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Chapter 11

Time-Dependent Perturbation Theory

11.1 Theory

Time-independent or stationary-state perturbation theory, as we developed ear-
lier, allows us to find approximations for the energy eigenvalues and eigenvectors
in complex physical systems that are not solvable in closed form and where we
could write Ĥ in two parts as

Ĥ = Ĥ0 + V̂ (11.1)

For these perturbation methods to work, V̂ must be weak and time-independent.

We now turn our attention to the case

Ĥ = Ĥ0 + V̂t (11.2)

where V̂t is weak and time-dependent.

Examples might be the decays of an atomic system by photon emission or the
ionization of an atom by shining light on it.

We assume that at some time t0 the system has evolved into the state ∣ψ(0))
t ⟩,

i.e., the state ∣ψ(0
t ⟩ satisfies the time evolution equation

ih̵
∂

∂t
∣ψ(0)
t ⟩ = Ĥ0 ∣ψ(0)

t ⟩ t ≤ t0 (11.3)

It is a solution of the time-dependent Schrodinger equation with no perturbing
interactions before t0 where

Ĥ = Ĥ0 t ≤ t0 (11.4)

At time t0 we turn on the interaction potential (or perturbation) so that

Ĥ = Ĥ0 + V̂t t ≥ t0 (11.5)
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The new state of the system then satisfies

ih̵
∂

∂t
∣ψt⟩ = Ĥ ∣ψt⟩= (Ĥ0 + V̂t) ∣ψt⟩ t ≥ t0 (11.6)

with the boundary condition(initial value)

∣ψt⟩ = ∣ψ(0)
t ⟩ at t=t0 (11.7)

As we said, we assume that the full time-dependent Schrodinger equation cannot
be solved in closed form and so we look for approximate solutions.

We let V̂t be a small perturbation, i.e., we assume there is a natural small
parameter in V̂t (as we saw in time-independent perturbation theory) and we
make an expansion of the solution in powers of V̂t or this small parameter.

Since the effect of Ĥ0 will be much greater than the effect of V̂t, most of the time
dependence comes from Ĥ0. If we could neglect V̂t, then since Ĥ0 is independent
of time, we would have the simple time dependence

∣ψt⟩ = e−
i
h̵ Ĥ0t ∣ψ(0)

t ⟩ (11.8)

Let us assume that this is still approximately true and remove this known time
dependence from the solution. This should remove the major portion of the
total time dependence from the problem. We do this by assuming a solution of
the form

∣ψt⟩ = e−
i
h̵ Ĥ0t ∣ψ(t)⟩ (11.9)

and then determining and solving the equation for the new state vector ∣ψ(t)⟩.

Substituting this assumption in our original equation, the equation for ∣ψ(t)⟩ is
then given by

ih̵
∂

∂t
(e−

i
h̵ Ĥ0t ∣ψ(t)⟩)= (Ĥ0 + V̂t) (e−

i
h̵ Ĥ0t ∣ψ(t)⟩)

Ĥ0e
− ih̵ Ĥ0t ∣ψ(t)⟩ + ih̵e−

i
h̵ Ĥ0t ∂

∂t
∣ψ(t)⟩

= Ĥ0e
− ih̵ Ĥ0t ∣ψ(t)⟩ + V̂te−

i
h̵ Ĥ0t ∣ψ(t)⟩

ih̵
∂

∂t
∣ψ(t)⟩ = V̂ (t) ∣ψ(t)⟩ (11.10)

where
V̂ (t) = e

i
h̵ Ĥ0tV̂te

− ih̵ Ĥ0t (11.11)

The substitution has removed Ĥ0 from the equation and changed the time de-
pendence of the perturbing potential. We are in the so-called interaction picture
or representation where both the state vectors and the operators depend on time
as we discussed earlier in Chapter 6.
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We develop a formal solution by integrating this equation of motion for the
state vector to get

ih̵

t

∫
t0

∂

∂t′
∣ψ(t′)⟩dt′ =

t

∫
t0

V̂ (t′) ∣ψ(t′)⟩dt′

= ih̵(∣ψ(t)⟩ − ∣ψ(t0)⟩) (11.12)

so that the formal solution is given by

∣ψ(t)⟩ = ∣ψ(t0)⟩ +
1

ih̵

t

∫
t0

V̂ (t′) ∣ψ(t′)⟩dt′ (11.13)

This is an integral equation for ∣ψ(t)⟩. We solve it as a power series in V̂t by the
method of iteration.

The 0th−order approximation is found by neglecting the perturbing potential.
We get

∣ψ(t)⟩ = ∣ψ(t0)⟩ (11.14)

The 1st−order approximation is obtained by inserting the 0th−order approxima-
tion into the full equation. We get

∣ψ(t)⟩ = ∣ψ(t0)⟩ +
1

ih̵

t

∫
t0

V̂ (t′) ∣ψ(t0)⟩dt′

=
⎛
⎜
⎝

1 + 1

ih̵

t

∫
t0

V̂ (t′)dt′
⎞
⎟
⎠
∣ψ(t0)⟩ (11.15)

The 2nd−order approximation is obtained by inserting the 1st−order approxi-
mation into the full equation. We get

∣ψ(t)⟩ = ∣ψ(t0)⟩ +
1

ih̵

t

∫
t0

V̂ (t′) ∣ψ(t0)⟩dt′

+ 1

(ih̵)2

t

∫
t0

dt′
t′

∫
t0

dt′′V̂ (t′)V̂ (t′′) ∣ψ(t0)⟩ (11.16)

Notice that in all subsequent iterations the operators V̂ (t′),V̂ (t′′),. . ., etc, always
occur in order of increasing time from right to left.

We can write the general result as

∣ψ(t)⟩ = Û(t, t0) ∣ψ(t0)⟩ (11.17)
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where

Û(t, t0) = Î +
∞
∑
n=1

1

(ih̵)n

t

∫
t0

dt1

t1

∫
t0

dt2........

tn−1

∫
t0

dtnV̂ (t1)V̂ (t2).......V̂ (tn) (11.18)

The complete, formal solution to the problem is then given by

∣ψt⟩ = e−
i
h̵ Ĥ0t ∣ψ(t)⟩ = e−

i
h̵ Ĥ0tÛ(t, t0) ∣ψ(t0)⟩ (11.19)

so that

e−
i
h̵ Ĥ0tÛ(t, t0) = the total time development operator (11.20)

Before developing the detailed techniques of time-dependent perturbation the-
ory, let us spend some time with the operator Û(t, t0) and discuss some of its
properties.

We first introduce the idea of a time-ordered product of operators as follows.
The symbol

(Â(t)B̂(t1)Ĉ(t2).......X̂(tn))+ ≡ T (Â(t)B̂(t1)Ĉ(t2).......X̂(tn)) (11.21)

means the product of the operators where the operators are written from right
to left in order of increasing times, i.e.,

(Â(t)B̂(t′))+ = { Â(t)B̂(t′) t ≥ t′
B̂(t′)Â(t) t′ ≥ t

(11.22)

Now, we have using the time-ordered product definition

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

2⎞
⎟
⎠
+

=
⎛
⎜
⎝

t

∫
t0

V̂ (t′)dt′
t

∫
t0

V̂ (t′′)dt′′
⎞
⎟
⎠
+

=
t

∫
t0

dt′
t

∫
t0

dt′′(V̂ (t′)V̂ (t′′))+

=
t

∫
t0

dt′
t′

∫
t0

dt′′V̂ (t′)V̂ (t′′) +
t

∫
t0

dt′′
t′′

∫
t0

dt′V̂ (t′′)V̂ (t′)

= 2

t

∫
t0

dt′
t′

∫
t0

dt′′V̂ (t′)V̂ (t′′) (11.23)
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and in general

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

n⎞
⎟
⎠
+

=
⎛
⎜
⎝

t

∫
t0

V̂ (t1)dt1
t

∫
t0

V̂ (t2)dt2.....
t

∫
t0

V̂ (tn)dtn
⎞
⎟
⎠
+

=
t

∫
t0

dt1

t

∫
t0

dt2......

t

∫
t0

dtn(V̂ (t1)V̂ (t2)......V̂ (tn))+

= n!

t

∫
t0

dt1

t

∫
t0

dt2......

t

∫
t0

dtnV̂ (t1)V̂ (t2)......V̂ (tn) (11.24)

because there are n! possible orderings of the n terms involved. This last form
is identical to the expression for Û(t, t0) and thus we have

Û(t, t0) =
∞
∑
n=0

1

(ih̵)n
1

n!

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

n⎞
⎟
⎠
+

=
⎛
⎜
⎝

exp

⎡⎢⎢⎢⎢⎣
− i
h̵

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
+

(11.25)

The last expression is just a convenient shorthand for the infinite sum. In order
to verify that this is in fact a solution of

ih̵
∂

∂t
∣ψ(t)⟩ = V̂ (t) ∣ψ(t)⟩ (11.26)

we must prove that

ih̵
∂

∂t
Û(t, t0) ∣ψ(t0)⟩ = V̂ (t)Û(t, t0) ∣ψ(t0)⟩ (11.27)

ih̵
∂

∂t
Û(t, t0) = V̂ (t)Û(t, t0) (11.28)

Substituting, we have

ih̵
∂

∂t
Û(t, t0) = ih̵

∂

∂t

⎛
⎜
⎝

exp

⎡⎢⎢⎢⎢⎣
− i
h̵

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
+

=
⎛
⎜
⎝
V̂ (t) exp

⎡⎢⎢⎢⎢⎣
− i
h̵

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
+

(11.29)

In the differentiation we do not have to worry about the non-commutation of the
operators inside the time-ordered product since the order is already specified.
Since t is certainly the latest time in the time-ordered product and therefore
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all the other operators will be on the right of V̂ (t) we can pull it outside the
time-ordered product and write

ih̵
∂

∂t
Û(t, t0) = V̂ (t)

⎛
⎜
⎝

exp

⎡⎢⎢⎢⎢⎣
− i
h̵

t

∫
t0

V̂ (t′)dt′
⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
+

= V̂ (t)Û(t, t0)

as required.

The most important question (really the only question) that is usually asked in
quantum mechanics is the following:

Suppose that the system is initially in an eigenstate
∣n⟩ of Ĥ0, i.e., Ĥ0 ∣n⟩ = εn ∣n⟩. What is the probability
that the system will be observed, after the perturbation
has had time to act, in a different (and thus orthogonal)
eigenstate of Ĥ0, say ∣m⟩?

Alternatively, the question is sometimes posed this way:

What is the probability that the interaction causes the
system to make a transition from the state ∣n⟩ to the
state ∣m⟩?

The probability amplitude for observing the system in the state ∣m⟩ at time t
is given by

⟨m ∣ ψt⟩ = ⟨m∣ e−
i
h̵ Ĥ0tÛ(t, t0) ∣ψ(t0)⟩

= ⟨m∣ e−
i
h̵ Ĥ0tÛ(t, t0) ∣n⟩ (11.30)

where

∣ψ(t0)⟩ = ∣n⟩ (11.31)

is the initial state.

Setting t0 = 0 for simplicity and using the 1st−order approximation for Û(t,0)
and also using

⟨m∣ e−
i
h̵ Ĥ0t = (e

i
h̵ Ĥ0t ∣m⟩)

+
= (e

i
h̵ εmt ∣m⟩)

+
= ⟨m∣ e−

i
h̵ εmt (11.32)
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we get

⟨m ∣ ψt⟩ =
1

ih̵
e−

i
h̵ εmt

t

∫
0

dt′ ⟨m∣ V̂ (t′) ∣n⟩

= 1

ih̵
e−

i
h̵ εmt

t

∫
0

dt′ ⟨m∣ e
i
h̵ Ĥ0tV̂t′e

− ih̵ Ĥ0t ∣n⟩

= 1

ih̵
e−

i
h̵ εmt

t

∫
0

dt′e
i
h̵ (εm−εn)t ⟨m∣ V̂t′ ∣n⟩ (11.33)

The probability of the transition is then

Pn→m(t) = ∣⟨m ∣ ψt⟩∣2 =
1

h̵2

RRRRRRRRRRRR

t

∫
0

dt′e
i
h̵ (εm−εn)t ⟨m∣ V̂t′ ∣n⟩

RRRRRRRRRRRR

2

(11.34)

The simplest example is when V̂t is not a function of t, or V̂t = V̂ . We then have

Pn→m(t) = ∣⟨m ∣ ψt⟩∣2 =
∣⟨m∣ V̂t′ ∣n⟩∣

2

h̵2

RRRRRRRRRRRR

t

∫
0

dt′e
i
h̵ (εm−εn)t

RRRRRRRRRRRR

2

(11.35)

If we define ∆ = εm − εn, then we have

Pn→m(t) = ∣⟨m∣ V̂t′ ∣n⟩∣
2
∣1 − e

− ih̵∆t

∆
∣
2

= ∣⟨m∣ V̂t′ ∣n⟩∣
2
(

sin ∆t
2h̵

∆/2
)

2

(11.36)

for the transition probability.

11.1.1 What is the physical meaning of this result?

We must be very careful when we use the words

the perturbation causes a transition
between eigenstates of Ĥ0

What this means physically is that the system has absorbed from the perturbing
field (or emitted to it) the energy difference ∆ = εm−εn and therefore the system
has changed its energy.

Does the statement also mean that the state vector has changed from an initial
value ∣ψ(0)⟩ = ∣n⟩ to a final value ∣ψ(t)⟩ = ∣m⟩?

We can get a better feeling for the correct answer to this question by deriving
the result in a different manner.
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We have
ih̵
∂

∂t
∣ψt⟩ = Ĥ ∣ψt⟩= (Ĥ0 + V̂t) ∣ψt⟩ (11.37)

and
Ĥ0 ∣n⟩ = εn ∣n⟩ (11.38)

As in our development of time-independent perturbation theory, we let

V̂t = gÛt (11.39)

where g is a small parameter.

The set of eigenvectors {∣n⟩} is a complete set and therefore we can use it as a
basis for the space and, in particular, we can write

∣ψt⟩ =∑
n

an(t)e−
i
h̵ εnt ∣n⟩ (11.40)

The reason for pulling out the phase factors will be clear shortly.

It is clear that if g = 0, then this is the correct general solution with

an(t) = an(0) = constant (11.41)

The phase factors we pulled out represent the time dependence due to Ĥ0 and
this is, by assumption, the major time dependence in the system.

If g is small we expect the time dependence of an(t), which is due to the per-
turbation to be weak or that

dan(t)
dt

is small (11.42)

It is in this sense that we can propose to use perturbation theory on the system.

Using the eigenbasis expansion we have

∑
n

(ih̵dan(t)
dt

+ εnan(t))e−
i
h̵ εnt ∣n⟩

=∑
n

(εnan(t) + gÛtan(t))e−
i
h̵ εnt ∣n⟩ (11.43)

Applying the linear functional ⟨m∣ from the left and using the orthonormality
relation

⟨m ∣ n⟩ = δmn (11.44)

we get

ih̵
dam(t)
dt

= g∑
n

⟨m∣ Ût ∣n⟩ eiωmntan(t)

=∑
n

Vmn(t)eiωmntan(t) (11.45)
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where
ωmn =

εm − εn
h̵

(11.46)

This is an exact equation. It implies that the time dependence of an(t) is due
entirely to V̂t (because we explicitly extracted out the dependence due to Ĥ0).
This is the interaction picture that we had earlier.

Exactly Solvable 2-State Example

Consider a 2-state system with

H0 = ( E1 0
0 E2

) , V (t) = ( 0 δeiωt

δe−iωt 0
) = ( V11 V12

V21 V22
) (11.47)

In the interaction picture, as derived above, we have

ih̵
dcm(t)
dt

=∑
n

Vmn(t)eiωmntcn(t) , ∣ψt⟩ =∑
n

cn(t)e−
i
h̵ εnt ∣n⟩ (11.48)

or

ih̵
dc1(t)
dt

= δei[ω+
E1−E2
h̵ ]t

c2(t) (11.49)

ih̵
dc2(t)
dt

= δei[−ω−
E1−E2
h̵ ]t

c1(t) (11.50)

∣ψt⟩ = c1(t)e−
i
h̵E1t ∣1⟩ + c2(t)e−

i
h̵E2t ∣2⟩ (11.51)

We can write these equations as

dC(t)
dt

= − iδ
h̵

( 0 ei[ω−ω21]t

e−i[ω−ω21]t 0
)C(t) (11.52)

where

C(t) = ( c1(t)
c2(t)

) , ω21 =
E2 −E1

h̵
(11.53)

We can find an exact solution. With initial conditions c1(0) = 1 and c2(0) = 0
we get

∣c1(t)∣2 =
δ2

δ2 + h̵2(ω−ω21)2

4

sin2 Ωt = 1 − ∣c2(t)∣2 (11.54)

where

Ω2 = δ2

h̵2
+ (ω − ω21)2

4
(11.55)

A graph of these functions is shown in Figure 11.1 below.

947



Figure 11.1: Exact Solution

A straightforward calculation gives

∣c1(t)∣2min = (ω − ω21)2

(ω − ω21)2 + 4δ2

h̵2

(11.56)

At resonance, ω = ω21, we have

Ω = δ

h̵
, ∣c1(t)∣2min = 0 (11.57)

as shown in Figure 11.2 below.

Figure 11.2: At Resonance

The amplitude as a function of ω is shown in Figure 11.3 below.

Figure 11.3: Amplitude versus ω
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where ∆ = full width at half maximum = 4δ/h̵. The amplitude is peaked at
resonance and the width is proportional to δ (the strength of the perturbation).

This periodically forced 2−state system is a basic problem - it demonstrates the
fundamental features of absorption and emission.

We now return to the full, general equations and look for a perturbation solution.
Now we assume (power series)

an(t) = a(0)n + ga(1)n + g2a(2)n + ...... (11.58)

Substituting and arranging the terms in a power series in g we have

⎛
⎝
da

(0)
n

dt

⎞
⎠
g0 +

⎛
⎝
ih̵
da

(1)
m

dt
−∑

n

⟨m∣ Ût ∣n⟩ e
i
h̵ωmnta(0)n

⎞
⎠
g1 + .....+

⎛
⎝
ih̵
da

(r+1)
m

dt
−∑

n

⟨m∣ Ût ∣n⟩ e
i
h̵ωmnta(r)n

⎞
⎠
gr + ....... = 0

or looking at each order separately we have

0th − order
da

(0)
n

dt
= 0

1st − order ih̵
da

(1)
m

dt
=∑

n

⟨m∣ Ût ∣n⟩ e
i
h̵ωmnta(0)n

.......

.......

(r + 1)st − order ih̵
da

(r+1)
m

dt
=∑

n

⟨m∣ Ût ∣n⟩ e
i
h̵ωmnta(r)n

.......

Note that the coefficients a(0)n follow from the initial condition

∣ψ(0)⟩ =∑
n

a(0)n ∣n⟩ (11.59)

The solution proceeds as follows:

initial condition → a(0)n

a(0)n → a(1)n using the 1st − order equation
........

a(r)n → a(r+1)
n using the (r + 1)st − order equation
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Now consider the following example. We assume that

Ĥ = Ĥ0 t ≤ 0 (11.60)

where
Ĥ0 ∣n⟩ = εn ∣n⟩ (11.61)

and during the time interval 0 ≤ t ≤ T a perturbation V̂t is applied to the system
and the an(t) change with time.

Finally, for t ≥ T the perturbation is turned off and an(t) = an(T ).

The probability that, as a result of the perturbation, the energy of the system
becomes εr, is given by

∣⟨r ∣ ψt⟩∣2 = ∣∑
i

ai(t)e−
i
h̵ εit ⟨r ∣ i⟩∣

2

= ∣ar(t)∣2 (11.62)

and as t→∞ we get
∣⟨r ∣ ψt⟩∣2 = ∣ar(T )∣2 (11.63)

Now to 1st−order we have

ih̵
da

(1)
r

dt
=∑

n

⟨r∣ Ût ∣n⟩ e
i
h̵ωrnta(0)n (11.64)

If ∣ψ(0)⟩ = ∣i⟩, then

a(0)n =
⎧⎪⎪⎨⎪⎪⎩

1 n = i
0 n ≠ i

(11.65)

This gives

ih̵
da

(1)
r

dt
= ⟨r∣ Ût ∣i⟩ e

i
h̵ωrit (11.66)

Integrating we have

a(1)r (T ) = 1

ih̵

T

∫
0

⟨r∣ Ût ∣i⟩ e
i
h̵ (εr−εi)tdt (11.67)

and
ar(T ) = a(0)r (T ) + ga(1)r (T ) (11.68)

which is identical to our earlier result as t→∞.

Now let return to our question. Has the state changed also?

In the example we found that the perturbation produces a final state ∣ψt⟩ for
t ≥ T which to 1st−order is

∣ψt⟩ =∑
n

an(t)e−
i
h̵ εnt ∣n⟩ (11.69)
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This is a coherent (definite relative phases) superposition of eigenvectors of Ĥ0.
This is NOT a stationary state. Interference effects between the terms in the
sum are detectable. They do not, however, affect

∣ar(T )∣2 = probability that the energy changes to εr (11.70)

Thus, the perturbation does not cause a jump from one stationary state ∣i⟩ of
Ĥ0 to another ∣r⟩, but instead it produces a non-stationary state.

The conventional language of quantum mechanics produces this ambiguity be-
tween the two statements

the energy is εr and the state is ∣r⟩

For the state
∣ψt⟩ =∑

n

an(t)e−
i
h̵ εnt ∣n⟩

it is correct to say

the probability of the energy being εr is ∣ar(T )∣2

or

Prob(E = εr ∣ ∣ψ⟩) = ∣ar(T )∣2

The state, however, is ∣ψt⟩ and NOT ∣r⟩.

An example

Suppose we perturb an oscillator with a decaying electric field of the form

V̂t = −qE0x̂e−
t
τ t ≥ 0 (11.71)

To 1st−order, starting with the initial state ∣n⟩ with energy

εn = h̵ω(n +
1

2
) (11.72)

we have

∣ψ(t)⟩ = ∣n⟩ + 1

ih̵

t

∫
0

dt′V̂ (t) ∣n⟩ (11.73)

where
V̂ (t) = e

i
h̵ Ĥ0tV̂te

− ih̵ Ĥ0t (11.74)

We let n = 0 (the ground state) for this example. We then have

∣ψ(t)⟩ = ∣0⟩ + 1

ih̵

t

∫
0

dt′e
i
h̵ Ĥ0t(−qE0x̂)e−

t
τ e−

i
h̵ Ĥ0t ∣0⟩ (11.75)
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Using

e−
i
h̵ Ĥ0t ∣0⟩ = e−i

ω
2 t ∣0⟩ (11.76)

x̂ ∣0⟩ =
√

h̵

2mω
∣1⟩ (11.77)

e
i
h̵ Ĥ0t ∣1⟩ = ei

3ω
2 t ∣0⟩ (11.78)

we get (letting t→∞)

∣ψ(t)⟩ = ∣0⟩ + 1

ih̵
(−qE0)

√
h̵

2mω

∞

∫
0

dt′eiωt
′− tτ ∣1⟩ (11.79)

and finally,

P0→1 = ∣⟨1 ∣ ψ(t)⟩∣2 = q2E2
0

2mh̵ω

RRRRRRRRRRRR

∞

∫
0

dt′eiωt
′− tτ

RRRRRRRRRRRR

2

= q2E2
0

2mh̵ω

τ2

τ2ω2 + 1
(11.80)

We now return to the earlier general result (11.36) we derived for the probability,
namely,

P0→n(t) = ∣⟨n∣ V̂t′ ∣0⟩∣
2
(

sin ∆t
2h̵

∆/2
)

2

(11.81)

In Figure 11.4 below we plot this function.
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Figure 11.4: Probability(0,n) versus Delta

The height of the central peak is proportional to t2 and the location of the first
zero is at

∆ = 2πh̵

t
(11.82)

so that the width of the peak decreases as 1/t.

The formula implies that for very short times

P0→n ∝ t2 for all εn (11.83)

As t →∞, however, the probability is largest for those states whose energy lies
under the sharp bump near ∆ = 0 or those states with whose energy lies under
the peak around ε0. Now the energy εn ≈ ε0 lies under the sharp bump when

∣∆∣ = ∣εn − ε0∣ <
2πh̵

t
(11.84)

The area under the bump is proportional to t and the rest of the area oscillates
in time around zero. This latter feature means that if εn ≠ ε0, the transition
probability oscillates in time with a repetition time of

2πh̵

∣εn − ε0∣
(11.85)

The case, where we are looking for a transition to a single state, is, thus, only
valid in perturbation theory for very small time t. Otherwise the condition that
the

P0→0(t) ≈ 1 (11.86)
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will not be true and perturbation theory breaks down. We also note that the
probability cannot grow larger than one or that, after a while, the higher-order
effects of the perturbation which we have neglected so far must become impor-
tant and prevent the probability from exceeding one.

The condition that tells us whether a transition probability to a state with
an energy appreciably different than the original energy is the same condition
in time-independent perturbation theory that tells whether the state vector
changes appreciably from the unperturbed state, namely

∣ ⟨n∣ V̂ ∣0⟩
εn − ε0

∣ << 1 (11.87)

Physically, a more interesting case occurs when the state ∣n⟩ is one of a contin-
uum of energy states, or it lies in a group of very closely spaced levels.

In this case we ask a different experimental question, namely,

What is the probability that the system makes
a transition to a small group of states near
∣n⟩ (or has energy near εn)?

Since the area under the bump near ∆ = 0 or εn ≈ ε0 is proportional to t, we
expect that the transition probability to a small group of states near ε0 will
grow linearly with t and thus

P0→n(t)
t

= transition rate = Γ = constant as t→∞ (11.88)

Quantities that we measure are related to the transition rate and this result
says that these measurements will make sense.

Let us now carry out this derivation in detail.

To calculate this transition rate we must sum P0→n over the group of final states.
We assume that ∣ ⟨b∣ V̂t′ ∣0⟩ ∣2 is relatively constant over the small group of states
near ∣n⟩ (has a weak energy dependence).

We then have

∑
n
ingroup

P0→n(t) = ∣⟨n∣ V̂t′ ∣0⟩∣
2

∫
group

dεnρ(εn)
⎡⎢⎢⎢⎢⎢⎣

sin [ (εn−ε0)t
h̵

]

[ (εn−ε0)
2

]

⎤⎥⎥⎥⎥⎥⎦

2

(11.89)

where

ρ(εn) = number of states per unit energy
ρ(εn)dεn = number of states in the interval dεn
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Now in the limit t→∞

⎡⎢⎢⎢⎢⎢⎣

sin [ (εn−ε0)t
h̵

]

[ (εn−ε0)
2

]

⎤⎥⎥⎥⎥⎥⎦

2

→ 2πt

h̵
δ(ε0 − εn) (11.90)

i.e., in general, for a sequence of functions

δt(α) =
sin2 αt

πα2t
(11.91)

we have that

δt(α) =
⎧⎪⎪⎨⎪⎪⎩

t
π

α = 0

≤ 1
πα2t

α ≠ 0
(11.92)

and

lim
t→∞

∞

∫
−∞

dαδt(α)F (α) = F (0) (11.93)

Therefore,
lim
t→∞

δt(α) = δ(α) (11.94)

Using this result, we have
∑
n

P0→n(t) =Γt (11.95)

and thus
Γ = transition rate = 2π

h̵
∣⟨n∣ V̂ ∣0⟩∣

2
ρ(εn)εn=ε0 (11.96)

which is called Fermi’s Golden Rule.

We now consider a perturbation that depends explicitly on time. In particular,
suppose we have a harmonic perturbation of the form

V̂t = V̂ eηt cosωt = V̂
2
eηt (e−iωt + eiωt) (11.97)

and ∣ψ(t0)⟩ = ∣0⟩, where we let t0 → −∞. The eηt factor is necessary to make
the mathematical operations valid in the limit. It is equivalent for small η to
turning the perturbation on slowly. In the end we will let η → 0.

We have

⟨n ∣ ψ(t)⟩ = ⟨n ∣ 0⟩ + 1

ih̵
e−

i
h̵ εnt

0

∫
−∞

dt′ ⟨n∣V̂ (t′) ∣0⟩

= e
ηt

2
[ ei(εn−ε0−h̵ω)

t
h̵

ε0 − εn + h̵ω + ih̵η
+ ei(εn−ε0+h̵ω)

t
h̵

ε0 − εn − h̵ω + ih̵η
] ⟨n∣ V̂ ∣0⟩ (11.98)
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Thus, the probability of the energy being εn at the time t is

∣⟨n ∣ ψ(t)⟩∣2

= e
2ηt

4
∣⟨n∣ V̂ ∣0⟩∣

2
⎧⎪⎪⎨⎪⎪⎩

1
(ε0−εn+h̵ω)2+(h̵η)2 + 1

(ε0−εn−h̵ω)2+(h̵η)2

+2Re e−2iωt

(ε0−εn+h̵ω+ih̵η)(ε0−εn−h̵ω+ih̵η)

⎫⎪⎪⎬⎪⎪⎭
(11.99)

The first term comes from the e−iωt part of V̂t (positive frequency) and the
second term comes from the eiωt part of V̂t (negative frequency). The last term
represents interference effects.

Since
P0→n(t) = Γ0→nt (11.100)

we have

Γ0→n =
dP0→n(t)

dt
(11.101)

and thus

Γ0→n (11.102)

= e
2ηt

4
∣⟨n∣ V̂ ∣0⟩∣

2
⎧⎪⎪⎨⎪⎪⎩

[ 1
(ε0−εn+h̵ω)2+(h̵η)2 + 1

(ε0−εn−h̵ω)2+(h̵η)2 ] (1 − cos 2ωt)
+2 sin 2ωt [ e−2iωt

(ε0−εn+h̵ω+ih̵η)(ε0−εn−h̵ω+ih̵η)]

⎫⎪⎪⎬⎪⎪⎭

The sinωt and cosωt terms arise from the interference term. In the limit η → 0
and assuming that ∣n⟩ is in the continuum part of spectrum, we have

1. the first two terms are not equal to zero only if εn − ε0 = ±h̵ω

2. the sinωt and cosωt terms average to zero if we assume that Γ0→n is
dP0→n(t)/dt averaged over a few cycles of V̂t

which gives the result

Γ0→n =
2π

h̵

∣⟨n∣ V̂ ∣0⟩∣
2

4
[δ(εn − ε0 − h̵ω) + δ(εn − ε0 + h̵ω)] (11.103)

The positive and negative frequency parts act independently and the interference
averages to zero.

Thus, the e−iωt part produced a ∆E > 0 process (absorption), while the eiωt

part produced a ∆E < 0 process (emission).

To enhance our understanding of time-dependent perturbation theory, we look
at a variation of this harmonic perturbation. Suppose we have a harmonic
perturbation of the form

V̂t = V̂ e−iωt + V̂ +eiωt (11.104)
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which is only applied for a finite time interval 0 ≤ t ≤ T . If we start with energy
εi in the state ∣i⟩, then at any time t ≥ T

a
(1)
f (t) = 1st − order amplitude for the state ∣ψ(t)⟩

to have energy εf (be in state ∣f⟩ ?) f ≠ i

is given by

a
(1)
f (T ) = 1

ih̵
⟨f ∣ V̂ ∣i⟩

T

∫
0

ei(ωfi−ω)tdt + 1

ih̵
⟨f ∣ V̂ + ∣i⟩

T

∫
0

ei(ωfi+ω)tdt (11.105)

and

∣a(1)f (T )∣
2
= probability that the final energy will be εf (11.106)

As an example we consider spin resonance (we solved this problem exactly ear-
lier).

We consider a spin = 1/2 particle in a static magnetic fieldB0 (in the z−direction).
This says that the unperturbed Hamiltonian is

Ĥ0 = −
1

2
h̵γB0σ̂z (11.107)

This operator has the eigenvectors and eigenvalues

∣+⟩ = (1
0
) , ∣−⟩ = (0

1
) , ε± = ∓

1

2
h̵γB0 (11.108)

We now perturb the system with another magnetic field B1, which is rotating
in the x − y plane with angular velocity ω. This implies that

V̂t = −
1

2
h̵γB1(cosωt̂i + sinωtĵ) ⋅ σ̂

= −1

2
h̵γB1 [σ̂x cosωt + σ̂y sinωt] = −1

2
h̵γB1 ( 0 e−iωt

eiωt 0
)

= −1

2
h̵γB1 (V̂ e−iωt + V̂ +eiωt) (11.109)

where

V̂ = ( 0 1
0 0

) , V̂ + = ( 0 0
1 0

) (11.110)

We choose the initial state to be

∣i⟩ = ∣n⟩ (spin up in the z-direction) (11.111)

The first order perturbation theory approximation for this result is

∣a(1)f (T )∣
2
= ( ω1

ω0 + ω
)

2

sin2 1

2
(ω0 + ω)T (11.112)
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where
ω0 = γB0 , ω1 = γB1 (11.113)

and we have used

⟨−∣ V̂ ∣+⟩ = 0, ⟨−∣ V̂ + ∣+⟩ = −1

2
h̵γB1 (11.114)

ωfi =
εf − εi
h̵

= ω0 (11.115)

When is the first order perturbation theory result valid?

If we compare the exact result with perturbation theory by expanding the exact
result in a power series, we find that the two results agree exactly if

∣ ω1

ω0 + ω
∣ << 1 (11.116)

which corresponds B1 ≪ B0 (as long as ω0 +ω ≠ 0). When ω0 +ω = 0 we have a
phenomenon called resonance. The exact solution gives

∣af(T )∣2 = sin2 1

2
αT (11.117)

where α2 = (ω0 + ω)2 + ω2
1 and perturbation theory gives

∣a(1)f (T )∣
2
= (ω1T

2
)

2

(11.118)

Thus, the results agree only if ∣ω1T ∣ ≪ 1 or if the perturbation only acts for a
short time.

11.2 Atomic Radiation and Selection Rules

We now apply time-independent perturbation theory to the absorption and
emission electromagnetic radiation by matter.

The Hamiltonian for an electron in an atom interacting with and electromagnetic
field is

Ĥ =
(p⃗op − q

c
A⃗)2

2me
+ qφ +U (11.119)

where q = −e, U = the potential energy function that binds the electrons in the
atom, and A⃗ and ϕ are the vector and scalar potentials associated with the
electromagnetic field.

These potentials imply the electric and magnetic fields

E⃗ = −∇φ − 1

c

∂A⃗

∂t
,B⃗ = ∇× A⃗ (11.120)
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Note that if A⃗ = 0, the B⃗ = 0 and

φ = −
r⃗

∫
0

E⃗(r⃗, t)⋅dr⃗ (11.121)

We rewrite Ĥ as
Ĥ = Ĥ0 + V̂ (11.122)

where

Ĥ0 =
p⃗2
op

2me
+U = Hamiltonian for the atom with no electromagnetic field

(11.123)
and

V̂ = q

2mec
(p⃗op ⋅ A⃗ + A⃗ ⋅ p⃗op) +

q2

2mec2
(A⃗ ⋅ A⃗) + qφ (11.124)

is the perturbation due to the presence of the electromagnetic field, i.e., the
term V̂ tells us how the atom interacts with the electromagnetic field.

11.2.1 The Electric Dipole Approximation
The typical wavelength of visible electromagnetic radiation is ≈ 5000 and the
typical dimension of an atom is ≈ a few . This implies that the electromagnetic
fields are approximately constant over the volume of the atom.

In Gaussian units ∣E⃗∣ ≈ ∣B⃗∣, but the force due to B⃗ ≈ (v/c)× the force due to E⃗.
Thus, magnetic effects are negligible in most atoms compared to electric effects.
We therefore assume

1. E⃗ ≈ constant over the volume of the atom

2. B⃗ can be neglected

This is the so-called electric dipole approximation.

In this approximation, we have A⃗ = 0 and as we said above (11.121), B⃗ = 0 and

φ = −
r⃗

∫
0

E⃗(r⃗, t)⋅dr⃗ (11.125)

This last integral is independent of path since

∇× E⃗ = −1

c

∂B⃗

∂t
= 0 (11.126)

Since we are assuming that E⃗ ≈ constant over the volume of the atom, we get

φ = −r⃗ ⋅ E⃗(t) (11.127)
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This adds a perturbation of the form

V̂ = −qr⃗ ⋅ E⃗(t) (11.128)

to the Hamiltonian.

In some derivations the quantity

V̂ = q

2mec
(p⃗op ⋅ A⃗ + A⃗ ⋅ p⃗op) +

q2

2mec2
(A⃗ ⋅ A⃗) + qφ (11.129)

is chosen as the perturbation. The next step would be to expand in powers of
the potentials. Since ∇ ⋅ E⃗ = 0 for the radiation field, we can choose ϕ = 0 and
∇ ⋅ A⃗ = 0 (if these relations were not true we could make them so with a gauge
transformation).

Therefore, we end up with an expansion in powers of A⃗. The first term in the
expansion is

V̂Ap = −
q

2mec
(p⃗op ⋅ A⃗ + A⃗ ⋅ p⃗op) = −

q

mec
A⃗ ⋅ p⃗op (11.130)

since
p⃗op ⋅ A⃗ − A⃗ ⋅ p⃗op ∝ ∇ ⋅ A⃗ = 0 (11.131)

In this case, in the electric dipole approximation

E⃗ ≈ constant , B⃗ = 0

A⃗(r⃗, t) = −c
r⃗

∫
0

E⃗(r⃗, t)dt

φ(r⃗, t) = 0

If E⃗(r⃗, t) = E⃗(r⃗)e−iωt, then A⃗ = eE⃗/iω. Using

p⃗op

m
= i

h̵
[Ĥ0, r⃗op] (11.132)

we get
V̂Ap = −

q

h̵ω
[Ĥ0, r⃗op] ⋅ E⃗ (11.133)

We can then calculate matrix elements

⟨m∣ V̂Ap ∣n⟩ = −
q

h̵ω
⟨m∣ Ĥ0r⃗op − r⃗opĤ0 ∣n⟩ ⋅ E⃗

= − q

h̵ω
(εm − εn) ⟨m∣ r⃗op ⋅ E⃗ ∣n⟩

= ωmn
ω

⟨m∣ V̂ ∣n⟩ (11.134)

where
ωmn =

εm − εn
h̵

(11.135)
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Thus, the matrix elements of V̂Ap (from A⃗⋅p⃗op) differ from the matrix elements of
V̂ (from ϕ) by the factor ωmn/ω. This implies different transition probabilities in
first order except at resonance where ωmn/ω = 1. The reason for the differences
is as follows:

1. we assumed that the perturbation = 0 for t ≤ 0 , t ≥ T

2. there is no physical problem with V = −qr⃗ ⋅ E⃗ changing discontinuously

3. however, if A⃗ ⋅ p⃗op changes discontinuously, then the relation

E⃗ = −1

c

∂A⃗

∂t
(11.136)

generates spurious δ−function type E⃗ fields

It is clear that one must exercise great care in choosing a starting point for
perturbation theory.

11.2.2 Induced Emission and Absorption
We now look at the physics connected with the harmonic perturbation. Physi-
cally, it represents an electromagnetic wave interacting with the atom.

We consider the perturbing potential

V̂ =
⎧⎪⎪⎨⎪⎪⎩

−qr⃗ ⋅ E⃗0(e−iωt + eiωt) 0 < t < T
0 t < 0, t > T

(11.137)

where E⃗0 = a constant vector which tells us the strength and polarization of the
electromagnetic field.

This perturbing potential corresponds to monochromatic(single wavelength)
electromagnetic radiation.

For an initial state ∣ψ(0)⟩ = ∣i⟩ where Ĥ0 ∣i⟩ = εi ∣i⟩ the probability, at any time
t ≥ T , that the atom will have a final energy εf is

Pi→f(T ) = ∣a(1)f (T )∣
2

(11.138)

to first order, where we have from our earlier derivation

a
(1)
f (T ) =

⟨f ∣ (−qr⃗ ⋅ E⃗0) ∣i⟩
h̵

[1 − ei(ωfi−ω)T

ωfi − ω
+ 1 − ei(ωfi+ω)T

ωfi + ω
] (11.139)

If εf > εi this gives the probability amplitude for absorbing radiation and if
εf < εi this gives the probability amplitude for emitting radiation.
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In the limit T →∞, as we saw earlier, Pi→f(t) = Γi→f t which gives

Γi→f =
2πq2

h̵

∣⟨f ∣ r⃗ ⋅ E⃗0 ∣i⟩∣
2

4
[δ(εi − εf − h̵ω) + δ(εi − εf + h̵ω)] (11.140)

In this expression

δ(εi − εf − h̵ω)→ absorption
δ(εi − εf + h̵ω)→ emission

We then have the transition rates

Γai→f = Γei→f =
2πq2

h̵

∣⟨f ∣ r⃗ ⋅ E⃗0 ∣i⟩∣
2

4
(11.141)

These expressions are zero/nonzero or transitions are not-allowed/allowed de-
pending on the matrix element of the perturbation, i.e.,

if for i→ f ⟨f ∣ r⃗ ⋅ E⃗0 ∣i⟩ = 0, then the transition i→ f is not allowed

These relationships between the quantum numbers of the initial and final states
that tell us whether or not a transition is allowed are called selection rules.

To determine the selection rules for one-electron atoms we only need to consider
matrix elements of the form

⟨n′`′m`′ms′ ∣ r⃗ ⋅ E⃗0 ∣n`m`ms⟩ (11.142)

or we need to look at three matrix elements, namely,

⟨n′`′m`′ms′ ∣ x̂ ∣n`m`ms⟩ , ⟨n′`′m`′ms′ ∣ ŷ ∣n`m`ms⟩ and ⟨n′`′m`′ms′ ∣ ẑ ∣n`m`ms⟩

Now

z = r cos θ ∝ rY10 = x3 (11.143)
x = r sin θ cosϕ∝ r(Y11 + Y1,−1) = x1 (11.144)
y = r sin θ sinϕ∝ r(Y11 − Y1,−1) = x2 (11.145)

A typical matrix element, therefore, will have a term like the following:

⟨sms′ ∣ sms⟩∫ Rn′`′(r)Rn`(r)r3dr∫ Y ∗
`′m`′Y`m`Y1mdΩ (11.146)

where m = ±1,0.

The radial integral would equal zero only by accident implying that it is not
part of the general selection rules, which must come from the other terms.
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The term ⟨sms′ ∣ sms⟩ = δms′ms gives us a simple selection rule (this simple rule
arises here because the interaction does not depend on spin). We have

ms′ =ms → the ∆ms = 0 SELECTION RULE (11.147)

The rest of the selection rules come from the angular integration terms

∫ Y ∗
`′m`′

Y`m`Y1mdΩ (11.148)

This integral equals 0 unless ` + `′ + 1 = an even integer. This rule follows from
parity considerations. For any angular integration over all angles to be nonzero,
the integrand must be even under the parity operation.

Now
Y`m → (−1)`Y`m (11.149)

under the parity operation. Therefore

Y ∗
`′m`′Y`m`Y1m → (−1)`+`

′+1Y ∗
`′m`′Y`m`Y1m (11.150)

which gives the stated rule.

The θ−integration says that we must have

∣`′ − `∣ ≤ 1 ≤ `′ + `

This corresponds to thinking of the integrand as made up of two states, namely,

⟨` ′m`′ ∣ ( ∣`m`⟩⊗ ∣1m⟩)

Our angular momentum addition rules say that

∣`m`⟩⊗ ∣1m⟩ = ∣` + 1⟩⊕ ∣`⟩⊕ ∣` − 1⟩

and the selection rule then follows from the orthogonality condition.

The two `−rules when combined imply the selection rule

∆m` =m`′ −m` = ±1,0 SELECTION RULE (11.151)

Thus, for transitions within the electric dipole approximation, as defined above,
we have the SELECTION RULES

∆m` =m`′ −m` = ±1 , 0 (11.152)
∆` = `′ − ` = ±1 (11.153)
∆ms = 0 = ∆s (11.154)

The derivation is more complex for multi-electron atoms due the complexity of
the wave function (see next chapter), but it can be shown that, in general, the
SELECTION RULES in the electric dipole approximation are
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1. parity changes

2. ∆(∑ `i) = ±1

3. ∆S = 0

4. ∆MS = 0

5. ∆L = ±1,0 (possibility of 0 which is not allowed for 1-electron atoms)

6. ∆ML = ±1,0

7. ∆J = ±1,0

8. ∆MJ = ±1,0

9. J = 0→ J = 0 is strictly forbidden

11.3 A Real Physical Process - Ionization

We now carry out the calculations of the transition rate for the ionization(transition
to the continuum) of hydrogen by electromagnetic radiation.

The initial state of the electron is the ground state of hydrogen

∣i⟩ = ∣100⟩ with energy εi = ε100 = −
e2

2a0
(11.155)

The final state of the electron in the ionization process is a free particle state(ionized
electron)

∣f⟩ = ∣
⇀

k⟩ with energy εf = εk =
h̵2k2

2m
(11.156)

We then have
p⃗op ∣k⃗⟩ = h̵k⃗ ∣k⃗⟩ (11.157)

which says this is a momentum eigenstate also (for free particles [Ĥ, p⃗op] = 0
and momentum and energy have the same eigenstates). The momentum is given
by p⃗ = h̵k⃗. Since εf > εi this is an absorption process and thus the transition
rate is given by

Γ0→k⃗ = transitionrate = lim
t→∞

P0→k⃗(t)
t

= 2π

h̵
∣⟨k⃗∣ V̂ ∣100⟩∣

2
δ(εk − ε100 − h̵ω) (11.158)

where ω = frequency of the electromagnetic radiation and

V̂ = −er⃗ ⋅ E⃗ (electric dipole approximation)

E⃗ = the electric field vector
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We define

dΓ = rate of transition into a small solid angle dΩ

= ∑
k⃗ in dΩ

Γ0→k⃗ (11.159)

For convenience we use a common trick and assume that the universe is a large
box (side = L, volume = L3). This allows us to normalize the plane wave states
associated with the free electron. We have

⟨r⃗ ∣ k⃗⟩ = Aeik⃗⋅r⃗ (11.160)

⟨k⃗ ∣ k⃗⟩ = 1 = ∫ d3r⃗ ⟨k⃗ ∣ r⃗⟩ ⟨r⃗ ∣ k⃗⟩

= A2 ∫ d3r⃗e−ik⃗⋅r⃗eik⃗⋅r⃗ = A2 ∫ d3r⃗ = A2L3 (11.161)

or
A = 1

L3/2 (11.162)

Now there are

L3 d3k⃗

(2π)3
= L3

(2π)3
dΩk2dk = L3mk

(2π)3h̵2
dΩdεk (11.163)

states in the volume d3k⃗ of phase space. This implies that there are

L3mk

(2π)3h̵2
(11.164)

states per unit energy per unit solid angle.

Therefore,

dΓ = ∑
k⃗indΩ

Γ0→k⃗ → dΩ

∞

∫
0

L3mk

(2π)3h̵2
dεk

πe2

2h̵
∣⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩∣

2
δ(εk − ε100 − h̵ω)

Doing the integration (using the delta function) we get

dΓ = dΩ
L3mke2

16π2h̵3
∣⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩∣

2
(11.165)

where

εk = ε100 + h̵ω = h̵
2k2

2m
(11.166)

k = (2mω

h̵
− 1

a2
0

)
1/2

(11.167)
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11.3.1 Evaluation of the Matrix Element

We have

⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩ = ∫ d3r⃗ ⟨k⃗ ∣ r⃗⟩ ⟨r⃗∣ r⃗ ⋅ E⃗ ∣100⟩

= 1

L3/2 ∫ d3r⃗e−ik⃗⋅r⃗ r⃗ ⋅ E⃗ ⟨r⃗ ∣ 100⟩

= 1

L3/2 ∫ d3r⃗e−ik⃗⋅r⃗ r⃗ ⋅ E⃗R10(r)Y00

= 2

a
3/2
0 L3/2 ∫ d3r⃗e−ik⃗⋅r⃗e−

r
a0 r⃗ ⋅ E⃗ (11.168)

We can arbitrarily choose k⃗ = kẑ which gives

⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩ = 2

a
3/2
0 L3/2 ∫ dΩdrr2e

−ikr cos θ− r
a0 r⃗ ⋅ E⃗ (11.169)

using k⃗ ⋅ R⃗ = kz = kr cos θ. Now in spherical-polar coordinates we have

E⃗ = E (sin θε cosϕεêx + sin θε sinϕεêz + cos θεêz) (11.170)
r⃗ = r (sin θ cosϕêx + sin θ sinϕêy + cos θêz) (11.171)

so that
E⃗ ⋅ r⃗ = Er (cos θ cos θε + sin θ sin θε cos(ϕ − ϕε)) (11.172)

We then have

⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩

= 2ε

a
3/2
0 L3/2

2π

∫
0

dϕ

π

∫
0

sin θdθ∫ drr3e
−ikr cos θ− r

a0 [cos θ cos θε + sin θ sin θε cos(ϕ − ϕε)]

Since
2π

∫
0

dϕ cosϕ =
2π

∫
0

dϕ sinϕ =0 (11.173)

the ϕ− integration wipes out the cos(ϕ − ϕε) term. Letting x = cos θ we then
have

⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩ = 4πE cos θε

a
3/2
0 L3/2

1

∫
−1

⎡⎢⎢⎢⎢⎣

∞

∫
0

drr3e
−ikrx− r

a0

⎤⎥⎥⎥⎥⎦
xdx (11.174)

Now
∞

∫
0

drr3e
−ikrx− r

a0 =
∞

∫
0

drr3e−αr = 3!

α4
= 6

(ikx + 1
a0

)
4

(11.175)
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Therefore, we have

⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩ = 4πE cos θε

a
3/2
0 L3/2

1

∫
−1

6x

(ikx + 1
a0

)
4
dx

= 4πE cos θε

a
3/2
0 L3/2

16ka5
0

(1 + k2a2
0)3

(11.176)

and

∣⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩∣
2
= 4096π2E2 cos2 θεa

7
0k

2

L3(1 + k2a2
0)6

(11.177)

where
k2 = 2mω

h̵
− 1

a2
0

(11.178)

Finally, we get

Γionization = ∫ dΓ = L
3mke2

16π2h̵3 ∫ dΩk⃗ ∣⟨k⃗∣ r⃗ ⋅ E⃗ ∣100⟩∣
2

(11.179)

where

dΩk⃗ = integration over the angles of k⃗
(varies direction of arbitrary z - axis)

However, varying the z-direction is the same as keeping E⃗ fixed and integrating
over dΩE⃗ . Therefore, we have

Γionization =
L3mke2

16π2h̵3

4096π2E2a7
0k

2

L3(1 + k2a2
0)6 ∫ dΩE⃗ cos2 θε

= 64πme2E2a7
0

3h̵3

k3

(1 + k2a2
0)6

(11.180)

Now

1 + k2a2
0 =

2mωa2
0

h̵
(11.181)

and letting

ω0 =
h̵

2ma2
0

(11.182)

we find that

1 + k2a2
0 =

ω

ω0
and k = 1

a0
( ω
ω0

− 1)
1/2

(11.183)

and we get

Γionization =
64πe2E2a3

0

3h̵
(ω0

ω
)

6

( ω
ω0

− 1)
3/2

(11.184)
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Thus, there exists a threshold energy for this process, i.e., it cannot occur unless
the energy of the photon is greater than a minimum amount, which makes
physical sense. In particular, we must have ω ≥ ω0 so that

h̵ω0 = ∣ε100∣ = Eionization = minimum = threshold (11.185)

We also get the correct 6th−power term in the answer which agrees with exper-
iment.

11.4 Adiabatic and Sudden Approximations

In standard time-dependent perturbation theory, we assume that the time-
dependent perturbation is weak. An alternative approach, where we assume
the time-dependence is slow, is called the adiabatic approximation.

Suppose that Ĥ = Ĥ(g(t)), where g(t) tells us the dependence on time. This
might correspond to a variation in time of some parameters. We still have

ih̵
d

dt
∣ψ(t)⟩ = Ĥ(g(t)) ∣ψ(t)⟩ (11.186)

and at any instant of time we have

Ĥ(g(t)) ∣n(g(t))⟩ = En(g(t)) ∣n(g(t))⟩ (11.187)

where n(g(t)) represents the quantum numbers describing the instantaneous
state vector.

Let us assume that the instantaneous eigenvectors always form a complete set
so that we can write

∣ψ(t)⟩ =∑
n

αn(t)eiβn(t) ∣n(g(t))⟩ (11.188)

where we have generalized the phase factor

e−
i
h̵ εnt (11.189)

that appeared in a similar expression in our earlier derivations to include the
term

βn(t) = −
1

h̵

t

∫
0

En(g(t′))dt′ (11.190)

which is called the dynamical phase.

Inserting this expression for the state vector ∣ψ(t)⟩ into the time-dependent
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Schrodinger equation we get

ih
d

dt
∑
n

αn(t)eiβn(t) ∣n(g(t))⟩ = Ĥ(g(t))∑
n

αn(t)eiβn(t) ∣n(g(t))⟩

ih̵∑
n

dαn(t)
dt

eiβn(t) ∣n(g(t))⟩ + ih∑
n

αn(t)
deiβn(t)

dt
∣n(g(t))⟩

+ ih∑
n

αn(t)eiβn(t)
d

dt
∣n(g(t))⟩

=∑
n

αn(t)eiβn(t)Ĥ(g(t)) ∣n(g(t))⟩ =∑
n

αn(t)eiβn(t)En(g(t)) ∣n(g(t))⟩

ih̵∑
n

dαn(t)
dt

eiβn(t) ∣n(g(t))⟩ + ih∑
n

αn(t)i
dβn(t)
dt

eiβn(t) ∣n(g(t))⟩

+ ih∑
n

αn(t)eiβn(t)
d

dt
∣n(g(t))⟩ =∑

n

αn(t)eiβn(t)En(g(t)) ∣n(g(t))⟩

Now
dβn(t)
dt

= − 1

h̵

d

dt

t

∫
0

En(g(t′))dt′ = −
1

h̵
En(g(t)) (11.191)

Therefore, we get

∑
n

dαn(t)
dt

eiβn(t) ∣n(g(t))⟩ +∑
n

αn(t)eiβn(t)
d

dt
∣n(g(t))⟩ = 0 (11.192)

Applying the linear functional

⟨m∣ = ⟨m(g(t))∣ (11.193)

from the left we get

∑
n

dαn
dt

eiβn ⟨m ∣ n⟩ +∑
n

αne
iβn ⟨m∣ d

dt
∣n⟩ = 0 (11.194)

Using
⟨m ∣ n⟩ = δmn (11.195)

we have

dαm
dt

eiβm = −∑
n

αne
iβn ⟨m∣ d

dt
∣n⟩ (11.196)

dαm
dt

= −∑
n

αne
i(βn−βm) ⟨m∣ d

dt
∣n⟩ (11.197)

Now taking the time derivative of the eigenvalue equation we have

dĤ

dt
∣n⟩ + Ĥ d

dt
∣n⟩ = dEn

dt
∣n⟩ +En

d

dt
∣n⟩ (11.198)
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Again, applying the linear functional ⟨m∣ from the left we get

⟨m∣ dĤ
dt

∣n⟩ + ⟨m∣ Ĥ d

dt
∣n⟩ = dEn

dt
⟨m ∣ n⟩ +En ⟨m∣ d

dt
∣n⟩ (11.199)

For m ≠ n, using ⟨m∣ Ĥ = ⟨m∣Em, we have

⟨m∣ dĤ
dt

∣n⟩ +Em ⟨m∣ d
dt

∣n⟩ = En ⟨m∣ d
dt

∣n⟩ (11.200)

⟨m∣ d
dt

∣n⟩ =
⟨m∣ dĤ

dt
∣n⟩

En −Em
(11.201)

Thus, we finally have

dαm
dt

=∑
n

αne
i(βn−βm) ⟨m∣ dĤ

dt
∣n⟩

Em −En
(11.202)

We choose the initial state to be one of the instantaneous eigenvectors

∣ψ(0)⟩ = ∣n(g(0))⟩ (11.203)

which implies that

αn(0) = 1

αm(0) = 0 m ≠ n

Therefore, for m ≠ n at small t we have

dαm
dt

≈ ei(βn−βm)t ⟨m∣ dĤ
dt

∣n⟩
Em −En

(11.204)

We now assume that

⟨m∣ dĤ
dt

∣n⟩ and Em −En (11.205)

have slow time dependence and that to this order of approximation we can write

ei(βn−βm)t = ei(Em−En)
t
h̵ (11.206)

which is what we would have if there was no extra time dependence.

We then get

αm(t) ≈ −ih̵
⟨m∣ dĤ

dt
∣n⟩

(Em −En)2
[ei(Em−En)t − 1] (11.207)

This implies that
αm(t) remains small for m ≠ n (11.208)
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The adiabatic theorem assumes that in the case where the system starts in an
eigenstate ∣n⟩ at t = 0, i.e.,

αm(t) = 0 m ≠ n (11.209)

and that
∣ψ(t)⟩ = e−iβnt ∣n(g(t))⟩ (11.210)

which says that if the system was in the eigenstate ∣n⟩ at t = 0, i.e.,

Ĥ(g(0)) ∣n⟩ = Ĥ0 ∣n⟩ = εn ∣n⟩ (11.211)

then at a later time t, it is still in the same eigenstate ∣n(g(t))⟩ of the new
Hamiltonian Ĥ(g(t)), i.e.,

Ĥ(g(t)) ∣n(t)⟩ = En(t) ∣n(t)⟩ (11.212)

This result is independent of the size of the perturbation. It depends only on
the change in time being slow.

This means that if we start with a particle in the ground state of a harmonic
oscillator potential

V = 1

2
k(0)x2 → ψ0(k(0), x) (11.213)

and assume that
k(0)→ k(T ) (11.214)

slowly, the particle ends up in the ground state of the harmonic oscillator po-
tential

V = 1

2
k(T )x2 → ψ0(k(T ), x) (11.215)

to within a phase factor.

The opposite result comes from the so-called sudden approximation , where the
change occurs so fast that no changes of the state vector are possible.

Since the state vector does not change at all, if you are in the ground state and
a sudden change in the parameters occurs, then you remain in the ground state
for the old parameters. This is not the ground state with new parameters. It is
some linear combination of the new states.

Let us look at the adiabatic approximation in another way. We consider a time
dependent part of the Hamiltonian of the form

Ĥ(t) = Ĥ0 + Ĥ ′ , Ĥ ′ = V̂ f(t) (11.216)

where f(t) has the form shown in Figure 11.5 below.
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Figure 11.5: Time Dependence

We assume that the particle starts out in the nth eigenstate of Ĥ0 = Ĥ(0)

∣ψ(0)⟩ = ∣n⟩i (11.217)

where the subscripts are

i→ initial parameters
f → final parameters

The state vectors is assumed to change in time to ∣ψ(t)⟩.

If V̂ is small, we can write, using first order time-independent perturbation
theory

∣m⟩f = ∣m⟩i + ∑
k≠m

Vkm
Em −Ek

∣k⟩i (11.218)

where
Vkm = i ⟨k∣ V̂ ∣m⟩i (11.219)

On the other hand, first order time-dependent perturbation theory implies that

∣ψ(t)⟩ =∑
n

αn(t)e−
i
h̵Ent ∣n⟩i (11.220)

with

αn(t) = 1 − i

h̵
Vnn

t

∫
0

f(t′)dt′ (11.221)

αm(t) = − i
h̵
Vmn

t

∫
0

f(t′)ei(Em−En)
t′

h̵ dt′ , m ≠ n (11.222)
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Now we are assuming that df/dt is small, we integrate by parts to get

αm(t) = − i
h̵
Vmn

t

∫
0

f(t′)ei(Em−En)
t′

h̵ dt′

= − Vmn
Em −En

t

∫
0

f(t′) d
dt′

[ei(Em−En)
t′

h̵ ]dt′

= − Vmn
Em −En

[f(t′)ei(Em−En)
t′

h̵ ]
t

0

+ Vmn
Em −En

t

∫
0

df(t′)
dt′

ei(Em−En)
t′

h̵ dt′ (11.223)

Using f(0) = 0 and neglecting the last term because df/dt is small gives

∣ψ(T )⟩ =
⎡⎢⎢⎢⎣
(1 − iVnn

h̵
γ) ∣n⟩i − ∑

q≠n

Vqn

Eq −En
∣q⟩i

⎤⎥⎥⎥⎦
e−

i
h̵EnT (11.224)

where

γ =
T

∫
0

f(t)dt (11.225)

Therefore

f ⟨n ∣ ψ(T )⟩ = [i ⟨n∣ + ∑
k≠n

Vkn
En −Ek

i ⟨k∣]
⎡⎢⎢⎢⎣
(1 − iVnn

h̵
γ) ∣n⟩i − ∑

q≠n

Vqn

Eq −En
∣q⟩i

⎤⎥⎥⎥⎦
e−

i
h̵EnT

=
⎡⎢⎢⎢⎣
1 − iVnn

h̵
γ + ∑

q≠n

∣Vqn∣2

(En −Eq)2

⎤⎥⎥⎥⎦
e−

i
h̵EnT (11.226)

f ⟨m ∣ ψ(T )⟩ = [i ⟨m∣ + ∑
k≠m

Vkm
Em −Ek

i ⟨k∣]
⎡⎢⎢⎢⎣
(1 − iVnn

h̵
γ) ∣n⟩i − ∑

q≠n

Vqn

Eq −En
∣q⟩i

⎤⎥⎥⎥⎦
e−

i
h̵EnT

= [−iγ VnnVnm
h̵(Em −En)

+ ∑
m≠k≠n

VnkVkm
(En −Ek)(Em −Ek)

] e−
i
h̵EnT

(11.227)

Note that all the first order terms cancel in the last expression. If we only keep
terms to first order (which is consistent with the derivation) we then have

f ⟨k ∣ψ(T )⟩ =
⎧⎪⎪⎨⎪⎪⎩

[1 − iVnn
h̵
γ] k = n

0 k ≠ n
(11.228)

which implies that

∣f ⟨n ∣ ψ(T )⟩∣2 = 1 + ∣Vnn∣2 γ2

h̵2
→ 1 to first order

∣f ⟨m ∣ ψ(T )⟩∣2 = 0 to first order m ≠ n
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which is the adiabatic approximation.

Therefore, the adiabatic approximation says:

if the Hamiltonian Ĥ(t) changes slowly in time,
then there will be no transitions from the
eigenstate ∣n⟩i of Ĥ(0) to a different
eigenstate ∣m⟩f of Ĥ(t)

In time-dependent perturbation theory, we assume the perturbation is turned
on and off and thus Ĥ(0) = Ĥ(T ), i.e., we have the same unperturbed Hamil-
tonian at the end.

The transitions in that case are from one eigenvector of the unperturbed Hamil-
tonian to another eigenvector of the same unperturbed Hamiltonian.

This implies a first-order transition amplitude and hence a second-order transi-
tion probability.

In the adiabatic approximation, however, we have a second-order transition am-
plitude (m ≠ n) and hence a fourth-order transition probability. That is why we
can assume that the transition probability for m ≠ n is equal to zero.

The first derivation gives the adiabatic approximation for any size perturbation.
In the second derivation,however, we not only assumed a slow change in time,
but also assumes a small perturbation so that we could use first order pertur-
bation theory.

What happens in the second derivation if the perturbation is not small?

The way to handle this is to divide the time interval (0, T ) into N subintervals
such that the perturbation ∆V is small within any subinterval. In fact, it is of
O(V /N). Thus, if N is large, ∆V is small.

We then apply our arguments to each subinterval. If the transition amplitude is
first-order in the perturbation, then the total transition amplitude behaves like

N (V
N

)→ V (11.229)

with each of the N steps giving a contribution proportional to ∆V . This says
that the net result is of order V , and thus, if V is large, the transition amplitude
will be large.

However, the transition amplitude is second-order and thus the total transition
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amplitude behaves like

N (V
N

)
2

→ V 2

N
→ 0asN →∞ (11.230)

Therefore, the transition amplitude (m ≠ n) is zero independentofthesize of V .

An Example

Let us consider a 1−dimensional square well where

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 ∣x∣ ≤ a
2

∞ ∣x∣ > a
2

(11.231)

The eigenfunctions and energies are

ψn(x) =
⎧⎪⎪⎨⎪⎪⎩

cos nπx
2a

n = 1,3,5, .......

sin nπx
2a

n = 2,4,6, .......
(11.232)

for ∣x∣ ≤ a
2
and zero otherwise and

En =
π2h̵2n2

8ma2
n = 1,2,3, ....... (11.233)

Suppose that we change the size of the well and ask what happens to the ground
state in the sudden and adiabatic approximations.

Sudden

ψ1(x) = cos
πx

2a
before (11.234)

leads to

ψ(x) = cos
πx

2a
after (no change in the wave function) (11.235)

However, after the change we have new eigenfunctions and energies

ψ′n(x) =
⎧⎪⎪⎨⎪⎪⎩

cos nπx
4ā

n = 1,3,5, .......

sin nπx
4ā

n = 2,4,6, .......
(11.236)

for ∣x∣ ≤ a
2
and zero otherwise and

E′
n =

π2h̵2n2

8mā2
n = 1,2,3, ....... (11.237)

The state of the system is still an eigenstate of the old well and, thus, is not an
eigenstate of the new well. In fact, we have

ψ(x) = cos
πx

2a
=∑

n

bnψ
′
n(x) (11.238)
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Adiabatic

ψ1(x) = cos
πx

2a
before (ground state of old well) (11.239)

ψ′1(x) = cos
πx

4a
after (ground state of new well) (11.240)

The state of the system is an eigenstate of the new well and, thus, is not an
eigenstate of the old well any longer. In fact, we have

ψ′n(x) = cos
πx

4a
=∑

n

bnψn(x) (11.241)

It is a superposition of the old energy eigenstates.

11.5 Problems

11.5.1 Square Well Perturbed by an Electric Field

At time t = 0, an electron is known to be in the n = 1 eigenstate of a 1−dimensional
infinite square well potential

V (x) =
⎧⎪⎪⎨⎪⎪⎩

∞ for ∣x∣ > a/2
0 for ∣x∣ < a/2

At time t = 0, a uniform electric field of magnitude E is applied in the direction
of increasing x. This electric field is left on for a short time τ and then removed.
Use time-dependent perturbation theory to calculate the probability that the
electron will be in the n = 2, 3 eigenstates at some time t > τ .

11.5.2 3-Dimensional Oscillator in an electric field

A particle of mass M , charge e, and spin zero moves in an attractive potential

V (x, y, z) = k (x2 + y2 + z2) (11.242)

(a) Find the three lowest energy levels E0, E1, E2 and their associated degen-
eracy.

(b) Suppose a small perturbing potential Ax cos ω̄t causes transitions among
the various states in (a). Using a convenient basis for degenerate states,
specify in detail the allowed transitions neglecting effects proportional to
A2 or higher.

(c) In (b) suppose the particle is in the ground state at time t = 0. Find the
probability that the energy is E1 at time t.
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11.5.3 Hydrogen in decaying potential
A hydrogen atom (assume spinless electron and proton) in its ground state is
placed between parallel plates and subjected to a uniform weak electric field

E⃗ =
⎧⎪⎪⎨⎪⎪⎩

0 for t < 0

E⃗0e−αt for t > 0

Find the 1storder probability for the atom to be in any of the n = 2 states after
a long time.

11.5.4 2 spins in a time-dependent potential
Consider a composite system made up of two spin = 1/2 objects. For t < 0, the
Hamiltonian does not depend on spin and can be taken to be zero by suitably
adjusting the energy scale. For t > 0, the Hamiltonian is given by

Ĥ = (4∆

h̵2
) S⃗1 ⋅ S⃗2

Suppose the system is in the state ∣+−⟩ for t ≤ 0. Find, as a function of time,
the probability for being found in each of the following states ∣++⟩, ∣−+⟩ and
∣−−⟩.

(a) by solving the problem exactly.

(b) by solving the problem assuming the validity of 1st−order time-dependent
perturbation theory with Ĥ as a perturbation switched on at t = 0. Under
what conditions does this calculation give the correct results?

11.5.5 A Variational Calculation of the Deuteron Ground
State Energy

Use the empirical potential energy function

V (r) = −Ae−r/a

where A = 32.7MeV , a = 2.18× 10−13 cm, to obtain a variational approximation
to the energy of the ground state energy of the deuteron (` = 0).

Try a simple variational function of the form

φ(r) = e−αr/2a

where α is the variational parameter to be determined. Calculate the energy
in terms of α and minimize it. Give your results for α and E in MeV . The
experimental value of E is −2.23MeV (your answer should be VERY close! Is
your answer above this? [HINT: do not forget about the reduced mass in this
problem]
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11.5.6 Sudden Change - Don’t Sneeze
An experimenter has carefully prepared a particle of mass m in the first excited
state of a one dimensional harmonic oscillator, when he sneezes and knocks the
center of the potential well a small distance a to one side. It takes him a time
T to blow his nose, and when he has done so, he immediately puts the center
back where it was. Find, to lowest order in a, the probabilities P0 and P2 that
the oscillator will now be in its ground state and its second excited state.

11.5.7 Another Sudden Change - Cutting the spring
A particle is allowed to move in one dimension. It is initially coupled to two
identical harmonic springs, each with spring constant K. The springs are sym-
metrically fixed to the points ±a so that when the particle is at x = 0 the classical
force on it is zero.

(a) What are the energy eigenvalues of the particle when it is connected to
both springs?

(b) What is the wave function in the ground state?

(c) One spring is suddenly cut, leaving the particle bound to only the other
one. If the particle is in the ground state before the spring is cut, what is
the probability that it is still in the ground state after the spring is cut?

11.5.8 Another perturbed oscillator
Consider a particle bound in a simple harmonic oscillator potential. Initially(t <
0), it is in the ground state. At t = 0 a perturbation of the form

H ′(x, t) = Ax2e−t/τ

is switched on. Using time-dependent perturbation theory, calculate the prob-
ability that, after a sufficiently long time (t≫ τ), the system will have made a
transition to a given excited state. Consider all final states.

11.5.9 Nuclear Decay
Nuclei sometimes decay from excited states to the ground state by internal
conversion, a process in which an atomic electron is emitted instead of a photon.
Let the initial and final nuclear states have wave functions ϕi(r⃗1, r⃗2, ..., r⃗Z) and
ϕf(r⃗1, r⃗2, ..., r⃗Z), respectively, where r⃗i describes the protons. The perturbation
giving rise to the transition is the proton-electron interaction,

W = −
Z

∑
j=1

e2

∣r⃗ − r⃗j ∣

where r⃗ is the electron coordinate.
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(a) Write down the matrix element for the process in lowest-order perturba-
tion theory, assuming that the electron is initially in a state characterized
by the quantum numbers (n`m), and that its energy, after it is emitted,
is large enough so that its final state may be described by a plane wave,
Neglect spin.

(b) Write down an expression for the internal conversion rate.

(c) For light nuclei, the nuclear radius is much smaller than the Bohr radius
for a give Z, and we can use the expansion

1

∣r⃗ − r⃗j ∣
≈ 1

r
+
r⃗ ⋅ r⃗j
r3

Use this expression to express the transition rate in terms of the dipole
matrix element

d⃗ = ⟨ϕf ∣
Z

∑
j=1

r⃗j ∣ϕi⟩

11.5.10 Time Evolution Operator
A one-dimensional anharmonic oscillator is given by the Hamiltonian

H = h̵ω (a†a + 1/2) + λa†aa

where λ is a constant. First compute a+ and a in the interaction picture and then
calculate the time evolution operator U(t, t0) to lowest order in the perturbation.

11.5.11 Two-Level System
Consider a two-level system ∣ψa⟩ , ∣ψb⟩ with energies Ea , Eb perturbed by a jolt
H ′(t) = Ûδ(t) where the operator Û has only off-diagonal matrix elements (call
them U). If the system is initially in the state a, find the probability Pa→b that
a transition occurs. Use only the lowest order of perturbation theory that gives
a nonzero result.

11.5.12 Instantaneous Force
Consider a simple harmonic oscillator in its ground state. An instantaneous
force imparts momentum p0 to the system. What is the probability that the
system will stay in its ground state?

11.5.13 Hydrogen beam between parallel plates
A beam of excited hydrogen atoms in the 2s state passes between the plates
of a capacitor in which a uniform electric field exists over a distance L. The
hydrogen atoms have a velocity v along the x−axis and the electric field E⃗ is
directed along the z−axis as shown in the figure.
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Figure 11.6: Hydrogen beam between parallel plates

All of the n = 2 states of hydrogen are degenerate in the absence of the field E⃗ ,
but certain of them mix (Stark effect) when the field is present.

(a) Which of the n = 2 states are connected (mixed) in first order via the
electric field perturbation?

(b) Find the linear combination of the n = 2 states which removes the degen-
eracy as much as possible.

(c) For a system which starts out in the 2s state at t = 0, express the wave
function at time t ≤ L/v. No perturbation theory needed.

(d) Find the probability that the emergent beam contains hydrogen in the
various n = 2 states.

11.5.14 Particle in a Delta Function and an Electric Field

A particle of charge q moving in one dimension is initially bound to a delta
function potential at the origin. From time t = 0 to t = τ it is exposed to a
constant electric field E0 in the x−direction as shown in the figure below:

Figure 11.7: Electric Field

The object of this problem is to find the probability that for t > τ the particle
will be found in an unbound state with energy between Ek and Ek + dEk.

(a) Find the normalized bound-state energy eigenfunction corresponding to
the delta function potential V (x) = −Aδ(x).

(b) Assume that the unbound states may be approximated by free particle
states with periodic boundary conditions in a box of length L. Find the
normalized wave function of wave vector k, ψk(x), the density of states as
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a function of k, D(k) and the density of states as a function of free-particle
energy Ek, D(Ek).

(c) Assume that the electric field may be treated as a perturbation. Write
down the perturbation term in the Hamiltonian, Ĥ1, and find the matrix
element of Ĥ1 between the initial and the final state ⟨0∣ Ĥ1 ∣k⟩.

(d) The probability of a transition between an initially occupied state ∣I⟩ and
a final state ∣F ⟩ due to a weak perturbation Ĥ1(t) is given by

PI→F (t) = 1

h̵2

RRRRRRRRRRRR

t

∫
−∞

⟨F ∣ Ĥ1(t′) ∣I⟩ eiωFIt
′

dt′
RRRRRRRRRRRR

2

where ωFI = (EF−EI)/h̵. Find an expression for the probability P (Ek)dEk
that the particle will be in an unbound state with energy between Ek and
Ek + dEk for t > τ .

11.5.15 Nasty time-dependent potential [complex integra-
tion needed]

A one-dimensional simple harmonic oscillator of frequency ω is acted upon by
a time-dependent, but spatially uniform force (not potential!)

F (t) = (F0τ/m)
τ2 + t2

, −∞ < t <∞

At t = −∞, the oscillator is known to be in the ground state. Using time-
dependent perturbation theory to 1st−order, calculate the probability that the
oscillator is found in the 1st excited state at t = +∞.

Challenge: F (t) is so normalized that the impulse

∫ F (t)dt

imparted to the oscillator is always the same, that is, independent of τ ; yet
for τ >> 1/ω, the probability for excitation is essentially negligible. Is this
reasonable?

11.5.16 Natural Lifetime of Hydrogen
Though in the absence of any perturbation, an atom in an excited state will stay
there forever(it is a stationary state), in reality, it will spontaneously decay to the
ground state. Fundamentally, this occurs because the atom is always perturbed
by vacuum fluctuations in the electromagnetic field. The spontaneous emission
rate on a dipole allowed transition from the initial excited state ∣ψe⟩ to all
allowed ground states ∣ψg⟩ is,

Γ = 4

3h̵
k3∑

g

∣⟨ψg ∣̂⃗d ∣ψe⟩∣
2
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where k = ωeg/c = (Ee −Eg)/h̵c is the emitted photon’s wave number.

Consider now hydrogen including fine structure. For a given sublevel, the spon-
taneous emission rate is

Γ(nLJMJ)→(n′L′J ′) =
4

3h̵
k3∑

M ′

J

∣⟨n′L′J ′M ′
J ∣ d⃗ ∣nLJMJ⟩∣

2

(a) Show that the spontaneous emission rate is independent of the initialMJ .
Explain this result physically.

(b) Calculate the lifetime (τ = 1/Γ) of the 2P1/2 state in seconds.

11.5.17 Oscillator in electric field
Consider a simple harmonic oscillator in one dimension with the usual Hamil-
tonian

Ĥ = p̂2

2m
+ mω

2

2
x̂2

Assume that the system is in its ground state at t = 0. At t = 0 an electric field
E⃗ = E x̂ is switched on, adding a term to the Hamiltonian of the form

Ĥ ′ = eE x̂

(a) What is the new ground state energy?

(b) Assuming that the field is switched on in a time much faster than 1/ω,
what is the probability that the particle stays in the unperturbed ground
state?

11.5.18 Spin Dependent Transitions
Consider a spin= 1/2 particle of mass m moving in three kinetic dimensions,
subject to the spin dependent potential

V̂1 =
1

2
k ∣−⟩ ⟨−∣⊗ ∣r⃗∣2

where k is a real positive constant, r⃗ is the three-dimensional position operator,
and {∣−⟩ , ∣+⟩} span the spin part of the Hilbert space. Let the initial state of
the particle be prepared as

∣Ψ0⟩ = ∣−⟩⊗ ∣0⟩
where ∣0⟩ corresponds to the ground state of the harmonic (motional) potential.

(a) Suppose that a perturbation

Ŵ = h̵Ω (∣−⟩ ⟨+∣ + ∣+⟩ ⟨−∣)⊗ ÎCM

where ÎCM denotes the identity operator on the motional Hilbert space,
is switched on at time t = 0.

Using Fermi’s Golden Rule compute the rate of transitions out of ∣Ψ0⟩.
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(b) Describe qualitatively the evolution induced by Ŵ , in the limits Ω ≫√
k/m and Ω ≪

√
k/m. HINT: Make sure you understand part(c).

(c) Consider a different spin-dependent potential

V̂2 = ∣+⟩ ⟨+∣⊗Σ+(x⃗) + ∣−⟩ ⟨−∣⊗Σ−(x⃗)

where Σ±(x⃗) denote the motional potentials

Σ+(x⃗) =
⎧⎪⎪⎨⎪⎪⎩

+∞ ∣x∣ < a
0 ∣x∣ ≥ a

Σ−(x⃗) =
⎧⎪⎪⎨⎪⎪⎩

0 ∣x∣ < a
+∞ ∣x∣ ≥ a

and a is a positive real constant. Let the initial state of the system be
prepared as

∣Ψ0⟩ = ∣−⟩⊗ ∣0′⟩

where ∣0′⟩ corresponds to the ground state of Σ−(x⃗). Explain why Fermi’s
Golden Rule predicts a vanishing transition rate for the perturbation Ŵ
specified in part (a) above.

11.5.19 The Driven Harmonic Oscillator

At t = 0 a 1−dimensional harmonic oscillator with natural frequency ω is driven
by the perturbation

H1(t) = −Fxe−iΩt

The oscillator is initially in its ground state at t = 0.

(a) Using the lowest order perturbation theory to get a nonzero result, find
the probability that the oscillator will be in the 2nd excited state n = 2 at
time t > 0. Assume ω ≠ Ω.

(b) Now begin again and do the simpler case, ω = Ω. Again, find the prob-
ability that the oscillator will be in the 2nd excited state n = 2 at time
t > 0

(c) Expand the result of part (a) for small times t, compare with the results
of part (b), and interpret what you find.

In discussing the results see if you detect any parallels with the driven
classical oscillator.
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11.5.20 A Novel One-Dimensional Well
Using tremendous skill, physicists in a molecular beam epitaxy lab, use a graded
semiconductor growth technique to make a GaAs(Gallium Arsenide) wafer con-
taining a single 1-dimensional (Al,Ga)As quantum well in which an electron is
confined by the potential V = kx2/2.

(a) What is the Hamiltonian for an electron in this quantum well? Show
that ψ0(x) = N0e

−αx2/2 is a solution of the time-independent Schrodinger
equation with this Hamiltonian and find the corresponding eigenvalue.
Assume here that α =mω/h̵, ω =

√
k/m and m is the mass of the electron.

Also assume that the mass of the electron in the quantum well is the same
as the free electron mass (not always true in solids).

(b) Let us define the raising and lowering operators â and â+ as

â+ = 1√
2
( d
dy

− y) , â = 1√
2
( d
dy

+ y)

where y =
√
mω/h̵x. Find the wavefunction which results from operating

on ψ0 with â+ (call it ψ1(x)). What is the eigenvalue of ψ1 in this quantum
well? You can just state the eigenvalue based on your knowledge - there
is no need to derive it.

(c) Write down the Fermi’s Golden Rule expression for the rate of a transition
(induced by an oscillating perturbation from electromagnetic radiation)
occuring between the lowest energy eigenstate and the first excited state.
State the assumptions that go into the derivation of the expression.

(d) Given that k = 3.0kg/s2, what photon wavelength is required to excite the
electron from state ψ0 to state ψ1? Use symmetry arguments to decide
whether this is an allowed transition (explain your reasoning); you might
want to sketch ψ0(x) and ψ1(x) to help your explanation.

(e) Given that

â ∣ν⟩ =
√
ν ∣ν − 1⟩ , â+ ∣ν⟩ = −

√
ν + 1 ∣ν + 1⟩

evaluate the transition matrix element ⟨0∣x ∣1⟩. (HINT: rewrite x in terms
of â and â+). Use your result to simplify your expression for the transition
rate.

11.5.21 The Sudden Approximation
Suppose we specify a three-dimensional Hilbert space HA and a time-dependent
Hamiltonian operator

H(t) = α
⎛
⎜
⎝

1 0 0
0 2 0
0 0 3

⎞
⎟
⎠
+ β(t)

⎛
⎜
⎝

0 0 1
0 0 0
1 0 −2

⎞
⎟
⎠
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where α and β(t) are real-valued parameters (with units of energy). Let β(t)
be given by a step function

β(t) =
⎧⎪⎪⎨⎪⎪⎩

α t ≤ 0

0 t > 0

The Schrodinger equation can clearly be solved by standard methods in the
intervals t = [−∞,0] and t = (0,+∞], within each of which H remains constant.
We can use the so-called sudden approximation to deal with the discontinuity
in H at t = 0, which simply amounts to assuming that

∣Ψ(0+)⟩ = ∣Ψ(0−)⟩

Suppose the system is initially prepared in the ground state of the Hamiltonian
at t = −1. Use the Schrodinger equation and the sudden approximation to
compute the subsequent evolution of ∣Ψ(t)⟩ and determine the function

f(t) = ⟨∣Ψ(0)⟩ ∣ ∣Ψ(t)⟩⟩ , t ≥ 0

Show that ∣f(t)∣2 is periodic. What is the frequency? How is it related to the
Hamiltonian?

11.5.22 The Rabi Formula
Suppose the total Hamiltonian for a spin−1/2 particle is

H = −γ [B0Sz + b1 (cos (ωt)Sx + sin (ωt)Sy)]

which includes a static field B0 in the z direction plus a rotating field in the
x − y plane. Let the state of the particle be written

∣Ψ(t)⟩ = a(t) ∣+z⟩ + b(t) ∣−z⟩

with normalization ∣a∣2 + ∣b∣2 = 1 and initial conditions

a(0) = 0 , b(0) = 1

Show that

∣a(t)∣2 = (γb1)2

∆2 + (γb1)2
sin2 ( t

2

√
∆2 + (γb1)2)

where ∆ = −γB0 − ω. This expression is known as the Rabi Formula.

11.5.23 Rabi Frequencies in Cavity QED
Consider a two-level atom whose pure states can be represented by vectors in a
two-dimensional Hilbert spaceHA. Let ∣g⟩ and ∣e⟩ be a pair of orthonormal basis
states of HA representing the ground and excited states of the atom, respec-
tively. Consider also a microwave cavity whose lowest energy pure states can be
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described by vectors in a three-dimensional Hilbert space HC . Let {∣0⟩ , ∣1⟩ , ∣2⟩}
be orthonormal basis states representing zero, one and two microwave photons
in the cavity.

The experiment is performed by sending a stream of atoms through the mi-
crowave cavity. The atoms pass through the cavity one-by-one. Each atom
spends a total time t inside the cavity (which can be varied by adjusting the
velocities of the atoms). Immediately upon exiting the cavity each atom hits a
detector that measures the atomic projection operator Pe = ∣e⟩ ⟨e∣.

Just before each atom enters the cavity, we can assume that the joint state of
that atom and the microwave cavity is given by the factorizable pure state

∣Ψ(0)⟩ = ∣g⟩⊗ (c0 ∣0⟩ + c1 ∣1⟩ + c2 ∣2⟩)

where ∣c0∣2 + ∣c1∣2 + ∣c2∣2 = 1

(a) Suppose the Hamiltonian for the joint atom-cavity system vanishes when
the atom is not inside the cavity and when the atom is inside the cavity
the Hamiltonian is given by

HAC = h̵ν ∣e⟩ ⟨g∣⊗ (∣0⟩ ⟨1∣ +
√

2 ∣1⟩ ⟨2∣) + h̵ν ∣g⟩ ⟨e∣⊗ (∣1⟩ ⟨0∣ +
√

2 ∣2⟩ ⟨1∣)

Show that while the atom is inside the cavity, the following joint states
are eigenstates of HAC and determine the eigenvalues:

∣E0⟩ = ∣g⟩⊗ ∣0⟩

∣E1+⟩ =
1√
2
(∣g⟩⊗ ∣1⟩ + ∣e⟩⊗ ∣0⟩)

∣E1−⟩ =
1√
2
(∣g⟩⊗ ∣1⟩ − ∣e⟩⊗ ∣0⟩)

∣E2+⟩ =
1√
2
(∣g⟩⊗ ∣2⟩ + ∣e⟩⊗ ∣1⟩)

∣E2−⟩ =
1√
2
(∣g⟩⊗ ∣2⟩ − ∣e⟩⊗ ∣1⟩)

Then rewrite ∣Ψ(0)⟩ as a superposition of energy eigenstates.

(b) Use part (a) to compute the expectation value

⟨Pe⟩ = ⟨Ψ(t)∣Pe ⊗ IC ∣Ψ(t)⟩

as a function of atomic transit time t. You should find your answer is of
the form

⟨Pe⟩ =∑
n

P (n) sin2 [Ωnt]

where P (n) is the probability of having n photons in the cavity and Ωn
is the n−photon Rabi frequency.
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Chapter 12

Identical Particles

12.1 Theoretical ideas

We now apply these quantum mechanical methods we have developed to multi-
electron atoms.

We will create a model to handle these atoms that follows from the one-electron
case we just considered. These systems are very complex and all the results that
we derive will be approximations.

If we consider an atom or system of N particles, the wave function

ψ(1,2,3,4, ......,N, t) = ψ(r⃗1s1, r⃗2s2, r⃗3s3, r⃗4s4, ......, r⃗NsN , t)
= ⟨1,2,3,4, .....,N, t ∣ ψ⟩ (12.1)

where r⃗jsj = (radius vector,spin) of the jth particle

describing the system will be a function of 3N spatial coordinates, time and
all of the particle spin variables. The 3N spatial coordinates form a multi-
dimensional configuration space.

The Hamiltonian of the system is given by

Ĥ = T̂ + V̂ (12.2)

where

T̂ =
N

∑
j=1

T̂j = −
N

∑
j=1

( h̵2

2mj
∇2
j) and V̂ = V̂ (r⃗1, r⃗2, ......, r⃗N , t) (12.3)

The time-dependent Schrodinger equation is

Ĥψ(1,2,3,4, ......,N, t) = ih̵ ∂
∂t
ψ(1,2,3,4, ......,N, t) (12.4)

The probability density is defined as

ρ(1,2,3,4, ......,N, t) = ψ∗(1,2,3,4, ......,N, t)ψ(1,2,3,4, ......,N, t) (12.5)
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so that

ρ(1,2,3,4, ......,N, t)d3r⃗1d
3r⃗2.......d

3r⃗N = probability of finding

particle 1 at r⃗1 in d3r⃗1 , and particle 2 at r⃗2 in d3r⃗2 ,

..........., and particle N at r⃗N in d3r⃗N all at time time t

We assume that the N -particle wave function is normalized.

The energy eigenstates or stationary states are solutions of

ĤψE(1,2,3,4, ......,N) = EψE(1,2,3,4, ......,N) (12.6)

which implies the time dependence

ψ(1,2,3,4, ......,N, t) = ψE(1,2,3,4, ......,N)e−i
E
h̵ t (12.7)

where E is the energy of the system.

When we consider an N−electron atom, the system really has N + 1 particles
(we must include the nucleus). However, the nucleus is so much more massive
than the electrons that we can make the approximation that it has infinite mass
and is fixed.

We put the nucleus of charge Ze at the origin and define

r⃗j = position vector of the jth electron

rjk = ∣r⃗j − r⃗k ∣ = separation between the jth and kth electrons

The potential energy is

V (1,2,3, .....,N) = −
N

∑
j=1

Ze2

rj
+
N

∑
j=1

N

∑
i>j

e2

rij
(12.8)

= Coulomb energy between nucleus and electrons
+ Coulomb energy between electrons

We will assume no spin-dependence or time dependence in the potential energy.

All electrons in the atom are considered to be identical or indistinguishable.
This means that there are no interactions that can, in any way, distinguish
them from each other.

Alternatively, we can say that, if we interchange the coordinates and spins of
two particles, then it is not possible to determine via any physical measurement
that any change was made in the system.

This says that all measurable quantities or the operators representing them must
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remain unchanged by the interchange of indistinguishable particles.

In particular, the Hamiltonian must remain unchanged, i.e., we must have

Ĥ(1,2,3,4, ..., j, k, ...,N) = Ĥ(1,2,3,4, ..., k, j, ...,N) (12.9)

This property of Ĥ is called exchange symmetry. Operators that have this
property are symmetric functions of their indices 1,2,3,4, .....,N and they are
called symmetric operators.

Now, every symmetry of a physical system must be represented by an operator
that commutes with Ĥ. In this case, we introduce the particle interchange or
permutation operator P̂ij such that

P̂ijψ(1,2,3, ........, i, j, ......,N) = ⟨1,2,3, ........, i, j, ......,N ∣ P̂ij ∣ψ⟩
= ⟨1,2,3, ........, j, i, ......,N ∣ ψ⟩ = ψ(1,2,3, ........, j, i, ......,N)

In words, we say

P̂ijψ(1,2,3, ........, i, j, ......,N) gives the amplitude for
finding the jth particle at r⃗i with spin si
and ith particle at r⃗j with spin sj

Now, the transformed Hamiltonian operator is given by

Ĥ ′ = P̂ijĤP̂ −1
ij = Ĥ (by assumption) (12.10)

This implies that
P̂ijĤ = ĤP̂ij → [Ĥ, P̂ij] = 0 (12.11)

as we expected. The same result holds for all symmetric operators.

Now, suppose that the state vector ∣ψ⟩ is an eigenvector of the symmetric, N−
particle Ĥ with energy E. We then have

Ĥ ∣ψ⟩ = E ∣ψ⟩ (12.12)

ĤP̂ij ∣ψ⟩ = P̂ijĤ ∣ψ⟩ = EP̂ij ∣ψ⟩ (12.13)

which says that

P̂ij ∣ψ⟩ is also an eigenvector of Ĥ with the same energy (12.14)

This holds for any pair (i, j). So Ĥ and P̂ij share a common eigenbasis as
expected. This phenomenon is called exchange degeneracy.

For simplicity, we assume that N = 2. We then have

Ĥ(1,2) and ψ(1,2) (12.15)
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and
[Ĥ, P̂12] = 0 (12.16)

What are the simultaneous eigenfunctions? We have

P̂12ψ(1,2) = ψ(2,1)
P̂ 2

12ψ(1,2) = P̂12ψ(2,1) = ψ(1,2)

which says that
P̂ 2

12 = Î (12.17)

and that P̂12 has eigenvalues ±1. Now if

Ĥψ(1,2) = Eψ(1,2) (12.18)

then
Ĥψ(2,1) = Eψ(2,1) (12.19)

and these two state functions are degenerate. Then, we can write

ψS(1,2) = ψ(1,2) + ψ(2,1)→ symmetric wave function
ψA(1,2) = ψ(1,2) − ψ(2,1)→ antisymmetric wave function

which are the simultaneous eigenfunctions with

ĤψS = EψS ĤψA = EψA (12.20)

P̂12ψS = +ψS P̂12ψA = −ψA (12.21)

It is an experimental fact that the behavior of wave functions under pairwise
particle interchange depends only on the kind of particles involved, in particular
on their spin.

All known particles divide themselves in to two classes:

1. Bosons → particles with integer spin, s = 0,1,2,3,4, ......

2. Fermions → particles with half-integer spin, s = 1/2,3/2,5/2, ......

and

1. Fermions have antisymmetric wave functions under particle interchange

2. Bosons have symmetric wave functions under particle interchange

This relationship between spin and wave function symmetry cannot be proved
in non-relativistic quantum mechanics. It can, however, be proved if we add rel-
ativity and construct the relativistic waves equations for bosons and fermions.

As we shall see, this symmetry/antisymmetry connection of spin and wave func-
tions will generalize to more complex systems with more particles.
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Before proceeding to study real atoms with N electrons, let us see what we can
learn from a one-dimensional systems containing either two identical bosons or
two identical fermions.

The general Hamiltonian for a one-dimensional two-particle system is

Ĥ = Ĥ1 + Ĥ2 + Û(x1 − x2) (12.22)

Ĥ1 = −
h̵2

2m

∂2

∂x2
1

+ V̂ (x1) (12.23)

Ĥ2 = −
h̵2

2m

∂2

∂x2
2

+ V̂ (x2) (12.24)

where
Û(x1 − x2) = the particle - particle interaction (12.25)

We will assume that Û(x1−x2) is small enough that we can apply perturbation
theory. We then use direct product states and write

Ĥ = Ĥ0 + Û (12.26)

Ĥ1ψ
(0)
n1

(x1) = E(0)
n1
ψ(0)
n1

(x1) (12.27)

Ĥ2ψ
(0)
n2

(x2) = E(0)
n2
ψ(0)
n2

(x2) (12.28)

Ĥψ(0)
n1n2

(x1, x2) = Ĥ0ψ
(0)
n1

(x1)ψ(0)
n2

(x2)

= (Ĥ1 + Ĥ2)ψ(0)
n1

(x1)ψ(0)
n2

(x2)

= (E(0)
n1

+E(0)
n2

)ψ(0)
n1

(x1)ψ(0)
n2

(x2)

= E(0)
n1n2

ψ(0)
n1n2

(x1, x2) (12.29)

We will construct the unperturbed(zero order) eigenfunctions and energies from
these direct product states.

For the moment, we will also ignore spin.

The simple direct product states will not work for a description of the two
particle system since the eigenfunctions of Ĥ0 must be either symmetric or
antisymmetric under particle interchange.

The correct choice is ψS or ψA where

ψ(0)S
n1n2

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) + ψ(0)
n1

(x2)ψ(0)
n2

(x1)] (12.30)

ψ(0)A
n1n2

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) − ψ(0)
n1

(x2)ψ(0)
n2

(x1)] (12.31)

Both of these states have energy E(0)
n1n2 = E

(0)
n1 +E(0)

n2 .
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12.2 Bosons with Spin = 0

We assume that s1 = s2 = 0. This says that there are no new degrees of freedom
and hence no reason to change the wave functions.

Indistinguishable bosons of spin = 0 require a symmetric wave function and thus
we choose as the properly symmetrized zero-order wave functions

ψ(0)S
n1n2

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) + ψ(0)
n1

(x2)ψ(0)
n2

(x1)] (12.32)

The ground state corresponds to n1 = n2 = 1 or

ψ
(0)S
11 = ψ(0)

1 (x1)ψ(0)
1 (x2) (12.33)

In perturbation theory, the first order energy is then

E11 = 2E
(0)
1 + ⟨ψ(0)S

11 ∣ Û(x1 − x2) ∣ψ(0)S
11 ⟩

= 2E
(0)
1 (12.34)

+
∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

dx1dx2dx
′
1dx

′
2

× ⟨ψ(0)S
11 ∣ (∣ψ(0)

1 (x2)⟩ ∣ψ(0)
1 (x1)⟩ ⟨ψ(0)

1 (x1)∣ ⟨ψ(0)
1 (x2)∣)

× Û(x1 − x2) (∣ψ(0)
1 (x′1)⟩ ∣ψ

(0)
1 (x′2)⟩ ⟨ψ

(0)
1 (x′1)∣ ⟨ψ

(0)
1 (x′2)∣) ∣ψ(0)S

11 ⟩

Now

⟨ψ(0)
1 (x1)∣ ⟨ψ(0)

1 (x2)∣ Û(x1 − x2) ∣ψ(0)
1 (x′1)⟩ ∣ψ

(0)
1 (x′2)⟩

= U(x1 − x2)δ(x1 − x′1)δ(x2 − x′2) (12.35)

which implies that

E11 = 2E
(0)
1

+
∞

∫
−∞

∞

∫
−∞

dx1dx2 ⟨ψ(0)S
11 ∣ (∣ψ(0)

1 (x2)⟩ ∣ψ(0)
1 (x1)⟩)

×U(x1 − x2) (⟨ψ(0)
1 (x1)∣ ⟨ψ(0)

1 (x2)∣) ∣ψ(0)S
11 ⟩ (12.36)

or

E11 = 2E
(0)
1 +

∞

∫
−∞

∞

∫
−∞

dx1dx2 ∣ψ(0)
1 (x1)∣

2
U(x1 − x2) ∣ψ(0)

1 (x2)∣
2

(12.37)

For later use we define the general direct integral

Jn1n2 =
∞

∫
−∞

∞

∫
−∞

dx1dx2 ∣ψ(0)
n1

(x1)∣
2
U(x1 − x2) ∣ψ(0)

n2
(x2)∣

2
(12.38)
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In this case, we have
E11 = 2E

(0)
1 + J11 (12.39)

Now we look at the first excited state of this system. We assume that for
the zero-order states, the first excited state corresponds to n1 = 1 and n2 = 2.
Therefore, the zero-order symmetric wave function for the first excited state is

ψ
(0)S
12 = 1√

2
[ψ(0)

1 (x1)ψ(0)
2 (x2) + ψ(0)

1 (x2)ψ(0)
2 (x1)] (12.40)

and the first order energy is

E12 = E(0)
1 +E(0)

2 + ⟨ψ(0)S
12 ∣ Û(x1 − x2) ∣ψ(0)S

12 ⟩ (12.41)

Using the same procedure as before we get

E12 = E(0)
1 +E(0)

2 + J12 +K12 (12.42)

where

Kn1n2 =
∞

∫
−∞

∞

∫
−∞

dx1dx2ψ
(0)∗
n1

(x1)ψ(0)
n2

(x1)U(x1 − x2)ψ(0)∗
n2

(x2)ψ(0)
n1

(x2) (12.43)

is called the exchange integral.

