

5.6.5. Law of large Numbers

This problem illustrates the law of large numbers.

(a) Assuming the probability of obtaining heads in a coin toss is 0.5, compare
the probability of obtaining heads in 5 out of 10 tosses with the probability
of obtaining heads in 50 out of 100 tosses and with the probability of
obtaining heads in 5000 out of 10000 tosses. What is happening?

(b) For a set of 10 tosses, a set of 100 tosses and a set of 10000tosses, calculate
the probability that the fraction of heads will be between 0.445 and 0.555.
What is happening?

5.6.6. Bayes

Suppose that you have 3 nickels and 4 dimes in your right pocket and 2 nickels
and a quarter in your left pocket. You pick a pocket at random and from it
select a coin at random. If it is a nickel, what is the probability that it came
from your right pocket? Use Baye’s formula.
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5.6.7. Psychological Tests
Two psychologists reported on tests in which subjects were given the prior in-
formation:

I = In a certain city, 85% of the taxicabs
are blue and 15% are green

and the data:

D = A witness to a crash who is 80% reliable (i.e.,
who in the lighting conditions prevailing can
distinguish between green and blue 80% of the
time) reports that the taxicab involved in the
crash was green

The subjects were then asked to judge the probability that the taxicab was
actually blue. What is the correct answer?

5.6.8. Bayes Rules, Gaussians and Learning
Let us consider a classical problem(no quantum uncertainty). Suppose we are
trying to measure the position of a particle and we assign a prior probability
function,

p(x) = 1√
2πσ2

0

e−(x−x0)2/2σ2
0

Our measuring device is not perfect. Due to noise it can only measure with a
resolution ∆, i.e., when I measure the position, I must assume error bars of this
size. Thus, if my detector registers the position as y, I assign the likelihood that
the position was x by a Gaussian,

p(y∣x) = 1√
2π∆2

e−(y−x)
2/2∆2

Use Bayes theorem to show that, given the new data, I must now update my
probability assignment of the position to a new Gaussian,

p(x∣y) = 1√
2πσ′2

e−(x−x
′)2/2σ′2

where

x′ = x0 +K1(y − x0) , σ′2 =K2σ
2
0 , K1 =

σ2
0

σ2
0 +∆2

, K2 =
∆2

σ2
0 +∆2

Comment on the behavior as the measurement resolution improves. How does
the learning process work?
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5.6.9. Berger’s Burgers-Maximum Entropy Ideas

A fast food restaurant offers three meals: burger, chicken, and fish. The price,
Calorie count, and probability of each meal being delivered cold are listed below
in Table 5.1:

Item Entree Cost Calories Prob(hot) Prob(cold)
Meal 1 burger $1.00 1000 0.5 0.5
Meal 2 chicken $2.00 600 0.8 0.2
Meal 3 fish $3.00 400 0.9 0.1

Table 5.6: Berger’s Burgers Details

We want to identify the state of the system, i.e., the values of

Prob(burger) = P (B)
Prob(chicken) = P (C)
Prob(fish) = P (F )

Even though the problem has now been set up, we do not know which state the
actual state of the system. To express what we do know despite this ignorance, or
uncertainty, we assume that each of the possible states Ai has some probability
of occupancy P (Ai), where i is an index running over the possible states. As
stated above, for the restaurant model, we have three such possibilities, which
we have labeled P (B), P (C), and P (F ).

A probability distribution P (Ai) has the property that each of the probabilities
is in the range 0 ≤ P (Ai) ≤ 1 and since the events are mutually exclusive and
exhaustive, the sum of all the probabilities is given by

1 =∑
i

P (Ai) (5.143)

Since probabilities are used to cope with our lack of knowledge and since one
person may have more knowledge than another, it follows that two observers
may, because of their different knowledge, use different probability distributions.
In this sense probability, and all quantities that are based on probabilities are
subjective.

Our uncertainty is expressed quantitatively by the information which we do not
have about the state occupied. This information is

S =∑
i

P (Ai) log2 ( 1

P (Ai)
) (5.144)

This information is measured in bits because we are using logarithms to base 2.
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In physical systems, this uncertainty is known as the entropy. Note that the en-
tropy, because it is expressed in terms of probabilities, depends on the observer.

The principle of maximum entropy (MaxEnt) is used to discover the probabil-
ity distribution which leads to the largest value of the entropy (a maximum),
thereby assuring that no information is inadvertently assumed.

If one of the probabilities is equal to 1, the all the other probabilities are equal
to 0, and the entropy is equal to 0.

It is a property of the above entropy formula that it has its maximum when
all the probabilities are equal (for a finite number of states), which the state of
maximum ignorance.

If we have no additional information about the system, then such a result seems
reasonable. However, if we have additional information, then we should be able
to find a probability distribution which is better in the sense that it has less
uncertainty.

In this problem we will impose only one constraint. The particular constraint
is the known average price for a meal at Berger’s Burgers, namely $1.75. This
constraint is an example of an expected value.

(a) Express the constraint in terms of the unknown probabilities and the prices
for the three types of meals.

(b) Using this constraint and the total probability equal to 1 rule find possible
ranges for the three probabilities in the form

a ≤ P (B) ≤ b
c ≤ P (C) ≤ d
e ≤ P (F ) ≤ f

(c) Using this constraint, the total probability equal to 1 rule, the entropy
formula and the MaxEnt rule, find the values of P (B), P (C), and P (F )
which maximize S.

(d) For this state determine the expected value of Calories and the expected
number of meals served cold.

In finding the state which maximizes the entropy, we found the probability dis-
tribution that is consistent with the constraints and has the largest uncertainty.
Thus, we have not inadvertently introduced any biases into the probability es-
timation.
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5.6.10. Extended Menu at Berger’s Burgers

Suppose now that Berger’s extends its menu to include a Tofu option as shown
in Table 5.2 below:

Entree Cost Calories Prob(hot) Prob(cold)
burger $1.00 1000 0.5 0.5
chicken $2.00 600 0.8 0.2
fish $3.00 400 0.9 0.1
tofu $8.00 200 0.6 0.4

Table 5.7: Extended Berger’s Burgers Menu Details

Suppose you are now told that the average meal price is $2.50.

Use the method of Lagrange multipliers to determine the state of the system
(i.e., P (B), P (C), P (F ) and P (T )).

You will need to solve some equations numerically.

5.6.11. The Poisson Probability Distribution

The arrival time of rain drops on the roof or photons from a laser beam on a
detector are completely random, with no correlation from count to count. If
we count for a certain time interval we won’t always get the same number - it
will fluctuate from shot-to-shot. This kind of noise is sometimes known as shot
noise or counting statistics.

Suppose the particles arrive at an average rate R. In a small time interval
∆t ≪ 1/R no more than one particle can arrive. We seek the probability for n
particles to arrive after a time t, P (n, t).

(a) Show that the probability to detect zero particles exponentially decays,
P (0, t) = e−Rt.

(b) Obtain a differential equation as a recursion relation

d

dt
P (n, t) +RP (n, t) = RP (n − 1, t)

(c) Solve this to find the Poisson distribution

P (n, t) = (Rt)n

n!
e−Rt

Plot a histogram for Rt = 0.1,1.0,10.0.
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(d) Show that the mean and standard deviation in number of counts are:

⟨n⟩ = Rt , σn =
√
Rt =

√
⟨n⟩

[HINT: To find the variance consider ⟨n(n − 1)⟩].

Fluctuations going as the square root of the mean are characteristic of
counting statistics.

(e) An alternative way to derive the Poisson distribution is to note that the
count in each small time interval is a Bernoulli trial(find out what this is),
with probability p = R∆t to detect a particle and 1 − p for no detection.
The total number of counts is thus the binomial distribution. We need to
take the limit as ∆t → 0 (thus p → 0) but Rt remains finite (this is just
calculus). To do this let the total number of intervals N = t/∆t→∞ while
Np = Rt remains finite. Take this limit to get the Poisson distribution.

5.6.12. Modeling Dice: Observables and Expectation Val-
ues

Suppose we have a pair of six-sided dice. If we roll them, we get a pair of results

a ∈ {1,2,3,4,5,6} , b ∈ {1,2,3,4,5,6}

where a is an observable corresponding to the number of spots on the top face
of the first die and b is an observable corresponding to the number of spots on
the top face of the second die. If the dice are fair, then the probabilities for the
roll are

Pr(a = 1) = Pr(a = 2) = Pr(a = 3) = Pr(a = 4) = Pr(a = 5) = Pr(a = 6) = 1/6
Pr(b = 1) = Pr(b = 2) = Pr(b = 3) = Pr(b = 4) = Pr(b = 5) = Pr(b = 6) = 1/6

Thus, the expectation values of a and b are

⟨a⟩ =
6

∑
i=1

iPr(a = i) = 1 + 2 + 3 + 4 + 5 + 6

6
= 7/2

⟨b⟩ =
6

∑
i=1

iPr(b = i) = 1 + 2 + 3 + 4 + 5 + 6

6
= 7/2

Let us define two new observables in terms of a and b:

s = a + b , p = ab

Note that the possible values of s range from 2 to 12 and the possible values of
p range from 1 to 36. Perform an explicit computation of the expectation values
of s and p by writing out

⟨s⟩ =
12

∑
i=2

iPr(s = i)
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and

⟨p⟩ =
36

∑
i=1

iPr(p = i)

Do this by explicitly computing all the probabilities Pr(s = i) and Pr(p = i).
You should find that ⟨s⟩ = ⟨a⟩ + ⟨b⟩ and ⟨p⟩ = ⟨a⟩⟨b⟩. Why are these results not
surprising?

5.6.13. Conditional Probabilities for Dice

Use the results of Problem 5.12. You should be able to intuit the correct answers
for this problems by straightforward probabilistic reasoning; if not you can use
Baye’s Rule

Pr(x∣y) = Pr(y∣x)Pr(x)
Pr(y)

to calculate the results. Here Pr(x∣y) represents the probability of x given y,
where x and y should be propositions of equations (for example, Pr(a = 2∣s = 8)
is the probability that a = 2 given the s = 8).

(a) Suppose your friend rolls a pair of dice and, without showing you the result,
tells you that s = 8. What is your conditional probability distribution for
a?

(b) Suppose your friend rolls a pair of dice and, without showing you the
result, tells you that p = 12. What is your conditional expectation value
for s?

5.6.14. Matrix Observables for Classical Probability

Suppose we have a biased coin, which has probability ph of landing heads-up
and probability pt of landing tails-up. Say we flip the biased coin but do not
look at the result. Just for fun, let us represent this preparation procedure by
a classical state vector

x0 = (
√
ph√
pt

)

(a) Define an observable (random variable) r that takes value +1 if the coin
is heads-up and −1 if the coin is tails-up. Find a matrix R such that

xT0 Rx0 = ⟨r⟩

where ⟨r⟩ denotes the mean, or expectation value, of our observable.

(b) Now find a matrix F such that the dynamics corresponding to turning the
coin over (after having flipped it, but still without looking at the result)
is represented by

x0 ↦ Fx0
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and
⟨r⟩↦ xT0 F

TRFx0

Does U = FTRF make sense as an observable? If so explain what values
it takes for a coin-flip result of heads or tails. What about RF or FTR?

(c) Let us now define the algebra of flipped-coin observables to be the set V
of all matrices of the form

v = aR + bR2 , a, b ∈ R

Show that this set is closed under matrix multiplication and that it is
commutative. In other words, for any v1, v2 ∈ V , show that

v1, v2 ∈ V , v1v2 = v2v1

Is U in this set? How should we interpret the observable represented by
an arbitrary element v ∈ V ?
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Chapter 6

The Formulation of Quantum Mechanics

6.1. Introduction

A physical theory is

1. a set of basic physical concepts

2. a mathematical formalism

3. a set of connections between the physical concepts and the mathematical
objects that represent them

The process of doing theoretical physics involves:

1. constructing a mathematical formalism that allows us to express a physical
problem or experiment in terms of mathematical objects

2. solving the mathematical system representing the physical problem – this
a pure mathematics at this point

3. translating the mathematical solution to the physical world using the set
of connections

A description of a physical system will involve three ingredients:

1. variables or measurable quantities that characterize the system

2. states that describe values of the variables as a function of time

3. equations of motion that determine how the states variables change in
time

In classical mechanics, the position of a particle, which is a physical concept,
is connected to a set of real numbers, which is a mathematical object. This
does not, in general, present us with any conceptual difficulties because we are
familiar with both positions and numbers from our everyday experiences.
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In quantum mechanics, however, the mathematical formalism that we will be
discussing, is very abstract. In addition, we lack any intuition based on experi-
ence concerning quantum phenomena. The everyday world that we live in does
not appear to consist of Hermitian operators and infinite-dimensional vectors.

Throughout the last century, many experiments have shown that the various
dynamical variables, which seem to have a continuous spectrum in classical me-
chanics, generally have completely discrete or quantized spectra or, at least,
a spectrum that is both discrete and continuous. In quantum mechanics, this
property will lead to most of the so-called non-classical results and force us to
work in a world of probabilities.

We will take an approach to the theoretical formalism of quantum mechanics
presented in terms of postulates.

6.2. Two Postulates:
Presentation, Rationalization and Meaning

Postulate 1

For each dynamical variable or observable, which is a physical
concept, there corresponds a Hermitian, linear operator,
which is a mathematical object.

The possible values of any measurement of the observable are
restricted to the eigenvalues of the corresponding operator.

It is the nature of a postulate that we can only make ourselves feel good about
it or, in other words, make ourselves feel that it makes sense in some way. A
priori, we cannot justify it in any way and we certainly cannot prove it is true or
we would have assumed a more fundamental postulate(the one we used to prove
the truth). A posteriori, we justify postulates by their effect on our predictions
about experimental results. My philosophy of theoretical physics is based on
this statement

If the predictions agree with experiment,
on certain quantum systems, then the
postulates are valid for that class of systems.

So what can we say about the 1st postulate? We already know that linear op-
erators possess both discrete and continuous spectra. In addition, we have a
vast storehouse of mathematical knowledge available about linear operators. So
making this choice certainly is a sensible(and the simplest) place to start.

364



Note that the postulate does not give us any rules for assigning operators to
observables.

Singling out the eigenvalues is also sensible since they represent a special con-
nection to the properties of the associated linear operator. Choosing Hermitian
operators also makes sense since this guarantees that we have only real eigen-
values representing measured quantities.

Now we need to deal with states. The mathematical object that we connect to
a physical state must allow us to calculate the probability distributions for all
observables.

Before stating the 2nd postulate, we need to present some new mathematical
objects and ideas.

TrŴ = 1 =∑
k

Wkk =∑
k

⟨φk ∣ Ŵ ∣φk⟩ (6.1)

where Wkk is the diagonal matrix element(in the basis) of the density operator
Ŵ .

Some Properties of the Trace:

Tr(AB) = Tr(BA) (6.2)

Tr(cB) = cTr(B) (6.3)

Tr(c(A +B)) = Tr(cA) + Tr(cB) = cTr(A) + cTr(B) (6.4)

If we denote the eigenvalues of Ŵ by wk and the corresponding eigenvectors by
∣wk⟩ so that

Ŵ ∣wk⟩ = wk ∣wk⟩ (6.5)

then, since Ŵ has a pure point spectrum, we can write Ŵ in terms of its
eigenvalues and eigenvectors (spectral representation) as

Ŵ =∑
k

wk ∣wk⟩ ⟨wk ∣ (6.6)

Since Ŵ is self-adjoint, its eigenvectors form an orthonormal basis where

⟨wk ∣wj⟩ = δkj (6.7)

We now derive some properties of this density operator mathematical object.

The spectrum of Ŵ is the set of numbers {wk}. We then have

TrŴ = 1 =∑
j

⟨wj ∣ Ŵ ∣wj⟩ (6.8)

=∑
j

⟨wj ∣wj ∣wj⟩ =∑
j

wj ⟨wj ∣wj⟩ =∑
j

wj
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So,
∑
j

wj = 1 (6.9)

Ŵ is a bounded, Hermitian(self-adjoint) operator. Since Ŵ is self-adjoint, this
means that Ŵ = Ŵ †, which implies that the eigenvalues are real, i.e., wk = w∗

k.
Using the fact that Ŵ is defined to be a positive operator, we then have

⟨a∣ Ŵ ∣a⟩ = ⟨a∣ (∑
k

wk ∣wk⟩ ⟨wk ∣) ∣a⟩ =∑
k

wk ⟨a ∣wk⟩ ⟨wk ∣a⟩ (6.10)

=∑
k

wk ∣ ⟨a ∣wk⟩ ∣2 ≥ 0

for any vector ∣a⟩. This can only be true, in general, if

wk ≥ 0 for all k (6.11)

The results
wk ≥ 0 for all k and ∑

j

wj = 1 (6.12)

0 ≤ wk ≤ 1 (6.13)

Finally, for any other operator B̂

Ŵ B̂ =∑
k

wk ∣wk⟩ ⟨wk ∣ B̂ (6.14)

We then have

Tr(Ŵ B̂) =∑
j

⟨wj ∣ (∑
k

wk ∣wk⟩ ⟨wk ∣ B̂) ∣wj⟩ (6.15)

=∑
k

wk∑
j

⟨wj ∣wk⟩ ⟨wk ∣ B̂ ∣wj⟩ =∑
k

wk∑
j

δjk ⟨wk ∣ B̂ ∣wj⟩

=∑
k

wk ⟨wk ∣ B̂ ∣wk⟩

which is a weighted sum (where the eigenvalues of the density operator are the
weight factors) of the diagonal matrix elements of the operator B̂ in a basis
consisting of eigenvectors of Ŵ .

Before we can show how this connects to probabilities, we must discuss the
concept of a state and its representation as a mathematical object.

In classical mechanics, a state refers to the set of coordinates and momenta of
the particles in the system.

In quantum mechanics, we say that a state describes the values of a set of
measurable quantities. The state description must be probabilistic so that we

366



can only know the probabilities that these values might occur.

In essence, we assume (this is the standard approach to quantum mechanics)
that the quantum state description refers to an ensemble of similarly prepared
systems(so that we can make probability statements) andNOT to any individual
system in the ensemble. We note that there is some dispute about this point.

We are, thus, identifying the state directly with a set of probability distributions.

Our earlier discussion(Chapter 5) of the experimental limit frequency and its
connection to probability indicated that if we know the average (or mean) value
or the expectation value, which has the symbol ⟨. . .⟩, for all of the observables
in our physical system, we have then specified the state of the system as exactly
as is possible.

Some properties that we require of expectation values in order that they make
physical sense as average values are:

1. if B̂ is self-adjoint, then ⟨B̂⟩ is real

2. if B̂ is positive, then ⟨B̂⟩ is nonnegative

3. if c = complex number, then ⟨cB̂⟩ = c⟨B̂⟩

4. ⟨Â + B̂⟩ = ⟨Â⟩ + ⟨B̂⟩

5. ⟨Î⟩ = 1

Postulate 2

(a) A density operator exists for every real physical system.

This rather innocuous looking postulate is at the heart of quantum theory. Its
full meaning will only become clear as we learn its connection to the probability
interpretation of quantum mechanics.

(b) The expectation value of an operator B̂ is given by

⟨B̂⟩ = Tr(Ŵ B̂) (6.16)

If we assume that every bounded, Hermitian operator represents some measur-
able quantity for a physical system, then each state is represented by a unique
density operator Ŵ .

Let us choose a simple example of a density operator to get some handle on what
this postulate is saying. In particular, let us choose as our density operator Ŵ
the projection operator onto a 1-dimensional subspace spanned by the vector
∣α⟩, namely

Ŵ = ∣α⟩ ⟨α∣ (6.17)

367



This is an idempotent operator since Ŵ 2 = Ŵ and thus it has eigenvalues
wk = 0,1 only. The eigenvector corresponding to eigenvalue 1 is ∣α⟩. We also
have

∑
k

wk = 1 = Tr(Ŵ ) (6.18)

⟨a∣ Ŵ ∣a⟩ = ∣ ⟨a ∣α⟩ ∣2 ≥ 0 (6.19)

so that all required properties for being a density operator are satisfied.

Since,
0 ≤ wk ≤ 1 and ∑

k

wk = 1 (6.20)

we can think of
Ŵ =∑

k

wk ∣wk⟩ ⟨wk ∣ (6.21)

as representing a statistical mixture of the states represented by the vectors ∣wk⟩
where the probability is wk that we have the state ∣wk⟩ present.

In this simple case, we then have

⟨B̂⟩ = Tr(Ŵ B̂) = ⟨α∣ B̂ ∣α⟩ (6.22)

which is the expectation value of B̂ in the state ∣α⟩.

Proof: Let ∣w1⟩ = ∣β⟩ , ∣w2⟩ = ∣α⟩ , ⟨α ∣β⟩ = 0. Then

Tr(Ŵ B̂) =
2

∑
m=1

⟨wm∣ Ŵ B̂ ∣wm⟩ =
2

∑
m=1

⟨wm ∣α⟩ ⟨α∣ B̂ ∣wm⟩ (6.23)

=
2

∑
m=1

⟨wm ∣w2⟩ ⟨w2∣ B̂ ∣wm⟩ =
2

∑
m=1

δm2 ⟨w2∣ B̂ ∣wm⟩

= ⟨w2∣ B̂ ∣w2⟩ = ⟨α∣ B̂ ∣α⟩

Since the important quantities for connection to experiment will be expectation
values, we see that the state represented by Ŵ , in this case, is equally well
represented by the state vector ∣α⟩; the density operator and the state vector
are equivalent ways of representing a physical system in this simple case.

In general, when
Ŵ =∑

k

wk ∣wk⟩ ⟨wk ∣ (6.24)

we saw earlier that
Tr(Ŵ B̂) =∑

k

wk ⟨wk ∣ B̂ ∣wk⟩ (6.25)

Postulate #2 then says that the average or expectation value of Ŵ , ⟨B̂⟩ , equals
the weighted sum of the expectation value in each of the eigenstates ∣wk⟩ of Ŵ
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with a weighting factor equal to the corresponding eigenvalue wk.

Thus, if we know the numbers ⟨wk ∣ B̂ ∣wk⟩ we can find the expectation value of
the corresponding operator, which is the maximum amount of information we
can know.

6.3. States and Probabilities

6.3.1. States

Among the set of all possible states there exists a special group called pure
states. The density operator for a pure state is given by

Ŵ = ∣ψ⟩ ⟨ψ∣ (6.26)

where the vector ∣ψ⟩ is of unit norm and is called the state vector. We dis-
cussed this density operator above and found that the expectation value for an
observable represented by Q̂ now in this pure state ∣ψ⟩, is given by

⟨Q̂⟩ = Tr(Ŵ Q̂) = Tr(∣ψ⟩ ⟨ψ∣ Q̂) = ⟨ψ∣ Q̂ ∣ψ⟩ (6.27)

Note that the density operator is independent of this arbitrary phase.

As we saw earlier the density operator Ŵ = ∣ψ⟩ ⟨ψ∣ for the pure state is idempo-
tent and thus the only possible eigenvalues are wk = 0,1 and therefore, the form
chosen for Ŵ agrees with the expansion in eigenvectors and eigenvalues.

Another property of a pure state goes as follows: we have, in the general case,

0 ≤ wk ≤ 1 and ∑
k

wk = 1 (6.28)

which implies that
w2
k ≤ wk (6.29)

so that
Tr(Ŵ 2) =∑

k

w2
k ≤∑

k

wk = 1 (6.30)

or
Tr(Ŵ 2) ≤ 1 (6.31)

in this case. For a pure state, however, where w2
k = wk because Ŵ is an idem-

potent projection operator, we then have

Tr(Ŵ 2) = 1 (6.32)

The most important way of distinguishing whether a state is pure or not follows
from this property of density operators:
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The density operator for a pure state cannot be
written as a linear combination of the density
operators of other states, but the density operator
for a nonpure state can always be so written.

We can see that this is true by assuming the opposite and getting a contradiction.
So let the density operator for a pure state be written as a linear combination
of density operators for other states

Ŵ =∑
j

cjŴ
(j) , 0 ≤ cj ≤ 1 , ∑

j

cj = 1 (6.33)

Now
Tr(Ŵ 2) =∑

i

∑
j

cicjTr(Ŵ (i)Ŵ (j)) (6.34)

Now each density operator Ŵ (i) has a spectral representation of the form

Ŵ (j) =∑
n

w
(j)
k ∣w(j)

n ⟩ ⟨w(j)
n ∣ (6.35)

Substitution gives

Tr(Ŵ (i)Ŵ (j)) =∑
n
∑
m

w(i)
n w(j)

m Tr(∣w(i)
n ⟩ ⟨w(i)

n ∣w(j)
m ⟩ ⟨w(j)

m ∣ (6.36)

=∑
n
∑
m

w(i)
n w(j)

m ∣ ⟨w(i)
n ∣w(j)

m ⟩ ∣2

≤∑
n

w(i)
n ∑

m

w(j)
m = 1 (6.37)

This then gives

Tr(Ŵ 2) =∑
i

∑
j

cicjTr(Ŵ (i)Ŵ (j)) ≤∑
i

ci∑
j

cj = 1 (6.38)

But we assumed that Ŵ represents a pure state and the equality must hold.
The only way for this to be true is as follows:

∣ ⟨w(i)
n ∣w(j)

m ⟩ ∣ = 1 for all m,n such that w(i)
n w(j)

m ≠ 0 (6.39)

The Schwarz inequality ∣ ⟨a ∣ b⟩ ∣2 ≤ ⟨a ∣a⟩ ⟨b ∣ b⟩ = 1 then says that ∣w(i)
n ⟩ and

∣w(j)
m ⟩ can differ at most by a phase factor. But by assumption, the eigenvectors

for each separate density operator are orthogonal. The only conclusion then is
that they are all the same operator, i.e.,

Ŵ (i) = Ŵ (j) for all i and j (6.40)

This contradicts the assumption that we could write a pure state density oper-
ator as a linear combination of other density operators. In fact all the density
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operators must be the same.

Are pure states more fundamental than nonpure states?

Can we regard nonpure states as some kind of mixture of pure states?

The answer depends on whether we require uniqueness. It turns out that we
cannot write nonpure states uniquely in terms of pure states. For example let
us consider the density operator given by

Ŵ(a) = a ∣u⟩ ⟨u∣ + (1 − a) ∣v⟩ ⟨v∣ (6.41)

with 0 < a < 1 and

⟨u ∣u⟩ = ⟨v ∣ v⟩ = 1 and ⟨u ∣ v⟩ = ⟨v ∣u⟩ = 0 (6.42)

Now define two other vectors ∣x⟩ and ∣y⟩ as linear combinations of ∣u⟩ and ∣v⟩.

∣x⟩ =
√
a ∣u⟩ +

√
1 − a ∣v⟩ (6.43)

∣y⟩ =
√
a ∣u⟩ −

√
1 − a ∣v⟩ (6.44)

⟨u ∣u⟩ = ⟨v ∣ v⟩ = 1 and ⟨u ∣ v⟩ = ⟨v ∣u⟩ = 0 (6.45)

such that we still have

⟨x ∣x⟩ = ⟨y ∣ y⟩ = 1 and ⟨x ∣ y⟩ = ⟨y ∣x⟩ = 0 (6.46)

We then have
Ŵ(a) =

1

2
∣x⟩ ⟨x∣ + 1

2
∣y⟩ ⟨y∣ (6.47)

so the linear combination is not unique. In fact, there are an infinite number of
ways to do it.

We will assume that both pure and nonpure states are fundamental and we will
see physical systems later on that are described by each type. Due to the lack
of uniqueness, we will not call the nonpure state a mixture or mixed state but
just stick with the name nonpure.

6.3.2. Probabilities

Postulate #2 says that the average value of an observable represented by Q̂ in
the state corresponding to density operator Ŵ is given by

⟨Q̂⟩ = Tr(Ŵ Q̂) (6.48)

Consider a function F (Q̂) of the operator Q̂. Let

h(q)dq = probability that the measured value of the observable
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represented by Q̂ lies between q and q + dq

Thus,

h(q) = probability density function (6.49)

Now, the general definition of an average value says that

⟨F (Q̂)⟩ = ∫
∞

−∞
F (q′)h(q′)dq′ (6.50)

Postulate #2, however, says

⟨F (Q̂)⟩ = Tr(ŴF (Q̂)) (6.51)

Taken together, these two relations will allow us to extract the probability den-
sity function h(q).

Case 1 : Discrete Spectrum

Let Q̂ be a self-adjoint operator representing the observable Q. Assume that it
has a pure discrete spectrum with eigenvectors ∣qn⟩ and corresponding eigenval-
ues qn such that

Q̂ ∣qn⟩ = qn ∣qn⟩ (6.52)

We can write its spectral representation (express the operator in terms of its
eigenvectors and eigenvalues) as

Q̂ =∑
n

qn ∣qn⟩ ⟨qn∣ (6.53)

Now consider the function

F (Q) = θ(q −Q) (6.54)

where

θ(q −Q) =
⎧⎪⎪⎨⎪⎪⎩

1 q > Q
0 q < Q

(6.55)

The expectation value of this function is then

⟨F (Q̂)⟩ = ⟨θ(q − Q̂)⟩ = ∫
∞

−∞
F (q′)h(q′)dq′ = ∫

∞

−∞
θ(q − q′)h(q′)dq′ (6.56)

= ∫
q

−∞
h(q′)dq′ = Prob(Q < q∣Ŵ )

= probability that Q < q given Ŵ
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Alternatively, we can also write

⟨θ(q − Q̂)⟩ = Tr(Ŵθ(q − Q̂)) = Tr [Ŵ∑
n

θ(q − qn) ∣qn⟩ ⟨qn∣] (6.57)

=∑
m

⟨qm∣ (Ŵ∑
n

θ(q − qn) ∣qn⟩ ⟨qn∣) ∣qm⟩

=∑
m
∑
n

⟨qm∣ Ŵ ∣qn⟩ θ(q − qn) ⟨qn ∣ qm⟩

=∑
m
∑
n

⟨qm∣ Ŵ ∣qn⟩ θ(q − qn)δnm =∑
n

⟨qn∣ Ŵ ∣qn⟩ θ(q − qn)

= Prob(Q < q∣Ŵ )

Now we have

h(q) = ∂

∂q
∫

q

−∞
h(q′)dq′ = ∂

∂q
Prob(Q < q∣Ŵ ) (6.58)

= ∂

∂q
∑
n

⟨qn∣ Ŵ ∣qn⟩ θ(q − qn) =∑
n

⟨qn∣ Ŵ ∣qn⟩ δ(q − qn)

This implies that the probability density h(q) = 0 unless q = an eigenvalue. In
other words, the probability = 0 that a dynamical variable or observable will
take on a value other than an eigenvalue of the corresponding operator. This
makes it clear the postulate #2 is consistent with the last part of postulate #1,
where we assumed this to be the case.

Now

Prob(Q = q∣Ŵ ) = probability that the observable
represented by Q̂ will have the discrete value
q in the ensemble characterized by Ŵ

We calculate this as follows:

Prob(Q = q∣Ŵ ) = lim
ε→0

(Prob(Q < q + ε∣Ŵ ) − Prob(Q < q − ε∣Ŵ )) (6.59)

= lim
ε→0

(∑
n

⟨qn∣ Ŵ ∣qn⟩ θ(q + ε − qn) −∑
n

⟨qn∣ Ŵ ∣qn⟩ θ(q − ε − qn))

=∑
n

⟨qn∣ Ŵ ∣qn⟩ lim
ε→0

(θ(q + ε + qn) − θ(q + ε − qn))

=∑
n

⟨qn∣ Ŵ ∣qn⟩ lim
ε→0

(δ(q − qn)2ε) =∑
n

⟨qn∣ Ŵ ∣qn⟩ δq,qn

If we now define the projection operator

P̂ (q) =∑
n

∣qn⟩ ⟨qn∣ δq,qn (6.60)
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which projects onto the subspace spanned by all the eigenvectors (degenerate)
with eigenvalue q = qn, we then have the general result that

Tr(Ŵ P̂ (q)) =∑
m

⟨qm∣ Ŵ P̂ (q) ∣qm⟩ (6.61)

=∑
m

⟨qm∣ Ŵ (∑
n

∣qn⟩ ⟨qn∣ δq,qn) ∣qm⟩

= ∑
m,n

⟨qm∣ Ŵ ∣qn⟩ δq,qn ⟨qn ∣ qm⟩

= ∑
m,n

⟨qm∣ Ŵ ∣qn⟩ δq,qnδnm

=∑
n

⟨qn∣ Ŵ ∣qn⟩ δq,qn = Prob(Q = q∣Ŵ )

If we have a pure state, then
Ŵ = ∣ψ⟩ ⟨ψ∣ (6.62)

and if qn is a non-degenerate eigenvalue,

Prob(Q = qn∣Ŵ ) = Tr(Ŵ P̂ (qn)) = Tr((∣ψ⟩ ⟨ψ∣)P̂ (qn)) (6.63)

=∑
m

⟨qm∣ (∣ψ⟩ ⟨ψ∣)P̂ (qn) ∣qm⟩

=∑
m

⟨qm∣ (∣ψ⟩ ⟨ψ∣)(∣qn⟩ ⟨qn∣)) ∣qm⟩

=∑
m

⟨qm ∣ψ⟩ ⟨ψ ∣ qn⟩ ⟨qn ∣ qm⟩

=∑
m

⟨qm ∣ψ⟩ ⟨ψ ∣ qn⟩ δnm

= ⟨qn ∣ψ⟩ ⟨ψ ∣ qn⟩ = ∣ ⟨qn ∣ψ⟩ ∣2

We note the following alternate and useful form of this result. We have

Prob(Q = qn∣Ŵ ) = ∣ ⟨qn ∣ψ⟩ ∣2 = ⟨qn ∣ψ⟩ ⟨ψ ∣ qn⟩
= ⟨qn∣ Ŵ ∣qn⟩ =∑

m

⟨qm∣ P̂qnŴ ∣qm⟩

= Tr(P̂qnŴ ) (6.64)

Thus, for a physical system that is characterized by a density operator Ŵ =
∣ψ⟩ ⟨ψ∣ or represented by a pure state characterized by a state vector ∣ψ⟩, the
probability of measuring a particular eigenvalue qn of an observable Q repre-
sented by the operator Q̂ is given by

∣ ⟨qn ∣ψ⟩ ∣2 (6.65)

To see that this all makes sense relative to the standard definition of an average
value we consider the quantity

⟨α∣ Q̂ ∣α⟩ = average value in the state ∣α⟩ (6.66)
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Now using the eigenvector/eigenvalue relation

Q̂ ∣qk⟩ = qk ∣qk⟩ (6.67)

which says that we can write as

Q̂ =∑
k

qk ∣qk⟩ ⟨qk ∣ (6.68)

we get
⟨α∣ Q̂ ∣α⟩ =∑

k

qk ⟨α ∣ qk⟩ ⟨qk ∣α⟩ =∑
k

qk ∣ ⟨qk ∣α⟩ ∣2 (6.69)

which says that the average value in the state ∣α⟩ is equal to the sum over all
possible values (the eigenvalues) of the value(eigenvalue) times the probability
of finding measuring that eigenvalue when in the state ∣α⟩, which is clearly given
by

∣ ⟨qk ∣α⟩ ∣2 (6.70)
This corresponds to the standard definition of the average value.

Thus, the connection between the mathematical object ∣ ⟨qk ∣α⟩ ∣2 and the prob-
ability of measuring the eigenvalue qn when in the state ∣α⟩ is now clear and
derivable from the earlier postulates.

We do not need to assume this as another postulate as is done in
many texts.

A Special Case: In general, any observable will exhibit a nonzero statistical
dispersion in its measured value for most states. For the case of a discrete spec-
trum, however, it is possible for all of the probability to reside in a single value.

Suppose the state involved is an eigenvector. The observable represented by the
operator Q̂ takes on a unique value, say q0 (a non-degenerate eigenvalue) with
probability = 1 in this state.

This means that

Prob(Q = q0∣Ŵ ) =∑
n

⟨qn∣ Ŵ ∣qn⟩ δq0,qn = ⟨q0∣ Ŵ ∣q0⟩ = 1 (6.71)

Now, any Ŵ satisfies
Tr(Ŵ 2) ≤ 1 (6.72)

or

Tr(Ŵ 2) =∑
n

⟨qn∣ Ŵ 2 ∣qn⟩ =∑
n

⟨qn∣ Ŵ ÎŴ ∣qn⟩ (6.73)

=∑
n
∑
m

⟨qn∣ Ŵ ∣qm⟩ ⟨qm∣ Ŵ ∣qn⟩

=∑
n
∑
m

∣ ⟨qn∣ Ŵ ∣qm⟩ ∣2

= ⟨q0∣ Ŵ ∣q0⟩ + rest of terms = 1 + rest of terms ≤ 1
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which says that

⟨qn∣ Ŵ ∣qm⟩ = δn0δm0 (6.74)

or all the other diagonal and non-diagonal matrix elements of Ŵ must vanish.

Thus, the only state for which the observable takes on the value q0 (non-
degenerate) with probability = 1 is the pure state represented by the density
operator Ŵ = ∣q0⟩ ⟨q0∣.

This state, whether described by the density operator Ŵ or the state vector ∣q0⟩
is called an eigenstate of Q̂. The observable has a definite value (probability =
1) in an eigenstate and ONLY in an eigenstate.

Case 2: Continuous Spectrum

Now we let Q̂ be a self-adjoint operator with a purely continuous spectrum, so
that we can write

Q̂ = ∫ q′ ∣q′⟩ ⟨q′∣ dq′ where Q̂ ∣q′⟩ = q′ ∣q′⟩ (6.75)

The eigenvectors are normalized using the Dirac delta-function, as we showed
earlier

⟨q′ ∣ q′′⟩ = δ(q′ − q′′) (6.76)

and we let

h(q)dq = probability that the measured value of the observable
represented by Q̂ lies between q and q + dq

Then, as in the discrete case, we have

⟨θ(q − Q̂)⟩ = ∫
q

−∞
h(q′)dq′ = Prob(Q < q∣Ŵ ) (6.77)

which gives the probability that Q < q. We also have

⟨θ(q − Q̂)⟩ = Tr(Ŵθ(q − Q̂)) (6.78)

and using the standard expansion of an operator

θ(q − Q̂) = ∫
∞

−∞
θ(q − q′) ∣q′⟩ ⟨q′∣ dq′ (6.79)
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we get

θ(q − Q̂) = Tr (Ŵ ∫
∞

−∞
θ(q − q′) ∣q′⟩ ⟨q′∣ dq′) (6.80)

= ∫
∞

−∞
dq′′ ⟨q′′∣ Ŵ (∫

∞

−∞
θ(q − q′) ∣q′⟩ ⟨q′∣ ∣q′′⟩ dq′)

= ∫
∞

−∞
dq′′ ⟨q′′∣ Ŵ ∫

∞

−∞
θ(q − q′) ∣q′⟩ ⟨q′ ∣ q′′⟩ dq′

= ∫
∞

−∞
dq′′ ⟨q′′∣ Ŵ ∫

∞

−∞
θ(q − q′) ∣q′⟩ δ(q′ − q′′)dq′

= ∫
∞

−∞
θ(q − q′) ⟨q′∣ Ŵ ∣q′⟩ dq′

= ∫
q

−∞
⟨q′∣ Ŵ ∣q′⟩ dq′ = Prob(Q < q∣Ŵ )

This says that the probability density for the observable represented by Q̂ within
the ensemble characterized by Ŵ is

h(q) = ∂

∂q
Prob(Q < q∣Ŵ ) = ⟨q∣ Ŵ ∣q⟩ (6.81)

in general. For the special case of a pure state where Ŵ = ∣ψ⟩ ⟨ψ∣ we have

h(q) = ∣ ⟨q ∣ψ⟩ ∣2 (6.82)

Later on we shall find that this is equivalent to a probability statement for the
famous Schrödinger equation wave function.

We now turn to the topic of quantum dynamics.

As we have seen :

States or density operators describe values or probabilities
for measurable quantities at given times.

We want to find :

Equations of motion that determine how these values
or probabilities of measurable quantities change with time.

It is clear from our discussion, that, in the theory of quantum mechanics, a state
only needs to be able specify how to calculate expectations values of measurable
quantities. Therefore, we will assume that

Equations of motion, at a minimum, only need to
specify how expectation values change in time.
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6.4. Quantum Pictures

There are three ways that are commonly used in quantum mechanics to make
expectation values depend on time:

Schrödinger Picture

1. states are represented by ket vectors that depend on time, ∣ψ(t)⟩

2. operators representing observables or measurable quantities are indepen-
dent of time, Q̂

We then get a time-dependent expectation value of the form

⟨Q̂(t)⟩ = ⟨ψ(t)∣ Q̂ ∣ψ(t)⟩ (6.83)

Heisenberg Picture

1. operators representing observables or measurable quantities are dependent
of time, Q̂(t)

2. states are represented by ket vectors that do not depend on time, ∣ψ⟩

We then get a time-dependent expectation value of the form

⟨Q̂(t)⟩ = ⟨ψ∣ Q̂(t) ∣ψ⟩ (6.84)

Interaction Picture

It is a mixture of the Schrödinger and Heisenberg pictures that is appropriate
for a very important class of problems. We will discuss it later after presenting
the Schrödinger and Heisenberg pictures.

All of these pictures must agree in the sense that they must all give the same
time dependence for ⟨Q̂(t)⟩. There is, after all, a unique real world out there!!!

We will discuss these pictures in terms of state vectors first, mixing in state
operator aspects as we proceed.

We have been discussing the so-called formal structure of quantum mechanics.
This structure is a fundamental part of the theory behind quantum mechanics,
but it has very little physical content on its own.

We cannot solve any physical problem with the formalism as it stands. We
must first develop connections or correspondence rules that tell us the specific
operators that actually represent particular dynamical variables.
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The fundamental dynamical variables that we will be working with are posi-
tion, linear momentum, angular momentum and energy. All such quantities
are related to space-time symmetry transformations. As we proceed with our
discussions, we will introduce any needed aspects of symmetry transformations
and discuss further aspects of the subject later.

6.5. Transformations of States and Observables
The way it must be.......

Experimental evidence leads us to believe that the laws of nature are invariant
under certain space-time symmetry transformations, including displacements in
space and time, rotations and Lorentz boosts (relative velocity changes).

For each such symmetry, both the state vectors and the observables must have
transformations, i.e.,

∣ψ⟩→ ∣ψ′⟩ , Q̂→ Q̂′ (6.85)

We will only use pure states for most of our discussions in this development
since nothing new appears in more complex cases.

What must be preserved in these transformations?

1. If Q̂ ∣qn⟩ = qn ∣qn⟩, then Q̂′ ∣q′n⟩ = qn ∣q′n⟩
Here we are assuming that the eigenvalues are unchanged since Q̂ and Q̂′

are the SAME observable represented in two frames of reference. Math-
ematically operators representing the same dynamical variable must have
the same spectrum. For example, in both frames the position operator will
have identical continuous spectra in the range [−∞,∞] in each frame.

2. If ∣ψ⟩ = ∑n cn ∣qn⟩ where Q̂ ∣qn⟩ = qn ∣qn⟩, then ∣ψ′⟩ = ∑n c′n ∣q′n⟩ where
Q̂′ ∣q′n⟩ = qn ∣q′n⟩. This actually follows from (1).

Now, equivalent events observed in each frame must have the same probability.
If this were not true, then some event might occur more often in one frame than
it does in another frame, which makes no physical sense.

This means that probabilities are equal or that

∣cn∣2 = ∣c′n∣2 or ∣ ⟨qn ∣ψ⟩ ∣2 = ∣ ⟨q′n ∣ψ′⟩ ∣2 (6.86)

We now present the mathematical formalism that characterizes this type of
transformation. But first, a digression to cover two new mathematical topics.

6.5.1. Antiunitary/Antilinear Operators

If, for any vector ∣ψ⟩, an operator T̂ satisfies

T̂ (∣ψ⟩ + ∣φ⟩) = T̂ ∣ψ⟩ + T̂ ∣φ⟩ and T̂ c ∣ψ⟩ = c∗T̂ ∣ψ⟩ (6.87)
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then this type of operator is called an antilinear operator. For an antilinear
operator T̂ to have an inverse T̂ −1 such that

T̂ −1T̂ = Î = T̂ T̂ −1 (6.88)

it is necessary and sufficient that for each vector ∣ψ⟩ there is one and only one
vector ∣φ⟩ such that ∣ψ⟩ = T̂ ∣φ⟩. This implies that T̂ −1 is unique and antilinear.

If an antilinear operator T̂ has an inverse T̂ −1 and if ∥T̂ ∣ψ⟩ ∥ = ∥ ∣ψ⟩ ∥ (preserves
norm) for all ∣ψ⟩, then T̂ is antiunitary.

Assume T̂ is antiunitary. Therefore, if

∣φ̃⟩ = T̂ ∣φ⟩ and ∣ψ̃⟩ = T̂ ∣ψ⟩ (6.89)

then we have ⟨φ̃ ∣ ψ̃⟩ = ⟨φ ∣ψ⟩∗. Now if T̂ is antilinear, then T̂ 2 is a linear operator
and if T̂ is antiunitary, then T̂ 2 is a unitary operator.

6.5.2. Wigner’s Theorem

Any mapping of the vector space onto itself

∣ψ⟩→ ∣ψ⟩′ = Û ∣ψ⟩ and ∣φ⟩→ ∣φ⟩′ = Û ∣φ⟩ (6.90)

that preserves ∣ ⟨φ ∣ψ⟩ ∣ can be implemented by an operator Û that is unitary
(linear) when ⟨φ′ ∣ψ′⟩ = ⟨φ ∣ψ⟩ or antiunitary(antilinear) when ⟨φ′ ∣ψ′⟩ = ⟨φ ∣ψ⟩∗.

We can show that all such transformation operators of interest in quantum
mechanics are linear operators. For example, let Û(`) describe a displacement
through a distance `. We know from experiment that this can be done as a series
of two displacements of size `/2 and thus, we must have Û(`) = Û(`/2)Û(`/2).
Now the product of two antilinear operators is linear. Therefore, regardless of
whether Û(`/2) is linear or antilinear, Û(`) is linear. There is nothing special,
however, about the value `, i.e., we must also have Û(`/2) = Û(`/4)Û(`/4) which
implies that Û(`/2) is linear and so on.

Operators in quantum mechanics are continuous, which means that they cannot
change discontinuously from linear to antilinear as a function of `. This means
that we need only consider continuous linear transformations in quantum me-
chanics.

Antilinear operators will appear later when we discuss discrete symmetries.

Now, if the transformation rule for state vectors is ∣q′n⟩ = Û ∣qn⟩ where

Q̂ ∣qn⟩ = qn ∣qn⟩ and Q̂′ ∣q′n⟩ = qn ∣q′n⟩ (6.91)
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then we must have

Q̂′Û ∣qn⟩ = qnÛ ∣qn⟩ or Û−1Q̂′Û ∣qn⟩ = qn ∣qn⟩ (6.92)

Therefore,
(Q̂ − Û−1Q̂′Û) ∣qn⟩ = (qn − qn) ∣qn⟩ = 0 (6.93)

for all ∣qn⟩. Since the set {∣qn⟩} is complete (the eigenvectors of a Hermitian
operator), this result holds for any vector ∣ψ⟩, which can be constructed from
the set {∣qn⟩}. Therefore, we must have

Q̂ − Û−1Q̂′Û = 0 (6.94)

or
Q̂→ Q̂′ = ÛQ̂′Û−1 (6.95)

is the corresponding transformation rule for linear operators.

6.5.3. The Transformation Operator and its Generator
Let t be a continuous parameter. We consider a family of unitary operators
Û(t), with the properties

Û(0) = Î and Û(t1 + t2) = Û(t1)Û(t2) (6.96)

Transformations such as displacements, rotations and Lorentz boosts clearly
satisfy these properties and so it make sense to require them in general.

Now we consider infinitesimal t. We can then write the infinitesimal version of
the unitary transformation as

Û(t) = Î + dÛ

dt
∣
t=0

t +O(t2) (6.97)

Now all unitary operators must satisfy the unitarity condition

Û Û † = Î for all t (6.98)

Therefore, we have to first order in t (an infinitesimal)

Û Û † = Î = [Î + dÛ(t)
dt

∣
t=0

t + . . .] [Î + dÛ †(t)
dt

∣
t=0

t + . . .] (6.99)

= Î + [dÛ(t)
dt

+ dÛ
†(t)
dt

]∣
t=0

t + . . .

which implies that

[dÛ(t)
dt

+ dÛ
†(t)
dt

]∣
t=0

= 0 (6.100)
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If we let
dÛ(t)
dt

∣
t=0

= −iĤ (6.101)

then the condition (6.99) becomes

−iĤ + (iĤ)† = 0 or Ĥ = Ĥ† (6.102)

which says that Ĥ is a Hermitian operator. It is called the generator of the
family of transformations Û(t) because it determines these operators uniquely.

Now consider the property Û(t1 + t2) = Û(t1)Û(t2). Taking the appropriate
partial derivative we have

∂

∂t1
Û(t1 + t2))∣

t1=0

= ( d

dt1
Û(t1))∣

t1=0

Û(t2) (6.103)

or
d

dt
Û(t))∣

t=t2
= −iĤÛ(t2) (6.104)

which can be written for arbitrary t as

i
dÛ(t)
dt

= ĤÛ(t) (6.105)

If Ĥ is not explicitly dependent on time, then this equation is satisfied by the
unique solution

Û(t) = e−iĤt (6.106)

Thus, the generator Ĥ of the infinitesimal transformation, determines the op-
erator Û(t) = e−iĤt for a finite transformation.

This is just Stone’s theorem, which we discussed earlier, but now derived in an
alternative way.

We will now approach the study of various pictures using simple methods and
then repeat the process using symmetry operations, which will clearly show the
power of using the latter approach and give us a deeper understanding about
what is happening.

6.6. The Schrödinger Picture

The Schrödinger picture follows directly from the previous discussion of the
Û(t) operator. Suppose we have some physical system that is represented by
the state vector ∣ψ(0)⟩ at time t = 0 and represented by the state vector ∣ψ(t)⟩
at time t.

We ask this question. How are these state vectors related to each other?
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We make the following assumptions:

1. Every vector ∣ψ(0)⟩ such that ⟨ψ(0) ∣ψ(0)⟩ = ∥ ∣ψ(0)⟩ ∥ = 1 represents a
possible state at time t = 0.

2. Every vector ∣ψ(t)⟩ such that ⟨ψ(t) ∣ψ(t)⟩ = ∥ ∣ψ(t)⟩ ∥ = 1 represents a
possible state at time t = 0.

3. Every bounded Hermitian operator represents an observable or measurable
quantity.

4. The properties of the physical system determine the state vectors to within
a phase factor since ∥eiα ∣ψ⟩ ∥ = ∥ ∣ψ⟩ ∥.

5. ∣ψ(t)⟩ is determined by ∣ψ(0)⟩. Now if ∣ψ(0)⟩ and ∣φ(0)⟩ represent two
possible states at t = 0 and ∣ψ(t)⟩ and ∣φ(t)⟩ represent the corresponding
states at time t, then ∣ ⟨φ(0) ∣ψ(0)⟩ ∣2 equals the probability of finding the
system in the state represented by ∣φ(0)⟩ given that the system is in the
state ∣ψ(0)⟩ at t = 0 and ∣ ⟨φ(t) ∣ψ(t)⟩ ∣2 equals the probability of finding
the system in the state represented by ∣φ(t)⟩ given that the system is in
the state ∣ψ(t)⟩ at time t.

6. It makes physical sense to assume that these two probabilities should be
the same

∣ ⟨φ(0) ∣ψ(0)⟩ ∣2 = ∣ ⟨φ(t) ∣ψ(t)⟩ ∣2

Wigner’s theorem then says that there exists a unitary, linear operator Û(t)
such that

∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ (6.107)

and an expression of the form

∣ ⟨α∣ Û(t) ∣β⟩ ∣2 (6.108)

gives the probability that the system is in state ∣α⟩ at time t given that it was
in state ∣β⟩ at time t = 0.

This clearly agrees with our earlier assumption of the existence of such an op-
erator and strengthens our belief that item (6) above is a valid assumption.

We assume that this expression is a continuous function of t. As we have already
showed (6.104), we then have Û(t) satisfying the equation

i
dÛ(t)
dt

= ĤÛ(t) (6.109)

or
Û(t) = e−iĤt (6.110)

and thus
∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ = e−iĤt ∣ψ(0)⟩ (6.111)
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which implies the following equation of motion for the state vector

i
dÛ(t)
dt

∣ψ(0)⟩ = ĤÛ(t) ∣ψ(0)⟩ (6.112)

or
i
d

dt
∣ψ(t)⟩ = Ĥ ∣ψ(t)⟩ (6.113)

which is the abstract form of the famous Schrödinger equation. We will derive
the standard form of this equation later. The operator Û(t) = e−iĤt is called
the time evolution operator for reasons that will become clear shortly.

Finally, we can write a time-dependent expectation value as

∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ = e−iĤt ∣ψ(0)⟩ (6.114)

⟨Q̂(t)⟩ = ⟨ψ(t)∣ Q̂ ∣ψ(t)⟩ (6.115)

This is the Schrödinger picture where state vectors change with time and oper-
ators are constant in time.

As we saw in the discussion above, using the Schrödinger picture depends on
a full knowledge of the Hamiltonian operator Ĥ. However, in the Schrödinger
picture, where we need to know Ĥ to solve the equation of motion for ∣ψ(t)⟩, the
equation of motion is such that we seem to need to know the complete solution
for all time, ∣ψ(t)⟩ to deduce Ĥ. We are trapped in a circle. Put another way,
the Schrödinger equation has no physical content unless we have an independent
way to choose the Hamiltonian operator Ĥ. Before deriving a way to choose Ĥ
(we will use a symmetry approach), we will look at the other pictures.

We note that the Schrödinger picture is not the same as the Schrödinger equa-
tion. The Schrödinger equation involves a mathematical object called the wave
function which is one particular representation of the state vector, namely the
position representation, as we shall see later. Thus, the Schrödinger equation is
applicable only to Hamiltonians that describe operators dependent on external
degrees of freedom like position and momentum. The Schrödinger picture, on
the other hand, works with both internal and external degrees of freedom and
can handle a much wider class of physical systems, as we will see.

Digression: Alternative Approach to Unitary Translation Operators

We now consider active translations of the state vector in space-time. Since the
length of a state vector cannot change (always normalized to 1) in the stan-
dard probability interpretation of quantum mechanics, active translations must
be represented by unitary operators and correspond to rotations(no change of
length) of the vectors in the Hilbert space.
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We use the quantities

ψα(r⃗) = ⟨r⃗ ∣α⟩ (6.116)
= probability amplitude for the state ∣α⟩ to be found in the state ∣r⃗⟩

for this discussion.

First, we consider translations in space. For the shifted amplitude we write

ψα′(r⃗) = ψα(r⃗ − ρ⃗) = Ûr(ρ⃗)ψα(r⃗) (6.117)

where
α,α′ label the state vectors

r⃗ indicates spatial translations involved

ρ⃗ is the displacement vector

The relationship above follows from Figure 6.1 below (it gives the meaning of
translation in space).

Figure 6.1: Space Translation

which implies that
ψα′(r⃗ + ρx̂, t) = ψα(r⃗, t) (6.118)

To determine the operator Ûr(ρ⃗) explicitly, we have oriented the translation
vector ρ⃗ parallel to the x-axis. We get

ψα(r⃗ − ρx̂) = ψα(x − ρ, y, z) (6.119)

= ψα(x, y, z) − ρ
∂

∂x
ψα(x, y, z) +

ρ2

2!

∂2

∂x2
ψα(x, y, z) − . . .

= e−ρ
∂
∂xψα(x, y, z)
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where we have used a Taylor expansion and defined the exponential operator
by

e−ρ
∂
∂x = 1 − ρ ∂

∂x
+ ρ

2

2!

∂2

∂x2
− . . . (6.120)

For a translation in an arbitrary direction ρ⃗, the generalization of this result is
accomplished by the replacement

ρ
∂

∂x
→ ρ⃗ ⋅ ▽ (6.121)

so that
ψα(r⃗ − ρ⃗) = e−ρ⃗⋅▽ψα(r⃗) = e−iρ⃗⋅p̂/h̵ψα(r⃗) (6.122)

where we have used
p̂ = −ih̵▽ (6.123)

Later we shall find that p̂ is the linear momentum operator. Thus, we find that
the spatial translation operator is given by

Ûr(ρ⃗) = e−iρ⃗⋅p̂/h̵ (6.124)

We will derive this result from first principles using symmetry arguments shortly.

Time Displacements in Quantum Mechanics

We now investigate the time displacement of a state function ψα(r⃗, t) by a time
interval τ as shown in Figure 6.2 below.

Figure 6.2: Time Translation

As before, we have
ψα′(r⃗, t + τ) = ψα(r⃗, t) (6.125)

We now represent this transformation with a unitary operator Ût(τ) such that

ψα′(r⃗, t) = Ût(τ)ψα(r⃗, t) = ψα(r⃗, t − τ) (6.126)
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We again make a Taylor expansion to get

Ût(τ)ψα(r⃗, t) = ψα(r⃗, t) + (−τ) ∂
∂t
ψα(r⃗, t) +

(−τ)2

2!

∂2

∂t2
ψα(r⃗, t) − . . . (6.127)

= e−τ
∂
∂tψα(r⃗, t)

It follows that
Ût(τ) = e−τ

∂
∂t = eiτÊ/h̵ = eiτĤ/h̵ (6.128)

where we have used
Ê = Ĥ = ih̵ ∂

∂t
(6.129)

Later we shall find that Ê = Ĥ is the energy or Hamiltonian operator.

We find that the time evolution operator for state vectors(kets) is given as
follows

∣r⃗, t, α′⟩ = eiĤτ/h̵ ∣r⃗, t, α⟩ = ∣r⃗, t − τ,α⟩ (6.130)

eiĤτ/h̵ ∣r⃗, t + τ,α⟩ = ∣r⃗, t, α⟩ (6.131)

∣r⃗, t + τ,α⟩ = e−iĤτ/h̵ ∣r⃗, t, α⟩ (6.132)

∣r⃗, τ, α⟩ = e−iĤτ/h̵ ∣r⃗,0, α⟩ (6.133)

∣r⃗, t, α⟩ = e−iĤt/h̵ ∣r⃗,0, α⟩ (6.134)

A result identical to our earlier derivation (6.110).

6.7. The Heisenberg Picture

As we saw earlier, we can think of the expectation value in two different ways,
namely,

∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ = e−iĤt ∣ψ(0)⟩ (6.135)

⟨Q̂(t)⟩ = ⟨ψ(t)∣ Q̂ ∣ψ(t)⟩ = ⟨ψ(0)∣ Û †(t)Q̂Û(t) ∣ψ(0)⟩ (6.136)

= ⟨ψ(0)∣ Q̂(t) ∣ψ(0)⟩

where
Q̂(t) = Û(t)†Q̂Û(t) = Û †(t)Q̂(0)Û(t) = eiĤtQ̂e−iĤt (6.137)

This implies that in the Heisenberg picture operators change with time and
states are constant in time.

Now Û(t) is a unitary, linear operator. This means that the transformation
preserves these properties:

1. Q̂(0) bounded → Q̂(t) bounded
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2. Q̂(0) Hermitian → Q̂(t) Hermitian

3. Q̂(0) positive → Q̂(t) positive

4. Q̂(0) and Q̂(t) have the same spectrum

In addition, if the spectral decomposition of Q̂(0) give the projection operators
Êx(0), then the spectral decomposition of Q̂(0) give the projection operators
Êx(t) = eiĤtÊx(0)e−iĤt.

This follows from:

⟨φ∣ Q̂(t) ∣ψ⟩ = ∫
∞

−∞
xd ⟨φ∣ Êx(t) ∣ψ⟩ (6.138)

= ⟨φ∣ eiĤtQ̂(0)e−iĤt ∣ψ⟩ = ⟨φ(t)∣ Q̂(0) ∣ψ(t)⟩

= ∫
∞

−∞
xd ⟨φ(t)∣ Êx(0) ∣ψ(t)⟩ = ∫

∞

−∞
xd ⟨φ∣ eiĤtÊx(0)e−iĤt ∣ψ⟩

For a function F of Q̂(t) we have

⟨φ∣F (Q̂(t)) ∣ψ⟩ = ∫
∞

−∞
F (x)d ⟨φ∣ Êx(t) ∣ψ⟩ (6.139)

= ∫
∞

−∞
F (x)d ⟨φ∣ eiĤtÊx(0)e−iĤt ∣ψ⟩

= ∫
∞

−∞
F (x)d ⟨φ(t)∣ Êx(0) ∣ψ(t)⟩

= ⟨φ(t)∣F (Q̂(0)) ∣ψ(t)⟩ = ⟨φ∣ eiĤtF (Q̂(0))e−iĤt ∣ψ⟩

or
F (Q̂(t)) = eiĤtF (Q̂(0))e−iĤt (6.140)

If {Q̂i(0)} represents a complete set of mutually commuting Hermitian oper-
ators, then {Q̂i(t)} is also a complete set of mutually commuting Hermitian
operators. In addition,

F ({Q̂i(t)}) = eiĤtF ({Q̂i(0)})e−iĤt (6.141)

and all algebraic relations between non-commuting operators are preserved in
time.

Since [f(Q̂, Q̂] = 0 we have

Û †(t)ĤÛ(t) = eiĤtĤe−iĤt = Ĥ (6.142)

which implies that Ĥ, the Hamiltonian operator is a constant of the motion (in
time).

388



6.8. Interaction Picture

We have derived the equation

i
d

dt
∣ψ(t)⟩ = Ĥ(t) ∣ψ(t)⟩ (6.143)

Now let us assume that Ĥ can be split up as follows:

Ĥ(t) = Ĥ0 + V̂ (t) (6.144)

where Ĥ0 is independent of t. This will be possible in many real physical
systems. Note that the equation

i
dÛ(t)
dt

= Ĥ(t)Û(t) (6.145)

does not have the simple solution

Û(t) = e−iĤt (6.146)

in this case.

We now define a new state vector by the relation

∣ψI(t)⟩ = eiĤ0t ∣ψ(t)⟩ (6.147)

Taking derivatives we get

i
d

dt
∣ψI(t)⟩ = i

d

dt
(eiĤ0t ∣ψ(t)⟩) = −eiĤ0tĤ0 ∣ψI(t)⟩ + eiĤ0ti

d

dt
∣ψ(t)⟩ (6.148)

= −eiĤ0tĤ0 ∣ψI(t)⟩ + eiĤ0tĤ ∣ψ(t)⟩ = eiĤ0tV̂ ∣ψ(t)⟩

= eiĤ0tV̂ e−iĤ0teiĤ0t ∣ψ(t)⟩

or
i
d

dt
∣ψI(t)⟩ = V̂I(t) ∣ψI(t)⟩ (6.149)

where we have defined
V̂I(t) = eiĤ0tV̂ e−iĤ0t (6.150)

We then have

⟨Q̂(t)⟩ = ⟨ψ(t)∣ Q̂ ∣ψ(t)⟩ = ⟨ψI(t)∣ eiĤ0tQ̂e−iĤ0t ∣ψI(t)⟩ (6.151)

= ⟨ψI(t)∣ Q̂I(t) ∣ψI(t)⟩

This says that in the interaction picture both the state vectors and the operators
are dependent on time. Their time development, however, depends on differ-
ent parts of Ĥ. The state vector time development depends on V̂I(t) and the
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operator time development depends on Ĥ0. It is, in some sense, intermediate
between the Schrödinger and Heisenberg picture.

The question still remains, however, how do we find Ĥ ?

We now turn to a more general approach based on symmetries to get a handle
on how to deal with this problem.

6.9. Symmetries of Space-Time

Since we are only considering non-relativistic quantum mechanics at this stage,
we will restrict our attention to velocities that are small compared to the speed
of light.

In this case, the set of all displacements in space-time, rotations in space and
Galilean boosts(Lorentz boosts in the low velocity limit) can be represented by
transformations where

x⃗→ x⃗′ = Rx⃗ + a⃗ + v⃗t , t′ = t + s (6.152)

where R is a rotation of the real 3-vectors x⃗ in 3-dimensional space, a⃗ is a real
3-vector that specifies space translations, v⃗ is a real 3-vector that represents the
velocity of a moving coordinate system and specifies the Galilean transforma-
tions, and the real number s specifies the time translation.

R can be thought of as a 3 × 3 matrix such that under a pure rotation

x⃗′ = Rx⃗ or x′j =∑
i

Rjixi (6.153)

⎛
⎜
⎝

x′1
x′2
x′3

⎞
⎟
⎠
=
⎛
⎜
⎝

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞
⎟
⎠

⎛
⎜
⎝

x1

x2

x3

⎞
⎟
⎠

(6.154)

For example, a rotation by angle θ about the x3(or z)-axis is given by

R3(θ) =
⎛
⎜
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎟
⎠

(6.155)

or
x′1 = x1 cos θ + x2 sin θ

x′2 = −x1 sin θ + x2 cos θ (6.156)

x′3 = x3

which corresponds to Figure 6.3 below.
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Figure 6.3: Rotation about z-axis

If we let T1 and T2 be two such transformations, then T1T2 is the transformation
corresponding to T2 followed by T1.

A set of transformations forms a group when:

1. The product of two transformation in the group is also a transformation
in the group.

2. The product is associative T3(T2T1) = (T3T2T1).

3. An identity transformation T0 exists such that x⃗ → x⃗ and t → t or T0T =
T = TT0 for all transformations T .

4. An inverse transformation T −1 exists for every transformation such that
T −1T = T0 = TT −1.

A subset of transformations T (τ) depending on a real parameter τ is called a
one-parameter subgroup if T0 = the identity and T (τ1+τ2) = T (τ1)T (τ2). Rota-
tions about a fixed axis, as we saw above, form a one-parameter subgroup where
the parameter is the angle of rotation.

Since products of the transformations from the three one-parameter subgroups,
which correspond to rotations about the 1−, 2−, and 3−axes separately, include
all possible rotations, there are three independent parameters(three angles) de-
scribing all rotations (remember the Euler angles from Classical Mechanics).

The total group of transformations has 10 parameters

1. rotations = 3 (3 angles)

2. space translations = 3 (3 components of a⃗)

3. Galilean boosts = 3 (3 components of v⃗)
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4. time translation = 1 (parameter s)

Each of these ten parameters corresponds to a one-parameter subgroup. A
ten-parameter group transformation is then defined by the product of ten one-
parameter subgroup transformations.

This means that in our discussions we need only consider the properties of
one-parameter subgroup transformations in order to understand general group
transformations.

In our earlier discussion we have already covered part of this topic when we
derived the time evolution operator Û(t), which clearly corresponds to the time
translation transformation.

Our earlier results tell us that for each of the ten transformations there exists a
linear, unitary operator Û(τ) on the state vectors and observables such that

∣ψ⟩→ ∣ψ′⟩ = Û(τ) ∣ψ⟩ and Q̂→ Q̂′ = Û(τ)Q̂Û−1(τ) (6.157)

where Û(τ) takes the general form

Û(τ) = eiτĜ (6.158)

and Ĝ = a Hermitian operator = the generator of the transformation.

The time evolution operator we derived earlier is a good example:

if ∣ψ(t)⟩ = state vector at time t, then for t′ = t + s

∣ψ(t′)⟩ = eiτĤ ∣ψ(t)⟩ (6.159)

6.10. Generators of the Group Transformations

In general we can write

Û(sµ) =
10

∏
µ=1

eisµK̂µ (6.160)

where the different sµ represent the ten parameters defining the group transfor-
mation represented by the operator Û(sµ) and

K̂µ = K̂†
µ = the Hermitian generators (there are 10) (6.161)

Now, let all the parameters become infinitesimally small so that we get infinites-
imal unitary operators of the form (expanding the exponentials)

Û(sµ) =
10

∏
µ=1

eisµK̂µ =
10

∏
µ=1

(Î + isµK̂µ) (6.162)
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or to first order in the parameters sµ,

Û = Î + i
10

∑
µ=1

sµK̂µ (6.163)

Note that the inverse transformation corresponding to eisµK̂µ is e−isµK̂µ .

We now construct the product transformation consisting of two infinitesimal
transformations followed by their inverses to get

eiεK̂µeiεK̂νe−iεK̂µe−iεK̂ν = Î + ε2[K̂ν , K̂µ] +O(ε3) (6.164)

where
[K̂ν , K̂µ] = K̂νK̂µ − K̂µK̂ν = commutator (6.165)

The algebraic steps involved are shown below.

eiεK̂µeiεK̂νe−iεK̂µe−iεK̂ν

= (Î + iεK̂µ −
1

2
ε2K̂2

µ)(Î + iεK̂ν −
1

2
ε2K̂2

ν)×

(Î − iεK̂µ −
1

2
ε2K̂2

µ)(Î − iεK̂ν −
1

2
ε2K̂2

ν)

= (Î + iε(K̂µ + K̂ν) − ε2K̂µK̂ν −
1

2
ε2(K̂2

µ + K̂2
ν))×

(Î − iε(K̂µ + K̂ν) − ε2K̂µK̂ν −
1

2
ε2(K̂2

µ + K̂2
ν))

= (Î + iε(K̂µ + K̂ν) − ε2K̂µK̂ν −
1

2
ε2(K̂2

µ + K̂2
ν)

−iε(K̂µ + K̂ν) − ε2K̂µK̂ν −
1

2
ε2(K̂2

µ + K̂2
ν)

+(iε(K̂µ + K̂ν))(−iε(K̂µ + K̂ν))

= Î − ε2K̂2
µ − ε2K̂2

ν − 2ε2K̂µK̂ν + ε2K̂2
µ + ε2K̂2

ν + ε2K̂µK̂ν + ε2K̂νK̂µ

= Î + ε2K̂νK̂µ − ε2K̂µK̂ν

= Î + ε2[K̂ν , K̂µ] +O(ε3)

We have expanded to 2nd order in ε in this derivation to explicitly see all the
higher order terms cancel out. In general, this is not necessary.

But remember that these transformations are part of a group and therefore the
product of the four transformations must also be a transformation Ŵ in the same
group. Actually, it only needs to be a member of the group to within an arbitrary
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phase factor of the form eiα (remember that the unitary transformations only
need to preserve ∣ ⟨φ ∣ψ⟩ ∣). We then have

eiαŴ = Î + ε2[K̂ν , K̂µ] (6.166)

(1 + iα)
⎛
⎝
Î + i∑

µ

sµK̂µ

⎞
⎠
= Î + ε2[K̂ν , K̂µ] (6.167)

iαÎ + i∑
µ

sµK̂µ = ε2[K̂ν , K̂µ] (6.168)

where we have used
Ŵ = ei∑µ sµK̂µ (6.169)

and expanded all the exponentials on the left-hand side of the equation to first
order.

Therefore, the most general mathematical statement that we can make based
on this result is that the commutator must take the form

[K̂ν , K̂µ] = i∑
λ

cλµνK̂µ + ibµν Î (6.170)

where the real numbers cλµν = the structure constants (of the group) and the term
involving the identity operator just corresponds to the existence of an arbitrary
phase factor. The structure factors and the bÕs are completely determined by
the group algebra as we shall see.

By convention, we define the transformations as follows:

1. Rotation about the α-axis (α = 1,2,3)

x⃗→ Rα(θα)x⃗ (6.171)

corresponds to the group operator

Û = e−iθαĴα (6.172)

where Ĵα = generators (α = 1,2,3)

2. Displacement along the α-axis (α = 1,2,3)

xα → xα + aα (6.173)

corresponds to the group operator

Û = e−iaαP̂α (6.174)

where P̂α = generators (α = 1,2,3)
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3. Velocity boost along the α-axis (α = 1,2,3)

xα → xα + vαt (6.175)

corresponds to the group operator

Û = eivαĜα (6.176)

where Ĝα = generators (α = 1,2,3)

4. Time displacement
t→ t + s (6.177)

corresponds to the group operator

Û = eisĤ (6.178)

where Ĥ = generator = Hamiltonian

6.11. Commutators and Identities

Initially, we will ignore the extra Î term in the equation(6.169) below

[K̂ν , K̂µ] = i∑
λ

cλµνK̂µ + ibµν Î (6.179)

in our discussions and then include its effect(if any) later on.

We can determine some of the commutators using physical arguments as follows:

1. space displacements along different axes are independent of each other
which implies that

[P̂α, P̂β] = 0 (6.180)

2. space displacements are independent of time displacements which implies
that

[P̂α, Ĥ] = 0 (6.181)

3. velocity boosts along different axes are independent of each other which
implies that

[Ĝα, Ĝβ] = 0 (6.182)

4. rotations are independent of time displacements which implies that

[Ĵα, Ĥ] = 0 (6.183)

5. space displacements and velocity boosts along a given axis are independent
of rotations about that axis

[Ĵα, P̂α] = 0 = [Ĵα, Ĝα] (6.184)
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6. obviously
[Ĥ, Ĥ] = 0 (6.185)

This leaves us to consider these remaining unknown commutators:

[Ĵα, P̂β], [Ĝα, Ĥ], [Ĵα, Ĵβ], [Ĝα, Ĵβ], [Ĝα, P̂β] (6.186)

Let us consider [Ĝ1, Ĥ] first.

The general procedure is as follows. We write down a product of four operators
consisting of the product of two operators representing a velocity boost in the
1-direction and a time translation and their inverses (as we did earlier).

Now these four successive transformation correspond to these changes of the
coordinates:

(x1, x2, x3, t)→ (x1 − εt, x2, x3, t) Lorentz boost at time t
→ (x1 − εt, x2, x3, t − ε) Time translation - only affects t
→ (x1 − εt + ε(t − ε), x2, x3, t − ε) Lorentz boost at time t-ε

→ (x1 − ε2, x2, x3, t) Time translation - only affects t

This last result just corresponds to a space displacement −ε2 along the 1-axis,
so equating the product of four transformations to a space translation, we have
the result

eiεĤeiεĜ1e−iεĤe−iεĜ1

= (Î + iεĤ)(Î + iεĜ1)(Î − iεĤ)(Î − iεĜ1)
= Î + ε2[Ĝ1, Ĥ] +O(ε3)

= e−i(−ε
2)P̂1 = Î + iε2P̂1

so that we find the result for the commutator

[Ĝ1, Ĥ] = iP̂1 (6.187)

In general, we get (using this same procedure)

[Ĝα, Ĥ] = iP̂α (6.188)

So we have determined one of the unknown commutators.

Now let us determine [Ĵα, Ĵβ] using the same type of procedure. For a rotation
we saw that

xj →∑
k

Rjkxk (6.189)

where

R1(θ) =
⎛
⎜
⎝

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎟
⎠

(6.190)
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R2(θ) =
⎛
⎜
⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎟
⎠

(6.191)

R3(θ) =
⎛
⎜
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎟
⎠

(6.192)

For small θ we have
Rα(θ) = Î − iθMα (6.193)

where Mα is determined by expanding the exponential to 1st order as

Mα = i dRα
dθ

∣
θ=0

(6.194)

M1(θ) =
⎛
⎜
⎝

0 0 0
0 0 i
0 −i 0

⎞
⎟
⎠

(6.195)

M2(θ) =
⎛
⎜
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟
⎠

(6.196)

M3(θ) =
⎛
⎜
⎝

0 i 0
−i 0 0
0 0 0

⎞
⎟
⎠

(6.197)

Then we have

R2(−ε)R1(−ε)R2(ε)R1(ε) (6.198)

= Î + ε2[M1,M2] = Î + iε2M3

= R3(−ε2)

or the product of four rotations is equivalent to a single rotation, which implies
that

[Ĵ1, Ĵ2] = iĴ3 (6.199)

and in general
[Ĵα, Ĵβ] = iεαβγ Ĵγ (6.200)

where we are using the Einstein summation convention for repeated indices and
εαβγ is the antisymmetric permutation symbol we introduced earlier with the
properties

εαβγ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if αβγ is an even permutation of 123

−1 if αβγ is an odd permutation of 123

0 if any two indices are the same
(6.201)
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Finally, we consider

eiεĜ2eiεĴ1e−iεĜ2e−iεĴ1 (6.202)

= (Î + iεG2)(Î + iεĜ1)(Î − iεG2)(Î − iεĜ1)
= Î + ε2[Ĵ1, Ĝ2] +O(ε3)

This involves a rotation by ε about the 1-axis and a velocity boost of ε along
the 2-axis. This product transformation changes the coordinates as follows:

(x1, x2, x3)→ (x1, x2 cos ε + x3 sin ε,−x2 sin ε + x3 cos ε)
→ (x1, x2 cos ε + x3 sin ε − εt,−x2 sin ε + x3 cos ε)
→ (x1, x2 + εt cos ε, x3 + εtsinε)
→ (x1, x2, x3 + ε2t) to 2nd order in ε

This is the same as
eiε

2Ĝ3 = Î + iε2Ĝ3 (6.203)

Thus, we have
[Ĵ1, Ĝ2] = iĜ3 (6.204)

or in general,
[Ĵα, Ĝβ] = iεαβγĜγ (6.205)

In a similar way,
[Ĵα, P̂β] = iεαβγP̂γ (6.206)

Summarizing so far we have

[P̂α, P̂β] = 0 , [P̂α, Ĥ] = 0 , [Ĝα, Ĝβ] = 0 , [Ĵα, Ĥ] = 0 (6.207)

[Ĵα, P̂α] = 0 , [Ĵα, Ĝα] = 0 , [Ĥ, Ĥ] = 0 (6.208)

[Ĝα, Ĥ] = iP̂α , [Ĵα, Ĵβ] = iεαβγ Ĵγ (6.209)

[Ĵα, Ĝβ] = iεαβγĜγ , [Ĵα, P̂β] = iεαβγP̂γ (6.210)

Before figuring out the last unknown commutator [Ĝα, P̂β], we need to see
whether the additional Î term has an effect on any of the commutators we have
already determined.

There are two relations, which are true for all commutators, that we will need
to use.

Commutators are antisymmetric so that

[Â, B̂] = −[B̂, Â] (6.211)

and they satisfy Jacobi’s identity which is

[[Â, B̂], Ĉ] = [[Ĉ, B̂], Â] + [[Â, Ĉ], B̂] (6.212)
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These identities, as we shall see, limit the possible multiples of Î that can be
present. So we now assume that each commutator has an additional multiple
of Î.

Thus, using [Ĵ1, P̂2] = iP̂3 − cÎ, where we have added a multiple of Î. We then
have

i[P̂3, P̂1] = [[Ĵ1, P̂2], P̂1] + [cÎ, P̂1] = [[Ĵ1, P̂2], P̂1]
= [[P̂1, P̂2], Ĵ1] + [[Ĵ1, P̂1], P̂2]

Now, [P̂1, P̂2] = 0 and [Ĵ1, P̂1] = 0, therefore [P̂3, P̂1] = 0 and no additional
multiple of Î is needed in this commutator. Everything is consistent without it!

In a similar manner we can show that

[P̂α, P̂β] = 0 , [P̂α, Ĥ] = 0 , [Ĝα, Ĝβ] = 0 , [Ĵα, Ĥ] = 0 (6.213)

so that no additional multiple of Î is needed in any of these commutators.

Since [Ĵα, Ĵβ] = −[Ĵβ , Ĵα], if the commutator [Ĵα, Ĵβ] is going to contain an
extra multiple of Î, then the constant must be antisymmetric also. Therefore
we must have

[Ĵα, Ĵβ] = iεαβγ Ĵγ + iεαβγbγ Î (6.214)

If we redefine Ĵα → Ĵα + bαÎ, then we get the original commutator back

[Ĵα, Ĵβ] = iεαβγ Ĵγ (6.215)

This change of definition implies that the transformation operator becomes

Ûα(θ) = e−iθĴα → e−iθĴαe−iθbα (6.216)

and thus ∣ψ′⟩ = Û ∣ψ⟩ changes to eiθbα ∣ψ′⟩ = Û ∣ψ⟩. Since overall phase factors
for the state vector do not change any physics we can ignore the extra Î terms
in this case. They do not change any real physics content!

In a similar manner, we show that

[Ĝα, Ĥ] = iP̂α , [Ĵα, Ĝβ] = iεαβγĜγ , [Ĵα, P̂β] = iεαβγP̂γ (6.217)

so that no additional multiple of Î is needed in any of these commutators.

Finally, we are left to consider the unknown commutator [Ĝα, P̂β]. Now using
the fact that [cÎ, P̂1] = 0 we have

i[Ĝ3, P̂1] = [[Ĵ1, Ĝ2], P̂1] + [cÎ, P̂1] = [[Ĵ1, Ĝ2], P̂1] (6.218)

= [[P̂1, Ĝ2], Ĵ1] + [[Ĵ1, P̂1], Ĝ2] = [[P̂1, Ĝ2], Ĵ1]
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which has the solution
[Ĝα, P̂β] = 0 α ≠ β (6.219)

In addition, we have

i[Ĝ3, P̂3] = [[Ĵ1, Ĝ2], P̂3] + [cÎ, P̂3] = [[Ĵ1, Ĝ2], P̂3] (6.220)

= [[P̂3, Ĝ2], Ĵ1] + [[Ĵ1, P̂3], Ĝ2]
= −i[P̂2, Ĝ2]

or
[Ĝ3, P̂3] = [Ĝ2, P̂2] (6.221)

and, in general
[Ĝα, P̂α] = [Ĝβ , P̂β] (6.222)

The only way to satisfy all of these commutators is to have the result

[Ĝα, P̂β] = δαβMÎ (6.223)

The value of M is undetermined. It cannot be eliminated by including mul-
tiples of Î in any of the other commutators. It must have some real physical
significance and we will identify it shortly.

6.12. Identification of Operators with Observables

We now use the dynamics of a free particle, which is a physical system that is
invariant under the Galilei group of space-time transformations, to identify the
operators representing the dynamical variables or observables in that case. This
section follows and expands on the work of Jordan(1975).

We assume that there exists a position operator (as we discussed earlier)

Q̂ = (Q̂1, Q̂2, Q̂3) (6.224)

(boldface = multi-component or vector operator) where

Q̂α ∣x⃗⟩ = xα ∣x⃗⟩ , α = 1,2,3 (6.225)

The position operator has an unbounded (−∞ < xα <∞), continuous spectrum.
The three operators Q̂α have a common set of eigenvectors and, thus, they
commute

[Q̂α, Q̂β] = 0 (6.226)

We now assume that there also exists a velocity operator

V̂ = (V̂1, V̂2, V̂3) (6.227)

such that we can make the following statement about expectation values (this
is an assumption)

d

dt
⟨Q̂⟩ = ⟨V̂⟩ (6.228)
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for any state vector.

It is important to note that each treatment of quantum mechan-
ics must make some assumption at this point. Although, they might
outwardly look like different assumptions, they clearly must be equiv-
alent since they result in the same theory with the same predictions.

For a pure state ∣ψ(t)⟩ we would then have

⟨ψ(t)∣ V̂ ∣ψ(t)⟩ = d

dt
(⟨ψ(t)∣ Q̂ ∣ψ(t)⟩) (6.229)

= [ d
dt

⟨ψ(t)∣] Q̂ ∣ψ(t)⟩ + ⟨ψ(t)∣ Q̂ [ d
dt

∣ψ(t)⟩]

Now a time displacement corresponds to t → t′ = t + s. To use this transforma-
tion, we first have to figure out a rule for the transformation of the ket vector
argument. When we represent the abstract vector ∣ψ⟩ as a function of space-
time we must be very careful about defining its properties. We derived this
result earlier, but it is so important that we do it again here.

Given ∣ψ⟩, we have seen that

ψ(x⃗, t) = ⟨x⃗, t ∣ψ⟩ (6.230)

Operating on the abstract vector with the time translation operator eisĤ ∣ψ⟩
then gives

⟨x⃗, t∣ eisĤ ∣ψ⟩ (6.231)

Now
e−isĤ ∣x⃗, t⟩ = ∣x⃗, t − s⟩ (6.232)

and therefore we get

⟨x⃗, t∣ eisĤ ∣ψ⟩ = ⟨x⃗, t − s ∣ψ⟩ = ψ(x⃗, t − s) (6.233)

or
∣ψ(t)⟩→ eisĤ ∣ψ(t)⟩ = ∣ψ(t − s)⟩ (6.234)

Here we have taken the so-called active point of view that the state is translated
relative to a fixed coordinate system.

Now, we let s = t to get

∣ψ(t)⟩→ eitĤ ∣ψ(t)⟩ = ∣ψ(0)⟩ (6.235)

or
∣ψ(t)⟩ = e−itĤ ∣ψ(0)⟩ (6.236)

and
d

dt
∣ψ(t)⟩ = −iĤ ∣ψ(t)⟩ (6.237)
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as we had already found in an earlier discussion. Using this result in (6.228) we
then find

⟨ψ(t)∣ V̂ ∣ψ(t)⟩ = i ⟨ψ(t)∣ ĤQ̂ ∣ψ(t)⟩ − i ⟨ψ(t)∣ Q̂Ĥ ∣ψ(t)⟩ (6.238)

= i ⟨ψ(t)∣ [Ĥ, Q̂] ∣ψ(t)⟩

which says that
V̂ = i[Ĥ, Q̂] (6.239)

is a valid velocity operator for a free particle.

However, since we do not know Ĥ, we are still stuck at the starting line.

Now a space displacement x⃗→ x⃗′ = x⃗ + a⃗ corresponds to

∣x⃗⟩→ ∣x⃗′⟩ = e−i∑α aαP̂α ∣x⃗⟩ = ∣x⃗ + a⃗⟩ (6.240)

Again, in this active point of view, the state is displaced relative to a fixed
coordinate system.

We then have, from our earlier discussion

Q̂→ Q̂′ = e−i∑α aαP̂αQ̂ei∑α aαP̂α (6.241)

where
Q̂′
α ∣x⃗⟩′ = xα ∣x⃗⟩′ or Q̂′

α ∣x⃗ + a⃗⟩ = xα ∣x⃗ + a⃗⟩ (6.242)

Since
Q̂α ∣x⃗⟩ = xα ∣x⃗⟩ or Q̂α ∣x⃗ + a⃗⟩ = (xα + aα) ∣x⃗ + a⃗⟩ (6.243)

we must have
(Q̂α − aαÎ) ∣x⃗ + a⃗⟩ = xα ∣x⃗ + a⃗⟩ (6.244)

which says that
Q̂′
α = Q̂α − aαÎ or Q̂′ = Q̂ − a⃗Î (6.245)

Now we need to work out how to use an operator of the form

eiuÂB̂e−iuÂ (6.246)

There are two ways to do this. The first way recognizes that it is the solution
of the 1st-order linear differential equation

i
d

du
eiuÂB̂e−iuÂ = −eiuÂÂB̂e−iuÂ + eiuÂB̂Âe−iuÂ (6.247)

= eiuÂ[Â, B̂]e−iuÂ = [eiuÂB̂e−iuÂ, Â]

with boundary condition

eiuÂB̂e−iuÂ = B̂ at u = 0 (6.248)
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A second way is to expand the exponentials in power series and regroup the
terms. In both cases, we get

eiuÂB̂e−iuÂ = B̂ − iu[B̂, Â] − u
2

2!
[[B̂, Â], Â] − . . . (6.249)

Using this last relation we can find useful results like

eiuĴ1 Ĵ3e
−iuĴ1 = Ĵ3 − iu[Ĵ3, Ĵ1] −

u2

2!
[[Ĵ3, Ĵ1], Ĵ1] − . . . (6.250)

= Ĵ3 − iu(iĴ2) −
u2

2!
[iĴ2, Ĵ1] − . . .

= Ĵ3 + uĴ2 −
u2

2!
Ĵ3 −

u3

3!
Ĵ2 +

u4

4!
Ĵ3 − . . .

= Ĵ3 (1 − u
2

2!
+ u

4

4!
− . . .) + Ĵ2 (u − u

3

3!
+ u

5

5!
− . . .)

= Ĵ3 cosu + Ĵ2 sinu

Now we finally arrive at the result we are looking for

Q̂′
α = Q̂α − aαÎ = e−i∑β aβP̂β Q̂αei∑β aβP̂β (6.251)

= Q̂α + i∑
β

aβ[Q̂α, P̂β] + . . .

which implies that
[Q̂α, P̂β] = iδαβ Î (6.252)

This solution, not only satisfies the equation to 1st-order as above, but implies
that all higher order terms are explicitly equal to zero. Thus, the solution is
exact.

This equation is one of the most important results in the theory of
quantum mechanics.

Now we continue the derivation of that last elusive commutator.

A rotation through an infinitesimal angle θ about an axis along the unit vector
n̂ has the effect

x⃗→ x⃗′ = x⃗ + θn̂ × x⃗ (6.253)

The corresponding transformation of the position eigenvectors is

∣x⃗⟩→ ∣x⃗′⟩ = e−iθn̂⋅Ĵ ∣x⃗⟩ (6.254)

and for the position operator

Q̂α → Q̂′
α = e−iθn̂⋅ĴQ̂αeiθn̂⋅Ĵ (6.255)

= Q̂α − iθ[n̂ ⋅ Ĵ, Q̂α] +O(θ2)
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We note that ∣x⃗′⟩ = an eigenvector of Q̂′ and ∣x⃗⟩ = an eigenvector of Q̂ (different
eigenvalues), but they are the same vector! (think about rotations of the axes).

Now as before (6.241) and (6.242),

Q̂′
α ∣x⃗⟩′ = xα ∣x⃗⟩′ (6.256)

Q̂α ∣x⃗′⟩ = x′α ∣x⃗′⟩ = (x⃗ + θn̂ × x⃗)α ∣x⃗′⟩ (6.257)

= (Q̂′ + θn̂ × Q̂′)α ∣x⃗⟩′

Now since the vectors ∣x⃗′⟩ = ∣x⃗⟩′ are a complete set, we must have

Q̂ = Q̂′ + θn̂ × Q̂′ (6.258)

or inverting this expression to 1st-order we have

Q̂′ = Q̂ − θn̂ × Q̂ (6.259)

Therefore, we find
[n̂ ⋅ Ĵ, Q̂α] = −in̂ × Q̂ (6.260)

For an arbitrary unit vector û this says that

[n̂ ⋅ Ĵ, û ⋅ Q̂α] = −iû ⋅ (n̂ × Q̂) = i(n̂ × û) ⋅ Q̂ (6.261)

or
[Ĵα, Q̂β] = i(êα × êβ) ⋅ Q̂ = i(εαβγ êγ) ⋅ Q̂ = iεαβγQ̂γ (6.262)

We note that this result is not only true for the components of the position
operator, but it is true for the components of any vector operator Â.

[Ĵα, Âβ] = iεαβγÂγ (6.263)

In a similar manner, since Ĝ generates a displacement in velocity space and we
have

V̂′ = V̂ − v⃗Î = eiv⃗⋅ĜV̂e−iv⃗⋅Ĝ (6.264)

This is the same way the Q̂ and P̂ operators behaved earlier. Now the unitary
operator Û(v⃗) = eiv⃗⋅Ĝ describes the instantaneous (t = 0) effect of a transforma-
tion to a frame of reference moving at velocity v⃗ with respect to the original
frame. It affects the V̂ operator as in (6.263). Due to its instantaneous nature
we must also have

ÛQ̂Û−1 = Q̂ or [Ĝα, Q̂β] = 0 (6.265)

Now, Q̂, the position operator, is clearly identified with an observable of the
physical state. After much work we have determined the commutators of Q̂
with all the symmetry generators of the Galilei group. We now have

[Ĝα, Q̂β] = 0 , [Ĝα, P̂β] = iδαβMÎ , [Q̂α, P̂β] = iδαβ Î (6.266)
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A possible solution of these equations is

Ĝα =MQ̂α (6.267)

We cannot show this is a unique solution.

We note, however, at this point that it is certainly true (using the commutators
in (6.265)) that

[Ĝ −MQ̂, P̂] = 0 and [Ĝ −MQ̂, Q̂] = 0 (6.268)

We must now turn to special cases in order to learn more about the physical
meaning of the generators.

Before discussing the special cases, we must again digress to review some math-
ematics discussed earlier and also cover some new mathematical ideas that we
will need.

A subspace M reduces a linear operator Â if Â ∣ψ⟩ is in M for every ∣ψ⟩ in M
and Â ∣φ⟩ is in M⊥ for every ∣φ⟩ in M⊥.

A set of operators is reducible if there is a subspace, other than the whole space
or the subspace containing only the null vector, which reduces every operator
in the set. Otherwise, we say that the set is irreducible.

A subspace M is invariant under a set of operators if Â ∣ψ⟩ is in M for every
operator in the set and every vector in M .

Thus, a subspace M reduces a set of operators if and only if M and M⊥ are
invariant under the set of operators.

A set of operators is symmetric if Â† is in the set for every operator Â in the
set.

If a subspace is invariant under a symmetric set of operators, then it reduces
the set of operators.

Schur’s Lemma

A symmetric set of bounded or Hermitian operators is irreducible if and only if
multiples of Î are the only bounded operators which commute with all operators
in the set.

Example 0: The commutator [Q̂α, Q̂β] = 0 says that the set of operators
{Q̂α , α = 1,2,3} is a complete set of commuting operators. Since [Q̂α, P̂β] =
iδαβ Î any function of Q̂α that commutes with the P̂α must be a multiple of Î.
Therefore, the set {Q̂1, Q̂2, Q̂3, P̂1, P̂2, P̂3} is irreducible.
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In other words, if an operator commutes with the Q̂α, then it is not a function
of P̂α since [Q̂α, P̂β] ≠ 0. If an operator commutes with the P̂α, then it is not
a function of Q̂α, for the same reason. If an operator is independent of the
set {Q̂α, P̂β} and there are no internal(not dependent on {Q̂α, P̂β}) degrees of
freedom, then it must be a multiple of Î.

Example 1 : Free Particle - no internal degrees of freedom

Now, as we stated earlier (6.267) that

[Ĝ −MQ̂, P̂] = 0 and [Ĝ −MQ̂, Q̂] = 0 (6.269)

and therefore
Ĝ −MQ̂ = multiple of Î (6.270)

or
Ĝα =MQ̂α + cαÎ (6.271)

But Ĝα is a component of a vector operator and therefore it must satisfy

[Ĵα, Ĝβ] = iεαβγĜγ (6.272)

The first term MQ̂α satisfies this relation, but the cαÎ term cannot unless we
choose cα = 0.

Therefore, we do not have any extra multiples of Î and we find that

Ĝα =MQ̂α (6.273)

when there are no internal degrees of freedom.

In a similar manner, we can show that

[Ĵ − Q̂ × P̂, P̂] = 0 and [Ĵ − Q̂ × P̂, Q̂] = 0 (6.274)

which then implies that
Ĵ − Q̂ × P̂ = c⃗Î (6.275)

But since
[Ĵα, Ĵβ] = iεαβγ Ĵγ (6.276)

again we are forced to choose c⃗ = 0 and thus

Ĵ = Q̂ × P̂ (6.277)

when there are no internal degrees of freedom.

The remaining generator we need to identify is Ĥ. It must satisfy

[Ĝα, Ĥ] = iP̂α → [MQ̂α, Ĥ] = iP̂α → [Q̂α, Ĥ] = i P̂α
M

(6.278)

406



A solution of this equation is given by

Ĥ = P̂ ⋅ P̂
2M

= P̂2

2M
(6.279)

as can be seen below

[Q̂α,
1

2M
P̂2] =

⎡⎢⎢⎢⎢⎣
Q̂α,

1

2M
∑
β

P̂ 2
β

⎤⎥⎥⎥⎥⎦
= 1

2M
∑
β

[Q̂α, P̂ 2
β ] (6.280)

= 1

2M
∑
β

(Q̂αP̂ 2
β − P̂ 2

β Q̂α) =
1

2M
∑
β

(Q̂αP̂βP̂β − P̂βP̂βQ̂α)

= 1

2M
∑
β

(Q̂αP̂βP̂β − P̂β(Q̂αP̂β − iδαβ Î))

= 1

2M
∑
β

(Q̂αP̂βP̂β − P̂βQ̂αP̂β + iδαβP̂β)

= 1

2M
∑
β

(Q̂αP̂βP̂β − (Q̂αP̂β − iδαβ Î)P̂β + iδαβP̂β)

= 1

2M
∑
β

2iδαβP̂β =
iP̂α
M

This result implies that Ĥ − P̂ ⋅ P̂/2M commutes with Q̂ and since [Ĥ, P̂] = 0,
it also commutes with P̂. Therefore, it is a multiple of Î, and we find

Ĥ − P̂ ⋅ P̂
2M

= E0Î , E0 = constant (6.281)

or

Ĥ = P̂ ⋅ P̂
2M

+E0Î (6.282)

Now, earlier we found that
[Q̂α, Ĥ] = iV̂α (6.283)

which now implies that

[Q̂α, Ĥ] = [Q̂α,
1

2M
P̂2] = iP̂α

M
= iV̂α (6.284)

Thus,

V̂α = P̂α
M

or V̂ = P̂

M
(6.285)

Summarizing, we have found that

P̂ =MV̂ , Ĥ = 1

2
V̂ ⋅ V̂ +E0 , Ĵ = Q̂ ×MV̂ (6.286)

where

V̂ = the velocity operator and Q̂ = the position operator (6.287)
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This implies, since we are talking about a free particle, that

M must be proportional to the mass of the free particle

i.e., suppose that
M = constant ×mass = βm (6.288)

then we must have

P̂α = constant × linear momentum = βp̂α
Ĥ = constant × energy = βÊ (6.289)

Ĵα = constant × angular momentum = βĵα

and all the relations (6.285)

P̂ =MV̂ , Ĥ = 1

2
V̂ ⋅ V̂ +E0 , Ĵ = Q̂ ×MV̂ (6.290)

still hold.

Now also remember that
[Q̂α, P̂β] = iδαβ Î (6.291)

which then implies that

[Q̂α, p̂β] = i
1

β
δαβ Î (6.292)

This says that 1/β must have the units Joule-Sec. With hindsight as to later
developments, we will now choose

h̵ = 1

β
(6.293)

and thus we finally obtain
[Q̂α, p̂β] = ih̵δαβ Î (6.294)

At this point, we do not know the numerical value of h̵ (any value will do at
this stage of our development). It can only be determined by experiment. Later
we shall see that it is

h̵ = h

2π
(6.295)

where h = Planck’s constant = 6.62 × 10−34 Joule-Sec. h̵ must be determined
from experiment since it sets the scale of all quantum phenomena and the scale
factors in physical theories cannot be known a priori (even though Kant thought
just the opposite was true).

Example 2 : Free Particle - with Spin

Internal degrees of freedom are, by definition, independent of the center of mass
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degrees of freedom(Example 1). This means they are represented by operators
that are independent of both Q̂ and P̂, or that they are represented by opera-
tors that commute with both Q̂ and P̂.

The set of operators {Q̂, P̂} is not irreducible in this case since an operator that
commutes with the set may still be a function of the operators corresponding
to the internal degrees of freedom.

The spin Ŝ is defined to be an internal contribution to the total angular mo-
mentum of the system. Therefore, we must modify the operator representing
angular momentum to be

Ĵ = Q̂ × P̂ + Ŝ (6.296)

with [Q̂, Ŝ] = 0 = [P̂, Ŝ].

We will study spin in great detail later in this book.

For now, let us see what we can say just based on the fact that spin is an angular
momentum. This means that the Ŝα must have the same commutators among
themselves as the Ĵα.

[Ŝα, Ŝβ] = iεαβγ Ŝγ (6.297)

Earlier we found the equation

[Ĝα, P̂β] = iδαβMÎ (6.298)

is satisfied by Ĝ =MQ̂ and

[Ĝ −MQ̂, P̂] = 0 and [Ĝ −MQ̂, Q̂] = 0 (6.299)

implied that Ĝ −MQ̂ = a⃗Î and we decided that we must have a⃗ = 0.

Now, however, we could also have terms involving Ŝ of the form

Ĝ −MQ̂ = cŜ (6.300)

Higher order powers of Ŝ do not contribute any new terms because the commu-
tator, which we can express as

Ŝ × Ŝ = iŜ (6.301)

indicates that they will reduce to a first-order term. So this result is general.

Now we found earlier that [Ĝα, Ĝβ] = 0, which implies that c = 0 and thus, we
still have Ĝ =MQ̂.

The previous argument to get

Ĥ = P̂ ⋅ P̂
2M

+E0Î (6.302)
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is identical to before except now E0 can be a function of Ŝ. Now we must have

[Ĵ, Ĥ] = 0→ [Ŝ,E0] = 0 (6.303)

which implies that E0 = cŜ ⋅ Ŝ is the only possibility. This has no effect on the
V̂ operator given by

V̂ = i[Ĥ, Q̂] (6.304)

since [E0, Q̂] = 0. Therefore, the relation

V̂ = P̂

M
(6.305)

remains valid.

So everything is the same as in Example 1 except that E0 now corresponds to
an internal (spin dependent) contribution to the energy.

Example 3 - A Particle Interacting with External Fields

We will only consider a spinless particle.

Interactions change the time evolution operator and as a consequence, the prob-
ability distributions for observables.

We assume that the equation of motion for the state vector retains its form

d

dt
∣ψ(t)⟩ = −iĤ ∣ψ(t)⟩ (6.306)

but the generator Ĥ changes to include the interactions. We single out Ĥ as
the only generator that changes in the presence of interactions because it gen-
erates dynamical evolution in time and interactions only change that property.
All the other generators imply purely geometric transformations which are not
dynamical.

We also retain the definition V̂ = i[Ĥ, Q̂], but note that interactions (a change
in Ĥ) will affect its value. So we assume that Ĥ still satisfies

V̂ = i[Ĥ, Q̂] (6.307)

If we shift to a different frame of reference moving uniformly with respect to
the original frame, we saw earlier that V̂ transforms as

eiv⃗⋅ĜV̂e−iv⃗⋅Ĝ = V̂ − v⃗Î (6.308)

Expanding the left-hand side to 1st-order in v⃗ gives

i[v⃗ ⋅ Ĝ, V̂] = −v⃗Î and [Ĝα, P̂β] = iδαβMÎ (6.309)
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Now, we still have the relation Ĝα =MQ̂α, since its derivation does not use any
commutators involving Ĥ.

Our earlier solution for V̂ (no external fields) was

V̂ = P̂

M
(6.310)

Now the commutators

[Ĝα, V̂β] = iδαβ Î and [Ĝα, P̂β] = iδαβMÎ (6.311)

imply that V̂ = P̂/M commutes with Ĝ. Since Ĝ =MQ̂, we must have

[V̂ − P̂

M
, Q̂] = 0 (6.312)

With no internal degrees of freedom present, the set of operators {Q̂α} is a
complete commuting set. This means that we must have

V̂ − P̂

M
= − A⃗(Q̂)

M
= a function only of Q̂ (6.313)

or

V̂ = P̂ − A⃗(Q̂)
M

(6.314)

We now need to solve V̂ = i[Ĥ, Q̂] for Ĥ. We have the result

P̂ − A⃗(Q̂)
M

= i[Ĥ, Q̂] (6.315)

A possible solution is

Ĥ0 =
(P̂ − A⃗(Q̂))

2

2M
(6.316)

as can be seen from the derivation below. We have

[Ĥ0, Q̂α] =
1

2M
∑
β

[(P̂ 2
β −AβP̂β − P̂βAβ −A2

β), Q̂α] (6.317)

= 1

2M
∑
β

([P̂ 2
β , Q̂α] − [AβP̂β , Q̂α] − [P̂βAβ , Q̂α] − [A2

β , Q̂α])

Now
[Q̂α, P̂β] = iδαβ Î and [Aβ , Q̂α] = 0 (6.318)

which gives

[AβP̂β , Q̂α] = Aβ[P̂β , Q̂α] = −iAβδαβ Î
[P̂βAβ , Q̂α] = [P̂β , Q̂α]Aβ = −iAβδαβ Î
[P̂ 2
β , Q̂α] = P̂βP̂βQ̂α − Q̂αP̂βP̂β = P̂β[P̂β , Q̂α] − iδαβP̂β = −2iδαβP̂β

[A2
β , Q̂α] = 0
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We then have the final step in the proof

[Ĥ0, Q̂α] =
1

2M
∑
β

2iδαβ(P̂β −Aβ) =
P̂α −Aα
M

(6.319)

That completes the proof. Finally, we can then say

[(Ĥ − Ĥ0), Q̂α] = 0 (6.320)

which implies that at most Ĥ can differ from Ĥ0 only by a function of Q̂

Ĥ − Ĥ0 =W (Q̂) = function of Q̂ (6.321)

or, in general

Ĥ =
(P̂ − A⃗(Q̂))

2

2M
+W (Q̂) (6.322)

This is the only form of Ĥ consistent with invariance under the Galilei group of
transformations.

The two new functions of Q̂ are called

A⃗(Q̂) = vector potential and W (Q̂) = scalar potential (6.323)

Both of the functions can be time-dependent. As operators they are functions
only of Q̂ and not of P̂.

This form certainly includes the classical electromagnetic interaction. However,
we cannot identify A⃗(Q̂) andW (Q̂) with the electromagnetic potential because
nothing in the derivation implies that they need to satisfy Maxwell’s equations.

This method can be generalized to cover the case of more than one particle
interacting with external fields.

An Aside

The conventional notation involving the generators and the constant h̵ is to use

P̂→ P̂

h̵
, Ĵ→ Ĵ

h̵
, M → M

h̵
, Ĥ → Ĥ

h̵
(6.324)

leading to changed transformation operators of the form

e−ia⃗⋅P̂/h̵ , e−iθn⋅Ĵ/h̵ , e−itĤ/h̵ (6.325)

or we could just let h̵ = 1 and continue to use all previous results unchanged.
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6.13. Multiparticle Systems

How do we generalize these single particle results to systems with more than
one particle?

We will deal with a special case that illustrates the general procedure without
adding any extra complexity.

Consider two particles forming a composite system where

Q̂(1) = operator representing an observable of particle 1

T̂ (2) = operator representing an observable of particle 2

We assume that the two particles in the composite system can be separated
physically so that they would not have any interaction with each other. This
means that when they are separated, the composite system must reduce to two
independent one-particle systems which we can describe using all of the one-
particle results we have already derived.

Thus, when we find a description of the two-particle system, it must include
the separate one-particle descriptions in some way. This means that it must be
possible to prepare the one-particle states as separate, independent entities in
the laboratory.

Now, earlier we proved that there exists a state of the system where an ob-
servable represented by an operator Q̂(1) has a definite value (probability = 1).
This state is any one of the eigenvectors of Q̂(1) and the definite value is the
corresponding eigenvalue. A similar result holds for the operator T̂ (2).

Now we have assumed that the properties of the two particles can be measured
independently. This means that a two-particle state vector for the compos-
ite system must exist such that it is a common eigenvector for all operators
representing observables of both particles. This says that if

Q̂(1) ∣qm⟩1 = qm ∣qm⟩1 and T̂ (2) ∣tn⟩2 = tn ∣tn⟩2 (6.326)

then for every m and n there exists a two-particle state vector ∣qm, tn⟩ for the
composite system with the properties

Q̂(1) ∣qm, tn⟩ = qm ∣qm, tn⟩ and T̂ (2) ∣qm, tn⟩ = tn ∣qm, tn⟩ (6.327)

The way to satisfy these conditions is to represent the two-particle state vector
as a mathematical object known as the Kronecker or direct product. We write
this (symbolically) as

∣qm, tn⟩ = ∣qm⟩1 ∣tn⟩2 or ∣qm, tn⟩ = ∣qm⟩1 ⊗ ∣tn⟩2 (6.328)
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If the set of vectors {∣qm⟩1} spans anM -dimensional vector space and the set of
vectors {∣tn⟩2} spans an N -dimensional vector space, then the set of all direct
product vectors spans an M ×N dimensional vector space.

Suppose we have two sets of operators, {Q̂(1)
i } for the system consisting of

particle 1 and {T̂ (2)
j } for the system consisting of particle 2. We define how

these operators act on the direct product states by the rules

Q̂
(1)
i ∣qm, tn⟩ = (Q̂(1)

i ∣qm⟩1)⊗ ∣tn⟩2 (6.329)

T̂
(2)
j ∣qm, tn⟩ = ∣qm⟩1 ⊗ (T̂ (2)

j ∣tn⟩2)

and we define a direct product between operators in the two sets by the relation

(Q̂(1)
i ⊗ T̂ (2)

j ) ∣qm, tn⟩ = (Q̂(1)
i ∣qm⟩1)⊗ (T̂ (2)

j ∣tn⟩2) (6.330)

When we write Q̂(1)
i or T̂ (2)

j alone, we really mean the following

Q̂
(1)
i → Q̂

(1)
i ⊗ Î(2) (6.331)

T̂
(2)
j → Î(1) ⊗ T̂ (2)

j

This definition of the direct product operators does not include all relevant
physical operators that we use in quantum mechanics. When the particles are
interacting, there must exist interaction operators that act on both sets of states.
Although this means that an individual direct product state vector for a com-
posite system cannot directly represent interacting particles, we will be able to
use the set of all such states(which is complete) as a basis for representing states
of interacting particles.

Since the common set of states {∣qm, tn⟩} comprise a complete basis set for all
of the Q̂(1)

i and T̂
(2)
j operators, these operators must form a set of mutually

commuting operators or

[Q̂(1)
i , T̂

(2)
j ] = 0 for all i, j (6.332)

An Example

Imagine we are in a fictitious world in which the single-particle Hilbert space
is 2-dimensional. Let us denote the corresponding basis vectors by ∣+⟩ and ∣−⟩.
In addition, let arbitrary operators β(1)

1 and β
(2)
1 be represented by (in their

respective spaces) by

β
(1)
1 = (1 ⟨+∣β(1)

1 ∣+⟩1 1 ⟨+∣β(1)
1 ∣−⟩1

1 ⟨−∣β(1)
1 ∣+⟩1 1 ⟨−∣β(1)

1 ∣−⟩1
) = (a b

c d
) (6.333)

β
(2)
1 = (2 ⟨+∣β(2)

1 ∣+⟩2 2 ⟨+∣β(2)
1 ∣−⟩2

2 ⟨−∣β(2)
1 ∣+⟩2 2 ⟨−∣β(2)

1 ∣−⟩2
) = (e f

g h
)
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These are operators in the space 1 (V1) and space 2 (V2), respectively. The
space V1 ⊗ V2 is therefore spanned by 4 vectors. They are

∣+⟩1 ∣+⟩2 = ∣+⟩1 ⊗ ∣+⟩2 = ∣++⟩ , ∣+⟩1 ∣−⟩2 = ∣+⟩1 ⊗ ∣−⟩2 = ∣+−⟩ (6.334)
∣−⟩1 ∣+⟩2 = ∣−⟩1 ⊗ ∣+⟩2 = ∣−+⟩ , ∣−⟩1 ∣−⟩2 = ∣−⟩1 ⊗ ∣−⟩2 = ∣−−⟩

We define the general operator (acts in both spaces)

Ô12 = β(1)
1 ⊗ Î(2)

=

⎛
⎜⎜⎜⎜
⎝

⟨++∣ Ô12 ∣++⟩ ⟨++∣ Ô12 ∣+−⟩ ⟨++∣ Ô12 ∣−+⟩ ⟨++∣ Ô12 ∣−−⟩
⟨+−∣ Ô12 ∣++⟩ ⟨+−∣ Ô12 ∣+−⟩ ⟨+−∣ Ô12 ∣−+⟩ ⟨+−∣ Ô12 ∣−−⟩
⟨−+∣ Ô12 ∣++⟩ ⟨−+∣ Ô12 ∣+−⟩ ⟨−+∣ Ô12 ∣−+⟩ ⟨−+∣ Ô12 ∣−−⟩
⟨−−∣ Ô12 ∣++⟩ ⟨−−∣ Ô12 ∣+−⟩ ⟨−−∣ Ô12 ∣−+⟩ ⟨−∣ Ô12 ∣−−⟩

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎞
⎟⎟⎟
⎠

(6.335)

where we have used the type of calculation below to determine the matrix ele-
ments.

⟨++∣ Ô12 ∣++⟩ = ⟨++∣β(1)
1 ⊗ Î(2) ∣++⟩

= 1 ⟨+∣β(1)
1 ∣+⟩1 2 ⟨+∣ Î(2) ∣+⟩2

= 1 ⟨+∣β(1)
1 ∣+⟩1 2 ⟨+ ∣+⟩2

= 1 ⟨+∣β(1)
1 ∣+⟩1 = a

Similarly, we have

Î(1) ⊗ β(2)
1 =

⎛
⎜⎜⎜
⎝

e f 0 0
g h 0 0
0 0 e f
0 0 g h

⎞
⎟⎟⎟
⎠

(6.336)

and

β
(1)
1 ⊗ β(2)

1 =
⎛
⎜⎜⎜
⎝

ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

⎞
⎟⎟⎟
⎠

(6.337)

Therefore, using the Pauli spin operators defined (in each space) by

σ̂1 ∣±⟩ = ∣∓⟩ , σ̂2 ∣±⟩ = ∓i ∣∓⟩ , σ̂3 ∣±⟩ = ± ∣∓⟩ (6.338)

so that these operators have the matrix representations (in each space)

σ̂1 = (0 1
1 0

) , σ̂2 = (0 −i
i 0

) , σ̂3 = (1 0
0 −1

) (6.339)
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We then have

σ̂
(1)
1 ⊗ σ̂(2)

1 =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(6.340)

σ̂
(1)
2 ⊗ σ̂(2)

2 =
⎛
⎜⎜⎜
⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎟
⎠

(6.341)

σ̂
(1)
3 ⊗ σ̂(2)

3 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(6.342)

Thus,

σ̂
(1)
1 ⋅ σ̂(2)

2 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(6.343)

and

f̂ = aÎ + bσ̂(1)
1 ⋅ σ̂(2)

2 =
⎛
⎜⎜⎜
⎝

a + b 0 0 0
0 a − b 2b 0
0 2b a − b 0
0 0 0 a + b

⎞
⎟⎟⎟
⎠

(6.344)

The states

∣+⟩1 ∣+⟩2 = ∣++⟩ , ∣+⟩1 ∣−⟩2 = ∣+−⟩ (6.345)
∣−⟩1 ∣+⟩2 = ∣−+⟩ , ∣−⟩1 ∣−⟩2 = ∣−−⟩

are given by

∣++⟩ =
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
, ∣+−⟩ =

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
, ∣−+⟩ =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, ∣−−⟩ =

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

(6.346)

and we have

σ̂
(1)
1 ∣++⟩ = σ̂(1)

1 ⊗ Î(2) ∣++⟩ =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
= ∣−+⟩ (6.347)

as expected.

416



An alternative way to think about the outer product is shown below:

σ̂
(1)
1 ⊗ σ̂(2)

1 = (0 1
1 0

)⊗ σ̂(2)
1 = ( 0 σ̂

(2)
1

σ̂
(2)
1 0

) =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(6.348)

Extending This Idea

This procedure for constructing composite state vectors using the direct product
also works when dealing with certain dynamical properties of a one-particle
state.

Any one-particle state must represent the various degrees of freedom for the
one-particle system. These degrees of freedom, as we have seen, are related to
observables and their associated operators and eigenvalues. Thus, quantities
like Q̂α, P̂β , and Ŝγ all represent different degrees of freedom of the physical
system or state vector.

In the case of certain one-particle system degrees of freedom, which are said
to be independent, we can write one-particle state vectors and operators using
direct products. For instance, as we saw in an earlier example, both Q̂α and
P̂β are independent of an internal degree of freedom that we called spin Ŝγ . In
fact, we defined an internal degree of freedom as one which was independent
of the center of mass degrees of freedom. We defined this independence via
commutators by [Q̂α, Ŝγ] = 0 = [P̂β , Ŝγ].

Another example of independence of degrees of freedom was our assumption that
[Q̂α, Q̂β] = 0, which says that the three components of the position operator are
independent degrees of freedom. This should not surprise us since it just reflects
the physical assumption that it is possible to prepare a state where a particle is
localized arbitrarily close to a single point in 3-dimensional position space, i.e.,
the particle can have a “position”.

Similarly, our assumption that [P̂α, P̂β] = 0 means it is possible to prepare a state
where a particle is localized arbitrarily close to a single point in 3-dimensional
momentum space, i.e., the particle can have a “momentum”.

It is also clear, since [Q̂α, P̂β] ≠ 0 that we will not be able to prepare a state in
which both Q̂α and P̂α (components along the same axis) are simultaneously
localized arbitrarily close to single point in phase space and since [Ĵβ , Ĵγ] ≠ 0
we will not be able to prepare a state in which two different components of the
angular momentum have definite values.

This means that we can write single particle states as direct products. For
example

∣x⃗⟩ = ∣x1⟩⊗ ∣x2⟩⊗ ∣x3⟩ (6.349)
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X̂1X̂2X̂3 = X̂1 ⊗ X̂2 ⊗ X̂3 (6.350)

X̂1X̂2X̂3 ∣x⃗⟩ = (X̂1 ∣x1⟩)⊗ (X̂2 ∣x2⟩)⊗ (X̂3 ∣x3⟩) (6.351)

or
∣x⃗′sz⟩ = ∣x1⟩⊗ ∣x2⟩⊗ ∣x3⟩⊗ ∣sz⟩ (6.352)

X̂1X̂2X̂3Ŝz = X̂1 ⊗ X̂2 ⊗ X̂3 ⊗ Ŝz (6.353)

X̂1X̂2X̂3Ŝz ∣x⃗′sz⟩ = (X̂1 ∣X⟩1)⊗ (X̂2 ∣X⟩2)⊗ (X̂3 ∣X⟩3)⊗ (Ŝz ∣x⃗′sz⟩) (6.354)

We can use words as follows:

∣x⃗⟩ = ∣x1⟩⊗ ∣x2⟩⊗ ∣x3⟩→ particle at (x1, x2, x3) (6.355)

or

∣x⃗′sz⟩ = ∣x1⟩⊗ ∣x2⟩⊗ ∣x3⟩⊗ ∣sz⟩→ particle at (x1, x2, x3) with spin sz (6.356)

If we can construct state vectors for two-particle systems, then it must be possi-
ble to define appropriate probability distributions. These are called joint prob-
ability distributions.

If we prepare both particles into a direct product state such that their individ-
ual preparations are independent and they do not interact with each other, then
their joint probability distribution for the observables Q and T corresponding to
the operators Q̂(1) and T̂ (2) should obey the statistical independence condition
we defined earlier for events A, B, and C, namely,

Prob(A ∩B∣C) = Prob(A∣C)Prob(B∣C) (6.357)

For the direct product state

∣ψ⟩ = ∣α⟩1 ⊗ ∣β⟩2 (6.358)

this says that the joint probability distribution of Q and T is

Prob((Q = qm) ∩ (T = tn)∣ψ) = ∣ ⟨qm, tn ∣ψ⟩ ∣2 (6.359)
= Prob(Q = qm∣α)Prob(T = tn∣β)
= ∣ ⟨qm ∣α⟩1 ∣2∣ ⟨tn ∣β⟩2 ∣2

The state does not have to be a pure state for this factorization to occur. It
only needs to be represented by a density operator of the form

Ŵ = Ŵ (1) ⊗ Ŵ (2) (6.360)

Further discussion of this topic follows in section(6.17).

Later, we will use these direct product procedures to construct operators and
basis states for multiparticle systems like atoms. Just how we will include in-
teractions is not clear yet.
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6.14. Equations of Motion Revisited and Finished

We discussed time dependence and the time evolution operator earlier. This is
the most important topic in quantum mechanics and will eventually enable us
to make predictions about the behavior of real physical systems. Let us now
review our earlier discussion from a more general point of view in light of some
of the new ideas we have introduced.

We derived a differential equation of motion for the state vector of the form

d

dt
∣ψ(t)⟩ = − i

h̵
Ĥ(t) ∣ψ(t)⟩ (6.361)

If, initially (at t = t0) we are in the state represented by the ket vector ∣ψ(t0)⟩ =
∣ψ0⟩, then we wrote the formal solution of the differential equation in terms of
the time development operator Û(t, t0) as

∣ψ(t)⟩ = Û(t, t0) ∣ψ(t0)⟩ (6.362)

We also showed that Û(t, t0) satisfies the same differential equation as ∣ψ(t)⟩

∂

∂t
Û(t, t0) = −

i

h̵
Ĥ(t)Û(t, t0) (6.363)

with the boundary condition Û(t0, t0) = Î. This implies, using the relation
(ÂB̂)† = B̂†Â† that

∂

∂t
Û †(t, t0) =

i

h̵
Û †(t, t0)Ĥ(t) (6.364)

We then have

∂

∂t
(Û †Û) = Û † ∂Û

∂t
+ ∂Û

†

∂t
Û (6.365)

= − i
h̵
Û †ĤÛ + i

h̵
Û †Ĥ†Û

= i

h̵
Û †(Ĥ − Ĥ†)Û

If Ĥ is Hermitian, then Ĥ = Ĥ† and

∂

∂t
(Û †Û) = 0 (6.366)

which implies that

Û †(t, t0)Û(t, t0) = cÎ where c = constant (6.367)

But the boundary condition implies that Û †(t0, t0)Û(t0, t0) = Î which implies
that c = 1. Therefore, in general we have Û †(t, t0)Û(t, t0) = Î, which is the uni-
tarity condition and implies Û † = Û−1 or that Û is unitary when Ĥ is Hermitian.
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This agrees with our earlier results.

Now, if Ĥ(t) is independent of t, then the differential equation has a simple
solution

Û(t, t0) = e−i(t−t0)
Ĥ
h̵ (6.368)

which is the form we assumed for the time evolution operator during the dis-
cussion of symmetry transformations.

If Ĥ(t) is not independent of t, then no simple closed form solution can be
given for Û(t, t0). We must use perturbation theory as we shall see later when
we develop time-dependent perturbation theory.

We can now derive the equation of motion for the density operator. We use a
pure state for simplicity. We have

Ŵ (t) = ∣ψ(t)⟩ ⟨ψ(t)∣ = Û(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û †(t, t0) (6.369)

= Û(t, t0)Ŵ (t0)Û †(t, t0)

Now, using Ŵ (t0) = Ŵ0, differentiating with respect to t gives

dŴ (t)
dt

= dÛ(t, t0)
dt

Ŵ0Û
†(t, t0) + Û(t, t0)Ŵ0

dÛ †(t, t0)
dt

(6.370)

= − i
h̵
ĤÛ(t, t0)Ŵ0Û

†(t, t0) +
i

h̵
Û(t, t0)Ŵ0Û

†(t, t0)Ĥ

= − i
h̵
[Ĥ(t), Ŵ (t)]

We will assume that this equation is also true for general states.

Now, we have stated earlier that no physical significance can be attached in
quantum mechanics to operators and vectors. The only physically significant
objects are the probability distributions of observables or their expectation val-
ues. Earlier we derived the result

⟨Q̂⟩ = Tr(Ŵ Q̂) (6.371)

We now assume that this result carries over to the time-dependent case and we
have

⟨Q̂⟩t = Tr(Ŵ (t)Q̂) (6.372)

Using the expression (6.368) for Ŵ (t) and the fact that the trace is invariant
under cyclic permutation, i.e.,

Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ) (6.373)

we get

⟨Q̂⟩t = Tr(Ŵ Q̂) = Tr(Û(t, t0)Ŵ0Û
†(t, t0)Q̂) (6.374)

= Tr(Ŵ0Û
†(t, t0)Q̂Û(t, t0))
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This result is the formal basis of the Schrödinger and Heisenberg pictures we
discussed earlier.

If we leave the time dependence in the density operator, then

⟨Q̂⟩t = Tr(Ŵ (t)Q̂) (6.375)

where

dŴ (t)
dt

= − i
h̵
[Ĥ(t), Ŵ (t)] and d

dt
∣ψ(t)⟩ = − i

h̵
Ĥ(t) ∣ψ(t)⟩ (6.376)

Q̂ is independent of time is these equations. This is the Schrödinger picture.

On the other hand, if we write

⟨Q̂⟩t = Tr(Ŵ0Û
†(t, t0)Q̂Û(t, t0)) = Tr(Ŵ0Q̂H(t)) (6.377)

where Q̂H(t) = Û †(t, t0)Q̂Û(t, t0), then the operator is time dependent and the
density operator(and hence the state vectors) are independent of time. This is
the Heisenberg picture.

We can derive the equation of motion of the time-dependent operators in the
Heisenberg picture as follows:

d

dt
Q̂H(t) = ∂Û

†

∂t
Q̂Û + Û † ∂Q̂

∂t
Û + Û †Q̂

∂Û

∂t
(6.378)

= i

h̵
(Û †ĤQ̂Û − Û †Q̂ĤÛ) + Û † ∂Q̂

∂t
Û

= i

h̵
(Û †ĤÛ Û †Q̂Û − Û †Q̂Û Û †ĤÛ) + Û † ∂Q̂

∂t
Û

= i

h̵
[ĤH(t), Q̂H(t)] + (∂Q̂

∂t
)
H

where we have included the possibility that Q̂ has some explicit time dependence
and we have used the definition

ÂH(t) = Û †(t, t0)ÂÛ(t, t0) (6.379)

for any operator. Note the change in sign in front of the commutator in this
equation for the operator from that of the density operator in the Schrödinger
picture.

The two pictures are clearly equivalent as mathematical formalisms, since they
are derived from the same expectation value formula by an internal rearrange-
ment of terms. Another way to say this is that the two pictures are equivalent
because the only physically significant quantity ⟨Q̂⟩t depends only on the rela-
tive motion in time of Ŵ and Q̂, which is the same in both cases.
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In the Schrödinger picture Ŵ (t) moves forward in time (term of the form
ÛŴ0Û

† = ÛŴ0Û
−1) and in the Heisenberg picture Q̂(t) moves backward in

time (term of the form Û †Ŵ0Û = Û−1Ŵ0Û). The opposite senses of motion in
time produce the sign difference of the commutator terms in the equations of
motion. These two picture are mutually exclusive and cannot be used together.

Finally, we determine expressions for d⟨Q̂⟩t/dt in each picture.

In the Schrödinger picture

d⟨Q̂⟩t
dt

= d

dt
Tr(Ŵ (t)Q̂) = Tr [dŴ

dt
Q̂ + Ŵ ∂Q̂

∂t
] (6.380)

= Tr [− i
h̵
(ĤŴ Q̂ − Ŵ ĤQ̂) + Ŵ ∂Q̂

∂t
]

= Tr [− i
h̵
(Ŵ Q̂Ĥ − Ŵ ĤQ̂) + Ŵ ∂Q̂

∂t
]

= Tr [ i
h̵
Ŵ (t)[Ĥ, Q̂] + Ŵ ∂Q̂

∂t
]

In the Heisenberg picture

d⟨Q̂⟩t
dt

= Tr(Ŵ0
dQ̂H(t)
dt

) = Tr [ i
h̵
Ŵ0[Ĥ, Q̂H(t)] + Ŵ0 (∂Q̂

∂t
)
H

] (6.381)

For a pure state, we can rewrite these results in terms of the state vectors instead
of the density operator. We have in the Schrödinger picture

⟨Q̂⟩t = ⟨ψ(t)∣ Q̂ ∣ψ(t)⟩ where ∣ψ(t)⟩ = Û(t, t0) ∣ψ0⟩ (6.382)

and in the Heisenberg picture

⟨Q̂⟩t = ⟨ψ0∣ Q̂H(t) ∣ψ0⟩ where Q̂H(t) = Û †(t, t0)Q̂Û(t, t0) (6.383)

as we saw in our earlier discussions.

6.15. Symmetries, Conservation Laws and Station-
ary States

Let T̂ (s) = eisK̂ represent a continuous unitary transformation with a Hermi-
tian generator K̂ = K̂†. Another operator Â representing some observable is
invariant under this transformation if

T̂ (s)ÂT̂ −1(s) = Â (6.384)

or
ÂT̂ (s) − T̂ (s)Â = [Â, T̂ (s)] = 0 (6.385)
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If s is an infinitesimal, then we can write

(Î + isK̂)Â(Î − isK̂) = Â→ Â + is[K̂, Â] = Â (6.386)

or
[K̂, Â] = 0 (6.387)

In words, the invariance of Â under the continuous transformation T̂ (s) = eisK̂
for all s implies it is true for infinitesimal s and thus leads to the commutator
condition for invariance, which says that the operator commutes with the Her-
mitian generator of the transformation.