Now let us look at a possible physical meaning of these direct and exchange
integrals.

We define

∣ψ(0)
n1

(x1)∣
2
= ρ1 = probability density for particle 1 in state n1 (12.44)

and

∣ψ(0)
n2

(x2)∣
2
= ρ2 = probability density for particle 2 in state n2 (12.45)

Therefore, the direct integrand takes the form

ρ1ρ2U(r12) (12.46)

To see what this means let

U(r12) =
e2

r12
(12.47)

which corresponds to a repulsive Coulomb potential. The direct integral is then

∫ ∫
(eρ1)(eρ2)

r12
dx1 dx2 (12.48)

This represents the total energy of two classical charge distributions interacting
with the potential energy U(r12).
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The exchange integral, however, has no such classical counterpart. It is the
result of symmetrizing the wave function and therefore arises because of the
invariance of Ĥ with respect to particle interchange.

The energy level diagram to first order might look like Figure 12.1 below.

Figure 12.1: Typical Boson Energy Level Diagram

The more interesting case is a two spin = 1/2 fermion system (since electrons
are spin = 1/2 fermions).

12.3 Spin = 1/2 Fermions

The particles now have internal degrees of freedom. The single particle state
vectors must now have both spatial and spin parts

∣space⟩ ∣spin⟩ (12.49)

For example,
∣ψ(0)
n1

⟩ ∣+⟩1 (12.50)

presents a fermion in the ψ(0)
n1 spatial state with spin up.

We write the corresponding wave function as

⟨x1 ∣ ψ(0)
n1

⟩ ∣+⟩1 = ψ
(0)
n1

(x1)α(1) (12.51)

and so on, where we define the labels α(j) = ∣+⟩j and β(j) = ∣−⟩j .

We must choose the antisymmetric combination for the zero-order wave func-
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tions. We have 4 possible direct product states given n1 and n2, i.e.,

ψ1(1,2) = ψ(0)
n1

(x1)ψ(0)
n2

(x2)α(1)α(2) (12.52)

ψ2(1,2) = ψ(0)
n1

(x1)ψ(0)
n2

(x2)α(1)β(2) (12.53)

ψ3(1,2) = ψ(0)
n1

(x1)ψ(0)
n2

(x2)β(1)α(2) (12.54)

ψ4(1,2) = ψ(0)
n1

(x1)ψ(0)
n2

(x2)β(1)β(2) (12.55)

These are not antisymmetric, however. A useful operator allows us to construct
antisymmetric states. Consider the operator

R̂ = 1√
2
(1 − P̂12) (12.56)

Now for any function A(1,2) we have

R̂A(1,2) = 1√
2
(1 − P̂12)A(1,2) = 1√

2
[A(1,2) −A(2,1)] (12.57)

which is antisymmetric. The factor 1/
√

(2) keeps the state normalized. We
now use R̂ to construct four antisymmetric states from the four direct product
states (12.52).

ψ
(0)
n1n2++(x1, x2) =

1√
2
(1 − P̂12)ψ1(1,2)

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2)α(1)α(2) − ψ(0)
n2

(x1)ψ(0)
n1

(x2)α(1)α(2)] (12.58)

ψ
(0)
n1n2+−(x1, x2) =

1√
2
(1 − P̂12)ψ2(1,2)

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2)α(1)β(2) − ψ(0)
n2

(x1)ψ(0)
n1

(x2)α(2)β(1)] (12.59)

ψ
(0)
n1n2−+(x1, x2) =

1√
2
(1 − P̂12)ψ3(1,2)

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2)β(1)α(2) − ψ(0)
n2

(x1)ψ(0)
n1

(x2)α(1)β(2)] (12.60)

ψ
(0)
n1n2−−(x1, x2) =

1√
2
(1 − P̂12)ψ4(1,2)

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2)β(1)β(2) − ψ(0)
n2

(x1)ψ(0)
n1

(x2)β(1)β(2)] (12.61)

where the subscripts imply
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+ + means both spins up
+ - or - + means one spin up and one spin down
- - means both spins down

Each of these wave functions is antisymmetric and each is an eigenfunction of
Ĥ0 (since Ĥ0 does not contain any spin dependent terms) with the same energy.
This implies that, at this point, we have a 4-fold degenerate zero-order system
with energy E(0)

n1 +E(0)
n2 .

We could use these states as the zero-order wave function to start perturbation
theory. It would be like doing the spin-orbit calculation using the ∣`sm`ms⟩
basis, rather than the ∣`sjmj⟩ basis where Ĥso is diagonal. It is always important
to choose zero-order wave functions, if it is not to difficult to do, that incorporate
as much of the symmetry of the system as possible. In other words, choose
zero-order wave functions that are simultaneous eigenstates of the maximal set
of commuting observables. This will hopefully produce a diagonal perturbation
matrix or at least so many zeros that it is easy to diagonalize the rest of the
matrix.

In this case, we not only have [Ĥ, P̂12] = 0 which told us to choose antisymmetric
zero-order states, but we also have [Ĥ, S⃗2

op] = 0 and [Ĥ, Ŝz] = 0 where

S⃗op = S⃗1,op + S⃗2,op = the total spin angular momentum

Ŝz = Ŝ1z + Ŝ2z = the z - component of the total spin angular momentum

Therefore we should choose antisymmetric state functions which are also eigen-
functions of Ĥ0, S⃗2

op and Ŝz as our zero-order states.

From our earlier work we know that the possible values of the total spin are
S = 0,1 and the state vectors that are eigenstates of S⃗2

op and Ŝz are

∣1,1⟩ = α(1)α(2) = χ11 (12.62)

∣1,0⟩ = 1√
2
(α(1)β(2) + α(2)β(1)) = χ10 (12.63)

∣1,−1⟩ = β(1)β(2) = χ1,−1 (12.64)

∣0,0⟩ = 1√
2
(α(1)β(2) − α(2)β(1)) = χ00 (12.65)

Notice that the χ1,m=±1,0 are symmetric under P̂12 and χ00 is antisymmetric.

Therefore, we will maintain overall antisymmetry by writing the wave functions
as products of spatial wave function and spin functions such that the spatial
function is symmetric when combined with χ00 and the spatial function is anti-
symmetric when combined with χ1,m=±1,0.
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The symmetric spatial function is

ψ(0)S
n1n2

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) + ψ(0)
n1

(x2)ψ(0)
n2

(x1)] (12.66)

and the antisymmetric spatial function is

ψ(0)A
n1n2

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) − ψ(0)
n1

(x2)ψ(0)
n2

(x1)] (12.67)

The four zero-order wave functions, which are now eigenfunctions of P̂12, Ĥ0,
S⃗2
op and Ŝz are then

ψ
(0)
n1n200 =

1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) + ψ(0)
n1

(x2)ψ(0)
n2

(x1)]χ00 (12.68)

ψ
(0)
n1n21ms

= 1√
2
[ψ(0)
n1

(x1)ψ(0)
n2

(x2) − ψ(0)
n1

(x2)ψ(0)
n2

(x1)]χ1ms ms = ±1,0

(12.69)

Notice that if we have identical spatial states, i.e., n1 = n2, the S = 1 states
vanish identically. This says that two fermions in an S = 1 spin state cannot be
in the same spatial state(the wavefunction vanishes). This is the first example
of a general principle we will discuss later called the Pauli Exclusion Principle.

An alternative way to find these zero-order wave functions is to go back to first
principles and use CG coefficients. For example

ψ(0)
n1n2sms = ∑

ms1 ,ms2
ms1+ms2=ms

ams1 ,ms2ψ
(0)
n1n2ms1ms2

(12.70)

where
ams1ms2 = ⟨s1s2ms1ms2 ∣ s1s2sms⟩ (12.71)

Now
⟨1

2

1

2
ms1ms2 ∣ 1

2

1

2
11⟩ = δms1 , 12 δms2 , 12 (12.72)

which implies that
ψ

(0)
n1n211 = ψ

(0)
n1n2++ (12.73)

as written above.

Similarly, for s = 1,ms = 0, the only nonzero CG coefficients are

⟨1

2

1

2

1

2
− 1

2
∣ 1

2

1

2
10⟩ = 1√

2
= ⟨1

2

1

2
− 1

2

1

2
∣ 1

2

1

2
10⟩ (12.74)

which implies that

ψ
(0)
n1n210 =

1√
2
ψ

(0)
n1n2+− +

1√
2
ψ

(0)
n1n2−+

= 1√
2
[ψ(0)
n1

(1)ψ(0)
n2

(2) − ψ(0)
n1

(2)ψ(0)
n2

(1)]χ10 (12.75)
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as written above. We now have the appropriate zero-order wave functions and
can apply perturbation theory to the two fermion system.

As with the two boson case, the zero-order ground state for two fermions cor-
responds to n1 = n2 = 1 with zero-order energy 2E

(0)
1 . Since the S = 1 or triplet

states have identically zero state functions in the case (since the spatial function
are antisymmetric), we have ψ(0)

11,1ms
= 0. The unperturbed ground state must

then have S = 0, Sz = 0 or it is ψ(0)
11,00(1,2). This involves a singlet state with

ms = 0 only

χ00 =
1√
2
(α(1)β(2) − β(1)α(2)) (12.76)

In this state, the particle spins are always opposite or antiparallel.

The ground state energy to first order is

E11 = 2E
(0)
1 + ⟨ψ(0)

11,00∣ Û(x1 − x2) ∣ψ(0)
11,00⟩

= 2E
(0)
1 + J11 (12.77)

which is the same energy as in the two boson system(we are assuming the same
Hamiltonian applies).

The spatial part of the wave function is the same also, namely,

ψ
(0)
1 (1)ψ(0)

2 (2) (12.78)

We must use a symmetric spatial wave function here because the spin vector is
antisymmetric in the ground state of two fermions. The presence of the spin
internal degrees of freedom(and the Pauli principle) has a more dramatic effect
on the first excited state for two fermions.

We again assume that the first excited state corresponds to n1 = 1, n2 = 2. This
gives the energy to first order as

E12 = E(0)
1 +E(0)

2 + ⟨ψ(0)
12,sms

∣ Û(x1 − x2) ∣ψ(0)
12,sms

⟩ (12.79)

We can write the energy this way, i.e., we do not need to write a 4 × 4 matrix
⟨Û⟩ and diagonalize it because the ⟨Û⟩ matrix is already diagonal in this basis
due the orthogonality of the spin functions and the fact that the perturbing
potential does not depend on spin. This first order energy is different for the
triplet and singlet states. If we do the integrals (they are the same as the boson
case) we get

E12 = E(0)
1 +E(0)

2 + J12 ±K12 (12.80)

where

+→ singlet s = 0,ms = 0

−→ triplet s = 1,ms = ±1,0
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All the triplet states have the same energy because they have the same spatial
wave function and the perturbing potential does not depend on spin.

We thus get the energy level structure shown in Figure 12.2 below.

Figure 12.2: Typical Fermion Energy Level Diagram

The energies now depend on the total spin S even though the Hamiltonian Ĥ
does not explicitly depend on spin. A very dramatic effect!!

This level splitting is not due to any additional terms added to the Hamiltonian
such as Ĥso or ĤZeeman. This effect is strictly due to symmetry requirements.
The requirement of symmetry or antisymmetry forced on the spatial wave func-
tions by the symmetry or antisymmetry of the spin vectors causes this level
splitting. The entire effect is due to the invariance of the Hamiltonian under
pairwise particle interchange.

Physically, we can argue as follows:

1. symmetric spatial functions are large for x1 ≈ x2 , while antisymmetric
spatial functions are ≈ 0 for x1 ≈ x2

2. U(x1 − x2) is expected to be largest for x1 ≈ x2

3. this implies that for S = 1 fermions ⟨Û⟩ is relatively small while for S = 0
fermions ⟨Û⟩ is relatively large

4. two identical fermions with antiparallel spins have a large probability of
being close together – they attract each other

5. two identical fermions with parallel spins have zero probability of being
close together – they repel each other

This repulsion is spin dependent and not due to the Coulomb repulsion between
the electrons.
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The first order energy for the singlet state is larger than for the triplet states
because the repulsive interaction is enhanced in the singlet state. This overall
effect is called spin pairing and it is a purely quantum mechanical effect.

12.4 The N-Electron Atom

We now extend our discussion to a system with N electrons (fermions). We
write

Ĥ = Ĥ0 + Ĥ ′ (12.81)

where

Ĥ0 =
N

∑
i=1

[− h̵2

2me
∇2
i + V̂ (r⃗i)] (12.82)

Ĥ ′ =
N

∑
i=1

N

∑
j>i
Û(r⃗i − r⃗j) (12.83)

The energy eigenstates for the N−electron atom are solutions of the time inde-
pendent Schrodinger equation

ĤψE = EψE (12.84)

where ψE = ψE(1,2,3,4, .......,N) and 1 = (r⃗1, s1) and so on.

The indistinguishability of the N electrons implies that

[Ĥ, P̂ij] = 0 i, j = 1,2,3,4, ......,N ; i ≠ j (12.85)

where the P̂ij interchange all attributes of the electrons, i.e., both the spatial
and spin degrees of freedom.

The wave function must be antisymmetric under pairwise electron interchange

P̂ijψE = −ψE i, j = 1,2,3,4, ......,N ; i ≠ j (12.86)

The general problem of N interacting electrons is very complex. At this stage we
only want to extract general properties that will also hold in real 3−dimensional
atomic systems. It turns out to be instructive to consider the case of non-
interacting electrons - the so-called independent particle model. In this model
we neglect the electron-electron interactions and look only at the zeroth order.

In particular, we consider N identical non-interacting particles in a potential
well V (r⃗). The Hamiltonian for any particle in the well is

Ĥ0(k) =
p⃗2
k,op

2m
+ V (r⃗k) (12.87)
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where
Ĥ0(k)φn(r⃗k) = εnφn(r⃗k) n = 0,1,2,3,4, ...... (12.88)

Thus, any single particle sees the energy level structure as shown in Figure 12.3
below.

Figure 12.3: Single Particle Energy Level Structure

The N-particle Hamiltonian is then

Ĥ = Ĥ0(1) + Ĥ0(2) + Ĥ0(3)....... + Ĥ0(N) (12.89)

with solutions given by

Ĥψ(1,2,3, ......,N) = Eψ(1,2,3, ......,N) (12.90)

where
ψ(1,2,3, ......,N) = φa(1)φb(2).......φn(N) (12.91)

and
E = εa + εb + ...... + εn (12.92)

This solution implies that

particle 1 is in state a with energy εa
particle 2 is in state b with energy εb
....................................

....................................

....................................

particle N is in state n with energy εn

Electrons have spin = 1/2. Thus, corresponding to any single particle energy
level, say a, there are two possible single particle states, namely,

φa(1)α(1) and φa(1)β(1) (12.93)

From now on when we write φa(1), where the subscript a will be understood to
also include the spin information.

The simple product state solutions are not physically admissible solutions since
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they are not antisymmetric under particle interchange for any two particles.

All such states with particles interchanged pairwise have the same energy. In
fact, any permutation of the indices produces a state with the same energy. We
need to construct a completely antisymmetric linear combination of all of these
solutions.

If these were bosons we would have to construct a completely symmetric linear
combination of all these solutions.

If we define

℘ψ(1,2,3,4, ......,N) = a permutation of the particles (12.94)

then, the completely symmetric state is easy to construct. It is

ψS(1,2,3, .....,N) =∑
℘
℘ψ(1,2,3,4, ......,N) (12.95)

where the sum means a sum over all possible permutations or arrangements.
There are N ! such permutations.
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Examples

N = 2→ N ! = 2

ψS(1,2) = φ1(1)φ2(2) + φ1(2)φ2(1)
N = 3→ N ! = 6

ψS(1,2,3) = φ1(1)φ2(2)φ3(3) + φ1(2)φ2(1)φ3(3) + φ1(3)φ2(2)φ3(1)
+ φ1(1)φ2(3)φ3(2) + φ1(3)φ2(1)φ3(2) + φ1(2)φ2(3)φ3(1)

How do we construct a completely antisymmetric state? Let us define a general
permutation operator by (illustrate for N = 5)

℘̂13452ψ(1,2,3,4,5) = ψ(3,1,4,5,2)
℘̂23451ψ(1,2,3,4,5) = ψ(2,3,4,5,1)

Any such permutation operator can be written as the product of the 2−particle
interchange operators P̂ij , i.e.,

ψ(2,3,1) = ℘̂231ψ(1,2,3)
= P̂12ψ(3,2,1) = P̂12P̂13ψ(1,2,3)

Thus, any permutation ℘̂ can be written in terms of an odd or even number of
pair interchanges or pair permutations and we call it an odd or even permutation
accordingly. All pair permutations are odd.

Therefore, for a completely antisymmetric state we must have

℘̂ψA =
⎧⎪⎪⎨⎪⎪⎩

+ψA if ℘̂ is an even permutation
−ψA if ℘̂ is an odd permutation

(12.96)

We therefore form a completely antisymmetric state as follows. We let

(−1)℘̂ =
⎧⎪⎪⎨⎪⎪⎩

+1 if ℘̂ is an even permutation
−1 if ℘̂ is an odd permutation

(12.97)

and then

Examples

N = 2→ N ! = 2

ψA(1,2) = φ1(1)φ2(2) − φ1(2)φ2(1)
N = 3→ N ! = 6

ψA(1,2,3) = φ1(1)φ2(2)φ3(3) − φ1(2)φ2(1)φ3(3) − φ1(3)φ2(2)φ3(1)
− φ1(1)φ2(3)φ3(2) + φ1(3)φ2(1)φ3(2) + φ1(2)φ2(3)φ3(1)

It is clear that if any two states are identical (put 2 = 3 above), then ψA is
identically = 0 as it should be for fermions.
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This implies that we can put at most 2 electrons in each energy level of the
potential well. The two electrons in the kth level would then have wave functions

φkα and φkβ (12.98)

i.e., they must have opposite spins. This says that N spin = 1/2 fermions must
occupy at least N/2 different states in the well.

This is very different than for bosons where all the N bosons can be in any
energy level.

Another way to write the completely antisymmetric wave function for fermions
is the so-called Slater determinant

ψA(1,2,3, .....,N) =

RRRRRRRRRRRRRRRRRR

φa(1) φa(2) . φa(N)
φb(1) φb(2) . φb(N)
. . . .

φn(1) φn(2) . φn(N)

RRRRRRRRRRRRRRRRRR

(12.99)

The last thing we must do is to normalize these state vectors.

⟨ψA ∣ ψA⟩ = ∑
s1,s2,....,sN

∫ d3r⃗1.......d
3r⃗N

×∑
℘℘′

(−1)℘(−1)℘
′

[℘φ∗a(1)....φ∗n(N)] [℘′φa(1)....φn(N)]

Now if ℘ ≠ ℘′, then [℘φa(1)....φn(N)] and [℘′φa(1)....φn(N)] are orthogonal
and the integration for that term is zero.

Therefore, we get

⟨ψA ∣ ψA⟩ = ∑
s1,s2,....,sN

∫ d3r⃗1.......d
3r⃗N∑

℘
℘ ∣φa(1)∣2.... ∣φn(N)∣2 (12.100)

But
∑
sk
∫ d3r⃗k ∣φk(j)∣2 = 1 (12.101)

so we finally get

⟨ψA ∣ ψA⟩ =∑
℘

1 = number of possible permutations = N ! (12.102)

and therefore, the properly normalized completely antisymmetric wave function
is

ψA(1,2,3, .....,N) = 1√
N !

RRRRRRRRRRRRRRRRRR

φa(1) φa(2) . φa(N)
φb(1) φb(2) . φb(N)
. . . .

φn(1) φn(2) . φn(N)

RRRRRRRRRRRRRRRRRR

(12.103)
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In a similar manner
⟨ψS ∣ ψS⟩ =

N !

Na!.......Nn!
(12.104)

where

Nk = the number of times the single particle state φk occurs

What is the difference between the ground state of N fermions and N bosons?

For N bosons, all N particles occupy the lowest level φ0 and the wavefunction
is

ψS(1,2,3, ....,N) = φ0(1)φ0(2)φ0(3).........φ0(N) (12.105)

with energy
E0 = Nε0 (12.106)

This is true no matter how large N might be, even for macroscopic systems where
N ≈ 1023. As we shall see in later discussions, this is one of the physical require-
ments for phenomena like superconductivity, superfluidity and Bose-Einstein
condensation.

Such a state is not allowed for fermions however. We must have

N even N odd
2 in φ0 2 in φ0

2 in φ1 2 in φ1

....... .......

2 in φN
2 −1 2 in φN−1

2

2 in φN
2

1 in φN+1
2

This difference for systems with even or odd numbers of fermions will lead to
dramatic physical consequences later for some atomic systems.

The ground state energy for N fermions is

2(ε0 + ε1 + ....... + εN
2
) for N even

2(ε0 + ε1 + ....... + εN−1
2

) + εN+1
2

for N odd

Either of these two energies is always greater than the N boson ground state
energy.

The extra energy is called the zero point energy and it arises from particle inter-
change invariance or it arises from the Pauli Exclusion Principle which states

No two identical fermions in a physical system
can have the same set of quantum numbers

It is equivalent to the antisymmetry of the wave function requirement for fermions.
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12.5 The Helium Atom

We now consider the simplest multielectron atom, namely, helium, which has
two electrons. The Hamiltonian is

Ĥ = Ĥ(1) + Ĥ(2) + V̂ =
p⃗2

1,op

2m
− Ze

2

r1
+
p⃗2

2,op

2m
− Ze

2

r2
+ e2

∣r⃗1 − r⃗2∣
(12.107)

where

Ĥ(i) = hydrogen atom Hamiltonian with nuclear charge Ze (instead of e)

V̂ = electrostatic repulsion between the electrons

We start by neglecting the electrostatic repulsion between the electrons. This
gives us a zero-order solution that we can use in perturbation theory. This is
equivalent to the independent particle model we just discussed.

Since Ĥ = Ĥ(1) + Ĥ(2) in this model, we can write

∣ψ⟩ = ∣n1`1m1⟩ ∣n2`2m2⟩ (12.108)

where

Ĥ(1) ∣n1`1m1⟩ = E(0)
n1

∣n1`1m1⟩ and Ĥ(2) ∣n2`2m2⟩ = E(0)
n2

∣n2`2m2⟩
Ĥ ∣ψ⟩ = (Ĥ(1) + Ĥ(2)) ∣ψ⟩ = (Ĥ(1) + Ĥ(2)) ∣n1`1m1⟩ ∣n2`2m2⟩

= E(0)
n1n2

∣ψ⟩ = (E(0)
n1

+E(0)
n2

) ∣n1`1m1⟩ ∣n2`2m2⟩ = (E(0)
n1

+E(0)
n2

) ∣ψ⟩

and

E(0)
n = − Z

2e2

2a0n2
(Z = 2 for helium) (12.109)

We will be working out the numbers in this problem so that we can compare our
results to experiment. The zero order energies are shown in Table 12.1 below:

n1 n2 E
(0)
n1n2(Ry) E

(0)
n1n2(eV )

1 1 -8 -108.8
1 2 -5 -68.0
1 3 -40/9 -64.4
1 .. .. ..
1 .. -4 -54.5
2 2 -2 -27.2

Table 12.1: Zero Order Energies

where

1 Ry(Rydberg) = e2

2a0
= 13.6 eV (12.110)
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The ground state energy is

Egs = E(0)
11 = 2E

(0)
1 = −8Ry (12.111)

and the energy of the system when one electron has been ionized (no longer
bound) is

Eion = E(0)
1 +E(0)

∞ = −4Ry (12.112)

Therefore, it requires the addition of 4Ry to create singly ionized helium. Notice
that the (2,2) state has an energy greater than Eion, which implies that it is
not a bound state of the helium atom. All the states (1, n) are bound states.
The energy level spectrum looks as shown in Figure 12.4 below.

Figure 12.4: Helium Energy level Spectrum

Since the particles are electrons we must antisymmetrize the wave functions.
We have two spin = 1/2 fermions. The spin functions are

∣s,ms⟩ =
⎧⎪⎪⎨⎪⎪⎩

∣1, (±1,0)⟩ → symmetric
∣0,0⟩ → antisymmetric

(12.113)

The spatial part of the wave function must be of opposite symmetry to the spin
functions so that the product is antisymmetric. By convention we label the
states as follows:
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Parahelium

(symmetric space part)χ00

(∣100⟩ ∣100⟩) ∣00⟩
1√
2
[∣100⟩ ∣2`m⟩ + ∣2`m⟩ ∣100⟩]χ00

and so on.

Orthohelium

(antisymmetric space part)χ1ms

1√
2
[∣100⟩ ∣2`m⟩ − ∣2`m⟩ ∣100⟩]χ1m

and so on.

These are the zero-order wave functions. We now handle the

e2

∣r⃗1 − r⃗2∣
= e2

r12
(12.114)

term by perturbation theory.

The first order ground state energy correction is

∆E = ⟨100∣ ⟨100∣ e
2

r12
∣100⟩ ∣100⟩ ⟨00 ∣ 00⟩

= e2 ∫ ∫ d3r⃗1d
3r⃗2

∣ψ100(r⃗1)∣2 ∣ψ100(r⃗2)∣2

r12
(12.115)

where

ψ100(r⃗) =
1√
π

( Z
a0

)
3/2

e
−Zra0 (12.116)

Therefore,

∆E = 1

π2
( Z
a0

)
3

e2

∞

∫
0

dr1r
2
1e

− 2Zr1
a0

∞

∫
0

dr2r
2
2e

− 2Zr2
a0 ∫ ∫ dΩ1dΩ2

1

r12
(12.117)

Even though this calculation does not give a very accurate result, it is still very
instructive to learn the tricks necessary to evaluate the integrals.

We first need to find a useful expression for 1/r12. We have

r12 = ∣r⃗1 − r⃗2∣ =
√

(r⃗1 − r⃗2) ⋅ (r⃗1 − r⃗2) (12.118)

r2
12 = (r⃗1 − r⃗2) ⋅ (r⃗1 − r⃗2) = r2

1 + r2
2 − 2r⃗1 ⋅ r⃗2

= r2
1 + r2

2 − 2r1r2 cosβ (12.119)
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where
β = angle between r⃗1 and r⃗2 (12.120)

Therefore,
1

r12
= 1

(r2
1 + r2

2 − 2r1r2 cosβ)1/2 (12.121)

In the subsequent development, we let the larger of r1, r2 be called r> and the
smaller be called r<. We then have

1

r12
= 1

r> (1 − 2 r<
r>

cosβ + ( r<
r>

)
2
)

1/2

= 1

r>
+ 1

2r>
(2
r<
r>

cosβ − (r<
r>

)
2

) − 3

8r>
(2
r<
r>

cosβ − (r<
r>

)
2

)
2

+ 15

48r>
(2
r<
r>

cosβ − (r<
r>

)
2

)
3

− ... (12.122)

or

1

r12
= 1

r>
[1 + r<

r>
cosβ + (r<

r>
)

2

(3

2
cos2 β − 1

2
) + ...] (12.123)

= 1

r>
[P0(cosβ) + r<

r>
P1(cosβ) + (r<

r>
)

2

P2(cosβ) + ...] (12.124)

Therefore,
1

r12
= 1

r>

∞
∑
λ=0

(r<
r>

)
λ

Pλ(cosβ) (12.125)

Now, the addition theorem for spherical harmonics, which is proved at the end
of this chapter, gives

Pλ(cosβ) = 4π

2λ + 1

λ

∑
m=−λ

Yλm(Ω1)Y ∗
λm(Ω2) (12.126)

Therefore, we finally have

1

r12
= 1

r>

∞
∑
λ=0

(r<
r>

)
λ 4π

2λ + 1

λ

∑
m=−λ

Yλm(Ω1)Y ∗
λm(Ω2) (12.127)

Now, the factor

∫ ∫ dΩ1dΩ2
1

r12
(12.128)

contains terms like
∫ ∫ dΩ1dΩ2Yλm(Ω1)Y ∗

λm(Ω2) (12.129)

and
∫ dΩYλm(Ω)∝ ∫ dΩYλm(Ω)Y00(Ω) = δλ0δm0 (12.130)
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Therefore, the only term that contributes from the sum is λ =m = 0 and we get

∫ ∫ dΩ1dΩ2
1

r12
= 1

r>
(12.131)

and therefore we have

∆E = 1

π2
( Z
a0

)
3

e2

∞

∫
0

dr1r
2
1e

− 2Zr1
a0

∞

∫
0

dr2r
2
2e

− 2Zr2
a0

1

r>
(12.132)

or

∆E = 1

π2
( Z
a0

)
3

e2

∞

∫
0

dr1r
2
1e

− 2Zr1
a0

r1

∫
0

dr2r
2
2e

− 2Zr2
a0

1

r1

+ 1

π2
( Z
a0

)
3

e2

∞

∫
0

dr1r
2
1e

− 2Zr1
a0

∞

∫
r1

dr2r
2
2e

− 2Zr2
a0

1

r2
(12.133)

which gives

∆E = 5

8

Ze2

a0
= J1s,1s = J10,10 = 2.5 Ry = 34 eV (12.134)

for Z = 2.

The ground state energy corrected to first order is then

E11 = E(0)
11 +∆E = −74.8 eV = −5.5 Ry (12.135)

The experimental value is

(E11)exp t = −78.975 eV = −5.807 Ry (12.136)

This first order result is amazingly good for this complex system!

Now we deal with the first excited state.

The first order energy shifts are once again given by standard perturbation
theory since the ⟨V̂ ⟩ matrix is diagonal in this basis due to the orthonormality
of the spin vectors and the fact that V̂ is independent of spin.

We thus have

∆Es,tn` =
1

2
∫ ∫ d3r⃗1d

3r⃗2 ∣ψ100(1)ψn`0(2) ± ψ100(2)ψn`0(1)∣2
e2

r12
(12.137)

where s, t → singlet, triplet → S = 0,1 → −,+. As shown before, we need only
calculate the m = 0 case because [L⃗op, V̂ ] = 0 where

L⃗op = L⃗1,op + L⃗2,op = total orbital angular momentum (12.138)
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which implies that the result is independent of m.

Therefore

∆Es,tn` = e
2 ∫ ∫ d3r⃗1d

3r⃗2 ∣ψ100(1)∣2 ∣ψn`0(2)∣2
1

r12
(12.139)

+ e2 ∫ ∫ d3r⃗1d
3r⃗2ψ

∗
100(1)ψ∗n`0(2)ψ100(2)ψn`0(1)

1

r12
= Jn` ±Kn`

where

Jn` = electrostatic repulsion between two charge distributions

∣ψ100(1)∣2 and ∣ψn`0(2)∣2 = the direct integral

and

Kn` = the exchange integral which arises from
antisymmetrization of the wave function

with

+ = singlet and − = triplet

A convenient way of representing this result is as follows.

S⃗op = S⃗1,op + S⃗2,op

→ 2S⃗1,op ⋅ S⃗2,op = S⃗2
op − S⃗2

1,op − S⃗2
2,op = h̵2(S(S + 1) − 3

2
) (12.140)

2S⃗1,op ⋅ S⃗2,op = h̵2
⎧⎪⎪⎨⎪⎪⎩

+ 1
2

triplet
− 3

2
singlet

(12.141)

and therefore
∆Es,tn` = Jn` −

1

2h̵2
(1 + 4S⃗1,op ⋅ S⃗2,op)Kn` (12.142)

The calculation results (in eV) are shown in Table 12.2 below and the energy
levels are shown in Figure 12.5 below. Not bad!!
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State 1s2s 1s2p
n` 10,20 10,20 10,21 10,21

singlet triplet singlet triplet
0th order -68.0 -68.0 -68.0 -68.0

J 11.4 11.4 13.2 13.2
K 1.2 1.2 0.9 0.9

1st order -55.4 -57.8 -53.9 -55.7
Eexpt -58.4 -59.2 -57.8 -58.0
error 3.0=5.1% 1.4=2.4% 3.9=6.7% 2.3=4.0%

Table 12.2: Calculation Results

Figure 12.5: Helium Energy Levels

For comparison, we will also calculate the ground state energy using the vari-
ational method. We neglect spin in this case. The simplest choice of a trial
function is the product of two hydrogen atom wave functions as in (12.143)
below, which would be an exact solution if the electron-electron repulsion was
neglected.

ψ(r⃗1, r⃗2) =
1√
π

( Z
a0

)
3/2

e
−Zr1a0

1√
π

( Z
a0

)
3/2

e
−Zr2a0 (12.143)

Since we expect the true wave function to be approximately represented by the
above function, we change Z to α and thus obtain the best possible value for
E0 for this type of trial function.
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We do the calculation as follows. We write

Ĥ = ĤZ(1) + ĤZ(2) + V̂ =
p⃗2

1,op

2m
− Ze

2

r1
+
p⃗2

2,op

2m
− Ze

2

r2
+ e2

r12

=
p⃗2

1,op

2m
− αe

2

r1
+
p⃗2

2,op

2m
− αe

2

r2
+ (α −Z)e2

r1
+ (α −Z)e2

r2
+ e2

r12

= Ĥα(1) + Ĥα(2) +
(α −Z)e2

r1
+ (α −Z)e2

r2
+ e2

r12
(12.144)

Now

Ĥα(1)ψα100(1) = E
(0)
100(α)ψ

α
100(1) = −α2ψα100(1) (12.145)

Ĥα(2)ψα100(2) = E
(0)
100(α)ψ

α
100(2) = −α2ψα100(2) (12.146)

in Rydbergs. Therefore

f(α) = −2α2 + ⟨ψα100(1)∣
(α −Z)e2

r1
∣ψα100(1)⟩

+ ⟨ψα100(2)∣
(α −Z)e2

r2
∣ψα100(2)⟩ + ⟨ψ(α)∣ e

2

r12
∣ψ(α)⟩ (12.147)

But

⟨ψα100(1)∣
(α −Z)e2

r1
∣ψα100(1)⟩ = ⟨ψα100(2)∣

(α −Z)e2

r2
∣ψα100(2)⟩

= ⟨100∣ (α −Z)e2

r
∣100⟩ (12.148)

Therefore,

f(α) = −2α2 + 2e2(α −Z) ⟨100∣ 1

r
∣100⟩ + ⟨100∣ ⟨100∣ e

2

r12
∣100⟩ ∣100⟩ (12.149)

Using some earlier calculations we get

f(α) = −2α2 + 4α(α −Z) + 5

4
α (12.150)

Minimizing
df

dα
= 0 = −2α + 2Z − 5

8
(12.151)

or
α = Z − 5

16
(12.152)

and

Evariational
0 = f(Z − 5

16
) = −2(Z − 5

16
)2 = −2Z2 + 5

4
Z − 2( 5

16
)2 (12.153)
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The first two terms are just the first order perturbation theory result. The third
term lowers the energy relative to perturbation theory.

For Z = 2, we get

Evariational0 = −5.7 Ry = −77.48 eV

Eexperimental0 = −78.975 eV

Eperturbation theory0 = −74.8 eV

Even with the simple trial function, we get a significantly better result using the
variational method. The reduction in the value of Z represents the effect of the
inner electron screening the outer electron so it see a smaller nuclear charge.

12.6 Multielectron Atoms

We now return to the case of N electrons (N > 2). We have

Ĥψα = Eαψα (12.154)

where α = all quantum numbers needed to specify the N -electron state and the
Hamiltonian Ĥ is

Ĥ =
N

∑
i=1

[− h̵2

2me
∇2
i −

Ze2

ri
] +

N

∑
i=1

N

∑
j>i

e2

rij
(12.155)

For the moment we are neglecting many small(weak) interactions (spin-orbit,
etc). We are also not including the electromagnetic field at this stage. We will
consider it later when we talk about time-dependent perturbation theory and
we will see that its presence leads to instability of atoms with respect to photon
absorption/emission.

The electrons are all indistinguishable, which says that

[Ĥ, P̂ij] = 0 i, j = 1,2,3, .....,N ; i ≠ j (12.156)

This implies, since electrons are fermions, that the wave functions must be
completely antisymmetric, i.e.,

P̂ijψα = −ψα i, j = 1,2,3, .....,N ; i ≠ j (12.157)

The full Hamiltonian is much too complex to solve exactly. We will approach
the solution as a series of increasingly better approximations and obtain a qual-
itative picture of the energy level structure of these complex atoms.

Since the difficulties arise from the e2/rij terms that represent the electron-
electron repulsion, we start with a model where each electron moves indepen-
dently of all the other electrons (an independent particle model). In this model
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each electron will be described by a single-particle wavefunction called an or-
bital.

This leads us to write an approximate Hamiltonian in terms of the single particle
Hamiltonians

Ĥ0i = −
h̵2

2me
∇2
i − V̂i(r⃗i) (12.158)

where we assume that the potential energy of the ith electron V̂i(r⃗i) does not
depend on the coordinates of the other N − 1 electrons. We then have the
approximate Hamiltonian for the entire system

ĤA
0 =

N

∑
i=1

Ĥ0i =
N

∑
i=1

[− h̵2

2me
∇2
i − V̂i(r⃗i)] (12.159)

This Hamiltonian is separable, i.e., we can assume that the system wavefunction
is a product of single-particle wavefunctions or orbitals.

ψα = ψε1(r⃗1)ψε2(r⃗2)ψε3(r⃗3)........ψεN (r⃗N) (12.160)

where the subscript εk represents all applicable single particle quantum numbers
for the kth electron, that is,

εk = (ni`im`imsi) (12.161)

Each single particle wave function is a product of the form

ψε = (spatial wave function)(spin vector) (12.162)

We will assume that the system wavefunction is a completely antisymmetric
combination of the product states ψα.

Each term in ĤA
0 has an eigenvalue equation of the form

[− h̵2

2me
∇2
i − V̂i(r⃗i)]ψni`im`imsi = Eni`im`imsiψni`im`imsi (12.163)

and there are N such equations.

To solve these equations, we must know the potential energy functions V̂i(r⃗i). As
a first approximation within the orbital approximations, we ignore the electron-
electron repulsion so that the electrons only interact with the nucleus and we
have

V̂i(r⃗i) = V̂ (ri) = −
Ze2

ri
(12.164)

In this approximation, all the other electrons do not matter at all and each
electron satisfies

[− h̵2

2me
∇2
i −

Ze2

ri
]ψni`im`imsi (r⃗i) = Eni`im`imsiψni`im`imsi (r⃗i) (12.165)
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This is a hydrogen atom with charge Ze. The single-particle wavefunctions are
given by

ψn`m`ms(r⃗) = Rn`(r)Y`m`(θ,ϕ)χsms = ψε(r⃗) (12.166)

where

Enk ≈ −
meZ

2e4

2h̵2nk
nk = 1,2,3, ...... (12.167)

The wave function corresponding to a set of orbitals (ε1, ε2, ......., εN) is then
properly antisymmetrized by writing it as

ψα = 1√
N !

RRRRRRRRRRRRRRRRRR

ψε1(1) ψε2(1) .. ψεN (1)
ψε1(2) .. .. ..
.. .. .. ..

ψε1(N) .. .. ψεN (N)

RRRRRRRRRRRRRRRRRR

(12.168)

where
Eα = Eε1 +Eε2 + ..... +EεN (12.169)

We certainly can write down an answer in this approximation but the result,
not surprisingly, is terrible. Any real electron is dramatically affected by the
others, even when there is only one other electron as we saw in helium.

We move on by making the next incrementally better approximation. This
involves the concept of screening.

12.6.1 Screening
Any electron, on the average, if it is far from the nucleus, does not feel all of
the nuclear charge Ze and hence has a weaker Coulomb attraction then we have
assumed. This is clear in the helium variational calculation where we found that
the best value of the charge variational parameter Z ′ was

Z ′ = Z − 5

16
(12.170)

This implies that, on the average, the distant electrons are shielded or screened
from the nucleus by the other electrons.

What is the simplest correction that we can make to take this effect into account
for multi-electron atoms and still leave us with solvable equations?

Suppose we write

Vi(ri) = −
Ze2

ri
+ V effi (ri) (12.171)

where V effi (ri) includes the screening effects of the other N − 1 electrons. An
important feature of this assumption is that V effi (ri) is independent of (θ,ϕ).
This says that the angular part of the wave function is still

Y`im`i (θ,ϕ) (12.172)
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The radial function, however, now satisfies a modified equation

1

r2
i

d

dri
[r2
i

d

dri
− `(` + 1)

r2
i

+ 2me

h̵2
(Eni − Vi(ri))]Rni`i(ri) = 0 (12.173)

This is called the central field approximation. We still have N difficult equations
to solve.

Hartree proposed the following solution using a successive approximations tech-
nique.

1. an initial potential function is guessed (a very educated guess)

2. this potential function is used to derive new wave functions

3. the new wave functions generate a new potential energy function

4. the procedure is continued until the final wave functions determine a self-
consistent potential, i.e., it stops changing as we iterate

The Hartree method is equivalent to a variational calculation, where the trial
function is taken to be a simple product of single-particle orbitals and the vari-
ation is performed by varying each orbital in an arbitrary way.

Using single-particle wave functions, however, we are still neglecting the corre-
lations between the electrons. Although the simple single-particle orbital prod-
uct functions ignore antisymmetry, some effect of the Pauli exclusion principle
(PEP) can be included in the calculations by choosing the single-particle quan-
tum numbers so they do not violate the PEP.

If we make the calculation more complicated, we can include antisymmetry by
using Slater determinant wave functions. This is called the Hartree-Fock the-
ory. Correlation effects arising from the 1/rij terms can then be added using
perturbation theory. At the level of this text, we assume that this can be done
(see Bethe/Jackiw for details).

12.6.2 Shell Structure
The hydrogen atom solution exhibited a kind of shell structure. We found that
the energy levels were given by

En = −
Z2e2

2a0n2
(12.174)

and each level had a degeneracy equal to n2 arising from the allowed ranges

` = 0,1,2, ......, n − 1

m` = −`, ........, `

1017



We say that each n value defines a shell with energy En and within each shell
we have subshells defined by `. Thus,

n = 1→ ` = 0→ 1ssubshell

n = 2→ ` = 0,1→ 2s,2psubshells

n = 3→ ` = 0,1,2→ 3s,3p,3dsubshells

We can generalize this idea to N electron atoms.

We assume that the atom consists of shells (n) and subshells (n`). Electrons
are placed into these shells so that we do not violate the PEP, that is, since the
electrons are fermions only two electrons can be in each energy level. We define
in this model

⟨r⟩n0 = radius of a shell
⟨r⟩n` = radius of a subshell

and we have
En` = En`′ (degenerate) (12.175)

(this is not true in the central field approximation).

For n > 1, the s−orbital has a nonzero probability near the origin r = 0 (the
nucleus). This implies that it penetrates the n = 1 shell more than the corre-
sponding p−orbitals do. This implies that the s subshell electrons feel a stronger
nuclear charge then the p subshell electrons.

Therefore, we expect in this model that the energy levels will look like Figure
12.6 below.

Figure 12.6: Expected Level Structure

which is the screening effect.

Complex screening arguments of this type lead to the Aufbau principle, which
tells us how electrons fill shells.
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We see how it works by figuring out the ground state of an N electron atom.
The ground state corresponds to that state where all the lowest energy levels
are filled with a maximum of two electrons per level. It is clear that this is the
state of lowest energy.

The single-particle Hamiltonian in the central field approximation commutes
with `iz and siz which implies that the energy levels are independent of m`i and
msi . Each energy level is therefore characterized by the 2N quantum numbers

ni, `i i = 1,2,3, ......,N (12.176)

We define the electronic configuration of an atomic state as the set of quan-
tum numbers (ni, `i) for all the electrons in the atom. We use the symbolic
representation

shell − label = (n − label)(` − label)number of electrons (12.177)

i.e.,

ground state of hydrogen = 1s1 = 1s

(a superscript 1 is always understood)
ground state of helium = 1s2

ground state of lithium = 1s22s

The electronic configuration of helium is an example of a closed or full shell.
The 1s subshell has the maximum number electrons as allowed by the PEP, i.e.,

n = 1, ` = 0,m` = 0, s = 1

2
,ms = ±

1

2
(12.178)

The Aufbau principle says that we fill the shells so that we obey the PEP or in
the order

1s,2s,2p,3s,3p,3d,4s, ..............

with energy increasing from left to right.

The screening arguments of the type we just discussed imply that for a given n
(a given shell) the energy order is s, p, d, ..... and generally the energy of a shell
increases with n = the principal quantum number. The closed shells correspond
to

s − shell → maximum number of electrons = 2
= 2(2` + 1)

p − shell → maximum number of electrons = 6
d − shell → maximum number of electrons = 10

and so on.
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Electrons in the shell beyond the last closed shell are called valence electrons.

Much of the form and shape of the periodic table is determined by the Aufbau
principle. For instance

number of valence electrons → chemical properties

The valence electrons are the ones that participate in bonding and chemical
reactions.

This implies that

carbon → 1s22s22p2

and

silicon → 1s22s22p63s23p2

which each have two p valence electrons should have similar chemical properties,
which is the case.

As with all simple principles of this type, anomalies and breakdowns soon ap-
pear. For the Aufbau principle this occurs at the n = 3 shell.

In real atoms, when the 3d and 4s subshells are partially full, the 4s level fills
ups before the 3d level. This means that

potassium → 1s22s22p23s23p64s

and not 1s22s22p63s23p63d

The 4s state has a larger probability of being near r = 0 then the 3d state and
hence its energy is lower.

For neutral atoms, an experimental ordering scheme is

shell increasing energy →
n = 1 1s

n = 2 2s 2p

n = 3 3s 3p 3d

n = 4 4s 4p 4d 4f

n = 5 5s 5p 5d

n = 6 6s 6p

At the level of this text we will not be doing any actual energy calculations.
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12.7 Angular Momentum Coupling

The N electrons each have spin and orbital angular momentum and thus have
associated magnetic moments.

For the full Hamiltonian Ĥ including the electron-electron repulsion terms we
have

[Ĥ, ⃗̀i,op] ≠ 0 i = 1,2,3, ......,N (12.179)

However,
[Ĥ, L⃗op] = 0 (12.180)

where

⇀

Lop =
N

∑
i=1

⃗̀
i,op = the total orbital angular momentum (12.181)

Therefore, the individual `i are not conserved, but L⃗ is conserved.

Thus, the electron-electron repulsion or electrostatic terms in the Hamiltonian
couple the electron orbital angular momenta.

In addition, we must add in spin-orbit and other magnetic interactions (spin-
spin, etc).

The spin-orbit interaction leads to terms of the form ⃗̀
i ⋅ s⃗i and thus couple a

particle’s orbital and spin angular momentum leading to (ji,mji) values, where
j⃗i = ⃗̀

i + s⃗i as we saw earlier in hydrogen.

In most light atoms, the magnetic interactions are usually weaker than the elec-
trostatic interactions, i.e., electrostatic ≈ 1 eV and spin-orbit ≈ 10−4 − 10−5 eV .

The angular momentum coupling in a light atom goes like:

1. the orbital angular momenta ⃗̀
i couple to form a total orbital angular

momentum
⇀

Lop =
N

∑
i=1

⃗̀
i,op (12.182)

2. the spin angular momenta s⃗i couple to form a total spin angular momen-
tum

S⃗op =
N

∑
i=1

s⃗i,op (12.183)

These two couplings occur when we include the electrostatic interactions
in the Hamiltonian Ĥ.
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3. the weaker magnetic interactions then couple L⃗ and S⃗ to form the total
angular momentum of the atom

J⃗ = L⃗+S⃗ (12.184)

This coupling scheme or order where the electrostatic interactions dominate the
magnetic interactions is called LS or Russell-Saunders coupling.

In heavy atoms, the spin-orbit magnetic interactions dominate the electrostatic
interactions and we get an alternative coupling scheme:

1. each electron’s ⃗̀
i and s⃗i couple via the magnetic interactions to form

j⃗i = ⃗̀
i + s⃗i

= the total angular momentum for the ith electron

2. the electrostatic interactions then couple the j⃗i to form

J⃗op =
N

∑
i=1

j⃗i,op (12.185)

This scheme is called jj-coupling.

We will now investigate the energy level structure in detail for these two different
schemes.

Our discussion of helium has shown that exchange symmetry, which requires
that the wave functions are completely antisymmetric, has dramatic observable
consequences. We saw a spin-spin correlation energy that is characterized by
the rule:

There is a tendency for electrons with parallel
spins to repel (avoid) each other. This fact,
together with the electrostatic repulsion between
electrons implies a strong exchange correlation
that cause the spins to tend to align with each other

12.7.1 LS Coupling
In this regime we have the observables and quantum numbers as shown in Table
12.3 below:
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Operator Quantum Number
L⃗2
op L

J⃗2
op J

S⃗2
op S

L̂z ML

Ŝz MS

Table 12.3: LS Coupling Quantum Numbers

When we discussed the spin-orbit interaction in hydrogen we found

1. when we neglect Ĥso we can use either ∣n,L,S,ML,MS⟩ or ∣n,L,S, J,MJ⟩
as basis states

2. when we add in Ĥso,ML andMS are no longer conserved (not good quan-
tum numbers) and therefore we must use ∣n,L,S, J,MJ⟩ as basis states

Now in the orbital approximation we have

ML =
N

∑
i=1

m`i , MS =
N

∑
i=1

msi (12.186)

and
L̂zψα = h̵MLψα Ŝzψα = h̵MSψα

What are the possible L,S values? We can use our addition of angular momen-
tum rules to find out.

Consider two p−electrons , i.e., an vp2 configuration. We have

`1 = `2 = 1→ L = 0,1,2

s1 = s2 =
1

2
→ S = 0,1

and

for a given L ML = −L, ........, L
for a given S MS = −S, ........, S

and

MJ =ML +MS

J = ∣L − S∣ , ......., L + S

Therefore we get the possibilities shown in Table 12.4 below:
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L S J State(s)
0 0 0 1S0

0 1 1 3S1

1 0 1 1P1

1 1 0,1,2 3P0,1,2

2 0 2 1D1

2 1 1,2,3 3D1,2,3

Table 12.4: Possible States

We will discuss the state notation shortly.

For a closed shell we must have L = S = 0 or we would violate the PEP. For
example,

s2 →`1 = `2 = 0→ L = 0

s1 = s2 =
1

2
→ S = 0 or 1

However, there is only one way to choose the m quantum numbers without
violating the PEP which is shown in Table 12.5 below.

m`1 m`2 ms1 ms2

0 0 1/2 -1/2

Table 12.5: s2 m-values

We therefore have ML =MS = 0 (only possibility) which implies that

L = S = J = 0→ 1S0 state (12.187)

For

p6 →`1 = `2 = `3 = `4 = `5 = `6 = 1

s1 = s2 = s3 = s4 = s5 = s6 =
1

2

Once again it turns out there is only one way to choose the values without vio-
lating the PEP. This is shown in Table 12.6 below.
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m`1 m`2 m`3 m`4 m`5 m`6 ms1 ms2 ms3 ms4 ms5 ms6

1 1 0 0 -1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2

Table 12.6: p6 m-values

We therefore have ML =MS = 0 (only possibility) which implies that

L = S = J = 0→ 1S0 state (12.188)

This result is true for all closed shells.

In the presence of Ĥso the energy levels will depend on L,S and J but not on
ML,MS or MJ , which is why we label their atomic terms by

2S+1LJ (12.189)

where
S,P,D,F, ......... means L = 0,1,2,3, ..... (12.190)

The superscript 2S + 1 s the multiplicity of the level (singlet, doublet, triplet,
etc).

If we ignore Ĥso then we have (2S + 1)(2L + 1) degeneracy for a given level.

Adding Ĥso splits the J states. Each term 2S+1LJ remains 2J + 1 degenerate
(the MJ values).

This degeneracy is removed by an external magnetic field which splits the 2J +1
MJ levels(Zeeman effect).

How do we determine the ground state for a particular atom in this scheme?

First, we fill up as many closed shells as possible. The remaining (valence)
electrons determine the ground state configuration.

Let us consider carbon which has two equivalent (same subshell) 2p-electrons in
the unfilled shell. We have

2p2 →`1 = `2 = 1→ L = 0,1 or 2

s1 = s2 =
1

2
→ S = 0 or 1

We get Table 12.7 below by applying these rules:
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L S J Term Sublevels
0 0 0 1S 1S0

1 0 1 1P 1P1

2 0 2 1D 1D2

0 1 1 3S 3S1

1 1 0,1,2 3P 3P0,1,2

2 1 1,2,3 3D 3D1,2,3

Table 12.7: Possible States from LS Rules

Not all of these sublevels are allowed by the PEP however. To see this we must
look at the individual electron quantum numbers. Table 12.8 below shows those
m`1 ,m`2 ,ms1 ,ms2 values allowed by the PEP (i.e., no two electrons have the
same set of quantum numbers).

Before proceeding to the table, in this case, we can use symmetry arguments
to determine the allowed levels. In the special case of only two electrons in an
unfilled shell, we can easily determine the symmetry of the spin vectors

S = 0→ antisymmetric spin function
S = 1→ symmetric spin function

We also know the symmetry of the spatial state in general. The symmetry fol-
lows from the symmetry of the angular part of the 2−electron wave function.
Since we have a central field approximation, the angular part of the wave func-
tion is given by the YLML

spherical harmonics. The radial function is always
symmetric. The symmetry of the spherical harmonics is (−1)L. Therefore,

L = odd→ antisymmetric space function
L = even→ symmetric space function

The product of the spin vector and the spatial function must always be anti-
symmetric. Therefore we have

S = 0 always combines with even L
S = 1 always combines with odd L

This method is only simple to carry out for 2−electron unfilled shells. In the
case of carbon we get the allowed states

L = 2, S = 0→ 5 states = (2L + 1)(2S + 1)
L = 1, S = 1→ 9 states
L = 0, S = 0→ 1 states

for a total of 15 allowed states. The individual quantum numbers table corre-
sponding to these 15 states is
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Entry m` = −1 m` = 0 m` = +1 ML MS

1 ↑↓ -2 0
2 ↑↓ 0 0
3 ↑↓ 2 0
4 ↑ ↑ -1 1
5 ↑ ↓ -1 0
6 ↓ ↑ -1 0
7 ↓ ↓ -1 -1
8 ↑ ↑ 0 1
9 ↑ ↓ 0 0
10 ↓ ↑ 0 0
11 ↓ ↓ 0 -1
12 ↑ ↑ 1 1
13 ↑ ↓ 1 0
14 ↓ ↑ 1 0
15 ↓ ↓ 1 -1

Table 12.8: Individual Quantum Numbers

Any other combinations will violate the PEP. This table can be constructed just
using the PEP.

We now construct an implied terms table which tells us how many states exist
with a particular pair of (ML,MS) values. It is shown as Table 12.9 below.

ML/MS 1 0 -1
2 0 1 0
1 1 2 1
0 1 3 1
-1 1 2 1
-2 0 1 0

Table 12.9: Implied terms

We use this table to determine which atomic terms are allowed for carbon. The
steps are as follows:

1. Consider the largest possible values of L and S, L = 2,S = 1 which corre-
spond to the 3D terms.

Now if a 3D atomic term existed , then we would necessarily have ML =
2,MS = 1 terms. However, there are no such terms, which implies that the
3D term is not allowed and thus the sublevels 3D1,

3D2,
3D3 are ruled out
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by the PEP.

2. We now look at the next largest values, namely, L = 2,S = 0 or the 1D
term. A L = 2,S = 0 term requires ML = 2,MS = 0 terms which do exist.
Therefore the 1D term and the sublevel 1D2 exist. This has J = 2 and
thus 2J + 1 = 5 MJ levels. This accounts for 5 of the 15 entries in the
table.

3. We subtract these 5 states to get a second-implied terms table

ML/MS 1 0 -1
2 0 0 0
1 1 1 1
0 1 2 1
-1 1 1 1
-2 0 0 0

Table 12.10: Implied terms

4. We now look at the next largest values, namely, L = 1,S = 1 or the 3P
term. Since entries with ML = −1,0,+1 and MS = −1,0,+1 still exist in
the new table, the 3P term and the sublevels 3P2,

3P1,
3P0 are allowed.

These correspond to a total of (2L + 1)(2S + 1) = 5 + 3 + 1 = 9 states.

5. We subtract these 9 states to get the third-implied terms table

ML/MS 1 0 -1
2 0 0 0
1 0 0 0
0 0 1 0
-1 0 0 0
-2 0 0 0

Table 12.11: Implied terms

Only one state is left with ML = MS = 0, which is a 1S atomic term.
Therefore the 1S0 sublevel is allowed.

This accounts for all the 15 entries in the table. No more states are allowed,
which means that the 3S and 1P atomic terms and their associated sublevels are
forbidden by the PEP. This result agrees with the allowed states we obtained
from symmetry arguments.

We always need to use the implied-terms tables in the general cases (more than
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2 electrons in an unfilled shell) because the corresponding symmetry arguments
are very complex to apply.

Finally, for carbon we have the 1S, 3P and 1D allowed by the PEP.

This result is true for all atoms with 2 equivalent p−electrons outside closed
subshells.

To complete the picture, we must now determine how the allowed terms are
ordered in energy.

12.7.2 Hund’s Rules

Each sublevel in carbon 1S0, 3P2, 3P1, 3P0 and 1D2 has a different energy when
Ĥso is included in Ĥ.

A set of rules exists for qualitatively ordering the levels. They are called Hund’s
rules.

Hund’s rules apply when we are ordering the energy levels and sublevels for
equivalent electrons in the ground state.

Rule 1 Terms in the ground state configuration with maximum multiplicity
2S + 1 lie lowest in energy.

This follows from the fact that same spins (unpaired spins) repel and different
spins (paired spins) attract.

High multiplicity implies a greater number of electrons with parallel spin than
low multiplicity in multielectron atoms. Since parallel spin electrons avoid each
other, the e2/rij effect decreases and the energy of high multiplicity states lies
below that of low multiplicity states.

Rule 2 Of several levels with the same multiplicity S, the one with maximum
L lies lowest in energy

In some sense, the maximum L state implies that all electrons are orbiting in
the same direction. These electrons tend to remain separated from each other
and so have a lower energy than those orbiting in the opposite direction, which
get close to each other some of the time.

Rule 2 Of several sublevels with the same multiplicity S and same L

1. the sublevel with the minimum value of J lies lowest in energy if the shell
is less than half-filled. These are called regular multiplets

2. the sublevel with the maximum value of J lies lowest in energy if the shell
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is more than half-filled. These are called inverted multiplets

This results follows from Ĥso and the fact that −e2/r increases as r → ∞.
Applying Hund’s rules to an np2 configuration we get the energy level scheme
in Figure 12.7 below.

Figure 12.7: np2 Level Scheme

Hund’s rules are not perfect since they are based on the orbital approximation.

To determine an electronic configuration, we must specify how the electrons are
placed into subshells. It turns out there is a phenomenon called configuration
interaction or configuration mixing which forces the quantum mechanical state
to sometimes be a mixture of more than one configuration.

12.7.3 JJ-Coupling

In heavy atoms, the magnetic interactions which couple the ⃗̀
i and s⃗i together

into the j⃗i, dominate over the electrostatic interactions which led to LS coupling.
The configurations are then better described by the so-called jj-coupling scheme.

Since si = 1/2 for all electrons, we have for `i ≥ 1

ji = `i ±
1

2
mji = −ji, ......., ji

The individual j⃗i then couple together to give the total J⃗ .

In a two-electron configuration the levels are labelled by J, j1, j2,MJ where

J = ∣j1 − j2∣ , ......., j1 + j2
MJ = −J, ......., J
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Let us consider the Pb (lead) atom, which has np2 valence electrons (built on
many closed shells). We have

`1 = `2 = 1

→ j1 =
1

2
,
3

2
and j2 =

1

2
,
3

2

The possible total J values are then

3

2
⊗ 3

2
= 3,2,1,0

1

2
⊗ 3

2
= 2,1

1

2
⊗ 1

2
= 1,0

Not all of these states are allowed by the PEP. For example,

J = 3,MJ = 3→j1 = j2 =
3

2
,mj1 =mj2 =

3

2
`1 = `2 = 1,m`1 =m`2 = 1

s1 = s2 =
1

2
,ms1 =ms2 =

1

2

Both electrons need to have identical quantum numbers for this state to exist.
Thus, this state is not allowed. In a similar manner,

J = 3 , j1 = j2 =
3

2

J = 1 , j1 = j2 =
1

2

can be shown to be forbidden by the PEP. Therefore we have

3

2
⊗ 3

2
= 2,0

1

2
⊗ 3

2
= 2,1

1

2
⊗ 1

2
= 0

Usually, the level with the lowest J for a given pair (j1, j2) has the lowest energy
(this is not a strict rule).

For medium weight atoms, neither LS nor jj coupling is valid.

There is a connection between the levels in the two schemes as illustrated by
the energy level diagram in Figure 12.8 below.
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Figure 12.8: LS - jj Energy Level Connection

The connection between the two schemes is clear.

The spacing between J-levels in LS coupling is given as follows.

⟨Ĥso⟩ =
1

2
C [(J(J + 1) −L(L + 1) − S(S + 1)] (12.191)

For the same L,S we have

EJ+1 −EJ =
1

2
C [(J + 1)(J + 2) − J(J + 1)]

= C(J + 1) (12.192)

This says that the spacing between consecutive levels of a fine structure multi-
plet is proportional to the larger J value involved. This is the Lande interval
rule.

We end this discussion with an example of two electrons that are not equiva-
lent(in different shells). The discussion is more straightforward since we do not
have to worry about the PEP (all possibilities are allowed).

We consider two electrons in a 4p4d configuration. In the LS coupling scheme
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we have:

`1 = 1 , `2 = 2→ L = 1,2,3

s1 = s2 =
1

2
→ S = 0,1

3⊗ 1→ J = 4,3,2

3⊗ 0→ J = 3→ 7 states
2⊗ 1→ J = 3,2,1→ 16 states
2⊗ 0→ J = 2→ 5 states
1⊗ 1→ J = 2,1,0→ 9 states
1⊗ 0→ J = 1→ 3 states

or

J = 4 in 1 level

J = 3 in 3 levels

J = 2 in 4 levels

J = 1 in 3 levels

J = 0 in 1 level

Thus, we have 12 total levels. The LS coupling energy level diagram is shown
in Figure 12.9

Figure 12.9: LS 4p4d Energy Levels
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In the jj-coupling scheme the energy leveldiagram is shown in Figure 12.10

Figure 12.10: jj 4p4d Energy Levels

Notice that the final J values are identical, but their arrangement in energy is
very different.

12.8 Spherical Harmonics Addition Theorem

In Chapter 9 we defined the properties of the spherical harmonics. We found
the following results.

12.8.1 Orbital Angular Momentum
Abstractly,

[L̂i, L̂j] = ih̵εijkL̂k and [L̂2
op, L̂j] = 0 (12.193)

L̂2
op ∣`m⟩ = h̵2`(` + 1) ∣`m⟩ and L̂3 ∣`m⟩ = h̵m ∣`m⟩ (12.194)

L̂± = L̂x ± iL̂y (12.195)

` = integer
2

≥ 0 (12.196)

For a given value of `, m takes on the 2` + 1 values

m = −`,−` + 1,−` + 2, ........., ` − 2, ` − 1, `
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In ordinary 3−dimensional space, if we define

Y`m(θ,ϕ) = ⟨θϕ ∣ `m⟩ = spherical harmonic (12.197)

then we have the defining equations for the Y`m(θ,ϕ) given by

⟨θϕ∣ L⃗2
op ∣`m⟩ = L⃗2

op ⟨θϕ ∣ `m⟩ = L⃗2
opY`m(θ,ϕ)

= h̵2`(` + 1) ⟨θϕ ∣ `m⟩ = h̵2`(` + 1)Y`m(θ,ϕ) (12.198)

⟨θϕ∣ L̂3 ∣`m⟩ = L̂3 ⟨θϕ ∣ `m⟩ = L̂3Y`m(θ,ϕ)
= h̵m ⟨θϕ ∣ `m⟩ = h̵mY`m(θ,ϕ) (12.199)

The general result is

Y`m(θ,ϕ) − (−1)`
2``!

¿
ÁÁÀ2` + 1

4π

(` +m)!
(` −m)!

eimϕ

(sin θ)m
( d

d cos θ
)
`−m

(sin θ)2` (12.200)

Some examples are:

Y00 =
1√
4π

(12.201)

Y10 =
√

3

4π
cos θ , Y1,±1 = ∓

√
3

8π
e±iϕ sin θ (12.202)

Y20 =
√

5

16π
(3 cos2 θ − 1) , Y2,±1 = ∓

√
15

8π
sin θ cos θe±iϕ (12.203)

Y2,±2 =
√

15

32π
sin2 θe±2iϕ (12.204)

Some Properties

Complex Conjugate
Y`,−m(θ,ϕ) = (−1)mY ∗

`,m(θ,ϕ) (12.205)

Under the parity operation

r⃗ → −r⃗ or r → r, θ → π − θ,ϕ→ ϕ + π

which says that

eimϕ → eimϕeimπ = (−1)meimϕ

sin θ → sin(π − θ)→ sin θ

cos θ → cos(π − θ)→ − cos θ

which imply that
Y`,m(θ,ϕ)→ (−1)`Y`,m(θ,ϕ) (12.206)
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Therefore,

if ` is even, then we have an even parity state
if ` is odd, then we have an odd parity state

Since they form a complete set, any function of (θ,ϕ) can be expanded in terms
of the Y`,m(θ,ϕ) (the Y`,m(θ,ϕ) are a basis), i.e., we can write

f(θ,ϕ) = ∑
`,m

f`mY`,m(θ,ϕ) (12.207)

where

f`m =
2π

∫
0

dϕ

π

∫
0

sin θdθY ∗
`′m′(θ,ϕ)f(θ,ϕ) (12.208)

and we have used the orthonormality relation

2π

∫
0

dϕ

π

∫
0

sin θdθY ∗
`′m′(θ,ϕ)Y`m(θ,ϕ) = δ`′`δm′m (12.209)

The spherical harmonics also satisfy these relations:

Closure:

∞
∑
`=0

`

∑
m=−`

Y ∗
`m(θ, φ)Y`m(θ′, φ′) = δ(θ − θ

′)δ(φ − φ′)
sin θ

≡ δ(r̂, r̂′) (12.210)

i.e., the solid angle delta function is equal to zero unless the two vectors r̂(θ, φ) , r̂′(θ′, φ′)
coincide. It has the property

∫ f(r̂′)δ(r̂, r̂′)dΩ′ = f(r̂) (12.211)

for any function f(r⃗) of the spatial direction specified by θ,ϕ.

Recursion:

L̂±Y`m = [`(` + 1) −m(m ± 1)]1/2 Y`,m±1

= [(` ∓m)(` + 1 ±m)]1/2 Y`,m±1 (12.212)

cos θY`m = [(` + 1 +m)(` + 1 −m)
(2` + 1)(2` + 3)

]
1/2

Y`+1,m

+ [ (` +m)(` −m)
(2` + 1)(2` − 1)

]
1/2

Y`−1,m (12.213)
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Figure 12.11: Angles Used in the Addition Theorem

12.8.2 The Addition Theorem

Consider two coordinate systems xyz and x′y′z′. The addition theorem is the
formula expressing the eigenfunction P`(cos θ′) of the angular momentum L̂z′

about the z′−axis in terms of the eigenfunctions Y`,m(θ,ϕ) of L̂z. . See Figure
12.11 below for orientations.

The angles α and β are the azimuth and the polar angles of the z′ axis in
the Cartesian xyz coordinate frame. They are also the first two Euler angles
specifying the orientation of the Cartesian coordinate system x′y′z′ with respect
to xyz. The third Euler angle γ is left unspecified here and the x′ and y′ axes
are not shown. The projections of the z′ axis and the radius vector on the xy
plane are dashed lines.

As we can see the position vector r⃗ has angular coordinates θ,ϕ and θ′, ϕ′ in
the two coordinate systems.

The direction of the z′ axis in space is specified by its polar angle β and its
azimuth angle α with respect to the xyz system.
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Since P` is an eigenfunction of L⃗2
op, only spherical harmonics with the same

subscript ` can appear in the expansion.

An interchange of θ,ϕ and β,α is equivalent to the transformation θ → −θ′ and
must leave the expansion unchanged because P`(cos θ′) is an even function of
θ′. This means that P`(cos θ′) must be a function of ϕ − α.

All of these requirements are satisfied only if we write

P`(cos θ′) =
`

∑
m=−`

cmY`,−m(β,α)Y`,m(θ, φ) (12.214)

We determine the coefficients cm using the conditions

L̂z′P`(cos θ′) = 0 (12.215)

We also use the identity (from rotation of a vector component)

L̂z′ = sinβ cosαL̂x + sinβ sinαL̂y + cosβL̂z

= 1

2
sinβe−iαL̂+ +

1

2
sinβeiαL̂− + cosβL̂z (12.216)

and invoke the linear independence of the spherical harmonics to obtain (after
some algebra)

cm±1 = −cm → cm = (−1)mc0 (12.217)

so that we only need to determine c0. We specialize to β = 0 or θ′ = θ so that
we have the relations

Y`m(0, φ) =
√

2` + 1

4π
δm0 (12.218)

Y`0(θ, φ) =
√

2` + 1

4π
P`(cos θ) (12.219)

We then have

P`(cos θ) =
`

∑
m=−`

cmY`,−m(0, α)Y`,m(θ, φ) =
`

∑
m=−`

cm

√
2` + 1

4π
δm0Y`,m(θ, φ)

= c0

√
2` + 1

4π
Y`,0(θ, φ) = c0

√
2` + 1

4π

√
2` + 1

4π
P`(cos θ) (12.220)

or
c0 =

4π

2` + 1
(12.221)

and we end up with the addition theorem

P`(cos θ′) = 4π

2` + 1

`

∑
m=−`

cmY
∗
`m(β,α)Y`,m(θ, φ) (12.222)

1038



where θ′ = angle between the directions (β,α) and (θ,ϕ).

If we combine the closure relation with the addition theorem we get the identity

∞
∑
`=0

(2` + 1)P`(r̂ ⋅ r̂′) = 4πδ(r̂, r̂′) (12.223)

Since we can write

δ(r⃗ − r⃗′) = δ(r − r
′)

r2
δ(r̂, r̂′) (12.224)

we then have the identity

δ(r⃗ − r⃗′) = δ(r − r
′)

r2

∞
∑
`=0

2` + 1

4π
P`(r̂ ⋅ r̂′) (12.225)

Another useful relation is

eikz =
∞
∑
`=0

(2` + 1)i`j`(kr)P`(cos θ) (12.226)

or, in general

eik⃗⋅r⃗ = 4π
∞
∑
`=0

`

∑
m=−`

i`j`(kr)Y ∗
`m(θk⃗, φk⃗)Y`m(θr⃗, φr⃗) (12.227)

12.9 Problems

12.9.1 Two Bosons in a Well

Two identical spin-zero bosons are placed in a 1−dimensional square potential
well with infinitely high walls, i.e., V = 0 for 0 < x < L, otherwise V = ∞. The
normalized single particle energy eigenstates are

un(x) =
√

2

L
sin (nπx/L)

(a) Find the wavefunctions and energies for the ground state and the first two
excited states of the system.

(b) Suppose that the two bosons interact with each other through the per-
turbing potential

H ′(x1, x2) = −LV0δ(x1 − x2)

Compute the first-order correction to the ground state energy of the sys-
tem.
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12.9.2 Two Fermions in a Well

Two identical spin−1/2 bosons are placed in a 1−dimensional square potential
well with infinitely high walls, i.e., V = 0 for 0 < x < L, otherwise V = ∞. The
normalized single particle energy eigenstates are

un(x) =
√

2

L
sin (nπx/L)

(a) What are the allowed values of the total spin angular momentum quantum
number, J ? How many possible values are there fore the z−component
of the total angular momentum?

(b) If single-particle spin eigenstates are denoted by ∣↑⟩ = u and ∣↓⟩ = d, con-
struct the two-particle spin states that are either symmetric or antisym-
metric. How many states of each type are there?

(c) Show that the j = 1, m = 1 state must be symmetric. What is the symme-
try of the J = 0 state?

(d) What is the ground-state energy of the two-particle system, and how does
it depend on the overall spin state?

12.9.3 Two spin−1/2 particles

The Hamiltonian for two spin−1/2 particles, one with mass m1 and the other
with m2, is given by

Ĥ = p⃗2
1

2m1
+ p⃗2

2

2m2
+ Va (r) + (1

4
− S⃗1 ⋅ S⃗2

h̵2
)Vb (r)

where ∣r⃗∣ = r⃗1 − r⃗2, ∣r⃗∣ = r and

Va(r) =
⎧⎪⎪⎨⎪⎪⎩

0 for r < a
V0 for r > a

, Vb(r) =
⎧⎪⎪⎨⎪⎪⎩

0 for r < b
V0 for r > b

with b < a and V0 very large (assume V0 is infinite where appropriate) and
positive.

(a) Determine the normalized position-space energy eigenfunction for the ground
state. What is the spin state of the ground state? What is the degeneracy?

(b) What can you say about the energy and spin state of the first excited
state? Does your result depend on how much larger a is than b? Explain.
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12.9.4 Hydrogen Atom Calculations

We discuss here some useful tricks for evaluating the expectation values of cer-
tain operators in the eigenstates of the hydrogen atom.

(a) Suppose we want to determine ⟨1/r⟩n`m. We can interpret ⟨λ/r⟩n`m as the
1st−order correction due to the perturbation λ/r (same dependence on r
as the potential energy). Show that this problem can be solved exactly
by just replacing e2 by e2 − λ everywhere in the original solution. So, the
exact energy is

E (λ) = −
m (e2 − λ)2

2n2h̵2

the 1st−order correction is the term linear in λ, that is,

E(1) = me
2λ

n2h̵2
= ⟨λ/r⟩n`m

Therefore we get

⟨1/r⟩n`m = me2

n2h̵2
= 1

n2a0

We note (for later use) that

E(λ) = E(0) +E(1) + .... = E(λ = 0) + λ(dE
dλ

)
λ=0

+ ....

so that one way to extract E(1) from the exact answer is to calculate

λ(dE
dλ

)
λ=0

(b) Evaluate, in a manner similar to part (a), ⟨p⃗2/2µ⟩
n`m

by considering the
Hamiltonian

Ĥ = p̂2

2µ
− Ze

2

r
+ λ p̂

2

2µ

(c) Consider now ⟨λ/r2⟩
n`m

. In this case, an exact solution is possible since
the perturbation just modifies the centrifugal term as follows:

h̵2`(` + 1)
2mr2

+ λ

r2
= h̵

2`′(`′ + 1)
2mr2

where `′ is a function of λ. Now go back to the original hydrogen atom
solution and show that the dependence of E on `′(λ) is

E(`′) = − mZ2e4

2h̵2(k + `′ + 1)2
= E(λ) = E(0) +E(1) + ....
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Then show that

⟨λ/r2⟩
n`m

= E(1)λ(dE
dλ

)
λ=0

= λ(dE
d`′

)
`′=`

(d`
′

dλ
)
`′=`

= λ

n3a2
0(` + 1/2)

or
⟨1/r2⟩

n`m
= 1

n3a2
0(` + 1/2)

(d) Finally consider ⟨λ/r3⟩
n`m

. Since there is no such term in the hydrogen
Hamiltonian, we resort to different trick. Consider the radial momentum
operator

pr = −ih̵( ∂
∂r

+ 1

r
)

Show that in terms of this operator we may write the radial part of the
Hamiltonian

− h̵
2

2m
( 1

r2

∂

∂r
r2 ∂

∂r
)

as
p2
r

2m
Now show that

⟨[H,pr]⟩ = 0

in the energy eigenstates. Using this fact, and by explicitly evaluating the
commutator, show that

⟨1/r3⟩
n`m

= Z

a0`(` + 1)
⟨1/r2⟩

n`m

and hence

⟨1/r3⟩
n`m

= Z3

n3a3
0`(` + 1)(` + 1/2)

12.9.5 Hund’s rule

Explain on the basis of Hund’s rules why the ground state of carbon is 3P0 and
that of oxygen is 3P2.

12.9.6 Russell-Saunders Coupling in Multielectron Atoms
Consider a configuration of k equivalent p electrons outside a closed shell, which
we denote simply by pk, i.e., carbon= p2, nitrogen= p3 and oxygen= p4.

(a) Use the implied-terms method to determine all the terms that can arise
from p3. Which of them will have the lowest energy?

(b) Repeat this calculation for p4 and show that we get the same result as for
p2
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12.9.7 Magnetic moments of proton and neutron

The magnetic dipole moment of the proton is

µ̂p = gp
e

2mp
Ŝp

with a measured magnitude corresponding to a value for the gyromagnetic ratio
of

gp = 2 × (2.792847337 ± 0.000000029)

We have not studied the Dirac equation yet, but the prediction of the Dirac
equation for a point spin−1/2 particle is gp = 2. We can understand the fact
that the proton gyromagnetic ratio is not two as being due its compositeness,
i.e., in a simple quark model, the proton is made up of three quarks, two ups
(u), and a down (d). The quarks are supposed to be point spin−1/2, hence,
their gyromagnetic ratios should be gu = gd = 2 (up to higher order corrections,
as in the case of the electron). Let us see if we can make sense out of the proton
magnetic moment.

The proton magnetic moment should be the sum of the magnetic moments of
its constituents, and any moments due to their orbital motion in the proton.
The proton is the ground state baryon, so we assume that the three quarks are
bound together (by the strong interaction) in a state with no orbital angular
momentum. The Pauli principle says that the two identical up quarks must
have an overall odd wave function under interchange of all quantum numbers.
We must apply this rule with some care since we will be including color as one
of these quantum numbers.

Let us look at some properties of color. It is the strong interaction analog
of electric charge in the electromagnetic interaction. However, instead of one
fundamental dimension in charge, there are three color directions, labeled as
red (r), blue (b), and green (g). Unitary transformations in this color space(up
to overall phases) are described by elements of the group SU(3), the group
of unimodular 3 × 3 matrices (electromagnetic charge corresponds to the group
U(1) whose elements are local phase changes). Just like combining spins, we
can combine these three colors according to a Clebsch-Gordon series, with the
result

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

These are different rules than for the addition of spin case because that case
uses the rotation group instead. We do not need to understand all aspects of
the SU(3) group for this problem. The essential aspect here is that there is a
singlet in the decomposition, i.e., it is possible to combine three colors in a way
as to get a color singlet state or a state with no net color charge. These turn
out to be the states of physical interest for the observed baryons according to a
postulate of the quark model.
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(a) The singlet state in the decomposition above must be antisymmetric under
the interchange of any two colors. Assuming this is the case, write down
the color portion of the proton wave function.

(b) Now that you know the color wave function of the quarks in the proton,
write down the spin wave function. You must construct a total spin state
∣1/2,1/2⟩ total spin angular momentum state from three spin−1/2 states
where the two up quarks must be in a symmetric state.

(c) Since the proton is uud and its partner the neutron (the are just two states
of the same particle) is ddu and mp ≃ mn, we can make the simplifying
assumption that mu ≃md. Given the measured value of gp, what does you
model give for mu? Remember that the up quark has electric charge 2/3
and the down quark has electric charge −1/3, in units of positron charge.

(d) Finally, use your results to predict the gyromagnetic moment of the neu-
tron(neutron results follows from proton results by interchanging u and d
labels) and compare with observation.

12.9.8 Particles in a 3-D harmonic potential
A particle of mass m moves in a 3−dimensional harmonic oscillator well. The
Hamiltonian is

Ĥ = p⃗2

2m
+ 1

2
kr2

(a) Find the energy and orbital angular momentum of the ground state and
the first three excited states.

(b) If eight identical non-interacting (spin 1/2) particles are placed in such
a harmonic potential, find the ground state energy for the eight-particle
system.

(c) Assume that these particles have a magnetic moment of magnitude µ. If a
magnetic field B is applied, what is the approximate ground state energy
of the eight-particle system as a function of B (what is the effect of a closed
shell?). Determine the magnetization −∂E/∂B for the ground state as a
function of B. What is the susceptibility? Don’t do any integrals.

12.9.9 2 interacting particles
Consider two particles of masses m1 ≠m2 interacting via the Hamiltonian

Ĥ = p2
1

2m
+ p2

2

2m
+ 1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
K (x1 − x2)2

(a) Find the exact solutions.

(b) Sketch the spectrum in weak coupling limit K << µω2 where µ = reduced
mass.
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12.9.10 LS versus JJ coupling
Consider a multielectron atom whose electron configuration is

1s22s22p63s23p63d104s24p4d

(a) To what element does this configuration belong? Is it the ground state or
an excited state? Explain.

(b) Suppose that we apply the Russell-Saunders coupling scheme to this atom.
Draw and energy level diagram roughly to scale for the atom, beginning
with the single unperturbed configuration energy and taking into account
the various interactions one at a time in the correct order. Be sure to
label each level at each stage of your diagram with the appropriate term
designation, quantum numbers and so on.

(c) Suppose instead we apply pure jj−coupling to the atom. Starting again
from the unperturbed n = 4 level, draw a second energy level diagram.
[HINT: Assume that for a given level (j1, j2), the state with the lowest J
lies lowest in energy]

12.9.11 In a harmonic potential
Two identical, noninteracting spin= 1/2 particles of mass m are in a one dimen-
sional harmonic oscillator potential for which the Hamiltonian is

H = p
2
1x

2m
+ 1

2
mω2x2

1 +
p2

2x

2m
+ 1

2
mω2x2

2

(a) Determine the ground-state and first-excited state kets and the corre-
sponding energies when the two particles are in a total spin= 0 state. What
are the lowest energy states and the corresponding kets for the particles
if they are in a total spin= 1 state?

(b) Suppose that the two particles interact with a potential energy of interac-
tion

V (∣x1 − x2∣) =
⎧⎪⎪⎨⎪⎪⎩

−V0 ∣x1 − x2∣ < a
0 elsewhere

Argue what the effect will be on the energies that you determined in (a),
that is, whether the energy of each state moves up, moves down, or remains
unchanged.

12.9.12 2 particles interacting via delta function
Two particles of mass m are placed in a rectangular box of sides a > b > c in the
lowest energy state of the system compatible with the conditions below. The
particles interact with each other according to the potential V = Aδ(r⃗1 − r⃗2).
Using first order perturbation theory calculate the energy of the system under
the following conditions:
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(a) particles are not identical

(b) identical particles of spin= 0

(c) identical particles of spin= 1/2 with spins parallel

12.9.13 2 particles in a square well
Two identical nonrelativistic fermions of massm, spin= 1/2 are in a 1−dimensional
square well of length L with V infinitely large outside the well. The fermions
are subject to a repulsive potential V (x1 − x2), which may be treated as a
perturbation.

(a) Classify the three lowest-energy states in terms of the states of the indi-
vidual particles and state the spin of each.

(b) Calculate to first-order the energies of the second- and third- lowest states;
leave your result in the form of an integral. Neglect spin-dependent forces
throughout.

12.9.14 2 particles interacting via a harmonic potential
Two particles, each of massM are bound in a 1−dimensional harmonic oscillator
potential

V = 1

2
kx2

and interact with each other through an attractive harmonic force F12 = −K(x1−
x2). Assume that K is very small.

(a) What are the energies of the three lowest states of this system?

(b) If the particles are identical and spinless, which of the states of (a) are
allowed?

(c) If the particles are identical and have spin= 1/2, which of the states of (a)
are allowed?

12.9.15 The Structure of helium
Consider a Helium atom in the 1s2p configuration. The total angular momen-
tum is L = 1 (a P−state). Due to the Fermi-Pauli symmetry this state splits
into singlet and triplet multiplets as shown below.
where the superscripts 1 and 3 represent the spin degeneracy for the singlet/triplet
respectively.

(a) Explain qualitatively why the triplet state has lower energy.

Now include spin-orbit coupling described by the Hamiltonian ĤSO =
f(r)L̂ ⋅Ŝ, where L̂ and Ŝ are the total orbital and spin angular momentum
respectively.
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Figure 12.12: Fermi-Pauli Splittings

(b) Without the spin-orbit interaction, good quantum numbers for the angu-
lar momentum degrees of freedom are ∣LMLSMS⟩. What are the good
quantum numbers with spin-orbit present?

(c) The energy level diagram including spin-orbit corrections is sketched be-
low.

Figure 12.13: Including Spin-Orbit

Label the states with appropriate quantum numbers. NOTE: Some of the
levels are degenerate; the sublevels are not shown.
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Chapter 13

Scattering Theory and Molecular Physics

13.1 Scattering Theory

One of the main techniques used by physicists to obtain information about
the structure of all forms of matter from elementary particles to solids is the
scattering of particles.

A particle is a localized region in space and time that contains energy and
momentum. In quantum mechanics a good representation of a particle is a wave
packet as we saw earlier. We will assume that the potential that is responsible
for the scattering effects is of short range in space.

We also assume that the spatial extent of the wave packet is small compared to
the spatial dimensions of the laboratory, i.e., the detectors , etc, but that it is
large compared to the size of the scattering region.

We imagine an experimental setup as shown below in Figure 13.1:

Figure 13.1: Scattering Experimental setup
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The incident wavepacket is emitted by a source at time t0 in a region where the
potential is zero (or negligible) and we detect the scattered wave packet (at the
detector) in another region where the potential is zero (or negligible).

The wave packet representing the incident particle is given by the expression

ψ(r⃗, t0) = ∫
d3k⃗

(2π)3
eik⃗⋅r⃗ak⃗ (13.1)

where ak⃗ has a maximum near k⃗0. Our earlier stationary phase arguments then
say that this wave packet (region in space and time where ∣ψ∣2 is nonzero) travels
with a velocity(group) h̵k⃗0/m towards the target.

The scattering problem is to determine

ψ(r⃗, t) = wave function at the time t
after the particle has interacted
with the target (and we are far
from the target once again)

The solution method is as follows:

1. We solve for the exact eigenstates ψk⃗(r⃗) of the potential V (r⃗) using the
Schrodinger equation

( h̵
2

2m
∇2 +Ek⃗)ψk⃗(r⃗) = V (r⃗)ψk⃗(r⃗) (13.2)

where

Ek⃗ =
h̵2k2

2m
(13.3)

and all values of Ek⃗ ≥ 0 are allowed eigenvalues.

2. These eigenstates are a complete set so we can always write

ψ(r⃗, t0) = ∫
d3k⃗

(2π)3
ψk⃗(r⃗)bk⃗ (13.4)

where
h̵2k2

2m
≥ 0 (13.5)

for all the ψk⃗(r⃗) in the expansion.

These assumptions imply that only the incident (incoming) and scat-
tered(outgoing) waves appear and that no bound state contribute since
they would have E < 0 and thus fall off exponentially.
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3. Since we now have an expansion in energy eigenstates it is trivial to in-
corporate the time evolution of ψ(r⃗, t). We get

ψ(r⃗, t) = ∫
d3k⃗

(2π)3
ψk⃗(r⃗)bk⃗e

−i
E
k⃗
h̵ (t−t0) (13.6)

This is the formal solution to the scattering problem.

13.1.1 Green’s Functions
We now need to determine the exact eigenstates ψk⃗(r⃗). We will use a Green’s
function approach similar to the one we introduced earlier for 1−dimensional
transmission/reflection problems.

The Green’s function for the free particle Schrodinger equation is given by the
differential equation

( h̵
2

2m
∇2 +Ek⃗)G(r⃗, k) = δ(r⃗) (13.7)

In terms of this function, the solution to the full Schrodinger equation is

ψk⃗(r⃗) = φ0(r⃗) + ∫ d3r⃗ ′G(r⃗ − r⃗ ′, k)V (r⃗ ′)ψk⃗(r⃗
′) (13.8)

where

( h̵
2

2m
∇2 +Ek⃗)φ0(r⃗) = 0 (13.9)

and φ0(r⃗) is the free-particle wave function (solution of the homogenous equa-
tion that results when V = 0). We then have

φ0(r⃗) = eik⃗⋅r⃗ (13.10)

Direct substitution shows that we have a general solution to the Schrodinger
equation.

( h̵
2

2m
∇2 +Ek⃗)ψk⃗(r⃗) = ( h̵

2

2m
∇2 +Ek⃗)φ0(r⃗)

+ ∫ d3r⃗′ ( h̵
2

2m
∇2 +Ek⃗)G(r⃗ − r⃗′, k)V (r⃗′)ψk⃗(r⃗

′)

= ∫ d3r⃗ ′δ(r⃗ − r⃗ ′)V (r⃗ ′)ψk⃗(r⃗
′) = V (r⃗)ψk⃗(r⃗)

How do we interpret this solution in the context of the scattering problem?

We identify the following terms

φ0(r⃗) = incident wave

∫ d3r⃗ ′G(r⃗ − r⃗ ′, k)V (r⃗ ′)ψk⃗(r⃗
′) = scattered wave
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In addition, we then say

V (r⃗ ′)ψk⃗(r⃗
′) = potential × amplitude evaluated at r⃗ ′

= source of the scattered wave
G(r⃗ − r⃗ ′, k) = amplitude of the scattered wave at r⃗ due

to a unit source (δ(r⃗ ′)) at r⃗ ′

The integral is then the total scattered wave (adds up all waves coming from all
parts of the target region) and is equal to the sum over all source points r⃗ ′.

For this interpretation to make physical sense G(r⃗− r⃗ ′, k) must generate outgo-
ing waves only !

We can determine the Green’s function, as we did earlier, using Fourier trans-
forms and complex contour integration. As before, the choice of the contour
will be equivalent to choosing boundary conditions for the differential equation
and thus completing the solution of the problem.

In this case we must choose a boundary condition (contour of integration) that
generates outgoing waves only.

Let us now determine the Green’s function and do the integrals.

We write (using Fourier transforms)

G(r⃗, k) = ∫
d3p⃗

(2π)3
eip⃗⋅r⃗G̃(p⃗) (13.11)

δ(r⃗) = ∫
d3p⃗

(2π)3
eip⃗⋅r⃗ (13.12)

Substitution then gives

( h̵
2

2m
∇2 +Ek⃗)G(r⃗, k) = ∫

d3p⃗

(2π)3
( h̵

2

2m
∇2 +Ek⃗)e

ip⃗⋅r⃗G̃(p⃗)

= ∫
d3p⃗

(2π)3
(− h̵

2p2

2m
+ h̵

2k2

2m
)eip⃗⋅r⃗G̃(p⃗)

= ∫
d3p⃗

(2π)3
eip⃗⋅r⃗ (13.13)

This implies that

G̃(p⃗) = 1
h̵2

2m
(k2 − p2)

(13.14)
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Therefore, we obtain

G(r⃗, k) = ∫
d3p⃗

(2π)3
eip⃗⋅r⃗

1
h̵2

2m
(k2 − p2)

= − 2m

8π3h̵2

2π

∫
0

dϕ

1

∫
−1

d cos θ

∞

∫
0

eipr cos θ

p2 − k2
p2dp

= − m

2π2h̵2

1

ir

∞

∫
0

p

p2 − k2
dp

ipr

∫
−ipr

dxex

= − m

2π2h̵2

1

ir

∞

∫
0

p

p2 − k2
(eipr − e−ipr)dp

= − m

2π2h̵2

1

ir

∞

∫
−∞

peipr

p2 − k2
dp (13.15)

The integrand has poles at p = ±k. If we choose a contour as shown in Figure
13.2 below

Figure 13.2: Integration Contour

then we have

− m

2π2h̵2

1

ir

⎡⎢⎢⎢⎢⎣

∞

∫
−∞

peipr

p2 − k2
dp + ∫

semicircle

zeizr

z2 − k2
dz

⎤⎥⎥⎥⎥⎦
= 2πiResidue(+k)

Now

∫
semicircle

zeizr

z2 − k2
dz → 0 as the radius of the semicircle →∞ (13.16)

due to the eipr term which behaves like e−Imag(p)r → 0 if Imag(p) > 0 as it does
on contour C.
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The residue at +k is
keikr

2k
= e

ikr

2
(13.17)

Therefore,

G(r⃗, k) = − m

2π2h̵2

1

ir
2πi

eikr

2
= − m

2πh̵2

eikr

r
(13.18)

This physically represents an outgoing spherical wave as is required by the
boundary conditions of the scattering problem.

Putting everything together we have

ψk⃗(r⃗) = e
ik⃗⋅r⃗ − m

2πh̵2 ∫ d3r⃗′
eik∣r⃗−r⃗

′∣

∣r⃗ − r⃗′∣
V (r⃗′)ψk⃗(r⃗

′) (13.19)

Note that since the time dependence of ψk⃗(r⃗
′) is e−iEk⃗t/h̵, we are adding up

terms of the form
ei(k∣r⃗−r⃗

′∣−
E
k⃗
h̵ t)

∣r⃗ − r⃗ ′∣
(13.20)

which are outgoing waves with the appropriate inverse square relationship built
in!

The magnitude of the outgoing momentum is

h̵k = same as the incoming momentum
(only the direction has changed)

Therefore, potential scattering of this type is elastic scattering.

Since we are assuming that the detectors are far away from the target, we can
look at solutions where ∣r⃗∣ >> ∣r⃗ ′∣. In this case, we have

k ∣r⃗ − r⃗ ′∣ = k
√

(r⃗ − r⃗ ′) ⋅ (r⃗ − r⃗ ′) = k (r2 + r ′2 − 2r⃗ ⋅ r⃗ ′)1/2

≈ k (r2 − 2r⃗ ⋅ r⃗ ′)1/2 = kr (1 − 2
r⃗

r
⋅ r⃗ ′)

1/2

≈ kr (1 − r⃗
r
⋅ r⃗ ′) = kr − k⃗ ′ ⋅ r⃗ ′ (13.21)

where
k⃗ ′ = kr̂ = k r⃗

r
= wave vector seen at the detector (13.22)

Therefore, at the detector we have

ψk⃗(r⃗) = e
ik⃗⋅r⃗ + e

ikr

r
fk⃗(θ,ϕ) (13.23)

where (θ,ϕ) = direction of vecr and

fk⃗(θ,ϕ) = −
m

2πh̵2 ∫ d3r⃗ ′e−ik⃗⋅r⃗
′

V (r⃗ ′)ψk⃗(r⃗
′) (13.24)

= the scattering amplitude
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The term
eikr

r
fk⃗(θ,ϕ) (13.25)

implies

⎛
⎜⎜⎜⎜⎜
⎝

amplitude that particle
will reach r after being
scattered at the target−
outgoing wave + inverse
r−squared effect

⎞
⎟⎟⎟⎟⎟
⎠

×
⎛
⎜⎜⎜
⎝

amplitude that incident
particle will be scattered
with k in the direction
(θ,ϕ)

⎞
⎟⎟⎟
⎠

(13.26)

Using the exact solution for ψk⃗(r⃗)

ψk⃗(r⃗) +
m

2πh̵2 ∫ d3r⃗ ′
eik∣r⃗−r⃗

′∣

∣r⃗ − r⃗ ′∣
V (r⃗ ′)ψk⃗(r⃗

′) = eik⃗⋅r⃗ (13.27)

we can substitute for eik⃗⋅r⃗ to get

ψ(r⃗, t0) = ∫
d3k⃗

(2π)3

⎡⎢⎢⎢⎣
ψk⃗(r⃗) +

m

2πh̵2 ∫ d3r⃗ ′
eik∣r⃗−r⃗

′∣

∣r⃗ − r⃗ ′∣
V (r⃗ ′)ψk⃗(r⃗

′)
⎤⎥⎥⎥⎦
ak⃗ (13.28)

Now we assumed that ak⃗ has a maximum near k⃗0 which implies that inside the
brackets [....] we can write ψk⃗(r⃗

′) ≈ ψk⃗0
(r⃗ ′) and since k0 >> ∣k⃗ − k⃗0∣ we get

k = k⃗ ⋅ k⃗
k

≈ k⃗0 ⋅ k⃗
k0

= k̂0 ⋅ k⃗ (13.29)

Therefore, the last term becomes

∫
d3k⃗

(2π)3
ak⃗e

ik⃗⋅k̂0∣r⃗−r⃗ ′∣ψk⃗0
(r⃗ ′) = ψ(k̂0 ∣r⃗ − r⃗ ′∣ , t0)ψk⃗0

(r⃗ ′) = 0 (13.30)

This is zero because at t = t0, ψ(k̂0 ∣r⃗ − r⃗ ′∣ , t0) = 0 since k̂0∣r⃗ − r⃗ ′∣ is to the right
of the potential.

Therefore,

ψ(r⃗, t0) = ∫
d3k⃗

(2π)3
ψk⃗(r⃗)ak⃗ (13.31)

which implies ak⃗ = bk⃗, i.e., the expansion coefficients are the same whether we
expand in plane waves or the exact energy eigenstates.

Thus, we can write

ψ(r⃗, t) = ∫
d3k⃗

(2π)3
ψk⃗(r⃗)ak⃗e

−i
E
k⃗
h̵ (t−t0) (13.32)
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For r⃗ far from the target, we can use the asymptotic form for ψk⃗(r⃗) to get

ψ(r⃗, t) = ψ0(r⃗, t) + ∫
d3k⃗

(2π)3
ak⃗
e
i(k⃗⋅r⃗−

E
k⃗
h̵ (t−t0))

r
fk⃗(θ,ϕ) (13.33)

where

ψ0(r⃗, t) = ∫
d3k⃗

(2π)3
ak⃗
e
i(k⃗⋅r⃗−

E
k⃗
h̵ (t−t0))

r
(13.34)

= wave packet at time t if V = 0

Finally, putting in the approximations

fk⃗ ≈ fk⃗0
and k ≈ k⃗ ⋅ k̂0 (13.35)

we get

ψ(r⃗, t) = ψ0(r⃗, t) +
fk⃗0

(θ,ϕ)
r

ψ0(k̂0r, t) (13.36)

The meaning of these terms is as follows:

1. ψ(r⃗, t) = (no scattering term) + (scattered wave)

2. the scattered term includes

ψ0(k̂0r, t) = amplitude to be at k̂0r at time t
= value of wave function at this point;

all the potential did was to bend the
particle path towards r⃗

fk⃗0
(θ,ϕ)
r

→ probability amplitude that the

potential did the bending

This result fails

1. if a scattering resonance is present since this implies that the wave packet
experiences strong deformations

2. if the potential has a long range effect

13.1.2 Cross Sections

The quantity used to connect theory to experiment in scattering experiments is
the differential scattering cross section.