It works both ways:

[T̂ , Â] = 0→ invariance under finite transformation
→ invariance under infinitesimal transformation

→ [K̂, Â] = 0

or

[K̂, Â] = 0→ invariance under infinitesimal transformation
→ invariance under finite transformation

→ [T̂ , Â] = 0

If K̂ depends on t, then the commutators [K̂(t), Â] = 0 and [T̂ (t), Â] = 0 must
hold for all t.

Now, the Hermitian generators of the symmetry transformation, as we have
seen, correspond to dynamical variables of a physical system.

space displacements ⇔ P̂

rotations ⇔ Ĵ

t displacements ⇔ Ĥ

These symmetry generators have no explicit time dependence, i.e., ∂K̂/∂t = 0.
Therefore,

d⟨K̂⟩t
dt

= Tr [ i
h̵
Ŵ (t)[Ĥ, K̂]] = 0 (6.388)

if Ĥ is invariant under the corresponding symmetry transformation, i.e., [Ĥ, K̂] =
0. Now [Ĥ, K̂] = 0→ [Ĥ, f(K̂)] = 0. This says that we must have

[Ĥ, θ(x − K̂)] = 0 (6.389)

But in our probability discussions, we showed that

⟨θ(x − K̂)⟩ = Prob(K < x∣Ŵ )
= probability that observable K̂ has a value < x given Ŵ
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This then says that Prob(K < x∣Ŵ ) is independent of t no matter what initial
state we start with. In this case, observable K = a is a constant of the motion.

Examples:

[Ĥ, P̂α] = 0 implies invariance under a space displacement along the α-axis. This
implies that P̂α= constant of the motion (is conserved) = linear momentum
along the α-axis.

[Ĥ, Ĵα] = 0 implies invariance under a rotation about the α-axis. This implies
that Ĵα= constant of the motion (is conserved) = angular momentum about
the α-axis.

If Ĥ is not an explicit function of t, then since [Ĥ, Ĥ] = 0, Ĥ is invariant under
time translations = constant of the motion = energy of the system.

Now suppose that Ĥ is independent of t and that

∣ψ(0)⟩ = [ eigenvector of Ĥ] = ∣En⟩ such that Ĥ ∣En⟩ = En ∣En⟩ (6.390)

Then we have, using [Ĥ, Û] = [Ĥ, f(Û)] = 0,

d

dt
∣ψ(t)⟩ = − i

h̵
Ĥ ∣ψ(t)⟩ = − i

h̵
ĤÛ(t,0) ∣ψ(0)⟩ (6.391)

= − i
h̵
ĤÛ(t,0) ∣En⟩ = −

i

h̵
ĤÛ(t,0)Ĥ ∣En⟩

= − i
h̵
ĤÛ(t,0)En ∣En⟩ = −

i

h̵
EnĤÛ(t,0) ∣En⟩

= − i
h̵
En ∣ψ(t)⟩ (6.392)

which has the solution
∣ψ(t)⟩ = e−i

En
h̵ t ∣En⟩ (6.393)

In this case, we then have for the expectation value of any observable represented
by the operator R̂

⟨R̂⟩ = ⟨ψ(t)∣ R̂ ∣ψ(t)⟩ = ⟨En∣ ei
En
h̵ tR̂e−i

En
h̵ t ∣En⟩ = ⟨En∣ R̂ ∣En⟩ (6.394)

or ⟨R̂⟩ is independent of t (for this state). This implies that ⟨f(R̂)⟩ is also
independent of t, which finally, implies that ⟨θ(x− R̂)⟩ is independent of t. This
means that, in this state,

Prob(x < R∣ψ) is independent of t (6.395)

This kind of state is called a stationary state. In a stationary state the expec-
tation values and probabilities of all observables are independent of time. If an
observable is a constant of the motion, however, then this would be true for
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any state and not just a stationary state. So these are very different physical
concepts.

Now, if [K̂, Ĥ] = 0, then K̂ and Ĥ have a common set of eigenvectors (it is
a complete set). But the eigenvectors of Ĥ are stationary states. This means
that we can prepare systems in stationary states where both the energy and the
observable represented by K̂ have definite values (no dispersion).

Suppose we have a set of mutually commuting observables and that they all also
commute with Ĥ. Then they have a common set of eigenvectors.

We will use the eigenvalues of Ĥ and all the eigenvalues of this mutually com-
muting set of observables to label state vectors. We will call the labels quantum
numbers. They will designate all we know about a state vector.

6.16. The Collapse or Reduction Postulate

Based on unitary time evolution postulate, a system consisting of a quantum
system (Q-system) and a measurement system (M-system), would necessarily
evolve in this way

∣initial⟩ = (a ∣+⟩Q + b ∣−⟩Q) ∣0⟩M (6.396)

→ ∣final⟩ =→ a ∣+⟩Q ∣+1⟩M + b ∣−⟩Q ∣−1⟩M

which is a superposition of Q-states and M-states. We assume that the M-states
represent macroscopic pointer locations on some meter.

This says that time evolution, within the framework of the standard postu-
lates, CORRELATES or ENTANGLES the dynamical variable (Q-system) to
be measured and the macroscopic (M-system) indicator that can be directly
(macroscopically) observed.

Derivation: Suppose that the meter has eigenvectors (labeled by eigenvalues)

∣+⟩M ⇒ meter on: reading = +1

∣−⟩M ⇒ meter on: reading = −1

∣0⟩M ⇒ meter off: reading = 0

and the system has eigenvectors (labeled by eigenvalues)

∣+⟩Q ⇒ value = +1

∣−⟩Q ⇒ value = −1

The initial state is
∣initial⟩ = (a ∣+⟩Q + b ∣−⟩Q) ∣0⟩M (6.397)
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which represents the quantum system in a superposition and the meter off.

We are interested in the evolution of this state according to quantum mechanics.

If, instead of the above initial state, we started with the initial state

∣A⟩ = ∣+⟩Q ∣0⟩M (6.398)

and then turn on the meter, this state must evolve into

∣A′⟩ = ∣+⟩Q ∣+1⟩M (6.399)

indicating that the meter has measured the appropriate value (that is the defi-
nition of a "good" meter).

Similarly, if, instead of the above initial state, we started with the initial state

∣B⟩ = ∣−⟩Q ∣0⟩M (6.400)

and then turn on the meter, this state must evolve into

∣B′⟩ = ∣−⟩Q ∣−1⟩M (6.401)

indicating that the meter has measured the appropriate value (again, that is
the definition of a "good" meter).

If the system is in the initial state corresponding to a superposition of these
two special states, however, then the linearity of quantum mechanics says that
it must evolve into

∣final⟩ = a ∣+⟩Q ∣+1⟩M + b ∣−⟩Q ∣−1⟩M (6.402)

as we assumed above(6.395).

Interpreting the state vector: Two models....

1. Pure state ∣ψ⟩ implies a complete description of an individual Q-system.
This corresponds to the statement that a dynamical variable P̂ has the
value p in the state ∣ψ⟩ if and only if P̂ ∣ψ⟩ = p ∣ψ⟩.

2. Pure state ∣ψ⟩ implies statistical properties of an ensemble of similarly
prepared systems.

Interpretation (1) is the standard interpretation espoused by 90% of all physi-
cists. It assumes that, because the state vector plays the most important role
in the mathematical formalism of QM, it must have an equally important role
in the interpretation of QM, so that

Properties of world ⇔ Properties of ∣ψ⟩ (6.403)
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Interpretation (1) by itself is not consistent with the unitary evolution postulate,
that is, the state ∣final⟩ as defined in (6.401) is not equal to an eigenvector of
any indicator (macroscopic pointer) variable. This means that the pointer (of
the meter) will flutter since the ∣±⟩ states could be macroscopically separated.
Since we never observe this flutter, any interpretation of ∣final⟩ as a description
of an individual system cannot be reconciled with both observation and unitary
time evolution.

Interpretation (2) has no such difficulties. ∣ψ⟩ is just an abstract mathematical
object which implies the probability distributions of the dynamical variables of
an ensemble. It represents a state of knowledge.

Physicists that believe interpretation (1) are forced to introduce a new postulate
at this point to remove these difficulties. This is the so-called reduction/collapse
of the state vector postulate, which says that during any measurement we have
a new real process which causes the transition

∣final⟩→ a ∣+⟩Q ∣+1⟩M or → b ∣−⟩Q ∣−1⟩M (6.404)

so that we end up with an eigenvector of the indicator variable and thus there
will be no flutter.

Various reasons are put forth for making this assumption, i.e.,

measurements are repeatable

Since this experiment(where the repeated measurement takes place immedi-
ately after the first measurement) has never been realized in the laboratory,
I do not know what to make of a requirement like this one. In addition, in
many experiments (like those involving photons), the system is destroyed by
the measurement (photon is absorbed) making it silly to talk about a repeat-
able measurement.

The fact that the reduction process has never been observed in the laboratory
makes it hard to understand in what sense it can it be thought of as a real
physical process.

It is important to note that this difficulty only arises for interpretation (1) where
statements are made about state vectors representing individual systems.
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Some Proposed Mechanisms for the Reduction

1. The reduction process is caused by an unpredictable and uncon-
trollable disturbance of the object by the measuring apparatus
(a non-unitary process).

This means that the Hamiltonian of the system must take the form

Ĥ = ĤQ + ĤM + ĤQM where ĤQM → disturbance (6.405)

This means, however, that it is already built into the standard unitary time
evolution via Û = e−iĤt/h̵ and, thus, the disturbance terms can only lead
to a final state that is still a superposition of indicator variable states. IT
DOES NOT WORK unless we are not told what is meant by unpredictable
and uncontrollable disturbance!

2. The observer causes the reduction process when she reads the
result of the measurement from the apparatus.

This is just a variation of (1). Here, the observer is just another indicator
device. The new final state becomes

∣final⟩ = a ∣+⟩Q ∣+1⟩M ∣sees + 1⟩O + b ∣−⟩Q ∣−1⟩M ∣sees − 1⟩O (6.406)

which is still a superposition and thus is NO HELP. It also introduces
consciousness into QM and that, in my opinion, is just silly!

3. The reduction is caused by the environment (called decoher-
ence), where by environment is meant the rest of the universe
other than the Q-system and the M-system.

In this model, the environment is a very large system with an enormous
number of degrees of freedom. We do not have any information about
most of the degrees of freedom and thus must average over them. This
causes pure states to change into nonpure or mixed states in a non-unitary
process as we will see later in the book.

Why do many physicists think an individual Q-system must have its own state
vector or wave function and then assume the collapse postulate?

IT WORKS for doing calculations!

This view has survived so long because it does not lead to any serious errors in
most situations. Why?

In general, predictions in quantum mechanics are derived from ∣ψ⟩ which gives
the wave function and which, in turn, gives the probabilities. The operational
significance of a probability is a relative frequency so that the experimentalist
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has to invoke an ensemble of similar systems to make any comparisons with the-
ory that is independent of any particular interpretation of the wave function.
So that interpretation (2) is being used in the end anyway.

Does this mean that we should stop worrying about the interpretation of the
wave function? NO!

But that is the subject of another book.....

In this book, we will not be dealing with such questions, that is, we do not ask
questions that require the collapse postulate and use a different mathematical
formalism for quantum mechanics.

What about interpretation (2)? It says that

A pure state describes the statistical
properties of an ensemble of similarly
prepared systems.

This means that in many situations we must use the density operator Ŵ or ρ̂
as the fundamental mathematical object of quantum mechanics instead of the
state vector.

It turns out that some systems only have a density operator ρ̂ and do not have
a legitimate state vector ∣ψ⟩.

For example, consider a box containing a very large number of electrons, each
having spin = 1/2. As we shall see later, this means the spin can have a measur-
able component = ±1/2 along any direction. An oriented Stern-Gerlach device
measures these spin components as we will see later.

Now, suppose the box has a hole so that electrons can get out and go into a
Stern-Gerlach device oriented to measure z-components (an arbitrary choice).
We will find the results

+1

2
50% of the time and − 1

2
50% of the time (6.407)

We then ask the question - what are the properties of the electrons in the box?

There are two possibilities, namely,

1. Each individual electron has the same state vector

∣ψ⟩Q = 1√
2
∣z = +1/2⟩ + 1√

2
∣z = −1/2⟩ = ∣ψ⟩box (6.408)

which is a superposition.
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2. 1/2 of the electrons have z = +1/2 and 1/2 of the electrons have z = −1/2
so that

∣ψ⟩Q = ∣z = +1/2⟩ OR ∣z = −1/2⟩ (6.409)

so that
∣ψ⟩BOX = 1√

2
∣z = +1/2⟩ + 1√

2
∣z = −1/2⟩ (6.410)

which seems to be the same state ∣ψ⟩box as in (1), but it really NOT a
superposition state in this case.

Therefore, it seems that we will not be able to tell which possibility is the correct
one!

However, it will turn out that

∣x − component = +1/2⟩ = 1√
2
∣z = +1/2⟩ + 1√

2
∣z = −1/2⟩ (6.411)

so that, in case (1), if we orient the Stern-Gerlach device to measure x-components
we would find all the electrons are in the same state ∣x − component = +1/2⟩, that
is, they are all the same!

On the other hand, in case (2) since (as we will see later)

∣z = ±1/2⟩ = 1√
2
∣x = +1/2⟩ ± 1√

2
∣x − 1/2⟩ (6.412)

we would find that

+1

2
give the ∣x = +1/2⟩ result and + 1

2
give the ∣x = −1/2⟩ result (6.413)

Therefore, the states are not the same! If we try to write a state vector for case
(2) we have to write

∣ψ⟩Q = 1√
2
∣z = +1/2⟩ + e

iα

√
2
∣z = −1/2⟩ (6.414)

instead of
∣ψ⟩BOX = 1√

2
∣z = +1/2⟩ + 1√

2
∣z = −1/2⟩ (6.415)

where α is a completely unknown relative phase factor, which must be averaged
over during any calculations since it is different for each separate measurement
(each member of the ensemble). With that property for α, this is not a legitimate
state vector in my opinion. We note that in a true superposition, the relative
phase factors between components is known exactly !

If we use density matrices we have a different story. For a pure state we can
always write ρ̂ = ∣ψ⟩ ⟨ψ∣ for some state vector ∣ψ⟩.
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In fact, case (1) gives

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣1/2⟩ ⟨−1/2∣ + ∣−1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨−1/2∣)

⇒ 1

2
(1 1

1 1
) (6.416)

where, as we saw earlier, the diagonal matrix elements represent probabilities.
The existence of the off-diagonal matrix elements implies that we will observe
quantum interference effects in this system.

Clearly, any pure state density operator cannot be written as the sum of pure
state projection operators as we proved earlier.

In case (2), however, we have

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨−1/2∣)⇒ 1

2
(1 0

0 1
) (6.417)

which clearly is the sum of pure state projection operators. This corresponds
to a nonpure or mixed state. Note that the off-diagonals are zero so that this
density operator cannot lead to any quantum interference effects as we might
expect.

If we treat case(2) as a pure state with the extra relative phase factor we would
obtain

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + e−iα ∣1/2⟩ ⟨−1/2∣ + eiα ∣−1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨−1/2∣)

⇒ 1

2
( 1 e−iα

eiα 1
) (6.418)

which becomes

ρ̂ = 1

2
(1 0

0 1
) (6.419)

when we average over α. The decoherence process has this effect on a very short
time scale.

6.17. Putting Some of These Ideas Together

6.17.1. Composite Quantum Systems; Tensor Product
Let us now look at composite systems again but now in the context of a special
kind of state called an “entangled” state, which illustrates some of the more
dramatic features of quantum physics.

Most of our discussions so far apply easily to quantum systems comprised of
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only one part, i.e., a single particle. As we will see shortly, it will be straightfor-
ward to use this formalism to deal with a single particle evolving in the presence
of external fields. In these cases, the external fields are treated as ordinary clas-
sical fields.

We did not, however, attempt to solve the system at the level where the particle
is interacting(quantum mechanically) with the other particles that are actually
generating the external fields. In this case all parts of the system must be dealt
with using quantum mechanics.

We also indicated earlier in this chapter how we might set up a such a multipar-
ticle system, without, however, indicating how this formalism might be used.

We now redo the multiparticle formalism and expand our discussion in sev-
eral directions with the goal of describing a system where all the particles are
interacting quantum mechanically.

Hilbert Space for Individual Quantum Systems

If we have a quantum system, then we can describe it as a vector

∣ψ⟩ = c1 ∣φ1⟩ + c2 ∣φ2⟩ + . . . + cN ∣φN ⟩ (6.420)

with respect to a set of basis vectors ∣φi⟩. The span (or set of all possible linear
combinations) of these basis vectors make up the Hilbert space

H = {∣φ1⟩ , ∣φ2⟩ , . . . , ∣φN ⟩} (6.421)

along with the inner product ⟨φi ∣φj⟩ = δij . Writing out these basis vectors, we
usually pick an ordering and assign them the unit vectors,

∣φ1⟩ =

⎛
⎜⎜⎜⎜⎜
⎝

1
0
0
⋅
⋅

⎞
⎟⎟⎟⎟⎟
⎠

, ∣φ2⟩ =

⎛
⎜⎜⎜⎜⎜
⎝

0
1
0
⋅
⋅

⎞
⎟⎟⎟⎟⎟
⎠

, . . . ∣φN ⟩ =

⎛
⎜⎜⎜⎜⎜
⎝

0
0
⋅
⋅
1

⎞
⎟⎟⎟⎟⎟
⎠

(6.422)

Individual quantum systems live in their own individual Hilbert spaces as shown
in the Figure 6.4 below.
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Figure 6.4: Quantum systems are described by vectors in own Hilbert space

We know that we can write every possible state of the system as some superpo-
sition of the basis vectors.

We usually think about the standard projectors associated with the basis vectors

P̂1 = ∣φ1⟩ ⟨φ1∣ (6.423)

given by the outer products of the different basis vectors with its own dual
vectors(or linear functionals) such as,

P̂1 = ∣φ1⟩ ⟨φ1∣ =

⎛
⎜⎜⎜⎜⎜
⎝

1
0
0
⋅
⋅

⎞
⎟⎟⎟⎟⎟
⎠

(1 0 0 ⋅ ⋅) =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 ⋅ ⋅ 0
0 0 ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟
⎠

(6.424)

As we discussed earlier, the essential usefulness of the standard projectors is that
their expectation values give us the probability that if we measured a system
∣ψ⟩ to determine which state it is in, we would get the different basis vectors
with probability of the form,

Prob(∣φ1⟩ = ⟨ψ∣ P̂1 ∣ψ⟩ = ∣c1∣2 (6.425)

We also remember that a key property of the projectors is that they sum to the
identity

N

∑
i=1

P̂i = Î (6.426)

Two-Level Systems

To make the discussion less unwieldy, we will work with quantum systems that
live in a 2-dimensional Hilbert space, such as a a spin-1/2 particle or photon
polarization (both of which will be discussed in detail in later chapters). For now
we only need to know that our physical system(particle) has two eigenstates of
some observable when it is measured in any direction (in physical space). We will
call these states up and down in the direction of measurement. In particular, we
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choose our basis to be given by the (up,down) states measured in the z-direction,
which we designate as

H = {∣↑⟩ , ∣↓⟩} (6.427)

Notice that we picked an ordering for the basis vectors and we can therefore
assign unit vectors to them,

∣↑⟩ = (1
0
) , ∣↓⟩ = (0

1
) (6.428)

such that any state of the particle can be described as

∣ψ⟩ = c↑ ∣↑⟩ + c↓ ∣↓⟩ (6.429)

If we performed a measurement of the observable in the z-direction, we would
get two outcomes with probabilities

Prob(↑) = ⟨ψ∣ P̂↑ ∣ψ⟩ = ∣c↑∣2 , P rob(↓) = ⟨ψ∣ P̂↓ ∣ψ⟩ = ∣c↓∣2 (6.430)

using the corresponding projectors

P̂↑ = (1 0
0 0

) , P̂↓ = (0 0
0 1

) (6.431)

That is basically everything we need to know about a single particle.

Hilbert Space for Composite Systems

Let us begin building up the Hilbert space for two distinct particles (two distinct
quantum systems). For example, suppose that I have a particle in my lab and
you have a particle in your lab. They have never come in contact with one
another and for all intensive purposes, I have no idea what you have done with
your particle and vice versa. In this case, it seems to make perfect sense that
we could just treat the particles completely independently at the level of their
Hilbert spaces. We would have something like that shown in Figure 6.5 below.

Figure 6.5: Hilbert space for 2 quantum systems independent of one another

We really should be able to think about these systems as entirely disjoint.
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Therefore, we can define two different Hilbert spaces,

HA = {∣↑⟩A , ∣↓⟩A} (6.432)

and
HB = {∣↑⟩B , ∣↓⟩B} (6.433)

with operators such as projectors that only act on states in their respective
systems

P̂A↑ = ∣↑⟩A ⟨↑∣A , P̂A↓ = ∣↓⟩A ⟨↓∣A , ÎA = P̂A↑ + P̂A↓ (6.434)

and
P̂B↑ = ∣↑⟩B ⟨↑∣B , P̂B↓ = ∣↓⟩B ⟨↓∣B , ÎB = P̂B↑ + P̂B↓ (6.435)

In terms of their matrices, for example,

P̂A↑ = (1 0
0 0

)
A

, P̂B↑ = (1 0
0 0

)
B

(6.436)

these operators look identical to one another. However, they are not really
identical, because you are only allowed to use operators (matrices) with A labels
on states with A labels and operators with B labels on states with B labels.
These rules reflect the situation that the particles are separate physical systems,
possibly in distant locations, that have no idea that the other even exists.

Tensor Product of Hilbert Spaces

Now suppose we bring our individual particles from our independent labs to-
gether. In this situation, it is not clear whether we can get away with describing
the two systems using two separate Hilbert spaces. For example, what if our
particles interact with one another? can we still describe them as independent
systems? It is not clear.

In order to be safe, we had better assume that we cannot still treat the systems
as living in their own spaces and we must now assemble a suitable composite
Hilbert space. The process is shown in Figure 6.6 below.

Figure 6.6: Hilbert space for 2 quantum systems independent of one another
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In order to do so, let us begin at the level of describing the basis vectors of our
new space. System A involves up and down basis vectors and so does system
B. So, at the level of the basis vectors, if system A is up, B can be either up or
down, corresponding to

{∣↑⟩A ∣↑⟩B , ∣↑⟩A ∣↓⟩B} (6.437)

or system A can be down and system B could be either up or down

{∣↓⟩A ∣↑⟩B , ∣↓⟩A ∣↓⟩B} (6.438)

Therefore, we build our composite Hilbert space with the four basis vectors

HAB = {∣↑⟩A ∣↑⟩B , ∣↑⟩A ∣↓⟩B , ∣↓⟩A ∣↑⟩B , ∣↓⟩A ∣↓⟩B} (6.439)

What are these funny objects involving some sort of product of basis kets? They
cannot be any normal type of matrix-vector multiplication since you cannot
multiply a column vector by a column vector. Instead, let us proceed as follows.
Given our ordering of the four basis vectors, we can associate them with unit
vectors. However, since there are now four basis vectors, our Hilbert space must
be 4-dimensional,

∣↑⟩A ∣↑⟩B =
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
, ∣↑⟩A ∣↓⟩B =

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠

(6.440)

∣↓⟩A ∣↑⟩B =
⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, ∣↓⟩A ∣↓⟩B =

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

This method of combining two 2-dimensional Hilbert spaces into a single 4-
dimensional Hilbert space is known as a tensor product. We discussed this
earlier and gave it a special symbol ⊗,

HAB =HA ⊗HB (6.441)

to indicate that we are multiplying vector spaces together. Notice that the
dimension of the tensor product Hilbert space is the product of the dimensions
of the individual spaces.

Of course, since we have four basis vectors, we must now have four standard
projectors of the type

P̂AB↑↑ = ∣↑⟩A ∣↑⟩B A ⟨↑∣B ⟨↑∣ (6.442)

This notation gets really clumsy after a while, so it is convention to shorten it
to

P̂AB↑↑ = ∣↑↑⟩AB ⟨↑↑∣ , P̂AB↑↓ = ∣↑↓⟩AB ⟨↑↓∣ (6.443)

P̂AB↓↑ = ∣↓↑⟩AB ⟨↓↑∣ , P̂AB↓↓ = ∣↓↓⟩AB ⟨↓↓∣
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Tensor Product of Matrices(Repeating earlier ideas for clarity)

We can compute the matrix representations of the projectors for our composite
system by multiplying out each basis vector with its dual vector. These are
4-dimensional matrices

P̂AB↑↑ =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, P̂AB↑↓ =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

(6.444)

P̂AB↓↑ =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, P̂AB↓↓ =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

Of course, it would be nice to have a systematic method for constructing oper-
ators on the tensor product Hilbert space from operators that act only on the
individual Hilbert spaces. This is definitely not the standard matrix product,
which we can see by looking at the projectors

P̂AB↑↑ ≠ P̂A↑ P̂B↑ (6.445)

since
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
≠ (1 0

0 0
)(1 0

0 0
) = (1 0

0 0
) (6.446)

i.e., clearly their dimensions do not match. Instead, we need a tensor product
for the projection matrices that reflects the same structure as the composite
Hilbert space that we constructed. We symbolize such a product as

P̂AB↑↑ = P̂A↑ ⊗ P̂B↑ (6.447)

How do we perform this tensor product between matrices? Well first, it needs
to be an operation that yields a matrix whose dimension is the product of
the dimensions of the matrices being multiplied. Second, it has to respect the
definition of the ordering that we used to construct the tensor product Hilbert
space. Such a product is defined by the following

XA ⊗ Y B = (X11Y X12Y
X21Y X22Y

) (6.448)

=

⎛
⎜⎜⎜⎜
⎝

X11 (Y11 Y12

Y21 Y22
) X12 (Y11 Y12

Y21 Y22
)

X21 (Y11 Y12

Y21 Y22
) X22 (Y11 Y12

Y21 Y22
)

⎞
⎟⎟⎟⎟
⎠
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In other words, we take each element in the first matrix and replace it with a
copy of the second matrix scaled by the element. This process, called the matrix
tensor product seems to do the trick. We can check for projectors

P̂AB↑↑ = P̂A↑ ⊗ P̂B↑ = ((1)P̂
B
↑ (0)P̂B↑

(0P̂B↑ (0)P̂B↑
)

=

⎛
⎜⎜⎜⎜
⎝

(1)(1 0
0 0

) (0)(1 0
0 0

)

(0)(1 0
0 0

) (0)(1 0
0 0

)

⎞
⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and the result checks out. You can verify it for the other projectors on your
own.

6.17.2. Quantum Entanglement and the EPR Paradox

The operators

P̂A↑ = (1 0
0 0

)
A

and P̂B↑ = (1 0
0 0

)
B

(6.449)

look identical to one another. However, they are not really identical because
you are only allowed to use operators (matrices) with A labels on states with A
labels and operators with B labels in states with B labels. These rules, as we
said earlier, reflect the situation that the particles are separate physical systems,
possibly in distant locations, that have no idea that the other even exists.

States in the Tensor Product Hilbert Space

These ideas lead to a number of intriguing properties about composite quantum
systems that we will now discuss.

Suppose that we took the state

∣ψ⟩A = cA↑ ∣↑⟩A + c
A
↓ ∣↓⟩A ∈HA (6.450)

from Alice’s lab, and the state

∣ψ⟩B = cB↑ ∣↑⟩B + cB↓ ∣↓⟩B ∈HB (6.451)

from Bob’s lab. Alice and Bob both prepared their systems completely inde-
pendently - with no communication between them to indicate what they were
doing in their own labs. When we bring their systems together, we should
express them as vectors in the composite Hilbert space

∣ψ⟩A ∣ψ⟩B = (cA↑ ∣↑⟩A + c
A
↓ ∣↓⟩A)⊗ (cB↑ ∣↑⟩B + cB↓ ∣↓⟩B) ∈HAB (6.452)
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After taking the tensor product between these states, we get

∣ψ⟩AB = cA↑ cB↑ ∣↑↑⟩AB + cA↑ cB↓ ∣↑↓⟩AB + cA↓ cB↑ ∣↓↑⟩AB + cA↓ cB↓ ∣↓↓⟩AB (6.453)

The important point to notice in this expression is that there is a special re-
lationship between the coefficients: the coefficient for each basis vector is the
product of the coefficients for the individual basis vectors in this case.

Quantum Entanglement

In (6.452), we found the expression for two, unrelated, independent quantum
systems expressed in the Hilbert space of the composite system. However, we
know that, in general, we can describe an arbitrary state in HAB as an arbitrary
superposition of the four basis vectors

∣ψ⟩AB = c↑↑ ∣↑↑⟩AB + c↑↓ ∣↑↓⟩AB + c↓↑ ∣↓↑⟩AB + c↓↓ ∣↓↓⟩AB (6.454)

This is the most general possible expression for the composite states since we
made sure to use the most general basis possible and we imposed no relationship
between the expansion coefficients (other than the state must be normalized).

Here is the big question: can every state of the form (6.453)

∣ψ⟩AB = c↑↑ ∣↑↑⟩AB + c↑↓ ∣↑↓⟩AB + c↓↑ ∣↓↑⟩AB + c↓↓ ∣↓↓⟩AB
be written in the product form (6.452)

∣ψ⟩AB = cA↑ cB↑ ∣↑↑⟩AB + cA↑ cB↓ ∣↑↓⟩AB + cA↓ cB↑ ∣↓↑⟩AB + cA↓ cB↓ ∣↓↓⟩AB
The answer is a resounding no. Consider the simple example

∣ψ⟩AB = 1√
2
∣↑↓⟩AB + 1√

2
∣↓↑⟩AB = 1√

2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠

(6.455)

Here, if we were to try and find a product state expression for this special
composite state vector, we would first infer that the product of the individual
basis vectors must satisfy

cA↑ c
B
↓ = cA↓ cB↑ = 1√

2
(6.456)

and
cA↑ c

B
↑ = cA↓ cB↓ = 0 (6.457)

which are not consistent with each other, i.e., there is no solution!

Therefore, we must conclude that the state (6.454)

∣ψ⟩AB = 1√
2
∣↑↓⟩AB + 1√

2
∣↓↑⟩AB = 1√

2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠
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cannot be expressed as a product between states in HA and HB . States in
a composite Hilbert space, such as this one, that cannot be factorized into
a product of states in the constituent Hilbert spaces are referred to as being
entangled.

Consequences of Entanglement

I strongly believe that entanglement is the most important difference between
quantum and classical physics. Let us see why by considering the following
situation. Suppose that Alice and Bob get together in a common lab and prepare
the joint state (6.454)

∣ψ⟩AB = 1√
2
∣↑↓⟩AB + 1√

2
∣↓↑⟩AB = 1√

2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠

After it is made, Alice takes one of the particles and Bob takes the other (we
can assume Alice takes the first one and Bob takes the second without loss of
generality). Then both of them return to the individual labs without changing
the state of their respective particles. When she gets back home, Alice decides
to perform a measurement on her particle to see what state it is in. Such a
measurement, performed by Alice on only part of the pair of particles, would
be described by operators such as the projectors (remember projectors give us
probabilities)

P̂A↑ ⊗ ÎB = (1 0
0 0

)(1 0
0 1

) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

(6.458)

and

P̂A↓ ⊗ ÎB = (0 0
0 1

)(1 0
0 1

) =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(6.459)

Notice that these projectors have the correct dimension since they are the ten-
sor product of 2-dimensional operators. Also notice that this operator should
be interpreted as doing something to Alice’s particle (the projector part) and
nothing to Bob’s particle as indicated by the identity operator acting on Bob’s
system. The identity operator is the quantum mechanical way of saying that
you did not do anything.

Operators of the above form, a tensor product of a projector on one component
Hilbert space with the identity on the other, are called partial projectors. First,
let us compute the probability that when Alice measures her particle she obtains

440



the up outcome

ProbA(↑) = AB ⟨ψ∣ P̂A↑ ⊗ ÎB ∣ψ⟩AB (6.460)

= 1√
2
(0 1 1 0)

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

1√
2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠
= 1

2

as well as for the down outcome

ProbA(↓) = AB ⟨ψ∣ P̂A↓ ⊗ ÎB ∣ψ⟩AB (6.461)

= 1√
2
(0 1 1 0)

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

1√
2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠
= 1

2

But here is the truly amazing part. What state do we have following Alice’s
measurement? Suppose that she obtains the up outcome, then(by the reduction
postulate) we get the measurement eigenstate

∣ψ′⟩AB =
P̂A↑ ⊗ ÎB√

AB ⟨ψ∣ P̂A↑ ⊗ ÎB ∣ψ⟩AB
∣ψ⟩AB =

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
= ∣↑↓⟩AB (6.462)

where the denominator is to maintain the normalization.

Similarly, when Alice measures down for her particle, the result is the projection.

∣ψ′⟩AB =
P̂A↓ ⊗ ÎB√

AB ⟨ψ∣ P̂A↓ ⊗ ÎB ∣ψ⟩AB
∣ψ⟩AB =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
= ∣↓↑⟩AB (6.463)

The interpretation of this result is that Alice knows what Bob’s state is as soon
as she performs her measurement. Therefore, a local operation in her lab tells
her global information about the composite state.

This prediction of quantummechanics was considered so bizarre that it prompted
Einstein, Podolsky and Rosen to essentially denounce quantum mechanics as ei-
ther being wrong or at least incomplete(we will define this carefully later in the
book). In order to make their point, the three authors proposed the following
situation, which today is called the EPR Paradox(after their initials). EPR
argued that Alice and Bob could get together and prepare the state just dis-
cussed. Then Bob would climb aboard a rocket and fly to a distant planet. At
that point, Alice and Bob would both measure their states and instantaneously
know the result of the other person’s experiment - despite the long distance be-
tween them. This seemingly violates special relativity since it would mean that
Alice’s and Bob’s physical systems somehow exchanged information at speeds
faster than the speed of light.
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6.17.3. Entanglement and Communication

To Communicate Superluminally, or Not

The immediate question we may ask is whether or not this bizarre information
gain(what Alice learns about the state of Bob’s particle) allows them to com-
municate faster than the speed of light. The answer is absolutely, definitely,
certainly, NO ! The short answer is that the randomness of the measurement
outcomes saves us, but, this question was still of great concern during quantum
mechanics’ infancy, since it led to a number of apparent paradoxes that took
some time to resolve. We will now dispel these rumors of superluminal commu-
nication once and for all.

In order to do so, we begin from the state shared by Alice and Bob

∣ψ+⟩AB = 1√
2
∣↑↓⟩AB + 1√

2
∣↓↑⟩AB (6.464)

and suppose that Alice measures the observable of her state along the z-direction(as
we have been doing). Then her possible outcomes correspond to the partial pro-
jectors

P̂A↑z ⊗ Î
B = ∣↑⟩A ⟨↑∣⊗ ÎB and P̂A↓z ⊗ Î

B = ∣↓⟩A ⟨↓∣⊗ ÎB (6.465)

When Alice measures her up outcome along the z-direction, her state transforms
to

↑z ∶ ∣ψ+⟩AB →
P̂A↑z ⊗ ÎB√

AB ⟨ψ+∣ P̂A↑z ⊗ ÎB ∣ψ+⟩AB
∣ψ+⟩AB = ∣↑↓⟩AB (6.466)

and when she measures down outcome along the z-direction she gets

↓z ∶ ∣ψ+⟩AB →
P̂A↓z ⊗ ÎB√

AB ⟨ψ+∣ P̂A↓z ⊗ ÎB ∣ψ+⟩AB
∣ψ+⟩AB = ∣↓↑⟩AB (6.467)

Now, what if Alice decides to perform an alternative procedure given by measur-
ing whether her particle is up or down along the x-direction. Now the projectors
are given by (using corresponding eigenstates for the x-direction which we will
derive for spin and polarization in later chapters)

P̂A↑x ⊗ Î
B = 1

2
(∣↑⟩ + ∣↓⟩) ⟨↑∣ + ⟨↓∣)⊗ ÎB (6.468)

and
P̂A↓x ⊗ Î

B = 1

2
(∣↑⟩ − ∣↓⟩) ⟨↑∣ − ⟨↓∣)⊗ ÎB (6.469)

i.e., we use

∣↑x⟩ =
1√
2
(∣↑⟩ + ∣↓⟩) and ∣↓x⟩ =

1√
2
(∣↑⟩ − ∣↓⟩) (6.470)
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in forming Alice’s projectors. If we work though the algebra we find for the
resulting state when Alice obtains up outcome in the x-direction

↑x∶ ∣ψ+⟩AB →
P̂A↑x ⊗ ÎB√

AB ⟨ψ+∣ P̂A↑z ⊗ ÎB ∣ψ+⟩AB
∣ψ+⟩AB = ∣↑x↑x⟩AB (6.471)

meaning that when Alice measures up in the x-direction, then Bob also measures
up in the x-direction. Conversely, when Alice measures down in the x-direction,
the resulting state is

↓x∶ ∣ψ+⟩AB →
P̂A↓x ⊗ ÎB√

AB ⟨ψ+∣ P̂A↓x ⊗ ÎB ∣ψ+⟩AB
∣ψ+⟩AB = ∣↓x↓x⟩AB (6.472)

and Bob also measures down in the x-direction.

Using this for a Communication System

We can now see whether it is possible for Alice and Bob to communicate by
choosing one basis or another when they want to send different bits of data. For
example, suppose that Bob wishes to send Alice binary zero. He might try to
do so by selecting to measure in the z-direction (use the z-basis). And when
he wishes to send logical one, he would then measure in the x-direction (use
the x-basis). The two parties could agree upon the following communication
protocol:

1. Bob selects a basis, either z or x, to send logical zero or one, respectively
and measures. If he measures up in that basis, the bit is considered good,
otherwise he throws away the bit.

2. When Alice chooses to measure in the z-basis (provided Bob also mea-
sured in the z-basis), she know that a logical zero has been sent when
she measures down (meaning Bob found up since the measurements are
anti-correlated). When Alice measures in the x-basis (provided that Bob
measured in the x-basis), she knows that Bob sent her a logical one when
she measures up (also implying that Bob measured up since the measure-
ments are correlated).

Unfortunately for people like Einstein (who were trying to find quantum me-
chanical paradoxes), this communication scheme conveys no information from
Bob to Alice. This is because Alice must pick her measurement basis randomly.
She cannot know the order in which to choose her measurement bases in ad-
vance, otherwise she would have just carried the classical information along
with her. Instead, she must guess by flipping a coin prior to each measurement.
Therefore, she picks the x-basis with probability 1/2 and the z-basis with prob-
ability 1/2. Unfortunately, when she picks the wrong basis, her measurement is
perfectly uncorrelated with Bob’s, so no information can be conveyed.
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6.17.4. Nonlocality and Tests of Quantum Entanglement

We have seen that entanglement between different components of a composite
quantum system are capable of displaying strong correlations between the out-
comes of measurements performed on separate components. In particular, we
have been looking at states such as

∣ψ+⟩AB = 1√
2
∣↑↓⟩AB + 1√

2
∣↓↑⟩AB = 1√

2

⎛
⎜⎜⎜
⎝

0
1
1
0

⎞
⎟⎟⎟
⎠
∈HAB (6.473)

in the composite Hilbert space HAB shared by both Alice and Bob. An essential
point to remember, something we learned earlier, is that it is impossible to
factorize this state

∣ψ+⟩AB ≠ ∣ψA⟩A ∣ψB⟩B (6.474)

for any possible choice of states. In other words, there is no way for Alice and
Bob to make this state independently (think of the joint Hilbert space HAB as
being the set of states they can make together and the individual Hilbert spaces
HA and HB as the sets of states that can be made independently.

Indeed, this prediction of quantum mechanics is somewhat bizarre. It tells us
that Alice and Bob working together have more power than they do working
separately. The question we want to address now is whether or not it would
be possible for Alice or Bob to mimic anything that behaves like quantum
entanglement using classical physics. Classically, we would expect to have the
following properties hold true

1. Objective Reality meaning that even though Alice and Bob do not know the
outcome of measurements they might perform on their physical systems,
the particle itself knows what outcome it will produce when measured.

2. Local Determinism meaning that if Alice and Bob have their particles in
different space-like separated locations, anything Alice does should have
no effect on what Bob measures and vice versa. In other words, Alice’s
measurement outcome should be determined only by what she has in her
lab with her.

Bell Inequalities

In order to test whether these classical assumptions are true, John Bell sug-
gested the following type of experiment back in the 1960’s. Suppose that there
is a pair source midway between Alice’s and Bob’s labs (which are distant from
one another). That is to say, some device produces arbitrary (possibly random)
states in the joint Hilbert space HAB and then sends one half of the pair to Alice
and one half to Bob. Both Alice and Bob know when to expect these particles
to arrive, but have no idea what state was made by the source.
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Alice and Bob each have a device to measure(up or down) their incoming parti-
cle along one of two different possible axes (directions). Therefore, think of the
measurement devices each having a switch to select between the two different
possible measurement directions and an output meter to indicate whether the
measurement outcome is up or down along that direction. We will label the
two different possible measurement directions by A,A′ and B,B′ (for example,
A might mean to measure along the z-direction and A′ along the y-direction,
and so on).

Prior to each particle arrival, Alice and Bob each pick an independent direction
to measure by setting their respective switches, wait for the measurement out-
come and then record the result. They can repeat this process many times such
that their measurement record might look something like:

A −1 B′ −1
A −1 B +1
A′ +1 B′ +1
A −1 B −1
A −1 B′ +1
A′ +1 B −1
A′ −1 B′ +1
A +1 B +1
A′ −1 B −1
A +1 B −1

Table 6.1: Sample Data

where we indicate up by +1 and down by −1.

Given this structure for the experiment, let us return to our concepts of local
determinism and objective reality. Well, objective reality suggests that each
particle should “know” whether it will be up or down for both possible mea-
surement settings. Local determinism suggests Alice’s measurement should be
independent of the switch setting on Bob’s measurement instrument.

Internal Information

Under the combined assumptions of local determinism and objective reality,
each particle must have the following information encoded into their internal
states

An = ±1 A′
n = ±1 Bn = ±1 B′

n = ±1 (6.475)

Each of the four possible measurement labels are treated as random variables,
with the subscript indicating which round of the measurement. So, for example,
A4 = +1, would mean that if Alice measures along the direction A in round n = 4,
she will get up.
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Now, let us consider the following function of the random variables

gn = AnBn +A′
nBn +AnB′

n −A′
nB

′
n (6.476)

Now, were we to tabulate the value of gn for all possible choices ofAn,A′
n,Bn,B

′
n,

we would find that gn = ±2 always. We can try this out for a set of possible
values, for example,

An = +1,A′
n = −1,Bn = −1,B′

n = −1→ gn = −1 + 1 − 1 − 1 = −2 (6.477)

In any case, we may write down the inequality

∣ 1

N

N

∑
n=1

gn∣ =
1

N
∣
N

∑
n=1

AnBn +
N

∑
n=1

A′
nBn +

N

∑
n=1

AnB
′
n −

N

∑
n=1

A′
nB

′
n∣ ≤ 2 (6.478)

In other words, since the extrema of gn are ±2, then the average over many
trials must be no larger than +2 and no smaller than −2. Thus, the absolute
value of the average must be no greater than 2.

We will prove all of these results in detail in Chapter 16.

This inequality is one of several that are know as Bell inequalities (this form
was developed by Clauser, Horne, Shimony and Holt). The true genius of such
an inequality is that it provides us with a simple test, based only on probability
theory, as to whether or not local determinism and objective reality are valid
assumptions.

Violations of Bell’s Inequality

As you might have already guessed, quantum mechanics violates this inequality.
For a simple example, let us consider the following scenario, which we will prove
in detail in Chapter 16. Assume that the pair source produces the following state

∣ψ−⟩AB = 1√
2
∣↑↓⟩AB − 1√

2
∣↓↑⟩AB = 1√

2

⎛
⎜⎜⎜
⎝

0
+1
−1
0

⎞
⎟⎟⎟
⎠

(6.479)

Also assume that Alice’s measurement A corresponds to measuring along the
axes

A = ẑ , A′ = cosφẑ + sinφx̂ (6.480)

while Bob, on the other hand, measures along the axes

B = ẑ , B′ = cosφẑ − sinφx̂ (6.481)

Now, all we have to do is compute the averages for all the terms in the inequality.
We will learn how to do this for spin-1/2 particles and photon polarization in
Chapters 7 and 9. For now, we just state the results

1

N

N

∑
n=1

AnBn = −1 ,
1

N

N

∑
n=1

A′
nBn = − cosφ (6.482)
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1

N

N

∑
n=1

AnB
′
n = − cosφ ,

1

N

N

∑
n=1

A′
nB

′
n = cos 2φ (6.483)

If we combine all of these results we find that

∣⟨gn⟩∣ =
1

N
∣
N

∑
n=1

gn∣ = ∣ − 1 − 2 cosφ + cos 2φ∣ (6.484)

We can now plot the expectation of gn(φ) and look for violations of the Bell
inequality.

Figure 6.7: Quantum Mechanics versus the Bell Inequality

Clearly, we see violation for a range of values of φ.

We will have more to say about this interesting subject in Chapter 16.

Finally, let us summarize once more some of the knowledge we have acquired
about density operators.

6.18. Expanding on the Density Operator and the
Statistical Description of Quantum Systems

In classical mechanics the state of a system is determined by a point in phase
space. If we do not know the exact positions and momenta of all particles in the
system, we need to use the probability density function to describe the system
statistically

In quantum mechanics the state of a system is characterized by a state vector
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in Hilbert space that contains all the relevant information. To prepare a vector
state for a quantum system at a given time, it suffices to perform a set of
measurements on the system corresponding to a complete set of commuting
observables. However, in practice such measurements are often impossible. The
problem is how to incorporate the incompleteness of our information into the
formalism of quantum mechanics in order to describe the state of such a system.

Incompleteness can be formally described in two ways:

(1) One way is to characterize the system as a member of a mixed ensemble
in which we do not know the state vector of every member, but we know
only the probability that an arbitrary member can be found in a specified
state vector. For example, 70% of the members are characterized by ∣ψ(1)⟩
and the remaining by ∣ψ(2)⟩ (these states are not necessarily orthogonal).
We will investigate this approach later and show that such an ensemble
cannot be characterized by an averaged state vector.

(2) The second way in which a description of the system by a state vector is
impossible is for systems that interact with others. Such systems are called
open systems and are of particular interest in quantum optics. In such
cases we are interested in only a part of the entire system. It is convenient
to separate the system of primary interest from that of secondary interest
and to call the former the system and the latter the reservoir. We can
eliminate the reservoir by using the reduced density operator method as
we will describe later.

6.18.1. Statistical Description of Quantum Systems and the
Nonexistence of an Averaged Quantum State

Consider a mixed ensemble of similar systems such that our information about
the state of the members is limited to the probability distribution over some
specified state vectors of the system {∣α⟩ , ∣β⟩ , ∣γ⟩ , ....} that are not necessarily
orthogonal. For simplicity we assume that they are the eigenvectors of one of
the observables of the system and form a complete basis for the Hilbert space.

Let A be a Hermitian operator of the system with eigenvectors {∣m⟩} for m =
1,2, ....,N , where N is the dimension of the Hilbert space of the system. Assume
that our information about the system is limited to the set of probabilities {Pm}
for finding the system in the mth eigenvector. Pm satisfies the conditions

0 ≤ Pm ≤ 1 , (m = 1, ........,N)
N

∑
m=1

Pm = 1 (6.485)
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It is reasonable to ask if the system can be described by a state vector. The
state vector of such a system can be any vector such as

∣ψ(k)⟩ =
N

∑
m=1

√
Pme

iφ(k)m ∣m⟩ (6.486)

where the phase φ(k)
m can take on any real number in the interval (−π,π). State

vectors like Eq. (6.485) are called accessible states of the relevant system. The
only parameters that discriminate one accessible state from another are the
phases {φ(k)

m }. Because of their arbitrariness, there is no preference between
these states. So the system can be found in each of its accessible states with
equal probability. Therefore, the probability distribution over the accessible
states Eq. (6.485) is uniform, although the distribution over the complete basis
{∣m⟩} is nonuniform distribution like Pm.

If the number of accessible states in this ensemble is Ω, the probability that an
arbitrary element of the ensemble is in the state ∣ψ(k)⟩ equals 1/Ω (for every
k = 1, ...,Ω). So if we want to define an averaged quantum state for this system,
we should multiply every accessible state by its corresponding probability and
sum over all states:

∣ψ̄⟩ =
Ω

∑
k=1

1

Ω
∣ψ(k)⟩

=
Ω

∑
k=1

1

Ω

N

∑
m=1

√
Pme

iφ(k)m ∣m⟩

=
N

∑
m=1

√
Pm ( 1

Ω

Ω

∑
k=1

eiφ
(k)
m ) ∣m⟩ (6.487)

Because the number of accessible states is very large, we can assume that the
φ
(k)
m ’s vary continuously. Then we can change the sum to an integration, that

is
1

Ω

Ω

∑
k=1

eiφ
(k)
m → 1

2π
∫

π

−π
dφm e

iφm (6.488)

Hence, the averaged quantum state is zero,

∣ψ̄⟩ = 0 (6.489)

Therefore, such a system cannot be described by a state vector and we should
look for another way to describe it.

We can assign an operator ∣ψ(k)⟩ ⟨ψ(k)∣ to every accessible state (6.485). Sim-
ilar to Eq. (6.486), which defines the ensemble average of the accessible state
vectors, we can define an ensemble average of these corresponding operators by
introducing

ρ =
Ω

∑
k=1

1

Ω
∣ψ(k)⟩ ⟨ψ(k)∣ (6.490)
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We will show that in spite of the zero average of the state vector, the average
of ρ does not vanish. If we substitute Eq (6.485) into Eq. (6.489), we obtain

ρ =
Ω

∑
k=1

1

Ω
(
N

∑
m=1

√
Pme

iφ(k)m ∣m⟩)(
N

∑
n=1

√
Pne

−iφ(k)n ⟨n∣)

=
Ω

∑
k=1

1

Ω

⎛
⎝

N

∑
n,m=1

√
PmPne

i(φ(k)m −φ(k)n ) ∣m⟩ ⟨n∣
⎞
⎠

(6.491)

We separate the double sums in Eq. (6.490) into two separate sums so that the
first one contains the terms with the same m and n, and the second one contains
terms with different m and n and obtain

ρ =
Ω

∑
k=1

1

Ω
(
N

∑
n=1

Pn ∣n⟩ ⟨n∣)

+
Ω

∑
k=1

1

Ω
(∑
n≠m

√
PmPne

i(φ(k)m −φ(k)n ) ∣m⟩ ⟨n∣) (6.492)

In the first sum all the terms are the same. In the second sum we can exchange
the order of the sum over k with that over m and n and substitute θ(k)mn =
φ
(k)
m − φ(k)

n :

ρ =
N

∑
n=1

Pn ∣n⟩ ⟨n∣ + ∑
n≠m

√
PmPn (

Ω

∑
k=1

1

Ω
eiθ

(k)
mn) ∣m⟩ ⟨n∣ (6.493)

The second term in Eq. (6.492) vanishes because the sum over k can be changed
by an integration over θmn just like Eq. (6.487) i.e.,

∫
π

−π
dθ eiθ = 0

Hence Eq. (9) reduces to

ρ =
N

∑
n=1

Pn ∣n⟩ ⟨n∣ (6.494)

The operator ρ contains both quantum (∣ψ(k)⟩) and classical statistical informa-
tion (Ω). Hence, all the necessary information for a quantum statistical descrip-
tion of the system is contained in ρ. This idea can be clarified by calculating the
ensemble average of an observable O of the system. For this purpose we mul-
tiply its expectation value in every accessible state ∣ψ(k)⟩ by its corresponding
probability, that is, 1/Ω, and sum over all states:

⟨O⟩ =
Ω

∑
k=1

1

Ω
⟨O⟩k =

Ω

∑
k=1

1

Ω
⟨∣ψ(k)⟩∣O ∣∣ψ(k)⟩⟩ (6.495)
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If we substitute the state vector Eq. (6.485) into Eq. (6.494) and follow the
same procedure that was done after Eq. (6), we find that

⟨O⟩ =
Ω

∑
k=1

1

Ω
(
N

∑
n=1

√
Pne

−iφ(k)n ⟨n∣)O (
N

∑
m=1

√
Pme

iφ(k)m ∣m⟩)

=
N

∑
n=1

Pn ⟨n∣O ∣n⟩ =
N

∑
n=1

PnOnn (6.496)

Therefore the ensemble average of an arbitrary operator can be evaluated by
knowing the probability distribution {Pn} and the complete basis {∣n⟩}, without
knowing the state vector.

If we use the completeness of the basis {∣n⟩}, we can write Eq. (6.495) as

⟨O⟩ =
N

∑
n=1

Pn ⟨n∣O ∣n⟩ =
N

∑
m,n=1

Pn ⟨n∣O ∣m⟩ ⟨m ∣n⟩

=
N

∑
m,n=1

Pn ⟨m ∣n⟩ ⟨n∣O ∣m⟩ =
N

∑
m=1

⟨m∣ (
N

∑
n=1

Pn ∣n⟩ ⟨n∣)O ∣m⟩

=
N

∑
m=1

⟨m∣ρO ∣m⟩ (6.497)

The right-hand side of Eq. (6.496) is the trace of the operator ρO and can be
rewritten as

⟨O⟩ = Tr(ρO) (6.498)

The density operator, Eq. (6.493), is sufficient to calculate every ensemble
average of the operators. Therefore the role of the density operator in the
statistical description of quantum systems is similar to the role of the probability
distribution function in the statistical description of classical systems.

6.18.2. Open Quantum Systems and the Reduced Density
Operator

Most physical systems of interest are not isolated but interact with other sys-
tems. For example, an atom cannot be studied as an isolated system even if it is
in a vacuum because it interacts with the vacuum state of the surrounding elec-
tromagnetic field. This interaction is the source of many interesting phenomena
such as spontaneous emission, the natural line width, the Lamb shift, and quan-
tum noise. To study such a system we eliminate the degrees of freedom of the
environment. This elimination leads to incompleteness of information about the
system of interest so that the description of the system by a state vector is no
longer possible.

Suppose we are interested only in making measurements on a system S that
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interacts with its environment R. The Hilbert space of the composite system
S +R is the tensor product

H =HS ⊗HR (6.499)

where HS and HR are the Hilbert spaces of the system and reservoir, respec-
tively.

Let HS and HR be the corresponding Hamiltonians, and {∣s⟩} and {∣r⟩} the
energy eigenvectors of the system and its reservoir, respectively, in the absence
of an interaction. Because the two systems are independent, their operators
commute with each other:

[HS ,HR] = 0 (6.500)

When they are put into contact, the total Hamiltonian is

H =HS +HR + VRS (6.501)

where VRS is the interaction between the two systems. If we prepare the com-
posite system at the instant t0 in a product state

∣Ψ(t0)⟩ = ∣ψS⟩⊗ ∣ψr⟩ (6.502)

then any measurement on S at this instant depends only on the state ∣ψS⟩ and
is independent of the state of the reservoir.

As time evolves, the state of the composite system evolves according to the
Schrödinger equation

ih̵
∂ ∣Ψ(t)⟩
∂t

=H ∣Ψ(t)⟩ (6.503)

where H is the total Hamiltonian as in Eq. (6.500). In general ∣Ψ(t)⟩ cannot be
written in a product form such as Eq. (6.501) because the interaction energy
VRS depends on both systems. Such a state is called an entangled state.

The question is how we can describe the state of S and make measurements
on it. To answer this question, let us consider an observable of the system S
such as AS and calculate its expectation value when the state of the composite
system is ∣Ψ(t)⟩. For this purpose we can use Eq. (6.497):

⟨ÃS⟩ = TrSR(ρÃS) (6.504)

where the trace is over the complete basis {∣s, r⟩} of the space H, and ρ is the
density operator of the composite system and is given by

ρ(t) = ∣Ψ(t)⟩ ⟨Ψ(t)∣ (6.505)

ÃS is the operator AS in the composite space H, that is,

ÃS = AS ⊗ IR (6.506)
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where IR is the identity operator in the space HR.

A straightforward calculation then gives

⟨ÃS⟩ = TrS(ρSÃS) (6.507)

where ρS is the reduced density operator of the system S in the space HS and
is defined as

ρS = TrS(ρ) (6.508)

As it is seen from Eq. (6.506), we can calculate the expectation values of all
observables of the system S in its own state space HS by using its reduced den-
sity operator.

A necessary and sufficient condition for a system to be in a pure state is that the
trace of the square of its density operator equals unity. But in general Tr (ρ2

S)
is not necessarily equal to unity even if the composite system is in a pure state.
Therefore the state of an open system cannot generally be described by a state
vector; instead it is described completely by the reduced density operator.

The most complete information about a quantum system is contained in its
state vector, but usually our information about the system is not sufficiently
complete to determine the state vector of the system. The incompleteness of
our information can be incorporated into the formalism of quantum mechanics
in two ways. One way is to describe the system as a member of a mixed ensem-
ble in which our information is limited to a probability distribution over some
specified state vectors of the system. We showed that the ensemble average
of the accessible states of the system is zero and the only way to describe the
system is by the density operator.

In the second case, we wish to make measurements on a part of a larger system.
This part is considered to be an open system that interacts with the rest of
the larger system (the environment or reservoir), which is not of interest to us.
Even if we can determine the state vectors of the system and the reservoir at
some instant of time, the interaction potential causes the composite system to
evolve into another state in which the degrees of freedom of both systems are
entangled so that we cannot separate the state of the system from that of the
reservoir. In order to focus on the system of interest we eliminate the degrees
of freedom of the reservoir. In this way we lose part of the information about
the system that had been coded in the state of the composite system so that
the description of the system by a state vector is no longer possible, and the
system is described by the reduced density operator.
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6.19. Problems

6.19.1. Can It Be Written?
Show that a density matrix ρ̂ represents a state vector (i.e., it can be written
as ∣ψ⟩ ⟨ψ∣ for some vector ∣ψ⟩) if, and only if,

ρ̂2 = ρ̂

6.19.2. Pure and Nonpure States
Consider an observable σ that can only take on two values +1 or −1. The
eigenvectors of the corresponding operator are denoted by ∣+⟩ and ∣−⟩. Now
consider the following states.

(a) The one-parameter family of pure states that are represented by the vec-
tors

∣θ⟩ = 1√
2
∣+⟩ + eiθ√

2
∣−⟩

for arbitrary θ.

(b) The nonpure state

ρ = 1

2
∣+⟩ ⟨+∣ + 1

2
∣−⟩ ⟨−∣

Show that ⟨σ⟩ = 0 for both of these states. What, if any, are the physical
differences between these various states, and how could they be measured?

6.19.3. Probabilities
Suppose the operator

M =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
represents an observable. Calculate the probability Prob(M = 0∣ρ) for the fol-
lowing state operators:

(a) ρ =
⎡⎢⎢⎢⎢⎢⎣

1
2

0 0
0 1

4
0

0 0 1
4

⎤⎥⎥⎥⎥⎥⎦
, (b) ρ =

⎡⎢⎢⎢⎢⎢⎣

1
2

0 1
2

0 0 0
1
2

0 1
2

⎤⎥⎥⎥⎥⎥⎦
, (c) ρ =

⎡⎢⎢⎢⎢⎢⎣

1
2

0 0
0 0 0
0 0 1

2

⎤⎥⎥⎥⎥⎥⎦

6.19.4. Acceptable Density Operators
Which of the following are acceptable as state operators? Find the correspond-
ing state vectors for any of them that represent pure states.

ρ1 = [
1
4

3
4

3
4

3
4

] , ρ2 = [
9
25

12
25

12
25

16
25

]
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ρ3 =
⎡⎢⎢⎢⎢⎢⎣

1
2

0 1
4

0 1
2

0
1
4

0 0

⎤⎥⎥⎥⎥⎥⎦
, ρ4 =

⎡⎢⎢⎢⎢⎢⎣

1
2

0 1
4

0 1
4

0
1
4

0 1
4

⎤⎥⎥⎥⎥⎥⎦

ρ5 =
1

3
∣u⟩ ⟨u∣ + 2

3
∣v⟩ ⟨v∣ +

√
2

3
∣u⟩ ⟨v∣ +

√
2

3
∣v⟩ ⟨u∣

⟨u ∣ u⟩ = ⟨v ∣ v⟩ = 1 and ⟨u ∣ v⟩ = 0

6.19.5. Is it a Density Matrix?
Let ρ̂1 and ρ̂2 be a pair of density matrices. Show that

ρ̂ = rρ̂1 + (1 − r)ρ̂2

is a density matrix for all real numbers r such that 0 ≤ r ≤ 1.

6.19.6. Unitary Operators
An important class of operators are unitary, defined as those that preserve
inner products, i.e., if ∣ψ̃⟩ = Û ∣ψ⟩ and ∣ϕ̃⟩ = Û ∣ϕ⟩, then ⟨ϕ̃ ∣ ψ̃⟩ = ⟨ϕ ∣ ψ⟩ and
⟨ψ̃ ∣ ϕ̃⟩ = ⟨ψ ∣ ϕ⟩.

(a) Show that unitary operators satisfy Û Û+ = Û+Û = Î, i.e., the adjoint is
the inverse.

(b) Consider Û = eiÂ, where Â is a Hermitian operator. Show that Û+ = e−iÂ
and thus show that Û is unitary.

(c) Let Û(t) = e−iĤt/h̵ where t is time and Ĥ is the Hamiltonian. Let ∣ψ(0)⟩
be the state at time t = 0. Show that ∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ = e−iĤt/h̵ ∣ψ(0)⟩
is a solution of the time-dependent Schrödinger equation, i.e., the state
evolves according to a unitary map. Explain why this is required by the
conservation of probability in non-relativistic quantum mechanics.

(d) Let {∣un⟩} be a complete set of energy eigenfunctions, Ĥ ∣un⟩ = En ∣un⟩.
Show that Û(t) = ∑

n
e−iEnt/h̵ ∣un⟩ ⟨un∣. Using this result, show that ∣ψ(t)⟩ =

∑
n
cne

−iEnt/h̵ ∣un⟩. What is cn?

6.19.7. More Density Matrices
Suppose we have a system with total angular momentum 1. Pick a basis corre-
sponding to the three eigenvectors of the z−component of the angular momen-
tum, Jz, with eigenvalues +1, 0, −1, respectively. We are given an ensemble of
such systems described by the density matrix

ρ = 1

4

⎛
⎜
⎝

2 1 1
1 1 0
1 0 1

⎞
⎟
⎠
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(a) Is ρ a permissible density matrix? Give your reasoning. For the remainder
of this problem, assume that it is permissible. Does it describe a pure or
mixed state? Give your reasoning.

(b) Given the ensemble described by ρ, what is the average value of Jz?

(c) What is the spread (standard deviation) in the measured values of Jz?

6.19.8. Scale Transformation
Space is invariant under the scale transformation

x→ x ′ = ecx

where c is a parameter. The corresponding unitary operator may be written as

Û = e−icD̂

where D̂ is the dilation generator. Determine the commutators [D̂, x̂] and
[D̂, p̂x] between the generators of dilation and space displacements. Determine
the operator D̂. Not all the laws of physics are invariant under dilation, so the
symmetry is less common than displacements or rotations. You will need to use
the identity in Problem 6.19.11.

6.19.9. Operator Properties

(a) Prove that if Ĥ is a Hermitian operator, then U = eiH is a unitary operator.

(b) Show that detU = eiTrH .

6.19.10. An Instantaneous Boost
The unitary operator

Û(v⃗) = eiv⃗⋅
ˆ⃗G

describes the instantaneous (t = 0) effect of a transformation to a frame of
reference moving at the velocity v⃗ with respect to the original reference frame.
Its effects on the velocity and position operators are:

Û ˆ⃗V Û−1 = ˆ⃗V − v⃗Î , Û ˆ⃗QÛ−1 = ˆ⃗Q

Find an operator Ĝt such that the unitary operator Û(v⃗, t) = eiv⃗⋅
ˆ⃗Gt will yield

the full Galilean transformation

Û ˆ⃗V Û−1 = ˆ⃗V − v⃗Î , Û ˆ⃗QÛ−1 = ˆ⃗Q − v⃗tÎ

Verify that Ĝt satisfies the same commutation relation with P⃗ , J⃗ and Ĥ as does
Ĝ.

456



6.19.11. A Very Useful Identity

Prove the following identity, in which Â and B̂ are operators and x is a param-
eter.

exÂB̂e−xÂ = B̂ + [Â, B̂]x + [Â, [Â, B̂]] x
2

2
+ [Â, [Â, [Â, B̂]]] x

3

6
+ ......

There is a clever way(see Problem 6.12 below if you are having difficulty) to do
this problem using ODEs and not just brute-force multiplying everything out.

6.19.12. A Very Useful Identity with some help....

The operator U(a) = eipa/h̵ is a translation operator in space (here we consider
only one dimension). To see this we need to prove the identity

eABe−A =
∞
∑
0

1

n!
[A, [A, ...[A,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

B ]....]]
²
n

= B + [A,B] + 1

2!
[A, [A,B]] + 1

3!
[A, [A, [A,B]]] + .....

(a) Consider B(t) = etABe−tA, where t is a real parameter. Show that

d

dt
B(t) = etA[A,B]e−tA

(b) Obviously, B(0) = B and therefore

B(1) = B + ∫
1

0
dt

d

dt
B(t)

Now using the power series B(t) = ∑∞n=0 t
nBn and using the above integral

expression, show that Bn = [A,Bn−1]/n.

(c) Show by induction that

Bn =
1

n!
[A, [A, ...[A,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

B ]....]]
²
n

(d) Use B(1) = eABe−A and prove the identity.

(e) Now prove eipa/h̵xe−ipa/h̵ = x + a showing that U(a) indeed translates
space.

457



6.19.13. Another Very Useful Identity

Prove that
eÂ+B̂ = eÂeB̂e−

1
2
[Â,B̂]

provided that the operators Â and B̂ satisfy

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0

A clever solution uses Problem 6.19.11or 6.19.12 result and ODEs.

6.19.14. Pure to Nonpure?

Use the equation of motion for the density operator ρ̂ to show that a pure state
cannot evolve into a nonpure state and vice versa.

6.19.15. Schur’s Lemma

Let G be the space of complex differentiable test functions, g(x), where x is
real. It is convenient to extend G slightly to encompass all functions, g̃(x), such
that g̃(x) = g(x)+c, where g ∈ G and c is any constant. Let us call the extended
space G̃. Let q̂ and p̂ be linear operators on G̃ such that

q̂g(x) = xg(x)

p̂g(x) = −idg(x)
dx

= −ig′(x)

Suppose M̂ is a linear operator on G̃ that commutes with q̂ and p̂. Show that

(1) q̂ and p̂ are hermitian on G̃

(2) M̂ is a constant multiple of the identity operator

6.19.16. More About the Density Operator

Let us try to improve our understanding of the density matrix formalism and the
connections with information or entropy.We consider a simple two-state system.
Let ρ be any general density matrix operating on the two-dimensional Hilbert
space of this system.

(a) Calculate the entropy, s = −Tr(ρ lnρ) corresponding to this density ma-
trix. Express the result in terms of a single real parameter. Make a clear
interpretation of this parameter and specify its range.

(b) Make a graph of the entropy as a function of the parameter. What is
the entropy for a pure state? Interpret your graph in terms of knowledge
about a system taken from an ensemble with density matrix ρ.
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(c) Consider a system with ensemble ρ a mixture of two ensembles ρ1 and ρ2:

ρ = θρ1 + (1 − θ)ρ2 , 0 ≤ θ ≤ 1

As an example, suppose

ρ1 =
1

2
( 1 0

0 1
) , ρ2 =

1

2
( 1 1

1 1
)

in some basis. Prove that

s(ρ) ≥ ρ = θs(ρ1) + (1 − θ)s(ρ2)

with equality if θ = 0 or θ = 1. This the so-called von Neumann’s mixing
theorem.

6.19.17. Entanglement and the Purity of a Reduced Density
Operator

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Let ∣ΨAB⟩ be the state

∣ΨAB⟩ = cos θ ∣0A⟩⊗ ∣0B⟩ + sin θ ∣1A⟩⊗ ∣1B⟩

For 0 < θ < π/2, this is an entangled state. The purity ζ of the reduced density
operator ρ̃A = TrB[∣ΨAB⟩ ⟨ΨAB ∣] given by

ζ = Tr[ρ̃2
A]

is a good measure of the entanglement of states in HAB . For pure states of the
above form, find extrema of ζ with respect to θ (0 ≤ θ ≤ π/2). Do entangled
states have large ζ or small ζ?

6.19.18. The Controlled-Not Operator
Again let HA and HB be a pair of two-dimensional Hilbert spaces with given
orthonormal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Consider the controlled-not
operator on HAB (very important in quantum computing),

UAB = PA0 ⊗ IB + PA1 ⊗ σBx

where PA0 = ∣0A⟩ ⟨0A∣, PA1 = ∣1A⟩ ⟨1A∣ and σBx = ∣0B⟩ ⟨1B ∣ + ∣1B⟩ ⟨00∣.

Write a matrix representation for UAB with respect to the following (ordered)
basis for HAB

∣0A⟩⊗ ∣0B⟩ , ∣0A⟩⊗ ∣1B⟩ , ∣1A⟩⊗ ∣0B⟩ , ∣1A⟩⊗ ∣1B⟩

Find the eigenvectors of UAB - you should be able to do this by inspection. Do
any of them correspond to entangled states?
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6.19.19. Creating Entanglement via Unitary Evolution
Working with the same system as in Problems 6.17 and 6.18, find a factorizable
input state

∣Ψin
AB⟩ = ∣ΨA⟩⊗ ∣ΨB⟩

such that the output state

∣Ψout
AB⟩ = UAB ∣Ψin

AB⟩

is maximally entangled. That is, find any factorizable ∣Ψin
AB⟩ such that Tr[ρ̃2

A] =
1/2, where

ρ̃A = TrB[∣Ψout
AB⟩ ⟨Ψout

AB ∣]

6.19.20. Tensor-Product Bases
LetHA andHB be a pair of two-dimensional Hilbert spaces with given orthonor-
mal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Consider the following entangled state
in the joint Hilbert space HAB =HA ⊗HB ,

∣ΨAB⟩ = 1√
2
(∣0A1B⟩ + ∣1A0B⟩)

where ∣0A1B⟩ is short-hand notation for ∣0A⟩ ⊗ ∣1B⟩ and so on. Rewrite this
state in terms of a new basis {∣0̃A0̃B⟩ , ∣0̃A1̃B⟩ , ∣1̃A0̃B⟩ , ∣1̃A1̃B⟩}, where

∣0̃A⟩ = cos
φ

2
∣0A⟩ + sin

φ

2
∣1A⟩

∣1̃A⟩ = − sin
φ

2
∣0A⟩ + cos

φ

2
∣1A⟩

and similarly for {∣0̃B⟩ , ∣1̃B⟩}. Again ∣0̃A0̃B⟩ = ∣0̃A⟩⊗ ∣0̃B⟩, etc. Is our particular
choice of ∣ΨAB⟩ special in some way?

6.19.21. Matrix Representations
LetHA andHB be a pair of two-dimensional Hilbert spaces with given orthonor-
mal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Let ∣0A0B⟩ = ∣0A⟩ ⊗ ∣0B⟩, etc. Let the
natural tensor product basis kets for the joint space HAB be represented by
column vectors as follows:

∣0A0B⟩↔
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
, ∣0A1B⟩↔

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
, ∣1A0B⟩↔

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, ∣1A1B⟩↔

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

For parts (a) -(c), let

ρAB = 3

8
∣0A⟩ ⟨0A∣⊗

1

2
(∣0B⟩ + ∣1B⟩) (⟨0B ∣ + ⟨1B ∣)

+ 5

8
∣1A⟩ ⟨1A∣⊗

1

2
(∣0B⟩ − ∣1B⟩) (⟨0B ∣ − ⟨1B ∣)
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(a) Find the matrix representation of ρAB that corresponds to the above vec-
tor representation of the basis kets.

(b) Find the matrix representation of the partial projectors IA ⊗ PB0 and
IA⊗PB1 (see problem 6.19.18 for definitions) and then use them to compute
the matrix representation of

(IA ⊗ PB0 )ρAB (IA ⊗ PB0 ) + (IA ⊗ PB1 )ρAB (IA ⊗ PB1 )

(c) Find the matrix representation of ρ̃A = TrB[ρAB] by taking the partial
trace using Dirac language methods.

6.19.22. Practice with Dirac Language for Joint Systems

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Let ∣0A0B⟩ = ∣0A⟩ ⊗ ∣0B⟩, etc.
Consider the joint state

∣ΨAB⟩ = 1√
2
(∣0A0B⟩ + ∣1A1B⟩)

(a) For this particular joint state, find the most general form of an observable
OA acting only on the A subsystem such that

⟨ΨAB ∣OA ⊗ IB ∣ΨAB⟩ = ⟨ΨAB ∣ (IA ⊗ PB0 )OA ⊗ IB (IA ⊗ PB0 ) ∣ΨAB⟩

where
PB0 = ∣0B⟩ ⟨0B ∣

Express your answer in Dirac language.

(b) Consider the specific operator

XA = ∣0A⟩ ⟨1A∣ + ∣1A⟩ ⟨0A∣

which satisfies the general form you should have found in part (a). Find
the most general form of the joint state vector ∣Ψ′

AB⟩ such that

⟨Ψ′
AB ∣XA ⊗ IB ∣Ψ′

AB⟩ ≠ ⟨ΨAB ∣ (IA ⊗ PB0 )XA ⊗ IB (IA ⊗ PB0 ) ∣ΨAB⟩

(c) Find an example of a reduced density matrix ρ̃A for the A subsystem such
that no joint state vector ∣Ψ′

AB⟩ of the general form you found in part (b)
can satisfy

ρ̃A = TrB [∣Ψ′
AB⟩ ⟨Ψ′

AB ∣]
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6.19.23. More Mixed States
Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {∣0A⟩ , ∣1A⟩} and {∣0B⟩ , ∣1B⟩}. Let ∣0A0B⟩ = ∣0A⟩ ⊗ ∣0B⟩, etc.
Suppose that both the A and B subsystems are initially under your control and
you prepare the initial joint state

∣Ψ0
AB⟩ = 1√

2
(∣0A0B⟩ + ∣1A1B⟩)

(a) Suppose you take the A and B systems prepared in the state ∣Ψ0
AB⟩ and

give them to your friend, who then performs the following procedure. Your
friend flips a biased coin with probability p for heads; if the result of the
coin-flip is a head(probability p) the result of the procedure performed by
your friend is the state

1√
2
(∣0a0b⟩ − ∣1a1b⟩)

and if the result is a tail(probability 1 − p) the result of the procedure
performed by your friend is the state

1√
2
(∣0a0b⟩ + ∣1a1b⟩)

i.e., nothing happened. After this procedure what is the density operator
you should use to represent your knowledge of the joint state?

(b) Suppose you take the A and B systems prepared in the state ∣Ψ0
AB⟩ and

give them to your friend, who then performs the alternate procedure. Your
friend performs a measurement of the observable

O = IA ⊗Uh
but does not tell you the result. After this procedure, what density opera-
tor should you use to represent your knowledge of the joint state? Assume
that you can use the projection postulate (reduction) for state condition-
ing (preparation).

6.19.24. Complete Sets of Commuting Observables
Consider a three-dimensional Hilbert space H3 and the following set of opera-
tors:

Oα ↔
⎛
⎜
⎝

1 1 0
1 0 0
0 0 0

⎞
⎟
⎠
, Oβ ↔

⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
, Oγ ↔

⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Find all possible complete sets of commuting observables(CSCO). That is, de-
termine whether or not each of the sets

{Oα},{Oβ},{Oγ},{Oα,Oβ},{Oα,Oγ},{Oβ ,Oγ},{Oα,Oβ ,Oγ}

constitutes a valid CSCO.
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6.19.25. Conserved Quantum Numbers
Determine which of the CSCO’s in problem 6.24 (if any) are conserved by the
Schrödinger equation with Hamiltonian

H = ε0

⎛
⎜
⎝

2 1 0
1 1 0
0 0 0

⎞
⎟
⎠
= ε0 (Oα} + {Oβ)
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Chapter 7

How Does It really Work:
Photons, K-Mesons and Stern-Gerlach

7.1. Introduction

Many experiments indicate that electromagnetic waves have a vector property
called polarization. Suppose that we have an electromagnetic wave (we will just
say light from now on) passing through a piece of Polaroid material. The Po-
laroid material has the property that it lets through only that light whose polar-
ization vector is oriented parallel to a preferred direction in the Polaroid(called
the optic axis).

Classically, if an incident beam of light is polarized parallel to the optic axis,
then experiment says that all of its energy gets through the Polaroid.

If, on the other hand, it is polarized perpendicular to the optic axis, then ex-
periment says that none of its energy gets through the Polaroid.

Classically, if it is polarized at an angle α to the optic axis, then experiment
says that a fraction cos2 α of its energy gets through the Polaroid.

Many experiments, including several that we will discuss later, indicate that
light(and everything else in the universe as it turns out) exhibits both "particle-
like" and "wave-like" properties. (We will define both of these terms more
carefully later and decide then if this simple statement makes any sense).

The particle associated with light is called a photon.

Can the experimental polarization/Polaroid results be reconciled with this idea
of a particle-like photon?

Suppose we assume that a light wave that is polarized in a certain direction is
made up of a large number of photons each of which is polarized in that same
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direction.

The particle properties of light, as represented by photons, invariably lead to
some confusion. It is not possible to eliminate all of this confusion at this el-
ementary discussion level because a satisfactory treatment of photons requires
quantum electrodynamics.

We can, however, make many of the more important physical properties clear.

Consider a simple representation of a monochromatic electromagnetic wave (and
its associated photons) with angular frequency ω and wavelength λ moving in
a direction given by the unit vector k̂. Such a monochromatic electromagnetic
wave is composed of N (a very large number) photons, each with energy E and
momentum vecp, such that we have the relationships

E = h̵ω , p⃗ = h̵k⃗ = h
λ
k̂ (7.1)

where k⃗ is the wave vector, h̵ = h/2π, ω = 2πf , h = Planck’s constant, f =
frequency = c/λ, and c = speed of light. We note that

E = h

2π
2πf = hf = h c

λ
= pc (7.2)

as required by relativity for a particle with zero mass(such as the photon).

The number of photons in the wave is such that the total energy of the N
photons, NE = Nh̵ω, is equal to the total energy W in the electromagnetic
wave, i.e., W = NE = Nh̵ω.

Here, we are using the fact, derived from many experiments, that the energy
of the light wave is quantized and thus can only take on certain discrete values
(its value is a multiple of some quantum of energy).

When we specify the polarization of light, we are actually giving the direction
of the electric field vector E⃗. Light waves are generally represented by plane
electromagnetic waves. This means that the electric field vector E⃗ and the
magnetic field vector B⃗ are both perpendicular to the direction of propagation
specified by k⃗. If we choose the direction of propagation to be the z-axis, which
is specified by the unit vector êz, then E⃗ and B⃗ lie in the x− y plane. Since we
are only considering the polarization property at this point, we can concentrate
on the E⃗ vector alone. Now, any vector in the x − y plane can be specified in
terms of a pairs of orthonormal vectors (called the basis) in that plane. The
vectors in these orthonormal directions are called the polarization vectors.

Two standard sets of orthonormal polarization vectors are often chosen when
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one discusses polarization. One of the two sets is

êx =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

, êy =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

(7.3)

which correspond to plane(or linearly)-polarized waves. A second set is

êR = ê+ =
1√
2

⎛
⎜
⎝

1
i
0

⎞
⎟
⎠

, êL = ê− =
1√
2

⎛
⎜
⎝

1
−i
0

⎞
⎟
⎠

(7.4)

which correspond to circularly polarized waves.

For classical electromagnetic fields, a light wave propagating in the z-direction
is usually described(illustrating with the two orthonormal sets) by electric field
vectors of the forms given below.

Plane-polarized basis:

E⃗(r⃗, t) =
⎛
⎜
⎝

Ex(r⃗, t)
Ex(r⃗, t)

0

⎞
⎟
⎠
= Ex(r⃗, t)

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
+Ey(r⃗, t)

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

(7.5)

= Ex(r⃗, t)êx +Ey(r⃗, t)êy

Circularly-polarized basis:

E⃗(r⃗, t) =
⎛
⎜
⎝

Ex(r⃗, t)
Ex(r⃗, t)

0

⎞
⎟
⎠

(7.6)

=
Ex(r⃗, t) + iEy(r⃗, t)√

2

1√
2

⎛
⎜
⎝

1
i
0

⎞
⎟
⎠
+
Ex(r⃗, t) − iEy(r⃗, t)√

2

1√
2

⎛
⎜
⎝

1
−i
0

⎞
⎟
⎠

= Ex(r⃗, t)êR +Ey(r⃗, t)êL

By convention, we represent the field components by

Ex(r⃗, t) = E0
xe
i(kz−ωt+αx) and Ey(r⃗, t) = E0

ye
i(kz−ωt+αy) (7.7)

where αx and αy are the (real)phases and E0
x and E0

y are the (real) amplitudes
of the electric field components.

Clearly, the polarization state of the light is directly related to the E⃗ vectors in
this formulation.

For example, using the above equations, we have these cases:
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1. If Ey = 0, then the wave is plane polarized in the x-direction

E⃗ = Exêx = Ex
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

(7.8)

2. If Ex = 0, then the wave is plane polarized in the y-direction

E⃗ = Ey êy = Ey
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

(7.9)

3. If Ex = Ey, then the wave is plane polarized at 45 ○

E⃗ = Exêx +Ey êy = Ex
⎛
⎜
⎝

1
1
0

⎞
⎟
⎠

(7.10)

4. If Ey = −iEx = e−iπ/2Ex, then the y-component lags the x-component by
90 ○ and the wave is right circularly polarized

E⃗ = ExêR = Ex
⎛
⎜
⎝

1
i
0

⎞
⎟
⎠

(7.11)

5. If Ey = iEx = eiπ/2Ex, then the y-component leads the x-component by
90 ○ and the wave is left circularly polarized

E⃗ = ExêL = Ex
⎛
⎜
⎝

1
−i
0

⎞
⎟
⎠

(7.12)

For our present discussion, the above properties of polarization are sufficient.
We will give a more detailed discussion of the quantum mechanics of photon
polarization shortly.

The picture we are proposing assumes that each photon has the same polariza-
tion as the light wave, which is, in fact, verified by experiment.

This simple experimental property leads to some fundamental difficulties for
classical mechanics.

If the incident beam is polarized parallel or perpendicular to the optic axis of a
Polaroid, then classical physics has no problems ........ all the photons (and thus
all the energy) either pass through or do not pass(and thus none of the energy)
through the Polaroid.

468



But what about the case where the wave is polarized at 45 ○ to the optic axis of
the Polaroid?

For the beam as a whole, the experimental result is that 1/2 (cos2 45 ○ = 1/2) of
the total energy and hence 1/2 of the photons pass through.

But what about any particular photon, each of which is polarized at 45 ○ to the
optic axis?

Now the answer is not clear at all and the fundamental dilemma of the sub-
atomic world rears its ugly head.

As will become clear during our discussions of quantum mechanics, this question
about what will happen to a particular photon under certain conditions is not
very precise.

In order for any theory to make clear predictions about experiments, we will
have to learn how to ask very precise questions. We must also remember that
only questions about the results of experiments have a real significance in physics
and it is only such questions that theoretical physics must consider.

All relevant questions and the subsequent experiments devised to answer the
questions must be clear and precise, however.

In this case, we can make the question clear by doing the experiment with a
beam containing only one photon and observe what happens after it arrives at
the Polaroid. In particular, we make a simple observation to see whether or not
it passes through the Polaroid.

The most important experimental result is that this single photon either passes
through the Polaroid or it does not. I will call this type of experiment a go-nogo
or yes-no experiment.

We never observe 1/2 the energy of a single photon. We always observe either
zero energy or an energy exactly equal to h̵ω. One never observes a part of a
photon passing through and a part getting absorbed in the Polaroid.

In addition, if a photon gets through, then experiment says that its polarization
vector changes such that it ends up polarized in a direction parallel to the optic
axis of this particular Polaroid (instead of at 45 ○ with respect to that axis as it
was polarized beforehand).

In a beam of N photons, each photon will independently behave as the single
photon did in the description above. No experiment can determine which of the
photons will pass through and which will not, even though they are all identi-
cal. In each experiment, however, exactly 1/2 of the total energy and 1/2 of the
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photons will pass through the 45 ○ Polaroid.

As we shall show later, the only way this result can be interpreted is to say that
each photon has a probability = 1/2 of passing through the 45 ○ Polaroid.

We are led to this probabilistic point of view because the energy of the elec-
tromagnetic wave is quantized(or equivalently, that the electromagnetic wave
is made up of photons) and we cannot have fractions of the energy quantum
appearing during an experiment.

We have managed to preserve the indivisibility of the photons(the quantization
of their energy), but we were able to do this only by abandoning the comforting
determinacy of classical physics and introducing probability.

The results in this experiment are not completely determined by the exper-
imental conditions(initial) under control of the experimenter, as they would
have been according to classical ideas.

As we shall see, the most that we will be able to predict in any experiment is a
set of possible results, with a probability of occurrence for each.

The experiment described above involving a single photon polarized at an angle
to the optic axis, allows us to ask only one type of experimental and theoretical
question, namely, does the photon go through or is it absorbed - only a yes-no
experiment? That will turn out to be the only legitimate question we can ask
in this case.

It is the first indication of the way we should frame our discussion of theory!

We shall see that questions like....

What decides whether a particular photon goes through?

When does a particular photon decide whether it will pass through?

How does a particular photon change its polarization direction?

cannot be answered by experiment and, therefore, must be regarded as outside
the domain of quantum theory and possibly all of physics.

What will our theory of quantum mechanics say about the state of the single
photon?

It will be shown that the photon polarized at an angle to the optic axis is in
a very special kind of state that we will call a superposition of being polarized
perpendicular to the optic axis and of being polarized parallel to the optic axis,
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i.e., a superposition of all the possibilities.

In this state, there will exist an extraordinary kind of relationship between the
two kinds(mutually perpendicular directions) of polarization.

The meaning of the word superposition will follow clearly from the mathemat-
ical formalism and language we have developed in this book. It will, however,
require a new physical connection to mathematics.

This, as we shall see later, is suggested by an attempt to express the mean-
ing of superposition in ordinary language(words). If we attempt to explain the
behavior of the photon polarized at an angle to the optic axis using ordinary
language, then we might be inclined to say something like this:

The photon is

not polarized parallel to the optic axis

not polarized perpendicular to the optic axis

not simultaneously possessing both polarizations

not possessing neither polarization

For this experiment with only two possible polarizations, these statements ex-
haust all the logical possibilities allowed by ordinary words!

Superposition is something completely different than any of the above and it is
not all of the above.

Its physical content will, however, be precise and clear in our new mathematical
formalism.

When the photon encounters the Polaroid, we are observing it. We are ob-
serving whether it is polarized perpendicular or parallel to the optic axis of the
Polaroid. The effect of this measurement will be to end up with the photon hav-
ing one or the other polarizations(the one we measure). In such a measurement,
the photon always makes a jump from a state of superposition to a state of a
definite polarization. Which of the two states it jumps to cannot be predicted.
We will, as we shall see, be able to predict the probability of each possibility.

If it jumps into the parallel state, it has passed through. If it jumps into the
perpendicular state, it has been absorbed.

We will have a great deal more to say about the two new words, superposition
and jump, as we proceed. Do not attach any classical meaning to the word jump
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as used here. It simply my attempt to use words for the moment.

7.1.1. Photon Interference
Another classic experiment involving light waves and hence photons is two-slit
interference. The ideas of superposition and jump will reappear in this case and
give us another view to enhance our understanding(or maybe confusion) at this
point.

We will discuss this type of experiment in great detail and in many different
forms in this book. As we shall see, the meaning of this experiment is easily
misunderstood.

This experiment looks at the position and momentum properties of photons
instead of the polarization properties.

For an approximately monochromatic light wave we have some knowledge of
both the position and momentum of the photons. In particular, the photons
must be located near the beam of light and their momentum is in the direction
of propagation of the beam and has an approximate magnitude

p = E
c
= h̵ω

c
= hf
c

= h
λ

(7.13)

According to the standard wave interference description, a two-slit interference
experiment consists of a device which, in some manner, splits the incoming
beam into two beams which are sent over different physical paths and then re-
combined, in some way, so that they can interfere and produce a distinctive
pattern on a screen as we discussed in Chapters 1-3.

To see the problems directly, we again consider an incident beam consisting of
a single photon. What happens as it passes through the apparatus?

The photon has only two classical possibilities if it is going to reach the screen
and contribute to the interference pattern, i.e., it must follow a path that passes
through one of the two slits.

As in the polarization experiment, the correct quantum description will involve
describing the single photon as a superposition of photons traveling on (at least)
two different paths to the same point on a screen.

Once again, as we shall see in detail later on, if we tried to use ordinary lan-
guage to describe the experimental results in the interference experiment we
find ourselves saying that the photon is
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not on path #1

not on path #2

not simultaneously on both paths

not on neither path

What actually happens when we try to determine the energy of a photon in one
of the beams?

When we do the measurement, we always find the photon(all of the energy in
the single photon system) in one of the beams. When we observe the photon it
must somehow jump from being in a superposition (which generates the inter-
ference pattern) to being entirely in one of the beams (which, as it turns out,
does not generate the interference pattern). One possibility is that the jump is
caused by the measurement of the energy in this case.

Although, we cannot predict on which path the photon will be found, we can,
however, predict the probability of either result from the mathematical formal-
ism we will develop for superposition.

Even more striking is the following result. Suppose we have a single beam of
light consisting of a large number of photons, which we split up into two beams
of equal intensity. On the average we should have about half of the photons in
each beam.

Now make the two beams interfere.

If we were to assume that the interference is the result of a photon in one beam
interfering with a photon in the other beam, then we would have to allow two
photons to annihilate each other some of the time (producing interference min-
ima) and sometimes turn into four photons (producing interference maxima).
This process clearly violates conservation of energy.

The new concept of superposition will enable us to deal with this problem. Each
photon in the original beam will be in a superposition of being in both beams.
The superposition of possibilities will produce the interference effect. Interfer-
ence between two different photons or of the photon with itself is never required
and energy will always be conserved.

We will have a great deal more to say about these and other experiments as we
develop the mathematical formalism of quantum mechanics.
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Some questions about this approach

Is it really necessary to introduce the new concepts of superposition
and jump?

In many simple experiments, the classical model of waves and photons connected
in some vague statistical way will be sufficient to explain many experimental re-
sults. The new quantum ideas do not contribute anything new in these cases.
As we shall see as we progress through this chapter, there are, however, an
overwhelming number of experiments where the only correct explanation comes
from a quantum theory built around these new concepts and their associated
mathematical formalism.

Will this new theory give us a better model of the photon and of
single photon processes?

I do not believe that the object of a physical theory is to provide a satisfying
model or picture, but instead, to develop a language that enables us to formu-
late physical laws and make experimental predictions.

Models and pictures are holdovers from classical physics as applied to macro-
scopic phenomena. In the case of atomic phenomena and beyond we cannot
expect to find an appropriate model or picture. All such models and pictures
rely on classical concepts and these concepts are totally inadequate in the mi-
croscopic arena. Their main goal seems to be to make the reader feel more com-
fortable with the new and strange phenomena under discussion. Their many
misleading implications, however, often cause misunderstandings that lead many
a student down dead-end paths as they try to understand quantum mechanics.
We will avoid all non-mathematical models.

Unless one has mastered the correct language and adjusted one’s mode of think-
ing, it will not, in general, be possible to understand modern theoretical physics.
For me, a self-consistent mathematical formulation of the theory that uses a
language appropriate to the physical phenomena involved and is able to make
correct predictions for all experiments constitutes a valid physical model.

The reasons for observed physical behavior are contained in the mathemati-
cal formalism. There is no deeper physics involved beyond the mathematical
formalism. The only model is the mathematical formalism and its associated
physical connections along with a language that is needed to understand it and
express what it means in terms of experiments.

What about determinism?

The problems that the concept of superposition presents to the classical idea
of determinism when we create a well-defined system are so devastating that
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these old ideas must be abandoned. We will discuss these ideas in great detail
throughout the book, but for now a short digression about states, superposition
and measurements seems appropriate.

A classical state is specified by giving numerical values for all the coordinates
and velocities of the constituents of the system at some instant of time. The
subsequent motion is then determined if we know the force laws.

For a small system, however, we cannot observe it and determine its properties
to the extent required for a complete classical description. Thus, any micro-
scopic system is necessarily specified by fewer or more indefinite data than all
the coordinates and velocities at some instant of time.

In the new mathematical formalism, we will carefully define the kind of infor-
mation we can know about a state, which information we can actually know
at a given instant of time and how we will prepare such states. The prepared
states will have definite values of a specific set of measurable quantities.

In terms of such states, we will define a superposition such that we have well-
defined mathematical relationships between the different states making up the
superposition. The mathematical definition of a superposition will not be de-
scribable with the classical ideas or pictures or models available, i.e., it will turn
out that when we superpose two states, the nature of the relationship that exists
between them cannot be explained in terms of classical physical concepts. The
system is not partly in one state and partly in the other in any sense.

We will have to deal with a completely new idea here.

During the course of our discussions, we will need to get accustomed to the
mathematical formalism behind the concept of superposition and we will need
to rely on the formalism and the mathematics, as expressed by the Dirac lan-
guage, without having any detailed classical models.

The new superposed state will be completely defined by the states involved, the
mathematical relationships between them and the physical meaning of those
mathematical relationships as defined by the formalism.

As we saw in the polarization and interference experiments, we must have a
superposition of two possible states, say A and B. Suppose that if the system
were in state A alone, then a particular measurement would, with certainty,
produce the result a and if the system were in state B alone, then the same
measurement would, with certainty, produce the result b. Then, if the system
is in the superposed state(of A and B), it turns out that the same measure-
ment will sometimes produce the result a and sometimes the result b. Given
the mathematical definition of the superposed state and the rules that we will
specify to relate the physics to the mathematics, we will be able to predict the
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probability of getting the result a and the probability of getting the result b.

We will not be able to predict which result we will get in any one measurement,
i.e., the measurement process will not be deterministic. Identical measurements
on identically prepared states will not yield identical results in any one mea-
surement.

If we repeat the measurements a large number of times, however, we can predict
the fraction of time we will obtain the result . That is all we will be able to
predict using the formalism of quantum mechanics we will develop. I firmly
believe, that nature is such that we will not, under any circumstances, be able
to make any more detailed predictions for quantum systems.

So, summarizing the situation before we proceed.....

When physicists try to construct a theory from their experimental observations
they are primarily concerned with two things:

how to calculate something that will enable them to
predict the results of further experiments

how to understand what is going on in the experiments

Now, it is not always possible to satisfy both of these concerns at the same
time. Sometimes we have a reasonably clear idea of what is going on, but the
mathematical details are so complex that calculating is very hard. Sometimes
the mathematics is quite clear, but the understanding is difficult.

Quantum mechanics falls into the latter category.

Over the years since quantum mechanics was first proposed, a very pragmatic
attitude has formed.

Physicists realized that an understanding of how electrons could behave in such
a manner would come once they developed the rules that would enable them to
calculate the way they behaved.

So quantum mechanics as a set of rules was developed, as we shall see in this
book.

It has been tested in a large number of experiments and never been found to be
wrong. It works extremely well.

Yet, we are still not sure how the electrons can behave in such a manner.
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In many ways, the situation has even gotten worse over the years. Some people,
as we shall see, held out the hope that quantum mechanics was an incomplete
theory and that as we did more experiments we would discover some loose end
or new idea that would allow us to make sense of things.

This has not happened and I believe it never will.

We now carry out the details of a special case that will illustrate how Quantum
Mechanics works and also illustrate the mathematical formalism that we have
developed in earlier chapters.

7.2. Photon Polarization

As we mentioned earlier, the electric field vector E⃗ of plane electromagnetic
waves lies in a plane perpendicular to the direction of propagation of the wave.
If we choose the z-axis as the direction of propagation, we can represent the
electric field vector as a 2-dimensional vector in the x − y plane. This means
that we will only require two numbers to describe the electric field. Since the
polarization state of the light is directly related to the electric field vector, this
means that we can also represent the polarization states of the photons by 2-
component column vectors or ket vectors of the form

∣ψ⟩ = (ψx
ψy

) where we assume the normalization condition ⟨ψ ∣ψ⟩ = 1 (7.14)

The components in the state vectors depend only on the actual polarization
state of the photon. The state vector contains all of the information that we
can have about the state of polarization of the photon (remember that it consists
of just two numbers).

Examples

∣x⟩ = (1
0
)→ linear polarized photon

∣y⟩ = (0
1
)→ linear polarized photon

∣R⟩ = 1√
2
(1
i
)→ right circular polarized photon

∣L⟩ = 1√
2
( 1
−i)→ left circular polarized photon

∣45⟩ = 1√
2
(1

1
)→ photon linearly polarized at 45 ○ to the x-axis
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The bra vector or linear functional corresponding the ket vector ∣ψ⟩ is given by
the row vector

⟨ψ∣ = (ψ∗x ψ∗y) (7.15)

which clearly implies via our inner product rules

⟨ψ ∣ψ⟩ = (ψ∗x ψ∗y)(
ψx
ψy

) = ∣ψx∣2 + ∣ψy ∣2 = 1 (7.16)

In general, for

∣φ⟩ = (φx
φy

) (7.17)

the inner product rule says that

⟨φ ∣ψ⟩ = (φ∗x φ∗y)(
ψx
ψy

) = φ∗xψx + φ∗yψy = ⟨ψ ∣φ⟩∗ (7.18)

We also have the results

⟨x ∣x⟩ = 1 = ⟨y ∣ y⟩ and ⟨x ∣ y⟩ = 0 = ⟨y ∣x⟩→ orthonormal set (7.19)

⟨R ∣R⟩ = 1 = ⟨L ∣L⟩ and ⟨R ∣L⟩ = 0 = ⟨L ∣R⟩→ orthonormal set (7.20)

Each of these two sets of state vectors is a basis for the 2-dimensional vector
space of polarization states since any other state vector can be written as a
linear combination of them, i.e.,

∣ψ⟩ = (ψx
ψy

) = ψx (
1
0
) + ψy (

0
1
) = ψx ∣x⟩ + ψy ∣y⟩ (7.21)

or

∣ψ⟩ = (ψx
ψy

) =
ψx − iψy

2
(1
i
) +

ψx + iψy
2

( 1
−i) (7.22)

=
ψx − iψy√

2
∣R⟩ +

ψx + iψy√
2

∣L⟩

We can find the components along the basis vectors using

⟨x ∣ψ⟩ = ⟨x∣ (ψx ∣x⟩ + ψy ∣y⟩) = ψx ⟨x ∣x⟩ + ψy ⟨x ∣ y⟩ = ψx (7.23)

⟨y ∣ψ⟩ = ⟨y∣ (ψx ∣x⟩ + ψy ∣y⟩) = ψx ⟨y ∣x⟩ + ψy ⟨y ∣ y⟩ = ψy (7.24)

or
∣ψ⟩ = ∣x⟩ ⟨x ∣ψ⟩ + ∣y⟩ ⟨y ∣ψ⟩ (7.25)

and similarly
∣ψ⟩ = ∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩ (7.26)

Basically, we are illustrating examples of a superposition principle, which says
that any arbitrary polarization state can be written as a superposition (linear
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combination) of x- and y-polarization states or equivalently, as a superposition
of right- and left-circularly polarized states.

Our earlier discussions of a beam of light passing through a polaroid can now
be recast in terms of these polarization states.

Classical physics says that the beam is a superposition of an x-polarized beam
and a y-polarized beam and when this beam passes through an x-polaroid, its
effect is to remove the y-polarized beam and pass the x-polarized beam through
unchanged.

The energy of the classical beam is given by ∣E⃗∣2 which for the polarization states
is proportional to ∣ψx∣2 + ∣ψy ∣2. Thus, the beam energy after passing through
an x-polaroid is proportional to ∣ψx∣2. The fraction of the beam energy or the
fraction of the number of photons in the beam that passes through is given by

∣ψx∣2

∣ψx∣2 + ∣ψy ∣2
= ∣ψx∣2 = ∣ ⟨x ∣ψ⟩ ∣2 (7.27)

for states normalized to 1. Our earlier discussion for the case of a single photon
forced us to set this quantity equal to the probability of a single photon in the
state ∣ψ⟩ passing through an x-polaroid or

probability of a photon in the state ∣ψ⟩
passing through an x-polaroid = ∣ ⟨x ∣ψ⟩ ∣2

This agrees with the mathematical results we derived in Chapter 6.

This all makes sense in an ensemble interpretation of the state vector, that is,
that the state vector represents the beam or equivalently, many copies of a single
photon system.

We then define ⟨x ∣ψ⟩ as the probability amplitude for the individual photon to
pass through the x-polaroid.

Another example confirming these results is light passing through a prism.
A prism passes right-circularly-polarized(RCP) light and rejects(absorbs) left-
circularly-polarized(LCP) light.

Since we can write
∣ψ⟩ = ∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩ (7.28)

we can generalize the polaroid result to say

amplitude that a photon in the state ∣ψ⟩
passes through a prism = ⟨R ∣ψ⟩
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and

probability that a photon in the state ∣ψ⟩
passes through a prism = ∣ ⟨R ∣ψ⟩ ∣2

Polaroids and prisms are examples of go-nogo devices. Certain photons are
passed through while others are absorbed in these devices.

We note that the probability is independent of the phase of the state, but
the amplitude depends on phase. This will be a crucial point later on in our
discussion.

7.2.1. How Many Basis Sets ?
We have already seen two examples of basis sets for the 2-dimensional vector
space of polarization states, namely,

{∣x⟩ , ∣y⟩} and {∣R⟩ , ∣L⟩} (7.29)

In the 2-dimensional vector space there are an infinite number of such orthonor-
mal basis sets related to the {∣x⟩ , ∣y⟩} set. They are all equivalent for describing
physical systems (they correspond to different orientations of the polaroid in
the experimental measurement). We can obtain the other sets say {∣x′⟩ , ∣y′⟩},
by a rotation of the bases (or axes) as shown in Figure 7.1 below.

Figure 7.1: Rotation of Axes

We then have in the x − y basis

∣ψ⟩ = ψx ∣x⟩ + ψy ∣y⟩ = (ψx
ψy

) = (⟨x ∣ψ⟩
⟨y ∣ψ⟩) (7.30)

and if we choose to use the equivalent x′ − y′ basis we have

∣ψ⟩ = ψx′ ∣x′⟩ + ψy′ ∣y′⟩ = (ψx′
ψy′

) = (⟨x
′ ∣ψ⟩

⟨y′ ∣ψ⟩) (7.31)
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How are these components related to each other? We have

∣ψ⟩ = ∣x⟩ ⟨x ∣ψ⟩ + ∣y⟩ ⟨y ∣ψ⟩ (7.32)

which implies
⟨x′ ∣ψ⟩ = ⟨x′ ∣x⟩ ⟨x ∣ψ⟩ + ⟨x′ ∣ y⟩ ⟨y ∣ψ⟩ (7.33)

or in matrix notation

⟨y′ ∣ψ⟩ = ⟨y′ ∣x⟩ ⟨x ∣ψ⟩ + ⟨y′ ∣ y⟩ ⟨y ∣ψ⟩ (7.34)

or in matrix notation

(⟨x
′ ∣ψ⟩

⟨y′ ∣ψ⟩) = (⟨x
′ ∣x⟩ ⟨x′ ∣ y⟩

⟨y′ ∣x⟩ ⟨y′ ∣ y⟩) = (⟨x ∣ψ⟩
⟨y ∣ψ⟩) (7.35)

So we can transform the basis (transform the components) if we can determine
the 2 × 2 transformation matrix

(⟨x
′ ∣x⟩ ⟨x′ ∣ y⟩

⟨y′ ∣x⟩ ⟨y′ ∣ y⟩) (7.36)

It turns out that this result is quite general in the sense that it holds for any
two bases, not just the linearly polarized bases we used to derive it.

For the linear(plane) polarized case, we can think of an analogy to unit vectors
along the axes in ordinary space as shown on the right in Figure 7.1.

Then we have(by analogy)

êx ⋅ êx′ = cos θ = ⟨x′ ∣x⟩ , êx′ ⋅ êy = sin θ = ⟨x′ ∣ y⟩ (7.37)

êy′ ⋅ êy = cos θ = ⟨y′ ∣ y⟩ , êy′ ⋅ êx = − sin θ = ⟨y′ ∣x⟩ (7.38)

or
∣x′⟩ = ⟨x ∣x′⟩ ∣x⟩ + ⟨y ∣x′⟩ ∣y⟩ = cos θ ∣x⟩ + sin θ ∣y⟩ (7.39)

∣y′⟩ = ⟨x ∣ y′⟩ ∣x⟩ + ⟨y ∣ y′⟩ ∣y⟩ = − sin θ ∣x⟩ + cos θ ∣y⟩ (7.40)

and the transformation matrix, R̂(θ), is

R̂(θ) = (⟨x
′ ∣x⟩ ⟨x′ ∣ y⟩

⟨y′ ∣x⟩ ⟨y′ ∣ y⟩) = ( cos θ sin θ
− sin θ cos θ

) (7.41)

so that

(⟨x
′ ∣ψ⟩

⟨y′ ∣ψ⟩) = ( cos θ sin θ
− sin θ cos θ

)(⟨x ∣ψ⟩
⟨y ∣ψ⟩) (7.42)

There are two equivalent ways to interpret these results.

First, we could say it tells us the components of ∣ψ⟩ in the rotated basis (we
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keep the vector fixed and rotate the axes). Second, we can rotate the vector and
keep the axes fixed(rotate in the opposite direction). In this case, we regard

(⟨x
′ ∣ψ⟩

⟨y′ ∣ψ⟩) (7.43)

as a new vector ∣ψ′⟩ whose components in the fixed x − y basis are the same as
the components of ∣ψ⟩ in the x′ − y′-basis or

⟨x′ ∣ψ⟩ = ⟨x ∣ψ′⟩ and ⟨y′ ∣ψ⟩ = ⟨y ∣ψ′⟩ (7.44)

For real ψx and ψy, ∣ψ′⟩ is the vector ∣ψ⟩ rotated clockwise by θ or, regarding
R̂(θ) as a linear operator in the vector space we have

∣ψ′⟩ = R̂(θ) ∣ψ⟩ (7.45)

It is not a Hermitian operator, however, so it cannot represent an observable. It
is a transformation of vectors and according to our earlier discussion in Chapter
6, it should be a unitary operator. We can see this as follows:

R̂−1(θ) = R̂(−θ) = (cos θ − sin θ
sin θ cos θ

) = R̂T (θ) = R̂†(θ) (7.46)

Since R̂(θ) is a unitary transformation operator for rotations, our earlier dis-
cussions in Chapter 6 say that we should be able to express it as an exponential
operator involving the angular momentum with respect to the axis of rotation
(z-axis) Ĵz, of the form

R̂(θ) = eiθĴz/h̵ (7.47)

Now, we can rewrite R̂(θ) as

R̂(θ) = ( cos θ sin θ
− sin θ cos θ

) = cos θ (1 0
0 1

) + i sin θ (0 −i
i 0

) (7.48)

= cos θÎ + i sin θQ̂

where the physical meaning of the operator

Q̂ = (0 −i
i 0

) (7.49)

is yet to be determined.
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Expanding (7.47) in a power series we have

R̂(θ) = R̂(0) + 1

1!

dR̂(θ)
dθ

∣
θ=0

θ + 1

2!

d2R̂(θ)
dθ2

∣
θ=0

θ2

+ 1

3!

d3R̂(θ)
dθ3

∣
θ=0

θ3 + 1

4!

d4R̂(θ)
dθ4

∣
θ=0

θ4 + . . .

= Î + 1

1!
( iĴz
h̵

) θ + 1

2!
( iĴz
h̵

)
2

θ2 + 1

3!
( iĴz
h̵

)
3

θ3 + 1

4!
( iĴz
h̵

)
4

θ4 + . . .

= eiθĴz/h̵ (7.50)

Now let us assume that h̵Q̂ = Ĵz, where Ĵz is defined in (7.47). We then have
the following algebraic results.

Ĵ2
z = h̵2Q̂2 = (0 −i

i 0
)(0 −i

i 0
) = (1 0

0 1
) = h̵2Î (7.51)

which implies that

Ĵ3
z = h̵2Ĵz , Ĵ4

z = h̵2Ĵ2
z = h̵4Î , Ĵ5

z = h̵4Ĵz and so on (7.52)

This gives

R̂(θ) = eiθĴz/h̵ = Î + (i) ĵz
h̵
θ + (i)2Î

2!
θ2 + (i) ĵz

3!h̵
θ3 + (i)4Î

4!
θ4 + . . .

= (1 − θ
2

2!
+ θ

4

4!
− . . .) + i (θ − racθ33! + . . .)

= cos θÎ + i sin θh̵Ĵz = cos θÎ + i sin θQ̂ (7.53)

as in (7.48).

So everything, exponential form of the rotation operator and matrix form of the
rotation operator, is consistent if we choose

Ĵz = h̵Q̂ = h̵(0 −i
i 0

) (7.54)

This corresponds to the matrix representation of Ĵz in the{∣x⟩ , ∣y⟩} basis.

We now work out the eigenvectors and eigenvalues of R̂(θ) as given by the
equation

R̂(θ) ∣ψ⟩ = c ∣ψ⟩ (7.55)

where c = the eigenvalue corresponding to the eigenvector ∣ψ⟩.

Since all vectors are eigenvectors of the identity operator Î, we only need to find
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the eigenvectors and eigenvalues of Ĵz in order to solve the problem for R̂(θ),
i.e.,

R̂(θ) ∣ψ⟩ = cos θÎ ∣ψ⟩ + i sin θQ̂ ∣ψ⟩ = cosθ ∣ψ⟩ + i

h̵
sin θĴz ∣ψ⟩ = c ∣ψ⟩ (7.56)

If we let(since R̂(θ) and Ĵz commute they have common eigenvectors)

Ĵz ∣ψ⟩ = λ ∣ψ⟩ (7.57)

then we have

R̂(θ) ∣ψ⟩ = cos θÎ ∣ψ⟩ + i sin θQ̂ ∣ψ⟩ = cos θ ∣ψ⟩ + i

h̵
sin θĴz ∣ψ⟩ = c ∣ψ⟩ (7.58)

or

c = cos θ + iλ
h̵

sin θ (7.59)

Now, since Ĵ2
z = h̵2Î, we have

Ĵ2
z ∣ψ⟩ = λ2 ∣ψ⟩ = h̵2Î ∣ψ⟩ = h̵2 ∣ψ⟩ (7.60)

which says that
λ2 = h̵2 or λ = ±h̵ = eigenvalues of Ĵz (7.61)

We can find the corresponding eigenvectors by inserting the eigenvalues into the
eigenvalue equation

Ĵz ∣Jz = h̵⟩ = h̵ ∣Jz = h̵⟩ (7.62)

We assume that

∣Jz = h̵⟩ = (a
b
) where ∣a∣2 + ∣b∣2 = 1 (7.63)

to get from (7.62)

h̵(0 −i
i 0

)(a
b
) = h̵(−ib

ia
) = h̵(a

b
) (7.64)

This gives the result ia = b which together with the normalization condition says
that a = 1/

√
2. We have arbitrarily chosen a to be real since only the relative

phase between components is important. This then gives b = i/
√

2. Finally, we
have the eigenvector

∣Jz = h̵⟩ =
1√
2
(1
i
) = ∣R⟩ (7.65)

Similarly, we get

∣Jz = −h̵⟩ =
1√
2
( 1
−i) = ∣L⟩ (7.66)

484



So the eigenvectors of Ĵz and hence of R̂(θ) are the RCP and LCP basis states.
We then have

R̂(θ) ∣R⟩ = (cos θÎ + i

h̵
sin θĴz) ∣R⟩

= (cos θ + i sin θ) ∣R⟩
= eiθ ∣R⟩ (7.67)

Similarly,
R̂(θ) ∣L⟩ = e−iθ ∣L⟩ (7.68)

This agrees with our earlier discussion in Chapter 4 where we found that the
eigenvalues of a unitary operator have complex exponential form.

Physically, this says that ∣R⟩ and ∣L⟩ are only changed by an overall phase factor
under a rotation of the basis. This allows us to easily specify what happens to
an arbitrary vector ∣ψ⟩ under rotations.

The procedure we will use next is, as we will see over and over again, the
standard way to do things in quantum mechanics. First, we expand the arbitrary
vector in the {∣R⟩ , ∣L⟩} basis

∣ψ⟩ = ∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩ (7.69)

We then apply the rotation operator to obtain

R̂(θ) ∣ψ⟩ = R̂(θ) ∣R⟩ ⟨R ∣ψ⟩ + R̂(θ) ∣L⟩ ⟨L ∣ψ⟩ (7.70)

= eiθ ∣R⟩ ⟨R ∣ψ⟩ + e−iθ ∣L⟩ ⟨L ∣ψ⟩

or the RCP component of the vector is multiplied by the phase factor eiθ and
the LCP component of the vector is multiplied by a different phase factor e−iθ.
Thus, rotations change the relative phase of the components, which is a real
physical change (as opposed to an overall phase change of the state vector).

We interpret (reasons will be clear later) these results to say that the RCP
photon is in a state which is an eigenvector of Ĵz with eigenvalue +h̵ or that the
photon in that state has z-component of spin = +h̵. Similarly, a LCP photon
has z-component of spin = −h̵.

Now, it is an experimental fact that if a photon traveling in the z-direction is
absorbed by matter, then the z-component of the angular momentum of the
absorber increases by h̵ or decreases by h̵. It never remains the same, nor does
it change by any value other than ±h̵.

One cannot predict, for any single photon, whether the change will be +h̵ or −h̵.
We can, however, predict the probability of either value occurring. In particular,
according to our probability formalism, we must have

∣ ⟨R ∣ψ⟩ ∣2 = probability of + h̵ , ∣ ⟨L ∣ψ⟩ ∣2 = probability of − h̵ (7.71)
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and the average value of the z-component of the angular momentum is

⟨Ĵz⟩ = ∑
all possibilities

(eigenvalue) × (probability of the eigenvalue) (7.72)

or
⟨Ĵz⟩ = +h̵∣ ⟨R ∣ψ⟩ ∣2 − h̵∣ ⟨L ∣ψ⟩ ∣2 (7.73)

In general, a photon is neither pure RCP nor pure LCP and the angular mo-
mentum does not have a definite value.

We can still talk in terms of probabilities, however. The discreteness of the
angular momentum spectrum forces a probabilistic interpretation on us.

We can easily see how all of this works using our mathematical formalism for
average values as follows:

⟨Ĵz⟩ = ⟨ψ∣ Ĵz ∣ψ⟩
= (⟨ψ ∣R⟩ ⟨R∣ + ⟨ψ ∣L⟩ ⟨L∣)Ĵz(∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩)
= (⟨R ∣ψ⟩∗ ⟨R∣ + ⟨L ∣ψ⟩∗ ⟨L∣)Ĵz(∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩)
= ⟨R∣ Ĵz ∣R⟩ ∣ ⟨R ∣ψ⟩ ∣2 + ⟨L∣ Ĵz ∣L⟩ ∣ ⟨L ∣ψ⟩ ∣2

+ ⟨R∣ Ĵz ∣L⟩ ⟨R ∣ψ⟩∗ ⟨L ∣ψ⟩ + ⟨L∣ Ĵz ∣R⟩ ⟨L ∣ψ⟩∗ ⟨R ∣ψ⟩
= +h̵∣ ⟨R ∣ψ⟩ ∣2 − h̵∣ ⟨L ∣ψ⟩ ∣2 (7.74)

as we showed earlier(7.73).

Let us return for a moment to the matrix representation of the Ĵz operator. We
have found the following results:

Ĵz ∣R⟩ = +h̵ ∣R⟩ and Ĵz ∣L⟩ = −h̵ ∣L⟩ (7.75)

In the {∣R⟩ , ∣L⟩} basis, these relations imply the matrix representation

Ĵz = (⟨R∣ Ĵz ∣R⟩ ⟨R∣ Ĵz ∣L⟩
⟨L∣ Ĵz ∣R⟩ ⟨L∣ Ĵz ∣L⟩

) = h̵(1 0
0 −1

) (7.76)

which is the standard form of Ĵz in terms of one of the so-called Pauli matrices,
namely,

σ̂z = (1 0
0 −1

)→ Ĵz = h̵σ̂z (7.77)

Now
∣x⟩ = 1√

2
(∣R⟩ + ∣L⟩) and ∣y⟩ = i√

2
(∣R⟩ − ∣L⟩) (7.78)

and, therefore, in the {∣x⟩ , ∣y⟩} basis we have the matrix representation

Ĵz = (⟨x∣ Ĵz ∣x⟩ ⟨x∣ Ĵz ∣y⟩
⟨y∣ Ĵz ∣x⟩ ⟨y∣ Ĵz ∣y⟩

) = h̵(0 −i
i 0

) (7.79)

which is the form we guessed and used earlier.
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7.2.2. Projection Operators
Let us now turn our attention to projection operators and density operators in
the context of photon polarization.

The general operator ∣ψ⟩ ⟨φ∣ can be represented by a 2 × 2 matrix in the polar-
ization state vector space. It is constructed using the outer product rule:

P̂ = ∣ψ⟩ ⟨φ∣ = (ψx
ψy

)(φ∗x φ∗y) = (ψxφ
∗
x ψxφ

∗
y

ψyφ
∗
x ψyφ

∗
y
) (7.80)

or equivalently, by choosing a basis and finding the matrix representation

P̂ = (⟨x∣ P̂ ∣x⟩ ⟨x∣ P̂ ∣y⟩
⟨y∣ P̂ ∣x⟩ ⟨y∣ P̂ ∣y⟩

) = (⟨x ∣ψ⟩ ⟨φ ∣x⟩ ⟨x∣ψ∣ ⟨φ ∣ y⟩
⟨y∣ψ∣ ∣φ∣x⟩ ⟨y∣ψ∣ ∣φ∣y⟩ )

= (ψxφ
∗
x ψxφ

∗
y

ψyφ
∗
x ψyφ

∗
y
)

In particular, we have for the projection operators

∣x⟩ ⟨x∣ = (1 0
0 0

) , ∣x⟩ ⟨y∣ = (0 1
0 0

) (7.81)

∣y⟩ ⟨x∣ = (0 0
1 0

) , ∣y⟩ ⟨y∣ = (0 0
0 1

)

From these results we easily see that

∣x⟩ ⟨x∣ + ∣y⟩ ⟨y∣ = (1 0
0 1

) = Î (7.82)

and

∣ψ⟩ = Î ∣ψ⟩ = (∣x⟩ ⟨x∣ + ∣y⟩ ⟨y∣) ∣ψ⟩ (7.83)

= ∣x⟩ ⟨x ∣ψ⟩ + ∣y⟩ ⟨y ∣ψ⟩ = (ψx
ψy

)

as they should. Similarly, we have

∣R⟩ ⟨R∣ + ∣L⟩ ⟨L∣ = Î (7.84)

which leads to

Ĵz = Ĵz Î = Ĵz(∣R⟩ ⟨R∣ + ∣L⟩ ⟨L∣) (7.85)
= h̵ ∣R⟩ ⟨R∣ − h̵ ∣L⟩ ⟨L∣ (7.86)

which is the expansion of the operator Ĵz in terms of eigenvalues and 1-dimensional
subspace projection operators (eigenvectors) that we discussed earlier.
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7.2.3. Amplitudes and Probabilities
The probability interpretation we have been making follows from the concept
of superposition. The superposition idea says that we can write any arbitrary
photon state as a linear combination of basis states

∣ψ⟩ = ∣R⟩ ⟨R ∣ψ⟩ + ∣L⟩ ⟨L ∣ψ⟩ (7.87)

We then interpreted ∣ ⟨R ∣ψ⟩ ∣2 as the probability that the photon in the state
∣ψ⟩ will behave as a RCP photon in the state ∣R⟩.

Generalizing this statement, we say that a system in a state ∣ψ⟩, in Quantum
Mechanics, has a probability ∣ ⟨φ ∣ψ⟩ ∣2 of behaving like it was in the state ∣φ⟩.

You might now conclude, from the experimental fact that only ±h̵ is transferred
to matter by light, that photons are always either in the state ∣R⟩ with some
probability α or in the state ∣l⟩ with probability 1 − α.

FACT: An x-polarized photon never passes through a y-polaroid

PROBLEM: If, the above interpretation of being either ∣R⟩ or ∣L⟩ was true,
then

1. an x-polarized photon has a probability ∣ ⟨R ∣x⟩ ∣2 = 1/2 of being RCP and
a RCP photon has a probability ∣ ⟨y ∣R⟩ ∣2 = 1/2 of being a y-polarized
photon and thus passing through a y-polaroid.

2. an x-polarized photon has a probability ∣ ⟨L ∣x⟩ ∣2 = 1/2 of being LCP and
a LCP photon has a probability ∣ ⟨y ∣L⟩ ∣2 = 1/2 of being a y-polarized
photon and thus passing through a y-polaroid.

This means that if we assume we can think that the photon is either ∣R⟩ or ∣L⟩
but we do not know which, i.e., photon properties have an objective reality, then
the total probability that an x-polarized photon would get through a y-polaroid
in this interpretation is

total probability = ∣ ⟨R ∣x⟩ ∣2∣ ⟨y ∣R⟩ ∣2 + ∣ ⟨L ∣x⟩ ∣2∣ ⟨y ∣L⟩ ∣2 = 1

2
(7.88)

However, as we stated, it NEVER HAPPENS. What is wrong?

SOLUTION: When we think of an x-polarized photon as being a RCP photon
or a LCP photon with equal probability, we are ruling out the possibility of any
interference between the RCP and LCP amplitudes. We are thinking classically !

We give meaning to the word interference here in this way.

The correct calculation of the probability, which lays the foundation for all of
the amplitude mechanics rules in Quantum Mechanics, goes as follows:
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1. The probability amplitude of an x-polarized photon passing through a
y-polaroid = ⟨y ∣x⟩ = 0, which implies that the probability ∣ ⟨y ∣x⟩ ∣2 = 0
also.

2. If we say that the x-polarized photon is in a superposition of ∣R⟩ and ∣L⟩
(we make no statement about probabilities at this point), this implies that

∣x⟩ = ∣R⟩ ⟨R ∣x⟩ + ∣L⟩ ⟨L ∣x⟩ (7.89)

which gives
⟨y ∣x⟩ = ⟨y ∣R⟩ ⟨R ∣x⟩ + ⟨y ∣L⟩ ⟨L ∣x⟩ (7.90)

or the amplitude for an x-polarized photon to pass through a y-polaroid is
the sum of two amplitudes, namely, that it passes through as a RCP photon
⟨y ∣R⟩ ⟨R ∣x⟩ and that it passes through as a LCP photon ⟨y ∣L⟩ ⟨L ∣x⟩.

3. The probability of passing through is then the absolute square of the total
amplitude

probability = ∣ ⟨y ∣R⟩ ⟨R ∣x⟩ + ⟨y ∣L⟩ ⟨L ∣x⟩ ∣2

= (⟨y ∣R⟩∗ ⟨R ∣x⟩∗ + ⟨y ∣L⟩∗ ⟨L ∣x⟩∗)(⟨y ∣R⟩ ⟨R ∣x⟩ + ⟨y ∣L⟩ ⟨L ∣x⟩)
= ∣ ⟨R ∣x⟩ ∣2∣ ⟨y ∣R⟩ ∣2 + ∣ ⟨L ∣x⟩ ∣2∣ ⟨y ∣L⟩ ∣2

⟨y ∣R⟩ ⟨R ∣x⟩ ⟨y ∣L⟩∗ ⟨L ∣x⟩∗ + ⟨y ∣R⟩∗ ⟨R ∣x⟩∗ ⟨y ∣L⟩ ⟨L ∣x⟩

4. The first two terms are the same as the incorrect calculation (7.88) above.
The last two terms represent interference effects between the two ampli-
tudes (RCP way and LCP way).

A simple calculation shows that the interference terms exactly cancel the first
two terms and that the probability equals zero in agreement with experiment!

INTERPRETATION: The way to interpret this result is as follows:

⟨y ∣R⟩ ⟨R ∣x⟩ = probability amplitude for an x-polarized photon to
pass through a y-polaroid as a RCP photon

⟨y ∣L⟩ ⟨L ∣x⟩ = probability amplitude for an x-polarized photon to
pass through a y-polaroid as a LCP photon

These are indistinguishable ways for the process to occur, i.e., no measurement
exists that can tell us whether it passes through the system as an RCP photon
or as a LCP photon without destroying the interference,i.e., without radically
altering the experiment.

To get the correct total probability, we add all the amplitudes for indistinguish-
able ways and then square the resulting total amplitude.

489



In the incorrect calculation, we found the probability for each indistinguishable
way and then added the probabilities.

In one case, we eliminated the interference effects and got the wrong result and,
in the other case, we included the interference effects and obtained the correct
result.

Summarizing, we have these rules for amplitude mechanics and probabilities in
Quantum Mechanics:

1. The probability amplitude for two successive events is the product of the
amplitudes for each event, i.e., the amplitude for the x-polarized photon
to pass through the y-polaroid as a RCP polarized photon is the product
of the amplitude for an x-polarized photon to be a RCP photon ⟨R ∣x⟩
and the amplitude for a RCP photon to be a y-polarized photon ⟨y ∣R⟩

⟨R ∣x⟩ ⟨y ∣R⟩

2. The total amplitude for a process that can take place in several indis-
tinguishable ways is the sum of the amplitudes for each individual way,
i.e.,

⟨y ∣x⟩ = ⟨R ∣x⟩ ⟨y ∣R⟩ + ⟨L ∣x⟩ ⟨y ∣L⟩

We note here that this is merely a reflection of the property of projection
operators that

Î = ∣R⟩ ⟨R∣ + ∣L⟩ ⟨L∣

which says that

⟨y ∣x⟩ = ⟨y∣ Î ∣x⟩ = ⟨R ∣x⟩ ⟨y ∣R⟩ + ⟨L ∣x⟩ ⟨y ∣L⟩

Thus, the mathematical sum over all projection operators being
equal to the identity operator is physically equivalent to the
sum over all possible intermediate states and it turns into a
sum over all the amplitudes for indistinguishable ways in this
interpretation.

3. The total probability for the process to occur is the absolute square of the
total amplitude.

So, in classical physics, we

1. find amplitudes and probabilities of each way separately

2. add all probabilities to get total probability

We get NO interference effects!!

In Quantum Mechanics, we
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1. find the amplitudes for each indistinguishable way the process can occur

2. add all the amplitudes to get a total amplitude

3. square the total amplitude to get the total probability

We get interference effects!!

The important result here is that we must consider ALL INDISTINGUISH-
ABLE WAYS in step (2).

An indistinguishable way is characterized as follows:

1. If two ways are indistinguishable, then there exists no measurement that
can decide which of the two ways actually happened without altering the
experiment.

2. In particular, if we attempt to find out, then the interference effects will
disappear and we will return to the classical result obtained by adding
probabilities.

What actually happens is that during any measurement trying distinguish the
ways, the relative phase of the components in the superposition becomes com-
pletely uncertain and this will wash out the interference. This happens as fol-
lows: instead of

∣x⟩ = ∣R⟩ ⟨R ∣x⟩ + ∣L⟩ ⟨L ∣x⟩ (7.91)

we would have, if we attempted to add a measurement to determine if the
x-polarized photon was RCP or LCP, to consider the state

∣x̃⟩ = eiαR ∣R⟩ ⟨R ∣x⟩ + eiαL ∣L⟩ ⟨L ∣x⟩ (7.92)

A probability calculation then gives

total probability = ∣ ⟨y ∣R⟩ ⟨R ∣x⟩ + ⟨y ∣L⟩ ⟨L ∣x⟩ ∣2 (7.93)

+ 2Real [⟨y ∣R⟩ ⟨R ∣x⟩ ei(αR−αL) ⟨y ∣L⟩∗ ⟨L ∣x⟩∗]

The observed probability, which is the result of many identical measurements
in the laboratory(in the standard interpretation), is an average over all values
of the extra phases(they are random in different experiments).