It is defined as follows: if
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1. Nin = number of incident particles per cm2

2. dN(θ,ϕ) = number of particles scattered inot a solid angle dΩ centered at
(θ,ϕ)

then
dσ

dΩ
= dN(θ,ϕ)

NindΩ
(13.37)

In terms of a single particle, dσ/dΩ is the total probability that the particle is
scattered into a unit solid angle divided by the total probability that the particle
crosses a unit area in front of the target.

The same assumptions are made as earlier, i.e., the incident packet size ≫ size
of the target and the detector is far from the incident bean and the target.

Now the total probability of being scattered into an infinitesimal solid angle
dΩ at r⃗ is the rate that probability strikes an area r2dΩ in the detector plane
integrated over time.

This is given by

∞

∫
−∞

dt × (velocity) × (area at detector) × (probability of scattering)

=
∞

∫
−∞

dt × ( h̵k0

m
) × (r2dΩ) ×

∣fk⃗0
(θ,ϕ)∣2

r2
∣ψ0(k̂0r, t)∣

2
(13.38)

or the total probability of being scattered into dΩ is

∣fk⃗0
(θ,ϕ)∣2 dΩ

⎡⎢⎢⎢⎢⎣

h̵k0

m

∞

∫
−∞

dt ∣ψ0(k̂0r, t)∣
2
⎤⎥⎥⎥⎥⎦

(13.39)

The total probability that crosses a unit area at r⃗0 in front of the target in the
incident beam is

∞

∫
−∞

dt(probability flux) = h̵k0

m

∞

∫
−∞

dt ∣ψ0(k̂0r, t)∣
2

(13.40)

If we assume that the wave packet does not spread between r⃗0 and k⃗0r (this
just says a particle remains a particle during the duration of the experiment),
then we have

dσ

dΩ
= ratio of these last two terms = ∣fk⃗0

(θ,ϕ)∣2 (13.41)

This result does not depend on the details of the incident wave packet.
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Finally, the total cross section σ, where

σ = ∫
all
solid
angles

dσ

dΩ
dΩ (13.42)

= total probability of being scattered divided by the
total probability that the particle crossed a unit area
in front of the target

= ∫ dΩ ∣fk⃗0
(θ,ϕ)∣2 (13.43)

Since experimentalists can measure σ and dσ/dΩ , the theorist needs to be able
to calculate them given the potential function.

13.1.3 Partial Waves
We now look at the special case where V (r⃗) = V (r) is spherically symmetric.
In this case, the angular momentum of the incident particle is conserved, i.e.,

[Ĥ, L⃗2
op] = 0 = [Ĥ, L̂z] (13.44)

This means we should only consider stationary state solutions that are also
eigenstates of the angular momentum.

We start off with an identity(see Addition Theorem discussion in Chapter 12).
If we choose k⃗ = kẑ, then we can write

eik⃗⋅r⃗ = eikr cos θ = eikz =
∞
∑
`=0

i`(2` + 1)P`(cos θ)j`(kr) (13.45)

This is an expansion of a plane wave in spherical harmonics (or angular momen-
tum eigenfunctions). The expansion coefficients are spherical Bessel functions.
Physically, the expansion implies that an plane wave of infinite spatial extent
contains all possible orbital angular momentum values.

In this expansion

P`(cos θ) =
√

4π

2` + 1
Y`0(θ,ϕ) (13.46)

= Legendre polynomial of order `

and
j`(kr) =

1

2
(h`(kr) + h` ∗ (kr)) (13.47)

where the h`(kr) are Hankel functions.

Since the incident plane wave is independent of ϕ (rotation about the direction
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of k⃗), the scattered wave must be invariant under rotations about the direction
of k⃗ ′, which implies that

fk⃗(θ,ϕ)→ fk⃗(θ) (13.48)

For functions of θ, the Legendre polynomials are a complete set so we can expand
fk⃗(θ) as

fk⃗(θ) =
∞
∑
`=0

(2` + 1)f`P`(cos θ) (13.49)

Each ` term is called a partial wave and f` is the partial wave scattering ampli-
tude.

For similar reasons, the stationary state wave functions can be written as

ψk⃗(r⃗) =
∞
∑
`=0

i`(2` + 1)P`(cos θ)R`(r) (13.50)

where

( d
2

dr2
+ k2 − `(` + 1)

r2
) rR`(r) =

2m

h̵2
V (r)rR`(r) (13.51)

In the limit of large r (where the detector is located), assuming that r2V (r)→ 0,
we get

( d
2

dr2
+ k2 − `(` + 1)

r2
) rR`(r) = 0 (13.52)

which is Bessel’s equation.

Therefore, near the detector (r →∞) we can write R`(r) as a linear combination
of the h`(kr) and h∗` (kr). In particular, we assume the form

R`(r) = B` [h` ∗ (kr) + S`(E)h`(kr)] (13.53)

The h∗` (kr) term represents an incoming spherical wave and the h`(kr) term
represents an outgoing spherical wave. We have therefore assumed that the
effect of the potential will be to modify only the outgoing wave.

In the absence of scattering, i.e., V = 0, we have

R`(r) = j`(kr) =
1

2
[h` ∗ (kr) + h`(kr)] (13.54)

which implies that

B` =
1

2
and S` = 1 (13.55)

When V (r) ≠ 0 only S` changes.

We will be considering only elastic scattering in this discussion.
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In the Schrodinger picture, we can talk about probability densities and proba-
bility flows or currents. In non-relativistic quantum mechanics we have a prob-
ability interpretation for the wave function which implies that

probability density = P (r⃗, t) = ∣ψ(r⃗, t)∣2 (13.56)
and

∫ ∣ψ(r⃗, t)∣2d3r⃗ = 1 (13.57)

Since there are no sources or sinks of probability in non-relativistic quantum
mechanics (no particle creation or annihilation processes) we must have a con-
tinuity equation of the form

∂P

∂t
+∇ ⋅ J⃗ = 0 (13.58)

where
J⃗ = probability current (13.59)

Using (13.56) and the time-dependent Schrodinger equation we get

J⃗ = h̵

2im
[ψ ∗ ∇ψ − ψ∇ψ∗] (13.60)

Proof:

ih̵
∂P

∂t
= ih̵ ∂

∂t
∣ψ(r⃗, t)∣2 = ih̵∂ψ∗

∂t
ψ + ih̵ψ ∗ ∂ψ

∂t

= (− h̵
2

2m
∇2ψ ∗ +V ψ∗)ψ + ψ ∗ ( h̵

2

2m
∇2ψ − V ψ)

= h̵

2im
[ψ ∗ ∇2ψ − ψ∇2ψ∗] = − h̵

2im
∇ ⋅ [ψ ∗ ∇ψ − ψ∇ψ∗]

= −∇ ⋅ J⃗

Since as many particles enter a sphere of radius r surrounding the target as leave
the sphere (this is the meaning of elastic scattering), the radial component of
the current must be zero or

Jr(r) =
h̵

2im
[R` ∗ (r)∂R`(r)

∂r
−R`(r)

∂R` ∗ (r)
∂r

] = 0 (13.61)

Substitution of (13.53) implies that we must have

∣S`(E)∣ = 1 (13.62)

which says that we can always write

S`(E) = e2iδ`(E) where δ` is real (13.63)

δ` is called the phase shift and 2δ` equals the difference in phase between the
outgoing parts of the wave function ψK⃗(r⃗) and the incident plane wave eik⃗⋅r⃗.

1060



The phase shift contains the all of the effects of the potential on the wave
function.

Since the δ`(E) are constants for a given scattering process (since E = constant),
we can determine their values at any point in the scattering process.

Let us look at r very large where V (r) = 0. We can then write

ψk⃗(r⃗) =
1

2
∑
`

i`(2` + 1)P`(cos θ) [h` ∗ (kr) + e2iδ`h`(kr)]

= 1

2
∑
`

i`(2` + 1)P`(cos θ) [h` ∗ (kr) + h`(kr) + (e2iδ` − 1)h`(kr)]

= 1

2
∑
`

i`(2` + 1)P`(cos θ) [h` ∗ (kr) + h`(kr)]

+ 1

2
∑
`

i`(2` + 1)P`(cos θ) [(e2iδ` − 1)h`(kr)]

=∑
`

i`(2` + 1)P`(cos θ)j`(kr)

+ 1

2
∑
`

i`(2` + 1)P`(cos θ) [(e2iδ` − 1)h`(kr)]

= eik⃗⋅r⃗ + 1

2
∑
`

i`(2` + 1)P`(cos θ) [(e2iδ` − 1)h`(kr)] (13.64)

But we know that

h`(kr)→
ei(kr−

`π
2 )

ikr
as r →∞ (13.65)

Substituting this result and using

ψk⃗(r⃗) = e
ik⃗⋅r⃗ + f(θ)

r
eikr

we get

f(θ) = 1

2ik
∑
`

(2` + 1)P`(cos θ) (e2iδ` − 1) (13.66)

= 1

k
∑
`

(2` + 1)P`(cos θ)eiδ` sin δ` (13.67)

where

f` = e2iδ` − 1 = eiδ` sin δ` (13.68)
= the partial wave scattering amplitude
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We obtain the total cross section using

σ = ∫ ∣f(θ)∣2dΩ (13.69)

=∑
`

∑
`′

(2` + 1)
k

(2`′ + 1)
k

e−iδ`eiδ`′ sin δ` sin δ`′

2π

∫
0

dϕ

1

∫
−1

dxP`(x)P`′(x)

Now
1

∫
−1

dxP`(x)P`′(x) =
δ``′

2` + 1
(13.70)

which implies that

σ = 4π

k2 ∑
`

(2` + 1) sin2 δ` =∑
`

σ` (13.71)

where
σ` =

4π

k2
(2` + 1) sin2 δ` (13.72)

is the partial wave cross section for scattering particles in angular momentum
`−states.

Since sin2 δ` ≤ 1, we have the limit

σ` ≤
4π

k2
(2` + 1) (13.73)

Classically, the maximum ` value that contributes to the sum is given by

`max = ka (13.74)

where a is the range of the potential (i.e., for, V (r) = 0 we have no scattering).

Quantum mechanically, for r > a, only the term

h̵2`(` + 1)
2mr2

(13.75)

acts. For energy

E = h̵
2k2

2m
(13.76)

the classical turning radius is

rcl =
√
`(` + 1)
k

(13.77)

For r < rcl, the wave function falls off exponentially. If rcl > a, then the particle
feels nothing from the potential, which says that the particle is scattered only
if

rcl ≤ a or
√
`(` + 1) ≈ ` ≤ ka (13.78)

Note that there are interference effects between different partial waves dσ/dΩ
but not in σ.
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13.1.4 The Optical Theorem
We earlier derived the relations

f(θ) = 1

k
∑
`

(2` + 1)P`(cos θ)eiδ` sin δ` (13.79)

σ = 4π

k2 ∑
`

(2` + 1) sin2 δ` (13.80)

These lead to another important result.

Imag(f(θ)) = 1

k
∑
`

(2` + 1)P`(cos θ) sin2 δ` (13.81)

Imag(f(0)) = 1

k
∑
`

(2` + 1)P`(1) sin2 δ` =
1

k
∑
`

(2` + 1) sin2 δ` (13.82)

or
σ = 4π

k
Imag(f(0)) (13.83)

which is the optical theorem.

13.1.5 Born Approximation
In some special cases, i.e., special potential functions, large ` or sma;; k for ` ≥ 1,
we can find an approximate analytic expression for δell. In general, however, we
must solve the problem numerically.

One such analytical method goes as follows.

We have the general relations

fk⃗(θ,ϕ) = −
m

2πh̵2 ∫ d3r⃗ ′e−ik⃗
′⋅r⃗ ′V (r⃗ ′)ψk⃗(r⃗

′) (13.84)

ψk⃗(r⃗) =
∞
∑
`=0

i`(2` + 1)P`(cos θ)R`(r) (13.85)

Using the relation

e−ik⃗
′⋅r⃗ ′ = 4π

∞
∑
`=0

`

∑
m=−`

(−1)`Y ∗`m (Ωk⃗ ′)j`(kr)Y`m(Ωr⃗ ′) (13.86)

we get

fk⃗(θ,ϕ) = −
2m

h̵2 ∫ d3r⃗′
∞
∑
`=0

`

∑
m=−`

(−1)`Y ∗`m (Ωk⃗ ′)j`(kr
′)Y`m(Ωr⃗ ′)V (r⃗ ′)

×
∞
∑
`′=0

i`
′

(2`′ + 1)P`′(cos θ)R`′(r) (13.87)

1063



Now

∫ d3r⃗ ′ →
2π

∫
0

dϕr⃗ ′

1

∫
−1

d(cos θr⃗ ′)
∞

∫
0

r ′2dr ′ (13.88)

and

ϕr⃗ ′ integration → δm0

θr⃗ ′ integration → δ``′

This implies (using θk⃗ ′ = θ) that we get

f(θ) = −2m

h̵2

∞
∑
`=0

(2` + 1)P`(cos θ)
∞

∫
0

r2drV (r)j`(kr)R`(r) (13.89)

But we also have, in general, that

f(θ) = 1

k
∑
`

(2` + 1)P`(cos θ)eiδ` sin δ` (13.90)

which then says that

eiδ` sin δ` = −
2mk

h̵2

∞

∫
0

r2drV (r)j`(kr)R`(r) (13.91)

If we suppose that the potential is weak for a particular partial wave, then we
have very small scattering effects on R`(r). We then have

R`(r) ≈ j`(kr) (13.92)

and
eiδ` sin δ` ≈ δ` (13.93)

or

δ` = −
2mk

h̵2

∞

∫
0

r2drV (r)j2
` (kr) (13.94)

This is the so-called Born Approximation for the phase shift δ`.

When the potential has a small effect on all partial waves we can derive another
form of the Born approximation. In this case, we assume the scattered wave is
small compared to the incident wave. This implies that

ψk⃗(r⃗)→ eik⃗⋅r⃗ (13.95)

and

f(θ) = − m

2πh̵2 ∫ d3r⃗ ′e−i(k⃗−k⃗
′)●r⃗ ′V (r⃗ ′) (13.96)

= − m

2πh̵2
Vk⃗ ′−k⃗ (13.97)
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where
Vk⃗ ′−k⃗ = Fourier transform of V (r⃗) (13.98)

Now we have elastic scattering (∣k⃗∣ = k = ∣k⃗ ′∣)which implies that

q⃗ = ∣k⃗ − k⃗ ′∣ (13.99)

q2 = ∣k⃗ − k⃗ ′∣
2
= k2 + k ′2 − 2k⃗ ⋅ k⃗ ′ (13.100)

= 2k2 − 2k2 cos θ = 2k2(1 − cos θ) (13.101)

= (2k sin
θ

2
)

2

(13.102)

where θ is the scattering angle (angle between k⃗ and k⃗ ′) as shown in Figure
13.3 below.

Figure 13.3: Elastic Scattering Angles
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When is the Born approximation valid?

For short range potentials, the wave function ψk⃗(r⃗) only contributes to the
scattered wave at small distances. We can therefore use a small distance ap-
proximation for ψk⃗(r⃗)

ψk⃗(r⃗) ≈ e
ik⃗⋅r⃗ − m

2πh̵
∫ d3r⃗ ′

eikr
′

r ′
V (r′)eik⃗⋅r⃗

′

≈ eik⃗⋅r⃗ (13.103)

only if

∣ m
2πh̵
∫ d3r⃗ ′

eikr
′

r ′
V (r ′)eik⃗⋅r⃗

′

∣ = ∣ m
2πh̵
∫ r ′2dr ′

eikr
′

r ′
V (r ′) sinkr ′

kr ′
∣ ≪ 1

This corresponds to weak potentials and large k (or large energy).

13.1.6 A General Property of Phase Shifts
Let us assume the potential

V (r) =
⎧⎪⎪⎨⎪⎪⎩

0 r > b
v(r) r ≤ b

(13.104)

The general results we will obtain are valid as long as r2V (r)→ 0 as r →∞.

For r > b, we have

ψ>` (r) =
1

2
[h` ∗ (kr) + e2iδ`h`(kr)] (13.105)

For r < b, we must solve the Schrodinger equation with ? present. We assume
that has been done and we obtained the solution ψ<` (r).

At r = b, both the wave function and its derivative must be continuous, which
implies that the logarithmic derivative is continuous

α` =
(dψ

<

` (r)
dr

)
r=b

ψ<` (b)
=

(dψ
>

` (r)
dr

)
r=b

ψ>` (b)
(13.106)

or using our earlier expression for ψ>` (r) we have

α` =
⎛
⎝

∂
∂r

[h` ∗ (kr) + e2iδ`h`(kr)]
h` ∗ (kr) + e2iδ`h`(kr)

⎞
⎠
r=b

(13.107)

Since h`(kr) = j`(kr) + iη`(kr), this gives

e2iδ` − 1 =
⎛
⎜
⎝

2 (dj`(kr)
dr

− α`j`(kr))

α`h`(kr) − dh`(kr)
dr

⎞
⎟
⎠
r=b

= 2i

cot δ` − 1
(13.108)

or

cot δ` =
⎛
⎝

dη`(kr)
dr

− α`η`(kr)
dj`(kr)
dr

− α`j`(kr)
⎞
⎠
r=b

(13.109)
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13.1.7 Examples

Scattering from a Hard Sphere

In this case we have

V (r) =
⎧⎪⎪⎨⎪⎪⎩

0 r > b
∞ r ≤ b

(13.110)

This is a repulsive potential. It implies that

ψ<` (r) = 0→ ψ<` (b) = ψ>` (b) = 0 (13.111)

and
α` =∞ (13.112)

This gives

cot δ` =
η`(kb)
j`(kb)

(13.113)

For ` = 0 we have
cot δ0 =

η0(kb)
j0(kb)

= −coskb

sinkb
= − cotkb (13.114)

or
δ0 = −kb (13.115)

therefore, for a repulsive potential δ0 < 0.

What about δ`? Consider low energy or small k. We then have for kb << 1,

cot δ` =
η`(kb)
j`(kb)

≈ −
(2`−1)!!
(kb)`+1

(kb)`
(2`+1)!!

= −(kb)−2`−1(2` − 1)!!(2` + 1)!! (13.116)

where
(2` + 1)!! = 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2` + 1) (13.117)

Therefore, we have
sin δ` ≈ (kb)2`+1 (13.118)

Thus, we can neglect all terms where ` ≠ 0 in the low energy limit and write

f(θ) = 1

k
P0(cos θ)eiδ0 sin δ0 =

1

k
eiδ0 sin δ0 (13.119)

dσ

dΩ
= ∣f(θ)∣2 = sin2 δ0

k2
= b2 (13.120)

σ = 4π
sin2 δ0
k2

= 4πb2 (13.121)

These results for the hard sphere show that, for low energy, the total cross
section is

4 × ( classical scattering cross section) (13.122)

due to quantum interference effects and the scattering is isotropic.
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Scattering from a Potential Well

In this case

V (r) =
⎧⎪⎪⎨⎪⎪⎩

0 r > b
−V0 r ≤ b

(13.123)

The solution for positive energy inside the well is

ψ<` (r) = j`(qr) (13.124)

where

q =
√

2m

h̵2
(V0 +E) (13.125)

Therefore, the boundary conditions at the well edge give

α` =
⎛
⎝

dj`(qr)
dr

j`(qr)
⎞
⎠
r=b

(13.126)

Now

j0(ρ) =
sinρ

ρ
, j1(ρ) =

sinρ

ρ2
− cosρ

ρ
(13.127)

η0(ρ) = −
cosρ

ρ
, η1(ρ) = −

cosρ

ρ2
− sinρ

ρ
(13.128)

Therefore,

α0 = q cot qb − 1

b
α0b = qb cot qb − 1

which gives

cot δ0 =
⎛
⎝

dη0(kr)
dr

− α0η0(kr)
dj0(kr)
dr

− α0j0(kr)
⎞
⎠
r=b

= kb sinkb + qb cot qb coskb

kb coskb − qb cot qb sinkb
(13.129)

For kb << 1 we get

cot δ0 =
qb cot qb

kb(1 − qb cot qb)
(13.130)

or

tan δ0 = −
kbα0b

qb cot qb
= − kα0b

2

1 + α0b
(13.131)

In a similar manner, we can derive

tan δ1 =
(kb)3

3

1 − α1b

2 + α1b
(13.132)
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For low energy (k → 0) and a deep well (V0 large) we get

σ = 4πb2 (1 − tan qb

qb
)

2

(13.133)

This calculation fails if either

1 + α0b = 0 or 2 + α1b = 0 (13.134)

which corresponds to the ` = 0 or the ` = 1 partial wave being in resonance with
the potential.

In general, this resonance condition is given by

` + 1 + α`b = 0 (13.135)

which implies that

cot δ` = 0→ tan δ` =∞→ δ`(k) = (n + 1

2
)π (13.136)

and thus the partial wave scattering cross section takes on its maximum value,
namely,

σ`(k) =
4π(2` + 1)

k2
(13.137)

For other k values (off-resonance) we have

δ` ≈ (kb)2`+1 (13.138)

This says that the resonance is very sharp for large ` values.

We can understand this effect better by looking at other features. As we saw,
for small k, cot δ` is very large since it is proportional to k−2`−1. Therefore,

σ` =
4π

k2
(2` + 1) sin2 δ` =

4π

k2
(2` + 1) 1

1 + cot2 δ`
(13.139)

will be proportional to k4`. In this case, except for the s-wave (` = 0), σ` will
be small.

However, near a resonance energy Er where

` + 1 + bα`(Er) = 0 (13.140)

cot δ` goes to zero and σ` will be proportional to k−2 and this is quite large (an
effect that is called resonance).

Near Er we can make a Taylor expansion and write

` + 1 + bα`(Er) ≈ ` + 1 + bα`(Er) + (E −Er)b(
∂α`
∂E

)
E=Er

+ ....

≈ (E −Er)b(
∂α`
∂E

)
E=Er

(13.141)
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and
` − bα`(Er) ≈ 2` + 1 (13.142)

After some algebra, these relations imply that

cot δ` ≈ −
2(E −Er)

Γk
(13.143)

where

Γk = −
2k2`+1b2`

[(2` − 1)!!]2 (∂α`
∂E

)
E=Er

(13.144)

Now ∂α`/∂E < 0, which implies that Γk > 0. Therefore, near resonance, the
partial wave cross section σ` is

σ` =
4π

Γ2
k

k2

4(E −Er)2 + Γ2
k

(13.145)

When
E −Er = ±

Γk
2

(13.146)

the partial wave cross section is equal to one-half its maximum value. Therefore,
Γ = Γk(Er) is the width of the resonance at half-maximum.

This functional form is called the Breit-Wigner formula for a scattering reso-
nance. The curves are shown in Figure 13.4 below.
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Figure 13.4: σ` versus E ; δ` versus E

which are standard resonance type curves.

13.1.8 Born Approximation Examples

Yukawa Potential

In this case

V (r) = ae
−µr

r
(13.147)

Although this potential is nonzero out to infinity, it is effectively short-range
because it falls off exponentially. The effective range is usually given as 1/µ.

The Fourier transform of this potential is easily calculated to be

Ṽ (k⃗ − k⃗ ′) = 4πa

∣k⃗ − k⃗ ′∣
2
+ µ2

(13.148)

where

∣k⃗ − k⃗ ′∣
2
= (2k sin

θ

2
)

2

(13.149)
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This gives

dσ

dΩ
= m2

(2πh̵2)2
∣Ṽ (k⃗ − k⃗ ′)∣

2
= m2

(2πh̵2)2

⎛
⎜
⎝

4πa

∣k⃗ − k⃗ ′∣
2
+ µ2

⎞
⎟
⎠

2

= a2

(4Ek sin2 θ
2
+ h̵2µ2

2m
)

2
(13.150)

By pure coincidence, if we let µ→ 0 so that the Yukawa potential turns into the
Coulomb potential we get the result

dσ

dΩ
= a2

16E2
k sin4 θ

2

(13.151)

which is the correct Rutherford cross section!

This is an accident and higher order terms will completely change this result.
The higher order terms that we have neglected in the Born approximation cannot
be ignored for a long-range potential like the Coulomb potential.

Later we will show how to handle Coulomb scattering correctly.

Scattering from Two Delta Functions

Here we have a free particle with momentum p = h̵k parallel to the z−axis
scattering from the potential

V (r⃗) = v0 [δ(r⃗ − εẑ) − δ(r⃗ + εẑ)] (13.152)

Using q⃗ = k⃗ − k⃗ ′ as defined earlier, we have, in the Born approximation,

f(θ) = − m

2πh̵2 ∫ d3r⃗ V (r⃗)e−iq⃗⋅r⃗ = − mv0

2πh̵2
(eiεq⃗⋅ẑ − e−iεq⃗⋅ẑ)

= mv0

πh̵2
i sin ∣qz ∣ ε (13.153)

where
qz = −q sin

θ

2
= −2k sin2 θ

2
(13.154)

is the projection of q⃗ on the z−axis.

The scattering cross section is

dσ

dΩ
= ∣f(θ)∣2 = m

2v2
0

π2h̵4
sin2 qzε

= m
2v2

0

π2h̵4
sin2 (2εk sin2 θ

2
) (13.155)

which corresponds to the standard two-source interference pattern as expected.
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Spin Dependent Potential

We now consider the scattering of a particle of mass m and momentum p = h̵k
through an angle θ by the spin-dependent potential

V (r⃗) = e−µr
2

[A +Bσ⃗ ⋅ r⃗] (13.156)

where
σ⃗ = (σ̂x, σ̂y, σ̂z) (13.157)

We assume that the initial spin is along the incident direction and we sum
over all final spins, which corresponds to measuring only the direction of the
scattered particles and not their spins. Note that this potential violates parity.

We use the Born approximation. The Fourier transform of the potential function
is given by

Ṽ (q⃗) = ∫ d3r⃗ V (r⃗)e−iq⃗⋅r⃗ (13.158)

where
q⃗ = k⃗ − k⃗′ (13.159)

We get

Ṽ (q⃗) = ∫ d3r⃗ e−µr
2

[A +Bσ⃗ ⋅ r⃗] e−iq⃗⋅r⃗

= (π
µ
)

3/2
e−

q2

4µ [A + iB
2µ
σ⃗ ⋅ q⃗]

= (π
µ
)

3/2
e−

q2

4µ [A + iB
2µ

[q+σ̂− + q−σ̂+ + qzσ̂z]] (13.160)

where
q± = qx ± iqy and σ± =

1

2
(σx ± iσy) (13.161)

Since the initial spin is oriented along k⃗, which we choose to be in the z−direction,
we also quantize the final spin along the same axis (use the same representa-
tion).

How do the different terms scatter spins?

1. The term A is spin-independent. This implies that the final spin state is
the same as the initial spin state and the value of this term is A.

2. The term Bqzσ̂z is a diagonal operator in this representation. This implies
that the final spin state is the same as the initial spin state and the value
of this term is Bqz. We only get the plus sign because we assumed spin
up in the initial state.

3. The term Bq+σ̂− flips the spin from +z to −z. This implies the value is
Bq+ in a final state with the spin flipped(lowered).
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4. The term Bq−σ̂+ gives a zero contribution since the initial spin cannot be
raised.

Therefore, if the final state is ∣+z⟩ we get a contribution

A + i

2µ
Bqz (13.162)

and if the final state is ∣−z⟩ we get a contribution

i

2µ
B(qx + iqy) (13.163)

To get the total contribution to f(θ) we must square each separate term (these
are not indistinguishable processes) and then sum over the final states. We get

∣A + i

2µ
Bqz∣

2

+ ∣ i
2µ
B(qx + iqy)∣

2

= A2 + B
2q2

4µ2
(13.164)

Therefore, the differential cross section is

dσ

dΩ
= π

4h̵vµ3 ∫ k ′2dk ′e−(k⃗−k⃗
′)2/2µδ ( h̵

2

2m
(k2 − k ′2)) [A2 + B

2(k⃗ − k⃗ ′)2

4µ2
]

= π2m2

4h̵4µ3
e−k

2(1−cos θ)/2µ [A2 + B
2k2(1 − cos θ)

2µ2
] (13.165)

Scattering from Atomic Electrons

The atomic potential seen by an incoming electron can be represented by the
function

V (r) = −Ze2 ∫
ρT (r⃗ ′)d3r⃗ ′

∣r⃗ − r⃗ ′∣
(13.166)

where
ρT (r⃗ ′) = ρnuclear(r⃗ ′) + ρelectronic(r⃗ ′)
= δ(r⃗ ′) − ρ(r⃗ ′)

We then have

f(θ) = mZe
2

2πh̵2 ∫ ∫
ρT (r⃗ ′)eiq⃗⋅r⃗

∣r⃗ − r⃗ ′∣
d3r⃗d3r⃗ ′

= mZe
2

2πh̵2 ∫ ρT (r⃗ ′)eiq⃗⋅r⃗
′

d3r⃗ ′ ∫
eiq⃗⋅(r⃗−r⃗

′)

∣r⃗ − r⃗ ′∣
d3r⃗ (13.167)
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In the last integral r⃗ ′ is a constant. Therefore we can write

∫
eiq⃗(⋅r⃗−r⃗

′)

∣r⃗ − r⃗ ′∣
d3r⃗ = ∫

eiq⃗⋅x⃗

x
d3x⃗

= lim
α→0

2π

∫
0

dϕ

π

∫
0

sin θdθ

∞

∫
0

e−αxeiqx cos θxdx

= 2π lim
α→0

∞

∫
0

e−αxxdx

0

∫
π

d(cos θ)eiqx cos θ

= 2π lim
α→0

∞

∫
0

e−αxxdx [e
iqx − e−iqx

iqx
]

= 4π

q
lim
α→0

∞

∫
0

e−αx sin qxdx

= 4π

q
lim
α→0

q

q2 + α2
= 4π

q2
(13.168)

This trick of introducing the integrating factor e−αx is a very useful procedure
for evaluating this type of integral. We then have

f(θ) = 2mZe2

h̵2q2 ∫ ρT (r⃗ ′)eiq⃗⋅r⃗
′

d3r⃗ ′

= 2mZe2

h̵2q2 ∫ [δ(r⃗ ′) − ρ(r⃗ ′)] eiq⃗⋅r⃗
′

d3r⃗ ′

= 2mZe2

h̵2q2
[1 − F (q)] (13.169)

where

F (q) = ∫ ρ(r⃗ ′)eiq⃗⋅r⃗
′

d3r⃗ ′ (13.170)

= the atomic scattering function energy of the nuclei

It is a measure of the amount of shielding of the nuclear charge by the electrons
in the atom. It is the Fourier transform of the electron charge density.

13.2 Molecular Physics

13.2.1 General Properties of Molecules
Molecules are made up of nuclei and electrons. Since they break up into atoms
if enough energy is supplied, we can regard them as bound states of atoms.

The determination of the electronic energy levels of molecules is significantly
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more complicated than in atomic systems since the potential felt by the electrons
does not exhibit many of the simplifying features of the atomic case.

On the other hand, nuclei are very massive compared to the electrons
me

mN
≈ 10−3 − 10−5 (13.171)

and this can be used to simplify our work.

First, we must determine to what extent we need to take nuclear motion into
account in our calculations. On the average, the nuclei move more slowly than
the electron, have a small zero point energy and are well localized. We can pic-
ture the nuclei in a molecule as having classical equilibrium positions (minimum
potential energy points) and that they oscillate slowly about these positions. In
the meantime, the electrons are moving rapidly through the nuclear potentials.
The electrons effectively see a static potential and the electronic wave functions
can only be adiabatically changed by the slow nuclear vibrations. The nuclei
have translational, vibrational and rotational motions that we must take into
account.

What are the typical energies associated with these motions?

In a molecule of size a, the typical momentum is of order h̵/a (due to the un-
certainty principle). This implies that

Eel = typical electronic energy

≈ p2

2m
= h̵2

2ma2
≈ a few eV

To estimate the nuclear vibrational motion relative to the equilibrium positions,
we assume a harmonic oscillator potential. The potential energy associated with
each mode of vibration is then

1

2
Mω2R2 (13.172)

where

M = the nuclear mass
R = amplitude of the oscillations
ω = vibrational frequency

For R = a, the vibrational energy is approximately the same as the electronic
energy. We see this as follows. We have

1

2
Mω2a2 ≈ h̵2

2ma2

ω ≈ (m
M

)
1/2 h̵2

ma2

1076



Therefore, the total vibrational energy is

Evib = h̵ω ≈ (m
M

)
1/2

Eel ≈ 0.01 − 0.1 eV (13.173)

The rotational energy for an angular momentum `h̵ is

Erot ≈
h̵2`(` + 1)

2I
≈ h̵2

Ma2
= m

M
Eel (13.174)

Therefore, we have
Emol = Eel +Evib +Erot (13.175)

where the relative sizes are given by

Eel ∶ Evib ∶ Erot = 1 ∶ (m
M

)
1/2

∶ m
M

(13.176)

In this model of a molecule we will use

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN (13.177)

where

T̂e = ∑
electrons
i

p⃗2
op,i

2m
= kinetic energy of the electrons

T̂N = ∑
nuclei
α

p⃗2
op,α

2m
= kinetic energy of the nuclei

V̂ee = repulsive electron - electron Coulomb interaction

V̂eN = attractive electron - nucleus Coulomb interaction

V̂NN = repulsive nucleus - nucleus Coulomb interaction

Since the nuclear kinetic energy is proportional to 1/M , it is relatively small
and we can treat it as a perturbation using the small perturbation parameter

(m
M

)
1/4

(13.178)

Thus, we start the calculation by neglecting T̂N (neglecting the nuclear motion).
In this approximation, the nuclear coordinates R⃗ are fixed, which implies that
they are no longer dynamical variables (observables) but only parameters. The
Schrodinger equation is then

(T̂e + V̂ee + V̂eN)ψn(r⃗, R⃗) = (εn(R⃗) − V̂NN(R⃗))ψn(r⃗, R⃗) (13.179)

= Eel(R⃗)ψn(r⃗, R⃗) (13.180)
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Here we have defined

εn(R⃗) = NN interaction energy + the electronic energy eigenvalue

= Eel(R⃗) + V̂NN(R⃗)
ψn(r⃗, R⃗) = wave function of the electrons (remember R⃗ is fixed)

r⃗ represents the coordinates of all the electrons

Now the wave function for the whole molecule satisfies the Schrodinger equation

(T̂e + T̂N + V̂ee + V̂eN + V̂NN)ψ(r⃗, R⃗) = Eψ(r⃗, R⃗) (13.181)

The solutions ψn(r⃗, R⃗) form a complete set of basis functions. Therefore we can
write

ψ(r⃗, R⃗) =∑
n

φn(R⃗)ψn(r⃗, R⃗) (13.182)

where the ϕn(R⃗) = expansion coefficients. Our task is to find the ϕn(R⃗).

Substituting we get

∑
m

(T̂e + T̂N + V̂ee + V̂eN + V̂NN)φm(R⃗)ψm(r⃗, R⃗) = E∑
m

φm(R⃗)ψm(r⃗, R⃗)

∑
m

(T̂N + V̂NN)φm(R⃗)ψm(r⃗, R⃗) +∑
m

(T̂e + V̂ee + V̂eN)φm(R⃗)ψm(r⃗, R⃗)

= E∑
m

φm(R⃗)ψm(r⃗, R⃗)

∑
m

(T̂N + V̂NN)φm(R⃗)ψm(r⃗, R⃗) +∑
m

(εm(R⃗) − V̂NN(R⃗))φm(R⃗)ψm(r⃗, R⃗)

= E∑
m

φm(R⃗)ψm(r⃗, R⃗)

∑
m

(T̂N + εm(R⃗))φm(R⃗)ψm(r⃗, R⃗) = E∑
m

φm(R⃗)ψm(r⃗, R⃗)

If we multiply on the left by ψ∗n(r⃗, R⃗) and integrate over all electron positions
using the orthonormality of the ψm(r⃗, R⃗) we get

∑
m
∫ d3rψ∗n(r⃗, R⃗)(T̂N + εm(R⃗))φm(R⃗)ψm(r⃗, R⃗)

= E∑
m

φm(R⃗)∫ d3rψ∗n(r⃗, R⃗)ψm(r⃗, R⃗)

∑
m
∫ d3rψ∗n(r⃗, R⃗)T̂Nφm(R⃗)ψm(r⃗, R⃗) +∑

m

εm(R⃗)φm(R⃗)δnm

= E∑
m

φm(R⃗)δnm

∑
m
∫ d3rψ∗n(r⃗, R⃗)T̂Nφm(R⃗)ψm(r⃗, R⃗) + εn(R⃗)φn(R⃗)

= Eφn(R⃗)
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Now T̂N contains 2nd derivatives with respect to the R⃗ and thus it acts on both
functions φm(R⃗) and ψm(r⃗, R⃗). Using

∇2(φψ) = (∇2φ)ψ + 2∇φ ⋅ ∇ψ + φ(∇2ψ) (13.183)

we have

∑
m
∫ d3rψ∗n(r⃗, R⃗)∑

α

h̵2

2Mα
∇2
R⃗α
φm(R⃗)ψm(r⃗, R⃗) + εn(R⃗)φn(R⃗)

= Eφn(R⃗)

∑
α

h̵2

2Mα
∑
m
∫ d3rψ∗n(r⃗, R⃗)[ψm(r⃗, R⃗)∇2φm(R⃗)

+ 2∇φm(R⃗) ⋅ ∇ψm(r⃗, R⃗) + φm(R⃗)∇2ψm(r⃗, R⃗)] + εn(R⃗)φn(R⃗) = Eφn(R⃗)

∑
α

h̵2

2Mα
∑
m

∇2φm(R⃗)∫ d3rψ∗n(r⃗, R⃗)ψm(r⃗, R⃗)

+∑
α

h̵2

2Mα
∑
m
∫ d3rψ∗n(r⃗, R⃗)[2∇φm(R⃗) ⋅ ∇ψm(r⃗, R⃗)

+ φm(R⃗)∇2ψm(r⃗, R⃗)] + εn(R⃗)φn(R⃗) = Eφn(R⃗)

∑
α

h̵2

2Mα
∑
m

∇2φm(R⃗)δnm

+∑
α

h̵2

2Mα
∑
m
∫ d3rψ∗n(r⃗, R⃗)[2∇φm(R⃗) ⋅ ∇ψm(r⃗, R⃗) + φm(R⃗)∇2ψm(r⃗, R⃗)]

+ εn(R⃗)φn(R⃗) = Eφn(R⃗)

∑
α

h̵2

2Mα
∇2
R⃗α
φn(R⃗)

+∑
α

h̵2

2Mα
∑
m
∫ d3rψ∗n(r⃗, R⃗)[2∇φm(R⃗) ⋅ ∇ψm(r⃗, R⃗) + φm(R⃗)∇2ψm(r⃗, R⃗)]

+ εn(R⃗)φn(R⃗) = Eφn(R⃗)
T̂Nφn(R⃗)

+∑
α

h̵2

2Mα
∑
m
∫ d3rψ∗n(r⃗, R⃗)[2∇φm(R⃗) ⋅ ∇ψm(r⃗, R⃗) + φm(R⃗)∇2ψm(r⃗, R⃗)]

+ εn(R⃗)φn(R⃗) = Eφn(R⃗)

or
(T̂N + εn(R⃗))φn(R⃗) = Eφn(R⃗) −∑

m

Anmφm(R⃗) (13.184)

where

Anmφm(R⃗)

= −∑
α

h̵2

2Mα
∫ d3rψ∗n(r⃗, R⃗)[2∇R⃗αφm(R⃗) ⋅ ∇R⃗αψm(r⃗, R⃗) + φm(R⃗)∇2

R⃗α
ψm(r⃗, R⃗)]
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The Anm term mixes different n andm, which corresponds to different electronic
wave functions in ψ(r⃗, R⃗).

How large is this term? The term

− h̵2

2Mα
∇2
R⃗α
ψn(R⃗) ≈ −(m

M
) h̵2

2m
∇2
r⃗ψn(r⃗)

→ (m
M

) × electron kinetic energy

Since this is very much less than the spacing between different n levels, it implies
that we will have negligible mixing of different n states. Now

φm(R⃗) ≈ harmonic oscillator wave function

≈ e−
(R⃗−R⃗0)

2Mω

2h̵

∇R⃗φm(R⃗) ≈ ∣R⃗ − R⃗0∣
Mω

h̵
φm(R⃗) ≈ δMω

h̵
φm(R⃗)

where δ ≈ typical nuclear displacement from equilibrium. But

1

2
Mω2δ2 ≈ h̵ω (13.185)

This implies the first term in Anm is of order

h̵ω ≈ (m
M

)
1/2

× spacing between n∣text−levels (13.186)

Therefore we can neglect all of the Anm terms. We thus have

(T̂N + εn(R⃗))φn(R⃗) = Eφn(R⃗) (13.187)

This is a simple Schrodinger equation for the φn(R⃗) , which are the expansion
coefficients and therefore we can write down ψ(r⃗, R⃗) once we know the ψn(r⃗, R⃗).

The term εn(R⃗) is the total electron energy and it has become the effective
potential energy for the nuclear motion in this approximation.

The effect of the electrons is to couple together the nuclei with rubber bands
whose force constants depend on the electronic state. Thus, for each ψn(r⃗, R⃗),
we have an εn(R⃗) which implies a φn(R⃗). To lowest order in

(m
M

)
1/2

(13.188)

we have no mixing of different n-levels.

We can therefore write the stationary states of the molecule as

ψ(α)
n (r⃗, R⃗) = φαn(R⃗)ψn(r⃗, R⃗) (13.189)
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with an energy Eαn of the molecule, where α labels different solutions to

(T̂N + εn(R⃗))φαn(R⃗) = Eαnφαn(R⃗) (13.190)

This approximation is the so-called Born-Oppenheimer approximation.

13.2.2 The Born-Oppenheimer approximation: A toy ver-
sion

Before proceeding with more complicated examples, we illustrate the Born-
Oppenheimer approximation, which, as we have described, is central to the
physics and chemistry of molecules and solids, by a one-dimensional toy model
that is easily solved.

Review of method and motivation

As we said earlier, molecules and solids are describable in terms of the motion
of the electrons and nuclei of the constituent atoms. Although this description
is immensely complicated, the fact that nuclei are much heavier than electrons
makes it possible to adopt an approach in which the nuclei, in the lowest order
of approximation, are taken to be at rest, and their motion is considered subse-
quently in higher orders.

This toy model is a simplification that makes the solution more transparent and
analytically tractable.

Review of prior derivation

For molecules the underlying Hamiltonian of the system is

H =∑
i

p2
i

2m
−∑
µ,i

Zµe
2

∣Rµ − ri∣
+∑
i>j

e2

∣ri − rj ∣

+∑
µ

P2
µ

2Mµ
+ ∑
µ>ν

ZµZνe
2

∣Rµ −Rν ∣
(13.191)

where the upper-case letters, R and P, denote the position and momentum
operators of the nuclei which are indexed by Greek letters. Lower-case letters,
r and p, and Latin subscripts are reserved for the electrons; m is the mass of an
electron, Mµ is the mass of the µth nucleus, −e is the electron charge, and +Zµe
is the charge on the µth nucleus. The Schrodinger equation for the stationary
states of the molecule is

⎡⎢⎢⎢⎣

h̵2

2m
∑
i

∇2
i −∑

µ,i

Zµe
2

∣Rµ − ri∣
+∑
i>j

e2

∣ri − rj ∣

+∑
µ

h̵2

2Mµ
∇2
µ + ∑

µ>ν

ZµZνe
2

∣Rµ −Rν ∣

⎤⎥⎥⎥⎦
ψ({r},{R}) = Eψ({r},{R}) (13.192)
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The first step in the Born-Oppenheimer approach consists in asserting that the
kinetic energy term associated with the heavy particles may be neglected in the
lowest approximation and their coordinates treated as parameters (and not as
dynamical variables). We write the full Hamiltonian as H = H0 + T̂R where
H0 is the electronic Hamiltonian in which the nuclear coordinates appear as
parameters. The eigenfunctions and eigenvalues of H0 describe the electrons for
fixed values of the coordinates of the nuclei:

H0φn({r};{R}) = εn({R})φn({r};{R}) (13.193)

We write {R} after a semicolon to indicate that {R} appear only as parameters.
The eigenvalues εn({R}) depend on the particular values of {R} of the nuclei
and yield energy surfaces that are labeled by n, the electronic quantum numbers.
Because the states φn({r};{R}) are a complete set of orthonormal vectors, we
can use them as a basis to write the full wave function as

ψ({r};{R}) =∑
n

χn({R})φn({r};{R}) (13.194)

with the understanding that the summation includes integra- tion over con-
tinuum states. If we substitute the expansion (13.194) into Eq. (13.192) and
integrate over the electronic coordinates, we obtain a set of coupled equations
describing the dynamics of the heavy nuclei, namely,

⎡⎢⎢⎢⎣
−∑
µ

h̵2

2Mµ
∇2
µ + εn({R}) −E

⎤⎥⎥⎥⎦
χn({R})

∑
µ,m

[∫ φ∗n({r};{R})∇µφm({r};{R})Πid
3ri]

×∇µχm({R}) + ∑
µ,m

[∫ φ∗n({r};{R})

×(− h̵2

2Mµ
∇2
µ)φm({r};{R})Πid

3ri})]χm({R (13.195)

where m ≠ n. The terms on the left-hand side describe the motion driven
by the kinetic energy operator of the nuclei on a given electronic energy surface
εn({R}), whereas those on the right-hand side represent jumps from one energy
sur- face to another ( n→m ) resulting in the coupling of the different electronic
states.

Equation (13.195) represents a formidable set of coupled equations which involve
no approximations. The Born-Oppenheimer approximation asserts that the
terms on the right-hand side of Eq. (13.195) may be neglected. Hence, the
equation for the heavy nuclei, which are confined to the nth electronic energy
surface, becomes

⎡⎢⎢⎢⎣
−∑
µ

h̵2

2Mµ
∇2
µ + εn({R}) −E

⎤⎥⎥⎥⎦
χn({R}) = 0 (13.196)

1082



Equation (13.196) is tantamount to the statement that the different electronic
energy surfaces εn({R}) do not intersect or come close to each other in the
relevant region of parameter space and are sufficiently distant in energy so that
they are not appreciably connected by the kinetic motion of the nuclei. That
is, the time scale of nuclear motions is slow compared to the movements of
the light electrons or, in other words, the amplitudes of the nuclear motion are
negligible in comparison with the equilibrium internuclear distances. Once this
simplification is made, the motion of the nuclei can be further investigated via
Eq. (13.196) to obtain the vibrations about the minima of εn({R}) and the
rotations of the molecules.

Real molecular systems are very complicated except for simple examples such
as the hydrogen molecular ion H+

2 (see below). To illustrate the basic ideas
in a simple setting, we discuss a one-dimensional model of the actual physical
system.

The Toy Model

Imagine a system of two particles: one light (of mass m) with coordinate x and
the other heavy (mass M) located at X. The particles are confined between
two impenetrable walls a distance L apart, that is, −L/2 ≤ x,X ≤ L/2. We as-
sume that these two particles interact with each other via an attractive Dirac
delta function interaction of strength λ. The Hamiltonian of the system within
the allowed range is thus

H = p2

2m
+ P 2

2M
− λδ(x −X) (13.197)

where p and P are the momenta of the two particles. The stationary states are
given by

[− h̵
2

2m

∂2

∂x2
− h̵2

2M

∂2

∂X2
− λδ(x −X)]ψ(x,X) = Eψ(x,X) (13.198)

We follow the Born-Oppenheimer approach and first solve for the energy levels
of the light particle, En(X), treating X as a parameter, that is,

[− h̵
2

2m

∂2

∂x2
− λδ(x −X)]φ(x;X) = εφ(x;X) (13.199)

or

[ d
2

dx2
+ k2]φ(x;X) = −λδ(x −X)φ(x;X) (13.200)

where k2 ≡ 2mε/h̵2 and λ ≡ 2mλ/h̵2. The wave function φ satisfies the boundary
conditions, φ(x = ±L/2,X) = 0. Thus for x < X the solution is A sink(x +L/2)
while for x > X we must have B sink(L/2 − x), where A and B are constants.
The continuity of the wave function at x =X implies that

A sink (L
2
+X) = B sink (L

2
−X) (13.201)
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The first derivative of the wave function must be discontinuous so as to yield
the delta function in Eq. (13.200), whose integral between x = X− and x = X+

yields the condition φ′(x =X+);X) − φ′(x =X−;X) = −λφ(x =X;X), or

−Bk cosk (L
2
−X) −Ak cosk (L

2
+X) = −λA sink (L

2
+X) (13.202)

If we eliminate A and B from Eqs. (13.201) and (13.202), we find the eigenvalue
condition for k (and hence ε = h̵2k2/2m):

k sinkL = λ sink (L
2
+X) sink (L

2
−X) (13.203)

For a given λ and L, Eq. (13.203) is to be solved for k as a function of X
to determine the energy surfaces (here curves as there is only one parameter
X). We observe that for X = ±L/2 the right-hand side of the eigenvalue con-
dition, Eq.(13.203) vanishes and sinkL = 0 has the solutions k = nπ/L and
εn = h̵2n2π2/(2mL)2. In other words, the infinite repulsion at the walls makes
the wave function of the light particle (and hence the probability of finding it)
zero at X = ±L/2, and hence it must disregard the presence of the heavy particle
if the latter is located at either of these two places.

As we consider values of X away from X = ±L/2, the value of k must be de-
termined by solving Eq. (13.203) and would be less than or equal to nπ/L
because of the attractive delta function potential. Furthermore, the energy
curves belonging to different n cannot cross each other as X varies, because
such one-dimensional systems cannot possess any degeneracy. Thus we may use
the integer n to label the states corresponding to the motion of the light parti-
cles analogous to the set of quantum numbers used to designate the state of an
electron in a molecule. Moreover, the eigenvalue condition in Eq. (13.203) is
symmetric under the transformation X → −X, and hence it suffices to examine
the range of X between 0 to L/2.

In the above discussion we have tacitly assumed that ε > 0 by taking trigono-
metric functions as the solutions of Eq. (13.200), which generally holds except
for the lowest state (and that too only if λ is large enough). The condition for
crossover from positive to negative ε is easily derived by noting that if ε becomes
negative, it must pass through zero and hence we can consider the eigenvalue
condition, Eq. (13.203), for small k to obtain the critical potential strength

λ = λc =
L

L2

4
−X2

(13.204)

If λ > λc for a range of X values, we must use the hyperbolic solutions of the
Schrodinger equation with ∣ε∣ = −ε = h̵2k2/2m, and the eigenvalue condition
becomes

k sinhkL = λ sinhk (L
2
+X) sinhk (L

2
−X) (13.205)
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Equation (13.205) admits only one solution for the corresponding k. The reason
is physically transparent. Note that for L→∞,λc → 0, which means that as the
walls recede to infinity, the attractive delta function potential no matter how
weak will have a solution with a negative energy eigenvalue (as can be seen by
solving the delta function potential without walls). Hence, in the presence of
the repulsive walls, this energy eigenvalue can be negative provided the walls
are not too close and the potential not too weak.

The nature of the energy surfaces is easily revealed by analyzing k as a function
of X as given by Eq. (13.203). The location of the extrema is obtainable from

dk

dX
= −λk sin 2kX

sinkL + kL coskL + λX sin 2kX − λL
2

sinkL
= 0 (13.206)

which yields 2kX = ±Nπ (N = 0,1,2, ....). For the lowest positive energy state,
n = 1, there will be only one extremum at X = 0 (corresponding to N = 0), and
this energy must be a minimum as can be seen from the following argument. At
X = ±L/2 we have k = π/L, and as we move the heavy particle away from the
wall, the energy and hence k must de- crease because of the attractive nature
of the interaction. Thus for the n = 1 energy surface, X = 0 is a minimum. For
the first excited electronic state, n = 2, we have three extrema at N = 0 and ±1.
The point X = 0 (corresponding to N = 0) is a maximum, because the vanishing
of the wave function at x = 0 with X =0 (the wave function is an odd function)
implies that the derivative is continuous and hence the energy corresponds to
k = 2π/L (as if the light particle disregards the presence of the heavy one). As
the heavy particle moves away from X = 0, the energy must decrease due to
the onset of the nonzero attraction. Thus the n = 2 energy surface gives rise
to a double well. Similarly, it is easy to see that for the second excited elec-
tronic state, there are three minima at X = 0 and X = ±π/kand two maxima at
X = ±π/2k.

The wave functions for the ground and first excited electronic states are shown
in Fig. 13.5
with the heavy particle located at X = L/4 and the strength of the delta func-
tion corresponding to λ = 2/L. We have taken L = 1. Attention is drawn to the
discontinuity in the derivative of the wave function of the light particle at the
location of the heavy particle (indicated by the arrow). The shape and sym-
metry of the wave functions are clearly affected by the location of the heavy
particle and the strength of the delta function interaction.

Now that we have solved for the motion of the light particle with the heavy
particle at X, we may, in the spirit of the Born-Oppenheimer approach, turn
our attention to the slower vibrational motion of the heavy particle governed
by the potential surfaces, εn(X), obtained from ε = h̵2k2/2m, where k are so-
lutions (labeled by the quantum number n) of Eq. (13.203). The vibrational
energies may be determined numerically given the values of the relevant param-
eters (m,M,λ,L). However, these energies can be estimated via the harmonic
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Figure 13.5: Wave function for the light particle when the heavy one is located
at X = L/4 taking λ = 2/L

approximation by using the curvature of the potential at the minima

d2ε(X)
dX2

= h̵
2k2

2m
[−4λk cos 2kX

C

+ 2λ2 sin 2kX(sin 2kX + 2kX cos 2kX)
C2

] (13.207)

where the dimensionless quantity C = kL coskL+λX sin 2kX+(1−λL/2) sinkL.

For convenience we choose the value λ = 2/L. For the ground state electronic
configuration, the minimum of the potential ε(X) = ε1(X) is at X = 0 and the
corresponding solution of Eq. (13.203) yields kL = 2.33 (and coskL = −0.69).
At the minimum of the potential, the curvature is

d2ε(X)
dX2

= − 4h̵2k2

mL2 coskL
(13.208)

leading to the classical angular frequency

ω =
√

d2ε(X)/dX2

M
(13.209)
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The ensuing spectra is a ladder with spacing h̵ω, and accordingly, the vibrational
energy levels are approximately given by

h̵ω (ν + 1

2
) = h̵2

2mL2

¿
ÁÁÀ16m

M

k2L2

∣ coskL∣
(ν + 1

2
) (13.210)

where ν is the vibrational quantum number and takes integer values 0,1,2, ... .

To make contact between the toy model and the realistic situation of molecules,
we take L to be of the order of chemical bond lengths (L ∼ 1) and m and
M to be the masses of the electron and the proton, respectively, m = 10−30 kg
and M ∼ 2000m. The separations between the electronic levels are thus of the
order of ∆ ∼ (h̵2/mL2) ∼ 6 eV , and the vibrational level spacings are h̵ω ∼
h̵2/(mL2)

√
m/M ∼ 0.1 eV .

In Figures. 13.6 and 13.7 the potential energy surfaces (in units of h̵2/2mL2) of
the ground and first excited electronic states are plotted against X (in units of
L) for λ = 2.0/L.

Figure 13.6: Potential energy surface (in units of h̵2/2mL2 of the ground elec-
tronic state (n = 1) plotted against X (in units of L) for λ = 2.0/L. We have
shown the vibrational bound states for M ∼ 2000m. Note the decreasing sep-
aration between the adjacent levels, particularly for higher excitations, which
reflects the anharmonicity of the potential surface.
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Figure 13.7: Potential energy surface of the first excited (n = 2) electronic state
for the same parameters as in Figure 13.6. Each energy level is almost doubly
degenerate which undergoes splitting due to tunneling between the wells through
the potential barrier. Splitting, though not discernible for the lower states, is
clearly evident for the highest vibrational pair of levels.

It can be seen that for M = 2000m, the energy separation of the lower vibra-
tional levels is almost 0.26(in units of h̵2/2mL2). Thus a quadratic fit to the
potential surface of the electronic ground state is very good at least for the
lower vibrational levels (the agreement is within 5%). Similarly, for the first
excited electronic state (n = 2), we have a double well potential surface and
the curvature at the minima both correspond to an energy separation of 0.56.
Indeed the results of a numerical calculation reveal that the almost equidistant
vibrational level structure is obtained for the low lying levels, but the energy
gaps reduce with increasing vibrational energy as the anharmonicity of the po-
tential surface becomes important. Another feature of the first excited state,
which is typical of a double well potential, is the occurrence of a doublet due to
a degenerate pair of levels corresponding to each well split due to their coupling
from tunneling through the barrier. This split- ting is too small to be seen in
Figure 13.7 for the lower vibrational excitation and barely discernible in the
next to highest vibrational level (shown by the thickening of this line in the
diagram) and is clearly evident in the highest vibrational doublet. Hence, we
see that many features of molecular systems apart from the methodology of the
Born-Oppenheimer adiabatic approximation find a simple illustration in the toy
model that we have discussed.
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13.2.3 Examples

Hydrogen Molecular Ion (H+
2 )

In the ionized H2 molecule, a single electron moves in the attractive potential
of two protons A and B as shown in Figure 13.8 below.

Figure 13.8: Hydrogen Molecular Ion Configuration
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The Hamiltonian, in the Born-Oppenheimer approximation, is

Ĥ = − h̵
2

2m
∇2 − e2

∣r⃗ − R⃗A∣
− e2

∣r⃗ − R⃗B ∣
+ e2

∣R⃗A − R⃗B ∣
(13.211)

We will solve the problem using the variational method.

As a trial function we use a linear combination of hydrogen atom 1s states for
separate protons:

ψ± = C± [ψA(r⃗) ± ψB(r⃗)] (13.212)

where we have chosen the symmetric and antisymmetric combinations only be-
cause the potential is symmetric about the midpoint of the molecule

R⃗A + R⃗B
2

(13.213)

The wave functions are

ψA(r⃗) =
1√
πa3

e−
∣r⃗−R⃗A ∣

a and ψB(r⃗) = 1√
πa3

e−
∣r⃗−R⃗B ∣

a (13.214)

The C± are normalization factors given by

1 = ∫ d3r ∣ψ±(r⃗)∣2 = C2
± ∫ d3r ∣ψA(r⃗) ± ψB(r⃗)∣2

= C2
± ∫ d3r (∣ψA(r⃗)∣2 + ∣ψB(r⃗)∣2 ± 2ψA(r⃗)ψB(r⃗))

= C2
± (2 + 2S(R))

where

R = ∣R⃗A − R⃗B ∣ (13.215)

S(R) = ∫ d3rψA(r⃗)ψB(r⃗) = (1 + R
a
+ R2

3a2
) e−

R
a (13.216)

The expectation value of Ĥ in these trial states is

⟨Ĥ⟩± =
1

2 ± 2S
(⟨A∣ Ĥ ∣A⟩ + ⟨B∣ Ĥ ∣B⟩ ± 2 ⟨A∣ Ĥ ∣B⟩) (13.217)

where

⟨A∣ Ĥ ∣A⟩ = ∫ d3rψA(r⃗)ĤψA(r⃗) (13.218)

and so on.
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Now

⟨A∣ Ĥ ∣A⟩ = ∫ d3rψA(r⃗)
⎛
⎝
− h̵

2

2m
∇2 − e2

∣r⃗ − R⃗A∣
− e2

∣r⃗ − R⃗B ∣
+ e2

∣R⃗A − R⃗B ∣
⎞
⎠
ψA(r⃗)

= ∫ d3rψA(r⃗)
⎛
⎝
− h̵

2

2m
∇2 − e2

∣r⃗ − R⃗A∣
⎞
⎠
ψA(r⃗)

+ ∫ d3rψA(r⃗)
⎛
⎝

e2

∣R⃗A − R⃗B ∣
⎞
⎠
ψA(r⃗) − ∫ d3rψA(r⃗)

⎛
⎝

e2

∣r⃗ − R⃗B ∣
⎞
⎠
ψA(r⃗)

= E1 +
e2

R
− e

2

R
[1 − [1 + R

a
] e−

2R
a ] = E1 +

e2

R
[1 + R

a
] e−

2R
a

= ⟨B∣ Ĥ ∣B⟩

where

E1 = ground state energy of a hydrogen atom = −1 Ry (13.219)

In a similar way

⟨A∣ Ĥ ∣B⟩ = ∫ d3rψA(r⃗)
⎛
⎝
− h̵

2

2m
∇2 − e2

∣r⃗ − R⃗A∣
− e2

∣r⃗ − R⃗B ∣
+ e2

∣R⃗A − R⃗B ∣
⎞
⎠
ψB(r⃗)

= (E1 +
e2

R
)S(R) − e

2

a
[1 + R

a
] e−

R
a

Putting everything together we get

ε±(R) = ⟨Ĥ⟩± (13.220)

= 1

1 ± S
[E1 +

e2

R
[1 + R

a
] e−

2R
a ± (E1 +

e2

R
)S(R) ∓ e

2

a
[1 + R

a
] e−

R
a ]

A plot of ε±(R) versus R/a is shown in Figure 13.9 below.

The top curve represents ε−(R) and the bottom curve is ε+(R). It is clear that
ε+(R) has a minimum and ε−(R) does not.

Therefore, the symmetric wave function leads to binding between the nuclei and
the antisymmetric wave function does not.

In the region between the nuclei

ψ+(r⃗) >> ψ−(r⃗) (13.221)

In fact, ψ−(r⃗) is zero on the bisecting plane. This implies that ψ+(r⃗) gives the
larger probability for the electron to be between the nuclei. This is the binding
mechanism. In this state the electron has the greatest attraction from both
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Figure 13.9: ε±(R) versus R/a

protons.

This theory implies

ψ+(r⃗) minimum → nuclear separation = 1.3

minimum energy = −1.76 eV
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The experimental results are

nuclear separation = 1.06

minimum energy = −2.8 eV

A single electron wave function ψ± = C± [ψA(r⃗) ± ψB(r⃗)] is a molecular orbital.
Our assumption of a linear combination or these atomic orbitals comprises the
LCAO model.

ψ+(r⃗) state → binding → binding orbital
ψ−(r⃗) state → E > 0 always → antibinding orbital

Hydrogen Molecule (H2)

We now have two electrons. The Hamiltonian for the two electrons in the H2

molecule is

Ĥ = − h̵
2

2m
∇2

1 −
h̵2

2m
∇2

2 −
e2

∣r⃗1 − R⃗A∣
− e2

∣r⃗1 − R⃗B ∣

− e2

∣r⃗2 − R⃗A∣
− e2

∣r⃗2 − R⃗B ∣
+ e2

∣r⃗1 − r⃗2∣
+ e2

∣R⃗A − R⃗B ∣
(13.222)

There are two different variational approaches to the solution of this problem.

Molecular Orbital Method

We make the assumption that the wave function of the two electrons in the
ground state is

ψsymm(1,2) = ψ+(1)ψ+(2)χspin−singlet (13.223)

= 1

2(1 + S(R))
(ψA(1) + ψB(1)) (ψA(2) + ψB(2))χsinglet

This wave function has a symmetric spatial part and an antisymmetric spin
part so that the total wave function for the two electrons is antisymmetric. The
spatial part is the product of the H+

2 molecular wave functions. The spatial
part has been chosen to be a binding orbital since it is maximum in between the
nuclei. Therefore, we expect this spatial wave function to represent the ground
state of the H2 molecule. The choice of the singlet spin function (paired spins)
is solely to insure antisymmetry.

The triplet spin state is symmetric an requires an antisymmetric spatial part,
i.e.,

ψanti(1,2) =
1√
2
[ψ+(1)ψ−(2) − ψ−(1)ψ+(2)]χtriplet (13.224)

This spatial part is an antibinding orbital since it is zero in between the nuclei
and thus has a higher energy than the other wave function.
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These assumptions clearly have defects:

1. At small proton separations the wave function is the product of two 1s
hydrogen wave functions instead of approximating a helium wavefunction,
i.e., the system is like helium with Z = 2 at small separations, but our
approximation assumes two electrons in S−states with Z = 1.

2. At larger proton separations there is little probability that the two elec-
trons will both be near the same proton. If we expand out the spatial part
of the wave function we have

(ψA(1)ψA(2) + ψB(1)ψB(2)) + (ψA(1)ψB(2) + ψA(2)ψB(1))

the first term says the two electrons are near the same proton. The last
term implies that one electron is near each proton. The presence of the first
term with the same amplitude as the second term is a poor approximation.

This last argument simply reflects the fact that at large proton separations

H +H is more energetically favorable then p +H−

The assumed wave function will still give a reasonable upper bound for the
binding energy since it depends only on the behavior of the system near the
actual nuclear separations, which is in between the above two extremes.

The Heitler-London or Valence Bond Method

In this method we leave out the ψA(1)ψA(2) and ψB(1)ψB(2) terms. We choose

ψs(1,2) =
1√

2(1 + S2)
(ψA(1)ψB(2) + ψA(2)ψB(1))χsing (13.225)

ψt(1,2) =
1√

2(1 − S2)
(ψA(1)ψB(2) − ψA(2)ψB(1))χtrip (13.226)

In this case, for large separations we have separated hydrogen atoms, which is
the correct physics. These wave functions exhibit the same small separation
problems as in the molecular orbital method, however.

The expectation value of Ĥ in these states is

ε±(R) = ⟨Ĥ⟩±

= ⟨AB∣ Ĥ ∣AB⟩ + ⟨BA∣ Ĥ ∣BA⟩ ± ⟨AB∣ Ĥ ∣BA⟩ ± ⟨BA∣ Ĥ ∣AB⟩
2 ± 2S2

= ⟨AB∣ Ĥ ∣AB⟩ ± ⟨AB∣ Ĥ ∣BA⟩
1 ± S2

(13.227)

where we have used

⟨AB∣ Ĥ ∣AB⟩ = ⟨BA∣ Ĥ ∣BA⟩
⟨AB∣ Ĥ ∣BA⟩ = ⟨BA∣ Ĥ ∣AB⟩
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The + sign is the singlet value and the − sign is the triplet value. The matrix
elements are given by

⟨AB∣ Ĥ ∣AB⟩ = ∫ d3r1d
3r2ψA(1)ψB(2)ĤψA(1)ψB(2) (13.228)

⟨AB∣ Ĥ ∣BA⟩ = ∫ d3r1d
3r2ψA(1)ψB(2)ĤψA(2)ψB(1) (13.229)

The Schrodinger equation for each of the 1S wave functions (ψA and ψB) is of
the form

⎛
⎝
− h̵

2

2m
∇2

1 −
e2

∣r⃗1 − R⃗A∣
⎞
⎠
ψA(r⃗1) = E1ψA(r⃗1) (13.230)

We therefore get for the matrix elements

⟨AB∣ Ĥ ∣AB⟩ = 2E1 +Q (13.231)

⟨AB∣ Ĥ ∣BA⟩ = S2(2E1 +
e2

R
) + Q̃ (13.232)

where

Q = total Coulomb energy

= ∫ d3r1d
3r2ψ

2
A(1)ψ2

B(2)
⎡⎢⎢⎢⎢⎣

e2

∣r⃗1 − r⃗2∣
− e2

∣r⃗1 − R⃗B ∣
− e2

∣r⃗2 − R⃗A∣
+ e2

∣R⃗A − R⃗B ∣

⎤⎥⎥⎥⎥⎦

= −2∫ d3r1ψ
2
A(1)

⎡⎢⎢⎢⎢⎣

e2

∣r⃗1 − R⃗B ∣

⎤⎥⎥⎥⎥⎦
+ ∫ d3r1d

3r2ψ
2
A(1)ψ2

B(2) [ e2

∣r⃗1 − r⃗2∣
] + e

2

R

= VC(R⃗) + e
2

R
(13.233)

Q̃ = total exchange energy

= ∫ d3r1d
3r2ψA(1)ψB(2)ψA(2)ψB(1)

⎡⎢⎢⎢⎢⎣

e2

∣r⃗1 − r⃗2∣
− e2

∣r⃗1 − R⃗B ∣
− e2

∣r⃗2 − R⃗A∣

⎤⎥⎥⎥⎥⎦

= −2∫ d3r1ψA(1)ψB(1)
⎡⎢⎢⎢⎢⎣

e2

∣r⃗1 − R⃗A∣

⎤⎥⎥⎥⎥⎦

+ ∫ d3r1d
3r2ψA(1)ψB(2)ψA(2)ψB(1) [ e2

∣r⃗1 − r⃗2∣
] + S2 e

2

R

= Vex(R⃗) + S2 e
2

R
(13.234)

The exchange term is a measure of the overlap of the wave functions, weighted
by the potential energies. It is the result of an interplay between quantum
mechanics and the PEP.
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Putting everything together we have

ε± = 2E1 +
VC ± Vex
1 ± S2

+ e
2

R
= 2E1 +

(VC + e2

R
) ± (Vex + S2 e2

R
)

1 ± S2
(13.235)

We have

VC +
e2

R
> 0 always and Vex + S2 e

2

R
< 0 generally (13.236)

which implies that ε+ < ε−. In fact, one finds that

ε− − 2E1 has no minimum
ε+ − 2E1 has a minimum 30 eV deep at R = 1.5a0

as shown in Figure 13.10 below.

Figure 13.10: Energy versus R

This implies that the molecule binds in the singlet state but not in the triplet
state. One finds that the strength of the binding is proportional to the overlap
of the two electron states .

The triplet wave function spatial part vanishes if both electrons are in between
the protons implying a smaller overlap and thus no binding.

13.2.4 Vibrational and Rotational Levels of a Molecule
We found earlier that the nuclear wave functions satisfy an equation of the form

(T̂N + εn(R⃗))ψn(R⃗) = Eψn(R⃗) (13.237)

if we consider a two-atom molecule like HCL, this equation gives the rotational
and vibrational energy levels.

If we denote the relative coordinate of the nuclei by r⃗, we have

(− h̵
2

2m
∇2 + ε(r))ψ(r⃗) = Eψ(r⃗) (13.238)
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where
r = ∣r⃗∣ and m = M1M2

M1 +M2
= reduced mass (13.239)

We have used the fact that the effective potential depends only on r.

This represents a rotationally symmetric problem (central force field). There-
fore, we assume

ψ(r⃗) = Rn`(r)Y`m(θ,ϕ) (13.240)

Substitution gives

(− h̵
2

2m
( d

2

dr2
+ 2

r

d

dr
) + ε(r) + h̵

2`(` + 1)
2mr2

)Rn`(r) = ERn`(r) (13.241)

Defining

Veff(r) = ε(r) +
h̵2`(` + 1)

2mr2
(13.242)

and using
un`(r) = rRn`(r) (13.243)

we have

(− h̵
2

2m

d2

dr2
+ Veff(r))un`(r) = Eun`(r) (13.244)

For small values of `, Veff(r) has a minimum that depends on ` (say at r = r`).
In the neighborhood of this minimum, we can expand Veff(r) in a Taylor series

Veff(r) = Veff(r`) +
1

2
mω2

` (r − r`)2 + ..... (13.245)

where

mω2
` = (

d2Veff

dr2
)
r=r`

(13.246)

For small displacements from equilibrium, we have simple harmonic motion.
Letting q = r − r` we get

(− h̵
2

2m

d2

dq2
+ ε(r`) +

h̵2`(` + 1)
2mr2

`

+ 1

2
mω2

` q
2)un`(r) = Eun`(r) (13.247)

where we have put r = r` (small displacement) in

ε(r) and
h̵2`(` + 1)

2mr2
(13.248)

We end up with the harmonic oscillator equation where the energy is

E = ε(r`) +
h̵2`(` + 1)

2I`
+ h̵ω`(n + 1/2) (13.249)
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with
I` =mr2

` = effective moment of inertia (13.250)

The corresponding stationary states are

un` = AnHn ( q

q0`
) exp{−1

2
( q

q0`
)

2

} (13.251)

where

q0` = ( h̵

mω`
)

1/2
(13.252)

Although the wave functions do not satisfy the requirement u(r = 0) = 0, the
energy eigenvalues are still reasonably accurate in this approximations, i.e.,

un`(0) ≈Hn(0) exp{−1

2
( r`
q0`

)
2

} (13.253)

With r` ≫ q0`, u(0) is very small. The energy eigenvalues contain contributions
from

1. the effective electronic energy

2. the rotational energy

3. the vibrational energy

The rotational levels have λ ≈ 0.1 − 1 cm which corresponds to the far infrared
and microwave regions. The vibrational levels have λ ≈ 2 × 10−3 − 3 × 10−3 cm
which corresponds to the infrared region.

13.3 Problems

13.3.1 S-Wave Phase Shift
We wish to find an approximate expression for the s-wave phase shift, δ0, for
scattering of low energy particles from the potential

V (r) = C

r4
, C > 0

(a) For low energies, k ≈ 0, the radial Schrodinger equation for ` = 0 may be
approximated by (dropping the energy term):

[− 1

r2

d

dr
r2 d

dr
+ 2mC

h̵2r4
]Rinside`=0 (r) = 0

By making the transformations

R(r) = 1√
r
ϕ(r) , r = i

h̵

√
2mC

x

show that the radial equation may be solved in terms of Bessel functions.
Find an approximate solution, taking into account behavior at r = 0.
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(b) Using the standard procedure of matching this to Routside`=0 (r) at r = a

(where a is chosen such that h̵a≫
√

2mC and ka≪ 1) show that

δ0 = −k
√

2mC

h̵

which is independent of a.

13.3.2 Scattering Slow Particles

Determine the total cross section for the scattering of slow particles (ka < 1) by
a potential V (r) = Cδ(r − a).

13.3.3 Inverse square scattering

Particles are scattered from the potential

V (r) = g

r2

where g is a positive constant.

(a) Write the radial wave equation and determine the regular solutions.

(b) Prove that the phase shifts are given by

δ` =
π

2

⎡⎢⎢⎢⎢⎣
` + 1

2
−
√

(` + 1

2
)

2

+ 2µg

h̵2

⎤⎥⎥⎥⎥⎦

(c) Find the energy dependence of the differential cross section for a fixed
scattering angle.

(d) Find δ` for 2µg/h̵2 ≪ 1 and show that the differential cross section is

dσ

dθ
= π3

2h̵2

g2µ

E
cot(θ

2
)

where E is the energy of the scattered particle.

(e) For the same potential, calculate the differential cross section using the
Born approximation and compare it with the above results. Why did this
happen?

13.3.4 Ramsauer-Townsend Effect

What must V0a
2 be for a 3-dimensional square well potential in order that

the scattering cross section be zero in the limit of zero bombarding energy
(Ramsauer-Townsend effect)?
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13.3.5 Scattering from a dipole

Consider an electric dipole consisting of two electric charges e and −e at a
mutual distance 2a. Consider also a particle of charge e and mass m with an
incident wave vector k⃗ perpendicular to the direction of the dipole, i.e., choose
the incident particle along the z−axis k⃗ = kẑ and the dipole set along he x−axis
or the charges are at ±ax̂.

Calculate the scattering amplitude in Born approximation, Find the directions
at which the differential cross-section is maximum.

13.3.6 Born Approximation Again

(a) Evaluate, in the Born approximation, the differential cross section for the
scattering of a particle of mass m by a delta-function potential V (r⃗) =
Bδ(r⃗).

(b) Comment on the angular and velocity dependence.

(c) Find the total cross section.

13.3.7 Translation invariant potential scattering

Show that if the scattering potential has a translation invariance property V (r⃗+
R⃗) = V (r⃗), where R⃗ is a constant vector, then the Born approximation scattering
vanishes unless q⃗ ⋅R⃗ = 2πn, where n is an integer and q⃗ is the momentum transfer.
This corresponds to scattering from a lattice. For any vector R⃗ of the lattice,
the set of vectors k⃗ that satisfy k⃗ ⋅R⃗ = 2πn constitutes the reciprocal lattice. This
prove then shows that the scattering amplitude vanishes unless the momentum
transfer q⃗ is equal to some vector of the reciprocal lattice. This is the Bragg-Von
Laue scattering condition.

13.3.8 ` = 1 hard sphere scattering

Consider the hard sphere potential of the form

V (r) =
⎧⎪⎪⎨⎪⎪⎩

0 r > r0

∞ r < r0

where kr0 ≪ 1. Write the radial Schrodinger equation for ` = 1, and show that
the solution for the p-wave scattering is of the form

χk1(r) = rRk1(r) = A [ sin(kr)
kr

− cos(kr) + a(cos(kr)
kr

+ sin(kr))]

where A and a are constants. Determine δ1(k) from the condition imposed on
χk1(r0). Show that in the limit k → 0, δ1(k) ≈ (kr0)3 and δ1(k) ≪ δ0(k).
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13.3.9 Vibrational Energies in a Diatomic Molecule
The nuclei of a diatomic molecule are moving in a potential field given as

Veff(R) = −2D [(a0

R
) − (a0

R
)

2

] + ( h̵2

2µR2
)J(J + 1)

Express this potential near its minimum by a harmonic oscillator potential and
determine the vibrational energies of the molecule.

13.3.10 Ammonia Molecule
In the ammonia molecule, NH3, the three hydrogen atoms lie in a plane at
the vertices of an equilateral triangle. The single nitrogen atom can lie either
above or below the plane containing the hydrogen atoms, but in either case the
nitrogen atom is equidistant from each of the hydrogen atoms (they form an
equilateral tetrahedron). Let us call the state of the ammonia molecule when
the nitrogen atom is above the plane of the hydrogen atoms ∣1⟩ and let us call
the state of the ammonia molecule when the nitrogen atom is below the plane
of the hydrogen atoms ∣2⟩.

How do we determine the energy operator for the ammonia molecule? If these
were the energy eigenstates, they would clearly have the same energy (since
we cannot distinguish them in any way). So diagonal elements of the energy
operator must be equal if we are using the (∣1⟩ , ∣2⟩) basis. But there is a small
probability that a nitrogen atom above the plane will be found below the plane
and vice versa (called tunneling). So the off-diagonal element of the energy
operator must not be zero, which also reflects the fact that the above and below
states are not energy eigenstates. We therefore arrive with the following ma-
trix as representing the most general possible energy operator for the ammonia
molecule system:

Ĥ = ( E0 A
A E0

)

where E0 and A are constants.

(a) Find the eigenvalues and eigenvectors of the energy operator. Label them
as (∣I⟩ , ∣II⟩)

(b) Let the initial state of the ammonia molecule be ∣I⟩, that is, ∣ψ(0)⟩ = ∣I⟩.
What is ∣ψ(t)⟩, the state of the ammonia molecule after some time t?
What is the probability of finding the ammonia molecule in each of its
energy eigenstates? What is the probability of finding the nitrogen atom
above or below the plane of the hydrogen atoms?

(c) Let the initial state of the ammonia molecule be ∣1⟩, that is, ∣ψ(0)⟩ = ∣1⟩.
What is ∣ψ(t)⟩, the state of the ammonia molecule after some time t?
What is the probability of finding the ammonia molecule in each of its
energy eigenstates? What is the probability of finding the nitrogen atom
above or below the plane of the hydrogen atoms?
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13.3.11 Ammonia molecule Redux
Treat the ammonia molecule shown in the figure

Figure 13.11: Ammonia Molecule

as a symmetric rigid rotator. Call the moment of inertia about the z−axis I3
and the moments about the pairs of axes perpendicular to the z−axis I1.

(a) Write down the Hamiltonian of this system in terms of L⃗, I3 and I1.

(b) Show that [Ĥ, L̂z] = 0

(c) What are the eigenstates and eigenvalues of the Hamiltonian?

(d) Suppose that at time t = 0 the molecule is in the state

∣ψ(0)⟩ = 1√
2
∣0,0⟩ + 1√

2
∣1,1⟩

What is ∣ψ(t)⟩?

13.3.12 Molecular Hamiltonian
A molecule consists of three atoms located on the corners of an equilateral
triangle as shown below

Figure 13.12: A Molecule

The eigenstates of the molecule can be written as linear combinations of the
atomic states ∣αi⟩ , i = 1,2,3, such that

⟨αi∣ Ĥ ∣αj⟩ =
⎧⎪⎪⎨⎪⎪⎩

ε if i = j
−β if i ≠ j
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where Ĥ is the Hamiltonian and ε, β > 0. Now define an operator R̂ such that

R̂ ∣α1⟩ = ∣α2⟩ , R̂ ∣α2⟩ = ∣α3⟩ , R̂ ∣α3⟩ = ∣α1⟩

(a) Show that R̂ commutes with Ĥ and find the eigenvalues and eigenvectors
of R̂.

(b) Find the eigenvalues and eigenvectors of Ĥ.

13.3.13 Potential Scattering from a 3D Potential Well

A 3D stepwise constant potential is given by

V (r⃗) =
⎧⎪⎪⎨⎪⎪⎩

V1 0 < ∣r⃗∣ < R1

V2 R1 < ∣r⃗∣ < R2

and zero outside R2.

(1) Calculate the differential cross-section in the Born approximation as a
function of the momentum transfer q, where q⃗ = k⃗′ − k⃗.

(2) Verify your expression is correct by showing that it reduces to the result
for the spherical square well when V1 = V2, i.e., calculate separately the
spherical square well result and set V1 = V2 → V0.

(3) Plot the result of the square well(part(2)) as a function of qR2 over a
sufficient region to understand its behavior (i.e., qR2 → 0 , qR2 ∼ 1 , qR2 ≫
1). Note and explain any noteworthy features.

(4) Now plot not simply versus q, but versus θ, 0 < θ < π, for four represen-
tative values of the energy. Use atomic scales: R2 = 3aB , V0 = 1 Ry. You
have to decide on relevant energies to plot; it should be helpful to plot on
the same graph with different line styles or colors.

(5) Return to the potential of part(1). Let R2 = 21/3R1, so there is an equal
volume inside R1 and between R1 and R2. Then set V1 = −V2, this means
the volume integral of the potential vanishes, and also that it has strong
r⃗ dependence (step function). Determine the differential cross-section in
this case. Plot versus energy and angle.

(6) Finally, consider a Gaussian potential that has the same range parameter
and the same volume integral as the simple square well of part(2). Cal-
culate the differential cross-section in this case. Can you identify possible
effects due to the sharp structure (discontinuity) that occurs in only one
of them.
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13.3.14 Scattering Electrons on Hydrogen
From measurements of the differential cross section for scattering electrons off
protons (in atomic hydrogen) it was found that the proton had a charge density
given by

ρ(r) = ae−br

where a and b are constants.

(a) Find a and b such that the proton charge equals e, the charge on the
electron.

(b) Show that the proton mean square radius is given by

⟨r2⟩ = 12

b2

(c) Assuming a reasonable value for ⟨r2⟩1/2
calculate a in esu/cm2.

13.3.15 Green’s Function
Consider a particle of mass m which scatters off a potential V (x) in one dimen-
sion.

(a) Show that the free-particle Green’s function for the time-independent
Schrodinger equation with energy E and outgoing-wave boundary con-
ditions is

GE(x) = 1

2π

∞

∫
−∞

dk
eikx

E − h̵2k2

2m
+ iε

with ε a positive infinitesimal.

(b) Write that the equation for the energy eigenfunction corresponding to an
incident wave traveling in the positive x−direction. Using this equation
find the reflection probability in the first Born approximation for the po-
tential

V (x) =
⎧⎪⎪⎨⎪⎪⎩

V0 ∣x∣ < a/2
0 ∣x∣ > a/2

For what values of E do you expect this to be a good approximation?

13.3.16 Scattering from a Hard Sphere
In this case we have

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 r > b
∞ r ≤ b

which is a repulsive potential. Determine the low energy differential and total
cross sections. Discuss your results.
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13.3.17 Scattering from a Potential Well
In this case

V (x) =
⎧⎪⎪⎨⎪⎪⎩

0 r > b
V0 r ≤ b

Determine δ0, the total cross section and the existence of resonances.

13.3.18 Scattering from a Yukawa Potential
Use the Born approximation to determine the differential cross section for a
Yukawa potential

V (r⃗) = ae
−µr

r

Discuss the limit µ→ 0.

13.3.19 Born approximation - Spin-Dependent Potential
Use the Born approximation to determine the differential cross section for the
spin-dependent potential

V (r⃗) = e−µr
2

[A +Bσ⃗ ⋅ r⃗]

13.3.20 Born approximation - Atomic Potential
Use the Born approximation to determine the differential cross section for the
atomic potential seen by an incoming electron, which can be represented by the
function

V (r) = −Ze2 ∫
ρT (

←

r
′
)d3r⃗′

∣r⃗ − r⃗′∣
where

ρT (r⃗′) = ρnuclear(r⃗′) + ρelectronic(r⃗′) = δ(r⃗′) − ρ(r⃗′)

13.3.21 Lennard-Jones Potential
Consider the Lennard-Jones potential (shown below) used to model the binding
of two atoms into a molecule.
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Figure 13.13: Lennard-Jones Potential

It is given by

V (r) = C12

r12
− C6

r6

(a) Near the minimum r0, the potential looks harmonic. Including the first
anharmonic correction, show that up to a constant term

V (x) = 1

2
mω2x2 + ξx3

where r0 = (2C12/C6)1/6, x = r − r0, mω2/2 = V ′′(r0) and ξ = V ′′′(r0)/6.

Let us write Ĥ = Ĥ0 + Ĥ1, where Ĥ0 = p̂2

2m
+ 1

2
mω2x2 and Ĥ1 = ξx3.

(b) What is the small parameter of the perturbation expansion?

(c) Show that the first energy shift vanishes(use symmetry).

(d) Show that the second energy shift (first nonvanishing correction) is

E(2)
n =

ξ2 ( h̵
2mω

)3

h̵ω
∑
m≠n

∣⟨m∣ (â + â+)3 ∣n⟩∣
2

n −m

(e) Evaluate the matrix elements to show that

E(2)
n = ξ2h̵2

m3ω4
[(n − 2)(n − 1)(n)

3
+ (n + 3)(n + 2)(n + 1)

−3
+ 9n3

1
+ 9(n + 1)3

−1
]

= − ξ
2h̵2

m3ω4
[15

4
(n + 1/2)2 + 7

16
]

(f) Consider carbon C-C bonds take Lennard-Jones parameters C6 = 15.2 eV 6

and C12 = 2.4 × 104 eV 12. Plot the potential and the energy levels from
the ground to second excited state including the anharmonic shifts.
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Figure 13.14: Diatomic Molecule

13.3.22 Covalent Bonds - Diatomic Hydrogen
Consider the simplest neutral molecule, diatomic hydrogen H2, consisting of
two electrons and two protons.

(a) Classically, where would you put the electrons so that the nuclei are at-
tracted to one another in a bonding configuration? What configuration
maximally repels the nuclei (anti-bonding)?

(b) Consider the two-electron state of this molecule. When the nuclei are far
enough apart, we can construct this state out of atomic orbitals and spins.
Write the two possible states as products of orbital and spin states. Which
is the bonding configuration? Which is the anti-bonding?

(c) Sketch the potential energy seen by the nuclei as a function of the inter-
nuclear separation R for the two different electron configurations. Your
bonding configuration should allow for bound-states of the nuclei to one
another. This is the covalent bond.

13.3.23 Nucleus as sphere of charge - Scattering
To a first approximation, the potential that a charged particle feels from a
hydrogen atom can be thought of as due to a positive point charge at the origin
(the proton) plus a uniform region of negative charge occupying a sphere of
radius a0 (the so-called electron cloud).

(a) Calculate, in the Born approximation, the differential cross section for
scattering a charged particle from the hydrogen atom as modeled above
(neglect the recoil of the hydrogen atom).

(b) What is the form of the differential cross section for low energy? Compare
with the pure Coulomb cross section.

(c) Show that the differential cross section becomes more and more like a
pure Coulomb cross section as the energy of the incident particle increases.
Explain why this happens.
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Chapter 14

Some Examples of Quantum Systems

14.1 Coherent and Squeezed States

We have derived relationships between the non-Hermitian operators â and â†

and the position and momentum operators

x̂ =
√

h̵

2mω
(â+ + â) , p̂ = i

√
mh̵ω

2
(â+ − â) (14.1)

Working with the coherent states defined by

â ∣α⟩ = α ∣α⟩ (14.2)

we found

∣α⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

∣m⟩ (14.3)

where
∣α2∣ = N = ⟨α∣ N̂op ∣α⟩ (14.4)

Let us now derive some important relations.

⟨α∣ x̂ ∣α⟩ =
√

h̵

2mω
⟨α∣ (â+ + â) ∣α⟩

=
√

h̵

2mω
(α + α∗) =

√
2h̵

mω
Real(α) (14.5)

⟨α∣ p̂ ∣α⟩ = i
√

h̵mω

2
⟨α∣ (â+ − â) ∣α⟩

= i
√

h̵mω

2
(α∗ − α) =

√
2mh̵ωImag(α) (14.6)
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⟨α∣ x̂2 ∣α⟩ = h̵

2mω
⟨α∣ (â+â+ + ââ+ + â+â + ââ) ∣α⟩

= h̵

2mω
⟨α∣ (α∗2 + αα∗ + α∗α + α2 + 1) ∣α⟩

= ⟨α∣ x̂ ∣α⟩2 + h̵

2mω
(14.7)

⟨α∣ p̂2 ∣α⟩ = − h̵mω
2

⟨α∣ (â+â+ − ââ+ − â+â + ââ) ∣α⟩

= − h̵mω
2

⟨α∣ (α∗2 − αα∗ − α∗α + α2 − 1) ∣α⟩

= ⟨α∣ p̂ ∣α⟩2 + h̵mω
2

(14.8)

Using these relations we have

(∆x)2 = ⟨α∣ x̂2 ∣α⟩ − ⟨α∣ x̂ ∣α⟩2 = h̵

2mω
(14.9)

(∆p)2 = ⟨α∣ p̂2 ∣α⟩ − ⟨α∣ p̂ ∣α⟩ = h̵mω
2

(14.10)

Hence
∆x∆p = h̵

2
(14.11)

which says that coherent states are minimum uncertainty states.

Now let us find the differential equation satisfied by ⟨x ∣α⟩ and determine its
solution. We have

⟨x∣ â ∣α⟩ = α ⟨x ∣ α⟩ = 1

2
⟨x∣

⎛
⎝

√
2mω

h̵
x̂ − p̂

i

√
2

mωh̵

⎞
⎠
∣α⟩

= 1

2

⎛
⎝

√
2mω

h̵
x̂ − 1

i

√
2

mωh̵
(−ih̵ d

dx
)
⎞
⎠
⟨x ∣ α⟩

or

(x̂ + h̵

mω

d

dx
) ⟨x ∣ α⟩ =

√
2h̵

mω
⟨x ∣ α⟩ (14.12)

which has the solution (check by substitution)

⟨x ∣ α⟩ = C exp [−(x − ⟨x⟩)2

4(∆x)2
+ i

h̵
⟨p⟩x] (14.13)

= C ′ exp

⎡⎢⎢⎢⎢⎢⎣
−mω

2h̵

⎛
⎝
x −

√
2h̵

mω
α
⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦
(14.14)
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For a fixed oscillator mode, specified by a given value of mω, the coherent states
are the manifold of those minimum uncertainty states that have definite values
of ∆x and ∆p. If mω = 1, then the uncertainties in x and p are both equal to√
h̵/2.

We can construct other minimum uncertainty states with a narrower ∆x, the
so-called squeezed states, for the same oscillator by defining a new set of raising
and lowering operators.

b̂ =
√

mω ′

2h̵
(x̂ + i p̂

mω ′ ) , b̂+ =
√

mω ′

2h̵
(x̂ − i p̂

mω ′ ) (14.15)

where we introduce an arbitrarily chosen positive parameter ω ′. Now we have

[b̂, b̂+] = mω
′

2h̵
(− i

mω ′ [x̂, p̂] +
i

mω ′ [p̂, x̂])

= − i
h̵
[x̂, p̂] = − i

h̵
ih̵ = 1 (14.16)

We also have

b̂ =
√

mω ′

2h̵
(x̂ + i p̂

mω ′ )

=
√

mω ′

2h̵

⎛
⎝

√
h̵

2mω
(â + â+) + i

mω ′ i

√
h̵mω

2
(â+ − â)

⎞
⎠

=
⎛
⎝

√
mω ′

2h̵

√
h̵

2mω
+
√

mω ′

2h̵

i

mω ′ i

√
h̵mω

2

⎞
⎠
â+

+
⎛
⎝

√
mω ′

2h̵

√
h̵

2mω
−
√

mω ′

2h̵

i

mω ′ i

√
h̵mω

2

⎞
⎠
â

= 1

2

⎛
⎝

√
ω ′

ω
−
√

ω

ω ′
⎞
⎠
â+ + 1

2

⎛
⎝

√
ω ′

ω
+
√

ω

ω ′
⎞
⎠
â

= λâ + νâ+ (14.17)

where

λ = 1

2

⎛
⎝

√
ω ′

ω
−
√

ω

ω ′
⎞
⎠

, ν = 1

2

⎛
⎝

√
ω ′

ω
+
√

ω

ω ′
⎞
⎠

(14.18)

and therefore
b̂+ = λâ+ + νâ (14.19)

since λ and ν are real. Algebra also shows that

λ2 − ν2 = 1

4
[ω

′

ω
+ ω

ω′
− ω

′

ω
− ω

ω′
+ 2 + 2] = 1 (14.20)

1111



We now invert the transformation. We have

λb̂ − νb̂+ = λ2â + λνâ+ − λνâ+ − ν2â = (λ2 − ν2)â = â (14.21)

which then implies that
λb̂+ − νb̂ = â+ (14.22)

We define the eigenstates of the lowering operator b̂ by

b̂ ∣β⟩ = β ∣β⟩ (14.23)

These new states are also minimum uncertainty states for x and p. We want to
calculate

(∆x)2 = ⟨x2⟩ − ⟨x⟩2 , (∆p)2 = ⟨p2⟩ − ⟨p⟩2 (14.24)

Now we have

x̂ =
√

h̵

2mω
(â + â+)

=
√

h̵

2mω
((λ − ν) b̂ + (λ − ν) b̂+)

=
√

h̵

2mω
(λ − ν) (b̂ + b̂+) (14.25)

and

p̂ = i
√

h̵mω

2
(â+ − â)

= i
√

h̵mω

2
((λ + ν) b̂+ − (λ + ν) b̂)

= i
√

h̵mω

2
(λ + ν) (b̂+ − b̂) (14.26)

These equations imply that earlier derivation we did is the same with different
multiplicative factors so that

(∆x)2 = h̵

2mω
(λ − ν)2 (14.27)

(∆p)2 = h̵mω
2

(λ + ν)2 (14.28)

and therefore

(∆x)2 (∆p)2 = h̵
2

4
(λ − ν)2 (λ + ν)2 = h̵

2

4
(λ2 − ν2)2 = h̵

2

4

It turns out that the operators â and b̂ are related by a unitary transformation,
i.e.,

b̂ = Û âÛ+ (14.29)
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where

Û = exp [ξ
2
(â2 − â+2)] (14.30)

and
eξ = λ + ν (14.31)

Proof:

Û âÛ+ = exp [ξ
2
(â2 − â+2)] â exp [−ξ

2
(â2 − â+2)] = eB̂ âe−B̂ (14.32)

Using the identity derived earlier we have

eB̂ âe−B̂ = â + [B̂, â] + 1

2
[B̂, [B̂, â]] + 1

6
[B̂, [B̂, [B̂, â]]] + .... (14.33)

Now with

B̂ = ξ
2
(â2 − â+2) (14.34)

we have

[B̂, â] = ξ
2
([â2, â] − [â+2, â]) = −ξ

2
[â+2, â] = ξâ+

[B̂, [B̂, â]] = ξ
2
ξ [â2, â+] = ξ2â

[B̂, [B̂, [B̂, â]]] = ξ3â+

and so on.

Therefore

Û âÛ+ = â + ξâ+ + ξ
2

2
â + ξ

3

6
â+ + .......

= â(1 + ξ
2

2!
+ ξ

4

4!
+ ....) + â+ (ξ + ξ

3

3!
+ ξ

5

5!
+ ....) (14.35)

If we define

λ = (1 + ξ
2

2!
+ ξ

4

4!
+ ....) , ν = (ξ + ξ

3

3!
+ ξ

5

5!
+ ....) (14.36)

so that
eξ = λ + ν (14.37)

we have
Û âÛ+ = λâ + νâ+ = b̂ (14.38)
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Finally, we have

â ∣coherent⟩ = α ∣coherent⟩

b̂ ∣squeezed⟩ = β ∣squeezed⟩
Û â ∣coherent⟩ = αÛ ∣coherent⟩
Û âÛ+Û ∣coherent⟩ = αÛÛ+Û ∣coherent⟩ = αÛ ∣coherent⟩

b̂Û ∣coherent⟩ = αÛ ∣coherent⟩ = αÛ ∣coherent⟩

b̂Û ∣coherent⟩ = αÛ ∣coherent⟩

which says that Û ∣coherent⟩ = ∣squeezed⟩. Thus, Û transforms a coherent state
into a squeezed state.

14.2 Electron in a circular wire

We now consider a loop of thin wire in the shape of a circle of radius R as
in Figure 14.1 below. A constant magnetic field perpendicular to the plane
of the loop produces a magnetic flux passing through the loop. Imagine that
the wire contains only one electron which is free to move. This electron has a
wavefunction ψ(θ) which depends only on the angular coordinate θ. We neglect
all interactions between the electron spin and the magnetic field as well as all
magnetic fields produced by the electron itself.

Figure 14.1: Circular Wire Configuration

We first determine the energies and energy eigenfunctions for a nonrelativistic
electron of mass m moving on this ring. In particular we want to find out how
ground state energy of the electron depends on the value of the applied magnetic
field in this approximation.