This involves integrating over the relative phase,i.e.,

1

2π
∫

2π

0
ei(αR−αL) d(αR − αL) = 0 (7.94)

It is clear that the interference term averages to zero and we get the classical
result! This means we cannot add such a measurement and retain any quantum
results!
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7.2.4. Pure States, Unpure States and Density Operators
If the photon were in the state ∣x⟩, then we would have, for some linear operator
Â

⟨Â⟩ = ⟨x∣ Â ∣x⟩ (7.95)

From our earlier discussion of density operators, however, we must also have,

⟨Â⟩ = Tr(Ŵ Â) (7.96)

where Ŵ is a density operator. Therefore we must have (using the {∣x⟩ , ∣y⟩}
basis)

⟨Â⟩ = ⟨x∣ Â ∣x⟩ = Tr(Ŵ Â) = ⟨x∣ Ŵ Â ∣x⟩ + ⟨y∣ Ŵ Â ∣y⟩
= ⟨x∣ Ŵ ÎÂ ∣x⟩ + ⟨y∣ Ŵ ÎÂ ∣y⟩
= ⟨x∣ Ŵ ∣x⟩ ⟨x∣ Â ∣x⟩ + ⟨x∣ Ŵ ∣y⟩ ⟨y∣ Â ∣x⟩

+ ⟨y∣ Ŵ ∣x⟩ ⟨x∣ Â ∣y⟩ + ⟨y∣ Ŵ ∣y⟩ ⟨y∣ Â ∣y⟩

This implies that

⟨x∣ Â ∣x⟩ = 1 and ⟨y∣ Â ∣x⟩ = ⟨x∣ Â ∣y⟩ = ⟨y∣ Â ∣y⟩ = 0 (7.97)

or

Ŵ = (1 0
0 0

) = ∣x⟩ ⟨x∣ (7.98)

which says that ∣x⟩ is a pure state.

Now suppose that the photon is in the state

∣ψ⟩ = 1√
2
∣x⟩ + 1√

2
∣y⟩ (7.99)

This says that the probability = 1/2 that the photon behaves like ∣x⟩ and the
probability = 1/2 that it behaves like ∣y⟩. Note that the relative phase between
the components is assumed to be known exactly in this state. In this case, we
have

⟨Â⟩ = ⟨ψ∣ Â ∣ψ⟩ = 1

2
[⟨x∣ Â ∣x⟩ + ⟨x∣ Â ∣y⟩ + ⟨y∣ Â ∣x⟩ + ⟨y∣ Â ∣y⟩]

= Tr(Ŵ Â) = ⟨x∣ Ŵ Â ∣x⟩ + ⟨y∣ Ŵ Â ∣y⟩ = ⟨x∣ Ŵ ÎÂ ∣x⟩ + ⟨y∣ Ŵ ÎÂ ∣y⟩
= ⟨x∣ Ŵ ∣x⟩ ⟨x∣ Â ∣x⟩ + ⟨x∣ Ŵ ∣y⟩ ⟨y∣ Â ∣x⟩

+ ⟨y∣ Ŵ ∣y⟩ ⟨x∣ Â ∣x⟩ + ⟨y∣ Ŵ ∣y⟩ ⟨y∣ Â ∣y⟩

which implies that

⟨x∣ Ŵ ∣x⟩ = 1

2
= ⟨y∣ Ŵ ∣y⟩ = ⟨y∣ Ŵ ∣x⟩ = ⟨x∣ Ŵ ∣y⟩ (7.100)
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or

Ŵ = 1

2
(1 1

1 1
) = 1

2
(1

1
)(1 1) = ∣ψ⟩ ⟨ψ∣ (7.101)

So, again we have a pure state.

But what happens if we only know that the probability = 1/2 that the photon
behaves like ∣x⟩ and the probability = 1/2 that it behaves like ∣y⟩. This says that
we might write the state vector as

∣ψ⟩ = a ∣x⟩ + b ∣y⟩ (7.102)

where we only know that ∣a∣2 = ∣b∣2 = 1/2. Let us choose

a = e
iαa

√
2

and b = e
iαb

√
2

(7.103)

We do not have any phase information in this case. In addition, the phases
values could be different in each separate experiment. This last fact means that
we must average over the relative phase (the only meaningful phase) αa − αb
when computing the probabilities and this means that all interference effects
will vanish.

When we calculate the expectation value we have

⟨Â⟩ = ⟨ψ∣ Â ∣ψ⟩

= 1

2
[⟨x∣ Â ∣x⟩ + ⟨x∣ Â ∣y⟩ e−i(αa−αb) + ⟨y∣ Â ∣x⟩ ei(αa−αb) + ⟨y∣ Â ∣y⟩]

and when we average over the relative phase we obtain

⟨Â⟩ = 1

2
⟨x∣ Â ∣x⟩ + 1

2
⟨y∣ Â ∣y⟩

Again, we must have

⟨Â⟩ = Tr(Ŵ Â) = ⟨x∣ Ŵ Â ∣x⟩ + ⟨y∣ Ŵ Â ∣y⟩ = ⟨x∣ Ŵ ÎÂ ∣x⟩ + ⟨y∣ Ŵ ÎÂ ∣y⟩
= ⟨x∣ Ŵ ∣x⟩ ⟨x∣ Â ∣x⟩ + ⟨x∣ Ŵ ∣y⟩ ⟨y∣ Â ∣x⟩

+ ⟨y∣ Ŵ ∣y⟩ ⟨x∣ Â ∣x⟩ + ⟨y∣ Ŵ ∣y⟩ ⟨y∣ Â ∣y⟩

which implies that

⟨x∣ Ŵ ∣x⟩ = 1

2
= ⟨y∣ Ŵ ∣y⟩ and ⟨y∣ Ŵ ∣x⟩ = ⟨x∣ Ŵ ∣y⟩ = 0

or

Ŵ = 1

2
(1 0

0 1
) = 1

2
∣x⟩ ⟨x∣ + 1

2
∣y⟩ ⟨y∣

= Prob(x) ∣x⟩ ⟨x∣ + Prob(y) ∣y⟩ ⟨y∣
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This is a nonpure or mixed state.

So, we have a pure state only if the relative phase information is known exactly.

The way to describe a nonpure state is by the corresponding density matrix,
which only requires knowing probabilities and not phases. It really does not
have a state vector.

7.2.5. Unpolarized Light
Consider the following experiment. We have a beam of monochromatic light
that is composed of photons from two sources which output photons in the
states ∣ψ1⟩ or ∣ψ2⟩, respectively. The sources emit the photons randomly and
are independent of each other, which implies that we cannot tell which source
any particular photon comes from.

We assign these probabilities

p1 = probability that a photon comes from source #1

p2 = probability that a photon comes from source #2

where p1 +p2 = 1. Now the probability that a particular observed photon trans-
fers h̵ is

p+ = p1∣ ⟨R ∣ψ1⟩ ∣2 + p2∣ ⟨R ∣ψ2⟩ ∣2 (7.104)

and the probability that it transfers −h̵ is

p− = p1∣ ⟨L ∣ψ1⟩ ∣2 + p2∣ ⟨L ∣ψ2⟩ ∣2 (7.105)

This implies that the average value of the angular momentum transfer for the
beam of photons is

⟨Ĵz⟩ = h̵p+ − h̵p−
= h̵p1∣ ⟨R ∣ψ1⟩ ∣2 + h̵p2∣ ⟨R ∣ψ2⟩ ∣2 − h̵p1∣ ⟨L ∣ψ1⟩ ∣2 − h̵p2∣ ⟨L ∣ψ2⟩ ∣2

= p1 [h̵∣ ⟨R ∣ψ1⟩ ∣2 − h̵∣ ⟨L ∣ψ1⟩ ∣2] + p2 [h̵∣ ⟨R ∣ψ2⟩ ∣2 − h̵∣ ⟨L ∣ψ2⟩ ∣2]

= p1⟨Ĵz⟩1 + p2⟨Ĵz⟩2

or, the average value of the angular momentum transfer for the beam of photons
= sum over the average value in each beam weighted by the probability that
photon comes from that beam.

Let me emphasize(once again) at this point that it is important to realize that
the statement

The photon is either in the state ∣ψ1⟩ or ∣ψ2⟩ but we do not know which

is NOT the same statement as
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The photon is in a state which is a superposition of ∣ψ1⟩ and ∣ψ2⟩

In the second case, we are saying the relative phase is known as in the state

∣ψ⟩ = 1√
2
∣x⟩ + 1√

2
∣y⟩ (7.106)

which we found to be a pure state. Being in a superposition implies that we
know the relative phase of the components.

In the first case, however, we are saying that the relative phase is unknown and,
as we have seen, interference effects will vanish. We can only specify a density
matrix in this case.

In pure states, we have superpositions and the probability amplitude rules ap-
ply. In nonpure or mixed states, where the system is in one of several states
with definite probabilities, we find weighted averages (weighted with the state
probabilities) of the value in each state. We use addition of probabilities with
no interference effects, which as we have seen, is equivalent to saying the relative
phase is unknown.

Unpolarized light has equal probability of being in any polarization state. It is
just a special nonpure or mixed state. No relative phase information is known
for unpolarized light.

7.2.6. How Does the Polarization State Vector Change?

Up to now we have been considering devices such as polaroids and prisms, which
are go-nogo devices. Some photons get through and some do not for each of
these devices depending on their polarization state.

We now consider devices where all the photons get through no matter what
their polarization state is, but, during transit, the device changes the incident
polarization state in some way.

In particular, we consider the example of a birefringent crystal, such as calcite.
A calcite crystal has a preferred direction called the optic axis. The crystal has
a different index of refraction for light polarized parallel to the optic axis than it
has for light polarized perpendicular to the optic axis. We assume that the optic
axis is in the x-y plane and send a beam of photons in the z-direction. Photons
polarized perpendicular to the optic axis are called ordinary and are in the state
∣o⟩ and photons polarized parallel to the optic axis are called extraordinary and
are in the state ∣e⟩.

The set {∣o⟩ , ∣e⟩} forms an orthonormal basis and general photon states inter-
acting with a calcite crystal are written as superpositions of these basis states.
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This is an example of a general rule in quantum mechanics.

If we are doing an experiment using a particular measuring device that measures
the observable Q̂, then we should use as the basis for all states, the eigenvectors
of Q̂. As we shall see, this requirement pushes us to ask the correct experimental
questions (those that quantum mechanics can answer). This particular basis is
called the home space for the experiment.

Now the phase of a light wave with wavelength λ as it propagates through a
medium in the z-direction is given by the quantity

φ = eikz (7.107)

with
k = 2π

λ
= nω

c
(7.108)

where n = index of refraction, omega = 2πf , f = frequency and c = speed of
light.

Since the phase depends on the index of refraction, the effect of passing through
a calcite crystal is to change the relative phase of the ∣(⟩ o) and ∣e⟩ components
making up the superposition, which is a real physical change that is measurable.

We assume that the photon entering the calcite crystal is in the initial state

∣ψin⟩ = ∣e⟩ ⟨e ∣ψin⟩ + ∣o⟩ ⟨o ∣ψin⟩ (7.109)

The two components have different indices of refraction ne and no, respectively.

If the beam passes through a length ` then the state upon leaving is given by
(remember the component phases change differently)

∣ψout⟩ = eike` ∣e⟩ ⟨e ∣ψin⟩ + eiko` ∣o⟩ ⟨o ∣ψin⟩ = Û` ∣ψin⟩ (7.110)

where
Ûz = eikez ∣e⟩ ⟨e∣ + eikoz ∣o⟩ ⟨o∣ (7.111)

is a time development operator of some sort since `= distance traveled in a time
t is proportional to t.

Now we define two new quantities which will be with us throughout our study
of Quantum Mechanics. For transitions between two states (in and out in this
case)

⟨φ ∣ψout⟩ = ⟨φ∣ Ûz ∣ψin⟩ = the transition amplitude for a photon to enter
the calcite in state ∣ψin⟩ and leave in state ∣φ⟩

∣ ⟨φ ∣ψout∣2⟩ = ∣ ⟨φ∣ Ûz ∣ψin⟩ ∣2 = the corresponding transition probability
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To proceed any further, we need to find out more about the operator Ûz. Now

∣ψz⟩ = state of photon after traveling a distance z through calcite (7.112)

= Ûz ∣ψin⟩

From the form of Ûz we have

Ûz+ε = eike(z+ε) ∣e⟩ ⟨e∣ + eiko(z+ε) ∣o⟩ ⟨o∣ (7.113)

= (eikeε ∣e⟩ ⟨e∣ + eikoε ∣o⟩ ⟨o∣)(eikez ∣e⟩ ⟨e∣ + eikoz ∣o⟩ ⟨o∣)

or
Ûz+ε = ÛεÛz (7.114)

This implies that

∣ψz+ε⟩ = Ûz+ε ∣ψin⟩ = ÛεÛz ∣ψin⟩ = Ûε ∣ψz⟩ (7.115)

Now let ε→ 0 such that koε≪ 1 and keε≪ 1 and we can then write (to 1st-order)

Ûε = eikeε ∣e⟩ ⟨e∣ + eikoε ∣o⟩ ⟨o∣ (7.116)
= (1 + ikeε) ∣e⟩ ⟨e∣ + (1 + ikoε) ∣o⟩ ⟨o∣
= Î + iεK̂

where
Î = ∣e⟩ ⟨e∣ + ∣o⟩ ⟨o∣ and K̂ = ke ∣e⟩ ⟨e∣ + ko ∣o⟩ ⟨o∣ (7.117)

Now, the relation
K̂ = ke ∣e⟩ ⟨e∣ + ko ∣o⟩ ⟨o∣ (7.118)

is an expansion of an operator in terms of its eigenvalues and the corresponding
projection operators (eigenvectors). It says that the eigenvectors of K̂ are ∣e⟩
and ∣o⟩ with eigenvalues ke and ko, respectively. This illustrates the awesome
power in these methods we have developed!!

We then have
∣ψz+ε⟩ = (Î + iεK̂) ∣ψz⟩ (7.119)

or
∣ψz+ε⟩ − ∣ψz⟩ = iεK̂ ∣ψz⟩ (7.120)

or
lim
ε→0

∣ψz+ε⟩ − ∣ψz⟩
ε

= iK̂ ∣ψz⟩ (7.121)

which gives the differential equation for the time development of the state vector

d

dt
∣ψz⟩ = iK̂ ∣ψz⟩ (7.122)

It is clearly similar to the differential equation we obtained earlier(Chapter 6)
from the time development operator. If we follow the results from the earlier
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case, then we should have

K̂ = Hermitian operator and Ûz = unitary operator

Let us derive these two results. We have, using the x − y basis

⟨x ∣ψz+ε⟩ − ⟨x ∣ψz⟩ = iε ⟨x∣ K̂ ∣ψz⟩ (7.123)

= iε ⟨x∣ K̂Î ∣ψz⟩ = iε ⟨x∣ K̂ ∣x⟩ ⟨x ∣ψz⟩ + iε ⟨x∣ K̂ ∣y⟩ ⟨y ∣ψz⟩

or the change in the x-component of ψz as we move an infinitesimal amount ε has
one part proportional to the x-component of ψz and a second part proportional
to the y-component of ψz.

Similarly, we have

⟨y ∣ψz+ε⟩ − ⟨y ∣ψz⟩ = iε ⟨y∣ K̂ ∣ψz⟩ (7.124)

= iε ⟨y∣ K̂Î ∣ψz⟩ = iε ⟨y∣ K̂ ∣x⟩ ⟨x ∣ψz⟩ + iε ⟨y∣ K̂ ∣y⟩ ⟨y ∣ψz⟩

Now, since no photons are lost as we pass through, we must have

⟨ψz+ε ∣ψz+ε⟩ = ⟨ψz ∣ψz⟩ = 1 (7.125)

for all z. We then get

⟨ψz+ε ∣ψz+ε⟩ = ⟨ψz ∣ψz⟩ + iε [⟨x∣ K̂ ∣x⟩ − ⟨x∣ K̂ ∣x⟩∗] ∣ ⟨x ∣ψz⟩2

+ iε [⟨y∣ K̂ ∣y⟩ − ⟨y∣ K̂ ∣y⟩∗] ∣ ⟨y ∣ψz⟩2

+ iε [⟨x∣ K̂ ∣y⟩ − ⟨x∣ K̂ ∣y⟩∗] ⟨y ∣ψz⟩ ⟨x ∣ψz⟩∗

+ iε [⟨y∣ K̂ ∣x⟩ − ⟨y∣ K̂ ∣x⟩∗] ⟨x ∣ψz⟩ ⟨y ∣ψz⟩∗

which says that we must have

⟨x∣ K̂ ∣x⟩ = ⟨x∣ K̂ ∣x⟩∗ , ⟨y∣ K̂ ∣y⟩ = ⟨y∣ K̂ ∣y⟩∗

⟨x∣ K̂ ∣y⟩ = ⟨x∣ K̂ ∣y⟩∗ , ⟨y∣ K̂ ∣x⟩ = ⟨y∣ K̂ ∣x⟩∗

or that K̂ is Hermitian.

Finally, one can show that Û †
z Ûz = Î so that Ûz is unitary as expected. From

our earlier discussions in Chapter 6, we then identify

Ûz = transformation operator and K̂ = generator of transformation.

7.2.7. Calculating the Transition Probability
We defined the transition probability as

T (z) = ∣ ⟨φ ∣ψz,out⟩ ∣2 = ∣ ⟨φ∣ Ûz ∣ψz,in⟩ ∣2 (7.126)
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Using
Ûz = eikez ∣e⟩ ⟨e∣ + eikoz ∣o⟩ ⟨o∣

and
∣ψin⟩ = a ∣o⟩ + b ∣e⟩ where ∣a∣2 + ∣b∣2 = 1 (7.127)

we get

T (z) = ∣ ⟨φ∣ (eikez ∣e⟩ ⟨e∣ + eikoz ∣o⟩ ⟨o∣)(a ∣o⟩ + b ∣e⟩)∣2 (7.128)

= ∣ ⟨φ∣ (beikez ∣e⟩ + aeikoz ∣o⟩ ∣2

= ∣beikez ⟨φ ∣ e⟩ + aeikoz ⟨φ ∣ o⟩ ∣2

Now let us ask a specific question.

Suppose a = 1/
√

2 = −ib, which means the that photon entering the calcite
crystal is an LCP photon.

What is the probability that it will exit as a RCP photon? This means we
choose

∣φ⟩ = 1√
2
(∣o⟩ + i ∣e⟩) (7.129)

or
⟨φ ∣ e⟩ = − i√

2
and ⟨φ ∣ o⟩ = 1√

2
(7.130)

We then get

T (z) = ∣beikez ⟨φ ∣ e⟩ + aeikoz ⟨φ ∣ o⟩ ∣2

= ∣ i√
2
eikez

i√
2
+ 1√

2
eikoz

1√
2
∣2 = 1

4
∣eikoz − −eikez ∣2

= 1

4
(1 + 1 − ei(ko−ke)z − e−i(ko−ke)z)

= 1

2
(1 − cos (ko − ke)z) (7.131)

If we choose (ko −ke)z = π, then T = 1 and all the LCP photons are turned into
RCP photons by a calcite crystal of just the right length.

This simple example clearly exhibits the power of these techniques.

7.2.8. Some More Bayesian Thoughts
The essence of quantum theory is its ability to predict probabilities for the out-
comes of tests based on specified preparations. Quantum mechanics is not a
theory about reality; it is a prescription for making the best possible predic-
tions about the future based on certain information (specified) about the past.
The quantum theorist can tell you what the odds are, if you wish to bet on the
occurrence of various events, such as the clicking of this or that detector.
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However, a more common activity is the reverse situation where the outcomes
of tests are known and it is their preparation(the initial state) that has to be
guessed. The formal name for this process is retrodiction. Retrodicting is the
analog of forecasting an event, but directed oppositely in time, i.e. to the past
rather than the future. Just as one might forecast, from a knowledge of physical
laws along with specific data about the current position and speed of a comet,
where it will be ten years from now, one might retrodict where it was ten years
ago.

Suppose we have the experiment described in Figure 7.2 below:

Figure 7.2: Experimental Setup

where S is a thermal source of light, P is a polarizer, H is pinhole, C is a
calcite crystal, and D is a detector with separate counters for the two different
polarized beams emerging from the calcite crystal. The detector D also makes
a permanent record of the measured events. We assume that the light intensity
is so weak and the detectors are so fast that individual photons can be regis-
tered. The arrivals of photons are recorded by printing + or − on a paper tape,
according to whether the upper or lower detector was triggered, respectively.
The sequence of + and − marks appears random. As the total number marks,
N+ and N−, become large, we find that the corresponding probabilities(count
ratios), tend to limits

N+
N+ +N−

→ cos2 α ,
N−

N+ +N−
→ sin2 α (7.132)

where α is the angle between the polarization axis of the polaroid and the optic
axis of the calcite crystal.

Now suppose that we do an experiment and find that the two detectors recorded
4 and 3 events, respectively. What can we infer about the orientation of the
polarizer?

This is the so-called inverse probability problem, which as we have seen from our
earlier discussions in Chapter 5 is an ideal situation to use Bayesian methods.
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Consider the following description.

Event B is the outcome of the experiment described above with 4+ detections
and 3− detections. This is a single experiment and not a set of seven experi-
ments.

Event A is the positioning of the polarizer at an angle in the interval θ to θ+dθ,
in that experiment.

Now, in a statistical ensemble, that is, an infinite set of conceptual replicas of the
same system, the relative frequencies of events A and B define the probabilities
Prob(A∣I) = Prob(A) and Prob(B∣I) = Prob(B), where I is all the information
about the preparation(conditioning).

In addition, Prob(A∩B∣I) is the joint probability of events A and B. This is the
relative frequency of the occurrence of both events, in the statistical ensemble
under consideration. Prob(A∣B ∩ I) is the conditional probability of A, when B
is true. As in Chapter 5, we have the relations

Prob(A ∩B∣I) = Prob(A∣B ∩ I)Prob(B∣I) = Prob(B∣A ∩ I)Prob(A∣I) (7.133)

and
Prob(A∣B ∩ I) = Prob(B∣A ∩ I)Prob(A∣I)

Prob(B∣I)
(7.134)

The last equation is Baye’s theorem.

In this equation it is assumed that Prob(B∣A∩I) is known from the appropriate
physical theory. For example, in the above experiment, the theory tells us that
the probabilities for triggering the upper and lower detectors are cos2 θ and
sin2 θ . We therefore, have from the Binomial distribution

Prob(B = {4,3}∣A ∩ I) = (n+ + n−)!
n+!n−!

Prob(+∣A ∩ I)n+Prob(−∣A ∩ I)n−

= 7!

4!3!
(cos2 θ)4(sin2 θ)3

= 35 cos8 θ sin6 θ (7.135)

In order to determine Prob(B∣A ∩ I) we still need Prob(A∣I) and Prob(B∣I).
These probabilities cannot be calculated from a theory nor determined empir-
ically. The depend solely on the statistical ensemble that we have mentally
constructed.

Let us consider the complete set of events of type A and call them A1,A2, . . .,
etc. For example, Aj represents the positioning of the polarizer at an angle
between θj and θj + dθj . By completeness,

∑
j

P (Aj) = 1 (7.136)
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and therefore
P (B) =∑

j

P (B∣AjP (Aj) (7.137)

At this point we introduce Baye’s postulate (different from Baye’s theorem).
This postulate which we have used in earlier discussions is also called the prin-
ciple of indifference or the principle of insufficient reasoning.

If we have no reason to expect that the person who positioned the polarizer had
a preference for some particular orientation, we assume that all orientations are
equally likely, so that

P (A) = dθ
π

(7.138)

for every θ (we can always take 0 ≤ θ ≤ π because θ and θ + π are equivalent).

We then have

P (B) =∑
j

P (B∣AjP (Aj) =
1

π
∫

π

0
35 cos8 θ sin6 θ dθ = 135

211
(7.139)

and we then obtain from Baye’s theorem that

Prob(A∣B ∩ I) = Prob(B∣A ∩ I)Prob(A∣I)
Prob(B∣I)

=
7!

4!3!
cos8 θ sin6 θ dθ

π
135
211

= 211

5π
cos8 θ sin6 θdθ (7.140)

which is the probability that the angle is between θ to θ + dθ given that event
B is the outcome of a single experiment with 4+ detections and 3− detections.

Suppose, dθ = 1 ○ = 0.0175 rad. If we plot

Prob(θ∣B = {4,3}, dθ = 0.0175) = 211

5π
cos8 θ sin6 θdθ = 2.283 cos8 θ sin6 θ (7.141)

versus θ we have
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Figure 7.3: Most Likely Angles

This says that, given the single data set, the angle is most likely to be

0.72 rad = 41.3 ○ or 2.42 rad = 138.7 ○ (7.142)

Clearly, Bayesian analysis allows us to infer results from one-time experiments
on single systems. The key is the use of Baye’s postulate of indifference.

7.3. The Strange World of Neutral K-Mesons

We can now use the same formalism we developed for photon polarization to
study elementary particles called K-mesons.

K-mesons are produced in high-energy accelerators via the production process

π− + p+ → Λ0 +K0

In this reaction, electric charge is conserved. This reaction takes place via the
so-called strong interactions. Another physical quantity called strangeness is
also conserved in strong interactions. All K0-mesons have a strangeness equal
to +1.

For every particle there always exists an antiparticle. For the K̄0, the antiparti-
cle is called the K̄0. The K0-mesons have a strangeness equal to −1. A reaction
involving the K̄0 is

K̄0 + p+ → Λ0 + π+

which is an absorption process.

The K-mesons that exist in the experimental world(the laboratory) are linear
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superpositions ofK0 and K̄0 states in the same way that RCP and LCP photons
were superpositions of ∣x⟩ and ∣y⟩ polarization states. So the world of K-mesons
can be represented by a 2-dimensional vector space.

One basis for the vector space is the orthonormal set {∣K0⟩ , ∣K̄0⟩} where

⟨K0 ∣K0⟩ = 1 = ⟨K̄0 ∣ K̄0⟩ and ⟨K0 ∣ K̄0⟩ = 0 (7.143)

Two linear operators are important for the study of K-mesons.

First, we represent the strangeness operator. We already stated that the states
∣K0⟩ and ∣K̄0⟩ have definite values of strangeness, which means that they are
eigenvectors of the strangeness operator Ŝ with eigenvalues ±1 (by convention).
Using our formalism, this means that

Ŝ ∣K0⟩ = ∣K0⟩ and Ŝ ∣K̄0⟩ = − ∣K̄0⟩ (7.144)

Ŝ = (⟨K
0∣ Ŝ ∣K0⟩ ⟨K0∣ Ŝ ∣K̄0⟩

⟨K̄0∣ Ŝ ∣K0⟩ ⟨K̄0∣ Ŝ ∣K̄0⟩) = (1 0
0 −1

)

= ∣K0⟩ ⟨K0∣ − ∣K̄0⟩ ⟨K̄0∣ (7.145)

in the {∣K0⟩ , ∣K̄0⟩} basis.

The second linear operator that is important in the K-meson system is charge
conjugation Ĉ. This operator changes particles into antiparticles and vice versa.
In the K-meson system using the {∣K0⟩ , ∣K̄0⟩} basis we define Ĉ by the particle-
antiparticle changing relations

Ĉ ∣K0⟩ = ∣K̄0⟩ and Ĉ ∣K̄0⟩ = ∣K0⟩ (7.146)

Ĉ = (⟨K
0∣ Ĉ ∣K0⟩ ⟨K0∣ Ĉ ∣K̄0⟩

⟨K̄0∣ Ĉ ∣K0⟩ ⟨K̄0∣ Ĉ ∣K̄0⟩) = (0 1
1 0

) (7.147)

We can find the eigenvectors and eigenvalues of the Ĉ operator as follows

Ĉ ∣ψ⟩ = λ ∣ψ⟩ (7.148)

Ĉ2 ∣ψ⟩ = λĈ ∣ψ⟩ = λ2 ∣ψ⟩ = Î ∣ψ⟩ = ∣ψ⟩

where we have used Ĉ2 = Î. This result says that λ2 = 1 or the eigenvalues of Ĉ
are ±1. If we use the {∣K0⟩ , ∣K̄0⟩} basis and assume that

∣ψ⟩ = a ∣K0⟩ + b ∣K̄0⟩ where ∣a∣2 + ∣b∣2 = 1 (7.149)

we find for λ = +1

Ĉ ∣ψ⟩ = aĈ ∣K0⟩ + bĈ ∣K̄0⟩ = a ∣K̄0⟩ + b ∣K0⟩
= ∣ψ⟩ = a ∣K0⟩ + b ∣K̄0⟩ (7.150)
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or a = b = 1/
√

2. If we define the +1 eigenvector as ∣KS⟩, we then have

∣KS⟩ =
1√
2
(∣K0⟩ + ∣K̄0⟩) (7.151)

Similarly, if we define the −1 eigenvector as ∣KL⟩, we then have

∣KL⟩ =
1√
2
(∣K0⟩ − ∣K̄0⟩) (7.152)

where
Ĉ ∣KS⟩ = ∣KS⟩ and Ĉ ∣KL⟩ = − ∣KL⟩ (7.153)

Since the commutator [Ŝ, Ĉ] ≠ 0, these two operators do not have a common set
of eigenvectors. This means that both operators cannot have definite values in
the same state. In fact, the concept of charge conjugation is meaningless for K-
mesons in the {∣K0⟩ , ∣K̄0⟩} states and the concept of strangeness is meaningless
for K-mesons in the {∣KS⟩ , ∣KL⟩} states.

The {∣KS⟩ , ∣KL⟩} states form a second orthonormal basis for the vector space
(like the RCP and LCP polarization states).

The standard approach we will follow when studying physical systems using
quantum mechanics will be to

1. define the Hamiltonian for the system

2. find its eigenvalues and eigenvectors

3. investigate the time development operator generated by the Hamiltonian
and

4. calculate transition probabilities connected to experiments

Along the way we will define the properties of other operators appropriate to the
system under investigation (like Ŝ and Ĉ above). It is the job of the theoretical
physicist to derive or guess an appropriate Hamiltonian.

Since we are in 2-dimensional vector space, all operators are represented by 2×2
matrices. In the case of the K-meson system, we will assume the most general
form constructed from all of the relevant operators. Therefore, we assume

Ĥ =MÎ +AĈ +BŜ = (M +B A
A M −B) (7.154)

and investigate the consequences of this assumption. We will assume that the
matrix has been written down in the {∣K0⟩ , ∣K̄0⟩} basis.
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Step 1

Investigate the commutators:

[Ĥ, Ĥ] = 0 , [Ĥ, Ŝ] ≠ 0 , [Ĥ, Ĉ] ≠ 0 , [Ŝ, Ĉ] ≠ 0 (7.155)

Since the Hamiltonian always commutes with itself and it is not explicitly de-
pendent on time, the physical observable connected to the Hamiltonian, namely
the energy, is conserved.

Since they do not commute with the assumed form of Ĥ, neither Ŝ nor Ĉ is
conserved in this model.

When a physical observable is conserved, we say its value corresponds to a good
quantum number that can be used to characterize(label) the ket vector repre-
senting the physical system.

Step 2

Investigate special cases (limits of the most general solution):

Case of A=0:

Ĥ =MÎ +BŜ = (M +B 0
0 M −B) (7.156)

Now
[Ĥ, Ŝ] = 0 (7.157)

which means that Ĥ and Ŝ share a common set of eigenvectors. We already
know the eigenvectors(non-degenerate) for Ŝ and so the eigenvector/eigenvalue
problem for Ĥ is already solved(clearly this is a very powerful rule). We have

Ĥ ∣K0⟩ = (M +B) ∣K0⟩ and Ĥ ∣K̄0⟩ = (M +B) ∣K̄0⟩ (7.158)

We could have surmised this from the diagonal form of the matrix representa-
tion, since the only way the matrix could be diagonal is for the basis states of
the representation to be the eigenvectors.

Ĉ is not conserved in this case, since [Ĥ, Ĉ] ≠ 0.

The energy eigenstates, {∣K0⟩ , ∣K̄0⟩} in this case, are a basis for the vector
space. This is always true for a Hermitian operator. This means that we can
write any arbitrary vector as a linear combination of these vectors

∣ψ⟩ = a ∣K0⟩ + b ∣K̄0⟩ = a ∣E =M +B⟩ + b ∣E =M −B⟩ (7.159)
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Now, as we derived earlier, energy eigenstates have a simple time dependence.
We have

Ĥ ∣E⟩ = E ∣E⟩ (7.160)

Û(t) ∣E⟩ = e−iĤt/h̵ ∣E⟩ = e−iEt/h̵ ∣E⟩

Therefore, in this case, the time dependence of the arbitrary state vector is given
by

∣ψ(t)⟩ = ae−i(M+B)t/h̵ ∣K0⟩ + be−i(M−B)t/h̵ ∣K̄0⟩ (7.161)

This will be a general approach we will use, i.e., expand an arbitrary state in
energy eigenstates and use the simple time dependence of the energy eigen-
states to determine the more complex time dependence of the arbitrary state.
Of course, we have to be able to solve the eigenvector/eigenvalue problem for
the Hamiltonian(the energy operator) of the system under investigation.

Case of B = 0:

Ĥ =MÎ +AĈ = (M A
A M

) (7.162)

Now
[Ĥ, Ĉ] = 0 (7.163)

which means that Ĥ and Ĉ share a common set of eigenvectors. We already
know the eigenvectors(non-degenerate) for Ĉ and so the eigenvector/eigenvalue
problem for Ĥ is again already solved. We have

Ĥ ∣KS⟩ = (M +A) ∣KS⟩ and Ĥ ∣KL⟩ = (M −A) ∣KL⟩ (7.164)

Ŝ is not conserved in this case, since [Ĥ, Ĉ] ≠ 0.

The energy eigenstates, {∣KS⟩ , ∣KL⟩} in this case, are a basis for the vector
space. In this basis

Ĥ = (M +A 0
0 M −A) (7.165)

as expected.

We could also solve this problem by finding the characteristic equation for the
Hamiltonian matrix, i.e., since we have

Ĥ ∣ψ⟩ = λ ∣ψ⟩→ (Ĥ − λÎ) ∣ψ⟩ = 0 (7.166)

the characteristic equation is

det(Ĥ − λÎ) = det(M − λ A
A M = λ)

= (M − λ)2 −A2 = 0→ λ =M ±A (7.167)
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Since we have another basis, we can write any arbitrary vector as a linear
combination of these vectors

∣ψ⟩ = a ∣KS⟩ + b ∣KL⟩ = a ∣E =M +A⟩ + b ∣E =M −A⟩ (7.168)

Therefore, in this case, we have the time dependence

∣ψ(t)⟩ = ae−i(M+A)t/h̵ ∣KS⟩ + be−i(M−A)t/h̵ ∣KL⟩ (7.169)

Step 3

Solve the general Hamiltonian problem (if possible; otherwise we must use ap-
proximation methods, which we will discuss later). We have

Ĥ =MÎ +AĈ +BŜ = (M +B A
A M −B) (7.170)

We assume that the eigenvectors satisfy Ĥ ∣φ⟩ = E ∣φ⟩ where

∣φ⟩ = (φ1

φ2
) (7.171)

This gives

(M +B A
A M −B)(φ1

φ2
) = E (φ1

φ2
) (7.172)

or

(M +B −E A
A M −B −E)(φ1

φ2
) = 0 (7.173)

This is a set of two homogeneous equations in two unknowns. It has a nontrivial
solution only if the determinant of the coefficients is zero

∣M +B −A A
A M −B −E∣ = (M +B −E)(M −B −E) −A2 = 0 (7.174)

This has solution

E± =M ±
√
A2 +B2 (the energy eigenvalues) (7.175)

We solve for the eigenstates by substituting the eigenvalues into the eigen-
value/eigenvector equation

(M +B A
A M −B)(φ1±

φ2±
) = E± (φ1±

φ2±
) (7.176)

After some algebra we get

φ1±
φ2±

= −A√
B ±A2 +B2

= B ±
√
A2 +B2

A
(7.177)
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We check the validity of this solution by comparing it the limiting cases; that is
why we looked at the special cases earlier.

For B = 0, we have

φ1±
φ2±

= −A
∓A

= ±1→ φ1+ = φ2+ and φ1− = −φ2− (7.178)

which says that

∣φ+⟩ =
1√
2
(1

1
) = ∣KS⟩ and ∣φ+⟩ =

1√
2
( 1
−1

) = ∣KL⟩ (7.179)

which agrees with the earlier results for this case.

In the other limiting case, A = 0, we have

φ1+
φ2+

=∞→ φ1+ = 1 and φ2+ = 0

φ1−
φ2−

= 0→ φ1− = 0 and φ2− = 1 (7.180)

which says that

∣φ+⟩ = (1
0
) = ∣K0⟩ and ∣φ+⟩ = (0

1
) = ∣K̄0⟩ (7.181)

which again agrees with the earlier results for this case.

If we normalize the general solution

φ1±
φ2±

= −A√
B ±A2 +B2

= B ±
√
A2 +B2

A
(7.182)

using

∣φ1±∣2 + ∣φ2±∣2 = 1 (7.183)

we obtain

φ1± =
A

√
A2 + (B ∓

√
A2 +B2)

2

φ2± =
B ∓

√
A2 +B2

√
A2 + (B ∓

√
A2 +B2)

2
(7.184)
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and

∣φ±⟩ =
1

√
A2 + (B ∓

√
A2 +B2)

2
( A

−B ±
√
A2 +B2

) (7.185)

= 1
√
A2 + (B ∓

√
A2 +B2)

2
[A ∣K0⟩ + (−B ±

√
A2 +B2) ∣K̄0⟩]

= 1

2

√
A2 + (B ∓

√
A2 +B2)

2
×

[(A −B ±
√
A2 +B2) ∣KS⟩ + (A +B ±

√
A2 +B2) ∣KL⟩]

Step 4

Look at a realistic physical system that we can relate to experiment.

In the real world of K-mesons, the Hamiltonian is such that B ≪ A. In this case
the states {∣KS⟩ , ∣KL⟩} are almost energy eigenstates or charge conjugation is
almost conserved. We expect that instead of being able to write

∣φ+⟩ = ∣KS⟩ and φ− = ∣KL⟩ (7.186)

which would be true if B = 0, we should be able to write

∣φ+⟩ = cos
θ

2
∣KS⟩ + sin

θ

2
∣KL⟩ (7.187)

∣φ−⟩ = − sin
θ

2
∣KS⟩ + cos

θ

2
∣KL⟩

where for θ ≪ 1 we clearly approximate the B = 0 result. Let us see how this
works. For B ≪ A, we choose

θ

2
= B

2A
≪ 1 (7.188)

and get
θ

2
≈ tan

θ

2
= B

2A
=

sin θ
2

cos θ
2

(7.189)

To lowest order we can then say

sin
θ

2
= B

2A
= δ ≪ 1 and cos

θ

2
= 1 (7.190)

to get

∣φ+⟩ = ∣KS⟩ + δ ∣KL⟩ (7.191)
∣φ−⟩ = ∣KL⟩ − δ ∣KS⟩
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This says that if ∣ψin⟩ = ∣φ−⟩, then the number

∣ ⟨KS ∣φ−⟩ ∣2

∣ ⟨KL ∣φ−⟩ ∣2
= probability of observing a KS

probability of observing a KL

= (Number of KS)/(Number of KS and KL)
(Number of KL)/(Number of KS and KL)

= (Number of KS)
(Number of KL)

(7.192)

gives the experimental ratio of the number of times we will measure a final state
of ∣KS⟩ to the number of times we will measure the final state of ∣KL⟩. The
signature for seeing a final state of ∣KL⟩ is to see a decay to 3 π-mesons and
that of a final state of ∣KS⟩ is to see a decay to 2 π-mesons. The number is

∣ ⟨KS ∣φ−⟩ ∣2

∣ ⟨KL ∣φ−⟩ ∣2
= ∣δ∣2 (7.193)

Now experiment gives the result ∣δ∣ = 2×10−3. This number is a measure of how
large of an effect strangeness non-conservation has on this system.

If B = 0, then charge conjugation is conserved. If B ≠ 0, then charge conjugation
is not absolutely conserved. So δ is a measure of the lack of charge conjugation
conservation in the K-meson system. If we identify the energy eigenvalues as
the particle rest energies

M +A =mSc
2 , M −A =mLc

2 (7.194)

we then have

A = mSc
2 −mLc

2

2
= 10−5 eV (7.195)

and
2Aδ = 10−17mKc

2 (7.196)

or
B

mKc2
= 10−17 (7.197)

Thus, this is a one part in 10−17 effect! It is one of the best measurements
ever made. It won the Nobel prize for the experimenters in 1963. It is now
understood in detail by the standard model of elementary particles.

Now let us look at Quantum Interference Effects in this K-meson system.

Suppose that B = 0. Then the energy eigenstates are {∣KS⟩ , ∣KL⟩} with eigen-
values M ±A. Now let

∣ψin⟩ = ∣K0⟩ = 1√
2
(∣KS⟩ + ∣KL⟩) (7.198)
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This is not an energy eigenstate so it will evolve in time. Its time evolution is
given by

∣ψ(t)⟩ = e−iĤt/h̵ ∣ψin⟩ = e−iĤt/h̵ ∣K0⟩ (7.199)

= 1√
2
(e−iĤt/h̵ ∣KS⟩ + e−iĤt/h̵ ∣KL⟩)

= 1√
2
(e−i(M+A)t/h̵ ∣KS⟩ + e−i(M−A)t/h̵ ∣KL⟩)

The probability amplitude that the initial meson changes(oscillates) into the
orthogonal state ∣K̄0⟩ at time t is given by

⟨K̄0 ∣ψ(t)⟩ = 1√
2
(e−i(M+A)t/h̵ ⟨K̄0 ∣KS⟩ + e−i(M−A)t/h̵ ⟨K̄0 ∣KL⟩)

= 1

2
(e−i(M+A)t/h̵ − e−i(M−A)t/h̵) (7.200)

Finally, the probability that the incomingK0-meson will behave like a K̄0-meson
at time t (that it has oscillated into a K̄0) is given by

PK̄0(t) = ∣ ⟨K̄0 ∣ψ(t)⟩ ∣2 = 1

2
[1 − cos Ωt] (7.201)

where

Ω = 1

h̵
((M +A) − (M −A)) = 2A

h̵
= mSc

2 −mLc
2

h̵
(7.202)

What is the physics here? If mS −mL = 0, then Ω = 0 and PK̄0(t) = 0 or the two
mesons do not change into one another(called oscillation) as time passes.

However, if If mS −mL ≠ 0, then PK̄0(t) ≠ 0 and the two mesons oscillate back
and forth, sometimes being a K0 and sometimes being a K̄0. This has been
observed in the laboratory and is, in fact, the way that the extremely small
mass difference is actually measured.

This is also the same mechanism that is proposed for oscillations between the
different flavors of neutrinos. Experiment seems to indicate that neutrino oscil-
lation is taking place and one of the possible explanations is that all the neutrino
masses cannot be zero!

7.4. Stern-Gerlach Experiments and Measurement

(This section follows the work of Feynman and Townsend.)

From early in our exploration of quantum mechanics, measurement played a
central role. A basic axiom of quantum theory is the the von Neumann projec-
tion postulate:
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If an observable Â is measured, the result is one of
its eigenvalues, a. After the measurement, the system
is projected into the eigenvector ∣a⟩. If ∣ψ⟩ is the
state before the measurement, the probability of this
occurence is ∣ ⟨a ∣ψ⟩ ∣2.

Let us now explore the physical consequences of these measurements. The most
fundamental example is the measurement of the angular momentum component
of a spin-1/2 particle which takes on only two possible values. We will discuss
the full theory of spin in Chapter 9.

The measurement was first carried out by Stern and Gerlach in 1922 to test
Bohr’s ideas about "space quantization". This was before Uhlenbeck and Goudsmidt’s
invention of spin angular momentum, so Stern and Gerlach’s results were not
completely understood. Nonetheless, the results were startling and one of the
first real pictures of the strange quantum world.

Consider the force on a magnetic moment which moves through a spatially
inhomogeneous magnetic field. The potential energy is

V = µ⃗ ⋅ B⃗(r⃗) (7.203)

and thus the force is

F⃗ = −∇V = ∇(µ⃗ ⋅ B⃗(r⃗)) = (µ⃗ ⋅ ∇)B⃗(r⃗) (7.204)

Stern and Gerlach set up a spatially inhomogeneous field with one very large
component(call it the z-component).

A schematic diagram of a Stern-Gerlach apparatus is shown in Figure 7.4 below.

Figure 7.4: Stern-Gerlach Apparatus
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We then have

n̂ = ẑ , B⃗ ∝ B(z)ẑ + small x,y components

⇒ (µ⃗ ⋅ ∇)B⃗(r⃗)∝ µz
∂B

∂z
ẑ (7.205)

Now quantum mechanically, µ⃗ = γJ J⃗ which gives

F⃗ = (γJ
∂B

∂z
JzẐ) (7.206)

Stern and Gerlach sent Na (sodium) atoms from an oven, collimated into a
beam, into the region of ingomogeneous field. Na is an alkali atom with one
valence electron with orbital angular momentum ` = 0 (an s-state). Thus, all
of the angular momentum of the atom is due to the spin angular momentum of
the single valence electron (spin 1/2). Thus

µ⃗ = −2µB
h̵

S⃗ = −µBσ⃗⇒ F⃗ = −µB
∂B

∂z
σz ẑ (7.207)

Clearly, the spin-up atoms ∣↑x⟩ will experience a different interaction than spin-
down atoms ∣↓x⟩ (due to two different eigenvalues of σz), thereby splitting the
beam into two spatially separated beams as shown in Figure 7.4 above. We note
that the spins which emerge from the oven have a random orientation.

In general, a Stern-Gerlach apparatus takes an incoming beam of particles with
angular momentum and splits the beam into a number of spots on a screen.
The number of spots is equal to 2J + 1, where J = angular momentum value of
the incoming beam.

We shall see in later chapters that 2J+1 = the number of values allowed quantum
mechanically for the measurable quantity J ⋅ n̂ where n̂ is unit vector in the
direction of the magnetic field inside the apparatus.

In the diagram, spot #2 (undeflected beam) is where the beam would have hit
the screen if no magnetic field were present in the apparatus. Spots #1 and #3
are an example the 2J + 1 = 2 spots we would observe in an experiment when
J = 1/2 (the original Stern-Gerlach experiment).

The important features of the apparatus for our theoretical discussion are:

1. The breakup into a finite number of discrete beams (we will assume we
are working with J = 1/2 particles and thus have 2 beams exiting the
apparatus)

2. The beams are separated in 3-dimensional space and each contains 1/2 of
the original particles entering the device

3. The possible values of B ⋅ n̂ for J = 1/2 are ±h̵/2 for any n̂.
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4. One exiting beam contains only particles with J ⋅ n̂ = +h̵/2 and the other
beam contains only particles with J ⋅ n̂ = −h̵/2

We will represent the beam state vectors by the ket vectors

∣+n̂⟩ = beam with J ⋅ n̂ = +h̵/2 (7.208)
∣−n̂⟩ = beam with J ⋅ n̂ = −h̵/2

and the Stern-Gerlach apparatus with a field in the n̂-direction by SGn̂.

5. The above results occur for all beams no matter what the direction of the
unit vector n̂

The S-G experiment has all the essential ingredients of a quantum measurement.
The quantum degree of freedom, here spin-1/2, is correlated with the final beam
direction of the atoms. Once the two spots on the screen are resolvable, we can
measure the spin state of the atom by determining which spatially separated
beam the atom is in.

We now report the results of a series of actual experiments.

Experiment #1

We send N particles into an SGẑ device and select out the beam where the
particles are in the state ∣+ẑ⟩ (we block the other beam). It contains N/2
particles. We then send this second beam into another SGẑ device. We find
that all N/2 exit in the state ∣+ẑ⟩. There is only one exit beam. Symbolically,
this looks like Figure 7.5 below:

Figure 7.5: Experiment #1

This says that when we make a measurement, say J ⋅ ẑ and then immediately
make another measurement of the same quantity, we get the same result as first
measurement with probability = 1. Since the only way to a measurement result
with certainty is to be in an eigenstate of the observable, the measurement seems
to have caused the system to change from a superposition of eigenstates into two
beams(separated in physical space) each with a definite state of the observable
J ⋅ ẑ (one of its eigenstates).
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This experiment is called state preparation. We prepare a state by measuring an
observable and finding one of the eigenvalues. Afterwards, by the von Neumann
projection postulate, the state is the corresponding eigenvector. In the above
experiment, by redirecting the spin-up beam into the second SG apparatus we
are guaranteed to find the eigenstate prepared by the first SG apparatus (with
the block). Thus a screen would have only one spot after the second apparatus.

Experiment 2

We send N particles into an SGẑ device and select out the beam where the
particles are in the state ∣+ẑ⟩. It contains N/2 particles. We then send the
selected beam into an SGx̂ device We find that N/4 exit in the state ∣+x̂⟩ and
N/4 exit in the state ∣−x̂⟩. At the end, there are two exit beams. Symbolically,
this looks like Figure 7.6 below:

Figure 7.6: Experiment #2

The same thing happens if we stop the ∣+ẑ⟩ beam and let the ∣−ẑ⟩ beam into the
SGx̂ device. So an SGx̂ device takes a beam with a definite value of J ⋅ ẑ and
randomizes it, i.e., we once again have two exiting beams with equal numbers
of particles. This is saying that for a system in an eigenstate of one observable,
the measurement of an incompatible observable (observables do not commute)
randomizes the value of the original observable. In this case [Ĵz, Ĵx] ≠ 0].

As we will show in Chapter 9, the ∣+ẑ⟩ state is not an eigenstate of Ĵx. In fact,

∣+ẑ⟩ = 1√
2
(∣+x̂⟩ + ∣−x̂⟩) (7.209)

i.e., a 50-50 superposition of spin-up and spin-down in the x-direction. Thus, we
see two beams after the SGx̂ apparatus. So even though a pure state is entering
the SGx̂ apparatus, we do not get a definite value because [Ĵz, Ĵx] ≠ 0].

Experiment 3

We now add a third SG device to Experiment 2. It is an ∣+ẑ⟩ device. We also
block the ∣+x̂⟩ exiting beam as shown symbolically in Figure 7.7 below.

We found above that N/4 exited in the state ∣+x̂⟩ from the SGx̂ device. After
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Figure 7.7: Experiment #3

the third device we find that N/8 exit in the state ∣+ẑ⟩ and N/8 exit in the state
∣−ẑ⟩.

What has happened? It seems that making a measurement of J ⋅ x̂ on a beam
with definite J ⋅ ẑ modifies the system rather dramatically.

We did two successive measurements on these particles. Since we isolated the
+ beam in each case we might be led to think that the beam entering the last
SGẑ device (because of our selections) has

J ⋅ ẑ = + h̵
2
AND J ⋅ x̂ = + h̵

2
(7.210)

But the experiment says this cannot be so, since 50% of the particles exiting
the last device have

J ⋅ ẑ = − h̵
2

(7.211)

We are forced to say that the SGẑ device takes a definite value of J ⋅ x̂ and
randomizes it so that we end up with two exiting beams with equal numbers of
particles.

Why? Again, since [Ĵz, Ĵx] ≠ 0] the two observables cannot share a common
set of eigenvectors or they are incompatible. Since an observable can only have
a definite value when the state is one of its eigenvectors, it is not possible for
both J ⋅ ẑ and J ⋅ x̂ to simultaneously have definite values.

Our two successive measurements DO NOT produce definite values for both ob-
servables. Each measurement only produces a definite value for the observable
it is measuring and randomizes the incompatible observable (actually random-
izes all other incompatible observables)!

All measurement results depend on the context of the measurement.

Another way to think about this is to say the following. An SGn̂ device is a mea-
surement of the angular momentum in the ẑ-direction. Any such measurement
of an observable randomizes the next measurement of any other incompatible
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observable.

In this cascaded measurement, the probability of finding ∣↓⟩ is the product of
conditional probabilities for uncorrelated events

P (↓z ∣ ↑x, ↑z) = P (↓z ∣ ↑x)P (↓z ∣ ↑z) = ∣ ⟨↓z ∣ ↑x⟩ ∣2∣ ⟨↑x ∣ ↑z⟩ ∣2 =
1

2

1

2
= 1

4

as is observed.

Now without the intermediate apparatus, classical theory would argue as follows.
If we don’t measure Jx we must sum the probabilities of all possible alternatives
or

P (↓z ∣ ↑z) = P (↓z ∣ ↑x)P (↑x ∣ ↑z) + P (↓z ∣ ↓x)P (↓x ∣ ↑z) =
1

2

1

2
+ 1

2

1

2
+ 1

2

which differs from the experimental result(= 0)

As we have discussed, quantum mechanically, if the different possibilities are
indistinguishable (i.e., there is no information available to distinguish the dif-
ferent alternatives) we must add the probability amplitudes (before squaring)
so that these different alternatives can interfere.

P (↓z ∣ ↑z) = ∣ ⟨↓z ∣ ↑z⟩ ∣2 = ∣ ⟨↓z ∣ Î ∣↑z⟩ ∣2

= ∣ ⟨↓z ∣ (∣↑x⟩ ⟨↑x∣ + ∣↓x⟩ ⟨↓x∣) ∣↑z⟩ ∣2

= P (↓z ∣ ↑x)P (↑x ∣ ↑z) + P (↓z ∣ ↓x)P (↓x ∣ ↑z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

classical terms

+ interference terms

= 1

2
− 1

2
= 0

So, the quantum amplitude interference calculation gives the correct result.

What constitutes a measurement?

If we send atoms with spin-up in the z-direction into an x-oriented SG apparatus,
there is a 50 − 50 probability of emerging as spin-up or spin-down in the x-
direction.

But if we do not detect which port the atom exits from, did we measure the
spin in the x-direction?

In a sense, no. A measurement is something that removes coherence, i.e., the
ability for quantum processes to interfere.

In principle, we can recombine these beams as if no measurement had occurred,
i.e., we can still have interference - we do not remove coherence unless we look.
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Again the context of the experiment is the significant feature!

Experiment 4

Now, let us construct a new device to illustrate this point. It is called a modified
SGx̂ device. It looks like Figure 7.8 below.

Figure 7.8: Experiment #4

Any beam of particles entering this modified device would experience deflections
while traveling though it. However, the device lengths and field strengths have
been cleverly chosen so that the net effect for any beam is no change! The
internal beams are all recombined so that the state of the beam upon exiting
the entire device is identical to the state of the beam before entering the device.
This device might be called a total-of-nothing device.

It turns out, however, that we can use this device to make a measurement
and select a particular spin state. We can calculate the paths that would be
followed in the device by the ∣+x̂⟩ and ∣−x̂⟩ (these are the relevant beams to
consider because these are SGx̂ devices). Using this information, we can block
the path that a particle in the state ∣−x̂⟩ would follow. Then, all the particles
exiting the modified ? device would be in the state ∣+x̂⟩.

Experiment 5

We can confirm this fact by inserting a modified SGx̂ device into Experiment 3
where we replace the SGx̂ device by the modified SGx̂ device. If we block the
∣−x̂⟩ beam, the state at the end of the modified SGx̂ device is the same as it
was after the original SGx̂ device and we get exactly the same results. In fact,
we get the same result whether we block the ∣−x̂⟩ beam or the ∣+x̂⟩ beam, as
should be the case.

Now we set up Experiment 5. It is shown in Figure 7.9 below.
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Figure 7.9: Experiment #5

In this experiment a beam enters the SGẑ device and we block the exiting ∣−ẑ⟩
beam. The ∣+ẑ⟩ beam is sent into the modified SGx̂ device and the exit beam
is sent into the final SGẑ device. In this case, however, we DO NOT block any
of the paths in the modified SGx̂ device. Since the beam entering the modified
SGx̂ device is reconstructed before it exits (we already saw that it does this
in the Experiment 4), we are NOT making a measurement of J ⋅ x̂ using the
modified SGx̂ device as we did when we used the original SGx̂ device.

Now we send in N particles and N/2 are in the ∣+ẑ⟩ beam as before. However,
now, instead of find N/8 particles in the final ∣+ẑ⟩ beam, we find N/2 parti-
cles. ALL the particles make it through unchanged, even though there are SGx̂
devices in between. It behaves as if the modified SGx̂ device was not there at
all(hence its name).

We might have assumed that 50% of the particles in the ∣+ẑ⟩ beam before the
modified SGx̂ device would emerge in the ∣+x̂⟩ state and the other 50% would
emerge in the ∣−x̂⟩ state. Experiment 5 says this cannot be true, since if it were
true, then we would have two beams coming out of the final SGẑ device, each
with 50% of the particles. Our results are incompatible with the statement that
the particles passing through the modified SGx̂ device are either in the state
∣+x̂⟩ or in the state ∣−x̂⟩.

In fact, if we carry out this experiment with a very low intensity beam where
only one particle at a time is passing through the apparatus, then we observe
that each particle emerging from the final SGẑ device is in the state ∣+ẑ⟩. This
eliminates any explanation of the result that would invoke interactions among
the particles while they were in the apparatus.

For beams of particles, we have been talking in terms of percentages or fractions
of the particles as experimental results. For a single particle, however, it is not
possible to predict with certainty the outcome of a measurement in advance.
We have seen this earlier in our experiments with photons and polaroids. We
are only able to use probability arguments in this case.
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In Experiment 2, for instance, before a measurement (passing through the SGx̂
device) of J ⋅ x̂ on a single particle in the ∣+ẑ⟩ state, all we can say is that there
is a 50% probability of obtaining ∣+x̂⟩ and a 50% probability of obtaining ∣−x̂⟩.

Probabilities alone are not enough, however, to explain Experiment 5. We came
to the incorrect conclusion because we made the same mistake as in our earlier
discussion of polarization. We added the separate probabilities of the indistin-
guishable ways to get the total probability, whereas the correct result, as we
know, is to add the amplitudes of the indistinguishable ways and then square
the total amplitude to get the correct result. We eliminated the interference
effects! When we donÕt actually make a measurement as in the modified SGx̂
device, we must add amplitudes and not probabilities.

We can now introduce a formalism, which should allow us to explain all experi-
ments correctly. We need a 2-dimensional vector space to describe these physical
systems. As a basis for this space we can use any of the sets {∣+n̂⟩ , ∣−n̂⟩} corre-
sponding to the definite values ±h̵/2 for J ⋅ n̂. Each of these is an orthonormal
basis where

⟨+n̂ ∣+n̂⟩ = 1 = ⟨−n̂ ∣−n̂⟩ and ⟨+n̂ ∣−n̂⟩ = 0 (7.212)

Any arbitrary state can be written as a superposition of the basis states

∣ψ⟩ = ⟨+n̂ ∣ψ⟩ ∣+n̂⟩ + ⟨−n̂ ∣ψ⟩ ∣−n̂⟩ (7.213)

and the operators can be written as

J ⋅ n̂ = h̵
2
∣+n̂⟩ ⟨+n̂∣ − h̵

2
∣−n̂⟩ ⟨−n̂∣ (7.214)

Finally, expectation values are given by

⟨Ĵz⟩ = ⟨ψ∣ Ĵz ∣ψ⟩ =
h̵

2
∣ ⟨+ẑ ∣ψ⟩ ∣2 − h̵

2
∣ ⟨−ẑ ∣ψ⟩ ∣2 (7.215)

Analysis of Experiment 3

In Experiment 3, the state before entering the first SGẑ device is

∣ψ1⟩ = a ∣+ẑ⟩ + b ∣−ẑ⟩ where ∣a∣2 + ∣b∣2 = 1 (7.216)

Since the SGẑ device is a measurement of Ĵz, after the SGẑ device the state is
∣+ẑ⟩ (remember the we blocked the ∣−ẑ⟩ path).

It is very important to realize that we cannot answer a question about a mea-
surement unless we express the state in the basis consisting of the eigenvectors
of the operator representing the observable being measured. We call this the
home space of the observable. That is why we used the Ĵz eigenvectors to dis-
cuss the measurement made using the SGẑ device.
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Now, we are going to make a measurement of Ĵx in the SGx̂ device. So we now
switch to a basis consisting of the Ĵx eigenvectors. We know we can write

∣+x̂⟩ = ⟨+ẑ ∣+x̂⟩ ∣+ẑ⟩ + ⟨−ẑ ∣+x̂⟩ ∣−ẑ⟩ (7.217)

One of our experiments tells us that when we send a particle in a ∣+x̂⟩ state
through an SGẑ device, the probability = 1/2 that we find ∣+ẑ⟩ and 1/2 that we
find ∣−ẑ⟩. This means that

∣ ⟨+ẑ ∣+x̂⟩ ∣2 = ∣ ⟨−ẑ ∣+x̂⟩ ∣2 = 1

2
(7.218)

or

⟨+ẑ ∣+x̂⟩ = e
1α+

√
2

and ⟨−ẑ ∣+x̂⟩ = e
1α+

√
2

(7.219)

so that

∣+x̂⟩ = e
1α+

√
2

∣+ẑ⟩ + e
1α+

√
2

∣−ẑ⟩ (7.220)

Similarly,

∣−x̂⟩ = e
1β+

√
2

∣+ẑ⟩ − e
1β+

√
2

∣−ẑ⟩ (7.221)

Experiment 6

In this experiment we replace the last SGẑ device in Experiment 3 with an SGŷ
device. The last part of the setup is shown in Figure 7.10 below.

Figure 7.10: Experiment #6

The incoming beam is from the first SGẑ device, where we blocked the ∣−ẑ⟩ path,
and therefore, we have N particles in the state ∣+ẑ⟩. They now go through the
SGx̂ device, where we block the ∣−x̂⟩ path, as shown. The beam entering the
SGŷ device has N/2 particles in the ∣+x̂⟩ state.

Whether we call the last direction the z-direction or the y-direction cannot affect
the results of the experiment, so we get the same result for this experiment as
we did for Experiment 3, except that we use the y-label instead of the z-label.
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If the SGx̂ device were replaced by an SGẑ device we would get the same result
also, since whether we call the direction the z-direction or the x-direction cannot
affect the results of the experiment.

Putting this all together we can say that

∣+ŷ⟩ = ⟨+ẑ ∣+ŷ⟩ ∣+ẑ⟩ + ⟨−ẑ ∣+ŷ⟩ ∣−ẑ⟩ (7.222)

with
∣ ⟨+ẑ ∣+ŷ⟩ ∣2 = ∣ ⟨−ẑ ∣+ŷ⟩ ∣2 = 1

2
(7.223)

and
∣+ŷ⟩ = ⟨+x̂ ∣+ŷ⟩ ∣+x̂⟩ + ⟨−x̂ ∣+ŷ⟩ ∣−x̂⟩ (7.224)

with
∣ ⟨+x̂ ∣+ŷ⟩ ∣2 = ∣ ⟨−x̂ ∣+ŷ⟩ ∣2 = 1

2
(7.225)

The conventional choice for the phases factors is such that we have

∣+x̂⟩ = 1√
2
∣+ẑ⟩ + 1√

2
∣−ẑ⟩ (7.226)

∣+ŷ⟩ = 1√
2
∣+ẑ⟩ + i√

2
∣−ẑ⟩ (7.227)

We will derive all of these results more rigorously in Chapter 9.

7.5. Problems

7.5.1. Change the Basis
In examining light polarization in the text, we have been working in the {∣x⟩ , ∣y⟩}
basis.

(a) Just to show how easy it is to work in other bases, express {∣x⟩ , ∣y⟩} in
the {∣R⟩ , ∣L⟩} and {∣45○⟩ , ∣135○⟩} bases.

(b) If you are working in the {∣R⟩ , ∣L⟩} basis, what would the operator repre-
senting a vertical polaroid look like?

7.5.2. Polaroids
Imagine a situation in which a photon in the ∣x⟩ state strikes a vertically oriented
polaroid. Clearly the probability of the photon getting through the vertically
oriented polaroid is 0. Now consider the case of two polaroids with the photon
in the ∣x⟩ state striking a polaroid oriented at 45○ and then striking a vertically
oriented polaroid.

Show that the probability of the photon getting through both polaroids is 1/4.
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Consider now the case of three polaroids with the photon in the ∣x⟩ state striking
a polaroid oriented at 30○ first, then a polaroid oriented at 60○ and finally a
vertically oriented polaroid.

Show that the probability of the photon getting through all three polaroids is
27/64.

7.5.3. Calcite Crystal

A photon polarized at an angle θ to the optic axis is sent through a slab of
calcite crystal. Assume that the slab is 10−2 cm thick, the direction of photon
propagation is the z−axis and the optic axis lies in the x − y plane.

Calculate, as a function of θ, he transition probability for the photon to emerge
left circularly polarized. Sketch the result. Let the frequency of the light be
given by c/ω = 5000

○
A, and let ne = 1.50 and no = 1.65 for the calcite indices of

refraction.

7.5.4. Turpentine

Turpentine is an optically active substance. If we send plane polarized light into
turpentine then it emerges with its plane of polarization rotated. Specifically,
turpentine induces a left-hand rotation of about 5○ per cm of turpentine that
the light traverses. Write down the transition matrix that relates the incident
polarization state to the emergent polarization state. Show that this matrix is
unitary. Why is that important? Find its eigenvectors and eigenvalues, as a
function of the length of turpentine traversed.

7.5.5. What QM is all about - Two Views

Photons polarized at 30○ to the x−axis are sent through a y−polaroid. An
attempt is made to determine how frequently the photons that pass through the
polaroid, pass through as right circularly polarized photons and how frequently
they pass through as left circularly polarized photons. This attempt is made as
follows:

First, a prism that passes only right circularly polarized light is placed between
the source of the 30○ polarized photons and the y−polaroid, and it is determined
how frequently the 30○ polarized photons pass through the y−polaroid. Then
this experiment is repeated with a prism that passes only left circularly polarized
photons instead of the one that passes only right.

(a) Show by explicit calculation using standard amplitude mechanics that the
sum of the probabilities for passing through the y−polaroid measured in
these two experiments is different from the probability that one would
measure if there were no prism in the path of the photon and only the
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y−polaroid.

Relate this experiment to the two-slit diffraction experiment.

(b) Repeat the calculation using density matrix methods instead of amplitude
mechanics.

7.5.6. Photons and Polarizers

A photon polarization state for a photon propagating in the z−direction is given
by

∣ψ⟩ =
√

2

3
∣x⟩ + i√

3
∣y⟩

(a) What is the probability that a photon in this state will pass through a
polaroid with its transmission axis oriented in the y−direction?

(b) What is the probability that a photon in this state will pass through a
polaroid with its transmission axis y′ making an angle ϕ with the y−axis?

(c) A beam carrying N photons per second, each in the state ∣ψ⟩, is totally
absorbed by a black disk with its surface normal in the z-direction. How
large is the torque exerted on the disk? In which direction does the disk ro-
tate? REMINDER: The photon states ∣R⟩ and ∣L⟩ each carry a unit h̵ of
angular momentum parallel and antiparallel, respectively, to the direction
of propagation of the photon.

7.5.7. Time Evolution

The matrix representation of the Hamiltonian for a photon propagating along
the optic axis (taken to be the z−axis) of a quartz crystal using the linear
polarization states ∣x⟩ and ∣y⟩ as a basis is given by

Ĥ = ( 0 −iE0

iE0 0
)

(a) What are the eigenstates and eigenvalues of the Hamiltonian?

(b) A photon enters the crystal linearly polarized in the x direction, that is,
∣ψ(0)⟩ = ∣x⟩. What is ∣ψ(t)⟩, the state of the photon at time t? Express
your answer in the {∣x⟩ , ∣y⟩} basis.

(c) What is happening to the polarization of the photon as it travels through
the crystal?
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7.5.8. K-Meson oscillations
An additional effect to worry about when thinking about the time development
of K-meson states is that the ∣KL⟩ and ∣KS⟩ states decay with time. Thus, we
expect that these states should have the time dependence

∣KL(t)⟩ = e−iωLt−t/2τL ∣KL⟩ , ∣KS(t)⟩ = e−iωSt−t/2τS ∣KS⟩

where

ωL = EL/h̵ , EL = (p2c2 +m2
Lc

4)1/2

ωS = ES/h̵ , ES = (p2c2 +m2
Sc

4)1/2

and
τS ≈ 0.9 × 10−10 sec , τL ≈ 560 × 10−10 sec

Suppose that a pure KL beam is sent through a thin absorber whose only effect
is to change the relative phase of the K0 and K̄0 amplitudes by 10○. Calculate
the number of KS decays, relative to the incident number of particles, that will
be observed in the first 5 cm after the absorber. Assume the particles have
momentum =mc.

7.5.9. What comes out?
A beam of spin 1/2 particles is sent through series of three Stern-Gerlach mea-
suring devices as shown in Figure 7.1 below: The first SGz device transmits

Figure 7.11: Stern-Gerlach Setup

particles with Ŝz = h̵/2 and filters out particles with Ŝz = −h̵/2. The second
device, an SGn device transmits particles with Ŝn = h̵/2 and filters out particles
with Ŝn = −h̵/2, where the axis n̂ makes an angle θ in the x − z plane with
respect to the z−axis. Thus the particles passing through this SGn device are
in the state

∣+n̂⟩ = cos
θ

2
∣+ẑ⟩ + eiϕ sin

θ

2
∣−ẑ⟩

with the angle ϕ = 0. A last SGz device transmits particles with Ŝz = −h̵/2 and
filters out particles with Ŝz = +h̵/2.

(a) What fraction of the particles transmitted through the first SGz device
will survive the third measurement?
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(b) How must the angle θ of the SGn device be oriented so as to maximize the
number of particles the at are transmitted by the final SGz device? What
fraction of the particles survive the third measurement for this value of θ?

(c) What fraction of the particles survive the last measurement if the SGz
device is simply removed from the experiment?

7.5.10. Orientations
The kets ∣h⟩ and ∣v⟩ are states of horizontal and vertical polarization, respec-
tively. Consider the states

∣ψ1⟩ = −
1

2
(∣h⟩ +

√
3 ∣v⟩) , ∣ψ2⟩ = −

1

2
(∣h⟩ −

√
3 ∣v⟩) , ∣ψ2⟩ = ∣h⟩

What are the relative orientations of the plane polarization for these three
states?

7.5.11. Find the phase angle
If CP is not conserved in the decay of neutral K mesons, then the states of
definite energy are no longer the KL , KS states, but are slightly different states
∣K ′

L⟩ and ∣K ′
S⟩. One can write, for example,

∣K ′
L⟩ = (1 + ε) ∣K0⟩ − (1 − ε) ∣K̄0⟩

where varepsilon is a very small complex number (∣ε∣ ≈ 2 × 10−3) that is a mea-
sure of the lack of CP conservation in the decays. The amplitude for a particle
to be in ∣K ′

L⟩ (or ∣K ′
S⟩) varies as e−iωLt−t/2τL (or e−iωSt−t/2τS) where

h̵ωL = (p2c2 +m2
Lc

4)1/2 (or h̵ωS = (p2c2 +m2
Sc

4)1/2)

and τL ≫ τS .

(a) Write out normalized expressions for the states ∣K ′
L⟩ and ∣K ′

S⟩ in terms of
∣K0⟩ and ∣K̄0⟩.

(b) Calculate the ratio of the amplitude for a long-lived K to decay to two
pions (a CP = +1 state) to the amplitude for a short-lived K to decay to
two pions. What does a measurement of the ratio of these decay rates tell
us about ε?

(c) Suppose that a beam of purely long-lived K mesons is sent through an
absorber whose only effect is to change the relative phase of the K0 and
K̄0 components by δ. Derive an expression for the number of two pion
events observed as a function of time of travel from the absorber. How well
would such a measurement (given δ) enable one to determine the phase of
ε?
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7.5.12. Quarter-wave plate

A beam of linearly polarized light is incident on a quarter-wave plate (changes
relative phase by 90○) with its direction of polarization oriented at 30○ to the
optic axis. Subsequently, the beam is absorbed by a black disk. Determine the
rate angular momentum is transferred to the disk, assuming the beam carries
N photons per second.

7.5.13. What is happening?

A system of N ideal linear polarizers is arranged in sequence. The transmission
axis of the first polarizer makes an angle ϕ/N with the y−axis. The transmission
axis of every other polarizer makes an angle ϕ/N with respect to the axis of the
preceding polarizer. Thus, the transmission axis of the final polarizer makes an
angle ϕ with the y−axis. A beam of y−polarized photons is incident on the first
polarizer.

(a) What is the probability that an incident photon is transmitted by the
array?

(b) Evaluate the probability of transmission in the limit of large N .

(c) Consider the special case with the angle 90○. Explain why your result is
not in conflict with the fact that ⟨x ∣ y⟩ = 0.

7.5.14. Interference

Photons freely propagating through a vacuum have one value for their energy
E = hν. This is therefore a 1−dimensional quantum mechanical system, and
since the energy of a freely propagating photon does not change, it must be an
eigenstate of the energy operator. So, if the state of the photon at t = 0 is denoted
as ∣ψ(0)⟩, then the eigenstate equation can be written Ĥ ∣ψ(0)⟩ = E ∣ψ(0)⟩. To
see what happens to the state of the photon with time, we simply have to apply
the time evolution operator

∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ = e−iĤt/h̵ ∣ψ(0)⟩ = e−ihνt/h̵ ∣ψ(0)⟩

= e−i2πνt ∣ψ(0)⟩ = e−i2πx/λ ∣ψ(0)⟩

where the last expression uses the fact that ν = c/λ and that the distance it
travels is x = ct. Notice that the relative probability of finding the photon at
various points along the x-axis (the absolute probability depends on the number
of photons emerging per unit time) does not change since the modulus-square of
the factor in front of ∣ψ(0)⟩ is 1. Consider the following situation. Two sources
of identical photons face each other an emit photons at the same time. Let the
distance between the two sources be L.
Notice that we are assuming the photons emerge from each source in state
∣ψ(0)⟩. In between the two light sources we can detect photons but we do
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Figure 7.12: Interference Setup

not know from which source they originated. Therefore, we have to treat the
photons at a point along the x−axis as a superposition of the time-evolved state
from the left source and the time-evolved state from the right source.

(a) What is this superposition state ∣ψ(t)⟩ at a point x between the sources?
Assume the photons have wavelength λ.

(b) Find the relative probability of detecting a photon at point x by evaluating
∣⟨ψ(t) ∣ ψ(t)⟩∣2 at the point x.

(c) Describe in words what your result is telling you. Does this correspond to
anything you have seen when light is described as a wave?

7.5.15. More Interference
Now let us tackle the two slit experiment with photons being shot at the slits one
at a time. The situation looks something like the figure below. The distance
between the slits, d is quite small (less than a mm) and the distance up the
y−axis(screen) where the photons arrive is much,much less than L (the distance
between the slits and the screen). In the figure, S1 and S2 are the lengths of the
photon paths from the two slits to a point a distance y up the y−axis from the
midpoint of the slits. The most important quantity is the difference in length
between the two paths. The path length difference or PLD is shown in the
figure.

Figure 7.13: Double-Slit Interference Setup

We calculate PLD as follows:

PLD = d sin θ = d
⎡⎢⎢⎢⎣

y

[L2 + y2]1/2
⎤⎥⎥⎥⎦
≈ yd
L

, y ≪ L
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Show that the relative probability of detecting a photon at various points along
the screen is approximately equal to

4 cos2 (πyd
λL

)

7.5.16. The Mach-Zender Interferometer and Quantum In-
terference

Background information: Consider a single photon incident on a 50-50 beam
splitter (that is, a partially transmitting, partially reflecting mirror, with equal
coefficients). Whereas classical electromagnetic energy divides equally, the pho-
ton is indivisible. That is, if a photon-counting detector is placed at each of the
output ports (see figure below), only one of them clicks. Which one clicks is
completely random (that is, we have no better guess for one over the other).

Figure 7.14: Beam Splitter

The input-output transformation of the waves incident on 50-50 beam splitters
and perfectly reflecting mirrors are shown in the figure below.

Figure 7.15: Input-Output transformation

(a) Show that with these rules, there is a 50-50 chance of either of the detectors
shown in the first figure above to click.

(b) Now we set up a Mach-Zender interferometer(shown below):
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Figure 7.16: Input-Output transformation

The wave is split at beam-splitter b1, where it travels either path b1-m1-
b2(call it the green path) or the path b1-m2-b2 (call it the blue path).
Mirrors are then used to recombine the beams on a second beam splitter,
b2. Detectors D1 and D2 are placed at the two output ports of b2.

Assuming the paths are perfectly balanced (that is equal length), show
that the probability for detector D1 to click is 100% - no randomness!

(c) Classical logical reasoning would predict a probability for D1 to click given
by

PD1 = P (transmission at b2∣green path)P (green path)
+ P (reflection at b2∣blue path)P (blue path)

Calculate this and compare to the quantum result. Explain.

(d) How would you set up the interferometer so that detector D2 clicked with
100% probability? How about making them click at random? Leave the
basic geometry the same, that is, do not change the direction of the beam
splitters or the direction of the incident light.

7.5.17. More Mach-Zender
An experimenter sets up two optical devices for single photons. The first, (i)
in figure below, is a standard balanced Mach-Zender interferometer with equal
path lengths, perfectly reflecting mirrors (M) and 50-50 beam splitters (BS).
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Figure 7.17: Mach-Zender Setups

A transparent piece of glass which imparts a phase shift (PS) φ is placed in one
arm. Photons are detected (D) at one port. The second interferometer, (ii) in
figure below, is the same except that the final beam splitter is omitted.

Sketch the probability of detecting the photon as a function of φ for each device.
Explain your answer.
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Chapter 8

Schrödinger Wave equation
1-Dimensional Quantum Systems

8.1. The Coordinate Representation

To form a representation of an abstract linear vector space we must carry out
these steps:

1. Choose a complete, orthonormal set of basis vectors {∣αk⟩}.

2. Construct the identity operator Î as a sum over the one-dimensional sub-
space projection operators ∣αk⟩ ⟨αk ∣

Î =∑
k

∣αk⟩ ⟨αk ∣ (8.1)

3. Write an arbitrary vector ∣ψ⟩ as a linear combination or superposition of
basis vectors using the identity operator

∣ψ⟩ = Î ∣ψ⟩ = (∑
k

∣αk⟩ ⟨αk ∣) ∣ψ⟩ =∑
k

⟨αk ∣ψ⟩ ∣αk⟩ (8.2)

It is clear from this last equation, that knowledge about the behavior(say
in time) of the expansion coefficients ⟨αk ∣ψ⟩ will tell us the behavior of
the state vector ∣ψ⟩ and allow us to make predictions. Remember also,
that the expansion coefficient is the probability amplitude for a particle
in the state ∣ψ⟩ to behave like it is in the state ∣αk⟩.

A particular representation that has become very important in the study of
many systems using Quantum Mechanics is formed using the eigenstates of the
position operator as a basis. It is called the coordinate or position representation.

The eigenstates {∣x⃗⟩} of the position operator (x̂, ŷ, ẑ) = Q̂ satisfy

x̂ ∣x⃗⟩ = x ∣x⃗⟩ , ŷ ∣x⃗⟩ = y ∣x⃗⟩ , ẑ ∣x⃗⟩ = z ∣x⃗⟩ (8.3)
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where the eigenvalues (x, y, z) are continuous variables in the range [−∞,∞].
They form the basis of the coordinate representation.

As we saw earlier, in this case, all summations above become integrals in the
continuous spectrum case and we have

Î = ∫ ∣x⃗⟩ ⟨x⃗∣ dx⃗ , where dx⃗ = dxdydz (8.4)

∣ψ⟩ = Î ∣ψ⟩ = ∫ (∣x⃗⟩ ⟨x⃗∣) ∣ψ⟩ dx⃗ = ∫ ⟨x⃗ ∣ψ⟩ ∣x⃗⟩ dx⃗ (8.5)

The expansion coefficient in the coordinate representation is given by

ψ(x⃗) = ⟨x⃗ ∣ψ⟩ (8.6)

Since the inner product is defined for all states ∣x⃗⟩, this new object is clearly
a function of the eigenvalues (x, y, z). As we will see, it is the probability
amplitude for finding the particle to be in the neighborhood of the point x⃗ in
3-dimensional space if it is in the state ∣ψ⟩. It is called the wave function.

The bra vector or linear functional corresponding to ∣ψ⟩ is

⟨ψ∣ = ⟨ψ∣ Î = ∫ ⟨ψ∣ (∣x⃗⟩ ⟨x⃗∣)dx⃗ = ∫ ⟨ψ ∣ x⃗⟩ ⟨x⃗∣ dx⃗ = ∫ ⟨x⃗ ∣ψ⟩∗ ⟨x⃗∣ dx⃗ (8.7)

The normalization condition takes the form

⟨ψ ∣ψ⟩ = 1 = ⟨ψ∣ Î ∣ψ⟩ = ∫ ⟨ψ ∣ x⃗⟩ ⟨x⃗ ∣ψ⟩ dx⃗

= ∫ ∣ ⟨x⃗ ∣ψ⟩ ∣2 dx⃗ = ∫ ∣ψ(x⃗)∣2 dx⃗

= ∫ ψ∗(x⃗)ψ(x⃗)dx⃗ (8.8)

The probability amplitude for a particle in the state ∣ψ⟩ to behave like it is in
the state ∣φ⟩, where

∣φ⟩ = Î ∣φ⟩ = ∫ (∣x⃗⟩ ⟨x⃗∣) ∣φ⟩ dx⃗ = ∫ ⟨x⃗ ∣φ⟩ ∣x⃗⟩ dx⃗ (8.9)

is given by

⟨φ ∣ψ⟩ = (∫ ⟨x⃗ ∣φ⟩∗ ⟨x⃗∣ dx⃗)(∫ ⟨x⃗ ′ ∣ψ⟩ ∣x⃗ ′⟩ dx⃗ ′)

= ∫ dx⃗∫ dx⃗ ′ ⟨x⃗ ∣φ⟩∗ ⟨x⃗ ′ ∣ψ⟩ ⟨x⃗ ∣ x⃗ ′⟩ (8.10)

Now, in our earlier discussions, we assumed the normalization condition

⟨x⃗ ∣ x⃗ ′⟩ = δ(x⃗ − x⃗ ′) (8.11)
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(position eigenvectors are not normalizable). This normalization condition ac-
tually follows (we did not need to assume it) from the expansion in basis states.
We have

∣ψ⟩ = ∫ ⟨x⃗ ′ ∣ψ⟩ ∣x⃗ ′⟩ dx⃗ ′

⟨x⃗ ∣ψ⟩ = ∫ ⟨x⃗ ′ ∣ψ⟩ ⟨x⃗ ∣ x⃗ ′⟩ dx⃗ ′

ψ(x⃗) = ∫ ψ(x⃗ ′) ⟨x⃗ ∣ x⃗ ′⟩ dx⃗ ′

which implies the delta-function normalization. Thus, the delta function nor-
malization follows from the completeness property of the projection operators
or vice versa.

Using this result in (8.10) we get

⟨φ ∣ψ⟩ = ∫ dx⃗∫ dx⃗ ′ ⟨x⃗ ∣φ⟩∗ ⟨x⃗ ′ ∣ψ⟩ δ(x⃗ − x⃗ ′)

= ∫ ⟨x⃗ ∣φ⟩∗ ⟨x⃗ ∣ψ⟩ dx⃗ = ∫ φ∗(x⃗)ψ(x⃗)dx⃗ (8.12)

We formally write the Q̂ operator using the expansion in eigenvalues and pro-
jection operators as

Q̂ = ∫ x⃗ ∣x⃗⟩ ⟨x⃗∣ dx⃗ (8.13)

This represents three integrals, one for each coordinate.

We will also need the properties of the linear momentum operator. The eigen-
states {∣p⃗⟩} of the momentum operator (p̂x, p̂y, p̂z) = P̂ satisfy

p̂x ∣p⃗⟩ = px ∣p⃗⟩ , p̂y ∣p⃗⟩ = py ∣p⃗⟩ , p̂z ∣p⃗⟩ = pz ∣p⃗⟩ (8.14)

where the eigenvalues (px, py, pz) are continuous variables in the range [−∞,∞].
They form the basis of the momentum representation.

We then have
Î = 1

(2πh̵)3 ∫ ∣p⃗⟩ ⟨p⃗∣ dp⃗ (8.15)

∣ψ⟩ = Î ∣ψ⟩ = 1

(2πh̵)3 ∫ (∣p⃗⟩ ⟨p⃗∣) ∣ψ⟩ dp⃗ = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψ⟩ ∣p⃗⟩ dp⃗ (8.16)

The expansion coefficient in the momentum representation is

Ψ(p⃗) = ⟨p⃗ ∣ψ⟩ (8.17)

It is the probability amplitude for finding the particle with momentum p⃗ (in the
neighborhood of) if it is in the state ∣ψ⟩.
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The bra vector or linear functional corresponding to ∣ψ⟩ is

⟨ψ∣ = ⟨ψ∣ Î = 1

(2πh̵)3 ∫ ⟨ψ∣ (∣p⃗⟩ ⟨p⃗∣)dp⃗ = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψ⟩∗ ⟨p⃗∣ dp⃗ (8.18)

The normalization condition takes the form

⟨ψ ∣ψ⟩ = 1 = ⟨ψ∣ Î ∣ψ⟩ = 1

(2πh̵)3 ∫ ⟨ψ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= 1

(2πh̵)3 ∫ ∣ ⟨p⃗ ∣ψ⟩ ∣2 dp⃗ 1

(2πh̵)3
= ∫ ∣Ψ(p⃗)∣2 dp⃗

= 1

(2πh̵)3 ∫ Ψ∗(p⃗)Ψ(p⃗)dp⃗ (8.19)

The probability amplitude for a particle in the state ∣ψ⟩ to behave like it is in
the state ∣φ⟩, where

∣φ⟩ = Î ∣φ⟩ = 1

(2πh̵)3 ∫ (∣p⃗⟩ ⟨p⃗∣) ∣φ⟩ dp⃗ = 1

(2πh̵)3 ∫ ⟨p⃗ ∣φ⟩ ∣p⃗⟩ dp⃗ (8.20)

is given by

⟨φ ∣ψ⟩ = ( 1

(2πh̵)3 ∫ ⟨p⃗ ∣φ⟩∗ ⟨p⃗∣ dp⃗)( 1

(2πh̵)3 ∫ ⟨p⃗ ′ ∣ψ⟩ ∣p⃗ ′⟩ dp⃗ ′)

= 1

(2πh̵)6 ∫ dp⃗∫ dp⃗ ′ ⟨p⃗ ∣φ⟩∗ ⟨p⃗ ′ ∣ψ⟩ ⟨p⃗ ∣ p⃗ ′⟩ (8.21)

The normalization condition follows from

∣ψ⟩ = 1

(2πh̵)3 ∫ ⟨p⃗ ′ ∣ψ⟩ ∣p⃗ ′⟩ dp⃗ ′

⟨p⃗ ∣ψ⟩ = 1

(2πh̵)3 ∫ ⟨p⃗ ′ ∣ψ⟩ ⟨p⃗ ∣ p⃗ ′⟩ dp⃗ ′

Ψ(x⃗) = 1

(2πh̵)3 ∫ Ψ(p⃗ ′) ⟨p⃗ ∣ p⃗ ′⟩ dp⃗ ′

which implies that
1

(2πh̵)3
⟨p⃗ ∣ p⃗ ′⟩ = δ(p⃗ − p⃗ ′) (8.22)

Using this result we get

⟨φ ∣ψ⟩ = 1

(2πh̵)6 ∫ dp⃗∫ dp⃗ ′ ⟨p⃗ ∣φ⟩∗ ⟨p⃗ ′ ∣ψ⟩ ⟨p⃗ ∣ p⃗ ′⟩

= 1

(2πh̵)3 ∫ dp⃗∫ dp⃗ ′ ⟨p⃗ ∣φ⟩∗ ⟨p⃗ ′ ∣ψ⟩ δ(p⃗ − p⃗ ′)

= 1

(2πh̵)3 ∫ ⟨p⃗ ∣φ⟩∗ ⟨p⃗ψ⟩ dp⃗ = 1

(2πh̵)3 ∫ Φ∗(p⃗)Ψ(p⃗)dp⃗ (8.23)
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We formally write the P̂ operator using the expansion in eigenvalues and pro-
jection operators as

P̂ = ∫ p⃗ ∣p⃗⟩ ⟨p⃗∣ dp⃗ (8.24)

We will now derive the connections between the two representations.

We showed earlier (4.413) that

⟨x⃗ ∣ p⃗⟩ = eip⃗⋅x⃗/h̵ (8.25)

This is, in fact, a key result. It will enable us to derive the famous Schrödinger
equation.

Before doing the derivation let us see how this result fits into our formalism and
further our understanding of its meaning by deriving it in a different way.

This way uses the Fourier transform ideas we derived earlier.

First, let us review what we said earlier. We have

ψ(x⃗) = ⟨x⃗ ∣ψ⟩ = ⟨x⃗∣ Î ∣ψ⟩ = 1

(2πh̵)3 ∫ ⟨x⃗ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= 1

(2πh̵)3 ∫ ⟨x⃗ ∣ p⃗⟩Ψ(p⃗)dp⃗ (8.26)

and

Ψ(p⃗) = ⟨p⃗ ∣ψ⟩ = ⟨p⃗∣ Î ∣ψ⟩ = ∫ ⟨p⃗ ∣ x⃗⟩ ⟨x⃗ ∣ψ⟩ dx⃗

= ∫ ⟨x⃗ ∣ p⃗⟩∗ ψ(x⃗)dx⃗ (8.27)

Fourier transforms are written

g(p⃗) = ∫ e−ip⃗⋅x⃗/h̵f(x⃗)dx⃗ , f(x⃗) = 1

(2πh̵)3 ∫ eip⃗⋅x⃗/h̵g(p⃗)dp⃗ (8.28)

which agrees with the result ⟨x⃗ ∣ p⃗⟩ = eip⃗⋅x⃗/h̵.

It is not a unique choice, however. It was not unique in our earlier derivation
either. It is the choice, however, that allows Quantum mechanics to make pre-
dictions that agree with experiment. It is Nature’s choice!

We might even say that this choice is another postulate.

Now, we can use these results to determine the expectation values of operators
involving the position and momentum operators.

Since we are interested in the coordinate representation we need only determine
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the following quantities.

The position operator calculations are straightforward

⟨x⃗∣ Q̂ ∣ψ⟩ = x⃗ ⟨x⃗ ∣ψ⟩ and ⟨x⃗∣ f(Q̂) ∣ψ⟩ = f(x⃗) ⟨x⃗ ∣ψ⟩ (8.29)

For the momentum operator we write

⟨x⃗∣ P̂ ∣ψ⟩ = 1

(2πh̵)3 ∫ ⟨x⃗∣ P̂ ∣p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= 1

(2πh̵)3 ∫ ⟨x⃗∣ p⃗ ∣p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= 1

(2πh̵)3 ∫ p⃗ ⟨x⃗ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

Now using ⟨x⃗ ∣ p⃗⟩ = eip⃗⋅x⃗/h̵ we have

p⃗ ⟨x⃗ ∣ p⃗⟩ = −ih̵∇ ⟨x⃗ ∣ p⃗⟩ = ⟨x⃗∣ P̂ ∣p⃗⟩ (8.30)

and thus

⟨x⃗∣ P̂ ∣ψ⟩ = 1

(2πh̵)3 ∫ p⃗ ⟨x⃗ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= (−ih̵∇) 1

(2πh̵)3 ∫ (−ih̵∇) ⟨x⃗ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= 1

(2πh̵)3 ∫ ⟨x⃗ ∣ p⃗⟩ ⟨p⃗ ∣ψ⟩ dp⃗

= −ih̵∇ ⟨x⃗ ∣ψ⟩ (8.31)

In a similar manner, we can also show that

⟨x⃗∣ P̂2 ∣ψ⟩ = (−ih̵∇)2 = −h̵2∇2 ⟨x⃗ ∣ψ⟩ (8.32)

Alternatively, we can show that the gradient is the correct result using the
symmetry transformation ideas we developed earlier in Chapter 6.

The momentum operator is the generator of displacements in space. We showed
earlier that

e−ia⃗⋅P̂/h̵ ∣x⃗⟩ = ∣x⃗ + a⃗⟩ (8.33)

Therefore, we have

ψ(x⃗ + a⃗) = ⟨x⃗ + a⃗ ∣ψ⟩ = ⟨x⃗∣ eia⃗⋅P̂/h̵ ∣ψ⟩
= e−a⃗⋅∇ ⟨x⃗ ∣ψ⟩ = e−a⃗⋅∇ψ(x⃗) (8.34)

Since

e−a⃗⋅∇ = 1 − a⃗ ⋅ ∇ + (a⃗ ⋅ ∇)2

2!
− . . . (8.35)
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we have the standard Taylor series for ψ(x⃗ + a⃗). Therefore, the gradient repre-
sentation of the momentum operator makes sense.

We now use these results to derive the Schrödinger wave equation.

The Schrödinger wave equation is the partial differential equation that corre-
sponds to the eigenvector/eigenvalue equation for the Hamiltonian operator or
the energy operator.

The resulting states are the energy eigenstates. We already saw that energy
eigenstates are stationary states and thus have simple time dependence. This
property will allow us to find the time dependence of amplitudes for very com-
plex systems in a straightforward way.

We have
Ĥ ∣ψE⟩ = E ∣ψE⟩ (8.36)

where E = a number and Ĥ = the energy operator =(kinetic energy + potential
energy) operators, i.e.,

Ĥ = P̂2

2m
+ V (Q̂) (8.37)

We then have

⟨x⃗∣ ( P̂2

2m
+ V (Q̂)) ∣ψE⟩ = E ⟨x⃗ ∣ψE⟩

⟨x⃗∣ P̂
2

2m
∣ψE⟩ + ⟨x⃗∣V (Q̂) ∣ψE⟩ = E ⟨x⃗ ∣ψE⟩

− h̵2

2m
∇2 ⟨x⃗ ∣ψE⟩ + V (x⃗) ⟨x⃗ ∣ψE⟩ = E ⟨x⃗ ∣ψE⟩

− h̵2

2m
∇2ψE(x⃗) + V (x⃗)ψE(x⃗) = EψE(x⃗) (8.38)

which is the time-independent Schrödinger wave equation. The quantity

ψE(x⃗) = ⟨x⃗ ∣ψE⟩ (8.39)

is the wave function or the energy eigenfunction in the position representation
corresponding to energy E.

Now the energy eigenfunctions have a simple time dependence, as we can see
from the following. Since

Û(t) ∣ψE⟩ = e−iĤt/h̵ ∣ψE⟩ = e−iEt/h̵ ∣ψE⟩ (8.40)

we have

∣x⃗⟩ Û(t) ∣ψE⟩ = ψE(x⃗, t) = e−iEt/h̵ ⟨x⃗ ∣ψE⟩

ψE(x⃗, t) = e−iEt/h̵ψE(x⃗,0) (8.41)
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Therefore,

− h̵2

2m
∇2ψE(x⃗, t) + V (x⃗)ψE(x⃗, t) = EψE(x⃗, t)

− h̵2

2m
∇2ψE(x⃗, t) + V (x⃗)ψE(x⃗, t) = ih̵ ∂

∂t
ψE(x⃗, t) (8.42)

which is the time-dependent Schrödinger wave equation.

We will have much more to say about these equations and how to use them later
on. For now, however, let us look at these ideas in a couple of different ways to
try and get a better understanding of what they mean.

8.2. The Free Particle and Wave Packets

Let us assume that the potential energy term in the one-particle Schrödinger
equation is equal to zero. The solution, in this case, is called a free particle.

We can easily see the form of the solution as a function of space and time as
follows: the Hamiltonian of the system is

Ĥ = P̂2

2m
with Ĥ ∣ψE⟩ = E ∣ψE⟩ (8.43)

This means that [Ĥ, P̂] = 0 and thus Ĥ and P̂ share a common set of eigenvec-
tors(eigenfunctions). The eigenvectors(eigenfunctions) corresponding to linear
momentum P̂ are easy to find from our earlier derivations. We have

P̂ ∣p⃗⟩ = P̂ ∣ψE⟩ = p⃗ ∣p⃗⟩ = p⃗ ∣ψE⟩

⟨x⃗∣ P̂ ∣ψE⟩ = p⃗ ⟨x⃗ ∣ψE⟩ = p⃗eip⃗⋅x⃗/h̵

= −ih̵∇eip⃗⋅x⃗/h̵ = −ih̵∇ ⟨x⃗ ∣ψE⟩ (8.44)

which says that the eigenfunctions are

⟨x⃗ ∣ p⃗⟩ = eip⃗⋅x⃗/h̵ = ψE(x⃗) = ⟨x⃗ ∣ψE⟩ = ⟨x⃗ ∣E⟩ (8.45)

We can see that this satisfies the time-independent Schrödinger equation with
no potential term. This solution is also called a plane-wave.

If we assume that at time t = 0, the state of the particle is

ψE(x⃗,0) = eip⃗⋅x⃗/h̵ (8.46)

then the time dependence is given by

∣x⃗, t⟩ = Û(t) ∣x⃗,0⟩ = e−iEt/h̵ ∣x⃗,0⟩

⟨x⃗, t ∣ψE⟩ = e−iEt/h̵ ⟨x⃗,0 ∣ψE⟩

ψE(x⃗, t) = e−iEt/h̵ψE(x⃗,0) = e−iEt/h̵eip⃗⋅x⃗/h̵ = ei(p⃗⋅x⃗−Et)/h̵ (8.47)
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where E = p2/2m.

Now we can write the position state vector the as a linear combination of momen-
tum state vectors or correspondingly we can write position space wave function
as a linear combination of momentum eigenfunctions or plane waves(since they
are a basis).

∣ψE⟩ = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψE⟩ ∣p⃗⟩ dp⃗

⟨x⃗ ∣ψE⟩ = ψE(x⃗) = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψE⟩ ⟨x⃗ ∣ p⃗⟩ dp⃗

ψE(x⃗,0) = 1

(2πh̵)3 ∫ eip⃗⋅x⃗/h̵ΨE(p⃗,0)dp⃗ (8.48)

Using the same derivation as above (8.48) we can show that

∣ψE⟩ = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψE⟩ ∣p⃗⟩ dp⃗

⟨x⃗, t ∣ψE⟩ = ψE(x⃗, t) = 1

(2πh̵)3 ∫ ⟨p⃗ ∣ψE⟩ ⟨x⃗, t ∣ p⃗⟩ dp⃗

ψE(x⃗, t) = 1

(2πh̵)3 ∫ ei(p⃗⋅x⃗−Et)/h̵ΨE(p⃗,0)dp⃗ (8.49)

We note that in the state ∣p⃗⟩, which is an eigenvector of P̂, the momentum
has the value p⃗ with probability = 1 (a certainty), which is the meaning of an
eigenvector! However, the probability of finding the particle at the point x⃗ is
independent of x⃗, i.e.,

∣ ⟨x⃗ ∣ p⃗⟩ ∣2 = ∣eip⃗⋅x⃗/h̵∣2 = 1 (8.50)

This means that the particle is equally probable to have any value of momentum.
The momentum is completely uncertain in a position eigenstate.

If we consider an intermediate case in which the particle is reasonably well
localized in position space, and at the same time, has a fairly well defined
momentum, then the wave function for such a state is called a wave packet.

Suppose that the function ∣ΨE(p⃗,0)∣ is peaked about the value p⃗0, with a width
≈ ∆p⃗. In particular, at t = 0, we choose

ΨE(p⃗,0) = g(p⃗)eiα(p⃗) (8.51)

where g(p⃗), called the weight function, takes the form of a real, nonnegative
function such as shown in Figure 8.1 below, and the phase α(p⃗) is real.
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Figure 8.1: Weight Function

We then have

ψE(x⃗, t) = 1

(2πh̵)3 ∫ g(p⃗)ei(p⃗⋅x⃗−Et+h̵α(p⃗))/h̵ dp⃗ (8.52)

as the wave function of a particle whose momentum is approximately p⃗0. This
means that most of the time, if we measure the momentum of the particle in
this state, then we would find a value within ∆p⃗ of p⃗0.

We now determine how this particle moves in time and why we have called this
expression a wave packet.

If for some position x⃗ (which is a parameter in the integral) the phase of the
exponential term is not slowly varying for some values of integration variable p⃗,
then the integral will equal zero. This occurs because the exponential term is
a very rapidly oscillating function (since h̵ is very small), i.e., if you multiply a
very rapidly varying function by a function of the assumed form of g(p⃗), then on
the average the integrand is zero. In effect, we are seeing destructive interference
between the plane waves.

If, however, x⃗ is a point such that the phase of the exponential remains fairly
constant over the same range of p⃗ where the function g(p⃗) is nonzero, then we
will get a nonzero value for the integral and the particle will have some nonzero
probability of being at that point.

One way to make this work is as follows:

1. At time t, assume the point x⃗t makes the phase stationary near p⃗0. By
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stationary we mean

∇p⃗(p⃗ ⋅ x⃗t −Et + h̵α(p⃗))p⃗=p⃗0 = 0 (8.53)

or we are near an extremum of the phase and hence the phase will be
slowly varying.

2. We will then get strong constructive interference between the plane waves
and ψE(x⃗, t) will be nonzero.

Solving the stationary phase equation for x⃗t we find, using E = p2/2m

(x⃗t −∇p⃗(E)t + h̵(∇p⃗α(p⃗)))p⃗=p⃗0 = 0

x⃗t = ((p⃗E)t + h̵(∇p⃗α(p⃗)))p⃗=p⃗0

= p⃗0

m
t − h̵(∇p⃗α(p⃗)) =

p⃗0

m
t + x⃗0 (8.54)

Therefore, the point x⃗t, which is essentially the center of the wave packet,
moves in time with a constant velocity v⃗ = p⃗0/m. This is exactly the velocity
one expects for a free particle of momentum p⃗0 and mass m. It is called the
group velocity of the wave packet. This procedure is called the stationary phase
method.

How localized is this wave packet(particle) or what is the spatial extent of the
packet?

We will have a nonzero integral and hence a nonzero probability for the particle
to be at a particular point as long as we have constructive interference or as
long as the exponential undergoes less than one oscillation as p⃗ varies over the
region for which the function g(p⃗) is also large. The change in the phase of the
exponential as we vary the x-component of p⃗ is approximately

∆φ = ∆(p⃗ ⋅ x⃗ −Et + h̵α(p⃗))p⃗=p⃗0 =
1

h̵
∆px

∂

∂px
(p⃗ ⋅ x⃗ −Et + h̵α(p⃗))p⃗=p⃗0

= 1

h̵
∆px (x −

∂

∂px
(Et + h̵α(p⃗))

p⃗=p⃗0

= 1

h̵
∆px(x − xt) (8.55)

As long as ∆φ ≤ 2π we will get constructive interference and the integral will
be nonzero. This tells us the extent of the wave packet in the x-direction about
the point xt. We get

∣x − xt∣ ≥
2πh̵

∆px
or ∣x − xt∣∆px ≥ h (8.56)

or
∆x∆px ≥ h (8.57)

Similarly we can show that ∆y∆py ≥ h and ∆z∆pz ≥ h.
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These relations between the spatial extent of the wave packet or the uncertainty
in its position, and the uncertainty in the particle momentum, are often called
the Heisenberg uncertainty principle. We will see below that the uncertainty
principle involves more than just these simple properties of a wave packet. We
will also develop more details about wave packets later on this book.

Note that there is no uncertainty relation between

∆x and ∆y,∆z,∆py,∆pz

∆y and ∆x,∆z,∆px,∆pz

∆z and ∆x,∆y,∆px,∆py

What is the difference between these pairs of variables? The difference is in
their commutators. It turns out, in this example of the wave packet, that
only those observables that are represented by non-commuting operators have
nonzero uncertainty relations.

This result has nothing to do with wave packets, Schrödinger equations, wave
functions or Fourier transforms, although all of these quantities can be used to
show that uncertainty relations exist.

The existence of uncertainty relations between non-commuting observables was
actually built into the theory of Quantum Mechanics when we assumed that we
were in an abstract linear vector space. All linear vector spaces have a property
called the Schwarz inequality and it always leads to such uncertainty relations
for non-commuting operators. So the Heisenberg uncertainty principle, to which
much mysticism has been attached, is really an assumption and little more than
a lemma that follows from the original assumption of a vector space.

8.3. Derivation of the Uncertainty Relations in Gen-
eral

Given two Hermitian operators Â and B̂ we define the two new operators

D̂A = Â − ⟨Â⟩ and D̂B = B̂ − ⟨B̂⟩ (8.58)

where ⟨Ô⟩ = ⟨ψ∣ Ô ∣ψ⟩ equals the average or expectation value in the state ∣ψ⟩. In
the statistical analysis of data, we use a quantity called the standard or mean-
square deviation as a measure of the uncertainty of an observed quantity. It is
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defined, for a set of N measurements of the quantity ∆q by

(∆q)2 = (standard deviation)2 = 1

N

N

∑
i=1

(qi − qaverage)2

= 1

N

N

∑
i=1

(qi)2 − 1

N

N

∑
i=1

(qiqaverage) −
1

N

N

∑
i=1

(qaverageqi) +
1

N

N

∑
i=1

(qaverage)2

= (q2)average − (qaverage)2 (8.59)

where we have used

qaverage =
1

N

N

∑
i=1

qi (8.60)

In analogy, we define the mean-square deviations for Â and B̂ as

(∆Â)2 = ⟨Â2⟩ − ⟨Â⟩2 = ⟨(Â − ⟨Â⟩)2⟩ = ⟨D̂2
A⟩ (8.61)

(∆B̂)2 = ⟨B̂2⟩ − ⟨B̂⟩2 = ⟨(B̂ − ⟨B̂⟩)2⟩ = ⟨D̂2
B⟩ (8.62)

We then have
(∆Â)2(∆B̂)2 = ⟨D̂2

A⟩⟨D̂2
B⟩ (8.63)

Now we assume that

[D̂A, B̂] = [Â, B̂] = [D̂A, D̂B] = iĈ (8.64)

where Ĉ is also a Hermitian operator and we let

∣α⟩ = D̂A ∣ψ⟩ = (Â − ⟨Â⟩) ∣ψ⟩ and ∣β⟩ = D̂B ∣ψ⟩ = (B̂ − ⟨B̂⟩) ∣ψ⟩ (8.65)

Then we have

(∆Â)2 = ⟨D̂2
A⟩ = ⟨ψ∣ D̂2

A ∣ψ⟩ = (⟨ψ∣ D̂A)(D̂A ∣ψ⟩) = ⟨α ∣α⟩ (8.66)

(∆B̂)2 = ⟨D̂2
B⟩ = ⟨ψ∣ D̂2

B ∣ψ⟩ = (⟨ψ∣ D̂B)(D̂B ∣ψ⟩) = ⟨β ∣β⟩ (8.67)

The Schwarz inequality says that for any two vectors we must have the relation

⟨α ∣α⟩ ⟨β ∣β⟩ ≥ ∣ ⟨α ∣β⟩ ∣2 (8.68)

We therefore have

(∆Â)2(∆B̂)2 = ⟨D̂2
A⟩⟨D̂2

B⟩ = ⟨α ∣α⟩ ⟨β ∣β⟩ ≥ ∣ ⟨α ∣β⟩ ∣2

(∆Â)2(∆B̂)2 ≥ ∣ ⟨ψ∣ D̂AD̂B ∣ψ⟩ ∣2 = ∣⟨D̂AD̂B⟩∣2 (8.69)

Now

∣⟨D̂AD̂B⟩∣2 = ∣⟨∆Â∆B̂⟩∣2 = ∣⟨1

2
[∆Â,∆B̂] + 1

2
{∆Â,∆B̂}⟩∣2

= ∣⟨1

2
[Â, B̂] + 1

2
{Â, B̂}⟩∣2 (8.70)
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where

[∆Â,∆B̂]† = −[∆Â,∆B̂]→ anti-Hermitian → expectation value is imaginary

{∆Â,∆B̂}† = {∆Â,∆B̂}→ Hermitian → expectation value is real

Therefore,

(∆Â)2(∆B̂)2 ≥ ∣⟨1

2
[Â, B̂] + 1

2
{Â, B̂}⟩∣2

≥ 1

4
∣⟨iĈ⟩ + a∣2

where a is a real number. Then

(∆Â)2(∆B̂)2 ≥ 1

4
∣a∣2 + 1

4
∣⟨Ĉ⟩∣2 ≥ 1

4
∣⟨Ĉ⟩∣2 (8.71)

since ∣a∣2/4 ≥ 0. This is the Heisenberg uncertainty principle. It is simply the
Schwarz inequality!!

The standard form in most texts follows from [x̂, p̂x] = ih̵, which gives

∆x̂∆p̂x ≥
h̵

2
(8.72)

We note that if [Â, B̂] = iĈ = 0, we then get

(∆Â)2(∆B̂)2 ≥ 0 (8.73)

or commuting observables do not have an uncertainty principle!

8.3.1. The Meaning of the Indeterminacy Relations
What is the significance of indeterminacy relations in the world of experimental
physics?

Consider the experimental results shown in Figure 8.2 below:
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Figure 8.2: Experimental Data

These are frequency distributions for the results of independent measurements
of Q and P on an ensemble if similarly prepared systems, i.e., on each of a
large number of similarly prepared systems one performs a single measurement
(either Q or P ). The histograms are the statistical distribution of the results.

The standard deviations (variances) as shown below must satisfy (according to
the theory) the relation

∆Q∆P ≥ h̵
2

(8.74)

They must be distinguished from the resolution of the individual measurements,
δQ and δP .

Let me emphasize these points:

1. The quantities ∆Q and ∆P are not errors of measurement. The errors or
preferably the resolutions of the Q and P measuring instruments are δQ
and δP . They are logically unrelated to ∆Q and ∆P and to the uncertainty
relations except for the practical requirement that if

δQ > ∆Q (or δP > ∆P ) (8.75)

then it will not be possible to determine ∆Q (or ∆P ) in the experiment
and the experiment cannot test the uncertainty relation.

2. The experimental test of the indeterminacy relation does not involve simul-
taneous measurements of Q and P , but rather it involves the measurement
of one or the other of these dynamical variables on each independently pre-
pared representative of the particular state being studied.

Why am I being so picky here?

The quantities ∆Q and ∆P as defined here are often misinterpreted as the
errors of individual measurements. This probably arises because HeisenbergÕs
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original paper on this subject, published in 1927, was based on an early version
of quantum mechanics that predates the systematic formulation and statistical
interpretation of quantum mechanics as it exists now. The derivation, as carried
out here was not possible in 1927!

8.3.2. Time-Energy Uncertainty Relations
The use of time-energy uncertainty relations in most textbooks is simply incor-
rect. Let us now derive the most we can say about such relations.

Earlier (6.380), we showed that

d⟨Q̂⟩t
dt

= Tr (Ŵ0
dQ̂H(t)
dt

) = Tr [ i
h̵
Ŵ0[Ĥ, Q̂H(t)] + Ŵ0 (∂Q̂

∂t
)
H

] (8.76)

in the Heisenberg picture. So we can write in general that for any operator Q̂

d⟨Q̂⟩
dt

= 1

ih̵
⟨[Q̂, Ĥ]⟩ + ⟨∂Q̂

∂t
⟩ (8.77)

Now consider a system whose Hamiltonian Ĥ does not explicitly depend on time
and let Q̂ be another observable of this system which does not depend on time
explicitly so that

d⟨Q̂⟩
dt

= 1

ih̵
⟨[Q̂, Ĥ]⟩ (8.78)

We consider the dynamical state of the system at a given time t. Let ∣ψ⟩
be the vector representing that state. Call ∆Q and ∆E the root-mean-square
deviations of Q̂ and Ĥ, respectively. Applying the Schwarz inequality (as in
section 8.3) to the vectors (Q̂− ⟨Q̂⟩) ∣ψ⟩ and (Ĥ − ⟨Ĥ⟩) ∣ψ⟩ and carrying out the
same manipulations, we find after some calculations

∆Q∆E ≥ 1

2
∣⟨[Q̂, Ĥ]⟩∣ (8.79)

the equality being realized when ∣ψ⟩ satisfies the equation

(Q̂ − α) ∣ψ⟩ = iγ(Ĥ − ε) ∣ψ⟩ (8.80)

where α, γ, and ε are arbitrary real constants. We then have from (8.78)

∆Q

∣d⟨Q̂⟩
dt

∣
∆E ≥ h̵

2
(8.81)

or
τQ∆E ≥ h̵

2
(8.82)

where we have defined
τQ = ∆Q

∣d⟨Q̂⟩
dt

∣
(8.83)
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τQ appears as a time characteristic of the evolution of the expectation value
of Q̂. It is the time required for the center of the center ⟨Q̂⟩ of the statisti-
cal distribution of Q̂ to be displaced by an amount equal to its width ∆Q. In
other words, the time necessary for this statistical distribution to be apprecia-
bly modified. In this way we can define a characteristic evolution time for each
dynamical variable of the system.

Let τ be the shortest of the times thus defined. τ may be considered as the
characteristic time of evolution of the system itself, that is, whatever the mea-
surement carried out on the system at an instant of time t′, the statistical
distribution of the results is essentially the same as would be obtained at the
instant t, as long as the difference ∣t − t′∣ is less than τ .

This time τ and the energy spread ∆E satisfy the time-energy uncertainty re-
lation

τ∆E ≥ h̵
2

(8.84)

If, in particular, the system is in a stationary state where d⟨Q̂⟩/dt = 0 no matter
what Q̂, and consequently τ is infinite, then ∆E = 0 according to (8.84).

Ordinary time t is just a parameter in non-relativistic QM and not an operator!
We cannot say that

∆t∆E ≥ h̵
2

(8.85)

which is an equation that has no meaning!

8.4. The Wave Function and Its Meaning

The Schrödinger equation

− h̵
2

2m
∇2ψE(x⃗, t) + V (x⃗)ψE(x⃗, t) = ih̵ ∂

∂t
ψE(x⃗, t) (8.86)

has the mathematical form similar to that of a type of equation called a wave
equation.

Since other wave equations imply the existence of real physical fields or waves
propagating in real three dimensional space, a possible interpretation of the
Schrödinger wave function ψE(x⃗, t) is that of a wave in real, three dimensional
space. We might also associate the wave field with a particle or a particle could
be identified with a wave packet solution to the Schrödinger equation, as we did
earlier in our discussion.

These are all misinterpretations!!!

We are being misled here because we are working with a simple system, namely,

549



a single particle in three-dimensional space.

To see that these interpretations are not valid, we must look at the more com-
plicated case of a system of N particles. We now generalize to a coordinate
representation for the system of N particles as follows:

1. Choose as a basis the set of vectors that is a common set of eigenvectors
for the N position operators Q̂(1), Q̂(2), . . . , Q̂(N) corresponding to the N
particles.

2. Assuming that each position operator satisfies an eigenvalue/eigenvector
equation of the form

Q̂(i) ∣x⃗(i)⟩ = x⃗(i) ∣x⃗(i)⟩ , i = 1,2, . . . ,N (8.87)

and that each of the sets of single particle eigenvectors forms a basis for
the 3-dimensional subspace of the single particle. The basis states for the
N particle system are then the direct product states among the N sets of
single particle eigenvectors. We write them as

∣x⃗(1), x⃗(2), . . . , x⃗(N)⟩ = ∣x⃗(1)⟩⊗ ∣x⃗(2)⟩⊗ . . .⊗ ∣x⃗(N)⟩ (8.88)

The state vector ∣Ψ⟩ representing an N particle system is then represented in
the 3N -dimensional configuration space corresponding to the 3N coordinates of
the N particles by

Ψ(x⃗(1), x⃗(2), . . . , x⃗(N)) = ⟨x⃗(1), x⃗(2), . . . , x⃗(N) ∣Ψ⟩ (8.89)

The Hamiltonian for the N particle system is given by

Ĥ =
N

∑
n=1

Ĥn + Û(x⃗(1), x⃗(2), . . . , x⃗(N)) (8.90)

where

Ĥn = single particle Hamiltonian for the nth particle

= − h̵2

2mn
∇2
n + V (x⃗(n)) (8.91)

and Û(x⃗(1), x⃗(2), . . . , x⃗(N)) = the interparticle interaction potential energy.

The equation of motion(the N -particle Schrödinger equation) is then

ĤΨ(x⃗(1), x⃗(2), . . . , x⃗(N)) = ih̵ ∂
∂t

Ψ(x⃗(1), x⃗(2), . . . , x⃗(N)) (8.92)

As we shall now see, this N particle equation does not allow any of the interpre-
tations that might seem to be valid for the single particle Schrödinger equation.

550



If we associated a physical wave in real, three dimensional space with a particle
or if a particle were to be identified with a wave packet, then there would have
to be N interacting waves in the real, three dimensional space where we actually
measure things. It is clear, however, that the N particle Schrödinger equation
says that this is NOT the case. There is only one wave function in an abstract
3N -dimensional configuration space.

We are able to make the incorrect interpretation in the one particle case because
it just happens, in that case, that the real, 3-dimensional has a one-to-one corre-
spondence to the 3-dimensional configuration space of the Schrödinger equation.

The proper interpretation of Ψ is that it is a statistical state function. It is noth-
ing more than a function that enables us to calculate probability distributions
for all observables and their expectation values. The important physical quanti-
ties are the probabilities and the NOT the function used to calculate them.

∣Ψ(x⃗(1), x⃗(2), . . . , x⃗(N))∣2 = probability density in configuration space for

particle 1 to be at x⃗(1)

particle 2 to be at x⃗(2)

. . .

. . .

particle N to be at x⃗(N)

We can demonstrate the necessity for a purely statistical interpretation for the
N -particle wave function as follows. Consider the experiment with photons
shown in Figure 8.3 below.

Figure 8.3: Experimental Setup
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We have a source which emits light(photons). This light falls on a half-silvered
mirror, which allows 1/2 of the light to be transmitted though and 1/2 to be
reflected as shown. The transmitted and reflected light is detected with the
two photomultipliers D1 and D2, respectively. Finally signals generated by the
detectors when they record a photon hit, are sent to a coincidence counter,
which records a count when it receives two signals at the same time (one from
each detector) to within some specified accuracy.

Now, suppose that the source can be described as an emitter of identical localized
wave packets (∣Ψ∣2 is nonzero only over a finite region of space). Assume that
these packets are emitted at random times, at an average rate R per second and
that no more than one packet exists in a small interval ∆. The probability of
an emission in any short interval of length ∆t is then

p = R∆t (8.93)

In each of these intervals, the detectors either see a photon or they do not.
The experimental arrangement guarantees that over long periods of time each
detector sees 1/2 of the emitted photons.

We can learn more about the details of what is happening as the detectors
record photon hits by monitoring the temporal response of the two detectors,
in particular, we can ask whether the detectors have both recorded photon hits
during the same interval.

The experimental procedure is to send light into the system and record the
number of coincidences relative to number of individual counts of the detectors.

The results are analyzed in terms of an anti-coincidence parameter A given by

A = Pc
P1P2

(8.94)

where

P1 = experimentally measured probability of detector 1 responding
P2 = experimentally measured probability of detector 2 responding
Pc = experimentally measured probability of coincidences

If light is composed of single particles (photons) and photons are not divisible
and ∣Ψ(x⃗, t)∣2 = the probability per unit volume at time t that the photon will
be located within some small volume about the point x⃗, then the two detectors
should never both record a hit in the same interval (they are mutually exclusive
events) and thus Pc = A = 0.

As we shall see later on when we analyze the space-time behavior of wave pack-
ets, if the photon is a wave packet, then the packet will split into two equal
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parts, one on each path. This means that both detectors will always record hits
during the same interval and thus Pc = 1.

The probability of a detector recording a count is proportional to the amount
of the wave amplitude in the region of the detector, in particular, to

∫detector
volume

∣Ψ∣2 dx⃗ (8.95)

For a symmetrical, equal path device, this is exactly p/2 for each detector. If the
detectors are far apart, the respective triggerings are independent (we assume
that a spacelike interval exists between the events). Therefore, the probability
of coincidence is given by

Pc =
p2

4
(8.96)

Experiments of this type were carried out by Clauser(1974) and Grangier, Roger
and Aspect(1986).

They obtained A = 0. This confirmed that light is photons or single particles
with a statistical interpretation of the wave function and not particles repre-
sented by wave packets or wave fields of some kind.

8.5. One-Dimensional Systems

The time-independent Schrödinger equation in 1-dimension is

− h̵
2

2m
∇2ψE(x) + V (x)ψE(x) = EψE(x) (8.97)

The solutions ψE(x) are the energy eigenstates (eigenfunctions). As we have
seen, their time dependence is given by

ψE(x, t) = e−iEt/h̵ψE(x,0) where ψE(x,0) = ⟨x ∣E⟩ (8.98)

and

Ĥ ∣E⟩ = E ∣E⟩ where Ĥ = p̂2

2m
+ V (x̂) (8.99)

We are thus faced with solving an ordinary differential equation with boundary
conditions. Since ψE(x) is physically related to a probability amplitude and
hence to a measurable probability, we assume that ψE(x) is continuous.

Using this assumption, we can determine the general continuity properties of
dψE(x)/dx. The continuity property at a particular point, say x = x0, is derived
as follows:

∫
x0+ε

x0−ε

d2ψE(x)
dx2

dx = ∫
x0+ε

x0−ε
d(dψE(x)

dx
) (8.100)

= −2m

h̵2
[E ∫

x0+ε

x0−ε
ψE(x)dx − ∫

x0+ε

x0−ε
V (x)ψE(x)dx]
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Taking the limit as ε→ 0 we have

lim
ε→0

⎛
⎝
dψE(x)
dx

∣
x=x0+ε

− dψE(x)
dx

∣
x=x0−ε

⎞
⎠

= −2m

h̵2
[E lim

ε→0
∫

x0+ε

x0−ε
ψE(x)dx − lim

ε→0
∫

x0+ε

x0−ε
V (x)ψE(x)dx] (8.101)

or

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0
∫

x0+ε

x0−ε
V (x)ψE(x)dx (8.102)

where we have used the continuity of ψE(x) to set

lim
ε→0
∫

x0+ε

x0−ε
ψE(x)dx = 0 (8.103)

This make it clear that whether or not dψE(x)/dx has a discontinuity depends
directly on the properties of the potential energy function.

If V (x) is continuous at x = x0 (harmonic oscillator example later), i.e., if

lim
ε→0

[V (x0 + ε) − V (x0 − ε)] = 0 (8.104)

then

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0
∫

x0+ε

x0−ε
V (x)ψE(x)dx = 0 (8.105)

and dψE(x)/dx is continuous at x = x0.

If V (x) has a finite discontinuity (jump) at x = x0 (finite square well and square
barrier examples later), i.e., if

lim
ε→0

[V (x0 + ε) − V (x0 − ε)] = finite (8.106)

then

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0
∫

x0+ε

x0−ε
V (x)ψE(x)dx = 0 (8.107)

and dψE(x)/dx is continuous at x = x0.

Finally, if V(x) has an infinite jump at x = x0 (infinite square well and delta-
function examples later), then we have two choices:

1. if the potential is infinite over an extended range of x (the infinite well),
then we must force ψE(x) = 0 in that region and use only the continuity
of ψE(x) as a boundary condition at the edge of the region
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2. if the potential is infinite at a single point, i.e., V (x) = Aδ(x − x0), then

∆(dψE(x)
dx

) = 2m

h̵2
lim
ε→0
∫

x0+ε

x0−ε
V (x)ψE(x)dx

= 2m

h̵2
lim
ε→0
∫

x0+ε

x0−ε
Aδ(x − x0)ψE(x)dx

= 2mA

h̵2
lim
ε→0

ψE(x0) =
2mA

h̵2
ψE(x0) (8.108)

and, thus, dψE(x)/dx is discontinuous at x = x0.

The last thing we must worry about is the validity of our probability interpre-
tation of ψE(x), i.e.,

ψE(x) = ⟨x ∣ψE⟩ = probability amplitude for the particle
in the state ∣ψE⟩ to be found at x

which says that we must also have

⟨ψE ∣ψE⟩ = ∫
∞

−∞
∣ψE(x)∣2 dx <∞ (8.109)

This means that we must be able to normalize the wave functions and make the
total probability that the particle is somewhere on the x-axis equal to one.

A wide range of interesting physical systems can be studied using 1-dimensional
potential energy functions. We will consider potentials in the form of square
wells and square barriers, delta-functions, linear functions and parabolic func-
tions.

We will now learn how to work with potentials in 1-dimension by doing a variety
of different examples. Along the way we will learn some very clever techniques
and tricks and expand our understanding of the physics and mathematics of
Quantum Mechanics.

We start with a simple system to illustrate the process for solving the Schrödinger
equation.

8.5.1. One-Dimensional Barrier
Consider the potential energy function

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 x ≤ 0

V0 x ≥ 0
(8.110)

which looks like Figure 8.4 below.
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Figure 8.4: Finite Step barrier

Since there are no infinite jumps in the potential energy function, both ψ(x) and
dψ(x)/dx are continuous everywhere. We have two distinct regions to consider,
which are labeled I and II in Figure 8.4.

In region I, V (x) = 0 and the Schrödinger equation is

− h̵
2

2m

d2ψI(x)
dx2

= EψI(x) (8.111)

Let us define k by

E = p2

2m
= h̵

2k2

2m
(8.112)

There are two possible solutions to this equation in region I, namely,

ψI(x) = e±ikx (8.113)

each with energy

E = p2

2m
= h̵

2k2

2m
(8.114)

The most general solution is a linear combination of the two possible solutions

ψI(x) = Ae+ikx +Be−ikx (8.115)

This is a linear combination of two waves. Since this is an energy eigenstate it
has a time dependence

e−iEt/h̵ (8.116)

If we insert the time dependence we have

ψI(x, t) = Ae+i(kx−ωt) +Be−i(kx+ωt) , ω = E
h̵

(8.117)

The first term is a traveling wave moving in the +x direction with phase velocity
ω/k and the second term is a traveling wave moving in the −x direction with a
phase velocity ω/k.

We can think of this solution in region I as representing an incident wave moving
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in the +x direction with amplitude A and a reflected wave moving in the −x
direction with an amplitude B. The reflection takes place at the potential
discontinuity much the same as a reflection occurs for light on the interface
between air and glass. We will show this clearly using wave packets later in this
section. The wave packets will also allow us to relate these results to particle
motion.

In region II, V (x) = V0 and Schrödinger’s equation is

− h̵
2

2m

d2ψII(x)
dx2

= (E − V0)ψII(x) (8.118)

If we define
γ2 = 2m

h̵2
(E − V0) (8.119)

We then again have two possible solutions

ψI(x) = e±iγx (8.120)

Two cases arise

E > V0 → γ is real → traveling wave solutions
E < V0 → γ is imaginary→ real exponential solutions

We first consider E > V0 , γ real. We then have the general solution in region II

ψII(x) = Ce+iγx +De−iγx (8.121)

Now the actual physical experiment we are considering must always restrict the
possibilities (always remember that we are physicists and not just solving an
abstract mathematical problem).

If we assume the incident wave is traveling in the +x direction in region I (coming
in from x = −∞), then the existence of a wave in region I traveling in the −x
direction makes sense. It is a reflected wave (reflection occurs at x = 0). In region
II, however, we cannot physically have a wave traveling in the −x direction (what
is its source?). We can, however, have a wave traveling in the +x direction. It
is the transmitted wave (again think of an analogy to an air-glass interface).

So, on physical grounds, we will assume that D = 0. We then have the solutions
for E > V0 , γ real

ψI(x) = Ae+ikx +Be−ikx x < 0 , k2 = 2m

h̵2
E (8.122)

ψII(x) = Ce+iγx x > 0 , γ2 = 2m

h̵2
(E − V0) (8.123)

We now use the continuity conditions at x = 0.

ψI(0) = ψII(0) and
dψI(0)
dx

= dψII(0)
dx

(8.124)
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which give the equations

A +B = C and ik(A −B) = iγC (8.125)

which imply the solutions

C

A
= 2k

k + γ
and

B

A
= k − γ
k + γ

(8.126)

We can see the physical content by looking more deeply at the probability
ideas associated with the Schrödinger equation. For a one-particle state, the
Schrödinger equation formalism says that

∫
Ω
ψ∗(x)ψ(x)d3x = probability particle is located in volume Ω (8.127)

The time rate of change of this probability is

∂

∂t
∫

Ω
ψ∗(x)ψ(x)d3x = ∫

Ω
[ψ∗ ∂ψ

∂t
+ ψ∂ψ

∗

∂t
] d3x

= ih̵

2m
∫

Ω
[ψ∗∇2ψ − ψ∇2ψ∗] d3x

= ih̵

2m
∫

Ω
∇ ⋅ [ψ∗∇ψ − ψ∇ψ∗] d3x (8.128)

where we have used the time-dependent Schrödinger equation and its complex
conjugate

− h̵
2

2m
∇2ψ + V (x⃗)ψ = ih̵∂ψ

∂t
and − h̵2

2m
∇2ψ∗ + V (x⃗)ψ∗ = −ih̵∂ψ

∗

∂t
(8.129)

Since the volume Ω is arbitrary, this (8.128) implies a continuity equation of the
form

∂

∂t
∣ψ(x⃗, t)∣2 +∇ ⋅ J⃗(x⃗, t) = 0 (8.130)

where
J⃗(x⃗, t) = − ih̵

2m
[ψ∗∇ψ − ψ∇ψ∗] (8.131)

is called the probability flux vector or the probability current density.