We have
∇× A⃗ = Bêz , B = constant (14.39)
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In cylindrical coordinates (r, θ, z), we can choose

Ar = Az = 0 , Aθ =
rB

2
→ A⃗ = rB

2
êθ (14.40)

The Schrodinger equation for the electron is

1

2m
(p⃗ − e

c
A⃗)

2

ψ = Eψ , e < 0 (14.41)

We then let

ψ = ψ′e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗
(14.42)

which should get rid of the effect of A⃗ (equivalent to a gauge transformation).
We have

(p⃗ − e
c
A⃗)ψ = (p⃗ − e

c
A⃗)ψ′e

ie
h̵c ∫⃗

r

A⃗⋅dr⃗

= h̵
i
∇(ψ′e

ie
h̵c ∫⃗

r

A⃗⋅dr⃗
) − e

c
A⃗ψ

= e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗ h̵

i
∇ψ′ + h̵

i
∇(e

ie
h̵c ∫⃗

r

A⃗⋅dr⃗
)ψ′ − e

c
A⃗ψ

= e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗ h̵

i
∇ψ′ + e

c
A⃗ψ − e

c
A⃗ψ

= e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗ h̵

i
∇ψ′ = e

ie
h̵c ∫⃗

r

A⃗⋅dr⃗
p⃗ψ′

Similarly,

(p⃗ − e
c
A⃗)

2

ψ = e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗
p⃗2ψ′ (14.43)

so that the Schrodinger equation becomes

1

2m
p⃗2ψ′ = Eψ′ (14.44)

Since the electron is confined to a loop of radius R, we have

ψ = ψ(θ) = ψ′(θ)e
ie
h̵c ∫⃗

r

A⃗⋅dr⃗
= ψ′(θ)e

ie
h̵c ∫⃗

r

AθRdθ
= ψ′(θ)e

ie
h̵cAθRθ (14.45)

Therefore we have

1

2m
p⃗2ψ′(θ) = − h̵2

2mR2

d2ψ′(θ)
dθ2

= Eψ′(θ) = h̵2

2mR2
C2

1ψ
′(θ) (14.46)

which has the solution

ψ′(θ) = eiC1θ → ψ(θ) = eiC1θe
ie
h̵cAθRθ = ei(C1+ eBR

2

2h̵c )θ (14.47)
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Now imposing single-valuedness, we have

ψ(θ) = ψ(θ + 2π) (14.48)

e
i(C1+ eBR

2

2h̵c )θ = ei(C1+ eBR
2

2h̵c )θ
e

2πi(C1+ eBR
2

2h̵c ) (14.49)

which says that

C1 +
eBR2

2h̵c
= n = 0,±1,±2, ...... (14.50)

or

C1 = n −
eBR2

2h̵c
→ En =

h̵2

2mR2
(n − eBR

2

2h̵c
)

2

(14.51)

If we define φ0 = −h̵c/e = unit of flux, and remembering that the flux through
the loop is φ = πR2B we have

En =
h̵2

2mR2
(n + φ

φ0
)

2

(14.52)

which says that the dependence of En on the external magnetic field B or flux
φ is parabolic. A plot is shown in Figure 14.2 below.

Figure 14.2: En versus B

Since n is an integer, the ground state energy Eg is given by

Eg =
h̵2

2mR2
(n∗ − eBR

2

2h̵c
)

2

(14.53)
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where n∗ is the integer nearest to eBR2/2h̵c or near

φ

φ0
= eφ
ch̵

< 0 (14.54)

Note that n∗ < 0 since e < 0.

Now imagine that we start with the wire in its ground state in the presence of
a magnetic flux φ. If the magnetic field is turned off determine the current in
the loop. Assume that R = 2 cm and φ = 0.6 gauss − cm2.

Suppose that we start with a state En which is the ground state. n will remain
the same when the magnetic field is turned off. Therefore, ψ(θ) = Ceinθ and
the electric current is

J⃗ = eh̵

2mi
(ψ∗∇ψ − ψ∇ψ∗) (14.55)

which follows from
∇ ⋅ J⃗ + ∂

∂t
∣ψ∣2 = 0 (14.56)

We then get

J⃗ = eh̵

2mi
(in) 2

R
ψ∗ψêθ =

neh̵

mR
ψ∗ψêθ (14.57)

Now, if S = the cross-section area of the thin wire, the normalization constant
is

∫ ψ∗ψd`dS = 2πR ∣C ∣2 S = 1→ ∣C ∣2 = 1

2πRS
(14.58)

Then,

I = current = ∫ J⃗ ⋅ dS⃗ = neh̵
mR

∣C ∣2 S = neh̵

2πmR2
(14.59)

where we have assumed that J⃗ is constant throughout the thin wire.

Since the electron is initially in the ground state, this implies that En is the
minimum energy and we have

n = greatest integer not greater than
ϕ

ϕ0
= eϕ
ch̵

(14.60)

or
greatest integer not greater than

ϕ

ϕ0
− 1 (14.61)

For a macroscopic system we have n≫ 1 and we can use

n ≈ eϕ
ch̵
→ I = neh̵

2πmR2
≈ e2ϕ

4πmcR2
(14.62)

For R = 2 cm and φ = 0.6 gauss − cm2 we have (using SI units)

I = (1.6 × 10−19)2(0.6 × 10−4) × 10−4

4π2(2 × 10−2)2(0.9 × 10−30)
= 1.1 × 10−14 amp (14.63)
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14.3 Spin-Orbit Coupling in Complex Atoms

Spin-orbit coupling is strictly an internal effect arising from the interaction
between the electron spin and the effective magnetic field due to the apparent
nuclear motion. In analogy with the one-electron atom, we can write for the
N−electron atom

Ĥso =
N

∑
i=1

ξi(r⃗i)L⃗i ⋅ S⃗i (14.64)

where ξi(r⃗i) is defined in a manner similar to the one-electron case, assuming
an effective potential field can be defined for each electron.

For the case of weak spin-orbit, let us use both classical and quantum mechanical
arguments to determine the first-order correction to the energy.

Classical Argument:

Vector Model for Combining Angular Momentum: The L⃗ ⋅ S⃗ interaction causes
L⃗ and S⃗ to exert torques on each other via their magnetic moments. This means
that neither of these quantities are independently constants of the motion.

However, if τ⃗external = 0, then J2 is a constant of the motion, where J⃗ = L⃗ + S⃗.

In this model, there exist two extreme orientations of these vectors for a single
electron as shown in Figure 14.3 below.

Figure 14.3: Extreme Orientations

and as shown in Figure 14.4 below the L⃗ and S⃗ vectors precess about the vector
J⃗ = L⃗ + S⃗ at the same angular velocity.
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Figure 14.4: Precessing Vectors

The quantum conditions now apply to J2 and Jz instead of L2, Lz and S2 and
Sz separately. This means that we define the state ∣J,MJ⟩ such that

Ĵ2 ∣J,MJ⟩ = J(J + 1)h̵2 ∣J,MJ⟩ (14.65)

Ĵz ∣J,MJ⟩ =MJ h̵ ∣J,MJ⟩ (14.66)

where J = ∣L + S∣ , ∣L + S∣−1, ......, ∣L − S∣ and each J value has 2J +1 MJ values.

Now consider the interaction term of the form ∑
i
L⃗i ⋅ S⃗i. In this model

each L⃗i precesses rapidly about L⃗

each S⃗i precesses rapidly about S⃗

This means that on the average

L⃗i = αiL⃗ , S⃗i = βiS⃗ (14.67)

so that
∑
i

L⃗i ⋅ S⃗i = γL⃗ ⋅ S⃗ , γ =∑
i

αiβi (14.68)

This means that (effectively)

Ĥso = γL⃗ ⋅ S⃗ = γ
2
(J⃗2 − L⃗2 − S⃗2) (14.69)

as we assumed.

1119



More formally (using the Wigner-Eckart theorem) we have

⟨LSJM ∣ Ĥso ∣LSJM⟩ = ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

× ⟨LSM ′
LM

′
S ∣ Ĥso ∣LSMLMS⟩

= ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

× ⟨LSM ′
LM

′
S ∣∑

i

ξi(r)L⃗i ⋅ S⃗i ∣LSMLMS⟩

= ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

×∑
i

ξi(r) ⟨LM ′
L∣ L⃗i ∣LML⟩ ⋅ ⟨SM ′

S ∣ S⃗i ∣SMS⟩

= ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

×∑
i

ξi(r) ⟨L ∥L⃗i∥L⟩ ⟨S ∥S⃗i∥S⟩

× ⟨LSM ′
LM

′
S ∣ L⃗ ⋅ S⃗ ∣LSMLMS⟩ (14.70)

where the last step involves two uses of the Wigner-Eckart theorem. We then
have

⟨LSJM ∣ Ĥso ∣LSJM⟩ = ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

×∑
i

ξi(r)αiβi ⟨LSM ′
LM

′
S ∣ L⃗ ⋅ S⃗ ∣LSMLMS⟩

= ∑
ML,MS ,M

′

L,M
′

S

ML+MS=M ′

L+M
′

S

C∗(LSM ′
LM

′
S)C(LSMLMS)

× ⟨LSM ′
LM

′
S ∣γL⃗ ⋅ S⃗ ∣LSMLMS⟩

= ⟨LSJM ∣γL⃗ ⋅ S⃗ ∣LSJM⟩ (14.71)

so that effectively, Ĥso = γL⃗ ⋅ S⃗.

We also note that since

Ĥso = γL⃗ ⋅ S⃗ → E(LSJ) = A(LS)(J(J + 1) −L(L + 1) − S(S + 1)
2

) (14.72)
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so that

E(L,S, J) −E(L,S, J − 1) = A(LS)(J(J + 1) −L(L + 1) − S(S + 1)
2

)

−A(LS)((J − 1)(J) −L(L + 1) − S(S + 1)
2

)

= A(LS)
2

(J2 + J − J2 + J) = A(LS)J (14.73)

which is called the Lande interval rule.

14.4 Zeeman Effect in Complex Atoms

The electronic spin and orbital angular momenta in a complex atom give rise to
a magnetic moment that we can write, by analogy with the one-electron atom,
as

M⃗ =
N

∑
i=1

M⃗i = −
β

h̵

N

∑
i=1

(L⃗i + 2S⃗i) (14.74)

In an external magnetic field B⃗ = Bz ẑ, the total Hamiltonian becomes Ĥ =
Ĥ0 + Ĥso + ĤB , where the term containing B is

ĤB = −M⃗ ⋅ B⃗ = −MzBz (14.75)

Let us now use classical precession arguments to derive an approximate operator
expression for M̂z. We will assume both a weak spin-orbit interaction and a weak
magnetic field interaction, but take the spin-orbit interaction to be dominant.
Remember, in the case of weak spin-orbit interaction and a weak magnetic field,
we can use the precession picture of the section 14.3. The same type of vector
diagrams can be used to deal with summations like

∑
i

L⃗i ⋅ L⃗ and ∑
i

S⃗i ⋅ S⃗ (14.76)

By vector addition we have J⃗ = L⃗ + S⃗ with both L⃗ and S⃗ precessing rapidly
about J⃗ . Also by vector addition we have

µ⃗ = µ⃗L + µ⃗S = gLL⃗ + gSS⃗ = e

2mc
(L⃗ + 2S⃗) (14.77)

Clearly, µ⃗ is not parallel to J⃗ since

gS = e

mc
= 2gL (14.78)
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In addition, µ⃗ is precessing rapidly about J⃗ . Therefore,

µeffective = µ⃗ ⋅
J⃗

J
= −µB

h̵

(L⃗ + 2S⃗) ⋅ J⃗
J

= −µB
h̵

(L⃗ + 2S⃗) ⋅ (L⃗ + S⃗)
J

= −µB
h̵

(L2 + 2S2 + 3L⃗ ⋅ S⃗)
J

= −µB
h̵

(L2 + 2S2 + 3
2
(J2 −L2 − S2))
J

= −µB
h̵
J
(3J2 −L2 + S2)

2J2
= −µB

h̵
J (1 + J

2 −L2 + S2

2J2
) (14.79)

or

µ⃗effective = −
µB
h̵
J⃗ (1 + J

2 −L2 + S2

2J2
) (14.80)

Now we use the Wigner-Eckert theorem.

14.4.1 Method #1: Plausibility Derivation

We have
H = −µ⃗ ⋅ B⃗ (14.81)

and
µ⃗ = e

2mc
(L⃗ + 2S⃗) = e

2mc
(J⃗ + S⃗) = GJ⃗ (14.82)

by the Wigner-Eckart theorem. Therefore,

GJ⃗ ⋅ J⃗ = e

2mc
(J⃗ ⋅ J⃗ + S⃗ ⋅ J⃗)→ G = e

2mc

J⃗ ⋅ J⃗ + S⃗ ⋅ J⃗
J⃗ ⋅ J⃗

= e

2mc

J(J + 1) + J⃗ ⋅J⃗+S⃗⋅S⃗−L⃗⋅L⃗
2

J(J + 1)

= e

2mc
[1 + J(J + 1) + S(S + 1) −L(L + 1)

2J(J + 1)
] (14.83)

14.4.2 Method #2: Full Formal Derivation

The Zeeman effect Hamiltonian is given by

Hzeeman =
eB

2mc
(∑
i

Liz + 2∑
i

Siz) = eB

2mc
(Lz + 2Sz) (14.84)

Therefore we need to evaluate the matrix element

⟨LSJM ∣ (Lz + 2Sz) ∣LSJM⟩
= ⟨LSJM ∣Jz ∣LSJM⟩ + ⟨LSJM ∣Sz ∣LSJM⟩
=Mh̵ + ⟨LSJ ∥S∥LSJ⟩ ⟨JM ∣Jz ∣JM⟩
=Mh̵ (1 + ⟨LSJ ∥S∥LSJ⟩) (14.85)
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Now

⟨LSJM ∣ S⃗ ⋅ J⃗ ∣LSJM⟩ = ⟨LSJ ∥S∥LSJ⟩ ⟨LSJM ∣ J⃗ ⋅ J⃗ ∣LSJM⟩
= J(J + 1)h̵2 ⟨LSJ ∥S∥LSJ⟩ (14.86)

or

⟨LSJ ∥S∥LSJ⟩ = ⟨LSJM ∣ S⃗ ⋅ J⃗ ∣LSJM⟩
J(J + 1)h̵2

(14.87)

But we have

⟨LSJM ∣ S⃗ ⋅ J⃗ ∣LSJM⟩ = 1

2
⟨LSJM ∣ (J2 + S2 −L2) ∣LSJM⟩

= h̵
2

2
(J(J + 1) + S(S + 1) −L(L + 1)) (14.88)

Putting it all together

⟨LSJ ∥S∥LSJ⟩ = J(J + 1) + S(S + 1) −L(L + 1)
2J(J + 1)

(14.89)

so that

⟨LSJM ∣ (Lz + 2Sz) ∣LSJM⟩ =Mh̵(1 + ⟨LSJ ∥S∥LSJ⟩)

=Mh̵(1 + J(J + 1) + S(S + 1) −L(L + 1)
2J(J + 1)

)

(14.90)

Therefore, the first-order correction to the energy level E(L,S, J) due to the
perturbation ĤB is

⟨Hzeeman⟩ =
eB

2mc
Mh̵(1 + J(J + 1) + S(S + 1) −L(L + 1)

2J(J + 1)
)

= µ0Mg(LSJ) (14.91)

where
g(LSJ) = 1 + J(J + 1) + S(S + 1) −L(L + 1)

2J(J + 1)
(14.92)

is the so-called Lande g-factor.

14.5 Neutron Interferometry

In the late 1970s several neutron interference experiments which are of funda-
mental importance in quantum mechanics and which settled debates started in
1930s, were carried out by Overhauser and collaborators.

In this section we investigate the effects on a neutron interference pattern of the
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gravitational field.

We mentioned some aspects of this type of experiment in Chapter 16. Here we
go into more detail.

We consider an interferometer made of three parallel equally spaced crystalline
silicon strips as shown in Figure 14.5 below.

Figure 14.5: Experimental Setup

The incident neutron beam is assumed to be monochromatic. C2 and C3 are
neutron counters.

For a particular value of the angle of incidence θ, called the Bragg angle, a plane
wave

ψinc = ei(p⃗⋅r⃗−Et)/h̵ (14.93)

where E is the energy of the neutrons and P⃗ their momentum, is split by
the crystal into two outgoing waves which are symmetric with respect to the
direction perpendicular to the crystal, as shown in Figure 14.6 below.

Figure 14.6: Splitting Waves
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The transmitted wave and the reflected wave have complex amplitudes which
can be written respectively as

α = cosχ , β = i sinχ χ real (14.94)

so that
ψI = αei(p⃗⋅r⃗−Et)/h̵ , ψII = βei(p⃗

′⋅r⃗−Et)/h̵ (14.95)
where ∣p⃗∣ = ∣p⃗ ′∣ since the neutrons scatter elastically on the nuclei of the crystal.
The transmission and reflection coefficients are

T = ∣α∣2 , R = ∣β∣2 with T +R = 1 (14.96)

In this interferometer setup the incident neutron beam is horizontal. It is split
by the interferometer into a set of beams, two of which recombine and interfere
at point D. The detectors C2 and C3 count the outgoing neutron fluxes. The
neutron beam velocity corresponds to a de Broglie wavelength λ = 1.445 and
the neutron mass is M = 1.675 × 10−27 kg.

For calculational simplicity we are using monochromatic plane waves to rep-
resent the neutron beams; they are, however, quasi-monochromatic with finite
extension in directions transverse to the beams.

14.5.1 Neutron Interferences
The measured neutron fluxes are proportional to the intensities of the waves that
reach the counters. We define the intensity of the incoming wave to be 1 (units
are arbitrary). For C2 the beams ABDC2 and ACDC2 interfere. Omitting the
propagation factors, at C2 we have the amplitude

A2 = α2β + β3 = β(α2 + β2) (14.97)

Similarly, for ABDC2 and ACDC3,

A3 = 2αβ2 (14.98)

The intensities at the two counters are then

I2 = R − 4R2T , I3 = 4R2T (14.99)

Suppose that we create a phase shift δ of the wave propagating along AC, i.e.,
in C the wave function is multiplied by eiδ.

The new amplitudes at the detectors are

A2 = α2βeiδ + β3 = β(α2eiδ + β2) , A3 = αβ2(1 + eiδ) (14.100)

and the new intensities become

I2 = R − 2R2T (1 + cos δ) , I3 = 2R2T (1 + cos δ) (14.101)

Note that I2 + I3 does not depend on the phase shift δ. This is because of the
conservation of the total number of particles arriving at D.
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14.5.2 The Gravitational Effect

The phase difference δ between the beams ACD and ABD is created by rotating
the interferometer by an angle ϕ around the direction of the incident beam as
shown in Figure 14.7 (on the left)below.

Figure 14.7: Geometrical Considerations

Now let d be the distance between the silicon strips(we neglect their thickness
in this discussion). We also define L as the side of ABCD and H as its height
as shown in Figure 14.7 (on the right) above. We then have(simple geometry)
that

L = d

cos θ
, H = 2d sin θ θ = Bragg angle (14.102)

Experimentally, the values of d and θ are d = 3.6 cm and θ = 22.1 ○.

For an angle ϕ we define the gravitational potential V to be V = 0 along AC
and V = V0 along BD.

Since there is no recoil energy of the silicon atoms to be taken into account, the
neutron total energy (kinetic + potential) is a constant of the motion in all of
the process. The energies are given by

EAC = p2

2M
= EBD = (p −∆p)2

2M
+MgH sinφ (14.103)

∆p ≈ M
2gH sinφ

p
(14.104)

where ∆p is the difference in the neutron momentum.

The velocity
√

2gH is of order 0.5m/s and the neutron velocity is

v = h

Mλ
≈ 2700 m/s (14.105)
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The change in the velocity ∆v is therefore very small, i.e.,

∆v = gH
v

≈ 2 × 10−4 m/s for φ = π
2

(14.106)

Now the gravitational potential varies in exactly the same way along AB and
CD. The neutron state in both cases is a plane wave with momentum p = h/λ
just beforeA or C. The same Schrodinger equation is used to determine the wave
function at the end of the segments. This implies that the phases accumulated
along the two segments AB and CD are equal.

When comparing segments AC and BD, the previous reasoning does not apply,
since the initial state of the neutron is not the same for the two segments. The
initial state is eipz/h̵ for AC and ei(p−∆p)z/h̵ for BD. After traveling over a
distance L = ĀC − B̄D, the phase difference between the two paths is

δ = L∆p

h̵
= M

2gλd2

πh̵2
tan θ sinφ (14.107)

The variation with ϕ of the experimentally measured intensity I2 in the counter
C2 is shown schematically in Figure 14.8 below (the data does not display a
minimum exactly at ϕ = 0 because of calibration difficulties).

Figure 14.8: Variation of Intensity with ϕ

From the previous result, we have

δ2 − δ1 = Ag(sinφ2 − sinφ1) (14.108)
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where

A = M
2λd2

πh̵2
tan θ (14.109)

Therefore,

g = δ2 − δ1
A(sinφ2 − sinφ1)

(14.110)

In the actual data there are 9 oscillations, i.e., δ2 − δ1 = 18π between ϕ1 = −32 ○

and ϕ2 = +24 ○, which gives g = 9.8m/s2. This clearly shows that the neutron
interference effects are directly the result of the difference in the gravitational
potential along two arms of the interferometer.

14.6 The Penning Trap

A Penning trap allows one to confine electrons in a finite spatial region and
then allow the accurate measurement of various properties. It involves the
superposition of a uniform magnetic field B⃗ directed along the z−axis and a
quadrupole electric field which derives from an electrostatic potential of the
form

Φ = K(2z2 − x2 − y2) (14.111)

where K is a positive constant.

An electron of charge −q(q > 0) and massm is placed in such a device. We denote
its spin operator by S⃗ and its momentum operator by p⃗. The Hamiltonian of
the electron in the above superposition of fields is

Ĥ = 1

2m
(p⃗ + qA⃗(r⃗))

2
+ V (r⃗) + (1 + a) q

m
S⃗ ⋅ B⃗ (14.112)

V (r⃗) = Φ =mω2
0(2ẑ2 − x̂2 − ŷ2)/4 (14.113)

= electrostatic potential energy (14.114)

A⃗(r⃗) = B⃗ × r⃗/2 (14.115)
= vector potential (14.116)

The constant a ≈ 1.16 × 10−3 is the gyromagnetic anomaly of the electron mag-
netic moment.

14.6.1 Motion of an Electron in a Penning Trap

We set ωc = qB/m, where B is the magnitude of the magnetic field, and we
assume that this cyclotron frequency ωc is much larger than ω0.

We note that p⃗ ⋅ A⃗(r⃗) = A⃗(r⃗) ⋅ p⃗ = L⃗ ⋅ B⃗/2 = L̂zB/2 and A⃗2 = B2(x2 + y2)/4. We
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then get

Ĥ = Ĥz + Ĥt + Ĥs (14.117)

Ĥz =
p̂2
z

2m
+ 1

2
mω2

0 ẑ
2 (14.118)

Ĥt =
p̂2
x

2m
+
p̂2
y

2m
+ 1

2
mΩ2(x̂2 + ŷ2) + 1

2
ωcL̂z (14.119)

Ĥs = (1 + a)ωcŜz (14.120)

with Ω2 = (ω2
c − 2ω2

0)/4 ⇒ Ω ≃ ωc/2 − ω2
0/2ωc and L⃗ is the orbital angular

momentum of the electron.

The eigenstates of Ĥs are the eigenstates of Ŝz, ∣±⟩ with energy eigenvalues

±(1 + a)h̵ωc/2 = ±h̵ωs , ωs = (1 + a)ωc/2 (14.121)

where we have used

Ŝz ∣±⟩ = ±h̵/2 ∣±⟩ (14.122)

Since Ĥz, Ĥt and Ĥs act on different variables, they must commute. An eigen-
basis of Ĥ can be constructed using the eigenstates ϕ(z), ψ(x, y) and ∣σ⟩ of
Ĥz, Ĥt and Ĥs, respectively. The corresponding eigenvalues are the sum of the
individual eigenvalues.

In order to calculate the motion along the z−axis, we introduce the creation and
annihilation operators

âz =
1√
2
(αẑ + i

αh̵
p̂z) , â+z =

1√
2
(αẑ − i

αh̵
p̂z) , α =

√
mh̵ω0

We then have

[âz, â+z ] =
1

2
(α2 [ẑ, ẑ] + i

h̵
[p̂z, ẑ] −

i

h̵
[ẑ, p̂z] −

1

α2h̵2
[p̂z, p̂z])

= 1

2
(+ i
h̵
[−ih̵] − i

h̵
[ih̵]) = 1 (14.123)

Thus, we have the same mathematical system as the harmonic oscillator so that

Ĥz = h̵ω0(N̂z + 1/2) , N̂z = â+z âz (14.124)

N̂z ∣Nz⟩ = Nz ∣Nz⟩ , Nz = 0,1,2,3, ...... (14.125)

Ĥz ∣Nz⟩ = ENz ∣Nz⟩ , ENz = h̵ω0(Nz + 1/2) (14.126)
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14.6.2 The Transverse Motion

We now investigate the x − y motion governed by the Hamiltonian Ĥt. If we
define the right- and left-circular creation and annihilation operators

âr =
1

2
(β(x̂ − iŷ) + i

βh̵
(p̂x − ip̂y)) (14.127)

âl =
1

2
(β(x̂ + iŷ) + i

βh̵
(p̂x + ip̂y)) (14.128)

where β is a real constant, then we can show (in same way as above) that

[âr, â+r ] = 1 = [âl, â+l ] , [âr, âl] = 0 = [âr, â+l ] (14.129)

Defining
N̂r = â+r âr , N̂l = â+l âl (14.130)

we have

N̂r = â+r âr =
1

4
(β2(x2 + y2) + 1

β2h̵2
(p2
x + p2

y) − 2 + 2Lz
h̵

) (14.131)

N̂l = â+l âl =
1

4
(β2(x2 + y2) + 1

β2h̵2
(p2
x + p2

y) − 2 − 2Lz
h̵

) (14.132)

and thus
L̂z = x̂p̂y − ŷp̂x = h̵(N̂r − N̂l) (14.133)

and
N̂r + N̂l =

1

2
(β2(x2 + y2) + 1

β2h̵2
(p2
x + p2

y)) − 1 (14.134)

If we define β2 =mΩ/h̵ we then have

Ĥt = h̵Ω(N̂r + N̂l + 1) + h̵ωc
2

(N̂r − N̂l) (14.135)

or
Ĥt = h̵ω′c(N̂r + 1/2) − h̵ωm(N̂l + 1/2) (14.136)

where

ω′c =
ωc
2
+Ω = 1

2
(ωc +

√
ω2
c − 2ω2

0) ≃ ωc (14.137)

ωm = ωc
2
−Ω = 1

2
(ωc −

√
ω2
c − 2ω2

0) ≃
ω2

0

2ωc
<< ωc (14.138)

Since this is just the difference of two oscillators we have the energy eigenvalues

Ecm = h̵ω′c(Nc + 1/2) − h̵ωm(Nm + 1/2) (14.139)

We also have from earlier

±(1 + a)h̵ωc/2 = ±h̵ωs , ωs = (1 + a)ωc/2 (14.140)
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Thus, the energy eigenvalues of Ĥ are

E = h̵ω0(Nz + 1/2) + h̵ω′c(Nc + 1/2) − h̵ωm(Nm + 1/2) + σh̵ωs (14.141)

where Nz, Nc and Nm are integers ≥ 0 and σ = ±1.

Note that the magnetron motion Em corresponds to an inverted harmonic oscil-
lator, so that its spectrum has no mower bound in the harmonic approximation
used in the example. Consequently, when the system is coupled to a heat bath
and relaxes towards thermal equilibrium, it should cascade down the ladder
of levels of the magnetron motion, thus increasing the size of the orbit of the
trapped particle in the xy−plane. Fortunately, the characteristic time corre-
sponding to the decay of the system in this way is very long, and the electron
can be confined around the center of the trap for a long time.

14.6.3 Measurement of Electron Anomalous Magnetic Mo-
ment

The electric quadrupole field is such that h̵ω0 = 2.58 × 10−7 eV . The magnetic
field is B = 5.87T . The system is placed in liquid helium at 4.2K. We then
have (using qh̵/2m = 5.79 × 10−5 eV )

h̵ωc = 6.8 × 10−4eV ∼ h̵ω′c
h̵ωm = 4.9 × 10−11eV

In liquid helium, kT = 3.5 × 10−4 eV and the longitudinal and magnetron level
spacings are much smaller than the thermal fluctuations. Thus, a classical
description of these two motions is appropriate. In contrast, a few quanta of
oscillation are thermal excited for the cyclotron motion since kT ≤ h̵ω_c. Now,
the electron anomaly is a ≈ 0.00116. Therefore we can draw the relative position
of the four energy levels

Nz = 0; Nm = 0; Nc = 0,1 and σ = ±1 (14.142)

The level configuration is shown in Figure 14.9 below.

Figure 14.9: Energy Levels
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The splitting ∆E between the level Nc = 0, σ = +1 and the level Nc = 1, σ = −1
is proportional to the anomaly a. We have ∆E = ah̵ωc = 5 × 10−7 eV , where we
have neglected the difference between ωc and ω ′

c which is ≈ 7.9× 10−11 eV . The
splitting corresponds to a frequency ν = ∆E/h̵ = 191MHz.

14.7 Schrodinger’s Cat

We first just describe a simple version.

Suppose that a cat within a closed box would be killed by a ∣↑⟩ particle but not
by a ∣↓⟩ particle. Now consider the effect of the state ∣↑⟩+Ket↓, which can easily
be produced by a properly oriented Stern-Gerlach device.

Suppose that a particle in the state ∣↑⟩+Ket↓ hits the cat and that the state of
the (spin + cat) makes a transition to

∣↑⟩ ∣dead cat⟩ + ∣↓⟩ ∣living cat⟩ (14.143)

which is a pure state.

When is it decided whether the cat is alive or dead?

Just when the observer opens the cat’s box?

An objective statement independent of the conscious
mind of the observer would be impossible.

What is the consequence of including the observer herself in the quantum me-
chanical description?

According to the point of view presented, the cat(together with the mechanism
for killing the cat, which was not mentioned above) is linked to other macro-
scopic objects. These are influenced differently in the two final states so that
their respective wave functions do not overlap. For everything that follows, the
macroscopic consequences are not recorded; the trace is taken over them. The
final state of the cat is described by a mixture of states corresponding to a dead
cat and a living cat: the cat is either dead or living and not in a pure state

∣dead cat⟩ + ∣living cat⟩ (14.144)

which would include both possibilities.
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14.7.1 Schrodinger’s Cat - a more detailed presentation
The superposition principle states that if ∣ϕa⟩ and ∣ϕb⟩ are two possible states
of a quantum system, the quantum superposition

1√
2
(∣ϕa⟩ + ∣ϕb⟩) (14.145)

is also an allowed state for this system. This principle is essential in explain-
ing quantum interference phenomena. However, when it is applied to large or
macroscopic objects, it leads to paradoxical situations where a system can be
in a superposition of states which is classical self-contradictory.

The most famous example is Schrodinger’s cat paradox where the cat is in a
superposition of the dead and alive states. The purpose of this discussion is to
show that such superposition of macroscopic states are not detectable in prac-
tice. They are extremely fragile, and very weak coupling to the environment
suffices to destroy the quantum superposition of the two states ∣ϕa⟩ and ∣ϕb⟩.

The Quasi-Classical States of a Harmonic Oscillator

We consider the high energy excitations of a one-dimensional harmonic oscillator
or mass m and frequency ω. The Hamiltonian is written

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (14.146)

We denote the eigenstates of Ĥ by {∣n⟩} where the energy eigenvalues are given
by

Ĥ ∣n⟩ = En ∣n⟩ = h̵ω(n + 1/2) ∣n⟩ (14.147)

Preliminaries

We introduce the operators

X̂ =
√
mω/h̵x̂ , P̂ = p̂/

√
mh̵ω (14.148)

and the annihilation and creation operators

â = 1√
2
(X̂ + iP̂ ) , â+ = 1√

2
(X̂ − iP̂ ) , N̂ = â+â (14.149)

The commutator [x̂, p̂] = ih̵ leads to the commutators [X̂, P̂ ] = i and [â, â+] = 1
and the relations

Ĥ = h̵ω(N̂ + 1/2) , N̂ ∣n⟩ = n ∣n⟩ (14.150)

We also have the relations

P̂ = −i ∂
∂X

, X̂ = i ∂
∂P

(14.151)
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â ∣n⟩ =
√
n ∣n − 1⟩ , â+ ∣n⟩ =

√
n + 1 ∣n + 1⟩ (14.152)

We can use these relations to derive the ground state wave function in the
position representation as follows:

0 = ⟨X ∣ â ∣0⟩ = 1√
2
⟨X ∣ (X̂ + iP̂ ) ∣0⟩

= 1√
2
X ⟨X ∣ 0⟩ + i√

2
(−i ∂

∂X
) ⟨X ∣ 0⟩

(X + ∂

∂X
) ⟨X ∣ 0⟩ = 0→ ⟨X ∣ 0⟩ = Ae−X

2/2 = ψ0(X)

ψ0(x) = Ae−mωx
2/2h̵ (14.153)

Similarly, we can derive its the ground state wave function in the momentum
representation as follows:

0 = ⟨P ∣ â ∣0⟩ = 1√
2
⟨P ∣ (X̂ + iP̂ ) ∣0⟩

= 1√
2
i
∂

∂P
⟨P ∣ 0⟩ + i√

2
P ⟨P ∣ 0⟩

(P + ∂

∂P
) ⟨P ∣ 0⟩ = 0→ ⟨P ∣ 0⟩ = Ae−P

2/2 = φ0(P )

φ0(p) = Ae−p
2/2mωh̵ (14.154)

These two wave functions are related by the Fourier transform, that is,

φ0(p) = e−p
2/2mωh̵ ∝

∞

∫
−∞

e−mωx
2/2h̵e−ipx/h̵dx

∝
∞

∫
−∞

ψ0(x)e−ipx/h̵dx

The Quasi-Classical States

The eigenstates of the operator â are called quasi-classical states, for reasons
we will now discuss.

Since we are considering the question: what are the eigenstates of the lowering
operator â? We can write

â ∣α⟩ = α ∣α⟩ where α = ∣α∣ eiφ (14.155)

where ∣α⟩ is the eigenvector of â and α is the eigenvalue, which is not necessarily
real since â is not Hermitian.

Since the vectors ∣n⟩ are eigenvectors of a Hermitian operator, they form a
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orthonormal complete set and can be used as an orthonormal basis for the
vector space. We can then write

∣α⟩ =
∞
∑
m=0

bm ∣m⟩ (14.156)

where

⟨k ∣ α⟩ =
∞
∑
m=0

bm ⟨k ∣m⟩ =
∞
∑
m=0

bmδkm = bk (14.157)

Now
⟨n − 1∣ â ∣α⟩ = α ⟨n − 1 ∣ α⟩ = αbn−1 (14.158)

and using
â+ ∣n − 1⟩ =

√
n ∣n⟩→ ⟨n − 1∣ â =

√
n ⟨n∣ (14.159)

we have
⟨n − 1∣ â ∣α⟩ =

√
n ⟨n ∣ α⟩ =

√
nbn (14.160)

or
bn =

α√
n
bn−1 (14.161)

This says that

b1 =
α√
1
b0 , b2 =

α√
2
b1 =

α2

√
2!
b0 (14.162)

or
bn =

αn√
n!
b0 (14.163)

We thus get the final result

∣α⟩ = b0
∞
∑
m=0

αm√
m!

∣m⟩ (14.164)

Let us now normalize this state (choose b0). We have

⟨α ∣ α⟩ = 1 = ∣b0∣2
∞
∑
m=0

∞
∑
k=0

α∗mαk√
m!

√
k!

⟨k ∣m⟩

= ∣b0∣2
∞
∑
m=0

∞
∑
k=0

α∗mαk√
m!

√
k!
δkm = ∣b0∣2

∞
∑
m=0

∣α∣2

m!

= ∣b0∣2 e∣α∣
2

(14.165)

which says that
b0 = e−

1
2 ∣α∣

2

(14.166)

and thus

∣α⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

∣m⟩ (14.167)
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Now

⟨n ∣ α⟩ = probability amplitude that the system in the state
∣α⟩ will be found in the state ∣n⟩

We have

⟨n ∣ α⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

⟨n ∣m⟩ = e−
1
2 ∣α∣

2 αn√
n!

(14.168)

which then says that

Pn = ∣⟨n ∣ α⟩∣2 = e
−∣α∣2 ∣α∣2n

n!
= e

−NNn

n!
= probability amplitude that the system in the state

∣α⟩ will be found in the state ∣n⟩

where we have defined N = ∣α∣2. We note that

⟨α∣ â+â ∣α⟩ = ∣α2∣ ⟨α ∣ α⟩ = ∣α2∣ = N = ⟨α∣ N̂op ∣α⟩ (14.169)

or N = the average value or expectation value of the Nop operator in the state
∣α⟩. This type of probability distribution is called a Poisson distribution, i.e., the
state ∣α⟩ has the number states or energy eigenstates distributed in a Poisson
manner.

Since the states ∣n⟩ are energy eigenstates, we know their time dependence, i.e.,

∣n, t⟩ = e−i
En
h̵ t ∣n⟩ (14.170)

Therefore, we have for the time dependence of the state ∣α⟩

∣α, t⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!

∣m, t⟩ = e−
1
2 ∣α∣

2
∞
∑
m=0

αm√
m!
e−i

Em
h̵ t ∣m⟩ (14.171)

This simple operation clearly indicates the fundamental importance of the en-
ergy eigenstates when used as a basis set.

If we are able to expand an arbitrary vector
representing some physical system in the energy
basis, then we immediately know the time dependence
of that state vector and hence we know the time
dependence of all the probabilities associated
with the state vector and the system.

Now let us try to understand the physics contained in the ∣α⟩ state vector. In a
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given energy eigenstate the expectation value of the position operator is given
by

⟨n, t∣ x̂ ∣n, t⟩ =
√

h̵

2mω0
⟨n, t∣ (â + â+) ∣n, t⟩

=
√

h̵

2mω0
⟨n∣ ei

En
h̵ t(â + â+)e−i

En
h̵ t ∣n⟩

=
√

h̵

2mω0
⟨n∣ (â + â+) ∣n⟩

=
√

h̵

2mω0
⟨n∣ (

√
n ∣n − 1⟩ +

√
n + 1 ∣n + 1⟩) = 0

i.e., it is equal to zero and is a constant.

On the other hand, in the state ∣α⟩ we find

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
∑
m
∑
k

b∗mbke
i
(Em−Ek)

h̵ t ⟨m∣ (â + â+) ∣k⟩ (14.172)

Now

⟨m∣ (â + â+) ∣k⟩ = ⟨m∣ (
√
k ∣k − 1⟩ +

√
k + 1 ∣k + 1⟩)

=
√
kδm,k−1 +

√
k + 1δm,k+1 (14.173)

Using this result we have

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
(
∞
∑
k=1

b∗k−1bk
√
kei

(Ek−1−Ek)

h̵ t +
∞
∑
k=0

b∗k+1bk
√
k + 1ei

(Ek+1−Ek)

h̵ t)

=
√

h̵

2mω0
(
∞
∑
k=1

b∗k−1bk
√
ke−iω0t +

∞
∑
k=0

b∗k+1bk
√
k + 1eiω0t)

=
√

h̵

2mω0
(
∞
∑
k=0

b∗kbk+1

√
ke−iω0t +

∞
∑
k=0

b∗k+1bk
√
k + 1eiω0t)

=
√

h̵

2mω0
b20

⎛
⎝

∞
∑
k=0

α∗kαk+1

√
(k + 1)!k!

√
ke−iω0t +

∞
∑
k=0

α∗k+1αk√
(k + 1)!k!

√
k + 1eiω0t

⎞
⎠

=
√

h̵

2mω0
b20∑

k

1

k!
∣α∣2k (αe−iω0t + α∗eiω0t) (14.174)
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Now using α = ∣α∣eiϕ we get

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
b202 ∣α∣∑

k

∣α∣2k

k!
Real(eiφe−iω0t)

= 2x0 ∣α∣ cos(ω0t − φ)(b20∑
k

∣α∣2k

k!
)

= 2x0 ∣α∣ cos(ω0t − φ) , x0 =
√

h̵

2mω0
(14.175)

The expectation value in the state ∣α⟩ behaves like that of a classical oscillator.

Before proceeding with the discussion, we will repeat the derivation using an
alternate but very powerful technique.

Using the Translation Operator

In general, a displaced state ∣λ⟩ is given in terms of the displacement operator
(in one dimension) by

∣λ⟩ = e−
i
h̵ p̂λ ∣0⟩ (14.176)

For the harmonic oscillator system

p̂ = 1

i

√
mh̵ω

2
(â − â+) (14.177)

If we choose ∣0⟩ to be the ground state of the oscillator, then we have for the
corresponding displaced ground-state

∣λ⟩ = e
√
mω
2h̵ (â+−â)λ ∣0⟩ (14.178)

By Glauber’s theorem
e(Â+B̂) = eÂeB̂e−

1
2
[Â,B̂] (14.179)

we have

e
√
mω
2h̵ (â+−â)λ = e

√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe

1
2
mω
2h̵

[â+,â]λ2

= e
√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe−

1
4
mω
h̵ λ2

(14.180)

and thus
∣λ⟩ = e

√
mω
2h̵ â

+λe−
√
mω
2h̵ âλe−

1
4
mω
h̵ λ2

∣0⟩ (14.181)

Now

e−
√
mω
2h̵ âλ ∣0⟩ = (Î + (−

√
mω

2h̵
λâ) + 1

2
(−

√
mω

2h̵
λâ)

2

+ .....) ∣0⟩ = ∣0⟩
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using â ∣0⟩ = 0. Similarly, using (â+)n ∣0⟩ =
√
n! ∣n⟩ we have

e
√
mω
2h̵ â

+λ ∣0⟩ = (Î + (
√
mω

2h̵
λâ+) + 1

2
(
√
mω

2h̵
λâ+)

2

+ .....) ∣0⟩

= ∣0⟩ +
√
mω

2h̵
λ ∣1⟩ + 1

2
(
√
mω

2h̵
λ)

2

∣2⟩ + ....

=
∞
∑
n=0

(
√
mω
2h̵
λ)

√
n!

n

∣n⟩ (14.182)

or

∣λ⟩ = e−
1
4
mω
h̵ λ2

∞
∑
n=0

(
√
mω
2h̵
λ)

√
n!

n

∣n⟩ (14.183)

Thus,

∣λ⟩ =
∞
∑
n=0

bn ∣n⟩ (14.184)

where

bn =
e−

N
2 N

n
2

√
n!

,
N

2
= mω

4h̵
λ2 (14.185)

or

Pn = probability of finding the system in the state ∣n⟩

= ∣bn∣2 =
e−NNn

n!
(14.186)

which is a Poisson distribution. Thus, we obtain the coherent states once again.

Let us now return to the original discussion. In the state ∣α⟩ we have

â ∣α⟩ = α ∣α⟩→ ⟨α∣ â+ = α∗ ⟨α∣ (14.187)
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so that

⟨E⟩ = ⟨α∣ Ĥ ∣α⟩ = h̵ω ⟨α∣ (N̂ + 1/2)) ∣α⟩ = h̵ω (∣α∣2 + 1/2)) (14.188)

⟨x⟩ =
√

h̵

2mω
⟨α∣ (â + â+) ∣α⟩ =

√
h̵

2mω
(α + α∗) (14.189)

⟨p⟩ = −i
√

mh̵ω

2
⟨α∣ (â − â+) ∣α⟩ = i

√
mh̵ω

2
(α∗ − α) (14.190)

(∆x)2 = h̵

2mω
⟨α∣ (â + â+)2 ∣α⟩ − ⟨x⟩2

= h̵

2mω
[(α + α∗)2 + 1] − h̵

2mω
(α + α∗)2

= h̵

2mω
→∆x =

√
h̵

2mω
(14.191)

(∆p)2 = −mh̵ω
2

⟨α∣ (â − â+)2 ∣α⟩ − ⟨p⟩2

= −mh̵ω
2

[(α − α∗)2 − 1] + mh̵ω
2

(α∗ − α)2

= mh̵ω
2

→∆p =
√

mh̵ω

2
(14.192)

Therefore, the Heisenberg inequality becomes an equality in this case

∆x∆p = h̵
2

(14.193)

independent of the value of α.

We can find the wave functions corresponding to ∣α⟩ using the earlier method.
We have in the position representation:

⟨X ∣ â ∣α⟩ = α ⟨X ∣ α⟩ = 1√
2
⟨X ∣ (X̂ + iP̂ ) ∣α⟩

= 1√
2
X ⟨X ∣ α⟩ + i√

2
(−i ∂

∂X
) ⟨X ∣ α⟩ (14.194)

1√
2
(X + ∂

∂X
) ⟨X ∣ α⟩ = α ⟨X ∣ α⟩

→ ⟨X ∣ α⟩ = Ae−(X−α
√

2)2/2 = ψα(X) (14.195)
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and in the momentum representation:

⟨P ∣ â ∣α⟩ = α ⟨P ∣ α⟩ = 1√
2
⟨P ∣ (X̂ + iP̂ ) ∣α⟩

= 1√
2
i
∂

∂P
⟨P ∣ α⟩ + i√

2
P ⟨p ∣ α⟩ (14.196)

1√
2
(P + ∂

∂P
) ⟨P ∣ α⟩ = α ⟨P ∣ α⟩

→ ⟨P ∣ α⟩ = A′e−(P+iα
√

2)2/2 = φα(P ) (14.197)

Suppose that at time t = 0, the oscillator is in a quasi-classical state ∣ψ(0)⟩ = ∣α0⟩
with α0 = ρeiϕ where ρ is a real positive number. Then at a later time t

∣ψ(t)⟩ = ∣α0, t⟩ = e−
1
2 ∣α0∣2

∞
∑
n=0

αn0√
n!

∣n, t⟩

= e−
1
2 ∣α0∣2

∞
∑
n=0

αn0√
n!
e−i

En
h̵ t ∣n⟩

= e−
1
2 ∣α0∣2e−iωt/2

∞
∑
n=0

αn0√
n!
e−inωt ∣n⟩

= e−iωt/2 ∣α(t)⟩ (14.198)

where α(t) = α0e
−iωt = ρe−i(ωt−ϕ).

Finally, we have

⟨α, t∣ x̂ ∣α, t⟩ =
√

h̵

2mω0
b20∑

k

1

k!
∣α∣2k (αe−iω0t + α∗eiω0t)

= 2

√
h̵

2mω0
∣α∣ cos(ω0t − φ)(b20∑

k

∣α∣2k

k!
) , x0 =

√
h̵

2mω0

= x0 cos(ω0t − φ) , x0 = ρ
√

2h̵

mω0
(14.199)

and
⟨α, t∣ p̂ ∣α, t⟩ = −p0 sin(ω0t − φ) , p0 = ρ

√
2mh̵ω (14.200)

In addition, we have (for ρ≫ 1)

∆x

x0
= 1

2ρ
<< 1 ,

∆p

p0
= 1

2ρ
<< 1 (14.201)

This says that the relative uncertainties in the position and momentum of the
oscillator are quite accurately defined at any time. Hence the name quasi-
classical state.

Let us look at some numbers. We consider a pendulum of length 1 meter and of
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mass 1 gram and assume that the state of this pendulum can be described by a
quasi-classical state. At time t = 0 we assume that the pendulum is at ⟨x(0)⟩ = 1
micron from its classical equilibrium position, with zero mean velocity.

An appropriate choice is ⟨x(0)⟩ = x0 , ⟨p(0)⟩ = 0→ φ = 0. We also have

ω = 2πν =
√
g

`
= 3.13 s−1 → α(0) = 3.9 × 109 (14.202)

The relative uncertainty in the position is

∆x

x0
= 1

2ρ
= 1

2α(0)
= 1.3 × 10−10 (14.203)

We note that after 1/4 period of oscillation,

T = period = 2π

ω
(14.204)

→ α (T /4) = α(0)eiωT /4 = α(0)eiπ/2 = iα(0) = −3.9i × 109 (14.205)

14.7.2 Construction of a Schrodinger-Cat State

Suppose that during the interval [0, T ] we add to the harmonic potential, the
coupling (interaction)

Ŵ = h̵g (â+â)2 = h̵gN̂2 (14.206)

We will assume that g ≫ ω,ωT ≪ 1. Under these conditions, we can make the
approximation that, during the interval [0, T ], the Hamiltonian of the system
is simply Ŵ . Assume that at time t = 0, the system is in a quasi-classical state
∣ψ(0)⟩ = ∣α⟩.

The eigenvectors of Ŵ are {∣n⟩} with Ŵ ∣n⟩ = h̵gn2 ∣n⟩. This implies that for
∣ψ(0)⟩ = ∣α⟩

∣ψ(T )⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!
e−ign

2T ∣n⟩ (14.207)

Some special cases will be of interest later.

∣ψ(T = 2π/g)⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!
e−i2πn

2

∣n⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!

∣n⟩ = ∣α⟩

∣ψ(T = π/g)⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!
e−iπn

2

∣n⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!

(−1)n ∣n⟩ = ∣−α⟩
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∣ψ(T = π/2g)⟩ = e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!
e−iπn

2/2 ∣n⟩

= e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!

1

2
[1 − i + (1 + i)(−1)n] ∣n⟩

= e−
1
2 ∣α∣

2
∞
∑
n=0

αn√
n!

1√
2
[e−iπ/4 + eiπ/4(−1)n] ∣n⟩

= 1√
2
[e−iπ/4 ∣α⟩ + eiπ/4 ∣−α⟩] (14.208)

Now, suppose that α is pure imaginary, that is, α = iρ. In this case, in the state
∣α⟩, the oscillator has a zero mean position and a positive velocity.

⟨x⟩ =
√

h̵

2mω
(α + α∗) = 0

⟨p⟩ = i
√

mh̵ω

2
(α∗ − α) =

√
2mh̵ωρ

Similarly, in the state ∣−α⟩, the oscillator also has a zero mean position, but a
negative velocity.

If ∣α∣ ≫ 1, the states ∣α⟩ and ∣−α⟩ are macroscopically different. The state
(14.208) is a quantum superposition of such states. It therefore constitutes a
(harmless) version of Schrodinger’s cat, where we represent dead and alive cats
by simple vectors in Hilbert space.

14.7.3 Quantum Superposition Versus Statistical Mixture
We now consider the properties of the state (14.208) in a macroscopic situation
∣α∣ ≫ 1. We will choose α = iρ pure imaginary and we set p0 =

√
2mh̵ωρ.

The probability distributions for position and momentum are given by

Pr(X)∝ ∣e−iπ/4 ⟨X ∣ α⟩ + eiπ/4 ⟨X ∣ −α⟩∣
2

∝ ∣e−iπ/4e−(X−iρ
√

2)2/2 + eiπ/4e−(X+iρ
√

2)2/2∣
2

∝ e−X
2

cos2 (
√

2Xρ − π
4
) (14.209)

Pr(P )∝ ∣e−iπ/4 ⟨P ∣ α⟩ + eiπ/4 ⟨P ∣ −α⟩∣
2

∝ ∣e−iπ/4e−(P−ρ
√

2)2/2 + eiπ/4e−(P+ρ
√

2)2/2∣
2

≈ e−(P−ρ
√

2)2

+ e−(P+ρ
√

2)2

(14.210)

where in the last expression we have used the fact that, for ρ ≫ 1, the two
Gaussians centered at ρ

√
2 and −ρ

√
2 have a negligible overlap.
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These probability distributions are plotted in Figure 14.10 below for α = 5i

Figure 14.10: X Probability Distribution

Figure 14.11: P Probability Distribution

Suppose that a physicist (Alice) prepares N independent systems all in the state
(14.208) and measures the momentum of each of these systems. Suppose the
measuring apparatus has a resolution δp such that:

√
mh̵ω << δp << p0 (14.211)

For N ≫ 1, the results of these measurements is that Alice (plotting a his-
togram) will find two peaks, each of which contains roughly half of the events,
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centered respectively at p0 and −p0 (resembling Figure 14.11).

The state (14.208) represents the quantum superposition of two states which
are macroscopically different, and therefore leads to the paradoxical situations
mentioned earlier.

Another physicist (Bob) claims that the measurements done by Alice have not
been performed on N quantum systems in the state (14.208), but that Alice is
actually dealing with a nonparadoxical statistical mixture, that is, half of the N
systems are in the state ∣α⟩ and the other half in the state ∣−α⟩.

Assuming that this is true, the statistical mixture of Bob leads (after N mo-
mentum measurements) to the same momentum distribution as that measured
by Alice: the N/2 oscillators in the state ∣α⟩ all lead to a mean momentum p0

and the N/2 oscillators in the state ∣−α⟩ all lead to a mean momentum −p0.
Up to this point, there is therefore no difference and no paradoxical behavior
related to the quantum superposition (14.208).

In order to settle the matter, Alice now measures the position of each of the
N independent systems, all prepared in the state (14.208). Assuming that the
resolution δx of the measuring apparatus is such that

δx << 1

∣α∣

√
h̵

mω
→ δX << 1

∣α∣
= 1

ρ
(14.212)

Alice has sufficient resolution to observe the oscillations of the function

cos2 (
√

2Xρ − π
4
) (14.213)

in the distribution Pr(X). The shape of the distribution for x will therefore
reproduce the probability law for X as drawn in Figure 14.10 above, that is, a
modulation of period

[h̵π2/(2mα2ω)]1/2
(14.214)

with a Gaussian envelope.

We continue with the assumption that Bob is dealing with a statistical mixture.
If Bob performs a position measurement on the N/2 systems in the state ∣α⟩,
he will find a Gaussian distribution corresponding to the probability law

Pr(X)∝ ∣⟨X ∣ α⟩∣2 ∝ e−X
2

(14.215)

He will find the same distribution for N/2 systems in the state ∣−α⟩. The sum
of his results will be a Gaussian distribution, which is quite different(see Figure
14.11) from the result expected by Alice.

The position measurement should, in principle, allow one to discriminate be-
tween the quantum superposition and the statistical mixture.
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In our earlier discussion of numbers for a pendulum we found that α = 3.9×109.
Therefore, the resolution δx which is necessary in order to tell the difference be-
tween a set of N systems in a quantum superposition (14.208), and a statistical
mixture consisting of N/2 systems in the state ∣α⟩ and N/2 systems in the state
∣−α⟩ is given by

δx << 1

∣α∣

√
h̵

mω
≈ 5 × 10−26m (14.216)

Clearly, it is impossible to attain such a resolution in practice!

14.7.4 The Fragility of a Quantum Superposition
In a realistic physical situation, one must take into account the coupling of the
oscillator with its environment, in order to estimate how long one can discrimi-
nate between the quantum superposition (14.208), that is, the Schrodinger cat
which is alive and dead, and a simple statistical mixture, that is, a set of cats
(systems), half of which are alive, the other half beginning dead; each cat being
either alive or dead.

If the oscillator is initially in the quasi-classical state ∣α0⟩ and if the environ-
ment is in a state ∣ξe(0)⟩, the wave function of the total system is the product
of the individual wave functions, and the state vector of the total system can
be written as the (tensor) product of the state vectors of the two subsystems:

∣Φ(0)⟩ = ∣α0⟩ ∣χe(0)⟩ (14.217)

The coupling is responsible for the damping of the oscillator’s amplitude.

At a later time t, the state vector of the total system becomes

∣Φ(t)⟩ = ∣α1⟩ ∣χe(t)⟩ (14.218)

where α1 = α(t)e−γt. The number α(t) corresponds to the quasi-classical state
one would find in the absence of damping (evaluated earlier as α(t) = α0e

−iωt)
and γ is a real positive number.

From earlier

E(t) = h̵ω (∣α(t)∣2 + 1/2)) = h̵ω (∣α0∣2 e−2γt + 1/2)) (14.219)

The energy decreases with time. After a time much longer than 1/γ, the os-
cillator is in its ground state. This dissipation model corresponds to a zero
temperature environment. The mean energy acquired by the environment is

E(0) −E(t) = h̵ω ∣α0∣2 (1 − e−2γt) ≈ 2h̵ω ∣α0∣2 γt , 2γt << 1 (14.220)

For initial states of the Schrodinger cat type for the oscillator, the state vector
of the total system, at t = 0,

∣Φ(0)⟩ = 1√
2
(e−iπ/4 ∣α0⟩ + eiπ/4 ∣−α0⟩) ∣χe(0)⟩ (14.221)
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and, at a later time t,

∣Φ(t)⟩ = 1√
2
(e−iπ/4 ∣α1⟩ ∣χ(+)

e (t)⟩ + eiπ/4 ∣−α1⟩ ∣χ(−)
e (t)⟩) (14.222)

still with α1 = α(t)e−γt. We assume that t is chosen such that α1 is pure
imaginary, ∣α1∣ ≫ 1, and ∣χ(+)

e (t)⟩ and ∣χ(−)
e (t)⟩ are two normalized states of the

environment that are a priori different (but not orthogonal).

The probability distribution of the oscillator’s position, measured independently
of the state of the environment, is then

Pr(x) = 1

2
∣⟨x ∣ α1⟩∣2 +

1

2
∣⟨x ∣ −α1⟩∣2

+Real (i ⟨x ∣ α1⟩∗ ⟨x ∣ −α1⟩ ⟨χ(+)
e (t) ∣ χ(−)

e (t)⟩) (14.223)

Let η = ⟨χ(+)
e (t) ∣ χ(−)

e (t)⟩. We then have 0 ≤ η ≤ 1, η real.

This says that the probability distribution of the position keeps its Gaussian
envelope, but the contrast of the oscillations (cross term) is reduced by a factor
η.

The probability distribution for the momentum is given by

Pr(p) = 1

2
∣⟨p ∣ α1⟩∣2 +

1

2
∣⟨p ∣ −α1⟩∣2 + ηReal (i ⟨p ∣ −α1⟩∗ ⟨p ∣ α1⟩) (14.224)

Since the overlap of the two Gaussians ⟨p ∣α1⟩ and ⟨p ∣−α1⟩ is negligible for
∣α1∣ ≫ 1, the crossed term, which is proportional to η does not contribute
significantly. We recover two peaks centered at ± ∣α1∣

√
2mh̵ω. The distinction

between a quantum superposition and a statistical mixture can be made by
position measurements. The quantum superposition leads to a modulation of
spatial period

[h̵π2/(2mα2ω)]1/2
(14.225)

with a Gaussian envelope, whereas only the Gaussian is observed for a statistical
mixture.

In order to see this modulation, the parameter η must not be too small, say
η ≥ 1/10.

In a very simple model, the environment is represented by a second oscillator, of
the same mass and frequency as the first one. We will assume that this second
oscillator is initially in its ground state ∣ξe(0)⟩ = ∣0⟩. If the coupling between
the two oscillators is quadratic, we can take for granted that

1. the states ∣χ(±)
e (t)⟩ are quasi-classical: ∣χ(±)

e (t)⟩ = ∣±β⟩
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2. and that, for short times (γt≪ 1): ∣β∣2 = 2γt∣α0∣2

A simple calculation then gives

⟨β ∣ −β⟩ = e−∣β∣
2

∑
n

β∗n(−β)n

n!
= e−∣β∣

2

e−∣β∣
2

= e−2∣β∣2 (14.226)

From earlier considerations we must have

η = ⟨β ∣ −β⟩ = e−2∣β∣2 ≥ 1/10→ ∣β∣ ≤ 1 (14.227)

For times shorter than 1/γ, the energy of the first oscillator is

E(t) = E(0) − 2γt ∣α0∣2 h̵ω (14.228)

The energy of the second oscillator is

E′(t) = h̵ω ∣(β(t)∣2 + 1/2) = h̵ω/2 + 2γt ∣α0∣2 h̵ω (14.229)

The total energy is conserved: the energy transferred during the time t is

∆E(t) = 2γt ∣α0∣2 h̵ω = h̵ω ∣(β(t)∣2 (14.230)

In order to distinguish between a quantum superposition and a statistical mix-
ture, we must have ∆E ≤ h̵ω. In other words, if a single energy quantum h̵ω is
transferred, it becomes problematic to tell the difference.

If we return to the numerical example of the pendulum we have the following
results: with 1/2γ = 1 year = 3 × 107s, the time it takes to reach ∣β∣ = 1 is
(2γ ∣α0∣2)−1 ≈ 2 × 10−12s

Conclusion

Even for a system as well protected from the environment as we have assumed
for the pendulum, the quantum superpositions of macroscopic states are unob-
servable. After a very short time, all measurements one can make on a system
initially prepared in such a state coincide with those made on a statistical mix-
ture. It is therefore not possible, at present, to observe the effects related to the
paradoxical character of a macroscopic quantum superposition. However, it is
quite possible to observe mesoscopic kittens, for systems which have a limited
number of degrees of freedom and are well isolated.

14.8 The Quantum Eraser

We now investigate a quantum process where the superposition of two probabil-
ity amplitudes leads to an interference phenomenon. The two amplitudes will
be associated with two quantum paths as in the double slit experiment. In the
investigation we will show that the interference disappears if an intermediate
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measurement gives information about which path has actually been followed.
Then we will show how the interference can actually reappear if the path infor-
mation is erased by a quantum device.

We consider a beam of neutrons, which are particles with charge zero and spin
1/2, propagating along the x−axis with velocity v. We will treat the motion of
the neutrons classically as uniform linear motion. Only the evolution of their
spin states will be treated quantum mechanically.

14.8.1 Magnetic Resonance

The eigenstates of the z component of the neutron spin are denoted ∣n ∶ ±⟩. A
constant uniform magnetic field B⃗0 = B0ûz is applied along the z−axis. The
magnetic moment of the neutron is denoted by µ̂ = γnŜn where γn is the gyro-
magnetic ratio and Ŝn is the spin operator of the neutron.

The magnetic energy levels of the neutron in the presence of the field B⃗0 are
E± = ∓γnh̵B0/2 = ±h̵ω0/2 where ω0 = −γnB0.

The neutrons cross a cavity of length L between times t0 and t1 = t0 + L/v.
Inside the cavity, in addition to the constant field B⃗0, a rotating field B⃗1(t)
is applied. The field B⃗1(t) lies in the (x, y) plane and has a constant angular
frequency ω:

B⃗1(t) = B1 (cosωtûx + sinωtûy) (14.231)

Let ∣ψn(t)⟩ = α+ ∣n ∶ +⟩+α− ∣n ∶ −⟩ be the neutron spin state at time t and consider
a neutron entering the cavity at time t0.

The Hamiltonian for the system is

H = µ̂n ⋅ (B⃗0 + B⃗1(t)) = γnŜn ⋅ (B⃗0 + B⃗1(t))

= γn (B0Ŝz +B1 (cosωtŜx + sinωtŜy)) (14.232)

which gives in the ∣n ∶ ±⟩ basis

H = h̵
2
( ω0 ω1e

−iωt

ω1e
iωt −ω0

) (14.233)

Therefore, the evolution equations are

H ∣ψn(t)⟩ =
h̵

2
( ω0 ω1e

−iωt

ω1e
iωt −ω0

)α+ ( 1
0

) + α− ( 0
1

)

= ih̵ d
dt

∣ψn(t)⟩ = ih̵
dα+
dt

( 1
0

) + ih̵dα−
dt

( 0
1

) (14.234)
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or

ih̵
dα+
dt

= h̵
2
ω0α+ +

h̵

2
ω1e

−iωtα− (14.235)

ih̵
dα−
dt

= h̵
2
ω1e

iωtα+ −
h̵

2
ω0α− (14.236)

or

i
dα+
dt

= 1

2
ω0α+ +

1

2
ω1e

−iωtα− (14.237)

i
dα−
dt

= 1

2
ω1e

iωtα+ −
1

2
ω0α− (14.238)

Defining
α±(t) = β±(t)e∓iω(t−t0)/2 (14.239)

we get

i
dβ+
dt

= ω0 − ω
2

β+ +
ω1

2
e−iωt0β− (14.240)

i
dβ−
dt

= ω − ω0

2
β− +

ω1

2
eiωt0β+ (14.241)

which has constant coefficients.

We assume that near resonance, ∣ω − ω0∣ ≪ ω1, and that terms proportional to
ω − ω0 may be neglected in these equations. The equations become

i
dβ+
dt

= ω1

2
e−iωt0β− (14.242)

i
dβ−
dt

= ω1

2
eiωt0β+ (14.243)

whose solution is

β±(t) = β±(t0) cos
ω1(t − t0)

2
− iβ∓(t0)e∓iωt0 sin

ω1(t − t0)
2

(14.244)

Defining

ϕ = ω1(t1 − t0)
2

, χ = ω(t1 − t0)
2

, δ = ω(t1 + t0)
2

(14.245)

we get

α+(t1) = e−iχβ+(t1) = e−iχ [α+(t0) cosϕ − iα−(t0)e−iωt0 sinϕ] (14.246)

α−(t1) = eiχβ−(t1) = eiχ [α−(t0) cosϕ − iα+(t0)e+iωt0 sinϕ] (14.247)

α+(t1) = [α+(t0)e−iχ cosϕ − iα−(t0)e−iδ sinϕ] (14.248)

α−(t1) = [α−(t0)eiχ cosϕ − iα+(t0)eiδ sinϕ] (14.249)

( α+(t1)
α−(t1)

) = U(t0, t1)(
α+(t0)
α−(t0)

) (14.250)
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where

U(t0, t1) = ( e−iχ cosϕ −ie−iδ sinϕ
−ieiδ sinϕ eiχ cosϕ

) (14.251)

is the time evolution matrix.

14.8.2 Ramsey Fringes
The neutrons are initially in the spin state ∣n ∶ −⟩. They successively cross
two identical cavities of the type described above. This is called a Ramsey
configuration and it is shown in Figure 14.12 below.

Figure 14.12: Ramsey Configuration

The object A is a detecting atom described later. The same oscillating field
B⃗1(t), is applied in both cavities. The magnitude B1 of this field is applied so as
to satisfy the condition ϕ = π/4. The constant field B⃗0 is applied throughout the
entire experimental setup. At the end of the setup, one measures the number of
outgoing neutrons which have flipped their spin and are in the final state ∣n ∶ +⟩.
This is done for several values of ω near ω = ω0.

The initial state condition corresponds to

α+(t0) = 0 , α−(t0) = 1 (14.252)

At time t1 the state is

( α+(t1)
α−(t1)

) = 1√
2
( e−iχ −ie−iδ
−ieiδ eiχ

)( 0
1

) = 1√
2
( −ie−iδ

eiχ
) (14.253)

or
∣ψ(t1)⟩ =

1√
2
(−ie−iδ ∣n ∶ +⟩ + eiχ ∣n ∶ −⟩) (14.254)
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This says that

α+(t1) = −
i√
2
e−iδ , α−(t1) =

1√
2
eiχ (14.255)

and the probability of finding it in the state ∣n ∶ ±⟩ is

P± =
1

2
(14.256)

The same neutron enters the second cavity at time t ′0 = t1 + T , with T = D/v,
where D is the distance between the two cavities. Between the two cavities the
spin precesses freely about B⃗0.

We then have

( α+(t′0)
α−(t′0)

) = ( e−iχ̃ 0
0 eiχ̃

)( α+(t1)
α−(t1)

) = 1√
2
( −ie−iδe−iχ̃

eiχeiχ̃
) (14.257)

where
χ̃ = ω0T

2
(14.258)

so that the spin state at t ′0 is

( α+(t′0)
α−(t′0)

) = 1√
2
( −ie−iδe−iω0T /2

eiχeiω0T ) (14.259)

Now let t ′1 be the time when the neutron leaves the second cavity with t′1 − t′0 =
t1 − t0 =D/v. Now δ′ = ω(t′1 + t′0)/2 is given by

t′0 = t1 + T , t′1 = 2t1 − t0 + T
δ′ = ω(2t1 − t0 + T + t1 + T )/2 = ω(3t1 + 2T − t0)/2

so that (for the second cavity)

U ′ = U(t′0, t′1) = ( e−iχ
′

cosϕ′ −ie−iδ
′

sinϕ′

−ieiδ
′

sinϕ′ eiχ
′

cosϕ′
) (14.260)

where
ϕ′ = ϕ = ω1(t1 − t0)/2 , χ′ = χ = ω1(t1 − t0)/2 (14.261)

so only the parameter δ changes into δ ′.

Thus the probability amplitude for detecting the neutron in state + after the
second cavity is obtained by

1. Applying U ′ to the vector

( α+(t′0)
α−(t′0)

) = 1√
2
( −ie−iδe−iω0T /2

eiχeiω0T ) (14.262)
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2. calculating the scalar product of the result with the + state.

We have

α+(t′1) =
1

2
(−ie−iδe−iχ/2e−iω0T /2 − ie−iδ

′

eiχ/2eiω0T /2) (14.263)

Since

δ + χ = ωt1 , δ′ − χ = ω
2
(3t1 + 2T − t0 − t1 + t0) = ω (t1 + T )

we get

α+(t′1) =
1

2
e−iω(t1+T )/2 (e−i(ω0−ω)T /2 + ei(ω0−ω)T /2)

= e−iω(t1+T )/2 cos
(ω0 − ω)T

2
(14.264)

Therefore, the probability that the neutron spin has flipped in the two-cavity
system is

P+ = ∣α+(t′1)∣
2 = cos2 (ω0 − ω)T

2
(14.265)

With the approximation ∣ω −ω0∣ ≪ ω1, the probability for a spin flip in a single
cavity is independent of ω and equal to 1/2. In contrast, the two-cavity result
exhibits strong modulation of the spin flip probability between 1 (ω = ω0) and
0 ((ω0 − ω)T = π). This modulation results from an interference process of the
two quantum paths corresponding to:

1. a spin flip in 1st cavity and no flip in 2nd cavity

2. no flip in 1st cavity and spin flip in 2nd cavity

In practice, the velocities of the neutrons have some dispersion around the mean
value v. This results in a dispersion in the time T to get from one cavity to the
other. A typical experimental result giving the intensity of the outgoing beam
in the + state as a function of the frequency f = ω/2π of the rotating field B1 is
shown in Figure 14.13 below.
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Figure 14.13: Experimental Results

Since cos2 ϕ/2 = (1 + cosϕ)/2, the averaged probability distribution is

⟨cos2 (ω − ω0)T
2

⟩ = ⟨1

2
+ 1

2
cos((ω − ω0)T )⟩

= 1

2
+ 1

2

∞

∫
−∞

P (T ) cos((ω − ω0)T )dT (14.266)

For
P (T ) = 1

τ
√

2π
e−(T−T0)2/2τ2

(14.267)

we get

⟨cos2 (ω − ω0)T
2

⟩ = 1

2
+ 1

2
e−(ω−ω0)2τ2/2 cos((ω − ω0)T0) (14.268)

This form agrees with the observed variation with frequency in Figure 14.13
of the experimental signal. The central maximum which is located at ω/2π =
748.8kHz corresponds to ω = ω0 . For that value a constructive interference
appears whatever the neutron velocity. The lateral maxima and minima are less
peaked, however, since the position of the lateral peak is velocity dependent.
The first two lateral maxima correspond to (ω − ω0)T = ±2π. Their amplitude
is reduced compared to the central peak by the exponential factor.

This experiment can be compared to a Young’s double slit interference experi-
ment with polychromatic light.

Suppose that we insert between the two cavities a device which can measure the
z component of the neutron spin (how this works will be discussed shortly). We
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define P++ as the probability of detecting a neutron in the + state between the
two cavities and in the + state when it leaves the second cavity. The probability
P++ is the product of two probabilities, namely, the probability of finding the
neutron in the state + when leaving the first cavity (p = 1/2) and, knowing that
it is in the + state of finding it in the + state when it leaves the second cavity
(p = 1/2). This gives P++ = 1/4. Similarly, P−+ = 1/4. The sum P++ + P−+ = 1/2
does not display any interference, since one has measured in which cavity the
neutron spin has flipped. This is very similar to the electron double slit inter-
ference experiment if one measures through which slit the electron passes.

14.8.3 Detection of the Neutron Spin State

In order to measure the spin of the neutron, one lets it interact during a time
τ with a spin 1/2 atom at rest. The atom’s spin operator is Ŝa. Let ∣a ∶ ±z⟩
be the two eigenstates of the observable Ŝaz. After the interaction between
the neutron and the atom, one measures the spin of the atom. Under certain
conditions (which we will derive shortly) one can deduce the spin state of the
neutron after the measurement.

Let ∣a ∶ ±x⟩ be the eigenstates of Ŝax and ∣a ∶ ±y⟩ those of Ŝay. We can then
write

∣a ∶ ±x⟩ = 1√
2
(∣a ∶ +z⟩ ± ∣a ∶ −z⟩) (14.269)

∣a ∶ ±y⟩ = 1√
2
(∣a ∶ +z⟩ ± i ∣a ∶ −z⟩) (14.270)

and

∣a ∶ ±y⟩ = 1

2
((1 ± i) ∣a ∶ +x⟩ + (1 ∓ i) ∣a ∶ −x⟩) (14.271)

We assume that the neutron-atom interaction does not affect the neutron’s
trajectory. We represent the interaction between the neutron and the atom by
a very simple model. This interaction is assumed to last a finite time τ during
which the neutron-atom interaction Hamiltonian has the form

V̂ = 2A

h̵
Ŝnz ⊗ Ŝax (14.272)

where A is a constant. We neglect the action of any external field, including B⃗0

during this time, i.e., we assume the atom-neutron interaction dominates for a
short period of time.

The operators Ŝnz and Ŝax commute since they act on two different Hilbert
spaces. Therefore,

[Ŝnz, V̂ ] = 0 (14.273)
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The common eigenvectors of Ŝnz and V̂ and the corresponding eigenvalues are

∣n ∶ +⟩⊗ ∣a ∶ ±x⟩ Ŝnz = +h̵/2 V = ±Ah̵/2 (14.274)

∣n ∶ −⟩⊗ ∣a ∶ ±x⟩ Ŝnz = −h̵/2 V = ∓Ah̵/2 (14.275)

The operators Ŝnz and V̂ form a complete set of commuting operators as far as
the spin variables are concerned.

From now on we assume that Aτ = π/2. Suppose that the initial state of the
system is

∣ψ(0)⟩ = ∣n ∶ +⟩⊗ ∣a ∶ +y⟩ (14.276)

Expanding in terms of energy eigenstates, we get

∣ψ(0)⟩ = ∣n ∶ +⟩⊗ ∣a ∶ +y⟩

= 1

2
∣n ∶ +⟩ ((1 + i) ∣a ∶ +x⟩ + (1 − i) ∣a ∶ −x⟩) (14.277)

and

∣ψ(t)⟩ = 1

2
∣n ∶ +⟩⊗ ((1 + i) ∣a ∶ +x⟩ e−iAt/2 + (1 − i) ∣a ∶ −x⟩ e+iAt/2)

so that

∣ψ(τ)⟩ = 1

2
∣n ∶ +⟩⊗ ((1 + i) ∣a ∶ +x⟩ e−iAτ/2 + (1 − i) ∣a ∶ −x⟩ e+iAτ/2)

which for Aτ = π/2 gives

∣ψ(τ)⟩ = 1

2
∣n ∶ +⟩⊗ ((1 + i) ∣a ∶ +x⟩ e−iπ/4 + (1 − i) ∣a ∶ −x⟩ e+iπ/4)

= 1

2
∣n ∶ +⟩⊗ ((1 + i) ∣a ∶ +x⟩ 1√

2
(1 − i) + (1 − i) ∣a ∶ −x⟩ 1√

2
(1 + i))

= 1√
2
∣n ∶ +⟩⊗ (∣a ∶ +x⟩ + ∣a ∶ −x⟩) = ∣n ∶ +⟩⊗ ∣a ∶ +⟩ (14.278)

Similarly, if ∣ψ(0)⟩ = ∣n ∶ −⟩⊗ ∣a ∶ −y⟩ then ∣ψ(τ)⟩ = ∣n ∶ −⟩⊗ ∣a ∶ −⟩.

Physically, this means that the neutron’s spin state does not change since it
is an eigenstate of V̂ , while the atom’s spin precesses around the x−axis with
angular frequency A. At time τ = π/2A it lies along the z−axis.

We now suppose that the initial spin state is

∣ψ(0)⟩ = (α+ ∣n ∶ +⟩ + α− ∣n ∶ −⟩)⊗ ∣a ∶ +y⟩ (14.279)

After the neutron-atom interaction described above, one measures the z−component
Ŝaz of the atom’s spin. The state after the interaction is(using linearity)

∣ψ(τ)⟩ = α+ ∣n ∶ +⟩⊗ ∣a ∶ +⟩ + α− ∣n ∶ −⟩ ∣a ∶ −⟩ (14.280)
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The measurement of the z-component of the atoms spin gives +h̵/2 with proba-
bility ∣α+∣2 and state ∣n ∶ +⟩⊗ ∣a ∶ +⟩ after the measurement or −h̵/2 with proba-
bility ∣α−∣2 and state ∣n ∶ −⟩⊗ ∣a ∶ −⟩ after the measurement. In both cases, after
measuring the z−component of the atom’s spin, the neutron spin state is known
- it is the same as that of the measured atom. It is not necessary to let the
neutron interact with another measuring apparatus in order to know the value
of Ŝnz.

14.8.4 The Actual Quantum Eraser

We have seen above that if one measures the spin state of the atom between
the two cavities, the interference signal disappears. We now want to show that
it is possible to recover an interference if the information left by neutron on the
detecting atom is erased by an appropriate measurement.

A neutron, initially in the spin state −, is sent into the two-cavity system.
Immediately after the first cavity, there is a detecting atom of the type described
above, prepared in the spin state +y. By assumption, the spin state of the atom
evolves only during the time interval τ when it interacts with the neutron.

The successive states for the neutron are:

∣ψ(t1)⟩ = ∣after 1st cavity and before atom interaction⟩

= 1√
2
(−ie−iδ ∣n ∶ +⟩⊗ ∣a ∶ +y⟩ + eiχ ∣n ∶ −⟩⊗ ∣a ∶ +y⟩)

∣ψ(t1 + τ)⟩ = ∣just after atom interaction⟩

= 1√
2
(−ie−iδ ∣n ∶ +⟩⊗ ∣a ∶ +⟩ + eiχ ∣n ∶ −⟩⊗ ∣a ∶ −⟩)

∣ψ(t′0)⟩ = ∣entering 2nd cavity⟩

= 1√
2
(−ie−i(δ+ω0T /2) ∣n ∶ +⟩⊗ ∣a ∶ +⟩ + ei(χ+ω0T /2) ∣n ∶ −⟩⊗ ∣a ∶ −⟩)

∣ψ(t′1)⟩ = ∣after 2nd cavity⟩

= 1

2

⎛
⎝
−ie−i(δ+ω0T /2) (e−iχ ∣n ∶ +⟩ − ie−iδ

′

∣n ∶ −⟩)⊗ ∣a ∶ +⟩
+ei(χ+ω0T /2) (−ie−iδ

′

∣n ∶ +⟩ + eiχ ∣n ∶ −⟩)⊗ ∣a ∶ −⟩
⎞
⎠

The probability of finding the neutron in the state + at time t′1 (after the 2nd
cavity) is the sum of the probabilities for finding

1. the neutron in state + and the atom in state +, i.e., the square modulus
of the coefficient of ∣n ∶ +⟩⊗ ∣a ∶ +⟩, which = 1/4 in this case)

2. the neutron in state + and the atom in state −, which = 1/4 in this case
also).
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We therefore get P+ = 1/4+1/4 = 1/2 - there is no interference since the quantum
path leading in the end to a spin flip of the neutron can be determined from the
state of the atom.

At time t′1, Bob measures the z−component of the neutron spin and Alice mea-
sures the y−component of the atom’s spin. Assume that both measurements
give +h̵/2.

We can write

∣ψ(t′1)⟩ =
1

2
√

2

⎛
⎝
−ie−i(δ+ω0T /2) (e−iχ ∣n ∶ +⟩ − ie−iδ

′

∣n ∶ −⟩)⊗ (∣a ∶ +y⟩ + ∣a ∶ −y⟩)
+ ei(χ+ω0T /2) (−ie−iδ

′

∣n ∶ +⟩ + eiχ ∣n ∶ −⟩)⊗ (∣a ∶ +y⟩ − ∣a ∶ −y⟩)
⎞
⎠

The probability amplitude that Bob finds +h̵/2 along the z−axis while Alice
finds +h̵/2 along the y−axis is the coefficient of the term ∣n ∶ +⟩⊗ ∣a ∶ +y⟩ in the
above state. Equivalently, the probability amplitude is found by projecting the
state onto ∣n ∶ +⟩⊗ ∣a ∶ +y⟩ and squaring. We get

P (Ŝnz = +h̵/2, Ŝay = +h̵/2) =
1

8
∣−ie−i(δ+χ+ω0T /2) − iei(χ−δ

′+ω0T /2)∣
2

= 1

2
cos2 (ω − ω0)T

2
(14.281)

which clearly exhibits a modulation reflecting an interference phenomenon. Sim-
ilarly, one finds that

P (Ŝnz = +h̵/2, Ŝay = −h̵/2) =
1

2
sin2 (ω − ω0)T

2
(14.282)

which is also modulated.

Let us now discuss the following three statements:

1. When Alice performs a measurement on the atom, Bob sees at once an
interference appear in the signal he is measuring on the neutron.

2. Knowing the result obtained by Alice on each event, Bob can select a
subsample of his own events which displays an interference phenomenon.

3. The experiment corresponds to an interference between two quantum
paths for the neutron spin. By restoring the initial state of the atom,
the measurement done by Alice erases the information concerning which
quantum path is followed by the neutron spin and thus allows interference
to reappear.

Statement (1) is clearly wrong. As seen earlier, if atom A is present, Bob no
longer sees oscillations (in ω − ω0) of the probability for detecting the neutron
in the state +. This probability is equal to 1/2 whatever Alice does. Notice

1158



that if the statement were correct, this would imply instantaneous transmission
of information from Alice to Bob. By seeing interference reappear, Bob would
know immediately that Alice is performing an experiment, even though she may
be far away.

Statement (2) is correct. If Alice and Bob put together all their results, and if
they select the subsample of events for which Alice finds +h̵/2, then the number
of events for which Bob also finds +h̵/2 varies like

cos2 (ω − ω0)T
2

(14.283)

Thus, they recover interference for this subset of events. In the complementary
set where Alice found −h̵/2, the number of Bob’s results giving +h̵/2 varies like

sin2 (ω − ω0)T
2

(14.284)

This search for correlation between events occurring in different detectors is a
common procedure in particle physics for example.

Statement (3), although less precise but more picturesque than than statement
(2), is nevertheless acceptable. The

cos2 (ω − ω0)T
2

(14.285)

signal found earlier can be interpreted as the interference of the amplitudes
corresponding to two quantum paths for the neutron spin which is initially in
the state −; either its spin flips in the 1st cavity, or it flips in the 2nd cavity. If
there exists a possibility to determine which quantum path is followed by the
system, interference cannot appear. It is necessary to erase this information,
which is carried by the atom, in order to observe some interference. After Alice
has measured the atom’s spin along the y−axis, she has, in some sense restored
the initial state of the system, and this enables Bob to see some interference. It is
questionable to say that information has been erased - one may feel that, on the
contrary, extra information has been acquired. Notice that the statement does
not specify in which physical quantity the interference reappears. Notice also
that the order of the measurements made by Alice and Bob has no importance,
contrary to what this third statement seems to imply.
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Chapter 15

States and Measurement

15.1 State Preparation/Determination
Density Matrix Revisited

In Chapter 6 we introduced the two basic concepts needed to discuss the formal
structure of quantum mechanics.

Postulate 1 defined observables as Hermitian operators and identified their
eigenvalues with the possible results of any measurement of the corresponding
dynamical variable.

Postulate 2 stated that every physical system has a state (or density ) operator
associated with it, or, alternatively, we might say that every physical system has
an associated state vector.

This means that we must have some reproducible preparation procedure, which
we identify with the term state, that determines a probability distribution for
each dynamical variable.

This presents us with two kinds of problems:

1. State Preparation - How do we actually prepare a state that is repre-
sented by a particular state operator or state vector?

2. State Determination - For a given system, how do we determine the
state operator or state vector?

15.1.1 State Preparation
Suppose that at t = t0 we have a known pure state represented by a state vec-
tor ∣ψ0⟩. It is always possible to mathematically(theoretically) construct a time
development operator U(t1, t0) that will generate any desired pure state via
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the relation ∣ψ1⟩ = U(t1, t0) ∣ψ0⟩. It is not always possible, however, to realize
U(t1, t0) in practice (in the laboratory).

Example: Consider an atom in its ground state. We can prepare an excited
state or a linear combination of excited states by using a pulse of electromag-
netic radiation from a laser.

If we know the initial state, the mathematical mapping is one-to-one (pure state
to pure state) and invertible and thus reversible.

The more fundamental problem, however, is how do we prepare a particular
state from an arbitrary unknown initial state? This mapping is not invertible
and, therefore, if we are able to carry it out in the laboratory, it must involve
some kind of irreversible process.

The fundamental laws of nature, however, are reversible, as far as we know.
This means that the effective irreversibility that arises must come about by a
coupling of the system to some kind of apparatus or to the environment so that
we have somewhere to transfer the entropy or information that is lost in the
irreversible process.

This says that even in the microscopic world where reversibility holds, we can
have, effectively, an irreversible transformation.

Now, we know that it is always possible to prepare the lowest energy state
of a system simply by waiting long enough for the system to decay into its
ground state. This follows because the decay of an atomic excited state by
spontaneous emission is due to the atom-electromagnetic field coupling and the
survival probability of an excited state, due to this interaction, decays to zero
(usually exponentially with time). This means that the probability of obtain-
ing the ground state can be made arbitrarily close to one just by waiting long
enough.

The method assumes that the energy of the excited state is radiated away to
infinity (it never returns to the system) and that the electromagnetic field is
initially in its lowest energy state since otherwise we have a nonvanishing prob-
ability for the atom to absorb energy from the field and become re-excited (no
longer guaranteed to be in the ground state).

In thermal equilibrium, the probability of obtaining an excited atomic state
is proportional to e−Ex/kBT where Ex = excitation energy of the atomic state,
kB = Boltzmann constant and T = the effective temperature of the radiation
field. This factor is usually very small. The presence of the cosmic background
radiation at a temperature of 3○K → kBT ≈ 0.0002 eV gives a lower limit to the
probabilities unless special shielding and refrigeration techniques are used in
any experiment. This background increases in importance as system gets larger
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since Ex gets smaller.

Suppose that this just waiting method can be used successfully to produce the
ground state for some system. It then turns out that we can then prepare a
wide range of states for a spinless particle.

Suppose that we wish to prepare the state characterized by the state function

ψ(r⃗) = R(r⃗)eiS(r⃗) (15.1)

where R(r⃗) and S(r⃗) are real functions.

Step #1

Construct a potential W1(r⃗) such that

− h̵
2

2m
∇2ψ0 +W1ψ0 = Eψ0 (15.2)

where ψ0(r⃗) = R(r⃗) is the ground state wave function for the system. By
definition of the ground state, R(r⃗) is then a nodeless function. We can do this
by choosing

W1(r⃗) = E + h̵2

2m

∇2R(r⃗)
R(r⃗)

(15.3)

Proof : Direct substitution gives

− h̵
2

2m
∇2ψ0 +W1ψ0 = −

h̵2

2m
∇2ψ0 +Eψ0 +

h̵2

2m

∇2R(r⃗)
R(r⃗)

ψ0 = Eψ0

or
(∇2R)ψ0 − (∇2ψ0)R = 0 (15.4)

which certainly has a solution ψ0(r⃗) = R(r⃗).

Step #2

Wait until the probability that the system has decayed to its ground state is
sufficiently close to one.

Step #3

Apply a pulse potential
W2(r⃗, t) = −h̵S(r⃗)δε(t) (15.5)

where

δε(t) =
⎧⎪⎪⎨⎪⎪⎩

1/ε 0 < t < ε
0 otherwise

(15.6)
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During the short time interval 0 < t < ε we can approximate the Schrodinger
equation by

ih̵
∂ψ(r⃗, t)
∂t

=W2(r⃗, t)ψ(r⃗, t) (15.7)

since W2 overwhelms any other interactions in the limit ε→ 0.

Step #4

Integrate the equation with the initial condition ψ(r⃗,0) = R(r⃗). We get

ψ(r⃗,0 + ε) = R(r⃗)eiS(r⃗) (15.8)

which is the state we wanted to prepare.

In general, we can usually carry out this procedure since we are only limited by
our ability to produce the potentials W1 and W2 in the laboratory.

The Filtering Method

An example of this method is the Stern-Gerlach(SG) apparatus. Its mode of
operation is simple. The potential energy of a magnetic moment µ⃗ in a magnetic
field B⃗ is E = −µ⃗ ⋅ B⃗. If the magnetic field is spatially inhomogeneous, then a
force arises given by

F⃗ = −∇E = ∇ (µ⃗ ⋅ B⃗) (15.9)

The magnitude and sign of the force depends on the spin state since µ⃗∝ S⃗(spin).
Therefore, different spin states will be deflected by this force into sub-beams
propagating in different directions.

Thus, the SG apparatus physically separates spin states in space.

By blocking off and thus eliminating all but one of the sub-beams, which is an
irreversible process, we can select(or filter out) a particular spin state. We will
discuss this procedure in detail shortly.

No-Cloning Theorem

Why don’t we just make exact replicas, or clones, of a prototype of the state
(assuming we can find one)? We do this all the time in the world of macro-
physics, i.e., duplicate keys, copying a computer file, etc.

Mathematically, to clone an arbitrary quantum state ∣ϕ⟩ we would need a device
in some suitable state ∣ψ⟩ and a unitary time development operator Û such that

Û ∣ϕ⟩⊗ ∣ψ⟩ = ∣ϕ⟩⊗ ∣ϕ⟩⊗ ∣ψ ′⟩ (15.10)

The dimension of the final device state vector ∣ψ′⟩ is smaller than that of the
initial device state vector ∣ψ⟩ because the overall dimension of the space is
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conserved under unitary transformations, i.e., if ∣ϕ⟩ is a 1−particle state and ∣ψ⟩
is an N−particle state, then ∣ψ′⟩ must be an (N − 1)−particle state.

We now show that such a device is impossible. We do it by assuming that it is
possible and then arriving at a contradiction.

So, we assume it is possible to find a Û operator. Then, we assume that there
exists two arbitrary states ∣ϕ1⟩ and ∣ϕ2⟩ for which the cloning transformation
works, i.e.,

Û ∣ϕ1⟩⊗ ∣ψ⟩ = ∣ϕ1⟩⊗ ∣ϕ1⟩⊗ ∣ψ′⟩
Û ∣ϕ2⟩⊗ ∣ψ⟩ = ∣ϕ2⟩⊗ ∣ϕ2⟩⊗ ∣ψ ′′⟩

It is possible that the final device states ∣ψ′⟩ and ∣ψ′′⟩ have a dependence on the
state we are attempting to clone.

Now Û is a linear operator. This implies that for the superposition state

∣ϕS⟩ =
1√
2
(∣ϕ1⟩ + ∣ϕ2⟩) (15.11)

we must have

Û ∣ϕS⟩⊗ ∣ψ⟩ = 1√
2
∣ϕ1⟩⊗ ∣ϕ1⟩⊗ ∣ψ ′⟩ + 1√

2
∣ϕ2⟩⊗ ∣ϕ2⟩⊗ ∣ψ ′′⟩ (15.12)

But ∣ϕS⟩ is not any special state and thus, by our assumption, we should have
obtained

Û ∣ϕS⟩⊗ ∣ψ⟩ = ∣ϕS⟩⊗ ∣ϕS⟩⊗ ∣ψ′′′⟩ (15.13)

but we do not!

Thus, it is impossible to build a device to clone an arbitrary, unknown quantum
state.

Classical states are just special limiting cases of quantum states. Since we are
able to copy an unknown classical state, does this theorem make any sense?

We were able to prove the impossibility of cloning states because of the linearity
of quantum mechanical time evolution process.

We could not prove the impossibility if we only required cloning to work on a
discrete set of states. The ability in quantum mechanics to form superpositions
was essential to the proof.

In any case, the set of discrete states must also be orthogonal. This follows from
the fact that the inner product between state vectors is preserved by a unitary
transformation.
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This means we must have

(⟨ψ∣⊗ ⟨ϕ1∣ Û+) (Û ∣ϕ2⟩⊗ ∣ψ⟩) = ⟨ψ∣⊗ ⟨ϕ1∣ Î ∣ϕ2⟩⊗ ∣ψ⟩
= ⟨ϕ1 ∣ ϕ2⟩ ⟨ψ ∣ ψ⟩
= (⟨ψ′∣⊗ ⟨ϕ1∣⊗ ⟨ϕ1∣) (∣ϕ2⟩⊗ ∣ϕ2⟩⊗ ∣ψ′′⟩)

= ∣⟨ϕ1 ∣ ϕ2⟩∣2 ⟨ψ′ ∣ ψ′′⟩

But since ⟨ψ ∣ ψ⟩ = 1 , ∣⟨ψ′ ∣ ψ′′⟩∣ ≤ 1 and ∣⟨ϕ1 ∣ ϕ2⟩∣ ≤ 1, the relation

⟨ϕ1 ∣ ϕ2⟩ ⟨ψ ∣ ψ⟩ = ∣⟨ϕ1 ∣ ϕ2⟩∣2 ⟨ψ′ ∣ ψ′′⟩ (15.14)

would only work mathematically if ⟨ϕ1 ∣ ϕ2⟩ = 0 or the discrete state vectors are
orthogonal.

Now, states that are classically different will certainly be orthogonal, so the
no-cloning theorem that we proved for quantum states would not be in conflict
with the ability to copy classical states.

Our discussion so far involves only pure states.

If, however, we can prepare ensembles corresponding to several different pure
states ∣ψi⟩, then by combining them with weights we can prepare the mixed
state represented by the state operator

ρ̂ =∑
i

wi ∣ψi⟩ ⟨ψi∣ (15.15)

In the laboratory, nature usually presents us with mixed states (states that are
not pure) and it is the preparation of pure states that is difficult.

15.1.2 State Determination
Suppose we have some apparatus that is designed (we think) to produce a cer-
tain state. We need to be able to test or calibrate it in order to determine what
state is actually being produced. In addition, some natural process can produce
an unknown state and we need to be able to determine its properties.

The procedure in either case must be repeatable(whether under the control of
the experimenter or occurring spontaneously in nature). This says that we must
be able to create an ensemble of systems and can carry out measurements on
each of them.

Because a measurement involves an interaction with the system, it will change
the values of the state parameters and hence change the state representing the
system. This means that any further measurements on the same system will
be useless as far as enhancing our understanding of the original state. We must
submit a system to the preparation procedure and then carry out only a single

1166



measurement on it. To obtain any more information, we must repeat the state
preparation procedures before another measurement is carried out. We can use
the same system each time in the preparation procedure, or another identical
system each time. The results will be the same.

What sort of measurements are sufficient to determine the state operator ρ̂(or
state vector) associated with the preparation procedure?

Suppose we have a dynamical variable R whose associated operator R̂ has a dis-
crete, non-degenerate eigenvalue spectrum, i.e., R̂ ∣rn⟩ = rn ∣rn⟩. Also suppose
that we do a single measurement and get the result R = r3. This only says that
we could have any state ∣ψ⟩ where ⟨r3 ∣ψ⟩ ≠ 0 or any state operator ρ̂ where
⟨r3∣ ρ̂ ∣r3⟩ ≠ 0.

If we repeat the preparation-measurement sequence many times, however, we
can determine the relative frequency of the result R = r3, i.e., we will be mea-
suring

Prob(R = rn∣ρ̂) = ⟨rn∣ ρ̂ ∣rn⟩ (15.16)

for the case of non-degenerate eigenvalues. This says that the measurement
of the probability distribution of the dynamical variable R gives the diagonal
matrix elements of the state operator in this representation.

To obtain information about the off-diagonal elements ⟨rm∣ ρ̂ ∣rn⟩ ≠ 0 we need to
measure some other dynamical variable whose operator does not commute with
R.

We can formally construct a set of operators such that their probability distribu-
tions would determine all of the matrix elements of the state operator. Consider
the Hermitian operators:

Âmn =
∣rm⟩ ⟨rn∣ + ∣rn⟩ ⟨rm∣

2
and B̂mn =

∣rm⟩ ⟨rn∣ − ∣rn⟩ ⟨rm∣
2i

(15.17)

We then have

Tr (ρ̂Âmn) =∑
p

⟨rp∣ρ̂Âmn ∣rp⟩

=∑
p

⟨rp∣ρ̂
∣rm⟩ ⟨rn∣ + ∣rn⟩ ⟨rm∣

2
∣rp⟩

=∑
p

1

2
[δpn ⟨rp∣ ρ̂ ∣rm⟩ + δpm ⟨rp∣ ρ̂ ∣rn⟩]

= 1

2
[⟨rn∣ ρ̂ ∣rm⟩ + ⟨rm∣ ρ̂ ∣rn⟩] = Re (⟨rm∣ ρ̂ ∣rn⟩) (15.18)

and similarly
Tr (ρ̂B̂mn) = −Im (⟨rm∣ ρ̂ ∣rn⟩) (15.19)
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Therefore, if Âmn and B̂mn represent observables, then the measurement of
their averages, i.e.,

Tr (ρ̂Q̂) = ⟨Q̂⟩ (15.20)

determines the all the matrix elements of the state operator ρ̂.

The remaining questions are

1. Are they observables?

2. How would we actually perform the necessary measurements?

These questions are not answerable within the formal approach. We must look
at special cases to see what measurements are actually required.