Using the barrier solutions for E > V0 , γ real, we have (for x-components)

JI(x, t) =
ih̵

2m
(A∗e−ikx +B∗eikx)(ikAeikx − ikBe−ikx)

− ih̵

2m
(Aeikx +Be−ikx)(ikA∗e−ikx − ikB∗eikx)

= h̵k
m

[∣A∣2 − ∣B∣2] = JI+ − JI− (8.132)

JII(x, t) =
ih̵

2m
[(C∗e−iγx)(iγCeiγx) − (Ceiγx)(−iγC∗e−iγx)]

= h̵γ
m

∣C ∣2 = JII+ (8.133)
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We then define the reflection and transmission probabilities in terms of the
currents as

R = JI−
JI+

= ∣B∣2

∣A∣2
and T = JII+

J1+
= γ
k

∣C ∣2

∣A∣2
(8.134)

Now, physically, we identify

∣A∣2 = incident beam intensity
∣B∣2 = reflected beam intensity
∣C ∣2 = transmitted beam intensity

and therefore

R = probability that an incident wave will be reflected
T = probability that an incident wave will be transmitted

We find

R = (k − γ)2

(k + γ)2
and T = 4kγ

(k + γ)2
(8.135)

Notice that
R + T = 1 (8.136)

which makes physical sense since the total probability for the wave to go some-
where must equal one.

Before proceeding to the case E < V0, let us recast the case E > V0 in terms
of the wave packet formalism we derived earlier. This will allow us to make
particle interpretations.

Remember we can construct a wavepacket from any traveling wave solution by
generating a linear combination of the traveling wave using only a restricted
range of momentum values. In particular, the incident wave packet is a linear
combination of incident waves

ψinc(x, t) = ∫
∞

0

dp

2πh̵
f(p)A(p)ei(px−Et)/h̵ where E = p2

2m
, p = h̵k (8.137)

Similarly, the reflected wave packet is a linear combination of reflected waves

ψrefl(x, t) = ∫
∞

0

dp

2πh̵
f(p)B(p)e−i(px+Et)/h̵ where E = p2

2m
, p = h̵k (8.138)

We assume, for simplicity, that f(p) is a real function that is nonzero only in
a limited range of p-values and has a maximum near p = p0. We also choose
A = 1. Our solution indicates that B(p) is a real function also and thus does
not contribute to the phase of the integrand, where the phase is the part of the
integrand of the form

ei phase (8.139)
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As we discussed earlier, the integrals are nonzero only when the phase of the
integrand is near an extremum at the same place that the rest of the integrand
is large(near p = p0 by assumption since we can always choose the form of f(p)
so that it dominates). Otherwise, the exponential terms oscillates so rapidly
(h̵ is so small) that the integral averages to zero. This is called the stationary
phase condition.

For the incident and reflected waves the stationary phase extremum argument
gives

∂

∂p
(px − p2

2m
t)
p=p0

= 0 = x − p0

m
t = x − v0t incident wave (8.140)

∂

∂p
(px + p2

2m
t)
p=p0

= 0 = x + p0

m
t = x + v0t reflected wave (8.141)

These equations tell us the location of the maximum of the wave packet (or
pulse) given by ∣ψ(x, t)∣2 in space as a function of time. We have

xinc = v0t , t < 0 (8.142)

which says that the incident packet or particle arrives at x = 0 at t = 0. In
this model, a particle is a localized lump of energy and momentum where the
localization is described by ∣ψ(x, t)∣2.

Note that we obtain the correct kinematic relation of a free particle as we should.

Similarly, for the reflected wave we have

xrefl = −v0t , t > 0 (8.143)

which says that the reflected packet or particle leaves x = 0 at t = 0.

For a finite step barrier of this kind, the reflected packet leaves at the same time
that the incident packet arrives.

The transmitted packet is given by

ψtrans(x, t) = ∫
∞

0

dp

2πh̵
f(p)C(p)ei(px−Et)/h̵ (8.144)

where E − V0 =
p2

2m
, p = h̵γ
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Since C(p) is a real function, the stationary phase extremum argument gives

∂

∂p
(γx − p2

2m
t − V0t)

p=p0

= 0 = x∂γ
∂p

∣
p=p0

− p0

m
t

= x
∂
√
p2 − 2mV0

∂p

RRRRRRRRRRRp=p0

− p0

m
t

= x p0√
p2

0 − 2mV0

− p0

m
t

or
xtrans =

γ0

m
t = ṽ0t transmitted wave (8.145)

This says that the transmitted wave moves in the region x > 0, t > 0 with a
speed

ṽ0 =
γ0

m
< p0

m
(8.146)

as it should.

Summarizing, this wave packet analysis says that the probability amplitude for
the particle being at a point in space and time is completely localized in the
incident wave for t < 0 as the packet travels towards x = 0 from the left (it arrives
at x = 0 at t = 0). For t > 0 the packet then splits into two packets, namely the
reflected and transmitted packets, such that the probability amplitude for the
particle is now localized in two regions. The localized packet traveling towards
the left represents the probability of the particle being reflected and the localized
packet traveling towards the right represents the probability of the particle being
transmitted.

Now what happens if E = p2/2m < V0? We then have the solutions (let A = 1)

x < 0 ψI = eikx +Re−ikx (8.147)

x > 0 ψII = Se−βx (8.148)

where h̵k =
√

2mE and h̵β =
√

2m(V0 −E). We have excluded the mathematical
solution eβx for x > 0 because it would cause the integral

∫
∞

−∞
∣ψ∣2 dx (8.149)

to diverge, which means it is a non-normalizable or unphysical solution. This is
an example of a solution not being well-behaved. At x = 0, we have the continuity
conditions which give

1 +R = S and 1 −R = − β
ik
S or

S = 2ik

ik − β
and R = ik + β

ik − β
(8.150)
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Since the solution for x > 0 is not a traveling wave, there is no transmitted
packet. The incident wave packet analysis is the same as before. The reflected
wave packet analysis is different because R(p) is not a real function. In fact,

∣R∣2 = 1→ R = eiφ =
ip +

√
2mV0 − p2

ip −
√

2mV0 − p2

=
ip +

√
2mV0 − p2

ip −
√

2mV0 − p2

ip +
√

2mV0 − p2

ip +
√

2mV0 − p2
(8.151)

or

eiφ =
p2 −mV0 − ip

√
2mV0 − p2

mV0
= cosφ + i sinφ (8.152)

with

cosφ = p
2 −mV0

mV0
and sinφ = −

p
√

2mV0 − p2

mV0
(8.153)

Therefore, we have as wave packet representations

ψinc(x, t) = ∫
∞

0

dp

2πh̵
f(p)f(p)ei(px−Et)/h̵ where E = p2

2m
, p = h̵k (8.154)

ψrefl(x, t) = ∫
∞

0

dp

2πh̵
f(p)f(p)e−i(px+Et−h̵φ(p))/h̵ (8.155)

where E = p2

2m
, p = h̵k

The stationary phase argument implies

x = p0

m
t = v0t for the incident packet (8.156)

which says that the incident packet arrives at x = 0 at t = 0 and

x = −p0

m
t + h̵ ∂φ(p)

∂p
∣
p=p0

for the reflected packet (8.157)

This says that the reflected wave packet leaves x = 0 at

t = tdelay =
h̵m

p0

∂φ(p)
∂p

∣
p=p0

(8.158)

which is NOT the same time that the incident packet arrived!

Continuing we have

∂ cosφ(p)
∂p

= − sinφ(p)∂φ(p)
∂p

= 2p

mV0
(8.159)
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∂φ(p)
∂p

= 2√
2mV0 − p2

0

(8.160)

which gives

tdelay =
mh̵

p0

2√
2mV0 − p2

0

= 2m

p0

1

β
(8.161)

Now, we found that
ψII(x) = Se−βx (8.162)

which says that the probability amplitude is significantly different from zero up
to a distance d = 1/β approximately. In other words,

ψII(x = 1/β) = 1

e
ψII(x = 0)→ ∣ψII(x = 1/β)∣2 ≈ 1

7
∣ψII(x = 0)∣2 (8.163)

Therefore, to a good approximation, we have the striking result tdelay = 2d/v0.
What does this mean? It seems as if there is a nonzero probability for finding
the particle in the classically forbidden region x > 0, where K = kinetic energy
= E − V0 since ψII(x) = e−βx ≠ 0 there. Since K cannot be less than zero, it
seems like we must have a violation of conservation of energy if the particle were
actually found in the region x > 0. This is NOT the case.

If we observe the particle in this forbidden region, then it will no longer be in
a state with E < V0. The act of measuring the location of the particle must
necessarily introduce an uncertainty in p and hence in E. The particle seems to
have an appreciable probability to exist in the region up to a distance d = 1/β.
If we observe the particle on the right, we have then localized it such that
∆x ≈ 1/β. This says that we have introduced an uncertainty in p

∆p ≥ h̵

∆x
≈ h̵β (8.164)

and a corresponding energy uncertainty

∆E ≈ (∆p)2

2m
≥ h̵

2β2

2m
= V0 −E (8.165)

This implies that E is now uncertain enough that we can no longer claim that
energy conservation has been violated! Quantum mechanics has a way of cov-
ering its own tracks!

8.5.2. Tunneling
We now change the potential energy function so that the barrier (step) is not
infinitely thick (which prevented a traveling wave from existing for E < V0 , x >
0. The new potential energy function is shown in Figure 8.5 below.
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Figure 8.5: Finite Step - Finite Width barrier

For E > V0 the results are similar to infinitely thick barrier and no new physical
ideas appear. For E < V0, however, we get some very interesting new physical
results. As we shall see, it turns out that a real traveling wave can appear on
the other side of the barrier (even though there are no sources on the side) in
this case. This is called quantum tunneling. Let us see how it works.

We have three regions I, II and III to consider as shown in Figure 8.5.

We get the solutions

x ≤ 0 − h̵2

2m

d2ψI
dx2

= EψI

ψI = A1e
ikx +B1e

−ikx , E = p2

2m
= h̵

2k2

2m
, k real (8.166)

0 ≤ x ≤ a − h̵2

2m

d2ψII
dx2

+ V0ψII = EψII

ψII = Ceγx +De−γx , V0 −E = p2

2m
= h̵

2γ2

2m
, γ real (8.167)

x ≥ a − h̵2

2m

d2ψIII
dx2

= EψIII

ψIII = A2e
ikx +B2e

−ikx , E = p2

2m
= h̵

2k2

2m
, k real (8.168)

The probability current does not vanish at x = ±∞, which implies that we must
assume the existence of distant sources and sinks of probability(or particles).

We have two sets of continuity equations (at x = 0 and x = a). At x = 0 we get

ψI(0) = ψII(0)→ A1 +B1 = C +D (8.169)
dψI(0)
dx

dψII(0)
dx

→ ik(A1 −B1) = γ(C −D) (8.170)
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and at x = a we get

ψII(a) = ψIII(a)→ Ceγa +De−γa = A2e
ika +B2e

−ika (8.171)
dψII(a)
dx

dψIII(a)
dx

→ γ(Ceγa −De−γa) = ik(A2e
ika −B2e

−ika) (8.172)

We can restate these equations in matrix form. At x = 0 we get

( 1 1
ik −ik)(A1

B1
) = M̂1 (A1

B1
) = (1 1

γ −γ)(C
D

) = M̂2 (C
D

) (8.173)

and at x = a we get

( e
γa e−γa

γeγa −γe−γa)(C
D

) = M̂3 (C
D

)

= ( eika e−ika

ikeika −ike−ika)(A2

B2
) = M̂4 (A2

B2
) (8.174)

The transmission/reflection properties of the barrier are given by the coefficients
A1,B1,A2,B2, which we assume are related by a transfer matrix Ŷ , where

(A1

B1
) = Ŷ (A2

B2
) (8.175)

We then have

M̂1 (A1

B1
) = M̂2 (C

D
)→ (A1

B1
) = M̂−1

1 M̂2 (C
D

) (8.176)

M̂3 (C
D

) = M̂4 (A2

B2
)→ (C

D
) = M̂−1

3 M̂4 (A2

B2
) (8.177)

or

(A1

B1
) = M̂−1

1 M̂2M̂
−1
3 M̂4 (A2

B2
) (8.178)

and thus
Ŷ = M̂−1

1 M̂2M̂
−1
3 M̂4 (8.179)

A great deal of algebra gives

Y11 = eika [coshγa + 1

2
i sinhγa(γ

k
− k
γ
)] (8.180)

Y12 =
1

2
e−ika sinhγa(γ

k
+ k
γ
) (8.181)

Y21 = −
1

2
ieika sinhγa(γ

k
+ k
γ
) (8.182)

Y22 = e−ika [coshγa − 1

2
i sinhγa(γ

k
− k
γ
)] (8.183)
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If we have sources only on the left of the barrier, then we must choose B2 = 0.
The currents are

JLEFT (x, t) =
h̵k

m
[∣A1∣2 − ∣B1∣2]

= JLEFT+(x, t) − JLEFT−(x, t) x < 0 (8.184)

JRIGHT (x, t) = JRIGHT+(x, t) =
h̵k

m
∣A2∣2 x > 0 (8.185)

The reflection and transmission probabilities are given by

R = ∣B1∣2

∣A1∣2
= ∣Y21∣2

∣Y11∣2
, T = ∣A2∣2

∣A1∣2
= 1

∣Y11∣2
(8.186)

Algebra shows R+T = 1 as it must in order to conserve probability (or particles).
Evaluating the expression for T we get

T = 1

1 + V 2
0 sinh2 γa

4E(V0−e)

, γ2 = 2m

h̵2
(V0 −E) (8.187)

The fact that T > 0 for E < V0 implies the existence of tunneling. The probability
amplitude leaks through the barrier.

It is important to realize that the fact that T > 0, DOES NOT say that particles
or wave packets passed through the barrier. No measurement can be done on
the system that will allow us to observe a particle in the region 0 < x < a with
E < V0, since this would violate energy conservation.

It is ONLY probability that is leaking through. If this causes the probability
amplitude and hence the probability to be nonzero on the other side of the
barrier, than it must be possible for us to observe the particle on the other side,
i.e., we can observe the particle on the left side of the barrier with E < V0, but
we can never observe it in the region of the barrier with E < V0. That is what
is being said here.

8.5.3. Bound States

Infinite Square Well

We now consider the potential energy function

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 −a
2
≤ x ≤ a

2

∞ ∣x∣ ≥ a
2

(8.188)

This is the so-called infinite square well shown in Figure 8.6 below.
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Figure 8.6: Infinite Square Well

This is an example of a potential that is infinite in an extended region. There-
fore, we must require that the wave function ψ(x) = 0 in these regions or the
Schrödinger equation makes no sense mathematically. In this case we have

ψI(x) = 0 and ψIII(x) = 0 (8.189)

In region II we have

− h̵
2

2m

d2ψII
dx2

= E = p2

2m
= h̵

2k2

2m
(8.190)

and
ψII(x) = Aeikx +Be−ikx (8.191)

The continuity of the wavefunction at x = ±a/2 says that we must have

ψII (−
a

2
) = Ae−ika/2 +Beika/2 = 0 (8.192)

ψII (
a

2
) = Aeika/2 +Be−ika/2 = 0 (8.193)

which imply that
B

A
= −e−ika = −eika (8.194)

This is an equation for the allowed values(values corresponding to a valid solu-
tion) of k. This equation is

e2ika = 1 (8.195)

The allowed values of k form a discrete spectrum of energy eigenvalues (quan-
tized energies) given by

2kna = 2nπ → kn =
nπ

a
→ En =

h̵2k2
n

2m
= n

2π2h̵2

2ma2
, n = 1,2,3,4, . . . (8.196)

The corresponding wave functions are

ψ
(n)
II (x) = An(eiknx − e−iknae−iknx)

= Ane−ikna/2(eikn(x+a/2) − e−ikn(x+a/2))
= Ãn sinkn(x + a/2) (8.197)
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where Ãn is determined by the normalization condition

∫
a/2

−a/2
∣ψn(x)∣2 dx = 1 (8.198)

Substituting the value of kn from (8.196) into (8.197) we get

ψ
(1)
II (x) = Ã1 sink1(x + a/2) = Ã1 sinπ(x + a/2)/a

= Ã1 sin (πx/a + π/2) = Ã1 cos (πx/a) (8.199)

ψ
(2)
II (x) = Ã2 sink2(x + a/2) = Ã2 sin 2π(x + a/2)/a

= Ã2 sin (2πx/a + π) = Ã2 sin (2πx/a) (8.200)

ψ
(3)
II (x) = Ã3 sink3(x + a/2) = Ã3 sin 3π(x + a/2)/a

= Ã3 sin (3πx/a + 3π/2) = Ã3 cos (3πx/a) (8.201)

or

ψII(x) =
⎧⎪⎪⎨⎪⎪⎩

sin (nπx/a) n even
cos (nπx/a) n odd

n = 1,2,3,4, . . . (8.202)

We have mathematically solved the ordinary differential equation problem, now
what is the physical meaning of these results?

We find a discrete spectrum of allowed energies corresponding to bound states of
the Hamiltonian; the energy is quantized. Bound states designate states which
are localized in space, i.e., the probability is large only over restricted regions
of space and goes to zero far from the potential region.

The lowest energy value or lowest energy level or ground state energy is

E1 =
π2h̵2

2ma2
> 0 (8.203)

with

ψ1(x) =
⎧⎪⎪⎨⎪⎪⎩

A cos (nπx/a) ∣x∣ ≤ a
2

0 ∣x∣ ≥ a
2

n = 1,2,3,4, . . . (8.204)

This minimum energy is not zero because of the Heisenberg uncertainty prin-
ciple. Since the particle has a nonzero amplitude for being in the well, we say
that it is localized such that ∆x ≈ a and thus

∆p ≥ h̵

∆x
≈ h̵
a

(8.205)

This says that the kinetic energy (or energy in this case because the potential
energy equals zero in region II) must have a minimum value given approximately
by

Emin =Kmin ≈
(∆p)2

2m
≈ h̵2

2ma2
(8.206)
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Let us look more closely at the wave functions.

The integer n−1 corresponds to the number of nodes (zeros) of the wave function
(other than the well edges).

They also have the property

ψ(−x) = ψ(x) for n odd and ψ(−x) = −ψ(x) for n even (8.207)

The above discrete transformation of the wave function corresponds to the parity
operator P̂ where we have

P̂ψ(x) = ψ(−x) = ψ(x) means even parity (8.208)

P̂ψ(x) = ψ(−x) = −ψ(x) means odd parity (8.209)

Let us look more generally at the parity operation. Suppose that the potential
energy function obeys the rule V (x⃗) = V (−x⃗) and let ψ(x⃗) be a solution of the
Schrödinger equation with energy E

(− h̵
2

2m
∇2 + V (x⃗))ψ(x⃗) = Eψ(x⃗) (8.210)

Now let x⃗→ −x⃗ to get the equation

(− h̵
2

2m
∇2 + V (−x⃗))ψ(−x⃗) = Eψ(−x⃗) (8.211)

or

(− h̵
2

2m
∇2 + V (x⃗))ψ(−x⃗) = Eψ(−x⃗) (8.212)

This says that, if ψ(x⃗) is a solution of the Schrödinger equation with energy E,
then ψ(−x⃗) is also a solution of the Schrödinger equation with the same energy
E. This says that the combinations

ψ(x⃗) ± ψ(−x⃗) (8.213)

are also solutions of the Schrödinger equation with the same energy E. Now

ψ(x⃗) + ψ(−x⃗)→ an even parity solution
ψ(x⃗) − ψ(−x⃗)→ an odd parity solution

This says that if V (x⃗) = V (−x⃗) (a symmetric potential), then we can always
choose solutions that have a definite parity (even or odd).

We formally define the parity operator by the relation

⟨x⃗∣ P̂ ∣ψ⟩ = ⟨−x⃗ ∣ψ⟩ (8.214)
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Since
⟨x⃗∣ P̂2 ∣ψ⟩ = ⟨−x⃗∣ P̂ ∣ψ⟩ = ⟨x⃗ ∣ψ⟩ (8.215)

we must have
P̂2 = Î (8.216)

which means the eigenvalues of P̂ are ±1 as we indicated earlier. This also says
that P̂−1 = P̂

We can show [Ĥ, P̂] = 0 for symmetric potentials by

P̂Ĥ ∣E⟩ = P̂E ∣E⟩ = EP̂ ∣E⟩ = ±E ∣E⟩
ĤP̂ ∣E⟩ = ±Ĥ ∣E⟩ = ±E ∣E⟩
(P̂Ĥ − ĤP̂) ∣E⟩ = 0

[Ĥ, P̂] = 0

since ∣E⟩ is an arbitrary state. As we saw earlier, this commutator relationship
says that

ĤP̂ = P̂Ĥ
P̂ĤP̂ = P̂2Ĥ = Ĥ
P̂−1ĤP̂ = Ĥ (8.217)

which means that Ĥ is invariant under the P̂ transformation. We have used
P̂2 = Î in this derivation. It also says that

Ĥ(P̂ ∣E⟩) = P̂Ĥ ∣E⟩ = E(P̂ ∣E⟩) (8.218)

or P̂ ∣E⟩ is an eigenstate of Ĥ with energy E as we stated above. The concept
of parity invariance and the fact that Ĥ and P̂ ∣E⟩share a common set of eigen-
functions can greatly simplify the solution of the Schrödinger equation in many
cases.

The Finite Square Well

We now consider the potential energy function

V (x) =
⎧⎪⎪⎨⎪⎪⎩

−V0 ∣x∣ ≤ a
2

0 ∣x∣ ≥ a
2

(8.219)

This is the so-called finite square well (in one dimension) and it is shown in
Figure 8.7 below.
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Figure 8.7: Finite Square Well

The solutions are:

Region I : x < −a
2

− h̵
2

2m

d2ψI
dx2

= EψI ,0 ≥ E ≥ −V0 , h̵
2k2 = 2m∣E∣ ,E = −∣E∣

with solutions
ψI(x) = Ae−kx +Bekx (8.220)

Since x = −∞ is included in this region, we must exclude the e−kx term by
choosing A = 0, which gives

ψI(x) = Bekx x < −a
2

(8.221)

Region II: −a
2
≤ x ≤ a

2

− h̵
2

2m

d2ψII
dx2

− V0ψII = EψII ,0 ≥ E ≥ −V0 , p
2 = 2m(V0 − ∣E∣) ,E = −∣E∣

with solutions
ψI(x) = Ceipx/h̵ +De−ipx/h̵ (8.222)

Region III: x > a
2

− h̵
2

2m

d2ψIII
dx2

= EψIII ,0 ≥ E ≥ −V0 , h̵
2k2 = 2m∣E∣ ,E = −∣E∣

with solutions
ψI(x) = Fekx +Ge−kx (8.223)

Since x = +∞ is included in this region, we must exclude the ekx term by
choosing F = 0, which gives

ψI(x) = Ge−kx x > a
2

(8.224)

These results represent a general solution to the problem. There seems to be 4
unknown constants, namely, B, C, D, and G. However, since V (x) = V (−x),
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parity is conserved and we can choose even and odd solutions, or solutions of
definite parity.

Even parity implies ψ(x) = ψ(−x) or G = B and C =D. This solution is

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C cospx/h̵ ∣x∣ ≤ a
2

Be−kx x > a
2

Bekx x < −a
2

(8.225)

Odd parity implies ψ(x) = −ψ(−x) or G = −B and D = −C. This solution is

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C sinpx/h̵ ∣x∣ ≤ a
2

Be−kx x > a
2

−Bekx x < −a
2

(8.226)

Thus, by using parity we reduce the number of unknowns in the problem to two
for each type of solution. We now impose the continuity conditions of the wave
function and its derivative only at x = a/2 for both solutions. Since these are
definite parity solutions the continuity condition at x = −a/2 will give no new
information and is not needed.

Even Parity Results

C cospa/2h̵ = Be−ka/2 and − p
h̵
C sinpa/2h̵ = −kBe−ka/2 (8.227)

or
B

C
= eka/2 cospa/2h̵ = p

h̵k
eka/2 sinpa/2h̵ (8.228)

so that
p tanpa/2h̵ = h̵k (8.229)

This last equation is a transcendental equation for E and its solutions determine
the allowed E values for the even parity states for this potential energy function.
These E values are the even parity energies or energy levels of a particle in the
finite square well potential.

Odd Parity Results

C sinpa/2h̵ = Be−ka/2 and fracph̵C cospa/2h̵ = −kBe−ka/2 (8.230)

or
B

C
= eka/2 sinpa/2h̵ = −fracph̵keka/2 cospa/2h̵ (8.231)

so that
p cotpa/2h̵ = −h̵k (8.232)

Again, this last equation is a transcendental equation for E and its solutions
determine the allowed E values for the odd parity states for this potential energy
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function. These E values are the odd parity energies or energy levels of a particle
in the finite square well potential.

In general, at this stage of the solution, we must either devise a clever numerical
or graphical trick to find the solutions of the transcendental equations or resort
to a computer.

The first thing one should always do is change variables to get rid of as many
extraneous constants as possible. In this case we let

β = ka = a
h̵

√
2m∣E∣ , α = γa = p

h̵
a = a

h̵

√
2m(V0 − ∣E∣) (8.233)

The first useful equation we can derive is

α2 + β2 = 2mV0a
2

h̵2
= constant for a given well (8.234)

This is the equation of a circle of radius
√

2mV0a2

h̵2
(8.235)

With these new variables the two transcendental equations are

β = α tan
α

2
for even parity and β = −α cot

α

2
for odd parity (8.236)

We can find solutions graphically by plotting as shown in Figure 8.8 below for
the case (effectively a choice of the quantity V0a

2)

circle radius =
√

2mV0a2

h̵2
= 5π

2
(8.237)

The solutions correspond to the intersections of the circle (fixed for a given
well) and the curves represented by the two transcendental equations. They are
shown in Figure 8.8.

For the choice of potential well shown in the figure we have 2 even parity solu-
tions and 1 odd parity solution. These correspond to the allowed energy levels
for this particular well and the corresponding wave functions and energies rep-
resent bound states of the well.
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Figure 8.8: Solutions for
√

2mV0a2

h̵2 = 5π
2

We can also do a straight numerical solution for even parity by rearranging the
equations as follows:

α2 + β2 = 2mV0a
2

h̵2
and β = α tan

α

2

α2 (1 + tan2 α

2
) = fracα2cos2 α

2
= 2mV0a

2

h̵2
(8.238)

α2 − 25π2

4
cos2 α

2
= f(α) = 0 (8.239)

The numerical solution of this equation can be carried out by any standard
technique (Newton-Raphson method, for instance) for finding the zeros of the
function f(α). For this case we get

α = 2.4950 and 7.1416 (8.240)

which is clearly in agreement with the graphical result.
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Transmission Resonances

As we have seen the spectrum of energies for the square well is made up of a
finite number of bound-state levels. The most important feature of a bound-
state wave function is that it is localized in space,i.e., it falls off exponentially
as we move away from the well.

Another interesting feature of the square well has to do with the continuous
part of its energy spectrum. All energy states with E > 0 are allowed. Again
there are three regions to consider, labeled in the same way as earlier. We will
again assume that we have a wave incident from the left (from x = −∞) with
unit intensity

ψI(x) = eikx +Be−ikx where E = h̵
2k2

2m
(8.241)

where B is the amplitude for the reflected wave.

In region II, which is over the well, we have the solution

ψII(x) = Ceik1x +De−ik1x where E + V0 =
h̵2k2

1

2m
(8.242)

In region III, we only have a transmitted wave as the solution

ψIII(x) = Feikx where E = h̵
2k2

2m
(8.243)

Again, we must match the wave functions and their derivatives at x = ±a/2.
This gives us 4 equations for the 4 unknown coefficients. Usually an author now
says that lots of algebra gives us the transmission coefficient and writes down
the answer. Let us actually do it just once.

Continuity of the wave function and its derivative at x = −a/2 gives

e−ika/2 +Beika/2 = Ce−ik1a/2 +Deik1a/2

ike−ika/2 − ikBeika/2 = ik1Ce
−ik1a/2 − ik1De

ik1a/2

Continuity of the wave function and its derivative at x = +a/2 gives

Feika/2 = Ceik1a/2 +De−ik1a/2

ikFeika/2 = ik1Ce
ik1a/2 − ik1De

−ik1a/2

Then
ik1e

−ika/2 + ik1Be
ika/2 = ik1Ce

−ik1a/2 + ik1De
ik1a/2

ike−ika/2 − ikBeika/2 = ik1Ce
−ik1a/2 − ik1De

ik1a/2

ik1Fe
ika/2 = ik1Ce

ik1a/2 + ik1De
−ik1a/2

ikFeika/2 = ik1Ce
ik1a/2 − ik1De

−ik1a/2
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Solving for C and D we get

2ik1Ce
−ik1a/2 = i(k + k1)e−ika/2 − i(k − k1)Beika/2

2ik1De
ik1a/2 = −i(k − k1)e−ika/2 + i(k + k1)Beika/2

2ik1Ce
ik1a/2 = i(k + k1)Feika/2

2ik1De
−ik1a/2 = −i(k − k1)Feika/2

Rearranging we have

C = (k+k1

2k1
)Fe−ik1a/2eika/2 = eik1a/2 [(k+k1

2k1
) e−ika/2 − (k−k1

2k1
)Beika/2]

D = − (k−k1

2k1
)Feik1a/2eika/2 = e−ik1a/2 [− (k−k1

2k1
) e−ika/2 + (k+k1

2k1
)Beika/2]

Therefore

(k+k1

2k1
)Fe−ik1aeika/2 − (k+k1

2k1
) e−ika/2 = − (k−k1

2k1
)Beika/2

− (k−k1

2k1
)Feik1aeika/2 + (k−k1

2k1
) e−ika/2 = (k+k1

2k1
)Beika/2

Dividing we get

(k+k1

2k1
)Fe−ik1aeika/2 − (k+k1

2k1
) e−ika/2

− (k−k1

2k1
)Feik1aeika/2 + (k−k1

2k1
) e−ika/2

=
− (k−k1

2k1
)

(k+k1

2k1
)

(k + k1)2 [Fe−ik1aeika/2 − e−ika/2] = − (k − k1)2 [−Feik1aeika/2 + e−ika/2]

or

[(k + k1)2
e−ik1a − (k − k1)2

eik1a] eika/2F

= − (k − k1)2
e−ika/2 + (k + k1)2

e−ika/2

Finally we solve for the transmission coefficient F to get

F = (k + k1)2 − (k − k1)2

(k + k1)2
e−ik1a − (k − k1)2

eik1a
e−ika

= 4kk1

(k2 + k2
1) (e−ik1a − eik1a) + 2kk1(e−ik1a + eik1a)

e−ika

= e−ika

cosk1a − i
2
( k
k1
+ k1

k
) sink1a

and the transmission probability

T (E) = ∣F (E)∣2 = 1

1 +
sin2

√
2m
h̵2 V0a2(1+ E

V0
)

4( EV0
)(1+ E

V0
)

(8.244)
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Figure 8.9: Transmission over a Square Well

A plot of T (E) versus E is shown above for the case

2mV0a
2

h̵2
= 25π2

4
(8.245)

The peaks are called resonances. They occur when T (E) = 1 or

sin2

√
2m

h̵2
V0a2(1 + E

V0
) = 0 (8.246)

or when √
2m
h̵2 V0a2(1 + E

V0
) = nπ

E
V0

= n2π2

2m
h̵2 V0a2 − 1 = 4n2

25
− 1 ≥ 0

E
V0

= 0.44,1.56,3.00, ........

in agreement with the diagram.

To a particle of these particular energies, the potential looks completely trans-
parent ; there is no reflected particle

R(E) = ∣B(E)∣2 = 0 (8.247)

All of the incident wave is transmitted into region III.

A special feature of these amplitudes, not derivable from non-relativistic quan-
tum mechanics, relates the properties of the transmission probability and the
bound state energies of the well.

The transmission amplitude F (E) is a function of the energy E. It was derived
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for E > 0. If we assume that it is an analytic function of E, then it has some
interesting properties. In particular, in the regions of E < 0 and real, F (E) has
poles (goes to infinity) at E values that correspond to the bound state energies
of the well.

F (E) being infinite corresponds to having a transmitted wave without having
an incident wave. This is exactly the condition to have a bound state, where
the transmitted(and reflected) wave does not propagate, but instead fall off ex-
ponentially.

The poles of F (E) occur when

cosk1a = i
2
( k
k1
+ k1

k
) sink1a

k1 cot k1a
2

= ik and k1 tan k1a
2

= −ik

which are the same transcendental equations we had earlier for the bound states
of the corresponding finite square well.

This property can be used to find bound state energies after solving the trans-
mission problem for a given potential.

What do wave packets say?

If we construct wave packets representing the incident, reflected and transmitted
particles using the formalism we demonstrated earlier, we find the following
result.

Away from a resonance energy, the transmitted and reflected packets do not
exhibit any strange behavior, i.e., the reflected packet forms and starts to move
in the −x direction from x = −a/2 at about the same time the transmitted packet
forms and starts to move in the +x direction from x = a/2. This time is on the
order of the classical transit time for a particle moving across the well

∆tclassical =
a

v
= ma

h̵k1
(8.248)

However, near any resonance, this behavior changes dramatically.

The wave seems to get bottled up in the vicinity of the well, as if some temporary
or metastable intermediate state forms. After a time larger than the classical
transit time across the well, the reflected and transmitted packets reform and
start moving away. An example is given below.

Time Delay at a Square Well

! wave packets ! time delay We consider the transmission through a square well
as shown below in Figure 8.10.
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Figure 8.10: Finite Square Well

The transmission amplitude is (from our earlier calculation)

F (E) = e−ika

cosk1a − i
2
( k
k1
+ k1

k
) sink1a

= ∣F ∣ eiθ (8.249)

where we have set

e−ikaei tan−1(− 1
2 (

k
k1
+ k1
k ) tank1a) = eiθ (8.250)

We then have
tan(θ + ka) = 1

2
( k
k1

+ k1

k
) tank1a (8.251)

Using trigonometric identities we get

tan θ+tanka
1−tan θ tanka

= 1
2
( k
k1
+ k1

k
) tank1a

tan θ + tanka = 1
2
( k
k1
+ k1

k
) tank1a (1 − tan θ tanka)

(8.252)

and

tan θ (1 + 1

2
( k
k1

+ k1

k
) tank1a tanka)

= 1

2
( k
k1

+ k1

k
) tank1a − tanka (8.253)

tan θ =
1
2
( k
k1
+ k1

k
) tank1a − tanka

1 + 1
2
( k
k1
+ k1

k
) tank1a tanka

(8.254)

Now the incident wave packet is given by

ψincident(x, t) = ∫ f(k)ei(kx−ω(k)t) dk (8.255)

and the transmitted wave packet is given by

ψtransmitted(x, t) = ∫ f(k)ei(kx−ω(k)t)∣F (k)∣eiθ(k) dk (8.256)
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where f(k) is nonzero only in a limited region about k = k0 and is peaked at
k = k0. The stationary phase argument then gives for the incident wave

x = v0t (8.257)

and for the transmitted wave

x = v0t −
dθ

dk
∣
k=k0

(8.258)

Therefore, the incident wave packet arrives at x = −a/2 at t = −a/2v0 and the
transmitted wave packet leaves x = +a/2 at

t = a

2v0
+ 1

v0

dθ

dk
∣
k=k0

, v0 =
h̵k0

m
(8.259)

Therefore, we have a quantum mechanical time delay over and above ∆tclassical
given by

τ = 1

v0

dθ

dk
∣
k=k0

(8.260)

Now
d tan θ

dk
= d tan θ

dθ

dθ

dk
= 1

cos2 θ

dθ

dk

dθ

dk
= cos2 θ

d tan θ

dk
= 1

1 + tan2 θ

d tan θ

dk
or

tan θ =
1
2
( k
k1
+ k1

k
) tank1a − tanka

1 + 1
2
( k
k1
+ k1

k
) tank1a tanka

(8.261)

where

E = h̵
2k2

2m
and E + V0 =

h̵2k2
1

2m
(8.262)

or
k2

1 = k2 + 2mV0

h̵2
(8.263)

One can show(Messiah) that these solutions have the following properties:

1. Resonances (when T = 1) occur when

k1a = nπ → tank1a = 0

2. The time delay due to quantum mechanics near resonance approximately
given by

τ = V0

2k
τclassical (8.264)

where
τclassical =

ma

h̵k
= classical transit time (8.265)
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This corresponds physically to the wave (or particle) remaining in region
II (the vicinity of the well) during this time delay.

At that time the wave packet splits up and the reflected and transmitted
packets reform and propagate.

3. Off resonance, the transmission probability is very small and the wave
practically does not penetrate the region of the well (it is totally reflected
at the first potential discontinuity).

8.5.4. Delta-Function Potentials
We now consider the potential energy function

V (x) = Aδ(x − a) (8.266)

where
δ(x − a) = 0 x ≠ a
∞
∫
−∞

f(x)δ(x − a)dx = f(a) (8.267)

and solve the corresponding Schrödinger equation

− h̵
2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) (8.268)

As we discussed earlier the wave function ψ(x) is assumed to be continuous for
physical reasons relating to the probability interpretation. The derivative of the
wave function, however, is not continuous at x = a for this potential. We can
see this as follows. We have

− h̵
2

2m

a+ε

∫
a−ε

d2ψ(x)
dx2

dx +A
a+ε

∫
a−ε

δ(x − a)V (x)ψ(x)dx = E
a+ε

∫
a−ε

ψ(x)dx (8.269)

In the limit ε→ 0, using the continuity of ψ(x), we get

− h̵
2

2m
[ dψ
dx

∣
a+ε

− dψ

dx
∣
a−ε

] = Eψ(a)
a+ε

∫
a−ε

dx −Aψ(a) (8.270)

so that
discontinuity (dψ

dx
)
x=a

= ∆(dψ
dx

) = 2mA

h̵2
ψ(a) (8.271)

For simplicity we choose a = 0. We then have two regions to consider

region I x < 0

region II x > 0

and the derivative is discontinuous at x = 0.
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Transmission Problem

We first carry out the calculation of the transmission and reflection probabilities.
We assume that A > 0(we have a delta function barrier), E > 0 and an incident
wave of unit intensity coming in from the left.

In region I we have

− h̵
2

2m

d2ψI
dx2

= EψI → ψI(x) = eikx +Be−ikx with E = h̵
2k2

2m
> 0 (8.272)

We have both an incident and a reflected wave.

In region II we have

− h̵
2

2m

d2ψII
dx2

= EψII → ψII(x) = Ceikx with E = h̵
2k2

2m
> 0 (8.273)

There is only a transmitted wave.

The boundary conditions (at x = 0) give

ψI(0) = ψII(0)→ 1 +B = C

dψII(0)
dx

− dψI(0)
dx

= 2m

h̵2
AψII(0)→ ikC − ik(1 −B) = 2m

h̵2
AC

The solutions are

C = ik

ik − mA
h̵2

and B =
mA
h̵2

ik − mA
h̵2

(8.274)

We then have

T = transmission probability = ∣C ∣2 = 1

1 + mA2

2h̵2E

(8.275)

R = reflection probability = ∣B∣2 = 1

1 + 2h̵2E
mA2

(8.276)

We note that T + R = 1 as it must for the probability interpretation to make
sense.

From our previous discussion, we suspect that the energy values of the poles
of the transmission probability correspond to the bound state energies for the
delta function well problem (A < 0). For the single delta function potential, T
has a single pole at

E = −mA
2

2h̵2
(8.277)
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Bound-State Problem

We let A→ −A , A > 0. In region I we have

− h̵
2

2m

d2ψI
dx2

= − ∣E∣ψI → ψI(x) = Beαx (8.278)

with

E = − ∣E∣ = − h̵
2α2

2m
< 0 (8.279)

We have excluded the negative exponential term since it would diverge in region
I as x→ −∞.

In region II we have

− h̵
2

2m

d2ψII
dx2

= − ∣E∣ψII → ψII(x) = Ce−αx (8.280)

with

E = − ∣E∣ = h̵
2α2

2m
< 0 (8.281)

We have excluded the positive exponential term since it would diverge in region
II as x→ +∞.

The boundary conditions give

ψI(0) = ψII(0)→ B = C (8.282)

dψII(0)
dx

− dψI(0)
dx

= −2m

h̵2
AψI(0)→ −αC − αB = −2m

h̵2
AB (8.283)

The resulting equation for α gives the allowed the bound state energies. We
have

α = mA
h̵2

→ only 1 solution only → 1 bound state (8.284)

E = − ∣E∣ = − h̵
2α2

2m
= −mA

2

2h̵2
(8.285)

which is the same value as we obtained from the pole of the transmission prob-
ability.

We also note that the solution has definite parity (even) since ψ(x) = ψ(−x).
This must occur since V (x) = V (−x) and hence parity commutes with the
Hamiltonian. As we also saw in the square well case, if only one solution exists
then it is always an even parity solution.
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Double Delta Function Potential

We now tackle a more realistic and hence more complex system, namely the
double delta function potential energy function given by

V (x) = u [δ (x + `
2
) + δ (x − `

2
)] (8.286)

We again start by considering the barrier transmission problem for u > 0.

Transmission problem

There are three regions to consider

region I x < `
2

region II − `
2
< x < `

2

region III x > `
2

The solutions in the three regions are

region I x < `
2

ψI(x) = Aeikx +Be−ikx

region II − `
2
< x < `

2
ψII(x) = Ceikx +De−ikx

region III x > `
2

ψIII(x) = Feikx

where

E = h̵
2k2

2m
> 0 (8.287)

The boundary conditions (the derivatives are discontinuous at x = ±`/2)give the
equations

x = − `
2

Ae−ik
`
2 +Beik

`
2 = Ce−ik

`
2 +Deik

`
2 (8.288)

ik (Ce−ik
`
2 −Deik

`
2 ) − ik (Ae−ik

`
2 −Beik

`
2 )

= 2mu

h̵2
(Ce−ik

`
2 +Deik

`
2 ) (8.289)

x = + `
2

Ceik
`
2 +De−ik

`
2 = Feik

`
2 (8.290)

ik (Feik
`
2 ) − ik (Ceik

`
2 −De−ik

`
2 ) = 2mu

h̵2
(Feik

`
2 ) (8.291)

We are interested in calculating the transmission probability

T (E) = ∣F ∣2

∣A∣2
(8.292)
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Much algebra gives these results

C = (1 − mu

ikh̵2
)F and D = mu

ikh̵2
eik`F (8.293)

F

A
= 1

[1 − mu2

2h̵2E
(1 − cos 2k`)]

2
+ i [ku

E
+ mu2

2h̵2E
sin 2k`]

= 1

[1 − mu
ikh̵2 ]

2 − [ mu
ikh̵2 ]

2
e2ik`

(8.294)

The poles of the transmission probability occur for the zeroes of the denominator
in (8.294). If we let u = −∣u∣ and E = −∣E∣ < 0 and k = iγ, the poles are given by

[1 − m ∣u∣
γh̵2

]
2

− [m ∣u∣
γh̵2

]
2

e−2γ` = 0 (8.295)

Some rearranging and algebra gives

eγ
`
2 = m ∣u∣

γh̵2
(eγ

`
2 ± e−γ

`
2 ) (8.296)

as the transcendental equation for the bound state energies of the double delta
function well.

We will solve this transcendental equation graphically. Again, it is always best
to first clean up the equation as much as possible by changing variables. There
are no rules for this part. We let

β = γ `
2
and ε = m ∣u∣ `

2h̵2
(8.297)

The transcendental equation then becomes

e−2β = ±(β
ε
− 1) (8.298)

Bound-State Problem

We now get the same equation in the standard way.

In this case u < 0 and we choose

E = − ∣E∣ = − h̵
2α2

2m
(8.299)

The solutions in the three regions are

region I x < `
2

ψI(x) = Aeαx
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region II − `
2
< x < `

2
ψII(x) = Beαx +Ce−αx

region III x > `
2

ψIII(x) =De−αx

The boundary conditions (the derivatives are discontinuous at x = ±`/2)give the
equations

x = − `
2

Ae−α
`
2 +Beα

`
2 = Ce−α

`
2 +Deα

`
2 (8.300)

α (Ce−α
`
2 −Deα

`
2 ) − α (Ae−α

`
2 −Beα

`
2 )

= 2mu

h̵2
(Ce−α

`
2 +Deα

`
2 ) (8.301)

x = + `
2

Ceα
`
2 +De−α

`
2 = Feα

`
2 (8.302)

α (Feα
`
2 ) − α (Ceα

`
2 −De−α

`
2 ) = 2mu

h̵2
(Feα

`
2 ) (8.303)

We consider two cases:

even parity: A =D and B = C
odd parity: A = −D and B = −C

Much algebra leads to the transcendental equations

even parity e−α` = −1 + h̵2α

m ∣u∣
(8.304)

odd parity e−α` = +1 − h̵2α

m ∣u∣
(8.305)

If we let

β = γ `
2
and ε = m ∣u∣ `

2h̵2
(8.306)

the equations becomes

even parity e−2β = +(β
ε
− 1) (8.307)

odd parity e−2β = −(β
ε
− 1) (8.308)

which agree with the result we obtained from the poles of the transmission
amplitude.
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Graphical Solution

Since
ε = m ∣u∣ `

2h̵2
(8.309)

is fixed by the choice of the parameters of the potential, we have transcendental
equations for β. The solutions give us the energy eigenvalues. We can simplify
the graphical solution with one more change of variables. We let

β

ε
= η (8.310)

and get
even parity e−2εη = η − 1 (8.311)

odd parity e−2εη = 1 − η (8.312)

Procedure:

1. plot 1 − η versus η and η − 1 versus η

2. plot e−2εη versus η for several values of ε

3. the intersections are the even and odd solutions

Figure 8.11: Double delta Function Bound States

In Figure 8.11 above, we plot the exponential function for several values of ε.
As can be seen, the properties of the solutions are:
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1. Even solutions always exist

2. Odd solutions do not always exists (see the ε = 0.25 line, which only
intersects the even curve)

3. As ε→ 0 which corresponds to `→∞ we get Eodd = Eeven. Physically, the
wells are separating so that they no longer influence each other and the
system behaves like two separate wells.

We will look at this property again later when we consider a translationally
invariant infinite line of delta functions. The interaction between the wells
coupled to the translations invariance will lead to energy bands as in real solids.

8.6. Harmonic Oscillators

We now turn our attention to a physical system with a harmonic oscillator
potential energy function

V (x) = 1

2
kx2 = 1

2
mω2

0x
2 (8.313)

We will first solve this system by going to the position representation and solv-
ing the Schrödinger equation using differential equation techniques. We will
review all of our methods, introduce Hermite polynomials and define generating
functions along the way.

After that we will introduce an algebraic method for solving this system that
does not make any reference to the position representation. In the next chapter
we will generalize this algebraic method for use in other types of systems.

8.6.1. Differential Equation Method
The Hamiltonian for the system is

Ĥ = p̂2

2m
+ 1

2
mω2

0 x̂
2 (8.314)

The energy eigenvalue equation is

Ĥ ∣ψ⟩ = E ∣ψ⟩ (8.315)

We put this into the position representation by these steps:

⟨x∣ Ĥ ∣ψ⟩ = ⟨x∣E ∣ψ⟩ = E ⟨x ∣ ψ⟩ = Eψ(x)

⟨x∣ ( p̂
2

2m
+ 1

2
mω2

0 x̂
2) ∣ψ⟩ = Eψ(x)

⟨x∣ p̂
2

2m
∣ψ⟩ + 1

2
mω2

0 ⟨x∣ x̂2 ∣ψ⟩ = Eψ(x)
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1

2m
(−ih̵ d

dx
)2 ⟨x ∣ ψ⟩ + 1

2
mω2

0x
2 ⟨x ∣ ψ⟩ = Eψ(x)

− h̵
2

2m

d2ψ(x)
dx2

+ 1

2
mω2

0x
2ψ(x) = Eψ(x) (8.316)

The last line is the standard 1-dimensional time-independent Schrödinger equa-
tion for the harmonic oscillator potential.

When solving such equations it is useful to rewrite it in dimensionless form. We
do this by making these substitutions (the choice is an art, not a science)

α4 = m
2ω2

0

h̵2
, q=αx and λ = 2E

h̵ω0
(8.317)

The equation (8.316) becomes

d2ψ

dq2
+ (λ − q2)ψ = 0 (8.318)

The solution of such equations is greatly aided by examining and extracting the
behavior of ψ in the asymptotic regions q → ±∞.

For sufficiently large q the equation becomes

d2ψ

dq2
− q2ψ = 0 (8.319)

which is satisfied by functions of the form

qne±
1
2 q

2

for any finite value of n (8.320)

Since the probability interpretation of the function requires us to be able to
normalize it, i.e., we must have

∞

∫
−∞

∣ψ(x)∣2dx <∞ (8.321)

This rules out the positive exponential. This result suggests that we try a
solution of the form

ψ(q) =H(q)e−
1
2 q

2

(8.322)

where H(q) is a polynomial of finite order in q and we have explicitly extracted
the asymptotic behavior.

Substituting into the original differential equation gives a new differential equa-
tion for H(q)

d2H

dq2
− 2q

dH

dq
+ (λ − 1)H = 0 (8.323)
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We now use the standard Frobenius series substitution method to solve this
equation. We assume a solution of the form

H(q) = qs
∞
∑
j=0

ajq
j where a0 ≠ 0 and s ≥ 0 (8.324)

The nonnegative restriction on s is required in order to guarantee that the
solution is well-behaved at q = 0 (we need to be able to normalize the wave
function). If we substitute this guess into the differential equation for H we get

qs
∞
∑
j=0

aj(j + s)(j + s − 1)qj−2 − 2qs
∞
∑
j=0

aj(j + s)qj + (λ − 1)qs
∞
∑
j=0

ajq
j = 0

qs [a0s(s − 1)q−2 + a1s(s + 1)q−1 + (a2(s + 2)(s + 1) − a0(2s + 1 − λ)) q0]
+ (a3(s + 3)(s + 2) − a1(2s + 3 − λ)) q1 + .......+

(aj+2(s + j + 2)(s + j + 1) − (2s + 2j + 1 − λ)aj) qj + ....... = 0

Now for a power series to be identically zero, the coefficient of each power must
be zero separately. We thus have

s(s − 1)a0 = 0 (8.325)
s(s + 1)a1 = 0 (8.326)
(s + 2)(s + 1)a2 − (2s + 1 − λ)a0 = 0 (8.327)
(s + 3)(s + 2)a3 − (2s + 3 − λ)a1 = 0 (8.328)
. . . . . .

(s + j + 2)(s + j + 1)aj+2 − (2s + 2j + 1 − λ)aj = 0 (8.329)

Now we assumed that a0 ≠ 0 , s ≥ 0. Therefore the (8.325) says that we must
have s = 0 or s = 1. (8.326) says that s = 0 or a1 = 0, or both. The remaining
equations give a2 in terms of a0, a3 in terms of a1, and, in general, aj+2 in
terms of aj . Whether the series will have a finite or an infinite number of terms
depends on the choice of s , a1, and the eigenvalue λ.

If the series does not terminate, then its asymptotic behavior can be inferred
from the coefficients of the high power terms. From the last recursion formula
(8.329) we have

aj+2

aj
→
j→∞

2

j
(8.330)

This ratio is the same as that of the series for qneq
2

with any finite value of n.
This implies that the solution we have found for the wave function

ψ(q) =H(q)e−
1
2 q

2

(8.331)

will diverge at large q.
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Since we cannot have that happen and still retain the probability interpretation,
the series must terminate (H(q) must be a polynomial as I mentioned earlier).
From the last recursion formula (8.329)we can see that if we choose

λ = 2s + 2j + 1 (8.332)

for some j, then the series will terminate (aj+2 = 0). Since a0 ≠ 0 this cutoff
procedure requires that j equals an even integer. This means that the odd series
will not terminate unless we choose a1 = 0. The index s can still be either 0 or
1 . Corresponding to these two values, λ is equal to 2j + 1 or 2j + 3, where j is
an even integer. We can express both cases in terms of an integer n as

λn = 2n + 1 (8.333)

This gives us the energy eigenvalues

En =
λn
2
h̵ω0 = (n + 1

2
) h̵ω0 (8.334)

As in the square well examples, we have a zero point energy. It corresponds to
the lowest or ground state energy value

E0 =
1

2
h̵ω0 (8.335)

The eigenfunctions have a definite parity, as they should since V (x) = V (−x).
From the definition of n, we can see that for a given solution

n = highest value of s + j (8.336)

If we denote the corresponding polynomials by Hn(q) we see that Hn(q) is of
degree n in q. Therefore, since the exponential is an even function, we have

n = even → even parity solution
n = odd → odd parity solution

The polynomial of order n, Hn(q), is a solution of the original equation with
λ = 2n + 1

d2Hn

dq2
− 2q

dHn

dq
+ 2nHn = 0 (8.337)

It is called the Hermite polynomial. We could find the exact forms of the poly-
nomials from the recursion relations. However, it more instructive to introduce
the idea of a generating function. We define

S(q, s) = eq
2−(s−q)2

= e−s
2+2sq =

∞
∑
n=0

Gn(q)
sn

n!
(8.338)

The functions Gn(q) defined in this way are polynomials in q. Now we have

∂S

∂q
= 2se−s

2+2sq =
∞
∑
n=0

Gn(q)
2sn+1

n!
=

∞
∑
n=0

dGn(q)
dq

sn

n!
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∂S

∂s
= (−2s + 2q)e−s

2+2sq =
∞
∑
n=0

Gn(q)
(−2s + 2q)sn

n!
=

∞
∑
n=0

Gn(q)
sn−1

(n − 1)!

Equating equal powers of q in each of these equation we get

dGn
dq

= 2nGn−1 and Gn+1 = 2qGn − 2nGn−1 (8.339)

The lowest order differential equation, which involves only Gn(q), that we can
construct out of this pair of equation is

d2Gn
dq2

= 2n
dGn−1

dq
,
dGn+1

dq
= 2(n + 1)Gn

dGn+1

dq
= 2q

dGn
dq

+2Gn−2n
dGn−1

dq

d2Gn
dq2

= 2q
dGn
dq

+2Gn −
dGn+1

dq
= 2q

dGn
dq

+2Gn − 2(n + 1)Gn

d2Gn
dq2

− 2q
dGn
dq

− 2nGn = 0 (8.340)

which is the Hermite polynomial equation. So Gn(q) =Hn(q) and we have

S(q, s) = eq
2−(s−q)2

= e−s
2+2sq =

∞
∑
n=0

Hn(q)
sn

n!
(8.341)

We then have

∂nS(q, s)
∂sn

= eq
2 ∂ne−(s−q)

2

∂sn
= (−1)neq

2 ∂ne−(s−q)
2

∂qn

=
∂n

∞
∑
m=0

Hm(q) s
m

m!

∂sn
=

∞
∑
m=n

Hm(q) sm−n

(m − n)!
(8.342)

where we have used the property

∂f(s − q)
∂s

= −∂f(s − q)
∂q

(8.343)

If we set s = 0 in the equation above we get

(−1)neq
2 ∂ne−q

2

∂qn
=Hn(q) (8.344)

We can then easily generate the polynomials

H0 = 1 , H1 = 2q , H2 = 4q2 − 2 , . . . (8.345)
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The Schrödinger wave functions are then given by

ψn(x) = AnHn(αx)e−
1
2α

2x2

(8.346)

We find the normalization constant An by
∞

∫
−∞

∣ψn(x)∣2 dx = 1 = ∣An∣
2

α

∞

∫
−∞

H2
n(q)e−q

2

dq (8.347)

Now we can determine all of the integrals of this type from the generating
function as follows. We have

∞

∫
−∞

e−s
2+2sqe−t

2+2tqe−q
2

dq =
∞
∑
n=0

∞
∑
m=0

sntm

n!m!

∞

∫
−∞

Hn(q)Hm(q)e−q
2

dq

=
√
πe2st =

√
π

∞
∑
n=0

(2st)n

n!
(8.348)

which says that
∞

∫
−∞

Hn(q)Hm(q)e−q
2

dq =
√
π2nn!δnm (8.349)

The case n =m, gives

An = ( α√
π2nn!

)
1/2

(8.350)

The case n ≠m just corresponds to the orthogonality property of eigenfunctions
of different eigenvalues.

8.6.2. Algebraic Method
The Hamiltonian for this system is

Ĥ = p̂2

2m
+ 1

2
mω2

0 x̂
2 (8.351)

The energy eigenvalue equation is

Ĥ ∣ψ⟩ = E ∣ψ⟩ (8.352)

The commutator between the position and momentum operators is

[x̂, p̂] = ih̵ (8.353)

This information defines a complete solution to the problem when using alge-
braic methods.

We now define the two new operators (like a change of basis)

â =
√
mω0

2h̵
x̂ + ip̂√

2mh̵ω0

and â+ =
√
mω0

2h̵
x̂ − ip̂√

2mh̵ω0

(8.354)
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x̂ =
√

h̵

2mω0
(â + â+) and p̂ = −i

√
mh̵ω0

2
(â − â+) (8.355)

These new operators are not Hermitian. They are Hermitian conjugates, how-
ever. We then have

[â, â+] = 1 and Ĥ = h̵ω0(N̂op +
1

2
) , N̂op = â+â (8.356)

Now suppose that the vector ∣n⟩ is an eigenvector of N̂op = â†â with eigenvalue
n

N̂op ∣n⟩ = n ∣n⟩ (8.357)

Since N̂op and Ĥ differ only by a constant, this implies that ∣n⟩ is also an
eigenvector of Ĥ, i.e.,

Ĥ ∣n⟩ = h̵ω0(N̂op +
1

2
) ∣n⟩ = h̵ω0(n +

1

2
) ∣n⟩ (8.358)

Therefore, ∣En⟩ = ∣n⟩ and the energy eigenvalues are

En = h̵ω0(n +
1

2
) (8.359)

Our task now is to find the allowed values of n.

Now N̂ †
op = (â†â)† = â†â = N̂op, so N̂op is a Hermitian operator. This means that

the eigenvalues of N̂op (and Ĥ) are real numbers. Now we also have the relation

n = ⟨n∣ N̂op ∣n⟩ = ⟨n∣ â+â ∣n⟩ (8.360)

If we let ∣φ⟩ = â ∣n⟩, then the last equation (8.360) can be written

n = ⟨φ ∣ φ⟩ ≥ 0 (8.361)

which says that the eigenvalues of N̂op (the values of n) are non-negative,
realnumbers.

Finally, using [â, â†] = 1, we have

N̂opâ = â+ââ = (ââ+ − 1) â = â (â+â − 1) = â (N̂op − 1) (8.362)

and similarly,
N̂opâ

+ = â+ (N̂op + 1) (8.363)

These operator relations imply that

N̂opâ ∣n⟩ = â(N̂op − 1) ∣n⟩ = (n − 1)â ∣n⟩ (8.364)

which says that â ∣n⟩ is an eigenstate of N̂op with eigenvalue n − 1 or that we
can write

â ∣n⟩ = α ∣n − 1⟩→ ⟨n∣ â+ = α∗ ⟨n − 1∣ (8.365)
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We will assume that the eigenstates are normalized, i.e., ⟨n ∣n⟩ = 1. We then
have

(⟨n∣ â+) (â ∣n⟩) = ∣α∣2 ⟨n − 1 ∣ n − 1⟩ = ∣α∣2

= ⟨n∣ â+â ∣n⟩ = ⟨n∣ N̂op ∣n⟩ = n (8.366)

which says that α =
√
n and we have the relation

â ∣n⟩ =
√
n ∣n − 1⟩ (8.367)

Repeating this procedure we have

â2 ∣n⟩ = â
√
n ∣n − 1⟩ =

√
nâ ∣n − 1⟩ =

√
n(n − 1) ∣n − 2⟩ (8.368)

which implies the following:

if the eigenvalue n exists, then
so do the eigenvalues n − 1, n − 2, .....

This sequence cannot continue forever since we have already shown that the
eigenvalues of N̂op are non-negative.

The only way out of this dilemma is that n is an integer. In this case, we would
eventually arrive at an eigenstate and then get

â ∣1⟩ = ∣0⟩ and â ∣0⟩ = 0 (8.369)

which says the sequence ends. Thus, the eigenvalues of N̂op are the non-negative
integers.

We can also go the other way since similar algebra shows that

N̂opâ
+ ∣n⟩ = â+(N̂op + 1) ∣n⟩ = (n + 1)â+ ∣n⟩ (8.370)

This implies that, in the same way as before,

â+ ∣n⟩ =
√
n + 1 ∣n + 1⟩ (8.371)

Thus, the eigenvalues of N̂op are all the non-negative integers

n = 0,1,2,3,4, . . . . . .

The operators â and â† are called lowering/raising operators from their property
of lowering and raising the eigenvalues by unity. They are also sometimes called
ladder operators because they generate a ladder of equally-spaced eigenvalues.
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Finally, assuming that ⟨0 ∣0⟩ = 1 we have

∣1⟩ = â+√
1
∣0⟩ = â+√

1!
∣0⟩

∣2⟩ = â+√
2
∣1⟩ = â+√

2

â+√
1
∣0⟩ = (â+)2

√
2!

∣0⟩

∣3⟩ = â+√
3
∣2⟩ = â+√

3

(â+)2

√
2!

∣0⟩ = (â+)3

√
3!

∣0⟩

. . . . . .

∣n⟩ = (â+)n√
n!

∣0⟩ (8.372)

and
En = h̵ω0(n +

1

2
) (8.373)

Notice that we were able to derive all of these results without introducing the
wave function (the position representation). If you are desperate to see the
position representation wave functions they can easily be derived from this for-
malism. We have

0 = ⟨x∣ â ∣0⟩ = ⟨x∣
√
mω0

2h̵
x̂ + ip̂√

2mh̵ω0

∣0⟩

=
√
mω0

2h̵
x ⟨x ∣ 0⟩ +

i(−ih̵ d
dx

)
√

2mh̵ω0

⟨x ∣ 0⟩ (8.374)

This is a differential equation for ⟨x ∣0⟩ = ψ0(x) which is the ground state wave
function. We have

dψo(x)
dx

+ mω0

h̵
xψo(x) = 0 (8.375)

which has the solution (when normalized)

⟨x ∣ 0⟩ = ψo(x) = (mω0

πh̵
)

1/4
e−

mω0x
2

2h̵ (8.376)

which agrees with our earlier work.

The higher energy wave functions are obtained using

⟨x ∣ 1⟩ = ψ1(x) = ⟨x∣ â+ ∣0⟩

= ⟨x∣
√
mω0

2h̵
x̂ − ip̂√

2mh̵ω0

∣0⟩

=
√

2mω0

h̵
x ⟨x ∣ 0⟩ (8.377)

and so on.
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The raising and lowering operator formalism is very powerful and will be very
useful beyond non-relativistic quantum mechanics where they will allow the
theory to represent the creation and annihilation of particles.

Coherent States

Let us now use this formalism to do an interesting exercise and show the power
of the methods.

We consider the following question: what are the eigenstates of the lowering
operator â? That is, we write

â ∣α⟩ = α ∣α⟩ with α= ∣α∣ eiφ (8.378)

where ∣α⟩ is the eigenvector of â and α is the eigenvalue, which is not necessarily
real since â is not Hermitian.

Since the vectors ∣n⟩ are eigenvectors of a Hermitian operator, they form a
orthonormal complete set and can be used as an orthonormal basis for the
vector space. We can then write

∣α⟩ =
∞
∑
m=0

bm ∣m⟩ (8.379)

where
⟨k ∣ α⟩ =

∞
∑
m=0

bm ⟨k ∣m⟩ =
∞
∑
m=0

bmδkm = bk (8.380)

Now
⟨n − 1∣ â ∣α⟩ = α ⟨n − 1 ∣ α⟩ = αbn−1 (8.381)

and using
â+ ∣n − 1⟩ =

√
n ∣n⟩→ ⟨n − 1∣ â =

√
n ⟨n∣ (8.382)

we have
⟨n − 1∣ â ∣α⟩ =

√
n ⟨n ∣ α⟩ =

√
nbn (8.383)

or
bn =

α√
n
bn−1 (8.384)

This says that

b1 =
α√
1
b0 , b2 =

α√
2
b1 =

α2

√
2!
b0 (8.385)

or
bn =

αn√
n!
b0 (8.386)

We thus get the final result

∣α⟩ = b0
∞
∑
m=0

αm√
m!

∣m⟩ (8.387)
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Let us now normalize this state (choose b0). We have

⟨α ∣ α⟩ = 1 = ∣b0∣2
∞
∑
m=0

∞
∑
k=0

α∗mαk√
m!

√
k!

⟨k ∣m⟩

= ∣b0∣2
∞
∑
m=0

∞
∑
k=0

α∗mαk√
m!

√
k!
δkm

= ∣b0∣2
∞
∑
m=0

∣α∣2

m!
= ∣b0∣2 e∣α∣

2

(8.388)

which says that
b0 = e−

1
2 ∣α∣

2

(8.389)

and thus

∣α⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

∣m⟩ (8.390)

Now

⟨n ∣α⟩ = probability amplitude that the system in the state
∣α⟩ will be found in the state ∣n⟩

which then says that

Pn = ∣⟨n ∣ α⟩∣2 = e
−∣α∣2 ∣α∣2n

n!
= e

−NNn

n!
(8.391)

is the probability that the system in the state ∣α⟩ will be found in the state ∣n⟩,
where we have defined N = ∣α∣2.

We note that

⟨α∣ â+â ∣α⟩ = ∣α2∣ ⟨α ∣ α⟩ = ∣α2∣ = N = ⟨α∣ N̂op ∣α⟩ (8.392)

or N = the average value or expectation value of the N̂op operator in the state
∣α⟩. This type of probability distribution is called a Poisson distribution, i.e., the
state ∣α⟩ has the number states or energy eigenstates distributed in a Poisson
manner.

Since the states ∣n⟩ are energy eigenstates, we know their time dependence, i.e.,

∣n, t⟩ = e−i
En
h̵ t ∣n⟩ (8.393)

Therefore, we have for the time dependence of the state ∣α⟩

∣α, t⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

∣m, t⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!
e−i

Em
h̵ t ∣m⟩ (8.394)
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This simple operation clearly indicates the fundamental importance of the en-
ergy eigenstates when used as a basis set.

If we are able to expand an arbitrary vector representing some physical system
in the energy basis, then we immediately know the time dependence of that
state vector and hence we know the time dependence of all the probabilities
associated with the state vector and the system.

We will use this result to solve for the time dependence of real physical systems
in later discussions.

Now let us try to understand the physics contained in the ∣α⟩ state vector. In a
given energy eigenstate the expectation value of the position operator is given
by

⟨n, t∣ x̂ ∣n, t⟩ =
√

h̵

2mω0
⟨n, t∣ (â + â+) ∣n, t⟩

=
√

h̵

2mω0
⟨n∣ ei

En
h̵ t(â + â+)e−i

En
h̵ t ∣n⟩

=
√

h̵

2mω0
⟨n∣ (â + â+) ∣n⟩

=
√

h̵

2mω0
⟨n∣ (

√
n ∣n − 1⟩ +

√
n + 1 ∣n + 1⟩) = 0

i.e., it is equal to zero and is independent of time.

On the other hand, in the state ∣α⟩ we find

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
∑
m
∑
k

b∗mbke
i
(Em−Ek)

h̵ t ⟨m∣ (â + â+) ∣k⟩ (8.395)

Now

⟨m∣ (â + â+) ∣k⟩ = ⟨m∣ (
√
k ∣k − 1⟩ +

√
k + 1 ∣k + 1⟩)

=
√
kδm,k−1 +

√
k + 1δm,k+1 (8.396)
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Using this result we have

⟨α, t∣ x̂ ∣α, t⟩

=
√

h̵

2mω0
(
∞
∑
k=1

b∗k−1bk
√
kei

(Ek−1−Ek)

h̵ t +
∞
∑
k=0

b∗k+1bk
√
k + 1ei

(Ek+1−Ek)

h̵ t)

=
√

h̵

2mω0
(
∞
∑
k=1

b∗k−1bk
√
ke−iω0t +

∞
∑
k=0

b∗k+1bk
√
k + 1eiω0t)

=
√

h̵

2mω0
(
∞
∑
k=0

b∗kbk+1

√
ke−iω0t +

∞
∑
k=0

b∗k+1bk
√
k + 1eiω0t)

=
√

h̵

2mω0
b20

⎛
⎝

∞
∑
k=0

α∗kαk+1

√
(k + 1)!k!

√
ke−iω0t +

∞
∑
k=0

α∗k+1αk√
(k + 1)!k!

√
k + 1eiω0t

⎞
⎠

=
√

h̵

2mω0
b20∑

k

1

k!
∣α∣2k (αe−iω0t + α∗eiω0t) (8.397)

Now using α = ∣α∣eiϕ we get

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
b202 ∣α∣∑

k

∣α∣2k

k!
Real(eiφe−iω0t)

= 2x0 ∣α∣ cos(ω0t − φ)(b20∑
k

∣α∣2k

k!
) , x0 =

√
h̵

2mω0

= 2x0 ∣α∣ cos(ω0t − φ) (8.398)

The expectation value of the position operator in the state ∣α⟩ is time-dependent
and behaves like a classical oscillator.

Now let us look at these states in another way. We consider adding a term to
the Hamiltonian of the form

V (x̂) = −F0x̂ (8.399)

so that

Ĥ = h̵ω0(â+â +
1

2
) − F0x0(â + â+) (8.400)

This corresponds to putting a charged oscillator in an electric field and including
the effective dipole interaction energy in the Hamiltonian.

In the corresponding classical mechanics problem, we have

H = p2

2m
+ 1

2
kx2 → oscillator with equilibrium point at x = 0
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and if we add a linear term in x, we get

H = p2

2m
+ 1

2
kx2 − F0x

= p2

2m
+ 1

2
k(x − F0

k
)2 − F

2
0

2k

→ oscillator with equilibrium point at x = F0

k

This suggests that we look for an oscillator solution to the quantum mechanical
problem. In particular, we look for a new set of raising and lowering operators
with the same commutator as the original set.

We can accomplish this by letting

Â = â + β and Â+ = â+ + β where β = a real number (8.401)

The commutator [â, â†] = 1 then implies that [Â, Â†] = 1. The Hamiltonian
becomes

Ĥ = h̵ω0((Â+ − β)(Â − β) + 1

2
) − F0x0((Â − β) + (Â+ − β))

= h̵ω0(Â+Â + 1

2
) − h̵ω0β(Â + Â+) + h̵ω0β

2 − F0x0(Â + Â+) + 2F0x0β

We are still free to choose β. We choose h̵ω0β = −F0x0, which gives

Ĥ = h̵ω0(Â+Â + 1

2
) − F

2
0 x

2
0

h̵ω0
(8.402)

which is just a harmonic oscillator with the energies shifted by a constant.

Now choose the new number states ∣N⟩ where Â†Â ∣N⟩ = N ∣N⟩ as before. We
then have

Ĥ ∣N⟩ = (h̵ω0(Â+Â + 1

2
) − F

2
0 x

2
0

h̵ω0
) ∣N⟩

= (h̵ω0(N + 1

2
) − F

2
0 x

2
0

h̵ω0
) ∣N⟩ = EN ∣N⟩ (8.403)

or we get the same set of energy levels as before, except that they are all dis-
placed by the same constant amount

−F
2
0 x

2
0

h̵ω0

The new ground state is given by

Â ∣N = 0⟩ = (â + β) ∣N = 0⟩ = 0 (8.404)

â ∣N = 0⟩ = −β ∣N = 0⟩ = F0x0

h̵ω0
∣N = 0⟩ (8.405)
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The new ground state is just an eigenstate of â with eigenvalue

α = F0x0

h̵ω0

i.e., the new ground state is a coherent state. These states are called coherent
states because of their properties when they appear in the quantum mechanical
theory of the laser. We will discuss these states in many other contexts later.

Now let us get this state another way that illustrates some new powerful tools.

Using the Translation Operator

In general, a displaced state ∣λ⟩ is given in terms of the displacement operator
(in one dimension) by

∣λ⟩ = e−
i
h̵ p̂λ ∣0⟩ (8.406)

For the harmonic oscillator system

p̂ = 1

i

√
mh̵ω

2
(â − â+) (8.407)

If we choose ∣0⟩ to be the ground state of the oscillator, then we have for the
corresponding displaced ground-state

∣λ⟩ = e
√
mω
2h̵ (â+−â)λ ∣0⟩ (8.408)

By GlauberÕs theorem(see last section of Chapter 8 for a derivation)

e(Â+B̂) = eÂeB̂e−
1
2
[Â,B̂] (8.409)

we have

e
√
mω
2h̵ (â+−â)λ = e

√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe

1
2
mω
2h̵

[â+,â]λ2

= e
√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe−

1
4
mω
h̵ λ2

(8.410)

and thus
∣λ⟩ = e

√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe−

1
4
mω
h̵ λ2

∣0⟩ (8.411)

Now

e−
√
mω
2h̵ âλ ∣0⟩ = (Î + (−

√
mω

2h̵
λâ) + 1

2
(−

√
mω

2h̵
λâ)

2

+ . . .) ∣0⟩

= ∣0⟩ (8.412)
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where we used â ∣0⟩ = 0. Similarly, using (â†)n ∣0⟩ =
√
n! ∣n⟩ we have

e
√
mω
2h̵ â

+λ ∣0⟩ = (Î + (
√
mω

2h̵
λâ+) + 1

2
(
√
mω

2h̵
λâ+)

2

+ . . .) ∣0⟩

= ∣0⟩ +
√
mω

2h̵
λ ∣1⟩ + 1

2
(
√
mω

2h̵
λ)

2

∣2⟩ + . . .

=
∞
∑
n=0

(
√
mω
2h̵
λ)

√
n!

n

∣n⟩ (8.413)

or

∣λ⟩ = e−
1
4
mω
h̵ λ2

∞
∑
n=0

(
√
mω
2h̵
λ)

√
n!

n

∣n⟩ (8.414)

Thus,

∣λ⟩ =
∞
∑
n=0

bn ∣n⟩ (8.415)

where

bn =
e−

N
2 N

n
2

√
n!

,
N

2
= mω

4h̵
λ2 (8.416)

or

Pn = probability of find the system in the state ∣n⟩

= ∣bn∣2 =
e−NNn

n!
(8.417)

which is a Poisson distribution. We, thus, obtain the coherent states once again.

8.7. Green’s Functions

In this section we will give a simple introduction to the Green’s function tech-
nique for solving differential equations. We will return to this subject later on in
more detail. The general form of the differential equations we have been solving
is

L̂ψ(x) = Q(x) where L̂ = E + h̵2

2m

d2

dx2
and Q(x) = V (x)ψ(x) (8.418)

Let us define a new function G(x,x′) such that

L̂G(x,x′) = δ(x − x′) (8.419)

Then the solution to the original differential equation is then given by

ψ(x) = ψ0(x) +
∞

∫
−∞

G(x,x′)Q(x′)dx′ (8.420)
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where ψ0(x) is any function that satisfies the homogeneous equation

L̂ψ0(x) = 0 (8.421)

Proof:

L̂ψ(x) = L̂ψ0(x) + L̂∫ G(x,x′)Q(x′)dx′

= 0 + ∫ (L̂G(x,x′))Q(x′)dx′ = ∫ δ(x − x′)Q(x′)dx′ = Q(x)

One representation of the delta function is given by

δ(x − x′) = 1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′)dp (8.422)

and if we assume that the Fourier transform of G(x,x′) exists (label it I), then
we can write

G(x,x′) = 1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′)I(p)dp (8.423)

Substituting into the differential equation for G(x,x′) we get

L̂G(x,x′) = 1

2πh̵

∞

∫
−∞

(L̂e
i
h̵p(x−x

′))I(p)dp

= 1

2πh̵

∞

∫
−∞

((E + h̵2

2m

d2

dx2
)e

i
h̵p(x−x

′))I(p)dp

= 1

2πh̵

∞

∫
−∞

((E − p2

2m
)e

i
h̵p(x−x

′))I(p)dp

= 1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′) (E − p2

2m
)I(p)dp

= δ(x − x′) = 1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′)dp

This says that

I(p) = 1

E − p2

2m

(8.424)

and hence

G(x,x′) = 1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′) 1

E − p2

2m

dp (8.425)

and

ψ(x) = e
i
h̵px +

∞

∫
−∞

⎡⎢⎢⎢⎢⎣

1

2πh̵

∞

∫
−∞

e
i
h̵p(x−x

′) 1

E − p2

2m

dp

⎤⎥⎥⎥⎥⎦
Q(x′)dx′ (8.426)
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where we have chosen
ψ0(x) = e

i
h̵px (8.427)

as the homogeneous solution for E > 0.

We can rearrange this as the expression

ψ(x) = e
i
h̵px +

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

e−
i
h̵px

′

Q(x′)dx′
⎤⎥⎥⎥⎥⎦

(8.428)

Example #1 - Single Delta Function

Let us choose Q(x) = uδ(x)ψ(x), which is a delta function barrier at the origin.
We then have

ψ(x) = e
i
h̵px +

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

e−
i
h̵px

′

uδ(x′)ψ(x′)dx′
⎤⎥⎥⎥⎥⎦

= e
i
h̵px + uψ(0)

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

(8.429)

How do we evaluate this integral?

There seems to be a mathematical problem since the integrand has poles when

p = ±
√

2mE (8.430)

But being physicists, we know that this problem has a sensible finite solution
(we already solved it earlier).

The key here is that we seemingly have a solution to the original differential
equation with no unknown constants. However, we have not imposed any bound-
ary conditions yet.

This is a solution to a 2nd order differential equation and any complete solution
always requires two boundary conditions.

In this case, the boundary conditions are replaced by a choice of the path of
integration or a choice of how we decide to avoid the two poles.

We must treat the integration variable p as a complex variable with valid physics
represented along the real axis. Once we accept this idea, we can then complete
the definition of the integral by choosing a contour of integration in the complex
p-plane.

This choice is equivalent to setting boundary conditions, as we shall see.

605



This is a very important lesson to learn.

We must always remember that we are physicists dealing with real physical
systems. The equations describing these real systems must have solutions since
the systems exist. When we run into a mathematical dead-end, the way out of
the dilemma is usually to invoke physical arguments. This case of the choice of
contours is just the first example of many that we shall see. The creation of the
delta function by Dirac was another such case. If this is to make sense, then the
possible contour choices should be able to reproduce all of the relevant physics
that we obtained earlier using boundary conditions.

Let us see how. The poles are on the real axis as shown in Figure 8.12 below.

Figure 8.12: Complex p-plane

There are eight possible contour choices which are shown in Figure 8.13 below.

606



Figure 8.13: Possible Contours

We are looking for the contour that corresponds to the boundary conditions
where we end up with only outgoing waves, i.e., where the integral behaves
like a wave traveling to the right (the transmitted wave) for x > 0 and a wave
traveling to the left (the reflected wave) for x < 0.

This is accomplished by choosing contour #3 for x > 0 and contour #4 for
x < 0. In each case, the contour encloses only one pole and using the method of
residues we can easily evaluate the integral.

We get

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

=m
ih̵

e
i
h̵px

√
2mE + p

∣
p=

√
2mE

= m

ih̵
√

2mE
e
i
h̵

√
2mEx , x > 0

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

=m
ih̵

e
i
h̵px

√
2mE − p

∣
p=−

√
2mE

= m

ih̵
√

2mE
e−

i
h̵

√
2mEx , x < 0
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The complete solution to the problem is then (using the absolute value function)

ψ(x) = ψinc(x) +
m ∣u∣
iph̵

e
i
h̵p∣x∣ψ(0) where p =

√
2mE (8.431)

Let x = 0 in this result and we can solve for ψ(0)

ψ(0) = iph̵

iph̵ −m ∣u∣
→ ψ(x) = e

i
h̵px + m ∣u∣

iph̵ −m ∣u∣
e
i
h̵p∣x∣ (8.432)

We then have

ψtrans(x) =
m ∣u∣

iph̵ −m ∣u∣
e
i
h̵px (8.433)

and

S(E) = transmission amplitude = m ∣u∣
iph̵ −m ∣u∣

(8.434)

and

T (E) = transmission probability = E

E + mu2

2h̵2

(8.435)

which is the same result as we found earlier.

Example #2 - Double Delta Function

Let us choose Q(x) = u(δ(x + a) + δ(x − a))ψ(x). We then have

ψ(x) = e
i
h̵px +

∞

∫
−∞

dp

2πh̵

e
i
h̵px

E − p2

2m

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

e−
i
h̵px

′

u(δ(x′ + a) + δ(x′ − a))ψ(x′)dx′
⎤⎥⎥⎥⎥⎦

= e
i
h̵px + uψ(a)

∞

∫
−∞

dp

2πh̵

e
i
h̵p(x−a)

E − p2

2m

+ uψ(−a)
∞

∫
−∞

dp

2πh̵

e
i
h̵p(x+a)

E − p2

2m

Both of these integrals are evaluated using contour #3 for x > a(we get outgoing
waves moving towards the right only from both terms).

We then get

ψ(x) = e
i
h̵px + mu

iph̵
[ψ(a)e

i
h̵p(x−a) + ψ(−a)e

i
h̵p(x+a)] where p =

√
2mE (8.436)

If we find ψ(a) and ψ(−a) by substituting ±a, we can then evaluate the trans-
mission probability as in the single delta function example. We again get the
same result as before.

More about Green’s functions later.
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8.8. Charged Particles in Electromagnetic Fields

If a charged particle moves in an electromagnetic field, the Lorentz force

F⃗ = q (E⃗ + v⃗
c
× B⃗) (8.437)

acts on the particle, where q = charge, E⃗ = electric field, v⃗ = velocity and B⃗ =
magnetic field.

The electric and magnetic fields can be expressed in terms of the electromagnetic
vector and scalar potentials

E⃗ = −∇φ − 1

c

∂A⃗

∂t
and

⇀

B = ∇× A⃗ (8.438)

In order to make the transition to a quantum mechanical discussion, we must
determine the Lagrangian and Hamiltonian for the charged particle in an elec-
tromagnetic field.

The appearance of the velocity vector v⃗ in the Lorentz force law means that we
will need to work with a velocity-dependent potential function. If we insert the
expressions for the electric and magnetic fields into the Lorentz force law we get

F⃗ = q (−∇φ − 1

c

∂A⃗

∂t
+ 1

c
v⃗ × (∇× A⃗)) (8.439)

Using the vector identity

B⃗ × (∇× C⃗) = ∇ (B⃗ ⋅ C⃗) − (B⃗ ⋅ ∇) C⃗ − (C⃗ ⋅ ∇) B⃗ − C⃗ × (∇× B⃗) (8.440)

we get
v⃗ × (∇× A⃗) = ∇ (v⃗ ⋅ A⃗) − (v⃗ ⋅ ∇) A⃗ (8.441)

where we have used the fact that v⃗ is not an explicit function of the position
vector r⃗.

Now, the total derivative relationship is given by

dA⃗

dt
= ∂A⃗
∂t

+ ∂A⃗
∂x

dx

dt
+ ∂A⃗
∂y

dy

dt
+ ∂A⃗
∂z

dz

dt

= ∂A⃗
∂t

+ (v⃗ ⋅ ∇)A⃗ (8.442)

Putting all this together we get

F⃗ = q (−∇ϕ + 1

c
∇(v⃗ ⋅ A⃗) − 1

c

dA⃗

dt
) (8.443)
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The standard Lagrange equation

d

dt
( ∂L
∂ẋj

) − ∂L

∂xj
= 0 where L = T − V = Lagrangian (8.444)

works for a potential V which does not depend on the velocity. However, when
the force law takes the following form

Fj = −
∂U

∂xj
+ d

dt
( ∂U
∂ẋj

) (8.445)

we can still construct a Lagrange equation of the form

d

dt
( ∂L
∂ẋj

) − ∂L

∂xj
= 0 where L = T −U = Lagrangian (8.446)

We can get the Lorentz force law into this form by using a mathematical trick

dAj

dt
= d

dt
( ∂

∂vj
(v⃗ ⋅ A⃗)) = d

dt
( ∂

∂vj
(v⃗ ⋅ A⃗ − qφ)) (8.447)

where we have used the fact that the potential φ is independent of the velocity,
to obtain

Fx = −
∂

∂x
(qφ − q

c
v⃗ ⋅ A⃗) + d

dt
( ∂

∂vx
(qφ − q

c
v⃗ ⋅ A⃗)) (8.448)

This says that we need to choose the generalized potential U as

U = qφ − q
c
v⃗ ⋅ A⃗ (8.449)

and get the Lagrangian

L = T −U = 1

2
mv⃗2 − qφ + q

c
v⃗ ⋅ A⃗ (8.450)

This gives the canonical momentum

p⃗ = ∂L
∂v⃗

=mv⃗ + q
c
A⃗ (8.451)

The canonical momentum is NOT the simply the mechanical momentum but
now includes an extra term proportional to the vector potential(the momentum
of the field!).

The Hamiltonian is derived from the Lagrangian using

H = p⃗ ⋅ v⃗ −L = 1

2m
(p⃗ − q

c
A⃗)

2

+ qϕ (8.452)

This says that the simplest way of coupling the electromagnetic field to the
motion of the particle is to replace the momentum by the quantity

p⃗ − q
c
A⃗ (8.453)
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which includes the momentum associated with the electromagnetic field.

This method of introducing the electromagnetic field into the equations of mo-
tion of a particle is called minimal coupling. We will see its relationship to gauge
invariance shortly.

The transition to quantum mechanics is now done in the standard manner.

Ĥ ∣ψ(t)⟩ = E ∣ψ(t)⟩ = ih ∂
∂t

∣ψ(t)⟩ (8.454)

⟨r⃗∣ Ĥ ∣ψ(t)⟩ = E ⟨r⃗ ∣ ψ(t)⟩ = ih ∂
∂t

⟨r⃗ ∣ ψ(t)⟩ (8.455)

⟨r⃗∣ Ĥ ∣ψ(t)⟩ = Eψ(r⃗, t) = ih∂ψ(r⃗, t)
∂t

(8.456)

where

Ĥ = 1

2m
(p̂ − q

c
A⃗(r̂, t))

2

+ qφ(r̂, t) (8.457)

Using

p̂ = h̵
i
∇ (8.458)

we then get the Schrödinger equation

⟨r⃗∣ [ 1

2m
(p̂ − q

c
A⃗(r̂, t))

2

+ qφ(r̂, t)] ∣ψ(t)⟩ = Eψ(r⃗, t) = ih∂ψ(r⃗, t)
∂t

(8.459)

[ 1

2m
( h̵
i
∇− q

c
A⃗(r⃗, t))

2

+ qφ(r⃗, t)] ⟨r⃗ ∣ ψ(t)⟩ = Eψ(r⃗, t) = ih∂ψ(r⃗, t)
∂t

(8.460)

1

2m
( h̵
i
∇− q

c
A⃗(r⃗, t))

2

ψ(r⃗, t) + qφ(r⃗, t)ψ(r⃗, t) = Eψ(r⃗, t) = ih∂ψ(r⃗, t)
∂t

(8.461)

The Schrödinger equation for a charged particle in an electromagnetic field
must be invariant under a gauge transformation (since Maxwell’s equations are
so invariant), which is represented by the relations

A⃗→ A⃗′ = A⃗ +∇S(r⃗, t) (8.462)

φ→ φ′ = φ − 1

c

∂S(r⃗, t)
∂t

(8.463)

where S(r⃗, t) is an arbitrary function. In order for the Schrödinger equation to
be invariant it must be transformed to

1

2m
( h̵
i
∇− q

c
A⃗′(r⃗, t))

2

ψ′(r⃗, t) + qφ′(r⃗, t)ψ′(r⃗, t) = ih∂ψ
′(r⃗, t)
∂t

(8.464)

where the wave function is only changed by an overall phase factor, i.e.,

ψ′(r⃗, t) = ψ(r⃗, t)e
iq
h̵cS(r⃗,t) (8.465)
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Proof:

1

2m
( h̵
i
∇− q

c
A⃗′(r⃗, t))

2

ψ′(r⃗, t) + qφ′(r⃗, t)ψ′(r⃗, t) = ih∂ψ
′(r⃗, t)
∂t

(8.466)

1

2m
( h̵
i
∇− q

c
A⃗ − q

c
∇S)

2

ψe
iq
h̵cS + (qφ − q

c

∂S

∂t
)ψe

iq
h̵cS = ih∂ψe

iq
h̵cS

∂t
(8.467)

Using the identities

∂ψe
iq
h̵cS

∂t
= ∂ψ
∂t
e
iq
h̵cS + iq

h̵c

∂S

∂t
ψe

iq
h̵cS (8.468)

( h̵
i
∇− q

c
A⃗ − q

c
∇S)(ψe

iq
h̵cS) = e

iq
h̵cS ( h̵

i
∇− q

c
A⃗)ψ (8.469)

we get the original Schrödinger equation back.

This result shows that the solutions of the gauge-transformed Schrödinger equa-
tion still describe the same physical states.

The wave functions or state vectors differ by a phase factor that depends on
space and time and thus, the invariance is LOCAL rather than GLOBAL (a
phase factor independent of space and time).

It is then clear that it is NOT the canonical momentum p̂ = −ih̵∇ (whose
expectation value is NOT gauge invariant), but the genuine kinetic momentum

p̂ − q
c
A⃗(r̂, t) (8.470)

(whose expectation value IS gauge invariant), that represents a measurable
quantity.

In any physical system, if the momentum operator p̂ appears, then it must
always be replaced by

p̂ − q
c
A⃗(r̂, t)

if we turn on an electromagnetic field. This is the only way to guarantee gauge
invariance in quantum mechanics.

Quantum mechanics + electromagnetism requires this minimal coupling for
gauge invariance to be valid. It is important to remember that local gauge
transformations of the electromagnetic potentials requires that wave functions
or state vectors transform via local phase changes, which means a phase factor
that depends on space and time.

Feynman showed that the effect of turning on a magnetic field is to multiply
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the wave functions or probability amplitudes by the phase factor

exp

⎡⎢⎢⎢⎢⎢⎣

iq

h̵c
∫
path

d⃗̀⋅ A⃗(r⃗, t)
⎤⎥⎥⎥⎥⎥⎦

(8.471)

The Aharonov-Bohm Effect

The extra phase factor has a rather striking and unexpected consequence.

Let A⃗ be independent of t and consider the possible interference between the
motions along two different paths as shown in Figure 8.14 below.

Figure 8.14: 2-Path Experiment

When a magnetic field is turned on, the relative phase for the two paths (1 and
2) is changed by a factor

q

h̵c

⎡⎢⎢⎢⎢⎢⎣
∫

path1

d⃗̀⋅ A⃗ − ∫
path2

d⃗̀⋅ A⃗
⎤⎥⎥⎥⎥⎥⎦
= qΦ
h̵c

(8.472)

where Φ = the total magnetic flux passing through the loop formed by the two
paths or the flux enclosed by the loop (this is just AmpereÕs law).

Now consider the experimental setup shown in Figure 8.15 below.

The cylindrical solenoid between the two slits generates a magnetic field out
of the page and confined to the region of the solenoid. This implies that the
particles are traveling in regions free of any magnetic fields.

The enclosed flux is NOT zero, however. As the flux is increased, the relative
phase between the two paths changes as described above and the diffraction
pattern on the screen changes. This occurs even though there are no magnetic
fields present along the paths.

There does exist, however, a nonzero vector potential in these regions and the
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Figure 8.15: Aharonov-Bohm Experiment

relative phase is changing because the vector potential is changing.

This illustrates most powerfully that it is the electromagnetic potential, rather
than the electromagnetic fields, as one might assume from MaxwellÕs equa-
tions, that are the fundamental physical quantities in quantum mechanics. This
is called the Aharonov-Bohm effect.

Classically, the electric and magnetic fields, E⃗ and B⃗ are the physically relevant
quantities, since they determine the Lorentz force. In regions where the electric
and magnetic fields are zero, a charged particle feels no force. The vector and
scalar potentials A⃗ and φ serve in classical physics only as auxiliary quantities.

In quantum mechanics, the vector potential A⃗(r⃗) is the fundamental physical
field. The wave function, however, always has the property that physical vari-
ables and physical effects only depend on gauge-invariant quantities.

More about this later.

8.9. Time Evolution of Probabilities

Now that we have solved for the eigenvectors and eigenvalues of several systems
we will return to a discussion of the time evolution of probability amplitudes.
Along the way we will reinforce the details about the most fundamental proce-
dure in quantum mechanics.
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Suppose we have some physical system that is describable by quantum mechan-
ics. We would like to be able to answer the following fundamental question?

If the system is in the state ∣α⟩ at time t = 0,
what is the probability that it will be in the
state ∣β⟩ at time t?

These two states are usually defined as follows:

∣α⟩ = initial state = state prepared by experimenter
∣β⟩ = final state = state defined by measuring device

The formal answer to the question is

Pβα(t) = ∣Amplitudeβα(t)∣2 = ∣Aβα(t)∣2 = ∣⟨β∣ Û(t) ∣α⟩∣
2

(8.473)

where Û(t) is the time evolution operator. Let us assume for simplicity at this
stage that the Hamiltonian Ĥ does not explicitly dependent on time t. From
our earlier discussions, we then have

Û(t) = e−iĤt/h̵ (8.474)

so that the probability amplitude becomes

Aβα(t) = ⟨β∣ Û(t) ∣α⟩ = ⟨β∣ e−
i
h̵ Ĥt ∣α⟩ (8.475)

The most important rule in quantum mechanics is the following:

If you are evaluating an amplitude involving a
particular operator, Ĥ in this case, then switch
to a basis for the space corresponding to the
eigenvectors of the that operator.

This basis is called the HOME space.

This is carried out by inserting identity operators as sums of projection operators
written in the energy eigenvector basis:

Aβα(t) = ⟨β∣ e−
i
h̵ Ĥt ∣α⟩ = ⟨β∣ Îe−

i
h̵ ĤtÎ ∣α⟩

=∑
E

∑
E′

⟨β ∣ E⟩ ⟨E∣ e−
i
h̵ Ĥt ∣E′⟩ ⟨E′ ∣ α⟩ (8.476)

where

Ĥ ∣E⟩ = E ∣E⟩ and Ĥ ∣E′⟩ = E′ ∣E′⟩ (8.477)
⟨E ∣ E′⟩ = δEE′ (8.478)

∑
E

∣E⟩ ⟨E∣ = Î =∑
E′

∣E′⟩ ⟨E′∣ (8.479)
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It is clear that the time evolution calculation is most easily done in this basis.

We then have

Aβα(t) =∑
E

∑
E′

⟨β ∣ E⟩ ⟨E∣ e−
i
h̵E

′t ∣E′⟩ ⟨E′ ∣ α⟩

=∑
E

∑
E′

e−
i
h̵E

′t ⟨β ∣ E⟩ ⟨E ∣ E′⟩ ⟨E′ ∣ α⟩

=∑
E

∑
E′

e−
i
h̵E

′t ⟨β ∣ E⟩δEE′ ⟨E′ ∣ α⟩

=∑
E

e−
i
h̵E

′t ⟨β ∣ E⟩ ⟨E ∣ α⟩ (8.480)

Let us now describe a typical procedure:

1. Determine the initial state of the system = ∣α⟩

2. Expand the initial state in terms of the energy basis

∣α⟩ =∑
E′′

∣E′′⟩ ⟨E′′ ∣α⟩

which means we know the coefficients ⟨E′′ ∣α⟩

3. Expand the final state in terms of the energy basis

∣β⟩ =∑
E′′

∣E′′⟩ ⟨E′′ ∣β⟩

which means we know the coefficients ⟨E′′ ∣β⟩

4. Calculate the amplitude and probability.

Example - Infinite Square Well System

Suppose that a particle in an infinite square well [−a/2,+a/2] is initially in the
state ∣α⟩, such that

⟨x ∣α⟩ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x < 0
2√
a

0 ≤ x ≤ a
4

0 x > a
4

(8.481)

Now we have found that

⟨x ∣E⟩ =
⎧⎪⎪⎨⎪⎪⎩

2√
a

cos nπx
a

n odd
2√
a

sin nπx
a

n even
(8.482)

where

En =
n2π2h̵2

2ma2
n = 1,2,3,4, . . . (8.483)
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Therefore, we get

⟨En ∣ α⟩ =

a
2

∫
− a2

⟨En ∣ x⟩ ⟨x ∣ α⟩dx = 2√
a

a
4

∫
0

⟨En ∣ x⟩dx

= 2
√

2

nπ

⎧⎪⎪⎨⎪⎪⎩

sin nπ
4

n odd
− cos nπ

4
n even

(8.484)

or

∣α⟩ = ⟨E1 ∣ α⟩ ∣E1⟩ + ⟨E2 ∣ α⟩ ∣E2⟩ + ⟨E3 ∣ α⟩ ∣E3⟩ + . . .

= 2

π
∣E1⟩ +

2

3π
∣E3⟩ +

2
√

2

4π
∣E4⟩ +

2

5π
∣E5⟩ −

2

7π
∣E7⟩ −

2
√

2

8π
∣E8⟩ + . . . (8.485)

If we assume that the final state ∣β⟩ is an energy eigenstate, say ∣En⟩, we then
have the probability amplitude that the particle started out in state ∣α⟩ at t = 0
is found in the state ∣En⟩ at time t is

Anα(t) =∑
E

e−
i
h̵Et ⟨En ∣ E⟩ ⟨E ∣ α⟩ = e−

i
h̵Ent ⟨En ∣ α⟩ (8.486)

and the corresponding probabilities are

Pnα(t) = ∣⟨En ∣ α⟩∣2 (8.487)

which is independent of time. A plot of these fixed probabilities versus n is
shown in Figure 8.16 below.

Figure 8.16: Probabilities
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If, on the other hand, we assume that the final state is a linear combination of
two energy eigenstates, say,

∣β⟩ = 1√
2
∣E1⟩ +

1√
2
∣E3⟩ (8.488)

then we have the probability amplitude that the particle started out in state ∣α⟩
at t = 0 is found in the state ∣β⟩ at time t is

Aβα(t) =∑
E

e−
i
h̵Et ⟨β ∣ E⟩ ⟨E ∣ α⟩

= 1√
2
(e−

i
h̵E1t ⟨E1 ∣ α⟩ + e−

i
h̵E3t ⟨E3 ∣ α⟩)

= 1√
2
∣E1⟩ +

1√
2
∣E3⟩ (8.489)

and the corresponding probability is

Pβα(t) = ∣⟨β ∣ α⟩∣2 = 1

2
∣e−

i
h̵E1t ⟨E1 ∣ α⟩ + e−

i
h̵E3t ⟨E3 ∣ α⟩∣

2

= 1

2
∣e−

i
h̵E1t 2

π
+ e−

i
h̵E3t 2

3π
∣
2

= 2

π2
∣1
3
+ e

i
h̵ (E3−E1)t∣

2

= 2

π2
(1

9
+ 2

3
cos [ 1

h̵
(E3 −E1)t] + 1)

= 20

9π2
(1 + 3

5
cos [ 1

h̵
(E3 −E1)t]) (8.490)

which is dependent on time. In this case the probability of observing this final
state oscillates between 0.18 and 0.72.

8.10. Numerical Techniques

We now introduce a numerical scheme for solving the 1-dimensional Schrödinger
equation. As we have seen the 1-dimensional Schrödinger equations takes the
form

− h̵
2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) (8.491)

We will consider systems with the boundary conditions

ψ(x) and
dψ(x)
dx

are continuous and finite for all x (8.492)

lim
x→±∞

ψ(x) = 0 (8.493)
∞

∫
−∞

∣ψ(x)∣2 dx <∞ or the wave function is normalizable (8.494)
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Let us illustrate the procedure with the harmonic oscillator potential (so we can
check our results against the exact answer). The potential energy function is

V (x) = 1

2
mω2x2 (8.495)

The Schrödinger equation becomes

d2ψ(x)
dx2

= 2m

h̵2
(1

2
mω2x2 −E)ψ(x) (8.496)

For real systems the very large or very small numerical values of m, ω, and h̵
can lead to calculational difficulties. For calculational simplicity we will choose

h̵ =
√

2 and m = ω = 1 (8.497)

Since h̵ω has units of energy, when the calculation is finished we can convert
our numerical energy values back to real physical units by the operation

Ereal = Enumerical
h̵ω√

2
(8.498)

We now have the equation

d2ψ(x)
dx2

= (0.5x2 −E)ψ(x) (8.499)

to solve for the allowed E values.

This potential energy function satisfies V (x) = V (−x), so that the solutions will
have definite parity or they will be even (ψ(x) = ψ(−x)) or odd (ψ(x) = −ψ(−x)).

We arbitrarily choose solutions of the form

even ψ(0) = 1 and dψ(0)
dx

= 0

odd ψ(0) = 0 and dψ(0)
dx

= 1

The particular numerical values chosen are arbitrary since the wave functions
we find have to be normalized anyway. These choices correspond to choosing
wave function that look like those in Figure 8.17 below

Figure 8.17: Initial Values
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in order to satisfy this parity property.

The solution method then follows these steps:

1. choose
ψ(0) and

dψ(0)
dx

(choose an even or odd solution type)

2. pick a starting energy value

3. with the chosen boundary conditions and energy value, break the second-
order differential equation into two first-order differential equations and
use a Runge-Kutta method to solve for the values of ψ(x) for x > 0, i.e.,
if we let

y = dψ
dx
→ dy

dx
= d

2ψ

dx2

then we get the two coupled first-order differential equations

dy

dx
= (0.5x2 −E)ψ and

dψ

dx
= y

4. the fourth-order Runge-Kutta equations corresponding to these equations
are then

xk+1 = xk + h

ψk+1 = ψk +
h

6
(f1 + 2f2 + 2f3 + f4)

yk+1 = yk +
h

6
(g1 + 2g2 + 2g3 + g4)

where

f(x,ψ, y,E) = y and g(x,ψ, y,E) = (0.5x2 −E)ψ (8.500)

and

f1 = f(xk, ψk, yk,E)

f2 = f(xk +
h

2
, ψk +

h

2
f1, yk +

h

2
g1,E)

f3 = f(xk +
h

2
, ψk +

h

2
f2, yk +

h

2
g2,E)

f4 = f(xk + h,ψk + hf3, yk + hg3,E)
g1 = g(xk, ψk, yk,E)

g2 = g(xk +
h

2
, ψk +

h

2
f1, yk +

h

2
g1,E)

g3 = g(xk +
h

2
, ψk +

h

2
f2, yk +

h

2
g2,E)

g4 = g(xk + h,ψk + hf3, yk + hg3,E)
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5. an allowed energy value (an eigenvalue of the Hamiltonian) occurs when
the numerical solution approaches zero (exponential decrease) for large
values of x

6. since it is not possible to find the energy eigenvalues exactly (due to com-
puter roundoff errors) the numerical solution will always diverge (get very
large (either positive or negative)) at large values of x

7. the solution method can only home in on the energy eigenvalue

The program code below carries out the following process:

1. choose an energy eigenvalue lower than the desired value

2. choose an energy step value

3. the solution will eventually diverge (say it gets large positively)

4. increase the energy value by the energy step

5. the solution will eventually diverge (say it still gets large positively)

6. increase the energy value by the energy step

7. the solution will eventually diverge negatively

8. an energy eigenvalue is now located between this energy value (where it
diverged negatively) and the last energy value (where it diverged posi-
tively)

9. change the energy value back to the previous value (where it diverged
positively) and decrease the energy step by a factor of 10

10. repeat the process until it diverges negatively again

11. change the energy value back to the previous value (where it diverged
positively) and decrease the energy step by a factor of 10

12. continue until the desired accuracy is reached

Sample programs (written in the MATLAB language)

function z=sq(x,psi,y,alpha)
if (x < 1)
z=-15*(1-alpha)*psi;

else
z=15*alpha*psi;

end
% energy 0 < alpha < 0; search for eigenvalues
% choose E lower than desired eigenvalue; choose estep a reasonable size
% and to move you in direction of an eigenvalue; program will home in
% and stop when estep/E<.0001; uses 4th order Runge-Kutta method
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format long
estep=-0.05;alpha=0.99;h=0.05;n=0;Eold=10^25;
while 1
n=n+1;psi=1;y=0;
for j=0:1000
f1=y;
g1=sq(j*h,psi,y,alpha);f2=y+h*g1/2;
g2=sq((j+0.5)*h,psi+h*f1/2,y+h*g1,alpha);f3=y+h*g2/2;
g3=sq((j+0.5)*h,psi+h*f2/2,y+h*g2/2,alpha);f4=y+h*g3;
g4=sq((j+1)*h,psi+h*f3,y+h*g3,alpha);
psi=psi+h*(f1+2*f2+2*f3+f4)/6;
if (abs(psi) > 100)
if (n == 1)
check=sign(psi); alpha=alpha+estep;

else
if (check ~= sign(psi))
alpha=alpha-estep; estep = estep/10;

else
alpha=alpha+estep;

end
end
break;

end
y=y+h*(g1+2*g2+2*g3+g4)/6;

end
stp=(abs(estep/alpha));
[alpha,stp]
if (stp < 0.0001)
break;

end
end
format short

A typical run looks like the table shown below.

Using the conversion rule the energy eigenvalue is

Ereal = (
√

2

2
) h̵ω√

2
= 1

2
h̵ω (8.501)

which is exactly correct for the lowest even state eigenvalue (the ground state).
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E − V alue StepSize
0.150000 0.333333
0.200000 0.250000
0.250000 0.200000
0.300000 0.166667
0.350000 0.142857
0.400000 0.125000
0.450000 0.111111
0.500000 0.100000
0.550000 0.0909091
0.600000 0.0833333
0.650000 0.0769231
0.700000 0.0714286
0.750000 0.0666667
0.700000 0.0071428
0.705000 0.0070922
0.710000 0.0070422
0.705000 0.0007092
0.705500 0.0007087
0.706000 0.0007082
0.706500 0.0007077
0.707000 0.0007072
0.707500 0.0007067
0.707000 0.0000707

Table 8.1: Run Values

8.11. Translation Invariant Potential - Bands

We now consider a potential that is periodic in space, which means that it is
translationally invariant, i.e.,

V (x) = V (x + a) where a = some fixed distance (8.502)

This might represent an electron in a 1-dimensional crystal lattice, where a is
the distance between atoms. The change in the allowed energy spectrum caused
by the periodicity of the lattice is rather striking.

The Hamiltonian of the system is

Ĥ(x, p) = p2

2m
+ V (x) (8.503)

This Hamiltonian is invariant if we translate a fixed distance a

Ĥ(x + a, p) = p2

2m
+ V (x + a) = p2

2m
+ V (x) = Ĥ(x, p) (8.504)
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This means that the transformation operator T̂ (a) that corresponds to a trans-
lation by a distance a commutes with the Hamiltonian

[Ĥ, T̂ (a)] = 0 (8.505)

and thus they must share a set of eigenfunctions.

From our earlier discussion, the translation operator has the defining property
that, if the state ∣ψ⟩ has the wave function ⟨x ∣ψ⟩ in the position representation,
then the state T̂ (a) ∣ψ⟩ has the wave function

⟨x∣ T̂ (a) ∣ψ⟩ = ⟨x + a ∣ ψ⟩ (8.506)

Let us rederive the eigenfunctions of T̂ (a). If ∣ψ⟩ is an eigenstate of the T̂ (a)
operator, then we must have

T̂ (a) ∣ψ⟩ = λ ∣ψ⟩ where λ = the eigenvalue (8.507)

and thus
ψ(x + a) = ⟨x∣ T̂ (a) ∣ψ⟩ = λ ⟨x ∣ ψ⟩ = λψ(x) (8.508)

With hindsight, we write λ in the form eika which defines k. We then have

ψ(x + a) = eikaψ(x) (8.509)

If we define
uk(x) = e−ikxψ(x) (8.510)

we then have that

ψ(x + a) = eik(x+a)uk(x + a) = eikaψ(x) = eikaeikxuk(x) (8.511)
uk(x + a) = uk(x) (8.512)

which says that uk(x) is also periodic in space with period a. The eigenfunctions
of T̂ (a) are then given by

ψ(x) = eikxuk(x) (8.513)

which is a plane wave modulated by a function with the periodicity of the lattice
(potential).

This type of wave function is called a Bloch wave.

We note that k must be real since if k were not real, then the eigenfunction
would diverge as x gets large and thus be unrenormalizable, which is not al-
lowed.

Since Ĥ and T̂ (a) must share a set of eigenfunctions, we can construct a com-
plete set of energy eigenstates in the form of Bloch waves. This means that we
can find at least one energy eigenstate for each possible λ = eika, since all λ are
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eigenvalues of T̂ (a).

Note also that the values k and k+2πn/a give the same eigenvalue and thus we
can restrict our attention to k values in the interval

−π
a
≤ k ≤ π

a
(8.514)

and we will be including all possible eigenvalues of T̂ (a).

Example

Let us now consider the specific example of a 1-dimensional periodic array of
delta functions

V (x) =
∞
∑
n=−∞

v0δ(x − na) (8.515)

which corresponds to the so-called Kronig-Penney model.

In the interval 0 < x < a the potential vanishes and the solution to the Schrödinger
equation is of the form

ψ(x) = Aeiqx +Be−iqx where E = h̵
2q2

2m
(8.516)

Therefore, in the interval 0 < x < a, we must have

uk(x) = Aei(q−k)x +Be−i(q+k)x (8.517)

The coefficients A and B are fully determined by two conditions:

1. ψ(x) and hence uk(x) must be continuous at the lattices sites

lim
η→0

(uk(η) − uk(−η))→ 0

Periodicity then says that uk(−η) = uk(a−η) and hence we must also have

lim
η→0

(uk(η) − uk(a − η))→ 0

which gives

A +B = Aei(q−k)a +Be−i(q+k)a (condition 1) (8.518)

2. dψ(x)/dx is discontinuous at the lattice points, as we showed earlier, as
follows:

lim
η→0

h̵2

2m

⎛
⎝
dψ(x)
dx

∣
x=η

− dψ(x)
dx

∣
x=−η

⎞
⎠
= v0ψ(0) (8.519)
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We have

lim
η→0

⎛
⎝
dψ(x)
dx

∣
x=η

⎞
⎠
= iq(A −B)

lim
η→0

⎛
⎝
dψ(x)
dx

∣
x=−η

⎞
⎠
= e−ika lim

η→0

⎛
⎝
dψ(x)
dx

∣
x=a−η

⎞
⎠

= e−ikaiq (Aeiqa −Be−iqa)
ψ(0) = A +B

which gives

h̵2

2m
iq (A −B −Aei(q−k)a +Be−i(q+k)a)

= v0(A +B) (condition 2) (8.520)

We only need these two conditions and do not need to worry about all of the
rest of the potential because of the periodicity.

We solve for the ratio A/B in each equation and equate the two results to get
a transcendental equation for q in terms of k (which then gives us the allowed
energy values). We get the equation

coska = cos qa + mv0

qh̵2
sin qa (8.521)

Now for any given value of k we must have

−1 ≤ coska ≤ +1 (8.522)

Therefore, if we plot

coska = cos qa + mv0a

h̵2

sin qa

qa
versus qa (8.523)

the only allowed q values are between the two lines representing ±1 as shown in
Figure 8.18 below.

i.e., q must always lie in the unshaded areas. For each value of coska there are
an infinite number of solutions. Taking k in the range −π/a ≤ k ≤ π/a , we can
plot

E = h̵
2q2

2m
versus ka

as shown in Figure 8.19 below.

The possible energy values lie in bands, with gaps between them. This structure
of the energy spectrum with bands and gaps occurs for all periodic potentials.

It is the basis of the explanation of energy bands in solids, which we will discuss
in detail later.
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Figure 8.18: Allowed q values

Figure 8.19: Bands and Gaps

8.12. Closed Commutator Algebras and Glauber’s
Theorem

The earlier example of the solution of the harmonic oscillator potential illustrates
a general rule about algebraic solutions.

In that example we had the following commutator algebra

[â, â+] = Î , [â, N̂] = â , [â+, N̂] = −â+ (8.524)

In this algebra, all the commutators only involve a closed set of operators. In
this case the set is {â, â†, and N̂}.

When the algebra is closed, we call it a closed commutator algebra.

If we have a closed commutator algebra, then, in general, we can completely
solve the eigenvalue/eigenvector problem for these operators using algebraic
methods.

Some examples are the harmonic oscillator, systems that can be factored, and,
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as we shall show later, angular momentum operators, and the hydrogen atom
system.

A very useful algebraic result is Glauber’s Theorem, which we now prove.

For two operators Â and B̂ assume that

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 (8.525)

Now let x be a parameter and consider the operator

f(x) = eÂxeB̂x (8.526)

We then get

df

dx
= ÂeÂxeB̂x + eÂxB̂eB̂x = ÂeÂxeB̂x + eÂxB̂e−ÂxeÂxeB̂x

= (Â + eÂxB̂e−Âx) eÂxeB̂x = (Â + eÂxB̂e−Âx) f(x)

Our assumption (8.526) implies that (proof later)

[B̂, Ân] = nÂn−1 [B̂, Â] (8.527)

and

[B̂, e−Âx] =∑
n

(−1)nx
n

n!
[B̂, Ân]

=∑
n

(−1)n xn

(n − 1)!
Ân−1 [B̂, Â]

= −e−Âx [B̂, Â]x (8.528)

which gives

[B̂, e−Âx] = B̂e−Âx − e−ÂxB̂ = −e−Âx [B̂, Â]x (8.529)

eÂxB̂e−Âx = B̂ − [B̂, Â]x (8.530)

Thus, we have

df

dx
= (Â + eÂxB̂e−Âx) f(x) = (Â + B̂ + [Â, B̂]x) f(x) (8.531)

Now, our assumption (8.526) says that

[(Â + B̂), [Â, B̂]] = 0 (8.532)

This means that we can treat them like numbers to solve the above differential
equation, i.e., we do not have to be careful above operator order. The solution
is

f(x) = eÂxeB̂x = e(Â+B̂)xe
1
2
[Â,B̂]x2

(8.533)
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Letting x = 1 we have Baker-Hausdorf identity (Glauber’s theorem)

e(Â+B̂) = eÂeB̂e−
1
2
[Â,B̂] (8.534)

This leaves us to prove (8.528). Consider some special cases to see how it works.

n = 1 [B̂, Â] = nÂn−1 [B̂, Â]

n = 2 [B̂, Â2] = B̂Â2 − Â2B̂ = [[B̂, Â] , Â] + 2ÂB̂Â + 2Â2B̂

= 2ÂB̂Â + 2Â2B̂ = 2Â [B̂, Â] = nÂn−1 [B̂, Â]

n = 3 [B̂, Â3] = B̂Â3 − Â3B̂ = B̂Â2Â − ÂÂ2B̂

= [[B̂, Â2] + Â2B̂] Â − Â [B̂Â2 − [B̂, Â2]]

= 2Â [B̂, Â] Â + Â2B̂Â − ÂB̂Â2 + 2Â2 [B̂, Â]

= 4Â2 [B̂, Â] + Â2B̂Â − Â3B̂ − 2Â2 [B̂, Â]

= 2Â2 [B̂, Â] + Â2 [B̂, Â] = 3Â2 [B̂, Â] = nÂn−1 [B̂, Â]

This suggests a general proof by induction. Assume that

[B̂, Ân−1] = (n − 1)Ân−2 [B̂, Â]

is true. Then, we have

[B̂, Ân] = B̂Ân − ÂnB = B̂Ân−1Â − ÂÂn−1B̂

= [Ân−1B̂ + (n − 1)Ân−2 [B̂, Â]] Â − Â [B̂Ân−1 − (n − 1)Ân−2 [B̂, Â]]

= 2(n − 1)Ân−1 [B̂, Â] + Ân−1B̂Â − ÂB̂Ân−1

= 2(n − 1)Ân−1 [B̂, Â] + Ân−1B̂Â − Â [Ân−1B̂ + (n − 1)Ân−2 [B̂, Â]]

= (n − 1)Ân−1 [B̂, Â] + Ân−1 [B̂, Â] = nÂn−1 [B̂, Â]

Done!

8.13. Quantum Interference with Slits

In the experiments considered here, we measure the y-component of momentum
for a particle passing through a system of slits. The source-slit system is the
preparation apparatus that determines the state vector. Recognizing that a
system of slits is a position-measuring device allows us to ascertain that the
state vector is a position state. Then, writing the state vector in momentum
space provides a straightforward calculation for the probability amplitude and
its corresponding probability function. Interference effects, if any, are inherent in
the probability function. We determine the statistical distribution of scattered
particles for four different slit systems. The results are in agreement with the
well-known interference patterns obtained in classical wave optics.

629



8.13.1. Introduction
The double-slit experiment is the archetypical system used to demonstrate quan-
tum mechanical behavior. It is said by Feynman “to contain the only mystery”
in all of quantum mechanics. Numerous textbooks and journal articles discuss
slit interference, usually in conjunction with wave-particle duality. Most authors
emphasize that classical physics cannot describe the double slit experiment with
particles. Yet, bolstered by the de Broglie hypothesis, they still ascribe to the
classical maxim, “Waves exhibit interference. Particles do not”. They then con-
clude that, “When particles exhibit interference, they are behaving like waves”.
Then the subsequent analysis is simply wave theory, and any interference effects
are made to agree with Young’s experiment.

Thus, classical wave optics, rather than quantum mechanics, is used to explain
quantum interference. For example, Ohanian states “ ... the maxima of this
interference pattern are given by a formula familiar from wave optics”. Some
authors do suggest that a quantum mechanical approach is lacking. Liboff tells
us, “The first thing to do is to solve Schrödinger’s equation and calculate ∣ψ∣2
at the screen”. Ballentine makes a similar statement when discussing diffraction
from a periodic array. “ ..... solve the Schrödinger equation with boundary con-
ditions corresponding to an incident beam from a certain direction, and hence
determine the position probability density ∣Ψ(x⃗)∣2 at the detectors” ’. But he
then says, “an exact solution of this equation would be very difficult to obtain,
..... ”. The difficulty according to Merzbacher (5) is that, “A careful analysis of
the interference experiment would require detailed consideration of the bound-
ary conditions at the slits”.

In spite of these misgivings, quantum mechanics does provide a straightforward
calculation for the probability distribution of the scattered particles.

Quantum mechanics is a theory about observations and their measurement. Its
postulates provide, among other things, a set of instructions for calculating the
probability of obtaining a particular result when an observable is measured.
These probability calculations require a state vector ∣ψ⟩, which is determined
by the preparation procedure. Its representation is dictated by the observable
being measured

∣ψ⟩ =∑
k

∣ak⟩ ⟨ak ∣ ψ⟩ (8.535)

The basis vectors ∣ak⟩ are the eigenvectors of the measured observable Â. Having
obtained the state vector ∣ψ⟩, the probability that a measurement of observable
Â yields the value ak is given by the Born postulate

Pk = ∣⟨ak ∣ ψ⟩∣2 (8.536)

The state vector ∣ψ⟩ and the probability distribution ∣ ⟨ak ∣ψ⟩ ∣2 are unique for a
given experiment. State preparation and measurement are discussed at length
in Chapter 15.
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We expect, then, that a quantum mechanical description of a slit experiment
will

1. clearly define which observable is being measured,

2. describe the preparation procedure that determines the state vector

3. yield the probability function for the scattered particles.

8.13.2. Probability functions and quantum interference

The experiment considered here consists of the apparatus shown in Figure 8.20
below. For such an experiment, the source-slit system, which determines the
possible y-coordinate(s) of the particle at the slits, is the preparation apparatus.

Figure 8.20: Particle Scattering from Slits

A particle originating at the source is scattered at angle θ by the system of
slits. Thus, a particle passing through the slits has undergone a unique state
preparation that determines the probability of scattering at angle θ.

The state vector is a position state. Because position and momentum are non-
commuting observables, a particle passing through slits always has an uncer-
tainty in its y-component of momentum. It can be scattered with any one of
the continuum of momentum eigenvalues py = p sin θ, where −π/2 ≤ θ ≤ π/2.
Measurement of a well-defined scattering angle θ constitutes a measurement of
the observable p̂y and, therefore, the basis vectors in Hilbert space are the mo-
mentum eigenvectors ∣py⟩.
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The probability that a particle leaves the slit apparatus with momentum py is,
then,

Ppy = ∣⟨py ∣ ψ⟩∣2 (8.537)

It is this probability function that exhibits quantum interference. Its maxima
and minima, if any, correspond to constructive and destructive interference re-
spectively.

In the position representation, the free-particle momentum eigenfunction corre-
sponding to the eigenvalue py is

⟨y ∣ py⟩ =
1√
2π
eipyy/h̵ (8.538)

and the probability amplitude for scattering with momentum py is

⟨py ∣ ψ⟩ =
∞

∫
−∞

⟨py ∣ y⟩ ⟨y ∣ ψ⟩dy = 1√
2π

∞

∫
−∞

e−ipyy/h̵ψ(y)dy (8.539)

An examination of the corresponding probability function

Ppy = ∣⟨py ∣ ψ⟩∣2

will determine whether or not there is interference.

In the following discussion, we evaluate the integral of amplitude equation by
first constructing the position state function

ψ(y) = ⟨y ∣ ψ⟩ (8.540)

We do this for four source-slit systems, including the double slit.

8.13.3. Scattering from a narrow slit

A narrow slit of infinitesimal width is an ideal measuring device; it determines
the position with infinite resolution. A particle emerging from a slit at y = y1 is
in the position eigenstate ∣y1⟩. In the position representation, the eigenfunction
of position is the Dirac delta function

ψ(y) = ⟨y ∣ y1⟩ = δ (y − y1) (8.541)

and the probability amplitude for a particle emerging from the slit with mo-
mentum py is

⟨py ∣ ψ⟩ = 1√
2π

∞

∫
−∞

e−ipyy/h̵δ (y − y1)dy =
1√
2π
e−ipyy1/h̵ (8.542)
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The corresponding probability function is

P (py) = ∣⟨py ∣ ψ⟩∣2 = ∣ 1√
2π
e−ipyy1/h̵∣

2

= constant (8.543)

It is equally probable that the particle is scattered at any angle. There is no
interference.

8.13.4. Scattering from a double slit(narrow)
We again assume that the slits are infinitesimally thin. For such a double slit
apparatus, the observable ŷ has two eigenvalues, y1 and y2. Assuming the
source-slit geometry does not favor one slit is over the other, the state vector is
the superposition of position eigenvectors

∣ψ⟩ = 1√
2
(∣y1⟩ + ∣y2⟩) (8.544)

and
ψ(y) = 1√

2
(δ (y − y1) + δ (y − y2)) (8.545)

Here, the amplitude for finding the particle with momentum py is

⟨py ∣ ψ⟩ = 1√
2π

1√
2

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

e−ipyy/h̵δ (y − y1)dy +
∞

∫
−∞

e−ipyy/h̵δ (y − y2)dy
⎤⎥⎥⎥⎥⎦

= 1

2
√
π

(e−ipyy1/h̵ + e−ipyy2/h̵) (8.546)

From which we get the probability function

P (py) = ∣⟨py ∣ ψ⟩∣2 = ∣ 1

2
√
π

(e−ipyy1/h̵ + e−ipyy2/h̵)∣
2

= 1

4π
(2 + eipy(y1−y2)/h̵ + e−ipy(y1−y2)/h̵)

= 1

2π
(1 + cos(

pyd

h̵
)) (8.547)

where d = y1 − y2 is the distance between the slits. We see that this probability
function does have relative maxima and minima and quantum interference does
occur. Using py = p sin θ we obtain the angular distribution of scattered particles

P (θ) = 1

2π
[1 + cos(pd sin θ

h̵
)] (8.548)

The distance between the slits determines the number of interference fringes. In
this example the distance between the slits is d = 4λ, where λ is the de Broglie
wavelength. If we define φ = pd sin θ/h̵ and use the half-angle formula

1 + cosϕ = 2 cos2 (ϕ
2
) (8.549)
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the probability function takes the form

P (ϕ) = 1

π
cos2 (ϕ

2
) (8.550)

This is the familiar intensity distribution for Fraunhofer diffraction. A plot of
(8.549) is shown in Figure 8.21.

Figure 8.21: Angular Distribution of scattered particles from double narrow slits

8.13.5. Scattering from a slit of finite width
A slit of finite width is an imperfect apparatus for measuring position. It cannot
distinguish between different position eigenvalues and a particle emerging from
a slit of width a can have any value of observable ŷ in the continuum −a/2 ≤ y ≤
a/2. Assuming an equal probability of passing through the slit at any point, a
particle at the slit is in the superposition state

ψ(y) = ⟨y ∣ψ⟩ =
⎧⎪⎪⎨⎪⎪⎩

1/
√
a −a/2 ≤ y ≤ a/2

0 elsewhere
(8.551)

Here, the probability amplitude is

⟨py ∣ ψ⟩ = 1√
2πa

a/2

∫
−a/2

e−ipyy/h̵dy

= ih̵

py
√

2πa
(e−ipya/2h̵ − eipya/2h̵)

= 2h̵

py
√

2πa
sin(apy/2h̵) (8.552)
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and the corresponding probability function is

P (py) = ∣⟨py ∣ ψ⟩∣2 = 2h̵2

πap2
y

sin2(apy/2h̵) (8.553)

This result is shown below in Figure 8.22 in terms of the scattering angle θ.

Figure 8.22: Angular Distribution of scattered particles from single slit of finite
width

Once again, the distance between the slits determines the number of interference
fringes. In this example the distance between the slits is d = 4λ, where λ is the
deBroglie wavelength.

We see that P (py) is the well-known diffraction pattern for light if we define
α = apy/2h̵ = ap sin θ/2h̵ and write

P (α) = a

2π
( sinα

α
)

2

(8.554)

8.13.6. Scattering from a double finite-width slit
As a final example, we consider a particle passing through a double-slit appa-
ratus consisting of two slits each of finite width a. This is the most realistic
description of the double slit experiment. Here, the state vector is

∣ψ⟩ = 1√
2
(∣y1⟩ + ∣y2⟩) (8.555)

where

⟨y ∣ψ1⟩ =
⎧⎪⎪⎨⎪⎪⎩

1/
√
a y1 − a/2 ≤ y ≤ y1 + a/2

0 elsewhere
(8.556)
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and

⟨y ∣ψ2⟩ =
⎧⎪⎪⎨⎪⎪⎩

1/
√
a y2 − a/2 ≤ y ≤ y2 + a/2

0 elsewhere
(8.557)

Again, we calculate the probability amplitude

⟨py ∣ ψ⟩ = 1√
2
(⟨py ∣ ψ1⟩ + ⟨py ∣ ψ2⟩)

= 1√
2πa

⎡⎢⎢⎢⎢⎢⎣

y1+a/2

∫
y1−a/2

e−ipyy/h̵dy +
y2+a/2

∫
y2−a/2

e−ipyy/h̵dy

⎤⎥⎥⎥⎥⎥⎦

= ih̵

py
√

2πa
[e−ipy(y1+a/2)h̵ − e−ipy(y1−a/2)h̵

+ e−ipy(y2+a/2)h̵ − e−ipy(y2−a/2)h̵] (8.558)

With a slight manipulation of terms this amplitude becomes

⟨py ∣ ψ⟩ = 2h̵

py
√

2πa
[e−ipyy1h̵ − e−ipyy2h̵] sin(apy/2h̵) (8.559)

and the corresponding probability distribution is

P (py) =
4h̵2

πap2
y

(1 + cos (pyd/h̵)) sin2(apy/2h̵) (8.560)

The angular distribution P (θ) is shown in Figure 8.23 and Figure 8.24 below
for two different slit configurations.

Figure 8.23: Angular Distribution of scattered particles from two slits of finite
width The slit width is λ = a
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Once again, the distance between the slits determines the number of interference
fringes. In this example the distance between the slits is d = 4λ, where λ is the
de Broglie wavelength.

Figure 8.24: Angular Distribution of scattered particles from two slits of finite
width The slit width is λ = a/2

Using φ = pd sin θ/2h̵ and α = ap sin θ/2h̵, we again get the optical form.

P (ϕ) = 2a

π
cos2 (ϕ/2)( sin(α)

α
)

2

(8.561)

8.13.7. Conclusions
The Born postulate has been used to obtain the interference pattern for particles
scattered from a system of slits without referring, a priori, to classical wave
theory. Having identified the state vector as a position state and the measured
observable the momentum, we obtain explicit expressions for the state vector
∣ψ⟩ and its corresponding probability function

P (py) = ∣⟨py ∣ ψ⟩∣2

The results are in agreement with wave optics.

Quantum interference can occur only when a large number of identically pre-
pared particles are observed. These particles are detected at different locations,
one at a time. A single particle is always detected as a localized entity and no
wave properties can be discerned from it.

It is interesting that for particles scattered from a double slit, the probability
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amplitude that gives rise to the interference is due to a superposition of delta
functions.

8.14. Algebraic Methods - Supersymmetric Quan-
tum Mechanics

8.14.1. Generalized Ladder Operators

Earlier in this chapter, we used the ladder or raising/lowering operators and
their commutator algebra to carry out an algebraic solution for the harmonic
oscillator system.

Can we generalize this procedure to other Hamiltonians?

Let us consider the general Hamiltonian Ĥ0

Ĥ0 = −
1

2

d2

dx2
+ V0(x) (8.562)

where we have set h̵ = 1.

For algebraic simplicity, we choose the potential energy term V0(x) to be

V0(x) = V (x) −E0 (8.563)

where V (x) = actual potential energy and E0 = ground-state energy, so that the
ground state energy is zero (this is just a choice of reference level for the poten-
tial energy). Suppose that the ground state(zero energy now) wave function is
represented by ψ0(x). We then have

Ĥ0ψ0(x) = −
1

2

d2ψ0(x)
dx2

+ V0(x)ψ0(x)

= −1

2

d2ψ0(x)
dx2

+ (V (x) −E0)ψ0(x)

= 1

2

d2ψ0(x)
dx2

+ V (x)ψ0(x) −E0ψ0(x) = 0 (8.564)

which gives

Ĥ0ψ0(x) = −
1

2
ψ′′0 + V0ψ0 = 0 (8.565)

or
V0 =

1

2

ψ′′0
ψ0

(8.566)

and

Ĥ0 =
1

2
[− d2

dx2
+ ψ

′′
0

ψ0
] (8.567)
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Let us now introduce the new operators(a generalization of the raising and
lowering operators)

â± = 1√
2
[∓ d

dx
− ψ

′
0

ψ0
] = 1√

2
[∓ d

dx
+W (x)] (8.568)

where
W (x) = −ψ

′
0

ψ0
(8.569)

is called the superpotential for the problem.

We then have

2â±â∓ = 2
1√
2
[∓ d

dx
− ψ

′
0

ψ0
] 1√

2
[± d

dx
− ψ

′
0

ψ0
]

= − d2

dx2
+ (∓ d

dx
)(−ψ

′
0

ψ0
) + (−ψ

′
0

ψ0
)(± d

dx
) + (−ψ

′
0

ψ0
)

2

= − d2

dx2
+ α̂ + (−ψ

′
0

ψ0
)

2

(8.570)

To determine a more useful form for the quantity

α̂ = ± d

dx
(ψ

′
0

ψ0
) ∓ (ψ

′
0

ψ0
) d

dx
(8.571)

we let it operate on an arbitrary function f(x). We get

α̂f(x) = ± d

dx
(ψ

′
0

ψ0
) f(x) ∓ (ψ

′
0

ψ0
) d

dx
f(x)

= ±(ψ
′
0

ψ0
) df
dx

∓ (ψ
′
0

ψ0
) df
dx

± f(x) d
dx

(ψ
′
0

ψ0
)

= [± d

dx
(ψ

′
0

ψ0
)] f(x) (8.572)

or

α̂ = ± d

dx
(ψ

′
0

ψ0
) = ±

⎛
⎝
ψ′′0
ψ0

− (ψ
′
0

ψ0
)

2⎞
⎠

(8.573)

We then get

2â±â∓ = − d2

dx2
+ α̂ + (ψ

′
0

ψ0
)

2

= − d2

dx2
±
⎛
⎝
ψ′′0
ψ0

− (ψ
′
0

ψ0
)

2⎞
⎠
+ (ψ

′
0

ψ0
)

2

= − d2

dx2
± ψ

′′
0

ψ0
+ (1 ∓ 1)(ψ

′
0

ψ0
)

2

(8.574)
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If we define two new quantities by

V1(x) = V0(x) −
d

dx

ψ′0
ψ0

, Ĥ1 = −
1

2

d2

dx2
+ V1(x) (8.575)

then we have

â+â− = −1

2

d2

dx2
+ 1

2

ψ′′0
ψ0

= 1

2
[− d2

dx2
+ ψ

′′
0

ψ0
] = Ĥ0 (8.576)

and

â−â+ = −1

2

d2

dx2
− 1

2

ψ′′0
ψ0

+ (ψ
′
0

ψ0
)

2

= −1

2

d2

dx2
− V0 +

ψ′′0
ψ0

− d

dx

ψ′0
ψ0

= −1

2

d2

dx2
+ V0 −

d

dx

ψ′0
ψ0

= −1

2

d2

dx2
+ V1 = Ĥ1 (8.577)

Ĥ1 is called the supersymmetric (SUSY) partner of Ĥ0. V1(x) and V0(x) are
called the supersymmetric partner potentials.

Now consider the operator

β̂ = d

dx
(8.578)

(remember −iβ̂ = p̂ = linear momentum operator) What is β̂+? We could figure
this out from the momentum operator, but it is instructive to do it from scratch.
The formal definition of β̂+ is given by the hermiticity condition

∫ (β̂+g∗(x))f(x)dx = ∫ g∗(x)(β̂f(x))dx (8.579)

or

∫ (β̂+g∗)fdx = ∫ g∗
df

dx
dx = g∗f ∣atlimits − ∫

dg∗

dx
fdx

= ∫ ((−β̂)g∗)fdx (8.580)

This says that β̂+ = −β̂, which we can also see from the Hermitian momentum
operator (β̂+ = (−ip̂)+ = ip̂+ = ip̂ = −β̂). We have assumed that g, f → 0 at the
limit points (this is required for hermiticity).

Therefore, since

a+ = 1√
2
[− d

dx
− ψ

′
0

ψ0
] = 1√

2
[−β̂ − ψ

′
0

ψ0
] (8.581)
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we get

(â+)+ = 1√
2
[−β̂+ − ψ

′
0

ψ0
] = 1√

2
[β̂ − ψ

′
0

ψ0
]

= 1√
2
[ d
dx

− ψ
′
0

ψ0
] = â− (8.582)

Similarly we have (â−)+ = â+ which says that

Ĥ0 = â+â− = â+(â+)+ = (â−)+â− (8.583)

which is the same result we had in the harmonic oscillator case, i.e., the Hamil-
tonian is expressed as the square of an operator.

The next thing we need is the commutator

[â−, â+] = â−â+ − â+â− = Ĥ1 − Ĥ0 (8.584)

We find

[â−, â+] = −1

2

d2

dx2
+ V1 − Ĥ0

= −1

2

d2

dx2
+ V0 −

d

dx

ψ′0
ψ0

+ 1

2

d2

dx2
− V0

= − d

dx

ψ′0
ψ0

(8.585)

In general, this commutator is a function of x for non-harmonic potential (it is
equal to a constant for the harmonic oscillator).

In order to work with this system of operators we need to figure out some of
their properties.

(1) We have

â+â−ψ0 = Ĥ0ψ0 = 0

⟨ψ0∣ Ĥ0 ∣ψ0⟩ = 0 = ⟨ψ0∣ â+â− ∣ψ0⟩

This says that the norm ∥â− ∣ψ0⟩∥ equals zero and hence that

â−ψ0 = 0 (8.586)

(2) We have

â+Ĥ1 − Ĥ0â
+ = â+â−â+ − â+â−â+ = 0 = â−Ĥ0 − Ĥ1â

− (8.587)
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(3) Let the state ψ0
n be an eigenstate of Ĥ0 with eigenvalue E0

n. We then have

Ĥ0ψ
0
n = â+â−ψ0

n = E0
nψ

0
nnotag (8.588)

â−â+(â−ψ0
n) = E0

n(â−ψ0
n) = Ĥ1(â−ψ0

n)

which says that â−ψ0
n is and eigenstate of Ĥ1 with eigenvalue E0

n (which is
also an eigenvalue of Ĥ0). This is true except for the ground state where
â−ψ0 = 0.

(4) Let the state ψ1
n be an eigenstate of Ĥ1 with eigenvalue E1

n. We then have

Ĥ1ψ
1
n = â−â+ψ1

n = E1
nψ

1
n

â+â−(â+ψ1
n) = E1

n(â+ψ0
n) = Ĥ0(â+ψ0

n)

which says that â−ψ1
n is and eigenstate of Ĥ0 with eigenvalue E1

n (which
is also an eigenvalue of Ĥ0).

This means that the eigenvalue spectrum of the two Hamiltonians Ĥ0 and
Ĥ1 can be derived from each other as shown in Figure 8.25 below.

Figure 8.25: Eigenstate/Eigenvalue Relationships

Ĥ0 and Ĥ1 have the same energy level spectrum E0
n,E

1
n except that the

zero energy ground state of Ĥ0, E0
0 , has no counterpart for Ĥ1.

The arrows indicate the operator connections between the state vectors.
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This is an extremely important result.

If only one of the Hamiltonians is exactly solvable or more easily treated
using approximation methods, then the solutions for the other Hamilto-
nian can be obtained from the solutions of the solvable member of the
pair. This is the meaning of supersymmetric partners.

(5) Now consider the normalization condition. We have

⟨ψ1
n∣ Ĥ1 ∣ψ1

n⟩ = ⟨ψ1
n∣ â−â+ ∣ψ1

n⟩ = ⟨ψ1
n∣E1

n ∣ψ1
n⟩ = E1

n ⟨ψ1
n ∣ ψ1

n⟩ (8.589)

Therefore, if ⟨ψ1
n ∣ ψ1

n⟩ = 1 (normalized to 1), then, if we let ∣α⟩ = â+ ∣ψ1
n⟩,

we must have
⟨α ∣ α⟩ = E1

n (8.590)

The state ∣α⟩ = â+ ∣ψ1
n⟩ is not normalized. We can insure normalized states

in successive steps by choosing

∣ψ0
n⟩ =

1√
E1
n

â+ ∣ψ1
n⟩ and ∣ψ1

n⟩ =
1√
E0
n

â− ∣ψ0
n⟩ (8.591)

We now fix one part of the notation by letting ψ0
0 = ψ0 and define

Φ = −ψ
0
0
′

ψ0
0

(8.592)

which implies that

â± = 1√
2
[∓ d

dx
+Φ(x)] (8.593)

V0 =
1

2

ψ0
0
′′

ψ0
0

= 1

2
[−Φ′ +Φ2] (8.594)

V1 =
1

2
[Φ′ +Φ2] (8.595)

A compact matrix notation for both Hamiltonians is

( Ĥ1 0

0 Ĥ0
) = (1

2
p̂2 + 1

2
Φ2) Î + 1

2
Φ′σ̂z (8.596)

where

p̂ = −i d
dx

and σz = ( 1 0
0 −1

) (8.597)

Now the equation

Φ = −ψ
0
0
′

ψ0
0

(8.598)
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says that

−Φ(x)dx = dψ
0
0

ψ0
0

(8.599)

− ∫ Φ(x)dx = ln(ψ0
0) − ln(A) (8.600)

ψ0
0(x) = A exp [−∫ Φ(x)dx] (8.601)

where A is a constant given by the normalization of ψ0
0 .

This result can inverted, i.e., we can specify Φ(x), which then gives ψ0
0 and a

pair of Hamiltonians to study.

8.14.2. Examples
(1) Harmonic Oscillator - We choose Φ(x) = ωx. This gives the two poten-

tials

V0 =
1

2
[−Φ′ +Φ2] = 1

2
[−ω + ω2x2] (8.602)

V1 =
1

2
[Φ′ +Φ2] = 1

2
[ω + ω2x2] (8.603)

and the two Hamiltonians

Ĥ0 = −
1

2

d2

dx2
+ V0 = −

1

2

d2

dx2
+ 1

2
ω2x2 − 1

2
ω (8.604)

Ĥ1 = −
1

2

d2

dx2
+ V1 = −

1

2

d2

dx2
+ 1

2
ω2x2 + 1

2
ω (8.605)

which corresponds to two harmonic oscillators with zero point energies
differing by ω. We then find

â− = 1√
2
[+ d

dx
+Φ(x)] = 1√

2
[ d
dx

+ ωx] (8.606)

Now we must have
√

2â−ψ0
0 = [ d

dx
+ ωx]ψ0

0 = 0 (8.607)

which is easy to solve. We get

dψ0
0(x)

ψ0
0(x)

= −ωxdx→ ∫
dψ0

0(x)
ψ0

0(x)
= −ω∫ xdx (8.608)

lnψ0
0(x) − lnA = −1

2
ωx2 (8.609)

ψ0
0(x) = A exp(−1

2
ωx2) (8.610)
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as the ground state of Ĥ0. Since Ĥ1 differs from Ĥ0 only by a shift of ω,
its lowest eigenstate corresponds to

ψ1
1(x) = A exp(−1

2
ωx2) , E1

1 = ω (8.611)

The first excited state of Ĥ0 is obtained using â+. We have â+ψ1
1 = â+ψ0

0 =
ψ0

1 , so that

ψ0
1 =

1√
2
[− d

dx
+ ωx]ψ0

0

= 1√
2
[− d

dx
+ ωx]A exp(−1

2
ωx2)

= Ax exp(−1

2
ωx2) (8.612)

with E0
1 = ω, and so on. Iterating in this fashion we can generate the

entire solution. It clearly agrees with our earlier results for the harmonic
oscillator.

(2) Reflection-Free Potentials - Let us investigate the case given by

Φ(x) = tanh(x) (8.613)

We then have
V0 =

1

2
[1 − 2

cosh2 x
] , V1 =

1

2
(8.614)

Thus, the potential

− 1

cosh2 x
(8.615)

has the constant potential 1/2, which corresponds to a free particle, as its
supersymmetric partner.

We can find the normalized ground state eigenfunction of Ĥ0 using

ψ0
0 = A exp [−∫ Φ(x)dx] = A exp [− log(cosh(x))]

= A

cosh(x)
(8.616)

Now, normalization gives
∞

∫
−∞

∣ψ0
0 ∣

2
dx = 1→ A = 1√

2
→ ψ0

0 =
1√
2

1

cosh(x)
(8.617)

The ground state energy is E0
0 = 0 (by definition). The energy eigenstates

for

Ĥ1 = −
1

2

d2

dx2
+ 1

2
(8.618)
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are given by

Ĥ1ψ
1
k = −

1

2

d2ψ1
k

dx2
+ 1

2
ψ1
k = E1

kψ
1
k (8.619)

d2ψ1
k

dx2
+ 2(E1

k −
1

2
)ψ1

k = 0 (8.620)

which has solutions
ψ1
k(x) = eikx (8.621)

where
k2 = 2(E1

k −
1

2
) or E1

k =
1

2
(1 + k2) (8.622)

From the formalism, the remaining normalized eigenfunctions of Ĥ0 are
given by

ψ0
k(x) =

1√
E1
k

â+ψ1
k

= 1
√

1
2
(1 + k2)

1√
2
[− d

dx
+ tanh(x)] eikx

= (−ik + tanh(x))√
(1 + k2)

eikx (8.623)

The corresponding energy eigenvalues are also E1
k. These continuum states

have the property that they do not possess reflected waves, hence the name
reflection-free potentials.

8.14.3. Generalizations

While the SUSY method seems to be very powerful, one wonders - how does
one find the Φ(x) functions relevant to a particular Hamiltonian Ĥ that one
wants to solve?

We can see how to do this by re-deriving this result in a different way.

We consider a general Hamiltonian Ĥ and define a set of operatorsη̂1, η̂2, η̂3, .......
and a set of real constants E1,E2,E3, ...... such that they satisfy the recursion
relations

η̂+1 η̂1 +E1 = Ĥ
η̂+2 η̂2 +E2 = η̂1η̂

+
1 +E1

η̂+3 η̂3 +E3 = η̂2η̂
+
2 +E2

................

................
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or, in general

η̂+j+1η̂j+1 +Ej+1 = η̂j η̂+j +Ej , j = 1,2,3, ........ (8.624)

Theorem - If each ηj has an eigenvector ∣ξj⟩ with eigenvalue equal to zero such
that

η̂j ∣ξj⟩ = 0 (8.625)

then

(a) the constant Ej is the jth eigenvalue of Ĥ (arranged in ascending order)

E1 = groundstate energy, E2 = 1stexcited state energy, ........ (8.626)

(b) the corresponding eigenvector is (ignoring normalization)

∣Ej⟩ = η̂+1 η̂+2 η̂+3 ............η̂+j−1 ∣ξj⟩ (8.627)

Before proving this theorem, let us talk about the meaning of the theorem.

Statement (a) implies not only that Ej is an eigenvalue, but also that there is
no eigenvalue between Ej−1 and Ej , i.e., if E is an eigenvalue of Ĥ, then E
equals one of the Ej or else E is larger than all of the Ej .

If we introduce Emax = least upper bound of the sequence E1,E2,E3, ...... then
the theorem gives all the eigenvalues below Emax. If Emax = ∞ (as in the
harmonic oscillator), then this theorem implies all of the eigenvalues. If Emax = 0
(as in the hydrogen atom), then this theorem implies all negative eigenvalues.

The theorem yields all parts of the discrete spectrum and says nothing about
the continuous part of the spectrum (if it exists).

Proof of the Theorem

We first define new operators

Âj = η̂+j η̂j +Ej (8.628)

so that using the recursion relations we get

Âj+1 = η̂+j+1η̂j+1 +Ej+1 = η̂j η̂+j +Ej for all j (8.629)

We then have

Âj+1η̂j = (η̂j η̂+j +Ej) η̂j = η̂j (η̂+j η̂j +Ej) = η̂jÂj
Âj η̂

+
j = (η̂+j η̂j +Ej) η̂+j = η̂+j (η̂j η̂+j +Ej) = η̂+j Âj+1

Ĥ = Â1 = η̂+1 η̂1 +E1
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Therefore

Ĥ ∣Ej⟩ = Â1η̂
+
1 η̂

+
2 η̂

+
3 ............η̂

+
j−1 ∣ξj⟩ = η̂+1 Â2η̂

+
2 η̂

+
3 ............η̂

+
j−1 ∣ξj⟩

= η̂+1 η̂+2 Â3η̂
+
3 ............η̂

+
j−1 ∣ξj⟩ = ...... and so on until

= η̂+1 η̂+2 Â3η̂
+
3 ............η̂

+
j−1Âj ∣ξj⟩

But our assumption η̂j ∣ξj⟩ = 0 then gives

Âj ∣ξj⟩ = (η̂+j η̂j +Ej) ∣ξj⟩ = η̂+j (η̂j ∣ξj⟩) +Ej ∣ξj⟩ = Ej ∣ξj⟩ (8.630)

or ∣ξj⟩ is an eigenstate of Âj with eigenvalue Ej . This gives

Ĥ ∣Ej⟩ = Ej ∣Ej⟩ (8.631)

or ∣Ej⟩ is an eigenstate of Ĥ with eigenvalue Ej .

Now consider the quantity Ej+1 −Ej and assume that ⟨ξj+1 ∣ ξj+1⟩ = 1. We then
have

Ej+1 −Ej = ⟨ξj+1∣ (Ej+1 −Ej) ∣ξj+1⟩ = ⟨ξj+1∣ (η̂j η̂+j − η̂+j+1η̂j+1) ∣ξj+1⟩
= ⟨ξj+1∣ (η̂j η̂+j ∣ξj+1⟩ since η̂j+1 ∣ξj+1⟩ = 0 (8.632)

Now let ∣β⟩ = η̂+j ∣ξj+1⟩. We then have Ej+1 −Ej = ⟨β ∣β⟩ ≥ 0, which says that

E1 ≤ E2 ≤ E3 ≤ E4 ≤ ........................ (8.633)

Finally, consider the eigenvector ∣E⟩ of Ĥ and define the vector

∣ρn⟩ = η̂nη̂n−1η̂n−2η̂n−3.....η̂2η̂1 ∣E⟩ (8.634)

We then have

0 ≤ ⟨ρ1 ∣ρ1⟩ = ⟨E∣ η̂+1 η̂1 ∣E⟩ = ⟨E∣ (Â1 −E1) ∣E⟩
= ⟨E∣ (Ĥ −E1)KetE = ⟨E∣ (E −E1) ∣E⟩ (8.635)

or
E −E1 ≥ 0→ E ≥ E1 (8.636)

Similarly,

0 ≤ ⟨ρ2 ∣ρ2⟩ = ⟨E∣ η̂+1 η̂+2 η̂2η̂1 ∣E⟩ = ⟨E∣ η̂+1 (Â2 −E2)η̂1 ∣E⟩

= ⟨E∣ η̂+1 (Â2η̂1 − η̂1E2) ∣E⟩ = ⟨E∣ η̂+1 (η̂1Â2 − η̂1E2) ∣E⟩

= ⟨E∣ η̂+1 η̂1(Ĥ −E2) ∣E⟩ = (E −E2) ⟨E∣ η̂+1 η̂1 ∣E⟩
= (E −E2)(E −E1) (8.637)

But, since E ≥ E1, this says that E ≥ E2. Generalizing we have

0 ≤ ⟨ρ2 ∣ρ2⟩ = (E −En)(E −En−1)...........(E −E2)(E −E1) (8.638)
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which implies that E ≥ Ej for all j or E = one of the Ej , which concludes the
proof.

This theorem does not, however, tell us how to find the operators.

The crucial step in the method is the factorization of the Hamiltonian Ĥ , i.e.,

Ĥ = η̂+i η̂1 +E1 → Ĥ −E1 = η̂+i η̂1 = ”square” of an operator (8.639)

Once we choose η̂1, it is not difficult to construct the others.

During the construction, any adjustable parameters must be chosen in such a
way that all the are as large as possible, which then guarantees a unique solution
to any problem. To see that this requirement is necessary, consider a change in
η̂j and Ej with η̂j−1 and Ej−1 held fixed. Now

η̂+j η̂j +Ej = η̂+j−1η̂j−1 +Ej−1 (8.640)

implies that
δ(η̂+j η̂j) + δEj = δ(η̂j−1η̂

+
j−1 +Ej−1) = 0 (8.641)

when η̂j−1 and Ej−1 are held fixed. Therefore, we get

δEj = ⟨ξj ∣ δEj ∣ξj⟩ = ⟨ξj ∣ − δ(η̂+j η̂j) ∣ξj⟩ = ⟨ξj ∣ − (δη̂+j )η̂j − η̂+j (δη̂j) ∣ξj⟩
= − ⟨ξj ∣ (δη̂+j )η̂j ∣ξj⟩ − ⟨ξj ∣ η̂+j (δη̂j) ∣ξj⟩ = 0 − ⟨ξj ∣ η̂+j (δη̂j) ∣ξj⟩
= − ⟨ξj ∣ (δη̂+j )+η̂j ∣ξj⟩

∗ = 0

This says that we are at an extremum or physically at a maximum.

In the first derivation we simply guessed the function Φ(x), calculated V0(x)
and then solved the problem corresponding to

Ĥ0 = −
d2

dx2
+ V0(x) (8.642)

t turns out, however, that for the particular form of Ĥ that we have been
considering, we can do more than guess. In particular, for

Ĥ = − p̂
2

2m
+ V (x̂) (8.643)

we can always choose

η̂j =
1√
2m

(p̂ + ifj(x̂) (8.644)

where fj(x̂) = a real function of the operator x̂.

649



8.14.4. Examples
(1) Harmonic Oscillator revisited - The Hamiltonian for this system is

Ĥ = p̂2

2m
+ mω

2

2
x2 (8.645)

We assume
η̂j =

1√
2m

(p̂ + ifj(x̂)) (8.646)

We then have, from earlier discussions,

[x̂, p̂] = ih̵ , [f(x̂), p̂] = ihdf(x)
dx

(8.647)

The last commutator follows by operating on an arbitrary function g(x)

[f(x̂), p̂] g(x) = [f(x̂)p̂ − p̂f(x̂)]g(x)

= −ih̵[f(x) d
dx

− d

dx
f(x)]g(x) = −ih̵[f dg

dx
− d(fg)

dx
]

= −ih̵[f dg
dx

− f dg
dx

− g df
dx

] = ih df
dx

g(x)

which gives the commutation relation.

We then get (using p̂+ = p̂ , x̂+ = x̂ and f+(x̂) = f∗(x) = f(x))

η̂+j η̂j =
1

2m
(p̂ − ifj)(p̂ + ifj)

= 1

2m
p̂2 + 1

2m
f2
j −

i

2m
[fj , p̂]

= 1

2m
p̂2 + 1

2m
f2
j +

h̵

2m

dfj

dx

Similarly,

η̂j η̂
+
j =

1

2m
p̂2 + 1

2m
f2
j −

h̵

2m

dfj

dx
(8.648)

We then have

Ĥ = η̂+1 η̂1 +E1

= 1

2m
p̂2 + 1

2m
f2

1 +
h̵

2m

df1

dx
= 1

2m
p̂2 + 1

2
mω2x2 (8.649)

and
1

2m
f2

1 +
h̵

2m

df1

dx
= 1

2
mω2x2 (8.650)

which implies that

f1(x) = ±mωx , E1 = ∓
1

2
h̵ω (8.651)
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We need only find a particular solution that guarantees the existence of a vector
∣ξj⟩ such that η̂j ∣ξj⟩ = 0.

Which sign does this imply?

The choice of the minus sign guarantees an ascending order of eigenvalues. The
choice of the plus sign implies a descending order and no lower limit to the set
of eigenvalues, which makes no physical sense.

So we choose
f1(x) = −mωx , E1 = +

1

2
h̵ω (8.652)

We now find f2 using

η̂+2 η̂2 +E2 = η̂1η̂
+
1 +E1 (8.653)

1

2m
f2

2 +
h̵

2m

df2

dx
= 1

2
mω2x2 + h̵ω (8.654)

which gives

f2(x) = −mωx , E2 = +
3

2
h̵ω (8.655)

Similarly, the recursion structure gives

fj(x) = −mωx , Ej = +(j − 1/2)h̵ω (8.656)

Thus, all the η̂j are identical

η̂j =
1√
2m

(p̂ − imωx̂) (8.657)

and
∣Ej⟩∝ (η̂+j )

j−1 ∣ξj⟩∝ (p̂ + imωx̂)j−1 ∣ξj⟩ (8.658)

where
η̂j ∣ξj⟩ =

1√
2m

(p̂ − imωx̂) ∣ξj⟩ = 0 (8.659)

Finally, we show that the state ∣ξj⟩ exists. We have

η̂1 ∣ξ1⟩ = 0→ ∣ξ1⟩ = the ground state (8.660)

This says that

(p̂ − imωx̂) ∣ξ1⟩ = 0 (8.661)
⟨x∣ (p̂ − imωx̂) ∣ξ1⟩ = ⟨x∣ p̂ ∣ξ1⟩ − imω ⟨x∣ x̂ ∣ξ1⟩ = 0 (8.662)

− ih̵ d

dx
⟨x ∣ ξ1⟩ − imωx ⟨x ∣ ξ1⟩ = 0 (8.663)
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This last differential equation says that

⟨x ∣ ξ1⟩ = A exp [−mω
2h̵

x2] (8.664)

which is the same ground state wave function as before!

Does this procedure really work for all Hamiltonians Ĥ of this form?

(2) One-Dimensional Infinite Square Well - This is probably the most
difficult case to consider because the potential involved is not defined by an ex-
plicit, analytic function of x. It only enters the problem implicitly via boundary
conditions at the walls. This means that Ĥ has no explicit dependence on x.
We must, however, somehow introduce a dependence on x in the factorization
procedure.

Let the well extend from x = 0 to x = L. We then have (inside the well)

Ĥ = p̂2

2m
(8.665)

Again, we assume

η̂j =
1√
2m

(p̂ + ifj(x̂)) (8.666)

which gives

1

2m
f2

1 +
h̵

2m

df1

dx
+E1 = 0

h̵df1

2mE1 + f1
= −dx→ ∫

h̵df1

2mE1 + f1
= −∫ dx

h̵∫
df1

2mE1 + f1
= h̵ 1√

2mE1

tan−1 f1√
2mE1

= −(x − x0)

or

f1(x) = −
√

2mE1 tan [
√

2mE1

h̵
(x − x0)] (8.667)

where x0 is the constant of integration.

The possible choices of E1 and x0 are restricted by the behavior of the tangent
function. In the position representation, x is a number such that 0 < x < L. The
tangent must remain finite in this interval. The singularities of tan y occur at

y = π
2
,

3π

2
,

5π

2
, ............ (8.668)

i.e., they are separated by π radians. We attain the largest possible value of E1

if one of the singularities lies at x = 0 and the next at x = L (it is permissible for
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the tangent to have a singularity at these points (the walls) since the potential
and hence Ĥ are also infinite there. So we assume that

at x = 0 tan [
√

2mE1

h̵
x0] =∞ (8.669)

at x = L tan [−
√

2mE1

h̵
(L − x0)] =∞ (8.670)

which imply that
√

2mE1

h̵
x0 =

π

2
, −

√
2mE1

h̵
(L − x0) =

3π

2
= −

√
2mE1

h̵
L + π

2
(8.671)

or

−
√

2mE1

h̵
L = π (8.672)

This gives

E1 =
h̵2π2

2mL2
(8.673)

and

f1 = −
√

2mE1 tan [
√

2mE1

h̵
(x − πh̵

2
√

2mE1

)]

= πh̵
L

tan [−π
L
x − π

2
] = πh̵

L

sin [− π
L
x − π

2
]

cos [− π
L
x − π

2
]

= πh̵
L

cos(πx
L

)
sin(πx

L
)
= πh̵
L

cot(πx
L

) (8.674)

This implies that

η̂1 =
1√
2m

[p̂ + iπh̵
L

cot
πx

L
] (8.675)

Reflecting on this result we now choose

η̂j =
1√
2m

[p̂ + icj cot(bjx)] (8.676)

where cj and bj are to be chosen to give the correct recursion relations. Now,
in order to guarantee 0 < x < L we must have 0 ≤ bj ≤ π/L. If we apply the
recursion relations we get

η̂+j+1η̂j+1 =
1

2m
[p̂2 − cj+1bj+1h̵ + cj+1(cj+1 − bj+1h̵) cot2 bj+1x] (8.677)

η̂j η̂
+
j =

1

2m
[p̂2 − cjbj h̵ + cj(cj + bj h̵) cot2 bjx] (8.678)
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which implies that

1

2m
[p̂2 − cj+1bj+1h̵ + cj+1(cj+1 − bj+1h̵) cot2 bj+1x] +Ej+1

= 1

2m
[p̂2 − cjbj h̵ + cj(cj + bj h̵) cot2 bjx] +Ej (8.679)

Equating powers of x gives

bj+1 = bj → bj = b1 =
π

L
(8.680)

cj+1(cj+1 − bj+1h̵) = cj(cj + bj h̵) (8.681)
2mEj+1 − cj+1bj+1h̵ = 2mEj − cjbj h̵ (8.682)

or

2mEj − (cj)2 = 2mE1 − (c1)2 = 0 (8.683)

Ej =
(cj)2

2m
(8.684)

and

cj+1(cj+1 −
πh̵

L
) = cj(cj +

πh̵

L
) (8.685)

which gives

cj+1 = −cj or cj+1 = cj +
πh̵

L
(8.686)

The last choice implies the largest E1. Therefore,

cj = j
πh̵

L
and Ej =

j2π2h̵2

2mL2
(8.687)

Finally, we show the existence of ∣ξj⟩ where η̂j ∣ξj⟩ = 0. This corresponds to the
equation

[−ih̵ d

dx
+ i jπh̵

L
cot(πx

L
)] ⟨x ∣ ξj⟩ = 0 (8.688)

or

⟨x ∣ ξj⟩ = (sin
πx

L
)
j

(8.689)

Now
∣Ej⟩ = η̂+1 η̂+2 .......η̂+j−1 ∣ξj⟩ (8.690)

implies that
ψj(x) = ⟨x ∣ Ej⟩ = ⟨x∣ η̂+1 η̂+2 .......η̂+j−1 ∣ξj⟩ (8.691)

Therefore,
ψ1(x) = ⟨x ∣ E1⟩ = ⟨x ∣ ξ1⟩ = sin

πx

L
(8.692)
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ψ2(x) = ⟨x ∣ E2⟩ = η̂+1 ⟨x ∣ ξ2⟩

= [−ih̵ d

dx
+ iπh̵

L
cot(πx

L
)] sin2 πx

L
∼ sin

2πx

L
(8.693)

Similarly,

ψ3(x) = η̂+1 η̂+2 ⟨x ∣ ξ3⟩ ∼ sin
3πx

L
(8.694)

and so on.

We also find
V0(x) =

1

2

ψ′′0
ψ0

(8.695)

where

ψ0(x) =
√

2

L
sin

πx

l
(8.696)

or

V0(x) =
1

2

π2

L2
(8.697)

In addition,

W (x) = − 1√
2

ψ′0
ψ0

= − 1√
2

π

L
cot

πx

L
(8.698)

Finally, the superpartner potential is

V1(x) = V0(x) −
d

dx

ψ′0
ψ0

=
√

2

L
sin

πx

L
+ 1√

2

π

L

d

dx
cot

πx

L
(8.699)

This completes the solution. The method works even in this case!

(3) Hydrogen Atom - As we will see in later discussions(Chapter 9), when
we write down the 3-dimensional Schrödinger equation for the hydrogen atom
and separate the variables, we obtain a 1−dimensional equation in the variable
r corresponding to radius. This equation looks like

Ĥ`un`(r) = [ 1

2m
p̂2
r +

h̵2`(` + 1)
2mr2

− e
2

r
]un`(r) = En`un`(r) (8.700)

The factorization method should also work on this equation. We choose

η̂+1 η̂1 =
1

2m
p̂2
r +

h̵2`(` + 1)
2mr2

− e
2

r
(8.701)

η̂+j+1η̂j+1 +Ej+1 = η̂j η̂+j +Ej (8.702)

For convenience, we have suppressed the ell dependence (η̂j ↔ η̂`j). Now assume

η̂j =
1√
2m

(p̂r + i(bj +
cj

r
)) (8.703)
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which gives

η̂+j η̂j =
1

2m
[p̂2
r + b2j + 2bj

cj

r
+
cj

r
(cj − h̵)] (8.704)

η̂j η̂
+
j =

1

2m
[p̂2
r + b2j + 2bj

cj

r
+
cj

r
(cj + h̵)] (8.705)

The definition of the Hamiltonian gives

η̂+1 η̂1 +E1 =
1

2m
[p̂2
r + b21 + 2b1

c1
r
+ c1
r
(c1 − h̵)] +E1

= 1

2m
p̂2
r +

h̵2`(` + 1)
2mr2

− e
2

r
(8.706)

Equating powers of r gives

1

2m
c1(c1 − h̵) =

1

2m
`(` + 1)h̵2 (8.707)

b1c1
m

= −e2 (8.708)

b21
2m

+E1 = 0 (8.709)

which imply

c1 = (` + 1)h̵ (8.710)

b1 = −
me2

(` + 1)h̵
(8.711)

E1 = −
1

2m
( me2

(` + 1)h̵
)

2

(8.712)

The recursion relations then give

cj+1(cj+1 − h̵) = cj(cj + h̵) (8.713)
bj+1cj+1 = bjcj (8.714)

b2j+1

2m
+Ej+1 =

b2j

2m
+Ej (8.715)

which imply

cj+1 = cj + h̵→ cj = (j − 1)h̵ + c1 → cj = (` + j)h̵ (8.716)

bjcj = b1c1 = −me2 (8.717)

Ej = −
b2j

2m
= − 1

2m
( me2

(` + j)h̵
)

2

(8.718)

If we let n = ` + j we have

En = −
1

2
α2mc

2

n2
(8.719)
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where

α = e2

h̵c
= the fine structure constant (8.720)

Finally, we get the eigenfunctions. We must have η̂(`)j ∣ξj⟩ = 0. Using

η̂
(`)
j = 1√

2m
[p̂r + i [−

me2

(` + j)h̵
+ (` + j)h̵

r
]]

= 1√
2m

[p̂r −
ih̵

(` + j)a0
+ i(` + j)h̵

r
] (8.721)

where

a0 =
h̵2

me2
= the Bohr radius (8.722)

we get

[p̂r −
ih̵

(` + j)a0
+ i(` + j)h̵

r
] ∣ξj⟩ = 0 (8.723)

where
p̂r = −ih̵ [ d

dr
+ 1

r
] (8.724)

This implies

[−ih̵ [ d
dr

+ 1

r
] − ih̵

(` + j)a0
+ i(` + j)h̵

r
] ⟨n, ` ∣ ξj⟩ = 0 (8.725)

which has a solution

⟨n, ` ∣ ξj⟩ = r`+j−1e
− r
(`+j)a0 ∼ ψ(`)

j (r) (8.726)

We thus have

ψ
(0)
1 (r) ∼ e−

r
a0 , ψ

(0)
2 (r) ∼ (1 − r

2a0
e
− r

2a0 ) (8.727)

and so on, which are the correct wave functions!

8.14.5. Supersymmetric Quantum Mechanics
This is the study of the relationship between pairs of superpartner potentials.
Some of the issues addressed are:

1. To what extent can the observed energy spectrum determine the potential
energy function. In other words, can we invert the energy levels and find
the V (x) that generated them. Is the inversion unique?

2. The number of potentials for which we can analytically solve the Schrödinger
equation is small. They are the infinite well, the harmonic oscillator (1−,
2- , and 3−dimensions), the Coulomb potential and a few others.
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All of these potentials can also be solved using the factorization method
operator techniques. Thus, they all have supersymmetric analogs. All the
superpartner potentials are similar in shape, differing only in the param-
eters in their definition.

3. Supersymmetric quantummechanics suggests a connection between fermions
and bosons at some fundamental level.

In supersymmetric quantum mechanics we study quantum mechanical systems
where the Hamiltonian Ĥ is constructed from anticommuting charges Q̂ which
are the square root of Ĥ, i.e.,

2Ĥ = {Q̂, Q̂+} = Q̂Q̂+ + Q̂+Q̂ (8.728)

0 = {Q̂,Q}→ Q̂2 = 0 (8.729)

These equations imply that

[Ĥ, Q̂] = [Q̂, Ĥ] = 1

2
[Q̂, Q̂Q̂+ + Q̂+Q̂]

= 1

2
(Q̂2Q̂+ + Q̂Q̂+Q̂ − Q̂Q̂+Q̂ − Q̂+Q̂2) = 0

or that the charge Q̂ is a conserved observable.

These Hamiltonians contain coordinates that are quantized by commutators
(bosonic coordinates) and anticommutators(fermionic coordinates). These co-
ordinates are mixed by supersymmetry transformations.

For a particle with spin, the position and spin orientation form a pair of such
coordinates. An explicit example is given by

Q̂ = (p̂ + iϕ(x̂)) ψ̂+ , Q̂+ = (p̂ − iϕ(x̂)) ψ̂ (8.730)

where x̂ and p̂ are bosonic coordinates (degrees of freedom) and ψ̂ and ψ̂+ are
fermionic coordinates (we have set h̵ = 1) satisfying

[x̂, p̂] = i , {ψ̂, ψ̂+} = 1 , {ψ̂, ψ̂} = {ψ̂+, ψ̂+} = 0 (8.731)

i.e., we have commutators for the bosonic coordinates and anticommutators for
the fermionic coordinates.

From these relations we get

{Q̂, Q̂} = {Q̂+, Q̂+} = 0 (8.732)

and
Ĥ = 1

2
p̂2 + 1

2
ϕ2(x̂) − 1

2
[ψ̂, ψ̂+]ϕ′(x̂) (8.733)

658



Using a 2 × 2 representation of the fermionic coordinates , we have

ψ̂+ = σ̂− = ( 0 0
1 0

) , ψ̂ = σ̂+ = ( 0 1
0 0

) (8.734)

{ψ̂, ψ̂+} = σ̂+σ̂− + σ̂−σ̂+ = Î (8.735)

[ψ̂, ψ̂+] = −σ̂z = ( −1 0
0 1

) (8.736)

so that

Ĥ = 1

2
(p̂2 + ϕ2(x̂)) + 1

2
σ̂zϕ

′(x̂)

= Ĥ0 + Ĥ1

= Bose sector + Fermi sector

The two sectors have the same energy levels. The only exception is the case
where the ground state of the Bose sector has zero energy and is thus non-
degenerate.

8.14.6. Additional Thoughts
Supersymmetry transformations are represented by the unitary operator

Û = exp(εQ̂ + ε+Q̂+) (8.737)

where ε and ε+ are anti-commuting c-numbers (called a Grassman algebra).

Supersymmetric one-particle quantum mechanics serves as a model for the inves-
tigation of spontaneous breaking of supersymmetry, which is supposed to occur
in supersymmetric field theories. The ground state ∣0⟩ is invariant with respect
to supersymmetry transformations provided that Û ∣0⟩ = ∣0⟩. This is satisfied if
and only if Q̂ ∣0⟩ = Q̂+ ∣0⟩ = 0, that is, if the ground state energy is zero.

If the ground state energy is greater than zero, then supersymmetry is sponta-
neously broken.

An example of spontaneously broken symmetry is

Φ = g(x2 − a2) (8.738)

Ĥ = p̂2

2m
+ g

2

2
(x2 − a2) + gxσ̂z (8.739)

The two potentials satisfy V0(−x) = −V1(x). There is no normalizable state in
this case with E00 = 0 since

∫ Φ(x)dx = g {1

3
x3 − a2x} (8.740)
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says that the ground state energy is positive.

The world we actually observe is in one of the degenerate ground states and the
supersymmetry is spontaneously broken!

8.15. Problems

8.15.1. Delta function in a well

A particle of massm moving in one dimension is confined to a space 0 < x < L by
an infinite well potential. In addition, the particle experiences a delta function
potential of strength λ given by λδ(x−L/2) located at the center of the well as
shown in Figure 8.1 below.

Figure 8.26: Potential Diagram

Find a transcendental equation for the energy eigenvalues E in terms of the
mass m, the potential strength λ, and the size of the well L.

8.15.2. Properties of the wave function

A particle of mass m is confined to a one-dimensional region 0 ≤ x ≤ a (an
infinite square well potential). At t = 0 its normalized wave function is

ψ(x, t = 0) =
√

8

5a
(1 + cos(πx

a
)) sin(πx

a
)

(a) What is the wave function at a later time t = t0?

(b) What is the average energy of the system at t = 0 and t = t0?

(c) What is the probability that the particle is found in the left half of the
box(i.e., in the region 0 ≤ x ≤ a/2 at t = t0?
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8.15.3. Repulsive Potential
A repulsive short-range potential with a strongly attractive core can be approx-
imated by a square barrier with a delta function at its center, namely,

V (x) = V0Θ(∣x∣ − a) − h̵
2g

2m
δ(x)

(a) Show that there is a negative energy eigenstate (the ground-state).

(b) If E0 is the ground-state energy of the delta-function potential in the
absence of the positive potential barrier, then the ground-state energy of
the present system satisfies the relation E ≥ E0+V0. What is the particular
value of V0 for which we have the limiting case of a ground-state with zero
energy.

8.15.4. Step and Delta Functions
Consider a one-dimensional potential with a step-function component and an
attractive delta function component just at the edge of the step, namely,

V (x) = VΘ(x) − h̵
2g

2m
δ(x)

(a) For E > V , compute the reflection coefficient for particle incident from the
left. How does this result differ from that of the step barrier alone at high
energy?

(b) For E < 0 determine the energy eigenvalues and eigenfunctions of any
bound-state solutions.

8.15.5. Atomic Model
An approximate model for an atom near a wall is to consider a particle moving
under the influence of the one-dimensional potential given by

V (x) =
⎧⎪⎪⎨⎪⎪⎩

−V0δ(x) x > −d
∞ x < −d

as shown in Figure 8.2 below.

(a) Find the transcendental equation for the bound state energies.

(b) Find an approximation for the modification of the bound-state energy
caused by the wall when it is far away. Define carefully what you mean
by far away.

(c) What is the exact condition on V0 and d for the existence of at least one
bound state?
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Figure 8.27: Potential Diagram

8.15.6. A confined particle

A particle of mass m is confined to a space 0 < x < a in one dimension by
infinitely high walls at x = 0 and x = a. At t = 0 the particle is initially in the
left half of the well with a wave function given by

ψ(x,0) =
⎧⎪⎪⎨⎪⎪⎩

√
2/a 0 < x < a/2

0 a/2 < x < a

(a) Find the time-dependent wave function ψ(x, t).

(b) What is the probability that the particle is in the nth eigenstate of the
well at time t?

(c) Derive an expression for average value of particle energy. What is the
physical meaning of your result?

8.15.7. 1/x potential

An electron moves in one dimension and is confined to the right half-space
(x > 0) where it has potential energy

V (x) = − e
2

4x

where e is the charge on an electron.

(a) What is the solution of the Schrödinger equation at large x?

(b) What is the boundary condition at x = 0?
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(c) Use the results of (a) and (b) to guess the ground state solution of the
equation. Remember the ground state wave function has no zeros except
at the boundaries.

(d) Find the ground state energy.

(e) Find the expectation value ⟨x̂⟩ in the ground state.

8.15.8. Using the commutator

Using the coordinate-momentum commutation relation prove that

∑
n

(En −E0) ∣⟨En∣ x̂ ∣E0⟩∣2 = constant

where E0 is the energy corresponding to the eigenstate ∣E0⟩. Determine the
value of the constant. Assume the Hamiltonian has the general form

Ĥ = p̂2

2m
+ V (x̂)

8.15.9. Matrix Elements for Harmonic Oscillator

Compute the following matrix elements

⟨m∣ x̂3 ∣n⟩ , ⟨m∣ x̂p̂ ∣n⟩

8.15.10. A matrix element

Show for the one dimensional simple harmonic oscillator

⟨0∣ eikx̂ ∣0⟩ = exp [−k2 ⟨0∣ x̂2 ∣0⟩ /2]

where x̂ is the position operator.

8.15.11. Correlation function

Consider a function, known as the correlation function, defined by

C(t) = ⟨x̂(t)x̂(0)⟩

where x̂(t) is the position operator in the Heisenberg picture. Evaluate the
correlation function explicitly for the ground-state of the one dimensional simple
harmonic oscillator.
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8.15.12. Instantaneous Force

Consider a simple harmonic oscillator in its ground state.

An instantaneous force imparts momentum p0 to the system such that the new
state vector is given by

∣ψ⟩ = e−ip0x̂/h̵ ∣0⟩

where ∣0⟩ is the ground-state of the original oscillator.

What is the probability that the system will stay in its ground state?

8.15.13. Coherent States

Coherent states are defined to be eigenstates of the annihilation or lowering
operator in the harmonic oscillator potential. Each coherent state has a complex
label z and is given by ∣z⟩ = ezâ

+

∣0⟩.

(a) Show that â ∣z⟩ = z ∣z⟩

(b) Show that ⟨z1 ∣ z2⟩ = ez
∗
1z2

(c) Show that the completeness relation takes the form

Î =∑
n

∣n⟩ ⟨n∣ = ∫
dxdy

π
∣z⟩ ⟨z∣ e−z

∗z

where ∣n⟩ is a standard harmonic oscillator energy eigenstate, Î is the identity
operator, z = x + iy, and the integration is taken over the whole x − y plane(use
polar coordinates).

8.15.14. Oscillator with Delta Function

Consider a harmonic oscillator potential with an extra delta function term at
the origin, that is,

V (x) = 1

2
mω2x2 + h̵

2g

2m
δ(x)

(a) Using the parity invariance of the Hamiltonian, show that the energy
eigenfunctions are even and odd functions and that the simple harmonic
oscillator odd-parity energy eigenstates are still eigenstates of the system
Hamiltonian, with the same eigenvalues.

(b) Expand the even-parity eigenstates of the new system in terms of the
even-parity harmonic oscillator eigenfunctions and determine the expan-
sion coefficients.
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(c) Show that the energy eigenvalues that correspond to even eigenstates are
solutions of the equation

2

g
= −

√
h̵

mπω

∞
∑
k=0

(2k)!
22k(k!)2

(2k + 1

2
− E

h̵ω
)
−1

You might need the fact that

ψ2k(0) = (mω
πh̵

)
1/4

√
(2k)!
2kk!

(d) Consider the following cases:

(1) g > 0, E > 0

(2) g < 0, E > 0

(3) g < 0, E < 0

Show the first and second cases correspond to an infinite number of energy
eigenvalues.

Where are they relative to the original energy eigenvalues of the harmonic
oscillator?

Show that in the third case, that of an attractive delta function core, there
exists a single eigenvalue corresponding to the ground state of the system
provided that the coupling is such that

[Γ(3/4)
Γ(1/4)

]
2

< g2h̵

16mω
< 1

You might need the series summation:

∞
∑
k=0

(2k)!
4k(k!)2

1

2k + 1 − x
=

√
π

2

Γ(1/2 − x/2)
Γ(1 − x/2)

You will need to look up other properties of the gamma function to solve
this problem.

8.15.15. Measurement on a Particle in a Box
Consider a particle in a box of width a, prepared in the ground state.

(a) What are then possible values one can measure for: (1) energy, (2) posi-
tion, (3) momentum ?

(b) What are the probabilities for the possible outcomes you found in part
(a)?
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(c) At some time (call it t = 0) we perform a measurement of position. How-
ever, our detector has only finite resolution. We find that the particle is
in the middle of the box (call it the origin) with an uncertainty ∆x = a/2,
that is, we know the position is, for sure, in the range −a/4 < x < a/4, but
we are completely uncertain where it is within this range. What is the
(normalized) post-measurement state?

(d) Immediately after the position measurement what are the possible values
for (1) energy, (2) position, (3) momentum and with what probabilities?

(e) At a later time, what are the possible values for (1) energy, (2) position,
(3) momentum and with what probabilities? Comment.

8.15.16. Aharonov-Bohm experiment
Consider an infinitely long solenoid which carries a current I so that there is a
constant magnetic field inside the solenoid(see Figue 8.3 below).

Figure 8.28: Aharonov-Bohm Setup
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Suppose that in the region outside the solenoid the motion of a particle with
charge e and mass m is described by the Schrödinger equation. Assume that
for I = 0 , the solution of the equation is given by

ψ0(r⃗, t) = eiE0t/h̵ψ0(r⃗)

(a) Write down and solve the Schrödinger equation in the region outside the
solenoid in the case I ≠ 0.

(b) Consider the two-slit diffraction experiment for the particles described
above shown in Figure 8.3 above. Assume that the distance d between
the two slits is large compared to the diameter of the solenoid.

Compute the shift ∆S of the diffraction pattern on the screen due to the
presence of the solenoid with I ≠ 0. Assume that L≫ ∆S.

8.15.17. A Josephson Junction
A Josephson junction is formed when two superconducting wires are separated
by an insulating gap of capacitance C. The quantum states ψi , i = 1,2 of
the two wires can be characterized by the numbers ni of Cooper pairs (charge
= −2e) and phases θi, such that ψi =

√
nie

iθi (Ginzburg-Landau approximation).
The (small) amplitude that a pair tunnel across a narrow insulating barrier is
−EJ/n0 where n0 = n1 + n2 and EJ is the the so-called Josephson energy. The
interesting physics is expressed in terms of the differences

n = n2 − n1 , ϕ = θ2 − θ1

We consider a junction where

n1 ≈ n2 ≈ n0/2

When there exists a nonzero difference n between the numbers of pairs of charge
−2e, where e > 0, on the two sides of the junction, there is net charge −ne on side
2 and net charge +ne on side 1. Hence a voltage difference ne/C arises, where
the voltage on side 1 is higher than that on side 2 if n = n2 −n1 > 0. Taking the
zero of the voltage to be at the center of the junction, the electrostatic energy
of the Cooper pair of charge −2e on side 2 is ne2/C, and that of a pair on side
1 is −ne2/C. The total electrostatic energy is C(∆V )2/2 = Q2/2C = (ne)2/2C.

The equations of motion for a pair in the two-state system (1,2) are

ih̵
dψ1

dt
= U1ψ1 −

EJ
n0
ψ2 = −

ne2

C
ψ1 −

EJ
n0
ψ2

ih̵
dψ2

dt
= U2ψ2 −

EJ
n0
ψ1 =

ne2

C
ψ2 −

EJ
n0
ψ1

(a) Discuss the physics of the terms in these equations.
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(b) Using ψi =
√
nie

iθi , show that the equations of motion for n and ϕ are
given by

ϕ̇ = θ̇2 − θ̇1 ≈ −
2ne2

h̵C

ṅ = ṅ2 − ṅ1 ≈
EJ
h̵

sinϕ

(c) Show that the pair(electric current) from side 1 to side 2 is given by

JS = J0 sinϕ , J0 =
πEJ
φ0

(d) Show that

ϕ̈ ≈ −2e2EJ
h̵2C

sinϕ

For EJ positive, show that this implies there are oscillations about ϕ = 0
whose angular frequency (called the Josephson plasma frequency)is given
by

ωJ =
√

2e2EJ
h̵2C

for small amplitudes.

If EJ is negative, then there are oscillations about ϕ = π.

(e) If a voltage V = V1 − V2 is applied across the junction(by a battery), a
charge Q1 = V C = (−2e)(−n/2) = en is held on side 1, and the negative of
this on side 2. Show that we then have

ϕ̇ ≈ −2eV

h̵
≡ −ω

which gives ϕ = ωt.

The battery holds the charge difference across the junction fixed at V C −
en, but can be a source or sink of charge such that a current can flow in
the circuit. Show that in this case, the current is given by

JS = −J0 sinωt

i.e., the DC voltage of the battery generates an AC pair current in circuit
of frequency

ω = 2eV

h̵

8.15.18. Eigenstates using Coherent States
Obtain eigenstates of the following Hamiltonian

Ĥ = h̵ωâ+â + V â + V ∗â+

for a complex V using coherent states.
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8.15.19. Bogoliubov Transformation

Suppose annihilation and creation operators satisfy the standard commutation
relations [â, â+] = 1. Show that the Bogoliubov transformation

b̂ = â coshη + â+ sinhη

preserves the commutation relation of the creation and annihilation operators,
i.e., [b̂, b̂+] = 1. Use this fact to obtain eigenvalues of the following Hamiltonian

Ĥ = h̵ω(̂a)+â + 1

2
V (ââ + â+â+)

(There is an upper limit on V for which this can be done). Also show that the
unitary operator

Û = e(ââ+â
+â+)η/2

can relate the two sets of operators as b̂ = Û âÛ−1.

8.15.20. Harmonic oscillator

Consider a particle in a 1−dimensional harmonic oscillator potential. Suppose
at time t = 0, the state vector is

∣ψ(0)⟩ = e−
ip̂a
h̵ ∣0⟩

where p̂ is the momentum operator and a is a real number.

(a) Use the equation of motion in the Heisenberg picture to find the operator
x̂(t).

(b) Show that e−
ip̂a
h̵ is the translation operator.

(c) In the Heisenberg picture calculate the expectation value ⟨x⟩ for t ≥ 0.

8.15.21. Another oscillator

A 1−dimensional harmonic oscillator is, at time t = 0, in the state

∣ψ(t = 0)⟩ = 1√
3
(∣0⟩ + ∣1⟩ + ∣2⟩)

where ∣n⟩ is the nth energy eigenstate. Find the expectation value of position
and energy at time t.
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8.15.22. The coherent state
Consider a particle of mass m in a harmonic oscillator potential of frequency ω.
Suppose the particle is in the state

∣α⟩ =
∞
∑
n=0

cn ∣n⟩

where
cn = e−∣α∣

2/2 α
n

√
n!

and α is a complex number. As we have discussed, this is a coherent state or
alternatively a quasi-classical state.

(a) Show that ∣α⟩ is an eigenstate of the annihilation operator, i.e., â ∣α⟩ =
α ∣α⟩.

(b) Show that in this state ⟨x̂⟩ = xcRe(α) and ⟨p̂⟩ = pcIm(α). Determine xc
and pc.

(c) Show that, in position space, the wave function for this state is ψα(x) =
eip0x/h̵u0(x − x0) where u0(x) is the ground state gaussian function and
⟨x̂⟩ = x0 and ⟨p̂⟩ = p0.

(d) What is the wave function in momentum space? Interpret x0 and p0.

(e) Explicitly show that ψα(x) is an eigenstate of the annihilation operator
using the position-space representation of the annihilation operator.

(f) Show that the coherent state is a minimum uncertainty state (with equal
uncertainties in x and p, in characteristic dimensionless units.

(g) If a time t = 0 the state is ∣ψ(0)⟩ = ∣α⟩, show that at a later time,

∣ψ(t)⟩ = e−iωt/2 ∣αe−iωt⟩

Interpret this result.

(h) Show that, as a function of time, ⟨x̂⟩ and ⟨p̂⟩ follow the classical trajectory
of the harmonic oscillator, hence the name quasi-classical state.

(i) Write the wave function as a function of time, ψα(x, t). Sketch the time
evolving probability density.

(j) Show that in the classical limit

lim
∣α∣→∞

∆N

⟨N⟩
→ 0

(k) Show that the probability distribution in n is Poissonian, with appropriate
parameters.

(l) Use a rough time-energy uncertainty principle(∆E∆t > h̵) , to find an un-
certainty principle between the number and phase of a quantum oscillator.
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8.15.23. Neutrino Oscillations
It is generally recognized that there are at least three different kinds of neutrinos.
They can be distinguished by the reactions in which the neutrinos are created
or absorbed. Let us call these three types of neutrino νe, νµ and ντ . It has been
speculated that each of these neutrinos has a small but finite rest mass, possibly
different for each type. Let us suppose, for this exam question, that there is
a small perturbing interaction between these neutrino types, in the absence of
which all three types of neutrinos have the same nonzero rest mass M0. The
Hamiltonian of the system can be written as

Ĥ = Ĥ0 + Ĥ1

where

Ĥ0 =
⎛
⎜
⎝

M0 0 0
0 M0 0
0 0 M0

⎞
⎟
⎠
→ no interactions present

and

Ĥ1 =
⎛
⎜
⎝

0 h̵ω1 h̵ω1

h̵ω1 0 h̵ω1

h̵ω1 h̵ω1 0

⎞
⎟
⎠
→ effect of interactions

where we have used the basis

∣νe⟩ = ∣1⟩ , ∣νµ⟩ = ∣2⟩ , ∣ντ ⟩ = ∣3⟩

(a) First assume that ω1 = 0, i.e., no interactions. What is the time develop-
ment operator? Discuss what happens if the neutrino initially was in the
state

∣ψ(0)⟩ = ∣νe⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

or ∣ψ(0)⟩ = ∣νµ⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

or ∣ψ(0)⟩ = ∣ντ ⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

What is happening physically in this case?

(b) Now assume that ω1 ≠ 0, i.e., interactions are present. Also assume that
at t = 0 the neutrino is in the state

∣ψ(0)⟩ = ∣νe⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

What is the probability as a function of time, that the neutrino will be in
each of the other two states?

(c) An experiment to detect the neutrino oscillations is being performed. The
flight path of the neutrinos is 2000 meters. Their energy is 100GeV . The
sensitivity of the experiment is such that the presence of 1% of neutrinos
different from those present at the start of the flight can be measured with
confidence. LetM0 = 20 eV . What is the smallest value of h̵ω1 that can be
detected? How does this depend on M0? Don’t ignore special relativity.
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8.15.24. Generating Function
Use the generating function for Hermite polynomials

e2xt−t2 =
∞
∑
n=0

Hn(x)
tn

n!

to work out the matrix elements of x in the position representation, that is,
compute

⟨x⟩nn′ =
∞

∫
−∞

ψ∗n(x)xψn′(x)dx

where
ψn(x) = NnHn(αx)e−

1
2α

2x2

and

Nn = ( α√
π2nn!

)
1/2

, α = (mω
h̵

)
1/2

8.15.25. Given the wave function ......
A particle of mass m moves in one dimension under the influence of a potential
V (x). Suppose it is in an energy eigenstate

ψ(x) = (γ
2

π
)

1/4

exp (−γ2x2/2)

with energy E = h̵2γ2/2m.

(a) Find the mean position of the particle.

(b) Find the mean momentum of the particle.

(c) Find V (x).

(d) Find the probability P (p)dp that the particle’s momentum is between p
and p + dp.

8.15.26. What is the oscillator doing?
Consider a one dimensional simple harmonic oscillator. Use the number basis
to do the following algebraically:

(a) Construct a linear combination of ∣0⟩ and ∣1⟩ such that ⟨x̂⟩ is as large as
possible.

(b) Suppose the oscillator is in the state constructed in (a) at t = 0. What is
the state vector for t > 0? Evaluate the expectation value ⟨x̂⟩ as a function
of time for t > 0 using (i)the Schrödinger picture and (ii) the Heisenberg
picture.

(c) Evaluate ⟨(∆x)2⟩ as a function of time using either picture.
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8.15.27. Coupled oscillators

Two identical harmonic oscillators in one dimension each have a mass m and
frequency ω. Let the two oscillators be coupled by an interaction term Cx1x2

where C is a constant and x1 and x2 are the coordinates of the two oscillators.
Find the exact energy spectrum of eigenvalues for this coupled system.

8.15.28. Interesting operators ....

The operator ĉ is defined by the following relations:

ĉ2 = 0 , ĉĉ+ + ĉ+ĉ = {ĉ, ĉ+} = Î

(a) Show that

1. N̂ = ĉ+ĉ is Hermitian

2. N̂2 = N̂
3. The eigenvalues of N̂ are 0 and 1 (eigenstates ∣0⟩ and ∣1⟩)
4. ĉ+ ∣0⟩ = ∣1⟩ , ĉ ∣0⟩ = 0

(b) Consider the Hamiltonian

Ĥ = h̵ω0(ĉ+ĉ + 1/2)

Denoting the eigenstates of Ĥ by ∣n⟩, show that the only nonvanishing
states are the states ∣0⟩ and ∣1⟩ defined in (a).

(c) Can you think of any physical situation that might be described by these
new operators?

8.15.29. What is the state?

A particle of mass m in a one dimensional harmonic oscillator potential is in a
state for which a measurement of the energy yields the values h̵ω/2 or 3h̵ω/2,
each with a probability of one-half. The average value of the momentum ⟨p̂x⟩
at time t = 0 is (mωh̵/2)1/2. This information specifies the state of the particle
completely. What is this state and what is ⟨p̂x⟩ at time t?

8.15.30. Things about a particle in a box

A particle of mass m moves in a one-dimensional box Infinite well) of length `
with the potential

V (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ x < 0

0 0 < x < `
∞ x > `
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At t = 0, the wave function of this particle is known to have the form

ψ(x,0) =
⎧⎪⎪⎨⎪⎪⎩

√
30/`5x(` − x) 0 < x < `

0 otherwise

(a) Write this wave function as a linear combination of energy eigenfunctions

ψn(x) =
√

2

`
sin(πnx

`
) , En = n2 π

2h̵2

2m`2
, n = 1,2,3, ....

(b) What is the probability of measuring En at t = 0?

(c) What is ψ(x, t > 0)?

8.15.31. Handling arbitrary barriers.....
Electrons in a metal are bound by a potential that may be approximated by a
finite square well. Electrons fill up the energy levels of this well up to an energy
called the Fermi energy as shown in the figure below:

Figure 8.29: Finite Square Well

The difference between the Fermi energy and the top of the well is the work
function W of the metal. Photons with energies exceeding the work function
can eject electrons from the metal - this is the so-called photoelectric effect.

Another way to pull out electrons is through application of an external uniform
electric field E⃗ , which alters the potential energy as shown in the figure below:

Figure 8.30: Finite Square Well + Electric Field

?By approximating (see notes below) the linear part of the function by a series
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of square barriers, show that the transmission coefficient for electrons at the
Fermi energy is given by

T ≈ exp(−4
√

2mW 3/2

3e ∣ε⃗∣ h̵
)

How would you expect this field- or cold-emission current to vary with the ap-
plied voltage? As part of your problem solution explain the method.

This calculation also plays a role in the derivation of the current-voltage char-
acteristic of a Schottky diode in semiconductor physics.

Approximating an Arbitrary Barrier

For a rectangular barrier of width a and height V0, we found the transmission
coefficient

T = 1

1 + V 2
0 sinh2 γa

4E(V0−E)

,γ2 = (V0 −E)2m

h̵2
,k2 = 2m

h̵2
E

A useful limiting case occurs for γa≫ 1. In this case

sinhγa = e
γa − e−γa

2
→

γa>>1

eγa

2

so that

T = 1

1 + (γ2+k2

4kγ
)

2
sinh2 γa

→
γa>>1

( 4kγ

γ2 + k2
)

2

e−2γa

Now if we evaluate the natural log of the transmission coefficient we find

lnT →
γa>>1

ln( 4kγ

γ2 + k2
)

2

− 2γa →
γa≫1

−2γa

where we have dropped the logarithm relative to γa since ln(almost anything)
is not very large. This corresponds to only including the exponential term.

We can now use this result to calculate the probability of transmission through
a non-square barrier, such as that shown in the figure below:

Figure 8.31: Arbitrary Barrier Potential

When we only include the exponential term, the probability of transmission
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through an arbitrary barrier, as above, is just the product of the individual
transmission coefficients of a succession of rectangular barrier as shown above.
Thus, if the barrier is sufficiently smooth so that we can approximate it by a
series of rectangular barriers (each of width ∆x) that are not too thin for the
condition γa≫ 1 to hold, then for the barrier as a whole

lnT ≈ ln∏
i

Ti =∑
i

lnTi = −2∑
i

γi∆x

If we now assume that we can approximate this last term by an integral, we find

T ≈ exp(−2∑
i

γi∆x) ≈ exp
⎛
⎝
−2∫

√
2m

h̵2

√
V (x) −Edx

⎞
⎠

where the integration is over the region for which the square root is real.

You may have a somewhat uneasy feeling about this crude derivation. Clearly,
the approximations made break down near the turning points, where E = V (x).
Nevertheless, a more detailed treatment shows that it works amazingly well.

8.15.32. Deuteron model

Consider the motion of a particle of mass m = 0.8 × 10−24 gm in the well shown
in the figure below:

Figure 8.32: Deuteron Model

The size of the well (range of the potential) is a = 1.4× 10−13 cm. If the binding
energy of the system is 2.2MeV , find the depth of the potential V0 in MeV .
This is a model of the deuteron in one dimension.

8.15.33. Use Matrix Methods
A one-dimensional potential barrier is shown in the figure below.
Define and calculate the transmission probability for a particle of mass m and
energy E (V1 < E < V0) incident on the barrier from the left. If you let V1 → 0
and a → 2a, then you can compare your answer to other textbook results. De-
velop matrix methods (as in the text) to solve the boundary condition equations.
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Figure 8.33: A Potential Barrier

8.15.34. Finite Square Well Encore
Consider the symmetric finite square well of depth V0 and width a.

(a) Let k0 =
√

2mV0/h̵2. Sketch the bound states for the following choices of
k0a/2.

(i) k0a
2

= 1 , (ii)k0a
2

= 1.6 , (iii)k0a
2

= 5

(b) Show that no matter how shallow the well, there is at least one bound
state of this potential. Describe it.

(c) Let us re-derive the bound state energy for the delta function well directly
from the limit of the the finite potential well. Use the graphical solution
discussed in the text. Take the limit as a → 0, V0 → ∞, but aV0 →
U0(constant) and show that the binding energy is Eb =mU2

0 /2h̵2.

(d) Consider now the half-infinite well, half-finite potential well as shown be-
low.

Figure 8.34: Half-Infinite, Half-Finite Well

Without doing any calculation, show that there are no bound states unless
k0L > π/2. HINT: think about erecting an infinite wall down the center
of a symmetric finite well of width a = 2L. Also, think about parity.

(e) Show that in general, the binding energy eigenvalues satisfy the eigenvalue
equation

κ = −k cotkL

where

κ =
√

2mEb
h̵2

and k2 + κ2 = k2
0
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8.15.35. Half-Infinite Half-Finite Square Well Encore

Consider the unbound case (E > V0) eigenstate of the potential below.

Figure 8.35: Half-Infinite, Half-Finite Well Again

Unlike the potentials with finite wall, the scattering in this case has only one
output channel - reflection. If we send in a plane wave towards the potential,
ψin(x) = Ae−ikx, where the particle has energy E = (h̵k)2/2m, the reflected
wave will emerge from the potential with a phase shift, ψout(x) = Aeikx+φ,

(a) Show that the reflected wave is phase shifted by

φ = 2 tan−1 (k
q

tan qL) − 2kL

where

q2 = k2 + k2
0 ,

h̵2k2
0

2m
= V0

(b) Plot the function of φ as a function of k0L for fixed energy. Comment on
your plot.

(c) The phase shifted reflected wave is equivalent to that which would arise
from a hard wall, but moved a distance L′ from the origin.

Figure 8.36: Shifted Wall

What is the effective L′ as a function of the phase shift φ induced by our
semi-finite well? What is the maximum value of L′? Can L′ be negative?
From your plot in (b), sketch L′ as a function of k0L, for fixed energy.
Comment on your plot.
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8.15.36. Nuclear α Decay
Nuclear alpha−decays (A,Z) → (A − 2, Z − 2) + α have lifetimes ranging from
nanoseconds (or shorter) to millions of years (or longer). This enormous range
was understood by George Gamov by the exponential sensitivity to underlying
parameters in tunneling phenomena. Consider α = 4He as a point particle in
the potential given schematically in the figure below.

Figure 8.37: Nuclear Potential Model

The potential barrier is due to the Coulomb potential 2(Z − 2)e2/r. The prob-
ability of tunneling is proportional to the so-called Gamov’s transmission coef-
ficients obtained in Problem 8.31

T = exp [− 2

h̵
∫

b

a

√
2m(V (x) −E)dx]

where a and b are the classical turning points (where E = V (x)) Work out
numerically T for the following parameters: Z = 92 (Uranium), size of nucleus
a = 5 fm and the kinetic energy of the α particle 1MeV , 3MeV , 10MeV ,
30MeV .

8.15.37. One Particle, Two Boxes
Consider two boxes in 1-dimension of width a, with infinitely high walls, sepa-
rated by a distance L = 2a. We define the box by the potential energy function
sketched below.
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Figure 8.38: Two Boxes

A particle experiences this potential and its state is described by a wave function.
The energy eigenfunctions are doubly degenerate, {φ(+)

n , φ
(−)
n ∣n = 1,2,3,4, ....} so

that

E(+)
n = E(−)

n = n2 π
2h̵2

2ma2

where φ(±)
n = un(x ±L/2) with

un(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2/a cos (nπx

a
) , n = 1,3,5, .... −a/2 < x < a/2√

2/a sin (nπx
a

) , n = 2,4,6, .... −a/2 < x < a/2
0 ∣x∣ > a/2

Suppose at time t = 0 the wave function is

ψ(x) = 1

2
φ
(−)
1 (x) + 1

2
φ
(−)
2 (x) + 1√

2
φ
(+)
1 (x)

At this time, answer parts (a) - (d)

(a) What is the probability of finding the particle in the state φ(+)
1 (x)?

(b) What is the probability of finding the particle with energy π2h̵2/2ma2?

(c) CLAIM: At t = 0 there is a 50-50 chance for finding the particle in either
box. Justify this claim.

(d) What is the state at a later time assuming no measurements are done?

Now let us generalize. Suppose we have an arbitrary wave function at
t = 0, ψ(x,0), that satisfies all the boundary conditions.

(e) Show that, in general, the probability to find the particle in the left box
does not change with time. Explain why this makes sense physically.

Switch gears again ......

(f) Show that the state Φn(x) = c1φ(+)
n (x) + c2φ(−)

n (x) (where c1 and c2 are
arbitrary complex numbers) is a stationary state.
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Consider then the state described by the wave function ψ(x) = (φ(+)
1 (x)+

c2φ
(−)
1 (x))/

√
2.

(g) Sketch the probability density in x. What is the mean value ⟨x⟩? How
does this change with time?

(h) Show that the momentum space wave function is

ψ̃(p) =
√

2 cos (pL/2h̵)ũ1(p)

where

ũ1(p) =
1√
2πh̵
∫

∞

−∞
u1(x)e−ipx/h̵

is the momentum-space wave function of u1(x).

(i) Without calculation, what is the mean value ⟨p⟩? How does this change
with time?

(j) Suppose the potential energy was somehow turned off (don’t ask me how,
just imagine it was done) so the particle is now free.

Without doing any calculation, sketch how you expect the position-space
wave function to evolve at later times, showing all important features.
Please explain your sketch.

8.15.38. A half-infinite/half-leaky box

Consider a one dimensional potential

V (x) =
⎧⎪⎪⎨⎪⎪⎩

∞ x < 0

U0δ(x − a) x > 0

Figure 8.39: Infinite Wall + Delta Function
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(a) Show that the stationary states with energy E can be written

u(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x < 0

A sin (ka+φ(k))
sin (ka) sin (kx) 0 < x < a

A sin (kx + φ(k)) x > a

where

k =
√

2mE

h̵2
, φ(k) = tan−1 [ k tan (ka)

k − γ0 tan (ka)
] , γ0 =

2mU0

h̵2

What is the nature of these states - bound or unbound?

(b) Show that the limits γ0 → 0 and γ0 →∞ give reasonable solutions.

(c) Sketch the energy eigenfunction when ka = π. Explain this solution.

(d) Sketch the energy eigenfunction when ka = π/2. How does the probability
to find the particle in the region 0 < x < a compare with that found in part
(c)? Comment.

(e) In a scattering scenario, we imagine sending in an incident plane wave
which is reflected with unit probability, but phase shifted according to the
conventions shown in the figure below:

Figure 8.40: Scattering Scenario

Show that the phase shift of the scattered wave is δ(k) = 2φ(k).

There exist mathematical conditions such that the so-called S-matrix ele-
ment eiδ(k) blows up. For these solutions is k real, imaginary, or complex?
Comment.

8.15.39. Neutrino Oscillations Redux
Read the article T. Araki et al, ”Measurement of Neutrino Oscillations with Kam
LAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005),
which shows the neutrino oscillation, a quantum phenomenon demonstrated at
the largest distance scale yet (about 180km).
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(a) The Hamiltonian for an ultrarelativistic particle is approximated by

H =
√
p2c2 +m2c4 ≈ pc + m

2c3

2p

for p=∣p⃗∣. Suppose in a basis of two states, m2 is given as a 2 × 2 matrix

m2 =m2
0I +

∆m2

2
(− cos (2θ) sin (2θ)

sin (2θ) cos (2θ))

Write down the eigenstates of m2.

(b) Calculate the probability for the state

∣ψ⟩ = (1
0
)

to be still found in the same state after time interval t for definite momen-
tum p.

(c) Using the data shown in Fig. 3 of the article, estimate approximately
values of ∆m2 and sin2 2θ.

8.15.40. Is it in the ground state?
An infinitely deep one-dimensional potential well runs fro x = 0 to x = a. The
normalized energy eigenstates are

un(x) =
√

2

a
sin (nπx

a
) , n = 1,2,3, ......

A particle is placed in the left-hand half of the well so that its wavefunction is
ψ = constant for x < a/2. If the energy of the particle is now measured, what is
the probability of finding it in the ground state?

8.15.41. Some Thoughts on T-Violation
Any Hamiltonian can be recast to the form

H = U
⎛
⎜⎜⎜
⎝

E1 0 . . . 0
0 E2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . En

⎞
⎟⎟⎟
⎠
U+

where U is a general n × n unitary matrix.

(a) Show that the time evolution operator is given by

e−iHt/h̵ = U
⎛
⎜⎜⎜
⎝

e−iE1t/h̵ 0 . . . 0

0 e−iE2t/h̵ . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . e−iEnt/h̵

⎞
⎟⎟⎟
⎠
U+
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(b) For a two-state problem, the most general unitary matrix is

U = eiθ ( cos θeiφ − sin θeiη

sin θe−iη cos θe−iφ
)

Work out the probabilities P (1 → 2) and P (2 → 1) over time interval t
and verify that they are the same despite the the apparent T-violation
due to complex phases. NOTE: This is the same problem as the neutrino
oscillation (problem 8.39) if you set Ei =

√
p2c2 +m2c4 ≈ pc+ m2c3

2p
and set

all phases to zero.

(c) For a three-state problem, however, the time-reversal invariance can be
broken. Calculate the difference P (1 → 2) − P (2 → 1) for the following
form of the unitary matrix

U =
⎛
⎜
⎝

1 0 0
0 c23 s23

0 −s23 c23

⎞
⎟
⎠

⎛
⎜
⎝

c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

⎞
⎟
⎠

⎛
⎜
⎝

c12 s12 0
−s12 c12 0

0 0 1

⎞
⎟
⎠

where five unimportant phases have been dropped. The notation is s12 =
sin θ12, c23 = cos θ23, etc.

(d) For CP-conjugate states (e.g.., anti-neutrinos(ν̄) vs neutrinos(ν), the Hamil-
tonian is given by substituting U∗ in place of U . Show that the probabili-
ties P (1→ 2) and P (1̄→ 2̄) can differ (CP violation) yet CPT is respected,
ie., P (1→ 2) = P (2̄→ 1̄).

8.15.42. Kronig-Penney Model
Consider a periodic repulsive potential of the form

V =
∞
∑
n=−∞

λδ(x − na)

with λ > 0. The general solution for −a < x < 0 is given by

ψ(x) = Aeiκx +Be−iκx

with κ =
√

2mE/h̵. Using Bloch’s theorem, the wave function for the next
period 0 < x < a is given by

ψ(x) = eika (Aeiκ(x−a) +Be−iκ(x−a))

for ∣k∣ ≤ π/a. Answer the following questions.

(a) Write down the continuity condition for the wave function and the required
discontinuity for its derivative at x = 0. Show that the phase eika under
the discrete translation x→ x + a is given by κ as

eika = cosκa + 1

κd
sinκa ± i

√
1 − (cosκa + 1

κd
sinκa)

2

Here and below, d = h̵2/mλ.
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(b) Take the limit of zero potential d → ∞ and show that there are no gaps
between the bands as expected for a free particle.

(c) When the potential is weak but finite (lartge d) show analytically that
there appear gaps between the bands at k = ±π/a.

(d) Plot the relationship between κ and k for a weak potential (d = 3a) and a
strong potential (d = a/3) (both solutions together).

(e) You always find two values of k at the same energy (or κ). What discrete
symmetry guarantees this degeneracy?

8.15.43. Operator Moments and Uncertainty

Consider an observable OA for a finite-dimensional quantum system with spec-
tral decomposition

OA =∑
i

λiPi

(a) Show that the exponential operator EA = exp(OA) has spectral decompo-
sition

EA =∑
i

eλiPi

Do this by inserting the spectral decomposition of OA into the power series
expansion of the exponential.

(b) Prove that for any state ∣ΨA⟩ such that ∆OA = 0, we automatically have
∆EA = 0.

8.15.44. Uncertainty and Dynamics

Consider the observable

OX = (0 1
1 0

)

and the initial state

∣ΨA(0)⟩ = (1
0
)

(a) Compute the uncertainty ∆OX = 0 with respect to the initial state ∣ΨA(0)⟩.

(b) Now let the state evolve according to the Schrödinger equation, with
Hamiltonian operator

H = h̵( 0 i
−i 0

)

Compute the uncertainty ∆OX = 0 as a function of t.
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(c) Repeat part (b) but replace OX with the observable

OZ = (1 0
0 −1

)

That is, compute the uncertainty ∆OZ as a function of t assuming evolu-
tion according to the Schrödinger equation with the Hamiltonian above.

(d) Show that your answers to parts (b) and (c) always respect the Heisenberg
Uncertainty Relation

∆OX∆OZ ≥ 1

2
∣⟨[OX ,OZ]⟩∣

Are there any times t at which the Heisenberg Uncertainty Relation is
satisfied with equality?
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Chapter 9

Angular Momentum; 2- and 3-Dimensions

9.1. Angular Momentum Eigenvalues and Eigen-
vectors

In an Chapter 6, we derived the commutation relations that define angular
momentum operators

[Ĵi, Ĵj] = ih̵εijkĴk ≡ ih̵∑
k

εijkĴk (9.1)

where

εijk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1 if ijk = even permutation of 123

−1 if ijk = odd permutation of 123

0 if any two indices are identical
(9.2)

and the Einstein summation convention over repeated indices is understood if
the summation sign is left out (unless an explicit override is given).

In addition, these are all Hermitian operators, i.e., (Ĵi)† = Ĵ†
i = Ĵi.

Since these three operators form a closed commutator algebra, we can solve for
the eigenvectors and eigenvalues using only the commutators.

The three operators Ĵ1, Ĵ2 and Ĵ3 do not commute with each other and hence
do not share a common set of eigenvectors (called a representation).

However, there exists another operator that commutes with each of the angular
momentum components separately. If we define

Ĵ2 =
3

∑
i=1

Ĵ2
i (9.3)

which is the square of the total angular momentum vector, we have

[Ĵ2, Ĵi] = 0 for i = 1,2,3 (9.4)
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In addition, we have (Ĵ2)† = Ĵ2, so that Ĵ2 is Hermitian also.

The commutation relations and the Hermitian property say that Ĵ2 and any one
of the components share a complete set of common eigenvectors. By conven-
tion, we choose to use Ĵ2 and Ĵ3 as the two operators, whose eigenvalues(good
quantum numbers) will characterize the set of common eigenvectors.

As we shall see, Ĵ2 is a so-called Casimir invariant operator that character-
izes the representations(set of eigenvectors). In particular, the eigenvalue of Ĵ2

characterizes the representation and the eigenvalues of one of the components
of the angular momentum (usually Ĵ3) will characterize the eigenvectors within
a representation.

We define the eigenvector/eigenvalue relations by the equations

Ĵ2 ∣λm⟩ = λh̵2 ∣λm⟩ (9.5)

Ĵ3 ∣λm⟩ =mh̵ ∣λm⟩ (9.6)

where the appropriate factors of h̵ that have been explicitly put into the relations
make m and λ dimensionless numbers.

We now define some other operators and their associated commutators so that
we can use them in our derivations.

Ĵ± = Ĵ1 ± iĴ2 (9.7)

Ĵ− = (Ĵ+)
+
→ they are not Hermitian operators (9.8)

We then have

[Ĵ2, Ĵ±] = [Ĵ2, Ĵ1] ± i [Ĵ2, Ĵ2] = 0 (9.9)

[Ĵ3, Ĵ±] = [Ĵ3, Ĵ1] ± i [Ĵ3, Ĵ2]

= ih̵Ĵ2 ∓ i (ih̵Ĵ1) = ±h̵Ĵ± (9.10)

and

[Ĵ+, Ĵ−] = [Ĵ1, Ĵ1] + i [Ĵ2, Ĵ1] − i [Ĵ1, Ĵ2] − [Ĵ2, Ĵ2]

= −2i [Ĵ1, Ĵ2] = 2h̵Ĵ3 (9.11)

and

Ĵ+Ĵ− = (Ĵ1 + iĴ2) (Ĵ1 − iĴ2)

= Ĵ2
1 + Ĵ2

2 − i [Ĵ1, Ĵ2] = Ĵ2 − Ĵ2
3 + h̵Ĵ3 (9.12)

and
Ĵ−Ĵ+ = Ĵ2 − Ĵ2

3 − h̵Ĵ3 (9.13)
Finally, we have

Ĵ2 = Ĵ+Ĵ− + Ĵ−Ĵ+
2

+ Ĵ2
3 (9.14)
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9.1.1. Derivation of Eigenvalues
Now the definitions (9.5) and (9.6) tell us that

⟨λm∣ Ĵ2 ∣λm⟩ = λh̵2 ⟨λm ∣ λm⟩ =∑
i

⟨λm∣ Ĵ2
i ∣λm⟩ (9.15)

λh̵2 ⟨λm ∣ λm⟩ =∑
i

⟨λm∣ ĴiĴi ∣λm⟩ =∑
i

⟨λm∣ Ĵ+i Ĵi ∣λm⟩ (9.16)

Let us define the new vector ∣αi⟩ = Ĵi ∣λm⟩. Remember that the norm of any
vector is non-negative, i.e., ⟨a ∣a⟩ ≥ 0. Therefore

⟨λm ∣ λm⟩ ≥ 0 and ⟨αi ∣ αi⟩ ≥ 0 (9.17)

Now since ⟨αi∣ = ⟨λm∣ Ĵ†
i we have

λh̵2 ⟨λm ∣ λm⟩ =∑
i

⟨λm∣ Ĵ+i Ĵi ∣λm⟩ =∑
i

⟨αi ∣ αi⟩ ≥ 0 (9.18)

or we have
λ ≥ 0 or the eigenvalues of Ĵ2 are greater than 0 (9.19)

In fact, we can even say more than this using these equations. We have

λh̵2 ⟨λm ∣ λm⟩ =∑
i

⟨αi ∣ αi⟩

= ⟨α1 ∣ α1⟩ + ⟨α2 ∣ α2⟩ + ⟨α3 ∣ α3⟩
= ⟨α1 ∣ α1⟩ + ⟨α2 ∣ α2⟩ + ⟨λm∣ Ĵ2

3 ∣λm⟩
= ⟨α1 ∣ α1⟩ + ⟨α2 ∣ α2⟩ +m2h̵2 ⟨λm ∣ λm⟩ ≥ 0

which says that

λh̵2 ⟨λm ∣ λm⟩ ≥m2h̵2 ⟨λm ∣ λm⟩⇒ λ ≥m2 (9.20)

This says that for a fixed value of λ (the eigenvalue of Ĵ2), which characterizes
the representation, there must be maximum and minimum values of m (the
eigenvalue of Ĵ3), which characterizes the eigenvectors within a representation.

Now we have

Ĵ3Ĵ+ ∣λm⟩ = Ĵ3(Ĵ+ ∣λm⟩)
= (Ĵ+Ĵ3 + [Ĵ3, Ĵ+]) ∣λm⟩ = (Ĵ+Ĵ3 + h̵Ĵ+) ∣λm⟩

= h̵(m + 1)Ĵ+ ∣λm⟩ = h̵(m + 1)(Ĵ+ ∣λm⟩) (9.21)

which says that Ĵ+ ∣λm⟩ is an eigenvector of Ĵ3 with the raised eigenvalue h̵(m+
1), i.e., Ĵ+ ∣λm⟩∝ ∣λ,m + 1⟩ (remember the harmonic oscillator discussion).

Since we already showed that for fixed λ, there must be a maximum value of m,
say mmax, then it must be the case that for that particular m-value we have

Ĵ+ ∣λmmax⟩ = 0 (9.22)
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If this were not true, then we would have

Ĵ+ ∣λmmax⟩∝ ∣λ,mmax + 1⟩ (9.23)

but this violates the statement that mmax was was the maximum m-value.

Using this result we find

Ĵ−Ĵ+ ∣λmmax⟩ = 0 = (Ĵ2 − Ĵ2
3 − h̵Ĵ3) ∣λmmax⟩

h̵2 (λ −m2
max −mmax) ∣λmmax⟩ = 0

λ −m2
max −mmax = 0→ λ =m2

max +mmax

λ =mmax(mmax + 1) (9.24)

It is convention to define

mmax = j and hence λ = j(j + 1) (9.25)

In the same way we can show

Ĵ3Ĵ− ∣λm⟩ = Ĵ3(Ĵ− ∣λm⟩)
= (Ĵ−Ĵ3 + [Ĵ3, Ĵ−]) ∣λm⟩ = (Ĵ−Ĵ3 − h̵Ĵ+) ∣λm⟩

= h̵(m − 1)Ĵ− ∣λm⟩ = h̵(m − 1)(Ĵ− ∣λm⟩) (9.26)

which says that Ĵ− ∣λm⟩ is an eigenvector of Ĵ3 with the lowered eigenvalue
h̵(m − 1), i.e., Ĵ− ∣λm⟩∝ ∣λ,m − 1⟩.

If we let the minimum value of m be mmin, then as before we must have

Ĵ− ∣λmmin⟩ = 0 (9.27)

or mmin is not the minimum value of m. This says that

Ĵ+Ĵ− ∣λmmin⟩ = 0 = (Ĵ2 − Ĵ2
3 + h̵Ĵ3) ∣λmmin⟩

h̵2 (λ −m2
min +mmin) ∣λmmin⟩ = 0

λ −m2
min +mmin = 0→ λ =m2

min −mmin

λ =mmin(mmin − 1) = j(j + 1) (9.28)

which says that
mmin = −j (9.29)

We have thus shown that the pair of operators Ĵ2 and Ĵ3 have a common set of
eigenvectors ∣jm⟩ (we now use the labels j and m), where we have found that

−j ≤m ≤ j (9.30)

and the allowed m-values change by steps of one, i.e., for a given j-value, the
allowed m-values are

−j,−j + 1,−j + 2, . . . . . . , j − 2, j − 1, j (9.31)
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which implies that
2j = integer (9.32)

or
j = integer

2
≥ 0 the allowed values (9.33)

Thus, we have the allowed sets or representations of the angular momentum
commutation relations given by

j = 0 , m = 0

j = 1

2
, m = 1

2
,−1

2
j = 1 , m = 1,0,−1

j = 3

2
, m = 3

2
,
1

2
,−1

2
,−3

2
(9.34)

and so on.

For each value of j, there are 2j + 1 allowed m-values in the eigenvalue spec-
trum(representation) and

Ĵ2 ∣jm⟩ = h̵2j(j + 1) ∣jm⟩ (9.35)

Ĵ3 ∣jm⟩ =mh̵ ∣jm⟩ (9.36)

Before proceeding, we need a few more relations. We found earlier that

Ĵ+ ∣jm⟩ = C+ ∣j,m + 1⟩ = ∣α+⟩ (9.37)

Ĵ− ∣jm⟩ = C− ∣j,m − 1⟩ = ∣α−⟩ (9.38)

and from these we have

⟨α+∣ = C∗
+ ⟨j,m + 1∣ (9.39)

⟨α−∣ = C∗
− ⟨j,m − 1∣ (9.40)

We can then say that

⟨α+ ∣ α+⟩ = ∣C+∣2 ⟨j,m + 1 ∣ j,m + 1⟩ = ∣C+∣2

= (⟨jm∣ (Ĵ+)+)(Ĵ+ ∣jm⟩)
= ⟨jm∣ Ĵ−Ĵ+ ∣jm⟩
= ⟨jm∣ (Ĵ2 − Ĵ2

3 − h̵Ĵ3) ∣jm⟩
= ⟨jm∣ h̵2(j(j + 1) −m2 −m) ∣jm⟩
= h̵2(j(j + 1) −m2 −m) ⟨jm ∣ jm⟩
= h̵2(j(j + 1) −m2 −m) (9.41)
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or
C+ = h̵

√
j(j + 1) −m(m + 1) (9.42)

and similarly

⟨α− ∣ α−⟩ = ∣C−∣2 ⟨j,m − 1 ∣ j,m − 1⟩ = ∣C−∣2

= (⟨jm∣ (Ĵ−)+)(Ĵ− ∣jm⟩)
= ⟨jm∣ Ĵ+Ĵ− ∣jm⟩
= ⟨jm∣ (Ĵ2 − Ĵ2

3 + h̵Ĵ3) ∣jm⟩
= ⟨jm∣ h̵2(j(j + 1) −m2 +m) ∣jm⟩
= h̵2(j(j + 1) −m2 +m) ⟨jm ∣ jm⟩
= h̵2(j(j + 1) −m2 +m) (9.43)

or
C− = h̵

√
j(j + 1) −m(m − 1) (9.44)

Therefore, we have the very important relations for the raising/lowering or lad-
der operators

Ĵ± ∣jm⟩ = h̵
√
j(j + 1) −m(m ± 1) ∣j,m ± 1⟩

= h̵
√

(j ±m + 1)(j ∓m) ∣j,m ± 1⟩ (9.45)

9.2. Transformations and Generators; Spherical Har-
monics

There are many vector operators and vector component operators in the fol-
lowing discussions. To avoid confusing notation, we will adopt the following
conventions:

A⃗op = a vector operator

Âj = a vector component operator

B̂ = any non-vector operator or it might be a unit vector (context will decide)
q⃗ = an ordinary vector

As we showed earlier, the angular momentum operators are the generators of
rotations. The unitary transformation operator for a rotation through an angle
θ about an axis along the direction specified by the unit vector n̂ is given by

Ûn̂(θ) = e−
i
h θn̂⋅J⃗op (9.46)

where J⃗op is the angular momentum operator.

What does the Ĵ3 operator look like in the position representation?
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We will quickly get an idea of the answer and then step back and do things in
more detail.

Suppose that we have a position representation wave function ψ(r⃗). For a
rotation about the 3-axis, we showed earlier in Chapter 6 that for an infinitesimal
angle ε

Û3(ε)ψ(x1, x2, x3) = ψ(x1 cos ε + x2 sin ε,−x1 sin ε + x2 cos ε, x3) (9.47)

In general, for infinitesimal shifts(a in this case) in the coordinates, we have, to
lowest order in the infinitesimals, for a function of one variable

f(x + a) = f(x) + a∂f
∂x

(9.48)

Extending this to two variables, we have, to first order in infinitesimals a and b,

f(x + a, y + b) = f(x, y) + a∂f
∂x

+ b∂f
∂y

(9.49)

Therefore, for an infinitesimal angle of rotation ε,

Û3(ε)ψ(x1, x2, x3) = ψ(x1 cos ε + x2 sin ε,−x1 sin ε + x2 cos ε, x3)

= ψ(x1, x2, x3) + εx2
∂ψ

∂x1
− εx1

∂ψ

∂x2

= (1 + ε(x2
∂

∂x1
− x1

∂

∂x2
))ψ(x1, x2, x3) (9.50)

But we also have (to first order)

Û3(ε)ψ(x1, x2, x3) = (1 − i

h̵
εĴ3)ψ(x1, x2, x3) (9.51)

Putting these two equations together we have

Ĵ3 = −ih̵(x2
∂

∂x1
− x1

∂

∂x2
) = (r⃗op × (−ih̵∇))3

= (r⃗op × p⃗op)3 = (L⃗op)3
= L̂3 (9.52)

where

L⃗op = orbital angular momentum operator
r⃗op = (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3)
p⃗op = (p̂x, p̂y, p̂z) = (p̂1, p̂2, p̂3)

Since L⃗op is an angular momentum, it must have the commutation relations

[L̂i, L̂j] = ih̵εijkL̂k (9.53)
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where as we indicated above

L̂1 = x̂2p̂3 − x̂3p̂2 (9.54)

L̂2 = x̂3p̂1 − x̂1p̂3 (9.55)

L̂3 = x̂1p̂2 − x̂2p̂1 (9.56)

and
L⃗+op = L⃗op (9.57)

Using
[x̂i, p̂j] = ih̵δij (9.58)

we get
[L̂i, xj] = ih̵εijkxk (9.59)

and for n̂ = a unit vector

∑
i

n̂i [L̂i, xj] = ih̵∑
i

n̂iεijkxk (9.60)

[n̂ ⋅ L⃗op, xj] = ih̵ (r⃗op × n̂)j (9.61)

[n̂ ⋅ L⃗op, r⃗op] =∑
j

[n̂ ⋅ L⃗op, xj]êj

= ih̵∑
j

(r⃗op × n̂)j êj = ih̵ (r⃗op × n̂) (9.62)

where we have used
A⃗ × B⃗ =∑

ijk

εijkAjBkêi (9.63)

Similarly, we get
[n̂ ⋅ L⃗op, p⃗op] = ih̵ (p⃗op × n̂) (9.64)

Now let us step back and consider rotations in 3-dimensional space and try to
get a better physical understanding of what is happening.

Consider the operator
r⃗ ′op = r⃗op + α⃗ × r⃗op (9.65)

where α⃗ = ordinary infinitesimal vector.

Now let ∣r⃗0⟩ = an eigenstate of r⃗op with eigenvalue r⃗0, i.e.,

r⃗op ∣r⃗0⟩ = r⃗0 ∣r⃗0⟩ (9.66)

We then have
r⃗ ′op ∣r⃗0⟩ = r⃗ ′0 ∣r⃗0⟩ = (r⃗0 + α⃗ × r⃗0) ∣r⃗0⟩ (9.67)

which says that ∣r⃗0⟩ is also an eigenstate of r⃗ ′op (different eigenvalue).
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Now, for simplicity, let α⃗ = αê3, which says that

α⃗ × r⃗0 = αê3 × (x01ê1 + x02ê2 + x03ê3) = αx01ê2 − αx02ê1 (9.68)
r⃗0 + α⃗ × r⃗0 = (x01 − αx02)ê1 + (x02 + αx01)ê2 + x03ê3 (9.69)

This last expression is the vector we get if we rotate r⃗0 about α̂ = α⃗/∣α⃗∣ (ê3 in
this case) by an infinitesimal angle α̂ = ∣α⃗∣. This result generalizes for α⃗ in any
direction.

Since the eigenvalues of r⃗ ′op are those of r⃗op rotated by ∣α⃗∣ about α⃗, we conclude
that r⃗ ′op is the position operator rotated by rotated by ∣α⃗∣ about α⃗.

Alternatively, r⃗ ′op is the position operator in a coordinate frame rotated by ∣α⃗∣
about α⃗ (remember our earlier discussions about the active/passive views).

To connect this to generators, unitary transformations, and angular momentum,
we proceed as follows. We can rewrite r⃗ ′op as

r⃗ ′op = r⃗op +
i

h̵
[α⃗ ⋅ L⃗op, r⃗op] (9.70)

which is equivalent (to first order in α) to

r⃗ ′op = e
i
h̵ α⃗⋅L⃗op r⃗ope

− ih̵ α⃗⋅L⃗op (9.71)

i.e.,

r⃗ ′op = e
i
h̵ α⃗⋅L⃗op r⃗ope

− ih̵ α⃗⋅L⃗op

= (Î + i

h̵
α⃗ ⋅ L⃗op)r⃗op(Î −

i

h̵
α⃗ ⋅ L⃗op) +O(α2)

= r⃗op +
i

h̵
[α⃗ ⋅ L⃗op, r⃗op] +O(α2) (9.72)

Earlier, however, we showed that, if the state vector transforms as

∣ψ′⟩ = Û ∣ψ⟩ (9.73)

then the operators transform as

Û−1ÔÛ (9.74)

which then implies that the rotation operator is

Û(α⃗) = e−
i
h̵ α⃗⋅L⃗op (9.75)

as we expect.

This result derived for infinitesimal rotation angles holds for finite rotation an-
gles also.

695



Let us look at the effect on state vectors

r⃗ ′op ∣r⃗0⟩ = r⃗′0 ∣r⃗0⟩ = e
i
h̵ α⃗⋅L⃗op r⃗ope

− ih̵ α⃗⋅L⃗op ∣r⃗0⟩ (9.76)

r⃗ope
− ih̵ α⃗⋅L⃗op ∣r⃗0⟩ = r⃗ ′0e−

i
h̵ α⃗⋅L⃗op ∣r⃗0⟩ (9.77)

or
e−

i
h̵ α⃗⋅L⃗op ∣r⃗0⟩ (9.78)

is an eigenstate of r⃗op with eigenvalue r⃗ ′0 or

∣r⃗ ′0⟩ = e−
i
h̵ α⃗⋅L⃗op ∣r⃗0⟩ and ⟨r⃗ ′0∣ = ⟨r⃗0∣ e

i
h̵ α⃗⋅L⃗op (9.79)

and thus L⃗op is the generator of ordinary rotations in 3-dimensional space.

For wave functions we have ψ(r⃗0) = ⟨r⃗0 ∣ψ⟩. Using this result, the wave function
transforms as

ψ(r⃗ ′0) = ⟨r⃗ ′0 ∣ ψ⟩ = ⟨r⃗0∣ e
i
h̵ α⃗⋅L⃗op ∣ψ⟩

= ⟨r⃗0 ∣ ψ ′⟩ = ψ ′(r⃗0) = wave function at rotated point r⃗ ′0 (9.80)

Now, we have seen that

L⃗op = r⃗op × p⃗op = −ih̵r⃗op ×∇ (9.81)

This can easily be evaluated in different coordinate systems.

Cartesian Coordinates

L⃗op = −ih̵∑
ijk

εijkxj
∂

∂xk
êi (9.82)

L̂1 = −ih̵(x2
∂

∂x3
− x3

∂

∂x2
) (9.83)

L̂2 = −ih̵(x3
∂

∂x1
− x1

∂

∂x3
) , L̂3 = −ih̵(x1

∂

∂x2
− x2

∂

∂x1
) (9.84)

as we saw at the beginning of this discussion.

Spherical-Polar Coordinates

We have
r⃗ = rêr and ∇ = êr

∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ
(9.85)

where

êr = sin θ cosϕê1 + sin θ sinϕê2 + cos θê3 (9.86)
êθ = cos θ cosϕê1 + cos θ sinϕê2 + sin sθê3 (9.87)
êϕ = − sin θê1 + cos θê2 (9.88)
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which gives

L⃗op = −ih̵ [êϕ
∂

∂θ
− êθ

1

sin θ

∂

∂ϕ
] (9.89)

and

L̂3 = L̂z = êz ⋅ L⃗op = −ih̵
∂

∂ϕ
(9.90)

L⃗2
op = L⃗op ⋅ L⃗op = −h̵2 [ 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) + 1

sin2 θ

∂2

∂ϕ2
] (9.91)

Similarly, we have

L̂1 = L̂x = ih̵ [sinϕ ∂

∂θ
+ cot θ cosϕ

∂

∂ϕ
] (9.92)

L̂2 = L̂y = −ih̵ [cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ
] (9.93)

and

∇2 = 1

r

∂2

∂r2
r −

L⃗2
op

h̵2r2
(9.94)

9.2.1. Eigenfunctions; Eigenvalues; Position Representation
Since

[L̂i, L̂j] = ih̵εijkL̂kand [L̂2
op, L̂j] = 0 (9.95)

the derivation of the eigenvalues and eigenvectors follows our earlier work, i.e.,
the equations

L̂2
op ∣`m⟩ = h̵2`(` + 1) ∣`m⟩ and L̂3 ∣`m⟩ = h̵m ∣`m⟩ (9.96)

L̂± = L̂x ± iL̂y (9.97)

imply

` = integer

2
≥ 0 (9.98)

and for a given value of `,m takes on the 2` + 1 values

m = −`,−` + 1,−` + 2, ........., ` − 2, ` − 1, ` (9.99)

If we move back into 3-dimensional space and define

Y`m(θ,ϕ) = ⟨θϕ ∣ `m⟩ = spherical harmonic (9.100)

then we have the defining equations for the Y`m(θ,ϕ) given by

⟨θϕ∣ L⃗2
op ∣`m⟩ = L⃗2

op ⟨θϕ ∣ `m⟩ = L⃗2
opY`m(θ,ϕ)

= h̵2`(` + 1) ⟨θϕ ∣ `m⟩ = h̵2`(` + 1)Y`m(θ,ϕ) (9.101)

⟨θϕ∣ L̂3 ∣`m⟩ = L̂3 ⟨θϕ ∣ `m⟩ = L̂3Y`m(θ,ϕ)
= h̵m ⟨θϕ ∣ `m⟩ = h̵mY`m(θ,ϕ) (9.102)
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Before determining the functional form of the Y`m ′s, we must step back and see
if there are any restrictions that need to be imposed on the possible eigenvalues
` and m due to the fact that we are in a real 3-dimensional space.

In general, eigenvalue restrictions come about only from the imposition of physi-
cal boundary conditions. A standard boundary condition that is usually imposed
is the following:

In real 3-dimensional space, if we rotate the system (or the axes by 2π, then we
get back the same world. This means that the Y`m(θ,ϕ) should be single-valued
under such rotations or that

Y`m(θ,ϕ + 2π) = Y`m(θ,ϕ) (9.103)

Now from the general rules we have developed, this gives

⟨θ,ϕ + 2π ∣ `m⟩ = ⟨θϕ∣ e2πiL̂3/h̵ ∣`m⟩ = e2πmi ⟨θ,ϕ ∣ `m⟩ (9.104)

or that single-valuedness of the wave function requires that

⟨θ,ϕ + 2π ∣ `m⟩ = ⟨θϕ∣ e2πiL̂3/h̵ ∣`m⟩ = e2πmi ⟨θ,ϕ ∣ `m⟩ (9.105)

This says, that for orbital angular momentum in real 3-dimensional space, no
1/2-integer values are allowed for m and hence that ` must be an integer. The
allowed sets are:

` = 0 , m = 0

` = 1 , m = −1,0,1

` = 2 , m = −2,−1,0,1,2

and so on.

It is important to note that we are imposing a much stronger condition than
is necessary. In general, as we have stated several times, it is not the state
vectors, operators or wave functions that have any physical meaning in quantum
mechanics. The only quantities that have physical meaning are those directly
related to measurable quantities, namely, the probabilities, and the expectation
values. This single-valued condition onm is not needed for the single-valuedness
of the expectation values, since the extra phase factors involving m will cancel
out during the calculation of the expectation value. Experiment, however, says
that ` is an integer only, so it seems that the strong condition is valid. We
cannot prove that this is so, however.

Let us now figure out the Y`m(θ,ϕ). We have

L̂3Y`m(θ,ϕ) = h̵
i

∂

∂ϕ
Y`m(θ,ϕ) = h̵mY`m(θ,ϕ) (9.106)
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which tells us the ϕ-dependence.

Y`m(θ,ϕ) = eimϕP`m(θ) (9.107)

Now we also must have, since ` = maximum value of m

⟨θϕ∣ L̂+ ∣``⟩ = 0 = L̂+ ⟨θϕ ∣ ``⟩ = L̂+Y``(θ,ϕ) (9.108)

Using the expressions for L̂x, L̂y, L̂+ and L̂− we have

h̵

i
eiϕ [i ∂

∂θ
− cot θ

∂

∂ϕ
]Y``(θ,ϕ) = 0 (9.109)

Using
h̵

i

∂

∂ϕ
Y``(θ,ϕ) = `h̵Y``(θ,ϕ) (9.110)

we get

[ ∂
∂θ

− ` cot θ]P``(θ) = 0 (9.111)

or
P``(θ) = (sin θ)` (9.112)

Therefore, the final expression is

Y``(θ,ϕ) = A`mei`ϕ(sin θ)` (9.113)

Now that we have generated the topmost spherical harmonic. We can generate
all the others for a given ` using the lowering operators, i.e.,

L̂−Y`m(θ,ϕ) = h̵
√
`(` + 1) −m(m − 1)Y`m−1(θ,ϕ) (9.114)

where
L̂− =

h̵

i
e−iϕ [i ∂

∂θ
− cot θ

∂

∂ϕ
] (9.115)

In general, we choose the A`m so that the Y`m(θ,ϕ) are normalized, i.e.,

1 = ∫ dΩ ∣Y`m(θ,ϕ)∣2 =
2π

∫
0

dϕ

π

∫
0

sin θdθ ∣Y`m(θ,ϕ)∣2 (9.116)

Since the Y`m(θ,ϕ) are eigenfunctions of a Hermitian operators, they form a
compete set which we can always make orthogonal so that we also assume that
we have

2π

∫
0

dϕ

π

∫
0

sin θdθY ∗
`′m′(θ,ϕ)Y`m(θ,ϕ) = δ`′`δm′m (9.117)

The algebra is complicated. The general result is

Y`m(θ,ϕ) − (−1)`
2``!

¿
ÁÁÀ2` + 1

4π

(` +m)!
(` −m)!

eimϕ

(sin θ)m
( d

d cos θ
)
`−m

(sin θ)2` (9.118)
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Some examples are:

Y00 =
1√
4π

, Y10 =
√

3

4π
cos θ (9.119)

Y1,±1 = ∓
√

3

8π
e±iϕ sin θ , Y20 =

√
5

16π
(3 cos2 θ − 1) (9.120)

Y2,±1 = ∓
√

15

8π
sin θ cos θe±iϕ , Y2,±2 =

√
15

32π
sin2 θe±2iϕ (9.121)

Some Properties
Y`,−m(θ,ϕ) = (−1)mY ∗

`,m(θ,ϕ) (9.122)

Under the parity operation

r⃗ → −r⃗ or r → r, θ → π − θ,ϕ→ ϕ + π (9.123)

This says that

eimϕ → eimϕeimπ = (−1)meimϕ

sin θ → sin(π − θ)→ sin θ

cos θ → cos(π − θ)→ − cos θ

(9.124)

which imply that
Y`,m(θ,ϕ)→ (−1)`Y`,m(θ,ϕ) (9.125)

Therefore,

if ` is even, then we have an even parity state
if ` is odd, then we have an odd parity state

Since they form a complete set, any function of (θ,ϕ) can be expanded in terms
of the Y`m(θ,ϕ) (the Y`m(θ,ϕ) are a basis), i.e., we can write

f(θ,ϕ) = ∑
`,m

f`mY`,m(θ,ϕ) (9.126)

where

f`m =
2π

∫
0

dϕ

π

∫
0

sin θdθY ∗
`′m′(θ,ϕ)f(θ,ϕ) (9.127)

9.3. Spin

indexSpin As we discussed earlier, a second kind of angular momentum exists
in quantum mechanics. It is related to internal degrees of freedom of particles
and is not related in any way to ordinary 3-dimensional space properties.
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We designate this new angular momentum by spin and represent it by the
operator S⃗op, where since it is an angular momentum, its components must
satisfy the commutators

[Ŝi, Ŝj] = ih̵εijkŜk (9.128)

where we have used the Einstein summation convention over repeated indices.

The analysis for the eigenvalues and eigenvectors follows the same path as for
earlier discussions. We have

S⃗2
op ∣s,ms⟩ = h̵2s(s + 1) ∣s,ms⟩ (9.129)

Ŝ3 ∣s,ms⟩ = h̵ms ∣s,ms⟩ (9.130)

which, together with the commutators, gives the following results.

For a given value of s, we have 2s + 1 ms-values

ms = −s,−s + 1,−s + 2, ........, s − 2, s − 1, s (9.131)

where
s = integer

2
≥ 0 (9.132)

There are no boundary conditions restricting the value of s, so we can have both
integer and half-integer values.

We now turn our attention to a most important special case and then generalize
the details.

9.3.1. Spin 1/2
We define a new operator σ⃗op such that

S⃗op =
1

2
h̵σ⃗op (9.133)

where σ⃗op = (σ̂1, σ̂2, σ̂3) are called the Pauli spin operators.

It is experimentally observed that if one measures the component of this spin
angular momentum along any direction, one always obtains either ±h̵/2.

If we designate the state with spin = +h̵/2 or spin up in the n̂ direction by the
ket vectors ∣n̂ ↑⟩ or ∣n̂+⟩, we then have

S⃗op ⋅ n̂ ∣n̂ ↑⟩ = h̵
2
∣n̂ ↑⟩ and S⃗op ⋅ n̂ ∣n̂ ↓⟩ = − h̵

2
∣n̂ ↓⟩ (9.134)

Any pair of eigenvectors ∣n̂ ↑⟩ or ∣n̂ ↓⟩ for a given direction n̂ form a basis for
the vector space associated with spin = 1/2 and we have

⟨n̂ ↑ ∣ ψ⟩ = amplitude for finding spin ”up” along n̂ if we are in the state ∣ψ⟩
⟨n̂ ↓ ∣ ψ⟩ = amplitude for finding spin ”down” along n̂ if we are in the state ∣ψ⟩
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These two amplitudes exhaust all possible measurements for spin = 1/2 in the n̂
direction and therefore completely specify the state ∣ψ⟩. That is what we mean
physically when we say they form a basis set or representation.

When we build the standard basis from these amplitudes, we choose it to be an
eigenstate of the Ŝ3 or Ŝz operator, i.e., if we write

∣ψ⟩ = ( ⟨z ↑ ∣ ψ⟩
⟨z ↓ ∣ ψ⟩ ) = a 2 - component vector (9.135)

then the appropriate basis is

∣z ↑⟩ = ( 1
0

)→ spin up in z - direction

∣z ↓⟩ = ( 0
1

)→ spin down in z - direction

Matrix Representations

Using this basis, the matrix representation of

Ŝz =
h̵

2
σ̂z (9.136)

is

Sz = ( ⟨z ↑∣ Ŝz ∣z ↑⟩ ⟨z ↑∣ Ŝz ∣z ↓⟩
⟨z ↓∣ Ŝz ∣z ↑⟩ ⟨z ↓∣ Ŝz ∣z ↓⟩

) = h̵
2
( 1 0

0 −1
) = h̵

2
σz

→ σz = ( 1 0
0 −1

) (9.137)

Now

Ŝ± = Ŝx ± iŜy (9.138)

→ Ŝx =
Ŝ+ + Ŝ−

2
and Ŝy =

Ŝ+ − Ŝ−
2i

(9.139)

Therefore, using

Sx = ( ⟨z ↑∣ Ŝx ∣z ↑⟩ ⟨z ↑∣ Ŝx ∣z ↓⟩
⟨z ↓∣ Ŝx ∣z ↑⟩ ⟨z ↓∣ Ŝx ∣z ↓⟩

) = h̵
2
( 0 1

1 0
) = h̵

2
σz

→ σx = ( 0 1
1 0

) (9.140)

and in a similar way

σy = ( 0 −i
i 0

) (9.141)
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Properties of the σ̂i

From
[Ŝi, Ŝj] = ih̵εijkŜk

and

S⃗op =
1

2
h̵σ⃗op

we get the commutation relations

[σ̂i, σ̂j] = 2iεijkσ̂k (9.142)

In addition, we have

σ̂iσ̂j = iεijkσ̂k i ≠ j (9.143)
σ̂iσ̂j + σ̂j σ̂i = {σ̂i, σ̂j} = 0 (called the anticommutator) (9.144)

σ̂2
i = Î = ( 1 0

0 1
) (9.145)

The fact that the spin = 1/2 operators anticommute is directly linked to the ex-
istence of fermions as one can see when the relativistic equation for the electron
is studied.

Put all together, these relations give

σ̂iσ̂j = δij + iεijkσ̂k (9.146)

or going back to the Ŝi

ŜiŜj =
h̵2

4
δij + iεijk

h̵

2
Ŝk (9.147)

In the special case of spin = 1/2, we have

S⃗2
op =

h̵2

4
(σ̂2
x + σ̂2

y + σ̂2
z) =

h̵2

4
(Î + Î + Î)

= 3h̵2

4
Î = h̵2s(s + 1)Î with s = 1

2
(9.148)

A very useful property that we will employ many time later on is (using (9.146))

(a⃗ ⋅ σ⃗op) (b⃗ ⋅ σ⃗op) = aiσ̂ibj σ̂j
= δijaibj + iεijkaibj σ̂k = aibi + iεijkaibj σ̂k
= a⃗ ⋅ b⃗ + i(a⃗ × b⃗) ⋅ σ⃗op (9.149)
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Rotations in Spin Space

We have said that
S⃗op ⋅ n̂ ∣n̂±⟩ = ± h̵

2
∣n̂±⟩ (9.150)

What do the states ∣n̂±⟩ look like in the ∣ẑ±⟩ basis? One way to find out is the
direct approach.

Let us choose a Cartesian basis for the unit vector (we will look at other choices
afterwards)

n̂ = (nx, ny, nz) , all real (9.151)

We then have

S⃗op ⋅ n̂ = h̵
2
σ⃗op ⋅ n̂ = h̵

2
(nxσ̂x + nyσ̂y + nzσ̂z)

= h̵
2
(nx (

0 1
1 0

) + ny (
0 −i
i 0

) + nz (
1 0
0 −1

))

= h̵
2
( nz nx − iny
nx + iny −nz

) (9.152)

and

S⃗op ⋅ n̂ ∣n̂+⟩ = + h̵
2
∣n̂+⟩ (9.153)

h̵

2
( nz nx − iny
nx + iny −nz

)( a
b

) = h̵
2
( a
b

) (9.154)

where we have represented

∣n̂+⟩ = ( a
b

) (9.155)

This matrix equation gives two homogeneous equations for a and b

(nz − 1)a + (nx − iny)b = 0

(nx + iny)a − (nz + 1)b = 0

or
a

b
= −

nx − iny
nz − 1

= nz + 1

nx + iny
(9.156)

The homogeneous equations have a non-trivial solution only if the determinant
of the coefficients of a and b equals zero or

(nz + 1)(nz − 1) + (nx − iny)(nx + iny) = 0 (9.157)

We assume that the vector ∣n̂+⟩ is normalized to one or

∣a∣2 + ∣b∣2 = 1 (9.158)
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Putting all this together we get

a = 1√
2

√
1 + nz and b = 1√

2

√
1 − nz (9.159)

∣n̂+⟩ = 1√
2
(

√
1 + nz√
1 − nz

) (9.160)

We can easily check this by letting ∣n̂+⟩ = ∣ẑ+⟩ or nz = 1, nx = ny = 0 which gives

∣ẑ+⟩ = ( 1
0

) (9.161)

as expected. In a similar manner

∣n̂−⟩ = 1√
2
( −

√
1 − nz√

1 + nz
) (9.162)

Note that the two vectors ∣n̂+⟩ and ∣n̂−⟩ are orthonormal as we expect.

This calculation can also be carried out in other coordinate bases. For the
spherical-polar basis we get

n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) (9.163)

S⃗op ⋅ n̂ = h̵
2
( cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

) (9.164)

∣n̂+⟩ = ( cos θ
2

eiϕ sin θ
2

) and ∣n̂−⟩ = ( sin θ
2

−eiϕ cos θ
2

) (9.165)

What can we say about operators in the spin = 1/2 vector space?

Any such operator B̂ can be expressed as a linear combination of the four
linearly independent matrices {Î , σ̂x, σ̂y, σ̂z} (they are, in fact, a basis for all
2 × 2 matrices)

B̂ = a0Î+axσ̂x+ayσ̂y+azσ̂z = a0Î+a ⋅ σ⃗op = ( a0 + az ax − iay

ax + iay a0 − az
) (9.166)

In particular, the density operator or the state operator Ŵ which is the same
as any other operator can be written as

Ŵ = 1

2
(Î+a⃗ ⋅ σ⃗op) (9.167)

where the factor of 1/2 has been chosen so that we have the required property

TrŴ = 1

2
TrÎ + aiTrσi = 1 since Trσi = 0 (9.168)

705



Since Ŵ = Ŵ † we must also have all the ai real. What is the physical meaning
of the vector a⃗?

Consider the following

⟨σ̂x⟩ = Tr(Ŵ σ̂x) =
1

2
Tr((Î + axσ̂x + ayσ̂y + azσ̂z)σ̂x)

= 1

2
Tr(σ̂x + axσ̂2

x + ayσ̂yσ̂x + azσ̂zσ̂x)

= 1

2
Tr(σ̂x + axÎ − iayσ̂z + iazσ̂y)

= ax
2
Tr(Î) = ax (9.169)

or, in general,

⟨σ⃗op⟩ = Tr (Ŵ σ⃗op) = a⃗ = polarization vector (9.170)

Now the eigenvalues of Ŵ are equal to

1

2
+ eigenvalues of a⃗ ⋅ σ⃗op (9.171)

and from our earlier work the eigenvalues are a⃗ ⋅ σ⃗op = ±1. Therefore the eigen-
values of Ŵ are

1

2
(1 ± ∣a⃗∣) (9.172)

But, as we showed earlier, all eigenvalues of Ŵ are ≥ 0, which says that polar-
ization vectors have a length ∣a⃗∣ restricted to 0 ≤ ∣a⃗∣ ≤ 1.

Pure states have ∣a⃗∣ = 1 and this gives eigenvalues 1 and 0 for Ŵ , which corre-
sponds to maximum polarization.

Note that for a⃗ = aê3 = ê3, we have

Ŵ = 1

2
(Î+σ̂3) = ( 1 0

0 0
) = ∣z+⟩ ⟨z+∣ (9.173)

as it should for a pure state.

An unpolarized state has ∣a⃗∣ = 0 and this gives eigenvalues (1/2,1/2) for Ŵ .
This represents an isotropic state where ⟨Ŝi⟩ = 0.

In this case we have

Ŵ = 1

2
Î = 1

2
( 1 0

0 1
) = 1

2
∣z+⟩ ⟨z+∣ + 1

2
∣z−⟩ ⟨z−∣ (9.174)

as we expect for a nonpure state or a mixture.

706



Let us now connect all of this stuff to rotations in spin space. For an infinitesimal
rotation through angle α = ∣α⃗∣ about an axis along α̂ = α⃗/α, a unit vector m̂
becomes

n̂ = m̂ + α⃗ × m̂ (9.175)

Following the same steps as earlier, this implies

S⃗op ⋅ n̂ = S⃗op ⋅ m̂ + S⃗op ⋅ (α⃗ × m̂) = S⃗op ⋅ m̂ + εijkαim̂jŜk (9.176)

But we have
εijkŜk =

1

ih̵
[Ŝi, Ŝj] (9.177)

which implies that

S⃗op ⋅ n̂ = S⃗op ⋅ m̂ + 1

ih̵
[Ŝi, Ŝj]αim̂j

= S⃗op ⋅ m̂ + 1

ih̵
[S⃗opvm̂, S⃗op ⋅ α⃗] (9.178)

Using the same approximations as we did earlier, we can see that this expression,
to first order in α, is equivalent to

S⃗op ⋅ n̂ = e−
i
h̵ S⃗op⋅α⃗S⃗op ⋅ m̂e

i
h̵ S⃗op⋅α⃗ (9.179)

This result holds for finite rotation angles also.

Now using this result, we have

S⃗op ⋅ n̂ [e−
i
h̵ S⃗op⋅α⃗ ∣m̂+⟩] = [e−

i
h̵ S⃗op⋅α⃗S⃗op ⋅ m̂] ∣m̂+⟩

= h̵
2
[e−

i
h̵ S⃗op⋅α⃗ ∣m̂+⟩] (9.180)

This says that

e−
i
h̵ S⃗op⋅α⃗ ∣m̂+⟩ = ∣n̂+⟩ and similarly e−

i
h̵ S⃗op⋅α⃗ ∣m̂−⟩ = ∣n̂−⟩ (9.181)

The rotation that takes m̂→ n̂ is not unique, however. We are free to rotate by
an arbitrary amount about n̂ after rotating m̂ into n̂. This freedom corresponds
to adding a phase factor.

We say that the unitary operator

e−
i
h̵ S⃗op⋅α⃗ (9.182)

has the effect of rotating the eigenstate of S⃗op ⋅ m̂ into the eigenstate of S⃗op ⋅ n̂.
The operator performs rotations on the spin degrees of freedom. The equations
are analogous to those for real rotations in space generated by L⃗op.
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Let us now work out a very useful identity. We can write

e−
i
h̵ S⃗op⋅α⃗ = e−

i
2 σ⃗op⋅α⃗ =

∞
∑
n=0

(− i
2
σ⃗op ⋅ α⃗)

n

n!
(9.183)

Now we have
(σ⃗op ⋅ α⃗)2 = α⃗ ⋅ α⃗ + i(α⃗ × α⃗) ⋅ σ⃗op = α⃗2 = α2 (9.184)

Therefore

e−
i
h̵ S⃗op⋅α⃗ = Î + 1

1!
(− i

2
σ⃗op ⋅ α⃗) +

1

2!
(− i

2
σ⃗op ⋅ α⃗)

2

+ 1

3!
(− i

2
σ⃗op ⋅ α⃗)

3

+ . . .

= Î
⎛
⎝

1 −
(α

2
)2

2!
+

(α
2
)4

4!
− ....

⎞
⎠
− iσ⃗op ⋅ α̂

⎛
⎝
(α

2
)

1!
−

(α
2
)3

3!
+ ....

⎞
⎠

= Î cos
α

2
− i(σ⃗op ⋅ α̂) sin

α

2
(9.185)

Consider an example. Let α⃗ → −90 ○ rotation about the x-axis or

α⃗ → −π
2
x̂ (9.186)

Now we have
σ̂z(σ̂x)n = (−σ̂x)nσ̂z (9.187)

which follows from the anticommutation relations. This implies that

σ̂zf(σ̂x) = f(−σ̂x)σ̂z
σ̂zf(σ̂x, σ̂y, σ̂z) = f(−σ̂x,−σ̂y, σ̂z)σ̂z

Using these relations we get

e−
i
2 σ⃗op⋅α⃗σ̂ze

i
2 σ⃗op⋅α⃗ = e

iπ
4 σ̂x σ̂ze

− iπ4 σ̂x = e
iπ
4 σ̂xe

iπ
4 σ̂x σ̂z = e

iπ
2 σ̂x σ̂z

= (cos
π

2
+ iσ̂x sin

π

2
)σ̂z = iσ̂xσ̂z = σ̂y (9.188)

as expected for this particular rotation.

Now the spin degrees of freedom are simply additional degrees of freedom for
the system. The spin degrees of freedom are independent of the spatial degrees
of freedom, however. This means that we can specify them independently or
that S⃗op commutes with all operators that depend on 3-dimensional space

[S⃗op, r⃗op] = 0 , [S⃗op, p⃗op] = 0 , [S⃗op, L⃗op] = 0 (9.189)

To specify completely the state of a spinning particle or a system with internal
degrees of freedom of any kind we must know

1. the amplitudes for finding the particle at points in space
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2. the amplitudes for different spin orientations

By convention, we choose ẑ as the spin quantization direction for describing
state vectors. The total state vector is then a direct-product state of the form

∣ψ⟩ = ∣external⟩⊗ ∣internal⟩ (9.190)

and the amplitudes are

⟨r⃗, ẑ+ ∣ ψ⟩ = probability amplitude for finding the particle at
r⃗ with spin up in the ẑ direction

⟨r⃗, ẑ− ∣ ψ⟩ = probability amplitude for finding the particle at
r⃗ with spin down in the ẑ direction

where
⟨r⃗, ẑ+ ∣ ψ⟩ = ⟨r⃗ ∣ ψexternal⟩ ⟨ẑ+ ∣ ψinternal⟩ (9.191)

and so on.

The total probability density for finding a particle at r⃗ is then the sum of two
terms

∣⟨r⃗, ẑ+ ∣ ψ⟩∣2 + ∣⟨r⃗, ẑ− ∣ ψ⟩∣2 (9.192)

which represents a sum over all the ways of doing it.

The total angular momentum of such a spinning particle is the sum of its orbital
and spin angular momenta

J⃗op = L⃗op + Sop (9.193)

J⃗op is now the generator of rotations in 3-dimensional space and in spin space
or it affects both external and internal degrees of freedom.

If we operate with e−iα⃗⋅J⃗op/h̵ on the basis state ∣r⃗0, m̂+⟩, where the particle is
definitely at r⃗0 with spin up (+h̵/2) in the m̂ direction, then we get a new state
∣r⃗ ′0, n̂+⟩ where

r⃗ ′0 = r⃗0 + α⃗ × r⃗0 and n̂ = m̂ + α⃗ × m̂ (9.194)

Since [S⃗op, L⃗op] = 0 we have

e−
i
h̵ α⃗⋅J⃗op = e−

i
h̵ (α⃗⋅L⃗op+α⃗⋅S⃗op)

= e−
i
h̵ α⃗⋅L⃗ope−

i
h̵ α⃗⋅S⃗ope−

i
h̵ α⃗⋅[S⃗op,L⃗op]

= e−
i
h̵ α⃗⋅L⃗ope−

i
h̵ α⃗⋅S⃗op (9.195)

This implies that

e−
i
h̵ α⃗⋅J⃗op ∣r⃗0, m̂+⟩ = e−

i
h̵ α⃗⋅L⃗ope−

i
h̵ α⃗⋅S⃗op ∣r⃗0, m̂+⟩ = ∣r⃗ ′0, n̂+⟩ (9.196)
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and that e−iα⃗⋅L⃗op/h̵ carries out the rotation of the spatial degrees of freedom,
while e−iα⃗⋅S⃗op/h̵ carries out the rotation of the spin degrees of freedom.