15.1.3 Spin State (S = 1/2)

What is the most general state operator for a spin = 1/2 system? Since this is a
world of 2 × 2 matrices and in that world the four matrices Î , σ̂x, σ̂y, σ̂z form
a basis for all the 2 × 2 matrices or, equivalently, all the operators in the spin
= 1/2 world. Therefore, we can always write

ρ̂ = 1

2
(Î + a⃗ ⋅ σ̂) (15.21)

This has Tr(ρ̂) = 1 as required. If we choose ax, ay and az real, then ρ̂ = ρ̂+ so
that it is Hermitian. We can determine ax, ay and az as follows:

⟨σ̂x⟩ = Tr (ρ̂σ̂x) =
1

2
Tr (σ̂x + axσ̂2

x + ayσ̂yσ̂x + azσ̂zσ̂x)

= 1

2
Tr (σ̂x + axÎ − iayσ̂z + iazσ̂y) =

1

2
axTr (Î) = ax (15.22)

and similarly ⟨σ̂y⟩ = ay and ⟨σ̂z⟩ = az or ⟨σ̂⟩ = Tr (ρ̂σ̂) = a⃗. Physically, therefore,
a⃗ is the polarization vector of the state.

The eigenvalues of ρ̂ are (1 ± ∣a⃗∣)/2 ≥ 0 → 0 ≤ ∣a⃗∣ ≤ 1. Pure states have ∣a⃗∣ =
1(maximum polarization) and unpolarized states have ∣a⃗∣ = 0 , which says that
it is isotropic and the average of any spin component is zero. Thus, in order to
determine the state operator, we must determine the components of a⃗. We have

Ŝi =
1

2
h̵σ̂i → ⟨Ŝi⟩ =

1

2
h̵T r (ρ̂σ̂i) =

1

2
h̵ai (15.23)

and it therefore sufficient to measure

⟨Ŝx⟩ , ⟨Ŝy⟩ and ⟨Ŝz⟩ (15.24)

which can be done using an SG apparatus (see discussion later in this chapter).
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For some unit vector n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) we have the operator

n̂ ⋅ σ̂ = ( cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

) (15.25)

Its eigenvalues are given by the characteristic equation

− (cos θ − λ)(cos θ + λ) − sin2 θ = 0

λ2 = 1→ λ = ±1

The eigenvectors of n̂ ⋅ σ̂ are

[ e−iϕ/2 cos θ
2

eiϕ/2 sin θ
2

] [ −e−iϕ/2 sin θ
2

eiϕ/2 cos θ
2

] (15.26)

Only the relative magnitudes and relative phases of the components of any state
vector have physical significance (the norm and overall phase are irrelevant).
Looking at the eigenvectors, it is clear that all possible values of the relative
magnitude and relative phase can be obtained by varying θ and ϕ, or, in other
words, the relative magnitude and relative phase of any 2−component vector
uniquely determines θ and ϕ. This implies that any pure state vector of an
S = 1/2 system can always be associated with a spatial direction n̂ for which it
is the +hbar/2 eigenvector for that component of spin, i.e., emphany pure state
always represents a definite spin in some direction in this case.

15.1.4 Spin State (S =1)
In this case, the state operator ρ̂ is a 3 × 3 Hermitian matrix(or operator). It
depends on 8 independent real numbers (parameters), i.e., since

ρ̂ = ρ̂+ → ρ11, ρ22, ρ33 real

→ ρij = ρ∗ji i ≠ j

the eight associated real numbers are

ρ11, ρ22,Reρ12, Imρ12,Reρ13, Imρ13,Reρ23, Imρ23

ρ33 = 1 − ρ11 − ρ22sinceTrρ̂ = 1

We can determine three of these numbers by measuring

⟨Ŝx⟩ , ⟨Ŝy⟩ , ⟨Ŝz⟩ (15.27)

where
⟨Ŝ⟩ = polarization, as before. (15.28)

The five other parameters are obtained by measuring the average values of the
so-called quadrupole operators

ŜαŜβ + ŜβŜα α,β = x, y, z (15.29)
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Only five of the six possible different operators are independent, namely,

(α,β) = (x, y), (z, x), (y, z), (x,x), (y, y) (15.30)

(α,β) = (z, z) is not independent since

Ŝ2
x + Ŝ2

y + Ŝ2
z = 2h̵2 (15.31)

Now for spin = 1 we have the matrix representation (Ŝz is diagonal)

Ŝx =
h̵√
2

⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
, Ŝy =

h̵√
2

⎡⎢⎢⎢⎢⎢⎣

0 −i 0
i 0 −i
0 i 0

⎤⎥⎥⎥⎥⎥⎦
, Ŝz =

h̵√
2

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
and we have

n̂ ⋅ Ŝ =

⎡⎢⎢⎢⎢⎢⎢⎣

cos θ 1√
2

sin θe−iϕ 0
1√
2

sin θeiϕ 0 1√
2

sin θe−iϕ

0 1√
2

sin θeiϕ − cos θ

⎤⎥⎥⎥⎥⎥⎥⎦

(15.32)

with eigenvalues/eigenvectors

+ h̵ 0 − h̵
⎡⎢⎢⎢⎢⎢⎣

1
2
(1 + cos θ)e−iϕ

1√
2

sin θ
1
2
(1 − cos θ)eiϕ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1√
2

sin θe−iϕ

cos θ
1√
2

sin θeiϕ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
2
(1 − cos θ)e−iϕ
− 1√

2
sin θ

1
2
(1 + cos θ)eiϕ

⎤⎥⎥⎥⎥⎥⎦

Unlike the spin = 1/2 case, it is no longer true that every vector must be an
eigenvector of the component of spin in some direction. This is so because it
requires four real parameters to specify the relative magnitudes and the relative
phases of the components of a general 3−component vector. The eigenvectors
above only contain two parameters θ and ϕ, however. Therefore, the pure states
of a spin = 1 system need not be associated with a spin eigenvalue in any spatial
direction. Let us define the quantities

aα = 1

h̵
T r(ρ̂Ŝα) α = x, y, z

qαα = 1

h̵2
Tr(ρ̂Ŝ2

α) α = x, y

qαβ =
1

h̵2
Tr [ŜαŜβ + ŜβŜα] αβ = xy, yz, zx

these are the eight real numbers we need defined in terms of the measurable
quantities:

⟨Ŝα⟩ α = x, y, z ,

⟨Ŝ2
α⟩ α = x, y

⟨ŜαŜβ + ŜβŜα⟩ αβ = xy, yz, zx
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Now, we can do direct evaluations of the type

ax =
1

h̵
T r(ρ̂Ŝx)

= 1

h̵
∑
sz

∑
s′z

⟨sz ∣ρ̂ ∣s′z⟩ ⟨s′z ∣ Ŝx ∣sz⟩

=
√

2(ρ12 + ρ23)

where ∣1⟩ = ∣sz = +h̵⟩ , ∣2⟩ = ∣sz = 0⟩ , ∣3⟩ = ∣sz = −h̵⟩.

Writing down all such possible equations and solving them for the matrix el-
ements of the state operator we can express the most general state operator
as

ρ̂ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 + 1
2
(ax − qxx − qyy) 1

2
√

2
(ax + qxx − i(ay + qyz)) 1

2
(qxx − qyy − iqxy)

1

2
√

2
(ax + qxx + i(ay + qyz)) −1 + qxx + qyy 1

2
√

2
(ax − qxx − i(ay − qyz))

1
2
(qxx − qyy + iqxy) 1

2
√

2
(ax − qxx + i(ay − qyz)) 1 − 1

2
(ax + qxx + qyy)

⎤⎥⎥⎥⎥⎥⎥⎦
With this parameterization of the state operator, we now ask how do we measure
the parameters?

An SG apparatus with the magnetic field gradient along the x−direction can be
used to perform measurements on an ensemble of particles that emerge from the
state preparation. We can determine the relative frequencies of the Sx−values
+h̵,0,−h̵ in this way. Then we can calculate

ax =
⟨Ŝx⟩
h̵

and qxx =
⟨Ŝ2
x⟩
h̵2

(15.33)

and similarly for gradients in the y− and z−directions. In this way we can
measure ax, ay, az, qxx, qyy, qzz which provides a check since we must have qzz =
2 − qxx + qyy. What about qxy, qyz, qzx? Here we take advantage of the time
evolution of the unknown state operator ρ̂ in a uniform magnetic field B⃗. We
have

Ĥ = −µ⃗ ⋅ B⃗ = αŜ ⋅ B⃗ = βŜz for B⃗ = Bẑ (15.34)

Now suppose that at t = 0 the state operator is ρ̂ and the magnetic field is
turned on for a time interval t, after which we measure Ŝ2

x. By doing this many
times for each of several t values, we can evaluate

d

dt
⟨Ŝ2
x⟩∣t=0

(15.35)

from the data. Now, for any observable

⟨R̂⟩
t
= Tr (ρ̂(t)R̂) (15.36)

where
∂ρ̂(t)
∂t

= i

h̵
[ρ̂(t), Ĥ] (15.37)
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In the Schrodinger picture we then have

d

dt
⟨R̂⟩

t
= d

dt
(Tr (ρ̂(t)R̂)) = Tr (∂ρ̂

∂t
R̂ + ρ̂ ∂R̂

∂t
)

= Tr (− i
h̵
[Ĥ, ρ̂] R̂ + ρ̂ ∂R̂

∂t
)

= Tr (− i
h̵
(Ĥρ̂R̂ − ρ̂ĤR̂) + ρ̂ ∂R̂

∂t
)

= Tr (− i
h̵
(ρ̂R̂Ĥ − ρ̂ĤR̂) + ρ̂ ∂R̂

∂t
)

= Tr ( i
h̵
ρ̂(t) [Ĥ, R̂] + ρ̂(t)∂R̂

∂t
)

From this equation of motion we then have

d

dt
⟨Ŝ2
x⟩∣t=0

= i

h̵
T r {ρ̂ [Ĥ, Ŝ2

x]} =
iβ

h̵
Tr {ρ̂ [Ŝz, Ŝ2

x]}

= −βTr {ρ̂ [ŜxŜy + ŜyŜx]} = −βh̵2qxy

In a similar manner we can determine qyz and qzx. Thus, we have managed to
determine the spin = 1 state completely. This procedure can be generalized to
higher spin states.

Now let us turn to the problem of determining the orbital state for a spin-
less particle. The orbital state of a spinless particle can be described by the
coordinate representation of the state operator

⟨r⃗∣ ρ̂ ∣r⃗ ′⟩ (15.38)

This is a function of two variable r⃗ and r⃗ ′. It is called the density matrix. Its
diagonal elements

⟨r⃗∣ ρ̂ ∣r⃗⟩ = ∣⟨r⃗ ∣ ψ⟩∣2 (15.39)

yield the position probability density.

To determine the density matrix for an arbitrary state we will need the prob-
ability distributions for the position and one or more dynamical variables with
operators that do not commute with the position operator. In 1933, Pauli posed
this question: Are the position and momentum probability densities sufficient to
determine the state?

The answer turns out to be NO!. Here is a counterexample.

Consider a pure state that is an eigenfunction of the orbital angular momentum,
i.e.,

ψnlm(r⃗) = fnl(r)Y lm(θ,ϕ) (15.40)
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Now the states ψnl,±m(r⃗) both have the same position and momentum distri-
butions, but they are distinct states of the system.

A sufficient set of measurements to determine the orbital state of a particle does
not seem to be known.

15.1.5 Composite Systems

Suppose that we have a composite system made up of components, i.e., a mul-
tiparticle state is a good example. Can we define states for the components
separately or only for the composite system as a whole? Is the state of a com-
posite system determined by the state of its parts?

To answer the first question, we consider a 2−component system (components
labeled 1 and 2). The basis set for the vector space is the set of direct product
vectors of the form

∣ambn⟩ = ∣am⟩⊗ ∣bn⟩ (15.41)

where

{∣am⟩} = set of basis vectors for component 1 alone
{∣bn⟩} = set of basis vectors for component 2 alone

The average of any dynamical variable R is given by

⟨R̂⟩ = Tr (ρ̂R̂) = ∑
m,n

⟨ambn∣ρ̂R̂ ∣ambn⟩

= ∑
m,n

∑
m′,n′

⟨ambn∣ ρ̂ ∣am′bn′⟩ ⟨am′bn′ ∣ R̂ ∣ambn⟩ (15.42)

Now suppose that R̂(1) is an operator representing a dynamical variable which
applies exclusively to component 1, i.e.,

R̂(1) → R̂(1) ⊗ Î(2) (15.43)

Then we have

⟨R̂(1)⟩ = ∑
m,n

∑
m′,n′

⟨ambn∣ ρ̂ ∣am′bn′⟩ ⟨am′ ∣ R̂(1) ∣am⟩ ⟨bn′ ∣ Î(2) ∣bn⟩

= ∑
m,n

∑
m′,n′

⟨ambn∣ ρ̂ ∣am′bn′⟩ ⟨am′ ∣ R̂(1) ∣am⟩ δnn′

= ∑
m,m′,n

⟨ambn∣ ρ̂ ∣am′bn⟩ ⟨am′ ∣ R̂(1) ∣am⟩ (15.44)

If we define the operator

ρ̂(1) = Tr(2)ρ̂→ operator in the space of component 1 alone (15.45)
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where Tr(2) means the trace over the space of component 2, then we have

⟨am∣ ρ̂(1) ∣am′⟩ =∑
n

⟨ambn∣ ρ̂ ∣am′bn⟩ (15.46)

and we can write

⟨R̂(1)⟩ =∑
m
∑
m′

⟨am∣ ρ̂(1) ∣am′⟩ ⟨am′ ∣ R̂(1) ∣am⟩ = Tr (ρ̂(1)R̂(1)) (15.47)

The operator ρ̂(1) is called the partial (or reduced) state operator for component
1. Similar results hold for

R̂(2) → Î(1) ⊗ R̂(2) → ⟨R̂(2)⟩ = Tr (ρ̂(2)R̂(2)) (15.48)

Let us now prove that ρ̂(1) and ρ̂(2) are in fact state operators. We must have

Tr(1)ρ̂(1) = 1 , ρ̂(1) = ρ̂(1)+ , ⟨u∣ ρ̂(1) ∣u⟩ ≥ 0 for all ∣u⟩ (15.49)

Now we have

Tr(1)ρ̂(1) =∑
m

⟨am∣ ρ̂(1) ∣am⟩ = ∑
m,n

⟨ambn∣ ρ̂ ∣ambn⟩ = Trρ̂ =1

⟨am∣ (ρ̂(1) − ρ̂(1)+) ∣am′⟩ =∑
n

⟨ambn∣ (ρ̂ − ρ̂+) ∣am′bn⟩

=∑
n

⟨ambn∣ (0) ∣am′bn⟩ = 0→ ρ̂(1) = ρ̂(1)+

To prove the last condition we assume ⟨u∣ ρ̂(1) ∣u⟩ < 0 and look for a contradiction.
In the space of component 1 we use the orthonormal basis {∣um⟩} where ∣u1⟩ = ∣u⟩
instead of using the basis {∣am⟩}. We also use the product states ∣umbn⟩ =
∣um⟩⊗ ∣bn⟩. Then, our assumption implies that

0 > ⟨u1∣ ρ̂(1) ∣u1⟩ =∑
n

⟨u1bn∣ ρ̂ ∣u1bn⟩ (15.50)

but this is impossible since ρ̂ is non-negative. Thus, ρ̂(1) and ρ̂(2) are state
operators. ρ̂(1) is sufficient to calculate the average of any dynamical variable
that belongs exclusively to component 1 and similarly for ρ̂(2).

They are not sufficient, in general, for determining the state of a composite sys-
tem. The reason is that they provide no information about correlations between
components 1 and 2.

If we find
⟨R̂(1)R̂(2)⟩ = ⟨R̂(1)⟩ ⟨R̂(2)⟩ (15.51)
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for all R̂(1) and R̂(2), then the composite state is said to be an uncorrelated
state. In this case, we have

⟨R̂(1)R̂(2)⟩ = Tr (ρ̂ [R̂(1) ⊗ R̂(2)])

= Tr (ρ̂(1)R̂(1))Tr (ρ̂(2)R̂(2))→ ρ̂ = ρ̂(1) ⊗ ρ̂(2) (15.52)

This is the only case where the total state operator is determined by the partial
state operators of the components.

Pure State Factor Theorem

If ρ̂ is a state operator and if ρ̂(1) = Tr(2)ρ̂ and ρ̂(2) = Tr(1)ρ̂ and if ρ̂(1) describes
a pure state, then

ρ̂ = ρ̂(1) ⊗ ρ̂(2) (15.53)

i.e., a pure partial state operator must be a factor of the total state operator.

Proof : We start with a representation of ρ̂ that guarantees nonnegativeness,
namely, the spectral representation in terms of eigenvectors and eigenvalues of
ρ̂

ρ̂ =∑
k

ρk ∣ϕk⟩ ⟨ϕk ∣ (15.54)

This form is nonnegative as long as the eigenvalues ρk > 0. Now let us expand
the eigenvectors in terms of the product vectors

∣ϕk⟩ = ∑
m,n

Ckmn ∣ambn⟩ (15.55)

This implies
ρ̂ =∑

k

ρk ∑
m,n

∑
m′,n′

CkmnC
k∗
m′n′ ∣ambn⟩ ⟨am′bn′ ∣ (15.56)

so that

ρ̂(1) = Tr(2)ρ̂ =∑
r

⟨br ∣
⎛
⎝∑k

ρk ∑
m,n

∑
m′,n′

CkmnC
k∗
m′n′ ∣ambn⟩ ⟨am′bn′ ∣

⎞
⎠
∣br⟩

=∑
r,k

∑
m,n

∑
m′,n′

ρkC
k
mnC

k∗
m′n′ ⟨br ∣ ambn⟩ ⟨am′bn′ ∣ br⟩

=∑
r,k

∑
m,n

∑
m′,n′

CkmnC
k∗
m′n′ ∣am⟩ ⟨am′ ∣ δrnδrn′

=∑
k

ρk ∑
m,m′

∑
n

CkmnC
k∗
m′n ∣am⟩ ⟨am′ ∣ (15.57)

Now, since this is a pure state, we must have

ρ̂(1) = ∣ψ⟩ ⟨ψ∣ (15.58)
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Since the original basis {∣am⟩} is arbitrary, we can choose ∣a1⟩ = ∣ψ⟩ which
implies that

ρ̂(1) = ∑
m,m′

∣am⟩ ⟨am′ ∣∑
k

ρk∑
n

CkmnC
k∗
m′n = ∣a1⟩ ⟨a1∣ (15.59)

This says that

∑
k

ρk∑
n

CkmnC
k∗
m′n =∑

n
∑
k

ρkC
k
mnC

k∗
m′n = 0 unless m =m ′ = 1

or that
∑
k

ρk ∣Ckmn∣
2
= 0 for m ≠ 1 (15.60)

Therefore, for m ≠ 1 and any k such that ρk ≠ 0 we must have Ckmn = 0 since
ρ ≥ 0. Thus

ρ̂ =∑
k

ρk∑
n
∑
n′
Ck1nC

k∗
1n′ ∣a1bn⟩ ⟨a1bn′ ∣

= ∣a1⟩ ⟨a1∣⊗ (∑
k

ρk∑
n
∑
n′
Ck1nC

k∗
1n′ ∣bn⟩ ⟨bn′ ∣) (15.61)

This is the form required by the theorem. The first factor is

ρ̂(1) = ∣ψ⟩ ⟨ψ∣ = ∣a1⟩ ⟨a1∣ (15.62)

and the second factor is identified with

ρ̂(2) =∑
k

ρk∑
n
∑
n′
Ck1nC

k∗
1n′ ∣bn⟩ ⟨bn′ ∣ (15.63)

Summarizing, we have shown that partial states for the components of a system
can be defined, but the states of the components do not suffice for determining
the state of a whole composite system. The relation between the states of the
components and the composite state is very complex. The theorem helps when
one component is pure, which implies that ρ̂ factors as specified.

Now a factorization of the form ρ̂ = ρ̂(1)⊗ρ̂(2) implies that there is no correlations
between the components 1 and 2. Therefore, a component described by a pure
state cannot have any correlations with the rest of the system. Does this make
sense?

Consider a many-particle spin system described by the state vector

∣ψ⟩ = ∣↑⟩⊗ ∣↑⟩⊗ ∣↑⟩⊗ ................... (15.64)

i.e., all spins are up in the z−direction. This seems like a high degree of correla-
tion. Yet, we must interpret the product form of the state vector as an absence
of correlations among the particles.
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We resolve this dilemma by noting that the correlation existing here is gener-
ated from the quantum mechanical probability distributions. Since ∣ψ⟩ is an
eigenvector of the z-components of the spins, there are no fluctuations in these
dynamical variables and no variability (no fluctuations) implies the degree of
correlation is undefined.

If, instead, we consider the components of the spin in any direction other than
z, they will be subject to fluctuation and those fluctuations will indeed be cor-
related in the state ∣ψ⟩.

Correlated states of multi-component systems are called entangled states. Many
modern quantum mechanical experiments involving quantum reality use entan-
gled states, as does quantum computing.

Consider the apparatus as shown in Figure 15.1 below.

Figure 15.1: Experimental Setup

The source (inside box) emits pairs of particles in variable directions, but always
with opposite momentum

k⃗b = −k⃗a , k⃗b′ = −k⃗a′ (15.65)

The two output ports on each side of the source box restrict each particle to
two possible directions. This says that the state of the emerging pairs is

∣ψ12⟩ =
1√
2
(∣k⃗a⟩ ∣k⃗b⟩ + ∣k⃗a′⟩ ∣k⃗b′⟩) (15.66)

The momenta of the particles are correlated in this state. This means that if
particle 1 on the right has momentum h̵k⃗a, then particle 2 on the left must have
momentum h̵k⃗b and if 1 has h̵k⃗a ′, then 2 must have h̵k⃗b ′.

Now by inserting mirrors in the proper places we can combine the beams a and
a′ on the right and combine beams b and b′ on the left. Looking at only one
side of the apparatus, it would appear that the amplitudes from paths a and
a′ should produce an interference pattern (like a double slit experiment) and
similarly for paths b and b′ on the left.

This, in fact, would be observed experimentally if the particles were not corre-
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lated and the state was of the form

∣ψ12⟩ = ∣ψ1⟩ ∣ψ2⟩ (15.67)

Correlations between the particles, in fact, leads to a qualitative difference. The
2-particle configuration space wave function will have the form

ψ12(r⃗1, r⃗2)∝ ei(k⃗a⋅r⃗1+k⃗b⋅r⃗2) + ei(k⃗a′ ⋅r⃗1+k⃗b′ ⋅r⃗2) (15.68)

and the position probability density is

∣ψ12(r⃗1, r⃗2)∣2 ∝ 1 + 1

2
[ei(k⃗a−k⃗a′)⋅r⃗1e−i(k⃗b−k⃗b′)⋅r⃗2 + e−i(k⃗a−k⃗a′)⋅r⃗1ei(k⃗b−k⃗b′)⋅r⃗2]

∝ 1 + cos [k⃗a − k⃗a′) ⋅ r⃗1 + (k⃗b − k⃗b′) ⋅ r⃗2] (15.69)

This form holds only in the regions where the beams overlap. The wave function
is zero outside the beams.

If you ignore particles on the left and place a screen to detect particles on the
right, then the detection probability for particle 1 is given by

∫ ∣ψ12(r⃗1, r⃗2)∣2dr⃗2 (15.70)

This is featureless, i.e., no interference pattern exists in the single particle prob-
ability density.

Only in the correlations between particles can interference be observed,i.e., if
we select only those particles on the right that are detected in coincidence with
particles on the left in a small volume near r⃗1, then their spatial density is
proportional to

∫ ∣ψ12(r⃗1, r⃗2)∣2δ(r⃗2)dr⃗2 = 1 + cos [k⃗a − k⃗a′) ⋅ r⃗1] (15.71)

and we do see an interference pattern.

15.2 Measurement and Interpretation of States

All experiments involve state preparation followed by a measurement. Mea-
surement and states are so closely linked in quantum mechanics that a detailed
analysis of the measurement process will allow us to devise a better interpreta-
tion of the state vector.

15.2.1 Example of Spin Measurement
We now return to a discussion of the measurement of a spin component using a
Stern-Gerlach(SG) apparatus.
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As we discussed earlier, its mode of operation is simple. The potential energy
of a magnetic moment µ⃗ in a magnetic field B⃗ is E = −µ⃗ ⋅ B⃗. If the magnetic
field is spatially inhomogeneous, then a force arises given by

F⃗ = −∇E = ∇ (µ⃗ ⋅ B⃗) (15.72)

The magnitude and sign of the force depends on the spin state since µ⃗∝ S⃗(spin).
Therefore, different spin states (different spin components) will be deflected by
this force into sub-beams propagating in different directions. The SG apparatus
physically separates spin states in space. By blocking off and thus eliminating
all but one of the sub-beams, which is an irreversible process, we can select(or
filter out) a particular spin state. In addition, the value of the spin component
can be inferred from the location of the sub-beam or equivalently, the deflection
of the beam. A schematic of an SG apparatus is shown in Figure 15.2 below:

Figure 15.2: Stern-Gerlach Setup

The velocity of the incident beam is in the y−direction and the magnetic field
is in the xz−plane, which is transverse to the beam. Some idealizations are
necessary to simplify our analysis:

1. the magnetic field vanishes outside of the gap between the poles

2. only the z−component of the field is significant

3. within the gap, the field has a constant gradient

This means, that relative to a coordinate origin located some distance below
the magnet, the components of the magnetic field can be written as

Bx = By = 0 , Bz = zB ′ , B ′ = field gradient (15.73)

In this case, the magnetic force is in the z−direction and the y-component of
the velocity will be constant. We can, therefore, choose a frame of reference
moving uniformly in the y−direction (with the beam velocity). In this frame
the incident particle is at rest and it experiences a time-dependent magnetic
field that is only nonzero during the time interval T that it takes for the beam
to pass through the magnet field region. The spin Hamiltonian, Ĥ = −µ̂ ⋅ B⃗, can
then be written as:

H(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 t < 0

−czσz 0 < t < T
0 T < t

(15.74)
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Now, we must have ∇ ⋅ B⃗ = 0 for any magnetic field. The above magnetic field
does not, in fact, satisfy this relation. We would need to have, at least, that

Bx = −xB′ , Bz = B0 + zB′ (15.75)

If, however, Bx ≪ B0, which is true in practice, then any component of the
magnetic moment in the xy−plane will precess rapidly about the z−axis and the
force due to Bx will average to zero. Therefore, we can use our approximate
Hamiltonian.

Now suppose that the state vector for the particles is given by

∣ψ0⟩ = a ∣+⟩ + b ∣−⟩ t ≤ 0 (15.76)

where ∣a2∣ + ∣b∣2 = 1 and ∣±⟩ = spin up/down eigenvectors of σz.

The time evolution of this state (equation of motion) then gives for t ≥ 0

∣ψ(t)⟩ = e−
i
h̵ Ĥt ∣ψ0⟩ = ae−

i
h̵ Ĥt ∣+⟩ + be−

i
h̵ Ĥt ∣−⟩

= aeiczt/h̵ ∣+⟩ + be−iczt/h̵ ∣−⟩ (15.77)

so that for t ≥ T

∣ψ1⟩ = ∣ψ(T )⟩ = aeiczT /h̵ ∣+⟩ + be−iczT /h̵ ∣−⟩ (15.78)

This says that the effect of the interaction is to create a correlation between the
spin and the momentum of the particle. The state vector above says that

if σz = +1 then Pz = +Tc
if σz = −1 then Pz = −Tc

or that the trajectory of the particle will be deflected either up or down accord-
ing to whether σz is positive of negative. Thus, by observing the deflection of
the particle we can infer the spin value.

This demonstrates that the essential feature of any measurement procedure is
the establishment of a correlation between the dynamical variable to be mea-
sured (spin component in this case) and some macroscopic indicator that can
be directly observed (the beam deflection in this case).

15.2.2 A General Theorem of Measurement Theory
What are the essential ingredients of a measurement?

(I) an object and (II) an apparatus together
with an interaction that produces a correlation
between some dynamical variable of (I) and an
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appropriate indicator variable of (II)

Suppose that we want to measure the dynamical variable R (assume it has a
discrete spectrum for now) that belongs to the object (I). We assume that the
corresponding operator R̂ possesses a complete set of eigenvectors, i.e.,

R̂ ∣r⟩I = r ∣r⟩I (15.79)

We assume that the apparatus (II) has an indicator variable A, and a corre-
sponding operator Â that also possesses a complete set of eigenvectors,i.e.,

Â ∣α,m⟩II = α ∣α,m⟩II (15.80)

where α is the indicator eigenvalue and m labels all the other quantum numbers
needed to specify a unique eigenvector of the apparatus.

We assume that the apparatus is prepared in an initial state prior to measure-
ment given by ∣0,m⟩II , i.e., the indicator eigenvalue α is set to zero.

Now introduce some interaction between (I) and (II) that produces a unique
correspondence between the value r of the dynamical variable R of (I) and the
indicator α of (II). Since the interaction causes a time development of the state
vectors, the time development operator Û implicitly specifies the interaction.
We can study this process further via the time development operator Û without
specifying any more details of the interaction.

Suppose that the initial state of (I) is an eigenstate of the R̂, say ∣r⟩I . Then the
initial state of the combined system (I) and (II) is given by

∣r⟩I ⊗ ∣0,m⟩II (15.81)

If we require that the measurement should not change the value of the quantity
being measured, then we must have

Û ∣r⟩I ⊗ ∣0,m⟩II = ∣r⟩I ⊗ ∣αr,m′⟩II (15.82)

Clearly r is unchanged by the interaction. However, the value ofmmight change
and the value of α changes to the value that corresponds to r, i.e., the indicator
variable now tells us (or allows us to infer) that the measured value is r. Since
we only care about the indicator variable, we need not put any restrictions on
the changes in m.

An assumption of this form is often made in the theory of measurement. It can
be significantly relaxed without affecting any of the arguments.

First, there is no reason why the state of the object (I) should not change during
the interaction (in practice it usually does). It is also not necessary for the state
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of the apparatus to remain an eigenvector corresponding to a unique value of
m. We can assume a much more general result of the form

Û ∣r⟩I ⊗ ∣0,m⟩II = ∑
r′,m′

ur
′,m′

r,m ∣r′⟩I ⊗ ∣αr,m′⟩II = ∣αr; (r,m)⟩ (15.83)

The labels (r,m) in the last vector are not eigenvalues but just indicate the
initial state from which the vector evolved.

The only restrictions here are that the final state vector is related to the initial
state vector by a unitary transformation, and that the particular value of r in
the initial state vector should correspond to a unique value of the indicator αr in
the final state vector. This last condition is required if the apparatus is actually
to be able to carry out a measurement.

The values of αr that correspond to different values of r should be clearly
distinguishable to the observer, i.e., they should be macroscopically distinct
values.

In the SG example the dynamical variable being measured is the spin component
σz and the indicator variable is the momentum Pz. In this case, therefore, the
indicator variable is not physically separate from the object of the measurement.
It only needs to be kinematically separate. Also in this case, we look at the
deflected beams and use the position coordinates of the point where the beam
strikes a screen as the indicator variable.

Now consider a general initial state for object (I) of the form

∣ψ⟩I =∑
r

cr ∣r⟩I (15.84)

This is not an eigenstate of the dynamical variable R that we are measuring. It
follows, however, from the linearity of the time development operator that the
final state of the system will be

Û ∣ψ⟩I ⊗ ∣0,m⟩II = Û (∑
r

cr ∣r⟩I)⊗ ∣0,m⟩II

=∑
r

cr ∣αr; (r,m)⟩ = ∣ψfm⟩ (15.85)

Thus, the final state vector is a coherent superposition of macroscopically distinct
indicator eigenvectors, which is the general theorem.

Finally, the probability, in the final state, that the indicator variable A of the
apparatus (II) has the value αr is ∣cr ∣2, which is just the same as the probability
in the initial state that the dynamical variable R of the object (I) had the value
r. This result is required if we are to have a faithful mapping from the initial
value of r to the final value αr.
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15.2.3 The Interpretation of the State Vector

We have just seen that if the initial state is not an eigenvector of the dynamical
variable being measured, then the final state vector for the whole system (object
of measurement + apparatus) must be a coherent superposition of macroscopi-
cally distinct indicator eigenvectors.

This enables us to get a better handle on how to interpret the quantum state.

Consider two standard interpretations:

(A) A pure state ∣ψ⟩ gives a complete description of an individual system. A
dynamical variable represented by the operator Q̂ has a value q in the
state ∣ψ⟩ if and only if

Q̂ ∣ψ⟩ = q ∣ψ⟩

(B) A pure state describes the statistical properties of an ensemble of similarly
prepared systems.

(A) is the more common interpretation in the literature, although it is not al-
ways made explicit. It assumes that because the state vector plays such an
important role in the mathematical formalism of quantum mechanics, it must
have an equally important role in the interpretation. It makes a strong corre-
spondence between the properties of the world and the properties of the state
vector.

Is it consistent with the measurement theorem, however?

Because the final state vector ∣ψfm⟩ of the measurement process is not an eigen-
vector of the indicator variable, (A) says that the indicator cannot have a definite
value, i.e., we are in a superposition of macroscopically distinct indicator states.
In other words, this superposition state implies that we have a macroscopic un-
certainty.

Suppose that the indicator variable is the position of a needle on a meter or
a mark on chart recorder. Suppose, also, that for two adjacent values of the
measured variable, r and r ′, the separation between the two corresponding in-
dicator variables αr and αr ′ is several centimeters. It would obvious to any
observer that the indicator position would be well defined to within a fraction
of a centimeter, but that the state vector involves a superposition of terms cor-
responding to values of αr that differ by many centimeters.

Thus, it seems that an interpretation of the final state as a description of an
individual system cannot be reconciled with observation.

There is no such difficulty with (B) where the state vector is simply some ab-
stract quantity that characterizes the probability distributions of the dynamical
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variables of an ensemble of similarly prepared systems (each member of the en-
semble consists of an object and a measuring apparatus).

The first idea for the measurement theorem came from Schrodinger in 1935 in
his now famous Cat experiment. We consider a box containing a cat, a flask
of poison gas, a radioactive atom, and an automatic device which releases the
poison gas when the atom decays.

If the atom were isolated, then after a time equal to one half-life, its state vector
would be

∣ψatom⟩ = 1√
2
(∣undecayed⟩ + ∣decayed⟩)

= 1√
2
(∣u⟩ + ∣d⟩) (15.86)

Now the atom is coupled to the cat via the apparatus. Therefore, the state of
the system after one half-life is

∣ψsystem⟩ = 1√
2
(∣u⟩atom ∣alive⟩cat + ∣d⟩atom ∣dead⟩cat) (15.87)

This is an entangled or correlated state. It is also a superposition of macroscopi-
cally distinct states (alive cat and dead cat). This is typical of any measurement
process.

Schrodinger argued the plausible interpretation that an individual system’s
properties are smeared over a range of values contained in the state vector.
The problem with this interpretation is that it implies a macroscopic smearing
for classical objects such as the unfortunate cat.

The physicists that believe interpretation (A) are now forced to introduce a new
postulate, called reduction of the state vector or collapse of the state vector.

A new process arises during a measurement so that a transition ∣ψfm⟩→ ∣αr0 ; (r0,m)⟩
occurs.

The process is called reduction or collapse and the final state is called the re-
duced state. Here the new final state vector is now an eigenstate of the indicator
variable A with eigenvalue αr0 corresponding to the actual observed indicator
position.

The big question is - what is this new mechanism?

Proposed mechanisms

1. The reduction process is caused by an unpredictable and uncontrollable
disturbance of the object by the measuring apparatus. Any interaction
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between the object (I) and the apparatus (II) that might act as the cause
of this disturbance must already be included in the Hamiltonian that we
use to construct the time development operator.

If the interaction satisfied the minimal condition that we derived earlier
(15.85)

Û ∣ψ⟩I ⊗ ∣0,m⟩II = Û (∑
r

cr ∣r⟩I)⊗ ∣0,m⟩II

=∑
r

cr ∣αr; (r,m)⟩ = ∣ψfm⟩ (15.88)

for it to be a measurement interaction, then it must, as above, lead to
a superposition and not to a reduced state. Therefore, it is difficult to
understand how the disturbance theory can make sense.

2. The observer causes the reduction process when she reads the result of the
measurement from the apparatus.

This is a variation of (1) with the observer instead of the apparatus causing
the disturbance. It also makes no sense. It also leads some physicists
to speculation about whether quantum mechanics can be applied to the
consciousness of the observer, which is an arena we do not need to enter.

3. The reduction is caused by the environment, where the environment means
the rest of the universe other than (I) and (II). The phenomenon is called
decoherence.

Here the proponents never quite make clear which part of the environment
is essential. If we include within (II) all these essential parts , then it is just
another disturbance model. We will have more to say about decoherence
later.

4. In proving the measurement theorem, the initial state of the apparatus
was assumed to be a definite pure state ∣0,m⟩I . But, in fact, is an abbre-
viation for a set of many microscopic quantum numbers, which are never
determined in any experiment. It is very improbable that they will have
the same values on every repetition of the state preparation. Therefore,
the initial state should not be described as a pure state, but as a mixed
state involving a distribution of values. Proponents of this view assumed
that this would be the way to circumvent the measurement theorem.

We can defeat the last view by re-deriving the theorem using general state
operators.

15.2.4 The Measurement Theorem for General States

Instead of the pure vector ∣ψim⟩ = ∣ψ⟩I ∣0,m⟩I ∣0,m⟩I we now assume that the
initial state for the system is a more general state for the system ((I) and (II))
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represented by
ρ̂i =∑

m

wm ∣ψim⟩ ⟨ψim∣ (15.89)

where the wm are the probabilities associated with each of the microscopic states
labeled by m, where m represents the quantum numbers(large number) of the
apparatus other than the indicator α. The final state must be a mixture of
indicator eigenvalues, say of the form

ρ̂d =∑
r

∣cr ∣2∑
m

vm ∣αr; (r,m)⟩ ⟨αr; (r,m)∣ (15.90)

which is diagonal with respect to αr.

If it were not so, then we would have a coherent superposition of macroscopically
distinct "indicator position" eigenvectors, which is not allowed by interpretation
A. The final state is more plausible than the reduced state, which would have
prescribed a unique measurement result αr0 . The new conjecture is consistent
with the prediction that the result of the measurement being αr has probability
∣cr ∣2.

This conjecture is not correct, however. The actual final state of the measure-
ment process is given by

ρ̂f = Û ρ̂iÛ+ =∑
m

wm ∣ψfm⟩ ⟨ψfm∣ (15.91)

where ∣ψfm⟩ = Û ∣ψim⟩. We then get

ρ̂f =∑
r1

∑
r2

c∗r1cr2∑
m

wm ∣αr1 ; (r1,m)⟩ ⟨αr2 ; (r2,m)∣ (15.92)

The terms with αr1 ≠ αr2 correspond to a coherent superposition of macroscop-
ically distinct indicator eigenvectors. These non-diagonal terms do not vanish
and thus the state will not reduce the diagonal form above. The measurement
theorem seems to be valid for these general states as well as the pure states.

It seems that in all cases where the initial state is not an eigenstate of the dynam-
ical variable being measured, the final state will involve coherent superpositions
of macroscopically distinct indicator eigenvectors. This makes interpretation
(A) untenable.

Thus, if we attempt to maintain the idea that the statistical quantum theory
is, in principle, able to produce a complete description of an individual physical
quantum system, then we seem to always end up in a theoretical box full of im-
plausible results. If one, however, views the quantum mechanical description as
the description of an ensemble of systems, it seems possible that the theoretical
difficulties will vanish.
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15.2.5 Which Wave Function?
Why then do so many physicists consider an individual particle to have its own
wave function?

It turns out that taking this view seldom leads to any serious errors. This
is because the predictions of quantum mechanics that are derived from a wave
function consist of probabilities, and the operational significance of a probability
corresponds to a relative frequency. This means that one usually has to invoke
an ensemble of similar systems when one makes a comparison with experiment
independent of how one interprets the wave function.

Since so many results do not seem to depend in any critical manner on which
interpretation one makes, should we dismiss the subject of interpretation as
irrelevant?

I do not think so!

Let us consider this interesting case. Electrons are emitted from a hot cathode
and then accelerated to form a beam to be used in interference experiments.

Using interpretation (A) we can account for the energy spread in the beam via
two different assumptions:

1. Each electron is emitted in an energy eigenstate (a plane wave), but the
particular energy varies from one electron to the next.

2. Each electron is emitted as a wave packet which has an energy spread
equal to the energy spread of the beam.

Do these two assumptions lead to quantitatively different predictions about the
resulting interference and thus allow us to distinguish between them experimen-
tally?

Let us analyze this system such that the electron beam is moving along the x-
axis (a one dimensional problem). Then, assumption (1) says that each electron
has a wave function of the form

ψk(x, t) = ei(kx−ωt) (15.93)

and has an energy

E = h̵ω = h̵
2k2

2M
(15.94)

The observed energy distribution (spread) of the beam enables us to calculate
the probability density (we call it W (ω)). The state operator corresponding to
this process will then be

ρ̂ = ∫ ∣ψk⟩ ⟨ψk ∣W (ω)dω (15.95)
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In the coordinate representation we get

ρ(x,x′) ≡ ⟨x∣ ρ̂ ∣x′⟩ = ∫ ψk(x, t)ψ∗k(x′, t)W (ω)dω

= ∫ eik(x−x
′)W (ω)dω (15.96)

Note that all of the time dependence cancels out, so that we have a steady state!

All observable quantities, including the interference pattern, can be calculated
from the state function ρ(x,x′).

Now, assumption (2) says that if an individual electron is emitted at t0 in a
wave packet state

ψt0(x, t) = ∫ A(ω)ei(kx−ω(t−t0))dω (15.97)

then the energy distribution is given by ∣A(ω)∣2 =W (ω). The state function for
the emission process is obtained by averaging over the emission time (assumed
to be uniformly distributed):

⟨x∣ ρ̂ ∣x′⟩ = lim
T→∞

1

T

T /2

∫
−T /2

ψt0(x, t)ψ∗t0(x, t)dt0

= lim
T→∞

1

T

T /2

∫
−T /2

∫ A(ω)ei(kx−ω(t−t0))dω∫ A∗(ω′)e−i(k
′x′−ω′(t−t0))dω′

Now, integrating over t0 and then taking the limit, the integral is zero unless
ω = ω ′ (k = k′). We thus get

ρ(x,x′) = ∫ ∣A(ω)∣2 eik(x−x
′)dω (15.98)

This is the same result as obtained from assumption (1). Assumptions (1)
and (2) do not lead to any observable differences and any controversy over the
supposed wave functions of individual electrons seems to be pointless.

Now let us adopt interpretation (B), which was that

A pure state describes the statistical properties
of an ensemble of similarly prepared systems

We now regard the state operator ρ̂ as the fundamental description of the state
generated by the thermal emission process, which now yields an ensemble of
systems each of which is a single electron. In this case, we can obtain ρ(x,x′)
without ever speculating about individual wave functions.
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Since this is a steady state process we must have

dρ̂

dt
= 0 (15.99)

(in the Schrodinger picture). This implies that

[Ĥ, ρ̂] = 0 (15.100)

and thus Ĥ and ρ̂ possess a complete set of common eigenvectors. This set is the
free particle states ∣ψω⟩, which have the coordinate representation ⟨x ∣ ψω⟩ = eikx
and satisfy the eigenvalue equation Ĥ ∣ψω⟩ = h̵ω ∣ψω⟩. In this case the state
operator has the form

ρ̂ = ∫ ∣ψω⟩ ⟨ψω ∣W (ω)dω (15.101)

W (ω) again describes the energy distribution in the beam. In the coordinate
representation this becomes

ρ(x,x′) = ∫ eik(x−x
′)W (ω)dω (15.102)

Of course we get the same result as earlier, since all of these clever approaches
must agree with the same set of experimental predictions in the end!!

This last approach seems, however, to be superior since it avoids any (probably
pointless) speculations about the form of the supposed wave function of an
individual electron.

15.2.6 Spin Recombination Experiment
Is there any evidence that the state vector retains its form and does not undergo
any reduction process?

Let us consider a spin recombination experiment involving a single crystal neu-
tron interferometer. The crystal is cut into the shape shown inn Figure 15.3
below from a perfect (no dislocations or grain boundaries) crystal of silicon
about 10 cm long.

Figure 15.3: Single Crystal Neutron Interferometer

The diffraction beams are shown in Figure 15.4 below:
The incident beam at A is divided into a transmitted beam AC and a diffracted
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Figure 15.4: Diffraction Beams

(Bragg-reflected) beam AB. Similar divisions occur at B and C, with the trans-
mitted beams leaving the apparatus (no further role in the experiment). The
diffracted beams from B and C recombine coherently at D, where a further
Bragg reflection takes place. The interference of the amplitudes of the two
beams is observable by means of two detectors, D1 and D2.

The amplitude atD1 is the sum of the transmitted part of CD plus the diffracted
part of BD, and similarly, the amplitude at D2 is the sum of the transmitted
part of BD plus the diffracted part of CD.

We assume for simplicity that the transmission and reflection coefficients are
the same at each of the vertices A,B,C and D and that free propagation of the
plane waves takes place between these vertices.

Only two distinct propagation directions are involved in this experiment. At
each diffraction vertex the amplitudes are redistributed between these two modes.
Figure 15.5 below shows what happens at a general diffraction vertex.

Figure 15.5: Diffraction Vertex

The time evolution and propagation processes are generated by linear opera-
tors. This implies that the relation between the amplitudes of the outgoing and
incoming waves is of the form

[ a′1
a′2

] = U [ a1

a2
] where U = [ t r

s u
] (15.103)
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or

a′1 = ta1 + ra2

a′2 = sa1 + ua2

U is a unitary matrix. The elements t an u are transmission coefficients and the
elements r and s are reflection coefficients.

Because U is unitary we have these relations:

UU+ = I → ∣t∣2 + ∣u∣2 = 1and ∣r∣2 + ∣s∣2 = 1 (15.104)

detU = 1→ ∣tu − rs∣ = 1 (15.105)

U−1 = U+ → 1

tu − rs
[ u −r
−s t

]

= [ t∗ s∗

r∗ u∗
]→ ∣u∣ = ∣t∣ and ∣s∣ = ∣r∣ (15.106)

Now complex numbers can be regarded as 2-dimensional vectors, to which the
triangle inequality

∣a + b∣ ≤ ∣a∣ + ∣b∣ (15.107)

applies. Using the inequality we have

∣tu − rs∣ = 1→ ∣tu∣ + ∣rs∣ ≥ 1 (15.108)

Now since ∣u∣ = ∣t∣ and ∣s∣ = ∣r∣ we must have ∣tu∣ + ∣rs∣ = 1. This result is
compatible with ∣tu − rs∣ = 1 only if tu and −rs have the same complex phase,
and thus rs/tu must be real and negative.

If the amplitude at A is ψA, then the amplitudes at B and C will be

ψB = ψAreiϕAB and ψC = ψAteiϕAC (15.109)

where ϕAB is the phase change due to the propagation through the empty space
between A and B, and similarly for ϕAC . The amplitude that emerges toward
the detector D1 is the sum of the amplitudes from paths ABDD1 and ACDD1

(and similarly for detector D2):

ψD1 = ψA ((a′2, a1)eiϕAB(a′1, a2)eiϕBD(a′2, a1) + (a′1, a1)eiϕAC (a′2, a1)eiϕCD(a′2, a2))
= ψA (seiϕABreiϕBDs + teiϕACseiϕCDu)
= ψAs (rseiϕABeiϕBD + tueiϕACeiϕCD) (15.110)

ψD2 = ψA ((a′2, a1)eiϕAB(a′1, a2)eiϕBD(a′1, a1) + (a′1, a1)eiϕAC (a′2, a1)eiϕCD(a′1, a2))
= ψA (seiϕABreiϕBD t + teiϕACseiϕCDr)
= ψAtrs (eiϕABeiϕBD + eiϕACeiϕCD) (15.111)
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Any perturbation that has an unequal effect on the phases associated with the
two paths will influence the intensities of the beams reaching the detectors D1

and D2. Since rs/tu is negative, it follows that if the interference between the
two terms in ψD2 is constructive, then the interference between the two terms
in ψD1 will be destructive and vice versa. The best way to detect such a per-
turbation is to monitor the difference between the counting rates in D1 and D2.
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An experiment of this sort in 1975 detected a quantum interference due to
gravity. The interferometer was rotated about a horizontal axis parallel to the
incident beam causing a difference in the gravitational potential on paths AC
and AB and thus a phase shift in the interference pattern. In the spin recombi-
nation experiment, a beams of neutrons with spin polarized in the +z−direction
is incident from the left as shown in Figure 15.6 below:

Figure 15.6: Spin Recombination Experiment

At point A the beam is split into a transmitted beam AC and a Bragg-reflected
beam AB of equal intensity. Similar splitting occur at B and at C. The trans-
mitted beams at B and C exit the apparatus. We now insert a spin-flipper into
the beam CD as shown. The dots indicate spin up beams and the x indicates
a spin down beam. The spin up and spin down beams are then recombined at
D. The detectors then determine the spin state of the beams that emerge from
the apparatus after point D.

We let the vectors ∣+⟩ and ∣−⟩ denote the spin-up and spin-down eigenvectors of
σ̂z. The neutrons at point B have the spin state ∣+⟩ and the neutrons after the
spin-flipper have the spin state ∣−⟩. We then ask this question.

What will be the spin state when the beams recombine at D?

At one time, when the beams are at B and C, they are separated by several
centimeters. This means that their spatial wave functions do not overlap. One
might suppose, in this case, that all coherence is lost and that no interference
is possible, i.e., that the spin state should be an incoherent mixture of spin-up
and spin-down states of the form

ρ̂inc = 1

2
(∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣) (15.112)

This state would also result if we applied the reduction hypothesis.

If, on the other hand, the coherence is maintained somehow, then the spin state
will be of the form

ρ̂coh = ∣u⟩ ⟨u∣ where ∣u⟩ = 1√
2
(eiα ∣+⟩ + eiβ ∣−⟩) (15.113)
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Both of these state operators predict that ⟨σ̂z⟩ = 0, i.e.

⟨σ̂z⟩inc = Tr (ρ̂incσ̂z) = ⟨+∣ ρ̂incσ̂z ∣+⟩ + ⟨−∣ ρ̂incσ̂z ∣−⟩
= ⟨+∣ ρ̂inc ∣+⟩ − ⟨−∣ ρ̂inc ∣−⟩

= ⟨+∣ (1

2
(∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣)) ∣+⟩ − ⟨−∣ (1

2
(∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣)) ∣−⟩

= 1

2
− 1

2
= 0

⟨σ̂z⟩coh = Tr (ρ̂cohσ̂z) = ⟨+∣ ρ̂cohσ̂z ∣+⟩ + ⟨−∣ ρ̂cohσ̂z ∣−⟩
= ⟨+∣ ρ̂coh ∣+⟩ − ⟨−∣ ρ̂coh ∣−⟩

= ⟨+∣ (∣u⟩ ⟨u∣) ∣+⟩ − ⟨−∣ (∣u⟩ ⟨u∣) ∣−⟩ = 1

2
− 1

2
= 0

or that the z−component of spin is equally likely to be positive or negative.

However, ρ̂inc actually predicts zero polarization in any direction, while ρ̂coh

predicts that the spin is polarized in some direction in the xy−plane. We can
see this by computing

⟨σ̂x⟩coh = Tr (ρ̂cohσ̂x) = ⟨+∣ ρ̂cohσ̂x ∣+⟩ + ⟨−∣ ρ̂cohσ̂x ∣−⟩
= ⟨+∣ ρ̂coh ∣−⟩ − ⟨−∣ ρ̂coh ∣+⟩ = ⟨+∣ (∣u⟩ ⟨u∣) ∣−⟩ − ⟨−∣ (∣u⟩ ⟨u∣) ∣+⟩

= 1

2
⟨+∣ (eiα ∣+⟩ + eiβ ∣−⟩) (e−iα ⟨+∣ + e−iβ ⟨−∣) ∣−⟩

− 1

2
⟨−∣ (eiα ∣+⟩ + eiβ ∣−⟩) (e−iα ⟨+∣ + e−iβ ⟨−∣) ∣+⟩

= 1

2
eiαe−iβ − 1

2
e−iαeiβ = cos(α − β) (15.114)

Even though the phases α and β are not necessarily known in advance, their
difference can be systematically varied by placing known phase-shifters in one
of the beams. Such an experiment was done in 1982 and it found a periodic
dependence of ⟨σ̂x⟩ on the phase shift and no such dependence for ⟨σ̂z⟩. This
confirms that the coherent superposition is the correct state.

Let us look at the state operators in more detail.

If we account for both the position and spin variables, the state function(vector)
should be

∣ψ⟩ = ψ+(r⃗) ∣+⟩ + ψ−(r⃗) ∣−⟩ (15.115)
where the wave functions ψ+(r⃗) and ψ−(r⃗) vanish outside the beams. The spin
state operator is given by

ρ̂ = ∣ψ⟩ ⟨ψ∣ = ∣ψ+∣2 ∣+⟩ ⟨+∣ + ψ+ψ∗− ∣+⟩ ⟨−∣ + ψ−ψ∗+ ∣−⟩ ⟨+∣ + ∣ψ−∣2 ∣−⟩ ⟨−∣ (15.116)

or

ρ = [ ⟨+∣ ρ̂ ∣+⟩ ⟨+∣ ρ̂ ∣−⟩
⟨−∣ ρ̂ ∣+⟩ ⟨−∣ ρ̂ ∣−⟩ ] = [ ∣ψ+∣2 ψ+ψ

∗
−

ψ−ψ
∗
+ ∣ψ−∣2

] (15.117)
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Along AB, AC, and from B to the left of D, ψ−(r⃗) = 0 and from the right of
the spin-flipper to the left of D, ψ+(r⃗) = 0. Both components are nonzero to the
right of D.

At the point D the off-diagonal terms are nonzero, which means that we have
a coherent superposition. In this experiment, the preservation of the coherence
over a distance of several centimeters is possible because the scatterer is cut
from a single crystal of silicon and the relative separation of the components are
stable to within the interatomic separation distance.

Suppose that the spectrometer were not such a high precision device and that the
relative separations of points A, B, C, and D are subject to random fluctuations
that are larger than the spatial spread of the neutron wave function.

This gives rise to random fluctuations in the phases α and β and hence, in
the phases of the off-diagonal terms. Different neutrons passing through the
spectrometer at different times would experience different configurations of the
spectrometer, and to determine the observed statistical distributions we must
average over these fluctuations.

If we regard the noise fluctuations as a part of the state preparation procedure,
then ρ should be averaged over the noise. If the phase difference (α−β) fluctuates
by more than 2π, then the off-diagonal terms will average to zero, ρ will be
diagonal and will reduce to ρinc which corresponds to the state operator for the
reduced state.

The reduced state can therefore be significant under certain conditions. It does
not seem, however, to be a fundamental object, but , instead, arises only due to
an effect on the system (neutron + spectrometer) from its environment(the cause
of the noise fluctuations). The separation of the system and the environment
is, however, artificial. If the reduction takes place in this manner, then it is
not a new fundamental process, and it would not have anything to do with
measurement.

Let us now include the environment not as an external effect on the system,
but as an integral part of the system. The neutrons that follow path ABD
will interact differently with the environment than those that follow path ACD.
These interactions will affect the state of the environment and therefore the final
state must now be

∣ψ⟩ = ψ+(r⃗) ∣+⟩ ∣e1⟩ + ψ−(r⃗) ∣−⟩ ∣e2⟩ (15.118)

where ∣e1⟩ is the state of the environment if the neutron followed path ABD
and ∣e2⟩ is the state of the environment if the neutron followed path ACD. If
∣e1⟩ = ∣e2⟩, then this inclusion of the environment has no effect. If we recalculate
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the state operator we now get

ρ = [ ∣ψ+∣2 ψ+ψ
∗
− ⟨e2 ∣ e1⟩

ψ−ψ
∗
+ ⟨e1 ∣ e2⟩ ∣ψ−∣2

] (15.119)

If the difference between the effects of taking paths ABD and ACD on the
environment is so great that ∣e1⟩ and ∣e2⟩ are orthogonal, then the state operator
reduced once again to ρinc.

We have thus seen two possible methods of handling the influences, if any,
of the environment on the experiment. One method treats the effect of the
environment as an outside perturbation, which introduces random phases and we
lose coherence if the random phase fluctuations are large enough. In the second
method, the environment is included in the state vector of the system. It is then
the effect of the apparatus on the environment, rather than the environment on
the apparatus, that is important. Clearly, these two approaches are equivalent.

15.2.7 Joint and Conditional Probabilities
In all of our discussions, an experiment consists of a state preparation followed
by the measurement of a single quantity. Suppose, instead, of a single mea-
surement, it involves a sequence of measurements of two or more dynamical
variables. In this case, we will not only need the probability distributions for
the individual quantities to be measured, but also will need to consider correla-
tions between values of the quantities to be measured.

We can deal with this by computing the joint probability distribution for the
results of two or more measurements, or the probability for one measurement
conditional on both state preparation and the result of another measurement.

We discussed these joint and conditional probabilities earlier in Chapter 5. Ax-
iom 4 related them by

Prob(A ∧B∣C) = Prob(A∣C)Prob(B∣A ∧C) (15.120)

We let event C be the state preparation that corresponds to the state operator
ρ̂ so we will replace C with ρ̂. The events A and B will be the results of two
measurements following that state preparation. Let R and S be two dynamical
variables represented by the Hermitian operators R̂ and Ŝ such that

R̂ ∣rn⟩ = rn ∣rn⟩ and Ŝ ∣sm⟩ = sm ∣sm⟩ (15.121)

We now define two projection operators.

Let ∆ be some interval (in eigenvalue space). Then the operators

MR(∆) = ∑
rn∈∆

∣rn⟩ ⟨rn∣ , MS(∆) = ∑
sm∈∆

∣sm⟩ ⟨sm∣ (15.122)
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project onto the subspace spanned by those eigenvectors whose eigenvalues lie
in the interval ∆.

Let A denote the event of R taking a value in the range ∆a(R ∈ ∆a). Let B
denote the event of S taking a value in the range ∆b(S ∈ ∆b).

We suppose that the first of these events takes place at time ta and the second at
time tb. We use the Heisenberg representation and assume that the specification
of ta is implicit in the operators R̂ and MR(∆) and that the specification of tb
is implicit in the operators Ŝ and MS(∆).

Review and Digression on Probability Distributions

Let us now extend some of our earlier discussions (Chapter 5). In general we
have

⟨R̂⟩ = Tr (ρ̂R̂) (15.123)

Now if g(r)dr is the probability that the observable R lies between r and r+dr,
then by definition

⟨F (R̂)⟩ =
∞

∫
−∞

F (r′)g(r′)dr′ = Tr (ρ̂F (R̂)) (15.124)

Let us now extract the probability density g(r) using these results.

Discrete Spectrum

Let R̂ have a purely discrete spectrum. We can then write

R̂ =∑
n

rn ∣rn⟩ ⟨rn∣ (15.125)

Now consider the function

F (R) = θ(r −R) =
⎧⎪⎪⎨⎪⎪⎩

1 R < r
0 R > r

(15.126)

We then have

⟨θ(r − R̂)⟩ =
r

∫
−∞

g(r′)dr′ = Pr ob(R < r∣ρ)

= Tr (ρ̂θ(r − R̂))

= Tr [ρ̂(∑
n

θ(r − rn) ∣rn⟩ ⟨rn∣)]

=∑
n

θ(r − rn) ⟨rn∣ ρ̂ ∣rn⟩ (15.127)
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Therefore,

g(r) = ∂

∂r
Pr ob(R < r∣ρ)

= ∂

∂r
∑
n

θ(r − rn) ⟨rn∣ ρ̂ ∣rn⟩

=∑
n

δ(r − rn) ⟨rn∣ ρ̂ ∣rn⟩ (15.128)

This makes it clear that g(r) = 0 if r is not an eigenvalue.

The probability that R will have the discrete value r in the virtual ensemble
characterized by ρ̂ is

Prob(R = r∣ρ) = lim
ε→0

[Prob(R < r + ε∣ρ) − Prob(R < r − ε∣ρ)]

=∑
n

δr,rn ⟨rn∣ ρ̂ ∣rn⟩ (15.129)

If we define the projection operator

P̂ (r) =∑
n

∣rn⟩ ⟨rn∣ δr, rn (15.130)

which projects onto the subspace spanned by all the degenerate eigenvectors
with eigenvalue r = rn. We then have

Prob(R = r∣ρ) = Tr (ρ̂P̂ (r)) (15.131)

In the special case of a pure state where ρ̂ = ∣ψ⟩ ⟨ψ∣ and a non-degenerate eigen-
value, this reduces to

Prob(R = rn∣ρ) = ∣⟨rn ∣ ψ⟩∣2 (15.132)
A particular dynamical variable will, in general, have a non-vanishing statisti-
cal dispersion in most states. In the case of a discrete variable, however, it is
possible for all of the probability to be concentrated on a single value. If the dy-
namical variable R takes on the unique value r0(assumed to be a non-degenerate
eigenvalue) with probability = 1 in some state, then from

Prob(R = r∣ρ) =∑
n

δr,rn ⟨rn∣ ρ̂ ∣rn⟩ (15.133)

we must have
⟨r0∣ ρ̂ ∣r0⟩ = 1 (15.134)

But, any state operator must satisfy Trρ̂2 ≤ 1 which implies

∑
m,n

⟨rn∣ ρ̂ ∣rm⟩ ⟨rm∣ ρ̂ ∣rn⟩ = ∑
m,n

∣⟨rn∣ ρ̂ ∣rm⟩∣2 ≤ 1 (15.135)

Since one term in the sum already accounts for an amount = 1, all of the other
diagonal and non-diagonal matrix elements of ρ̂ must vanish.

Therefore the only state for which R takes on the non-degenerate eigenvalue r0

with probability = 1 is the pure state ρ̂ = ∣r0⟩ ⟨r0∣. This is what we mean by an
eigenstate.
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Continuous Spectrum

Let Q̂ be a Hermitian operator having a purely continuous spectrum such that

Q̂ ∣q′⟩ = q′ ∣q′⟩ (15.136)

Then we can write
Q̂ = ∫ q′ ∣q′⟩ ⟨q′∣dq′ (15.137)

The eigenvectors are normalized by the relation

⟨q′ ∣ q′′⟩ = δ(q′ − q′′) (15.138)

Now let g(q)dq be the probability that the corresponding observable Q lies
between q and q + dq. We then get

⟨θ(q − Q̂)⟩ =
q

∫
−∞

g(q′)dq′ = Pr ob(Q < q∣ρ)

= Tr (ρ̂θ(q − Q̂)) = Tr
⎡⎢⎢⎢⎢⎣
ρ̂

∞

∫
−∞

θ(q − q′) ∣q′⟩ ⟨q′∣dq′
⎤⎥⎥⎥⎥⎦

=
q

∫
−∞

⟨q′∣ ρ̂ ∣q′⟩dq′ (15.139)

or
g(q) = ∂

∂q
Pr ob(Q < q∣ρ) = ⟨q∣ ρ̂ ∣q⟩ (15.140)

Once again in the pure state we get

g(q) = ∣⟨q ∣ ψ⟩∣2 (15.141)

The expressions for the probability and the probability density always consist
of a relation between two factors: one characterizing the state (the state func-
tion) and one characterizing a portion of the spectrum being observed(the filter
function).

In the expression
Prob(R = r∣ρ) = Tr (ρ̂P̂ (r)) (15.142)

they are ρ̂ and ˆP (r) respectively.

In the expressions ∣⟨rn ∣ ψ⟩∣2 and ∣⟨q ∣ ψ⟩∣2 they are the state vector ψ and an
eigenvector belonging to the observable.

The two objects have very distinct natures,i.e., the state vector must be nor-
malized and therefore belongs to Hilbert space. The filter function does not
necessarily belong to Hilbert space, but rather to an extended or rigged Hilbert
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space.

Returning to our discussion, we have the following situation. Associated with
any dynamical variable R and its corresponding Hermitian operator R̂ is a fam-
ily of projection operators MR(∆) which are related to the eigenvectors and
eigenvalues of R̂ by

MR(∆) = ∑
rn∈∆

∣rn⟩ ⟨rn∣ (15.143)

The sum is over all eigenvectors(even degenerate) whose eigenvalues lie in the
subset ∆. For a continuous spectrum the sum becomes an integral. Then the
probability that the value of R will lie within ∆ is given by

Prob(R ∈ ∆∣ρ) = Tr (ρ̂MR(∆)) (15.144)

If the region ∆ contains only one eigenvalue, then this reduces the earlier result
for Prob(R = r∣ρ) and in the continuous spectrum case it is equal to the integral
of the probability density over the region ∆. This result satisfies all of the 4
probability axioms in Chapter 5.

We then have

Prob(A∣C) = Prob(R ∈ ∆a∣ρ) = Tr (ρ̂MR(∆a)) (15.145)

The joint probability Prob(A ∧B∣C) can be evaluated only if we can find(from
quantum mechanics) a projection operator for the compound event A∧B. This
is possible if the projection operators MR(∆a) and MS(∆b) commute. In that
case the product MR(∆a)MS(∆b) is also a projection operator that projects
onto the subspace spanned by those common eigenvectors of R̂ and Ŝ with
eigenvalues in the ranges ∆a and ∆b, respectively. We then have

Prob(A ∧B∣C) = Prob ((R ∈ ∆a) ∧ (S ∈ ∆b)∣ρ)
= Tr (ρ̂MR(∆a)MS(∆b)) (15.146)

This is just the joint probability that both events A and B occur on the condition
C, or, in other words, it is the probability that the result of the measurement
of R at time ta is in the range ∆a and the result of the measurement of S at
time tb is in the range ∆b, following the state preparation corresponding to ρ̂.
If R̂ and Ŝ commute this calculation is possible for arbitrary ranges.

The last term Prob(B∣A ∧C) is

Prob(B∣A ∧C) = Prob ((S ∈ ∆b)∣(R ∈ ∆a) ∧ ρ) (15.147)

It is the probability for a result of the S measurement, conditional on the state
preparation and a certain result of the R measurement. We do not know how
to deal with these expressions directly.

Two paths are now open to us.
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1. We can regard the preparation of the state ρ̂ and the following measure-
ment of R as a composite operation that corresponds to the preparation
of a new state ρ̂′.

2. We can define

Prob(B∣A ∧C) = Prob(A ∧B∣C)
Prob(A∣C)

(15.148)

since we know how to calculate the right-hand-side.

Filtering-Type Measurements

If we want to regard the initial ρ− state preparation followed by the R measure-
ment as a composite operation that results in a new state ρ′, then we require a
detailed description of the R measurement apparatus and a dynamical analysis
of its operation. This is only possible for particular cases and no general treat-
ment can be done.

Are there any types of measurements that we can treat without too much diffi-
culty?

Let us consider a measurement of the filtering type where the ensemble of sys-
tems generated by the ρ− state preparation is separated into sub-ensembles
according to the value of the dynamical variable R (SG apparatus is an exam-
ple of this type of measurement).

If we consider the result of a subsequent S measurement on only that sub-
ensemble for which R ∈ ∆a, and ignore the rest, then we are determining the
conditional probability

Prob(B∣A&C) = Prob ((S ∈ ∆b)∣(R ∈ ∆a) ∧ ρ) (15.149)

This filtering process, which has the effect of removing all values of R except
those for which R ∈ ∆a, can be regarded as preparing a new state that is
represented by

ρ̂′ = MR(∆a)ρ̂MR(∆a)
Tr [MR(∆a)ρ̂MR(∆a)]

(15.150)

so that we have

Prob(B∣A ∧ ρ) = Prob ((S ∈ ∆b) ∣ (R ∈ ∆a) ∧ ρ)
= Prob ((S ∈ ∆b) ∣ρ′) = Tr (ρ′MS(∆b)) (15.151)
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Finally, we can calculate a joint probability for two filtering-type measurements
as:

Prob(A ∧B∣C) = Pr ob(A∣C)Pr ob(B∣A ∧C)
= Pr ob(A∣ρ)Pr ob(B∣A ∧ ρ)
= Tr (ρ̂MR(∆a))Tr (ρ̂′MS(∆b))

= Tr (ρ̂MR(∆a))Tr (
MR(∆a)ρ̂MR(∆a)

Tr [MR(∆a)ρ̂MR(∆a)]
MS(∆b))

= Tr (ρ̂MR(∆a))
Tr [MR(∆a)ρ̂MR(∆a)]

Tr (MR(∆a)ρ̂MR(∆a)MS(∆b))

= Tr (ρ̂MR(∆a))
Tr [ρ̂MR(∆a)MR(∆a)]

Tr (ρ̂MR(∆a)MS(∆b)MR(∆a))

= Tr (ρ̂MR(∆a))
Tr [ρ̂MR(∆a)]

Tr (ρ̂MR(∆a)MS(∆b)MR(∆a))

= Tr (ρ̂MR(∆a)MS(∆b)MR(∆a)) (15.152)

In the case when MR(∆a) and MS(∆b) commute, this reduces to the earlier
expression

Prob(A ∧B∣C) = Tr (ρ̂MR(∆a)MS(∆b)) (15.153)

The derivation of this last relation required that R̂ and Ŝ commute, but no such
restriction was required to derive

Prob(B∣A ∧ ρ) = Tr (ρ′MS(∆b)) (15.154)

The latter, however, is restricted to filtering-type measurements.

We have just seen that both results are consistent with

Prob(A ∧B∣C) = Prob(A∣C)Prob(B∣A ∧C) (15.155)

when all the various conditions are satisfied together. It does seem strange
however that the conditions for evaluating the two sides of the equation should
be different. This is not really a puzzle, however.

The derivation of Prob(A∧B∣C) was implicitly based on the assumption that the
measurements of R and S were equivalent to, or at least compatible with, a joint
filtering according to the eigenvalues of R and S, i.e., a product of projection
operators. This is only possible if R and S commute. In this case the time order
of measurements is irrelevant, as is clear from the symmetry with respect to the
two projection operators, i.e.,

Prob(A ∧B∣C) = Tr (ρ̂MR(∆a)MS(∆b)) (15.156)

Remember these are time-dependent operators in the Heisenberg picture.
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If the operators R and S do not commute, the above relation is not true, as
the definition of the joint probability. In this case we must carefully observe
the time orderings, because it is the R measurement that serves as (part of the)
state preparation for the S measurement and not vice versa. This is clear in the
lack of symmetry in the last result

Prob(A ∧B∣C) = Tr (ρ̂MR(∆a)MS(∆b)MR(∆a)) (15.157)

Application to Spin Measurements

Let us now illustrate these ideas in a spin = 1/2 system.

Assume a state represented by ∣ψ⟩ has been prepared. It is then subjected to
three successive measurements of the filtering type:

a measurement of σ̂z at time t1
a measurement of σ̂u at time t2
a measurement of σ̂x at time t3

where the u−direction is in the zx−plane, making an angle θ with respect to
the z−axis. These filtering measurements will split the initial beam first into
two, then into four, and finally into eight separated subbeams as in Figure 15.7
below:

Figure 15.7: Filtering Splitting Beam

Seven SG machines are required to carry out this experiment. We assume that
the spin vector is a constant of the motion between the measurements.

Each of the eight final outcomes of this experiment corresponds to a particular
combination of results (+1 or −1) for the three (σ̂z , σ̂u , σ̂x) measurements,
and the probability of these various outcomes is, in fact, the joint probability
for the results of the three measurements.

The full notation for this joint probability should be

Prob(σ̂z = a, σ̂u = b, σ̂x = c∣ψ ∧X) (15.158)

with a = ±1, b = ±1 and c = ±1. As indicated above, the probability is condi-
tional on the state preparation (denoted by ψ) and the configuration of the SG
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machines (denoted by X). We abbreviate it Prob(a, b, c∣ψ ∧X) with the time
ordering assumed.

It is important to note that this is the joint probability for the results of three ac-
tual measurements, and not the joint distribution for hypothetical simultaneous
values of three noncommuting observables. Moreover, the various subbeams in
this experiment are all separated in space and no attempt is made to recombine
them. Thus, questions of relative phase and coherence are irrelevant.

We write the initial state vector as

∣ψ⟩ = α ∣z+⟩ + β ∣z−⟩ (15.159)

in the basis of the σ̂z eigenvectors. The amplitudes are divided at each filter-
ing operation and the division is calculated using projection operators. The
absolute squares of these amplitudes then give the probabilities of the various
measurements.

After the measurement of σ̂z at t1 we have

Pz(a∣ψ&X) = ⟨ψ∣ M̂z(a) ∣ψ⟩

= ⟨ψ∣ (∣a⟩ ⟨a∣) ∣ψ⟩ = ∣⟨a ∣ ψ⟩∣2

=
⎧⎪⎪⎨⎪⎪⎩

∣α∣2 for a = +1 or ∣a⟩ = ∣z+⟩
∣β∣2 for a = −1 or ∣a⟩ = ∣z−⟩

(15.160)

Similarly, after the measurement of σ̂u at t2 we have

Pzu(a, b∣ψ ∧X) = (⟨ψ∣ M̂z(a)) M̂u(b) (M̂z(a) ∣ψ⟩)

= ⟨ψ∣ M̂z(a)M̂u(b)M̂z(a) ∣ψ⟩ (15.161)

where
M̂u(±1) = ∣u±⟩ ⟨u±∣ (15.162)

and

∣u+⟩ = cos
θ

2
∣z+⟩ + sin

θ

2
∣z−⟩ , ∣u−⟩ = − sin

θ

2
∣z+⟩ + cos

θ

2
∣z−⟩ (15.163)

Finally after the measurement of σ̂x at t3 we have

Pzu(a, b, c∣ψ ∧X) = (⟨ψ∣ M̂z(a)M̂u(b)) M̂x(c) (M̂u(b)M̂z(a) ∣ψ⟩)

= ⟨ψ∣ M̂z(a)M̂u(b)M̂x(c)M̂u(b)M̂z(a) ∣ψ⟩ (15.164)

Now we can always write

Pzu(a, b∣ψ ∧X) = ∑
c=±1

Pzu(a, b, c∣ψ ∧X) (15.165)
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i.e., the probability for the z and u measurements independent of what happens
at the x measurement (the later x measurement should not affect them!).

We then get

Pzu(a, b∣ψ ∧X) = ∑
c=±1

Pzux(a, b, c∣ψ ∧X)

= ∑
c=±1

⟨ψ∣ M̂z(a)M̂u(b)M̂x(c)M̂u(b)M̂z(a) ∣ψ⟩

= ⟨ψ∣ M̂z(a)M̂u(b)(M̂x(c = +1) + M̂x(c = −1))M̂u(b)M̂z(a) ∣ψ⟩
= ⟨ψ∣ M̂z(a)M̂u(b)ÎM̂u(b)M̂z(a) ∣ψ⟩
= ⟨ψ∣ M̂z(a)M̂u(b)M̂z(a) ∣ψ⟩ (15.166)

as expected.

So the presence of the σ̂x filter has no effect on the earlier measurements. Sim-
ilarly, we have

Pz(a∣ψ ∧X) = ∑
b=±1

∑
c=±1

Pzux(a, b, c∣ψ ∧X)

= ⟨ψ∣ M̂z(a) ∣ψ⟩ (15.167)

since the absence of the σ̂x and σ̂u filters has no effect on the measurement of
σ̂z.

Now several interesting conditional probabilities can be calculated from these
joint probability distributions using the formula

Prob(B∣A ∧C) = Prob(A ∧B∣C)
Prob(A∣C)

(15.168)

(1) Conditioning on a Prior Measurement

Let C be the preparation of the state ψ, A be the result σ̂z = +1 for the first
measurement, andB be to result of the measurement of σ̂u. Then the probability
that the second measurement will yield σ̂u = +1 conditional on both the state
preparation and the result σ̂z = +1 in the first measurement is

Prob(σ̂u = +1∣(σ̂z = +1) ∧ ψ) = Pzu(+1,+1∣ψ)
Pz(+1∣ψ)

= ⟨ψ∣ M̂z(+1)M̂u(+1)M̂z(+1) ∣ψ⟩
⟨ψ∣ M̂z(+1) ∣ψ⟩

=
∣α cos θ

2
∣2

∣α∣2
= cos2 θ

2
(15.169)
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This is the same as the probability of obtaining σ̂u = +1 conditional on the new
state being ∣ψ′⟩ = ∣z+⟩, i.e., as if the first measurement collapsed or reduced the
state to correspond to the measurement. We have not, however, assumed any
reduction process. This result follows from existing quantum mechanical rules.
It does not, however, say that any collapse occurred!

(2) Probability Distribution for σ̂x regardless of σ̂z and σ̂u

The probability of the result σ̂x = +1 in the final measurement regardless of the
results of the prior measurements is

Px(+1∣ψ ∧X) = ∑
a=±1

∑
b=±1

P (a, b,+1∣ψ ∧X)

= ∑
a=±1

∑
b=±1

⟨ψ∣ M̂z(a)M̂u(b)M̂x(+1)M̂u(b)M̂z(a) ∣ψ⟩ (15.170)

Now

P (a, b, c∣ψ ∧X) = ⟨ψ∣ M̂z(a)M̂u(b)M̂x(c)M̂u(b)M̂z(a) ∣ψ⟩ (15.171)

or

P (+1,+1,+1∣ψ ∧X) = 1

2
∣α∣2 cos2 θ

2
[1 + sin θ] (15.172)

P (−1,+1,+1∣ψ ∧X) = 1

2
∣β∣2 sin2 θ

2
[1 + sin θ] (15.173)

P (+1,−1,+1∣ψ ∧X) = 1

2
∣α∣2 sin2 θ

2
[1 − sin θ] (15.174)

P (−1,−1,+1∣ψ ∧X) = 1

2
∣β∣2 cos2 θ

2
[1 − sin θ] (15.175)

and therefore carrying out the sum we get

Px(+1∣ψ ∧X) = 1

2
[1 + (∣α∣2 − ∣β∣2) sin θ cos θ] (15.176)

This is the probability of obtaining the result σ̂x = +1 with the σ̂z and σ̂u filters
in place, but ignoring the results of the σ̂z and σ̂u measurements. It is not equal
to the probability of obtaining σ̂x = +1 with the σ̂z and σ̂u filters absent, which
is

Px(+1∣ψ) = ⟨ψ∣Mx(+1) ∣ψ⟩ 1

2
∣α + β∣2 (15.177)

These two results differ because the particle must pass through the σ̂z and σ̂u
filters before reaching the σ̂x filter and clearly the presence of the other filters
is relevant!

Thus, we must always explicitly take the dynamical action of the apparatus into
account when developing a theory of measurement.
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(3) Conditioning on Both Earlier and Later Measurements

We now calculate the probability for a particular result of the intermediate σ̂u
measurement, conditional on specified results for the preceding σ̂z measurement
and the following σ̂x measurement.

The later measurement cannot have any causal effect on the outcome of the ear-
lier measurement, but it can give relevant information because of the statistical
correlations between the results of successive measurements!

We use
Prob(B∣A ∧C) = Prob(A ∧B∣C)

Prob(A∣C)
(15.178)

with C = ψ ∧X, A = (σ̂z(t1) = +1) ∧ (σ̂x(t3) = +1) and B = (σ̂u(t2) = +1). We
get

Prob((σ̂u(t2) = +1)∣(σ̂z(t1) = +1) ∧ (σ̂x(t3) = +1) ∧ ψ ∧X)

= P (+1,+1,+1∣ψ ∧X)
Pzx(+1,+1∣ψ ∧X)

(15.179)

From earlier we have

P (+1,+1,+1∣ψ ∧X) = 1

2
∣α∣2 cos2 θ

2
[1 + sin θ] (15.180)

and

Pzx(+1,+1∣ψ&X)
= P (+1,+1,+1∣ψ ∧X) + P (+1,−1,+1∣ψ ∧X)

= 1

2
∣α∣2 cos2 θ

2
[1 + sin θ] + 1

2
∣α∣2 sin2 θ

2
[1 − sin θ]

= 1

2
∣α∣2 (1 + sin θ cos θ) (15.181)

Putting it all together we get

Prob((σ̂u(t2) = +1)∣(σ̂z(t1) = +1) ∧ (σ̂x(t3) = +1) ∧ ψ ∧X)

= (cos2 θ

2
) 1 + sin θ

1 + sin θ cos θ
(15.182)

Thus, the probability distribution for σ̂u is well-defined for all θ. There is ,
however, no quantum state ρ̂′ such that

Prob(σ̂u = +1∣ρ′) = (cos2 θ

2
) 1 + sin θ

1 + sin θ cos θ
(15.183)

This is clear from the fact that

Prob((σ̂u(t2) = +1)∣(σ̂z(t1) = +1) ∧ (σ̂x(t3) = +1) ∧ ψ ∧X) = 1 (15.184)
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i.e., the probability is 1 for both θ = 0 and θ = π/2, which is very different than
case (1).

How do we resolve this paradox?

We must remember that a quantum state is characterized by a well-defined
state preparation procedure that can yield a statistically reproducible ensemble
of systems, and not merely by the specification of abstract information.

This is why the probabilities in these examples have been conditional on the
apparatus configuration X.

Now the angle θ specifies the direction of the σ̂u filter and it must be included
in X, i.e., we should write Xθ. By conditioning on the final result σ̂x = +1 we
select a subensemble discarding those cases in which the result is −1. However,
a part of the specification of this subensemble is that its members have passed
through the σ̂u filter. Thus, the conditions that define the subensemble include
the value of the angle θ, which therefore may not be changed.

In the usual situation, as in case (1), all of the specifications correspond to
operations performed before the measurement of interest. Hence, they define
an ensemble whose composition does not depend upon what measurement we
may choose to perform. We then have a well-defined state, which yields a well-
defined probability distribution for any subsequent measurement that we may
choose to perform.

But this is not possible if we specify conditional information both before and
after the measurement of interest, as in the last example.

Thus, the paradox is resolved and makes us realize that we must pay very careful
attention to the state preparation concepts.

Comparing Approaches

Let us now look at all of this theory in a more standard manner(as is done in
many textbooks) and then compare the two approaches.

The standard axioms of quantum theory are:

1. The state is described by a vector ∣ψ⟩ in a linear space.

2. The observables are represented by Hermitian operators and a function of
an observable f(observable) is represented by f(operator).

3. The expectation value of an observable is ⟨ψ∣ operator ∣ψ⟩.
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4. The dynamics are given by the Schrodinger equation

ih̵
∂

∂t
∣ψ⟩ = Ĥ ∣ψ⟩ where Ĥ = Hamiltonian or energy operator

5. The only possible results of a measurement of an observable are the eigen-
values of the corresponding operator.

6. In a measurement of the observable Â with the result a, the original state
changes into state ∣a⟩ where

Â ∣a⟩ = a ∣a⟩

In this text, we made a different set of assumptions:

Postulate 1

For each dynamical variable or observable,
which is a physical concept, there corresponds
a Hermitian, linear operator, which is a
mathematical object.

The possible values of any measurement of
the observable are restricted to the eigenvalues
of the corresponding operator.

Postulate 1 is equivalent to axioms (2) and (5).

Postulate 2

(a) A density operator exists for every real physical system.
(b) The expectation value of an operator B̂ is given by

⟨B̂⟩ = Tr(Ŵ B̂)

Postulate 2 is equivalent to axioms (1) and (3).

We also assumed that we were in a linear vector space and hence could prove
Stone’s theorem which is equivalent to axiom (4) above.

We did not assume axiom (6).

In the discussion just completed we saw that axiom (6) seems to be incorporated
in our theory but is not generally true.

It is at the heart of all the controversy in quantum mechanics.
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Let us see how the standard approach proceeds.

First, both approaches imply that if a system is in the state (linear combination)

∣ψ⟩ =∑
n

cn ∣an⟩ where Â ∣an⟩ = an ∣an⟩ (15.185)

then the probability during a measurement of A that we measure the eigenvalue
am is given by

∣⟨am ∣ ψ⟩∣2 = ∣cn∣2 (15.186)

The conceptual difficulties that we will elucidate within the structure of the
quantum mechanical state do not imply a weakness in quantum theory, whose
experimental validity has never encountered any limitations, but only a weakness
of our imagination!!

The Density Matrix in the Standard Approach

Pure and Mixed Ensembles

If a system is in a state ∣ψ⟩, then the observable Â has the average or expectation
value

⟨Â⟩ = ⟨ψ∣ Â ∣ψ⟩ (15.187)

If we define a new operator called the density operator given by

ρ̂ = ∣ψ⟩ ⟨ψ∣ (15.188)

then we have these properties

Tr(ρ̂Â) =∑
n

⟨n∣ρ̂Â ∣n⟩ =∑
n

⟨n ∣ ψ⟩ ⟨ψ∣ Â ∣n⟩

=∑
n

⟨ψ∣ Â ∣n⟩ ⟨n ∣ ψ⟩ = ⟨ψ∣ ÂÎ ∣ψ⟩ = ⟨ψ∣ Â ∣ψ⟩ (15.189)

Tr(ρ̂) = Tr(ρ̂Î) = ⟨ψ∣ Î ∣ψ⟩ = ⟨ψ ∣ ψ⟩ = 1 (15.190)

ρ̂2 = (∣ψ⟩ ⟨ψ∣)(∣ψ⟩ ⟨ψ∣) = ∣ψ⟩ ⟨ψ ∣ ψ⟩ ⟨ψ∣ = ∣ψ⟩ ⟨ψ∣ = ρ̂ (15.191)

If we let {∣n⟩} and {∣m⟩} be two different basis systems, then we have

Tr(X̂) =∑
n

⟨n∣X̂ ∣n⟩ = ∑
n,m

⟨n ∣m⟩ ⟨m∣ X̂ ∣n⟩

= ∑
n,m

⟨m∣ X̂ ∣n⟩ ⟨n ∣m⟩ =∑
m

⟨m∣X̂ ∣m⟩

so that the trace is independent of the basis.

If the systems or objects under investigation are all in one and the same state
∣ψ⟩, we call this a pure ensemble or we say that the system is in a pure state.
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In order to verify the probability predictions contained in the state vector ∣ψ⟩ ex-
perimentally , we must , in fact, investigate an ensemble of identically prepared
objects. If

∣ψ⟩ =∑
n

cn ∣n⟩ (15.192)

then the eigenvalue an will be the Â measurement result Nn times for an en-
semble of N objects. The larger N , the more precisely Nn/N approaches the
probability ∣cn∣2, i.e.,

∣cn∣2 = lim
N→∞

Nn
N

(15.193)

and the expectation value correspondingly becomes

⟨Â⟩ =∑
n

∣cn∣2an = lim
N→∞

1

N
∑
n

Nnan (15.194)

In addition to the inherent statistical character residing in the states themselves,
an ensemble can also contain a statistical distribution of states.

If an ensemble with distinct states is present, we call this a mixed ensemble,
a mixture, or we say a mixed state. Suppose that of the N representatives of
the ensemble, N1 are in the state ∣ψ1⟩, N2 are in the state ∣ψ2⟩, etc. Then the
probability that an arbitrarily chosen element of the ensemble is in the state
∣ψi⟩ is given by

pi =
Ni
N
→∑

i

pi =∑
i

Ni
N

= 1

N
∑
i

Ni = 1 (15.195)

The expectation value of Â is then

⟨Â⟩ =∑
n

pi ⟨ψi∣ Â ∣ψi⟩ (15.196)

This expectation value can also be represented by a density matrix of the form

ρ̂ =∑
i

pi ∣ψi⟩ ⟨ψi∣ (15.197)

with the properties

Tr (ρ̂Â) =∑
n

⟨n∣ρ̂Â ∣n⟩ =∑
n,i

pi ⟨n ∣ ψi⟩ ⟨ψi∣ Â ∣n⟩

=∑
n,i

pi ⟨ψi∣ Â ∣n⟩ ⟨n ∣ ψi⟩ =∑
i

pi ⟨ψi∣ Â ∣ψi⟩ = ⟨Â⟩ (15.198)

Tr (ρ̂) = 1 (15.199)

ρ̂2 =∑
i,j

pipj ∣ψi⟩ ⟨ψi ∣ ψj⟩ ⟨ψj ∣ ≠ ρ̂ (15.200)
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For each ∣ψ⟩

⟨ψ∣ ρ̂ ∣ψ⟩ =∑
i

pi ∣⟨ψ ∣ ψi⟩∣2 ≥ 0→ non − negative (15.201)

If
ρ̂ ∣m⟩ = Pm ∣m⟩→ ρ̂ =∑

m

Pm ∣m⟩ ⟨m∣ (15.202)

then
⟨ψ∣ ρ̂ ∣ψ⟩ =∑

m

Pm ∣⟨m ∣ ψ⟩∣2 ≥ 0→ Pm ≥ 0 (15.203)

and

∑
m

Pm =∑
m

⟨m∣ ρ̂ ∣m⟩ =∑
m

⟨m∣ (∑
i

pi ∣ψi⟩ ⟨ψi∣) ∣m⟩

=∑
i

pi∑
m

∣⟨m ∣ ψi⟩∣2 = 1

We also have
ρ̂2 =∑

m

P 2
m ∣m⟩ ⟨m∣→ Trρ̂2 =∑

m

P 2
m < 1 (15.204)

Thus, the criterion for a pure state is Trρ̂2 = 1 and for a mixed state Trρ̂2 < 1.

Now the expectation value of the projection operator ∣n⟩ ⟨n∣ (discrete spectrum)
is given by

Tr (∣n⟩ ⟨n∣ ρ̂) =∑
i

pi ∣⟨n ∣ ψi⟩∣2 =∑
i

pi ∣c(i)n ∣
2

(15.205)

which is equal to the probability of obtaining the state ∣n⟩ as a result of a
measurement.

The expectation value of the projection operator ∣x⟩ ⟨x∣ (continuous spectrum)
is given by

Tr (∣x⟩ ⟨x∣ ρ̂) =∑
i

pi ∣⟨x ∣ ψi⟩∣2 =∑
i

pi ∣ψi(x)∣2 (15.206)

which is equal to the probability of obtaining the state ∣x⟩ as a result of a mea-
surement.

Now let us consider a system consisting of two subsystems 1 and 2 with or-
thonormal basis states {∣1n⟩} and {∣2n⟩}, respectively. A general pure state in
the direct product space is then

∣ψ⟩ = ∑
m,n

cnm ∣1n⟩ ∣2m⟩ where ∑
n,m

∣cnm∣2 = 1 (15.207)

The corresponding density operator is

ρ̂ = ∣ψ⟩ ⟨ψ∣ = ∑
n,m

∑
n′.m′

cnmc
∗
n′m′ ∣1n⟩ ∣2m⟩ ⟨1n′∣ ⟨2m′∣ (15.208)
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If we carry out measurements concerning only subsystem 1, that is, if the op-
erators corresponding to the observables being measured only act on the states
∣1n⟩, then

⟨Â⟩ = Tr (ρ̂Â) = ∑
m′′,n′′

⟨2m′′∣ ⟨1n′′∣ρ̂Â ∣1n′′⟩ ∣2m′′⟩

= ∑
m′′,n′′

⟨2m′′∣ ⟨1n′′∣
⎛
⎝∑n,m

∑
n′.m′

cnmc
∗
n′m′ ∣1n⟩ ∣2m⟩ ⟨1n′∣ ⟨2m′∣

⎞
⎠
Â ∣1n′′⟩ ∣2m′′⟩

= ∑
m′′,n′′

∑
n,m

∑
n′.m′

cnmc
∗
n′m′(⟨2m′′∣ ⟨1n′′∣)(∣1n⟩ ∣2m⟩) ⟨1n′∣ Â ∣1n′′⟩ ⟨2m′ ∣ 2m′′⟩

= ∑
m′′,n′′

∑
n,m

∑
n′.m′

cnmc
∗
n′m′δm,m′′δm′,m′′δn,n′′ ⟨1n′∣ Â ∣1n′′⟩

= ∑
n,n′,m

cnmc
∗
n′m ⟨1n′∣ Â ∣1n⟩

Now we can write

∑
n,n′,m

cnmc
∗
n′m ⟨1n′∣ Â ∣1n⟩ =∑

n′′
⟨1n′′∣

⎛
⎝
⎛
⎝ ∑n,n′,m

cnmc
∗
n′m ∣1n⟩ ⟨1n′∣

⎞
⎠
Â
⎞
⎠
∣1n′′⟩

= Tr1

⎛
⎝
⎛
⎝ ∑n,n′,m

cnmc
∗
n′m ∣1n⟩ ⟨1n′∣

⎞
⎠
Â
⎞
⎠
= Tr1 ( ˆ̄ρÂ)

where

ˆ̄ρ = ∑
n,n′,m

cnmc
∗
n′m ∣1n⟩ ⟨1n′∣ = Tr2ρ̂→ appropriate density operator (15.209)

so that finally
⟨Â⟩ = Tr1 [(Tr2ρ̂) Â] (15.210)

where Trk means trace over subsystem k. Now

ˆ̄ρ2 = ∑
n,n′,m

cnmc
∗
n′m ∑

n1,n′1,m1

cn1m1c
∗
n′1m1

∣1n⟩ ⟨1n′ ∣ 1n1⟩ ⟨1n′1∣

= ∑
n,n′,m

cnmc
∗
n′m ∑

n1,n′1,m1

cn1m1c
∗
n′1m1

∣1n⟩ δn′n1 ⟨1n′1∣

= ∑
n,n′,n′1

(∑
m

cnmc
∗
n′m)(∑

m1

cn′m1c
∗
n′1m1

) ∣1n⟩ ⟨1n′1∣

which say that, in general
ˆ̄ρ2 ≠ ˆ̄ρ (15.211)

If, however, the cnm take the form

cnm = bndm with ∑
n

∣bn∣2 = 1 =∑
m

∣dm∣2 (15.212)
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then we have

ˆ̄ρ2 = ∑
n,n′,n′1

(∑
m

cnmc
∗
n′m)(∑

m1

cn′m1c
∗
n′1m1

) ∣1n⟩ ⟨1n′1∣

= ∑
n,n′,n′1

(bnb∗n′∑
m

∣dm∣2)(bn′b∗n′1∑
m1

∣dm1 ∣
2) ∣1n⟩ ⟨1n′1∣

= ∑
n,n′,n′1

(bnb∗n′) (bn′b∗n′1) ∣1n⟩ ⟨1n′1∣ = ∑
n,n′,n′1

bnb
∗
n′1

∣1n⟩ ⟨1n′1∣∑
n′

∣bn′ ∣2

= ∑
n,n′,n′1

bnb
∗
n′1

∣1n⟩ ⟨1n′1∣ = ˆ̄ρ

In this case we have,

∣ψ⟩ = (∑
n

bn ∣1n⟩)(∑
m

dm ∣2m⟩) (15.213)

i.e., it is the direct product of two pure states of the subspaces 1 and 2.

It is also true, in this case, that

Tr1 ˆ̄ρ2 = ∑
n,n′

(∑
n

cnmc
∗
n′m)(∑

m1

cn1m1c
∗
n′1m1

) = 1 (15.214)

Except for this special case, ˆ̄ρ represents the density operator of a mixed en-
semble. If the information of a subspace is ignored, then the pure state becomes
a mixed state.

Although the total system is in a pure state, the density operator ˆ̄ρ, which
yields all expectation values pertaining only to subsystem 1, represents a mixed
ensemble in general.

Projection Operators

The projection operator in subspace 2, ∣2m⟩ ⟨2m∣ , projects onto the state ∣2m⟩.
Therefore,

(∣2m⟩ ⟨2m∣) ∣ψ⟩ = ∣ψ⟩ = (∣2m⟩ ⟨2m∣) ∑
m′,n

cnm ∣1n⟩ ∣2m′⟩ =∑
n

cnm ∣1n⟩ ∣2m⟩

and the state operator becomes

ρ̂→ ∣2m⟩ ⟨2m∣ ρ̂ ∣2m⟩ ⟨2m∣
Tr1 ⟨2m∣ ρ̂ ∣2m⟩

(15.215)

This implies that if ρ̂ represents a pure ensemble, the so does the projected state
operator.

In general, filters can be represented mathematically by the application of pro-
jection operators onto the state operator as above.
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The von Neumann Equation

We now re-derive the equation of motion for the state operator. The Schrodinger
equation

ih̵
∂

∂t
∣ψi⟩ = Ĥ ∣ψi⟩→ −ih̵ ∂

∂t
⟨ψi∣ = ⟨ψi∣ Ĥ (15.216)

gives

∂ρ̂

∂t
= ∂

∂t
[∑
i

pi ∣ψi⟩ ⟨ψi∣] =∑
i

pi ((
∂

∂t
∣ψi⟩) ⟨ψi∣ + ∣ψi⟩ (

∂

∂t
⟨ψi∣))

= 1

ih̵
∑
i

pi (Ĥ ∣ψi⟩ ⟨ψi∣ − ∣ψi⟩ ⟨ψi∣ Ĥ) = 1

ih̵
[Ĥ,∑

i

pi ∣ψi⟩ ⟨ψi∣]

= − i
h̵
[Ĥ, ρ̂] (15.217)

which is the von Neumann equation. This holds for time-dependent Hamiltoni-
ans also. It describes the time evolution of the state operator in the Schrodinger
picture.

Now, if we start in the state ∣ψ(t0)⟩ at time t0, then we have the formal solution
of the Schrodinger equation

∣ψ(t)⟩ = Û(t, t0) ∣ψ(t0)⟩ (15.218)

where
ih̵
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) (15.219)

We then get

∂ρ̂(t)
∂t

= − i
h̵
[Ĥ, ρ̂] = − i

h̵
[Ĥ,∑

i

pi ∣ψi⟩ ⟨ψi∣]

= − i
h̵
[Ĥ,∑

i

piÛ(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û+(t, t0)]

= − i
h̵
∑
i

piĤÛ(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û+(t, t0)

+ i

h̵
∑
i

piÛ(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û+(t, t0)Ĥ

=∑
i

pi
∂

∂t
Û(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û+(t, t0)

+∑
i

piÛ(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣
∂

∂t
Û+(t, t0)

= ∂

∂t
(Û(t, t0) ∣ψ(t0)⟩ ⟨ψ(t0)∣ Û+(t, t0))

= ∂

∂t
(Û(t, t0)ρ̂(t0)Û+(t, t0))
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or
ρ̂(t) = Û(t, t0)ρ̂(t0)Û+(t, t0) (15.220)

Theorem: The quantity Trρ̂2 is time independent. Hence, a pure(mixed) state
remains a pure(mixed) state.

Proof :

Trρ̂2(t) = TrÛ ρ̂(t0)Û+Û ρ̂(t0)Û+ = TrÛ ρ̂(t0)Î ρ̂(t0)Û+

= TrÛ ρ̂(t0)ρ̂(t0)Û+ = Trρ̂(t0)ρ̂(t0)Û+Û = Trρ̂2(t0)

Therefore, if Trρ̂2(t0) = 1, then Trρ̂2(t) = 1 and the state remains pure and
similarly for the mixed state. The expectation value in the two pictures is given
by

⟨Â⟩ = Tr (ρ̂(t)Â) = Tr (ρ̂(t0)ÂH(t)) (15.221)

or the time dependence comes from the state operator in the Schrodinger picture
and from the operator in the Heisenberg picture.

Spin = 1/2 Systems

How things actually work is particularly transparent in state spaces of low di-
mension. We consider spin = 1/2 (a 2−dimensional state space). The states (in
Dirac and spinor notation)

∣↑⟩→ χ+ = ( 1
0

) and ∣↓⟩→ χ− = ( 0
1

) (15.222)

are eigenstates of σ̂z, i.e., σ̂zχ± = ±χ±. Now a rotation in spin space through an
angle θ about an axis n̂ is represented by the unitary operator

Û = e
i
2 θn̂⋅σ̂ = cos

θ

2
Î + in̂ ⋅ σ̂ sin

θ

2
(15.223)

and

e
i
2 θn̂⋅σ̂m̂ ⋅ σ̂e−

i
2 θn̂⋅σ̂ = (cos

θ

2
Î + in̂ ⋅ σ̂ sin

θ

2
) (m̂ ⋅ σ̂) (cos

θ

2
Î − in̂ ⋅ σ̂ sin

θ

2
)

= cos2 θ

2
(m̂ ⋅ σ̂) + i [n̂ ⋅ σ̂, m̂ ⋅ σ̂] sin

θ

2
cos

θ

2
+ (n̂ ⋅ σ̂) (m̂ ⋅ σ̂) (n̂ ⋅ σ̂) sin2 θ

2

Now
(n̂ ⋅ σ̂)(m̂ ⋅ σ̂) = n̂ ⋅ m̂Î + iσ̂ ⋅ (n̂ × m̂) (15.224)

or
[(n̂ ⋅ σ̂), (m̂ ⋅ σ̂)] = 2iσ̂ ⋅ (n̂ × m̂) (15.225)

Alternatively,

[(n̂ ⋅ σ̂), (m̂ ⋅ σ̂)] = nimj[σ̂i, σ̂j] = 2iεijknimj σ̂k = 2iεkijnimj σ̂k

= 2iσ̂k(n̂ × m̂)k = 2iσ̂ ⋅ (n̂ × m̂) = −2im̂ ⋅ (n̂ × σ̂) (15.226)
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Therefore,

e
i
2 θn̂⋅σ̂m̂ ⋅ σ̂e−

i
2 θn̂⋅σ̂ = cos2 θ

2
(m̂ ⋅ σ̂) + i [2iσ̂ ⋅ (n̂ × m̂)] sin

θ

2
cos

θ

2

+ (n̂ ⋅ σ̂) (n̂ ⋅ m̂ + iσ̂ ⋅ (n̂ × m̂)) sin2 θ

2

= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) sin2 θ

2
+ (m̂ ⋅ (n̂ × σ̂)) sin θ + (m̂ ⋅ σ̂) cos2 θ

2

+ i (n̂ ⋅ σ̂) ((n̂ × m̂) ⋅ σ̂) sin2 θ

2

= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) sin2 θ

2
+ (m̂ ⋅ (n̂ × σ̂)) sin θ + (m̂ ⋅ σ̂) cos2 θ

2

+ i (n̂ ⋅ (n̂ × m̂) + iσ̂ ⋅ (n̂ × (n̂ × m̂)) sin2 θ

2

= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) sin2 θ

2
+ (m̂ ⋅ (n̂ × σ̂)) sin θ + (m̂ ⋅ σ̂) cos2 θ

2

− (n̂ × m̂) ⋅ (n̂ × σ̂) sin2 θ

2

= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) sin2 θ

2
+ (m̂ ⋅ (n̂ × σ̂)) sin θ + (m̂ ⋅ σ̂) cos2 θ

2

− (m̂ ⋅ σ̂ − (m̂ ⋅ n̂) (n̂ ⋅ σ̂)) sin2 θ

2

= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) sin2 θ

2
+ (m̂ ⋅ (n̂ × σ̂)) sin θ − ((m̂ ⋅ (n̂ × (n̂ × σ̂))

+ (m̂ ⋅ n̂) (n̂ ⋅ σ̂)) cos2 θ

2
+ (m̂ ⋅ (n̂ × (n̂ × σ̂))) sin2 θ

2
= (m̂ ⋅ n̂) (n̂ ⋅ σ̂) − (m̂ ⋅ (n̂ × (n̂ × σ̂))) cos θ + (m̂ ⋅ (n̂ × σ̂)) sin θ (15.227)

or

e
i
2 θn̂⋅σ̂σ̂e−

i
2 θn̂⋅σ̂ = n̂ (n̂ ⋅ σ̂) − (n̂ × (n̂ × σ̂)) cos θ + (n̂ × σ̂) sin θ (15.228)

For rotations about the x−axis these reduce to (using n̂ = x̂)

Ûx = e
i
2 θσx = cos

θ

2
Î + iσx sin

θ

2
= cos

θ

2
Î + i( 0 1

1 0
) sin

θ

2
(15.229)

e
i
2 θσx t̂ ⋅ σ̂e−

i
2 θσx = (t̂ ⋅ x̂)(x̂ ⋅ σ̂) − t̂ ⋅ (x̂ × (x̂ × σ̂)) cos θ + t̂ ⋅ (x̂ × σ̂) sin θ

= txσx − t̂ ⋅ (x̂ × (σy ẑ − σz ŷ)) cos θ + t̂ ⋅ (σy ẑ − σz ŷ) sin θ

= txσx − t̂ ⋅ (−σy ŷ − σz ẑ) cos θ + t̂ ⋅ (σy ẑ − σz ŷ) sin θ

= txσx + (σyty + σztz) cos θ + (σytz − σzty) sin θ

= (tx, ty, tz)
⎛
⎜
⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎟
⎠

⎛
⎜
⎝

σx
σy
σz

⎞
⎟
⎠

(15.230)
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The eigenstates of t̂ ⋅ σ̂, i.e., the eigenstates of spin = 1/2 in the t̂ direction are
given by the equation

Ûx(t̂ ⋅ σ̂)Û+
xχ± = e

i
2 θσx(t̂ ⋅ σ̂)e−

i
2 θσxχ± = ±χ± (15.231)

or
(t̂ ⋅ σ̂)(Û+

xχ±) = ±(Û+
xχ±) (15.232)

The two eigenfunctions are

Û+
xχ+ = ( cos θ

2

−i sin θ
2

) , Û+
xχ− = ( −i sin θ

2

cos θ
2

) (15.233)

Some Special Cases

For θ = −π/2, we get the eigenfunctions of σy:

χy+ =
1√
2
( 1
i

) = 1√
2
(χ+ + iχ−) , χy− =

1√
2
( i

1
) = 1√

2
(iχ+ + χ−)

(15.234)
and similarly for the eigenfunctions of σx:

χx+ =
1√
2
( 1

1
) = 1√

2
(χ+ + χ−) , χx− =

1√
2
( 1
−1

) = 1√
2
(χ+ − χ−)

(15.235)
A rotation through 2π gives Û = −1 and χ → −χ. In a rotation through 360○

the spinor changes its sign. It takes a rotation through 4π to produce Û =
+1 and χ → +χ. This property is related to the spinor nature of χ and the
transformation relation for t̂ ⋅ σ̂ is related to the vector nature of σ̂.

Let us now discuss the spin part of the density matrix. Imagine we are dealing
with electron beams. An electron beam of spin ↑ has the density operator

ρ↑ = ∣↑⟩ ⟨↑∣ (15.236)

while an electron beam of spin ↓ has the density operator

ρ↓ = ∣↓⟩ ⟨↓∣ (15.237)

If one mixes the two beams in a 50:50 ratio, the density operator is

ρM = 1

2
(∣↑⟩ ⟨↑∣ + ∣↓⟩ ⟨↓∣) (15.238)

This state has unknown relative phases.

It is not a pure state since

ρ2
M = 1

2
ρM ≠ ρM (15.239)
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In contrast, the pure state (a superposition instead of a mixture) has known
relative phases, i.e.

∣ψ⟩ = 1√
2
(∣↑⟩ + eiα ∣↓⟩) (15.240)

and has the density operator

ρα = 1

2
(∣↑⟩ ⟨↑∣ + ∣↓⟩ ⟨↓∣ + e−iα ∣↑⟩ ⟨↑∣ + eiα ∣↓⟩ ⟨↓∣) (15.241)

In the pure state case, we clearly have interference terms. We can also see the
differences in the matrix representations, which are given by

ρnm = ⟨n∣ρ ∣m⟩ (15.242)

In these two cases we get

ρM = 1

2
( 1 0

0 1
) , ρα = 1

2
( 1 e−iα

eiα 1
) (15.243)

The mixed state density operator is diagonal.

The difference between the two density operators shows up in expectation values
and hence has measurable consequences. For the pure state,

⟨Â⟩
α
= Tr (ραÂ) = Tr (1

2
( 1 e−iα

eiα 1
)( ⟨1∣ Â ∣1⟩ ⟨1∣ Â ∣2⟩

⟨2∣ Â ∣1⟩ ⟨2∣ Â ∣2⟩
))

= 1

2
Tr ( ⟨1∣ Â ∣1⟩ + e−iα ⟨2∣ Â ∣1⟩ ⟨1∣ Â ∣2⟩ + e−iα ⟨2∣ Â ∣2⟩

eiα ⟨1∣ Â ∣1⟩ + ⟨2∣ Â ∣1⟩ eiα ⟨1∣ Â ∣2⟩ + ⟨2∣ Â ∣2⟩
)

= 1

2
(⟨1∣ Â ∣1⟩ + ⟨2∣ Â ∣2⟩ + 2Re (eiα ⟨1∣ Â ∣2⟩))

while for the mixed state we have

⟨Â⟩
M

= Tr (ρM Â) = Tr (1

2
( 1 0

0 1
)( ⟨1∣ Â ∣1⟩ ⟨1∣ Â ∣2⟩

⟨2∣ Â ∣1⟩ ⟨2∣ Â ∣2⟩
))

= 1

2
Tr ( ⟨1∣ Â ∣1⟩ ⟨1∣ Â ∣2⟩

⟨2∣ Â ∣1⟩ ⟨2∣ Â ∣2⟩
)

= 1

2
(⟨1∣ Â ∣1⟩ + ⟨2∣ Â ∣2⟩)

Again, we see no interference (quantum) effects from the mixed state. It is clear
from these expressions that the mixed-state expectation value arises from the
pure-state expectation value by averaging over the relative phase value, i.e.,

ρM = 1

2π

2π

∫
0

ραdα (15.244)
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Polarization of Spin = 1/2 Particles

The most general density operator in spin space is given by

ρ̂ = 1

2
(Î + b⃗ ⋅ σ⃗) (15.245)

since the set of four matrices Î , σ̂1, σ̂2, σ̂3 is a basis for all 2 × 2 matrices. The
property Trρ̂ = 1 works because TrÎ = 2 and Trσ̂i = 0. If we choose b⃗ to point
in the z−direction, then we have

ρ̂ = 1

2
(Î + bσ̂z) =

1

2
( 1 + b 0

0 1 − b ) (15.246)

This implies that (1± b)/2 are probabilities and thus we must have ∣⃗b∣ ≤ 1. If we
have a pure state, then we must also have ρ̂2 = ρ̂, which implies that

ρ̂2 = 1

4
(Î + 2b⃗ ⋅ σ⃗ + (b⃗ ⋅ σ⃗)(b⃗ ⋅ σ⃗)) = 1

4
(Î + 2b⃗ ⋅ σ⃗ + b2Î)

= 1

2
(1 + b2

2
Î + b⃗ ⋅ σ⃗) = ρ̂ = 1

2
(Î + b⃗ ⋅ σ⃗) ρ̂2 = ρ̂

or ∣⃗b∣ = 1 in the pure state case. Now a straightforward calculation gives

⟨σ̂i⟩ = Trρ̂σ̂i = Tr [
1

2
(Î + b⃗ ⋅ σ⃗) σ̂i]

= Tr [1

2
σ̂i] + Tr [

1

2
(b⃗ ⋅ σ⃗)σ̂i] = Tr [

1

2
biÎ] = bi

This implies that the degree of polarization of the spin state is characterized by
b = ∣⃗b∣. The case b = 0 represents a completely polarized beam.

(4) The Measurement Process

We have a beams of atoms or electrons moving through the inhomogeneous field
of a magnet as shown in Figure 15.8 below.

The force is given by

mz
∂Bz
∂z

(15.247)

which splits the beams into many beams each with a different value of mz. We
assume that the total angular momentum is spin only and S = 1/2. The motion
in the y−direction is force-free and can be separated out. We then have the
Hamiltonian

Ĥ = p̂2
z

2m
+B(z)µBσ̂z ≈

p̂2
z

2m
+ (B +B′z + ....)µBσ̂z (15.248)
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Figure 15.8: Stern-Gerlach Setup

describing the motion in the z−direction. We have Taylor expanded the mag-
netic field. The time-development of the state vector is given by the equation

ih̵
∂ψ

∂t
= ih̵ ∂

∂t
( u+
u−

) = Ĥψ = Ĥ ( u+
u−

) (15.249)

ih̵
∂u±
∂t

= ( p̂
2
z

2m
±BµB ±B′µBz)u± (15.250)

If we let the spatial wavefunction be a wave packet f(z) concentrated about the
z−axis before entering the magnetic field at time t = 0, then at time t, it is then
approximately

u±(z, t) = f(z ±Ct2)e∓iαt (15.251)

where the constant
C = B

′µB
2m

(15.252)

is the acceleration during the period the particle is in the magnetic field region
and

α = BµB
h̵

(15.253)

This says that the particles with spin ↑ and ↓ are deflected downwards and
upwards, respectively.

The Stern-Gerlach Experiment as a Model for an Idealized Measure-
ment

In this experiment the object being measured is the spin of the particle and the
measuring apparatus is the position of the particle after traversing the magnetic
field (location on some screen). After passing through the magnetic field we
know that

for ↑ , z < 0 and for ↓ , z > 0 (15.254)

This apparatus, whose readout (position of some pointer) is the z−coordinate
of the particle, is thus appropriate for distinguishing ↑ from ↓ and, by the actual
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size of the deflection, for determining the size of the magnetic moment and hence
the spin.

The requirement that the z−coordinate of the particle serve as the pointer of
a measuring instrument implies that the deflections must be macroscopically
distinguishable. Formally, this implies that the overlap of the two wave packets
f(z + Ct2) and f(z − Ct2) must be negligible. We also assume that we have
calibrated the device.

What happens to general states?

We consider the initial state(a superposition)

ψ(z,0) = 1√
2
(χ+ + χ−) f(z) (15.255)

After traversing the field this becomes

ψ(z, t) = 1√
2
(χ+f(z +Ct2)e−iαt + χ−f(z −Ct2)eiαt) (15.256)

The polarization and the pointer (z-coordinate) are coupled or entangled.

There is a unique correlation between the state of the spin and the state of
the pointer. Neither the spin nor the pointer are in an eigenstate (neither have
definite values).

In the basis of the states ∣z⟩ ∣±⟩, the density operator is

ρzz′ = ⟨±∣ ⟨z∣ (∣ψ(t)⟩ ⟨ψ(t)∣) ∣z′⟩ ∣±′⟩

= 1

2
( f(z +Ct2)f(z′ +Ct2)∗ f(z +Ct2)f(z′ −Ct2)∗e−2iαt

f(z −Ct2)f(z′ +Ct2)∗e2iαt f(z −Ct2)f(z′ −Ct2)∗ )

(15.257)

Measurement of spin observables

After the spin 1/2 particle has passed through the Stern-Gerlach apparatus,
suppose that its spin is measured. The measurement can take place in two
ways:

(i) ignoring the pointer position z

(ii) for a particular pointer position z

In case (i), if one ignores the pointer position, then ρ is equivalent to

ρ̂ = ∫ dz ⟨z∣ρ ∣z⟩ = 1

2
( 1 0

0 1
) (15.258)
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This result holds because there is no overlap of the pointer wave functions
f(z + Ct2) and f(z − Ct2). For an observable F (σ⃗), depending only on spin
operators, we then have

Trz,σ (ρF (σ⃗)) = Trσ (ρ̂F (σ⃗)) (15.259)

where the density operator ρ̂ corresponds to a mixed ensemble. Thus, the pure
ensemble ρ is replaced by the mixed ensemble ρ̂.

In case (ii), filtering out the pointer position: in this case, we consider only the
particles with pointer position z−positive, i.e., we construct

Trz>0,σ (ρF (σ⃗)) = ∫ dsρzz =
1

2
( 0 0

0 1
) (15.260)

Because of normalization, the density is operator is actually

( 0 0
0 1

) = ρ↓ (15.261)

The particles deflected up have the spin wave function ∣↓⟩.

For a measurement with the result z−positive(spin negative), the state goes
over to ∣↓⟩. This is consistent with the quantum mechanical postulate that
measurements are repeatable.

The fact that the particles which have been filtered off at a particular pointer
position are in that eigenstate corresponding to the eigenvalue measured is called
the collapse or reduction of the state vector.

Going over from ρ to ρ̂ with respect to all observables related to spin can also
be regarded as a reduction of the state vector.

The density matrix ρ̂ describes an ensemble composed of 50% spin-up and 50%
spin-down states. If N particles are subjected to this Stern-Gerlach experiment,
then as far as their spins are concerned, they are completely equivalent to N/2
particles in the state ∣↑⟩ and N/2 in the state ∣↓⟩.

15.2.8 A General Experiment and Coupling to the Envi-
ronment

We now consider a general experiment. Let O be the object and A the apparatus
including the readout. At the time t = 0, let the state of the whole system O+A
be

∣ψ(0)⟩ =∑
n

cn ∣O,n⟩ ∣A⟩ (15.262)
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where the ∣O,n⟩ are object states and ∣A⟩ is the (metastable) initial state of
the apparatus. At a later time t, after the interaction of the object with the
measuring apparatus, the state becomes

∣ψ(t)⟩ =∑
n

cn ∣O,n⟩ ∣A(n)⟩ (15.263)

where the final states of the apparatus ∣A(n)⟩ . n = 1,2,3, ..... must be macro-
scopically distinguishable.

As before the density operator for this pure states is

ρ(t) = ∣ψ(t)⟩ ⟨ψ(t)∣ (15.264)

If we read off the result of the measurement, the density operator for observables
relevant to the object O is

ρ̂ = TrA(n)ρ(t) =∑
n

∣cn∣2 ∣O,n⟩ ⟨O,n∣ (15.265)

We needed to make use of the fact that the final states of the apparatus are
macroscopically distinguishable, and thus do not overlap, i.e., that ⟨A(n) ∣A(m)⟩ =
δmn.

Thus, if we do not read off the result of the measurement, a mixture occurs with
respect to O. If, on the other hand, we read off a particular value, e.g., A(m),
the density operator is then

∣O,m⟩ ⟨O,m∣ (15.266)

The probability of measuring the value A(m) is clearly ∣cm∣2. The fact that in
a measurement with the result A(m) the density operator changes from

∣ψ(t)⟩ ⟨ψ(t)∣→ ∣O,m⟩ ⟨O,m∣ (15.267)

is known as the reduction of the wave function or state vector.

We now take into account the fact that the object and the apparatus are never
completely isolated from the environment, and take Z to be an additional vari-
able representing all further macroscopic consequences which couple to the state
A of the apparatus. The initial state is then

∣ψ(0)⟩ =∑
n

cn ∣O,n⟩ ∣A⟩ ∣Z⟩ (15.268)

and after passage through the apparatus the state evolves into

∣ψ(t)⟩ =∑
n

cn ∣O,n⟩ ∣A(n)⟩ ∣Z(n)⟩ (15.269)

If we do not read off Z, which always happens in practice, since we cannot keep
track of all the macroscopic consequences, the density operator of the (object
+ apparatus) is the mixture

ˆ̂ρ =∑
n

∣cn∣2 ∣A(n)⟩ ∣O,n⟩ ⟨O,n∣ ⟨A(n)∣ (15.270)
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The subsystem (object + apparatus) is thus a mixed state. N such subsystems
behave like

N ∣c1∣2 subsystems in the state ∣O,1⟩ ∣A(1)⟩

N ∣c2∣2 subsystems in the state ∣O,2⟩ ∣A(2)⟩
....................

N ∣cn∣2 subsystems in the state ∣O,n⟩ ∣A(n)⟩
....................

This is a completely different density operator than that of the pure state, i.e.,
∣ψ(t)⟩ ⟨ψ(t)∣.

(i) If we do not read off A(n) either, then ˆ̂ρ is equivalent to

ρ̂ =∑
n

∣cn∣2 ∣O,n⟩ ⟨O,n∣ (15.271)

(ii) If we read off A(n), then the probability of obtaining the particular reading
A(m) is

TrO,A (∣A(m)⟩ ⟨A(m)∣̂̂ρ) = ∣cm∣2 (15.272)

and in this case, the density operator is then

∣A(m)⟩ ∣O,m⟩ ⟨O,m∣ ⟨A(m)∣ (15.273)

From that point onwards, it does not matter if we disregard A. Taking the trace
over A(n) yields, for the observable O, the density operator

∣O,m⟩ ⟨O,m∣ (15.274)

The key problem in the theory of measurement is this reduction of the wave
function and in particular the question of when it takes place. This problem is
illustrated quite drastically by phenomena of Schrodinger’s Cat discussed in
Chapter 14.

Influence of an Observation on Time Evolution

In order to further analyze the measurement process and its impact, we return
to the Stern-Gerlach experiment and consider this additional setup.

After the atomic beams have traversed the Stern-Gerlach apparatus, we recom-
bine them by means of a complicated field configuration in such a way that all
of the deformation and spreading of the wave function is carefully undone, i.e.,
the state

f(z) (c1eiφ+χ+ + c2eiφ−χ−) (15.275)

is formed. This is the initial wave function once again, essentially. The phase
factors are inserted to characterize any path length differences.
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Now, in the region where the beams + and − are macroscopically separated, we
can set up a real measuring device whose pointer Z which reacts to z by the
interaction U(z−Z), so that positive (negative) z leads to positive(negative) Z.
We then have for the initial state

∣ψa⟩ = f(z) (c1χ+ + c2χ−) ∣Z = 0⟩ (15.276)

for the intermediate state

∣ψc⟩ = c1χ+f(z +Ct2) ∣Z = −1⟩ + c2χ−f(z −Ct2) ∣Z = +1⟩ (15.277)

and for the state after traversing the entire setup

∣ψe⟩ = f(z)(c1χ+eiφ+ ∣Z = −1⟩ + c2χ−e−iφ+ ∣Z = +1⟩) (15.278)

The pointer positions are described by ∣Z = 0⟩ and ∣Z = ±1⟩.

We now compare these two situations:

I. We turn on the coupling to the measuring device Z and obtain the final
state

∣ψe⟩ = f(z)(c1χ+eiφ+ ∣Z = −1⟩ + c2χ−e−iφ+ ∣Z = +1⟩) (15.279)

II. We turn off the coupling to the measuring device Z and obtain the final
state

∣ψe⟩ = f(z) (c1eiφ+χ+ + c2eiφ−χ−) ∣Z = 0⟩ (15.280)

The resulting density operators are quite different. Although the state

∣ψe⟩ = f(z)(c1χ+eiφ+ ∣Z = −1⟩ + c2χ−e−iφ+ ∣Z = +1⟩) (15.281)

is a pure state, it is equivalent to a mixture, as far as the statements relating to
the particle are concerned. This is due to the fact that the macroscopic states
∣Z = ±1⟩ do not overlap (they are orthogonal).

In situation II, both the total state and the state of the atom are pure states, In
situation I, the final state of the total system (atom + pointer) (characterized
by spin z and Z), is mixed, unless c1 or c2 vanish.

Evidently, the physical situation differs according to whether the interaction
U(z −Z) between the system and the pointer is turned on or not.

Even if we do not read the result, we still influence the atomic system.

In order to further illustrate the back-reaction of the experiment on the object,
we now consider the following thought experiment due to Heisenberg. We con-
nect two Stern-Gerlach devices in series as shown in Figure 15.9 below
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Figure 15.9: Back Reaction Experiment

Let the initial state of the atoms in the atomic beam be ∣a⟩, let {∣e⟩} be a basis
for the final states, and let {∣c⟩} be a basis for the intermediate state. We now
determine the probability of transition to the final state ∣e⟩, by representing this
in terms of the transition amplitudes of ∣a⟩ to ∣c⟩ to ∣e⟩.

For an isolated system the transition probability is

P Ia→e = ∣∑
c

U (1)
ac U

(2)
ce ∣

2

(15.282)

because
∑
c

U (1)
ac U

(2)
ce = Uae (15.283)

holds for an isolated system.

On the other hand, one could also say that the transition probability is the
product of the probabilities

∣U (1)
ac ∣

2
∣U (2)
ce ∣

2
(15.284)

summed over all intermediate states c :

P IIa→e =∑
c

∣U (1)
ac ∣

2
∣U (2)
ce ∣

2
(15.285)

These two probability expressions correspond to different experiments.

For P IIa→e there is a measurement in the intermediate region, and this introduces
unknown phase factors eiφc which must be averaged over.

Experiment 1: Between SG1 and SG2, the atoms remain unperturbed. There
is no coupling to the external world, and the transition probability is P Ia→e.

Experiment 2: Between SG1 and SG2, there is an influence on the atoms,
making possible a determination of the stationary state. However, the result
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of the measurement is not recorded, and a mixture is formed. The transition
probability is P Ia→eI.

Experiment 3: Between SG1 and SG2, an influence on the atoms occurs
making possible a determination of the stationary state. Let us assume that c

is found. The probability for state ∣e⟩ behind SG2 is then given by ∣U (2)
ce ∣

2
.

15.3 Kochen-Specker Theorem

Some, perhaps many, users of quantum theory may find a pragmatic approach
(or interpretation), where a sharp distinction is made between the system and
the observer or observing equipment(or even a full instrumentalist interpre-
tation, where the primary emphasis is placed on the act of measurement with
quantum theory being viewed as a scheme for predicting the probabilistic spread
of the results obtained) satisfactory, but it is hard to believe that either gives
the ultimate view of physical reality. Indeed, with their reluctance to grant
objective status to the properties of individual systems, it is arguable whether
either gives a picture of reality at all.

However, attempts to move towards a more realist philosophy by ascribing latent
properties to individual systems most often tend to be too vague to do much
more than stimulate a search for new conceptual categories. In particular, there
is the unresolved issue of how the transition from potentiality to actuality is
made in realistic interpretations.

It is not surprising, therefore, that many physicists have sought an interpreta-
tion of quantum theory in which the probabilistic results would have the same
status as those in classical statistical physics where almost all of these difficult
philosophical problems do not arise.

Most discussions of this type involve the epistemic interpretation of probabil-
ity, in which probabilistic assignments refer to our knowledge of an objectively
existing state of affairs, for example, an expression like ∆ψA (the dispersion)
would be a measure of our ignorance of A which, it is supposed, does have an
actual value. Such a position is consistent with a completely realist view of the
world, in which individual objects and properties have an unequivocal existence
that is independent of any act of observation or measurement.

Interpretations of this type are naturally coupled with the assumptions that

1. quantum states refer to individual systems directly, not just to the out-
come of repeated measurements, or to any associated ensemble of systems

2. a (perfect) measurement of a physical quantity reveals the value that it
possessed immediately beforehand
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Most problems discussed by quantum theorists would not arise in a scheme
where properties are possessed in this way. For example, state-vector reduc-
tion would merely be an acquisition of further knowledge about the system
by making a measurement - a clear analogue of the classical idea of conditional
probability. True, this raises the question of whether the measurement itself can
be described in quantum-mechanical terms, but the significance of this problem,
in this case, is no greater than it is in classical statistical physics.

Since an epistemic interpretation of quantum theory promises to remove most of
the conceptual problems, one might wonder why the theory is not automatically
presented in this way from the outset.

The reason is that the concept of an individual system possessing a value for all
its physical quantities is difficult to reconcile with the actual formalism of quan-
tum theory. As we have seen, one obstacle to this view are the Bell inequalities,
as discussed earlier in Chapter 8 and will discuss extensively in Chapter 16.

Another obstacle is the Kochen-Specker theorem, which we discuss now. We
are concerned here with the existence of a value function V∣ψ⟩(A) that is to be
interpreted as the value of the physical quantity A when the quantum state (of
an individual system) is ∣ψ⟩. There is no difficulty with this concept in clas-
sical physics, where, to each physical quantity A there corresponds a function
fA ∶ S →R (where S is the classical state space) such that the value of A in the
state s ∈ S is just the value of fA at s:

Vs(A) = fA(s) (15.286)

The situation in quantum mechanics is very different since we have no prima
facie idea how to specify the value of V∣ψ⟩(A) for any particular pair (A, ∣ψ⟩).
If ∣ψ⟩ is an eigenvector ∣a⟩ of the self-adjoint operator Â that represents A, then
we might be inclined to say that V∣a⟩(A) = a, where a is the corresponding eigen-
value, but it is unclear how to go beyond this special case.

As a consequence, nothing useful can be said about the existence of quantum
value-functions without postulating further properties for them.

We note that there are plenty of functions that satisfy the eigenvector require-
ment. For example, the function

V∣ψ⟩(A) = ⟨ψ∣ Â ∣ψ⟩ (15.287)

does so (assuming that ∣ψ⟩ is normalized). However, as we know, this gives
the expected value of A, so it is not a good choice for a value function in any
situation in which the dispersion ∆ψA is non-zero. Therefore, to get a sensible
notion of a value function it is clearly necessary to go beyond the eigenvector
requirement.
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The most natural condition to impose is that, for any function F ∶R→R,

V∣ψ⟩(F (A)) = F (V∣ψ⟩(A)) [condition A] (15.288)

Thus, in any quantum state ∣ψ⟩, the value of a function of a physical quantity
is equal to the function evaluated on the value of the quantity; for example, the
value of L2

x is the square of the value of the angular momentum Lx.

Earlier we discussed the meaning of the expression F (A).

If we are quantizing a given classical system with state space S then F (A) can
stand for F (fA)(s), where fA ∶ S → R, and where the map F (fA) ∶ S → R is
defined by F (fA)(s) ∶= F (fA(s)) for all s ∈ S. In this case, it is viable to regard
a value function V∣ψ⟩ as being defined on real-valued functions f on the classical
state space S.

However, if we do not wish to assume any such classical background, then
something different is needed.

One possibility is to define F (A) as that physical quantity which is associated
with the operator F (Â). Of course, this is only meaningful if the quantization
map from physical quantity to self-adjoint operator is

(1) onto so that F (Â) is the quantum representative of some physical quan-
tity.

(2) one-to-one so that the quantity thus defined is unique.

Under these circumstances, nothing is lost by thinking of V∣ψ⟩ as a function of
self-adjoint operators, rather than physical quantities.

Another way of looking at this whole argument is to start with a value-function
V ′
∣ψ⟩ that is a function of self-adjoint operators, rather than physical quantities.

The analogue of the condition A above is then the relation

V ′
∣ψ⟩(F (Â)) = F (V ′

∣ψ⟩(Â)) (15.289)

which deals only with mathematical entities. A value-function V∣ψ⟩ of physical
quantities can then be defined by

V∣ψ⟩(A) ∶= V ′
∣ψ⟩(Â) (15.290)

If the quantization map is one-to-one and onto, then F (A) is well-defined as the
inverse image of F (Â), and the V∣ψ⟩ function constructed in this way satisfies
condition A.

Note that we are driven towards such a strategy because, on the one hand(and
unlike in the pragmatic approach), an operational definition in terms of mea-
surements is not appropriate in the context of the more realist interpretation
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being sought. But, on the other hand, we must avoid defining F (A) to be the
physical quantity that satisfies condition A for all ∣ψ⟩ ∈ H, since, then condi-
tion A would be a tautology. The potential trap is that this is precisely how a
function of a physical quantity is defined in classical physics. This discussion
impinges also on the basic function-preserving requirement F̂ (A) = F (Â), which
does become a tautology if F (A) is defined to be the physical quantity that is
associated with the operator F (Â).

The intuitively plausible requirement of condition A has the following important
implications (all can be proved).

1. If [Â, B̂] = 0, the value function is additive in the sense that, for all ∣ψ⟩ ∈H

V∣ψ⟩(A +B) = V∣ψ⟩(A) + V∣ψ⟩(B) (15.291)

where A+B denotes the physical quantity associated with the self-adjoint
operator Â + B̂.

2. If [Â, B̂] = 0, the value function is multiplicative in the sense that, for all
∣ψ⟩ ∈H

V∣ψ⟩(AB) = V∣ψ⟩(A)V∣ψ⟩(B) (15.292)

where AB denotes the physical quantity associated with the self-adjoint
operator ÂB̂.

3. Let I denote the physical quantity that corresponds to the identity oper-
ator Î. Then using the result in (2) above with A ∶= I, we see that, for
each state ∣ψ⟩

V∣ψ⟩(B) = V∣ψ⟩(I)V∣ψ⟩(B) (15.293)

for all physical quantities B. Thus, for each ∣ψ⟩ ∈H, we get

V∣ψ⟩(I) = 1 (15.294)

provided that there is at least one quantity B for which V∣ψ⟩(B) ≠ 0.

The multiplicative property of (2) above has an important implication for any
physical quantity P whose representative is a projection operator P̂ . In this
case, the property P̂ 2 = P̂ implies at once that

(V∣ψ⟩(P ))2 = V∣ψ⟩(P 2) = V∣ψ⟩(P ) (15.295)

and hence
V∣ψ⟩(P ) = 0 or 1 (15.296)

Thus, thinking of P as a proposition, we see that a quantum value function V∣ψ⟩
gives it a false or true assignment in the state ∣ψ⟩.

Now consider a collection {P̂1, P̂2, ....., P̂n} of projection operators that forms a
resolution of the identity, that is,

P̂iP̂j = 0 if i ≠ j , P̂1 + P̂2 + ..... + P̂n = Î (15.297)
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For example, these could be the spectral projectors of a self-adjoint operator
Â with discrete eigenvalues, so that P̂i = P̂A=ai . In a realist interpretation,
the associated proposition Pi asserts that A has a particular value ai, which
implies that the collection of propositions {P̂1, P̂2, ....., P̂n} should be mutually
exclusive - only one can be true at any given time - and exhaustive - at least one
of them must be true at any given time. This is in accord with the commonsense
view of the nature of truth and falsity, that is, in a set of mutually exclusive
and exhaustive propositions one and only one can be true and the rest are false.
This expectation is borne out by the formalism. Indeed, the results above imply
that

V∣ψ⟩(A +B) = V∣ψ⟩(A) + V∣ψ⟩(B) (15.298)

V∣ψ⟩(
n

∑
i=1

Pi) =
n

∑
i=1

V∣ψ⟩(Pi) = 1 (15.299)

for all states ∣ψ⟩.

However, since each V∣ψ⟩(Pi) has the value 0 or 1, this sum can equal 1 only if
one of the propositions is given the value 1 and the rest are given the value 0.

A special case is when P̂i ∶= ∣ei⟩ ⟨ei∣ where {∣e1⟩ , ∣e2⟩ , ......} is an orthonormal
basis for the Hilbert space H. Then, according to the result just obtained
above, for any state ∣ψ⟩ a value function V∣ψ⟩ must assign the number 1 to one
of the projectors/one-dimensional subspaces (more precisely, to the associated
proposition) and 0 to the rest. This is not a trivial requirement, since any
given vector will belong to many different orthonormal basis sets, and the value
given to the corresponding one-dimensional subspace must be independent of
the choice of such a set.

In fact, this requirement is so difficult that it cannot be satisfied.

This will ultimately defeat any idea of a realist interpretation.

As stated above, this argument must apply to all possible sets of orthogonal
projectors which provide a resolution of the identity in the Hilbert space. Since
the projectors are in one-to-one correspondence with the rays in the Hilbert
space, the above constraint means that, for every complete orthogonal basis of
unit vectors in the Hilbert space, we must be able to associate the number 1
with one vector and the number 0 with all the other vectors in the basis in a
consistent manner.

15.3.1 Theorem (due to Kochen and Specker)

There is no such function V∣ψ⟩ if the
Hilbert space H is such that dim(H) > 2.
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It is convenient(for carrying out a proof) to translate this problem into a coloring
problem on the surface of a unit hypersphere in Hilbert space.

Translation into Coloring Problem

Can we color the hypersphere with two colors, red and blue, in such a way that
the following conditions are satisfied?

1. Every point (unit vector) is colored red or blue.

2. For every complete orthogonal set of unit vectors only one is colored red.

3. Unit vectors belonging to the same ray have the same color.

The two-color statement of the Kochen-Specker theorem is:

If the dimension of the Hilbert space is greater than
two, the coloring of the unit hypersphere in the way
described above is not possible.

Let us denote the two-color theorem (not possible case) in a real(complex)
Hilbert space of finite dimensionN by T real(complex)N and in an infinite-dimensional
separable Hilbert space by T real(complex)∞ .

We notice at once that
T realN → T realN+1 (15.300)

This follows by supposing the coloring is possible in the (N+1)−dimensional case
(that is ∼ (T realN+1) is true - the possible case) and considering the N−dimensional
subspace orthogonal to any direction colored blue. This will now itself induce
a coloring of the unit hypersphere in the subspace in accordance with the spec-
ification of the theorem. So ∼ (T realN+1) →∼ (T realN ) or contrapositively, we have
proved T realN → T realN+1 .

Repeated applications of this result show that if we can prove T realN for any
given N , then the theorem is true for any greater value of N and, indeed, T real∞
will follow by a similar argument, in which, assuming the coloring is possible
in the infinite-dimensional case, we show that it would be possible in a finite-
dimensional subspace that includes a direction colored red.

Further, for any dimension, finite or infinite,

T realN → T complexN (15.301)

since, if we could color the unit hypersphere in the Hilbert space defined over the
complex field, we could show the coloring to be possible for a real Hilbert space
of the same dimension by considering some particular complete orthogonal set
of vectors in the complex case, and generating a structure isomorphic to a real
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Hilbert space by considering all the orthogonal sets obtained by real orthogonal
transformations from the initial set of orthonormal vectors.

With these results in mind, all we need to do is examine T realN for low values
of N . We notice that T real2 is false(it is possible to satisfy conditions (1)-(3)).
This corresponds to coloring the unit circle in a real Euclidean plane. The
construction for doing such a coloring is shown in Figure 15.10 below.

Figure 15.10: 2-Dimensional Construction

Alternate open-closed quadrants are colored blue and red as indicated. It is
then easily checked that, for any orthogonal pair of directions, one is indeed
colored red and the other blue, with opposite directions having the same color.

We now show that T real3 holds. First, we give a plausibility argument due to
Belinfante.

Consider the unit sphere in Euclidean 3-space. Suppose that the coloring had
been carried out. Then we would expect 1/3 of the surface to be colored red
and 2/3 to be colored blue, since for every orthogonal triad of directions one is
colored red and the remaining two blue. But every time we color a point P ,
say, red, then we must color the whole equator, with P as the pole, blue, since
any direction orthogonal to P gets colored blue. This is shown in Figure 15.11
below.

Figure 15.11: 3-Dimensional Construction

PQR is one orthogonal triad of directions, so if P is red, then Q and R must be
blue. Rotating this orthogonal triad about OP sweeps out the complete blue
equator as shown. So it looks like we can never end up with enough red points,
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if every red point is associated with an infinite number of blue points on the
corresponding equator.

This argument , of course, is quite unrigorous, since there is a lot of double
counting if one remembers that each point on a blue equator lies on infinitely
many other equators!

Kochen and Specker gave a rigorous proof which goes as follows.

First, we prove a lemma:

There is a finite angular distance between
any two points with opposite color.

More specifically, we shall show that if 1 and 2 are any two points on the surface
of a sphere with center at O, and if we denote by θ12 the angle between the unit
vectors

Ð→
O1 and

Ð→
O2, then if

0 ≤ θ12 ≤ sin−1 (1

3
) (15.302)

the points 1 and 2 cannot be assigned the opposite color.

Proof : We first introduce the representation of the points and orthogonality
relations on the sphere by means of a so-called Kochen-Specker diagram, in
which points on the sphere are represented by vertices in the diagram and if two
points are in orthogonal directions, the corresponding vertices of the diagram
are joined by a straight line. We show that the Kochen-Specker diagram shown
in Figure 15.12 below is constructible if

0 ≤ θ12 ≤ sin−1 (1

3
)

This Kochen-Specker diagram has ten points on the unit sphere in 3−dimensional
Euclidean space with

0 ≤ θ12 ≤ sin−1 (1

3
)

as we shall prove.

Suppose first that θ12 is any acute angle. Since 3 is orthogonal to 1 and 2, and
4 is orthogonal to 3,

Ð→
O4 must be in the plane defined by

Ð→
O1 and

Ð→
O2. Since

Ð→
O4 is orthogonal to

Ð→
O2, we may choose 4 so that θ14 is also acute, and clearly,

θ14 = π/2 − θ12 as shown in Figure 15.13 below.

Now write
Ð→
O5 = î,

Ð→
O6 = k̂ and take a unit vector ĵ orthogonal to î and k̂ so as
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Figure 15.12: Kochen-Specker Diagram

Figure 15.13: Angle Diagram

to complete a set of orthonormal vectors {̂i.ĵ, k̂}. Then
Ð→
O7, being orthogonal

to î, may be written as

Ð→
O7 = (ĵ + xk̂)(1 + x2)−1/2 (15.303)

Similarly,
Ð→
O8 = (̂i + yĵ)(1 + y2)−1/2 (15.304)

for some numbers x and y.

The orthogonality relations in the diagram force

Ð→
O9 = (xĵ − k̂)(1 + x2)−1/2 (15.305)

and ÐÐ→
O10 = (yî − ĵ)(1 + y2)−1/2 (15.306)

But
Ð→
O1 is orthogonal to

Ð→
O7 and

Ð→
O8, so we must have

Ð→
O1 = (xyî − xĵ + k̂)(1 + x2 + x2y2)−1/2 (15.307)

Also,
Ð→
O4 is orthogonal to

Ð→
O9 and

ÐÐ→
O10, so we must have

Ð→
O4 = (̂i + yĵ + xyk̂)(1 + y2 + x2y2)−1/2 (15.308)
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But then, taking the inner product of
Ð→
O1 and

Ð→
O4, we have at once

cos θ14 =
xy

((1 + x2 + x2y2)(1 + y2 + x2y2))1/2

= cos (π/2 − θ12) = sin θ12 (15.309)

This expression is easily seen to achieve a maximum of 1/3 for x = y = ±1. So
the Kochen-Specker diagram is constructible if

0 ≤ θ12 ≤ sin−1 (1

3
)

Now consider the color map V ∶ S → {red, blue}, whose domain is the surface
S of the unit sphere, and suppose that V (1) = red and V (2) = blue, then from
the Kochen-Specker diagram above, V (1) = red → V (7) = V (8) = V (3) = blue.
But V (2) = blue implies that V (4) = red. Hence, V (9) = V (10) = blue. But
V (7) = V (9) = blue, which implies that V (5) = red and V (8) = V (10) = blue
implies that V (6) = red. But V (5) = V (6) = red is not possible since 5 and 6
are orthogonal directions.

Hence, we conclude there is a minimum angular distance between points of
opposite color which is certainly greater than sin−1 ( 1

3
), otherwise the above

contradiction would be derivable.

We now use the lemma to prove the impossibility of the coloring considered in
T real3

Suppose that we take θ12 = 18○ < sin−1 (1/3), then we know that V (1) = red
implies that V (2) = red. But now introduce four additional points, labelled
3,4,5,and 6, lying at 18○ intervals along the equator through the points 1 and 2.
Then, repeating the above argument

V (1) = red→ V (2) = red→ V (3) = red→ V (4) = red→ V (5) = red→ V (6) = red

But θ16 = 5 × 18○ = 90○.

So, if any point on the sphere is colored red, we have demonstrated two orthog-
onal red points, which contradicts the specification of the coloring.

But, considering any three orthogonal points on the sphere, one of them must
be colored red.

Hence, the coloring is not possible, that is, we have demonstrated T real3 .

This argument can be put in the form of a Kochen-Specker diagram with a finite
set of vertices which cannot be colored in the specified way.

All we have to do is to choose three arbitrary points p0, q0, r0 and insert the
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appropriate fivefold repetition of the Kochen-Specker diagram above, with θ12 =
18○, between each pair of vertices of the triangle p0, q0, r0. The resulting beau-
tiful example of an inconsistent Kochen-Specker diagram, that is, one which
cannot be colored, is shown in Figure 15.14 below.

Figure 15.14: An Inconsistent Kochen-Specker Diagram

Notice that, since a is orthogonal to r0 and q0, as also is p0, then we can choose
a to coincide with p0. Similarly, we can identify b and q0 and c and r0. So the
total number of vertices in the diagram is made up of eight vertices in each of the
fifteen hexagons with three pairs of vertices identified, leaving (8× 15)− 3 = 117
distinct vertices.

In other words, what is demonstrated in Figure 15.14 is a collection of 117 points
on the unit sphere with the orthogonality relationships indicated, which can be
constructed, but which cannot be colored as specified. So we have proved T real3 .

We have shown that if a value function exists for a Hilbert space of a particular
dimension N , then it necessarily does so for any space of dimension less than
N . Similarly, if a value function exists for a complex Hilbert space, then one
exists on any real Hilbert space of the same dimension.

Then, to prove the theorem, it was clear that it suffices to show that no such
function can exist in real, 3-dimensional euclidean space.
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Reducing the problem in this manner had the advantage that it could be stud-
ied in a manifestly geometrical way, in which case it looks like a certain type of
map-coloring problem as shown above.

In their original proof, Kochen and Specker found a counter example to the ex-
istence of a value function, in the form of a set of 117 vectors in the vector space
R3 that could not be consistently assigned the numbers 0 or 1 in the desired
way as we have shown above.

This remarkable result shows that a value function V∣ψ⟩ cannot exist without
violating one of the assumptions implicit in the statement of the theorem. The
obvious candidates are:

1. The requirement that V∣ψ⟩(F (A)) = F (V∣ψ⟩(A))

2. The assumption that the quantization map A↦ Â is one-to-one.

The natural situation in which the first requirement might, perhaps, be expected
to fail is when we deal with a self-adjoint operator Â that can be written as
functions Â = f1(Â1) and Â = f2(Â2) of a pair of self-adjoint operators Â1 and
Â2 with [Â1, Â2] ≠ 0.

The value condition implies, in this case, that

V∣ψ⟩(F (A)) = f1(V∣ψ⟩(A1)) = f2(V∣ψ⟩(A2)) (15.310)

and, if Â1 and Â2 do not commute, the wisdom of this assumption could be
questioned. For example, if we suppose that the value possessed by a quantity
can be found by making an appropriate measurement (which is an assumption,
albeit not an unreasonable one), then the last equation implies that measuring
Â1 and applying f1 to the result, will yield the same number as measuring
Â2 and applying f2 to the result. However, there seems no good reason for
supposing this would be so if [Â1, Â2] ≠ 0.

On the other hand, dropping the last equation has a very peculiar effect. For
example, let Â1 and Â2 be a pair of non-commuting, self-adjoint operators whose
spectral resolutions contain a common projector P̂ .

Then P̂ can be written as one function of Â1, and as another function of Â2,
that is, in general, if a self-adjoint operator Â has a discrete spectrum with a
spectral resolution

Â =
M

∑
i=1

aiP̂i (15.311)

then the projector P̂i can be written as a function of Â

P̂i = χai(Â) (15.312)
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where χr(t) ∶= 1 if t = r and 0 otherwise. Hence, the failure of the value condition
P (or equivalently, the truth or falsity of the associated proposition) depends
on the context in which P̂ is taken: if viewed as belonging to the spectral
representation of Â1, it will be given one value; if viewed as belonging to that
of Â2, it will be given another.

For example, if P̂ is thought of as belonging to the spectral representation of Â1,
the remaining projectors in the spectral set are a natural choice for commuting
partners and, analogously, if P̂ is viewed as part of the spectral representation
of Â2. More generally, this means that the value of any physical quantity A
whose representing operator Â has degenerate eigenvalues may depend on the
context in which it is considered. In particular, it may depend on the choice
of other physical quantities whose associated operators commute with Â, and
which therefore help to label the degeneracy subspaces of Â.

Yet another way of expressing these ideas is to say that the operator Â does not
represent a unique physical quantity. It has a different meaning depending on
what other compatible quantities are considered at the same time. This links
up with the second possible way of saving value functions, that is, the idea that
the quantization map A↦ Â may be many-to-one.

The Kochen-Specker theorem is not directly relevant to the pragmatic approach
to quantum theory in so far as no attempt is made in that approach to think
of an individual system as possessing values for its observables. However, if
this approach is augmented with the assumptions (1) physical quantities do
have values in any individual systems and (2) these values can be revealed by
suitable measurements, then the theorem implies that the results obtained will
depend on the context in which an observable is studied. In particular, if Â, B̂
and Ĉ are three operators with

[Â, B̂] = 0 = [Â, Ĉ] , [B̂, Ĉ] ≠ 0 (15.313)

then the result of an individual measurement of A will depend on whether we
choose to measure B or C (or neither) at the same time.

A very important example of this situation arises naturally in the EPR context
of a pair of entangled systems that have become spatially separated, and on
which measurements are then made in such a way that the measurement events
are space-like separated. Remember that two events are space-like separated if
no signal can be sent from one to another without exceeding the speed of light
and for any such pair of events there is always some inertial frame of reference
with respect to which the two events are simultaneous.

If A is associated with the first system and B and C with the second, then we
expect to be able to measure A simultaneously with either B or C and hence

[Â, B̂] = 0 = [Â, Ĉ] (15.314)
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On the other hand, it is easy to arrange that the operators B̂ and Ĉ associated
with the second system are such that [B̂, Ĉ] ≠ 0.

Note that the probabilistic predictions of the formalism concerning the results
of measuring A do not depend on what else is measured at the same time, that
is, the probability of getting result am when the state is ∣ψ⟩ is always just

⟨ψ∣ P̂m ∣ψ⟩ (15.315)

In addition, statements about the hypothetical values of quantities for individual
systems are not amenable to experimental tests. In consequence, the deductions
above concerning contextuality will not trouble a pragmatist. Indeed, she may
even support them, by citing Bohr’s ideas about a property of a quantum system
having a meaning only within the context of a specific measurement situation.

However, within a realist interpretation, a contextual assignment of values is
in sharp variance with what is normally meant by saying that a property is
possessed.

In normal discourse, implicit in the statement the quantity A has a value a is
an understanding that this is independent of what else might be asserted at the
same time. But, according to the Kochen-Specker theorem, in the quantum case
we are obliged to talk instead of pairs (A,B) or (A,C) having certain values
(a, b) and (a′, c) as pairs, and the implication of contextuality is that a may not
equal a′.

Note that the analogue of a value-function in a hidden variable theory would
involve the assumption that the value of a physical quantity A in a quantum
state ∣ψ⟩ depends on these additional variables. However, this does not change
the force of these arguments above.

In particular, it is only in the contextual sense that properties in a hidden
variable theory can be said to be possessed.

Let make a digression now to consider quantum logic.

15.4 The Logic of Quantum Propositions

15.4.1 The Meaning of True

Several times we have mentioned the idea that a projection operator P̂ can be
regarded as the quantum representative of a proposition P̂ , with the eigenvalues
1 and 0 being associated in some way with P̂ being true or false respectively.
Equivalently, the proposition is represented by the subspace

HP̂ ∶= {∣ψ⟩ ∈H∣P̂ ∣ψ⟩ = ∣ψ⟩} (15.316)
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of H. Furthermore, the discussion above showed that, if it existed, a value
function V∣ψ⟩ satisfying

V∣ψ⟩(F (A)) = F (V∣ψ⟩(A)) (15.317)

would associate a number 0 or 1 with each projector. The obvious interpretation
is that V∣ψ⟩(P ) = 1 and V∣ψ⟩(P ) = 0 correspond, respectively, to the proposition
being true or false when the quantum state is ∣ψ⟩.

Binary-valued functions of this type (called valuations) play an important role
in classical propositional logic, which suggests that it may be profitable to ex-
plore quantum theory further from this perspective, particularly the "logic of
propositions represented by projectors.

A central ingredient will presumably be the fact that each (normalized) state
∣ψ⟩ gives rise to a probability assignment

Prob(P ∣ ∣ψ⟩) ∶= ⟨ψ∣ P̂ ∣ψ⟩ = ⟨ψ∣ P̂ 2 ∣ψ⟩

= (⟨ψ∣ P̂ ) (P̂ ∣ψ⟩) = ∥P̂ ∣ψ⟩∥
2

(15.318)

which will be interpreted in some way as the probability that the state of affairs
represented by P̂ is realized if the state is ∣ψ⟩.

Since all propositions in physics can be reduced ultimately to statements about
values(possessed, measured or otherwise) of physical quantities, nothing is lost
by focussing on this case.

In what follows, we shall only discuss propositions of the type A ∈ ∆, which
asserts that the value of a physical quantity (or easily extended to a finite set
of compatible quantities) A lies in some subset ∆ ⊂ R (or will be found to do
so if a suitable measurement is made). Assertions of this type refer to the state
of affairs at some specific time.

Propositions of the type A ∈ ∆ are what are normally assumed to be represented
by spectral projectors. If the spectrum of Â is discrete, the operator P̂A∈∆ is just
the sum of the projectors P̂A=ai where the eigenvalues ai belong to the subset
∆ of real numbers. Of course, a special case is when ∆ = {aj} for some specific
eigenvalue aj , in which case P̂A∈∆ = P̂A=aj .

The probabilistic predictions of quantum theory are that if the state is ∣psi⟩,
then

Prob (A ∈ ∆∣ ∣ψ⟩) = ∥P̂A∈∆ ∣ψ⟩∥
2

(15.319)

In particular, Prob (A ∈ ∆∣ ∣ψ⟩) = 1 if and only if P̂A∈∆ ∣ψ⟩ = ∣ψ⟩, that is, ∣ψ⟩
lies in the eigenspace HA∈∆(=HP̂A∈∆) generated by all eigenvectors of Â whose
eigenvalues are in ∆.
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Note that a given projection operator may represent more than one proposition
of this type. For example, two operators Â and B̂ may share a common spectral
projector so that P̂A∈∆ = P̂B∈∆′ for some subsets ∆ and ∆′ of R. In this case,
we shall say that the propositions A ∈ ∆ and B ∈ ∆′ are physically equivalent.
There are implications for such a definition if [Â, B̂] ≠ 0.

Important issues concerning this proposition-projector association include:

(1) the exact nature of the propositions represented by projection operators

(2) the way in which the concepts of "truth and falsity apply to such propo-
sitions

(3) the quantum analogue of the way in which the set of propositions in classi-
cal physics acquires the structure of a Boolean algebra from the underlying
mathematical representation of states and physical quantities

The nature of the proposition represented by a projection operator depends on
the interpretation of quantum theory that is adopted.

A realist might want to say that the projection operator P̂A∈∆ represents the
physical quantity whose value is 1 if the value of A lies in ∆ and is 0 otherwise.
Hence, in this case, the proposition A ∈ ∆ is to be read as

The realist version of A ∈ ∆:
A has a value and this value lies in the subset ∆.

Of course, this leaves open the question of when such an assertion is justified.
The situation in classical physics is clear: the proposition is true in a state s ∈ S
if, and only if, fA ∶ S → R is such that fA(s) ∈ ∆. However, as we saw in the
Kochen-Specker discussion, any attempt to assign possessed values for all quan-
tities in quantum theory can only be maintained at the expense of considering
these properties to be contextual. This means that it is not meaningful to say
that any particular proposition is either true or false without specifying what
other compatible propositions are to be considered at the same time.

One possibility is to adopt the minimal attitude that a physical quantity A can
only be said to have a value a if (1) a is an eigenvalue of Â and (2) the state
∣ψ⟩ lies in the associated eigenspace HA=a. One might then argue that, since
the first part of the realist version of A ∈ ∆ is ”A has a value.....”, the truth
of A ∈ ∆ requires that ∣ψ⟩ belong to one of the eigenspaces of Â. Thus, ∣ψ⟩
must be an eigenvector of Â. The second part ”.......... and this value lies in the
subset ∆”, then means that the corresponding eigenvalue must belong to the set
∆ = {a1, a2, ....., ad}. Note that the first requirement excludes any ∣ψ⟩ that is the
sum of elements in more than one of the eigenspaces HA=a1 ,HA=a2 , .......,HA=ad ,
even though the formalism gives Prob(A ∈ ∆∣ ∣ψ⟩) = 1 for all such states. In these
circumstances, it is clearly inappropriate to regard the spectral projector P̂A∈∆
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as representing the proposition A ∈ ∆. Therefore, if one wanted to maintain the
proposition-projector link, it would be natural to adopt the weaker condition
that A ∈ ∆ is true in a state ∣ψ⟩ if P̂A∈∆ ∣ψ⟩ = ∣ψ⟩, that is, if ∣ψ⟩ is any linear
combination of eigenvectors of Â whose corresponding eigenvalues lie in ∆.

The situation is less ambiguous in the instrumentalist approaches to quantum
theory. The projector P̂A∈∆ now represents a physical observable that is defined
operationally by specifying how it is to be measured, that is, measure A, and
then, if the result lies in ∆, assign the number 1 to the observable, otherwise
assign the number 0. The proposition A ∈ ∆ should now be read as asserting
that a measurement of A will yield a result that lies in the subset ∆.

On the face to it, the statement ”if a measurement of A is made, then the result
will lie in ∆” is applicable to a single system, as is the realist claim that ”A
has a value that lies in ∆” . However, the instrumentalist form of the propo-
sition is not a statement about how things are, but rather a claim about what
would happen if a certain operation was performed. This seems to cry out
for a positivist-type verification, that is, make the measurement and see what
happens - if the result does not lie in ∆, then the proposition is certainly false.

But what if the result does lie in ∆? Does this mean this proposition is true?
Certainly not if, as is arguably the case, a more precise rendering of the propo-
sition is:

The modal version of A ∈ ∆:

if a measurement of A is made, then, necessarily,
the result will lie in the subset ∆.

Put in the modal form, the proposition is manifestly counterfactual and cannot
be verified by any single, or finite set, of measurements. Indeed, it could be
argued that, in this form, the proposition does not apply at all to an individual
system but only to a collection of such on which repeated measurements are to
be made. Thus, in this reading, it is consistent to say that states and proposi-
tions apply only to such collections.

The discussion above shows why, in the relative-frequency, anti-realist interpre-
tations of quantum theory, we are lead naturally to read the proposition A ∈ ∆
as:

The probability-one version of A ∈ ∆:

if a measurement of A is made, then, with,
probability one, the result will lie in the subset ∆.
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in which case it is clear when it would be asserted as true, namely,

if the quantum state is ∣ψ⟩, a proposition T represented
by a projection operator P̂T is true if Prob(T ∣ ∣ψ⟩) = 1

Some Comments on these Ideas

1. Since
Prob(T ∣ ∣ψ⟩) = ∥P̂T ∣ψ⟩∥

2

the condition Prob(T ∣ ∣ψ⟩) = 1 implies that P̂T ∣ψ⟩ = ∣ψ⟩, that is, ∣ψ⟩ is, in
fact, an eigenvector of P̂T with eigenvalue 1.

2. This result implies that the proposition A ∈ ∆ is true in any state ∣ψ⟩ that
can be written as a linear superposition of the eigenvectors associated with
the eigenvalues in ∆. Of course, this does not mean that the probability
of getting any specific eigenvalue is equal to 1. Indeed, this number will be
strictly less than 1 if ∣ψ⟩ has non-zero expansion coefficients for more than
one of the eigenspaces. Note that, unlike in the realist case, this causes no
problems, since the modal form of A ∈ ∆ does not say that a measurement
of A necessarily gives any one particular element of ∆.

3. Care must be taken when handling propositions in this modal form. For
example, if the proposition A = am is interpreted as ”if A is measured,
then the result will necessarily be am”, then the value of Prob(A = am∣ ∣ψ⟩)
cannot be read as the probability that the proposition is true when the
state is ∣ψ⟩. Rather, Prob(A = am∣ ∣ψ⟩) refers to the relative frequency
with which result am will be found on a given collection of systems.

For example, the statement "there is a 70% chance that the proposition ”if A
is measured, then the result will necessarily be am is true”, is quite different
from "if A is measured, then there is a 70% chance that the result will be am”.
It is the latter that is intended in the quantum formalism by the statement
Prob(A = am∣ ∣ψ⟩) = 0.7. Note that, if desired, one might introduce an extended
class of modal propositions of the form

if a measurement of A is made, then the probability
that the result will lie in ∆ IS r.

where the real number r satisfies 0 ≤ r ≤ 1. The special value r = 1 then
corresponds to the probability-one proposition above.

15.4.2 Is ”False” the Same as ”Not True”?

The next issue to consider is what it means to say that a proposition is false
and under what circumstances in quantum theory such an assertion would be
justified.
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In classical physics or logic, this causes no difficulties:

a proposition is false if and only if it is not true

If we adopt this idea in quantum theory then, in the relative-frequency interpre-
tations, ”A ∈ ∆ is false” means that, in a long series of repeated measurements
of A, one or more numbers not lying in ∆ will occur with a non-zero relative
frequency. In general, this suggests the definition that a proposition T is ”false”
in a state ∣ψ⟩ if Prob(T ∣ ∣ψ⟩) < 1.

On the other hand, a realist may balk at the idea that the proposition A ∈ ∆
could be said to be false if there is still a non-zero probability of finding values in
∆. When confronted with the existing formalism of quantum theory - in partic-
ular the idea that propositions are to be associated with projection operators - a
realist may feel that the most natural assignment of truth and falsity in a state
∣ψ⟩ is that a proposition A ∈ ∆ is (1) true in state ∣ψ⟩ if Prob(A ∈ ∆∣ ∣ψ⟩) = 1
(that is, ∣ψ⟩ ∈HA∈∆) and (2) false if Prob(A ∈ ∆∣ ∣ψ⟩) = 0 (that is, ∣ψ⟩ ∈H⊥A∈∆).

However, any vector ∣ψ⟩ ∈ H can be written as a sum of components in HA∈∆
and H⊥A∈∆, and, according to these assignments, the proposition A ∈ ∆ cannot
be said to be either true or false if both components are non-zero. This suggests
that some sort of multi-valued logic should be used. The simplest such attempt,
due to Reichenbach is to use a three-valued logic in which a proposition can be
either true, false, or indeterminate. The typical quantum mechanical situation
in which a non-trivial superposition of eigenvectors leads to a proposition being
neither true nor false would then be assigned to the indeterminate category.

A more complex possibility is to use a continuous spectrum of truth values lying
between 0 and 1, with the truth value of the proposition T in a state ∣ψ⟩ being
set equal to Prob(T ∣ ∣ψ⟩). This is the idea that lies behind the concept of fuzzy
logic.

But, in either case, it is not really clear what the meaning is of a proposition
that is deemed to apply to a single system but which is then said to be neither
true nor false. Philosophers have debated this for some time without reaching
any definite conclusions.

In addition, serious worries have been expressed about using the idea of using a
multi-valued logic within a mathematical framework that is, itself, based firmly
on classical two-valued logic.

Another major problem with multi-valued logics is to decide on the appropriate
analogues of the usual logical connectives and, or, negation, and logical impli-
cation that are usually introduced in the context of classical physics. Many
mathematical attempts have been tried, but no clear consensus has emerged.
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The difficulties with logical connectives can be alleviated by adopting the strat-
egy in which a proposition A ∈ ∆ is understood to be false in state ∣ψ⟩ if it
is not true, that is, if Prob(A ∈ ∆∣ ∣ψ⟩) < 1. This approach is quite natural in
instrumentalist interpretations of quantum theory, and results in a two-valued
propositional structure, albeit at the expense of introducing a certain asymme-
try between the concepts of ”true” and ”false”. It is still necessary to define the
logical connectives, however.

The Logical Connectives

The construction of a quantum logic on the set of two-valued (true/false) propo-
sitions originally started by Birkhoff and von Neumann. They started with the
set ℘(H) of all closed subspaces of a Hilbert space H (or, equivalently, with the
set of all projection operators) and suggested certain analogues of the classical
logical operations. The basic definitions are as follows.

1. A proposition T implies another U , written T ⪯ U , if for all states ∣ψ⟩
such that Prob(T ∣ ∣ψ⟩) = 1, we have Prob(U ∣ ∣ψ⟩) = 1, that is, U is true
in all states in which T is true. This is equivalent to HT being a closed
subspace of HU .

The analogous classical relation is ST ⊂ SU .

If P̂T and P̂U are the associated projection operators, the relation T ⪯ U ,
is equivalent to

P̂T P̂U = P̂U P̂T = P̂T (15.320)

Note that if T implies U and U implies T , it is natural to say that
the propositions T and U are equivalent. Indeed, The former means
P̂T P̂U = P̂T and P̂T P̂U = P̂U , that is, P̂T = P̂U , which is the definition of
physical equivalence suggested earlier. As is the case in classical physics,
the appropriate objects to study are the equivalence classes of propositions
which, in the quantum case, are the projection operators. This means that
it is more appropriate to view the logical operations as defined on projec-
tion operators (or, equivalently, topologically closed subspaces), than on
propositions, per se.

2. The operator that corresponds to the identically false proposition is the
null operator ∅̂ that maps every vector in H to the null vector, and the
operator that is the identically true proposition is the unit or identity
operator Î. Thus, for any projection operator P̂ , we have ∅̂ ⪯ P̂ ⪯ Î.

In classical physics, the analogue of these two propositions are the empty
set ∅ and the whole space S respectively, and for all subsets ST of S we
have ∅ ⊂ ST ⊂ S.

3. If T is a proposition, the proposition ¬T (not T ) is defined by requiring
that, for all states ∣ψ⟩, Prob(¬T ∣ ∣ψ⟩) = 1 if, and only if, Prob(T ∣ ∣ψ⟩) = 0.
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This is equivalent to the relation H¬T = (HT )�. This relation determines
a unique projection operator P̂¬T that represents ¬T :

P̂¬T = Î − P̂T (15.321)

which actually implies the (superficially stronger) relation between the
probabilities of T and ¬T

Prob(T ∣ ∣ψ⟩) + Prob(¬T ∣ ∣ψ⟩) = 1 (15.322)

The classical analogue is S¬T = S − ST .

Unlike the classical case, the quantum definition has the peculiar prop-
erty that T can be false in a state ∣ψ⟩ (that is, T is not true, so that
Prob(T ∣ ∣ψ⟩) < 1) without implying that ¬T is true (which requires that
Prob(T ∣ ∣ψ⟩) = 0). But, as expected, ¬T true does imply that T is false!
This curious asymmetry stems directly from (1) the existence of linear
superpositions of eigenstates of the operator P̂T and (2) our desire to have
a binary-valued, rather than trinary-valued, logic.

4. Let T and U be a pair of propositions with associated closed subspaces
HT and HU , and projection operators P̂T and P̂U , respectively. Then
the proposition T ∧ U (to be interpreted as some type of conjunction,
T AND U) is defined by requiring that Prob(T ∧U ∣ ∣ψ⟩) = 1 in a state ∣ψ⟩
if and only if Prob(T ∣ ∣ψ⟩) = 1 and Prob(U ∣ ∣ψ⟩) = 1, that is, T ∧U is true
in the state ∣ψ⟩ if and only if both T AND U are true. This means

HT∧U =HT ∩HU (15.323)

which is reminiscent of the classical result ST∧U = ST ∩ SU .

Expressed in terms of subspaces, the quantum definition seems rather
natural. However, there is no simple way of translating it into the language
of projection operators since the operator P̂T ∧ P̂U ∶= P̂T∧U that projects
onto HT ∩HU is not a simple function of the projection operators P̂T and
P̂U . If [P̂T , P̂U ] = 0 it can be shown that the projection operator P̂T ∧ P̂U
that represents the proposition T ∧U is

P̂T ∧ P̂U = P̂T P̂U (15.324)

5. In classical physics, the set that represents the disjunction T ∨U (T OR U)
of a pair of propositions T and U , is the union ST ∪SU of the sets ST and
SU that represent them, that is, it is the smallest subset of the state space
S that contains both ST and SU .

The obvious analogue in quantum theory is the set HT∨U equal to the
union of HT and HU . But this cannot be correct since HT ∪HU is not a
linear subspace of H, that is, it is not closed under the operation of taking
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sums of vectors. This suggests that the more appropriate definition would
be HT∨U = HT +HU , which is defined to be the linear sum of all vectors
in HT and HU . However, even this is not correct if H has an infinite
dimension since then HT + HU may not be topologically closed. This
defect is remedied by the final definition

HT∨U =HT +HU (15.325)

which is the smallest, topologically closed linear subspace of that contains
both HT and HU .

As in the case of the conjunction, there is no easy way to write this
last relation in terms of the associated projection operators. However,
if [P̂T , P̂U ] = 0, then the projection operator P̂T ∨ P̂U ∶= P̂T∨U that repre-
sents the proposition T ∨U is

P̂T ∨ P̂U = P̂T + P̂U − P̂T P̂U (15.326)

In particular, if P̂T P̂U = 0 then P̂T ∨ P̂U = P̂T + P̂U (this is the classical
result).

Some Comments

1. The closed subspaces HT and HU of H satisfy the equation

HT +HU = (H�
T ∩H

�
U)� (15.327)

This is the analogue of the DeMorgan rule of classical set theory

ST ∪ SU = S − ((S − ST ) ∩ (S − SU)) (15.328)

which corresponds to the logical identity T ∨U = ¬(¬T ∧ ¬U).

This fact provides further justification for the consistency of the above
assignments of logical connectives.

2. Care must be taken in interpreting the assignment of logical connectives.
This is particularly true of the idea of ”T ∧ U ”. One may interpret ∧ as
"and" in the normal sense only if the two operators commute since, as
mentioned earlier, only then is it unequivocally meaningful to assert that
states of the system exist in which both properties are possessed at the
same time. In the non-commuting case, the best that can be said (instead
of

P̂T ∧ P̂U = P̂T P̂U (15.329)

is that
P̂T ∧ P̂U = lim

k→∞
(P̂T P̂U)k (15.330)

which is sometimes read as saying that T ∧ U refers to the results of an
infinite sequence of measurements of T and U .
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3. The fact that most pairs of operators do not commute is reflected in
the crucial property of the set of quantum propositions that the algebraic
structure associated with the definitions of ∧ and ∨ fails to be distributive.

This can be seen easily with the aid of a simple example. Let H∣ψ1⟩ and
H∣ψ2⟩ be one-dimensional subspaces of a two-dimensional Hilbert space
H, spanned by (that is, all complex multiples of) the linearly-independent
vectors ∣ψ1⟩ and ∣ψ2⟩ respectively, and let ∣φ⟩ be any non-trivial linear
combination of ∣ψ1⟩ and ∣ψ2⟩. Then we have

H∣φ⟩ ∩ (H∣ψ1⟩ +H∣ψ2⟩) =H∣φ⟩ ∩H =H∣φ⟩ (15.331)

but if we use the standard distributive property we have

H∣φ⟩∩(H∣ψ1⟩ +H∣ψ2⟩) =H∣φ⟩∩H∣ψ1⟩+H∣φ⟩∩H∣ψ2⟩ =H∅+H∅ =H∅ (15.332)

We thus have the contradiction H∣φ⟩ = H∅. This result contrasts sharply
with the distributive property of classical propositions, which is direct con-
sequence of the Boolean nature of the algebra if intersections and unions
of subsets of a classical state space.

Most of the strange, non-classical features of quantum theory can be traced back
to this non-distributive property of the logical structure of quantum proposi-
tions.

It is useful to think about Gleason’s theorem in light of these discussions.

Gleason’s Theorem

The probability rules for density matrices imply that for any proposition P ,
with associated projector P̂ ∈ ℘(H), the probability associated with P in the
state ρ̂ is

Prob(P ∣ρ) = Tr (ρ̂P̂ ) (15.333)

An interesting and important question arises at this point. Are there any other
ways of assigning probabilities to the elements of ℘(H), or, is the standard
quantum formalism unique? More precisely, can we find a new probabilistic
theory by starting with some Hilbert space H, with its non-distributive algebra
℘(H) of subspaces/projection operators, and then construct a probability map
Prob ∶ ℘(H)→R that is not of the type given above? In particular, what is the
space of states in such a theory?

To tackle this question we must first decide what requirements should be satis-
fied by a probability map Prob ∶ ℘(H)→R. The analogous question in classical
statistical physics is answered by defining a general probability measure to be a
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real-valued function µ of subsets of S that satisfies the three conditions

0 ≤ µ(W ) ≤ 1 for all such subsets W
µ(∅) = 0 , µ(S) = 1

µ(W1 ∪W2 ∪ ....) = µ(W1) + µ(W2) + ......

In the quantum case, one obvious condition is 0 ≤ Prob(P ) ≤ 1 for all propo-
sitions P ∈ ℘(H). Two other, essentially trivial, requirements are Prob(∅) = 0
and Prob(I) = 1, where ∅ and I correspond respectively to the propositions
that are identically false and true.

They key question is what should be required of the probabilities Prob(T ∧U)
and Prob(T ∨U) for a pair of propositions T and U .

It is helpful to start by considering the analogous question in classical physics,
where propositions correspond to subspaces of the state space S. In this case,
bearing in mind that ST∧U = ST ∩SU and ST∨U = ST ∪SU , it is easy to see with
the aid of a Venn diagram that one required condition is

Prob(T ∨U) = Prob(T ) + Prob(U) (15.334)

which, if {P1, P2, ...., PM} is any finite set of propositions that are pairwise
exclusive, generalizes at once to

Prob(P1 ∨ P2 ∨ ........ ∨ PM) =
M

∑
i=1

Prob(Pi) (15.335)

An important technical requirement in classical probability theory is countable
additivity, that is, this relation should continue to hold in the limit M →∞.

The quantum analogue of two mutually-exclusive propositions is a pair of pro-
jection operators P̂T , P̂U that are orthogonal, that is, P̂T P̂U = 0 = P̂U P̂T . In this
case, problems of incompatibility do not apply, and it is natural to suppose that
the last relation passes across in the form

P̂1 ∨ P̂2 ∨ ........ ∨ P̂M =
M

∑
i=1

P̂i (15.336)

for any collection of pairwise orthogonal projection operators.

Thus, a minimal set of requirements on any quantum probability function Prob ∶
℘(H)→R is

0 ≤ Prob(P̂ ) ≤ 1 for all P̂ ∈ ℘(H)
Prob(0̂) = 0 , P rob(Î) = 1

Prob(
∞
∑
i=1

P̂i) =
∞
∑
i=1

Prob(P̂i)
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for any finite or countably infinite set {P1, P2, ....} of projection operators that
are pairwise mutually orthogonal.

Typically, such sets arise as the spectral projectors of a self-adjoint operator.

One way of satisfying these relations is to define

Prob(P̂ ) = Tr (ρ̂P̂ ) (15.337)

where ρ̂ is any density operator.
12pt] A remarkable theorem due to Gleason shows that, provided that dim(H) >
2, the converse is true - the only way of satisfying

0 ≤ Prob(P̂ ) ≤ 1 for all P̂ ∈ ℘(H)
Prob(0̂) = 0 , P rob(Î) = 1

Prob(
∞
∑
i=1

P̂i) =
∞
∑
i=1

Prob(P̂i)

is with the aid of a density operator and the relation

Prob(P̂ ) = Tr (ρ̂P̂ ) (15.338)

Gleason’s theorem places strong constraints on any attempts to modify the
standard quantum formalism as, for example, might be desired in the construc-
tion of hidden variable theories. It also gives a rather deep reason why density
operators play such an important role in quantum theory.

15.5 Quantum Mechanical Picture of the World

Let us look at Kochen-Speker and Gleason in another way to help our under-
standing. Quantum mechanics provides us with the most detailed picture of
the natural world. The mention of quantum mechanics conjures up ideas of
uncertainty, indeterminacy, and probability. This section aims to explain these
ideas which based on the knowledge we have gained in this text.

If you look at most papers on this subject it seems that only the experts can
know the details, because only they have the knowledge of the esoteric mathe-
matics required. Hopefully we can simplify the arguments using only elementary
mathematics(especially geometric arguments) in this presentation.

We first build a mathematical model of the subatomic world based on the prop-
erties revealed by the Stern-Gerlach experiment. We then analyze the model
and prove a theorem whose physical implications are immediately obvious. One
must follow the reasoning carefully and analyze the figures to understand the
proof of the theorem. We will find that the subatomic world cannot be com-
pletely determined and that its properties cannot be definite before an experi-
ment reveals these properties to us.
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15.5.1 The Model
To understand atoms or subatomic particles, the tools of classical physics, as
we have seen, are not sufficient. We need new kinds of concepts and laws, which
are contained in quantum mechanics. Because matter and radiation consists
of subatomic particles, the macroscopic world must be ultimately explained
according to quantum principles.

As we saw earlier, one of the first surprising results on the behavior of small
particles was observed by Stern and Gerlach in 1922. In that experiment, a
beam of silver atoms was sent through a magnet as shown in Fig. 15.15 below.

Figure 15.15: Stern-Gerlach Setup
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According to classical mechanics, the silver atoms should be deflected by a
certain angle. There should be a large range of scattering angles and, therefore,
a band of impacts on a screen placed behind the magnet. Surprisingly, only two
narrow strips were observed, one above the initial direction and one below. The
fact that only two strips were obtained was totally unexpected in the context
of classical physics; the only explanation of this fact was that a property of
the silver atoms-called intrinsic angular momentum or spin-could take on only
two possible values, ±h̵/2. More precisely, the projection of the spin along the
direction of the magnetic field can have only two values in this case.

It was subsequently discovered that for atoms other than silver, the beam split
into three, four, or more branches, depending on the kind of atom. If the beam
of particles splits into two branches, we say the particle has spin 1/2; if it splits
into three, we say the particle has spin 1; if it splits into four, we say the particle
has spin 3/2, and so forth.

The discovery of angular momentum quantization was a key moment in the
creation of quantum mechanics. We are interested only in a particular aspect
of the Stern-Gerlach experiment. In fact, we will not even talk directly about
the angular momentum, although it will constantly enhance the argument. Let
us consider spin 1 particles. If we shoot a beam of those particles at a Stern-
Gerlach device positioned according to Fig. 15.16 (oriented in the z−direction
represented by the unit vector ẑ), some of the particles will deflect up (in state
∣1z⟩ = ∣↑z⟩), some of them down(in state ∣−1z⟩ = ∣↓z⟩), and a third group will not
deflect up or down(in state ∣0z⟩ = ∣→z⟩).

Figure 15.16: Stern-Gerlach oriented in z−direction
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If the magnet is turned to face in any other direction, say the −x−direction
represented by the unit vector x̂, as in Fig. 15.17 below

Figure 15.17: Stern-Gerlach oriented in −x−direction

the result will be the same: a beam goes to the right, another one goes to the
left, and a third beam is not deflected. The corresponding states are ∣1x⟩ = ∣↑x⟩),
∣−1x⟩ = ∣↓x⟩), and ∣0x⟩ = ∣→x⟩ as before.

From this experiment, we come to the important conclusion that the state of
a system is characterized by a state vector that is labeled by a number or an
arrow representing a direction in space. This type of characterization, as we
have seen, turns out to be a basic principle of quantum mechanics.

We can use a Stern-Gerlach device to answer the following question: Is the
system in the ∣0x⟩ = ∣→x⟩ state? The answer will be yes for the beam that
does not deflect when the magnetic field points in the x−direction. The beams
that are deflected will give us negative answer to this question. This kind of
question, which is answered with only two alternatives: yes or no, 1 or 0, is
called a projector. Thus, the question, Is the system in the ∣0x⟩ = ∣→x⟩ state? is
called the ←x or 0x projector (or projection operator) and is represented by the
operator symbol P←x or P0x . In the same way, we can apply a 0y projector P0y

which corresponds to the question, Is the system in the ∣0y⟩ = ∣→y⟩ state? In
general, we can define the projector P0n corresponding to an arbitrary direction
represented by the unit vector n̂.

But quantum mechanics, as we have seen, is very peculiar. Suppose that we
apply the projector P0x with an affirmative response, so that we are sure that
the system (the atom) is in the ∣0x⟩ state. If we now introduce a second Stern-
Gerlach magnet, pointing in any other direction n̂, then the projector P0n will
be answered sometimes affirmatively and sometimes negatively. To be precise,
the probability of obtaining yes is equal to the square of the projection (proba-
bility amplitude) of n̂ on x̂, i.e., n̂ ⋅ x̂ as shown in Fig. 15.18 below.
This, as we know, is the same as the square of the scalar product (probability
amplitude) of the states representing the atom in each case, i.e., ⟨0n ∣0x⟩, which
is just the Born Rule. If the direction n̂ is orthogonal to x̂, then the projection
is zero. Therefore, the probability that the system is in the ∣0n⟩ is zero. In this
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Figure 15.18: Projection = Probability Amplitude

case, the answer to the question Pn will be no if Px had been affirmative.

Gleason, in his remarkable theorem published in 1957 (A. Gleason, ”Measures
on the closed subspaces of a Hilbert space,” J. Math. Mech. 6(6), 885-893
(1957)), proved that a probability measure µ defined over a spherical sur-
face [or a linear space of dimension 3 if for any vector a′ and any number
λ, µ(a) = µ(λa) (a and λa are the same physical state)] has to be of the form:
prob(Pθ = 1∣Pz = 1) = cos2 θ. (Note: Pθ = 1 is a convenient way of saying that
Pθ takes on the value 1. Other authors write v(Pθ=1 instead). Gleason showed
the equivalent result for any dimension of Hilbert space.

Questions referring to perpendicular directions are mutually exclusive: if one of
them is affirmative, the other will be negative. Because these questions or pro-
jectors do not interfere with each other, we say that they are compatible, in the
sense that they can be measured together. (If the directions are not perpendic-
ular, they can interfere: we can obtain two affirmative results). Mathematically
this looks like:

∣0x⟩ =
1√
2

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠

∣0y⟩ =
1√
2

⎛
⎜
⎝

1
0
1

⎞
⎟
⎠

∣0z⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

Thus,
⟨0x ∣0y⟩ = ⟨0x ∣0z⟩ = ⟨0y ∣0z⟩ = 0

In three-dimensional space, there are at most three compatible projectors. For
example, the projectors, P0x , P0y , and P0z are compatible, because they do not
interfere with each other and can be implemented at the same time, meaning
that the response will be yes for one of the three and no for the other two. If
the system is in the ∣0x⟩ state, for instance, it cannot be in the ∣0y⟩ state or the
∣0z⟩ state.

In general, a set of three directions that are mutually perpendicular will be

1256



called an orthogonal triple. In an orthogonal triple, one of the projectors will
yield yes (1) and the other two will yield no (0). The maximum number of
compatible projectors is three because we are considering a spin-1 particle. The
spin of other kinds of particles as well as other quantum observable quantities
will require a different number of dimensions. But the important point is that
any quantum observable quantity can be split into projectors so that our analysis
can be extended to every quantum observable quantity.

15.5.2 The Question

With these ideas in mind, we turn our attention to the central idea of this sec-
tion: What picture of the world does quantum mechanics provide? We know
quantum mechanics is a probabilistic theory. In each experiment we have a
certain probability of obtaining one result or another. But when we throw a
die, we also obtain a result with a certain probability. Is it the same kind of
randomness? Do the probabilities have the same nature in both cases?

When we throw the die, we could in principle know what number we would see if
we knew the precise value of the force applied to the die. But there are so many
elements we do not control that we accept the result as a random event, even
though in theory, we could predict the result if we analyzed the details of the
enormous variety of variables that are relevant. We use probabilities because
analyzing all those details would be too laborious. It is a question of practical
difficulty; not just of principle.

What would happen in a quantum experiment? Would there be any way of de-
termining the result of an experiment through a complete understanding of the
variables? We know that when we repeat a quantum experiment we can obtain
different results, even with the same initial conditions. That does not happen in
the case of the die: if the forces were the same, the result would be the same as
well. In a quantum experiment we may need to have more profound knowledge.
Moreover, it is possible that today’s technology is insufficient to discover the
subtle variables that cause the same experiment to produce different results. Is
it not plausible to think that there should be something within the system that
explains why we obtain one result and not another? Einstein, among others,
thought this way. For him, quantum mechanics-despite its achievements-seemed
to be an incomplete theory because it could not predict with certainty the re-
sult of an experiment. Even though our insufficient knowledge prevents us from
identifying it, could each object have a hidden variable that could explain its
apparently random behavior in a particular experiment? Or do we have to ad-
mit that quantum uncertainty is more radical? Is matter really intrinsically
random so that there is no possibility, even in principle, of predicting the result
of an experiment?

An alternative lies between these two pictures of the world. If the hidden vari-
ables explaining the apparently random results exist, we would have a totally
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deterministic world. It is a world where there is a cause for everything that hap-
pens. In such a world of hidden variables, the properties of a subatomic particle,
or any other quantum system, would be clearly defined. If we return to the set of
projectors we have constructed, then each projector would have a plain answer:
yes (1) or no (0). As we have said the projectors take on only two values, 0 or 1,
with a certain probability. When we say that the projectors are defined, we mean
that they take on the value 1 (or 0) with probability 1. Therefore the expectation
value of any projector in that case is ⟨Ptheta⟩ = prob(Pθ = 1) = 0 or 1. In brief
definite values’ means ⟨Ptheta⟩ = 0 or 1. If there were a definite world out there,
we could ascribe the values 0 or 1 to all the projectors, with the condition that if
three projectors are mutually orthogonal, only one of them will be ascribed the
value 1. Note that the assumption ⟨Ptheta⟩ = 0 or 1 is by itself contradictory
to quantum mechanics because in the latter prob(Pθ = 1∣Pz = 1) = cos2 θ. We do
not have to wait for the conclusion of the theorem. It is a matter of principle: a
theory with definite values clashes with quantum mechanics. So for that matter
we do not need the KSB theorem. The merit of the theorem is to show that any
theory with definite values and satisfying prob(∑Pi) = ∑prob(Pi) (Pi mutually
orthogonal) is contradictory by itself.

But this proposition is a mathematical one and can be analyzed as such. Thus,
mathematics will tell us which is the correct picture of the world. (This power
of mathematics is possible only because we have previously constructed the pro-
jectors, a mathematical structure, superimposed on the physical world).

In 1932 the problem of hidden variables was discussed by Von Neumann. He
presented it like this: Suppose that the correct picture of the world is the first
one; that is, let us suppose that apparently identical states have a hidden vari-
able that makes them different. Then we could select a set of systems that
were exactly in the same pure state, that is, with the same value for the hidden
variable. In this case, our set would be a true dispersionless state (dispersion
is the deviation from the mean). On the contrary, if there were no hidden vari-
ables, then apparently identical systems (systems that are in the same state)
would have slight differences which would correspond to their different behavior
in the experiments; thus, they do show dispersion. Von Neumann proved that
there are no dispersionless states; therefore there cannot be hidden variables.
But his demonstration was not conclusive. The matter was not resolved until
1966-1967.

It was Bell, who used a result obtained previously by Gleason and Kochen and
Specker, who proved that there cannot be pure dispersionless states, that is, it
is impossible to ascribe values 0, 1 to the projectors consistently. We present
here a simplified version, proposed by Gill and Keanes (and based on the work
of Piron).

As we have said, the question is whether it is possible to maintain a world pic-
ture in which the quantum observable quantities, the properties of subatomic
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particles, exist before we measure or look at them (looking at things is a way of
measuring them). In that world we could assign values to every projector.

Because the projectors point in any direction of space, we can talk about projec-
tors or directions alike. Besides, let us remember that, if we consider a sphere of
unit radius, each direction has one corresponding point on it: the one where that
direction goes through the sphere. Thus we can equally well speak of projec-
tors, directions, or points on a sphere. Consequently, the existence of an outside
world, determinate and deterministic, would mean that we can ascribe values
0 or 1 to all the points on a sphere. But remember that we have a restriction:
in each orthogonal triple, we ascribe the value 1 to only one point and the 0 to
the other two.

To see whether it is possible to assign values 0 or 1 to all the points on a spherical
surface with that restriction, we need a geometrical lemma.

15.5.3 The Geometrical Lemma

Let us now look at the orthogonal triple A, AE , AP as shown in Fig.15.19 below.

Figure 15.19: Orthogonal Triple

We have rotated the equatorial plane so that the great circle has A as its most
northerly point, and crosses the equator at the point AE . Call AP the point of
the northern hemisphere orthogonal to that great circle. Of these three points,
one must have the value 1; the other two, 0.

Proposition - If the value of AP , a direction perpendicular to a great circle,
is 1, then all the directions in the great circle have to take on the value 0.

To see that this statement is true, it is sufficient to note that any direction B in
the great circle can make up an orthogonal triple with AP and another direction
B′ in the circle, perpendicular to B as shown in Fig.15.20 below.
Because an orthogonal triple can have only one 1, B and B′ must take on the
value 0.
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Figure 15.20: If value of AP is 1, B and B′ take on the value 0

We next prove a lemma which will be fundamental to our argument.

Proposition - Starting from one point A of the northern hemisphere, we can
reach any more southerly point than A by a finite sequence of great circle de-
scents.

The great circle descent from a point A is the great circle which has A as its
most northerly point. (From now on, the great circle descent from A will be
called the great circle from A). Beginning at any point A (not at the north
pole or on the equator), we can descend along the great circle from A to an-
other point B; then we can descend along the great circle from B to another
point C; we can once more descend along the great circle from C; and so forth.
The lemma states that we can go along great circle descents from one point to
another further south. That means that we can travel from Madrid to Manila
going along a sequence of great circle descents.

The proof of this lemma is straightforward if we project the points of the north-
ern hemisphere from the center of the sphere onto the plane tangent to the
sphere at the north pole. In Fig.15.21 below we see that the projection of a
parallel is a circumference (parallels are lines of constant latitude). We also
see that a great circle descent projects onto a straight line, the tangent to the
circumference projected by the parallel that contains the summit of the great
circle. Besides, the meridians give rise to straight lines passing through the
north pole.
These considerations imply that the great circle descent from S projects onto a
straight line, tangent to the circumference at the point s of the tangent plane
and perpendicular at that point to the line projected by the meridian. To prove
the lemma, we begin with the simplest case: How can we go along great cir-
cle descents from the point S to the point T , both on the same meridian (see
Fig.15.22 below)?
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Figure 15.21: Parallel and great circle that are tangent at S project from sphere
center onto tangent plane at North Pole, giving rise, respectively, to a circum-
ference and a straight line tangent to it at point s. Point C of great circle from
S projects onto point c of straight line. Meridian through S gives rise to straight
line PS, perpendicular to straight line sc.

Figure 15.22: S and T are on the same meridian

First, let us project the points S and T onto the plane tangent to the sphere at
the north pole (see Fig.15.23 below)
We will obtain the points s and t. We also project the great circle from S (DS)
and obtain the straight line ds , perpendicular to the projection of the meridian
Pst. Remember that we want to find a point R such that we can descend to R
along the great circle from S, and then to T along the great circle from R. We
are going to search for R using the tangent plane, because R will be the summit
of its great circle if the projections of its meridian and the great circle from it
are perpendicular. Thus we should search for a point r in ds such that the angle
Prt is 90○; in this way RT will be an arc of the great circle from R, because
its projection rt will be perpendicular at r to the projection Pr of the meridian
through R. To find the point r it is sufficient to recall a statement of elementary
geometry: An inscribed angle spanning a semicircumference is 90○. Therefore
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Figure 15.23: The projection of the great circle from S (DS) is the straight line
ds, perpendicular to the projection of its meridian (the straight line Pst)

we draw the semicircumference whose diameter is the segment Pt (see Fig.15.24
below); the point where it intersects ds is the point r for which we were looking.

Figure 15.24: r is intersection of semicircumference(diameter = segment Pt)
with line ds

1262



Next we find the point R in the sphere surface whose projection is r. In Fig.
15.25 below we see the spatial construction that enables us to find the point R,
and the arcs of the great circle descents DS and DR that we travel on to reach
T from S.

Figure 15.25: Join r with center of sphere and find R on spherical surface

We have already looked at the case in which the two points that we want to
join using great circle descents are on the same meridian. Next, we examine the
procedure used when the two points are on different meridians. In particular,
we will examine the case when the two points are almost antipodes-points whose
geographic longitudes differ by 180○ .

Let us suppose that we intend to descend from the point S to another one on
a lower latitude, which is on the other side (that is, 180○ away) on the same
meridian. First we project the point S onto the plane tangent to the sphere at
the north pole (see Fig. 15.26 below).

Figure 15.26: Project point S onto plane tangent to sphere at North pole
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Next, we divide the angle of 180○ that separates the points of interest in the
projection plane into, for example, eight parts. We start at s and make the
construction in Fig. 15.27 below.

Figure 15.27: Going to the other side of the meridian

We call T the point on the sphere surface whose projection onto the plane is
exactly the point t. The points S and T become linked by the arcs of great circle
descents corresponding to the projections perpendicular to the lines dividing
the 180○ angle. (If we divide the 180○ into smaller equal angles and make the
previous construction, we could get from S to latitudes lower but almost equal
to that of S). To find the spherical surface points we join each of the dividing
points with the sphere’s center (see Fig.15.28 below).

Figure 15.28: Project back to find the summits of the great circle descents

The points S and T are thus linked by the arcs of the succession of great circle
descents shown in Fig. 15.29 below.
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Figure 15.29: Find the arcs of the great circle descents

As we have mentioned, if we increase the divisions of the 180○ angle, we will
reach latitudes as close as we wish to that of the starting point. The connection
with southerly points could be achieved either by varying one of the angles
or following the method we have used before to join two points on the same
meridian. In any case it is clear that we can always reach, starting from one
point A of the northern hemisphere, any more southerly point than A (even if
it is on the other side on the same meridian) by a finite sequence of great circle
descents.

15.5.4 The Theorem
Using this lemma, we can determine if it is possible to assign values 0 or 1 to the
points of the spherical surface so that we have exactly one 1 in each orthogonal
triple. First let us see which distribution of zeros and ones the lemma implies.
Let us begin with an orthogonal triple and assign 1 to one of the points and 0
to the other two. Let us place the 1 at the North Pole to facilitate the picture;
all the points on the equator will thus take on the value 0 (see the proposition).
Let us now consider the triple in Fig.15.30, where the great circle’s plane forms
an angle of more than 45○ with the equator.

Figure 15.30: Great circle A forms an angle of more than 45○ with the equator
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If A has value 0, because AE is on the equator and is therefore 0-valued, the
point AP would take on the value 1; consequently, all the points of the great
circle descent from A would be 0-valued as well. But the latitude of AP is less
than 45○, which means that AP is more southerly than A; thus we can reach
AP along a sequence of great circle descents from A. Because we can reason
similarly about each one of these great circle descents, we ultimately conclude
that AP is 0-valued. (If the most northerly point of a great circle, say B, takes
on the value 0, because BE is on the equator and there- fore is 0-valued, BP
would take on the value 1. Therefore all the points of the great circle descent
from B would also take on the value 0). We thus arrive at a contradiction and
conclude that in a 45○ dome around the north pole, all the points are 1-valued.

If all the points on the spherical surface within 45○ of a 1-valued point have
to take the value 1, then the points on the great circles perpendicular to those
projectors-which occupy the central zone of the spherical surface-have to take
on the value 0. In short, from the hypothesis that the projectors have well-
defined values, we have reached the conclusion that the spherical surface must
be distributed according to Fig.15.31 below: If we choose as the North Pole the
direction of the original 1-valued projector, the points in the 45○ domes around
the North Pole and around the South Pole are 1-valued. The remaining points
of the spherical surface are 0-valued.

Figure 15.31: Distribution of ones and zeros on the spherical surface

But the spherical surface’s division into 1’s and 0’s that we have concluded
is contradictory (in addition to clashing with quantum mechanics, that is, for
quantum mechanics, and contrary to the result we have obtained, there is a
nonzero probability that a projector within the upper skullcap takes on the
value zero). Indeed, from the hypothesis that projectors have well-defined val-
ues, we have proven that if a projector is 1-valued, it has to be surrounded
by a 45○ dome made up of 1’s. But let us look at a projector that forms, for
example, 40○ with the North Pole (P40 in Fig. 15.31). It also has the value 1;
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therefore all the projectors until P85 (a projector that forms 85○ with the North
Pole) should be 1-valued as well. But we had concluded that P85 was 0-valued.
Consequently, we arrive at a contradiction. Thus it is impossible to distribute
1’s and 0’s on a spherical surface with the required condition. (In terms of color
we see that if 1 means red and 0 means green and in each orthogonal triple there
must be only one red point, it is impossible to color the spherical surface with
these two colors). We have proven the KSB no-go theorem: It is impossible to
ascribe values 0 or 1 to each point on a spherical surface so that we have exactly
one 1 in each orthogonal triple.

We conclude that we cannot maintain a picture of a completely determinate
world. We cannot think that reality exists out there, without observing it. Ein-
stein was not happy with this state of affairs. He thought that there should be an
objective world having definite properties whether or not they were measured.
It was Pais who said that during a walk with him Einstein suddenly stopped,
turned to Pais, and asked him whether he really believed that the moon existed
only when one looked at it. The theorem we have just proved shows that the
properties of microscopic systems are not completely defined before we look at
them. The value of the projectors remains indefinite until we measure them. We
need to accept a radically random world. The microscopic universe is blurred
until we make an experiment and force it to choose one option. For this reason
Peres has said that unperformed experiments have no results, preventing us from
using counterfactual arguments.

Therefore, we have to admit that there are some commeasurable or co-decidable
(simultaneously decidable) projectors and others that are not. Hence, there are
some quantities that we can measure at the same time, but whose measuring
excludes measuring other quantities that are not compatible with them. And
we cannot say anything about the latter. The crux of the KSB theorem is that
we cannot assign any value at all to them.