If
∣ψ ′⟩ = e

i
h̵ α⃗⋅J⃗op ∣ψ⟩ (9.197)

then the wave function of ∣ψ ′⟩ is

⟨r⃗0, m̂+ ∣ ψ ′⟩ = ⟨r⃗0, m̂+∣ e
i
h̵ α⃗⋅J⃗op ∣ψ⟩ = ⟨r⃗ ′0, n̂+ ∣ ψ⟩ (9.198)

This is the wavefunction of ∣ψ⟩ evaluated at the rotated point with a rotated
spin quantization direction.

The spin representation of rotations has a feature which is strikingly different
from that of rotations in 3-dimensional space.

Consider a rotation by 2π in spin space. This implies that

e−iπσ⃗op⋅α⃗ = cosπ − iσ⃗op ⋅ α⃗ sinπ = −Î (9.199)

A 2π rotation in spin space is represented by −Î. Since the rotations α⃗ and
α⃗ + 2πα⃗ are physically equivalent, we must say that the spin representation of
rotations is double-valued, i.e.,

e−
i
2 σ⃗op⋅α⃗ and e−

i
2 σ⃗op⋅(α⃗+2πα̂) = −e−

i
2 σ⃗op⋅α⃗ (9.200)

represent the same rotation.

9.3.2. Superselection Rules
Let us expand on this important point. The 2π rotation transformation operator
is given by

Ûn̂(2π) = e−
2πi
h̵ n̂⋅J⃗op (9.201)

When operating on the angular momentum state vectors we have

Ûn̂(2π) ∣j,m⟩ = e−
2πi
h̵ n̂⋅J⃗op ∣j,m⟩ = e−2πij ∣j,m⟩ = (−1)2j ∣j,m⟩ (9.202)

This says that it has no effect if j = integer and multiplies by −1 if j = half-
integer.

We usually think of a rotation through 2π as a trivial operation that changes
nothing in a physical system. This belief implies that we are assuming all
dynamical variables are invariant under 2π rotations or that

Ûn̂(2π) ∣j,m⟩ = e−
2πi
h̵ n̂⋅J⃗op ∣j,m⟩ = e−2πij ∣j,m⟩ = (−1)2j ∣j,m⟩ (9.203)

where Â is any physical observable.
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But, as we have seen above, Ûn̂(2π) is not equal to a trivial operator (not equal
to the identity operator for all physical states and operators). This says that
invariance under Ûn̂(2π) may lead to nontrivial consequences.

The consequences that arise from invariance of an observable are not identical
to those that arise from invariance of a state.

Let Û = a unitary operator that leaves the observable F̂ invariant or that we
have

[Û , F̂ ] = 0 (9.204)

Now consider a state that is not invariant under the transformation Û . If it is
a pure state represented by ∣ψ⟩, then ∣ψ ′⟩ = Û ∣ψ⟩ ≠ ∣ψ⟩. The expectation value
of F̂ in the state ∣ψ⟩ is

⟨F̂ ⟩ = ⟨ψ ′∣ F̂ ∣ψ ′⟩ = ⟨ψ∣ Û+F̂ Û ∣ψ⟩ = ⟨ψ∣ Û+Û F̂ ∣ψ⟩ = ⟨ψ∣ F̂ ∣ψ⟩ (9.205)

which implies that the observable statistical properties of F̂ are the same in
the two states ∣ψ⟩ and ∣ψ ′⟩. This conclusion certainly holds for Û(2π). Does
anything else hold? Is there something peculiar to Û(2π)?

It turns out that Û(2π) divides the vector space into two subspaces:

1. integer angular momentum - has states ∣+⟩ where

Û(2π) ∣+⟩ = ∣+⟩ (9.206)

2. half-integer angular momentum - has states ∣−⟩ where

Û(2π) ∣−⟩ = − ∣−⟩ (9.207)

Now for any invariant physical observable B̂ (where [Û , B̂] = 0), we have

⟨+∣ Û(2π)B̂ ∣−⟩ = ⟨+∣ B̂Û(2π) ∣−⟩
⟨+∣ B̂ ∣−⟩ = − ⟨+∣ B̂ ∣−⟩
→ ⟨+∣ B̂ ∣−⟩ = 0 (9.208)

This says that all physical observable have vanishing matrix elements between
states with integer angular momentum and states with half-integer angular mo-
mentum (states in the two subspaces).

This is called a superselection rule.

A superselection rule says that there is no observable distinction among vectors
of the form

∣ψϕ⟩ = ∣+⟩ + eiϕ ∣−⟩ (9.209)
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for different values of the phase ϕ. This is so because

⟨ψϕ∣ B̂ ∣ψϕ⟩ = ⟨+∣ B̂ ∣+⟩ + ⟨−∣ B̂ ∣−⟩ (9.210)

and this is independent of ϕ.

What about a more general state represented by the state operator

Ŵ =∑
i,j

wij ∣i⟩ ⟨j∣ (9.211)

If we break up the basis for the space into + and − subspaces, i.e.,

basis set = {{+ states} ,{− states}}

then the matrix representation of Ŵ partitions into four blocks

Ŵ = ( Ŵ++ Ŵ+−
Ŵ−+ Ŵ−−

) (9.212)

While, for any physical observable, the same partitioning scheme produces

B̂ = ( B̂++ 0

0 B̂−−
) (9.213)

i.e., there is no mixing between the subspaces. This gives

⟨B̂⟩ = Tr (Ŵ B̂) = Tr+ (Ŵ++B̂++) + Tr− (Ŵ−−B̂−−) (9.214)

where Tr± implies a trace only over the particular subspace. The cross matrix
elements Ŵ+− and Ŵ−+ do not contribute to the expectation value of the observ-
ables, or interference between vectors of the ∣+⟩ and ∣−⟩ types is not observable.

All equations of motion decouple into two separate equations in each of the two
subspaces and no cross-matrix elements of Ŵ between the two subspaces ever
contribute.

If we assume that the cross matrix elements are zero initially, then they will
never develop(become nonzero) in time.

What is the difference between a generator Û(2π) of a superselection rule and a
symmetry operation that is generated by a universally conserved quantity such
as the displacement operator

e−
i
h̵ a⃗⋅P⃗op

which is generated by the total momentum P⃗op?

The Hamiltonian of any closed system is invariant under both transformations.
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Both give rise to a quantum number that must be conserved in any transition.
In these examples the quantum numbers are

±1 for Û(2π) and the total momentum

The difference is that there exist observables that do not commute with P⃗op and
Q⃗op, but there are no observables that do not commute with Û(2π).

By measuring the position one can distinguish states that differ only by a dis-
placement, but there is no way to distinguish between states that differ only by
a 2π rotation.

The superselection rules from Û(2π), which separates the integer and half-
integer angular momentum states, is the only such rule in the quantum me-
chanics of stable particles (non-relativistic quantum mechanics).

In Quantum Field Theory(relativistic quantum mechanics), where particles can
be created and annihilated, the total electric charge operator generates another
superselection rule, provided that one assumes all observables are invariant un-
der gauge transformations.

This says that no interference can be observed between states of different total
charge because there are no observables that do not commute with the charge
operator.

In a theory of stable particles, the charge of each particle and hence the total
charge is an invariant. Thus, the total charge operator is simply a multiple of Î.
Every operator commutes with Î implying that the charge superselection rule
is trivial in non-relativistic quantum mechanics.

Now back to the normal world.

The techniques that we have developed for the spin = 1/2 system can be applied
to any two-state system. Here is an example of a two-sided box solved using
both the Schrödinger and Heisenberg pictures.

9.3.3. A Box with 2 Sides

Let us consider a box containing a particle in a state ∣ψ⟩. The box is divided
into two halves (Right and Left) by a thin partition. The only property that
we will assign to the particle is whether it is on the Right or Left side of the
box.

This means that the system has only two states, namely, ∣R⟩ and ∣L⟩ that must
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have the properties

⟨R ∣ ψ⟩ = amplitude to find the particle on right side if in state ∣ψ⟩
⟨L ∣ ψ⟩ = amplitude to find the particle on leftt side if in state ∣ψ⟩

We also suppose that the particle can tunnel through the thin partition and
that

d

dt
⟨R ∣ ψ⟩ = K

ih̵
⟨L ∣ ψ⟩ , K real (9.215)

How does this system develop in time?

We solve this problem in two ways, namely, using the Schrödinger and Heisen-
berg pictures.

Schrödinger Picture

We define the general system state vector

∣ψ⟩ = ( ψR
ψL

) = ( ⟨R ∣ ψ⟩
⟨L ∣ ψ⟩ )

= ψR ( 1
0

) + ψL ( 0
1

)

= ψR ∣R⟩ + ψL ∣L⟩ (9.216)

The time-dependent Schrödinger equation is

ih̵
∂

∂t
∣ψ(t)⟩ = ih̵(

∂ψR
∂t
∂ψL
∂t

) = Ĥ ( ψR
ψL

) (9.217)

Now we are given that

dψR
dt

= K
ih̵
ψL →

dψ∗R
dt

= −K
ih̵
ψ∗L (9.218)

The state vector must remain normalized as it develops in time so that

⟨ψ ∣ ψ⟩ = ∣ψR∣2 + ∣ψL∣2 = 1

∂ ⟨ψ ∣ ψ⟩
∂t

= 0 =
∂ψ∗R
∂t

ψR + ψ∗R
∂ψR
∂t

+
∂ψ∗L
∂t

ψL + ψ∗L
∂ψL
∂t

0 = −K
ih̵
ψ∗LψR + ψ∗R

K

ih̵
ψL +

∂ψ∗L
∂t

ψL + ψ∗L
∂ψL
∂t

0 = ψL (
∂ψ∗L
∂t

+ K
ih̵
ψ∗R) + ψ∗L (∂ψL

∂t
− K
ih̵
ψR)

which says that
dψL
dt

= K
ih̵
ψR →

dψ∗L
dt

= −K
ih̵
ψ∗R (9.219)
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Therefore we have

K ( ψL
ψR

) = Ĥ ( ψR
ψL

) (9.220)

which says that

Ĥ =K ( 0 1
1 0

) (9.221)

The eigenvalues of Ĥ are ±K and its eigenvectors are

∣±K⟩ = 1√
2
( 1
±1

) (9.222)

Note that for ℘̂ = parity operator (switches right and left) we have

℘̂ ∣±K⟩ = ± ∣±K⟩ (9.223)

so these are also states of definite parity.

If the initial state of the system is

∣ψ(0)⟩ = ( ψR(0)
ψL(0)

) (9.224)

then we can write this state in terms of energy eigenstates as

∣ψ(0)⟩ = ( ψR(0)
ψL(0)

)

= 1√
2
(ψR(0) + ψL(0)) ∣+K⟩ + 1√

2
(ψR(0) − ψL(0)) ∣−K⟩ (9.225)

Since we know the time dependence of energy eigenstates

∣±K⟩t = e
∓ ih̵Kt ∣±K⟩ (9.226)

the time dependence of ∣ψ(t)⟩ is given by

∣ψ(t)⟩ = 1√
2
(ψR(0) + ψL(0)) e−

i
h̵Kt ∣+K⟩

+ 1√
2
(ψR(0) − ψL(0)) e+

i
h̵Kt ∣−K⟩ (9.227)

or

∣ψ(t)⟩ = 1

2
( (ψR(0) + ψL(0)) e−

i
h̵Kt + (ψR(0) − ψL(0)) e+

i
h̵Kt

(ψR(0) + ψL(0)) e−
i
h̵Kt − (ψR(0) − ψL(0)) e+

i
h̵Kt

)

= (ψR(0) cos
Kt

h̵
− iψL(0) sin

Kt

h̵
) ∣R⟩

+ (−iψR(0) sin
Kt

h̵
+ ψL(0) cos

Kt

h̵
) ∣L⟩ (9.228)
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Therefore, the probability that the particle is on the Right side at time t is

PR = ∣⟨R ∣ ψ(t)⟩∣2 = ∣ψR(0) cos
Kt

h̵
− iψL(0) sin

Kt

h̵
∣
2

(9.229)

Now suppose that

ψR(0) =
1√
2
and ψL(0) = eiδψR(0) (9.230)

This says that the particle was equally probable to be on either side at t = 0,
but that the amplitudes differed by a phase factor. In this case, we get

PR = 1

2
(1 + sin δ sin

2Kt

h̵
) (9.231)

Heisenberg Picture

Let us define an operator Q̂ such that for a state vector

∣ψ⟩ = ψR ∣R⟩ + ψL ∣L⟩

we have

⟨ψ∣ Q̂ ∣ψ⟩ = ∣ψR∣2 = probability that particle is on right side (9.232)

This says that
⟨ψ∣ Q̂ ∣ψ⟩ = ∣ψR∣2 = ⟨ψ ∣ R⟩ ⟨R ∣ ψ⟩ (9.233)

or

Q̂ = ∣R⟩ ⟨R∣ = pure state projection operator = ( 1 0
0 0

) = Î + σ̂z (9.234)

and that the expectation value of the pure state projection operator is equal to
the probability of being in that state. This agrees with our earlier discussions.

Now we have

Ĥ =K ( 0 1
1 0

) =Kσ̂x (9.235)

Therefore,

Q̂(t) = e
i
h̵ ĤtQ̂e−

i
h̵ Ĥt (9.236)

Now as we saw earlier

e
i
h̵ Ĥt = e

i
h̵Kσ̂xt = cos

Kt

h̵
Î + i sin Kt

h̵
σ̂x (9.237)
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Thus,

Q̂(t) = (cos
Kt

h̵
Î + i sin Kt

h̵
σ̂x)(Î + σ̂z)(cos

Kt

h̵
Î − i sin Kt

h̵
σ̂x)

= cos2 Kt

h̵
+ sin2 Kt

h̵
+ cos2 Kt

h̵
σ̂z − i sin

Kt

h̵
cos

Kt

h̵
[σ̂z, σ̂x] + sin2 Kt

h̵
σ̂xσ̂zσ̂x

= 1 + cos2 Kt

h̵
σ̂z + 2 sin

Kt

h̵
cos

Kt

h̵
σ̂y − sin2 Kt

h̵
σ̂z

= 1 + cos
2Kt

h̵
σ̂z + sin

2Kt

h̵
σ̂y (9.238)

Then
PR(t) = ⟨ψ(0)∣ Q̂(t) ∣ψ(0)⟩ (9.239)

where

∣ψ(0)⟩ = 1√
2
∣R⟩ + eiδ√

2
∣L⟩ (9.240)

Now

σ̂z ∣R⟩ = ∣R⟩ , σ̂z ∣L⟩ = − ∣L⟩
σ̂y ∣R⟩ = −i ∣L⟩ , σ̂y ∣L⟩ = i ∣R⟩

and we get

PR = 1

2
(1 + sin δ sin

2Kt

h̵
) (9.241)

as before.

9.4. Magnetic Resonance

How does an experimentalist observe the spin of a particle?

Classically, a spinning charge distribution will have an associated magnetic mo-
ment. In non-relativistic quantum mechanics particles with internal spin degrees
of freedom also have magnetic moments which are connected to their angular
momentum. We write for the magnetic moment operator

M⃗op = M⃗orbital
op + M⃗spin

op

= g`
q

2mc
L⃗op + gs

q

2mc
S⃗op =

q

2mc
(g`L⃗op + gsS⃗op) (9.242)

where, as we shall derive later,

gj`s = 1 + j(j + 1) − `(` + 1) + s(s + 1)
2j(j + 1)

(9.243)

g` = gjj0 = 1 and gs = gj0j = 2 (9.244)
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Therefore we have

M⃗op =
q

2mc
(L⃗op + 2S⃗op) =

q

2mc
(J⃗op + S⃗op) (9.245)

which says that M⃗op is not parallel to J⃗op. The energy operator or contribution
to the Hamiltonian operator from the magnetic moment in a magnetic field
B⃗(r⃗, t) is

ĤM = −M⃗op ⋅ B⃗(r⃗, t) (9.246)

Spin measurement experiments are designed to detect the effects of this extra
contribution to the system energy and thus detect the effects of spin angular
momentum.

We will return to a full discussion of the effect of ĤM on the energy levels of
atoms, etc in a later chapter. For now we will restrict our attention to spin
space and investigate the effect of the spin contribution to ĤM on the states of
a particle.

We will use
Ĥspin = −

g

2

q

mc
B⃗ ⋅ S̄op (9.247)

where we have replaced gs by g. We have not set g = 2 since it turns out that
it is not exactly that value(due to relativistic effects).

In the Schrödinger picture we have

ih̵
d

dt
∣ψ(t)⟩ = Ĥspin ∣ψ(t)⟩ (9.248)

If we ignore spatial dependences (worry only about spin effects), we have

∣ψ(t)⟩ = ( ⟨n̂+ ∣ ψ(t)⟩
⟨n̂− ∣ ψ(t)⟩ ) (9.249)

ih̵
d

dt
( ⟨n̂+ ∣ ψ(t)⟩

⟨n̂− ∣ ψ(t)⟩ ) = −g
2

q

mc
B⃗ ⋅ S̄op (

⟨n̂+ ∣ ψ(t)⟩
⟨n̂− ∣ ψ(t)⟩ )

= −g
4

qh̵

mc
B⃗ ⋅ σ⃗op (

⟨n̂+ ∣ ψ(t)⟩
⟨n̂− ∣ ψ(t)⟩ )

= −g
4

qh̵

mc
( Bz Bx − iBy
Bx + iBy −Bz

)( ⟨n̂+ ∣ ψ(t)⟩
⟨n̂− ∣ ψ(t)⟩ ) (9.250)

This represents two coupled differential equations for the time dependence of
the amplitudes ⟨+ ∣ψ⟩ and ⟨− ∣ψ⟩. When solved, the solution tells us the time
dependence of the measurable probabilities.

We can see the physics of the motion best in the Heisenberg picture, where the
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operators, instead of the states, move in time. In this case, we have

ih̵
dŜi(t)
dt

= [Ŝi(t), Ĥspin(t)]

= − gq

2mc
[Ŝi(t), Ŝj(t)]Bj(t) = −i

gqh̵

2mc
εijkŜk(t)Bj(t) (9.251)

for each component. The operators are all time-dependent Heisenberg picture
operators. This gives

dS⃗op(t)
dt

= gq

2mc
S⃗op(t) × B⃗(t) = M⃗spin(t) × B⃗(t) (9.252)

The right-hand-side is the torque exerted by the magnetic field on the magnetic
moment.

In operator language, this equation implies that the rate of change of the spin
angular momentum vector equals the applied torque. This implies that the spin
vector with q < 0 precesses in a positive sense about the magnetic field direction
as shown in Figure 9.1 below.

Figure 9.1: Motion of Spin

Suppose that B⃗(t) = B0ẑ (independent of t). We then have

dŜz(t)
dt

= 0 (9.253)

dŜx(t)
dt

= gqB0

2mc
Ŝy(t) (9.254)

dŜy(t)
dt

= −gqB0

2mc
Ŝx(t) (9.255)
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These coupled differential equations have the solutions

Ŝx(t) = Ŝx(0) cosω0t + Ŝy(0) sinω0t (9.256)

Ŝy(t) = −Ŝx(0) sinω0t + Ŝy(0) cosω0t (9.257)

Ŝz(t) = Ŝz(0) (9.258)

where
ω0 =

gqB0

2mc
(9.259)

Now suppose that at t = 0, the spin is in the +x-direction, which says that

⟨Ŝx(0)⟩ = ⟨x̂+∣ Ŝx(0) ∣x̂+⟩ =
h̵

2
(9.260)

⟨Ŝy(0)⟩ = ⟨Ŝz(0)⟩ = 0 (9.261)

Therefore, the expectation values of the solutions become

⟨Ŝx(t)⟩ =
h̵

2
cosω0t (9.262)

⟨Ŝy(t)⟩ = −
h̵

2
sinω0t (9.263)

⟨Ŝz(0)⟩ = 0 (9.264)

which says that the expectation value of the spin vector rotates in a negative
sense in the x − y plane (precession about the z-axis).

Now let us return to the Schrödinger picture to see what precession looks like
there. We will do the calculation a couple of different ways.

First we use the time-development operator. For B̂ = Bn̂ we have

Ĥ = −gqh̵B
4mc

σ⃗op ⋅ n̂ (9.265)

If we define
ωL = qB

mc
= Larmor frequency (9.266)

and let g = 2 we have

Ĥ = −1

2
h̵ωLσ⃗op ⋅ n̂ (9.267)

In the Schrödinger picture,

ih̵
d

dt
∣ψ(t)⟩ = Ĥspin(t) ∣ψ(t)⟩ (9.268)

When Ĥspin(t) is time-independent, we have the solution

∣ψ(t)⟩ = Û(t) ∣ψ(0)⟩ (9.269)
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where
Û(t) = e−

i
h̵ Ĥt (9.270)

or
∣ψ(t)⟩ = ei

ωLt

2 σ⃗op⋅n̂ ∣ψ(0)⟩ (9.271)

Since n̂ = a unit vector, we have (σ⃗op ⋅ n̂)2 = Î, which gives, as before,

∣ψ(t)⟩ = (cos
ωLt

2
+ i(σ⃗op ⋅ n̂) sin

ωLt

2
) ∣ψ(0)⟩ (9.272)

This is the solution to the Schrödinger equation in this case.

Now let

∣ψ(0)⟩ = ( 1
0

) = ∣⌢z ↑⟩ = ∣⌢z+⟩ = ∣+⟩ (9.273)

From earlier we have

σ⃗op ⋅ n̂ = ( nz nx − iny
nx + iny −nz

) (9.274)

We then have

∣ψ(t)⟩ = cos
ωLt

2
∣+⟩ + i( nz nx − iny

nx + iny −nz
) ∣+⟩ sin

ωLt

2

= cos
ωLt

2
∣+⟩ + i( nz nx − iny

nx + iny −nz
)( 1

0
) sin

ωLt

2

= cos
ωLt

2
∣+⟩ + i sin ωLt

2
( nz
nx + iny

)

= cos
ωLt

2
∣+⟩ + i sin ωLt

2
(nz ∣+⟩ + (nx + iny) ∣−⟩)

= (cos
ωLt

2
+ inz sin

ωLt

2
) ∣+⟩ + i(nx + iny) sin

ωLt

2
∣−⟩ (9.275)

This says that as the initial state ∣+⟩ develops in time it picks up some amplitude
to be in the ∣−⟩ state.

Special Case

Let

n̂ = ŷ → B⃗ is in the y- direction
ny = 1 , nx = nz = 0

This gives

∣ψ(t)⟩ = cos
ωLt

2
∣+⟩ − sin

ωLt

2
∣−⟩ (9.276)
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which implies that ⟨ŝz⟩ flips with frequency ν = ωL/4π or that the spin vector
is precessing around the direction of the magnetic field.

Finally, let us just solve the Schrödinger equation directly. We have

ih̵
d

dt
( ⟨n̂+ ∣ ψ(t)⟩

⟨n̂− ∣ ψ(t)⟩ )

= −1

2

qh̵

mc
( Bz Bx − iBy
Bx + iBy −Bz

)( ⟨n̂+ ∣ ψ(t)⟩
⟨n̂− ∣ ψ(t)⟩ ) (9.277)

If we choose n̂ = x̂,then we have

ih̵
d

dt
( a(t)
b(t) ) = −1

2
h̵ωL ( 0 1

1 0
)( a(t)

b(t) ) (9.278)

where a(t) = ⟨n̂+ ∣ ψ(t)⟩ and b(t) = ⟨n̂− ∣ ψ(t)⟩

and ∣a∣2 + ∣b∣2 = 1

This gives two coupled differential equations

ȧ = iωL
2
b and ḃ = iωL

2
a (9.279)

which are solved as follows:

(ȧ + ḃ) = iωL
2

(ȧ + ḃ)→ a + b = (a(0) + b(0))ei
ωL
2 t (9.280)

(ȧ − ḃ) = −iωL
2

(ȧ − ḃ)→ a − b = (a(0) − b(0))e−i
ωL
2 t (9.281)

or

a(t) = a(0) cos
ωL
2
t + ib(0) sin

ωL
2
t (9.282)

b(t) = ia(0) sin
ωL
2
t + b(0) cos

ωL
2
t (9.283)

For the initial state

∣ψ(0)⟩ = ( a(0)
b(0) ) = ( 1

0
) (9.284)

we get

a(t) = cos
ωL
2
t , b(t) = i sin ωL

2
t (9.285)

and
a(t) = cos

ωL
2
t , b(t) = i sin ωL

2
t (9.286)

as before.
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9.4.1. Spin Resonance

Let us now consider the addition of an oscillating magnetic field perpendicular
to the applied field B⃗ = B0ẑ. In particular, we add the field

B⃗1 = B1 cosωtx̂ (9.287)

In the Schrödinger picture, we then have the equation of motion

ih̵
d

dt
∣ψ(t)⟩ = − eh̵

2mc

g

2
(B0σ̂z +B1 cosωtσ̂x) ∣ψ(t)⟩ (9.288)

Now we first make the transformation (shift to rotating coordinate system since
we know that if the extra field were not present the spin would just be precessing
about the direction of the applied field)

∣ψ(t)⟩ = ei
ωt
2 σ̂z ∣ψ ′(t)⟩ (9.289)

which gives

ih̵
d

dt
(ei

ωt
2 σ̂z ∣ψ ′(t)⟩) = − eh̵

2mc

g

2
(B0σ̂z +B1 cosωtσ̂x) ei

ωt
2 σ̂z ∣ψ ′(t)⟩ (9.290)

ih̵e−i
ωt
2 σ̂z

d

dt
(ei

ωt
2 σ̂z ∣ψ ′(t)⟩) (9.291)

= − eh̵

2mc

g

2
(B0e

−iωt2 σ̂z σ̂ze
iωt2 σ̂z +B1 cosωte−i

ωt
2 σ̂z σ̂xe

iωt2 σ̂z) ∣ψ ′(t)⟩

or

ih̵e−i
ωt
2 σ̂z (ei

ωt
2 σ̂z

d

dt
∣ψ ′(t)⟩ + iω

2
σ̂ze

iωt2 σ̂z ∣ψ ′(t)⟩)

= − eh̵

2mc

g

2
(B0σ̂z +B1 cosωte−i

ωt
2 σ̂z σ̂xe

iωt2 σ̂z) ∣ψ ′(t)⟩ (9.292)

Now

cosωte−i
ωt
2 σ̂z σ̂xe

iωt2 tσ̂z = cosωtσ̂xe
iωtσ̂z

= σ̂x(cos2 ωt + iσ̂z cosωt sinωt)

= σ̂x(
1

2
+ 1

2
cos 2ωt + iσ̂z

1

2
sin 2ωt)

= σ̂x
2
+ 1

2
(σ̂x cos 2ωt + iσ̂xσ̂z sin 2ωt)

= σ̂x
2
+ 1

2
(σ̂x cos 2ωt + σ̂y sin 2ωt) (9.293)

Defining

ω0 =
geB0

4mc
and ω1 =

geB1

4mc
(9.294)
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we get

ih̵
d

dt
∣ψ′(t)⟩

= ((ω − ω0

2
) σ̂z −

ω1

2
σ̂x) ∣ψ′(t)⟩

+ ω1

2
(σ̂x cos 2ωt + σ̂y sin 2ωt) ∣ψ′(t)⟩ (9.295)

The two higher frequency terms produce high frequency wiggles in ∣ψ ′(t)⟩. Since
we will be looking at the average motion of the spin vector (expectation values
changing in time), these terms will average to zero and we can neglect them in
this discussion.

We thus have
ih̵
d

dt
∣ψ′(t)⟩ = ((ω − ω0

2
) σ̂z −

ω1

2
σ̂x) ∣ψ′(t)⟩ (9.296)

which has a solution

∣ψ′(t)⟩ = e−i
Ωt
2 σ̂ ∣ψ′(0)⟩ (9.297)

Ω = [(ω − ω0)2 + ω2
1]

1/2
and σ̂ = ω − ω0

Ω
σ̂z −

ω1

Ω
σ̂x (9.298)

We note that

σ̂2 = (ω − ω0)2 + ω2
1

Ω2
Î = Î (9.299)

The final solution to the original problem (again neglecting the higher frequency
terms) is then(after leaving the rotating system)

∣ψ(t)⟩ = e−i
ωt
2 σ̂ze−i

Ωt
2 σ̂ ∣ψ(0)⟩ (9.300)

Example

Let us choose

∣ψ(0)⟩ = ∣+⟩ = ( 1
0

) (9.301)

We get

∣ψ(t)⟩ = e−i
ωt
2 σ̂ze−i

Ωt
2 σ̂ ∣+⟩ = e−i

ωt
2 σ̂z (cos

Ωt

2
− iσ̂ sin

Ωt

2
) ∣+⟩ (9.302)

= e−i
ωt
2 σ̂z (cos

Ωt

2
∣+⟩ − iω − ω0

Ω
sin

Ωt

2
σ̂z ∣+⟩ + i

ω1

Ω
sin

Ωt

2
σ̂x ∣+⟩)

Now using

σ̂z ∣+⟩ = ∣+⟩ and σ̂x ∣+⟩ = ∣−⟩ (9.303)

e−i
ωt
2 σ̂z = cos

ωt

2
− i sin ωt

2
σ̂z (9.304)
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we have

∣ψ(t)⟩ = A(+) ∣+⟩ +A(−) ∣−⟩ (9.305)

A(+) = cos
ωt

2
cos

Ωt

2
− i sin ωt

2
cos

Ωt

2

− iω − ω0

Ω
cos

ωt

2
sin

Ωt

2
− ω − ω0

Ω
sin

ωt

2
sin

Ωt

2
(9.306)

A(−) = −iω1

Ω
cos

ωt

2
sin

Ωt

2
+ ω1

Ω
sin

ωt

2
sin

Ωt

2
(9.307)

Therefore, the amplitude for spin flip to the state ∣ẑ ↓⟩ = ∣−⟩ at time t is

⟨− ∣ ψ(t)⟩ = A(−) = −iω1

Ω
cos

ωt

2
sin

Ωt

2
+ ω1

Ω
sin

ωt

2
sin

Ωt

2

= −iω1

Ω
sin

Ωt

2
ei
ωt
2 (9.308)

and the probability of spin flip is

Pflip(t) = ∣⟨− ∣ ψ(t)⟩∣2 = ω
2
1

Ω2
sin2 Ωt

2
= ω2

1

2Ω2
(1 − cos Ωt) (9.309)

What is happening to the spin vector? If we plot Pflip(t) versus t as in Figure
9.2 below we get

Figure 9.2: Spin=Flip Probability verus Time

where the peak values are given by ω2
1/Ω2. What is the value of ω2

1/Ω2 and can
it be large? If we plot ω2

1/Ω2 versus ω (frequency of added field) we get
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Figure 9.3: Resonance Curve

The peak occurs at ω − ω0 ≈ 0 (called a resonance). Therefore, if ω − ω0 ≫
ω1 (called off-resonance), the maximum probability for spin flip is small(that
corresponds to the Figure 9.2). However, if ω − ω0 ≈ 0, which corresponds to
resonance, the maximum probability ≈ 1 and the spin has flipped with certainty.
The spin system preferentially absorbs energy (flipping spin) near resonance.

This spin resonance process is used to determine a wide variety of spin properties
of systems.

9.5. Addition of Angular Momentum

A derivation of the addition process for arbitrary angular momentum values is
very complex. We can, however, learn and understand all of the required steps
within the context of a special case, namely, combining two spin = 1/2 systems
into a new system. We will do the general derivation after the special case.

9.5.1. Addition of Two Spin = 1/2 Angular Momenta
We define

S⃗1,op = spin operator for system 1 (9.310)

S⃗2,op = spin operator for system 2 (9.311)

The operators for system 1 are assumed to be independent of the operators for
system 2, which implies that

[Ŝ1i, Ŝ2j] = 0 for all i and j (9.312)
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We characterize each system by eigenvalue/eigenvector equations

S⃗2
1,op ∣s1,m1⟩ = h̵2s1(s1 + 1) ∣s1,m1⟩ (9.313)

Ŝ1,z ∣s1,m1⟩ = h̵m1 ∣s1,m1⟩ (9.314)

S⃗2
2,op ∣s2,m2⟩ = h̵2s2(s2 + 1) ∣s2,m2⟩ (9.315)

Ŝ2,z ∣s2,m2⟩ = h̵m2 ∣s2,m2⟩ (9.316)

where
s1 = s2 =

1

2
and m1 = ±

1

2
, m2 = ±

1

2
(9.317)

Since both s1 and s2 are fixed and unchanging during this addition process we
will drop them from the arguments and subscripts to lessen the complexity of
the equations.

Each space (1 and 2) is 2-dimensional and thus each has two (2s + 1 = 2) basis
states corresponding to the number of m-values in each case

∣s1 =
1

2
,m1 =

1

2
⟩ = ∣1

2
,
1

2
⟩
1
= ∣↑⟩1 = ∣+⟩1 (9.318)

∣s1 =
1

2
,m1 = −

1

2
⟩ = ∣1

2
,−1

2
⟩
1
= ∣↓⟩1 = ∣−⟩1 (9.319)

∣s2 =
1

2
,m2 =

1

2
⟩ = ∣1

2
,
1

2
⟩
2
= ∣↑⟩2 = ∣+⟩2 (9.320)

∣s2 =
1

2
,m2 = −

1

2
⟩ = ∣1

2
,−1

2
⟩
2
= ∣↓⟩2 = ∣−⟩2 (9.321)

This means that there are 4 possible basis states for the combined system that
we can construct using the direct product procedure. We label them as

∣↑↑⟩ = ∣++⟩ = ∣+⟩1 ⊗ ∣+⟩2 , ∣↑↓⟩ = ∣+−⟩ = ∣+⟩1 ⊗ ∣−⟩2 (9.322)
∣↓↑⟩ = ∣−+⟩ = ∣−⟩1 ⊗ ∣+⟩2 , ∣↓↓⟩ = ∣−−⟩ = ∣−⟩1 ⊗ ∣−⟩2 (9.323)

so that the first symbol in the combined states corresponds to system 1 and the
second symbol to system 2. These are not the only possible basis states as we
shall see. The “1” operators operate only on the “1” part of the direct product,
for example,

S⃗2
1,op ∣+−⟩ = h̵2s1(s1 + 1) ∣+−⟩ = 3

4
h̵2 ∣+−⟩ (9.324)

Ŝ1,z ∣+−⟩ = h̵m1 ∣+−⟩ = h̵
2
∣+−⟩ (9.325)

S⃗2
2,op ∣+−⟩ = h̵2s2(s2 + 1) ∣+−⟩ = 3

4
h̵2 ∣+−⟩ (9.326)

Ŝ2,z ∣+−⟩ = h̵m2 ∣+−⟩ = − h̵
2
∣+−⟩ (9.327)

727



The total spin angular momentum operator for the combined system is

S⃗op = S⃗1,op + S⃗2,op (9.328)

It obeys the same commutation rules as the individual system operators, i.e.,

[Ŝi, Ŝj] = ih̵εijkŜk (9.329)

This tells us to look for the same kind of angular momentum eigenstates and
eigenvalues

S⃗2
op ∣s,m⟩ = h̵2s(s + 1) ∣s,m⟩ (9.330)

Ŝz ∣s,m⟩ = h̵m ∣s,m⟩ (9.331)

To proceed, we need to derive some relations. Squaring the total spin operator
we have

S⃗2
op = (S⃗1,op + S⃗2,op)

2
= S⃗2

1,op + S⃗2
2,op + 2S⃗1,op ⋅ S⃗2,op

= 3

4
h̵2Î + 3

4
h̵2Î + 2Ŝ1zŜ2z + 2Ŝ1xŜ2x + 2Ŝ1yŜ2y (9.332)

Now using
Ŝ1± = Ŝ1x ± iŜ1y and Ŝ2± = Ŝ2x ± iŜ2y (9.333)

we have
2Ŝ1xŜ2x + 2Ŝ1yŜ2y = Ŝ1+Ŝ2− + Ŝ1−Ŝ2+ (9.334)

and therefore
S⃗2
op =

3

2
h̵2Î + 2Ŝ1zŜ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+ (9.335)

Now suppose we choose the four states ∣++⟩ , ∣+−⟩ , ∣−+⟩ , ∣−−⟩ as the orthonormal
basis for the 4-dimensional vector space of the combined system. We then ask
the following question.

Are these basis states also eigenstates of the spin operators for the combined
system?

We have

Ŝz ∣++⟩ = (Ŝ1z + Ŝ2z) ∣+⟩1 ⊗ ∣+⟩2 = (Ŝ1z ∣+⟩1)⊗ ∣+⟩2 + ∣+⟩1 ⊗ (Ŝ2z ∣+⟩2)

= ( h̵
2
∣+⟩1)⊗ ∣+⟩2 + ∣+⟩1 ⊗ ( h̵

2
∣+⟩2) = ( h̵

2
+ h̵

2
) ∣+⟩1 ⊗ ∣+⟩2

= h̵ ∣++⟩ (9.336)

and similarly

Ŝz ∣+−⟩ = 0 (9.337)

Ŝz ∣−+⟩ = 0 (9.338)

Ŝz ∣−−⟩ = −h̵ ∣−−⟩ (9.339)
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This says that the direct-product basis states are eigenvectors of (total) Ŝz and
that the eigenvalues are m = 1,0,−1 and 0 (a second time).

Since each value s of the total angular momentum of the combined system must
have 2s + 1 associated m-values, these results tell us that the combined system
will have

s = 1→m = 1,0,−1 and s = 0→m = 0 (9.340)

which accounts for all of the four states. What about the Ŝ2
op operator?

We have

S⃗2
op ∣++⟩ = (3

2
h̵2Î + 2Ŝ1zŜ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) ∣++⟩

= (3

2
h̵2 + 2

h̵

2

h̵

2
+ Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) ∣++⟩ (9.341)

Now using
Ŝ1+ ∣++⟩ = 0 = Ŝ+ ∣++⟩ (9.342)

we get
S⃗2
op ∣++⟩ = 2h̵2 ∣++⟩ = h̵21(1 + 1) ∣++⟩ (9.343)

or the state ∣++⟩ is also an eigenstate of Ŝ2
op with s = 1

∣++⟩ = ∣s = 1,m = 1⟩ = ∣1,1⟩ (9.344)

Similarly, we have

S⃗2
op ∣−−⟩ = 2h̵2 ∣−−⟩ = h̵21(1 + 1) ∣−−⟩ (9.345)

or the state ∣−−⟩ is also an eigenstate of Ŝ2
op with s = 1

∣−−⟩ = ∣s = 1,m = −1⟩ = ∣1,−1⟩ (9.346)

In the same manner we can show that ∣+−⟩ and ∣−+⟩ are not eigenstates of Ŝ2
op.

So the simple direct-product states are not appropriate to describe the combined
system if we want to characterize it using

S⃗2
op and Ŝz (9.347)

However, since the direct-product states are a complete basis set, we should
be able to construct the remaining two eigenstates of Ŝ2

op and Ŝz as linear
combinations of the direct-product states

∣s,m⟩ = ∑
m1,m2

asmm1m2 ∣m1,m2⟩ (9.348)

where we have left out the s1 and s2 dependence in the states and coefficients.

In a formal manner, we can identify the so-called Clebsch-Gordon coefficients
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asmm1m2 by using the orthonormality of the direct-product basis states. We
have

⟨m′
1,m

′
2 ∣ s,m⟩ = ∑

m1,m2

asmm1m2 ⟨m′
1,m

′
2 ∣m1,m2⟩

= ∑
m1,m2

asmm1m2δm′
1m1

δm′
2m2

= asmm′
1m

′
2

(9.349)

where we have used

⟨m′
1,m

′
2 ∣m1,m2⟩ = δm′

1m1
δm′

2m2
(9.350)

This does not help us actually compute the coefficients because we do not know
the states ∣s,m⟩. A procedure that works in this case and that can be general-
ized, is the following.

We already found that ∣++⟩ = ∣1,1⟩ and ∣−−⟩ = ∣1,−1⟩. Now we define the oper-
ators

Ŝ± = Ŝx ± iŜy = (Ŝ1x + Ŝ2x) ± i(Ŝ1y + Ŝ2y) = Ŝ1± + Ŝ2± (9.351)

These are the raising and lowering operators for the combined system and thus
they satisfy the relations

Ŝ± ∣s,m⟩ = h̵
√
s(s + 1) −m(m ± 1) ∣s,m ± 1⟩ (9.352)

This gives
Ŝ+ ∣1,1⟩ = 0 = Ŝ− ∣1,−1⟩ (9.353)

as we expect. If, however, we apply Ŝ− to the topmost state (maximum s and
m values) we get

Ŝ− ∣1,1⟩ = h̵
√

1(1 + 1) − 1(1 − 1) ∣1,0⟩ = h̵
√

2 ∣1,0⟩
= (Ŝ1− + Ŝ2−) ∣+⟩1 ⊗ ∣+⟩2 = (Ŝ1− ∣+⟩1)⊗ ∣+⟩2 + ∣+⟩1 ⊗ (Ŝ2− ∣+⟩2)

= h̵
√

1

2
(1

2
+ 1) − 1

2
(1

2
− 1) ∣−⟩1 ⊗ ∣+⟩2

+ h̵
√

1

2
(1

2
+ 1) − 1

2
(1

2
− 1) ∣+⟩1 ⊗ ∣−⟩2

= h̵ ∣−+⟩ + h̵ ∣+−⟩ (9.354)

or
∣1,0⟩ = ∣s = 1,m = 0⟩ = 1√

2
∣−+⟩ + 1√

2
∣+−⟩ (9.355)

Note that the only terms that appear on the right hand side are those that have
m =m1 +m2. We can easily see that this is a general property since

Ŝz ∣s,m⟩ =mh̵ ∣s,m⟩ = ∑
m1,m2

asmm1m2(Ŝ1z + Ŝ2z) ∣m1,m2⟩

= h̵ ∑
m1,m2

asmm1m2(m1 +m2) ∣m1,m2⟩ (9.356)
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The only way to satisfy this equation is for m = m1 +m2 in every term in the
sum. Thus, our linear combination should really be written as a single sum of
the form

∣s,m⟩ = ∑
m1,m2
m1+m2=m

asmm1m2 ∣m1,m2⟩ =∑
m1

asmm1,m−m1 ∣m1,m −m1⟩ (9.357)

These three states

∣1,1⟩ = ∣++⟩→ a1,1, 12 ,
1
2
= 1 (9.358)

∣1,0⟩ = 1√
2
(∣−+⟩ + ∣+−⟩)→ a1,1,− 1

2 ,
1
2
= a1,1, 12 ,−

1
2
= 1√

2
(9.359)

∣1,−1⟩ = ∣−−⟩→ a1,1,− 1
2 ,−

1
2
= 1 (9.360)

are called a triplet.

The state ∣s = 0,m = 0⟩ = ∣0,0⟩ can then be found as follows: the state has
m = 0, Ŝz ∣0,0⟩ = 0 and thus each state(term) in the linear combination must
have m =m1 +m2 = 0, which means we must be able to write

∣0,0⟩ = a ∣+−⟩ + b ∣−+⟩ (9.361)

where

∣a∣2 + ∣b∣2 = 1 (state is normalized to 1) (9.362)

Now we must also have

⟨1,0 ∣ 0,0⟩ = 0 (since the ∣s,m⟩ states are orthogonal) (9.363)

which implies that
1√
2
a + 1√

2
b = 0→ b = −a (9.364)

We then have

2 ∣a∣2 = 1→ a = 1√
2
= −b (9.365)

and

∣0,0⟩ = ∣s = 0,m = 0⟩ = 1√
2
∣+−⟩ − 1√

2
∣−+⟩ (9.366)

This is called a singlet state. That completes the construction of the angular
momentum states for the combined system of two spin-1/2 systems.

We now generalize this procedure for the addition of any two angular momenta.
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9.5.2. General Addition of Two Angular Momenta

Given two angular momenta J⃗1,op and J⃗2,op, we have the operators and states
for each separate system

J⃗1,op → J⃗2
1,op, Ĵ1z, Ĵ1± → ∣j1,m1⟩

J⃗2,op → J⃗2
2,op, Ĵ2z, Ĵ2± → ∣j2,m2⟩

with

J⃗2
1,op ∣j1,m1⟩ = h̵2j1(j1 + 1) ∣j1,m1⟩ , Ĵ1z ∣j1,m1⟩ = h̵m1 ∣j1,m1⟩ (9.367)

Ĵ1± ∣j1,m1⟩ = h̵
√
j1(j1 + 1) −m1(m1 ± 1) ∣j1 ± 1,m1⟩ (9.368)

J⃗2
2,op ∣j2,m2⟩ = h̵2j2(j2 + 1) ∣j2,m2⟩ , Ĵ2z ∣j2,m2⟩ = h̵m2 ∣j2,m2⟩ (9.369)

Ĵ2± ∣j2,m2⟩ = h̵
√
j2(j2 + 1) −m2(m2 ± 1) ∣j2 ± 1,m2⟩ (9.370)

Remember that there are 2j1 + 1 possible m1 values and 2j2 + 1 possible m2

values.

Since all of the “1” operators commute with all of the “2” operators, we can find
a common eigenbasis for the four operators J⃗2

1,op, Ĵ1z, J⃗
2
2,op, Ĵ2z in terms of the

direct-product states

∣j1, j2,m1,m2⟩ = ∣j1,m1⟩⊗ ∣j2,m2⟩ (9.371)

For the combined system we define total operators as before

J⃗op = J⃗1,op + J⃗2,op = total angular momentum (9.372)

Ĵz = Ĵ1z + Ĵ2z, [J⃗2
op, Ĵz] = 0 (9.373)

[J⃗2
op, Ĵ

2
1,op] = 0 , [J⃗2

op, Ĵ
2
2,op] = 0 (9.374)

[Ĵ2
1,op, Ĵz] = 0 , [Ĵ2

2,op, Ĵz] = 0 (9.375)

These commutators imply that we can construct a common eigenbasis of J⃗2
1,op,

Ĵ1z ,J⃗2
2,op,Ĵ2z using the states ∣j1, j2,m1,m2⟩ where

J⃗2
op ∣j,m⟩ = h̵2j(j + 1) ∣j,m⟩ and Ĵz ∣j,m⟩ = h̵m ∣j,m⟩ (9.376)

There are 2j + 1 possible m values for each allowed j value. We cannot use the
operators Ĵ1z, Ĵ2z to construct the eigenbasis for the combined system because
they do not commute with J⃗2

op.

Remember that in order for a label to appear in a ket vector it must be one of
the eigenvalues of a set of commuting observables since only such a set shares a
common eigenbasis.
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We now determine how to write the ∣j1, j2,m1,m2⟩ in terms of the ∣j1,m1⟩ ⊗
∣j2,m2⟩ basis. We have

∣j1, j2, j,m⟩
=∑
j′1

∑
j′2

∑
m1

∑
m2

∣j′1, j′2,m1,m2⟩ ⟨j′1, j′2,m1,m2 ∣ j1, j2, j,m⟩ (9.377)

where

⟨j′1, j′2,m1,m2 ∣ j1, j2, j,m⟩ = Clebsch - Gordon coefficients (9.378)

This corresponds to inserting an identity operator of the form

Î =∑
j′1

∑
j′2

∑
m1

∑
m2

∣j′1, j′2,m1,m2⟩ ⟨j′1, j′2,m1,m2∣ (9.379)

Since

⟨j′1, j′2,m1,m2∣
⇀

J
2

1,op ∣j1, j2, j,m⟩
= h̵2j′1(j′1 + 1) ⟨j′1, j′2,m1,m2 ∣ j1, j2, j,m⟩
= h̵2j1(j1 + 1) ⟨j′1, j′2,m1,m2 ∣ j1, j2, j,m⟩

the Clebsch-Gordon(CG) coefficients must vanish unless j ′1 = j1 and similarly
unless j ′2 = j2. Thus we have

∣j1, j2, j,m⟩ =∑
m1

∑
m2

∣j1, j2,m1,m2⟩ ⟨j1, j2,m1,m2 ∣ j1, j2, j,m⟩ (9.380)

Also, as we saw earlier, since Ĵz = Ĵ1z + Ĵ2z we must have

⟨j1, j2,m1,m2∣ Ĵz ∣j1, j2, j,m⟩ = h̵(m1 +m2) ⟨j1, j2,m1,m2 ∣ j1, j2, j,m⟩
= h̵m ⟨j1, j2,m1,m2 ∣ j1, j2, j,m⟩

which implies that the CG coefficients must vanish unless m1 +m2 = m. Thus
the only non-vanishing coefficients are

⟨j1, j2,m1,m2 ∣ j1, j2, j,m =m1 +m2⟩ (9.381)

and we can write

∣j1, j2, j,m⟩ =∑
m1

∑
m2=m−m1

∣j1, j2,m1,m2⟩ ⟨j1, j2,m1,m2 ∣ j1, j2, j,m⟩

=∑
m1

∣j1, j2,m1,m2 =m −m1⟩ ⟨j1, j2,m1,m2 =m −m1 ∣ j1, j2, j,m⟩

For fixed j1 and j2 there are 2j1 + 1 possible m1 values and 2j2 + 1 possible m2

values. Thus, there are (2j1+1)(2j2+1) linearly independent states of the form

∣j1, j2,m1,m2⟩ = ∣j1,m1⟩⊗ ∣j2,m2⟩
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and hence the vector space describing the combined system is (2j1+1)(2j2+1)-
dimensional.

This says that there must be (2j1 + 1)(2j2 + 1) states of the form ∣j1, j2, j,m⟩
also.

We notice that there is only one state with m =m1 +m2 = j1 + j2, namely,

m1 = j1 and m2 = j2 (9.382)

This state has the maximum possible m value.

There are two states with m =m1 +m2 = j1 + j2 − 1, namely,

m1 = j1 − 1,m2 = j2 and m1 = j1,m2 = j2−1 (9.383)

and so on.

For example

j1 = 2 , j2 = 1→ (2(2) + 1))(2(1) + 1)) = 15 states (9.384)

If we label these states by the m-values only (since j1 and j2 do not change) or
∣m1,m2⟩, then we have(in this example)

m = 3→ 1 state→ ∣2,1⟩
m = 2→ 2 states→ ∣2,0⟩ , ∣1,1⟩
m = 1→ 3 states→ ∣1,0⟩ , ∣0,1⟩ , ∣2,−1⟩
m = 0→ 3 states→ ∣0,0⟩ , ∣1,−1⟩ , ∣−1,1⟩
m = −1→ 3 states→ ∣−1,0⟩ , ∣0,−1⟩ , ∣−2,1⟩
m = −2→ 2 states→ ∣−2,0⟩ , ∣−1,−1⟩
m = −3→ 1 state→ ∣−2,−1⟩

for a total of 15 states. The combined system, as we shall see by construction,
has these states

j = 3→m = 3,2,1,0,−1,−2,−3→ 7 states
j = 2→m = 2,1,0,−1,−2→ 5 states
j = 1→m = 1,0,−1→ 3 states

for a total of 15 states.

The general rules, which follows from group theory, are

1. The combined system has allowed j values given by

j1 + j2 ≥ j ≥ ∣j1 − j2∣ in integer steps (9.385)
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2. The total number of states is given by the total number of m-values for
all the allowed j-values or

j1+j2
∑

j=∣j1−j2∣
(2j + 1) =(2j1 + 1)(2j2 + 1) (9.386)

We write the addition of two angular momenta symbolically as

j1 ⊗ j2 = ∣j1 − j2∣⊕ ∣j1 − j2∣ + 1⊕ ∣j1 − j2∣ + 2⊕ ......⊕ j1 + j2 − 1⊕ j1 + j2 (9.387)

Examples

Our original special case of adding two spin = 1/2 systems gives

j1 = j2 =
1

2
→ j = 0,1→ 1

2
⊗ 1

2
= 0⊕ 1→ 4 states (9.388)

which is the result we found earlier.

Other cases are:

j1 = j2 = 1→ j = 0,1,2→ 1⊗ 1 = 0⊕ 1⊕ 2→ 9 states
j1 = 2,j2 = 1→ j = 1,2,3→ 2⊗ 1 = 1⊕ 2⊕ 3→ 15 states
j1 = 2,j2 = 3→ j = 1,2,3,4,5→ 2⊗ 3 = 1⊕ 2⊕ 3⊕ 4⊕ 5→ 35 states

9.5.3. Actual Construction of States

Notation

1. states labeled ∣7,6⟩ are ∣j,m⟩ states

2. states labeled ∣3,2⟩⊗ are ∣m1,m2⟩ states

3. we suppress the j1, j2 labels everywhere

Notation

1. choose j1 and j2

2. write down the direct-product ∣m1,m2⟩ basis

3. determine the allowed j values

4. write down the maximum m state (m = j1 + j2); it is unique

5. the maximum m-value corresponds to the maximum j-value

6. use the lowering operator to generate all other m-states for this J-value;
there are 2j + 1, i.e.,

Ĵ− ∣j,m⟩ = h̵
√
j(j + 1) −m(m − 1) ∣j,m − 1⟩
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7. find the maximum m-state for the next lowest j-value; it is constructed
from the same basis states as in the corresponding m-states for higher
j-values; use orthonormality properties to figure out coefficients

8. repeat (6) and (7) until all j-values have been dealt with

More Detailed Examples (we must learn this process by doing it)

#1 - Individual system values

j1 = j2 =
1

2
→m1,m2 =

1

2
,−1

2
(we already did this example) (9.389)

The basis states are (we use the notation ∣+−⟩ here instead of ∣1/2,−1/2⟩⊗)

∣++⟩ , ∣+−⟩ , ∣−+⟩ , ∣−−⟩
m =m1 +m2 = 1 0 − 1 0

Construction Algebra

Allowed j-values are j = 1,0

j = 1 has 2j + 1 = 3 m-values = 1,0,−1

j = 0 has 2j + 1 = 1 m value = 0

∣1,1⟩ = ∣++⟩ maximum or topmost (j,m) state is always unique

Ĵ− ∣1,1⟩ =
√

2h̵ ∣1,0⟩ = (Ĵ1− + Ĵ2−) ∣++⟩ = h̵ ∣+−⟩ + h̵ ∣−+⟩

∣1,0⟩ = 1√
2
∣+−⟩ + 1√

2
∣−+⟩

Ĵ− ∣1,0⟩ =
√

2h̵ ∣1,−1⟩ = (Ĵ1− + Ĵ2−) ( 1√
2
∣+−⟩ + 1√

2
∣−+⟩) =

√
2h̵ ∣−−⟩

∣1,−1⟩ = ∣−−⟩

We must now have ∣0,0⟩ = a ∣+−⟩ + b ∣−+⟩ (Rule 7) with

∣a∣2 + ∣b∣2 = 1 and ⟨1,0 ∣ ,0,0⟩ = 1√
2
a + 1√

2
b = 0

which gives
a = −b = 1√

2

or

∣0,0⟩ = 1√
2
∣+−⟩ − 1√

2
∣−+⟩
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All the j−values are now done. We end up with the Clebsch-Gordon coefficients.

#2 - Individual system values

j1 = j2 = 1→m1,m2 = 1,0,−1 (9.390)

The basis states are

∣1,1⟩⊗ ∣1,0⟩⊗ ∣1,−1⟩⊗ ∣0,1⟩⊗ ∣0,0⟩⊗
m =m1 +m2 = 2 1 0 1 0

∣0,−1⟩⊗ ∣−1,1⟩⊗ ∣−1,0⟩⊗ ∣−1,−1⟩⊗
m =m1 +m2 = −1 0 − 1 − 2

Construction Algebra

Allowed j-values are j = 2,1,0

j = 2 has 2j + 1 = 3 m-values = 2,1,0,−1,−2

j = 1 has 2j + 1 = 3 m-values = 1,0,−1

j = 0 has 2j + 1 = 1 m value = 0

∣2,2⟩ = ∣1,1⟩⊗ maximum or topmost (j,m) state is always unique

Ĵ− ∣2,2⟩ = 2h̵ ∣2,1⟩ = (Ĵ1− + Ĵ2−) ∣1,1⟩⊗ =
√

2h̵ ∣1,0⟩⊗ +
√

2h̵ ∣0,1⟩⊗

∣2,1⟩ = 1√
2
∣1,0⟩⊗ +

1√
2
∣0,1⟩⊗

Ĵ− ∣2,1⟩ =
√

6h̵ ∣2,0⟩ = (Ĵ1− + Ĵ2−) ( 1√
2
∣1,0⟩⊗ +

1√
2
∣0,1⟩⊗)

= h̵ ∣1,−1⟩⊗ + 2h̵ ∣0,0⟩⊗ + h̵ ∣−1,1⟩⊗

∣2,0⟩ = 1√
6
∣1,−1⟩⊗ +

2√
6
∣0,0⟩⊗ +

1√
6
∣−1,1⟩⊗

Continuing we have

∣2,−1⟩ = 1√
2
∣−1,0⟩⊗ +

1√
2
∣0,−1⟩⊗

∣2,−2⟩ = ∣−1,−1⟩⊗

which completes the five j = 2 states.

We must now have ∣1,1⟩ = a ∣1,0⟩⊗ + b ∣0,1⟩⊗ with
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∣a∣2 + ∣b∣2 = 1 and ⟨2,1 ∣ ,1,1⟩ = 1√
2
a + 1√

2
b = 0

which gives
a = −b = 1√

2

or

∣1,1⟩ = 1√
2
∣1,0⟩⊗ −

1√
2
∣0,1⟩⊗

We now find all of the j = 1 states

Ĵ− ∣1,1⟩ =
√

2h̵ ∣1,0⟩ = (Ĵ1− + Ĵ2−)(
1√
2
∣1,0⟩⊗ −

1√
2
∣0,1⟩⊗)

= h̵ ∣1,−1⟩⊗ − h̵ ∣−1,1⟩⊗

∣1,0⟩ = 1√
2
∣1,−1⟩⊗ −

1√
2
∣−1,1⟩⊗

and continuing

∣1,−1⟩ = 1√
2
∣0,−1⟩⊗ −

1√
2
∣−1,0⟩⊗

which completes the three j = 1 states.

We must now have ∣0,0⟩ = a ∣1,−1⟩⊗ + b ∣0,0⟩⊗ + c ∣−1,1⟩⊗ with

∣a∣2 + ∣b∣2 = 1 and ⟨2,0 ∣ ,0,0⟩ = 1√
6
a + 2√

6
b + 1√

6
c = 0

and ⟨1,0 ∣ ,0,0⟩ = 1√
6
a − 1√

6
c = 0

which gives
a = −b = c = 1√

3

or

∣0,0⟩ = 1√
3
∣1,−1⟩⊗ −

1√
3
∣0,0⟩⊗ +

1√
3
∣−1,1⟩⊗

All the j-values are now done.

9.6. Two- and Three-Dimensional Systems

We now turn our attention to 2− and 3−dimensional systems that can be solved
analytically.

In the position representation, the wave function

ψ(r⃗) = ⟨r⃗ ∣ ψ⟩ (9.391)
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contains all the information that is knowable about the state of a physical sys-
tem. The equation that determines the wave function is the Schrödinger equa-
tion, which we derived from the energy eigenvalue equation

Ĥ ∣ψ⟩ = E ∣ψ⟩ (9.392)

The general form of the Schrödinger equation in three dimensions is

− h̵
2

2m
∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Eψ(r⃗) (9.393)

We will use a succession of concrete examples to elucidate the solution techniques
and the physical principles that are involved.

9.6.1. 2- and 3-Dimensional Infinite Wells

2-Dimensional Infinite Square Well - Cartesian Coordinates

The potential energy function is

V (x, y) =
⎧⎪⎪⎨⎪⎪⎩

0 ∣x∣ < a
2
and ∣y∣ < a

2
→ region I

∞ otherwise→ region II
(9.394)

This is a simple extension of the 1−dimensional infinite well problem, but it
is useful because it illustrates all the ideas we will need for more complicated
problems.

In region I
∂2ψ(x, y)
∂x2

+ ∂
2ψ(x, y)
∂y2

= −2mE

h̵2
ψ(x, y) (9.395)

In region II
ψ(x, y) = 0 (9.396)

since the potential is infinite over an extended region.

We solve this equation by the separation of variables (SOV) technique. We
assume

ψ(x, y) =X(x)Y (y) (9.397)

Upon substitution we get

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= −2mE

h̵2
(9.398)

Each term on the left-hand side of the equation is a function only of a single
variable and hence the only way to satisfy the equation for all x and y is to set
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each function of a single variable equal to a constant. We have

1

X

d2X

dx2
= −2mEx

h̵2
= constant (9.399)

1

Y

d2Y

dy2
= −

2mEy

h̵2
= constant (9.400)

E = Ex +Ey (9.401)

If we choose
2mEx
h̵2

= k2
x ,

2mEy

h̵2
= k2

y ,
2mE

h̵2
= k2 (9.402)

we get the solutions

X(x) = A sinkxx +B coskxx (9.403)
Y (y) = C sinkyy +D coskyy (9.404)

with the boundary conditions

X (±a
2
) = 0 = Y (±a

2
) (9.405)

For the function X(x) each boundary condition implies two solution types

A = 0 or sin
kxa

2
= 0 and B = 0 or cos

kxa

2
= 0 (9.406)

These are both summarized in the solution

X(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sin nxπx
a

nx = even
kx = nxπ

a
nx = integer

cos nxπx
a

nx = odd
(9.407)

and similarly for Y (y)

Y (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sin
nyπy

a
ny = even

ky = nyπ

a
ny = integer

cos
nyπy

a
ny = odd

(9.408)

The corresponding energy eigenvalues are

E = (n2
x + n2

y)
π2h̵2

2ma2
, nx,ny = 1,2,3,4 . . . (9.409)

The 1−dimensional result we found earlier was

E1 dim = n
2π2h̵2

2ma2
, n = 1,2,3,4 . . . (9.410)

A plot of these levels for comparison is shown in Figure 9.4 below; we choose
π2h̵2

2ma2 = 1
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Figure 9.4: Comparison of 1D and 2D Infinite Wells

The major change is not only that the level structure gets more complex, but
also that a major new feature appears, namely, degeneracy.

Several of the 2−dimensional well levels are degenerate, which means that dif-
ferent sets of quantum numbers give the same energy eigenvalue.

In the energy level diagram above the E = 5,10,13,17,20,25,26 and 29 lev-
els are all two-fold degenerate. This degeneracy arises from the fact that
V (x, y) = V (−x,−y) and hence parity is conserved. This means that the correct
physical eigenstates should be simultaneous eigenstates of both the parity and
the energy.

The first three wave functions are

ψ11(x, y) = cos
πx

a
cos

πy

a
, E = E11 (9.411)

ψ12(x, y) = cos
πx

a
sin

2πy

a
, E = E12 (9.412)

ψ21(x, y) = sin
2πx

a
cos

πy

a
, E = E21 = E12 (9.413)

A simple calculation shows that we have

⟨11 ∣ 12⟩ = ⟨11 ∣ 21⟩ = 0→ orthogonal and ⟨21 ∣ 12⟩ ≠ 0→ not orthogonal
(9.414)

We can construct two new eigenfunctions from the degenerate pair that are
orthogonal using the Gram-Schmidt process. We get

ψ+12 = ψ12 + ψ21 and ψ−12 = ψ12 − ψ21 (9.415)

We then have
⟨12+ ∣ 12−⟩ = 0→ orthogonal (9.416)
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We also note that for the parity operator ℘ we have

℘̂ ∣11⟩ = ∣11⟩ , ℘̂ ∣12+⟩ = ∣12+⟩ , ℘̂ ∣12−⟩ = − ∣12−⟩ (9.417)

so that the new eigenfunctions are simultaneous eigenstates of parity and energy.

Two of the wave functions are plotted below in Figure 9.5 and 9.6 as ∣ψ∣2.

Figure 9.5: ∣ψ11∣2

Figure 9.6: ∣ψ+12∣2

Now let us turn to the infinite circular well in two dimensions.

9.6.2. Two-Dimensional Infinite Circular Well
We consider the potential in two dimensions

V (r) =
⎧⎪⎪⎨⎪⎪⎩

0 r < a
∞ r > a

(9.418)

The Schrödinger equation in plane-polar coordinates is

− h̵
2

2m
[1

r

∂

∂r
(r ∂
∂r

) + 1

r2

∂2

∂ϕ2
]ψ(r,ϕ) = Eψ(r,ϕ) r < a (9.419)

ψ(r,ϕ) = 0 r < a (9.420)
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We assume(SOV)
ψ(r,ϕ) = R(r)Φ(ϕ) (9.421)

which gives

− h̵
2

2m
[ 1

rR

∂

∂r
(r ∂R
∂r

) + 1

r2

1

Φ

∂2Φ

∂ϕ2
] = E r < a (9.422)

We choose a separation constant

1

Φ

∂2Φ

∂ϕ2
= −α2 → Φ(ϕ) = B sin(αϕ + δ) (9.423)

The requirement of single-valuedness under a ϕ-rotation of 2π says that

sin(αϕ + δ) = sin(αϕ + δ + απ)
→ α = integer = 0,1,2,3 . . .

Alternatively, we could write

Φ(ϕ) = Beiαϕ

α = integer = . . . − 3,−2,−1,0,1,2,3, . . .

(9.424)

Substitution of this solution leaves the radial differential equation

r2 d
2R

dr2
+ r dR

dr
+ [λ2r2 − α2]R = 0 where λ2 = 2mE

h̵2
(9.425)

This is BesselÕs equation. The general solution is

R(r) = NJα(λr) +MYα(λr) (9.426)

Now Yα(λr)→∞ as r → 0. Therefore, in order to have a normalizable solution
in the region r < a (which includes r = 0), we must choose M = 0 and thus we
have

R(r) = NJα(λr) (9.427)

and the complete solution is then

ψkα(r,ϕ) = R(r)Φ(ϕ) = NJα(λr)eiαϕ (9.428)

The continuity (or boundary) condition at r = a is

ψkα(a,ϕ) = 0→ R(a) = 0→ Jα(λa) = 0 (9.429)

Thus, the allowed values of λ and hence the allowed values of E are given by

λnαa = znα = the nth zero of Jα → Enα = h̵2

2ma2
z2
nα (9.430)
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Figure 9.7: Two Dimensional Wells

We compare the infinite square and circular wells in 2−dimensions using the
energy level diagram in Figure 9.7 above.

Note the rather dramatic differences in both the location and degeneracies for
the two sets of energy levels.

Some of the wave functions for the 2−dimensional circular well are shown in
Figures 9.8-9.11 below.

Figure 9.8: ∣ψ01∣2
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Figure 9.9: ∣ψ11∣2

Figure 9.10: ∣ψ03∣2

Figure 9.11: ∣ψ23∣2

The 3−dimensional infinite square well is a simple extension of the 2−dimensional
infinite square well. The result for the energies is

E = (n2
x + n2

y + n2
z)
π2h̵2

2ma2
, nx, ny, nz = 1,2,3,4 . . . (9.431)

The 3−dimensional infinite spherical well involves the potential

V (r, θ,ϕ) =
⎧⎪⎪⎨⎪⎪⎩

0 r < a region I
∞ r > a region II

(9.432)

The Schrödinger equation is:

Region I

1

r2

∂

∂r
(r2 ∂ψ

∂r
) + 1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) + 1

r2 sin2 θ

∂2ψ

∂ϕ2
= −2m

h̵2
E (9.433)

Region II
ψ(r, θ,ϕ) = 0 (9.434)
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The equation in region I can be rewritten in terms of the L⃗2
op operator as

1

r2

∂

∂r
(r2 ∂ψ

∂r
) −

L⃗2
opψ

h̵2r2
= −2m

h̵2
Eψ (9.435)

Since the potential energy is spherically symmetric, we have

[L⃗2
op, Ĥ] = 0 (9.436)

and thus the operators L⃗2
op and Ĥ have a common eigenbasis.

Earlier, we found the eigenfunctions of L⃗2
op to be the spherical harmonics Y`m(θ,ϕ),

where
L⃗2
opY`m(θ,ϕ) = h̵2`(` + 1)Y`m(θ,ϕ) (9.437)

Therefore, we can write(SOV)

ψ(r, θ,ϕ) = R`(r)Y`m(θ,ϕ) (9.438)

Substitution of this form of the solution gives the radial equation in region I

d2R`
dr2

+ 2

r

dR`
dr

− `(` + 1)
r2

R` + k2R` = 0 (9.439)

where

E = h
2k2

2m
(9.440)

In region II we have R`(r) = 0.

The most general solution of the radial equation(which is a different form of
Bessel’s equation) is

R`(r) = Aj`(kr) +Bη`(kr) (9.441)
where

j`(kr) = ( π

2kr
)

1/2
J`+1/2(kr) (9.442)

η`(kr) = (−1)`+1 ( π

2kr
)

1/2
J−`−1/2(kr) (9.443)

are the spherical Bessel functions.

Now η`(kr) → ∞ as r → 0. Therefore, the normalizable solution in region I
(which contains r = 0) is

R`(r) = Aj`(kr) (9.444)
The first few of these functions are

j0(x) =
sinx

x
(9.445)

j1(x) =
sinx

x2
− cosx

x
(9.446)

j2(x) = ( 3

x3
− 1

x
) sinx − 3

x2
cosx (9.447)
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The boundary conditions give

j`(kn`a) = 0 where kn` = the nth zero of j` (9.448)

The full solution is

ψn`m(θ,ϕ) = Rn`(r)Y`m(θ,ϕ) = j`(knr)Pm` (cos θ)eimϕ (9.449)

Some of the wavefunctions (absolute squares) are shown in Figures 9.12-9.16
below.

Figure 9.12: n`m = 100

Figure 9.13: n`m = 200

Figure 9.14: n`m = 111
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Figure 9.15: n`m = 211

9.6.3. 3-Dimensional Finite Well
We now consider the potential function in three dimensions

V (r) =
⎧⎪⎪⎨⎪⎪⎩

−V0 r ≤ a region I
0 r > a region II

(9.450)

The Schrödinger equation is

Region I (same as infinite well)

1

r2

∂

∂r
(r2 ∂ψ

∂r
) + 1

r2 sin2 θ

∂

∂θ
(sin θ

∂ψ

∂θ
)

+ 1

r2 sin2 θ

∂2ψ

∂ϕ2
+ 2m

h̵2
V0ψ = −2m

h̵2
Eψ (9.451)

Region II

1

r2

∂

∂r
(r2 ∂ψ

∂r
) + 1

r2 sin2 θ

∂

∂θ
(sin θ

∂ψ

∂θ
) + 1

r2 sin2 θ

∂2ψ

∂ϕ2
= −2m

h̵2
Eψ (9.452)

If we choose E = −∣E∣ < 0 for bound states, we have

1

r2

∂

∂r
(r2 ∂ψ

∂r
) −

L⃗2
opψ

h̵2r2
+ 2m

h̵2
V0ψ = 2m

h̵2
∣E∣ψ in region I (9.453)

1

r2

∂

∂r
(r2 ∂ψ

∂r
) −

L⃗2
opψ

h̵2r2
= 2m

h̵2
∣E∣ψ in region II (9.454)

We then write, as before,

ψ(θ,ϕ) = R`(r)Y`m(θ,ϕ) (9.455)

and get

1

r2

∂

∂r
(r2 ∂R

∂r
) − `(` + 1)R

r2
+ 2m

h̵2
V0R = 2m

h̵2
∣E∣R in region I (9.456)

1

r2

∂

∂r
(r2 ∂R

∂r
) − `(` + 1)R

r2
= 2m

h̵2
∣E∣R in region II (9.457)
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which finally becomes

d2R

dρ2
+ 2

ρ

dR

dρ
+ [1 − `(` + 1)

ρ2
]R = 0 (9.458)

ρ = αr , α2 = 2m

h̵2
(V0 − ∣E∣) in region I (9.459)

and

d2R

dγ2
+ 2

γ

dR

dγ
+ [1 − `(` + 1)

γ2
]R = 0 (9.460)

γ = iβr , β2 = 2m

h̵2
∣E∣ in region II (9.461)

The solutions are

R(r) = Aj`(αr) r ≤ a (9.462)

R(r) = Bh(1)
` (iβr) = B [j`(iβr) + iη`(iβr)] r > a (9.463)

where

j0(x) =
sinx

x
(9.464)

j1(x) =
sinx

x2
− cosx

x
(9.465)

j2(x) = ( 3

x3
− 1

x
) sinx − 3

x2
cosx (9.466)

j`(x) = x` (−
1

x

d

dx
)
` sinx

x
(9.467)

which are spherical Bessel functions of the 1st kind, and

η0(x) = −
cosx

x
(9.468)

η1(x) = −
cosx

x2
− sinx

x
(9.469)

η2(x) = −( 3

x3
− 1

x
) cosx − 3

x2
sinx (9.470)

η`(x) = −x` (−
1

x

d

dx
)
` cosx

x
(9.471)

which are spherical Bessel functions of the 2nd kind, and

h
(1)
0 (ix) = − 1

x
e−x (9.472)

h
(1)
1 (ix) = i( 1

x
+ 1

x2
) e−x (9.473)

h
(1)
2 (ix) = ( 1

x
+ 3

x2
+ 3

x3
) e−x (9.474)

h
(1)
` (ix) = j`(ix) + iη`(ix) (9.475)
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which are spherical Hankel functions of the 1st kind.

There is another independent solution for r > a, namely,

h
(2)
` (ix) = j`(ix) − iη`(ix) (9.476)

which is a spherical Hankel functions of the 2nd kind, but we must exclude it
because it behaves like eβr as r →∞ and, hence, is not normalizable.

We have also excluded η`(αr) from the solution for r ≤ a because it diverges at
r = 0.

We note for future reference that we have the asymptotic behaviors

j`(x) →
x→0

x`

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ ⋅(2` + 1)
and η`(x) →

x→0

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ ⋅(2` − 1)
x`

(9.477)

j`(x) →
x→∞

1

x
cos [x − (` + 1)π

2
] and η`(x) →

x→∞
1

x
sin [x − (` + 1)π

2
] (9.478)

h
(1)
` (x) →

x→∞
1

x
ei[x−

1
2 (`+1)π] and h(2)

` (x) →
x→∞

1

x
e−i[x−

1
2 (`+1)π] (9.479)

Since both R and dR/dr are continuous at r = a, we can combine the two
continuity equations into one using the continuity of the so-called logarithmic
derivative

1

R

dR

dr
at r = a (9.480)

For each value of ` this gives a transcendental equation for the energy E.

Examples:

` = 0 ξ cot ξ = −ζ and ξ2 + ζ2 = 2mV0a
2

h̵2
(9.481)

ξ = αa and ζ = βa

` = 1
cot ξ

ξ
− 1

ξ2
= 1

ζ
+ 1

ζ2
vξ2 + ζ2 = 2mV0a

2

h̵2
(9.482)

ξ = αa and ζ = βa

A graphical solution for the ` = 0 case is shown in Figure 9.16 below.
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Figure 9.16: Graphical Solution

For a given well, only one circle exists on the plot. The solutions (energy
eigenvalues) are given by the intersection of that circle with the cotangent curves.

The big change from the finite well in one dimension is that the quantity

2mV0a
2

h̵2
(9.483)

must be larger than some minimum value before any bound state exists (this
corresponds to the radius of the smallest circle that intersects the cotangent
curves). In particular,

2mV0a
2

h̵2
< (π

2
)

2

→ no solution (9.484)

2mV0a
2

h̵2
< (3π

2
)

2

→ 1 solution (9.485)

2mV0a
2

h̵2
< (5π

2
)

2

→ 2 solutions (9.486)
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9.6.4. Two-Dimensional Harmonic Oscillator
The 2-dimensional harmonic oscillator system has the Hamiltonian

Ĥ = 1

2m
(p̂2
x + p̂2

y) +
1

2
mω2(x̂2 + ŷ2)

= ( p̂
2
x

2m
+ 1

2
mω2x̂2) + (

p̂2
y

2m
+ 1

2
mω2ŷ2)

= Ĥx + Ĥy (9.487)

where we have the commutation relations

[Ĥx, Ĥy] = 0 = [Ĥ, Ĥx] = [Ĥ, Ĥy] (9.488)

These commutators imply that Ĥ, Ĥx and Ĥy have a common eigenbasis. We
label their common state vectors by

∣E⟩ = ∣Ex,Ey⟩ = ∣Ex⟩ ∣Ey⟩ (9.489)

with

Ĥx ∣Ex⟩ = Ex ∣Ex⟩ (9.490)

Ĥy ∣Ey⟩ = Ey ∣Ey⟩ (9.491)

Ĥ ∣E⟩ = E ∣E⟩ = (Ĥx + Ĥy) ∣Ex⟩ ∣Ey⟩
= (Ex +Ey) ∣E⟩ (9.492)

or
E = Ex +Ey (9.493)

Now Ĥx (and Ĥy) each represent a 1−dimensional oscillator. This suggests that
we define new operators for the x coordinate

ax =
√
mω

2h̵
x̂ + i√

2mh̵ω
p̂x = (a+x)

+ (9.494)

where
[x̂, p̂x] = ih̵→ [âx, a+x] = 1 (9.495)

and
Ĥx = h̵ω (â+xâx +

1

2
) = h̵ω (N̂x +

1

2
) (9.496)

As we found earlier, N̂x has an eigenvalue equation

N̂x ∣nx⟩ = nx ∣nx⟩ , nx = 0,1,2,3, ......... (9.497)

We then have

Ĥx ∣nx⟩ = h̵ω (N̂x +
1

2
) ∣nx⟩ = h̵ω (nx +

1

2
) ∣nx⟩ (9.498)
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or
Ex = h̵ω (nx +

1

2
) (9.499)

In a similar manner, we repeat this process for the y coordinate

ay =
√
mω

2h̵
ŷ + i√

2mh̵ω
p̂y = (a+y)

+
(9.500)

where
[ŷ, p̂y] = ih̵→ [ây, a+y] = 1 (9.501)

and
Ĥy = h̵ω (â+y ây +

1

2
) = h̵ω (N̂y +

1

2
) (9.502)

As we found earlier, N̂y has an eigenvalue equation

N̂y ∣ny⟩ = ny ∣ny⟩ , ny = 0,1,2,3, ......... (9.503)

We then have

Ĥy ∣ny⟩ = h̵ω (N̂y +
1

2
) ∣ny⟩ = h̵ω (ny +

1

2
) ∣ny⟩ (9.504)

or
Ey = h̵ω (ny +

1

2
) (9.505)

Putting this all together we get

E = Ex +Ey = h̵ω(nx + ny + 1) = h̵ω(n + 1) (9.506)

Table 9.1 below gives the resulting energy level structure.

nx ny E/h̵ω n
0 0 1 0
1 0 2 1
0 1 2 1
0 2 3 2
2 0 3 2
1 1 3 2

Table 9.1: Energy Levels - 2D Oscillator

Each energy value, which is characterized by the quantum number n, has a
degeneracy equal to (n + 1).

The existence of degeneracy indicates (this is a general rule) that there is an-
other operator that commutes with Ĥ.
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Since this is a central force in the x−y plane, it is not difficult to guess that the
other operator that commutes with Ĥ is the angular momentum about the axis
perpendicular to the plane (the z−axis), L̂z. Since all of the x-type operators
commute with all of the y-type operators we can write

L̂z = (r⃗op × p⃗op)z = x̂p̂y − ŷp̂x (9.507)

Inverting the standard operator definitions we have

x̂ =
√

h̵

2mω
(âx + â+x) , p̂x =

1

i

√
mh̵ω

2
(âx − â+x) (9.508)

ŷ =
√

h̵

2mω
(ây + â+y) , p̂y =

1

i

√
mh̵ω

2
(ây − â+y) (9.509)

which gives

L̂z =
h̵

i
(â+xây − â+yax) (9.510)

Now using

[âx, N̂x] = âx , [â+x, N̂x] = −â+x (9.511)

[ây, N̂y] = ây , [â+y , N̂y] = −â+y (9.512)

we get

[Ĥx, L̂z] =
h̵

i
(âyâ+x + âxâ+y) = − [Ĥy, L̂z] (9.513)

or
[Ĥ, L̂z] = 0 (9.514)

Therefore, Ĥ and L̂z share a common eigenbasis. This new eigenbasis will not
be an eigenbasis for Ĥx or Ĥy separately since they do not commute with L̂z.

This suggests that we use linear combinations of the degenerate eigenstates to
find the eigenstates of L̂z. This works because linear combinations for fixed n
remain eigenstates of Ĥ (they are no longer eigenstates of Ĥx or Ĥy however).

We define the eigenstates and eigenvalues of L̂z by the equation

L̂z ∣m⟩ =mh̵ ∣m⟩ (9.515)

and the common eigenstates of Ĥ and L̂z by ∣n,m⟩ where

Ĥ ∣n,m⟩ = h̵ω(n + 1) ∣n,m⟩ (9.516)

L̂z ∣n,m⟩ =mh̵ ∣n,m⟩ (9.517)

For notational clarity we will write the old states as ∣nx⟩ ∣ny⟩.
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For the n = 0 states (there is only one) we have

L̂z ∣0,0⟩ = L̂z ∣0⟩ ∣0⟩ = 0→m = 0 , n = 0 (9.518)

Now we look at the n = 1 states. We let

∣ψ⟩ = a ∣0⟩ ∣1⟩ + b ∣1⟩ ∣0⟩ where ∣a∣2 + ∣b∣2 = 1 (normalization) (9.519)

Since the two states that make up the linear combination are both eigenstates
of Ĥ with n = 1, the linear combination is an eigenstate of Ĥ with n = 1 for any
choice of a and b. We therefore choose a and b to make this state an eigenstate
of L̂z.

We must have

L̂z ∣ψ⟩ = L̂z ∣1,m⟩ = L̂z(a ∣0⟩ ∣1⟩ + b ∣1⟩ ∣0⟩)

= h̵
i
(â+xây − â+yax)(a ∣0⟩ ∣1⟩ + b ∣1⟩ ∣0⟩)

=mh̵(a ∣0⟩ ∣1⟩ + b ∣1⟩ ∣0⟩) (9.520)

Using
â ∣n⟩ =

√
n ∣n − 1⟩ , â+ ∣n⟩ =

√
n + 1 ∣n + 1⟩ (9.521)

we get

a
h̵

i
∣1⟩ ∣0⟩ − b h̵

i
∣0⟩ ∣1⟩ =mh̵(a ∣0⟩ ∣1⟩ + b ∣1⟩ ∣0⟩) (9.522)

or
ma = ib and mb = −ia (9.523)

Dividing these two equations we get

a

b
= − b

a
(9.524)

which implies that
a2 = −b2 → a = ±ib (9.525)

and

m = − b
ia

=
⎧⎪⎪⎨⎪⎪⎩

+1 a = +ib
−1 a = −ib

(9.526)

Normalization then says that

m =
⎧⎪⎪⎨⎪⎪⎩

+1 a = 1√
2
, b = − i√

2

−1 a = 1√
2
, b = + i√

2

(9.527)

or
∣1,±1⟩ = 1√

2
(∣0⟩ ∣1⟩ ∓ ∣1⟩ ∣0⟩) (9.528)
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n m E/h̵ω
0 0 1
1 +1 2
1 -1 2

Table 9.2: Energy Levels - (n,m) Characterization

This gives a new characterization of the first two excited energy levels as shown
in Table 9.2 above.

Let us now do the n = 2 states. In the same way we assume

∣ψ⟩ = a ∣2⟩ ∣0⟩ + b ∣1⟩ ∣1⟩ + c ∣0⟩ ∣2⟩ (9.529)

where normalization gives
∣a∣2 + ∣b∣2 + ∣c∣2 = 1 (9.530)

We then have

L̂z ∣ψ⟩ = L̂z ∣2,m⟩ =mh̵ ∣ψ⟩
=mh̵a ∣2⟩ ∣0⟩ +mh̵b ∣1⟩ ∣1⟩ +mh̵c ∣0⟩ ∣2⟩

= h̵
i
(â+xây − â+y âx)(a ∣2⟩ ∣0⟩ + b ∣1⟩ ∣1⟩ + c ∣0⟩ ∣2⟩)

= h̵
i
[
√

2b ∣2⟩ ∣0⟩ +
√

2(c − a) ∣1⟩ ∣1⟩ −
√

2b ∣0⟩ ∣2⟩] (9.531)

which gives

ma = −i
√

2b (9.532)

mc = +i
√

2b (9.533)

mb = −i
√

2(c − a) (9.534)

a

c
= −1→ c = −a

c

b
= − b

c − a
→ a

b
= − b

2a
→ b2

= −2a2 → b = ±i
√

2a

Putting these pieces all together we have

a = 1

2
= −c , b± = ±i

√
2

2
(9.535)

This implies the m-values

m =
⎧⎪⎪⎨⎪⎪⎩

√
2b+
ia

+2
√

2b−
ia

−2
(9.536)
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or
∣2,0⟩ = 1√

2
∣2⟩ ∣0⟩ + 1√

2
∣0⟩ ∣2⟩ (9.537)

Thus, the final energy levels are as shown in Table 9.3 below.

n m E/h̵ω
0 0 1
1 +1 2
1 -1 2
2 +2 3
2 0 3
2 -2 3

Table 9.3: Energy Levels - (n,m) Characterization

What a strange result? The allowed m-values are separated by ∆m = ±2.

Let us look at this system using the Schrödinger equation to help us understand
what is happening.

We have (using plane-polar coordinates)

− h2

2M
(1

r

∂

∂r
(r ∂ψ
∂r

) + 1

r2

∂2ψ

∂ϕ2
) + 1

2
Mω2r2ψ = Eψ (9.538)

Choosing
ψ(r,ϕ) = R(r)Φ(ϕ) (9.539)

we get

− h2

2M

1

R
(d

2R

dr2
+ 1

r

dR

dr
) − h2

2Mr2

1

Φ

∂2Φ

∂ϕ2
+ 1

2
Mω2r2 = E (9.540)

Now we must have
1

Φ

∂2Φ

∂ϕ2
= −m2 = constant (9.541)

which produces a radial equation of the form

− h2

2M
(d

2R

dr2
+ 1

r

dR

dr
) + ( h

2m2

2Mr2
+ 1

2
Mω2r2)R = ER (9.542)

Now we change the variables using

r = ρy , ρ = h̵

Mω
(9.543)
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and get
d2R

dy2
+ 1

y

dR

dy
+ (ε − y2 − m

2

y2
)R = 0 (9.544)

where
ε = E

h̵ω
(9.545)

As with the solution of other differential equations, the procedure to follow is
to extract out the asymptotic behavior as y → 0,∞ and solve the equation for
the remaining function by recognizing the well-known equation that results.

As y →∞ the dominant term will be y2 and the equation for this behavior is

d2R

dy2
− y2R = 0 (9.546)

which has a solution R → e−y
2/2.

As y → 0 the dominant term will be 1/y2 and the equation for this behavior is

d2R

dy2
− m

2

y2
R = 0 (9.547)

which has a solution R → y∣m∣, where we have excluded any negative powers
since that solution would diverge at y = 0.

Therefore we assume R = y∣m∣e−y
2/2G(y). Substitution gives the equation for G

as
d2G

dy2
+ (2 ∣m∣ + 1

y
− 2y) dG

dy
+ (ε − 2 − 2 ∣m∣)G = 0 (9.548)

Changing the variable again to z = y2 we have

d2G

dz2
+ ( ∣m∣ + 1

z
− 1) dG

dz
+ (ε − 2(∣m∣ + 1)

4z
)G = 0 (9.549)

If we are clever, we recognize this as LaguerreÕs equation. If not, we make a
series solution substitution

G(z) =
∞
∑
s=0

bsz
s (9.550)

which gives the recursion relation

bs+1

bs
=

s + ∣m∣+1
2

− ε
4

(s + 1)(s + ∣m∣ + 1)
→ 1

s
for large s (9.551)

This says that unless the series terminates (becomes a polynomial in z) it will
behave like ez = ey

2

which implies that the solution for R(y) will diverge for
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large y and thus, not be normalizable.

If we choose the maximum s-value to be smax = nr, then we can terminate the
series by choosing

ε = 2 ∣m∣ + 2 + 4nr (9.552)

which then gives us the allowed energy eigenvalues

Enr,m = h̵ω(∣m∣ + 2nr + 1) (9.553)

The polynomial solutions are the generalized Laguerre polynomials L∣m∣
nr (z).

The first few Laguerre polynomials are

Lk0(z) = 1 , Lk1(z) = 1 + k − z (9.554)

Lk2(z) =
1

2
(2 + 3k + k2 − 2z(k + 2) + z2) (9.555)

The full wave function is

ψnr,m(r,ϕ) = r∣m∣e
− r2

2ρ2 L∣m∣
nr ( r

2

ρ2
) eimϕ (9.556)

and the energy level structure is shown in Table 9.4 below.

E/h̵ω nr m degeneracy
1 0 0 1
2 0 +1 2
2 0 -1
3 0 +2 3
3 1 0
3 0 -2
4 0 +3 4
4 1 +1
4 1 -1
4 0 -3

Table 9.4: Energy Levels - 2D Oscillator

which is the same structure (with different labels) as in the operator solution.
The fact that ∆m = 2 in the 2-dimensional case is one of many peculiarities
associated with two dimensions that does not appear three dimensions.

9.6.5. What happens in 3 dimensions?
In Cartesian coordinates we have a simple extension of the 2-dimensional case.

E = h̵ω (nx + ny + nz +
3

2
) = h̵ω (n + 3

2
) (9.557)
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The degeneracy is
(n + 1)(n + 2)

2
(9.558)

The energy level structure is shown in Table 9.5 below.

E/h̵ω nx ny nz n degeneracy
3/2 0 0 0 0 1
5/2 1 0 0 1 3
5/2 0 1 0 1
5/2 0 0 1 1
7/2 2 0 0 2 6
7/2 0 2 0 2
7/2 0 0 2 2
7/2 1 1 0 2
7/2 1 0 1 2
7/2 0 1 1 2

Table 9.5: Energy Levels - 3D Oscillator

In spherical-polar coordinates, we can follow a procedure similar to the plane-
polar 2-dimensional case to get

ψnr,`,m(y, θ,ϕ) = y`e−
y2

2 L
`+ 1

2
nr (y2)Y`m(θ,ϕ) (9.559)

where

r = ρy , ρ2 = h̵2

Mω
(9.560)

The corresponding energy values are

Enr,` = h̵ω(2nr + ` +
3

2
) (9.561)

which gives Table 9.6 below.

E/h̵ω nr ` n = 2nr + ` degeneracy
3/2 0 0 0 1
5/2 0 1 1 3 → m=± 1,0
7/2 1 or 0 0 or 2 2 6 → m=± 2, ± 1

Table 9.6: Energy Levels - 3D Oscillator

Finally, we look at a case we skipped over(because it is the most difficult example
of this type).
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9.6.6. Two-Dimensional Finite Circular Well
We consider the potential in two dimensions

V (r) =
⎧⎪⎪⎨⎪⎪⎩

−V0 r < a
0 r > a

(9.562)

The Schrödinger equation in plane-polar coordinates is

− h̵2

2m
[1

r

∂

∂r
(r ∂
∂r

) + 1

r2

∂2

∂ϕ2
]ψ(r,ϕ) − V0ψ(r,ϕ) = Eψ(r,ϕ) r < a (9.563)

− h̵2

2m
[1

r

∂

∂r
(r ∂
∂r

) + 1

r2

∂2

∂ϕ2
]ψ(r,ϕ) = Eψ(r,ϕ) r > a (9.564)

We assume(SOV)
ψ(r,ϕ) = R(r)Φ(ϕ) (9.565)

which gives

− h̵2

2m
[ 1

rR

∂

∂r
(r ∂R
∂r

) + 1

r2

1

Φ

∂2Φ

∂ϕ2
] = E + V0 r < a (9.566)

− h̵2

2m
[ 1

rR

∂

∂r
(r ∂R
∂r

) + 1

r2

1

Φ

∂2Φ

∂ϕ2
] = E r > a (9.567)

We choose a separation constant

1

Φ

∂2Φ

∂ϕ2
= −α2 → Φ(ϕ) = B sin(αϕ + δ) (9.568)

The requirement of single-valuedness under a ϕ-rotation of 2π says that

sin(αϕ + δ) = sin(αϕ + δ + απ)
→ α = integer = 0,1,2,3 . . .

Alternatively, we could write

Φ(ϕ) = Beiαϕ

α = integer = ⋅ ⋅ ⋅ − 3,−2,−1,0,1,2,3, . . .

Substitution of this solution leaves the radial differential equations

r2 d
2R

dr2
+ r dR

dr
+ [β2r2 − α2]R = 0 r < a where β2 = 2m(E + V0)

h̵2
(9.569)

r2 d
2R

dr2
+ r dR

dr
+ [λ2r2 − α2]R = 0 r > a where λ2 = 2mE

h̵2
(9.570)

These are BesselÕs equations. The general solutions are

R(r) = NJα(βr) +MYα(βr) r < a (9.571)
R(r) = PJα(λr) r > a (9.572)
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and the complete solutions are then

ψkα(r,ϕ) = { R(r)Φ(ϕ) = (NJα(βr) +MYα(βr))eiαϕ r < a
R(r)Φ(ϕ) = PJα(λr)eiαϕ r > a } (9.573)

The continuity (or boundary) conditions at r = a are

NJα(βa) +MYα(βa) = PJα(λa) (9.574)

Nβ
dJα(βr)
d (βr)

∣
r=a

+Mβ
dYα(βr)
d (βr)

∣
r=a

= Pλ dJα(λr)
d (λr)

∣
r=a

(9.575)

Let us consider the case α = 0. We have

NJ0(βa) +MY0(βa) = PJ0(λa) (9.576)

Nβ
dJ0(βr)
d (βr)

∣
r=a

+Mβ
dY0(βr)
d (βr)

∣
r=a

= Pλ dJ0(λr)
d (λr)

∣
r=a

(9.577)

where

J0(x) = 1 − x
2

22
+ x4

224
− x6

22426
+ .... (9.578)

dJ0(x)
dx

= −J1(x) = −(x
2
− x3

224
+ x5

22426
− x7

2242628
+ ....) (9.579)

Y0(x) =
2

π
[`n(x

2
) + γ]J0(x)γ = 0.5772156 (9.580)

dY0(x)
dx

= 2

π
[`n(x

2
) + γ] dJ0(x)

dx
+ 2

πx
J0(x) (9.581)

Clearly, the 2-dimensional finite well is very difficult.

9.6.7. The 3-Dimensional Delta Function

We now consider a particle is moving in 3-dimensions under the action of the
attractive delta function potential at ? given by

V (r) = − h̵2

2Mα
δ(r − a) (9.582)

Since this is a central force we know that we can write the solutions in the form

ψ(r, θ,ϕ) = R(r)Y`m(θ,ϕ) (9.583)

The Schrödinger equation is

− h̵2

2M
(d

2R

dr2
+ 2

r

dR

dr
− `(` + 1)

r2
R) − h̵2

2Mα
δ(r − a)R − h̵

2k2

2M
R = 0 (9.584)
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where, since we are looking for bound states, we have set

E = − h̵
2k2

2M
< 0 (9.585)

Now the function R(r) must be continuous everywhere. But as we saw earlier in
the 1-dimensional case, the derivative of R is not continuous for delta functions.
The discontinuity at r = a is found by integrating the radial equation around
the point r = a.

− h̵2

2M

a+

∫
a−

r2dr (d
2R(r)
dr2

+ 2

r

dR(r)
dr

− `(` + 1)
r2

R(r))

− h̵2

2Mα

a+

∫
a−

r2drδ(r − a)R(r) − h̵
2k2

2M

a+

∫
a−

r2drR(r) = 0

which gives the second boundary (continuity) condition

α [dR(a+)
dr

− dR(a−)
dr

] = −R(a) (9.586)

For r > a and r < a we then have the equation

− h̵2

2M
(d

2R

dr2
+ 2

r

dR

dr
− `(` + 1)

r2
R) − h̵

2k2

2M
R = 0 (9.587)

which has as a solution for the case ` = 0

R(r) = 1

r
(Ae−kr +Bekr) (9.588)

For R(r) to be well behaved at r = 0 we must choose B = −A. Therefore, the
solution for r < a is

R(r) = c
r

sinhkr (9.589)

For R(r) to be well behaved as r → ∞ we must choose B = 0. Therefore the
solution for r > a is

R(r) = b
r
e−kr (9.590)

The boundary conditions at r = a then give the equations

c

a
sinhka = b

a
e−ka → c sinhka = be−ka (9.591)

and
0 = −kα(be−ka + c coshka) + c sinhka (9.592)

Eliminating b and c we get a transcendental for k (or E)

α

a
= 1 − e−2ka

2ka
(9.593)
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The right-hand side of this equation has a range

0 < 1 − e−2ka

2ka
< 1 (9.594)

Therefore, the allowed range of the parameter α, in order that an ` = 0 bound
state exist, is 0 < α < a.

Just this once let us ask .... what can we say about ` ≠ 0? This will illustrate
some properties of the spherical Bessel functions. We have the radial equation

r2 d
2R

dr2
+ 2r

dR

dr
+ (k2r2 − `(` + 1))R = 0 (9.595)

which as we have seen before is the spherical Bessel function equation with the
general solution

R(r) = Aj`(kr) +Bη`(kr) (9.596)
For r < a we must choose B = 0 (η`(kr) diverges at r = 0) and for r > a we must
choose B = iA, which leads to a solution that drops off exponentially as r →∞.
So we finally have

r < a R(r) = Gj`(kr) (9.597)

r > a R(r) =Hh(1)
` (kr) =H(j`(kr) + iη`(kr)) (9.598)

The boundary conditions then give

Gj`(ka) =Hh(1)
` (ka) =H(j`(ka) + iη`(ka)) (9.599)

−G
α
j`(ka) =H

dh
(1)
` (ka)
dr

−Gdj`(ka)
dr

= dj`(ka)
dr

(H −G) + iGdη`(ka)
dr

(9.600)

Now
dj`(kr)
dr

= k

2` + 1
[`j`−1(kr) − (` + 1)j`+1(kr)] (9.601)

and similarly for η` and h
(1)
` . Therefore, we get

Gj`(ka) = (j`(ka) + iη`(ka))H (9.602)
Gk

2` + 1
[`j`−1(ka) − (` + 1)j`+1(ka)]

− i Gk

2` + 1
[`η`−1(ka) − (` + 1)η`+1(ka)] −

G

α
j`(ka)

= k

2` + 1
[`j`−1(ka) − (` + 1)j`+1(ka)]H (9.603)

or
η`(ka)

j`(ka) + iη`(ka)
=

[`η`−1(ka) − (` + 1)η`+1(ka)] − i(2`+1)
kα

j`(ka)
[`j`−1(ka) − (` + 1)j`+1(ka)]

This is the transcendental equation for the energy!!! That is enough for nonzero
angular momentum!
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9.6.8. The Hydrogen Atom

Schrödinger Equation Solution

The potential energy function

V (r) = −Ze
2

r
(9.604)

represents the attractive Coulomb interaction between an atomic nucleus of
charge +Ze and an electron of charge −e.

The Schrödinger equation we have been using describes the motion of a single
particle in an external field. In the hydrogen atom, however, we are interested
in the motion of two particles (nucleus and electron) that are attracted to each
other via the potential above (where r is the separation distance between the
two particles).

We start by writing the Schrödinger equation for the two particle system. It
involves six coordinates (three for each particle). We use Cartesian coordinates
to start the discussion. We have

Ĥ =
p⃗2

1,op

2m1
+
p⃗2

2,op

2m2
+ V (r⃗) where r⃗ = r⃗1 − r⃗2 (9.605)

which gives

− h̵2

2m1
( ∂2

∂x2
1

+ ∂2

∂y2
1

+ ∂2

∂z2
1

)φ(x1, y1, z1, x2, y2, z2)

− h̵2

2m2
( ∂2

∂x2
2

+ ∂2

∂y2
2

+ ∂2

∂z2
2

)φ(x1, y1, z1, x2, y2, z2)

+ V (x1 − x2, y1 − y2, z1 − z2)φ(x1, y1, z1, x2, y2, z2)
= Eφ(x1, y1, z1, x2, y2, z2) (9.606)

We now introduce relative and center-of-mass(CM) coordinates by

x = x1 − x2 , y = y1 − y2 , z = z1 − z2

r⃗ = (x, y, z)
MX =m1x1 +m2x2 , MY =m1y1 +m2y2 , MZ =m1z1 +m2z2

R⃗ = (X,Y,Z)
M =m1 +m2 = total mass of the system

Substitution gives

− h̵2

2M
( ∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2
)φ(x, y, z,X,Y,Z)

− h̵
2

2µ
( ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
)φ(x, y, z,X,Y,Z)

+ V (x, y, z)φ(x, y, z,X,Y,Z) = Eφ(x, y, z,X,Y,Z) (9.607)
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where
µ = m1m2

m1 +m2
= the reduced mass (9.608)

We can now separate the variables by assuming a solution of the form

φ(x, y, z,X,Y,Z) = ψ(x, y, z)Ψ(X,Y,Z) (9.609)

which gives the two equations

− h̵
2

2µ
∇2
r⃗ψ(r⃗) + V (r)ψ(r⃗) = Eψ(r⃗) (9.610)

− h̵2

2M
∇2
R⃗

Ψ(R⃗) = E′Ψ(R⃗) (9.611)

The second equation says that the CM of the two particles is like a free particle
of mass M.

The first equation describes the relative motion of the two particles and is the
same as the equation of motion of a particle of mass µ in an external potential
energy V (r).

In the hydrogen atom problem we are only interested in the energy levels E
associated with the relative motion. In addition, since the nuclear mass is so
much larger than the electron mass, we have

µ ≈me =melectron (9.612)

This is a central force so we assume a solution of the form

ψ(r⃗) = R(r)Y`m(θ,ϕ) (9.613)

and obtain the radial equation

− h̵
2

2µ

1

r2

d

dr
(r2 dR

dr
) − Ze

2

r
R + `(` + 1)h̵2

2µr2
R = ER (9.614)

where E < 0 for a bound state. We follow the same approach as before. We
change the variables so that the equation is in dimensionless form by introducing
ρ = αr where

α2 = 8µ ∣E∣
h̵2

and λ = 2µZe2

αh̵2
= Ze

2

h̵
( µ

2 ∣E∣
)

1/2

(9.615)

We get
1

ρ2

d

dρ
(ρ2 dR

dr
ρ) + (λ

ρ
− 1

4
− `(` + 1)

ρ2
)R = 0 (9.616)

For ρ→∞ the equation becomes

1

ρ2

d

dρ
(ρ2 dR

dr
ρ) − 1

4
R = 0 (9.617)
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which has the solution
R → ρne±

1
2ρ (9.618)

where n can have any finite value. Since we want a normalizable solution, we
will look for a solution of the form

R → F (ρ)e−
1
2ρ (9.619)

Substitution gives an equation for F

d2F

dρ2
+ (2

ρ
− 1) dF

dρ
+ [λ − 1

ρ
− `(` + 1)

ρ2
]F = 0 (9.620)

We solve this equation (it is LaguerreÕs equation) by series substitution.

F (ρ) = ρs(a0 + a1ρ + a2ρ
2 + ....) = ρsL(ρ) (9.621)

where a0 ≠ 0 and s∣ge0. We must also have that F (0) is finite. Substitution
gives an equation for L.

ρ2 d
2L

dρ2
+ ρ [2(s + 1) − ρ] dL

dρ
+ [ρ(λ − s − 1) + s(s + 1) − `(` + 1)]L = 0 (9.622)

If we set ρ = 0 in this equation and use the fact that L is a power series we get
the condition

s(s + 1) − `(` + 1) = 0 (9.623)

or
s = ` or s = −(` + 1) (9.624)

Since R must be finite at the origin we exclude the second possibility and choose
s = `. This gives

ρ2 d
2L

dρ2
+ ρ [2(` + 1) − ρ] dL

dρ
+ [ρ(λ − ` − 1)]L = 0 (9.625)

Substituting the power series gives a recursion relation for the coefficients

aν+1 =
ν + ` + 1 − λ

(ν + 1)(ν + 2` + 2)
aν (9.626)

If the series does not terminate, then this recursion relation behaves like

aν+1

aν
→ 1

ν
(9.627)

for large ν. This corresponds to the series for ρneρ. Since this will give a
non-normalizable result, we must terminate the series by choosing

λ = n = positive integer = n′ + ` + 1 = total quantum number (9.628)
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where n′(= radial quantum number) is the largest power of ρ in the solution L.
Since n′ and n are non-negative integers, n = 1,2,3,4, . . .

We thus obtain the solution for the energies

En = − ∣En∣ = −
µZ2e4

2h̵2n2
= − Z

2e2

2a0n2
(9.629)

where

a0 = Bohr radius = h̵2

µe2
(9.630)

Unlike the finite square well, where we had a finite number of bound state levels,
in this case, we obtain an infinite set of discrete energies. This results from the
very slow decrease of the Coulomb potential energy with distance.

The Laguerre polynomial solutions are given by the generating function

G(ρ, s) = e
− ρs

1−s

1 − s
=

∞
∑
q=0

Lq(ρ)
q!

sq , s < 1 (9.631)

By differentiating the generating function with respect to ρ and s we can show
that

dLq

dρ
− q

dLq−1

dρ
= −qLq−1 (9.632)

Lq+1 = (2q + 1 − ρ)Lq − q2Lq−1 (9.633)

The lowest order differential equation involving only Lq that can be constructed
from these two equations is

ρ
d2Lq

dρ2
+ (1 − ρ)

dLq

dρ
+ qLq = 0 (9.634)

This is not quite our original equation. However, if we define the associated
Laguerre polynomials by

Lpq(ρ) =
dp

dρp
Lq(ρ) (9.635)

then differentiating the differential equation p times we get

ρ
d2Lpq

dρ2
+ (p + 1 − ρ)

dLpq

dρ
+ (q − p)Lpq = 0 (9.636)

Setting λ = n we then see that the solutions to the Schrödinger equation are

L2`+1
n+` (ρ) (9.637)

which are polynomials of order (n + `) − (2` + 1) = n − ` − 1 in agreement with
the earlier results.
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We can differentiate the generating function p times to get

Gp(ρ, s) =
(−s)pe−

ρs
1−s

(1 − s)p+1
=

∞
∑
q=0

Lpq(ρ)
q!

sq , s < 1 (9.638)

Explicitly, we then have

L2`+1
n+` (ρ) =

n−`−1

∑
k=0

(−1)k+1 [(n + `)!]2 ρk

(n − ` − 1 − k)!(2` + 1 + k)!k!
(9.639)

The normalized radial wave functions are of the form

Rn`(ρ) = −{( 2Z

na0
)

3 (n − ` − 1)!
2n [(n + `)!]3

}
1/2

e−
1
2ρρ`L2`+1

n+` (ρ) (9.640)

with

a0 =
h̵2

µe2
and ρ = 2Z

na0
r (9.641)

and
ψn`m(r, θ,ϕ) = Rn`(r)Y`m(θ,ϕ) (9.642)

The first few radial wave functions are

R10(r) = ( Z
a0

)
3/2

2e
−Zra0 (9.643)

R20(r) = ( Z

2a0
)

3/2
(2 − Zr

a0
) e−

Zr
2a0 (9.644)

R21(r) = ( Z

2a0
)

3/2 Zr

a0

√
3
e
− Zr

2a0 (9.645)

What about degeneracy since the energy values do not depend on ` and m?

For each value of n, ` can vary between 0 and n − 1, and for each value of
these ` values m can vary between −` and ` (2` + 1 values). Therefore the total
degeneracy of an energy level En is given by

n−1

∑
`=0

(2` + 1) = 2
n(n − 1)

2
+ n = n2 (9.646)

The degeneracy with respect to m is true for any central force (as we have seen
in other examples). The ` degeneracy, however, is characteristic of the Coulomb
potential alone. It is called an accidental degeneracy.

Some useful expectation values are:

⟨r⟩n`m = a0

2Z
[3n2 − `(` + 1)] ⟨1

r
⟩
n`m

= Z

a0n2
(9.647)

⟨ 1

r2
⟩
n`m

= Z2

a2
0n

3(` + 1
2
)

⟨ 1

r3
⟩
n`m

= Z3

a3
0n

3`(` + 1
2
)(` + 1)

(9.648)
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9.6.9. Algebraic Solution of the Hydrogen Atom

Review of the Classical Kepler Problem

In the classical Kepler problem of an electron of charge -e moving in the electric
force field of a positive charge Ze located at the origin, the angular momentum

L⃗ = r⃗ × p⃗ (9.649)

is constant. The motion takes place in a plane perpendicular to the constant
angular momentum direction. NewtonÕs second law tells us that the rate of
change of the momentum is equal to the force

dp⃗

dt
= −Ze

2

r2
r̂ where r = ∣r⃗∣ and r̂ = r⃗

r
= unit vector (9.650)

The so-called Runge-Lenz vector is defined by

A⃗ = 1

Ze2m
(L⃗ × p⃗) + r̂ (9.651)

If we take its time derivative we find

dL⃗

dt
= 0 and L⃗ =mr⃗ × dr⃗

dt
=mr2r̂ × dr̂

dt
+mr(r̂ × r̂)dr

dt
=mr2r̂ × dr̂

dt
(9.652)

dA⃗

dt
= 1

Ze2m
(L⃗ × dp⃗

dt
+ dL⃗
dt

× p⃗) + dr̂
dt

= 1

Ze2m
(L⃗ × dp⃗

dt
) + dr̂

dt

= − 1

m
(L⃗ × r̂

r2
) + dr̂

dt
= −(r̂ × dr̂

dt
) × r̂ + dr̂

dt

= −(dr̂
dt

(r̂ ⋅ r̂) − (r̂ ⋅ dr̂
dt

)) + dr̂
dt

= −dr̂
dt

+ d(r̂ ⋅ r̂)
dt

+ dr̂
dt

= 0 (9.653)

Thus, the vector A⃗ is a constant of the motion. It corresponds physically to the
length and direction of the semi-major axis of the classical elliptical orbit. The
equation of the elliptical orbit is easily found using the A⃗ vector.

A⃗ ⋅ r⃗ = ar cos θ = 1

Ze2m
(L⃗ × p⃗) ⋅ r⃗ + r̂ ⋅ r⃗

= − 1

Ze2m
L⃗ ⋅ (r⃗ × p⃗) + r (9.654)

ar cos θ = − L2

Ze2m
+ r (9.655)

→ 1

r
= Ze

2m

L2
(1 − a cos θ)→ orbit equation (conic sections) (9.656)

where

a = ∣A⃗∣ (9.657)

= eccentricity and the direction of A⃗ is from the origin to the aphelion
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The Quantum Mechanical Problem

In order to make this useful in quantum mechanics, the classical Runge-Lenz
vector must be generalized. In classical physics

L⃗ × p⃗ = −p⃗ × L⃗ (9.658)

In quantum mechanics, this identity is not valid since the components of L⃗op
do not commute. The correct quantum mechanical generalization (remember it
must be a Hermitian operator if it is a physical observable) of the vector A⃗ is

A⃗op =
1

2Ze2m
(L⃗op × p⃗op − p⃗op × L⃗op) + ( r⃗

r
)
op

(9.659)

This satisfies [Ĥ, A⃗op] = 0, which says A⃗ is a constant. It also satisfies A⃗op ⋅L⃗op =
0.

We can derive the following commutators:

[L̂i, Âj] = ih̵εijkÂk , [L̂i, p̂j] = ih̵εijkp̂k , [L̂i, r̂j] = ih̵εijkr̂k (9.660)

which gives

A⃗op =
1

2Ze2m
(2L⃗op × p⃗op + ih̵p⃗op) + ( r⃗

r
)
op

(9.661)

We now derive two important properties of A⃗. The first property follows from
the commutators

[(L⃗op × p⃗op)i , p̂j] + [p̂i, (L⃗op × p⃗op)j] = 0 (9.662)

[(L⃗op × p⃗op)i , (L⃗op × p⃗op)j] = −ih̵εijkL̂kp
2 = −ih̵εijkp2L̂k (9.663)

[(L⃗op × p⃗op)i ,
r̂j

r
] + [ r̂i

r
, (L⃗op × p⃗op)j] = 2ih̵εijk

L̂k
r

(9.664)

which leads to

[Âi, Âj] = ih̵( −2Ĥ

Z2e4m
) εijkL̂k (9.665)

where

Ĥ = Hamiltonian =
p⃗2
op

2m
−Ze2 (1

r
)
op

(9.666)

The second property follows from the relations

(L⃗op × p⃗op) ⋅ (L⃗op × p⃗op) = L⃗2
opp⃗

2
op (9.667)

( r⃗
r
)
op
⋅ (L⃗op × p⃗op) + (L⃗op × p⃗op) ⋅ (

r⃗

r
)
op

= −
2L⃗2

op

r
+ 2ih̵( r⃗

r
)
op
⋅ p⃗op (9.668)

p⃗op ⋅ (
r⃗

r
)
op

= ( r⃗
r
)
op
⋅ p⃗op − 2ih̵(1

r
)
op

(9.669)

p⃗op ⋅ L⃗op = L⃗op ⋅ p⃗op = 0 (9.670)

p⃗op ⋅ (L⃗op × p⃗op) + (L⃗op × p⃗op) ⋅ L⃗op = 2ih̵p⃗2
op (9.671)
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which lead to

A⃗2
op = A⃗op ⋅ A⃗op = 1 + 2Ĥ

Z2e4m
(L⃗2

op + h̵2) (9.672)

We now define the two new operators (they are ladder operators) by

I⃗±op =
1

2

⎡⎢⎢⎢⎢⎣
L⃗op ± (− 2Ĥ

Z2e4m
)

1/2

A⃗op

⎤⎥⎥⎥⎥⎦
(9.673)

Using the relations we have derived for [Âi, Âj] and [L̂i, Âj] we have

[I⃗+op, I⃗−op] = 0 (9.674)

which means they have a common eigenbasis. We also have

[Î±op,i, Î±op,j] = ih̵εijk Î±op,k (9.675)

which are the standard angular momentum component commutation relations.
Since they each commute with Ĥ, they also have a common eigenbasis with Ĥ.

Therefore, we can find a set of states such that

(I⃗±op)2 ∣ψ⟩ = i±(i± + 1)h̵2 ∣ψ⟩ and Ĥ ∣ψ⟩ = E ∣ψ⟩ (9.676)

We can show that (I⃗+op)2 = (I⃗−op)2, which implies that i+ = i−. We also have(as
before)

i+ = 0,
1

2
,1,

3

2
,2,

5

2
,3, . . . (9.677)

Since A⃗op ⋅ L⃗op = 0 we get

2 [(I⃗+op)2 + (I⃗−op)2] + h̵2 = −Z
2e4m

2Ĥ
(9.678)

[4i+(i+ + 1) + 1] h̵2 = −Z
2e4m

2E
(9.679)

E = − Z2e4m

2(2i+ + 1)2
= −Z

2e4m

2n2
(9.680)

where we have set n = 2i+ + 1 = 1,2,3,4,5, . . ., which are the correct energy
values for hydrogen.

While the energy depends only on the quantum number i+ (or n) each state has
a degeneracy depending on the number of z-component values for each i+ value.
This is

(2i+ + 1)(2i− + 1) = (2i+ + 1)2 = n2 (9.681)

which is the correct degeneracy.
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9.6.10. The Deuteron
A deuteron is a bound state of a neutron and a proton. We can consider this
system as a single particle with reduced mass

µ =
mprotonmneutron

mproton +mneutron
≈
mproton

2
=
mp

2
(9.682)

moving in a fixed potential V (r), where r is the proton-neutron separation. As
a first approximation, we assume that the nuclear interaction binding the proton
and the neutron into a deuteron is a finite square well in 3−dimensions.

V (r) =
⎧⎪⎪⎨⎪⎪⎩

−V0 r < a
0 r ≥ a

(9.683)

The physical properties of the deuteron system are:

1. Almost an ` = 0 state (a small admixture of ` = 2 is present). We will
assume ` = 0.

2. Only one bound state exists.

3. The depth and range of the potential is such that the deuteron is weakly
bound. The energy level in the potential corresponds to the binding energy
of the system, where

E = binding energy =mdeuteronc
2 − (mproton +mneutron)c2 < 0 (9.684)

Experimentally, it has been found that E = −2.228MeV .

4. By weakly bound we mean

∣E∣
(mproton +mneutron)c2

<< 1 (9.685)

In fact, for the deuteron we have

∣E∣
(mproton +mneutron)c2

≈ 0.001 (9.686)

5. This system is so weakly bound that any small decrease in the radius of
the well a or small reduction in the depth of the well V0 would cause the
system to break up (no bound state exists).

We derived the solutions for this potential earlier.

R(r) = Aj0(αr) r < a

R(r) = Bh(1)
0 (iβr) r ≥ a
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where
α2 = 2m

h̵2
(V0 − ∣E∣) and β2 = 2m

h̵2
∣E∣ (9.687)

The transcendental equation arising from matching boundary conditions at r = a
gave us the equations

η = −ξ cot ξ and ξ2 + η2 = 2mV0a
2

h̵2
(9.688)

where
ξ = αa and η = βa (9.689)

The graphical solution as shown below in Figure 9.17 plots

η = −ξ cot ξ and η2 = 2mV0a
2

h̵2
− ξ2 versus ξ (9.690)

Figure 9.17: Deuteron Solution

We found a finite number of bound states for given values of the well parameters.
In particular

2mV0a
2

h̵2
< (π

2
)

2

→ no solution

2mV0a
2

h̵2
< (3π

2
)

2

→ 1 solution

2mV0a
2

h̵2
< (5π

2
)

2

→ 2 solutions
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For the weakly bound deuteron system we expect that

ξ = π
2
+ ε , ε≪ π

2
(9.691)

i.e., the radius of the circle is barely large enough to get a single (weakly) bound
state.

Substituting into the transcendental equation we get

η = −(π
2
+ ε) cot(π

2
+ ε) = −(π

2
+ ε)

cos (π
2
+ ε)

sin (π
2
+ ε)

= −(π
2
+ ε)

cos (π
2
) cos (ε) − sin (π

2
) sin (ε)

sin (π
2
) cos (ε) + cos (π

2
) sin (ε)

≈ (π
2
+ ε) sin (ε)

cos (ε)
≈ (π

2
+ ε)

ε − ε3

6

1 − ε2

2

≈ (π
2
+ ε)(ε − ε

3

6
)(1 + ε

2

2
)

≈ π
2
ε + (1 + π

4
)ε2

Now substituting into the circle equation we get

(π
2
+ ε)

2

+ (π
2
ε + (1 + π

4
)ε2)

2

= 2mV0a
2

h̵2

π2

4
+ πε + (1 + π

2

4
) ε2 ≈ 2mV0a

2

h̵2
(9.692)

Dropping the small quadratic terms in ε we get

ε ≈ 2mV0a
2

πh̵2
− π

4
(9.693)

Therefore,

∣E∣ = h̵2

2ma2
η2 ≈ h̵2π2

8ma2
(2mV0a

2

πh̵2
− π

4
)

2

(9.694)

A typical value for the range of the interaction is the order of 2 Fermi or
a ≈ 2 × 10−13 cm. In order to get ∣E∣ ≈ 2.3MeV , we would need a well depth of
V0 ≈ 42MeV which is reasonable (according to experimentalists).

9.6.11. The Deuteron - Another Way
Experiment (scattering) indicates that instead of a square well (very unrealistic)
the actual potential is of the form

V (r) = −Ae−
r
a (9.695)
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where
A ≈ 32MeV and a ≈ 2.25x10−13cm (9.696)

We can solve for this potential (` = 0 case) exactly using this clever trick I first
learned from Hans Bethe at Cornell University.

The radial equation in this case is

1

r2

d

dr
(r2 dR

dr
) + 2m

h̵2
(Ae−

r
a − ∣E∣)R = 0 (9.697)

d2R

dr2
+ 2

r

dR

dr
+ 2m

h̵2
(Ae−

r
a − ∣E∣)R = 0 (9.698)

Now let
R(r) = χ(r)

r
(9.699)

which implies that

dR

dr
=
d (χ

r
)

dr
= 1

r

dχ

dr
− 1

r2
χ (9.700)

d2R

dr2
= − 2

r2

dχ

dr
+ 1

r

d2χ

dr2
+ 2

r3
χ (9.701)

Substitution gives
d2χ

dr2
+ 2m

h̵2
(Ae−

r
a − ∣E∣)χ = 0 (9.702)

We now change the variables using

ξ = e−
r
2a → d

dr
= dξ
dr

d

dξ
= − ξ

2a

d

dξ

d2

dr2
= d

dr
(− ξ

2a

d

dξ
) = dξ

dr

d

dξ
(− ξ

2a

d

dξ
) = ( ξ

2a
)

2 d2

dξ2
+ ξ

4a2

d

dξ

We then get the equation

ξ2 d
2χ

dξ2
+ ξ dχ

dξ
+ ((αa)2ξ2 − (ka)2)χ = 0 (9.703)

where
(αa)2 = 2mA

h̵2
a2 and (ka)2 = 2m ∣E∣

h̵2
a2 (9.704)

Now Bessel’s equation has the form

x2 d
2y

dx2
+ xdy

dx
+ (x2 − ν2)y = 0 (9.705)

Therefore, we have BesselÕs equation with a general solution

χ(r) = CJka(αaξ) +BYka(αaξ) (9.706)

R(r) = 1

r
(CJka(αaξ) +BYka(αaξ)) (9.707)
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As r → ∞, ξ = e− r
2a → 0, which implies we must choose B = 0 or the solution

diverges.

As r → 0, ξ = e− r
2a → 1, which implies we must have

Jka(αa) = 0 (9.708)

or the solution diverges. This is then the energy eigenvalue condition. For the
values of A and a given earlier we have

Jka(6.28) = 0 (9.709)

and if we let ∣E∣ = qA, this becomes

J1/2(6.28) = 0 (9.710)

Now
J6.4q(6.28) = 0 (9.711)

Therefore we have

6.4q = 1

2
→ q = 1

12.8
→ ∣E∣ = qA = 2.34MeV (9.712)

which is an excellent result for the bound state energy of the deuteron.

9.6.12. Linear Potential
We now consider a linear potential energy function given by

V (r) = αr − V0 (9.713)

The Schrödinger equation becomes

− h̵
2

2m

⎛
⎝

1

r2

d

dr
(r2 dψ

dr
) −

L⃗2
op

h̵2r2
ψ
⎞
⎠
+ (αr − V0 −E)ψ = 0 (9.714)

Since it is a central potential, we can write

ψ = R(r)Y`m(θ,ϕ) (9.715)

which implies

− h̵
2

2m
( 1

r2

d

dr
(r2 dR

dr
) − `(` + 1)

r2
R) + (αr − V0 −E)R = 0 (9.716)

If we let
χ(r) = rR(r) (9.717)

we get

− h̵
2

2m

d2χ

dr2
+ (αr − V0 −E + h̵

2`(` + 1)
2mr2

)χ = 0 (9.718)
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For ` > 0 there is no closed form solution for this equation and numerical methods
must be applied.

For ` = 0, we have

− h̵
2

2m

d2χ

dr2
+ (αr − V0 −E)χ = 0 (9.719)

Now we let

ξ = (r − E + V0

α
)(2mα

h̵2
)

1/3
(9.720)

which implies that

d

dr
= dξ
dr

d

dξ
= (2mα

h̵2
)

1/3 d

dξ

d2

dr2
= d

dr
(dξ
dr

d

dξ
) = dξ

dr

d

dξ
((2mα

h̵2
)

1/3 d

dξ
)

= (2mα

h̵2
)

2/3 d2

dξ2

We then get the equation
d2χ

dξ2
− ξχ = 0 (9.721)

This equation is not as simple as it looks. Let us try a series solution of the
form

χ(ξ) =
∞
∑
n=0

anξ
n (9.722)

Substitution gives the relations

a2 = 0 and am+2 =
am−1

(m + 2)(m + 1)
(9.723)

The solution that goes to zero as ξ → ±∞ is then of the form

χ(ξ) = c1f(ξ) − c2g(ξ) = CAi(ξ) = Airy function (9.724)

where

f(x) = 1 + 1

3!
x3 + 1 ⋅ 4

6!
x6 + 1 ⋅ 4 ⋅ 7

9!
x9 + . . . (9.725)

g(x) = x + 2

4!
x4 + 2 ⋅ 5

7!
x7 + 2 ⋅ 5 ⋅ 8

10!
x10 + . . . (9.726)

Now to insure that the wave function is normalizable we must also have

χ(ξ(r = 0)) = 0 (9.727)

Ai(−E + V0

α
(2mα

h̵2
)

1/3
) = 0 (9.728)
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This says that

−En + V0

α
(2mα

h̵2
)

1/3
= zn = nthzeroofAi(ξ) (9.729)

Thus, the allowed energies are given by

En = −zn ( h̵
2α2

2m
)

1/3

− V0 (9.730)

The first three zeroes are

z1 = −2.3381 , z2 = −4.0879 , z3 = −5.5209 (9.731)

Programming the numerical method we described earlier for solving the Schrödinger
equation allows us to determine E values For simplicity, we have chosen h̵ =m =
α = V0 = 1 which gives the ` = 0 energies as

En = −zn (1

2
)

1/3
− 1 = −0.794zn − 1 (9.732)

The general ` equation is (in this case)

d2χ

dr2
− 2(r − 1 −E + `(` + 1)

2r2
)χ = 0 (9.733)

For ` = 0 we theoretically expect the first three energy values 0.856, 2.246 and
3.384 and the program produces the values 0.855750, 2.24460, 3.38160 which is
good agreement.

We now use the linear potential to look at quark-quark bound states at low
energies.

9.6.13. Modified Linear Potential and Quark Bound States
Over the past three decades the quark model of elementary particles has had
many successes. Some experimental results are the following:

1. Free (isolated) quarks have never been observed.

2. At small quark separations color charge exhibits behavior similar to that
of ordinary charge.

3. Quark-Antiquark pairs form bound states.

We can explain some of the features of these experimental results by describing
the quark-quark force by an effective potential of the form

V (r) = −A
r
+Br (9.734)
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and using non-relativistic quantum mechanics.

The linear term corresponds to a long-range confining potential that is respon-
sible for the fact that free, isolated quarks have not been observed.

In simple terms, a linear potential of this type means that it costs more and
more energy as one of the quarks in a bound system attempts to separate from
the other quark. When this extra energy is twice the rest energy of a quark,
a new quark-antiquark pair can be produced. So instead of the quark getting
free, one of the newly created quarks joins with one of the original quarks to
recreate the bound pair (so it looks like nothing has happened) and the other
new quark binds with the quark attempting to get free into a new meson. We
never see a free quark! A lot of energy has been expended, but the outcome is
the creation of a meson rather than the appearance of free quarks.

The other term, which resembles a Coulomb potential, reflects the fact that at
small separations the so-called "color charge" forces behave like ordinary charge
forces.

The original observations of quark-quark bound states was in 1974, The ex-
periments involved bound states of charmed quarks called charmonium (named
after the similar bound states of electrons and positrons called positronium).
The observed bound-state energy levels were as shown in Table 9.7 below:

n ` E(GeV )
1 0 3.097
2 1 3.492
2 0 3.686
3 0 4.105
4 0 4.414

Table 9.7: Observed Bound-State Energy Levels
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The Schrödinger equation for this potential becomes

− h̵
2

2m

⎛
⎝

1

r2

d

dr
(r2 dψ

dr
) −

L⃗2
op

h̵2r2
ψ
⎞
⎠
+ (V (r) −E)ψ = 0 (9.735)

Since it is a central potential, we can write

ψ = R(r)Y`m(θ,ϕ) (9.736)

which implies

− h̵
2

2m
( 1

r2

d

dr
(r2 dR

dr
) − `(` + 1)

r2
R) + (V (r) −E)R = 0 (9.737)

If we let
χ(r) = rR(r) (9.738)

we get

− h̵
2

2m

d2χ

dr2
+ (V (r) −E + h̵

2`(` + 1)
2mr2

)χ = 0 (9.739)

or
d2χ

dr2
− (aE − `(` + 1)

r2
+ b
r
− cr)χ = 0 (9.740)

We must solve this system numerically. The same program as earlier works
again with a modified potential function.

The results for a set of parameters (a = 0.0385, b = 2.026, c = 34.65) chosen to
get the right relationship between the levels are shown in Table 9.8 below:

n ` E(calculated) E(rescaled)
1 0 656 3.1
2 1 838 3.4
2 0 1160 3.6
3 0 1568 4.1
4 0 1916 4.4

Table 9.8: Quark Model-Numerical Results
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which is a reasonably good result and indicates that validity of the model.
The rescaled values are adjusted to correspond to theTable 9.7. A more exact
parameter search produces almost exact agreement.

9.7. Problems

9.7.1. Position representation wave function

A system is found in the state

ψ(θ,ϕ) =
√

15

8π
cos θ sin θ cosϕ

(a) What are the possible values of L̂z that measurement will give and with
what probabilities?