One of the authors of the theorem, Specker, related this problem to a ques-
tion about the different kinds of God’s knowledge of reality. In particular, the
KSB theorem is related to the future contingencies of the philosopher and Je-
suit Pedro Fonseca (1528-1599): those future events whose occurrence depends
on an action taken by a creature exercising free will. According to Fonseca,
God knows the outcome of unperformed experiments, or as he puts it, he knows
what would happen if He put the will of the creatures in circumstances different
from those in which He put them. Father Fonseca calls this knowledge middle
science. But the KSB theorem proves that God does not have middle science.
He cannot know what would happen if something different from what actually
happens were to happen, that is, if a different projector had been measured.
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15.5.5 The Discrete Version
Kochen and Specker’s original paper did not deal with a continuous set of pro-
jectors. They searched for a finite number of projectors or directions leading
to a contradiction like the one we have found. They arrived at a contradiction
with a set of 117 directions. In 1990 Peres reduced that number to only 33. In
1991 Penrose heard Peres lecture on this work, and realized that Peres’ direc-
tions matched those of a geometrical figure he had seen in a lithograph, The
Waterfall, of the Dutch painter Escher (see the cap on the left tower of Fig.
15.32 below).

Figure 15.32: The left-hand tower has the quantum polyhedron

The figure is a polyhedron which is composed of three interpenetrating cubes,
each obtained from the others by 90○ rotations about lines joining the mid-
points of its opposite edges (see Fig. 15.33 below).

Figure 15.33: The quantum polyhedron is made o three interpenetrating cubes

The 33 directions of Peres are the lines through opposite vertices, opposite edge
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midpoints, and opposite face midpoints of each cube.

In Figs.15.34-15.39, each letter corresponds to the straight line going through
the center of the cubes and the point closer to that letter. The straight lines
going through the center of a face are designated as AS (upper), AL (lateral),
and AF (frontal) for the cube A, BS , BL, and BF for the cube B,and CS , CL,
and CF for the cube C. The polyhedron’s symmetry allows the following oper-
ations.

Figure 15.34: The directions on the cube A

Figure 15.35: The directions on the two interpenetrating cubes A and B
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Figure 15.36: The interpenetrating cubes A and B in perspective

Figure 15.37: The directions on the two interpenetrating cubes A and C

Figure 15.38: The interpenetrating cubes A and C in perspective
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Figure 15.39: The directions on the cube C

In the orthogonal triple ASXY , we choose as the AS direction the one with the
value 1 so that the directions X and Y will take on the value 0. The directions
AL and AF are 0-valued too, because they are perpendicular to AS . In the
triple BSBFY , the direction Y is 0-valued. From the two others, we choose BS
as the one with the value 1. In the triple CSCLX, the X is 0-valued. From the
two others, we choose CS as the one with the value 1. In the triple DEAF ,
AF is 0-valued. We can still choose the value of the two others. We choose D
as the one with the value 1. The directions F and G are perpendicular to D as
well; so they will take on the value 0.

In the triple HFY , H has the value 1, because F and Y are 0-valued. J takes
on the value 0 because it is perpendicular to H. (It is clear that H and F are
perpendicular because F becomes H when we turn the cube A 90○ around Y ,
to generate the cube C).

In the triple KCLJ , K takes on the value 1 because it is orthogonal to CL and
J , which are 0-valued. L takes on the value 0 because it is perpendicular to K.
In the tripleMY L, M takes on the value 1 because it is orthogonal to Y and L.
N takes on the value 0 because it is perpendicular toM . In the triple OALN , O
takes on the value 1 because it is orthogonal to AL and N . P takes on the value
0 because it is perpendicular to O. In QXP , Q takes on the value 1 because it
is orthogonal to X and P . R takes on the value 0 because it is perpendicular
to Q. In SBFR, S takes on the value 1 because it is orthogonal to BF and
R, which are 0-valued. T takes on the value 0 because it is orthogonal to S.
Finally, in XGT , X takes on the value 1 because it is orthogonal to G and T ,
which had the value 0. But X was 0-valued! Thus we arrive at a contradiction.

By using only a finite number of directions, we have shown again that it is not
possible to assign 0,1 values to every direction if the condition that there is only
one 1-valued direction for each orthogonal triple of directions is fulfilled. So we
have again proved the KSB theorem.
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How far does this theorem lead us? If, as shown, projectors and quantum observ-
able quantities are not completely determined, we have a picture of microscopic
reality with indefinite and ambiguous properties. Physical properties do not
have, in general, objective existence independent of the act of observation. We
should accept what Jordan had already said in 1934: Observations not only
disturb what has to be measured, they produce it! In a measurement of position,
for example, the electron is forced to a decision. We compel it to assume a defi-
nite position; previously it was, in general, neither here nor there; it had not yet
made its decision for a definite position.... And Jordan concluded: We ourselves
produce the results of measurement. The KSB theorem proves that we do not
have an alternative picture of the subatomic world. That is its importance.

15.6 Problems

15.6.1 Measurements in a Stern-Gerlach Apparatus
(a) A spin−1/2 particle in the state ∣Sz+⟩ goes through a Stern-Gerlach ana-

lyzer having orientation n̂ = cos θẑ − sin θx̂ (see figure below).

Figure 15.40: Tilted Stern-Gerlach Setup
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What is the probability of finding the outgoing particle in the state?

(b) Now consider a Stern-Gerlach device of variable orientation as in the figure
below.

Figure 15.41: Variable Orientation Stern-Gerlach Setup

More specifically, assume that it can have the three different directions

n̂1 = n̂ = cos θẑ − sin θx̂

n̂2 = cos (θ + 2
3
π) ẑ − sin (θ + 2

3
π) x̂

n̂3 = cos (θ + 4
3
π) ẑ − sin (θ + 4

3
π) x̂

with equal probability 1/3. If a particle in the state ∣Sz+⟩ enters the
analyzer, what is the probability that it will come out with spin eigenvalue
+h̵/2?

(c) Calculate the same probability as above but now for a Stern-Gerlach an-
alyzer that can have any orientation with equal probability.

(d) A pair of particles is emitted with the particles in opposite directions in
a singlet state ∣0,0⟩. Each particle goes through a Stern-Gerlach analyzer
of the type introduced in (c); see figure below. Calculate the probability
of finding the exiting particles with opposite spin eigenvalues.

Figure 15.42: EPR Stern-Gerlach Setup

15.6.2 Measurement in 2-Particle State

A pair of particles moving in one dimension is in a state characterized by the
wave function

ψ(x1, x2) = N exp [− 1

2α
(x1 − x2 + a)2] exp [− 1

2β
(x1 + x2)2]
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(a) Discuss the behavior of ψ(x1, x2) in the limit a→ 0.

(b) Calculate the momentum space wave function and discuss its properties
in the above limit.

(c) Consider a simultaneous measurement of the positions x1 and x2 of the
two particles when the system is in the above state. What are the ex-
pected position values? What are the values resulting from simultaneous
measurement of the momenta p1 and p2 of the two particles?

15.6.3 Measurements on a 2 Spin-1/2 System
(a) Consider a system of two spin-1/2 particles in the singlet state

∣1,0⟩ = 1√
2
(∣↑⟩(1) ∣↓⟩(2) − ∣↓⟩(1) ∣↑⟩(2))

and perform a measurement of S(1)
z . Comment on the fact that a simulta-

neous measurement of S(2)
z gives an outcome that can always be predicted

form the first-mentioned measurement. Show that this property, entan-
glement, is not shared by states that are tensor products. Is this state

∣ψ⟩ = 1

2
(∣1,1⟩ +

√
2 ∣1,0⟩ + ∣1,−1⟩)

entangled, i.e., is it a tensor product?

(b) Consider now the set of four states ∣a⟩, a = 0,1,2,3:

∣0⟩ = 1√
2
(∣1,1⟩ + i ∣1,−1⟩)

∣1⟩ = 1√
2
(∣1,−1⟩ + i ∣1,1⟩)

∣2⟩ = 1√
2
(e−iπ/4 ∣1,0⟩ − eiπ/4 ∣0,0⟩)

∣3⟩ = 1√
2
(e−iπ/4 ∣1,0⟩ + eiπ/4 ∣0,0⟩)

Show that these states are entangled and find the unitary matrix Uaα such
that

∣a⟩ = Uaα ∣α⟩
where {∣α⟩} = ∣1,1⟩ , ∣1,−1⟩ , ∣1,0⟩ , ∣0,0⟩.

(c) Consider a one-particle state ∣ψ⟩ = C+ ∣↑⟩+C− ∣↓⟩ and one of the entangled
states considered in (b), for example ∣0⟩. Show that the product state can
be written as

∣ψ⟩ ∣0⟩ = 1

2
(∣0⟩ ∣ψ⟩ + ∣1⟩ ∣ψ′⟩ + ∣2⟩ ∣ψ′′⟩ + ∣3⟩ ∣ψ′′′⟩)

where the states ∣ψ ′⟩, ∣ψ ′′⟩, ∣ψ ′′′⟩, are related to ∣ψ⟩ through a unitary
transformation
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15.6.4 Measurement of a Spin-1/2 Particle
A spin−1/2 electron is sent through a solenoid with a uniform magnetic field in
the y direction and then measured with a Stern-Gerlach apparatus with field
gradient in the x direction as shown below:

Figure 15.43: EPR Stern-Gerlach Setup

The time spent inside the solenoid is such that Ωt = ϕ, where Ω = 2µBB/h̵ is
the Larmor precession frequency.

(a) Suppose the input state is the pure state ∣↑z⟩. Show that the probability
for detector DA to fire as a function of ϕ is

PDA = 1

2
(cos(ϕ/2) + sin(ϕ/2))2 = 1

2
(1 + sinϕ)

Repeat for the state ∣↓z⟩ and show that

PDA = 1

2
(cos(ϕ/2) − sin(ϕ/2))2 = 1

2
(1 − sinϕ)

(b) Now suppose the input is a pure coherent superposition of these two states,

∣↑x⟩ =
1√
2
(∣↑z⟩ + ∣↓z⟩)

Find and sketch the probability for detector DA to fire as a function of ϕ.

(c) Now suppose the input state is the completely mixed state

ρ̂ = 1

2
(∣↑z⟩ ⟨↑z ∣ + ∣↓z⟩ ⟨↓z ∣)

Find and sketch the probability for detector DA to fire as a function of ϕ.
Comment on the result.

15.6.5 Mixed States vs. Pure States and Interference
A spin-interferometer is shown below:
Spin−1/2 electrons prepared in a given state (pure or mixed) are separated into
two paths by a Stern-Gerlach apparatus( gradient field along z). In one path,
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Figure 15.44: Spin-Interferometer Setup

the particle passes through a solenoid, with a uniform magnetic field along the
x−axis. The two paths are then recombined, sent through another Stern-Gerlach
apparatus with field gradient along x, and the particles are counted in detectors
in the two emerging ports.

The strength of the magnetic field is chosen so that Ωt = ϕ, for some phase ϕ,
where Ω = 2µBB/h̵ is the Larmor frequency and t is the time spent inside the
solenoid.

(a) Derive the probability of electrons arriving at detector DA as a function
of ϕ for the following pure state inputs:

(i) ∣↑z⟩ , (ii) ∣↓z⟩ , (iii) ∣↑x⟩ , (iv) ∣↓x⟩

Comment on your results.

(b) Remember that for a mixed state we have

ρ̂ =∑
i

pi ∣ψi⟩ ⟨ψi∣

where pi is the probability of ∣ψi⟩.

This is a statistical mixture of the states {∣ψi⟩}, not a coherent superpo-
sition of states. We should think of it classically, i.e., we have one of the
set {∣ψi⟩}, we just do not know which one.

Prove that
PDA = Tr [∣↑x⟩ ⟨↑x∣ ρ̂] =∑

i

pi ∣⟨↑x ∣ ψi⟩∣2

where ∣⟨↑x ∣ ψi⟩∣2 = the probability of detector B firing for the given input
state (we figured these out in part (a)). Repeat part (a) for the following
mixed state inputs:

(i) ρ̂ = 1

2
∣↑z⟩ ⟨↑z ∣ +

1

2
∣↓z⟩ ⟨↓z ∣ , (ii) ρ̂ = 1

2
∣↑x⟩ ⟨↑x∣ +

1

2
∣↓x⟩ ⟨↓x∣ ,

(iii) ρ̂ = 1

3
∣↑z⟩ ⟨↑z ∣ +

2

3
∣↓z⟩ ⟨↓z ∣
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15.6.6 Which-path information, Entanglement, and Deco-
herence

If we can determine which path a particle takes in an interferometer, then we
do not observe quantum interference fringes. But how does this arise?

Consider the interferometer shown below:

Figure 15.45: Spin-Interferometer Setup

Into one arm of the interferometer we place a which-way detector in the form
of another spin−1/2 particle prepared in the state ∣↑z⟩W . If the electron which
travels through the interferometer, and is ultimately detected (denoted by sub-
script D), interacts with the which-way detector, the which-way electron flips
the spin ∣↑z⟩W → ∣↓z⟩W , i.e, the "which-way" detector works such that

If ∣ψ⟩D = ∣↑z⟩D nothing happens to ∣↑z⟩W
If ∣ψ⟩D = ∣↓z⟩D, then ∣↑z⟩W → ∣↓z⟩W (a spin flip)

Thus, as a composite system

∣↑z⟩D ∣↑z⟩W → ∣↑z⟩D ∣↑z⟩W ∣↓z⟩D ∣↑z⟩W → ∣↑z⟩D ∣↓z⟩W (15.339)

(a) The electron D is initially prepared in the state ∣↑x⟩D = (∣↑z⟩D + ∣↓z⟩D) /
√

2.
Show that before detection, the two electrons D and W are in an entangled
state

∣ΨDW ⟩ = 1√
2
(∣↑z⟩D ∣↑z⟩W + ∣↓z⟩D ∣↓z⟩W )

(b) Only the electron D is detected. Show that its marginal state, ignoring
the electron W, is the completely mixed state,

ρ̂D = 1

2
∣↑z⟩D D ⟨↑z ∣ +

1

2
∣↓z⟩D D ⟨↓z ∣

This can be done by calculating

Prob(mD) = ∑
mW

∣⟨mD,mW ∣ ΨDW ⟩∣2

for some observable.
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This state shows no interference between ∣↑z⟩D and ∣↓z⟩D. Thus, the
emphwhich-way detector removes the coherence between states that ex-
isted in the input.

(c) Suppose now the which-way detector does not function perfectly and does
not completely flip the spin, but rotates it by an angle θ about x so that

∣↑θ⟩W = cos (θ/2) ∣↑z⟩W + sin (θ/2) ∣↓z⟩W
Show that in this case the marginal state is

ρ̂D = 1

2
∣↑z⟩D D ⟨↑z ∣ +

1

2
∣↓z⟩D D ⟨↓z ∣

+ cos (θ/2) ∣↑z⟩D D ⟨↓z ∣ + sin (θ/2) ∣↓z⟩D D ⟨↑z ∣

Comment on the limits θ → 0 and θ → π.

15.6.7 Livio and Oivil
Two scientists (they happen to be twins, named Oivil and Livio, but never
mind .....) decide to do the following experiment. They set up a light source,
which emits two photons at a time, back-to-back in the laboratory frame. The
ensemble is given by

ρ = 1

2
(∣LL⟩ ⟨LL∣ + ∣RR⟩ ⟨RR∣)

where L refers to left-handed polarization and R refers to right-handed polar-
ization. Thus, ∣LR⟩ would refer to the state in which photon number 1 (defined
as the photon which is aimed at Oivil, say) is left-handed and photon number
2 (the photon aimed at scientist Livio) is right-handed.

These scientists(one of whom has a diabolical bent) decide to play a game with
Nature: Oivil (of course) stays in the lab, while Livio treks to a point a light-
year away. The light source is turned on and emits two photons, one directed
toward each scientist. Oivil soon measures the polarization of his photon; it is
left-handed. He quickly makes a note that his sister is going to see a left-handed
photon, about a year from that time.

The year has passed and finally Livio sees her photon, and measures its po-
larization. She sends a message back to her brother Oivil, who learns in yet
another year what he know all along; Livio’s photon was left-handed.

Oivil then has a sneaky idea. He secretly changes the apparatus, without telling
his forlorn sister. Now the ensemble is

ρ = 1

2
(∣LL⟩ + ∣RR⟩) (⟨LL∣ + ⟨RR∣)

He causes another pair of photons to be emitted with this new apparatus and
repeats the experiment. The result is identical to the first experiment.
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(a) Was Oivil lucky, or will he get the right answer every time, for each ap-
paratus? Demonstrate the answer explicitly using the density matrix for-
malism.

(b) What is the probability that Livio will observe a left-handed photon, or a
right-handed photon, for each apparatus? Is there a problem with causal-
ity here? How can Oivil know what Livio is going to see, long before
she sees it? Discuss what is happening here. Feel free to modify the
experiment to illustrate any points you wish to make.

15.6.8 Measurements on Qubits

You are given one of two quantum states of a single qubit(physical system rep-
resenting a 2-valued state): either ∣φ⟩ = ∣0⟩ or ∣φ⟩ = cos θ ∣0⟩ + sin θ ∣1⟩. You want
to make a single measurement that best distinguishes between these two states,
i.e., you want to find the best basis for making a measurement to distinguish
the two states. So let us measure the qubit in the basis {∣ν⟩ = α ∣0⟩+β ∣1⟩ , ∣ν⊥⟩},
where α, β are to be determined for optimal success. For outcome ∣ν⟩ we guess
that the qubit was in state ∣0⟩; for outcome ∣ν⊥⟩ we guess that the qubit was
in state ∣φ⟩. Determine the optimal measurement basis given this procedure.
You can take α and β to be real numbers, in which case the normalization
∣α∣2 + ∣β∣2 = 1 implies that you can write α and β as, e.g. α = sinγ and β = cosγ.
HINT: you will need to first construct the probability of a correct measurement
in this situation. You should convince yourselves that this is given by

Pr[qubitwas ∣0⟩]Pr[∣ν⟩ ∣qubitwas ∣0⟩]+Pr[qubitwas ∣ψ⟩]Pr[∣ν⊥⟩ ∣qubitwas ∣ψ⟩]

where, e.g.
Pr[∣ν⟩ ∣qubitwas ∣0⟩] = ∣ ⟨ν ∣0⟩ ∣2

If the state you are presented with is either ∣φ⟩ or ∣ψ⟩ with 50% probability each,
what is the probability that your measurement correctly identifies the state?

15.6.9 To be entangled....

Let HA = span{∣0A⟩ , ∣1A⟩} and HB = span{∣0B⟩ , ∣1B⟩} be two-dimensional
Hilbert spaces and let ∣ΨAB⟩ be a factorizable state in the joint space HA⊗HB .
Specify necessary and sufficient conditions on ∣ΨAB⟩ such that UAB ∣ΨAB⟩ is an
entangled state where

UAB = ∣0A⟩ ⟨0A∣⊗ ∣0B⟩ ⟨0B ∣ − ∣1A⟩ ⟨1A∣⊗ ∣1B⟩ ⟨1B ∣

15.6.10 Alice, Bob and Charlie

Let Alice, Bob and Charlie be in possession of quantum systems whose states live
in HA = span{∣0A⟩ , ∣1A⟩}, HB = span{∣0B⟩ , ∣1B⟩} and HC = span{∣0C⟩ , ∣1C⟩},
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respectively. Suppose that a joint state of these systems has been prepared as
the (three-way) entangled state

∣ΨABC⟩ = 1√
2
(∣0A0B0C⟩ + ∣1A1B1C⟩)

(a) What is the reduced density operator on HA ⊗HB if we take a partial
trace over HC?

(b) Suppose Charlie performs a measurement specified by the partial projec-
tors 1A⊗1B⊗ ∣0C⟩ ⟨0C ∣ and 1A⊗1B⊗ ∣1C⟩ ⟨1C ∣. Compute the probabilities
of the possible outcomes, as well as the corresponding post-measurement
states. Show that this ensemble is consistent with your answer to part (a)

(c) Suppose Charlie performs a measurement specified by the partial projec-
tors 1A ⊗ 1B ⊗ ∣xC⟩ ⟨xC ∣ and 1A ⊗ 1B ⊗ ∣yC⟩ ⟨yC ∣, where

∣xC⟩ = 1√
2
(∣0C⟩ + ∣1C⟩) , ∣yC⟩ = 1√

2
(∣0C⟩ − ∣1C⟩)

Again, compute the probabilities of the possible outcomes and the corre-
sponding post-measurement states and show that this ensemble is consis-
tent with your answer from part (a).

(d) Suppose Alice and Bob know that Charlie has performed one of the two
measurements from parts (b) and (c), but they do not know which (as-
sume equal probabilities) measurement he performed nor do they know
the outcome. Write down the quantum ensemble that you think Alice
and Bob should use to describe the post-measurement state on HA ⊗HB .
Is this consistent with the reduced density operator from part (a)? How
should Alice and Bob change their description of the post-measurement
state if Charlie subsequently tells them which measurement he performed
and what the outcome was?

1280



Chapter 16

The EPR Argument and Bell Inequality

16.1 Hidden variables and Bell’s Inequalities-1st
Try

As we have seen, when a quantum system possesses more than one degree of
freedom, the associated Hilbert space is a tensor product of the spaces associ-
ated with each degree of freedom. This structure leads to specific properties
of quantum mechanics, whose paradoxical nature has been discussed in earlier
chapters. In this section we will study an example of such a situation by con-
sidering entangled states for the spins of two particles.

The system under consideration is a hydrogen atom which is dissociated into
an electron and a proton. We consider the spin states of these two particles
when they have left the dissociation region and are located in spatially distinct
regions, e.g. a few meters from one another. They are then considered to be
free particles whose spin states do not evolve.

16.1.1 The Electron Spin

Consider a unit vector ûφ n the (z, x) plane given by ûφ = cosφ ûz + sinφ ûx
where ûx and ûz are unit vectors in the x and z directions. We note that
Ŝeφ = Ŝe ⋅ ûφ is the component of the electron spin in the ûφ direction.

In the eigenbasis ∣e ∶ ±⟩ of Ŝez, the matrix representing Ŝeφ is

( ⟨+∣ Ŝeφ ∣+⟩ ⟨+∣ Ŝeφ ∣−⟩
⟨−∣ Ŝeφ ∣+⟩ ⟨−∣ Ŝeφ ∣−⟩

) = h̵
2
( cosφ sinφ

sinφ − cosφ
) (16.1)

which has eigenvalues ±h̵/2 (true for any direction).
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The corresponding eigenvectors are

∣e ∶ +φ⟩ = cos
φ

2
∣e ∶ +⟩ + sin

φ

2
∣e ∶ −⟩ (16.2)

∣e ∶ −φ⟩ = − sin
φ

2
∣e ∶ +⟩ + cos

φ

2
∣e ∶ −⟩ (16.3)

If the electron is emitted in the state ∣e ∶ +φ⟩, the probability P+(α) of finding
the electron in the state ∣e ∶ +α⟩ is given by

P+(α) = ∣⟨e ∶ +α ∣ e ∶ +φ⟩∣2

= ∣(cos
α

2
⟨e ∶ +∣ + sin

α

2
⟨e ∶ −∣) (cos

φ

2
∣e ∶ +⟩ + sin

φ

2
∣e ∶ −⟩)∣

2

= ∣(cos
α

2
cos

φ

2
+ sin

α

2
sin

φ

2
)∣

2

= cos2 φ − α
2

(16.4)

and similarly,

P−(α) = ∣⟨e ∶ −α ∣ e ∶ +φ⟩∣2

= ∣(− sin
α

2
⟨e ∶ +∣ + cos

α

2
⟨e ∶ −∣) (cos

φ

2
∣e ∶ +⟩ + sin

φ

2
∣e ∶ −⟩)∣

2

= ∣(− sin
α

2
cos

φ

2
+ cos

α

2
sin

φ

2
)∣

2

= sin2 φ − α
2

(16.5)

Using these results, the expectation value of Ŝeα in the ∣e ∶ +φ⟩ state is then

⟨Ŝeα⟩ = (+ h̵
2
)P+(α) + (− h̵

2
)P−(α)

= h̵
2
(cos2 φ − α

2
− sin2 φ − α

2
) = h̵

2
cos(φ − α) (16.6)

16.1.2 Correlations Between the Two Spins

We assume that after the dissociation, the electron-proton system is in the
factorized spin state ∣e ∶ +φ⟩⊗ ∣p ∶ −φ⟩. Now if ∣u1⟩ ∈ E and ∣u2⟩ ∈ E and ∣v1⟩ ∈ F
and ∣v2⟩ ∈ F , then ∣u⟩ ⊗ ∣v⟩ ∈ G = E ⊗ F and if Â and B̂ act respectively in
E and F , then Ĉ = Â ⊗ B̂ acts in G. Then one has ⟨u2∣ ⊗ ⟨v2∣ Ĉ ∣u1⟩ ⊗ ∣v1⟩ =
⟨u2∣ Â ∣u1⟩ ⟨v2∣ B̂ ∣v1⟩.

We now determine the probability P+(α) of finding +h̵/2 when measuring the
component Ŝeα of the electron spin in this state.

The projector on the eigenstate ∣e ∶ +α⟩, corresponding to the measured value,
is ∣e ∶ +α⟩ ⟨e ∶ +α∣ ⊗ Îp, where Îp is the identity operator on the proton states.
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Therefore,

P+(α) = ⟨p ∶ −φ∣⊗ ⟨e ∶ +φ∣ (∣e ∶ +α⟩ ⟨e ∶ +α∣⊗ Îp) ∣e ∶ +φ⟩⊗ ∣p ∶ −φ⟩
= ⟨p ∶ −φ∣ Îp ∣p ∶ −φ⟩ ⟨e ∶ +φ ∣ e ∶ +α⟩ ⟨e ∶ +α ∣ e ∶ +φ⟩

= ∣⟨e ∶ +α ∣ e ∶ +φ⟩∣2 = cos2 φ − α
2

(16.7)

and the state after the measurement is ∣e ∶ +α⟩ ⊗ ∣p ∶ −φ⟩. The proton spin is
not affected, because the initial state is factorized (and all probability laws are
factorized).

For ûφ = cosφûz + sinφûx and ûβ = cosβûz + sinβûx we can calculate the expec-
tation values (as earlier)

⟨Ŝeα⟩ =
h̵

2
cos(φ − α) , ⟨Ŝpβ⟩ = −

h̵

2
cos(φ − β) (16.8)

The correlation coefficient between the two spins E(α,β) is defined by

E(α,β) =
⟨Ŝeα ⊗ Ŝpβ⟩ − ⟨Ŝeα⟩ ⟨Ŝpβ⟩

(⟨Ŝ2
eα

⟩ ⟨Ŝ2
pβ

⟩)
1/2 (16.9)

Now

Ŝ2
eα

= h̵
2

4
Îe , Ŝ2

pβ
= h̵

2

4
Îp (16.10)

and

⟨Ŝeα ⊗ Ŝpβ⟩ = ⟨e ∶ +α∣ Ŝe ∣e ∶ +α⟩ ⟨p ∶ +β∣ Ŝp ∣p ∶ +β⟩

= − h̵
2

4
cos(φ − α) cos(φ − β) (16.11)

Thus,

E(α,β) =
− h̵

2

4
cos(φ − α) cos(φ − β) + h̵2

4
cos(φ − α) cos(φ − β)

h̵2

4

= 0

This just reflects the fact that in a factorized state, the two spin variables are
independent.

Correlations in the Singlet State

Now assume that, after the dissociation, the two particles are in the singlet spin
state

∣ψs⟩ =
1√
2
(∣e ∶ +⟩⊗ ∣p ∶ −⟩ − ∣e ∶ −⟩⊗ ∣p ∶ +⟩) (16.12)
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If we measure the component Ŝeα of the electron spin along the direction ûα =
cosαûz + sinαûx, we find the following results and corresponding probabilities:
there are two possible values

+ h̵
2
⇔ projector ∣e ∶ +α⟩ ⟨e ∶ +α∣⊗ Îp

− h̵
2
⇔ projector ∣e ∶ −α⟩ ⟨e ∶ −α∣⊗ Îp

with probabilities

P+(α) = (∣⟨e ∶ +α ∣ e ∶ +⟩∣2 + ∣⟨e ∶ +α ∣ e ∶ −⟩∣2) = 1

2

P−(α) = (∣⟨e ∶ −α ∣ e ∶ +⟩∣2 + ∣⟨e ∶ −α ∣ e ∶ −⟩∣2) = 1

2

This result is a consequence of the rotational invariance of the singlet state.

Now suppose the result of this measurement is +h̵/2 and then later on, one
measures the component Ŝpβ of the proton spin along the direction ûβ = cosβûz+
sinβûx.

Since the electron spin is measured to be +h̵/2, the state after that measurement
is

⟨e ∶ +α ∣ ψs⟩ ∣e ∶ +α⟩ =
1√
2
(⟨e ∶ +α ∣ e ∶ +⟩ ∣e ∶ +α⟩⊗ ∣p ∶ −⟩ − ⟨e ∶ +α ∣ e ∶ −⟩ ∣e ∶ +α⟩⊗ ∣p ∶ +⟩)

⇒ cos
α

2
∣e ∶ +α⟩⊗ ∣p ∶ −⟩ − sin

α

2
∣e ∶ +α⟩⊗ ∣p ∶ +⟩ (16.13)

The probabilities for the two possible results of measurement of the proton spin,
±h̵/2, are

P+(β) = sin2 α − β
2

, P−(β) = cos2 α − β
2

(16.14)

What would have happened if we had measured the proton spin first?

If the proton had been measured first then we would have

P+(β) =
1

2
, P−(β) =

1

2
(16.15)

as we found for the electron when the electron was measured first.

The fact that the measurement on the electron affects the probabilities of the
results of a measurement on the proton, although the two particles are spatially
separated, is in contradiction to Einstein’s assertion or belief that the real states
of two spatially separated objects must be independent of one another. This is
the starting point of the EPR paradox. Quantum mechanics is not a local theory
as far as measurements are concerned.
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Note, however, that this non-locality does not allow the instantaneous trans-
mission of information, From a measurement of the proton spin, one can not
determine whether the electron spin has been previously measured. It is only
when, for a series of experiments, the results of the measurements on the electron
and the proton are later compared, that one can find this non-local character
of quantum mechanics.

We now recalculate the expectations values ⟨Ŝeα⟩ and ⟨Ŝpβ⟩in the singlet state.
We get (using the same process as above) ⟨Ŝeα⟩ = 0 = ⟨Ŝpβ⟩. This is so because
one does not worry about the other variable.

Finally, we can calculate the correlation coefficient in the singlet state. We have,
since the spins are correlated now, that

⟨Ŝeα ⊗ Ŝpβ⟩ =
h̵2

4
(sin2 α − β

2
− cos2 α − β

2
) = − h̵

2

4
cos(α − β) (16.16)

and therefore

E(α,β) =
− h̵

2

4
cos(α − β) + 0

h̵2

4

= − cos(α − β) (16.17)

in the singlet state.

16.1.3 A Simple Hidden Variable Model
For Einstein and several other physicists, the solution to the paradox uncovered
above comes from the fact that the states of quantum mechanics, in particu-
lar the singlet state above, provide and incomplete description of reality. A
complete theory (for predicting spin measurements, in the present case) should
incorporate additional variables or parameters, whose knowledge would ren-
der measurements independent for two spatially separated objects. However,
present experiments cannot determine the values of these parameters, which
are therefore called hidden variables. The experimental result should then con-
sist of some averaging over these unknown parameters.

In the case of interest, a very simplified example of such a theory is the follow-
ing. We assume that, after each dissociation, the system is in a factorized state
∣e ∶ +φ⟩⊗ ∣p ∶ −φ⟩, but that the direction φ varies from one event to another. In
this case φ is the hidden variable. We assume that all directions of φ are equally
probable, i.e., the probability density that the decay occurs with direction φ is
uniform and equal to 1/2π.

Since we are ignorant of the value of φ, the expectation value of an observable
Â is now defined to be

⟨Â⟩ = 1

2π

2π

∫
0

⟨e ∶ +φ∣⊗ ⟨p ∶ −φ∣ Â ∣e ∶ +φ⟩⊗ ∣p ∶ −φ⟩ (16.18)
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Let us now use this new definition of the expectation value to investigate the
correlation coefficient. We have from earlier

E(α,β) =
⟨Ŝeα ⊗ Ŝpβ⟩ − ⟨Ŝeα⟩ ⟨Ŝpβ⟩

(⟨Ŝ2
eα

⟩ ⟨Ŝ2
pβ

⟩)
1/2

Using our earlier results we have

⟨Ŝeα⟩ =
h̵2

4
∫ cos(φ − α)dφ

2π
= 0 (16.19)

and similarly ⟨Ŝpβ⟩ = 0. We also have

⟨Ŝeα ⊗ Ŝpβ⟩ = −
h̵2

4
∫ cos(φ − α) cos(φ − β)dφ

2π
= − h̵

2

8
cos(α − β) (16.20)

Therefore, in this simple hidden variable model

E(α,β) = −1

2
cos(α − β) (16.21)

In such a model, one finds a non-vanishing correlation coefficient, which is an
interesting observation. Even more interesting is that the correlation is smaller
than the prediction of quantum mechanics by a factor of 2.

The first precise experimental tests of hidden variable descriptions versus quan-
tum mechanics have been performed on correlated pairs of photons emitted in
an atomic cascade. Although, we are not dealing with spin−1/2 particles in this
case (see discussion later in this chapter), the physical content is basically the
same as in this case. As an example Figure 16.1 below presents the experimental
results of Aspect, et al,

Figure 16.1: Data from Aspect, etal

It gives the variation of E(α,β) as a function of the difference α − β, which is
found experimentally to be the only relevant quantity, i.e., the results do not
depend in any way on α or β separately! The circles indicate the size of exper-
imental errors.

The experimental points agree with the predictions of quantum mechanics and
clearly disagree, therefore, with the predictions of this particular hidden vari-
ables theory.
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16.2 Bell’s Theorem and Experimental Results

As proved by Bell in 1965, the disagreement between the predictions of quantum
mechanics and those of hidden variable theories is actually very general when
one considers correlation measurements on entangled states.

We can, however, show that the correlation results for hidden variable theories
are constrained by what is known as Bell’s inequality, which is violated by quan-
tum mechanics.

Consider a hidden variable theory, whose results consists of two functionsA(λ, ûα)
and B(λ, ûβ) giving respectively the results of the electron and proton spin mea-
surements. Each of these two functions takes only two values +h̵/2 and −h̵/2. It
depends on the value of the hidden variable λ for the considered electron-proton
pair. The nature of the hidden variable need not be further specified for this
discussion. The result A of course depends on the axis ûα chosen for the mea-
surement of the electron spin, but it does not depend on the axis ûβ . Similarly
B does not depend on ûα. This locality hypothesis is essential for the following
discussion.

Note that we assume here that the hidden variable theory reproduces the one
operator averages found for the singlet state:

⟨Ŝeα⟩ = ∫ P (λ)A(λ, ûα)dλ = 0 (16.22)

⟨Ŝpβ⟩ = ∫ P (λ)B(λ, ûβ)dλ = 0 (16.23)

If this was not the case, such a hidden variable theory should clearly be rejected
since it would not reproduce a well-established experimental result.

Let us now consider the quantity

A(λ, ûα)B(λ, ûβ) +A(λ, ûα)B(λ, û′β) +A(λ, û′α)B(λ, û′β) −A(λ, û′α)B(λ, ûβ)
(16.24)

for any set ûα, ûβ , û′α, û
′
β . We can rewrite this as

A(λ, ûα)(B(λ, ûβ) +B(λ, û′β)) +A(λ, û′α)(B(λ, û′β) −B(λ, ûβ)) (16.25)

Now the two quantities B(λ, ûβ) and B(λ, û′β) can take on only two values ±h̵/2.
Therefore, one has either

B(λ, ûβ) +B(λ, û′β) = ±h̵ , B(λ, û′β) −B(λ, ûβ) = 0 (16.26)

or
B(λ, ûβ) +B(λ, û′β) = 0 , B(λ, û′β) −B(λ, ûβ) = ±h̵ (16.27)

Therefore, since ∣A(λ, ûα)∣ = ∣A(λ, û′α)∣ = h̵/2, we have the result

A(λ, ûα)(B(λ, ûβ)+B(λ, û′β))+A(λ, û′α)(B(λ, û′β)−B(λ, ûβ)) = ±h̵2/2 (16.28)
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We then define the quantity S as

S = E(α,β) +E(α,β′) +E(α′, β′) −E(α′, β) (16.29)

and we get

∫ P (λ)dλ [ A(λ, ûα)B(λ, ûβ) +A(λ, ûα)B(λ, û′β)
+A(λ, û′α)B(λ, û′β) −A(λ, û′α)B(λ, ûβ)

]

= h̵
2

4
[E(α,β) +E(α,β′) +E(α′, β′) −E(α′, β)]

= ± h̵
2

2
∫ P (λ)dλ = ± h̵

2

2

or ∣S∣ ≤ 2, which is Bell’s inequality.

Now let us consider a special case α − β = β′ − α = α′ − β′ = π/4. The quantum
mechanical result for S is

SQ = − cos(α − β) − cos(α − β′) − cos(α′ − β′) + cos(α′ − β) (16.30)

If we set θ1 = α − β , θ2 = β′ − α , θ3 = α′ − β′, we can look for the extrema of

f(θ1, θ2, θ3) = cos(θ1 + θ2 + θ3) − cos θ1 − cos θ2 − cos θ3 (16.31)

The extrema correspond to θ1 = θ2 = θ3 and sin θ1 = sin 3θ1 whose solutions
between 0 and π are θ1 = 0, π/4, 3π/4, π.

Defining the function g(θ1) = −3 cos θ1 + cos 3θ1 we have

g(0) = −2 , g(π/4) = −2
√

2 , g(3π/4) = 2
√

2 , g(π) = 2 (16.32)

The plot in Figure 16.2 below shows g(θ):

Figure 16.2: Bell Function
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The shaded areas correspond to results which cannot be explained by hidden
variable theories. This system therefore constitutes a test of the predictions of
quantum mechanics versus any local hidden variable theory.

16.3 The EPR(Einstein-Podolsky-Rosen) Argument-
Quick Overview

The nondeterministic character of quantum mechanics is very disturbing for
the classical physicist. Hence, there were repeated attempts to replace quantum
theory by a statistical theory.

According to these theories, there exist hidden variables whose values prescribe
the values of all observables for any particular object, except that the hidden
variables are unknown to the experimenter, thus yielding the probabilistic char-
acter of the theory. The probabilistic character of quantum mechanics would
then be quite analogous to that of classical statistical mechanics, where one can
imagine that the motion of all the particles is, in principle, known.

For example, let us consider a particle of spin = 1/2 in an eigenstate of Sx
with eigenvalue h̵/2. According to quantum mechanics, the z−component is not
fixed. If one measures it for a very large number of such particles, one finds h̵/2
50% of the time and −h̵/2 50% of the time. According to the idea of hidden
variables, for each particle, parameters unknown to us would determine whether
h̵/2 or −h̵/2 results. These hidden variables would prescribe ±h̵/2 each 50% of
the time.

By means of a number of thought experiments, Einstein attempted to demon-
strate the incompleteness of the quantum mechanical description and to get
around the indeterminism and the uncertainty relation. Each of these argu-
ments was refuted, in turn, by Bohr.

An argument - sometimes referred to as a paradox - due to Einstein, Podolsky
and Rosen (EPR) , played a pivotal role in the discussion of indeterminism and
the existence of hidden variables; we consider the argument as reformulated by
David Bohm.

Let two spin = 1/2 particles in the singlet state

∣0,0⟩ = 1√
2
(∣↑⟩ ∣↓⟩ − ∣↓⟩ ∣↑⟩) (16.33)

be emitted from a source an then move apart in space. Even if the two particles
are separated by an arbitrarily large distance and can no longer communicate
with one another, one finds the following correlations in this state during a
measurement of the one particle spin states:

1289



If one measures the z−component of the spin and finds
particle 1 spin up, particle 2 is spin down. If one
finds particle 1 spin down, particle 2 has spin up.

If, instead, one measures Sx, then +h̵/2 for
particle 1 implies −h̵/2 for particle 2, etc.

This expresses the nonlocality of quantum theory.

The experiment on particle 1 influences the result of the experiment on particle
2, although they are widely separated. The nonlocality is a consequence of the
existence of correlated many-particle states such as the direct product

∣↑⟩ ∣↓⟩ (16.34)

and the fact that one can linear superimpose such states.

The nonlocality of quantum mechanics does not lead to contradictions with
relativity theory. Although a measurement of a spin component of particle 1
immediately reveals the value of that component for particle 2, no information
can be transmitted in this way. Since particle 1 takes values ±h̵/2 each 50% of
the time, this remains true for particle 2, even after the measurement of particle
1. Only by a subsequent(slow) comparison of the results is it possible to verify
the correlation.

Einstein, Podolsky and Rosen gave the following argument in favor of hidden
parameters in conjunction with the EPR thought experiment.

By the measurement of Sz or Sx of particle 1, the values of Sz or Sx of particle 2
are known. Because of the separation of the particles, there was no influence on
particle 2, and therefore the values of Sz, Sx etc, must have been fixed before the
experiment. Thus, there must be a more complete theory with hidden variables.

In the EPR argument, the predictions of the quantum states

∣0,0⟩ = 1√
2
(∣↑⟩ ∣↓⟩ − ∣↓⟩ ∣↑⟩)

are used, but the inherent nonlocality is denied.

In the remainder of our discussion, we will consider local hidden variables. These
would predetermine which value each of the components of S⃗ of particle 1 has
and likewise for particle 2. Each of the particles would carry this information
independently of the other.
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16.3.1 The Bell Inequality again

We now show again that such local hidden variables lead to predictions differ-
ent from those of quantum mechanics. We then compare the predictions with
experiment.

We consider a correlation experiment in which a particle of total spin = 0 decays
into two particles each with spin = 1/2. At a sufficiently large distance from the
source, a rotatable polarizer and a detector are set up for each particle as shown
below, so that the particles can be detected and we can investigate whether any
correlation in the spin orientations exists. The setup is shown in Figure 16.3
below.

Figure 16.3: Bell-EPR Experiment

Polarizer 1 with angular setting α only lets particle 1 through if its spin in the
direction n̂α has the value +h̵/2 and polarizer 2 with angular setting β only
lets particle 2 through if its spin in the direction n̂β has the value +h̵/2. The
particles are counted by detectors 1 and 2. If they respond, then the spin is
positive, otherwise it is negative.

We consider the correlation between various angular settings of the polarization
experiment.

A measure of the correlation is N(α;β), defined as the relative number of exper-
iments resulting in particle 1 at angle α being positive and particle 2 at angle
β being positive.

Using the spin projection operator

Pθ =
1

2
(1 + σ⃗ ⋅ n̂θ) (16.35)

quantum mechanics gives

N(α;β) = ⟨0,0∣ 1

2
(1 + σ⃗1 ⋅ n̂α)

1

2
(1 + σ⃗2 ⋅ n̂β) ∣0,0⟩

= ⟨0,0∣ 1

2
(1 + σ⃗1 ⋅ n̂α)

1

2
(1 − σ⃗1 ⋅ n̂β) ∣0,0⟩

= 1

4
(1 − n̂α ⋅ n̂β) (16.36)
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since ⟨0,0∣ σ⃗1 ∣0,0⟩ = 0 in the singlet state. For coplanar detectors this reduces
to

N(α;β) = 1

2
sin2 β − α

2
(16.37)

If hidden variables were really present, we could represent N(α;β) by the fol-
lowing sum

N(α;β) = N(αγ;β) +N(α;γβ) (16.38)

Here, N(αγ;β) is the relative number of particle pairs in which particle 1 has
positive spin at angles α and γ and negative spin at β, while N(α;γβ) is the
relative number of particle pairs in which particle 1 has negative spin at ∣gamma
instead. In theories with hidden variables, all of these quantities are assumed
to be known.

Now one has N(αγ;β) ≤ N(γ;β) since N(γ;β) = N(αγ;β)+N(γ;βα) and both
quantities on the right-hand side of the equation are nonnegative. Similarly,
N(α;γβ) ≤ N(α;γ). Thus,

N(α;β) ≤ N(α;γ) +N(γ;β) (16.39)

This is a simple version of the Bell inequality.

Remarks

1. In experiments one often works with the correlation defined by

P (α;β) = ⟨0,0∣ (σ⃗1 ⋅ n̂α) (σ⃗2 ⋅ n̂β) ∣0,0⟩ = 4N(α;β) − 1 (16.40)

instead of N(α;β) itself. Using

N(α;β) = 1

2
sin2 β − α

2
(16.41)

we get
P (α − β) ≡ P (α;β) = − cos(α − β) (16.42)

and Bell’s inequality becomes

P (α;β) − 1 ≤ P (α;γ) + P (γ;β) (16.43)

2. The limit prescribed by the Bell inequality can be determined as follows.
In

N(α;β) ≤ N(α;γ) +N(γ;β) (16.44)

we substitute for α,β, γ the values 0, π, π/2 respectively to obtain

N(0;π) ≤ N(0;π/2) +N(π/2;π) (16.45)

In the singlet state,

N(0;π) = 1

2
, N(0;π/2) = N(π/2;π) (16.46)
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so that
N(0;π/2) ≥ 1

4
(16.47)

Other values can be obtained by different combinations of angles.

Finally, we contrast the consequences of the Bell inequality with quantum me-
chanics and compare with experiments.

To this end, we compute N(α;β), N(α;γ) and N(γ;β) for the three angles
α = 0○, γ = 45○ and β = 90○ using

N(α;β) = 1

2
sin2 β − α

2
(16.48)

to get
1

2
sin2 45○ ≤ 2 sin2 22.5○ (16.49)

or
0.5 ≤ 0.29 (16.50)

which is clearly not true! Therefore, quantum mechanics and hidden variables
are incompatible.

The comparison of quantum mechanics and the Bell inequality is shown in Fig-
ure 16.4 below, which gives the correlation P (θ) = P (θ; 0) according to quantum
mechanics and the Bell inequality.

Figure 16.4: Bell-EPR Experiment Theoretical Predictions
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The experimental demonstration of the violation of the Bell inequality by Lamehl-
Rachti for protons and Aspect for photons is shown in Figure 16.5 below which
gives the experimental results on the spin correlation of proton pairs

Figure 16.5: Bell-EPR Experiment - Data

Clearly, quantum mechanics is correct. This means that any theory that has
the same probabilistic predictions as quantum mechanics must be nonlocal.

16.4 EPR and Bell - The Details

Let us first rethink some quantum mechanical ideas in a context needed for this
discussion. This review will hopefully reinforce the ideas you have learned so
far.

16.4.1 Single-Photon Interference

All good discussions on quantum mechanics present a long an interesting anal-
ysis of the double slit experiment. The crux of the discussion comes when the
light intensity is reduced sufficiently for photons to be considered as presenting
themselves at the entry slit one by one. For a long time this point was very con-
tentious, because correlations between two successive photons cannot be ruled
out a priori.

Since 1985, however, the situation has changed. An experiment was performed
by Grangier, Roger and Aspect. It was an interference experiment with only a
single photon. They used a light source devised for an EPR experiment which
guarantees that photons arrive at the entry slit singly.

The experiment is difficult to do in practice, but is very simple in principle and
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it provides an excellent experimental introduction to the concepts of quantum
mechanics.

The light source is a beam of calcium atoms, excited by two focused laser
beams having wavelengths λ ′ = 406nm and λ ′′ = 581nm respectively. Two-
photon excitation produces a state having the quantum number J = 0. When
it decays, this state emits two monochromatic photons having the wavelengths
λ1 = 551.3nm and λ2 = 422.7nm respectively, in a cascade of two electronic
transitions from the initial J = 0 level to the final J = 0 state, passing through
an intermediate J = 1 state, as shown in Figure 16.6 below

Figure 16.6: Calcium based light source - Energy Levels

The mean lifetime of the intermediate state is 4.7ns. To simplify the termi-
nology, we shall call the λ1 = 551.3nm light green, and the λ2 = 422.7nm light
violet.

Next we describe the experiment, exhibiting its three stages which reveal the
complications of the apparatus in progressively greater detail (Figures 16.7-16.9
below).

1. The first stage is a trivial check that the apparatus is working properly;
nevertheless it is already very instructive (Figure 16.7 below).

Figure 16.7 shows interference with a single photon (first stage). In the
sketch, solid lines are optical paths and dashed lines are electrical connec-
tions.

On either side of the source S one positions two photomultiplier tubes
PMO and PMA. These are very sensitive, and can detect the arrival
of a single photon. Detection proceeds through photoelectric absorption,
followed by amplification which produces an electric signal proportional
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Figure 16.7: Single Photon Interference Experiment - Stage 1

to the energy of the incident photon. The associated electronic logic cir-
cuits can identify the photons absorbed by each detector: the channel
PMO responds only to green light, and the channel PMA responds only
to violet light. The electronic gate is opened (for 9ns - this is twice the
mean lifetime and corresponds to an 85% probability that the photon has
been emitted) when green light is detected by PMO. If, while the gate
is open, violet light is emitted by the same atom towards(not all of the
violet photons go towards the source) PMA, then PMA detects this pho-
ton, producing a signal that passes through the gate and is counted in
NA. The counter NO registers the number of green photons detected by
PMO. It turns out that NA ≪ NO. As the observation period becomes
very long(approximately 5 hours), the ratio NA/NO tends to a limit that
is characteristic of the apparatus. It represents the probability of detect-
ing a violet photon in PMA during the 9ns following the detection of a
green photon by PMO.

The purpose of this arrangement is to use a green photon in order to open
a 9ns time window, in which to detect a violet photon emitted by the
same atom. As we shall see, there is only an extremely small probability
of detecting through the same window another violet photon emitted by
a different atom.

We will assume that a second observer is in the lab. This observer always
feels compelled to present what he thinks are simple-minded truths using
ordinary words. We will called this second observer Albert. Albert, as we
shall see, has a tendency to use, one after another, the three phrases, I ob-
serve, I conclude, and I envisage. Consulted about the above experiment,
Albert states, with much confidence,

I observe that the photomultiplier PMA detects violet light when the source
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S is on, and that it ceases to detect anything when the source is off. I con-
clude that the violet light is emitted by S, and that it travelled from S to
PMA.

I observe that energy is transferred between the light and the photomulti-
plier PMA always in the same amount, which I will call a quantum.

I envisage the quanta as particles, emitted by the source, propagating freely
from S to PMA, and absorbed by the detector. I shall call this quanta pho-
tons.

Albert stops talking at this point.

2. The second stage of the experiment introduces the concept of individual
photons in Figure 16.8 below which is interference with a single photon
(second stage).

Figure 16.8: Single Photon Interference Experiment - Stage 2

Across the path of the violet light one places a half-silvered mirror LSα,
which splits the primary beam into two secondary beams(equal intensity),
one transmitted and detected by PMA, the other reflected and detected
by PMB . As in the first stage, the gate is opened for 9ns, by PMO. While
it is open, one registers detection by either PMA (counted as NA) or by
PMB (counted as NB) or by both, which we call a coincidence (counted
as NC). The experiment runs for 5 hours again and yields the following
results:

(a) The counts NA and NB are both of the order of 105. By contrast,
NC is much smaller, being equal to 9.

(b) The sequence of counts from PMA is random in time, as is the se-
quence of counts from PMB .
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(c) The very low value of NC shows that counts in PMA and PMB are
mutually exclusive (do not occur at same time).

The experimenters analyze the value of NC in depth; their reasoning can
be outlined as follows:

(a) Suppose two different atoms each emit a violet photon, one being
transmitted to PMA and the other reflected to PMB with both ar-
riving during the 9ns opening of the gate; then the circuitry records
a coincidence. In the regime under study, and for a run of 5 hours,
quantum theory predicts that the number of coincidences should be
NC = 9. The fact that this number is so small means that, in practice,
any given single photon is either transmitted or reflected.

(b) If light is considered as a wave, split into two by LSα and condensed
into quanta on reaching PMA and PMB , then one would expect the
photon counts to be correlated in time, which would entail NC ≫ 9.
Classically speaking this would mean that we cannot have a trans-
mitted wave without a reflected wave.

(c) Experiment yields NC = 9; this quantum result differs from the clas-
sical value by 13 standard deviations; hence the discrepancy is very
firmly established, and allows us to assert that we are indeed dealing
with a source of individual photons.

Albert leaves such logical thinking to professionals. Once he notes that
NC is very small, he is quite prepared to treat it as if it were zero. He
therefore says I observe that light travels from the source to PMA or to
PMB, because detection ceases when the source is switched off.

I observe the counts NA and NB correspond to a game of heads or tails,
in that the two possibilities are mutually exclusive, and that the counts are
random.

I observe that the optical paths 1 and 2 are distinguishable, because the
experiment allows me to ascertain, for each quantum, whether it has trav-
elled path 1 (detection by PMA) or path 2 (detection by PMB).

I envisage that, on arrival at the half-silvered mirror, each photon from
the source is directed at random either along path 1 or along path 2; and
I assert that it is the nature of photons to play heads or tails..

Digression: The Mach-Zender Interferometer and Quantum In-
terference

(a) The next experiment uses a Mach-Zender interferometer so let us see
how it operates.

Background information: Consider a single photon incident on
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a 50-50 beam splitter (that is, a partially transmitting, partially re-
flecting mirror, with equal coefficients). Whereas classical electro-
magnetic energy divides equally, the photon is indivisible. That is,
if a photon-counting detector is placed at each of the output ports
(see Figure 16.9 below), only one of them clicks. Which one clicks is
completely random (that is, we have no better guess for one over the
other).

Figure 16.9: 50-50 Beam Splitter

The input-output transformation of the waves incident on 50-50 beam
splitters and perfectly reflecting mirrors are shown in Figure 16.10
below.

Figure 16.10: Input/output Transformations

We can easily show that with these rules, there is a 50-50 chance
of either of the detectors shown in the first figure above to click.
According to the rules given in the figure

ψ1,out =
1√
2
ψin , ψ2,out =

1√
2
ψin (16.51)

since nothing enters port #2.

By our probability postulate the probability to find a photon at po-
sition 1 or 2 is

P1,out = ∫ ∣ψ1,out∣2dx = 1
2 ∫ ∣ψin∣2dx = 1

2

P2,out = ∫ ∣ψ2,out∣2dx = 1
2 ∫ ∣ψin∣2dx = 1

2

}⇒ 50 − 50% chance

Note: As we see from the experimental discussion below, the photon
is found at one detector or the other, never both. The photon is
indivisible. This contrasts with classical waves where half of the
intensity goes one way and half the other; an antenna would also
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receive energy. We interpret this as the mean value of a large number
of photons.

(b) Now we set up a Mach-Zender interferometer(shown in Figure 16.11
below):

Figure 16.11: Mach-Zehnder Interferometer

?The wave is split at beam-splitter b1, where it travels either path
b1-m1-b2(call it the green path) or the path b1-m2-b2 (call it the blue
path). Mirrors are then used to recombine the beams on a second
beam splitter, b2. Detectors D1 and D2 are placed at the two output
ports of b2.

Assuming the paths are perfectly balanced (that is equal length), we
can show that the probability for detector D1 to click is 100% - no
randomness!

To find the wavefunctions impinging on detectors D1 and D2 let us
apply the transformation rules sequentially.

(1) Beamsplitter #1

ψ1,out =
1√
2
ψin , ψ2,out =

1√
2
ψin

(2) Propagation a distance L/2 along each path mean that the phase
of the wavefunction changes by eikL/2 so that the wavefunctions
are

ψ1,at−mirror =
1√
2
eikL/2ψin , ψ2,at−mirror =

1√
2
eikL/2ψin
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(3) Reflection off mirrors means wavefunctions become

ψ1,after−mirror = −
1√
2
eikL/2ψin (16.52)

ψ2,after−mirror = −
1√
2
eikL/2ψin

(4) Propagation a distance L/2 along each path mean that the phase
of the wavefunction changes by eikL/2 so that the wavefunctions
are

ψ1,at−b2 =
1√
2
eikLψin , ψ2,at−b2 =

1√
2
eikLψin

(5) After beamsplitter #2

ψout,1 =
ψ1,at−b2 + ψ2,at−b2√

2
= eikLψin

ψout,2 =
ψ1,at−b2 − ψ2,at−b2√

2
= 0

Therefore,

P1,out = ∫ ∣ψout,1∣2dx = ∫ ∣ψin∣2dx = 1

P2,out = ∫ ∣ψout,2∣2dx = 0

Thus, we have a 100% chance of detector D1 firing and a 0% chance
of detector D2 firing. There is no randomness.

(c) Classical logical reasoning would predict a probability for D1 to click
given by

PD1 = P (transmission at b1∣green path)P (green path)
+ P (reflection at b2∣blue path)P (blue path)

Now we know that there is a 50-50 probability for the photon to take
the blue or green path which implies that

P (green) = P (blue) = 1/2

Also with the particle incident at b2 along the green path there is
a 50% chance of transmission and similarly for reflection of the blue
path.

Therefore,

P (transmission at b2∣green) = P (reflection at b2∣blue) = 1/2

and
PD1 =

1

2
⋅ 1

2
+ 1

2
⋅ 1

2
= 1

2
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so that classical reasoning implies a 50-50 chance of D1 firing, that
is, it is completely random!

The quantum case is different because the two paths which lead to
detector D1 interfere. For the two paths leading to D1 we have

ψtotal =
1√
2
eikLψin + 1√

2
eikLψin

√
2

PD1 = ∫ ∣ψtotal∣2dx = PD1 =
1

2
⋅ 1

2
+ 1

2
⋅ 1

2
+ 1

2
⋅ 1

2
+ 1

2
⋅ 1

2
= 1

where the last two terms are the so-called interference terms. Thus,
PD1 = 1. The paths that lead to detector D2 destructively interfere
so that PD2 = 0.

We now ask how would you set up the interferometer so that detector
D2 clicked with 100% probability? How about making them click at
random?

Leave the basic geometry the same, that is, do not change the direc-
tion of the beam splitters or the direction of the incident light.

We now want constructive interference for the paths leading to D2
and destructive interference for D1.

We can achieve this by changing the relative phase of the two paths
by moving the mirror so that the path lengths are not the same.

Suppose we move the mirror on the green path (at an angle of 45○) so
that the path lengths in the green path are both changed to L+∆L.
We then have

ψout,1 =
1√
2
eik(L+∆L) + 1√

2
eikL

√
2

= ψin

ψout,2 =
1√
2
eik(L+∆L) − 1√

2
eikL

√
2

= ψin

and

PD1 = ∫ dx ∣ψ2,out∣2 =
1

4
∫ dx ∣ψin∣2 ∣eikL∣

2 ∣eik∆L + 1∣
2

= 1

4
(eik∆L + 1) (eik∆L + 1)

∗
= 1

4
(eik∆L + 1) (e−ik∆L + 1)

= 1

4
(2 + eik∆L + e−ik∆L) = 1 + cos(k∆L)

2
= cos2 (k∆L

2
)
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Similarly we have

PD2 = ∫ dx ∣ψ1,out∣2 =
1

4
∫ dx ∣ψin∣2 ∣eikL∣

2 ∣eik∆L − 1∣
2

= 1

4
(eik∆L − 1) (eik∆L − 1)

∗
= 1

4
(eik∆L − 1) (e−ik∆L − 1)

= 1

4
(2 − eik∆L − e−ik∆L) = 1 − cos(k∆L)

2
= sin2 (k∆L

2
)

Therefore, to achieve PD1 = 0 and PD2 = 1 we choose

k∆L =mπ (m odd)⇒∆L =mπ

k
=mλ

2

We can make the both random if

cos2 (k∆L

2
) = sin2 (k∆L

2
) = 1

2
⇒ k∆L

2
= pπ

4
(p odd)

∆L = p π
2k

= pλ
4

Returning to our discussion.....

3. The third stage then consists of an interference experiment as shown in
Figure 16.12 below, which is the interference with a single photon (third
stage).

Figure 16.12: Mach-Zehnder Interferometer Inserted
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A so-called Mach-Zehnder interferometer is used, allowing one to obtain
two interference profiles. The beam of violet light from the source S
is split into two by the mirror LSα. After reflection from two different
mirrors, these secondary beams meet on a second half-silvered mirror LSβ .
Here, each secondary beam is further split into two; thus one establishes
two interference regions, region (1’,2’) where one places PMA, and region
(1",2") where one places PMB .

A very high precision piezoelectric system allows one of the mirrors to
be displaced so as to vary the path difference between the two arms of
the interferometer. In this way one can shift the pattern of interference
fringes by regular steps, without moving the detectors PMA and PMB ;
the standard step corresponds to a change of λ/50 in the difference between
the two optical paths.

A sweep, taking 15 sec for each standard step, yields two interference plots
corresponding, respectively, to the paths (1’,2’) and (1",2"); the fringes
have good contrast(difference in intensity between maxima and minima),
and their visibility

(NA,max −NA,min) / (NA,max +NA,min) (16.53)

was measured as 98% as shown in Figure 16.13 below which gives the two
interference plots obtained with the Mach-Zehnder interferometer. Note
that the maximum counting rates in PMA correspond to minima in PMB ,
indicating a relative displacement of λ/2 between the two interference pat-
terns
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Figure 16.13: Interference Results

If we recall that we are reasoning in terms of photons, and that the photons
are being processed individually, then we must admit that the interference
does not stem from any interaction between successive photons, but that
each photon interferes with itself.

What would Albert have to say? He seems exasperated but is still polite.
His statements are brief:

I observe that the optical paths differ in length between LSα and LSβ, and
are then coincident over (1’,2’) and over (1",2").

In PMA I observe a process that seems perfectly natural to me, namely

light + light→ light

In PMB I observe a process that I find astounding, namely

light + light→ darkness

Such superposition phenomena with light I shall call interference; con-
structive in PMA and destructive in PMB.

In the situation considered before, I envisaged light as consisting of par-
ticles called photons, which travelled either along path 1 or along path 2.
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In the present situation I want to know for each individual photon which
path it has travelled; to this end I should like to ask you to close off path
2, since this will ensure that the photons travel by path 1..

Clearly Albert is perturbed. He awaits the new experimental results with
some anxiety.

On closing either path, whether 1 or 2, one observes that all interference
phenomena disappear. For instance, instead of a very high count NA and
a very low count NB , we now obtain essentially equal counts from PMA

and PMB .

Albert is visibly displeased and now very wary. He then continues with
his analysis of the experiment:

I observe that in order to produce interference phenomena it is necessary
to have two optical paths of different lengths, both open.

Whenever a photon is detected, I note my inability to ascertain whether
the light has travelled by path 1 or by path 2, because I have no means for
distinguishing between the two cases.

If I were to suppose that photons travel only along 1, then this would imply
that path 2 is irrelevant, which is contrary to what I have observed. Simi-
larly, if I were to suppose that photons travel only along 2, then this would
imply that path 1 is irrelevant, which is also contrary to my observations.

If I envisage the source S as emitting particles, then I am forced to con-
clude that each individual photon travels simultaneously along both paths
1 and 2; but this result contradicts the results of the previous experiment
(second stage), which compelled me to envisage that every photon chooses,
at random, either path 1 or path 2.

I conclude that the notion of particles is unsuited to explaining interfer-
ence phenomena.

I shall suppose instead that the source emits a wave; this wave splits into
two at LSα, and the two secondary waves travel one along path 1 and
the other along path 2. They produce interference by mutual superposition
on LSβ constructively in (1’,2’) and destructively in (1",2"). At the far
end of (1’,2’) or of (1",2") I envisage each of the waves condensing into
particles, which are then detected by the photomultipliers (essentially by
PMA since the contrast is 98% means only very few photons are detected
by PMB

It seems to me that I am beginning to understand the situation. I en-
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visage light as having two complementary forms: depending on the kind
of experiment that is being done, it can manifest itself either as a wave,
or as a particle, but never as both simultaneously and in the same place.
Thus, in the experiment where the path followed by the light cannot be
ascertained (third stage), light behaves first like a wave, producing inter-
ference phenomena; but it behaves like a particle when, afterwards, it is de-
tected through the photoelectric effect. I conclude that light behaves rather
strangely, but nevertheless I have the impression that its behavior can be
fully described once one has come to terms with the idea of wave-particle
duality..

Albert leaves the room slowly, hesitantly, even reluctantly. He might be
impressed by all the completeness of all that he has just described or
maybe he is worried that more needs to be said.

In fact, something does remain to be said, since the problem of causality
remains open. Let us look carefully at the experimental layouts in the
second and third stages: we see that they have LSα in common, and that
they differ only beyond some boundary (indicated by the dashed circle
downstream from LSα). We have stated that light behaves like a particle
or like a wave depending on whether or not one can ascertain the path
it takes through the apparatus; but in the two experiments under con-
sideration, the choice between the alternatives must be decided on LSα,
before the light has crossed the crucial boundary, that is, at a stage where
nothing can as yet distinguish between the two kinds of apparatus, since
they differ only beyond the point of decision. It is as if the light chose
whether to behave like a wave or like a particle before knowing whether
the apparatus it will pass through will elicit interference phenomena or
the photoelectric effect. Hence the question of causality is indeed opened
up with vengeance.

Albert comes back abruptly. He is disconcerted and wearily says:

Originally I supposed that light would behave like a wave or like a particle,
depending on the kind of experiment to which it was being subjected.

I observe that the choice must be made on the half-silvered mirror LSα,
before the light reaches that part of the apparatus where the choice is ac-
tually implemented; this would imply that the effect precedes the cause.

I know that both waves and particles obey the principle of causality, that
is, that cause precedes effect.

I conclude that light is neither wave nor particle; it behaves neither like
waves on the sea, nor like projectiles fired from a gun, nor like any other
kind of object that I am familiar with.
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I must ask you to forget everything I have said about this experiment,
which seems to me to be thoroughly mysterious.

Albert leaves, but quickly returns with a contented smile, and his final
statement is not without a touch of malice. I observe in all cases that the
photomultipliers register quanta when I switch on the light source.

I conclude that ”something" has travelled from the source to the detector.
This "something" is a quantum object, and I shall continue to call it a
photon, even though I know that it is neither a wave nor a particle.

I observe that the photon gives rise to interference when one cannot as-
certain which path it follows; and that interference disappears when it is
possible to ascertain the path.

For each detector, I observe that the quanta it detects are randomly dis-
tributed in time.

If I repeat the experiment several times under identical conditions, then I
observe that the photon counts registered by each photomultiplier are re-
producible in a statistical sense. For example, suppose that in the first and
in the second experiments PMA registers N ′

A and N ′′
A respectively; then

one can predict that N ′′
A has a probability of 0.68 of being in the interval

N ′
A ± (N ′

A)1/2

Thus, these counts enable me to determine experimentally, for any kind of
apparatus, the probability that a given detector will detect a quantum, and
it is precisely such probabilities that constitute the results of experiments.

I assert that the function of a physical theory is to predict the results of
experiments.

What I expect from theoretical physicists is a theory that will enable me
to predict, through calculation, the probability that a given detector will
detect a photon. This theory will have to take into account the random
behavior of the photon, and the absence or presence of interference phe-
nomena depending on whether the paths followed by the light can or cannot
be ascertained..

Albert leaves, wishing the physicists well in their future endeavors.

Physicist have indeed worked hard and the much desired theory has in-
deed come to light, namely, quantum mechanics, as we have seen in our
discussions. As we have seen, it applies perfectly not only to photons, but
equally well to electrons, protons, neutrons, etc; in fact, it applies to all
the particles of microscopic physics. For the last 75 years it has worked
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to the general satisfaction of physicists.

Meanwhile, it has produced two very interesting problems of a philosophical
nature.

1. Chance as encountered in quantum mechanics lies in the very nature of the
coupling between the quantum object and the experimental apparatus. No
longer is it chance as a matter of ignorance or incompetence: it is chance
quintessential and unavoidable.

2. Quantum objects behave quite differently from the familiar objects of
our everyday experience: whenever, for pedagogical reasons, one allows
an analogy with macroscopic models like waves or particles, one always
fails sooner or later, because the analogy is never more than partially
valid. Accordingly, the first duty of a physicist is to force her grey cells,
that is her concepts and her language, into unreserved compliance with
quantum mechanics (as we have been attempting to do); eventually this
will lead her to view the actual behavior of microsystems as perfectly
normal. As a teacher of physics, our duties are if anything more onerous
still, because we must convince the younger generations that quantum
mechanics is not a branch of mathematics, but an expression of our best
present understanding of physics on the smallest scale; and that, like all
physical theories, it is predictive.

In this context, let us review the basic formalism of quantum mechanics.

16.4.2 Basic Formalism
We will introduce the elements of quantum mechanics as axioms. Physicists
have devised a new mathematical tool. The transition amplitude from initial
to final state, and it is this amplitude that enables one to calculate the needed
probabilities.

1. For the experiment where the photon travels from the source S to the de-
tector PMA (see Figure 16.14(a) below), we write the transition amplitude
from S to PMA as

⟨photon arriving atPMA ∣ photon leaving S⟩

which we symbolize simply as

⟨f1 ∣ i⟩ , ⟨f2 ∣ i⟩

In this case there are two probabilities:

∣⟨f1 ∣ i⟩∣2 , ∣⟨f2 ∣ i⟩∣2

The total probability is their sum:

∣⟨f1 ∣ i⟩∣2 + ∣⟨f2 ∣ i⟩∣
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More generally, we would write

∣⟨f ∣ i⟩∣2 =∑
k

∣⟨fk ∣ i⟩∣2

Figure 16.14 below shows three arrangements sufficient to determine the
transition amplitude: (a) a single optical path; (b) two paths,allowing us
to ascertain which path has actually been taken; (c) two paths, not allow-
ing us to ascertain which path has actually been taken.

Figure 16.14: Three Arrangements

2. If a photon is emitted by the source S can take either of two paths, but it
is impossible to ascertain which path it does take (Figure 16.14(c) above),
then there are again two transition amplitudes:

⟨photon arriving atPMA ∣ photon leaving S⟩along path 1

⟨photonarrivingatPMB ∣ photon leaving S⟩along path 2

which we symbolize simply as

⟨f ∣ i⟩1 , ⟨f ∣ i⟩2

To allow for interference, we assert that in this case it is the amplitudes
that must be added; the total amplitude reads

⟨f ∣ i⟩ = ⟨f ∣ i⟩1 + ⟨f ∣ i⟩2
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The total probability is then:

∣⟨f ∣ i⟩1 + ⟨f ∣ i⟩2∣
2

More generally, we would write

total amplitude: ⟨f ∣ i⟩ =∑
k

⟨f ∣ i⟩k

total probability: ∣⟨f ∣ i⟩∣2 = ∣∑
k

⟨f ∣ i⟩k∣
2

where the sums are over all possible paths.

3. If one wants to analyze the propagation of the light more closely, one
can take into account its passage through the half-silvered mirror LSα,
considering this as an intermediate state (Figure 16.14(b) above). The
total amplitude for path 1 is

⟨photon arriving atPMA ∣ photon leaving S⟩

However, it results from two successive intermediate amplitudes:

⟨photon arriving atLSα ∣ photon leavingS⟩
⟨photon arriving atPMA ∣ photon leavingLSα⟩

Here we consider the total amplitude as the product of the successive
intermediate amplitudes; symbolically, labelling the intermediate state as
v, we have

⟨f ∣ i⟩ = ⟨f ∣ ν⟩ ⟨ν ∣ i⟩

Finally, consider a system of two mutually independent photons. If photon
1 undergoes a transition from a state i1 to a state f1, and photon 2 from
a state i2 to a state f2, then

⟨f1f2 ∣ i1i2⟩ = ⟨f1 ∣ i1⟩ ⟨f2 ∣ i2⟩

The four rules just given suffice to calculate the detection probability in any
possible experimental situation. They assume their present form as a result of
a long theoretical evolution; but they are best justified a posteriori, because
in 75 years they have never been found to be wrong. Accordingly, we may
consider them as the basic principles governing the observable behavior of all
microscopic objects, that is, objects whose action on each other are of order
(Planck’s constant). From these principles (they are equivalent to our earlier
postulates - just look different because we are using the amplitude instead of
the state vector as the fundamental mathematical object in the theory) one can
derive all the requisite formalism, that is, all of quantum mechanics.

Quantum mechanics as we have described it earlier and also above, works splen-
didly, like a well-oiled machine. It, and its basic principles, might therefore be

1311



expected to command the assent of every physicist; yet it has evoked, and on
occasion continues to evoke, reservations both explicit and implicit. For this
there are two reasons:

1. Quantummechanics introduces unavoidable chance, meaning that its char-
acteristic randomness is inherent in the microscopic phenomena them-
selves.

2. It attributes to microscopic objects properties so unprecedented that we
cannot represent them through any macroscopic analogs or models.

Both features are revolutionary, and it is natural that they should have provoked
debate. On the opposite sides of this debate we find two great physicists, Neils
Bohr and Albert Einstein, and we will now discuss how the debate evolved from
its beginnings in 1927 to its conclusion in 1983 (that is 56 years!).

16.5 Inseparable Photons (the EPR Paradox) in-
cluding some history

Though ornithologists have known about inseparable parrots for a long time,
to physicists the existence of inseparable photons has been brought home only
during the last two decades, through a beautiful series of experiments by Alain
Aspect and his research group at Orsay Laboratory in Paris. The experiments
are exemplary, in virtue both of the difficulties they had to overcome and the re-
sults achieved, which are exceptionally clear-cut. In fact, the significance of the
experiments extends beyond the strict confines of physics, because they provide
the touchstone for settling a philosophical debate that has divided physicist for
75 years. The division dates back to the appearance of two mutually contradic-
tory interpretations of quantum mechanics at the Como conference in 1927. To
sketch the debate, we start with a brief summary of the philosophy of physics.

16.5.1 The Philosophical Stakes in the Debate
Our summary is best presented diagrammatically as shown in Figure 16.15 be-
low where we present the philosophical elements in a debate between physicists.

Figure 16.15: Philosophical Ideas
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1. For the physicist who is a realist, a physical theory reflects the behavior
of real objects, whose existence is not brought into question.

2. For the physicist who is a positivist, the purpose of a physical theory is to
describe the relations between measurable quantities. The theory does not
tell one whether anything characterized by these quantities really exists,
nor even whether the question makes sense.

3. For the physicist who is a determinist, exact knowledge of the initial con-
ditions and of the interactions allows the future to be predicted exactly.
Determinism is held to be a universal characteristic of natural phenom-
ena, even about those which we know, as yet, little or nothing. In this
framework, any recourse to chance merely reflects our own ignorance.

4. For the physicist who is a probabilist, chance is inherent in the very nature
of microscopic phenomena. To her, determinism is a consequence, on
the macroscopic level, if the laws of chance operating on the microscopic
level; it is appropriate to measurements of mean values of quantities whose
relative fluctuations are very weak.

From these four poles, realism, positivism, determinism, and chance, the physi-
cist chooses two, one on each axis. Though sometimes the choice is made in full
awareness of what it entails, most often it is made subconsciously. In our de-
scription of quantum mechanics, we might adopt without reservations, the point
of view of the elementary particle physicist. For a start, she believes firmly in
the existence of particles, since she spends her time in accelerating, deflecting,
focusing, and detecting them. Even though she has never seen or touched them,
to her their objective existence is not in any doubt. Next she observes that they
impinge on the detectors quite erratically, whence she has no doubts, either,
that their behavior is random. Accordingly, the elementary particle experimen-
talist has chosen realism and chance, most often without realizing that she has
made choices at all.

There are other philosophical options that can be adopted with eyes fully open:
realism and determinism are the choices of Albert Einstein; positivism and
chance are those of Neils Bohr. They are well acquainted and each thinks very
highly of the other: which is no bar to their views being incompatible, nor to
the two men representing opposite poles of the debate.

16.5.2 From Como to Brussels (1927-30)

On September 26,1927, in Como, Niels Bohr delivered a memorable lecture. His
stance is that of an enthusiastic champion of the new quantum mechanics. He
puts special weight on the inequalities proved by Heisenberg the year before:

∆x∆px ≥
1

2
h̵ , ∆t∆E ≥ 1

2
h̵ (16.54)
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They imply that it is impossible to define exact initial conditions for a mi-
croscopic object, which automatically makes it impossible to construct, on the
microscopic scale, a deterministic theory patterned on classical mechanics. Only
a probabilistic theory is possible, and that theory is quantum mechanics.

Einstein disagrees with this point of view, and his opposition to Bohr’s the-
ses becomes public at the Brussels conference in 1930: he adopts the role of a
dissenter who knows precisely how to press home the most difficult questions.
Deeply shocked by the retreat from determinism, he tries to show via his thought
(gedanken) experiments he can contravene the Heisenberg inequalities.

At the cost of several sleepless nights devoted to analyzing the objections of
his adversary, Bohr refutes all of Einstein’s criticisms, and emerges from the
conference as the undoubted winner.

16.5.3 From Brussels to the EPR Paradox (1930-35)

Having lost the argument at Brussels, Einstein tries to define his objections
with ever greater precision. Believing as he does that position and momentum
exist emphobjectively and simultaneously, he considers quantum mechanics to
be incomplete and merely provisional. The points of view of the two antagonists
at this stage of the debate can be spelled out as follows.

For Einstein, a physical theory must be a deterministic and a complete repre-
sentation of the objective reality underlying the phenomena. It features known
variables that are observable, and others, unknown as yet, called hidden vari-
ables. Because of our provisional ignorance of the hidden variables, matter at
the microscopic level appears to us to behave arbitrarily, and we describe it
by means of a theory that is incomplete and probabilistic, namely by quantum
mechanics.

For Bohr, a physical theory makes sense only as a set of relations between
observable quantities. Quantum mechanics supplies a correct and complete de-
scription of the behavior of objects at the microscopic level, which means that
the theory itself is likewise complete. The observed behavior is probabilistic,
implying that chance is inherent in the nature of the phenomena.

Between chance as a matter of ignorance, as advocated by Einstein, and chance
unavoidable, as advocated by Bohr, the debate does not remain merely philo-
sophical. Quite naturally it returns to the plane of physics with the thought
experiment proposed by Einstein, Podolsky and Rosen in 1935, which in their
view proves that quantum mechanics is indeed incomplete. Their thought exper-
iment is published as a paper in the Physical Review, but it is so important that
it reverberates as far as the New York Times. Physicists call the proposal the
EPR paradox, after its proponents. It will take fifty years to untangle the ques-
tion, first in theory and then by experiment. We will not, of course, follow these
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fifty years blow by blow; instead, we confine attention to three decisive stages
reached respectively in 1952, 1964, and 1983. But we start with an illustration
that helps one see what the EPR paradox actually is.

16.5.4 Elementary Introduction to the EPR Paradox
Consider two playing cards, one red(diamond) and one black(spade) as shown
in Figure 16.16 below where we use two playing cards help us understand the
stakes in the EPR paradox.

Figure 16.16: EPR Setup

An experimenter in Lyons puts them into separate envelopes which she then
seals. She is thus provided with two envelopes looking exactly alike, and she
puts both into a container. She shakes the container so as the shuffle the pack,
and the system is ready for the experiment.

At 8:00 two travellers, one from Paris and one from Nice, come to the container
(in Lyons), take one envelope each, and then return to Paris and Nice, respec-
tively. At 14:00 they are back at their starting points; each opens her envelope,
looks at the card, and telephones to Lyons reporting the color. The experiment
is repeated every day for a year, and the observer in Lyons keeps a careful record
of the results. At the end of the year the record stands as follows:

1. The reports from Paris are red or black, and the sequence of these reports
is random. The situation is exactly the same as in a game of heads or
tails, and probability of each outcome is 1/2.

2. The reports from Nice are red or black, and the sequence of these reports
is random. Here too probability of each outcome is 1/2.

3. When Paris reports red, Nice reports black ; when Paris reports black, Nice
reports red. One sees that there is perfect(anti) correlation between the
report from Paris and the report from Nice.
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Accordingly, the experiment we have described displays two features:

1. It is unpredictable and thereby random at the level of individual observa-
tions in Paris and Nice.

2. It is predictable, by virtue of the correlation, at the level where one observes
the Paris and the Nice results simultaneously.

Einstein and Bohr might have interpreted the correlation as follows.

According to Einstein

The future of the system is decided at 8:00 when the envelopes are chosen,
because he believes that the contents of the two envelopes differ. Suppose, for
instance, that Paris has (without knowing it) drawn a red card, and Nice the
black. The colors so chosen exist in reality, even though we do not know them.
The two cards are moved, separately, by the travellers between 8:00 and 14:00,
during which time they do not influence each other in any way. The results on
opening the envelopes read red in Paris and black in Nice. Since the choice at
8:00 was made blind, the opposite outcome is equally possible, but the results
at 14:00 are always correlated (either red/black or black/red). This correlation
at 14:00 is determined by the separation of the colors at 8:00, and we say the
theory proposed by Einstein is realist, deterministic, and separable(or local), by
virtue of a hidden variable, namely, the color.

According to Bohr

There is a crucial preliminary factor, inherent in the preparation of the system.
On shaking the container with the two envelopes, one loses information regard-
ing the colors. Afterwards, one only knows that each envelope contains either a
red card (probability 1/2) or a black card (probability 1/2). We will therefore
say that a given envelope is in a brown state, which is a superposition of a red
state and of a black state having equal probabilities. At 8:00 the two envelopes
are identical: both are in a brown state, and the future of the system is still
undecided. There is no solution until the envelopes are opened at 14:00, since it
is only the action of opening them that makes the colors observable. The result
is probabilistic. There is a probability 1/2 that in Paris the envelope will be
observed to go from the brown state to the red, while the envelope in Nice is
observed to go from the brown state to the black; there is the same probability
1/2 of observing the opposite. But the results of the observations on the two
envelopes are always correlated, which means that there is a mutual influence
between them, in particular at 14:00; in fact it is better to say that, jointly,
they constitute a single and non-separable system, even though one is in Paris
and the other is in Nice. Accordingly, the theory proposed by Bohr is positivist,
probabilistic(non-deterministic) and non-separable(non-local), interrelating as
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it does the colors that are actually observed.

Einstein’s view appears to be common sense, while it must be admitted that
Bohr’s is very startling; however, the point of this macroscopic example is, pre-
cisely, to stress how different the quantum view is from the classical.

Proceeding with impeccable logic but from different premises, both theories
predict the same experimental results. Can we decide between them? At the
level considered here it seems we cannot: for even if the envelopes were opened
prematurely while still in Lyons, one would merely obtain the same results at a
different time, and without affecting the validity of either interpretation. The
solution to the problem must be looked for at the atomic level, by studying the
true EPR set-up itself.

16.5.5 The EPR Paradox (1935-52)
Albert Einstein, Boris Podolsky, and Nathan Rosen meant to look for an experi-
ment that could measure, indirectly but simultaneously, two mutually exclusive
quantities like position and momentum. Such results would contravene the pre-
dictions of quantum mechanics, which allows the measurement of only one such
quantity at any one time; that is why the thought experiment is called the EPR
paradox.

In 1952, David Bohm showed that the paradox could be set up not only with con-
tinuously varying quantities like position and momentum, but also with discrete
quantities like spin. This was the first step towards any realistically conceiv-
able experiment. Meanwhile, objectives have evolved, and nowadays it is more
usual to talk of the EPR scenario, meaning some sensible experiment capable
of discriminating between quantum theory and hidden-variable theories. Such
a set-up is sketched in Figure 16.17 below where we present the simplest EPR
scenario.

Figure 16.17: EPR Scenario

A particle with spin 0 decays, at S, into two particles of spin 1/2, which di-
verge from S in opposite directions. Two Stern-Gerlach type detectors A and B
measure the x−components of the spins. Two types of response are possible:

1. spin up at A, spin down at B, a result denoted by (+1,−1)
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2. spin down at A, spin up at B, a result denoted by (−1,+1)
Thus far everyone is agreed, but the interpretation is yet to come.

Einstein reasons that if pairs of particles produced at S elicit different responses
(+1,−1) and (−1,+1) from the detector system A,B, then the pairs must have
differed already at S, immediately after the decay.

It must be possible to represent this difference by a hidden variable λ, which
has an objective meaning, and which governs the future of the system. After
the decay the two particles separate without influencing each other any further,
and eventually they trigger the detectors A and B.

Bohr reasons that all the pairs produced at S are identical. Each pair consti-
tutes a non-separable system right up to the time when the photons reach the
detectors A and B. At that time we observe the response of the detectors, which
is probabilistic, admitting two outcomes (+1,−1) and (−1,+1). To sum up,
Einstein restricts the operation of chance to the instant of decay (at S), whose
details we ignore, but which we believe creates pairs whose hidden variables λ
are different.

By contrast, Bohr believes that chance operates at the instant of detection, and
that it is inherent in the very nature of the detection process: this chance is
unavoidable.

We are still in the realms of thought, and stay there up to 1964.

In 1964, the landscape changes: John Bell, a theorist at CERN, shows that it
is possible to distinguish between the two interpretations experimentally.

The test applies to the EPR scenario; it is refined by Clauser, Horne, Shimony,
and Holt, whence it is called the BCHSH inequality after its five originators.

16.5.6 The BCHSH Inequality (1964)
To set up an EPR scenario, one first needs a source that emits particle pairs.
Various experimental possibilities have been explored:

1. atoms emitting two photons in cascade

2. electron-positron annihilation emitting two high-energy photons

3. elastic proton-proton scattering

It is solution (1) that has eventually proved the most convenient; it has been
exploited by Alain Aspect at the Institute for Optics in Paris, in particular.

Next one needs detectors whose response can assume one of two values, repre-
sented conventionally by +1 and −1. Such a detector might be
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1. for spin 1/2 particles, a Stern-Gerlach apparatus responding to spin up or
spin down

2. for photons, a polarizer responding to parallel polarization or perpendicular
polarization

Our sketch of the EPR scenario can now be completed as in Figure 16.18 below
where we present the most general EPR scenario.

Figure 16.18: BCHSH Setup

Figure 16.18(a) views the apparatus perpendicularly to axis, showing the two
detectors A and B, with their polarizing directions denoted as A⃗ and B⃗.

Figure 16.18(b) views the apparatus along its axis, and shows that the analyzing
directions of the two detectors are not parallel, but inclined to each other at an
angle θ.

In Figure 16.18((c) we also a view along the axis of the apparatus, and shows the
actual settings chosen by Aspect: two orientations are allowed for each detector,
A⃗1 or A⃗2 for one, and B⃗1 or B⃗2 for the other.

We adopt the following conventions:

(1) α = ±1 is the response of detector A when oriented along A⃗

(2) β = ±1 is the response of detector B when oriented along B⃗

Since each detector has two possible orientations, called 1 and 2, we shall denote
their responses as α1, α2 and β1, β2 respectively. Now consider the quantity ⟨γ⟩
defined by

⟨γ⟩ = ⟨α1β1⟩ + ⟨α1β2⟩ + ⟨α2β1⟩ − ⟨α2β2⟩ (16.55)
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where the symbol ⟨...⟩ denotes the mean value over very many measured events.
We call ⟨γ⟩ the correlation function of the system.

The BCHSH inequality reads −2 ≤ ⟨γ⟩ ≤ 2. Its authors have proved that it must
be satisfied if mechanics at the microscopic level constitutes a theory that is
realist, deterministic, and separable: or in other words if the theory contains a
hidden variable. A sketch of the a proof is shown below.

A Proof of Bell’s Inequality

A theory that is deterministic and separable

Suppose that the pair a, b emerging from S can be characterized by a hidden
variable λ. The responses of the detectors A, B are α(A⃗, λ) and β(B⃗, λ) respec-
tively as shown in Figure 16.19 below.

Figure 16.19: Bell Inequality Setup

The theory is deterministic and separable:

1. deterministic, because the results are determined by the hidden variables
plus the settings A⃗ and B⃗

2. separable, because the response of A is independent of the response of B,
and vice versa

Since the value of λ is unknown and different for each pair, the responses of A and
B seem random. Lacking information about λ, we characterize it by choosing a
statistical distribution ρ(λ), which then allows us to derive the distribution of
the responses α(A⃗, λ) and β(B⃗, λ), which can be compared with experiment.

Bell’s inequalities have the great virtue that they apply to any hidden variable
theory, irrespective of the choice of ρ(λ).

Theorem 1: Consider the four numbers α1, α2 and β1, β2, each of which can
assume only the values 1 or −1. Then the combination

γ = α1β1 + α1β2 + α2β1 − α2β2 (16.56)

can assume only the values 2 and −2.

To prove the theorem, one constructs a truth table for all 16 possibilities, which
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α1 α2 β1 β1 γ
1 1 1 1 2
1 1 1 -1 2
1 1 -1 1 -2
1 1 -1 -1 -2
1 -1 1 1 2
1 -1 1 -1 2
1 -1 -1 1 -2
1 -1 -1 -1 -2
-1 1 1 1 -2
-1 1 1 -1 2
-1 1 -1 1 -2
-1 1 -1 -1 2
-1 -1 1 1 -2
-1 -1 1 -1 -2
-1 -1 -1 1 2
-1 -1 -1 -1 2

Table 16.1: γ Values

shows that 2 and −2 are indeed the only possible values of γ.
Theorem 2: Consider very many sets of four numbers α1, α2 and β1, β2. The
mean value of γ lies in the range [−2,2]. In other words,

−2 ≤ ⟨γ⟩ ≤ 2 (16.57)

This is obvious, because every value of γ lies in this range, and so therefore must
the mean. The endpoints are included in order to allow for limiting cases. Note
that both theorems are purely mathematical, neither involves any assumptions
about physics.

16.5.7 BCHSH Inequality(Bell’s inequality in real world)

Within the framework of a theory that is realist, deterministic, and separable,
we can describe the photon pair in detail. Realism leads us to believe that
polarization is an objective property of each member of the pair, independent
of any measurements that may be made later. Determinism leads us to believe
that the polarizations are uniquely determined by the decay cascade, and that
they are fully specified by the hidden variable λ, which governs the correlation
of the polarizations in A and B. Finally, separability leads us to believe that the
measurements in A and B do not influence each other, which means in particular
that the response of detector A is independent of the orientation of detector B.

Now consider a pair of photons a, b, characterized by a hidden variable λ. The
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response of the apparatus in its four settings would be as follows:

α1 and β1 in the orientation (A⃗1, B⃗1)
α2 and β2 in the orientation (A⃗2, B⃗2)
α′1 and β′2 in the orientation (A⃗1, B⃗2)
α′2 and β′1 in the orientation (A⃗2, B⃗1)

Recall that the variables α and β can only take on the values 1 and −1. It is
impossible in practice to make four measurements on one and the same pair
of photons, because each photon is absorbed in the first measurement made
on it; that is why we have spoken conditionally, that is, of what results would
be(a COUNTERFACTUAL statement). But if we believe that the photon
correlations are governed by a theory that is realist, deterministic, and separable,
then we are entitled to assume that the responses, of type α or type β, depend
on properties that the photons possess before the measurement, so that the
responses correspond to some objective reality. In such a framework we can
appeal to the principle of separability, which implies, for instance, that detector
A would give the same response to the orientations (A⃗1, B⃗1) and (A⃗1, B⃗2),
because the response of A is independent of the orientation of B.

Mathematically, this is expressed by the relation α1 = α′1.

Similarly one finds α2 = α′2 , β1 = β′1 , β2 = β′2.

Thus, we have shown that, for a given pair of photons, all possible responses
of the apparatus in its four chosen settings can be specified by means of only
four two-valued variables α1, α2 and β1, β2. This reduction from eight to four
variables depends on the principle of separability. In this way, we are led to a
situation covered by Theorem 2, and therefore −2 ≤ ⟨γ⟩ ≤ 2.

By making many measurements for each of the four settings we can determine
the four mean values ⟨α1β1⟩ , ⟨α1β2⟩ , ⟨α2β1⟩ , ⟨α2β2⟩ and thus the mean value
of the correlation

⟨γ⟩ = ⟨α1β1⟩ + ⟨α1β2⟩ + ⟨α2β1⟩ − ⟨α2β2⟩

According to quantum mechanics (which is positivist, probabilistic, and non-
separable), there are cases where the BCHSH inequality is violated. In par-
ticular, one can show that for photons in the configuration chosen by Aspect
quantum mechanics yields(we will derive this shortly)

⟨γ⟩ = 3 cos 2θ − cos 6θ (16.58)

This leads to values well outside the interval [−2,2]; for example to ⟨γ⟩ = 2
√

2
when θ = 22.5○ and to ⟨γ⟩ = −2

√
2 when θ = 67.5○.

Proof : The laboratory reference frame Oxyz serves to specify the orientations
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Figure 16.20: Detector Orientations

of detectors and polarizers as shown in Figure 16.20 below:

Before any measurements have been made, the photon pair a, b forms a non-
separable entity, represented by the vector

∣Φ⟩ = 1√
2
(∣xA, xB⟩ + ∣yA, yB⟩) (16.59)

The act of measurement corresponds to passage to the ϕ-basis. Hence, we
require the transition amplitudes from the two states ∣xA, xB⟩ , ∣yA, yB⟩ to the
four states

∣ϕA, ϕB⟩ , ∣ϕA, ϕB + π/2⟩ , ∣ϕA + π/2, ϕB⟩ , ∣ϕA + π/2, ϕB + π/2⟩ (16.60)

In the ϕ-basis we have

∣Φ⟩ = 1√
2
[cos(ϕB − ϕA) ∣ϕA, ϕB⟩

− sin(ϕB − ϕA) ∣ϕA, ϕB + π/2⟩
+ sin(ϕB − ϕA) ∣ϕA + π/2, ϕB⟩
+ cos(ϕB − ϕA) ∣ϕA + π/2, ϕB + π/2⟩] (16.61)

The square of each amplitude featured here represents the detection probability.
For example, the probability of simultaneously detecting photon a polarized at
the angle ϕA and the photon b polarized at the angle ϕB is

( 1√
2

cos(ϕB − ϕA))
2

= 1

2
cos2(ϕB − ϕA) (16.62)

By convention, we write the responses of detector A to a photon in state ∣ϕA⟩
(respectively ∣ϕA + π/2⟩) as α = 1 and similarly with β for detector B.

Let us analyze the four possible responses:
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1. ∣ϕA, ϕB⟩ gives α = 1, β = 1 so αβ = 1; the probability is

P++ =
1

2
cos2(ϕB − ϕA) (16.63)

2. ∣ϕA, ϕB + π/2⟩ gives α = −1, β = 1 so αβ = −1; the probability is

P+− =
1

2
sin2(ϕB − ϕA) (16.64)

3. ∣ϕA + π/2, ϕB⟩ gives α = 1, β = −1 so αβ = −1; the probability is

P−+ =
1

2
sin2(ϕB − ϕA) (16.65)

4. ∣ϕA + π/2, ϕB + π/2⟩ gives α = −1, β = −1 so αβ = 1; the probability is

P−− =
1

2
cos2(ϕB − ϕA) (16.66)

The mean value of ⟨αβ⟩AB follows immediately as

⟨αβ⟩AB = P++ − P+− − P−+ + P−− = cos 2(ϕB − ϕA) (16.67)

The settings chosen by Aspect are as shown in Figure 16.20 above. Correspond-
ing to it we have the four terms

⟨α1β1⟩ = ⟨αβ⟩A1B1
= cos 2(ϕB1 − ϕA1) = cos 2θ (16.68)

⟨α1β2⟩ = ⟨αβ⟩A1B2
= cos 2(ϕB1 − ϕA2) = cos 2θ (16.69)

⟨α2β1⟩ = ⟨αβ⟩A2B1
= cos 2(ϕB2 − ϕA1) = cos 2θ (16.70)

⟨α2β2⟩ = ⟨αβ⟩A2B2
= cos 2(ϕB2 − ϕA2) = cos 6θ (16.71)

For comparison with Bell’s inequality, we introduce the correlation function

⟨γ⟩ = ⟨α1β1⟩ + ⟨α1β2⟩ + ⟨α2β1⟩ − ⟨α2β2⟩ = 3 cos 2θ − cos 6θ (16.72)

Thus, the BCHSH test turns the EPR scenario into an arena for rational con-
frontation between the two interpretations; it remains only to progress from
thought experiments to experiments conducted in the laboratory.

16.5.8 The Beginnings of the Experiment at Orsay (1976)
Alain Aspect’s experiment studies the correlation between the polarizations
of the members of photon pairs emitted by calcium. The light source is a
beam of calcium atoms, excited by two focused laser beams having wavelengths
λ ′ = 406nm and λ ′′ = 581nm respectively. Two-photon excitation produces
a state having the quantum number J = 0. When it decays, this state emits
two monochromatic photons having the wavelengths λ1 = 551.3nm and λ2 =
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Figure 16.21: Calcium based light source - Energy Levels

422.7nm respectively, in a cascade of two electronic transitions from the initial
J = 0 level to the final J = 0 state, passing through an intermediate J = 1 state,
as shown in Figure 16.21 below which shows the excitation and decay of the
calcium atom.

The mean lifetime of the intermediate state is 4.7ns. To simplify the termi-
nology, we shall call the λ1 = 551.3nm light green, and the λ2 = 422.7nm light
violet.

The polarizer, which works like a Wollaston prism is shown in Figure 16.22 be-
low where we can see the two-valued response of a Wollaston prism.

Figure 16.22: Wollason Prism - Polarizer

The Wollaston prism is made of quartz or of calcite. It splits an incident beam
of natural (unpolarized) light into two beams of equal intensity, polarized at 90○

to each other. If only a single unpolarized photon is incident, it emerges either
in the state ∣x⟩, with probability 1/2, or in the state ∣y⟩ , with probability 1/2.
Thus, the response of the system is two-valued.

The photon is detected by the photomultiplier tubes (PM) downstream from
the prism. Every electric pulse from these detectors corresponds to the passage
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of a photon, allowing the photons to be counted. The experimental layout is
sketched in Figure 16.23 below, which shows a sketch of the first Orsay experi-
ment.

Figure 16.23: First Orsay Experiment

?It uses a coincidence circuit which registers an event whenever two photons
are detected in cascade. In this way four separate counts are recorded simul-
taneously, over some given period of time. In the EPR scenario envisaged by
Bohm, where θ = 0, the only possible responses are (+1,−1) or (−1,+1) In the
situation realized by Aspect, the angle θ is non-zero, and four different responses
are possible.