(b) Determine the expectation value of L̂x in this state.

9.7.2. Operator identities

Show that

(a) [a⃗ ⋅ L⃗, b⃗ ⋅ L⃗] = ih̵ (a⃗ × b⃗) ⋅ L⃗ holds under the assumption that a⃗ and b⃗ com-
mute with each other and with L⃗.

(b) for any vector operator V⃗ (x̂, p̂) we have [L⃗2, V⃗ ] = 2ih̵ (V⃗ × L⃗ − ih̵V⃗ ).

9.7.3. More operator identities

Prove the identities

(a) (σ⃗ ⋅ A⃗) (σ⃗ ⋅ B⃗) = A⃗ ⋅ B⃗ + iσ⃗ ⋅ (A⃗ × B⃗)

(b) eiφS⃗⋅n̂/h̵σ⃗e−iφS⃗⋅n̂/h̵ = n̂(n̂ ⋅ σ⃗) + n̂ × [n̂ × σ⃗] cosφ + [n̂ × σ⃗] sinφ

9.7.4. On a circle

Consider a particle of mass µ constrained to move on a circle of radius a. Show
that

H = L2

2µa2

Solve the eigenvalue/eigenvector problem of H and interpret the degeneracy.
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9.7.5. Rigid rotator

A rigid rotator is immersed in a uniform magnetic field B⃗ = B0êz so that the
Hamiltonian is

Ĥ = L̂
2

2I
+ ω0L̂z

where ω0 is a constant. If

⟨θ, φ ∣ ψ(0)⟩ =
√

3

4π
sin θ sinφ

what is ⟨θ, φ ∣ ψ(t)⟩? What is ⟨L̂x⟩ at time t?

9.7.6. A Wave Function

A particle is described by the wave function

ψ(ρ,φ) = Ae−ρ
2/2∆ cos2 φ

Determine P (Lz = 0), P (Lz = 2h̵) and P (Lz = −2h̵).

9.7.7. L = 1 System

Consider the following operators on a 3-dimensional Hilbert space

Lx =
1√
2

⎛
⎜
⎝

0 1 0
1 0 1
0 1 0

⎞
⎟
⎠
, Ly =

1√
2

⎛
⎜
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎟
⎠
, Lz =

⎛
⎜
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎟
⎠

(a) What are the possible values one can obtain if Lz is measured?

(b) Take the state in which Lz = 1. In this state, what are ⟨Lx⟩, ⟨L2
x⟩ and

∆Lx =
√

⟨L2
x⟩ − ⟨Lx⟩2.

(c) Find the normalized eigenstates and eigenvalues of Lx in the Lz basis.

(d) If the particle is in the state with Lz = −1 and Lx is measured, what are
the possible outcomes and their probabilities?

(e) Consider the state

∣ψ⟩ = 1√
2

⎛
⎜
⎝

1/
√

2

1/
√

2
1

⎞
⎟
⎠

in the Lz basis. If L2
z is measured and a result +1 is obtained, what is

the state after the measurement? How probable was this result? If Lz is
measured, what are the outcomes and respective probabilities?
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(f) A particle is in a state for which the probabilities are P (Lz = 1) = 1/4,
P (Lz = 0) = 1/2 and P (Lz = −1) = 1/4. Convince yourself that the most
general, normalized state with this property is

∣ψ⟩ = e
iδ1

2
∣Lz = 1⟩ + e

iδ2

√
2

∣Lz = 0⟩ + e
iδ3

2
∣Lz = −1⟩

We know that if ∣ψ⟩ is a normalized state then the state eiθ ∣ψ⟩ is a phys-
ically equivalent state. Does this mean that the factors eiδj multiplying
the Lz eigenstates are irrelevant? Calculate, for example, P (Lx = 0).

9.7.8. A Spin-3/2 Particle
Consider a particle with spin angular momentum j = 3/2. The are four sublevels
with this value of j, but different eigenvalues of jz, ∣m = 3/2⟩,∣m = 1/2⟩,∣m = −1/2⟩
and ∣m = −3/2⟩.

(a) Show that the raising operator in this 4−dimensional space is

ĵ+ = h̵ (
√

3 ∣3/2⟩ ⟨1/2∣ + 2 ∣1/2⟩ ⟨−1/2∣ +
√

3 ∣−1/2⟩ ⟨−3/2∣)

where the states have been labeled by the jz quantum number.

(b) What is the lowering operator ĵ−?

(c) What are the matrix representations of Ĵ±, Ĵx, Ĵy, Ĵz and Ĵ2 in the jz
basis?

(d) Check that the state

∣ψ⟩ = 1

2
√

2
(
√

3 ∣3/2⟩ + ∣1/2⟩ − ∣−1/2⟩ −
√

3 ∣−3/2⟩)

is an eigenstate of Ĵx with eigenvalue h̵/2.

(e) Find the eigenstate of Ĵx with eigenvalue 3h̵/2.

(f) Suppose the particle describes the nucleus of an atom, which has a mag-
netic moment described by the operator µ⃗ = gNµN j⃗, where gN is the
g-factor and µN is the so-called nuclear magneton. At time t = 0, the
system is prepared in the state given in (c). A magnetic field, pointing
in the y direction of magnitude B, is suddenly turned on. What is the
evolution of ⟨ĵz⟩ as a function of time if

Ĥ = −µ̂ ⋅ B⃗ = −gNµN h̵J⃗ ⋅ B⃗ŷ = −gNµN h̵BĴy

where µN = eh̵/2Mc = nuclear magneton? You will need to use the identity
we derived earlier

exÂB̂e−xÂ = B̂ + [Â, B̂]x + [Â, [Â, B̂]] x
2

2
+ [Â, [Â, [Â, B̂]]] x

3

6
+ ......
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9.7.9. Arbitrary directions
Method #1

(a) Using the ∣z+⟩ and ∣z−⟩ states of a spin 1/2 particle as a basis, set up
and solve as a problem in matrix mechanics the eigenvalue/eigenvector
problem for Sn = S⃗ ⋅ n̂ where the spin operator is

S⃗ = Ŝxêx + Ŝy êy + Ŝz êz

and
n̂ = sin θ cosϕêx + sin θ sinϕêy + cos θêz

(b) Show that the eigenstates may be written as

∣n̂+⟩ = cos
θ

2
∣z+⟩ + eiϕ sin

θ

2
∣z−⟩

∣n̂−⟩ = sin
θ

2
∣z+⟩ − eiϕ cos

θ

2
∣z−⟩

Method #2

This part demonstrates another way to determine the eigenstates of Sn = S⃗ ⋅ n̂.

The operator
R̂(θêy) = e−iŜyθ/h̵

rotates spin states by an angle θ counterclockwise about the y−axis.

(a) Show that this rotation operator can be expressed in the form

R̂(θêy) = cos
θ

2
− 2i

h̵
Ŝy sin

θ

2

(b) Apply R̂ to the states ∣z+⟩ and ∣z−⟩ to obtain the state ∣n̂+⟩ with ϕ = 0,
that is, rotated by angle θ in the x − z plane.

9.7.10. Spin state probabilities
The z-component of the spin of an electron is measured and found to be +h̵/2.

(a) If a subsequent measurement is made of the x−component of the spin,
what are the possible results?

(b) What are the probabilities of finding these various results?

(c) If the axis defining the measured spin direction makes an angle θ with
respect to the original z−axis, what are the probabilities of various possible
results?

(d) What is the expectation value of the spin measurement in (c)?
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9.7.11. A spin operator
Consider a system consisting of a spin 1/2 particle.

(a) What are the eigenvalues and normalized eigenvectors of the operator

Q̂ = Aŝy +Bŝz
where ŝy and ŝz are spin angular momentum operators and A and B are
real constants.

(b) Assume that the system is in a state corresponding to the larger eigenvalue.
What is the probability that a measurement of ŝy will yield the value +h̵/2?

9.7.12. Simultaneous Measurement
A beam of particles is subject to a simultaneous measurement of the angular
momentum observables L̂2 and L̂z. The measurement gives pairs of values

(`,m) = (0,0) and (1,−1)

with probabilities 3/4 and 1/4 respectively.

(a) Reconstruct the state of the beam immediately before the measurements.

(b) The particles in the beam with (`,m) = (1,−1) are separated out and
subjected to a measurement of L̂x. What are the possible outcomes and
their probabilities?

(c) Construct the spatial wave functions of the states that could arise from
the second measurement.

9.7.13. Vector Operator

Consider a vector operator V⃗ that satisfies the commutation relation

[Li, Vj] = ih̵εijkVk
This is the definition of a vector operator.

(a) Prove that the operator e−iϕLx/h̵ is a rotation operator corresponding to
a rotation around the x−axis by an angle ϕ, by showing that

e−iϕLx/h̵Vie
iϕLx/h̵ = Rij(ϕ)Vj

where Rij(ϕ) is the corresponding rotation matrix.

(b) Prove that
e−iπLx ∣`,m⟩ = ∣`,−m⟩

(c) Show that a rotation by π around the z−axis can also be achieved by first
rotating around the x−axis by π/2, then rotating around the y−axis by π
and, finally rotating back by −π/2 around the x−axis. In terms of rotation
operators this is expressed by

eiπLx/2h̵e−iπLy/h̵e−iπLx/2h̵ = e−iπLz/h̵
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9.7.14. Addition of Angular Momentum

Two atoms with J1 = 1 and J2 = 2 are coupled, with an energy described by
Ĥ = εJ⃗1 ⋅J⃗2, ε > 0. Determine all of the energies and degeneracies for the coupled
system.

9.7.15. Spin = 1 system

We now consider a spin = 1 system.

(a) Use the spin = 1 states ∣1,1⟩, ∣1,0⟩ and ∣1,−1⟩ (eigenstates of Ŝz) as a
basis to form the matrix representation (3 × 3) of the angular momentum
operators Ŝx, Ŝy, Ŝz, Ŝ2, Ŝ+, and Ŝ−.

(b) Determine the eigenstates of Ŝx in terms of the eigenstates ∣1,1⟩, ∣1,0⟩ and
∣1,−1⟩ of Ŝz.

(c) A spin = 1 particle is in the state

∣ψ⟩ = 1√
14

⎛
⎜
⎝

1
2
3i

⎞
⎟
⎠

in the Ŝz basis.

(1) What are the probabilities that a measurement of Ŝz will yield the
values h̵, 0, or −h̵ for this state? What is ⟨Ŝz⟩?

(2) What is ⟨Ŝx⟩ in this state?

(3) What is the probability that a measurement of Ŝx will yield the value
h̵ for this state?

(d) A particle with spin = 1 has the Hamiltonian

Ĥ = AŜz +
B

h̵
Ŝ2
x

(1) Calculate the energy levels of this system.

(2) If, at t = 0, the system is in an eigenstate of Ŝx with eigenvalue h̵,
calculate the expectation value of the spin ⟨ŜZ⟩ at time t.

9.7.16. Deuterium Atom

Consider a deuterium atom (composed of a nucleus of spin = 1 and an electron).
The electronic angular momentum is J⃗ = L⃗ + S⃗, where L⃗ is the orbital angular
momentum of the electron and S⃗ is its spin. The total angular momentum of
the atom is F⃗ = J⃗ + I⃗, where I⃗ is the nuclear spin. The eigenvalues of Ĵ2 and
F̂ 2 are J(J + 1)h̵2 and F (F + 1)h̵2 respectively.

787



(a) What are the possible values of the quantum numbers J and F for the
deuterium atom in the 1s(L = 0) ground state?

(b) What are the possible values of the quantum numbers J and F for a
deuterium atom in the 2p(L = 1) excited state?

9.7.17. Spherical Harmonics

Consider a particle in a state described by

ψ = N(x + y + 2z)e−αr

where N is a normalization factor.

(a) Show, by rewriting the Y ±1,0
1 functions in terms of x, y, z and r that

Y ±1
1 = ∓( 3

4π
)

1/2 x ± iy√
2r

, Y 0
1 = ( 3

4π
)

1/2 z

r

(b) Using this result, show that for a particle described by ψ above

P (Lz = 0) = 2/3 , P (Lz = h̵) = 1/6 , P (Lz = −h̵) = 1/6

9.7.18. Spin in Magnetic Field

Suppose that we have a spin−1/2 particle interacting with a magnetic field via
the Hamiltonian

Ĥ =
⎧⎪⎪⎨⎪⎪⎩

−µ⃗ ⋅ B⃗ , B⃗ = Bêz 0 ≤ t < T
−µ⃗ ⋅ B⃗ , B⃗ = Bêy T ≤ t < 2T

where µ⃗ = µBσ⃗ and the system is initially(t = 0) in the state

∣ψ(0)⟩ = ∣x+⟩ = 1√
2
(∣z+⟩ + ∣z−⟩)

Determine the probability that the state of the system at t = 2T is

∣ψ(2T )⟩ = ∣x+⟩

in three ways:

(1) Using the Schrödinger equation (solving differential equations)

(2) Using the time development operator (using operator algebra)

(3) Using the density operator formalism
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9.7.19. What happens in the Stern-Gerlach box?

An atom with spin = 1/2 passes through a Stern-Gerlach apparatus adjusted so
as to transmit atoms that have their spins in the +z direction. The atom spends
time T in a magnetic field B in the x−direction.

(a) At the end of this time what is the probability that the atom would pass
through a Stern-Gerlach selector for spins in the −z direction?

(b) Can this probability be made equal to one, if so, how?

9.7.20. Spin = 1 particle in a magnetic field

[Use the results from Problem 9.15]. A particle with intrinsic spin = 1 is placed
in a uniform magnetic field B⃗ = B0êx. The initial spin state is ∣ψ(0)⟩ = ∣1,1⟩.
Take the spin Hamiltonian to be Ĥ = ω0Ŝx and determine the probability that
the particle is in the state ∣ψ(t)⟩ = ∣1,−1⟩ at time t.

9.7.21. Multiple magnetic fields

A spin−1/2 system with magnetic moment µ⃗ = µ0σ⃗ is located in a uniform
time-independent magnetic field B0 in the positive z−direction. For the time
interval 0 < t < T an additional uniform time-independent field B1 is applied in
the positive x−direction. During this interval, the system is again in a uniform
constant magnetic field, but of different magnitude and direction z′ from the
initial one. At and before t = 0, the system is in the m = 1/2 state with respect
to the z−axis.

(a) At t = 0+, what are the amplitudes for finding the system with spin pro-
jections m′ = 1/2 with respect to the z′−axis?

(b) What is the time development of the energy eigenstates with respect to
the z′ direction, during the time interval 0 < t < T?

(c) What is the probability at t = T of observing the system in the spin state
m = −1/2 along the original z−axis? [Express answers in terms of the angle
θ between the z and z′ axes and the frequency ω0 = µ0B0/h̵]

9.7.22. Neutron interferometer

In a classic table-top experiment (neutron interferometer), a monochromatic
neutron beam (λ = 1.445) is split by Bragg reflection at point A of an interfer-
ometer into two beams which are then recombined (after another reflection) at
point D as in Figure 9.1 below:

One beam passes through a region of transverse magnetic field of strength B
(direction shown by lines)for a distance L. Assume that the two paths from A
to D are identical except for the region of magnetic field.
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Figure 9.18: Neutron Interferometer Setup

(a) Find the explicit expression for the dependence of the intensity at point D
on B, L and the neutron wavelength, with the neutron polarized parallel
or anti-parallel to the magnetic field.

(b) Show that the change in the magnetic field that produces two successive
maxima in the counting rates is given by

∆B = 8π2h̵c

∣e∣ gnλL

where gn (= −1.91) is the neutron magnetic moment in units of −eh̵/2mnc.
This calculation was a PRL publication in 1967.

9.7.23. Magnetic Resonance

A particle of spin 1/2 and magnetic moment µ is placed in a magnetic field
B⃗ = B0ẑ+B1x̂ cosωt−B1ŷ sinωt, which is often employed in magnetic resonance
experiments. Assume that the particle has spin up along the +z−axis at t = 0
(mz = +1/2). Derive the probability to find the particle with spin down (mz =
−1/2) at time t > 0.

9.7.24. More addition of angular momentum

Consider a system of two particles with j1 = 2 and j2 = 1. Determine the
∣j,m, j1, j2⟩ states listed below in the ∣j1,m1, j2,m2⟩ basis.

∣3,3, j1, j2⟩ , ∣3,2, j1, j2⟩ , ∣3,1, j1, j2⟩ , ∣2,2, j1, j2⟩ , ∣2,1, j1, j2⟩ , ∣1,1, j1, j2⟩

9.7.25. Clebsch-Gordan Coefficients

Work out the Clebsch-Gordan coefficients for the combination

3

2
⊗ 1

2
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9.7.26. Spin−1/2 and Density Matrices
Let us consider the application of the density matrix formalism to the problem
of a spin−1/2 particle in a static external magnetic field. In general, a particle
with spin may carry a magnetic moment, oriented along the spin direction (by
symmetry). For spin−1/2, we have that the magnetic moment (operator) is thus
of the form:

µ̂i =
1

2
γσ̂i

where the σ̂i are the Pauli matrices and γ is a constant giving the strength of
the moment, called the gyromagnetic ratio. The term in the Hamiltonian for
such a magnetic moment in an external magnetic field, B⃗ is just:

Ĥ = −µ⃗ ⋅ B⃗

The spin−1/2 particle has a spin orientation or polarization given by

P⃗ = ⟨σ⃗⟩

Let us investigate the motion of the polarization vector in the external field.
Recall that the expectation value of an operator may be computed from the
density matrix according to

⟨Â⟩ = Tr (ρ̂Â)

In addition the time evolution of the density matrix is given by

i
∂ρ̂

∂t
= [Ĥ(t), ρ̂(t)]

Determine the time evolution dP⃗ /dt of the polarization vector. Do not make
any assumption concerning the purity of the state. Discuss the physics involved
in your results.

9.7.27. System of N Spin−1/2 Particle
Let us consider a system of N spin−1/2 particles per unit volume in thermal
equilibrium, in an external magnetic field B⃗. In thermal equilibrium the canon-
ical distribution applies and we have the density operator given by:

ρ̂ = e
−Ĥt

Z

where Z is the partition function given by

Z = Tr (e−Ĥt)

Such a system of particles will tend to orient along the magnetic field, resulting
in a bulk magnetization (having units of magnetic moment per unit volume),
M⃗ .
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(a) Give an expression for this magnetization M⃗ = Nγ⟨σ⃗/2⟩(donÕt work too
hard to evaluate).

(b) What is the magnetization in the high-temperature limit, to lowest non-
trivial order (this I want you to evaluate as completely as you can!)?

9.7.28. In a coulomb field
An electron in the Coulomb field of the proton is in the state

∣ψ⟩ = 4

5
∣1,0,0⟩ + 3i

5
∣2,1,1⟩

where the ∣n, `,m⟩ are the standard energy eigenstates of hydrogen.

(a) What is ⟨E⟩ for this state? What are ⟨L̂2⟩, ⟨L̂x⟩ and ⟨L̂x⟩?

(b) What is ∣ψ(t)⟩? Which, if any, of the expectation values in (a) vary with
time?

9.7.29. Probabilities
(a) Calculate the probability that an electron in the ground state of hydrogen

is outside the classically allowed region(defined by the classical turning
points)?

(b) An electron is in the ground state of tritium, for which the nucleus is
the isotope of hydrogen with one proton and two neutrons. A nuclear
reaction instantaneously changes the nucleus into He3, which consists of
two protons and one neutron. Calculate the probability that the electron
remains in the ground state of the new atom. Obtain a numerical answer.

9.7.30. What happens?
At the time t = 0 the wave function for the hydrogen atom is

ψ(r⃗,0) = 1√
10

(2ψ100 + ψ210 +
√

2ψ211 +
√

3ψ21−1)

where the subscripts are the values of the quantum numbers (n`m). We ignore
spin and any radiative transitions.

(a) What is the expectation value of the energy in this state?

(b) What is the probability of finding the system with ` = 1 , m = +1 as a
function of time?

(c) What is the probability of finding an electron within 10−10 cm of the proton
(at time t = 0)? A good approximate result is acceptable.

(d) Suppose a measurement is made which shows that L = 1 , Lx = +1. Deter-
mine the wave function immediately after such a measurement.
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9.7.31. Anisotropic Harmonic Oscillator
In three dimensions, consider a particle of mass m and potential energy

V (r⃗) = mω
2

2
[(1 − τ)(x2 + y2) + (1 + τ)z2]

where ω ≥ 0 and 0 ≤ τ ≤ 1.

(a) What are the eigenstates of the Hamiltonian and the corresponding eigenen-
ergies?

(b) Calculate and discuss, as functions of τ , the variation of the energy and
the degree of degeneracy of the ground state and the first two excited
states.

9.7.32. Exponential potential
Two particles, each of mass M , are attracted to each other by a potential

V (r) = −(g
2

d
) e−r/d

where d = h̵/mc with mc2 = 140MeV and Mc2 = 940MeV .

(a) Show that for ` = 0 the radial Schrödinger equation for this system can be
reduced to Bessel’s differential equation

d2Jρ(x)
dx2

+ 1

x

dJρ(x)
dx

+ (1 − ρ
2

x2
)Jρ(x) = 0

by means of the change of variable x = αe−βr for a suitable choice of α
and β.

(b) Suppose that this system is found to have only one bound state with a
binding energy of 2.2MeV . Evaluate g2/d numerically and state its units.

(c) What would the minimum value of g2/d have to be in order to have two
` = 0 bound state (keep d andM the same). A possibly useful plot is given
below in Figure 9.2.
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Figure 9.19: Jρ(α) contours in the α − ρ plane

9.7.33. Bouncing electrons
An electron moves above an impenetrable conducting surface. It is attracted
toward this surface by its own image charge so that classically it bounces along
the surface as shown in Figure 9.20 below:

Figure 9.20: Bouncing electrons
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(a) Write the Schrödinger equation for the energy eigenstates and the energy
eigenvalues of the electron. (Call y the distance above the surface). Ignore
inertial effects of the image.

(b) What is the x and z dependence of the eigenstates?

(c) What are the remaining boundary conditions?

(d) Find the ground state and its energy? [HINT: they are closely related to
those for the usual hydrogen atom]

(e) What is the complete set of discrete and/or continuous energy eigenvalues?

9.7.34. Alkali Atoms

The alkali atoms have an electronic structure which resembles that of hydrogen.
In particular, the spectral lines and chemical properties are largely determined
by one electron(outside closed shells). A model for the potential in which this
electron moves is

V (r) = −e
2

r
(1 + b

r
)

Solve the Schrödinger equation and calculate the energy levels.

9.7.35. Trapped between

A particle of massm is constrained to move between two concentric impermeable
spheres of radii r = a and r = b. There is no other potential. Find the ground
state energy and the normalized wave function.

9.7.36. Logarithmic potential

A particle of mass m moves in the logarithmic potential

V (r) = C`n( r
r0

)

Show that:

(a) All the eigenstates have the same mean-squared velocity. Find this mean-
squared velocity. Think Virial theorem!

(b) The spacing between any two levels is independent of the mass m.
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9.7.37. Spherical well
A spinless particle of mass m is subject (in 3 dimensions) to a spherically sym-
metric attractive square-well potential of radius r0.

(a) What is the minimum depth of the potential needed to achieve two bound
states of zero angular momentum?

(b) With a potential of this depth, what are the eigenvalues of the Hamiltonian
that belong to zero total angular momentum? Solve the transcendental
equation where necessary.

9.7.38. In magnetic and electric fields
A point particle of mass m and charge q moves in spatially constant crossed
magnetic and electric fields B⃗ = B0ẑ and E⃗ = E0x̂.

(a) Solve for the complete energy spectrum.

(b) Find the expectation value of the velocity operator

v⃗ = 1

m
p⃗mechanical

in the state p⃗ = 0.

9.7.39. Extra(Hidden) Dimensions
Lorentz Invariance with Extra Dimensions

If string theory is correct, we must entertain the possibility that space-time has
more than four dimensions. The number of time dimensions must be kept equal
to one - it seems very difficult, if not altogether impossible, to construct a con-
sistent theory with more than one time dimension. The extra dimensions must
therefore be spatial.

Can we have Lorentz invariance in worlds with more than three spatial dimen-
sions? The answer is yes. Lorentz invariance is a concept that admits a very
natural generalization to space-times with additional dimensions.

We first extend the definition of the invariant interval ds2 to incorporate the
additional space dimensions. In a world of five spatial dimensions, for example,
we would write

ds2 = c2dt2 − (dx1)2 − (dx2)2 − (dx3)2 − (dx4)2 − (dx5)2 (9.741)

Lorentz transformations are then defined as the linear changes of coordinates
that leave ds2 invariant. This ensures that every inertial observer in the six-
dimensional space-time will agree on the value of the speed of light. With more
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dimensions, come more Lorentz transformations. While in four-dimensional
space-time we have boosts in the x1, x2 and x3 directions, in this new world
we have boosts along each of the five spatial dimensions. With three spatial
coordinates, there are three basic spatial rotations - rotations that mix x1 and
x2, rotations that mix x1 and x3, and finally rotations that mix x2 and x3.
The equality of the number of boosts and the number of rotations is a special
feature of four-dimensional space-time. With five spatial coordinates, we have
ten rotations, which is twice the number of boosts.

The higher-dimensional Lorentz invariance includes the lower-dimensional one.
If nothing happens along the extra dimensions, then the restrictions of lower-
dimensional Lorentz invariance apply. This is clear from equation (9.1). For
motion that does not involve the extra dimensions, dx4 = dx5 = 0, and the ex-
pression for ds2 reduces to that used in four dimensions.

Compact Extra Dimensions

It is possible for additional spatial dimensions to be undetected by low energy
experiments if the dimensions are curled up into a compact space of small vol-
ume. At this point let us first try to understand what a compact dimension is.
We will focus mainly on the case of one dimension. Later we will explain why
small compact dimensions are hard to detect.

Consider a one-dimensional world, an infinite line, say, and let x be a coordinate
along this line. For each point P along the line, there is a unique real number
x(P ) called the x−coordinate of the point P . A good coordinate on this infinite
line satisfies two conditions:

(1) Any two distinct points P1 ≠ P2 have different coordinates x(P1) ≠ x(P2).

(2) The assignment of coordinates to points are continuous - nearby points
have nearly equal coordinates.

If a choice of origin is made for this infinite line, then we can use distance from
the origin to define a good coordinate. The coordinate assigned to each point
is the distance from that point to the origin, with sign depending upon which
side of the origin the point lies.

Imagine you live in a world with one spatial dimension. Suppose you are walking
along and notice a strange pattern - the scenery repeats each time you move a
distance 2πR for some value of R. If you meet your friend Phil, you see that
there are Phil clones at distances 2πR, 4πR, 6πR, ....... down the line as shown
in Figure 9.21 below.
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Figure 9.21: Multiple friends

In fact, there are clones up the line, as well, with the same spacing.

There is no way to distinguish an infinite line with such properties from a circle
with circumference 2πR. Indeed, saying that this strange line is a circle explains
the peculiar property - there really are no Phil clones - you meet the same Phil
again and again as you go around the circle!

How do we express this mathematically? We can think of the circle as an open
line with an identification, that is, we declare that points with coordinates that
differ by 2πR are the same point. More precisely, two points are declared to be
the same point if their coordinates differ by an integer number of 2πR:

P1 ∼ P2 ↔ x(P1) = x(P2) + 2πRn , n ∈ Z (9.742)

This is precise, but somewhat cumbersome, notation. With no risk of confusion,
we can simply write

x ∼ x + 2πR (9.743)

which should be read as identify any two points whose coordinates differ by 2πR.
With such an identification, the open line becomes a circle. The identification
has turned a non-compact dimension into a compact one. It may seem to you
that a line with identifications is only a complicated way to think about a circle.
We will se, however, that many physical problems become clearer when we view
a compact dimension as an extended one with identifications.

The interval 0 ≤ x ≤ 2πR is a fundamental domain for the identification (9.3) as
shown in Figure 9.22 below.

Figure 9.22: Fundamental domain
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A fundamental domain is a subset of the entire space that satisfies two condi-
tions:

(1) no two points in are identified

(2) any point in the entire space is related by the identification to some point
in the fundamental domain

Whenever possible, as we did here, the fundamental domain is chosen to be a
connected region. To build the space implied by the identification, we take the
fundamental domain together with its boundary, and implement the identifica-
tions on the boundary. In our case, the fundamental domain together with its
boundary is the segment 0 ≤ x ≤ 2πR. In this segment we identify the point
x = 0 with the point x = 2πR. The result is the circle.

A circle of radius R can be represented in a two-dimensional plane as the set of
points that are a distance R from a point called the center of the circle. Note
that the circle obtained above has been constructed directly, without the help
of any two-dimensional space. For our circle, there is no point, anywhere, that
represents the center of the circle. We can still speak, figuratively, of the radius
R of the circle, but in our case, the radius is simply the quantity which multi-
plied by 2π gives the total length of the circle.

On the circle, the coordinate x is no longer a good coordinate. The coordinate
x is now either multi-valued or discontinuous. This is a problem with any coor-
dinate on a circle. Consider using angles to assign coordinates on the unit circle
as shown in Figure 9.23 below.

Figure 9.23: Unit circle identification
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Fix a reference point Q on the circle, and let O denote the center of the
circle. To any point P on the circle we assign as a coordinate the angle
θ(P ) = angle(POQ). This angle is naturally multi-valued. The reference
point Q, for example, has θ(Q) = 0○ and θ(Q) = 360○. If we force angles to
be single-valued by restricting 0○ ≤ θ ≤ 360○, for example, then they become
discontinuous. Indeed, two nearby points, Q and Q−, then have very different
angles θ(Q) = 0○, while θ(Q−) ∼ 360○. It is easier to work with multi-valued
coordinates than it is to work with discontinuous ones.

If we have a world with several open dimensions, then we can apply the identi-
fication (9.3) to one of the dimensions, while doing nothing to the others. The
dimension described by x turns into a circle, and the other dimensions remain
open. It is possible, of course, to make more than one dimension compact.

Consider the example, the (x, y) plane, subject to two identifications,

x ∼ x + 2πR , y ∼ y + 2πR

It is perhaps clearer to show both coordinates simultaneously while writing the
identifications. In that fashion, the two identifications are written as

(x, y) ∼ (x + 2πR, y) , (x, y) ∼ (x, y + 2πR) (9.744)

The first identification implies that we can restrict our attention to 0 ≤ x ≤ 2πR,
and the second identification implies that we can restrict our attention to
0 ≤ y ≤ 2πR. Thus, the fundamental domain can be taken to be the square
region 0 ≤ x, y < 2πR as shown in Figure 9.24 below.

Figure 9.24: Fundamental domain = square

The identifications are indicated by the dashed lines and arrowheads. To build
the space implied by the identifications, we take the fundamental domain to-
gether with its boundary, forming the full square 0 ≤ x, y < 2πR, and implement
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the identifications on the boundary. The vertical edges are identified because
they correspond to points of the form (0, y) and (2πR, y), which are identified
by the first equation (9.4). This results in the cylinder shown in Figure 9.25
below.

Figure 9.25: Square → cylinder

The horizontal edges are identified because they correspond to points of the
form (x,0) and (x,2πR), which are identified by the second equation in (9.4).
The resulting space is a two-dimensional torus.

We can visualize this process in Figure 9.26 below.

Figure 9.26: 2-dimensional torus

?or in words, the torus is visualized by taking the fundamental domain (with its
boundary) and gluing the vertical edges as their identification demands. The
result is first (vertical) cylinder shown above (the gluing seam is the dashed
line). In this cylinder, however, the bottom circle and the top circle must also
be glued, since they are nothing other than the horizontal edges of the funda-
mental domain. To do this with paper, you must flatten the cylinder and then
roll it up and glue the circles. The result looks like a flattened doughnut. With a
flexible piece of garden hose, you could simply identify the two ends and obtain
the familiar picture of a torus.
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We have seen how to compactify coordinates using identifications. Some com-
pact spaces are constructed in other ways. In string theory, however, compact
spaces that arise from identifications are particularly easy to work with.

Sometimes identifications have fixed points, points that are related to themselves
by the identification. For example, consider the real line parameterized by the
coordinate x and subject to the identification x ∼ −x. The point x = 0 is the
unique fixed point of the identification. A fundamental domain can be chosen
to be the half-line x ≥ 0. Note that the boundary point x = 0 must be included
in the fundamental domain. The space obtained by the above identification is
in fact the fundamental domain x ≥ 0. This is the simplest example of an orb-
ifold, a space obtained by identifications that have fixed points. This orbifold
is called an R1/Z2 orbifold. Here R1 stands for the (one-dimensional) real line,
and Z2 describes a basic property of the identification when it is viewed as the
transformation x→ −x - if applied twice, it gives back the original coordinate.

Quantum Mechanics and the Square Well

The fundamental relation governing quantum mechanics is

[x̂i, p̂j] = ih̵δij

In three spatial dimensions the indices i and j run from 1 to 3. The general-
ization of quantum mechanics to higher dimensions is straightforward. With d
spatial dimensions, the indices simply run over the d possible values.

To set the stage for for the analysis of small extra dimensions, let us review the
standard quantum mechanics problem involving and infinite potential well.

The time-independent Schrödinger equation(in one-dimension) is

− h̵
2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x)

In the infinite well system we have

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ (0, a)
∞ if x ∉ (0, a)

When x ∈ (0, a), the Schrödinger equation becomes

− h̵
2

2m

d2ψ(x)
dx2

= Eψ(x)

The boundary conditions ψ(0) = ψ(a) = 0 give the solutions

ψk(x) =
√

2

a
sin(kπx

a
) , k = 1,2, ......,∞
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The value k = 0 is not allowed since it would make the wave-function vanish
everywhere. The corresponding energy values are

Ek =
h̵2

2m
(kπ
a

)
2

Square Well with Extra Dimensions

We now add an extra dimension to the square well problem. In addition to x,
we include a dimension y that is curled up into a small circle of radius R. In
other words, we make the identification

(x, y) ∼ (x, y + 2πR)

The original dimension x has not been changed(see Figure 9.27 below). In the
figure, on the left we have the original square well potential in one dimension.
Here the particle lives on the the line segment shown and on the right, in the
(x, y) plane the particle must remain in 0 < x < a. The direction y is identified
as y ∼ y + 2πR.

Figure 9.27: Square well with compact hidden dimension
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The particle lives on a cylinder, that is, since the y direction has been turned into
a circle of circumference 2πR, the space where the particle moves is a cylinder.
The cylinder has a length a and a circumference 2πR. The potential energy
V (x, y) is given by

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ (0, a)
∞ if x ∉ (0, a)

that is, is independent of y.

We want to investigate what happens when R is small and we only do experi-
ments at low energies. Now the only length scale in the one-dimensional infinite
well system is the size a of the segment, so small R means R << a.

(a) Write down the Schrödinger equation for two Cartesian dimensions.

(b) Use separation of variables to find x−dependent and y−dependent solu-
tions.

(c) Impose appropriate boundary conditions, namely, and an infinite well in
the x dimension and a circle in the y dimension, to determine the allowed
values of parameters in the solutions.

(d) Determine the allowed energy eigenvalues and their degeneracy.

(e) Show that the new energy levels contain the old energy levels plus addi-
tional levels.

(f) Show that when R << a (a very small (compact) hidden dimension) the
first new energy level appears at a very high energy. What are the exper-
imental consequences of this result?

9.7.40. Spin−1/2 Particle in a D-State
A particle of spin−1/2 is in a D-state of orbital angular momentum. What
are its possible states of total angular momentum? Suppose the single particle
Hamiltonian is

H = A +BL⃗ ⋅ S⃗ +CL⃗ ⋅ L⃗

What are the values of energy for each of the different states of total angular
momentum in terms of the constants A, B, and C?

9.7.41. Two Stern-Gerlach Boxes
A beam of spin−1/2 particles traveling in the y−direction is sent through a Stern-
Gerlach apparatus, which is aligned in the z−direction, and which divides the
incident beam into two beams with m = ±1/2. The m = 1/2 beam is allowed to
impinge on a second Stern-Gerlach apparatus aligned along the direction given
by

ê = sin θx̂ + cos θẑ
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(a) Evaluate Ŝ = (h̵/2) σ⃗ ⋅ ê, where σ⃗ is represented by the Pauli matrices:

σ1 = ( 0 1
1 0

) , σ2 = ( 0 −i
i 0

) , σ3 = ( 1 0
0 −1

)

Calculate the eigenvalues of S⃗.

(b) Calculate the normalized eigenvectors of S⃗.

(c) Calculate the intensities of the two beams which emerge from the second
Stern-Gerlach apparatus.

9.7.42. A Triple-Slit experiment with Electrons

A beam of spin-1/2 particles are sent into a triple slit experiment according to
the figure below.

Figure 9.28: Triple-Slit Setup

Calculate the resulting intensity pattern recorded at the detector screen.

9.7.43. Cylindrical potential

The Hamiltonian is given by

Ĥ =
ˆ⃗p2

2µ
+ V (ρ̂)

where ρ =
√
x2 + y2.

(a) Use symmetry arguments to establish that both p̂z and L̂z, the z−component
of the linear and angular momentum operators, respectively, commute
with Ĥ.
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(b) Use the fact that Ĥ, p̂z and L̂z have eigenstates in common to express the
position space eigenfunctions of the Hamiltonian in terms of those of p̂z
and L̂z.

(c) What is the radial equation? Remember that the Laplacian in cylindrical
coordinates is

∇2ψ = 1

ρ

∂

∂ρ
(ρ∂ψ
∂ρ

) + 1

ρ2

∂2ψ

∂ϕ2
+ ∂

2ψ

∂z2

A particle of mass µ is in the cylindrical potential well

V (ρ) =
⎧⎪⎪⎨⎪⎪⎩

0 ρ < a
∞ ρ > a

(d) Determine the three lowest energy eigenvalues for states that also have p̂z
and L̂z equal to zero.

(e) Determine the three lowest energy eigenvalues for states that also have p̂z
equal to zero. The states can have nonzero L̂z.

9.7.44. Crazy potentials.....

(a) A nonrelativistic particle of mass m moves in the potential

V (x, y, z) = A(x2 + y2 + 2λxy) +B(z2 + 2µz)

where A > 0, B > 0, ∣λ∣ < 1. µ is arbitrary. Find the energy eigenvalues.

(b) Now consider the following modified problem with a new potential

Vnew =
⎧⎪⎪⎨⎪⎪⎩

V (x, y, z) z > −µ and any x and y
+∞ z < −µ and any x and y

Find the ground state energy.

9.7.45. Stern-Gerlach Experiment for a Spin-1 Particle

A beam of spin−1 particles, moving along the y-axis, passes through a sequence
of two SG devices. The first device has its magnetic field along the z−axis and
the second device has its magnetic field along the z′−axis, which points in the
x− z plane at an angle θ relative to the z−axis. Both devices only transmit the
uppermost beam. What fraction of the particles entering the second device will
leave the second device?
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9.7.46. Three Spherical Harmonics
As we see, often we need to calculate an integral of the form

∫ dΩY ∗
`3m3

(θ,ϕ)Y`2m2
(θ,ϕ)Y`1m1

(θ,ϕ)

This can be interpreted as the matrix element ⟨`3m3∣ Ŷ (`2)
m2 ∣`1m1⟩, where Ŷ (`2)

m2

is an irreducible tensor operator.

(a) Use the Wigner-Eckart theorem to determine the restrictions on the quan-
tum numbers so that the integral does not vanish.

(b) Given the addition rule for Legendre polynomials:

P`1(µ)P`2(µ) =∑
`3

⟨`30 ∣ `10`20⟩2P`3(µ)

where ⟨`30 ∣ `10`20⟩ is a Clebsch-Gordon coefficient. Use the Wigner-
Eckart theorem to prove

∫ dΩY ∗
`3m3

(θ,ϕ)Y`2m2
(θ,ϕ)Y`1m1

(θ,ϕ)

=

¿
ÁÁÀ(2`2 + 1)(2`1 + 1)

4π(2`3 + 1)
⟨`30 ∣ `10`20⟩ ⟨`3m3 ∣ `2m2`1m1⟩

HINT: Consider ⟨`30∣ Ŷ (`2)
0 ∣`10⟩.

9.7.47. Spin operators ala Dirac
Show that

Ŝz =
h̵

2
∣z+⟩ ⟨z+∣ − h̵

2
∣z−⟩ ⟨z−∣

Ŝ+ = h̵ ∣z+⟩ ⟨z−∣ , Ŝ− = h̵ ∣z−⟩ ⟨z+∣

9.7.48. Another spin = 1 system
A particle is known to have spin one. Measurements of the state of the particle
yield ⟨Sx⟩ = 0 = ⟨Sy⟩ and ⟨Sz⟩ = a where 0 ≤ a ≤ 1. What is the most general
possibility for the state?

9.7.49. Properties of an operator

An operator f̂ describing the interaction of two spin−1/2 particles has the form
f̂ = a + bσ⃗1 ⋅ σ⃗2 where a and b are constants and σ⃗j=σxj x̂+σyj ŷ+σzj ẑ are Pauli
matrix operators. The total spin angular momentum is

j⃗ = j⃗1 + j⃗2 =
h̵

2
(σ⃗1 + σ⃗2)
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(a) Show that f̂ , j⃗2 and ĵz can be simultaneously measured.

(b) Derive the matrix representation of f̂ in the ∣j,m, j1, j2⟩ basis.

(c) Derive the matrix representation of f̂ in the ∣j1, j2,m1,m2⟩ basis.

9.7.50. Simple Tensor Operators/Operations
Given the tensor operator form of the particle coordinate operators

r⃗ = (x, y, z); R0
1 = z , R±

1 = ∓x ± iy√
2

(the subscript "1" indicates it is a rank 1 tensor), and the analogously defined
particle momentum rank 1 tensor P q1 , q = 0,±1, calculate the commutator be-
tween each of the components and show that the results can be written in the
form

[Rq1, P
m
1 ] = simple expression

9.7.51. Rotations and Tensor Operators
Using the rank 1 tensor coordinate operator in Problem 9.7.50, calculate the
commutators

[L±,Rq1]and [Lz,Rq1]

where L⃗ is the standard angular momentum operator.

9.7.52. Spin Projection Operators

Show that P1 = 3
4
Î + (S⃗1 ⋅ S⃗2)/h̵2 and P0 = 1

4
Î − (S⃗1 ⋅ S⃗2)/h̵2 project onto the

spin−1 and spin−0 spaces in 1
2
⊗ 1

2
= 1 ⊕ 0. Start by giving a mathematical

statement of just what must be shown.

9.7.53. Two Spins in a magnetic Field
The Hamiltonian of a coupled spin system in a magnetic field is given by

H = A + J S⃗1 ⋅ S⃗2

h̵2
+BS1z + S2z

h̵

where factors of h̵ have been tossed in to make the constants A, J , B have
units of energy. [J is called the exchange constant and B is proportional to the
magnetic field].

(a) Find the eigenvalues and eigenstates of the system when one particle has
spin 1 and the other has spin 1/2.

(b) Give the ordering of levels in the low field limit J ≫ B and the high field
limit B ≫ J and interpret physically the result in each case.
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9.7.54. Hydrogen d States
Consider the ` = 2 states (for some given principal quantum number n, which is
irrelevant) of the H atom, taking into account the electron spin= 1/2 (Neglect
nuclear spin!).

(a) Enumerate all states in the J , M representation arising from the ` = 2,
s= 1/2 states.

(b) Two states have mj =M = +1/2. Identify them and write them precisely
in terms of the product space kets ∣`,m`; s,ms⟩ using the Clebsch-Gordon
coefficients.

9.7.55. The Rotation Operator for Spin−1/2
We learned that the operator

Rn(Θ) = e−iΘ(e⃗n⋅Ĵ)/h̵

is a rotation operator, which rotates a vector about an axis e⃗n by and angle Θ.
For the case of spin 1/2,

Ĵ = Ŝ = h̵
2

ˆ⃗σ → Rn(Θ) = e−iΘσ̂n/2

(a) Show that for spin 1/2

Rn(Θ) = cos(Θ

2
)Î − i sin(Θ

2
)σ̂n

(b) Show Rn(Θ = 2π) = −Î; Comment.

(c) Consider a series of rotations. Rotate about the y−axis by θ followed by
a rotation about the z−axis by φ. Convince yourself that this takes the
unit vector along e⃗z to e⃗n. Show that up to an overall phase

∣↑n⟩ = Rz(φ)Ry ∣↑z⟩

9.7.56. The Spin Singlet
Consider the entangled state of two spins

∣ΨAB⟩ = 1√
2
(∣↑z⟩A ⊗ ∣↓z⟩B − ∣↓z⟩A ⊗ ∣↑z⟩B)

(a) Show that (up to a phase)

∣ΨAB⟩ = 1√
2
(∣↑n⟩A ⊗ ∣↓n⟩B − ∣↓n⟩A ⊗ ∣↑n⟩B)

where ∣↑n⟩, ∣↓n⟩ are spin spin-up and spin-down states along the direction
e⃗n. Interpret this result.

(b) Show that ⟨ΨAB ∣ σ̂n ⊗ σ̂n′ ∣ΨAB⟩ = −e⃗n ⋅ e⃗n′
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9.7.57. A One-Dimensional Hydrogen Atom

Consider the one-dimensional Hydrogen atom, such that the electron confined
to the x axis experiences an attractive force e2/r2.

(a) Write down Schrödinger’s equation for the electron wavefunction ψ(x) and
bring it to a convenient form by making the substitutions

a = h̵2

me2
, E = − h̵2

2ma2α2
, z = 2x

αa

(b) Solve the Schrödinger equation for ψ(z). (You might need Mathematica,
symmetry arguments plus some properties of the Confluent Hypergeomet-
ric functions or just remember earlier work).

(c) Find the three lowest allowed values of energy and the corresponding
bound state wavefunctions. Plot them for suitable parameter values.

9.7.58. Electron in Hydrogen p−orbital

(a) Show that the solution of the Schrödinger equation for an electron in a
pz−orbital of a hydrogen atom

ψ(r, θ, φ) =
√

3

4π
Rn`(r) cos θ

is also an eigenfunction of the square of the angular momentum operator,
L̂2, and find the corresponding eigenvalue. Use the fact that

L̂2 = −h̵2 [ 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) + 1

sin2 θ

∂2

∂φ2
]

Given that the general expression for the eigenvalue of L̂2 is `(` + 1)h̵2,
what is the value of the ` quantum number for this electron?

(b) In general, for an electron with this ` quantum number, what are the
allowed values of m`? (NOTE: you should not restrict yourself to a pz
electron here). What are the allowed values of s and ms?

(c) Write down the 6 possible pairs of ms and m` values for a single elec-
tron in a p−orbital. Given the Clebsch-Gordon coefficients shown in the
table below write down all allowed coupled states ∣j,mj⟩ in terms of the
uncoupled states ∣m`,ms⟩. To get started here are the first three:

∣3/2,3/2⟩ = ∣1,1/2⟩

∣3/2,1/2⟩ =
√

2/3 ∣0,1/2⟩ +
√

1/3 ∣1,−1/2⟩

∣1/2,1/2⟩ = −
√

1/3 ∣0,1/2⟩ +
√

2/3 ∣1,−1/2⟩
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∣j,mj⟩
mj1 mj2 ∣3/2,3/2⟩ ∣3/2,1/2⟩ ∣1/2,1/2⟩ ∣3/2,−1/2⟩ ∣1/2,−1/2⟩ ∣3/2,−3/2⟩
1 1/2 1
1 -1/2

√
1/3

√
2/3

0 1/2
√

2/3 −
√

1/3
0 -1/2

√
2/3

√
1/3

-1 1/2
√

1/3 −
√

2/3
-1 -1/2 1

Table 9.9: Clebsch-Gordon coefficients for j1 = 1 and j2 = 1/2

(d) The spin-orbit coupling Hamiltonian, Ĥso is given by

Ĥso = ξ(r⃗)ˆ̀⋅ ŝ

Show that the states with ∣j,mj⟩ equal to ∣3/2,3/2⟩, ∣3/2,1/2⟩ and ∣1/2,1/2⟩
are eigenstates of the spin-orbit coupling Hamiltonian and find the cor-
responding eigenvalues. Comment on which quantum numbers determine
the spin-orbit energy. (HINT: there is a rather quick and easy way to do
this, so if you are doing something long and tedious you might want to
think again .....).

(e) The radial average of the spin-orbit Hamiltonian

∫
∞

0
ξ(r)∣Rn`(r)∣2r2dr

is called the spin-orbit coupling constant. It is important because it gives
the average interaction of an electron in some orbital with its own spin.
Given that for hydrogenic atoms

ξ(r) = Ze2

8πε0m2
ec

2

1

r3

and that for a 2p−orbital

Rn`(r) = ( Z
a0

)
3/2 1

2
√

6
ρe−ρ/2

(where ρ = Zr/a0 and a0 = 4πε0h̵
2/mec

2) derive an expression for the
spin-orbit coupling constant for an electron in a 2p−orbital. Comment on
the dependence on the atomic number Z.

(f) In the presence of a small magnetic field, B, the Hamiltonian changes by
a small perturbation given by

Ĥ(1) = µBB(ˆ̀
z + 2ŝz)
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The change in energy due to a small perturbation is given in first-order
perturbation theory by

E(1) = ⟨0∣ Ĥ(1) ∣0⟩

where ∣0⟩ is the unperturbed state (i.e., in this example, the state in the
absence of the applied field). Use this expression to show that the change
in the energies of the states in part (d) is described by

E(1) = µBBgjmj (9.745)

and find the values of gj . We will prove the perturbation theory result in
the Chapter 10.

(g) Sketch an energy level diagram as a function of applied magnetic field
increasing from B = 0 for the case where the spin-orbit interaction is
stronger than the electron’s interaction with the magnetic field. You can
assume that the expressions you derived above for the energy changes of
the three states you have been considering are applicable to the other
states.

9.7.59. Quadrupole Moment Operators
The quadrupole moment operators can be written as

Q(+2) =
√

3

8
(x + iy)2

Q(+1) = −
√

3

2
(x + iy)z

Q(0) = 1

2
(3z2 − r2)

Q(−1) =
√

3

2
(x − iy)z

Q(−2) =
√

3

8
(x − iy)2

Using the form of the wave function ψ`m = R(r)Y `m(θ, φ),

(a) Calculate ⟨ψ3,3∣Q(0) ∣ψ3,3⟩

(b) Predict all others ⟨ψ3,m′ ∣Q(0) ∣ψ3,m⟩ using the Wigner-Eckart theorem in
terms of Clebsch-Gordon coefficients.

(c) Verify them with explicit calculations for ⟨ψ3,1∣Q(0) ∣ψ3,0⟩, ⟨ψ3,−1∣Q(0) ∣ψ3,1⟩
and ⟨ψ3,−2∣Q(0) ∣ψ3,−3⟩.

Note that we leave ⟨r2⟩ = ∫
∞

0 r2 drR2(r)r2 as an overall constant that drops out
from the ratios.
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9.7.60. More Clebsch-Gordon Practice

Add angular momenta j1 = 3/2 and j2 = 1 and work out all the Clebsch-Gordon
coefficients starting from the state ∣j,m⟩ = ∣5/2,5/2⟩ = ∣3/2,3/2⟩⊗ ∣1,1⟩.

9.7.61. Spherical Harmonics Properties

(a) Show that L+ annihilates Y 2
2 =

√
15/32π sin2 θe2iφ.

(b) Work out all of Y m2 using successive applications of L− on Y 2
2 .

(c) Plot the shapes of Y m2 in 3-dimensions (r, θ, φ) using r = Y m2 (θ, φ).

9.7.62. Starting Point for Shell Model of Nuclei

Consider a three-dimensional isotropic harmonic oscillator with Hamiltonian

H = p⃗ 2

2m
+ 1

2
mω2r⃗ 2 = h̵ω (a⃗+ ⋅ a⃗ + 3

2
)

where p⃗ = (p̂1, p̂2, p̂3), r⃗ = (x̂1, x̂2x̂2), a⃗ = (â1, â2, â3). We also have the com-
mutators [x̂i, p̂j] = ih̵δij , [x̂i, x̂j] = 0, [p̂i, p̂j] = 0, [âi, âj] = 0, [â+i , â+j ] = 0, and
[âi, â+j ] = δij Answer the following questions.

(a) Clearly, the system is spherically symmetric, and hence there is a con-
served angular momentum vector. Show that L⃗ = r⃗× p⃗ commutes with the
Hamiltonian.

(b) Rewrite L⃗ in terms of creation and annihilation operators.

(c) Show that ∣0⟩ belongs to the ` = 0 representation. It is called the 1S state.

(d) Show that the operators ∓(a+1±a+2) and a+3 form spherical tensor operators.

(e) Show that N = 1 states, ∣1,1,±1⟩ = ∓(a+1 ± a+2) ∣0⟩ /
√

2 and ∣1,1,0⟩ = a+3 ∣0⟩,
form the ` = 1 representation. (Notation is ∣N, `,m⟩) It is called a 1P state
because it is the first P−state.

(f) Calculate the expectation values of the quadrupole moment Q = (3z2−r2)
for N = ` = 1, m = −1,0,1 states, and verify the Wigner-Eckart theorem.

(g) There are six possible states at the N = 2 level. Construct the states
∣2, `,m⟩ with definite ` = 0,2 and m. They are called 2S (because it is
second S−state) and 1D (because it is the first D−state).

(h) How many possible states are there at the N = 3,4 levels? What ` repre-
sentations do they fall into?

(i) What can you say about general N?
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(j) Verify that the operator Π = eiπa⃗
+⋅a⃗ has the correct property as the parity

operator by showing that Π x⃗Π+ = −x⃗ and Π p⃗Π+ = −p⃗.

(k) Show that Π = (−1)N

(l) Without calculating it explicitly, show that there are no dipole transitions
from the 2P state to the 1P state. As we will see in Chapter 11, this
means, show that ⟨1P ∣ r⃗ ∣2P ⟩ = 0.

9.7.63. The Axial-Symmetric Rotor
Consider an axially symmetric object which can rotate about any of its axes but
is otherwise rigid and fixed. We take the axis of symmetry to be the z−axis, as
shown below.

Figure 9.29: Axially Symmetric Rotor

The Hamiltonian for this system is

Ĥ =
L̂2
x + L̂2

y

2I⊥
+ L̂2

z

2I∥

where I⊥ and I∥ are the moments of inertia about the principle axes.

(a) Show that the energy eigenvalues and eigenfunctions are respectively

E`,m = h̵2

2I⊥
(`(` + 1) −m2 (1 − I⊥

I∥
)) , ψ`,m = Y m` (θ, φ)

What are the possible values for ` and m? What are the degeneracies?

At t = 0, the system is prepared in the state

ψ`,m(t = 0) =
√

3

4π

x

r
=
√

3

4π
sin θ cosφ

(b) Show that the state is normalized.
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(c) Show that

ψ`,m(t = 0) = 1√
2
(−Y 1

1 (θ, φ) + Y −1
1 (θ, φ))

(d) From (c) we see that the initial state is NOT a single spherical harmonic
(the eigenfunctions given in part (a)). Nonetheless, show that the wave-
function is an eigenstate of Ĥ (and thus a stationary state) and find the
energy eigenvalue. Explain this.

(e) If one were to measure the observable L̂2 (magnitude of the angular mo-
mentum squared) and L̂z, what values could one find and with what prob-
abilities?

9.7.64. Charged Particle in 2-Dimensions
Consider a charged particle on the x − y plane in a constant magnetic field
B⃗ = (0,0,B) with the Hamiltonian (assume eB > 0)

H =
Π2
x +Π2

y

2m
, Πi = pi −

e

c
Ai

(a) Use the so-called symmetric gauge A⃗ = B(−y, x)/2, and simplify the Hamil-
tonian using two annihilation operators âx and ây for a suitable choice of
ω.

(b) Further define âz = (âx + iây)/2 and âz̄ = (âx − iây)/2 and then rewrite the
Hamiltonian using them. General states are given in the form

∣n,m⟩ = (â+z)
n

√
n!

(â+z̄)
m

√
m!

∣0,0⟩

starting from the ground state where âz ∣0,0⟩ = âz̄ ∣0,0⟩ = 0. Show that
they are Hamiltonian eigenstates of energies h̵ω(2n + 1).

(c) For an electron, what is the excitation energy when B = 100kG?

(d) Work out the wave function ⟨x, y ∣0,0⟩ in position space.

(e) ∣0,m⟩ are all ground states. Show that their position-space wave functions
are given by

ψ0,m(z, z̄) = Nzme−eBz̄z/4h̵c

where z = x + iy and z̄ = x − iy. Determine N.

(f) Plot the probability density of the wave function for m = 0,3,10 on the
same scale (use ContourPlot or Plot3D in Mathematica).

(g) Assuming that the system is a circle of finite radius R, show that there are
only a finite number of ground states. Work out the number approximately
for large R.

(h) Show that the coherent state efâ
+
z ∣0,0⟩ represents a near-classical cy-

clotron motion in position space.
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9.7.65. Particle on a Circle Again
A particle of mass m is allowed to move only along a circle of radius R on a
plane, x = R cos θ, y = R sin θ.

(a) Show that the Lagrangian is L = mR2θ̇2/2 and write down the canonical
momentum pθ and the Hamiltonian.

(b) Write down the Heisenberg equations of motion and solve them, (So far
no representation was taken).

(c) Write down the normalized position-space wave function ψk(θ) = ⟨θ ∣k⟩
for the momentum eigenstates p̂θ ∣k⟩ = h̵k ∣k⟩ and show that only k = n ∈ Z
are allowed because of the requirement ψ(θ + 2π) = ψ(θ).

(d) Show the orthonormality

⟨n ∣m⟩ = ∫
2π

0
ψ∗nψm dθ = δnm

(e) Now we introduce a constant magnetic field B inside the radius r < d < R
but no magnetic field outside r > d. Prove that the vector potential is

(Ax,Ay) =
⎧⎪⎪⎨⎪⎪⎩

B(−y, x)/2 r < d
Bd2(−y, x)/2r2 r > d

(9.746)

Write the Lagrangian, derive the Hamiltonian and show that the energy
eigenvalues are influenced by the magnetic field even though the particle
does not see the magnetic field directly.

9.7.66. Density Operators Redux
(a) Find a valid density operator ρ for a spin−1/2 system such that

⟨Sx⟩ = ⟨Sy⟩ = ⟨Sz⟩ = 0

Remember that for a state represented by a density operator ρ we have
⟨Oq⟩ = Tr[ρOq]. Your density operator should be a 2×2 matrix with trace
equal to one and eigenvalues 0 ≤ λ ≤ 1. Prove that ρ you find does not
correspond to a pure state and therefore cannot be represented by a state
vector.

(b) Suppose that we perform a measurement of the projection operator Pi and
obtain a positive result. The projection postulate (reduction postulate)
for pure states says

∣Ψ⟩↦ ∣Ψi⟩ =
Pi ∣Ψ⟩√
⟨Ψ∣Pi ∣Ψ⟩

Use this result to show that in density operator notation ρ = ∣Ψ⟩ ⟨Ψ∣ maps
to

ρi =
PiρPi
Tr[ρPi]
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9.7.67. Angular Momentum Redux

(a) Define the angular momentum operators Lx, Ly, Lz in terms of the po-
sition and momentum operators. Prove the following commutation result
for these operators: [Lx, Ly] − ih̵Lz.

(b) Show that the operators L± = Lx ± iLy act as raising and lowering oper-
ators for the z component of angular momentum by first calculating the
commutator [Lz, L±].

(c) A system is in state ψ, which is an eigenstate of the operators L2 and Lz
with quantum numbers ` and m. Calculate the expectation values ⟨Lx⟩
and ⟨L2

x⟩. HINT: express Lx in terms of L±.

(d) Hence show that Lx and Ly satisfy a general form of the uncertainty
principle:

⟨(∆A)2⟩⟨(∆B)2⟩ ≥ −1

4
⟨[A,B]⟩

9.7.68. Wave Function Normalizability

The time-independent Schrödinger equation for a spherically symmetric poten-
tial V (r) is

− h̵
2

2µ
[ 1

r2

∂

∂r
(r2 ∂R

∂r
) − `(` + 1)

r2
] = (E − V )R

where ψ = R(r)Y m` (θ, φ), so that the particle is in an eigenstate of angular
momentum.

Suppose R(r) ∝ r−α and V (r) ∝ −r−β near the origin. Show that α < 3/2
is required if the wavefunction is to be normalizable, but that α < 1/2 (or
α < (3−β)/2 if β > 2) is required for the expectation value of energy to be finite.

9.7.69. Currents

The quantum flux density of probability is

j⃗ = ih̵

2m
(ψ∇ψ∗ − ψ∗∇ψ)

It is related to the probability density ρ = ∣ψ∣2 by ∇ ⋅ j⃗ + ρ̇ = 0.

(a) Consider the case where ψ is a stationary state. Show that ρ and j⃗ are
then independent of time. Show that, in one spatial dimension, j⃗ is also
independent of position.

(b) Consider a 3D plane wave ψ = Aeik⃗⋅x⃗. What is j⃗ in this case? Give a
physical interpretation.

817



9.7.70. Pauli Matrices and the Bloch Vector
(a) Show that the Pauli operators

σx =
2

h̵
Sx , σy =

2

h̵
Sy , σz =

2

h̵
Sz

satisfy
Tr[σi, σj] = 2δij

where the indices i and j can take on the values x, y or z. You will
probably want to work with matrix representations of the operators.

(b) Show that the Bloch vectors for a spin−1/2 degree of freedom

s⃗ = ⟨Sx⟩x̂ + ⟨Sy⟩ŷ + ⟨Sz⟩ẑ

has lengthh̵/2 if and only if the corresponding density operator represents
a pure state. You may wish to make use of the fact that an arbitrary
spin−1/2 density operator can be parameterized in the following way:

ρ = 1

2
(I + ⟨σx⟩σx + ⟨σy⟩σy + ⟨σz⟩σz)
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Chapter 10

Time-Independent Perturbation Theory

10.1. Nondegenerate Case

For most physically interesting systems, it is not possible to find simple, exact
formulas for the energy eigenvalues and state vectors.

In many cases, however, the real system is very similar to another system that
we can solve exactly in closed form.

Our procedure will then be to approximate the real system by the similar system
and approximately calculate corrections to find the corresponding values for
the real system. The approximation method that is most often used is called
perturbation theory.

10.1.1. Rayleigh-Schrodinger Perturbation Theory

Consider the problem of finding the energies (eigenvalues) and state vectors
(eigenvectors) for a system with a Hamiltonian Ĥ that can be written in the
form

Ĥ = Ĥ0 + V̂ (10.1)

where we have already solved the system described by Ĥ0, i.e., we know that

Ĥ0 ∣n⟩ = εn ∣n⟩ (10.2)

with ⟨m ∣n⟩ = δmn (remember that the eigenvectors of a Hermitian operator
always form a complete orthonormal set ... or we can make them so using the
Gram-Schmidt process if degeneracy exists).

We call this solvable system the unperturbed or zero-order system.

We then assume that the extra term V̂ is a small correction to Ĥ0 (that is what
we mean by similar systems).
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This says that the real physical system will have a solution given by

Ĥ ∣N⟩ = En ∣N⟩ (10.3)

where the real physical state vectors ∣N⟩ are only slightly different from the
unperturbed state vectors ∣n⟩ and the real physical energies En are only slightly
different from the unperturbed energies εn. Mathematically, we can express
this situation by writing the perturbation in the form

V̂ = gÛ (10.4)

where g is some small (≪ 1) constant factor pulled out of the correction term
V̂ that characterizes its strength (or effect on the system described by Ĥ0) of
the perturbation.

As g → 0, each eigenvector ∣N⟩ of Ĥ must approach the corresponding eigen-
vector ∣n⟩ of Ĥ0 and each energy eigenvalue En of Ĥ must approach the corre-
sponding energy eigenvalue εn of Ĥ0.

We can guarantee that this property is true by assuming that power series ex-
pansions in the small parameter g exist for all physically relevant quantities of
the real system, i.e.,

Ĥ = Ĥ0 + V̂ = Ĥ0 + gÛ (10.5)

∣N⟩ = ∣n⟩ + g ∣N (1)⟩ + g2 ∣N (2)⟩ + . . . (10.6)

En = εn + gE(1)
n + g2E(2)

n + . . . (10.7)

where the terms ∣N (i)⟩ and E
(i)
n are called the ith-order correction to the un-

perturbed or zero-order solution. This is a major assumption, that we cannot,
in general, prove is true a priori, i.e., we cannot prove that the power series
converge and therefore make sense.

The usual normalization condition we might impose would be ⟨N ∣N⟩ = 1. Since
the results of any calculation are independent of the choice of normalization (re-
member the expectation value and density operator definitions all include the
norm in the denominator), we choose instead to use the normalization condition

⟨n ∣ N⟩ = 1 (10.8)

which will greatly simplify our derivations and subsequent calculations.

Substituting the power series expansion into the normalization condition we get

⟨n ∣ N⟩ = 1 = ⟨n ∣ n⟩ + g ⟨n ∣ N (1)⟩ + g2 ⟨n ∣ N (2)⟩ + . . . (10.9)

But since we already have assumed that ⟨n ∣n⟩ = 1, we must have

0 = g ⟨n ∣ N (1)⟩ + g2 ⟨n ∣ N (2)⟩ + .... (10.10)
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Now the only way for a power series to be identically zero is for the coefficient
of each power of g to be separately equal to zero. This gives the result

⟨n ∣ N (i)⟩ = 0 , i = 1,2,3,4, . . . (10.11)

as a direct consequence of the normalization condition, i.e., all corrections to
the state vector are orthogonal to the unperturbed state vector.

We now substitute all of these power series into the original energy eigenvalue
equation for Ĥ:

Ĥ ∣N⟩ = En ∣N⟩
(Ĥ0 + gÛ) (∣n⟩ + g ∣N (1)⟩ + g2 + ∣N (2)⟩ ....)

= (εn + gE(1)
n + g2E(2)

n + ....) (∣n⟩ + g ∣N (1)⟩ + g2 + ∣N (2)⟩ ....)

We now multiply everything out and collect terms in a single power series in g.
We get

0 = (Ĥ0 ∣n⟩ − εn ∣n⟩) g0 + (Ĥ0 ∣N (1)⟩ + Û ∣n⟩ − εn ∣N (1)⟩ −E(1)
n ∣n⟩) g1

+ ...................................................

+ (Ĥ0 ∣N (k)⟩ + Û ∣N (k−1)⟩ − εn ∣N (k)⟩ −E(1)
n ∣N (k−1)⟩ − .... −E(k)

n ∣n⟩) gk

+ ...................................................

Since the power series is equal to zero, the coefficient of each power of g must
be equal to zero. We get (labelling the equation by the corresponding power of
g)

0th − order Ĥ0 ∣n⟩ = εn ∣n⟩ (10.12)

which is just our original assumption = unperturbed solution.

1st − order Ĥ0 ∣N (1)⟩ + Û ∣n⟩ = εn ∣N (1)⟩ +E(1)
n ∣n⟩ (10.13)

...........................................

...........................................

kth − order Ĥ0 ∣N (k)⟩ + Û ∣N (k−1)⟩

= εn ∣N (k)⟩ +E(1)
n ∣N (k−1)⟩ + .... +E(k)

n ∣N (0)⟩ (10.14)

...........................................

where we have used the notation ∣n⟩ = ∣N (0)⟩.

Let us consider the 1st − order equation. If we apply the linear functional ⟨n∣
we get

⟨n∣ Ĥ0 ∣N (1)⟩ + ⟨n∣ Û ∣n⟩ = ⟨n∣ εn ∣N (1)⟩ + ⟨n∣E(1)
n ∣n⟩ (10.15)

εn ⟨n ∣ N (1)⟩ + ⟨n∣ Û ∣n⟩ = εn ⟨n ∣ N (1)⟩ +E(1)
n ⟨n ∣ n⟩ (10.16)
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or since ⟨n ∣N (1)⟩ = 0 we get

E(1)
n = ⟨n∣ Û ∣n⟩ = 1st − order correction to the energy

= diagonal matrix element of Û in the ∣n⟩ (unperturbed) basis

or the expectation value of Û in the state ∣n⟩
or in the nth unperturbed state

Therefore, to first order in g we have

En = εn + gE(1)
n = εn + g ⟨n∣ Û ∣n⟩

= εn + ⟨n∣ V̂ ∣n⟩ (10.17)

where we have reabsorbed the factor g back into the original potential energy
function.

In the same manner, if we apply the linear functional ⟨n∣ to the kth − order
equation we get

E(k)
n = ⟨n∣ Û ∣N (k−1)⟩ (10.18)

This says that, if we know the correction to the eigenvector to order (k − 1),
then we can calculate the correction to the energy eigenvalue to order k (the
next order).

Now the kth − order correction to the eigenvector, ∣N (k)⟩ is just another vector
in the space and, hence, we can expand it as a linear combination of the ∣n⟩
states (since they are a basis).

∣N (k)⟩ = ∑
m≠n

∣m⟩ ⟨m ∣ N (k)⟩ (10.19)

The state ∣n⟩ is not included because ⟨n ∣N (i)⟩ = 0 by our choice of normalization.

In order to evaluate this sum, we must find an expression for the coefficients
⟨m ∣N (k)⟩.

This can be done by applying the linear functional ⟨m∣, m ≠ n to the kth−order
equation. We get

⟨m∣ Ĥ0 ∣N (k)⟩ + ⟨m∣ Û ∣N (k−1)⟩

= ⟨m∣ εn ∣N (k)⟩ + ⟨m∣E(1)
n ∣N (k−1)⟩ + .... + ⟨m∣E(k)

n ∣N (0)⟩

εm ⟨m ∣ N (k)⟩ + ⟨m∣ Û ∣N (k−1)⟩

= εn ⟨m ∣ N (k)⟩ +E(1)
n ⟨m ∣ N (k−1)⟩ + ...... +E(k)

n ⟨m ∣ N (0)⟩

If we assume that εm ≠ εn (we have nondegenerate levels) we get

⟨m ∣ N (k)⟩ (10.20)

= 1

εn − εm
(⟨m∣ Û ∣N (k−1)⟩ −E(1)

n ⟨m ∣ N (k−1)⟩ − ...... −E(k)
n ⟨m ∣ N (0)⟩)
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This formula allows us to find the kth − order correction to the eigenvector in
terms of lower order corrections to ∣N⟩ and En as long as ∣n⟩ corresponds to a
nondegenerate level.

To see how this works, we will calculate the corrections to second order.

For first order, we let k = 1 and get

⟨m ∣ N (1)⟩ = 1

εn − εm
(⟨m∣ Û ∣N (0)⟩ −E(1)

n ⟨m ∣ N (0)⟩)

= 1

εn − εm
(⟨m∣ Û ∣n⟩ −E(1)

n ⟨m ∣ n⟩)

= 1

εn − εm
⟨m∣ Û ∣n⟩ (10.21)

which gives

∣N (1)⟩ = ∑
m≠n

∣m⟩ ⟨m ∣ N (1)⟩ = ∑
m≠n

∣m⟩ 1

εn − εm
⟨m∣ Û ∣n⟩ (10.22)

Therefore, to first order in g we have

∣N⟩ = ∣n⟩ + g ∣N (1)⟩ = ∣n⟩ + ∑
m≠n

∣m⟩ 1

εn − εm
⟨m∣ V̂ ∣n⟩ (10.23)

We then use N (1) to calculate E(2)
n , the second order correction to the energy,

using

E(2)
n = ⟨n∣ Û ∣N (1)⟩ = ⟨n∣ Û (∑

m≠n
∣m⟩ 1

εn − εm
⟨m∣ Û ∣n⟩)

= ∑
m≠n

∣⟨n∣ Û ∣m⟩∣
2

εn − εm
(10.24)

Therefore, to second order in g we have

En = εn + gE(1)
n + g2E(2)

n

= εn + ⟨n∣ V̂ ∣n⟩ + ∑
m≠n

∣⟨n∣ V̂ ∣m⟩∣
2

εn − εm
(10.25)
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We then obtain the second order correction to the state vector in the same way.

⟨m ∣ N (2)⟩ = 1

εn − εm
(⟨m∣ Û ∣N (1)⟩ −E(1)

n ⟨m ∣ N (1)⟩ −E(2)
n ⟨m ∣ N (0)⟩)

= 1

εn − εm
⟨m∣ Û ∣N (1)⟩ − 1

εn − εm
⟨n∣ Û ∣n⟩ ⟨m ∣ N (1)⟩

= 1

εn − εm
⟨m∣ Û (∑

k≠n
∣k⟩ 1

εn − εk
⟨k∣ Û ∣n⟩)

− 1

εn − εm
⟨n∣ Û ∣n⟩ 1

εn − εm
⟨m∣ Û ∣n⟩

= ∑
k≠n

⟨m∣ Û ∣k⟩ ⟨k∣ Û ∣n⟩
(εn − εm)(εn − εk)

− ⟨n∣ Û ∣n⟩ ⟨m∣ Û ∣n⟩
(εn − εm)2

(10.26)

Therefore,

∣N (2)⟩ = ∑
m≠n
∑
k≠n

∣m⟩ ⟨m∣ Û ∣k⟩ ⟨k∣ Û ∣n⟩
(εn − εm)(εn − εk)

− ∑
m≠n

∣m⟩ ⟨n∣ Û ∣n⟩ ⟨m∣ Û ∣n⟩
(εn − εm)2

(10.27)

and so on.

An Example

We will now do an example where we know the exact answer so that we can
compare it to the perturbation results.

We consider a 1-dimensional system represented by a perturbed harmonic os-
cillator where

Ĥ = Ĥ0 + V̂ (10.28)

with

Ĥ0 = h̵ω(â+â +
1

2
)→ harmonic oscillator (10.29)

Ĥ0 ∣n⟩ = εn ∣n⟩ = h̵ω(n + 1

2
) ∣n⟩ (10.30)

In standard operator notation

Ĥ0 =
p̂2

2m
+ 1

2
kx2 , k =mω2 (10.31)

We now perturb the system with the potential energy term

V̂ = 1

2
k ′x2 , k ′ << k (10.32)

Therefore,

Ĥ = p̂2

2m
+ 1

2
(k + k ′)x2 (10.33)
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We still have a harmonic oscillator (with a changed spring constant). This says
that the new energies are given by

En = h̵ω̃(n +
1

2
) (10.34)

where

ω̃ =
√

k + k ′
m

=
√

k

m

√
1 + k

′

k
= ω

√
1 + k

′

k
(10.35)

Therefore, the exact energies for the perturbed system are

En = h̵ω̃(n +
1

2
) = h̵ω

√
1 + k

′

k
(n + 1

2
) (10.36)

For k′ ≪ k, we can expand this as

En = h̵ω(n +
1

2
)
⎛
⎝

1 + 1

2

k ′

k
− 1

8
(k

′

k
)

2

+ . . .
⎞
⎠

(10.37)

which should correspond to the perturbation calculated energy calculated to 2nd

order in perturbation theory. We now do the perturbation calculation.

Our earlier derivation gives

En = εn + ⟨n∣ V̂ ∣n⟩ + ∑
m≠n

∣⟨n∣ V̂ ∣m⟩∣
2

εn − εm
(10.38)

∣N⟩ = ∣n⟩ + ∑
m≠n

∣m⟩ 1

εn − εm
⟨m∣ V̂ ∣n⟩ (10.39)

where
V̂ = 1

2
k ′x2 = 1

4

k′h̵

mω
(â + â+)2 (10.40)

We need to calculate this matrix element

⟨m∣ V̂ ∣n⟩ = 1

4

k ′h̵

mω
⟨m∣ (â + â+)2 ∣n⟩ = 1

4

k ′h̵

mω
⟨m∣ â2 + ââ+ + â+â + (â+)2 ∣n⟩

= 1

4

k ′h̵

mω
⟨m∣ (

√
n(n − 1) ∣n − 2⟩ + (n + 1) ∣n⟩ + n ∣n⟩ +

√
(n + 1)(n + 2) ∣n + 2⟩)

= 1

4

k ′h̵

mω
(
√
n(n − 1)δm,n−2 + (2n + 1)δm,n +

√
(n + 1)(n + 2)δm,n+2)

(10.41)

where we have used

⟨m∣ â ∣n⟩ =
√
n ⟨m ∣ n − 1⟩ =

√
nδm,n−1 (10.42)

⟨m∣ â+ ∣n⟩ =
√
n + 1 ⟨m ∣ n + 1⟩ =

√
n + 1δm,n+1 (10.43)
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Therefore,

⟨n∣ V̂ ∣n⟩ = 1

4

k ′h̵

mω
(2n + 1) = h̵ω(n + 1

2
)(1

2

k ′

k
) (10.44)

and

∑
m≠n

∣⟨n∣ V̂ ∣m⟩∣
2

εn − εm
= (1

4

k ′h̵

mω
)

2

[n(n − 1)
2h̵ω

− (n + 1)(n + 2)
(−2h̵ω)

]

= −h̵ω (n + 1

2
)
⎡⎢⎢⎢⎢⎣

1

8
(k

′

k
)

2⎤⎥⎥⎥⎥⎦
(10.45)

which then gives

En = h̵ω(n +
1

2
)
⎛
⎝

1 + 1

2

k ′

k
− 1

8
(k

′

k
)

2

+ . . .
⎞
⎠

(10.46)

in agreement with the exact result (to 2nd order).

To calculate the new state vector to first order we need

∑
m≠n

∣m⟩ 1

εn − εm
⟨m∣ V̂ ∣n⟩

= 1

4

k ′h̵

mω

√
n(n − 1)
2h̵ω

∣n − 2⟩ + 1

4

k ′h̵

mω

√
(n + 1)(n + 2)

(−2h̵ω)
∣n + 2⟩ (10.47)

which gives

∣N⟩ = ∣n⟩ + 1

4

k ′h̵

mω

√
n(n − 1)
2h̵ω

∣n − 2⟩ − 1

4

k ′h̵

mω

√
(n + 1)(n + 2)

2h̵ω
∣n + 2⟩ (10.48)

What does the new ground state wave function look like? We have

∣N = 0⟩ = ∣0⟩ −
√

2

2h̵ω
∣2⟩ (10.49)

and

⟨x ∣ N = 0⟩ = ⟨x ∣ 0⟩ − 1

4

k ′h̵

mω

√
2

2h̵ω
⟨x ∣ 2⟩ (10.50)

ψN=0(x) = ψ0(x) −
1

4

k ′h̵

mω

√
2

2h̵ω
ψ2(x) (10.51)

Now we found earlier that

⟨x ∣ 0⟩ = ψ0(x) = (mω
πh̵

)
1/4

e−
mωx2

2h̵ (10.52)

and

⟨x ∣ 2⟩ = ψ2(x) = (mω
4πh̵

)
1/4

(2mω
h̵
x2 − 1)e−

mωx2

2h̵ (10.53)
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which gives

ψN=0(x) = (mω
πh̵

)
1/4

e−
mωx2

2h̵ (1 + 1

4

k ′h̵

mω

√
2

2h̵ω

1√
2
(1 − 2

mω

h̵
x2))

= (mω
πh̵

)
1/4

e−
mωx2

2h̵ (1 + k
′

8k
− mωk

′

4h̵k
x2) (10.54)

Since we are only changing the spring constant we should have

ψN=0(x) = (mω̃
πh̵

)
1/4

e−
mω̃x2

2h̵ = (mω
πh̵

)
1/4

(1 + k
′

k
)

1/8

e−
mωx2

2h̵

√
1+ k ′k

= (mω
πh̵

)
1/4

(1 + k
′

8k
) e−

mωx2

2h̵ (1+ k′2k )

= (mω
πh̵

)
1/4

(1 + k
′

8k
)(1 − mωk

′

4h̵k
x2) e−

mωx2

2h̵

= (mω
πh̵

)
1/4

e−
mωx2

2h̵ (1 + k
′

8k
− mωk

′

4h̵k
x2) (10.55)

which agrees with the perturbation result to this order.

The perturbation theory we have developed so far breaks down if there are any
states where

εn = εm but ⟨m∣ V̂ ∣n⟩ ≠ 0 (10.56)

i.e., degenerate states with nonzero matrix elements of the perturbing potential
between them.

10.2. Degenerate Case

We handle this case as follows. Suppose we have a group of k states

∣n1⟩ , ∣n2⟩ , ∣n3⟩ , . . . , ∣nk⟩ (10.57)

that are degenerate states of the unperturbed Hamiltonian Ĥ0, i.e.,

Ĥ0 ∣ni⟩ = εn1 ∣ni⟩ , i = 1,2,3,4,5, . . . , k (10.58)

If ⟨ni∣ V̂ ∣nj⟩ ≠ 0 for i ≠ j within this set, the previous perturbation formulas will
fail because the energy denominators εni − εnj → 0.

Remember, however, that any linear combination of the degenerate states

∣n1⟩ , ∣n2⟩ , ∣n3⟩ , . . . , ∣nk⟩ (10.59)

is also an eigenstate of Ĥ0 with the same energy εn1 .
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Therefore, if we can choose a different set of basis states (start off with a new
set of zero-order states) within this degenerate subspace, i.e., choose a new set
of k orthogonal states (linear combinations of the old set of degenerate states)

∣nα⟩ =
k

∑
i=1

Cαi ∣ni⟩ (10.60)

such that we have
⟨nα∣ V̂ ∣nβ⟩ = 0 for α ≠ β (10.61)

then we can use the perturbation formulas as derived earlier.

This procedure will work because the terms with zero denominators will have
zero numerators and if one looks at the derivation, this means that these terms
do not even appear in the final results, i.e., the zero numerators take effect be-
fore the zero denominators appear.

This condition says that the correct choice of zero-order states within the degen-
erate subspace (the set of degenerate vectors) for doing degenerate perturbation
theory is that set which diagonalizes the matrix representation of V̂ within each
group of degenerate states.

The problem of diagonalizing V̂ within a group of k states

∣n1⟩ , ∣n2⟩ , ∣n3⟩ , . . . , ∣nk⟩ (10.62)

is that of finding the eigenvectors and eigenvalues of the k × k matrix

⎛
⎜⎜⎜⎜
⎝

⟨n1∣ V̂ ∣n1⟩ ⟨n1∣ V̂ ∣n2⟩ ⋅ ⟨n1∣ V̂ ∣nk⟩
⟨n2∣ V̂ ∣n1⟩ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⟨nk ∣ V̂ ∣n1⟩ ⋅ ⋅ ⟨nk ∣ V̂ ∣nk⟩

⎞
⎟⎟⎟⎟
⎠

(10.63)

We now show that if the coefficients Cαi of the new zero-order states are just
the components of the eigenvectors of this matrix, then it will be diagonalized
in the degenerate subspace.

Suppose that we represent the eigenvector by the column vector

∣nα⟩ =
⎛
⎜⎜⎜
⎝

Cα1

Cα2

⋅
Cαk

⎞
⎟⎟⎟
⎠

(10.64)

then the statement that ∣nα⟩ is an eigenvector of the k × k submatrix of V̂ with
eigenvalues that we write as E(1)

nα is equivalent to writing

V̂ ∣nα⟩ = E(1)
nα ∣nα⟩ (10.65)
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or

⎛
⎜⎜⎜⎜
⎝

⟨n1∣ V̂ ∣n1⟩ ⟨n1∣ V̂ ∣n2⟩ ⋅ ⟨n1∣ V̂ ∣nk⟩
⟨n2∣ V̂ ∣n1⟩ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⟨nk ∣ V̂ ∣n1⟩ ⋅ ⋅ ⟨nk ∣ V̂ ∣nk⟩

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

Cα1

Cα2

⋅
Cαk

⎞
⎟⎟⎟
⎠
= E(1)

nα

⎛
⎜⎜⎜
⎝

Cα1

Cα2

⋅
Cαk

⎞
⎟⎟⎟
⎠

(10.66)

or finally
∑
i

⟨nj ∣V̂ ∣ni⟩Cαi = E(1)
nα Cαi (10.67)

All of these calculations take place within the k-dimensional degenerate subspace.

We will assume that the eigenvectors are normalized, which implies that

∑
i

∣Cαi∣2 = 1 (10.68)

i.e., vectors are normalized to one.

Now consider another of the new vectors given by

∣nβ⟩ =
k

∑
j=1

Cβj ∣nj⟩ (10.69)

We then have

⟨nβ ∣ =
k

∑
j=1

C∗
βj ⟨nj ∣ (10.70)

Applying the linear functional ⟨nβ ∣ to the eigenvector/eigenvalue equation we
get

∑
j

∑
i

⟨nj ∣C∗
βj V̂ Cαi ∣ni⟩ = E(1)

nα ∑
j

C∗
βjCαi (10.71)

Now, since the eigenvectors of any Hermitian matrix are always a complete
orthonormal set (or can always be made so using the Gram-Schmidt process),
the orthonormality of the new vectors says that

∑
j

C∗
βjCαi = ⟨nβ ∣ nα⟩ = δβα (10.72)

Therefore the vectors

∣nα⟩ =
k

∑
i=1

Cαi ∣ni⟩ (10.73)

satisfy

⎛
⎝∑j

⟨nj ∣C∗
βj

⎞
⎠
V̂ (∑

i

Cαi ∣ni⟩) = E(1)
nα δαβ (10.74)

⟨nβ ∣ V̂ ∣nα⟩ = E(1)
nα δαβ (10.75)
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This says that the corresponding eigenvalue E(1)
nα of one of the new vectors is

the first order energy corrections for the state ∣Nα⟩. The states

∣nα⟩ , ∣nβ⟩ , ∣nγ⟩ , . . . , ∣nκ⟩ (10.76)

are called the new zeroth-order state vectors.

Thus the group of states

∣n1⟩ , ∣n2⟩ , ∣n3⟩ , . . . , ∣nk⟩ (10.77)

in the presence of the perturbation V̂ split(rearrange) into the k states

∣nα⟩ , ∣nβ⟩ , ∣nγ⟩ , . . . , ∣nκ⟩ (10.78)

which are given to first order by

∣Nα⟩ = ∣nα⟩ + ∑
m≠α,β,..,κ

∣m⟩ ⟨m∣ V̂ ∣nα⟩
εn1 − εm

(10.79)

and the energy shift to second order is

Enα = εn1 + ⟨nα∣ V̂ ∣nα⟩ + ∑
m≠α,β,..,κ

∣⟨m∣ V̂ ∣nα⟩∣
2

εn1 − εm
(10.80)

where
⟨nα∣ V̂ ∣nα⟩ = E(1)

nα (10.81)

is an eigenvalue of the V̂ matrix in the degenerate subspace.

An Example

We now consider a 2−dimensional oscillator that is perturbed by a potential of
the form

V̂ = λx̂ŷ (10.82)

We then have
Ĥ = Ĥ0 + V̂ (10.83)

where

Ĥ0 =
p̂2
x

2m
+
p̂2
y

2m
+ 1

2
k(x2 + y2) (10.84)

As we showed earlier, using the âx and ây operators we get

Ĥ0 = h̵ω(â+xâx + â+y ây + 1) (10.85)

Ĥ0 ∣nx, ny⟩ = εnx,ny ∣nx, ny⟩ = h̵ω(nx + ny + 1) ∣nx, ny⟩ (10.86)
degeneracy = nx + ny + 1 (10.87)
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and
V̂ = λ h̵

2mω
(âx + â+x)(ây + â+y) (10.88)

The unperturbed ground-state is ∣0,0⟩ with ε0,0 = h̵ω. It is a nondegenerate
level, so we can apply the standard perturbation theory to get

E0 = ε0,0 + ⟨0,0∣ V̂ ∣0,0⟩ + ∑
m≠0
n≠0

∣⟨m,n∣ V̂ ∣0,0⟩∣
ε0,0 − εm,n

(10.89)

Now
⟨0,0∣ V̂ ∣0,0⟩ = λh̵

2mω
⟨0,0∣ (âx + â+x)(ây + â+y) ∣0,0⟩ = 0 (10.90)

and

⟨m,n∣ V̂ ∣0,0⟩ = λh̵

2mω
⟨m,n∣ (âx + â+x)(ây + â+y) ∣0,0⟩

= λh̵

2mω
⟨m,n∣ â+xâ+y ∣0,0⟩ =

λh̵

2mω
⟨m,n ∣ 1,1⟩

= λh̵

2mω
δm,1δn,1 (10.91)

Thus, the correction to first order is zero. Calculating to second order we get

E0 = h̵ω − ( λh̵

2mω
)

2 1

2h̵ω
= h̵ω (1 − λ2

8m2ω4
) (10.92)

The next unperturbed level is 2−fold degenerate, i.e.,

nx = 0, ny = 1→ ε0,1 = 2h̵ω

nx = 1, ny = 0→ ε1,0 = 2h̵ω

For ease of notation we will sometimes denote

∣1,0⟩ = ∣a⟩ and ∣0,1⟩ = ∣b⟩ (10.93)

We now use degenerate perturbation theory.

The procedure is to evaluate the V̂ matrix in the 2 × 2 degenerate subspace,
diagonalize it and obtain the first order corrections.

The 2 × 2 matrix is

V = ( V̂aa V̂ab
V̂ba V̂bb

) = ( ⟨a∣ V̂ ∣a⟩ ⟨a∣ V̂ ∣b⟩
⟨b∣ V̂ ∣a⟩ ⟨b∣ V̂ ∣b⟩

) (10.94)

Now

V̂aa = ⟨1,0∣ V̂ ∣1,0⟩ = 0 = ⟨0,1∣ V̂ ∣0,1⟩ = V̂bb (10.95)

V̂ab = V̂ba = ⟨1,0∣ V̂ ∣0,1⟩ = λh̵

2mω
⟨1,0∣ â+xây ∣0,1⟩

= λh̵

2mω
(10.96)
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Therefore the 2 × 2 submatrix is

V = λh̵

2mω
( 0 1

1 0
) (10.97)

This is simple to diagonalize. We get these results

∣a ′⟩ = 1√
2
(∣a⟩ + ∣b⟩) = 1√

2
( 1

1
)→ eigenvalue = + λh̵

2mω
(10.98)

∣b ′⟩ = 1√
2
(∣a⟩ − ∣b⟩) = 1√

2
( 1
−1

)→ eigenvalue = − λh̵

2mω
(10.99)

∣a′⟩ and ∣b′⟩ are the new zeroth order state vectors (eigenvectors of the 2 × 2
submatrix) and

± λh̵

2mω
(10.100)

are the corresponding first order energy corrections.

Thus, the 2−fold degenerate level splits into two nondegenerate levels as shown
in Figure 10.1 below.

Figure 10.1: Splitting of a degenerate Level

where

Ea′ = 2h̵ω − λh̵

2mω
(10.101)

Eb′ = 2h̵ω + λh̵

2mω
(10.102)

∆E = levelsplitting = λh̵

mω
(10.103)

Another Example

Now let us consider a system of two spin−1/2 particles in a magnetic field. We
also assume that there exists a direct spin-spin interaction so that the Hamilto-
nian takes the form

Ĥ = (αS⃗1,op + βS⃗2,op) ⋅ B⃗ + γS⃗1,op ⋅ S⃗2,op (10.104)
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If we choose B⃗ = Bẑ and γ ≫ α,β, then we can write

Ĥ = Ĥ0 + V̂ (10.105)

Ĥ0 = γS⃗1,op ⋅ S⃗2,op (10.106)

V̂ = αBŜ1z + βBŜ2z (10.107)

We define

S⃗op = S⃗1,op + S⃗2,op = total spin angular momentum (10.108)

and then we have

S⃗2
op = S⃗op ⋅ S⃗op = (S⃗1,op + S⃗2,op) ⋅ (S⃗1,op + S⃗2,op)

= S⃗2
1,op + S⃗2

2,op + 2S⃗1,op ⋅ S⃗2,op

= 3

4
h̵2Î + 3

4
h̵2Î + 2S⃗1,op ⋅ S⃗2,op (10.109)

or

Ĥ0 = γS⃗1,op ⋅ S⃗2,op =
γ

2
(S⃗2

op −
3

2
h̵2Î) (10.110)

Our earlier discussion of the addition of angular momentum says that when we
add two spin−1/2 angular momenta we get the resultant total angular momen-
tum values 0 and 1, i.e.,

1

2
⊗ 1

2
= 0⊕ 1 (10.111)

Each separate spin−1/2 system has the eigenvectors/eigenvalues

S⃗2
1,op ∣±⟩ =

3

4
h̵ ∣±⟩ , S⃗1z ∣±⟩ = ±

h̵

2
∣±⟩ (10.112)

The corresponding direct-product states are

∣++⟩ , ∣+−⟩ , ∣−+⟩ , ∣−−⟩ (10.113)

where the symbols mean
∣+−⟩ = ∣+⟩1 ∣−⟩2 (10.114)

and so on.

The total angular momentum states are (we derived them earlier) labeled as
∣s,m⟩ where

S⃗2
op ∣s,m⟩ = h̵2s(s + 1) ∣s,m⟩ (10.115)

Ŝz ∣s,m⟩ = (Ŝ1z + Ŝ2z) ∣s,m⟩ = ±mh̵ ∣s,m⟩ (10.116)
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They are given in terms of the direct product states by

∣1,1⟩ = ∣++⟩ = ∣1⟩ (10.117)

∣1,0⟩ = 1√
2
∣+−⟩ + 1√

2
∣−+⟩ = ∣2⟩ (10.118)

∣1,−1⟩ = ∣−−⟩ = ∣3⟩ (10.119)

∣0,0⟩ = 1√
2
∣+−⟩ − 1√

2
∣−+⟩ = ∣4⟩ (10.120)

The total angular momentum states are eigenstates of Ĥ0 and we use them as
the unperturbed or zero-order states.

Ĥ0 ∣1,1⟩ = γh̵
2

4
∣1,1⟩ = ε1 ∣1,1⟩ (10.121)

Ĥ0 ∣1,0⟩ = γh̵
2

4
∣1,0⟩ = ε2 ∣1,0⟩ (10.122)

Ĥ0 ∣1,−1⟩ = γh̵
2

4
∣1,−1⟩ = ε3 ∣1,−1⟩ (10.123)

Ĥ0 ∣0,0⟩ = −3γh̵2

4
∣0,0⟩ = ε4 ∣0,0⟩ (10.124)

We thus have one nondegenerate level and one 3−fold degenerate level. Now
using

V̂ = αBŜ1z + βBŜ2z (10.125)

we do perturbation theory on these levels.

Nondegenerate Level

First order:

E
(1)
4 = ⟨4∣ V̂ ∣4⟩

= ( 1√
2
⟨+−∣ + 1√

2
⟨−+∣) (αBŜ1z + βBŜ2z)(

1√
2
∣+−⟩ − 1√

2
∣−+⟩) = 0

Second order:

E
(2)
4 = ∑

m≠4

∣⟨m∣ V̂ ∣4⟩∣
2

ε4 − εm
=

∣⟨++∣αBŜ1z + βBŜ2z ( 1√
2
∣+−⟩ − 1√

2
∣−+⟩)∣

2

ε4 − ε1

+
∣( 1√

2
⟨+−∣ + 1√

2
⟨−+∣)αBŜ1z + βBŜ2z ( 1√

2
∣+−⟩ − 1√

2
∣−+⟩)∣

2

ε4 − ε2

+
∣⟨−−∣αBŜ1z + βBŜ2z ( 1√

2
∣+−⟩ − 1√

2
∣−+⟩)∣

2

ε4 − ε3
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E
(2)
4 =

∣( 1√
2
⟨+−∣ + 1√

2
⟨−+∣)αBŜ1z + βBŜ2z ( 1√

2
∣+−⟩ − 1√

2
∣−+⟩)∣

2

ε4 − ε2

= −B
2(α − β)2

γ

Therefore the energy to second order for the non-degenerate level is

E4 = ε4 +E(1)
4 +E(2)

4 = −3γh̵2

4
− B

2(α − β)2

γ
(10.126)

Degenerate Level

In this case, the 3 × 3 degenerate submatrix of V̂ is

⎛
⎜⎜
⎝

⟨1∣ V̂ ∣1⟩ ⟨1∣ V̂ ∣2⟩ ⟨1∣ V̂ ∣3⟩
⟨2∣ V̂ ∣1⟩ ⟨2∣ V̂ ∣2⟩ ⟨2∣ V̂ ∣3⟩
⟨3∣ V̂ ∣1⟩ ⟨3∣ V̂ ∣2⟩ ⟨3∣ V̂ ∣3⟩

⎞
⎟⎟
⎠
= (α + β)h̵B

2

⎛
⎜
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎟
⎠

(10.127)

which is already diagonal. Since the diagonal elements are the first order energy
corrections, we have (to first order)

E1 =
γh̵2

4
+ (α + β)h̵B

2
(10.128)

E2 =
γh̵2

4
(10.129)

E3 =
γh̵2

4
− (α + β)h̵B

2
(10.130)

Exact Solution

We can, in fact, solve this problem exactly and compare it to the perturbation
result. We do this by choosing a new basis set (arbitrary choice made to simplify
calculations) and rewriting Ĥ in terms of operators appropriate to the basis
choice(that is what is meant by simplify calculations).

We then use the new basis to construct the 4×4 Ĥ matrix and then diagonalize
the matrix. This method always works for a system with a small number of
states.

Choose the direct product states as a basis

∣++⟩ = ∣1⟩ , ∣+−⟩ = ∣2⟩ , ∣−+⟩ = ∣3⟩ , ∣−−⟩ = ∣4⟩ (10.131)

Write Ĥ as (choose operators appropriate(easy to calculate) to the basis or the
HOME space)

Ĥ = αBŜ1z + βBŜ2z + γ (Ŝ1zŜ2z + Ŝ1xŜ2x + Ŝ1yŜ2y)

= αBŜ1z + βBŜ2z + γ (Ŝ1zŜ2z +
1

2
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+)) (10.132)
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Construct the 4 × 4 Ĥ matrix

⎛
⎜⎜⎜⎜
⎝

⟨1∣ Ĥ ∣1⟩ ⟨1∣ Ĥ ∣2⟩ ⟨1∣ Ĥ ∣3⟩ ⟨1∣ Ĥ ∣4⟩
⟨2∣ Ĥ ∣1⟩ ⟨2∣ Ĥ ∣2⟩ ⟨2∣ Ĥ ∣3⟩ ⟨2∣ Ĥ ∣4⟩
⟨3∣ Ĥ ∣1⟩ ⟨3∣ Ĥ ∣2⟩ ⟨3∣ Ĥ ∣3⟩ ⟨3∣ Ĥ ∣4⟩
⟨4∣ Ĥ ∣1⟩ ⟨4∣ Ĥ ∣2⟩ ⟨4∣ Ĥ ∣3⟩ ⟨4∣ Ĥ ∣4⟩

⎞
⎟⎟⎟⎟
⎠

(10.133)

using

Ŝz ∣±⟩ = ±
h̵

2
∣±⟩ (10.134)

Ŝ+ ∣+⟩ = 0 = Ŝ− ∣−⟩ (10.135)

Ŝ+ ∣−⟩ = h̵ ∣+⟩ and Ŝ− ∣+⟩ = h̵ ∣−⟩ (10.136)
(10.137)

We get

⎛
⎜⎜⎜⎜⎜
⎝

Bh̵(α + β) + γh̵2

4
0 0 0

0 Bh̵(α − β) − γh̵2

4
γh̵2

2
0

0 γh̵2

2
−Bh̵(α − β) − γh̵2

4
0

0 0 0 −Bh̵(α + β) + γh̵2

4

⎞
⎟⎟⎟⎟⎟
⎠

Diagonalizing to get the eigenvalues we find the exact energies

E1 =
γh̵2

4
+Bh̵(α + β) , E2 = −

γh̵2

4
+ 1

2

√
γ2h̵4 + 4B2h̵2(α − β)2

E3 = −
γh̵2

4
− 1

2

√
γ2h̵4 + 4B2h̵2(α − β)2 , E4 =

γh̵2

4
−Bh̵(α + β)

To compare to the perturbation calculation we let B → 0 and we get the ap-
proximation

E1 =
γh̵2

4
+Bh̵(α + β) , E2 =

γh̵2

4
+ B

2(α − β)2

γ

E3 = −
3γh̵2

4
− B

2(α − β)2

γ
, E4 =

γh̵2

4
−Bh̵(α + β)

which agrees with the perturbation results.

10.2.1. More Ideas about Perturbation Methods

The main problem with Rayleigh-Schrodinger perturbation theory (RSPT ) is
that the form of the higher order terms becomes increasingly complex and,
hence, the series is difficult to evaluate.
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The Brillouin-Wigner Method

This technique allows us to see the higher order structure of the perturbation
series more clearly.

Consider the energy eigenvalue equation

Ĥ ∣N⟩ = En ∣N⟩ = (Ĥ0 + gÛ) ∣N⟩ (10.138)

Applying the linear functional ⟨m∣ we get

⟨m∣ Ĥ ∣N⟩ = En ⟨m ∣ N⟩ = ⟨m∣ Ĥ0 ∣N⟩ + g ⟨m∣ Û ∣N⟩
En ⟨m ∣ N⟩ = εm ⟨m ∣ N⟩ + g ⟨m∣ Û ∣N⟩
(En − εm) ⟨m ∣ N⟩ = g ⟨m∣ Û ∣N⟩ (10.139)

We will use the normalization ⟨n ∣N⟩ = 1 once again.

Now since the ∣m⟩ states are a complete orthonormal basis we can always write

∣N⟩ =∑
m

∣m⟩ ⟨m ∣ N⟩ = ∣n⟩ ⟨n ∣ N⟩ + ∑
m≠n

∣m⟩ ⟨m ∣ N⟩

= ∣n⟩ + ∑
m≠n

∣m⟩ ⟨m ∣ N⟩ (10.140)

Using the results above (10.139) we get

∣N⟩ = ∣n⟩ + ∑
m≠n

∣m⟩ g

En − εm
⟨m∣ Û ∣N⟩ (10.141)

We now develop a series expansion of ∣N⟩ in powers of g as follows:

0th − order ∶
∣N⟩ = ∣n⟩

1st−order ∶ ( substitute 0th−order result for ∣N⟩ into general formula (10.141))

∣N⟩ = ∣n⟩ + ∑
m≠n

∣m⟩ g

En − εm
⟨m∣ Û ∣n⟩

This is not the same result as in RSPT since the full energy En remains in the
denominator.

2nd−order ∶ ( substitute 1st−order result for ∣N⟩ into general formula (10.141))

∣N⟩ = ∣n⟩ + ∑
m≠n

∣m⟩ g

En − εm
⟨m∣ Û

⎛
⎝
∣n⟩ +∑

j≠n
∣j⟩ g

En − εj
⟨j∣ Û ∣n⟩

⎞
⎠

= ∣n⟩ + ∑
m≠n

∣m⟩ g

En − εm
⟨m∣ Û ∣n⟩

+ g2 ∑
m≠n
∑
j≠n

∣m⟩ g

En − εm
⟨m∣ Û ∣j⟩ g

En − εj
⟨j∣ Û ∣n⟩
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and so on.

This is a complex power series in g since the full energy En remains in the
denominator.

If we let ∣m⟩ = ∣n⟩ in (10.139) we get

En ⟨n ∣ N⟩ = εn ⟨n ∣ N⟩ + g ⟨n∣ Û ∣N⟩ (10.142)

En = εn + g ⟨n∣ Û ∣N⟩ (10.143)

This can be expanded to give En as a series in powers of g, i.e., substituting
the 0th − order approximation for ∣N⟩ gives the 1st − order approximation for
En and substituting the 1st − order approximation for ∣N⟩ gives the 2nd − order
approximation for En and so on.

If we substitute the 1st − order approximation for ∣N⟩ we get

En = εn + g ⟨n∣ Û ∣N⟩

= εn + g ⟨n∣ Û (∣n⟩ + ∑
m≠n

∣m⟩ g

En − εm
⟨m∣ Û ∣n⟩)

= εn + g ⟨n∣ Û ∣n⟩ + g2 ∑
m≠n

∣⟨m∣ Û ∣n⟩∣
2

En − εm
(10.144)

which is the second-order energy.

So the BWPT and the RSPT agree at each order of perturbation theory, as
they must. The structure of the equations, however, is very different.

A simple example shows the very different properties of the two methods.

Consider the Hamiltonian given by Ĥ = Ĥ0 + V̂ where

Ĥ0 = ( ε1 0
0 ε2

)→ eigenvectors ∣1⟩ = ( 1
0

)and ∣2⟩ = ( 0
1

) (10.145)

and

V̂ = ( 0 α
α∗ 0

) (10.146)

The exact energy eigenvalues are obtained by diagonalizing the Ĥ matrix

Ĥ = ( ε1 α
α∗ ε2

) (10.147)

to get the characteristic equation

det [ ε1 −E α
α∗ ε2 −E

] = 0 = E2 − (ε1 + ε2)E + (ε1ε2 − ∣α∣2) (10.148)
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which has solutions

E1 =
1

2
(ε1 + ε2) +

1

2

√
(ε1 − ε2)2 + 4 ∣α∣2 (10.149)

E2 =
1

2
(ε1 + ε2) −

1

2

√
(ε1 − ε2)2 + 4 ∣α∣2 (10.150)

In the degenerate limit, ε1 = ε2 = ε, we have the exact solutions

E1 = ε + ∣α∣ and E2 = ε − ∣α∣ (10.151)

Now, BWPT gives

En = εn + ⟨n∣ V̂ ∣N⟩

= εn + ⟨n∣ V̂ ∣n⟩ + ∑
m≠n

∣⟨m∣ V̂ ∣n⟩∣
2

En − εm
(10.152)

or

E1 = εn + ⟨1∣ V̂ ∣1⟩ +
∣⟨2∣ V̂ ∣1⟩∣

2

E1 − ε2
= ε1 +

∣α∣2

E1 − ε2
(10.153)

Rearranging we get

E2
1 − (ε1 + ε2)E1 + (ε1ε2 − ∣α∣2) = 0 (10.154)

which is the same eigenvalue equation as the exact solution. In the degenerate
limit, ε1 = ε2 = ε, we have

E1 = ε + ∣α∣ (10.155)
or BWPT gives the exact answer for this simple system, even in the degenerate
case.

On the other hand, RSPT gives to second-order

E1 = ε1 + ⟨1∣ V̂ ∣1⟩ + ∣α∣2

ε1 − ε2
(10.156)

This is equivalent to the exact formula to second order only!

In the degenerate limit we get nonsense since the denominator vanishes. As
we saw earlier, RSPT requires an entirely different procedure in the degenerate
case.

Notice that RSPT is in trouble even if ε1 ≈ ε2 which implies that

∣α∣2

ε1 − ε2
is very large (10.157)

and thus, that the perturbation expansion makes no sense(the terms are sup-
posed to get smaller!).

A clever trick for handling these almost degenerate cases using RSPT goes as
follows.

839



Almost Degenerate Perturbation Theory

Given Ĥ = Ĥ0 + V̂ , suppose, as in the last example, we have two states ∣n⟩ and
∣m⟩ of the unperturbed (zero order) Hamiltonian Ĥ0 that have energies that are
approximately equal.

This is a troublesome situation for RSPT because it is an expansion that includes
increasing numbers of

1

εn − εm
(10.158)

terms. This implies that successive terms in the perturbation series might de-
crease slowly or not at all.

To develop a more rapidly converging perturbation expansion we rearrange the
calculation as follows. We use the definition of the identity operator in terms of
projection operators to write

V̂ = Î V̂ Î =∑
i,j

∣i⟩ ⟨i∣ V̂ ∣j⟩ ⟨j∣ (10.159)

We then break up V̂ into two parts

V̂ = V̂1 + V̂2 (10.160)

where we separate out the m and n terms into v̂1

V̂1 = ∣m⟩ ⟨m∣ V̂ ∣m⟩ ⟨m∣ + ∣m⟩ ⟨m∣ V̂ ∣n⟩ ⟨n∣
+ ∣n⟩ ⟨n∣ V̂ ∣m⟩ ⟨m∣ + ∣n⟩ ⟨n∣ V̂ ∣n⟩ ⟨n∣ (10.161)

and v̂2 = the rest of the terms. We then write

Ĥ = Ĥ0 + V̂ = Ĥ0 + V̂1 + V̂2 = Ĥ ′
0 + V̂2 (10.162)

This new procedure then finds exact eigenvectors/eigenvalues of Ĥ ′
0 and treats

v̂2 by ordinary perturbation theory.

Since the basis is orthonormal, we have from the definition of v̂2, i.e.,

V̂2 = ∑
i,j≠m,n

∣i⟩ ⟨i∣ V̂ ∣j⟩ ⟨j∣ (10.163)

which gives

0 = ⟨n∣ V̂2 ∣n⟩ = ⟨n∣ V̂2 ∣m⟩ = ⟨m∣ V̂2 ∣n⟩ = ⟨m∣ V̂2 ∣m⟩ (10.164)

Thus, the closeness of the levels εn and εm will not prevent us from applying
standard perturbation theory to V̂2, i.e., the numerators of terms with very
small energy denominators, which might cause the series to diverge, all vanish
identically!

840



Now if ∣i⟩ is an eigenvector of Ĥ0 (not ∣m⟩ or ∣n⟩), then it is also an eigenvector
of Ĥ ′

0 since, by the orthonormality condition,

V̂1 ∣i⟩ = 0 (10.165)

Neither ∣m⟩ nor ∣n⟩ is an eigenvector of Ĥ ′
0 however.

Now, the Ĥ0 matrix is diagonal since we are using its eigenvectors as a basis.
The Ĥ ′

0 matrix is diagonal also except for the 2 × 2 submatrix

( ⟨m∣ Ĥ ′
0 ∣m⟩ ⟨m∣ Ĥ ′

0 ∣n⟩
⟨n∣ Ĥ ′

0 ∣m⟩ ⟨n∣ Ĥ ′
0 ∣n⟩

) (10.166)

Therefore, we can finish the solution of the problem of Ĥ ′
0 by diagonalizing this

2 × 2 matrix.

Diagonalizing the 2 × 2 matrix is equivalent to finding the linear combinations
(or new zero order eigenvectors)

α ∣n⟩ + β ∣m⟩ (10.167)

that diagonalize the 2 × 2 matrix.

We must have

Ĥ ′
0 (α ∣n⟩ + β ∣m⟩) = (Ĥ0 + V̂1) (α ∣n⟩ + β ∣m⟩) = E ′ (α ∣n⟩ + β ∣m⟩) (10.168)

Now

Ĥ ′
0 ∣n⟩ = Ĥ0 ∣n⟩ + V̂1 ∣n⟩

= εn ∣n⟩ + ∣m⟩ ⟨m∣ V̂ ∣m⟩ ⟨m ∣ n⟩ + ∣m⟩ ⟨m∣ V̂ ∣n⟩ ⟨n ∣ n⟩
+ ∣n⟩ ⟨n∣ V̂ ∣m⟩ ⟨m ∣ n⟩ + ∣n⟩ ⟨n∣ V̂ ∣n⟩ ⟨n ∣ n⟩

= εn ∣n⟩ + ∣m⟩ ⟨m∣ V̂ ∣n⟩ + ∣n⟩ ⟨n∣ V̂ ∣n⟩
= (εn + ⟨n∣ V̂ ∣n⟩) ∣n⟩ + ∣m⟩ ⟨m∣ V̂ ∣n⟩

= E(1)
n ∣n⟩ + ⟨m∣ V̂ ∣n⟩ ∣m⟩ (10.169)

and similarly
Ĥ ′

0 ∣m⟩ = E(1)
m ∣m⟩ + ⟨n∣ V̂ ∣m⟩ ∣n⟩ (10.170)

Therefore, we get

α (E(1)
n ∣n⟩ + ⟨m∣ V̂ ∣n⟩ ∣m⟩) + β (E(1)

m ∣m⟩ + ⟨n∣ V̂ ∣m⟩ ∣n⟩) = E ′ (α ∣n⟩ + β ∣m⟩)
(10.171)

Since the state vectors ∣m⟩ and ∣n⟩ are orthogonal, we must then have

E(1)
n α + ⟨n∣ V̂ ∣m⟩β = E ′α (10.172)

⟨m∣ V̂ ∣n⟩α +E(1)
m β = E ′β (10.173)
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These equations have two solutions, namely,

α = ⟨n∣ V̂ ∣m⟩ (10.174)

β± =
E

(1)
m −E(1)

n

2
±

¿
ÁÁÁÀ⎛

⎝
E

(1)
m −E(1)

n

2

⎞
⎠

2

+ ∣⟨n∣ V̂ ∣m⟩∣
2

(10.175)

which then give the results

E± =
E

(1)
m +E(1)

n

2
±

¿
ÁÁÁÀ⎛

⎝
E

(1)
m −E(1)

n

2

⎞
⎠

2

+ ∣⟨n∣ V̂ ∣m⟩∣
2

(10.176)

We then know all the eigenvectors/eigenvalues of Ĥ ′
0 (we know all of the unper-

turbed states) and we can deal with V̂2 by perturbation theory.

Finally, let us introduce another interesting idea.

Fake Degenerate Perturbation Theory

Consider the problem of finding the energy eigenvalues and state vectors for
a system with a Hamiltonian Ĥ = Ĥ0 + V̂ where we know the solution to the
zero-order system

Ĥ0 ∣n⟩ = εn ∣n⟩ (10.177)

We will assume that the unperturbed states are nondegenerate.

Now define

Eaverage = Eav =
1

N

N

∑
n=1

εn (10.178)

and redefine
Ĥ = Eav Î + Û (10.179)

where
Û = Ĥ0 −Eav Î + V̂ (10.180)

If the energies associated with Û are small corrections to Eav, then we can use
degenerate perturbation theory to solve this problem, i.e., the new unperturbed
Hamiltonian is

Ĥ ′
0 = Eav Î (10.181)

and all of its levels are degenerate in zero order.

The problem is then solved by diagonalizing the Û matrix in the basis of Ĥ0

states.
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10.2.2. Thoughts on Degeneracy and Position Representa-
tion

When we derived the energy spectrum of the hydrogen atom we found that the
states were labeled by three quantum numbers

∣ψ⟩ = ∣n`m⟩ (10.182)

where

n = the radial quantum number
` = orbital angular momentum quantum number
m = z − component of orbital angular momentum quantum number

and we found that

n = 1,2,3, ........

` = 0,1,2, ....., n − 1 for a given value of n
m = −`,−` + 1, ......` − 1, ` for a given value of `

The energy eigenvalues, however, did not depend on ` or m. We found that

En`m = En = −
e2

2a0n2
(10.183)

Therefore, each energy level had a degeneracy given by

g =
n−1

∑
`=0

`

∑
m=−`

1 =
n−1

∑
`=0

(2` + 1) = 2
n−1

∑
`=0

` +
n−1

∑
`=0

1

= 2
n(n − 1)

2
+ n = n2 (10.184)

The degeneracy with respect to m is understandable since no direction is explic-
itly preferred in the Hamiltonian. We expect that this degeneracy will disappear
as soon as a preferred direction is added to the Hamiltonian, as in the case of
external electric(Stark effect) or magnetic(Zeeman effect) fields.

The degeneracy with respect to ` is a property peculiar to the pure 1/r Coulomb
potential. Since no other atom except hydrogen has a pure Coulomb potential,
we expect this degeneracy to vanish in other atoms.

Such a degeneracy is called an accidental degeneracy.

Now the electron and proton making up the hydrogen atom also have spin angu-
lar momentum. The presence of these extra(internal) degrees of freedom should
change the Hamiltonian.
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The Schrodinger equation was derived from the eigenvalue equation for the
Hamiltonian

Ĥ ∣ψ⟩ = E ∣ψ⟩ (10.185)

by re-expressing that equation in the position representation. The associated
Schrodinger wave functions were given by the scalar product(linear functional)
relation

ψ(r⃗) = ⟨r⃗ ∣ ψ⟩ (10.186)

The single particle Schrodinger equation is relevant for problems where the
Hamiltonian contains terms dependent on ordinary 3−dimensional space(for
many-particle systems we must use a multi-dimensional configuration space
which bears no simple relationship to ordinary three-dimensional space). Spin
is an internal degree of freedom that has no representation in the 3−dimensional
space of the Schrodinger wave equation.

The Schrodinger picture, however, does not choose a particular representation
and, therefore, we can include spin within the context of solving the Schrodinger
equation in the following ad hoc manner. A more rigorous treatment requires
relativity.

If there are spin-dependent terms in the Hamiltonian, then we expand the
Hilbert space used to solved the problem by constructing a new basis that is
made up of direct product states of the following type

∣ψnew⟩ = ∣ψ⟩⊗ ∣s,ms⟩ (10.187)

where ∣ψ⟩ depends on only ordinary 3−dimensional space and ∣s,ms⟩ is an eigen-
vector of S⃗2

op and Ŝz.

The energy eigenvalue equation becomes

⌢

H ∣ψnew⟩ = E ∣ψnew⟩
= (((3 − space operators)) ∣ψ⟩)⊗ (((spin - dependent operators)) ∣s,ms⟩)

and the corresponding wave function is

⟨r⃗ ∣ ψnew⟩ = ⟨r⃗ ∣ ψ⟩ ∣s,ms⟩ = ψ(r⃗) ∣s,ms⟩ (10.188)

where abstract spin vector is stuck onto the wave function in some way (maybe
with superglue).

Let us now investigate what happens in atoms when we add in spin, some aspects
of relativity and external fields. We restrict our attention to one-electron atoms
like hydrogen at this point.
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10.3. Spin-Orbit Interaction - Fine Structure

The proton in hydrogen generates an electric field

E⃗ = e

r2
r̂ = e

r3
r⃗ (10.189)

that acts on the moving electron. This result is approximately true (to first
order) in most atoms. Now special relativity says that an electron moving with
a velocity v⃗ through an electric field E⃗ also behaves as if it is interacting with a
magnetic field given by

B⃗ = −1

c
v⃗ × E⃗ (10.190)

to first order in v/c.

This magnetic field interacts with the spin (actually with its associated magnetic
moment) to produce an additional contribution to the energy of the form

E = −M⃗spin ⋅ B⃗ (10.191)

where
M⃗spin = −

e

mc
S⃗ (10.192)

Substituting everything in we get

E = − e

mc2
S⃗ ⋅ (v⃗ × E⃗) = − e

mc2
S⃗ ⋅ (v⃗ × e

r3
r⃗)

= 1

m2c2
S⃗ ⋅ L⃗ e

2

r3
(10.193)

Now

e2

r3
= 1

r

dV

dr
for V (r) = −e

2

r
= potential energy of the electron (10.194)

so that we finally obtain the so-called spin-orbit energy contribution

E = [ 1

m2c2
1

r

dV

dr
] S⃗ ⋅ L⃗ = Espin−orbit = Eso (10.195)

This corresponds to an additional term in the Hamiltonian of the form

Ĥso = [ 1

m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op (10.196)

This term couples the orbital and spin angular momentum degrees of freedom
(hence the label spin-orbit energy) and mixes 3−dimensional space with spin
space. That is why we had to expand the Hilbert space as we discussed earlier.

Another way to think about this interaction is that the electron spin magnetic
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moment vector (or spin vector) is precessing about the direction of the magnetic
field. The equations for such a precessional motion are

M⃗spin × B⃗ = dS⃗
dt

= Ω⃗L(armor) × S⃗ (10.197)

where

∣Ω⃗L∣ =
eB

m
(10.198)

Now

B⃗ = −1

c
v⃗ × E⃗ = 1

emc2
1

r

dV

dr
L⃗ (10.199)

which implies that

∣Ω⃗L∣ =
1

m2c2
1

r

dV

dr
∣L⃗∣ (10.200)

It turns out that this is exactly a factor of 2 too large. There is another rela-
tivistic effect, which gives another precession (called Thomas precession) effect,
that cancels exactly one-half of this spin-orbit effect.

10.3.1. Thomas Precession

This is a relativistic kinematic effect. It results from the time dilation between
the rest frames of the electron and the proton. This causes observers in these
two frames to disagree on the time required for one of the particles to a make a
complete revolution about the other particle.

If an observer on the electron measures a time interval T , then the observer on
the proton measures

T ′ = γT where γ = 1
√

1 − v2

c2

, v = speed of the electron (10.201)

We assume uniform circular motion for simplicity.

The orbital angular velocities measured by the observers are

2π

T
and

2π

T ′ (10.202)

respectively.

In the rest frame of the electron, the spin angular momentum vector maintains
its direction in space. This implies that an observer on the proton sees this spin
vector precessing at a rate equal to the difference of the two angular velocities,

846



i.e., the precessional frequency is

ΩThomas =
2π

T
− 2π

T ′ =
2π

T ′ (
T ′

T
− 1)

= 2π

T ′

⎛
⎜
⎝

1
√

1 − v2

c2

− 1
⎞
⎟
⎠

≈ 2π

T ′ (
v2

2c2
) (10.203)

But we also have
2π

T ′ = ω =
∣L⃗∣
mr2

and
mv2

r
= −dV

dr
(10.204)

for circular motion.

Thus, we get

∣Ω⃗T ∣ = −
1

2

1

m2c2
1

r

dV

dr
∣L⃗∣ = −1

2
∣Ω⃗L∣ (10.205)

Therefore, the combined precession is reduced by a factor of two and we get the
result

Ĥso = [ 1

2m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op (10.206)

The energy levels arising from this correction are called the atomic fine structure.

10.4. Another Relativity Correction

The correct relativistic kinetic energy term is

K = (γ − 1)mc2 =
⎛
⎜
⎝

1
√

1 − v2

c2

− 1
⎞
⎟
⎠
mc2

= ((1 + 1

2

v2

c2
− 1

8

v4

c4
+ ...) − 1)mc2

= (1

2

v2

c2
− 1

8

v4

c4
)mc2 =

p⃗2
op

2m
−

p⃗4
op

8m3c2
(10.207)

Therefore, we must correct the p⃗2
op/2m we have already included in the Hamil-

tonian by adding a terms of the form

Ĥrelativity = −
p⃗4
op

8m3c2
(10.208)

Thus, if no external field are present we have the Hamiltonian

Ĥ = Ĥ0 + Ĥrelativity + Ĥso (10.209)
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where

Ĥ0 =
p⃗2
op

2m
− e2 (1

r
)
op

(10.210)

Ĥrelativity = −
p⃗4
op

8m3c2
(10.211)

Ĥso = [ 1

2m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op (10.212)

10.5. External Fields - Zeeman and Stark Effects;
Hyperfine Structure

10.5.1. Zeeman Effect

If an external magnetic field exists, then it interacts with the total magnetic
moment of the electron, where

M⃗total = M⃗orbital + M⃗spin = −
e

2mc
(g`L⃗ + gsS⃗) (10.213)

as we derived earlier. If we define

µB = Bohr magneton = eh̵

mc
(10.214)

and let B⃗ext = Bẑ, then we have, using g` = 1 and gs = 2, the result

EZeeman = −M⃗total ⋅ B⃗ext =
µBB

h̵
(Lz + 2Sz) (10.215)

Thus, we must add a term of the form

ĤZeeman =
µBB

h̵
(L̂z + 2Ŝz) (10.216)

to the Hamiltonian when an external magnetic field is present.

We can see directly how the orbital angular momentum part of this energy
arises. We saw earlier that if we had a Hamiltonian

Ĥ0 =
p⃗2
op

2m
+ V (r⃗op) (10.217)

and we add an electromagnetic field characterized by a vector potential A⃗, where
B⃗ = ∇× A⃗, then the momentum operator changes to

p⃗em = p⃗ − e
c
A⃗(r⃗) (10.218)
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and the Hamiltonian changes to

Ĥ =
p⃗2
em,op

2m
+ V (r⃗op) =

(p⃗op − e
c
A⃗(r⃗op))

2

2m
+ V (r⃗op)

= Ĥ0 −
e

2mc
(p⃗op ⋅ A⃗(r⃗op) + A⃗(r⃗op) ⋅ p⃗op) +

e2

2mc2
A⃗2(r⃗op) (10.219)

The magnetic field has to be enormous or the radial quantum number n very
large for the A⃗2 term to have any effect, so we will neglect it for now. Let us
look at the term

p⃗op ⋅ A⃗(r⃗op) + A⃗(r⃗op) ⋅ p⃗op (10.220)

For a uniform (constant in magnitude and direction) external field B⃗, we have

A⃗ = −1

2
r⃗ × B⃗ (10.221)

I will prove this so we get a chance to see the use of εijk in vector algebra.

∇× A⃗ = −1

2
∇× (r⃗ × B⃗) = −1

2
∑
ijk

εijk
∂

∂xj
(r⃗ × B⃗)

k
êi

= −1

2
∑
ijk

εijk
∂

∂xj
(∑
mn

εkmnxmBn) êi

= −1

2
∑
ij

∑
mn

(∑
k

εijkεmnk)
∂

∂xj
(xmBn) êi

= −1

2
∑
ij

∑
mn

(δimδjn − δinδjm) ∂

∂xj
(xmBn) êi

= −1

2
∑
ij

[ ∂

∂xj
(xiBj) êi −

∂

∂xj
(xjBi) êi]

= −1

2
∑
ij

[ ∂xi
∂xj

Bj + xi
∂Bj

∂xj
−
∂xj

∂xj
Bi − xj

∂Bi
∂xj

]êi

Now
∂xi
∂xj

= δij and
∂Bi
∂xj

= 0 (10.222)

so we get

∇× A⃗ = −1

2
∑
ij

[δijBj − δjjBi]êi

= −1

2
[∑
i

Biêi − 3∑
i

Biêi]

= −1

2
[B⃗ − 3B⃗] = B⃗
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Therefore, we have

p⃗op ⋅ A⃗(r⃗op) + A⃗(r⃗op) ⋅ p⃗op = −
1

2
[p⃗op ⋅ (r⃗op × B⃗) + (r⃗op × B⃗) ⋅ p⃗op]

= −1

2

⎡⎢⎢⎢⎢⎣
∑
ijk

εijkBk [p̂ix̂j + x̂j p̂i]
⎤⎥⎥⎥⎥⎦
= −1

2

⎡⎢⎢⎢⎢⎣
∑
ijk

εijkBk [2x̂j p̂i − ih̵δij]
⎤⎥⎥⎥⎥⎦

=∑
ijk

εkjix̂j p̂iBk = (r⃗op × p⃗op) ⋅ B⃗ = L⃗op ⋅ B⃗ (10.223)

which then gives

Ĥ = Ĥ0 −
e

2mc
L⃗op ⋅ B⃗ + e2

2mc2
A⃗2(r⃗op) (10.224)

which accounts for the orbital angular momentum part of the Zeeman energy.

The spin angular momentum part of the Zeeman energy cannot be derived
from the non-relativistic Schrodinger equation. When one derives the Dirac
relativistic equation for the electron, the S⃗op ⋅ B⃗ term appears naturally.

10.5.2. Stark Effect

If a hydrogen atom is placed in an external electric field E⃗ which is constant
is space and time (uniform and static), then an additional energy appears. It
corresponds to an interaction between and electric dipole made up of the electron
and proton separated by a distance and the external electric field. We introduce
the electric dipole moment operator

d⃗op = −er⃗op (10.225)

where r⃗ is the position vector of the electron relative to the proton. We then
write the extra energy term as

Ĥdipole = −d⃗op ⋅ E⃗ (10.226)

If we choose E⃗ = E ẑ, then we have Ĥdipole = −ezE . The full Hamiltonian is then

Ĥ = Ĥ0 + Ĥrelativity + Ĥso + ĤZeeman + Ĥdipole (10.227)

where

Ĥ0 =
p⃗2
op

2m
− e2 (1

r
)
op

(10.228)

Ĥrelativity = −
p⃗4
op

8m3c2
(10.229)

Ĥso = [ 1

2m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op (10.230)

ĤZeeman =
µB
h̵

(L⃗op + 2S⃗op) ⋅ B⃗ (10.231)

Ĥdipole = −er⃗op ⋅ E⃗ (10.232)

850



10.5.3. Hyperfine Structure
The nuclear magnetic dipole moment also generates a magnetic field. If we
assume that it is a point dipole M⃗N , then the magnetic field is given by

B⃗(r⃗) =
⎛
⎝

3 (M⃗N ⋅ r⃗) r⃗
r5

− M⃗N

r3

⎞
⎠
+ 8π

3
M⃗Nδ(r⃗) (10.233)

where the first two terms are the standard result of the magnetic field due to a
loop of current as seen from very far away (approximates dipole as a point) and
the last term is peculiar to a point dipole. The last term will give a contribution
only for spherically symmetric states (` = 0). The extra energy is then

Ĥhyperfine = −M⃗e ⋅ B⃗

= −
⎛
⎝

3 (M⃗N ⋅ r⃗) (M⃗e ⋅ r⃗)
r5

− M⃗N ⋅ M⃗e

r3

⎞
⎠
− 8π

3
M⃗N ⋅ M⃗eδ(r⃗) (10.234)

where
M⃗N = gN

Ze

2mNc
S⃗N,op and M⃗e =

e

mc
S⃗e,op (10.235)

This is clearly due to spin-spin interactions between the electron and the nucleus
and gives rise to the so-called hyperfine level splitting.

10.6. Examples

Now that we have identified all of the relevant corrections to the Hamiltonian
for atoms, let us illustrate the procedures for calculation of the new energy levels
via perturbation theory. We look at the simplest atom first.

10.6.1. Spin-Orbit, Relativity, Zeeman Effect in Hydrogen
Atom

The Hamiltonian is

Ĥ = Ĥ0 + Ĥrelativity + Ĥso + ĤZeeman (10.236)

where

Ĥ0 =
p⃗2
op

2m
− e2 (1

r
)
op

(10.237)

Ĥrelativity = −
p⃗4
op

8m3c2
(10.238)

Ĥso = [ 1

2m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op (10.239)

ĤZeeman =
µB
h̵

(L⃗op + 2S⃗op) ⋅ B⃗ (10.240)
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The first step is to calculate all relevant commutators so that we can find those
operators that have a common eigenbasis.

[J⃗2
op, Ĥ0] = 0 = [Ĵz, Ĥ0] = [L⃗2

op, Ĥ0] = [S⃗2
op, Ĥ0] (10.241)

[L⃗2
op, S⃗

2
op] = 0 = [L⃗2

op, J⃗
2
op] = [S⃗2

op, J⃗
2
op] (10.242)

[J⃗2
op, Ĵz] = 0 = [L⃗2

op, Ĵz] = [S⃗2
op, Ĵz] (10.243)

This says that there exists a common set of eigenvectors in the unperturbed
system for the set of operators

Ĥ0, J⃗
2
op, L⃗

2
op, S⃗

2
op, Ĵz (10.244)

We label these states by the corresponding eigenvalues of the commuting set of
observables (these are called good quantum numbers)

∣n, `, s, j,mj⟩ (10.245)

We also have

[Ŝz, Ĥ0] = 0 = [L̂z, Ĥ0] = [L⃗2
op, Ĥ0] = [S⃗2

op, Ĥ0] (10.246)

[L⃗2
op, S⃗

2
op] = 0 = [L⃗2

op, Ŝz] = [S⃗2
op, Ŝz] = [L⃗2

op, L̂z] = [S⃗2
op, L̂z] (10.247)

which says that there exists another common set of eigenvectors in the unper-
turbed system for the operators

Ĥ0, L⃗
2
op, S⃗

2
op, L̂z, Ŝz (10.248)

We label these states by the corresponding eigenvalues of this commuting set of
observables (again these are called good quantum numbers)

∣n, `, s,m`,ms⟩ (10.249)

In this latter basis, the unperturbed or zero-order Hamiltonian has solutions
represented by

Ĥ0 ∣n, `,m`, s,ms⟩ = E(0)
n ∣n, `,m`, s,ms⟩ , E(0)

n = − Ze2

2a0n2

Ze = nucleus charge (Z = 1 for hydrogen ) , a0 = Bohr radius = h̵2

me2

ψn`m`sms(r, θ, φ) = ⟨r⃗∣ (∣nlm`sms⟩) = ⟨r⃗∣ (∣nlm`⟩ ∣sms⟩)
= ⟨r⃗ ∣ nlm`⟩ ∣sms⟩ = ψn`m`(r, θ, φ) ∣sms⟩
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and first few unperturbed wave functions are

ψ100(r, θ, φ) =
1√
π

( Z
a0

)
3/2

e
−Zra0 (10.250)

ψ200(r, θ, φ) =
1√
32π

( Z
a0

)
3/2

(2 − Zr
a0

) e−
Zr
2a0 (10.251)

ψ210(r, θ, φ) =
1√
32π

( Z
a0

)
3/2 Zr

a0
e
− Zr

2a0 cos θ (10.252)

ψ21±1(r, θ, φ) =
1√
64π

( Z
a0

)
3/2 Zr

a0
e
− Zr

2a0 sin θe±iφ (10.253)

We also have the relations below for the unperturbed states.

L⃗2
op ∣n, `, s, j,mj⟩ = h̵2`(` + 1) ∣n, `, s, j,mj⟩ (10.254)

S⃗2
op ∣n, `, s, j,mj⟩ = h̵2s(s + 1) ∣n, `, s, j,mj⟩ (10.255)

J⃗2
op ∣n, `, s, j,mj⟩ = h̵j(j + 1) ∣n, `, s, j,mj⟩ (10.256)

Ĵz ∣n, `, s, j,mj⟩ = h̵2mj ∣n, `, s, j,mj⟩ (10.257)

L⃗2
op ∣n, `, s,m`,ms⟩ = h̵2`(` + 1) ∣n, `, s,m`,ms⟩ (10.258)

S⃗2
op ∣n, `, s,m`,ms⟩ = h̵2s(s + 1) ∣n, `, s,m`,ms⟩ (10.259)

L̂z ∣n, `, s,m`,ms⟩ = h̵m` ∣n, `, s,m`,ms⟩ (10.260)

Ŝz ∣n, `, s,m`,ms⟩ = h̵ms ∣n, `, s,m`,ms⟩ (10.261)

Ĵz ∣n, `, s,m`,ms⟩ = (L̂z + Ŝz) ∣n, `, s,m`,ms⟩ (10.262)
= h̵(m` +ms) ∣n, `, s,m`,ms⟩ (10.263)
= h̵mj ∣n, `, s,m`,ms⟩ (10.264)

Since the total angular momentum is given by

J⃗op = L⃗op + S⃗op (10.265)

the rules we developed for the addition of angular momentum say that

j = ` + s, ` + s − 1, ......., ∣` − s∣ + 1, ∣` − s∣ (10.266)

and
mj = j, j − 1, j − 2, ........,−j + 1,−j (10.267)

In the case of hydrogen, where s = 1/2, we have only two allowed total j values
for each ` value, namely,

j = ` ± 1

2
(10.268)

We can use either of the two sets of basis states (both are an orthonormal basis)

∣n, `, s, j,mj⟩ or ∣nlm`sms⟩ (10.269)
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as the zero-order states for a perturbation theory development of the energies.
The choice depends on the specific perturbations we are trying to calculate.

Let us start off by using the ∣n, `, s, j,mj⟩ states.

If we use the potential energy function

V (r) = −e
2

r
(10.270)

for hydrogen, then the spin-orbit correction to the Hamiltonian becomes

Ĥso = [ 1

2m2c2
1

r

dV

dr
] S⃗op ⋅ L⃗op =

e2

2m2c2
( 1

r3
) S⃗op ⋅ L⃗op (10.271)

Now J⃗op = L⃗op + S⃗op implies that

J⃗2
op = L⃗2

op + S⃗2
op + 2L⃗op ⋅ S⃗op (10.272)

→ L⃗op ⋅ S⃗op =
1

2
(J⃗2
op − L⃗2

op − S⃗2
op) (10.273)

and therefore

Ĥso =
e2

4m2c2
( 1

r3
)(J⃗2

op − L⃗2
op − S⃗2

op) (10.274)

Therefore,

[J⃗2
op, Ĥso] = 0 = [Ĵz, Ĥso] = [L⃗2

op, Ĥso] = [S⃗2
op, Ĥso] = [Ĥ0, Ĥso] (10.275)

which implies that the state vectors ∣n, `, s, j,mj⟩ are also eigenvectors of Ĥso.
This means that the matrix representation of Ĥso in this basis will be diagonal
and we can apply standard non-degenerate perturbation theory.

Applying our rules for first order perturbation theory we have

En`sjmj = E(0)
n + ⟨n`sjmj ∣ Ĥso ∣n`sjmj⟩

= E(0)
n + e2h̵2

4m2c2
(j(j + 1) − `(` + 1) − s(s + 1)) ⟨n`sjmj ∣

1

r3
op

∣n`sjmj⟩

(10.276)

We now evaluate

⟨n`sjmj ∣
1

r3
op

∣n`sjmj⟩ = ∫ d3r⃗′ ∫ d3r⃗ ⟨n`sjmj ∣ r⃗′⟩ ⟨r⃗′∣ 1

r3
op

∣r⃗⟩ ⟨r⃗ ∣ n`sjmj⟩

(10.277)
Now

⟨r⃗′∣ 1

r3
op

∣r⃗⟩ = 1

r3
⟨r⃗′ ∣ r⃗⟩ = 1

r3
δ(r⃗′ − r⃗) (10.278)
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which gives

⟨n`sjmj ∣
1

r3
op

∣n`sjmj⟩ = ∫ d3r⃗
1

r3
∣⟨r⃗ ∣ n`sjmj⟩∣2 = ∫ d3r⃗

1

r3
∣ψn`sjmj(r⃗)∣

2

Therefore, we can calculate the energy corrections once we know ∣n, `, s, j,mj⟩.

We first consider the trivial case of the n = 1 level in hydrogen. We have

E
(0)
1 = − e2

2a0
(10.279)

and the corresponding states are shown in Table 10.1 below.

n ` s m` ms j mj

1 0 1/2 0 +1/2 1/2 +1/2
1 0 1/2 0 -1/2 1/2 -1/2

Table 10.1: n = 1 level quantum numbers

or
∣1,0, 1

2
,
1

2
,
1

2
⟩
jm

and ∣1,0, 1

2
,
1

2
,−1

2
⟩
jm

(10.280)

where we have added the label jm to distinguish them from the ∣n, `, s,m`,ms⟩
states which we label with m`ms =mm. We are able to specify m` and ms also
in this case because when ` = 0 we must have m` = 0 and j = s which says that
mj =ms.

This is a two-fold degenerate ground state for the atom in zeroth order.

Since ` = 0, which implies that j = s = 1/2, the expectation value ⟨Ĥso⟩ = 0.
Thus, there is no spin orbit correction for this state to first order, In fact, there
is no spin orbit correction to any order for an ` = 0 state.

Now in general, we can write

∣n, `, s, j,mj⟩ = ∑
m`,ms
m`+ms=mj

an`sjmjm`ms ∣n, `, s,m`,ms⟩ (10.281)

where the an`sjmjm`ms are the relevant Clebsch-Gordon(CG) coefficients.

For the n = 1 level we have the simple cases where

∣1,0, 1

2
,
1

2
,±1

2
⟩
jm

= ∣1,0, 1

2
,0,±1

2
⟩
mm

(10.282)

i.e., the CG coefficients are equal to 1,

a1,0, 12 ,
1
2 ,±

1
2 ,0,±

1
2
= 1 (10.283)
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which is always true for the (maximum j, maximum(minimum) mj) states.
There is always only one such state.

The next level is the n = 2 level of hydrogen and the complexity of the calculation
increases fast. We have

E
(0)
2 = − e2

8a0
(10.284)

It is always the case that the direct-product states ∣n, `, s,m`,ms⟩ are easier to
write down. For this level the ∣n, `, s, j,mj⟩ states need to be constructed from
the ∣n, `, s,m`,ms⟩ states. Before we proceed, we can enumerate the states in
both schemes. The degeneracy is given by

degeneracy = 2
n−1

∑
`=0

(2` + 1) = 2n2 = 8 =
n−1

∑
`=0

`+s
∑

j=∣`−s∣
(2j + 1) = 2

n−1

∑
`=0

(2` + 1)

The states are shown in Tables 10.2 and 10.3 below.

n ` s m` ms ket
2 1 1/2 1 +1/2 ∣2,1,1/2,1,1/2⟩mm
2 1 1/2 0 +1/2 ∣2,1,1/2,0,1/2⟩mm
2 1 1/2 -1 +1/2 ∣2,1,1/2,−1,1/2⟩mm
2 1 1/2 1 -1/2 ∣2,1,1/2,1,−1/2⟩mm
2 1 1/2 0 -1/2 ∣2,1,1/2,0,−1/2⟩mm
2 1 1/2 -1 -1/2 ∣2,1,1/2,−1,−1/2⟩mm
2 0 1/2 0 1/2 ∣2,0,1/2,0,1/2⟩mm
2 0 1/2 0 -1/2 ∣2,0,1/2,0,−1/2⟩mm

Table 10.2: n = 2 level quantum numbers m`ms states

n ` s j mj ket
2 1 1/2 3/2 3/2 ∣2,1,1/2,1,1/2⟩mm
2 1 1/2 3/2 1/2 ∣2,1,1/2,0,1/2⟩mm
2 1 1/2 3/2 -1/2 ∣2,1,1/2,−1,1/2⟩mm
2 1 1/2 3/2 -3/2 ∣2,1,1/2,1,−1/2⟩mm
2 1 1/2 1/2 1/2 ∣2,1,1/2,0,−1/2⟩mm
2 1 1/2 1/2 -1/2 ∣2,1,1/2,−1,−1/2⟩mm
2 0 1/2 1/2 1/2 ∣2,0,1/2,0,1/2⟩mm
2 0 1/2 1/2 -1/2 ∣2,0,1/2,0,−1/2⟩mm

Table 10.3: n = 2 level quantum numbers jmj states

In the first set of states, we could have also included the mj label since we must
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have mj =m` +ms.

In order to learn all the intricate details of this type of calculation, we shall
proceed in two ways using the spin-orbit correction as an example.

In method #1, we will construct the ∣n, `, s, j,mj⟩ states (the zero-order state
vectors) from the ∣n, `, s,m`,ms⟩ and then calculate the first-order energy cor-
rections. In this basis, the ⟨Ĥso⟩ matrix will be diagonal.

In method #2, we will construct the ⟨Ĥso⟩ matrix using the easiest states to
write down, namely the ∣n, `, s,m`,ms⟩ states, and then diagonalize it to find
the correct first order energies and new zero-order state vectors, which should
be the ∣n, `, s, j,mj⟩ states.

Method #1

We start with the state with maximum j and mj values. This state always has
a CG coefficient equal to 1, i.e., there is only one way to construct it from the
other angular momenta.

∣n = 2, ` = 1, s = 1

2
, j = 3

2
,mj =

3

2
⟩
jm

= ∣n = 2, ` = 1, s = 1

2
,m` = 1,ms =

1

2
⟩
mm

where we have shown all the labels explicitly. From now on we will write such
equations as

∣2,1, 1

2
,
3

2
,
3

2
⟩
jm

= ∣2,1, 1

2
,1,

1

2
⟩
mm

We then use the lowering operators to obtain

Ĵ− ∣2,1, 1

2
,
3

2
,
3

2
⟩
jm

= h̵
√

3

2
(3

2
+ 1) − 3

2
(3

2
− 1) ∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

= h̵
√

3 ∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

= (L̂− + Ŝ−) ∣2,1,
1

2
,1,

1

2
⟩
mm

= h̵
√

1 (1 + 1) − 1 (1 − 1) ∣2,1, 1

2
,0,

1

2
⟩
mm

+ h̵
√

1

2
(1

2
+ 1) − 1

2
(1

2
− 1) ∣2,1, 1

2
,1,−1

2
⟩
mm

= h̵
√

2 ∣2,1, 1

2
,0,

1

2
⟩
mm

+ h̵
√

1 ∣2,1, 1

2
,1,−1

2
⟩
mm

or

∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

=
√

2

3
∣2,1, 1

2
,0,

1

2
⟩
mm

+
√

1

3
∣2,1, 1

2
,1,−1

2
⟩
mm

(10.285)

Notice that we use the total J operators on the left and the L and S operators
on the right.
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The result is a linear combination of the ∣n, `, s,m`,ms⟩ states all with mj = 1/2
as we expected.

Continuing this process we have

Ĵ− ∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

= h̵
√

3

2
(3

2
+ 1) − 1

2
(1

2
− 1) ∣2,1, 1

2
,
3

2
,−1

2
⟩
jm

= 2h̵ ∣2,1, 1

2
,
3

2
,−1

2
⟩
jm

= (L̂− + Ŝ−)
⎛
⎝

√
2

3
∣2,1, 1

2
,0,

1

2
⟩
mm

+
√

1

3
∣2,1, 1

2
,1,−1

2
⟩
mm

⎞
⎠

= h̵
√

4

3
∣2,1, 1

2
,−1,

1

2
⟩
mm

+ h̵
√

8

3
∣2,1, 1

2
,0,−1

2
⟩
mm

or

∣2,1, 1

2
,
3

2
,−1

2
⟩
jm

=
√

1

3
∣2,1, 1

2
,−1,

1

2
⟩
mm

+
√

2

3
∣2,1, 1

2
,0,−1

2
⟩
mm

(10.286)

and finally

∣2,1, 1

2
,
3

2
,−3

2
⟩
jm

= ∣2,1, 1

2
,−1,−1

2
⟩
mm

(10.287)

We now need to construct the maximum state for then next lowest value of j,
namely,

∣2,1, 1

2
,
1

2
,
1

2
⟩
jm

(10.288)

This state has mj = 1/2 so it must be constructed out of the same states that
make up

∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

(10.289)

or it can be written as

∣2,1, 1

2
,
1

2
,
1

2
⟩
jm

= a ∣2,1, 1

2
,0,

1

2
⟩
mm

+ b ∣2,1, 1

2
,1,−1

2
⟩
mm

(10.290)

Now we must have

⟨2,1, 1

2
,
3

2
,
1

2
∣ 2,1,

1

2
,
1

2
,
1

2
⟩
jm

= 0 orthogonality (10.291)

⟨2,1, 1

2
,
1

2
,
1

2
∣ 2,1,

1

2
,
1

2
,
1

2
⟩
jm

= 1 normalization (10.292)
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Using the orthonormality of the ∣n, `, s,m`,ms⟩ states we get

√
2

3
a +

√
1

3
b = 0 and a2 + b2 = 1 (10.293)

The solution is

a =
√

1

3
andb = −

√
2

3
(10.294)

and therefore

∣2,1, 1

2
,
1

2
,
1

2
⟩
jm

=
√

1

3
∣2,1, 1

2
,0,

1

2
⟩
mm

−
√

2

3
∣2,1, 1

2
,1,−1

2
⟩
mm

(10.295)

In a similar manner, we find

∣2,1, 1

2
,
1

2
,−1

2
⟩
jm

=
√

2

3
∣2,1, 1

2
,−1,

1

2
⟩
mm

−
√

1

3
∣2,1, 1

2
,0,−1

2
⟩
mm

(10.296)

Finally, we construct the other j = 1/2 states with ` = 0. They are

∣2,0, 1

2
,0,

1

2
⟩
jm

= ∣2,0, 1

2
,0,

1

2
⟩
mm

(10.297)

∣2,0, 1

2
,0,−1

2
⟩
jm

= ∣2,0, 1

2
,0,−1

2
⟩
mm

(10.298)

We can now calculate the first-order energy corrections. We do not actually need
the detailed construction of the states to do this, but we will need these states
to compare with the results of Method #2 later. We found earlier (10.276) that
in the ∣n, `, s, j,mj⟩ basis

En`sjmj = E(0)
n +

e2h̵2An`sjmj
4m2c2

(j(j + 1) − `(` + 1) − s(s + 1)) (10.299)

An`sjmj = ∫ d3r⃗
1

r3
∣ψn`sjmj(r⃗)∣

2
(10.300)

or

∆En,`,s,j,mj = En,`,s,j,mj −E(0)
n = e

2h̵2A±
4m2c2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

` j = ` + 1/2
−(` + 1) j = ` − 1/2
0 ` = 0

(10.301)

A± = ∫ d3r⃗
1

r3
∣ψn,`,s,j=`± 1

2 ,mj
(r⃗)∣

2
(10.302)
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Evaluating the integrals we get

∆En,`,s,j,mj =
Z2 ∣E(0)

n ∣α2

n(2` + 1)(` + 1)
j = ` + 1

2
(10.303)

∆En,`,s,j,mj = −
Z2 ∣E(0)

n ∣α2

n`(2` + 1)
j = ` − 1

2
(10.304)

∆En,`,s,j,mj = 0 ` = 0 (10.305)

where

α = e2

h̵c
= fine structure constant (10.306)

Therefore, for the n = 2 level we have

∆E2,1, 12 ,
3
2 ,mj

=
Z2 ∣E(0)

2 ∣α2

12
j = ` + 1

2
= 3

2
(10.307)

∆E2,1, 12 ,
1
2 ,mj

= −
Z2 ∣E(0)

2 ∣α2

6
j = ` − 1

2
= 1

2
(10.308)

∆E2,0, 12 ,
1
2 ,mj

= 0 j = ` + 1

2
= 1

2
(10.309)

We note that for hydrogen Z2α2 ≈ 10−4 and thus, the fine structure splitting is
significantly smaller than the zero-order energies.

The relativity correction is the same order of magnitude as the spin-orbit cor-
rection. We found

Ĥrelativity = −
p⃗4
op

8m3c2
(10.310)

This gives the correction

∆Erel = −
h̵4

8m3c2

∞

∫
0

r2drψ∗n`m(r)∇4ψn`m(r)

=
Z2 ∣E(0)

n ∣α2

4n2
(3 − 4n

` + 1
2

) (10.311)

Combining these two correction terms(spin-orbit and relativity) gives

∆Efine structure =
Z2 ∣E(0)

2 ∣α2

4n2
(3 − 4n

j + 1
2

) (10.312)

The result is independent of `. It turns out that this result is valid for ` = 0
also. There is an additional term that must be added to the Hamiltonian which
contributes only in ` = 0 states. It is called the Darwin term.
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The Darwin term comes from the relativistic equation for the electron and takes
the form

ĤDarwin =
h̵2

8m2c2
∇2V = − h̵2

8m2c2
(4πeQnuclear(r⃗)) =

πh̵2Ze2

2m2c2
δ(r⃗) (10.313)

where
Qnuclear(r⃗) = the nuclear charge density (10.314)

Because of the delta function, a contribution

⟨ĤDarwin⟩nj` =
πh̵2Ze2

2m2c2
∣ψn`(0)∣2 =

mc2Z4α4

2n3
δ`,0 (10.315)

arises for ` = 0 states only. This is identical to the contribution ⟨Ĥso + Ĥrel⟩ for
` = 0, j = 1/2.

Method #2

We use the ∣n, `, s,m`,ms⟩ basis. In this case, the best form of the operators to
use (means we know how to evaluate them with these states) are

Ĥso =
e2

2m2c2
( 1

r3
) S⃗op ⋅ L⃗op

= e2

2m2c2
( 1

r3
)(L̂zŜz +

1

2
(L̂+Ŝ− + L̂−Ŝ+)) (10.316)

If we label the rows and columns of the matrix representation by

∣1⟩ = ∣2,1, 1

2
,1,

1

2
⟩
mm

mj =
3

2

∣2⟩ = ∣2,1, 1

2
,1,−1

2
⟩
mm

mj =
1

2

∣3⟩ = ∣2,1, 1

2
,0,

1

2
⟩
mm

mj =
1

2

∣4⟩ = ∣2,1, 1

2
,0,−1

2
⟩
mm

mj = −
1

2

∣5⟩ = ∣2,1, 1

2
,−1,

1

2
⟩
mm

mj = −
1

2

∣6⟩ = ∣2,1, 1

2
,−1,−1

2
⟩
mm

mj = −
3

2

∣7⟩ = ∣2,0, 1

2
,0,

1

2
⟩
mm

mj =
1

2

∣8⟩ = ∣2,0, 1

2
,0,−1

2
⟩
mm

mj = −
1

2

then we get the matrix for ⟨Ĥso⟩ as shown in Table 10.4 below.

I have used a table rather than an equation format so that I could clearly label
the rows and columns by the state index.
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1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 b c 0 0 0 0 0
3 0 c d 0 0 0 0 0
4 0 0 0 e f 0 0 0
5 0 0 0 f g 0 0 0
6 0 0 0 0 0 h 0 0
7 0 0 0 0 0 0 p 0
8 0 0 0 0 0 0 0 q

Table 10.4: ⟨Ĥso⟩ matrix

We have marked the non-zero elements. Using the operator properties derived
earlier we get

a = ⟨1∣ Ĥso ∣1⟩ = ⟨2,1, 1

2
,1,

1

2
∣ Ĥso ∣2,1,

1

2
,1,

1

2
⟩
mm

= ⟨2,1, 1

2
,1,

1

2
∣ e2

2m2c2
( 1

r3
)(L̂zŜz +

1

2
(L̂+Ŝ− + L̂−Ŝ+)) ∣2,1, 1

2
,1,

1

2
⟩
mm

= e2

2m2c2
⟨2,1∣ 1

r3
∣2,1⟩mm ⟨2,1, 1

2
,1,

1

2
∣ (L̂zŜz +

1

2
(L̂+Ŝ− + L̂−Ŝ+)) ∣2,1, 1

2
,1,

1

2
⟩
mm

= e2

2m2c2
⟨2,1∣ 1

r3
∣2,1⟩mm ⟨2,1, 1

2
,1,

1

2
∣ L̂zŜz ∣2,1,

1

2
,1,

1

2
⟩

= e2h̵2

4m2c2

∞

∫
0

1

r
R2
n`(r)dr =

e2h̵2

4m2c2
[ Z3

a3
0n

3`(` + 1
2
)(` + 1)

] (10.317)

Similar calculations give ⟨Ĥso⟩ as shown in Table 10.5 below.

1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 -a

√
2a 0 0 0 0 0

3 0
√

2a 0 0 0 0 0 0
4 0 0 0 0

√
2a 0 0 0

5 0 0 0
√

2a -a 0 0 0
6 0 0 0 0 0 a 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Table 10.5: ⟨Ĥso⟩ matrix - revised

862



This says that (only diagonal elements)

E
(1)
1 = a = E(1)

6 , E
(1)
7 = 0 = E(1)

8 (10.318)

and

∣1⟩ = ∣2,1, 1

2
,
3

2
,
3

2
⟩
jm

and ∣6⟩ = ∣2,1, 1

2
,
3

2
,−3

2
⟩
jm

∣7⟩ = ∣2,0, 1

2
,
1

2
,
1

2
⟩
jm

and ∣8⟩ = ∣2,0, 1

2
,
1

2
,−1

2
⟩
jm

In order to find E(1)
2′ ,E

(1)
3′ ,E

(1)
4′ ,E

(1)
5′ , corresponding to the new zero-order state

vectors ∣2′⟩ , ∣3′⟩ , ∣4′⟩ , ∣5′⟩, we must diagonalize the two 2 × 2 submatrices.

We begin with the submatrix involving states ∣2⟩ and ∣3⟩ as shown in Table 10.6,
namely,

2 3

2 -a
√

2a
3

√
2a 0

Table 10.6: ⟨Ĥso⟩ 2-3 submatrix

The characteristic equation is

(−a −E)(−E) − 2a2 = 0 = E2 + aE − 2a2 (10.319)

or
E

(1)
2′ = a and E(1)

3′ = −2a (10.320)

Notice that these energies are

E
(1)
2′ = `a and E(1)

3′ = −(` + 1)a (10.321)

as expected for the

j = ` + 1

2
and j = ` − 1

2
(10.322)

states respectively.

We find the eigenvectors using the eigenvalue equations. For ∣2′⟩ we have

( −a a
√

2

a
√

2 0
) ∣2′⟩ = ( −a a

√
2

a
√

2 0
)( u

v
) = E(1)

2′ ( u
v

) = a( u
v

)

or
−u +

√
2v = u and

√
2u = v (10.323)
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Using the normalization condition u2 + v2 = 1 we get

u =
√

1

3
and v =

√
2

3
(10.324)

or

∣2′⟩ =
√

1

3
∣2⟩ +

√
2

3
∣3⟩ = ∣2,1, 1

2
,
3

2
,
1

2
⟩
jm

(10.325)

and similarly

∣3 ′⟩ =
√

2

3
∣2⟩ −

√
1

3
∣3⟩ = ∣2,1, 1

2
,
1

2
,
1

2
⟩
jm

(10.326)

We then deal with the submatrix involving states ∣4⟩ and ∣5⟩ as shown in Table
10.7, namely,

4 5

4 0
√

2a
5

√
2a -a

Table 10.7: ⟨Ĥso⟩ 4-5 submatrix

The characteristic equation is

(−a −E)(−E) − 2a2 = 0 = E2 + aE − 2a2 (10.327)

or

E
(1)
4′ = a and E(1)

5′ = −2a (10.328)

and the eigenvectors are

∣4′⟩ =
√

2

3
∣4⟩ +

√
1

3
∣5⟩ = ∣2,1, 1

2
,
3

2
,−1

2
⟩
jm

(10.329)

∣5 ′⟩ =
√

1

3
∣4⟩ −

√
2

3
∣5⟩ = ∣2,1, 1

2
,
1

2
,−1

2
⟩
jm

(10.330)

So including the spin-orbit correction we end up with the energy levels

E
(0)
2 + a for 1,2′,4′,6→ 4 - fold degenerate

E
(0)
2 for 7,8→ 2 - fold degenerate

E
(0)
2 − 2a for 3′,5′ → 2 - fold degenerate
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10.6.2. Spin-Orbit and Arbitrary Magnetic Field

Now let us add on the Zeeman correction (for B⃗ = Bẑ)

ĤZeeman =
µB
h̵

(L⃗op + 2S⃗op) ⋅ B⃗ = µBB
h̵

(L̂z + 2Sz) (10.331)

We can solve this problem for arbitrary magnetic field by repeating Method #2
using the correction term as the sum of spin-orbit and Zeeman effects.

The zero-order Hamiltonian is Ĥ0 and the zero-order state vectors are the
∣n, `, s,m`,ms⟩ states. The eight zero-order n = 2 states are all degenerate with
energy

E
(0)
2 = − e2

8a0
(10.332)

so we must use degenerate perturbation theory.

We have already calculated the ⟨Ĥso⟩ in this basis. It is shown in Table 10.8
below.

1 2 3 4 5 6 7 8

1 a 0 0 0 0 0 0 0
2 0 -a

√
2a 0 0 0 0 0

3 0
√

2a 0 0 0 0 0 0
4 0 0 0 0

√
2a 0 0 0

5 0 0 0
√

2a -a 0 0 0
6 0 0 0 0 0 a 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Table 10.8: ⟨Ĥso⟩ matrix

where

a = e2h̵2

96m2a3
0c

2
(10.333)

The ⟨L̂z + 2Ŝz⟩ matrix is diagonal in this representation and its diagonal el-
ements are given by m` + 2ms and so the Zeeman contribution ⟨ĤZeeman⟩ is
shown in Table 10.9 below.

865



1 2 3 4 5 6 7 8

1 2b 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 b 0 0 0 0 0
4 0 0 0 -b 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 -2b 0 0
7 0 0 0 0 0 0 b 0
8 0 0 0 0 0 0 0 -b

Table 10.9: ⟨ĤZeeman⟩ matrix

where b = µBB. The combined perturbation matrix ⟨V̂ ⟩ is then given in Table
10.10 below.

1 2 3 4 5 6 7 8

1 a+2b 0 0 0 0 0 0 0
2 0 -a a

√
2 0 0 0 0 0

3 0 a
√

2 b 0 0 0 0 0
4 0 0 0 -b a

√
2 0 0 0

5 0 0 0 a
√

2 -a 0 0 0
6 0 0 0 0 0 a-2b 0 0
7 0 0 0 0 0 0 b 0
8 0 0 0 0 0 0 0 -b

Table 10.10: ⟨V̂ ⟩ matrix

After diagonalizing, the new energies are

E1′ = −
e2

8a0
+ e2

8a0

α2

12
+ 2µBB

E2′ = −
e2

8a0
+ 1

2
(−(a − b) +

√
9a2 + 2ab + b2)

E3′ = −
e2

8a0
+ 1

2
(−(a − b) −

√
9a2 + 2ab + b2)

E4′ = −
e2

8a0
+ 1

2
(−(a + b) +

√
9a2 − 2ab + b2)
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E5′ = −
e2

8a0
+ 1

2
(−(a + b) −

√
9a2 − 2ab + b2)

E6′ = −
e2

8a0
+ e2

8a0

α2

12
− 2µBB

E7′ = −
e2

8a0
+ µBB

E8′ = −
e2

8a0
− µBB

If we let B be small so that b≪ a, we then get the approximate energies

E1′ = −
e2

8a0
+ e2

8a0

α2

12
+ 2µBB

E2′ = −
e2

8a0
+ 1

2
(−(a − b) + 3a(1 + b

9a
))

= − e2

8a0
+ a + 2

3
b = − e2

8a0
+ e2

8a0

α2

12
+ 2

3
µBB

E3′ = −
e2

8a0
+ 1

2
(−(a − b) − 3a(1 + b

9a
))

= − e2

8a0
− 2a + 1

3
b = − e2

8a0
− e2

8a0

α2

6
+ 1

3
µBB

E4′ = −
e2

8a0
+ 1

2
(−(a + b) + 3a(1 − b

9a
))

= − e2

8a0
+ a − 2

3
b = − e2

8a0
+ e2

8a0

α2

12
− 2

3
µBB

E5′ = −
e2

8a0
+ 1

2
(−(a + b) − 3a(1 − b

9a
))

= − e2

8a0
− 2a − 1

3
b = − e2

8a0
− e2

8a0

α2

6
− 1

3
µBB

E6′ = −
e2

8a0
+ e2

8a0

α2

12
− 2µBB

E7′ = −
e2

8a0
+ µBB

E8′ = −
e2

8a0
− µBB

This is clearly a perturbation of the spin-orbit energy levels. We assume that
the new state vectors become the zero-order vectors in the spin-orbit case for
low fields. In this case the Zeeman effect corrections(to the fine structure ener-
gies) are given by Table 10.11 below.
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` s j mj ∆EZeeman State
1 1/2 3/2 3/2 2µBB 1′

1 1/2 3/2 1/2 2µBB/3 2′

1 1/2 1/2 1/2 µBB/3 3′

1 1/2 3/2 -1/2 −2µBB/3 4′

1 1/2 1/2 -1/2 −µBB/3 5′

1 1/2 3/2 -3/2 −2µBB 6′

0 1/2 1/2 1/2 µBB 7′

0 1/2 1/2 -1/2 −µBB 8′

Table 10.11: n = 2 energy corrections for small B

A little bit of study shows the general relation

∆EZeeman = gµBBmj (10.334)

where

g = Lande g - factor = 1 + j(j + 1) − `(` + 1) + s(s + 1)
2j(j + 1)

(10.335)

This is called the Zeeman effect.

We can prove this result in general. The general method uses the Wigner-Eckart
Theorem.

10.6.3. Wigner-Eckart Theorem

Consider a vector operator A⃗op. We have already shown that the Cartesian
components of any vector operator has the following commutation relations
with the Cartesian components of the angular momentum operator

[Âi, Ĵj] = ih̵εijkÂk (10.336)

We will now prove the following powerful theorem:

In a basis that diagonalizes J⃗2
op and Ĵz (i.e., the ∣λ, `, s, j,mj⟩ states, where λ

signifies other operators that commute with J⃗2
op and Ĵz), the matrix elements

of A⃗op between states with the same j−value are proportional to the matrix
elements of J⃗op and the proportionality factor is independent of mj .

The algebra involved in the proof is simpler if we work in the so-called spherical
basis instead of the Cartesian basis. The spherical basis uses

Ĵ± = Ĵx ± iĴy , Ĵ0 = Ĵz (10.337)

Â± = Âx ± iÂy , Â0 = Âz (10.338)
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The corresponding commutators are

[Â±, Ĵ0] = ∓h̵Â± , [Â±, Ĵ±] = 0 (10.339)

[Â±, Ĵ∓] = ±2h̵Â0 , [Â0, Ĵ0] = 0 (10.340)

[Â0, Ĵ±] = ±h̵Â± (10.341)

which all follow from the original commutator for the arbitrary vector operator.
Now, by definition of the operators, we have

Ĵ0 ∣λ, j,mj⟩ = h̵mj ∣λ, j,mj⟩ = ⟨j,mj ∣ Ĵ0 ∣j,mj⟩ ∣λ, j,mj⟩ (10.342)

Ĵ± ∣λ, j,mj⟩ = h̵
√
j(j + 1) −mj(mj ± 1) ∣λ, j,mj ± 1⟩

= ⟨j,mj ± 1∣ Ĵ± ∣j,mj⟩ ∣λ, j,mj ± 1⟩ (10.343)

⟨λ, j,mj ∣ Ĵ± = (Ĵ∓ ∣λ, j,mj⟩)
+

= ⟨λ, j,mj ∓ 1∣ h̵
√
j(j + 1) −mj(mj ∓ 1)

= ⟨λ, j,mj ∓ 1∣ ⟨j,mj ∣ Ĵ± ∣j,mj ∓ 1⟩ (10.344)

We now work with the matrix elements of some of the commutators and use the
defining relations above to prove the theorem.

First, we have

∓h̵ ⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj⟩ = ⟨λ′, j,m′

j ∣ [Â±, Ĵ0] ∣λ, j,mj⟩

= ⟨λ′, j,m′
j ∣ [Â±Ĵ0 − Ĵ0Â±] ∣λ, j,mj⟩

= (mj −m′
j)h̵ ⟨λ′, j,m′

j ∣ Â± ∣λ, j,mj⟩ (10.345)

or
0 = (mj −m′

j ± 1)h̵ ⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj⟩ (10.346)

This says that either m′
j =mj ± 1 or the matrix element

⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj⟩ = 0 (10.347)

Since we have an identical property for the matrix elements of Ĵ± this implies
that the matrix elements of Â± are proportional to those of Ĵ± and we can write
the proportionality constant as

⟨λ′, j,mj ± 1∣ Â± ∣λ, j,mj⟩
⟨j,mj ± 1∣ Ĵ± ∣j,mj⟩

(10.348)

Second, we have

⟨λ′, j,m′
j ∣ [Â±, Ĵ±] ∣λ, j,mj⟩ = 0 (10.349)

⟨λ′, j,m′
j ∣ Â±Ĵ± ∣λ, j,mj⟩ = ⟨λ′, j,m′

j ∣ Ĵ±Â± ∣λ, j,mj⟩ (10.350)

⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj ± 1⟩ ⟨λ′, j,mj ± 1∣ Ĵ± ∣λ, j,mj⟩

= ⟨λ′, j,m′
j ∓ 1∣ Â± ∣λ, j,mj⟩ ⟨λ, j,mj ± 1∣ Ĵ± ∣λ, j,m′

j ∓ 1⟩ (10.351)
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Using the result from the first commutator this says that m′
j = mj ± 2, which,

in turn, implies that

⟨λ′, j,mj ± 2∣ Â± ∣λ, j,mj ± 1⟩
⟨j,mj ± 2∣ Ĵ± ∣j,mj ± 1⟩

=
⟨λ′, j,mj ± 1∣ Â± ∣λ, j,mj⟩

⟨j,mj ± 1∣ Ĵ± ∣j,mj⟩
(10.352)

This says that the proportionality constant is independent of mj .

We define a new symbol for the proportionality constant

⟨λ′, j∣ ∣A∣ ∣λ, j⟩± = the reduced matrix element (10.353)

which gives the relation

⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj⟩ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩± ⟨j,m′

j ∣ Ĵ± ∣j,mj⟩ (10.354)

To complete the proof we need to show that the same result holds for Â0 and
that

⟨λ′, j∣ ∣A∣ ∣λ, j⟩+ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩− (10.355)

We have

± 2h̵ ⟨λ′, j,m′
j ∣ Â0 ∣λ, j,mj⟩ = ⟨λ′, j,m′

j ∣ [Â±, Ĵ∓] ∣λ, j,mj⟩

= ⟨λ′, j,m′
j ∣ [Â±Ĵ∓ − Ĵ∓Â±] ∣λ, j,mj⟩

= ⟨λ′, j,m′
j ∣ Â± ∣λ, j,mj ∓ 1⟩ ⟨j,mj ∓ 1∣ Ĵ∓ ∣j,mj⟩

− ⟨λ′, j,m′
j ± 1∣ Â± ∣λ, j,mj⟩ ⟨j,m′

j ∣ Ĵ∓ ∣j,m′
j ± 1⟩ (10.356)

Now substituting in the matrix element of Â± we get

± 2h̵ ⟨λ′, j,m′
j ∣ Â0 ∣λ, j,mj⟩

= ⟨λ′, j∣ ∣A∣ ∣λ, j⟩± [⟨j,m′
j ∣ Ĵ± ∣j,mj ∓ 1⟩ ⟨j,mj ∓ 1∣ Ĵ∓ ∣j,mj⟩

− ⟨j,m′
j ± 1∣ Ĵ± ∣j,mj⟩ ⟨j,m′

j ∣ Ĵ∓ ∣j,m′
j ± 1⟩] (10.357)

This says that Â0 has non-vanishing matrix elements only when m′
j = mj . We

then get

± 2h̵ ⟨λ′, j,m′
j ∣ Â0 ∣λ, j,mj⟩

= ⟨λ′, j∣ ∣A∣ ∣λ, j⟩± [∣⟨j,mj ∓ 1∣ Ĵ∓ ∣j,mj⟩∣
2
− ∣⟨j,mj ± 1∣ Ĵ∓ ∣j,mj⟩∣

2
]

= ±2h̵mj = ±2h̵ ⟨λ′, j,m′
j ∣ Ĵ0 ∣λ, j,mj⟩ (10.358)

Putting it all together we get

⟨λ′, j,m′
j ∣ Â0 ∣λ, j,mj⟩ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩± ⟨j,m′

j ∣ Ĵ0 ∣j,mj⟩ (10.359)

Since no operator has a ± subscript, this also says that

⟨λ′, j∣ ∣A∣ ∣λ, j⟩+ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩− = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩ (10.360)
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and we finally have

⟨λ′, j,m′
j ∣ A⃗op ∣λ, j,mj⟩ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩± ⟨j,m′

j ∣ J⃗op ∣j,mj⟩ (10.361)

This completes the proof of the Wigner-Eckart theorem.

A very important extension of this theorem is the following result:

⟨λ′, j,m′
j ∣ A⃗op ⋅ J⃗op ∣λ, j,mj⟩ = ⟨λ′, j∣ ∣A∣ ∣λ, j⟩ ⟨j,m′

j ∣ J⃗2
op ∣j,mj⟩

= δm′
j ,mj

h̵2j(j + 1) ⟨λ′, j∣ ∣A∣ ∣λ, j⟩ (10.362)

which says that the scalar product is diagonal in mj . This result follows directly
from the Wigner-Eckart theorem

⟨λ′, j,m′
j ∣ A⃗op ⋅ J⃗op ∣λ, j,mj⟩ =∑

k

⟨λ′, j,m′
j ∣Aop,kJop,k ∣λ, j,mj⟩

=∑
k

⟨λ′, j,m′
j ∣Aop,k

⎛
⎜
⎝
∑
m′′
j

∣λ, j,m′′
j ⟩ ⟨λ, j,m′′

j ∣
⎞
⎟
⎠
Jop,k ∣λ, j,mj⟩

= ∑
λ′′,j′′,m′′

j

∑
k

⟨λ′, j,m′
j ∣Aop,k ∣λ, j,m′′

j ⟩ ⟨λ, j,m′′
j ∣Jop,k ∣λ, j,mj⟩

=∑
m′′
j

∑
k

⟨λ′, j∣ ∣A∣ ∣λ, j⟩ ⟨λ′, j,m′
j ∣Jop,k ∣λ, j,m′′

j ⟩ ⟨λ, j,m′′
j ∣Jop,k ∣λ, j,mj⟩

= ⟨λ′, j∣ ∣A∣ ∣λ, j⟩∑
k

⟨λ′, j,m′
j ∣Jop,k

⎛
⎜
⎝
∑
m′′
j

∣λ, j,m′′
j ⟩ ⟨λ, j,m′′

j ∣
⎞
⎟
⎠
Jop,k ∣λ, j,mj⟩

= ⟨λ′, j∣ ∣A∣ ∣λ, j⟩ ⟨j,m′
j ∣ J⃗2

op ∣j,mj⟩ = δm′
j ,mj

h̵2j(j + 1) ⟨λ′, j∣ ∣A∣ ∣λ, j⟩

Now back to the Zeeman effect. In the low field limit, we need to evaluate the
diagonal matrix elements

⟨`sjmj ∣ (L̂z + 2Ŝz) ∣`sjmj⟩ = ⟨`sjmj ∣ (Ĵz + Ŝz) ∣`sjmj⟩
= h̵mj + ⟨`sjmj ∣ Ŝz ∣`sjmj⟩ (10.363)

Now the Wigner-Eckart theorem says that

⟨`sjmj ∣ Ŝz ∣`sjmj⟩ = ⟨`sj∣ ∣S∣ ∣`sj⟩ ⟨`sjmj ∣ Ĵz ∣`sjmj⟩
= h̵mj ⟨`sj∣ ∣S∣ ∣`sj⟩ (10.364)

The scalar product matrix element formula gives

⟨`sjmj ∣ S⃗op ⋅ J⃗op ∣`sjmj⟩ = ⟨`sj∣ ∣S∣ ∣`sj⟩ ⟨jmj ∣ J⃗2
op ∣jmj⟩

= h̵2j(j + 1) ⟨`sj∣ ∣S∣ ∣`sj⟩ (10.365)

But we also have

(J⃗op − S⃗op)2 = L⃗2
op = J⃗2

op + S⃗2
op − 2S⃗op ⋅ J⃗op (10.366)
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⟨`sjmj ∣ S⃗op ⋅ J⃗op ∣`sjmj⟩ =
1

2
⟨`sjmj ∣ (J⃗2

op + S⃗2
op − L⃗2

op) ∣`sjmj⟩

= 1

2
h̵2(j(j + 1) + s(s + 1) − `(` + 1)) (10.367)

or

⟨`sj∣ ∣S∣ ∣`sj⟩ = j(j + 1) + s(s + 1) − `(` + 1)
2j(j + 1)

(10.368)

and thus

⟨`sjmj ∣ (L̂z + 2Ŝz) ∣`sjmj⟩

= h̵mj + h̵mj
j(j + 1) + s(s + 1) − `(` + 1)

2j(j + 1)
= h̵mjgj`s (10.369)

gj`s = 1 + j(j + 1) + s(s + 1) − `(` + 1)
2j(j + 1)

= Lande g - factor (10.370)

Finally, we have

⟨`sjmj ∣ ĤZeeman ∣`sjmj⟩ = µBBmjgj`s (10.371)

and the result we found earlier in the special example case is now proved in
general.

10.6.4. Paschen-Bach Effect

When B is large enough such that ∆EZeeman ≫ ∆Eso, but not large enough
so that the B⃗2 term we neglected earlier is important, we have the so-called
Paschen-Bach effect. If the B⃗2 term is dominant we have the so-called quadratic
Zeeman effect.

The best way to see what is happening for all magnetic field values is a plot. In
CGS Gaussian units

µB = 5.7884 × 10−9 eV

gauss
, a0 = 5.2918 × 10−8 cm , e = 4.80 × 10−10 esu

e2

a0
= 27.2 eV a = 1.509 × 10−5 eV b = 5.7884 × 10−9B eV
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Using our earlier results we then have

E1′ = −
e2

8a0
+ e2

8a0

α2

12
+ 2µBB

E2′ = −
e2

8a0
+ 1

2
(−(a − b) +

√
9a2 + 2ab + b2)

E3′ = −
e2

8a0
+ 1

2
(−(a − b) −

√
9a2 + 2ab + b2)

E4′ = −
e2

8a0
+ 1

2
(−(a + b) +

√
9a2 − 2ab + b2)

E5′ = −
e2

8a0
+ 1

2
(−(a + b) −

√
9a2 − 2ab + b2)

E6′ = −
e2

8a0
+ e2

8a0

α2

12
− 2µBB

E7′ = −
e2

8a0
+ µBB

E8′ = −
e2

8a0
− µBB

A plot of

(E + e2

8a0
) × 105 eV versus loge(B(gauss))

looks like Figure 10.2 below.

Figure 10.2: Hydrogen Atom In a Magnetic Field - Zeeman Effect

This plot for fields below 400 gauss ( loge(B) ≈ 6) shows the characteristic level
structure of the Zeeman effect.

The very large magnetic field Paschen-Bach effect is illustrated in Figure 10.3
below.
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Figure 10.3: Hydrogen Atom In a Magnetic Field - Paschen-Bach Effect

Notice the equally-spaced level signature of the Paschen-Bach effect.

We now define some notation that will be important later as we study atomic
spectra. For small magnetic fields we found that the approximate state vectors
are the ∣n`sjmj⟩ states. The energy levels including spin-orbit effects are

En = E(0)
n +∆Eso

= − Ze2

2a0n2

+
Z2α2 ∣E(0)

n ∣
n`(2` + 1)(` + 1)

(1 − δ`,0) (`δj,`+1/2 − (` + 1)δj,`−1/2) (10.372)

We define a spectroscopic notation to label the energy levels using the scheme
shown below:

∣n`sjmj⟩→ n2S+1L(symbol)J (10.373)

so that

∣21
1

2

3

2
mj⟩→ 22P 3

2
, ∣21

1

2

1

2
mj⟩→ 22P 1

2
, ∣20

1

2

1

2
mj⟩→ 22S 1

2

The L(symbols) are defined by Table 10.12 below.

L 0 1 2 3
Symbol S P D F

Table 10.12: Spectroscopic Labels

The energy level diagram for n = 1 and n = 2 is shown in Figure 10.4 below.
Earlier we calculated the relativistic correction and found that it was the same
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Figure 10.4: Spin-Orbit Energy Levels

order of magnitude as the spin-orbit correction for hydrogen. We found

∆Erel = −
Z2α2 ∣E(0)

n ∣
n

( 2

2` + 1
− 3

4n
) (10.374)

Combining these two corrections we have

∆Efs = ∆Eso +∆Erel = −
Z2α2 ∣E(0)

n ∣
n

( 1

j + 1
2

− 3

4n
) j = ` ± 1

2
(10.375)

which is independent of `. This changes the energy level structure to that shown
in Figure 10.5 below.

Figure 10.5: Fine Structure Energy Levels

The observed spectral lines result from an electron making a transition between
these levels. We will discuss this topic later.

10.6.5. Stark Effect

When a hydrogen atom is placed in an external electric field E⃗0, the potential
energy of the proton and the electron is given by

Vdipole(r⃗e, r⃗p) = −eE⃗0 ⋅ r⃗p + eE⃗0 ⋅ r⃗e
= eE0(ze − zp) = eE0z (10.376)
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where
z = ze − zp = zrelative (10.377)

Therefore, we consider the Hamiltonian

Ĥ = Ĥ0 + Ĥdipole (10.378)

where

Ĥ0 =
p⃗2
op

2m
− e2 (1

r
)
op

(10.379)

Ĥdipole = eE0zop (10.380)

For weak electric fields, we can apply perturbation theory (we ignore spin in
this calculation). First, we apply perturbation theory to the n = 1 ground state
of the hydrogen atom.

For the ground state, the wave function is ψ100(r⃗) and the first-order correction
to the energy is

E
(1)
1 = ⟨100∣ eE0zop ∣100⟩

= eE0 ∫ d3r⃗d3r⃗′ ⟨100 ∣ r⃗⟩ ⟨r⃗∣ zop ∣r⃗′⟩ ⟨r⃗′ ∣ 100⟩

= eE0 ∫ d3r⃗d3r⃗′zψ∗100(r⃗) ⟨r⃗ ∣ r⃗′⟩ψ100(r⃗′)

= eE0 ∫ d3r⃗d3r⃗′zψ∗100(r⃗)δ(r⃗ − r⃗′)ψ100(r⃗′)

= eE0 ∫ d3r⃗z ∣ψ100(r⃗)∣2 (10.381)

This equals zero since the integrand is the product of an even and odd functions.
Thus, the first-order correction is zero for the ground state.

The second-order correction is given by non-degenerate perturbation theory as

E
(2)
1 =

∞
∑
n=2

n−1

∑
`=0

`

∑
m=−`

∣⟨n`m∣ eE0zop ∣100⟩∣2

E
(0)
1 −E(0)

m

(10.382)

Using z = r cos θ we have

⟨n`m∣ zop ∣100⟩ = ∫ d3r⃗ [Rn`(r)Y ∗
`m(θ, φ)] [r cos θ]R10(r)Y00(θ, φ) (10.383)

Now

Y00 =
1√
4π

and z =
√

4π

3
Y10 (10.384)

Therefore,

⟨n`m∣ zop ∣100⟩ = ∫ r3drRn`(r)R10(r)
1√
3
∫ dΩY ∗

`m(θ, φ)Y10(θ, φ) (10.385)
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Now
∫ dΩY ∗

`m(θ, φ)Y10(θ, φ) = δ`,1δm,0 (10.386)

by the orthonormality of the (L⃗2
op, L̂z) eigenfunctions. Therefore,

⟨n`m∣ zop ∣100⟩ = 1√
3
δ`,1δm,0

∞

∫
0

r3drRn1(r)R10(r) (10.387)

and

∣⟨n10∣ zop ∣100⟩∣2 = 1

3

28n7(n − 1)2n−5

(n + 1)2n+5
a2

0 = β(n)a2
0 (10.388)

Finally,

E
(2)
1 = (eE0a0)2

∞
∑
n=2

β(n)
e2

2a0
(1 − 1

n2 )
= −2FE2

0a
3
0 (10.389)

where

F =
∞
∑
n=2

n2β(n)
(n2 − 1)

≈ 1.125 (10.390)

Therefore, the ground state exhibits a quadratic Stark effect.

The n = 2 level, which is the first excited state of hydrogen, has 4 degenerate
states.

n = 2→ ` = 0→ ψ200 = ψ1

→ ` = 1→m =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1→ ψ211 = ψ2

0→ ψ210 = ψ3

−1→ ψ21−1 = ψ4

We must use degenerate perturbation theory. We construct the 4 × 4 ⟨eE0zop⟩
matrix and then diagonalize it. We have

⟨eE0zop⟩ = eE0
⎛
⎜⎜⎜
⎝

⟨1∣ zop ∣1⟩ ⟨1∣ zop ∣2⟩ ⟨1∣ zop ∣3⟩ ⟨1∣ zop ∣4⟩
⟨2∣ zop ∣1⟩ ⟨2∣ zop ∣2⟩ ⟨2∣ zop ∣3⟩ ⟨2∣ zop ∣4⟩
⟨3∣ zop ∣1⟩ ⟨3∣ zop ∣2⟩ ⟨3∣ zop ∣3⟩ ⟨3∣ zop ∣4⟩
⟨4∣ zop ∣1⟩ ⟨4∣ zop ∣2⟩ ⟨4∣ zop ∣3⟩ ⟨4∣ zop ∣4⟩

⎞
⎟⎟⎟
⎠

(10.391)

Now z has no ϕ dependence and therefore,

⟨j∣ zop ∣k⟩ = 0 if mj ≠mk (10.392)

Thus,

⟨1∣ zop ∣2⟩ = 0 = ⟨1∣ zop ∣4⟩
⟨2∣ zop ∣1⟩ = 0 = ⟨2∣ zop ∣3⟩ = ⟨2∣ zop ∣4⟩
⟨3∣ zop ∣2⟩ = 0 = ⟨3∣ zop ∣4⟩
⟨4∣ zop ∣1⟩ = 0 = ⟨4∣ zop ∣2⟩ = ⟨4∣ zop ∣3⟩
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and the matrix becomes

⟨eE0zop⟩ = eE0
⎛
⎜⎜⎜
⎝

⟨1∣ zop ∣1⟩ 0 ⟨1∣ zop ∣3⟩ 0
0 ⟨2∣ zop ∣2⟩ 0 0

⟨3∣ zop ∣1⟩ 0 ⟨3∣ zop ∣3⟩ 0
0 0 0 ⟨4∣ zop ∣4⟩

⎞
⎟⎟⎟
⎠

(10.393)

We also have

⟨1∣ zop ∣1⟩ = 0 = ⟨2∣ zop ∣2⟩ = ⟨3∣ zop ∣3⟩ = ⟨4∣ zop ∣4⟩ (10.394)

since these integrands involve the product of even and odd functions.

Finding out which matrix elements are equal to zero without actually evaluating
the integrals corresponds to finding what are called selection rules. We will
elaborate on the idea of selection rules in the next section on the Van der Waal’s
interaction.

Thus, the matrix finally becomes (after relabeling the rows and columns)

⟨eE0zop⟩ = eE0
⎛
⎜⎜⎜
⎝

0 ⟨1∣ zop ∣3⟩ 0 0
⟨3∣ zop ∣1⟩ 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

(10.395)

where

⟨1∣ zop ∣3⟩ = ⟨3∣ zop ∣1⟩ = ∫ ψ200(r⃗)zψ210(r⃗)d3r⃗ = −3eE0a0 (10.396)

Diagonalizing the 2 × 2 submatrix gives eigenvalues ±3eE0a0. The first-order
energies and new zero-order wave functions are

ψ211(r⃗)→ E211 = E(0)
2 remains degenerate (10.397)

ψ21−1(r⃗)→ E21−1 = E(0)
2 remains degenerate (10.398)

ψ(+)(r⃗) =
1√
2
(ψ200(r⃗) − ψ210(r⃗))→ E+ = E(0)

2 + 3eE0a0

ψ(−)(r⃗) =
1√
2
(ψ200(r⃗) + ψ210(r⃗))→ E− = E(0)

2 − 3eE0a0

The degeneracy is broken for the m = 0 levels and we see a linear Stark effect.
The linear Stark effect only appears for degenerate levels.

10.6.6. Van der Waal’s Interaction
We now consider a system consisting of two widely separated atoms. In partic-
ular, we consider the interaction between two hydrogen atoms, where we treat
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the two protons as fixed point charges separated by a vector R⃗ and we define

r⃗1 = vector from first proton to its electron
r⃗2 = vector from second proton to its electron

as shown in Figure 10.5 below.

Figure 10.6: Van der Waal’s System

The Hamiltonian is given by
Ĥ = Ĥ0 + V (10.399)

where

Ĥ0 =
p⃗2

1,op

2µ
− e

2

r1
+
p⃗2

2,op

2µ
− e

2

r2
= 2 non-interacting hydrogen atoms (10.400)

and

V̂ = rest of the Coulomb interactions
= Vp1p2 + Ve1e2 + Ve1p2 + Ve2p1

= e2 ⎛
⎝

1

R
+ 1

∣R⃗ + r⃗2 − r⃗1∣
− 1

∣R⃗ + r⃗2∣
− 1

∣R⃗ − r⃗1∣
⎞
⎠

(10.401)

This is the perturbation potential.

We know the zero-order solution for two non-interacting hydrogen atoms. It is

zero-order states : ∣n1`1m1⟩ ∣n2`2m2⟩ (10.402)

with

zero-order energies : E(0)
n1n2

= − e2

2a0
( 1

n2
1

+ 1

n2
2

) (10.403)

where

Ĥ0 ∣n1`1m1⟩ ∣n2`2m2⟩ = −
e2

2a0
( 1

n2
1

+ 1

n2
2

) ∣n1`1m1⟩ ∣n2`2m2⟩ (10.404)
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This expression for the perturbation potential is too complicated to calculate.
We will need to make an approximation. We make the reasonable assumption
that

R >> r2 and R >> r1 (10.405)

We have two useful mathematical results that we can apply. In general, we can
write

1

∣R⃗ + a⃗∣
= 1

[R2 + 2R⃗ ⋅ a⃗ + a2]1/2 = 1

R
[1 + 2R⃗ ⋅ a⃗

R2
+ a2

R2
]
−1/2

(10.406)

and for small x we have

[1 + x]−1/2 ≈ 1 − 1

2
x + 3

8
x2 − 5

16
x3 + ...... (10.407)

Using

x = 2R⃗ ⋅ a⃗
R2

+ a2

R2
(10.408)

we get the general result

1

∣R⃗ + a⃗∣
= 1

R

⎡⎢⎢⎢⎢⎣
1 − 1

2
(2R⃗ ⋅ a⃗
R2

+ a2

R2
) + 3

8
(2R⃗ ⋅ a⃗
R2

+ a2

R2
)

2

− .....
⎤⎥⎥⎥⎥⎦

= 1

R

⎡⎢⎢⎢⎢⎣
1 − a⃗ ⋅ R⃗

R2
− 1

2

a2

R2
+ 3

2

(a⃗ ⋅ R⃗)2

R4
+ .....

⎤⎥⎥⎥⎥⎦
(10.409)

Therefore, we have

1

∣R⃗ + r⃗2∣
= 1

R
− r⃗2 ⋅ R⃗

R3
− 1

2

r2
2

R3
+ 3

2

(r⃗2 ⋅ R⃗)2

R5
(10.410)

1

∣R⃗ − r⃗1∣
= 1

R
+ r⃗1 ⋅ R⃗

R3
− 1

2

r2
1

R3
+ 3

2

(r⃗1 ⋅ R⃗)2

R5
(10.411)

1

∣R⃗ + r⃗2 − r⃗1∣
= 1

R
− (r⃗2 − r⃗1) ⋅ R⃗

R2
− 1

2

(r⃗2 − r⃗1)2

R2
+ 3

2

((r⃗2 − r⃗1) ⋅ R⃗)2

R4

= 1

R
− r⃗2 ⋅ R⃗

R3
+ r⃗1 ⋅ R⃗

R3
− 1

2

r2
1

R3
− 1

2

r2
2

R3
+ r⃗1 ⋅ r⃗2

R3

+ 3

2

(r⃗2 ⋅ R⃗)2

R5
+ 3

2

(r⃗1 ⋅ R⃗)2

R5
− 3

((r⃗1 ⋅ R⃗)(r⃗2 ⋅ R⃗)
R5

(10.412)

Putting all this together we get

V = e2

R3

⎡⎢⎢⎢⎢⎣
r⃗1 ⋅ r⃗2 − 3

((r⃗1 ⋅ R⃗)(r⃗2 ⋅ R⃗)
R2

⎤⎥⎥⎥⎥⎦
(10.413)
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Physically, this says that for large separations, the interaction between the atoms
is the same as that between two dipoles er⃗1 and er⃗2 separated by R⃗.

To simplify the algebra, we now choose the vector R⃗ to lie along the z−axis

R⃗ = Rẑ (10.414)

which gives

V = e2

R3
[(x1x2 + y1y2 + z1z2) − 3

z1z2R
2

R2
]

= e2

R3
(x1x2 + y1y2 − 2z1z2) (10.415)

We now specialize to consider the case n1 = n2 = 2. When n = 2, there are 4
electron states for each atom

` = 0,m = 0

` = 1,m = 1,0,−1

Therefore, there are 16 = (4×4) degenerate unperturbed zero-order states, each
with energy

E0 = −
e2

8a0
− e2

8a0
= − e2

4a0
(10.416)

We use degenerate perturbation theory. To carry out degenerate perturbation
theory, we must construct the 16 × 16 matrix representation of ⟨V̂ ⟩ and diago-
nalize it to find the energies corrected to first-order.

The typical matrix element is (leaving off the n labels)

⟨`1m1`2m2∣ V̂ ∣`1m1`2m2⟩

= e2

R3
⟨`1m1∣ x̂1 ∣`1m1⟩ ⟨`2m2∣ x̂2 ∣`2m2⟩

+ e2

R3
⟨`1m1∣ ŷ1 ∣`1m1⟩ ⟨`2m2∣ ŷ2 ∣`2m2⟩

− 2
e2

R3
⟨`1m1∣ ẑ1 ∣`1m1⟩ ⟨`2m2∣ ẑ2 ∣`2m2⟩ (10.417)

We have

x = r sin θ cosφ = −r
√

2π

3
(Y1,1 − Y1,−1) (10.418)

y = r sin θ sinφ = +ir
√

2π

3
(Y1,1 + Y1,−1) (10.419)

z = r cos θ = r
√

4π

3
Y10 (10.420)
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and

⟨n`m∣x ∣n`′m′⟩

= −
√

2π

3

⎡⎢⎢⎢⎢⎣

∞

∫
0

r3Rn`(r)Rn`′(r)dr
⎤⎥⎥⎥⎥⎦
[∫ dΩY ∗

`m(Y1,1 − Y1,−1)Y`′m′] (10.421)

⟨n`m∣ y ∣n`′m′⟩

= i
√

2π

3

⎡⎢⎢⎢⎢⎣

∞

∫
0

r3Rn`(r)Rn`′(r)dr
⎤⎥⎥⎥⎥⎦
[∫ dΩY ∗

`m(Y1,1 + Y1,−1)Y`′m′] (10.422)

⟨n`m∣ z ∣n`′m′⟩

=
√

4π

3

⎡⎢⎢⎢⎢⎣

∞

∫
0

r3Rn`(r)Rn`′(r)dr
⎤⎥⎥⎥⎥⎦
[∫ dΩY ∗

`mY10Y`′m′] (10.423)

Now let us return to the subject of selection rules.

We will just begin the discussion here and then elaborate and finish it later
when we cover the topic of time-dependent perturbation theory.

Consider the integrals involving the spherical harmonics above. We have

∫ dΩY ∗
`mY1m′′Y`′m′ = 0unless{ ` + `′ + 1 = even

m =m′ +m′′ (10.424)

These rules follow from doing the integrations over the θ and ϕ variables.

In particular, when the perturbation involves x, y, or z we have

for x and y m =m′ ± 1

for z m =m′

which is the so-called
∆m = ±1,0 (10.425)

selection rule for this type of perturbation.

In addition, we have the
∆` = ±1 (10.426)

selection rule for this type of perturbation.

These two rules will enable us to say many matrix elements are equal to zero
by inspection.

We can derive two more very useful selection rules as follows. We know that

[L̂i, rj] = ih̵εijkrk (10.427)
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This allows us to write (after much algebra)

[L̂z, V̂ ] = [(L̂1z + L̂2z), V̂ ] = [L̂1z, V̂ ] + [L̂2z, V̂ ]

= e2

R3
[L̂1z, (x1x2 + y1y2 − 2z1z2)] +

e2

R3
[L̂2z, (x1x2 + y1y2 − 2z1z2)]

= 0

This implies that [L̂z, Ĥ] = 0 or that the z−component of the total angular
momentum of the electrons is not changed by this perturbation (it is conserved).

This gives the selection rule

m1 +m2 =m′
1 +m′

2 (10.428)

Summarizing the selection rules we have

`1 + `′1 + 1 = even ( = reason b for a zero)
`2 + `′2 + 1 = even ( = reason c for a zero)
m1 −m′

1 = ±1,0 ( = reason d for a zero)
m2 −m′

2 = ±1,0 ( = reason d for a zero)
m1 +m2 =m′

1 +m′
2 ( = reason a for a zero)

and we have also given reason labels for each.

The unperturbed states are (using the format ∣`1m1⟩ ∣`2m2⟩ are

∣1⟩ = ∣00⟩ ∣00⟩ , ∣2⟩ = ∣00⟩ ∣11⟩ , ∣3⟩ = ∣00⟩ ∣10⟩ , ∣4⟩ = ∣00⟩ ∣1,−1⟩
∣5⟩ = ∣11⟩ ∣00⟩ , ∣6⟩ = ∣11⟩ ∣11⟩ , ∣7⟩ = ∣11⟩ ∣10⟩ , ∣8⟩ = ∣11⟩ ∣1,−1⟩
∣9⟩ = ∣10⟩ ∣00⟩ , ∣10⟩ = ∣10⟩ ∣11⟩ , ∣11⟩ = ∣10⟩ ∣10⟩ , ∣12⟩ = ∣10⟩ ∣1,−1⟩
∣13⟩ = ∣1,−1⟩ ∣00⟩ , ∣14⟩ = ∣1,−1⟩ ∣11⟩ , ∣15⟩ = ∣1,−1⟩ ∣10⟩ , ∣16⟩ = ∣1,−1⟩ ∣1,−1⟩

The ⟨V̂ ⟩ matrix looks like (using labels (VALUE) or (0reason)) and labeling the
rows/columns in order as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
There are only 12 nonzero elements(out of 256) and because the matrix is Her-
mitian we only have 6 to calculate (one side of the diagonal). It should now be
clear why finding the relevant selection rules is so important!!!
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0bc 0ba 0a 0a 0a 0a 0a A 0a 0a B 0a 0a C 0a 0a
0ba 0bc 0a 0a D 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a
0a 0a 0a 0bc 0a 0a 0a 0a E 0a 0a 0a 0a 0a 0a 0a
0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a 0a 0a F 0a 0a 0a
0a D 0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a
0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a
0a 0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a 0a 0a
A 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a 0a
0a 0a E 0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a 0a 0a 0a
0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a 0a 0a
B 0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0bc 0a 0a
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0a 0a
0a 0a 0a F 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0a
C 0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a 0a 0bc 0a 0a
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc 0a
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0bc

Table 10.13: ⟨V̂ ⟩ matrix entries

The 10 nonzero elements are given by the expressions

A = C = e2

R3
⟨200∣ ⟨200∣ (x1x2 + y1y2) ∣211⟩ ∣21,−1⟩ (10.429)

B = E = −2
e2

R3
⟨200∣ ⟨200∣ z1z2 ∣210⟩ ∣21,0⟩ (10.430)

D = e2

R3
⟨200∣ ⟨211∣ (x1x2 + y1y2) ∣211⟩ ∣200⟩ (10.431)

F = e2

R3
⟨200∣ ⟨21,−1∣ (x1x2 + y1y2) ∣21,−1⟩ ∣200⟩ (10.432)

If we define

α =
√

8π

3

∞

∫
0

r3R20R21dr (10.433)

we have

⟨200∣x ∣211⟩ = α
2
= − ⟨200∣x ∣21,−1⟩ (10.434)

⟨200∣ y ∣211⟩ = iα
2
= ⟨200∣x ∣21,−1⟩ (10.435)

⟨200∣ z ∣211⟩ =
√

2

2
α (10.436)

and

A = C = E
2
= B

2
= −D = −F = −1

2
α2 e

2

R3
(10.437)
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Now we rearrange the row/column labels(the original choice was arbitrary) to
create a Jordan canonical form with blocks on the diagonal. We choose

1 8 11 14 2 5 3 9 4 13 6 7 10 12 15 16

0 A 2A A 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -A 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -A 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2A 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2A 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -A 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -A 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.14: Jordan Canonical Form

The is called the block-diagonalized form. We have one 4 × 4 and three 2 × 2
matrices to diagonalize. We get the eigenvalues

4 × 4→ 0,0,±
√

6A , 2 × 2→ ±A
2 × 2→ ±2A , 2 × 2→ ±A

Therefore, the energies correct to first-order are

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 +
√

6A degeneracy = 1

E0 + 2A degeneracy = 1

E0 +A degeneracy = 2

E0 degeneracy = 8

E0 −A degeneracy = 2

E0 − 2A degeneracy = 1

E0 −
√

6A degeneracy = 1

(10.438)

That was a real problem!
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10.7. Variational Methods

All perturbation methods rely on our ability to make the separation Ĥ = Ĥ0+ V̂
where Ĥ0 is solvable exactly and V̂ is a small correction. The Rayleigh-Ritz
variational method is not subject to any such restrictions. This method is based
on the following mathematical results.

We can always write

Ĥ = ÎĤ =∑
N

∣N⟩ ⟨N ∣ Ĥ =∑
N

En ∣N⟩ ⟨N ∣ (10.439)

where
Ĥ ∣N⟩ = En ∣N⟩ (10.440)

This is just the spectral decomposition of Ĥ in terms of its eigenvectors and
eigenvalues. Now, if we choose some arbitrary state vector ∣ψ⟩ (called a trial
vector), then have

⟨ψ∣ Ĥ ∣ψ⟩ =∑
N

En ⟨ψ ∣ N⟩ ⟨N ∣ ψ⟩

≥∑
N

E0 ⟨ψ ∣ N⟩ ⟨N ∣ ψ⟩ = E0∑
N

⟨ψ ∣ N⟩ ⟨N ∣ ψ⟩

≥ E0 ⟨ψ∣ (∑
N

∣N⟩ ⟨N ∣) ∣ψ⟩ = E0 ⟨ψ∣ Î ∣ψ⟩ = E0 ⟨ψ ∣ ψ⟩ (10.441)

or
⟨ψ∣ Ĥ ∣ψ⟩
⟨ψ ∣ ψ⟩

≥ E0 (10.442)

for any choice of the trial vector ∣ψ⟩, where E0 is the ground state energy (the
lowest energy). Equality holds only if ∣ψ⟩ is the true ground state vector. This
result says that

⟨ψ∣ Ĥ ∣ψ⟩
⟨ψ ∣ ψ⟩

is an upper bound for E0 (10.443)

Procedure

1. Pick a trial vector ∣ψ⟩ that contains unknown parameters {αk}

2. Calculate
⟨ψ∣ Ĥ ∣ψ⟩
⟨ψ ∣ ψ⟩

= E0 ({αk}) (10.444)

3. Since E0 ({αk}) is an upper bound, we then minimize it with respect to
all of the parameters {αk}. This gives a least upper bound for that choice
of the functional form for the trial vector.

4. We perform the minimization by setting

∂E0

∂αk
= 0 for all k (10.445)
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5. The more complex the trial vector, i.e., the more parameters we incor-
porate allows us to better approximate the true functional form of the
ground state vector and we will get closer and closer to the true energy
value.

What about states other than the ground state? If the ground state has different
symmetry properties than the first excited state, i.e.,

ground state → ` = 0→ contains Y00

1st excited state → ` = 1→ contains Y1m

then if we choose a trial vector with the symmetry of an ` = 0 state we obtain an
approximation to the ground state energy. If, however, we choose a trial vector
with the symmetry of an ` = 1 state, then we obtain an approximation to the
first-excited state energy and so on.

In other words, the variational method always gives the least upper bound for
the energy of the state with the same symmetry as the trial vector.

Example

Let us choose the harmonic oscillator Hamiltonian

Ĥ = − h̵
2

2m

d2

dx2
+ 1

2
kx2 (10.446)

and a trial wave function

ψ(x, a) =
⎧⎪⎪⎨⎪⎪⎩

(a2 − x2)2 ∣x∣ < a
0 ∣x∣ ≥ a

(10.447)

where a is an unknown parameter. The variational principle says that

⟨ψ(a)∣ Ĥ ∣ψ(a)⟩
⟨ψ(a) ∣ ψ(a)⟩

= E0(a) ≥ E0 = true ground state energy

We get a best value for this choice of trial function by minimizing with respect
to a using

dE0(a)
da

= 0 (10.448)

Now we need to calculate the integrals. We have for the denominator (the
normalization integral)

⟨ψ(a) ∣ ψ(a)⟩ =
a

∫
−a

ψ2(x, a)dx =
a

∫
−a

(a2 − x2)4dx

= 2

a

∫
0

(a2 − x2)4dx = 336

315
a9 (10.449)
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and for the numerator

⟨ψ(a)∣ Ĥ ∣ψ(a)⟩ = − h̵
2

2m
2

a

∫
0

ψ(x, a)d
2ψ(x, a)
dx2

dx + 1

2
k2

a

∫
0

ψ2(x, a)x2dx

= − h̵
2

2m
(−80

21
a7) + 1

2
k ( 336

3465
a11) (10.450)

Therefore,

E0(a) = 1.786
h̵2

ma2
+ 0.045ka2 (10.451)

The minimum condition gives

a2 = 6.300( h̵
2

mk
)

1/2

(10.452)

which then says that
0.566h̵ω ≥ E0 (10.453)

The true value is 0.500h̵ω. This is an excellent result considering that the trial
function does not look at all like the correct ground-state wave function (it
is a Gaussian function). This points out clearly how powerful the variational
technique can be for many problems.

10.8. 2nd-Order Degenerate Perturbation Theory

Suppose that the first order correction in perturbation theory is zero for some
degenerate states so that the states remain degenerate. In this case, second-
order degenerate perturbation theory must be applied. This is complex. We
follow the derivation in Schiff (using our notation).

We assume that
εm = εk , Vkm = 0 and Vkk = Vmm (10.454)

so that the degeneracy is not removed in first order.

We assume the equations (to second order)

Ĥ = Ĥ0 + V̂ = Ĥ0 + gÛ (10.455)

∣M⟩ = am ∣m⟩ + ak ∣k⟩ + g ∑
l≠m,k

a
(1)
l ∣l⟩ + g2 ∑

l≠m,k
a
(2)
l ∣l⟩ (10.456)

∣K⟩ = bm ∣m⟩ + bk ∣k⟩ + g ∑
l≠m,k

b
(1)
l ∣l⟩ + g2 ∑

l≠m,k
b
(2)
l ∣l⟩ (10.457)

∣N⟩ = ∣n⟩ + g ∑
l≠m,k

a
(1)
nl ∣l⟩ + g2 ∑

l≠m,k
a
(2)
nl ∣l⟩ , n ≠m,k (10.458)

Ep = εp + gE(1)
p + g2E(2)

p (10.459)

Ĥ ∣M⟩ = (Ĥ0 + V̂ ) ∣M⟩ = Em ∣M⟩ = (εm + gE(1)
m + g2E(2)

m ) ∣M⟩ (10.460)
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where the degenerate states are labeled by k, m and we assume the degenerate
zero-order states are linear combinations of the two zero order degenerate states
as shown.

A very important point is being made here.

If the system remains degenerate after first-order correction, then one must
redevelop the equations for degenerate perturbation theory, using the correct
zero order state vectors, i.e., linear combinations of the degenerate states. Even
in the special case where the degenerate basis is uncoupled, i.e.,

⟨k∣V ∣m⟩ = Vkm = 0 (10.461)

we must not use non-degenerate perturbation theory, as one might do if many
textbooks are to be believed.

Remember that the primary object of degenerate perturbation theory is not
only to eliminate the divergent terms, but to determine the appropriate linear
combinations to use for zero-order state vectors. If we start with the wrong
linear combinations, then we would have a discontinuous change of states in the
limit of vanishing interactions, which says that the perturbation expansion is
not valid.

We then have

gamU ∣m⟩ + gakU ∣k⟩ + g ∑
l≠m,k

a
(1)
l εl ∣l⟩

+ g2 ∑
l≠m,k

a
(2)
l εl ∣l⟩ + g2 ∑

l≠m,k
a
(1)
l U ∣l⟩

= (gE(1)
m + g2E(2)

m ) (am ∣m⟩ + ak ∣k⟩) + g ∑
l≠m,k

a
(1)
l εm ∣l⟩

+ g2 ∑
l≠m,k

a
(2)
l εm ∣l⟩ + g2 ∑

l≠m,k
a
(1)
l E(1)

m ∣l⟩

Applying the linear functional ⟨m∣ we get

gamUmm + g2 ∑
l≠m,k

a
(1)
l Uml = gE(1)

m am + g2E(2)
m am (10.462)

Applying the linear functional ⟨k∣ we get

gakUkk + g2 ∑
l≠m,k

a
(1)
l Ukl = gE(1)

m ak + g2E(2)
m ak (10.463)

Applying the linear functional ⟨n∣ we get

gamUnm + gakUnk + gεna(1)n + g2εna
(2)
n + g2 ∑

l≠m,k
a
(1)
l Unl

= gεma(1)m + g2εma
(2)
m + g2E(1)

m a(2)m (10.464)
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The first-order terms in (10.462) and (10.463) give the expected result

E(1)
m = Umm = Ukk (10.465)

The second-order terms in (10.462) and (10.463) give (equation (10.465))

∑
l≠m,k

a
(1)
l Uml = E(2)

m am , ∑
l≠m,k

a
(1)
l Ukl = E(2)

m ak (10.466)

The first-order terms in (10.464) give an expression for a(1)l when n = l ≠ m,k
(10.467)

a
(1)
l (εm − εl) = amUlm + akUlk (10.467)

Substituting (10.467) into (10.466) we get a pair of homogeneous algebraic equa-
tions for am and ak.

These equations have a nonvanishing solution if and only if the determinant of
the coefficients of am and ak is zero or

det

⎡⎢⎢⎢⎢⎢⎢⎣

∑
l≠m,k

UmlUlm
εm−εl −E(2)

m ∑
l≠m,k

UmlUlk
εm−εl

∑
l≠m,k

UklUlm
εm−εl ∑

l≠m,k
UklUlk
εm−εl −E

(2)
m

⎤⎥⎥⎥⎥⎥⎥⎦

= 0 (10.468)

or

det

⎡⎢⎢⎢⎢⎢⎢⎣

∑
l≠m,k

VmlVlm
εm−εl − g2E

(2)
m ∑

l≠m,k
VmlVlk
εm−εl

∑
l≠m,k

VklVlm
εm−εl ∑

l≠m,k
VklVlk
εm−εl − g

2E
(2)
m

⎤⎥⎥⎥⎥⎥⎥⎦

= 0 (10.469)

The two roots of this equation are g2E
(2)
m and g2E

(2)
k and the two pairs of

solutions of (10.466) are am,ak and bm,bk. We thus obtain perturbed energy
levels in which the degeneracy has been removed in second order and we also
find the correct linear combinations of the unperturbed degenerate state vectors
∣m⟩ and ∣k⟩.

Example

This is a tricky problem because the degeneracy between the first and second
state is not removed in first order degenerate perturbation theory.

A system that has three unperturbed states can be represented by the perturbed
Hamiltonian matrix

Ĥ = Ĥ0 + V̂

=
⎛
⎜
⎝

E1 0 0
0 E1 0
0 0 E2

⎞
⎟
⎠
+
⎛
⎜
⎝

0 0 a
0 0 b
a∗ b∗ 0

⎞
⎟
⎠
=
⎛
⎜
⎝

E1 0 a
0 E1 b
a∗ b∗ E2

⎞
⎟
⎠

(10.470)

where E2 > E1. The quantities a and b are to be regarded as perturbations that
are of same order and are small compared to E2 −E1. The procedure is:
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1. Diagonalize the matrix to find the exact eigenvalues.

2. Use second-order nondegenerate perturbation theory to calculate the per-
turbed energies. Is this procedure correct?

3. Use second-order degenerate perturbation theory to calculate the per-
turbed energies.

4. Compare the three results obtained.

Solution - We have

Ĥ = Ĥ0 + V̂

=
⎛
⎜
⎝

E1 0 0
0 E1 0
0 0 E2

⎞
⎟
⎠
+
⎛
⎜
⎝

0 0 a
0 0 b
a∗ b∗ 0

⎞
⎟
⎠
=
⎛
⎜
⎝

E1 0 a
0 E1 b
a∗ b∗ E2

⎞
⎟
⎠

with E2 > E1 and E2 −E1 ≫ a = b.

1. For an exact solution we need to find the eigenvalues of

⎛
⎜
⎝

E1 0 a
0 E1 b
a∗ b∗ E2

⎞
⎟
⎠

(10.471)

This leads to the characteristic equation

(E1 −E)(E1 −E)(E2 −E) − (E1 −E) ∣b∣2 − (E1 −E) ∣a∣2 = 0 (10.472)

This says that one of the eigenvalues is E = E1 and the remaining quadratic
equation is

E2 − (E1 +E2)E + (E1E2 − ∣b∣2 − ∣a∣2) = 0 (10.473)

or the other two eigenvalues are

E = 1

2
((E1 +E2) ±

√
(E1 +E2)2 − 4(E1E2 − ∣b∣2 − ∣a∣2)) (10.474)

The exact energy values are

E1

1

2
((E1 +E2) +

√
(E1 +E2)2 − 4(E1E2 − ∣b∣2 − ∣a∣2)) ≈ E1 +

∣a∣2 + ∣b∣2

E1 −E2

E = 1

2
((E1 +E2) −

√
(E1 +E2)2 − 4(E1E2 − ∣b∣2 − ∣a∣2)) ≈ E2 −

∣a∣2 + ∣b∣2

E1 −E2
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2. Apply non-degenerate second-order perturbation theory. The unperturbed
system has

Ĥ0 =
⎛
⎜
⎝

E1 0 0
0 E1 0
0 0 E2

⎞
⎟
⎠

(10.475)

Since this is diagonal we have

E
(0)
1 = E1 = E(0)

2 , E
(0)
3 = E2 (levels 1 and 2 are degenerate)

and unperturbed eigenvectors

∣1⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

, ∣2⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

, ∣3⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(10.476)

The perturbation is (in the unperturbed basis)

V̂ =
⎛
⎜
⎝

0 0 a
0 0 b
a∗ b∗ 0

⎞
⎟
⎠

(10.477)

Since the diagonal matrix elements of the perturbation are zero we have

E
(1)
1 = E(1)

2 = E(1)
3 = 0 or no first - order corrections (10.478)

Thus, levels 1 and 2 remain degenerate.

If we formally (and incorrectly) apply non-degenerate second-order per-
turbation theory to this system we get

E(2)
n = ∑

m≠n

∣Vmn∣2

E
(0)
n −E(0)

m

(10.479)

Now V12 = 0,V13 = a,V23 = b and so we get

E
(2)
1 = ∑

m≠1

∣Vm1∣2

E
(0)
1 −E(0)

m

= 0

0
+ ∣V13∣2

E
(0)
1 −E(0)

3

?= ∣a∣2

E1 −E2
incorrect because of 0/0 term

E
(2)
2 = ∑

m≠2

∣Vm2∣2

E
(0)
2 −E(0)

m

= 0

0
+ ∣V23∣2

E
(0)
2 −E(0)

3

?= ∣b∣2

E1 −E2
incorrect because of 0/0 term
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E
(2)
3 = ∑

m≠3

∣Vm3∣2

E
(0)
3 −E(0)

m

= ∣V13∣2

E
(0)
3 −E(0)

1

+ ∣V23∣2

E
(0)
3 −E(0)

2

= ∣a∣2 + ∣b∣2

E2 −E1
agrees with exact solution

3. Now we apply second-order degenerate perturbation theory for the two
degenerate levels. We have

det

RRRRRRRRRRRRRR

∣V13∣2

E
(0)
1 −E(0)3

−E(2) V13V32

E
(0)
1 −E(0)3

V23V31

E
(0)
2 −E(0)3

∣V23∣2

E
(0)
2 −E(0)3

−E(2)

RRRRRRRRRRRRRR
(10.480)

= det

RRRRRRRRRRRR

∣a∣2
E1−E2

−E(2) ab∗

E1−E2

ba∗

E1−E2

∣b∣2
E1−E2

−E(2)

RRRRRRRRRRRR
= 0

(E(2))2 − ∣a∣2 + ∣b∣2

E1 −E2
E(2) + ∣a∣2 ∣b∣2

(E1 −E2)2
− ∣a∣2 ∣b∣2

(E1 −E2)2

= E(2) (E(2) − ∣a∣2 + ∣b∣2

E1 −E2
) = 0 (10.481)

corresponding to

E(2) = 0

E(2) = ∣a∣2 + ∣b∣2

E1 −E2

so that to second-order we have

E1

E1 +
∣a∣2 + ∣b∣2

E1 −E2

E2 −
∣a∣2 + ∣b∣2

E1 −E2

which agrees with the exact result.

10.9. Problems

10.9.1. Box with a Sagging Bottom

Consider a particle in a 1−dimensional box with a sagging bottom given by

V (x) =
⎧⎪⎪⎨⎪⎪⎩

−V0sin(πx/L) for 0 ≤ x ≤ L
∞ for x < 0 and x > L
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(a) For small V0 this potential can be considered as a small perturbation of
an infinite box with a flat bottom, for which we have already solved the
Schrodinger equation. What is the perturbation potential?

(b) Calculate the energy shift due to the sagging for the particle in the nth

stationary state to first order in the perturbation.

10.9.2. Perturbing the Infinite Square Well

Calculate the first order energy shift for the first three states of the infinite
square well in one dimension due to the perturbation

V (x) = V0
x

a

as shown in Figure 10.7 below.

Figure 10.7: Ramp perturbation

10.9.3. Weird Perturbation of an Oscillator

A particle of mass m moves in one dimension subject to a harmonic oscillator
potential 1

2
mω2x2. The particle is perturbed by an additional weak anharmonic

force described by the potential ∆V = λ sinkx , λ << 1. Find the corrected
ground state.

10.9.4. Perturbing the Infinite Square Well Again

A particle of mass m moves in a one dimensional potential box

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ for ∣x∣ > 3a

0 for a < x < 3a

0 for −3a < x < −a
V0 for ∣x∣ < a

as shown in Figure 10.8 below.

Use first order perturbation theory to calculate the new energy of the ground
state.

894



Figure 10.8: Square bump perturbation

10.9.5. Perturbing the 2-dimensional Infinite Square Well
Consider a particle in a 2-dimensional infinite square well given by

V (x, y) =
⎧⎪⎪⎨⎪⎪⎩

0 for 0 ≤ x ≤ a and 0 ≤ y ≤ a
∞ otherwise

(a) What are the energy eigenvalues and eigenkets for the three lowest levels?

(b) We now add a perturbation given by

V1(x, y) =
⎧⎪⎪⎨⎪⎪⎩

λxy for 0 ≤ x ≤ a and 0 ≤ y ≤ a
0 otherwise

Determine the first order energy shifts for the three lowest levels for λ≪ 1.

(c) Draw an energy diagram with and without the perturbation for the three
energy states, Make sure to specify which unperturbed state is connected
to which perturbed state.

10.9.6. Not So Simple Pendulum
A mass m is attached by a massless rod of length L to a pivot P and swings
in a vertical plane under the influence of gravity as shown in Figure 10.9 below.

Figure 10.9: A quantum pendulum

(a) In the small angle approximation find the quantum mechanical energy
levels of the system.

(b) Find the lowest order correction to the ground state energy resulting from
the inaccuracy of the small angle approximation.

895



10.9.7. 1-Dimensional Anharmonic Oscillator
Consider a particle of massm in a 1−dimensional anharmonic oscillator potential
with potential energy

V (x) = 1

2
mω2x2 + αx3 + βx4

(a) Calculate the 1st−order correction to the energy of the nth perturbed state.
Write down the energy correct to 1st−order.

(b) Evaluate all the required matrix elements of x3 and x4 needed to determine
the wave function of the nth state perturbed to 1st−order.

10.9.8. A Relativistic Correction for Harmonic Oscillator
A particle of mass m moves in a 1−dimensional oscillator potential

V (x) = 1

2
mω2x2

In the nonrelativistic limit, where the kinetic energy and the momentum are
related by

T = p2

2m

the ground state energy is well known to be E0 = h̵ω/2.

Relativistically, the kinetic energy and the momentum are related by

T = E −mc2 =
√
m2c4 + p2c2 −mc2

(a) Determine the lowest order correction to the kinetic energy (a p4 term).

(b) Consider the correction to the kinetic energy as a perturbation and com-
pute the relativistic correction to the ground state energy.

10.9.9. Degenerate perturbation theory on a spin = 1 system
Consider the spin Hamiltonian for a system of spin = 1

Ĥ = AŜ2
z +B(Ŝ2

x − Ŝ2
y) , B << A

This corresponds to a spin = 1 ion located in a crystal with rhombic symmetry.

(a) Solve the unperturbed problem for Ĥ0 = AŜ2
z .

(b) Find the perturbed energy levels to first order.

(c) Solve the problem exactly by diagonalizing the Hamiltonian matrix in
some basis. Compare to perturbation results.
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10.9.10. Perturbation Theory in Two-Dimensional Hilbert
Space

Consider a spin−1/2 particle in the presence of a static magnetic field along the
z and x directions,

B⃗ = Bz êz +Bxêx

(a) Show that the Hamiltonian is

Ĥ = h̵ω0σ̂z +
h̵Ω

2
σ̂x

where h̵ω0 = µBBz and h̵Ω0 = 2µBBx.

(b) IfBx = 0, the eigenvectors are ∣↑z⟩ and ∣↓z⟩ with eigenvalues ±h̵ω0respectively.
Now turn on a weak x field with Bx ≪ Bz. Use perturbation theory to
find the new eigenvectors and eigenvalues to lowest order in Bx/Bz.

(c) If Bz = 0, the eigenvectors are ∣↑x⟩ and ∣↓x⟩ with eigenvalues ±h̵Ω0 respec-
tively. Now turn on a weak z field with Bz ≪ Bx. Use perturbation theory
to find the new eigenvectors and eigenvalues to lowest order in Bz/Bx.

(d) This problem can actually be solved exactly. Find the eigenvectors and
eigenvalues for arbitrary values of Bz and Bx. Show that these agree with
your results in parts (b) and (c) by taking appropriate limits.

(e) Plot the energy eigenvalues as a function of Bz for fixed Bx. Label the
eigenvectors on the curves when Bz = 0 and when Bz → ±∞.

10.9.11. Finite Spatial Extent of the Nucleus
In most discussions of atoms, the nucleus is treated as a positively charged
point particle. In fact, the nucleus does possess a finite size with a radius given
approximately by the empirical formula

R ≈ r0A
1/3

where r0 = 1.2×10−13 cm (i.e., 1.2 Fermi) and A is the atomic weight or number
(essentially the number of protons and neutrons in the nucleus). A reasonable
assumption is to take the total nuclear charge +Ze as being uniformly distributed
over the entire nuclear volume (assumed to be a sphere).

(a) Derive the following expression for the electrostatic potential energy of an
electron in the field of the finite nucleus:

V (r) =
⎧⎪⎪⎨⎪⎪⎩

−Ze
2

r
for r > R

Ze2

R
( r2

2R2 − 3
2
) for r < R

Draw a graph comparing this potential energy and the point nucleus po-
tential energy.
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(b) Since you know the solution of the point nucleus problem, choose this as
the unperturbed Hamiltonian Ĥ0 and construct a perturbation Hamilto-
nian Ĥ1 such that the total Hamiltonian contains the V (r) derived above.
Write an expression for Ĥ1.

(c) Calculate(remember that R≪ a0 = Bohr radius) the 1st−order perturbed
energy for the 1s (n`m) = (100) state obtaining an expression in terms of Z
and fundamental constants. How big is this result compared to the ground
state energy of hydrogen? How does it compare to hyperfine splitting?

10.9.12. Spin-Oscillator Coupling
Consider a Hamiltonian describing a spin−1/2 particle in a harmonic well as
given below:

Ĥ0 =
h̵ω

2
σ̂z + h̵ω (â+â + 1/2))

(a) Show that
{∣n⟩⊗ ∣↓⟩ = ∣n, ↓⟩ , ∣n⟩⊗ ∣↑⟩ = ∣n, ↑⟩}

are energy eigenstates with eigenvalues En,↓ = nh̵ω and En,↑ = (n + 1)h̵ω,
respectively.

(b) The states associated with the ground-state energy and the first excited
energy level are

{∣0, ↓⟩ , ∣1, ↓⟩ , ∣0, ↑⟩}

What is(are) the ground state(s)? What is(are) the first excited state(s)?
Note: two states are degenerate.

(c) Now consider adding an interaction between the harmonic motion and the
spin, described by the Hamiltonian

Ĥ1 =
h̵Ω

2
(âσ̂+ + â+σ̂−)

so that the total Hamiltonian is now Ĥ = Ĥ0 + Ĥ1. Write a matrix rep-
resentation of Ĥ in the subspace of the ground and first excited states in
the ordered basis given in part (b).

(d) Find the first order correction to the ground state and excited state energy
eigenvalues for the subspace above.

10.9.13. Motion in spin-dependent traps
Consider an electron moving in one dimension, in a spin-dependent trap as
shown in Figure 10.10 below:
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Figure 10.10: A spin-dependent trap

If the electron is in a spin-up state (with respect to the z−axis), it is trapped in
the right harmonic oscillator well and if it is in a spin-down state (with respect to
the z−axis), it is trapped in the left harmonic oscillator well. The Hamiltonian
that governs its dynamics can be written as:

Ĥ = p̂2

2m
+ 1

2
mω2

osc(ẑ −∆z/2)2 ⊗ ∣↑z⟩ ⟨↑z ∣ +
1

2
mω2

osc(ẑ +∆z/2)2 ⊗ ∣↓z⟩ ⟨↓z ∣

(a) What are the energy levels and stationary states of the system? What are
the degeneracies of these states? Sketch an energy level diagram for the
first three levels and label the degeneracies.

(b) A small, constant transverse field Bx is now added with ∣µBBx∣ << h̵ωosc.
Qualitatively sketch how the energy plot in part (a) is modified.

(c) Now calculate the perturbed energy levels for this system.

(d) What are the new eigenstates in the ground-state doublet? For ∆z macro-
scopic, these are sometimes called Schrodinger cat states. Explain why.

10.9.14. Perturbed Oscillator

A particle of mass m is moving in the 3−dimensional harmonic oscillator poten-
tial

V (x, y, z) = 1

2
mω2(x2 + y2 + z2)

A weak perturbation is applied in the form of the function

∆V (x, y, z) = kxyz + k2

h̵ω
x2y2z2

where k is a small constant. Calculate the shift in the ground state energy to
second order in k. This is not the same as second-order perturbation theory!
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10.9.15. Another Perturbed Oscillator
Consider the system described by the Hamiltonian

H = p2

2m
+ mω

2

2α
(1 − e−αx

2

)

Assume that α <<mω/h̵

(1) Calculate an approximate value for the ground state energy using first-
order perturbation theory by perturbing the harmonic oscillator Hamilto-
nian

H = p2

2m
+ mω

2

2
x2

(2) Calculate an approximate value for the ground state energy using the
variational method with a trial function ψ = e−βx

2/2.

10.9.16. Helium from Hydrogen - 2 Methods
(a) Using a simple hydrogenic wave function for each electron, calculate by

perturbation theory the energy in the ground state of the He atom asso-
ciated with the electron-electron Coulomb interaction. Use this result to
estimate the ionization energy of Helium.

(b) Calculate the ionization energy by using the variational method with an
effective charge λ in the hydrogenic wave function as the variational pa-
rameter.

(c) Compare (a) and (b) with the experimental ionization energy

Eion = 1.807E0 , E0 =
α2mc2

2
, α = fine structure constant

You will need

ψ1s(r) =
√

λ3

π
exp(−λr) , a0 =

h̵2

me2
, ∫ ∫ d3r1d

3r2
e−β(r1+r2)

∣r⃗1 − r⃗2∣
= 20π2

β5

That last integral is very hard to evaluate from first principles.

10.9.17. Hydrogen atom + xy perturbation
An electron moves in a Coulomb field centered at the origin of coordinates. The
first excited state (n = 2) is 4−fold degenerate. Consider what happens in the
presence of a non-central perturbation

Vpert = f(r)xy

where f(r) is some function only of r, which falls off rapidly as r →∞. To first
order, this perturbation splits the 4−fold degenerate level into several distinct
levels (some might still be degenerate).
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(a) How many levels are there?

(b) What is the degeneracy of each?

(c) Given the energy shift, call it ∆E, for one of the levels, what are the values
of the shifts for all the others?

10.9.18. Rigid rotator in a magnetic field
Suppose that the Hamiltonian of a rigid rotator in a magnetic field is of the
form

Ĥ = AL⃗2 +BL̂z +CL̂y
Assuming that A, B ≫ C, use perturbation theory to lowest nonvanishing order
to get approximate energy eigenvalues.

10.9.19. Another rigid rotator in an electric field
Consider a rigid body with moment of inertia I, which is constrained to rotate
in the xy−plane, and whose Hamiltonian is

Ĥ = 1

2I
L̂2
z

Find the eigenfunctions and eigenvalues (zeroth order solution). Now assume
the rotator has a fixed dipole moment p⃗ in the plane. An electric field E⃗ is
applied in the plane. Find the change in the energy levels to first and second
order in the field.

10.9.20. A Perturbation with 2 Spins

Let S⃗1 and S⃗2 be the spin operators of two spin−1/2 particles. Then S⃗ = S⃗1+ S⃗2

is the spin operator for this two-particle system.

(a) Consider the Hamiltonian

Ĥ0 = α(Ŝ2
x + Ŝ2

y − Ŝ2
z)/h̵2

Determine its eigenvalues and eigenvectors.

(b) Consider the perturbation Ĥ1 = λ(Ŝ1x − Ŝ2x). Calculate the new energies
in first-order perturbation theory.

10.9.21. Another Perturbation with 2 Spins

Consider a system with the unperturbed Hamiltonian Ĥ0 = −A(Ŝ1z + Ŝ2z) with
a perturbing Hamiltonian of the form Ĥ1 = B(Ŝ1xŜ2x − Ŝ1yŜ2y).

(a) Calculate the eigenvalues and eigenvectors of ?Ĥ0
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(b) Calculate the exact eigenvalues of Ĥ0 + Ĥ1

(c) By means of perturbation theory, calculate the first- and the second-order
shifts of the ground state energy of Ĥ0, as a consequence of the perturba-
tion Ĥ1. Compare these results with those of (b).

10.9.22. Spherical cavity with electric and magnetic fields
Consider a spinless particle of mass m and charge e confined in spherical cavity
of radius R, that is, the potential energy is zero for r < R and infinite for r > R.
(a) What is the ground state energy of this system?

(b) Suppose that a weak uniform magnetic field of strength B is switched on.
Calculate the shift in the ground state energy.

(c) Suppose that, instead a weak uniform electric field of strength E is switched
on. Will the ground state energy increase or decrease? Write down, but
do not attempt to evaluate, a formula for the shift in the ground state
energy due to the electric field.

(d) If, instead, a very strong magnetic field of strength B is turned on, ap-
proximately what would be the ground state energy?

10.9.23. Hydrogen in electric and magnetic fields
Consider the n = 2 levels of a hydrogen-like atom. Neglect spins. Calculate to
lowest order the energy splittings in the presence of both electric and magnetic
fields B⃗ = Bêz and E⃗ = E êx.

10.9.24. n = 3 Stark effect in Hydrogen
Work out the Stark effect to lowest nonvanishing order for the n = 3 level of the
hydrogen atom. Obtain the energy shifts and the zeroth order eigenkets.

10.9.25. Perturbation of the n = 3 level in Hydrogen - Spin-
Orbit and Magnetic Field corrections

In this problem we want to calculate the 1st-order correction to the n=3 un-
perturbed energy of the hydrogen atom due to spin-orbit interaction and mag-
netic field interaction for arbitrary strength of the magnetic field. We have
Ĥ = Ĥ0 + Ĥso + Ĥm where

Ĥ0 =
p⃗2
op

2m
+ V (r) , V (r) = −e2 (1

r
)

Ĥso = [ 1

2m2c2
1

r

dV (r)
dr

] S⃗op ⋅ L⃗op

Ĥm = µB
h̵

(L⃗op + 2S⃗op) ⋅ B⃗
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We have two possible choices for basis functions, namely,

∣n`sm`ms⟩ or ∣n`sjmj⟩

The former are easy to write down as direct-product states

∣n`sm`ms⟩ = Rn`(r)Y m`` (θ,ϕ) ∣s,ms⟩

while the latter must be constructed from these direct-product states using ad-
dition of angular momentum methods. The perturbation matrix is not diagonal
in either basis. The number of basis states is given by

n−1=2

∑
`=0

(2` + 1) × 2 =10 + 6 + 2 = 18

All the 18 states are degenerate in zero-order. This means that we deal with an
18 × 18 matrix (mostly zeroes) in degenerate perturbation theory.

Using the direct-product states

(a) Calculate the nonzero matrix elements of the perturbation and arrange
them in block-diagonal form.

(b) Diagonalize the blocks and determine the eigenvalues as functions of B.

(c) Look at the B → 0 limit. Identify the spin-orbit levels. Characterize them
by (`sj).

(d) Look at the large B limit. Identify the Paschen-Bach levels.

(e) For small B show the Zeeman splittings and identify the Lande g−factors.

(f) Plot the eigenvalues versus B.

10.9.26. Stark Shift in Hydrogen with Fine Structure
Excluding nuclear spin, the n = 2 spectrum of Hydrogen has the configuration:

Figure 10.11: n = 2 Spectrum in Hydrogen

where ∆EFS/h̵ = 10 GHz (the fine structure splitting) and ∆ELamb/h̵ = 1 GHz
(the Lamb shift - an effect of quantum fluctuations of the electromagnetic field).
These shifts were neglected in the text discussion of the Stark effect. This is
valid if ea0Ez >> ∆E. Let x = ea0Ez.
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(a) Suppose x < ∆ELamb, but x << ∆EFS . . Then we need only consider the
(2s1/2,2p1/2) subspace in a near degenerate case. Find the new energy
eigenvectors and eigenvalues to first order. Are they degenerate? For what
value of the field (in volts/cm) is the level separation doubled over the
zero field Lamb shift? HINT: Use the representation of the fine structure
eigenstates in the uncoupled representation.

(b) Now suppose x > ∆EFS . We must include all states in the near degenerate
case. Calculate and plot numerically the eigenvalues as a function of x, in
the range from 0 GHz < x < 10 GHz.

Comment on the behavior of these curves. Do they have the expected
asymptotic behavior? Find analytically the eigenvectors in the limit x/∆EFS →
∞. Show that these are the expected perturbed states.

10.9.27. 2-Particle Ground State Energy

Estimate the ground state energy of a system of two interacting particles of
mass m1 and m2 with the interaction energy

U(r⃗1 − r⃗2) = C (∣r⃗1 − r⃗2∣4)

using the variational method.

10.9.28. 1s2s Helium Energies

Use first-order perturbation theory to estimate the energy difference between
the singlet and triple states of the (1s2s) configuration of helium. The 2s single
particle state in helium is

ψ2s(r⃗) =
1√
4π

( 1

a0
)

3/2
(2 − 2r

a0
) e−r/a0

10.9.29. Hyperfine Interaction in the Hydrogen Atom

Consider the interaction

Hhf =
µBµN
a3
B

S⃗1 ⋅ S⃗2

h̵2

where µB , µN are the Bohr magneton and the nuclear magneton, aB is the
Bohr radius, and S⃗1 , S⃗2 are the proton and electron spin operators.

(a) Show that Hhf splits the ground state into two levels:

Et = −1 Ry + A
4

, Es = −1 Ry − 3A

4

and that the corresponding states are triplets and singlets, respectively.
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(b) Look up the constants, and obtain the frequency and wavelength of the
radiation that is emitted or absorbed as the atom jumps between the
states. The use of hyperfine splitting is a common way to detect hydrogen,
particularly intergalactic hydrogen.

10.9.30. Dipole Matrix Elements
Complete with care; this is real physics. The charge dipole operator for the
electron in a hydrogen atom is given by

d⃗(r⃗) = −er⃗

Its expectation value in any state vanishes (you should be able to see why
easily), but its matrix elements between different states are important for many
applications (transition amplitudes especially).

(a) Calculate the matrix elements of each of the components between the
1s ground state and each of the 2p states(there are three of them). By
making use of the Wigner-Eckart theorem (which you naturally do without
thinking when doing the integral) the various quantities are reduced to a
single irreducible matrix element and a very manageable set of Clebsch-
Gordon coefficients.

(b) By using actual H-atom wavefunctions (normalized) obtain the magnitude
of quantities as well as the angular dependence (which at certain points
at least are encoded in terms of the (`, m) indices).

(c) Reconstruct the vector matrix elements

⟨1s∣ d⃗ ∣2pj⟩

and discuss the angular dependence you find.

10.9.31. Variational Method 1
Let us consider the following very simple problem to see how good the variational
method works.

(a) Consider the 1−dimensional harmonic oscillator. Use a Gaussian trial
wave function ψn(x) = e−αx

2

. Show that the variational approach gives
the exact ground state energy.

(b) Suppose for the trial function, we took a Lorentzian

ψα(x) =
1

x2 + α

Using the variational method, by what percentage are you off from the
exact ground state energy?
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(c) Now consider the double oscillator with potential

V (x) = 1

2
mω2(∣x∣ − a)2

as shown below:

Figure 10.12: Double Oscillator Potential

Argue that a good choice of trial wave functions are:

ψ±n(x) = un(x − a) ± un(x + a)

where the un(x) are the eigenfunctions for a harmonic potential centered
at the origin.

(d) Using this show that the variational estimates of the energies are

E±
n =

An ±Bn
1 ±Cn

where

An = ∫ un(x − a)Ĥun(x − a)dx

Bn = ∫ un(x − a)Ĥun(x + a)dx

Cn = ∫ un(x + a)Ĥun(x − a)dx

(e) For a much larger than the ground state width, show that

∆E0 = E(−)
0 −E(+)

0 ≈ 2h̵ω

√
2V0

πh̵ω
e−2V0/h̵ω

where V0 = mω2a2/2. This is known as the ground tunneling splitting.
Explain why?

(f) This approximation clearly breaks down as a→ 0. Think about the limits
and sketch the energy spectrum as a function of a.

906



10.9.32. Variational Method 2

For a particle in a box that extends from −a to +a, try the trial function (within
the box)

ψ(x) = (x − a)(x + a)

and calculate E. There is no parameter to vary, but you still get an upper
bound. Compare it to the true energy. Convince yourself that the singularities
in ψ′′ at x = ±a do not contribute to the energy.

10.9.33. Variational Method 3

For the attractive delta function potential

V (x) = −aV0δ(x)

use a Gaussian trial function. Calculate the upper bound on E0 and compare
it to the exact answer −ma2V 2

0 /2h2.

10.9.34. Variational Method 4

For an oscillator choose

ψ(x) =
⎧⎪⎪⎨⎪⎪⎩

(x − a)2(x + a)2 ∣x∣ ≤ a
0 ∣x∣ > a

calculate E(a), minimize it and compare to h̵ω/2.

10.9.35. Variation on a linear potential

Consider the energy levels of the potential V (x) = g ∣x∣.

(a) By dimensional analysis, reason out the dependence of a general eigenvalue
on the parameters m =mass, h̵ and g.

(b) With the simple trial function

ψ(x) = cθ(x + a)θ(a − x)(1 − ∣x∣
a

)

compute (to the bitter end) a variational estimate of the ground state
energy. Here both c and a are variational parameters.

(c) Why is the trial function ψ(x) = cθ(x + a)θ(a − x) not a good one?

(d) Describe briefly (no equations) how you would go about finding a varia-
tional estimate of the energy of the first excited state.
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10.9.36. Average Perturbation is Zero

Consider a Hamiltonian

H0 =
p2

2µ
+ V (r)

H0 is perturbed by the spin-orbit interaction for a spin= 1/2 particle,

H ′ = A

h̵2
S⃗ ⋅ L⃗

Show that the average perturbation of all states corresponding to a given term
(which is characterized by a given L and S) is equal to zero.

10.9.37. 3-dimensional oscillator and spin interaction

A spin= 1/2 particle of massmmoves in a spherical harmonic oscillator potential

U = 1

2
mω2r2

and is subject to the interaction

V = λσ⃗ ⋅ r⃗

Compute the shift of the ground state energy through second order.

10.9.38. Interacting with the Surface of Liquid Helium

An electron at a distance x from a liquid helium surface feels a potential

V (x) =
⎧⎪⎪⎨⎪⎪⎩

−K/x x > 0

∞ x ≤ 0

where K is a constant.

In Problem 8.7 we solved for the ground state energy and wave function of this
system.

Assume that we now apply an electric field and compute the Stark effect shift
in the ground state energy to first order in perturbation theory.

10.9.39. Positronium + Hyperfine Interaction

Positronium is a hydrogen atom but with a positron as the "nucleus" instead of
a proton. In the nonrelativistic limit, the energy levels and wave functions are
the same as for hydrogen, except for scaling due to the change in the reduced
mass.
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(a) From your knowledge of the hydrogen atom, write down the normalized
wave function for the 1s ground state of positronium.

(b) Evaluate the root-mean-square radius for the 1s state in units of a0. Is
this an estimate of the physical diameter or radius of positronium?

(c) In the s states of positronium there is a contact hyperfine interaction

Ĥint = −
8π

3
µ⃗e ⋅ µ⃗pδ(r⃗)

where µ⃗e and µ⃗p are the electron and positron magnetic moments and

µ⃗ = ge

2mc
ˆ⃗S

Using first order perturbation theory compute the energy difference be-
tween the singlet and triplet ground states. Determine which lies lowest.
Express the energy splitting in GHz. Get a number!

10.9.40. Two coupled spins
Two oppositely charged spin−1/2 particles (spins s⃗1=h̵σ⃗1/2 and s⃗2=h̵σ⃗2/2 ) are
coupled in a system with a spin-spin interaction energy ∆E. The system is
placed in a uniform magnetic field B⃗ = Bẑ. The Hamiltonian for the spin
interaction is

Ĥ = ∆E

4
σ⃗1 ⋅ σ⃗2 − (µ⃗1 + µ⃗2) ⋅ B⃗

where µ⃗j = gjµ0s⃗j/h̵ is the magnetic moment of the jth particle.

(a) If we define the 2-particle basis-states in terms of the 1-particle states by

∣1⟩ = ∣+⟩1 ∣+⟩2 , ∣2⟩ = ∣+⟩1 ∣−⟩2 , ∣3⟩ = ∣−⟩1 ∣+⟩2 , ∣4⟩ = ∣−⟩1 ∣−⟩2

where

σix ∣±⟩i = ∣∓⟩i , σix ∣±⟩i = ±i ∣∓⟩i , σiz ∣±⟩i = ± ∣±⟩i

and

σ1xσ2x ∣1⟩ = σ1xσ2x ∣+⟩1 ∣+⟩2 = (σ1x ∣+⟩1)(σ2x ∣+⟩2) = ∣−⟩1 ∣−⟩2 = ∣4⟩

then derive the results below.

The energy eigenvectors for the 4 states of the system, in terms of the
eigenvectors of the z−component of the operators σ⃗i = 2s⃗i/h̵ are

∣1′⟩ = ∣+⟩1 ∣+⟩2 = ∣1⟩ , ∣2′⟩ = d ∣−⟩1 ∣+⟩2 + c ∣+⟩1 ∣−⟩2 = d ∣3⟩ + c ∣2⟩
∣3′⟩ = c ∣−⟩1 ∣+⟩2 − dc ∣+⟩1 ∣−⟩2 = c ∣3⟩ − d ∣2⟩ , ∣4′⟩ = ∣−⟩1 ∣−⟩2 = ∣4⟩
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where
σ⃗zi ∣±⟩i = ± ∣±⟩i

as stated above and

d = 1√
2
(1 − x√

1 + x2
)

1/2

, c = 1√
2
(1 + x√

1 + x2
)

1/2

, x = µ0B(g2 − g1)
∆E

(b) Find the energy eigenvalues associated with the 4 states.

(c) Discuss the limiting cases

µ0B

∆E
≫ 1 ,

µ0B

∆E
≪ 1

Plot the energies as a function of the magnetic field.

10.9.41. Perturbed Linear Potential
A particle moving in one-dimension is bound by the potential

V (x) =
⎧⎪⎪⎨⎪⎪⎩

ax x > 0

∞ x < 0

where a > 0 is a constant. Estimate the ground state energy using first-order
perturbation theory by the following method: Write V = V0 + V1 where V0(x) =
bx2, V1(x) = ax − bx2 (for x > 0), where b is a constant and treat V1 as a
perturbation.

10.9.42. The ac-Stark Effect
Suppose an atom is perturbed by a monochromatic electric filed oscillating at
frequency ωL, E⃗(t) = Ez cosωLtêz (such as from a linearly polarized laser),
rather than the dc-field studied in the text. We know that such a field can be
absorbed and cause transitions between the energy levels: we will systematically
study this effect in Chapter 11. The laser will also cause a shift of energy levels
of the unperturbed states, known alternatively as the ac-Stark effect, the light
shift, and sometimes the Lamp shift (don’t you love physics humor). In this
problem, we will look at this phenomenon in the simplest case that the field
is near to resonance between the ground state ∣g⟩ and some excited state ∣e⟩,
ωL ≈ ωeg = (Ee − Eg)/h̵, so that we can ignore all other energy levels in the
problem (the two-level atom approximation).

(i) The classical picture. Consider first the Lorentz oscillator model of
the atom - a charge on a spring - with natural resonance at ω0. The
Hamiltonian for the system is

H = p2

2m
+ 1

2
mω2

0z
2 − d⃗ ⋅ E⃗(t)

where d = −ez is the dipole.
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Figure 10.13: Lorentz Oscillator

(a) Ignoring damping of the oscillator, use Newton’s Law to show that
the induced dipole moment is

d⃗induced(t) = αE⃗(t) = αEz cosωLt

where

α = e2/m
ω2

0 − ω2
L

≈ −e2

2mω0∆

is the polarizability with ∆ = ωL − ω0 the detuning.

(b) Use your solution to show that the total energy stored in the system
is

H = −1

2
dinduced(t)E(t) = −1

2
αE2(t)

or the time average value of H is

H̄ = −1

4
αE2

z

Note the factor of 1/2 arises because energy is required to create the
dipole.

(ii) The quantum picture. We consider the two-level atom described above.
The Hamiltonian for this system can be written in a time independent form
(equivalent to the time-averaging done in the classical case).

Ĥ = Ĥatom + Ĥint

where Ĥatom = −h̵∆ ∣e⟩ ⟨e∣ is the unperturbed atomic Hamiltonian and
Ĥint = − h̵Ω

2
(∣e⟩ ⟨g∣ + ∣g⟩ ⟨e∣) is the dipole-interaction with h̵Ω = ⟨e∣ d⃗ ∣g⟩ ⋅ E⃗.

(a) Find the exact energy eigenvalues and eigenvectors for this simple
two dimensional Hilbert space and plot the levels as a function of ∆.
These are known as the atomic dressed states.

(b) Expand your solution in (a) to lowest nonvanishing order in Ω to find
the perturbation to the energy levels. Under what conditions is this
expansion valid?
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(c) Confirm your answer to (b) using perturbation theory. Find also
the mean induced dipole moment (to lowest order in perturbation
theory), and from this show that the atomic polarizability, defined
by ⟨d⃗⟩ = αE⃗ is given by

α = − ∣ ⟨e∣ d⃗ ∣g⟩ ∣2

h̵∆

so that the second order perturbation to the ground state is E(2)
g =

−αE2
z as in part (b).

(d) Show that the ratio of the polarizability calculated classically in (b)
and the quantum expression in (c) has the form

f =
αquantum

αclassical
= ∣ ⟨e∣ z ∣g⟩ ∣2

(∆z2)SHO
where (∆z2)

SHO
is the SHO zero point variance. This is also known

as the oscillator strength.

We see that in lowest order perturbation theory an atomic resonance looks
just like a harmonic oscillator with a correction factor given by the oscilla-
tor strength and off-resonance harmonic perturbations cause energy level
shifts as well as absorption and emission(Chapter 11).

10.9.43. Light-shift for multilevel atoms
We found the ac-Stark (light shift) for the case of a two-level atom driven by a
monchromatic field. In this problem we want to look at this phenomenon in a
more general context, including arbitrary polarization of the electric field and
atoms with multiple sublevels.

Consider then a general monochromatic electric field E⃗(x⃗, t) = R(E⃗(x⃗)e−iωLt),
driving an atom near resonance on the transition ∣g;Jg⟩ → ∣e;Je⟩, where the
ground and excited manifolds are each described by some total angular momen-
tum J with degeneracy 2J + 1. The generalization of the ac-Stark shift is now
the light-shift operator acting on the 2Jg + 1 dimensional ground manifold:

V̂LS(x⃗) = −
1

4
E⃗∗(x⃗) ⋅ ˆ̈α ⋅ E⃗(x⃗)

Here,

ˆ̈α = −
ˆ⃗
dge

ˆ⃗
deg

h̵∆

is the atomic polarizability tensor operator, where ˆ⃗
deg = P̂e ˆ⃗

dP̂g is the dipole
operator, projected between the ground and excited manifolds; the projector
onto the excited manifold is

P̂e =
Je

∑
Me=−Je

∣e;Je,Me⟩ ⟨e;Je,Me∣
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and similarly for the ground manifold.

(a) By expanding the dipole operator in the spherical basis(±,0), show that
the polarizability operator can be written

ˆ̈α = α̃
⎛
⎜⎜⎜
⎝

∑
q,Mg

∣CMg+q
Mg

∣
2
e⃗q ∣g, Jg,Mg⟩ ⟨g, Jg,Mg ∣ e⃗q ∗

+ ∑
q≠q′,Mg

C
Mg+q
Mg+q−q′ C

Mg+q
Mg

e⃗q′ ∣g, Jg,Mg + q − q′⟩ ⟨g, Jg,Mg ∣ e⃗q ∗

⎞
⎟⎟⎟
⎠

where

α̃ = −
∣⟨e;Je ∥d∥ g;Jg⟩∣2

h̵∆

and
CMe

Mg
= ⟨JeMe ∣1qJgMg⟩

Explain physically, using dipole selection rules, the meaning of the expres-
sion for ˆ̈α.

(b) Consider a polarized plane wave, with complex amplitude of the form
E⃗(x⃗) = E1ε⃗Le

ik⃗⋅x⃗ where E1 is the amplitude and ε⃗L the polarization (possi-
bly complex). For an atom driven on the transition ∣g;Jg = 1⟩→ ∣e;Je = 2⟩
and the cases (i) linear polarization along z, (ii) positive helicity polariza-
tion, (iii) linear polarization along x, find the eigenvalues and eigenvectors
of the light-shift operator. Express the eigenvalues in units of

V1 = −
1

4
α̃∣E1∣2.

Please comment on what you find for cases (i) and (iii). Repeat for
∣g;Jg = 1/2⟩→ ∣e;Je = 3/2⟩ and comment.

(c) A deeper insight into the light-shift potential can be seen by expressing
the polarizability operator in terms of irreducible tensors. Verify that the
total light shift is the sum of scalar, vector, and rank-2 irreducible tensor
interactions,

V̂LS = −1

4
(∣E⃗(x⃗)∣2 ˆα(0) + (E⃗∗(x⃗) × E⃗(x⃗) ⋅ ˆα(1) + E⃗∗(x⃗) ⋅ ˆα(2) ⋅ E⃗(x⃗))

where

ˆα(0) =
ˆ⃗
dge ⋅ ˆ⃗

deg

−3h̵∆
, ˆα(1) =

ˆ⃗
dge × ˆ⃗

deg

−2h̵∆

and

ˆα(2)
ij =

1

−h̵∆

⎛
⎜
⎝

ˆ⃗
dige

ˆ⃗
djge +

ˆ⃗
djge

ˆ⃗
dige

2
− ˆα(0)δij

⎞
⎟
⎠
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(d) For the particular case of ∣g;Jg = 1/2⟩→ ∣e;Je = 3/2⟩, show that the rank-2
tensor part vanishes. Show that the light-shift operator can be written in
a basis independent form of a scalar interaction (independent of sublevel),
plus an effective Zeeman interaction for a fictitious B-field interacting with
the spin−1/2 ground state,

V̂LS = V0(x⃗)Î + B⃗fict(x⃗) ⋅ ˆ⃗σ

where

V0(x⃗) =
2

3
U1∣ε⃗L(x⃗)∣2 → proportional to field intensity

and

B⃗fict(x⃗) =
1

3
U1 ( ε⃗L

∗(x⃗) × ε⃗L(x⃗)
i

)→ proportional to field ellipticity

and we have written E⃗(x⃗) = E1ε⃗L(x⃗). Use this form to explain your
results from part (b) on the transition ∣g;Jg = 1/2⟩→ ∣e;Je = 3/2⟩.

10.9.44. A Variational Calculation
Consider the one-dimensional box potential given by

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 for ∣x∣ < a
∞ for ∣x∣ > a

Use the variational principle with the trial function

ψ(x) = ∣a∣λ − ∣x∣λ

where λ is a variational parameter. to estimate the ground state energy. Com-
pare the result with the exact answer.

10.9.45. Hyperfine Interaction Redux
An important effect in the study of atomic spectra is the so-called hyperfine
interaction – the magnetic coupling between the electron spin and the nuclear
spin. Consider Hydrogen. The hyperfine interaction Hamiltonian has the form

ĤHF = gsgiµBµN
1

r3
ŝ ⋅ î

where ŝ is the electron’s spin−1/2 angular momentum and î is the proton’s
spin−1/2 angular momentum and the appropriate g-factors and magnetons are
given.

(a) In the absence of the hyperfine interaction, but including the electron and
proton spin in the description, what is the degeneracy of the ground state?
Write all the quantum numbers associated with the degenerate sublevels.
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(b) Now include the hyperfine interaction. Let f̂ = î + ŝ be the total spin
angular momentum. Show that the ground state manifold is described
with the good quantum numbers ∣n = 1, ` = 0, s = 1/2, i = 1/2, f,mf ⟩. What
are the possible values of f and mf?

(c) The perturbed 1s ground state now has hyperfine splitting. The energy
level diagram is sketched below.

Figure 10.14: Hyperfine Splitting

Label all the quantum numbers for the four sublevels shown in the figure.

(d) Show that the energy level splitting is

∆EHF = gsgiµBµN ⟨ 1

r3
⟩1s

Show numerically that this splitting gives rise to the famous 21 cm radio
frequency radiation used in astrophysical observations.

10.9.46. Find a Variational Trial Function

We would like to find the ground-state wave function of a particle in the potential
V = 50(e−x−1)2 with m = 1 and h̵ = 1. In this case, the true ground state energy
is known to be E0 = 39/8 = 4.875. Plot the form of the potential. Note that the
potential is more or less quadratic at the minimum, yet it is skewed. Find a
variational wave function that comes within 5% of the true energy. OPTIONAL:
How might you find the exact analytical solution?

10.9.47. Hydrogen Corrections on 2s and 2p Levels

Work out the first-order shifts in energies of 2s and 2p states of the hydrogen
atom due to relativistic corrections, the spin-orbit interaction and the so-called
Darwin term,

− p4

8m3
ec

2
+ g 1

4m2
ec

2

1

r

dVc
dr

(L⃗ ⋅ S⃗) + h̵2

8m2
ec

2
∇2Vc , Vc = −

Ze2

r

where you should be able to show that ∇2Vc = 4πδ(r⃗). At the end of the
calculation, take g = 2 and evaluate the energy shifts numerically.
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10.9.48. Hyperfine Interaction Again
Show that the interaction between two magnetic moments is given by the Hamil-
tonian

H = −2

3
µ0(µ⃗1 ⋅ µ⃗2)δ(x⃗ − y⃗) −

µ0

4π

1

r3
(3
rirj

r2
− δij)µi1µ

j
2

where ri = xi − yi. (NOTE: Einstein summation convention used above). Use
first-order perturbation to calculate the splitting between F = 0,1 levels of
the hydrogen atoms and the corresponding wavelength of the photon emission.
How does the splitting compare to the temperature of the cosmic microwave
background?

10.9.49. A Perturbation Example
Suppose we have two spin−1/2 degrees of freedom, A and B. Let the initial
Hamiltonian for this joint system be given by

H0 = −γBz (SAz ⊗ IB + IA ⊗ SBz )

where IA and IB are identity operators, SAz is the observable for the z−component
of the spin for the system A, and SBz is the observable for the z−component of
the spin for the system B. Here the notation is meant to emphasize that both
spins experience the same magnetic field B⃗ = Bz ẑ and have the same gyromag-
netic ratio γ.

(a) Determine the energy eigenvalues and eigenstates for H0

(b) Suppose we now add a perturbation term Htotal =H0 +W , where

W = λS⃗A ⋅ S⃗B = λ (SAx ⊗ SBx + SAy ⊗ SBy + SAz ⊗ SBz )

Compute the first-order corrections to the energy eigenvalues.

10.9.50. More Perturbation Practice
Consider two spi−1/2 degrees of freedom, whose joint pure states can be repre-
sented by state vectors in the tensor-product Hilbert space HAB = HA ⊗HB ,
where HA and HB are each two-dimensional. Suppose that the initial Hamilto-
nian for the spins is

H0 = (−γABzSAz )⊗ IB + IA ⊗ (−γBBzSBz )

(a) Compute the eigenstates and eigenenergies of H0, assuming γA ≠ γB and
that the gyromagnetic ratios are non-zero. If it is obvious to you what the
eigenstates are, you can just guess them and compute the eigenenergies.

(b) Compute the first-order corrections to the eigenstates under the pertur-
bation

W = αSAx ⊗ SBx
where α is a small parameter with appropriate units.
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eigenvalues and eigenvectors, 263
Electromagnetic Fields, 609
energy measurements, 102
EPR, 438
Equations of motion, 419
expectation value, 13

Formalism
Antilinear/Antiunitary operators,

379
density operator, 365
Postulate 1, 364

917



Postulate 2, 368
Quantum Pictures, 378
Quantum Pictures

Heisenberg Picture, 378
Interaction Picture, 378
Schrödinger Picture, 378

States and Probabilities, 369
Trace, 365
Transformation operators/ gener-

ators, 381
Transformations, 379
Two Postulates, 364
Wigner’s Theorem, 380

Fourier Series, 47
Fourier Transform, 47
Free particle wave packet, 161
free particle wave packets, 540
functions of operators, 297

general one dimensional motion, 207
general potential functions, 190
Generators of Group Transformations,

392
Glauber’s Theorem, 627
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