1. N++ the number of coincidences corresponding to α = 1 and β = 1, that is,
to αβ = 1

2. N+− the number of coincidences corresponding to α = 1 and β = −1, that
is, to αβ = −1

3. N−+ the number of coincidences corresponding to α = −1 and β = 1, that
is, to αβ = −1

4. N−− the number of coincidences corresponding to α = −1 and β = −1, that
is, to αβ = 1

The resolving time of the coincidence circuit is 10ns, meaning that it reckons
two photons as coincident if the they are separated in time by no more than
10ns. The mean life of the intermediate state of the calcium atom is 4.7ns.
Therefore, after a lapse of 10ns, that is more than twice the mean lifetime,
almost all the atoms have decayed (actually 88%). In other words, the efficiency
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of the coincidence counter is very high.

The experiment consists in counting, over some given time interval, the four
kinds of coincidence: N++,N+−,N−+ and N−−. The total number of events is
N = N++ +N+− +N−+ +N−−.

Accordingly, the different kinds of coincidence have probabilities

P++ = N++/N corresponding to αβ = 1

P+− = N+−/N corresponding to αβ = −1

P−+ = N−+/N corresponding to αβ = −1

P−− = N−−/N corresponding to αβ = 1

and the measured average of αβ is

⟨αβ⟩ = N++ −N+− −N−+ +N−−
N

(16.73)

Each set of four coincidence counts corresponds to one particular setting of
(A⃗, B⃗), and yields a mean value ⟨αβ⟩. But in order to determine the correlation
function ⟨γ⟩ used in the BCHSH inequality, we need four mean values ⟨αβ⟩.
Therefore, we choose, in succession four different settings as shown in Figure
16.18(c); four counting runs then yield the four mean values ⟨α1β1⟩ , ⟨α1β2⟩ , ⟨α2β1⟩ , ⟨α2β2⟩
which then determine the value of ⟨γ⟩ via

⟨γ⟩ = ⟨α1β1⟩ + ⟨α1β2⟩ + ⟨α2β1⟩ − ⟨α2β2⟩ (16.74)

The Results of the First Experiment at Orsay

The results of the first Orsay experiment are shown in Figure 16.24 below. The
angle θ which specifies the setting of the polarizers is plotted horizontally, and
the mean value ⟨γ⟩ vertically.

Figure 16.24: Results from First Orsay Experiment
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From earlier, the correlation function predicted by quantum mechanics reads

⟨γ⟩ = 3 cos 2θ − cos 6θ (16.75)

It is drawn as the solid curve on the graph(the curve has been corrected for
instrumental effects, which explains why its ends are not precisely at 2 and −2).
According to the BCHSH inequality

−2 ≤ ⟨γ⟩ ≤ 2 (16.76)

so that hidden-variable theories exclude the cross-hatched regions of the plane,
which correspond to ⟨γ⟩ > 2 or ⟨γ⟩ < −2.

The experimental results from 17 different values of θ are indicated on the figure
by squares, where the vertical size of the square gives plus or minus one standard
deviation (a measure of the experimental error).

Clearly, there can be no doubt that the BCHSH inequality is violated; many of
the experimental points fall outside the interval [−2,2]. At the point where the
violation is maximal (θ = 22.5○), one finds

⟨γ⟩ = 2.70 ± 0.015 (16.77)

which represents a departure of over 40 standard deviations from the extreme
value of 2. What is even more convincing is the precision with which the exper-
imental points lie on the curve predicted by quantum mechanics.

Quite evidently, for the EPR scenario one must conclude not only that hidden-
variable theories fail, but also that quantum mechanics is positively the right
theory for describing the observations.

The Relativistic Test

The EPR experiment just described shows that the measurements in A and B
are correlated. What is the origin of the correlations?

According to quantum theory, before the measurement each particle pair consti-
tutes a single system extending from A to B, whose two parts are non-separable
and correlated. This interpretation corresponds to a violation of Bell’s inequal-
ity and agreement with experiment.

According to hidden-variables theories, the particle pair is characterized, at the
instant of decay, by its hidden variable , which determines the correlation be-
tween the polarizations measured in A and B. This interpretation satisfies Bell’s
inequality but disagrees with experiment.

Accordingly, the Orsay experiment supports the quantum interpretation (in
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terms of the correlation between two parts A and B of a single system).

However, to clinch this conclusion, one must ensure that no influence is exerted
in the ordinary classical sense through some interaction propagated between the
two detectors A and B, that is, no influence which might take effect after the
decay at S, and which might be responsible for the correlation actually observed.

Let us therefore examine the Orsay apparatus in more detail as in Figure 16.25
below where we attempt to test Einsteinian non-separability.

Figure 16.25: Orsay Experiment - Details

When the detectors at A and B record a coincidence, this means that both have
been triggered within a time interval of at most 10ns, the resolving time of the
circuit. Could it happen that, within this interval, A sends to B a signal capable
of influencing the response of B? In the most favorable case, such a signal would
travel with the speed of light in vacuum, which according to relativity theory is
the upper limit on the propagation speed of information, and thereby of energy.
To cover the distance AB, which is 12m in the figure, such a signal would need
40ns. This is too long by at least 30ns, and rules out any causal links between
A and B in the sense of classical physics. One says that the interval between A
and B is space-like.

One of the advantages of the Orsay experiment is that it uses a very strong
light-source, allowing sufficient distance between the detectors A and B while
still preserving reasonable counting rates. By increasing the distance AB step
by step, Aspect could check that the correlation persists, even when the interval
between A and B becomes space-like. This is the check that guarantees that
the two-photon system is non-separable irrespective of the distance AB.

It has become the custom to speak of the principle of Einsteinian separability in
order to denote the absence of correlations between two events separated by a
space-like interval. This is the principle that the Orsay experiment invites us to
reconsider, even though our minds, used to the world at the macroscopic level,
find it difficult to conceive of two microscopic photons 12m apart as a single
indivisible object.
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The Final Stage of the Experiment at Orsay (1983)

Though the results of the first Orsay experiment are unarguable and clear-cut,
the conclusion they invite is so startling that one should not be surprised at
the appearance of a last-ditch objection, which as it happens gave the exper-
imenters a great deal of trouble. In the preceding section we discussed the
possible role of interactions between A and B operating after the decay at S,
and duly eliminated the objection. But one can also ask whether correlations
might be introduced through an interaction operating before the decay. We
could imagine that the decay itself is preconditioned by the setting of detectors
A and B, such influences taking effect through the exchange of signals between
the detectors and the source. No such mechanism is known a priori, but we
do know that, if there is one, then Einsteinian non-separability would cease to
be a problem, because the mechanism could come into action long before the
decay, removing any reason for expecting a minimum 30ns delay. Though such
a scenario is very unlikely, the objection is a serious one and must be taken into
account; to get around it, the experimenter must be able to choose the orienta-
tion of the detectors A and B at random after the decay has happened at S. In
more picturesque language, we would say that the two photons must leave the
source without knowing the orientations of the polarizers A and B. Briefly put,
this means that it must be possible to change the detector orientations during
the 20ns transits over SA and SB.

The solution adopted at Orsay employs periodic switching every 10ns. These
changes are governed by two independent oscillators, one for channel A and one
for channel B. The oscillators are stabilized, but however good the stabilization
it cannot eliminate small random drifts that are different in the two channels,
seeing that the oscillators are independent. This ensures that the changes of
orientation are random even though the oscillations are periodic, provided the
experiment lasts long enough (1 to 3 hours).

The key element of the second Orsay experiment is the optical switch shown in
Figure 16.26 below.
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Figure 16.26: Second Orsay Experiment - Optical Switch

In a water tank, a system of standing waves is produced by electro-acoustic
excitation at a frequency of 25MHz(corresponds to 10ns between switchings).

The fluid keeps changing from a state of perfect rest to one of maximum agita-
tion and back again. In the state of rest, the light beam is simply transmitted,
In the state of maximum agitation, the fluid arranges itself into a structure of
parallel and equidistant plane layers, alternately stationary (nodal planes) or
agitated (antinodal planes). Thus, one sets up a lattice of net-like diffracting
planes; the diffracted intensity is maximum at the so-called Bragg angles, just as
in scattering from a crystal lattice. Here the light beam is deviated through 102

radians (the angles in the figure are exaggerated for effect). The two numerical
values, 25MHz and 102 radians, suffice to show the magnitude of the technical
achievement. With the acoustic power of 1 watt, the system functions as an
ideally efficient switch.

The second Orsay experiment (using optical switches) is sketched in Figure
16.27 below.

Figure 16.27: Second Orsay Experiment using Optical Switches

In this set-up, the photons a and b leave S without knowing whether they will
go, the first to A1 or A2 and the second to B1 or B2.

1331



The second experiment is less precise than the first, because the light beams
must be very highly collimated in order to ensure efficient switching. Neverthe-
less, its results exhibit an unambiguous violation of Bell’s inequality, reaching
5 standard deviations at the peak; moreover the results are entirely compatible
with the predictions of quantum mechanics.

16.6 The Principle of Non-Separability

Experiment has spoken. Half a century after the Como conference, Bohr’s in-
terpretation once again beats Einstein’s, in a debate more subtle and also more
searching. There were two conflicting theories:

Einstein Bohr
hidden variables quantum mechanics

realist positivist
deterministic probabilistic
separable non-separable

Table 16.2: Two Conflicting Theories

The violation of the BCHSH inequality argues for Bohr’s interpretation, all the
more so as the measured values of ⟨γ⟩ are in close agreement with the predic-
tions of quantum mechanics.

It remains to ask oneself just why hidden-variable theories do fail. Of the three
basic assumptions adopted by such theories, namely realism, determinism, and
separability, at least one must be abandoned. In the last resort, it is separa-
bility that seems to be the most vulnerable assumption. Indeed, one observes
experimentally that the violation of the BCHSH inequality is independent of the
distance between the two detectors A and B, even when this distance is 12m
or more. There are still die-hard advocates of determinism, who try to explain
non-separability through non-local hidden variables. Such theories, awkward
and barely predictive, are typically ad hoc, and fit only a limited number of
phenomena. They are weakly placed to defend themselves against interpreta-
tions furnished by quantum mechanics, which have the virtues of simplicity,
elegance, efficiency, and generality, and which are invariably confirmed by ex-
periment.

The principle of Einsteinian separability asserts that there are no correlations
between two phenomena separated by a space-like interval. In other words, no
interaction can propagate faster than light in vacuum. In an EPR scenario
this principle must be abandoned, and replaced by a principle asserting non-
separability:
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in a quantum system evolving free of external
perturbations,and from well-defined initial
conditions, all parts of thesystem remain
correlated, even when the interval between
them is space-like

This assertion reflects the properties of the state vector of a quantum system.
For an EPR system, the state vector after the decay of the source reads

∣Φ⟩ = 1√
2
(∣xA, xB⟩ + ∣yA, yB⟩) (16.78)

This expression combines the elements A and B in a non-separable manner,
which is what explains the observed correlations. The truth is that all this
has been well known ever since the beginnings of quantum mechanics, with the
concept of the electron cloud as the most telling illustration. It is for instance
hard to imagine separability between the 92 electrons of a uranium atom. What
is new is that quantum mechanics, considered hitherto as a microscopic theory
applicable on the atomic scale, is now seen to apply to a two-particle system
macroscopically, on the scale of meters. The truly original achievement of As-
pect’s experiment is the demonstration of this fact.

Quantum objects have by no means exhausted their capacity to astonish us by
their difference from the properties of the macroscopic objects in our everyday
surroundings. In the preceding sections we saw that a photon can interfere with
itself and we have shown that two photons 12m apart constitute but a single
object. Thus, it becomes ever more difficult to picture a photon through analo-
gies with rifle bullets, surface waves in water, clouds in the sky, or with any
other object of our familiar universe. Such partial analogies fail under attempts
to make them more complete, and through their failure we discover new prop-
erties pertaining to quantum objects. The only fruitful procedure is to follow
the advice of Niels Bohr, namely, to bend one’s mind to the new quantum con-
cepts until they become habitual and thereby intuitive. Earlier generations of
physicists have had to face similar problems. They had to progress from Aristo-
tle’s mechanics to Newton’s, and then from Newton’s to Einstein’s. The same
effort is now required of us, at a time favorable in that, by mastering the EPR
paradox, quantum mechanics has passed a particularly severe test with flying
colors.

From this point of view, the principle of non-separability seems as important as
the principle of special relativity , and Aspect’s experiment plays the same role
now that the Michelson-Morley experiment played then.
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16.7 An Example and a Solution - Bell’s Theo-
rem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
â, the other a polaroid with axis parallel to the unit vector b̂. Let P++(â, b̂) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly, P−−(â, b̂) is the probability that both photons are absorbed
by their respective polaroids, P+−(â, b̂) is the probability that the photon at the
â polaroid is transmitted and the other is absorbed, and finally, P−+(â, b̂) is
the probability that the photon at the â polaroid is absorbed and the other is
transmitted.

The classical realist assumption is that these probabilities can be separated:

Pij(â, b̂) = ∫ dλρ(λ)Pi(â, λ)Pj(b̂, λ) (16.79)

where i and j take on the values + and −, where λ signifies the so-called hidden
variables, and where ρ(λ) is a weight function. This equation is called the
separable form.

The correlation coefficient is defined by

C(â, b̂) = P++(â, b̂) + P−−(â, b̂) − P+−(â, b̂) − P−+(â, b̂) (16.80)

and so we can write

C(â, b̂) = ∫ dλρ(λ)C(â, λ)C(b̂, λ) (16.81)

where

C(â, λ) = P+(â, λ) − P−(â, λ) (16.82)

C(b̂, λ) = P+(b̂, λ) − P−(b̂, λ) (16.83)

It is required that

(a) ρ(λ) ≥ 0

(b) ∫ dλρ(λ) = 1

(c) −1 ≤ C(â, λ) ≤ 1 , −1 ≤ C(b̂, λ) ≤ 1

The Bell coefficient

B = C(â, b̂) +C(â, b̂′) +C(â′, b̂) −C(â′, b̂′) (16.84)

combines four different combinations of the polaroid directions.
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(1) Show that the above classical realist assumptions imply that ∣B∣ ≤ 2.

(2) Show that quantum mechanics predicts that C(â, b̂) = 2 (â ⋅ b̂)
2
− 1.

(3) Show that the maximum value of the Bell coefficient is 2
√

2, according to
quantum mechanics.

(4) Cast the quantum mechanical expression for C(â, b̂) into a separable form.
Which of the classical requirements, (a), (b), or (c) above is violated?

Solution

(1) With the separability assumption, we have (16.81)

C(â, b̂) = ∫ dλρ(λ)C(â, λ)C(b̂, λ)

It follows that the Bell coefficient can be written in the form

B = C(â, b̂) +C(â, b̂′) +C(â′, b̂) −C(â′, b̂′)

= ∫ dλρ(λ)[C(â, λ)(C(b̂, λ) +C(b̂′, λ))

+C(â′, λ)(C(b̂, λ) −C(b̂′, λ))] (16.85)

Since ∣C(â, λ)∣ ≤ 1, ∣C(â′, λ)∣ ≤ 1 and ρ(λ) ≥ 0, we have

∣B∣ ≤ ∫ dλρ(λ) (∣C(b̂, λ) +C(b̂′, λ)∣ + ∣C(b̂, λ) −C(b̂′, λ)∣) (16.86)

Now suppose that for a given λ, CM(λ) is the maximum and Cm(λ) is the
minimum of C(b̂, λ) and C(b̂′, λ), so that CM(λ) ≥ Cm(λ). Then

∣B∣ ≤ ∫ dλρ(λ) (∣CM(λ) +Cm(λ)∣ +CM(λ) −Cm(λ)) (16.87)

There are two cases to consider.

For the case CM(λ) ≥ 0, we have ∣CM(λ) +Cm(λ)∣ = CM(λ) +Cm(λ) so that

∣B∣ ≤ ∫ dλρ(λ) (CM(λ) +Cm(λ) +CM(λ) −Cm(λ))

= 2∫ dλρ(λ)CM(λ) ≤ 2∫ dλρ(λ) ∣CM(λ)∣ ≤ 2∫ dλρ(λ) = 2

For the case CM(λ) < 0, we have ∣CM(λ) +Cm(λ)∣ = −CM(λ) −Cm(λ) so that

∣B∣ ≤ ∫ dλρ(λ) (−CM(λ) −Cm(λ) +CM(λ) −Cm(λ))

= 2∫ dλρ(λ)(−Cm(λ)) ≤ 2∫ dλρ(λ) ∣Cm(λ)∣ ≤ 2∫ dλρ(λ) = 2

Thus, in all cases ∣B∣ ≤ 2.
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(2) A photon, traveling in the y−direction, might have right- or left-handed
circular polarization. The corresponding quantum states are written ∣R⟩ and
∣L⟩ respectively. These circular polarization states can be expressed as coherent
superpositions of linearly polarized states in the z and x directions:

∣R⟩ = 1√
2
(∣z⟩ + i ∣x⟩) , ∣L⟩ = 1√

2
(∣z⟩ − i ∣x⟩) (16.88)

Under a rotation of the coordinate axes by an angle θ about the y direction,
∣R⟩→ eiθ ∣R⟩ and ∣L⟩→ e−iθ ∣L⟩ or equivalently

( ∣z⟩
∣x⟩ )→ ( ∣z′⟩

∣x′⟩ ) = ( cos θ − sin θ
sin θ cos θ

)( ∣z⟩
∣x⟩ ) (16.89)

If each photon is in a state of right-handed circular polarization, we write the
corresponding state vector as ∣R1⟩ ∣R2⟩. However, since the photons are moving
in opposite directions, one along the positive, and the other along the negative
y axis, it follows that the actual directions in which the electric fields rotate, in
time, in the vicinity of the two photons, are opposed to one another. The same
holds for the state ∣L1⟩ ∣L2⟩, corresponding to each photon being in a state of
left-handed circular polarization.

The linear combination of these two states,

∣EPR⟩ = 1√
2
(∣R1⟩ ∣R2⟩ + ∣L1⟩ ∣L2⟩) (16.90)

corresponds to the more general situation in which the photons are in oppositely
oriented states of circular polarization, where the sense of this polarization is
not specified. We can write this entangled or Einstein-Podolsky-Rosen state in
the form

∣EPR⟩ = 1√
2
(∣z1⟩ ∣z2⟩ − ∣x1⟩ ∣x2⟩) (16.91)

which is a superposition of states of linear polarization.

Suppose now that a measurement of linear polarization is made on photon 1 in
the z direction, and of photon 2 in the z′ direction, that is, the z direction after
a rotation of the axes about the y axis. The probability amplitude associated
with this measurement on the EPR state is

⟨EPR ∣ z1z
′
2⟩ =

1√
2
(⟨z1∣ ⟨z2∣ − ⟨x1∣ ⟨x2∣) (∣z1⟩ (cos θ ∣z2⟩ − sin θ ∣x2⟩))

= 1√
2

cos θ (16.92)

where we have used ⟨z1 ∣ x1⟩ = 0. The probability that photon 1 is found to have
linear polarization in the direction z, and photon 2 in the direction z′ is

P++(â, b̂) = ∣⟨EPR ∣ z1z
′
2⟩∣

2 = 1

2
cos2 θ (16.93)
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where we have assumed that â is in the z direction and b̂ is in the z′ direction.

Suppose next that the linear polarization of the linear polarization of photon 1
were measured in the x direction, and that of photon 2 again in the z′ direction.
The probability amplitude is

⟨EPR ∣ x1z
′
2⟩ =

1√
2
(⟨z1∣ ⟨z2∣ − ⟨x1∣ ⟨x2∣) (∣x1⟩ (cos θ ∣z2⟩ − sin θ ∣x2⟩))

= 1√
2

sin θ (16.94)

If photon 1 has polarization in the x direction, then it will not be transmitted
by a polarizer in the z direction - it will be absorbed. Hence,

P−+(â, b̂) = ∣⟨EPR ∣ x1z
′
2⟩∣

2 = 1

2
sin2 θ (16.95)

Similarly,

P+−(â, b̂) = ∣⟨EPR ∣ z1x
′
2⟩∣

2 = 1

2
sin2 θ (16.96)

P−−(â, b̂) = ∣⟨EPR ∣ x1x
′
2⟩∣

2 = 1

2
cos2 θ (16.97)

The correlation coefficient is then

C(â, b̂) = P++(â, b̂) + P−−(â, b̂) − P+−(â, b̂) − P−+(â, b̂)
= cos2 θ − sin2 θ = 2 cos2 θ − 1 = cos 2θ (16.98)

Since the unit vectors â and b̂ are at an angle θ with respect to one another, it
follows that â ⋅ b̂ = cos θ and therefore

C(â, b̂) = 2 cos2 θ − 1 = 2(â ⋅ b̂)2 − 1 (16.99)

(3) Suppose that the angle between the vectors â′ and â is x/2, between â and
b̂ is y/2 and between b̂ and b̂′ is z/2. Then the angle between â′ and b̂′ is
(x + y + z)/2 and according to quantum mechanics, the Bell coefficient has the
form

B = cosx + cos y + cos z − cos(x + y + z) (16.100)

This function has extrema when

∂B

∂x
= − sinx + sin(x + y + z) = 0

∂B

∂y
= − sin y + sin(x + y + z) = 0

∂B

∂z
= − sin z + sin(x + y + z) = 0
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or
sinx = sin y = sin z = sin(x + y + z) (16.101)

This has the solution

x = y = z and 3x = π − x→ x = π/4 (16.102)

For this extremum

B = 3 cos
π

4
− cos

3π

4
= 3√

2
+ 1√

2
= 2

√
2 (16.103)

This is a maximum, since at this point

∂2B

∂x2
= ∂

2B

∂y2
= ∂

2B

∂z2
= − cos

π

4
+ cos

3π

4
= −

√
2 < 0

(4) Let the vector â be at an angle θa with respect to some direction in the xz
plane, and let b̂ be at an angle θb with respect to the same direction. Then

C(â, b̂) = cos 2(θa − θb)
= cos 2θa cos 2θb + sin 2θa sin 2θb

= ∫ dλρ(λ)C(â, λ)C(b̂, λ) (16.104)

and with the assignments

ρ(λ) = δ(λ + 1) + δ(λ − 1)
C(â,1) = cos 2θa , C(â,−1) = sin 2θa

C(b̂,1) = cos 2θb , C(b̂,−1) = sin 2θb

we then see that

ρ(λ) ≥ 0

− 1 ≤ C(â, λ) , C(b̂, λ) ≤ 1forλ = ±1

but
∫ dλρ(λ) = 1 + 1 = 2

so that the normalization condition (b) is violated.

16.8 Non-Locality, EPR and Bell - a last time

As we discussed earlier, the second major problem confronting hidden variables
and possessed properties was first understood in the context of the EPR para-
dox and then reinforced by the Bell inequalities. Let us look back at these ideas
in light of the above discussions.
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The original EPR analysis was rather complex in a technical sense and most dis-
cussions now use a simpler version due to Bohm. He considered a particle whose
decay produces two spin−1/2 particles whose total spin angular momentum is
zero. These particles move away from each other in opposite directions, and the
components of their spins along various directions are subsequently measured
by two observers, N and L, say. The constraint on the total spin means that if
both observers agree to measure the spin along a certain direction n̂ , and if N
measures +h̵/2, then L will necessarily get the result −h̵/2, and if N measures
−h̵/2, then L will necessarily get the result +h̵/2.

There are no surprises if such correlations are analyzed in the context of clas-
sical physics. If one particle emerges from the decay with its internal angular
momentum vector pointing along some particular direction, then because of
conservation of angular momentum, the second particle is guaranteed to emerge
with its spin vector pointing in the opposite direction. Thus, the 100% anti-
correlations found in the measurements made by the two observers are simply
the result of the fact that both particles possess actual, and (anti-)correlated,
values of internal angular momentum and this is true from the time they emerge
from the decay to the time the measurements are made. There are no paradoxes
here, and everything is in accord with the simple realist view of classical physics.

The situation in quantum theory is radically different. Suppose first that the
measurements are made along the z−axes of the two observers. The spin part
of the state of the two particles can be written in terms of the associated eigen-
vectors as

∣ψ⟩ = 1√
2
(∣↑⟩ ∣↓⟩ − ∣↓⟩ ∣↑⟩) (16.105)

where, for example, ∣↑⟩ ∣↓⟩ is the state in which particles 1 and 2 have spin +h̵/2
and −h̵/2 respectively. Thus

Ŝz ∣↑⟩ = +h̵/2 ∣↑⟩ , Ŝz ∣↓⟩ = −h̵/2 ∣↓⟩ (16.106)

The pragmatic or instrumentalist interpretation of the entangled state ∣ψ⟩ is
straightforward. If, in a series of repeated measurements by N, a selection is
made of the pairs of particles for which the measurement of particle gave spin-
up, then - with probability one - a series of measurements by L on her particle
in these pairs will yield spin-down. Similarly, if N finds spin-down then, with
probability one, L will find spin-up. This correlation can be explained by say-
ing that the measurements by N(computed with the operator Ŝz ⊗ Î) cause a
reduction of the state vector from ∣ψ⟩ to ∣↑⟩ ∣↓⟩ or ∣↓⟩ ∣↑⟩ respectively according
to whether the spin-up or the spin-down result is selected. This new state is an
eigenstate of the operator Î ⊗ Ŝz associated with the second particle, and with
an eigenvalue that is the opposite of the result obtained by N.

This description is acceptable within the confines of the pragmatic approach
to quantum theory, but difficulties arise if one tries to enforce a more realist
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interpretation of the above entangled state.

The obvious question is how the information about each observer’s individual
results gets to the other particle to guarantee that the result obtained by the
second observer will be the correct one.

One might be tempted to invoke the reasoning of classical physics and argue
that both particles possess the appropriate value all the time.

However, the only way in standard quantum theory of guaranteeing that a cer-
tain result will be obtained is if the state is an eigenvector of the observable
concerned. But the state ∣ψ⟩ above is not of this type. In fact, it displays the
typical features of quantum entanglement - it is a superposition of states. Any
attempt to invoke a hidden variable resolution will have to cope with the impli-
cations of the Kochen-Specker theorem.

There is also a question of whether this picture is compatible with special rela-
tivity. If the measurements by the two observers are space-like separated (which
can be easily arranged) then which of them makes the first measurement and
hence, in the standard interpretation, causes the state-vector reduction is clearly
reference-frame dependent.

The problem is compounded by considering what happens if the observers decide
to measure, say, the x-component of the spins, rather than the z-components.
The state above can now be written in terms of Ŝx eigenvectors as

∣ψ⟩ = 1√
2
(∣←⟩ ∣→⟩ − ∣→⟩ ∣←⟩) (16.107)

where ∣→⟩ and ∣←⟩ correspond to eigenvalues +h̵/2 and −h̵/2 respectively of the
operator Ŝx.

In one sense, this new entangled state is what might have been expected, and
confirms that there is the same type of 100% anti-correlation between Ŝx mea-
surements as that found for the observable Ŝz. Indeed, this argument can be
generalized to show that for any unit vector n̂, the entangled state can be
rewritten as a sum of two anti-correlated terms containing eigenvectors of the
projection n̂ ⋅ Ŝ of the spin operator along n̂. Thus, if one adopts the classical
type argument, one is obliged to conclude that both particles possessed exact
values of spin along any axis from the moment they left the decay. This might
not be easy to reconcile with the uncertainty relations associated with the an-
gular momentum commutators.

EPR considered these issues, and concluded that the difficulties could be re-
solved in one of only two ways:

1. When N makes her measurement, the result communicates itself at once
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in some way to particle 2, and converts its state into the appropriate
eigenvector.

or

2. Quantum theory is incomplete and provides only a partial specification of
the actual state of the system.

In contemplating the first possibility it must be appreciated that the two par-
ticles may have moved a vast distance apart before the first measurement is
made and, therefore, any at once mode of communication would be in violent
contradiction with the spirit (if not the law) of special relativity. It is not
surprising that Einstein was not very keen on this alternative! An additional
objection involves the lack within quantum theory itself of any idea about how
this non-local effect is supposed to take place, so in this sense the theory would
be incomplete anyway.

EPR came to the conclusion that the theory is indeed incomplete, although they
left open the correct way in to complete it. One natural path is to suppose that
there exist hidden variables whose values are not accessible to measurement in
the normal way but which determine the actual values of what we normally
regard as observables - in the same way as do the microstates in classical sta-
tistical physics.

However, it is not a trivial matter to construct a hidden variable theory that
reproduces all of the empirical results of quantum mechanics (which are experi-
mentally correct!). In particular, such a theory would need to explain why it is
that certain observables are incompatible (those with non-vanishing commuta-
tor) in the sense that one cannot prepare a state of the system that violates the
predictions of the uncertainty relations. In addition, there is the need to come
to terms with the implications of the Kochen-Specker theorem.

Hidden variable theories capable of reproducing the results of conventional quan-
tum theory do in fact exist (Bohm for example) but they exhibit a non-locality
which is every bit as peculiar as that discussed above. One might think that this
is a deficiency of these particular theories and that others might exist without
this problem.

However, as we discussed earlier and will review here again, a very famous result
of John Bell shows that this is not possible, that is, any hidden-variable theory
that exactly replicates the results of quantum theory will necessarily possess
striking non-local features.

This result is of major importance in understanding and appreciating the con-
ceptual challenge posed by quantum theory.
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16.8.1 The Bell Inequalities

As with the Kochen-Specker result, the non-locality property we are about to
discuss is not just a feature of hidden variables theories. It applies to any realist
interpretation of quantum theory in which it is deemed meaningful to say that
an individual system possesses values for its physical quantities in a way that
is analogous to that in classical physics.

We will derive an inequality that is satisfied by certain correlation functions in
any such theory which is also local. We will then see that the predictions (which
are experimentally correct) of quantum theory violate this inequality.

The considerations of EPR were concerned with two observers who make mea-
surements along the same axis. Bell found his famous inequalities by asking
what happens if the observers measure the spin of the particles along different
axes. In particular, we consider a pair of unit vectors â and â′ for one observer
and another pair b̂ and b̂′ for the other observer.

Now suppose a series of repeated measurements is made on a collection of sys-
tems whose quantum state is described by the entangled state vector ∣ψ⟩. For
example, we could look at a series of decays, each of which produces a pair of
particles with zero total spin angular momentum. The central realist assump-
tion we are testing is that each particle has a definite value at all times for any
direction of spin. We let an denote 2/h̵ times the value of â ⋅ Ŝ possessed by
particle 1 in the nth element of the collection. Thus an = ±1 if â ⋅ Ŝ = ±h̵/2.

The key ingredient in the derivation of the Bell inequalities is the correlation be-
tween measurements made by the two observers along these different directions.
For directions â and b̂ this is defined by

C(â, b̂) ∶= lim
N→∞

1

N

N

∑
n=1

anbn (16.108)

and similarly for the other directions. Note that if the results are always totally
correlated(spins always in the same direction) then C(â, b̂) = +1, whereas if they
are totally anti-correlated(spins always in opposite directions) we get C(â, b̂) =
−1.

Now look at the quantity

gn ∶= anbn + anb′n + a′nbn + a′nb′n (16.109)

For any member n of the collection, each term in this sum will take on the value
+1 or −1 . Furthermore, the fourth term on the right hand side is equal to the
product of the first three (because (an)2 = 1 = (bn)2). Then thinking about the
various possibilities shows that gn can take on only the values ±2. Therefore,
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the right hand side of the expression

∣ 1

N

N

∑
n=1

gn∣ = ∣ 1

N

N

∑
n=1

anbn +
1

N

N

∑
n=1

anb
′
n +

1

N

N

∑
n=1

a′nbn −
1

N

N

∑
n=1

a′nb
′
n∣

representing the average value of gn must be less than or equal to 2. Thus in
the limit as N →∞, we get

∣C(â, b̂) +C(â, b̂′) +C(â′, b̂) −C(â′, b̂′)∣ ≤ 2 (16.110)

which is one of the famous Bell inequalities.

It is important to emphasize the only assumptions that have gone into proving
this inequality are:

1. For each particle it is meaningful to talk about the actual values of the
projection of the spin along any direction.

2. There is locality in the sense that the value of any physical quantity is not
changed by altering the position of a remote piece of measuring equipment.

This means that both occurrences of an in the expression for the average value
of gn have the same value, that is, they do not depend on the direction (b̂ or
b̂′) along which the other observer chooses to measure the spin of particle 2. In
particular, we are ruling out the type of context-dependent values that arose in
our discussion of the Kochen-Specker theorem.

We will now show that the predictions of quantum theory violate this inequality
over a range of directions for the spin measurements. The quantum mechanical
prediction for the correlation between the spin measurements along axes â or b̂
is

C(â, b̂) ∶= ( 2

h̵
)

2

⟨ψ∣ â ⋅ Ŝ(1) ⊗ b̂ ⋅ Ŝ(2) ∣ψ⟩ (16.111)

where Ŝ(1) and Ŝ(2) are the spin operators for particles 1 and 2 respectively,
and the tensor product is as we defined earlier in this chapter. Since the total
angular momentum of the entangled vector ∣ψ⟩ is zero, it is invariant under the
unitary operators which generate rotations of the coordinate systems.

This means that C(â, b̂) is a function of â ⋅ b̂ = cos θab only and, hence, there is
no loss of generality in assuming that â points along the z−axis and that b̂ lies
in the x − z plane. Then the expression for C(â, b̂) becomes

C(â, b̂) = ⟨ψ∣σ1z ⊗ (σ2z cos θab + σ2x sin θab) ∣ψ⟩ (16.112)

It is then straightforward to show that

C(â, b̂) = − cos θab (16.113)
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Now we restrict our attention to the special case in which (1) the four vectors
â, â′, b̂, b̂′ are coplanar and (2) â or b̂ are parallel and (3) θab′ = θa′b = ϕ say.
Then the Bell inequality will be satisfied provided that

∣1 + 2 cosϕ − cos 2ϕ∣ ≤ 2 (16.114)

This is violated for all values of ϕ between 0○ and 90○. This means that if the
predictions of quantum theory are experimentally valid in this region then any
idea of systems possessing individual values for observables must necessarily in-
volve an essential non-locality. This applies in particular to any hidden variable
theory that is completely consistent with the results of quantum theory. Thus,
the important questions are:

1. Are the Bell inequalities empirically violated?

2. If so, are such violations in accord with the predictions of quantum theory?

In many experiments over the last two decades, the overwhelming conclusion is
that the predictions of quantum theory are vindicated and so we are obliged
either to stick with a pragmatic approach or a strict instrumentalist interpreta-
tion or else to accept the existence of a strange non-locality that seems hard to
reconcile with our normal concepts of spatial separation between independent
entities.

16.9 Bayesian Probability in QM

We turn to Bayesian probability arguments to deal with a realist.

16.9.1 Using Bayesian Ideas in Analysis of Experiments
In actual experimental tests, there are no infinite ensembles for accurate mea-
surements of mean values. Experimental physicists perform a finite number of
tests and then they state their results accompanied by a confidence level.

The real problem of theory versus experimental analysis is of a different nature
however.

I am a theorist and I believe that quantum mechanics gives a reliable description
of nature. I have a friend, however, who is a local realist.

We only have a finite number of trials of a Bell inequality experiment at our
disposal.

How many tests are needed to make my realist friend feel uncomfortable?

The problem is not whether the validity of a Bell inequality can be salvaged
by invoking clever loopholes, as some realists try to trick us into, but whether
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there can be any local realistic theory that reproduces the experimental results.

To simplify the discussion, I will assume that there are ideal detectors and that
the rate at which particles are produced by the apparatus is perfectly known.

Experimental Results Change Beliefs

First, we consider a yes-no test.

Quantum mechanics(QM) predicts that the probability of the yes result is q
and an alternative local realistic(LR) theory predicts a probability r.

An experimental test is performed n times and yields m yes results.

What can we infer about the likelihood of the two theories?

The answer is given by Baye’s theorem

P (B∣A ∧C) = P (A∣B ∧C)P (B∣C)
P (A∣C)

(16.115)

Denote by p ′q = P (q∣I) and p ′r = P (r∣I) the prior probabilities that we assign
to the validity of the two theories. These are subjective probabilities expressing
our personal beliefs.

For example, if my friend is willing to bet 100 to 1 (for example) that LR is
correct and QM is wrong, then

p ′r
p ′q

= 100 (16.116)

The question is: how many experimental tests are needed to change my friend’s
opinion to

p ′′r
p ′′q

= 0.01 (16.117)

say, before he is driven to bankruptcy. This is a reversal (in belief) by a factor
of 104.

In this case, P (r∣{m,n} ∧ I) = p ′′r is the new prior probability for my friend
after the experiments are finished and similarly we have P (q∣{m,n} ∧ I) = p ′′q .

If we define

Er = P ({m,n}∣q ∧ I) , Eq = P ({m,n}∣q ∧ I) (16.118)

which are just the probabilities of the experimentally found result (the actual
data - m successes in n trials) according to the two theories.
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These follow from the binomial theorem

Er =
n!

m!(n −m)!
rm(1 − r)n−m , Eq =

n!

m!(n −m)!
qm(1 − q)n−m (16.119)

It then follows from Baye’s theorem that

P ({m,n}∣r ∧ I)P (r∣I) = P (r∣{m,n} ∧ I)P ({m,n}∣I) (16.120)
P ({m,n}∣q ∧ I)P (q∣I) = P (q∣{m,n} ∧ I)P ({m,n}∣I) (16.121)

or that

P ({m,n}∣r ∧ I)P (r∣I)
P (r∣{m,n} ∧ I)

= P ({m,n}∣I) = P ({m,n}∣q ∧ I)P (q∣I)
P (q∣{m,n} ∧ I)

or
P ({m,n}∣r ∧ I)P (r∣I)
P ({m,n}∣q ∧ I)P (q∣I)

= p
′
rEr
p ′qEq

= P (r∣{m,n} ∧ I)
P (q∣{m,n} ∧ I)

= p
′′
r

p ′′q
(16.122)

We define the ratio

P ({m,n}∣q ∧ I)
P ({m,n}∣r ∧ I)

=
Eq

Er
=D = (q

r
)
m

(1 − q
1 − r

)
n−m

(16.123)

as the confidence depressing factor for the hypothesis LR with respect to the
hypothesis QM.

16.9.2 Simple Example

Suppose that we flip coins and the yes-no question is: Did the coin come up
heads?

I, the theorist, will assume that the coin is unbiased and that therefore q = 0.5
and m = n/2 (assuming that I am correct). We then have

D = ( 1

2r
)
n/2

( 1

2(1 − r)
)
n/2

= (1

2
)
n

( 1

r(1 − r)
)
n/2

(16.124)

Since we want 104, we find

(5

3
)
n

= 104 → n log
5

3
= 4→ n = 4

log 5
3

= 4

0.22
≈ 16 (16.125)

So that it would take only 16 coin flips to reverse my untrusting friend’s belief.

Now let us return to the Bell inequality.
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Figure 16.28: Three Detector Experiment

16.9.3 Simple Ideas
Let us consider a device that has three widely separated detectors each of which
has two switch settings as shown in Figure 16.28 above.

When a detector is triggered it flashes either red or green. The detectors are
far apart from the source, there are no connections between the detectors and
no connections between the source and the detectors other than those mediated
by the group of three particles (as shown) that originate at the source and fly
away, one to each detector.

A run of the experiment consists of setting the switch on each detector to one of
its two positions (labeled 1 or 2), pressing a button at the source (to release a trio
of particles, one aimed at each detector), and recording the color subsequently
flashed at each detector.

There are eight possible switch settings:

111 112 121 122 211 212 221 222 (16.126)

We consider only the data acquired for four of the eight possible switch settings,
namely, those in which the number of detectors set to 1 is odd.

111 122 212 221 (16.127)

The other set
112 122 212 222 (16.128)
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will lead to similar results (1↔ 2). As shown in Figure 16.28 we call the detec-
tors A, B, and C, and specify pertinent facts about them by listing three pieces
of information (switch settings or colors flashed) in that order.

If we run the experiment many times, then the observational results are the
following. If just one detector is set to 1 (and the others to 2), then an odd
number of red lights always flash, that is, either all three detectors flash red or
there is one red flash and two green ones.

If all three detectors are set to 1, then an odd number of red lights is never
observed to flash - either two of the three flash red or all three flash green.

This is summarized by the table:

Settings Result 1 Result 2 Result 3 Result 4
111 GGG GRR RGR RRG
122 RGG GRG GGR RRR
212 RGG GRG GGR RRR
221 RGG GRG GGR RRR

Table 16.3: Results

All four outcomes are equally likely in each case(this particular detail is not
important).

We will discuss a real, physical system that exhibits this behavior later.

Let us set aside, for the moment, the 111 case and consider the 122, 212, and
221 cases in which just one detector is set to 1. Because an odd number of red
lights always flash in any of these three cases, whenever the switches are so set
we can predict with certainty what one of the three detectors will do in a run,
merely by noting what happens to the other two. For should the other two flash
the same color (RR or GG), then the third will have to flash red, but should
the other two flash different colors (RG or GR), then the third will have to flash
green.

Now we follow the path set out by EPR to draw an inference that will seem
inescapable. Along the way we will use the so-called EPR reality criterion.

Since there are no direct connections between the detectors, their behavior can
only be coordinated due to the fact that all three are triggered by particles that
came from a common source. This fact and this fact alone must contain the
explanation for why we can learn in advance what color will flash at a given
detector, say A, from measurements made far away at B and C. Information
telling the detector at A what color to flash in order to maintain the observed
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consistency with the colors flashed at B and C must somehow be encoded in the
particle that triggers A. Since that particle could indeed have been coordinated
with the particles that triggered B and C when all three were back at their
common source, this explanation seems both inevitable and entirely reasonable.

We can apply this reasoning to any one of the three detectors (by moving it
farther from the source so that before it flashes we have had the opportunity
to observe what colors flash at the other two). We conclude that in each run
of the experiment each particle must be carrying to its detector instructions on
what color to flash, and that an odd number of the particles must specify red.

Thus, for a given choice of the switch settings (say 122) the particles heading for
detectors A, B, and C must respectively be carrying instructions RRR, RGG,
GRG, or GGR, but never GRR, RGR, RRG, or GGG.

Which of the four allowed groups of instructions they collectively carry is re-
vealed only when the lights flash. All of the above reasoning applies equally
well, of course, to 212 and 221 runs.

In the absence of connections between the detectors and the source, a particle
has no information about how the switch of its detector will be set until it ar-
rives there. Since in each run any detector might turn out to be the one set to
1 or one of the ones set to 2, to preserve the perfect record of always having
an odd number of red flashes in 122, 212, and 221 runs, it would seem to be
essential for each particle to be carrying instructions for how its detector should
flash for either of the two possible switch settings it might find upon arrival.

The existence of instructions of this sort is the EPR reality criterion.

The instructions carried by each particle can be symbolized by a pair of letters

1→ R R G or G

2→ R G R G

would result in RRR if the switch settings were 122, GGR for 212, and GRG
for 221.

Since each of the three possible switch settings result in an odd number of red
flashes, this is indeed a legal set of instructions.

An example of an illegal set of instructions is

R R G

G R R

for this gives an even number of red flashes GRR for the switch setting 212,
which is never observed.
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Since there are eight ways the lights can flash, namely,

RRR RRG RGG RGR GRR GRG GGR GGG (16.129)

the total number of possible instruction sets is 8 × 8 = 64.

It is not hard to enumerate all the legal (odd number of red flashes) instruction
sets.

First note that three of the six positions in a legal instruction set corresponding
to any one of the three choices 122, 212, or 221 for the switch settings, must
contain an odd number of R’s, since that particular setting might be encountered
in any run, and since only odd numbers of red flashes are ever observed. Thus,
the only possible entries for the positions corresponding to the switch settings
122 are (leaving blank the entries not relevant to those three settings):

ABC ABC ABC ABC

1→ R − − R − − G − − G − −
2→ −RR −GG −RG −GR

so that 122 gives RRR, RGG, GRG, or GGR independent of the other entries.

We can next count the way to fill in the blanks in these four forms so as to
produce the correct data for switch settings 221. Since each of the four already
specifies the color flashed at detector B for setting 2, namely, R G R G, to
ensure that any 221 run produces an odd number of red flashes there are only
two choices available for the other two (A and C) unspecified 221 entries for
each of the four forms: RR or GG if the specified entry is R and RG or GR if
the specified entry is G so that we have

ABC ABC ABC ABC
1→ R−R R−G G−G G−R
2→ RRR RGG GRG GGR

ABC ABC ABC ABC
1→ R−R R−R G−R G−G
2→ GRR GGG RRG RGR

This raises the number of possible forms to eight, each of which leaves only the
entry for setting 1 at the detector B unspecified. But that entry is now entirely
determined by the entries at settings 2 for detectors A and C (having to be R,
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if the latter two entries are the same color and G, if they are different).

ABC ABC ABC ABC
1→ RRR RGG GRG GGR
2→ RRR RGG GRG GGR

ABC ABC ABC ABC
1→ RGR RRR GGR GRG
2→ RRR GGG RRG RGR

They are arranged in the same horizontal order as the forms in (1), with the
two possibilities for each form placed directly above one another. It is easy to
check explicitly that each instruction set (2) does indeed give an odd number of
red flashes when a single detector is set to 1.

122 gives RRR RGG GRG GGR
RRR RGG GRG GGR

221 gives RRR RGG GRG GGR
GRG GGR RRR RGG

212 gives RRR RGG GRG GGR
GGR GRG RGG RRR

Clearly, (2) represents the eight legal sets.

Now, finally, we consider the fourth type of run, in which all three detectors are
set to 1, and an odd number of red flashes is never observed.

The above instruction sets must determine the outcomes of these runs as well.
For who is to prevent somebody from flipping the two switches set to 2 over to
1, just before the particles arrive?

An inspection of the upper rows in (2) reveals that every one of the eight allowed
instruction sets results in an odd number of red flashes when all three switches
are set to 1.

If the instruction sets existed, then 111 runs would always have to produce an
odd number of red flashes. But they never do.

Thus, a single 111 run suffices all by itself to give data inconsistent with the
otherwise compelling inference of instruction sets.

Here the instruction sets(realistic theory) require an odd number of red flashes
in every 111 run, but quantum mechanics(experiment) prohibits an odd number
of red flashes in every 111 run.
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Something is wrong with the EPR idea of instruction sets or EPR reality.

The Quantum Mechanical Explanation

Here is how the device works. What emerges from the source are three spin−1/2
particles (a, b, and c) in a spin state whose structure is given below. The parti-
cles fly apart to the detectors in the horizontal plane. We define the z−direction
for each particle to be along the line of flight. The detectors contain Stern-
Gerlach magnets which measure the vertical (x) component of the spin when
the switch is set to 1 and the horizontal component (y) perpendicular to the line
of flight when their switch is set to 2. They are set so that we get red flashes
for spin-up, and green flashes for spin-down.

Let us describe a spin state that produces the remarkable correlations (GHZ-
state) described earlier.

We measure angular momentum for each particle in units of ? so that the spin
operators for each particle can be taken to be the Pauli matrices. Now consider
the three commuting Hermitian operators

σaxσ
b
yσ

c
y , σayσ

b
xσ

c
y , σayσ

b
yσ

c
x (16.130)

They commute because all pairs of the six spin operators out of which they are
constructed commute, except for those associated with the x and y components
of the spin of a single particle, which anticommute. This does not cause any
trouble, however, because converting the product in one order to the product
in then other order always involves and even number of such anticommuting
exchanges.

Being commuting and Hermitian, the three operators above can be provided
with simultaneous eigenvectors. Since the square of each operator is the iden-
tity, the eigenvalues of each can only be ±1.

The actual spin state that produces the remarkable correlations (theGreenberger-
Horne-Zeilinger or GHZ-state) is described by

∣GHZ⟩ = 1√
2
(∣1,1,1⟩ − ∣−1,−1,−1⟩) (16.131)

where ±1 specifies spin-up or spin-down along the appropriate z−axis.

For simplicity in the following argument, here we pick the state with all three
eigenvalues equal to +1, which preserves the symmetry among the particles. The
argument works for any such symmetric state and for any linear combination of
such states as in the above state.

Since the components of the spin vectors of different particles commute, we can
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simultaneously measure the x component for one particle and the y components
for the other two. Because the spin state is an eigenvector of all three of the
operators

σaxσ
b
yσ

c
y , σayσ

b
xσ

c
y , σayσ

b
yσ

c
x

with eigenvalue +1, the product of the results of each of the three single spin
measurements has to be +1, regardless of which particle we pick for the x spin
measurement. Since +1 flashes red and −1 flashes green, there must indeed be
an even number of green flashes and thus an odd number of red flashes.

What about the result of three x−spin measurements, declared earlier never to
result in an odd number of red flashes? Translating this into spin language tells
us that the product of the three results must always be −1. The Hermitian
operator corresponding to that product is

σaxσ
b
xσ

c
x (16.132)

so for the declaration to be correct, it must be that the eigenvector of the
first three operators with eigenvalue +1 is also an eigenvector of the last opera-
tor(above) with eigenvalue −1.

This is easily confirmed. Indeed, the last operator is just minus the product of
the other three operators

σaxσ
b
xσ

c
x = −(σaxσbyσcy)(σayσbxσcy)(σayσbyσcx) (16.133)

Since we are in an eigenvector with eigenvalue +1 of each of the three operators
appearing on the right, we are indeed also in an eigenvector of σaxσ

b
xσ

c
x with

eigenvalue −1.

The consequence of the EPR reality criterion specified earlier, if translated into
quantum theoretic terminology, would also assert that the state was an eigen-
vector of the operator σaxσ

b
xσ

c
x, but with the wrong eigenvalue. In this sense, the

GHZ experiment provides the strongest possible contradiction between quan-
tum mechanics and the EPR reality criterion.

Alternatively, we can say it this way. We may measure, on each particle, either
σx or σy, without disturbing the other particles. The results of these measure-
ments will be called mx or my, respectively. From

σaxσ
b
yσ

c
y ∣111⟩ = ∣111⟩

σayσ
b
xσ

c
y ∣111⟩ = ∣111⟩

σayσ
b
yσ

c
x ∣111⟩ = ∣111⟩

and
σaxσ

b
xσ

c
x ∣111⟩ = − ∣111⟩
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we can predict with certainty that, if the three σx are measured, the results
satisfy

maxmbxmcx = −1 (16.134)

Therefore, each of the operators σax, σ
b
x and σcx corresponds to an EPR element

of reality, because its value can be predicted with certainty by performing mea-
surements on the two other, distant particles.

However, it follows from

σaxσ
b
yσ

c
y ∣111⟩ = ∣111⟩

σayσ
b
xσ

c
y ∣111⟩ = ∣111⟩

σayσ
b
yσ

c
x ∣111⟩ = ∣111⟩

that we can predict with certainty the value of σax by measuring σby and σcy
rather than σbx and σbx. We then have

maxmbymcy = +1 (16.135)

and likewise, by cyclic permutation,

maymbxmcy = +1 (16.136)

and
maymbymcx = +1 (16.137)

The product of the last four results gives

maxmbxmcxmaxmbymcymaymbxmcymaymbymcx = −1 (16.138)

(max)2(mbx)2(mcx)2(mby)2(mcy)2(may)2 = −1 (16.139)

But,
(mjx)2 = 1 (16.140)

so that we get a contradiction.

There is a tacit assumption in the above argument, thatmax inmaxmbxmcx = −1
is the same as max in maxmbymcy = +1, in spite of the fact that these two ways
of obtaining max involve mutually exclusive experiments - measuring σbx and σcx
or measuring σby and σcy.

This tacit assumption is of counterfactual nature, and cannot be experimentally
verified. It obviously adheres to the EPR reality criterion - but is simply wrong!

Saying it another way, the crucial minus sign in

σaxσ
b
xσ

c
x = −(σaxσbyσcy)(σayσbxσcy)(σayσbyσcx)
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which is totally destructive of the possibility of these instruction sets, comes
from the fact that in working out the identity it is necessary to interchange the
anticommuting operators σbx and σby in order to get rid of all the y components
(using (σiy)2 = 1) and be left with a product of three x components. It is
only that one instance of uncompensated anticommutation that produces the
conclusion so devastating to the hypothesis of instruction sets.

This is extremely pleasing, for it is just the fact the x and y components of the
spin of a single particle do not commute, which leads the well-educated quantum
mechanician to reject from the start the inference instruction sets (which have
to specify the value of both of these non-commuting observables), making it
necessary for me to disguise what was going on earlier so that you would not
have dismissed this discussion as rubbish before reaching the interesting part.

There is no other Bellian refutation of EPR in which the mathematical details
of the refutation so closely reflect the broad interpretive doctrines of quantum
theory that EPR tried to challenge. The entries in the instruction sets are
precisely the conjectured c−number values for all the σix and σiy−values that
appear to be the only explanation for the remarkable correlations. In addition,
the logic of the red and green lights in the simple model precisely parallels the
algebraic behavior of the four operators used here except for that one devastating
anticommutation.

Let us return now to using Bayesian ideas to convince our realist friends about
the validity of quantum mechanics within the context of the Bell inequalities.

16.9.4 More about the Greenberger-Horne-Zeilinger(GHZ)
State

We consider the GHZ state for a three-particle system

∣GHZ⟩ = 1√
2
(∣1,1,1⟩ − ∣−1,−1,−1⟩) (16.141)

where −1 and +1 denote any two orthogonal states of each of the three particle
subsystems.

We have three distant observers examine the three subsystems. The first ob-
server has the choice of two tests. The first test can give two different results
that we label a = ±1, and likewise the other test yields a′ = ±1. Symbols b, b′, c
and c′ are similarly defined for the other two observers. Any possible values of
their results satisfy

a′bc = ab′c = abc′ = −a′b′c′ = +1 (16.142)

Mermin has then shown that we have the inequality

−2 ≤ ⟨a′bc + ab′c + abc′ − a′b′c′⟩ ≤ +2 (16.143)
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As we saw above quantum mechanics makes a very simple prediction for the
GHZ state: there are well chosen tests that give with certainty

a′bc = ab′c = abc′ = −a′b′c′ = +1 (16.144)

It is important to remember that performing any such test can verify the value
1 for only one of these products (at a time) since each product corresponds to
a different experimental setup.

If, however, we take all these results together, they manifestly conflict with
a′bc + ab′c + abc′ − a′b′c′ = ±2.

Many physicists have erroneously, at this point, stated that a single experi-
ment is sufficient to invalidate local realism. This is sheer nonsense: a single
experiment can only verify one occurrence of one of the terms in

a′bc = ab′c = abc′ = −a′b′c′ = +1 (16.145)

What does our realist friend think?

He believes that, in each experimental run, each term in the above result has a
definite value even if that term is not actually measured in that run.

We ask him to propose a rule giving the average values of the products in

a′bc + ab′c + abc′ − a′b′c′ = ±2 (16.146)

Suppose that he assumes

⟨a′bc⟩ = ⟨ab′c⟩ = ⟨abc′⟩ = ⟨−a′b′c′⟩ = 0.5 (16.147)

This clearly attains the right hand side of (Mermin’s) inequality. This assump-
tion then leads to the prediction that if we measure a′bc we shall find the result
1 (that is, yes) in 75% of the cases and the opposite result in 25% and like wise
for the other tests. This simply corresponds to the averages proposed above.

In our earlier discussion about confidence depressing factors, this corresponds
to

q = 1 and r = 0.75 (16.148)

If we assume that quantum mechanics is correct, then m = n (that is what q = 1
means). Therefore, we have

D = (q
r
)
m

(1 − q
1 − r

)
n−m

= (1

r
)
n

= (4

3
)
n

(16.149)

Therefore it would take

D = (4

3
)
n

= 104 → n = 4

log(1.33)
≈ 32 (16.150)

tests to undo the realist’s beliefs.
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16.10 Problems

16.10.1 Bell Inequality with Stern-Gerlach

A pair of spin−1/2 particles is produced by a source. The spin state of each
particle can be measured using a Stern-Gerlach apparatus (see diagram below).

Figure 16.29: EPR Stern-Gerlach Setup

(a) Let n̂1 and n̂2 be the field directions(arrows in diagram) of the Stern-
Gerlach magnets. Consider the commuting observables

σ(1) = 2

h̵
n̂1 ⋅ S⃗1 , σ(2) = 2

h̵
n̂2 ⋅ S⃗2

corresponding to the spin component of each particle along the direction
of the Stern-Gerlach apparatus associated with it. What are the possible
values resulting from measurement of these observables and what are the
corresponding eigenstates?

(b) Consider the observable σ(12) = σ(1)⊗σ(2) and write down its eigenvectors
and eigenvalues. Assume that the pair of particles is produced in the
singlet state

∣0,0⟩ = 1√
2
(∣Sz+⟩(1) ∣Sz−⟩(2) − ∣Sz−⟩(1) ∣Sz+⟩(2))

What is the expectation value of σ(12)?

(c) Make the assumption that the spin of a particle has a meaningful value
even when it is not being measured. Assume also that the only possible
results of the measurement of a spin component are ±h̵/2. Then show that
the probability of finding the spins pointing in two given directions will be
proportional to the overlap of the hemispheres that these two directions
define. Quantify this criterion and calculate the expectation value of σ(12).
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(d) Assume the spin variables depend on a hidden variable λ. The expectation
value of the spin observable σ(12) is determined in terms of the normalized
distribution function f(λ):

⟨σ(12)⟩ = 4

h̵2 ∫ dλf(λ)S(1)
z (λ)S(2)

ϕ (λ)

Prove Bell’s inequality

∣⟨σ(12)(ϕ)⟩ − ⟨σ(12)(ϕ′)⟩∣ ≤ 1 + ∣⟨σ(12)(ϕ − ϕ′)⟩∣

(e) Consider Bell’s inequality for ϕ ′ = 2ϕ and show that it is not true when
applied in the context of quantum mechanics.

16.10.2 Bell’s Theorem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
â, the other a polaroid with axis parallel to the unit vector b̂. Let P++(â, b̂) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly, P−−(â, b̂) is the probability that both photons are absorbed
by their respective polaroids, P+−(â, b̂) is the probability that the photon at the
â polaroid is transmitted and the other is absorbed, and finally, P−+(â, b̂) is
the probability that the photon at the â polaroid is absorbed and the other is
transmitted.

The classical realist assumption is that these probabilities can be separated:

Pij(â, b̂) = ∫ dλρ(λ)Pi(â, λ)Pj(b̂, λ)

where i and j take on the values + and −, where λ signifies the so-called hidden
variables, and where ρ(λ) is a weight function. This equation is called the
separable form.

The correlation coefficient is defined by

C(â, b̂) = P++(â, b̂) + P−−(â, b̂) − P+−(â, b̂) − P−+(â, b̂)

and so we can write

C(â, b̂) = ∫ dλρ(λ)C(â, λ)C(b̂, λ)

where

C(â, λ) = P+(â, λ) − P−(â, λ) , C(b̂, λ) = P+(b̂, λ) − P−(b̂, λ)

It is required that
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(a) ρ(λ) ≥ 0

(b) ∫ dλρ(λ) = 1

(c) −1 ≤ C(â, λ) ≤ 1 , −1 ≤ C(b̂, λ) ≤ 1

The Bell coefficient

B = C(â, b̂) +C(â, b̂′) +C(â′, b̂) −C(â′, b̂′)

combines four different combinations of the polaroid directions.

(1) Show that the above classical realist assumptions imply that ∣B∣ ≤ 2

(2) Show that quantum mechanics predicts that C(â, b̂) = 2 (â ⋅ b̂)
2
− 1

(3) Show that the maximum value of the Bell coefficient is 2
√

2 according to
quantum mechanics

(4) Cast the quantum mechanical expression for C(â, b̂) into a separable form.
Which of the classical requirements, (a), (b), or (c) above is violated?

16.10.3 Bell’s Theorem with Neutrons

Suppose that two neutrons are created in a singlet state. They fly apart; the
spin of one particle is measured in the direction a, the other in the direction b.

(a) Calculate the relative frequencies of the coincidencesR(up, up), R(up, down),
R(down,up) and R(down, down), as a function of θ, the angle between a
and b.

(b) Calculate the correlation coefficient

C(a, b) = R(up, up) −R(up, down) −R(down,up) +R(down, down)

(c) Given two possible directions, a and a′, for one measurement, and two
possible directions, b and b′, for the other, deduce the maximum possible
value of the Bell coefficient, defined by

B = C(a, b) +C(a′, b) +C(a′, b′) −C(a, b′)

(d) Show that this prediction of quantum mechanics is inconsistent with clas-
sical local realism.
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16.10.4 Greenberger-Horne-Zeilinger State
The Greenberger-Horne-Zeilinger (GHZ) state of three identical spin−1/2 par-
ticles is defined by

∣GHZ⟩ = 1√
2
(∣za+⟩ ∣zb+⟩ ∣zc+⟩ − ∣za−⟩ ∣zb−⟩ ∣zc−⟩)

where za+ is the eigenvector of the z−component of the spin operator of par-
ticle a belonging to eigenvalue +h̵/2 (z−spin up), za− is the eigenvector of the
z−component of the spin operator of particle a belonging to eigenvalue −h̵/2
(z−spin down), and similarly for b and c. Show that, if spin measurements are
made on the three particle in the x− or y−directions,

(a) the product of three spins in the x−direction is always −h̵3/8

(b) the product of two spins in the y−direction and one spin in the x−direction
is always +h̵3/8

(c) Consider a prize game for a team of three players, A, B, and C. The players
are told that they will be separated from one another and that each will
be asked one of two questions, say X or Y, to which each must give one of
two allowed answers, namely, +1 or −1. Moreover, either

(a) all players will be asked the same question X

or

(b) one of the three players will be asked X and the other two Y

After having been asked X or Y, no player may communicate with the
others until after all three players have given their answers, +1 or −1. To
win the game, the players must give answers such that, in case (a) the
product of the three answers is −1, whereas in case (b) the product of the
three answers is +1.

(a) Show that no classical strategy gives certainty of a win for the team

(b) Show that a quantum strategy, in which each player may take one of
the GHZ particles with her, exists for which a win is certain
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Chapter 17

Path Integral Methods

17.1 Historical Remarks

In this book we have developed the standard formulation of quantum mechan-
ics developed more or less concurrently by Schrodinger, Heisenberg, Dirac and
others in the 1920s and shown to be equivalent to one another soon thereafter.

In 1933, Dirac made the observation that the action plays a central role in
classical mechanics (he considered the Lagrangian formulation of classical me-
chanics to be more fundamental than the Hamiltonian formulation), but that
it seemed to have no important role in quantum mechanics as it was known at
the time. He speculated on how the situation might be rectified, and he arrived
at the conclusion that (in more modern language) the propagator in quantum
mechanics corresponds to

exp(iS
h̵
) (17.1)

where S is the classical action evaluated along the classical path.

In 1948, Feynman developed Dirac’s suggestion, and succeeded in deriving a
new formulation of quantum mechanics, based on the fact that the propagator
can be written as a sum over all possible paths (not just the classical one)
between the initial and final points. Each path contributes exp (iS/h̵) to the
propagator. So while Dirac considered only the classical path, Feynman showed
that all paths contribute: in a sense, the quantum particle takes all paths, and
the amplitudes for each path add according to the usual quantum mechanical
rule for combining amplitudes.

17.2 Motivation

What do we learn from path integrals? Path integrals give us no dramatic new
results in the quantum mechanics of a single particle. In fact, most, if not all,
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calculations in quantum mechanics which can be done by path integrals can be
done with considerably greater ease using the standard formulation of quantum
mechanics. So why all the fuss?

It turns out that path integrals are considerably more useful in more complicated
situations, such as quantum field theory. Even if this was not case, however,
path integrals give a very worthwhile contribution to our understanding of quan-
tum mechanics.

First, path integrals provide a physically extremely appealing and intuitive way
of viewing quantum mechanics: anyone who can understand Young’s double slit
experiment in optics should be able to understand the underlying ideas behind
path integrals.

Second, the classical limit of quantum mechanics can be understood in a par-
ticularly clean way via path integrals.

17.3 Path Integrals in Quantum Mechanics

17.3.1 General ideas
Consider a particle moving in one dimension. The Hamiltonian has the usual
form:

H = p2

2m
+ V (q) (17.2)

The fundamental question in the path integral (PI) formulation of quantum
mechanics is:

If the particle is at a position q at time t = 0, what
is the probability amplitude that it will be at some
other position q′ at a later time t = T?

It is easy to get a formal expression for this amplitude in the usual Schrodinger
formulation of quantum mechanics. Let us introduce the eigenstates of the
position operator q̂, which form a complete orthonormal set:

q̂ ∣q⟩ = q ∣q⟩ , ⟨q′ ∣ q⟩ = δ(q′ − q) , ∫ dq ∣q⟩ ⟨q∣ = 1 (17.3)

(when there is the possibility of an ambiguity, operators will be written with a
hat, otherwise the hat will be dropped). Then the initial state is

∣ψ(0)⟩ = ∣q⟩ (17.4)

Letting the state evolve in time and projecting on the state ∣q′⟩, we get the
amplitude A,

A = ⟨q′ ∣ ψ(T )⟩ ≡K(q′, T ; q,0) = ⟨q′∣ e−iHT ∣q⟩ (17.5)
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(except where otherwise noted, h̵ will be set to 1). This object, for obvious
reasons, is known as the propagator from the initial space-time point (q,0) to
the final point (q′, T ). Clearly, the propagator is independent of the origin of
time:

K(q′, T + t; q, t) =K(q′, T ; q,0) (17.6)

We will derive an expression for this amplitude in the form of a summation(integral
really) over all possible paths between the initial and final points. In doing so,
we will derive the PI method from quantum mechanics.

Let us separate the time evolution in the above amplitude into two smaller time
evolutions, writing

e−iHT = e−iH(T−t1)e−iHt1 (17.7)

The amplitude becomes

A = ⟨q′∣ e−iH(T−t1)e−iHt1 ∣q⟩ (17.8)

Inserting an identity operator gives

A = ∫ dq1 ⟨q′∣ e−iH(T−t1) ∣q1⟩ ⟨q1∣ e−iHt1 ∣q⟩

= ∫ dq1K(q′, T ; q1, t1)K(q1, t1; q,0) (17.9)

This formula is none other than an expression of the quantum mechanical rule
for combining amplitudes. If a process can occur a number of ways, the am-
plitude for each of these ways add. A particle, in propagating from q to q′,
must be somewhere at an intermediate time t1. Labelling that intermediate
position q1, we compute the amplitude for propagation via the point q1 (this
is the product of two propagators as in equation(17.9)) and integrate over all
possible intermediate positions. This result is reminiscent of Young’s double
slit experiment where the amplitudes for passing through each of the two slits
combine and interfere. We will look at this example in more detail later.

We can repeat the division of the time interval T . Let us divide it up into a
large number N of time intervals of duration δ = T /N . Then we can write the
propagator as

A = ⟨q′∣ (e−iHδ)
N

∣q⟩ = ⟨q′∣ e−iHδe−iHδ.........e−iHδ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ntimes

∣q⟩ (17.10)
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We can again insert a complete set of states (identity operator) between each
exponential, which gives

A = ⟨q′∣ e−iHδ ∫ dqN−1 ∣qN−1⟩ ⟨qN−1∣ e−iHδ ∫ dqN−2 ∣qN−2⟩ ⟨qN−2∣ .........

.....∫ dq2 ∣q2⟩ ⟨q2∣ e−iHδ ∫ dq1 ∣q1⟩ ⟨q1∣ e−iHδ ∣q⟩

= ∫ dq1........dqN−1 ⟨q′∣ e−iHδ ∣qN−1⟩ ⟨qN−1∣ e−iHδ ∣qN−2⟩ ........ ⟨q1∣ e−iHδ ∣q⟩

= ∫ dq1........dqN−1KqN , qN−1
KqN−1, qN−2

........Kq2, q1Kq1, q0

where we have defined q0 = q, qN = q′ and Kqi, qj = ⟨qj ∣ e−iHδ ∣qi⟩. Note that the
initial and final positions are not integrated over. This expression says that the
amplitude is the integral of the amplitude of all N−legged paths, as illustrated
in Figure 17.1 below

Figure 17.1: Amplitude as a sum over N-legged paths

Apart from the mathematical details concerning the limit N →∞, this is clearly
going to become a sum over all possible paths of the amplitude for each path:

A = ∑
paths

Apath (17.11)

where

∑
paths

= ∫ dq1........dqN−1 , Apath =KqN , qN−1
KqN−1, qN−2

........Kq2, q1Kq1, q0

(17.12)
Let us look at this expression in detail.
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The propagator for one sub-interval is

Kqj+1, qj = ⟨qj+1∣ e−iHδ ∣qj⟩ (17.13)

We can expand the exponential, since ? is small:

Kqj+1, qj = ⟨qj+1∣ e−iHδ ∣qj⟩ = ⟨qj+1∣ (1 − iHδ − 1

2
H2δ2 + ....) ∣qj⟩

= ⟨qj+1 ∣ qj⟩ − iδ ⟨qj+1∣H ∣qj⟩ +O(δ2) (17.14)

The first term is a delta function, which we can write as

⟨qj+1 ∣ qj⟩ = δ (qj+1 − qj) = ∫
dpj

2π
eipj(qj+1−qj) (17.15)

In the second term of equation(17.14), we can insert another identity operator
but this time in the form of an integral over momentum eigenstates between H
and ∣qj⟩. This gives

−iδ ⟨qj+1∣H ∣qj⟩ = −iδ ⟨qj+1∣ (
p2

2m
+ V (q))(∫

dpj

2π
∣pj⟩ ⟨pj ∣) ∣qj⟩

= −iδ∫
dpj

2π
⟨qj+1∣ (

p2

2m
+ V (q)) ∣pj⟩ ⟨pj ∣ qj⟩

= −iδ∫
dpj

2π
⟨qj+1∣ (

p2
j

2m
+ V (qj+1)) ∣pj⟩ ⟨pj ∣ qj⟩

= −iδ∫
dpj

2π
(
p2
j

2m
+ V (qj+1)) ⟨qj+1 ∣ pj⟩ ⟨pj ∣ qj⟩

= −iδ∫
dpj

2π
(
p2
j

2m
+ V (qj+1)) eipj(qj+1−qj) (17.16)

where we used ⟨q ∣ p⟩ = exp(ipq). Note that the operator p acted to the right
and the operator V (q) acted to the left.

The expression in equation(17.16) is asymmetric between qj+1 and qj . The origin
of this is our choice of putting the identity operator to the right of H in the
second term of equation(17.14). Had we put it to the left instead, we would have
obtained V (qj) in equation(17.16). To not play favorites, we should choose some
sort of average of these two cases. In what follows, I will simply write V (q̄j)
where q̄j = 1

2
(qj+1 + qj) (the exact choice does not matter in the continuum limit,

which we will take eventually; this choice is the common choice). Combining
equations(17.15) and (17.16), the sub-interval propagator is

Kqj+1 , qj = ∫
dpj

2π
eipj(qj+1−qj) (1 − iδ (

p2
j

2m
+ V (q̄j)) +O(δ2))

= ∫
dpj

2π
eipj(qj+1−qj)e−iδH(pj , q̄j) (1 +O(δ2)) (17.17)

1365



There are N such factors in the amplitude. Combining them, and writing
q̇j = (qj+1 − qj) /δ, we get

Apath = ∫
N−1

∏
j=0

dpj

2π
exp

⎛
⎝
iδ
N−1

∑
j=0

(pj q̇j −H(pj , q̄j))
⎞
⎠

(17.18)

where we have neglected a multiplicative factor of the form (1 +O(δ2))N which
will tend toward one in the continuum limit. Then the propagator becomes

K = ∫ dq1........dqN−1Apath

= ∫
N−1

∏
j=1

dqj ∫
N−1

∏
j=0

dpj

2π
exp

⎛
⎝
iδ
N−1

∑
j=0

(pj q̇j −H(pj , q̄j))
⎞
⎠

(17.19)

Note that there is one momentum integral for each interval (N total), while
there is one position integral for each intermediate position (N − 1 total).

If N →∞, this approximates an integral over all functions p(t), q(t). We adopt
the following notation:

K ≡ ∫ Dp(t)Dq(t) exp
⎛
⎜
⎝
i

T

∫
0

dt (pq̇ −H(p , q))
⎞
⎟
⎠

(17.20)

This result is known as the phase-space path integral. The integral is viewed as
over all functions p(t) and over all functions q(t) where q(0) = q, q(T ) = q′. But
to actually perform an explicit calculation, equation(17.20) should be viewed as
a shorthand notation for the expression equation(17.19) in the limit N →∞.

If, as is often the case (and we have assumed in deriving the above expression),
the Hamiltonian is of the standard form, namely

H = p2

2m
+ V (q) (17.21)

we can actually carry out the momentum integrals in equation(17.19). We can
rewrite this expression as

K = ∫
N−1

∏
j=1

dqj exp
⎛
⎝
−iδ

N−1

∑
j=0

V (q̄j)
⎞
⎠∫

N−1

∏
j=0

dpj

2π
exp

⎛
⎝
iδ
N−1

∑
j=0

(pj q̇j −
p2
j

2m
)
⎞
⎠

(17.22)
The p integrals are all Gaussian, and they are uncoupled. One such integral is

∫
dp

2π
eiδ(pq̇−p

2/2m) =
√

m

2πiδ
eiδmq̇

2/2 (17.23)

The careful reader may be worried about the convergence of this integral. If so,
a factor exp(−εp2) can be introduce and the limit ε → 0 taken at the end (see
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for example Chapter 1 - page 21).

The propagator becomes

K = ∫
N−1

∏
j=1

dqj exp
⎛
⎝
−iδ

N−1

∑
j=0

V (q̄j)
⎞
⎠

N−1

∏
j=0

(
√

m

2πiδ
exp(

iδmq̇2
j

2
))

= ( m

2πiδ
)
N/2

∫
N−1

∏
j=1

dqj exp
⎛
⎝
iδ
N−1

∑
j=0

(
mq̇2

j

2
− V (q̄j))

⎞
⎠

(17.24)

The argument of the exponential is a discrete approximation of the action of
a path passing through the points q0 = q, q1, .., qN−1, qN = q′. As above, we can
write this in the more compact form

K = ∫ Dq(t) exp (iS(q(t))) (17.25)

This is our final result and is known as the configuration space path integral.
Again, equation(17.25) should be viewed as a notation for the more precise
expression equation(17.24), as N →∞.

17.3.2 Examples

To solidify the above notions, let us consider a few explicit examples. As a
first example, we will compute the free particle propagator first using ordinary
quantum mechanics and then via PI. We will then mention some generalization
which can be done in a similar manner.

Free Particle

Let us compute the propagator K(q′, T ; q,0) for a free particle, described by
the Hamiltonian

H = p2

2m
(17.26)

The propagator can be computed straightforwardly using ordinary quantum
mechanics. To this end, we write

K = ⟨q′∣ e−iHT ∣q⟩ = ⟨q′∣ e−ip
2T /2m ∫

dp

2π
∣p⟩ ⟨p ∣ q⟩

= ∫
dp

2π
e−ip

2T /2m ⟨q′ ∣ p⟩ ⟨p ∣ q⟩ = ∫
dp

2π
e−ip

2T /2m+i(q′−q)p (17.27)

The integral is a Gaussian. We obtain

K = ( m

2πiT
)

1/2
eim(q′−q)2/2T (17.28)
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Let us see how the same result can be obtained using PIs. The configuration
space PI (equation(17.25)) is

K = lim
N→∞

( m

2πiδ
)
N/2

∫
N−1

∏
j=1

dqj exp
⎛
⎝
i
mδ

2

N−1

∑
j=0

(
qj+1 − qj

δ
)

2⎞
⎠

= lim
N→∞

( m

2πiδ
)
N/2

∫
N−1

∏
j=1

dqj exp(im
2δ

[ (qN − qN−1)2 + (qN−1 − qN−2)2

+... (q2 − q1)2 + (q1 − q0)2 ])

(17.29)

where q0 = q and qN = q′ are the initial and final points. The integrals are
Gaussian and can be evaluated exactly, although the fact that they are coupled
complicates matters significantly. The result is

K = lim
N→∞

( m

2πiδ
)
N/2 1√

N
(2πiδ

m
)
(N−1)/2

eim(q′−q)2/2Nδ

= lim
N→∞

( m

2πiNδ
)

1/2
eim(q′−q)2/2Nδ (17.30)

But Nδ is the total time interval T , so that we get

K = ( m

2πiT
)

1/2
eim(q′−q)2/2T (17.31)

in agreement with equation(17.28).

A couple of remarks are in order. First, we can write the argument of the
exponential as

T × 1

2
m(q

′ − q
T

)
2

(17.32)

which is just the action S(qclassical) for a particle moving along the classical
path (a straight line in this case) between the initial and final points.

Secondly, we can restore the factors of h̵ if we want, by ensuring the correct
dimensions. The argument of the exponential is the action, so in order to make
it a pure number we must divide by h̵. Furthermore, the propagator has the
dimension of the inner product of two position eigenstates, which is inverse
length. In order that the coefficient have this dimension we must multiply by
h̵−1/2. The final result is

K = ( m

2πih̵T
)

1/2
eiS(qc)/h̵ (17.33)

This result typifies a couple of important features of calculations in this subject,
which we will see repeatedly as we continue the discussion. First, the propagator
separates into two factors, one which is the phase eiS(qc)/h̵. Second, calculations
in the PI formalism are typically quite a bit more lengthy than using standard
techniques of quantum mechanics.
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Harmonic Oscillator

As a second example of the computation of a PI, let us show how to compute
the propagator for the harmonic oscillator using this method.

Let us start with the somewhat-formal version of the configuration-space PI
(equation(17.25)):

K(q′, T ; q,0) = ∫ Dq(t) exp (iS(q(t))) (17.34)

For the harmonic oscillator

S(q(t)) =
T

∫
0

dt(1

2
mq̇2 − 1

2
mω2q2) (17.35)

The paths over which the integral is to be performed go from q(0) = q to q(T ) =
q′. To do this PI, suppose we know the solution of the classical problem, qc(t):

q̈c + ω2q2
c = 0 , qc(0) = q , qc(T ) = q′ (17.36)

We can write q(t) = qc(t) + y(t) and perform a change of variables in the PI to
y(t), since integrating over all deviations from the classical path is equivalent
to integrating over all possible paths. Since at each time q and y differ by a
constant, the Jacobian of the transformation is 1. Furthermore, since ? obeys
the correct boundary conditions, the paths y(t) over which we integrate go from
y(0) = 0 to y(T ) = 0. The action for the path qc(t) + y(t) can be written as a
power series in y:

S(qc(t) + y(t)) =
T

∫
0

dt(1

2
mq̇2

c −
1

2
mω2q2

c)

+ (linear in y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+
T

∫
0

dt(1

2
mẏ2 − 1

2
mω2y2) (17.37)

The term linear in y vanishes by construction - qc being the classical path, is
the path for which the action is stationary! So we may write

S(qc(t) + y(t)) = S(qc(t)) + S(y(t)) (17.38)

We substitute this into equation(17.25) and obtain

K(q′, T ; q,0) = eiS(qc(t)) ∫ Dq(t)eiS(y(t)) (17.39)

As mentioned above, the paths y(t) over which we integrate go from y(0) = 0
to y(T ) = 0. The only appearance of the initial and final positions is in the
classical path, i.e., in the classical action. Once again, the PI separates into
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two factors. The first is written in terms of the action of the classical path and
the second is a PI over deviations from this classical path. The second factor is
independent of the initial and final points.

This separation into a factor depending on the action of the classical path and
a second one, a PI which is independent of the details of the classical path is a
recurring theme and an important one. Indeed, it is often the first factor which
contains most of the useful information contained in the propagator and it can
be deduced without even performing a PI. It can be said that much of the work
in the game of path integrals consists in avoiding having to compute one!

The evaluation of equation(17.39) is complicated and will be done at the end of
this chapter. The result is

K(q′, T ; q,0) = ( mω

2πi sin (ωT )
)

1/2

eiS(qc(t)) (17.40)

where
S(qc(t)) =

mω

2 sin (ωT )
((q′2 + q2) cos (ωT ) − 2q′q) (17.41)

We close this section with two remarks. First, the PI for any quadratic action
can be evaluated exactly (see derivation later), essentially since such a PI con-
sists of Gaussian integrals. The general result is given later.

Second, K(q′, T ; q,0) is the amplitude to propagate from one point to another
in a given time interval. Now we ask this question: if a particle is initially
at position q, what is the wave function after the elapse of a time T? If we
consider K as a function of the final position and time, it turns out to be the
wave function for a particle with a specific initial condition and, as such, the
propagator satisfies the Schrodinger equation at its final point.

17.4 The Classical Limit

17.4.1 "Derivation" of the Principle of Least Action
Since the example calculations performed above are somewhat dry and math-
ematical, it is worth backing up a bit and staring at the expression for the
configuration space PI, equation(17.25):

K = ∫ Dq(t) exp (iS(q(t)))

This innocent looking expression tells us something which is at first glance un-
believable and at second glance really unbelievable. The first glance observation
is that a particle, in going from one position to another, takes all possible paths
between these two positions. This is, if not actually unbelievable, at the very
least counter-intuitive. We could, however, argue away much of what makes us
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feel uneasy if we could convince ourselves that while all paths contribute, the
classical path is the dominant one.

However, the second glance observation is not reassuring. If we compare the
contribution of the classical path (whose action is S(qc(t))), with that of some
other, arbitrarily wild, path (whose action is S(qw(t))), we find that the first
is exp(iS(qc(t))) while the second is exp(iS(qw(t))). They are both complex
numbers of unit magnitude - each path taken in isolation is equally important.
The classical path is no more important than any arbitrarily complicated path!

How are we to reconcile this really unbelievable conclusion with the fact that a
ball thrown in the air has a more-or-less parabolic motion?

The key, not surprisingly, is in how the different paths interfere with one an-
other. By considering the case where the rough scale of classical action is much
bigger than the quantum of action, h̵, we will see the emergence of the Principle
of Least Action.

Consider two neighboring paths q(t) and q′(t) which contribute to the PI (see
Figure 17.2 below).

Figure 17.2: Two Neighboring Paths

Let q′(t) = q(t) + η(t), with η(t) small. Then we can write the action as a
functional Taylor expansion about the classical path.

If you are not familiar with the manipulation of functionals (functions of func-
tions) do not despair - the only rule needed beyond standard calculus is the
functional derivative

δq(t)
δq(t′)

= δ(t − t′) (17.42)

where the last function is the Dirac delta function.

We have

S(q′) = S(q + η) = S(q) + ∫ dtη(t)δS(q(t))
δq(t)

+O(η2) (17.43)
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The two paths contribute exp(iS(q(t))) and exp(iS(q′(t))) to the PI. The com-
bined contribution is

A ≃ eiS(q)/h̵ (1 + exp( i
h̵
∫ dtη(t)δS(q)

δq(t)
)) (17.44)

where we have neglected corrections of order η2. We see that the difference in
phase between the two paths, which determines the interference between the
two contributions, is

1

h̵
∫ dtη(t)δS(q)

δq(t)
(17.45)

e see that the smaller the value of h̵, the larger the phase difference between two
given paths. So even if the paths are very close together, so that the difference
in actions is extremely small, for sufficiently small h̵ the phase difference will
still be large and on average destructive interference occurs.

This argument must be rethought, however, for one exceptional path - the path
which extremizes the action, i.e., the classical path qc(t). For this path

S(qc + η) = S(qc) +O(η2) (17.46)

Thus, the classical path and a very close neighbor will have actions which differ
by much less than two randomly chosen but equally close paths (see Figure 17.3
below).

Figure 17.3: Paths near classical path interfere constructively

This means that for fixed closeness of two paths and for fixed h̵, paths near the
classical path will on average interfere constructively (small phase difference)
whereas for random paths the interference will be on average destructive.

Thus, heuristically, we conclude that is the problem is classical (action ≫ h̵),
the most important contribution to the PI comes from the region around the
path which extremizes the PI. In other words, the particle’s motion is governed
by the principle that the action is stationary. This, of course, is none other
than the Principle of Least Action from which the Euler-Lagrange equations of
classical mechanics are derived.
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17.5 Topology and Path Integrals in Quantum
Mechanics

In path integrals, if the configuration space has holes in it such that two paths
between the same initial and final points are not deformable into one another,
interesting effects can arise. This property of the configuration space goes by the
following catchy name: non-simple-connectedness. We now study a situation of
this type.

17.5.1 Aharonov-Bohm Effect

The Aharonov-Bohm effect(already discussed in Chapter 8) is one of the most
dramatic illustrations of a purely quantum effect: the influence of the electro-
magnetic potential on particle motion even if the particle is perfectly shielded
from any electric and magnetic fields. While classically the effect of electric
and magnetic fields can be understood purely in terms of the forces these fields
create on the particles, Aharonov and Bohm devised an ingenious thought ex-
periment (which has since been carried out in the laboratory) showing that this
is no longer true in quantum mechanics. Their effect is best illustrated by a
refinement of Young’s double-slit experiment, where particles passing through
a barrier with two slits in it produce an interference pattern on a screen further
downstream as shown in Figure 17.4 below.

Figure 17.4: Aharonov-Bohm effect. Magnetic flux is confined within the shaded
area. particles are excluded from this area by a perfect shield

Aharonov and Bohm proposed that such an experiment be performed with
charged particles. The setup had an added twist. A magnetic field from which
the particles are perfectly shielded exists in between the two slits. If we per-
form the experiment first with no magnetic flux and then with a nonzero and
arbitrary flux passing through the shielded region, the interference pattern will
change, in spite of the fact that the particles are perfectly shielded from the mag-
netic field and feel no electric or magnetic force whatsoever.
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Classically, we say - no force, no effect. Not so in quantum mechanics. PIs
provide a excellent way of understanding this effect.

Consider first two representative paths q1(t) and q2(t) (in two dimensions) pass-
ing through slits 1 and 2 respectively, and which arrive at the same spot on the
screen as shown in Figure 17.5 below.

Figure 17.5: Two representative paths contributing to the amplitude for a given
point on the screen

Before turning on the magnetic field, let us suppose that the actions for these
paths are S(q1) and S(q2). Then the interference of the amplitudes is deter-
mined by

eiS(q1)/h̵ + eiS(q2)/h̵ = eiS(q1)/h̵ (1 + ei(S(q2)−S(q1))/h̵) (17.47)

The relative phase is
ϕ12 ≡ (S(q2) − S(q1))/h̵ (17.48)

Thus, the two paths interfere constructively if ϕ12 = 2nπ and destructively if
ϕ12 = (2n + 1)π and, in general, there is partial cancellation between the two
contributions.

How is this result affected if we add a magnetic field B⃗? We can describe this
field by a vector potential, writing B⃗ = ∇× A⃗. This affects the particle’s motion
by the following change in the Lagrangian (see Chapter 8):

L(q⃗,˙⃗q)→ L′(q⃗,˙⃗q) = L(q⃗,˙⃗q) − e
c
v⃗ ⋅ A⃗(q⃗) (17.49)

Thus, the action changes by

−e
c
∫ dt v⃗ ⋅ A⃗(q⃗) = −e

c
∫ dt

dq⃗(t)
dt

⋅ A⃗(q⃗) = −e
c
∫ dq⃗(t) ⋅ A⃗(q⃗)

The integral is

∫ dq⃗(t) ⋅ A⃗(q⃗) (17.50)
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which is the line integral of A⃗ long the path taken by the particle. So including
the effect of the magnetic field, the action of the first path is

S′(q⃗1) = S(q⃗1) −
e

c
∫
q⃗1

dq⃗(t) ⋅ A⃗(q⃗) (17.51)

and similarly for the second path.

Let us now look at the interference between the two paths, including the mag-
netic field.

eiS
′(q⃗1)/h̵ + eiS

′(q⃗2)/h̵ = eiS
′(q⃗1)/h̵ (1 + ei(S

′(q⃗2)−S′(q⃗1))/h̵) = eiS
′(q⃗1)/h̵ (1 + eiϕ

′

12)
(17.52)

where the new relative phase is

ϕ′12 = ϕ12 −
e

h̵c

⎛
⎜
⎝
∫
q⃗2

dq⃗(t) ⋅ A⃗(q⃗) − ∫
q⃗1

dq⃗(t) ⋅ A⃗(q⃗)
⎞
⎟
⎠

(17.53)

But the difference in the line integrals in equation(17.53) is a contour integral

∫
q⃗2

dq⃗(t) ⋅ A⃗(q⃗) − ∫
q⃗1

dq⃗(t) ⋅ A⃗(q⃗) = ∮ dq⃗(t) ⋅ A⃗(q⃗) = Φ (17.54)

where Φ is the flux inside the closed loop bounded by the two paths. So we can
write

ϕ′12 = ϕ12 −
eΦ

h̵c
(17.55)

It is important to note that the change of relative phase due to the magnetic field
is independent of the details of the two paths, as long as each passes through
the corresponding slit. This means that the PI expression for the amplitude
for the particle to reach a given point on the screen is affected by the magnetic
field in a particularly clean way. Before the magnetic field is turned on, we may
write A = A1 +A2, where

A1 = ∫
slit 1

Dq⃗ eiS
′(q⃗)/h̵ (17.56)

and similarly for A2. Including the magnetic field,

A′
1 = ∫

slit 1

Dq⃗ e
i(S′(q⃗)− ec ∫

1

dq⃗⋅A⃗/h̵
= e

−ie ∫
1

dq⃗⋅A⃗/h̵c
A1 (17.57)

where we have pulled the line integral out of the PI since it is the same for all
paths passing through slit 1 arriving at the point on the screen under consider-
ation. So the amplitude is

A = e
−ie ∫

1

dq⃗⋅A⃗/h̵c
A1 + e

−ie ∫
2

dq⃗⋅A⃗/h̵c
A2 = e

−ie ∫
1

dq⃗⋅A⃗/h̵c
(A1 + e−ie∮ dq⃗⋅A/h̵cA2)

= e
−ie ∫

1

dq⃗⋅A⃗/h̵c
(A1 + e−ieΦ/h̵cA2) (17.58)
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The overall phase is irrelevant and the interference pattern is influenced directly
by the phase eΦ/h̵c. If we vary the phase continuously (by varying the mag-
netic flux), we can detect a shift in the interference pattern. For example, if
eΦ/h̵c = π, then a spot on the screen which formerly corresponded to construc-
tive interference will now be destructive and vice versa.

Since the interference is dependent only on the phase difference mod(2π), as
we vary the flux we get a shift of the interference pattern which is periodic,
repeating itself when eΦ/h̵c changes by an integer times 2π.

17.6 Evaluation of Path Integrals - Details

We consider the case of particles moving in one dimension labelled by the posi-
tion coordinate x. The particles have associated with them a Lagrangian

L(x, ẋ, t) = 1

2
mẋ2 −U(x) (17.59)

In order to define the path integral we assume a series of times tN > tN−1 >
tN−2 > ...... > t1 > t0 letting N go to infinity later. The spacings between the
times t + j + 1 and tj will all be identical, namely

tj+1 − tj =
tN − t0
N

= εN (17.60)

The discretization in time leads to a discretization of the paths x(t) which will
be represented through the series of space-time points

{(x0, t0) , (x1, t1) , (x2, t2) ...... (xN−1, tN−1) , (xN , tN)} (17.61)

Even though the time instances are fixed, we note that the xj the values are not.
They can be anywhere in the allowed volume which we will choose to be the
interval [−∞,+∞]. In passing from one space-time instance (xj , tj) to the next
(xj+1, tj+1) we assume that kinetic energy and potential energy are constant,
namely,

1

2
m

(xj+1 − xj)2

ε2
N

and U(xj) (17.62)

respectively. these assumptions lead then to the following Riemann form for the
action integral

S[x(t)] = lim
N→∞

εN
N−1

∑
j=0

(1

2
m

(xj+1 − xj)2

ε2
N

−U(xj)) (17.63)

where the form S[....] is the standard form for a functional.

The main idea is that one can replace the path integral now by a multiple
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integral over x1, x2, etc. This allows us to write the propagator or evolution
operator as

K (xN , tN ;x0, t0) =

lim
N→∞

CN

∞

∫
−∞

dx1

∞

∫
−∞

dx2.....

∞

∫
−∞

dxN−1 exp
⎛
⎝
i

h̵
εN

N−1

∑
j=0

(1

2
m

(xj+1 − xj)2

ε2
N

−U(xj))
⎞
⎠

(17.64)

Here, cN is a constant which depends on N and other constants in the exponent.
It needs to be chosen to make sure that the limit in equation(17.64) can be
properly taken. Its value is

CN = ( m

2πih̵εN
)
N/2

(17.65)

17.6.1 Propagator for a Free Particle
Rather then using the integration variables xj , it is more suitable to define new
integration variables yj , the origin of which coincides with the classical path of
the particle. To see the benefit of such an approach, we define a path y(t) as
follows

x(t) = xcl(t) + y(t) (17.66)

where xcl(t) is the classical path which connects the space-time points (x0, t0)
and (xN , tN), namely,

xcl(t) = x0 +
xN − x0

tN − t0
(t − t0) (17.67)

It is essential for the following to note that, since x(t0) = xcl(t0) = x0 and
x(tN) = xcl(tN) = xN , it holds that

y(t0) = y(tN) = 0 (17.68)

Also we use the fact that the velocity of the classical path

ẋcl =
xN − x0

tN − t0
(17.69)

is constant. The action integral S[x(t)∣x(t0) = x0, x(tN) = xN ] for any path
x(t) can be expressed through an action integral over the path y(t) relative to
the classical path(note explicit new notation). We get

S[x(t)∣x(t0) = x0, x(tN) = xN ] =
tN

∫
t0

dt
1

2
m (ẋ2

cl + 2ẋclẏ + ẏ2)

= 1

2
m

tN

∫
t0

dt ẋ2
cl +mẋcl

tN

∫
t0

dt ẏ + 1

2
m

tN

∫
t0

dt ẏ2 (17.70)
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The condition (17.68) implies for the second term on the RHS

tN

∫
t0

dt ẏ = y(tN) − y(t0) = 0 (17.71)

The first term on the RHS of (17.70) is using (17.67)

1

2
m

tN

∫
t0

dt ẋ2
cl =

1

2
m

(xN − x0)2

tN − t0
(17.72)

The third term can be written in the notation introduced above

1

2
m

tN

∫
t0

dt ẏ2 = S[x(t)∣x(t0) = 0, x(tN) = 0] (17.73)

i.e., due to (17.68), can be expressed through a path integral with endpoints
x(t0) = 0, x(tN) = 0. The resulting expression for S[x(t)∣x(t0) = x0, x(tN) = xN ]
is

S[x(t)∣x(t0) = x0, x(tN) = xN ]

= 1

2
m

(xN − x0)2

tN − t0
+ S[x(t)∣x(t0) = 0, x(tN) = 0] (17.74)

Inserting into the expression for the propagator we have

K (xN , tN ;x0, t0) = exp [ im
2h̵

(xN − x0)2

tN − t0
]
x(tN )=0

∫
x(t0)=0

D[x(t)] exp( i
h̵
S[x(t)])

(17.75)
which can be written as

K (xN , tN ;x0, t0) = exp [ im
2h̵

(xN − x0)2

tN − t0
]K (0, tN ; 0, t0) (17.76)

Thus, we need to evaluate

K (0, tN ; 0, t0) =

lim
N→∞

( m

2πih̵εN
)
N/2 ∞

∫
−∞

dy1

∞

∫
−∞

dy2.....

∞

∫
−∞

dyN−1 exp
⎛
⎝
i

h̵
εN

N−1

∑
j=0

(1

2
m

(yj+1 − yj)2

ε2
N

)
⎞
⎠

(17.77)

The exponent E can be written, using

E = im

2h̵εN
( 2y2

1 − y1y2 − y2y1 + 2y2
2 − y2y3 − y3y2

+2y2
3 − ....... − −yN−2yN−1 − yN−1yN−2 + 2y2

N−1
)

= i
N−1

∑
j,k=1

yjajkyk (17.78)
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where the ajk are the elements of the following symmetric (N − 1) × (N − 1)
matrix

(ajk) =
m

2h̵εN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 . . 0 0
−1 2 −1 . . 0 0
0 −1 2 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . 2 −1
0 0 0 . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17.79)

The following integral

I =
∞

∫
−∞

dy1

∞

∫
−∞

dy2.....

∞

∫
−∞

dyN−1 exp
⎛
⎝
i
N−1

∑
j,k=1

yjajkyk
⎞
⎠

(17.80)

must now be determined. We will exploit the fact that for any real, symmetric
matrix there exists a similarity transformation such that

S−1aS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ã11 0 0 . . 0 0
0 ã22 0 . . 0 0
0 0 ã33 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . ãn−1,n−1 0
0 0 0 . . 0 ãnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17.81)

where S can be chosen as an orthonormal transformation, i.e.,

STS = I → ST = S−1 (17.82)

The ãkk are the eigenvalues of the a matrix and are real. This property allows us

to simplify the bilinear form
n

∑
j,k
yjajkyk by introducing new integration variables

ỹj =
n

∑
k

(S−1)
jk
yk , yk =

n

∑
k

Sjkỹk (17.83)

The bilinear form then reads in terms of ỹj
n

∑
j,k

yjajkyk =
n

∑
j,k

n

∑
`,m

ỹ`S`jajkSkmỹm =
n

∑
j,k

n

∑
`,m

ỹ` (ST )`j ajkSkmỹm =
n

∑
j,k

ỹj ãjkỹm

where we have used (from equations (17.81) and (17.82))

ãjk =
n

∑
`,m

(ST )
j`
a`mSmk (17.84)

For the determinant of ã we have

det(ã) =
n

∏
j=1

ãjj (17.85)
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as well as

det(ã) = det(S−1aS) = det(S−1)det(a)det(S) = det(a) =
n

∏
j=1

ãjj (17.86)

We have assumed that det(a) ≠ 0. Accordingly we have

n

∏
j=1

ãjj ≠ 0 (17.87)

so that none of the eigenvalues of a vanishes, i.e., ãjj ≠ 0 for j = 1,2, ...., n.
Substitution of the integration variables (17.83) in equation(17.80) gives

I =
∞

∫
−∞

dỹ1

∞

∫
−∞

dỹ2.....

∞

∫
−∞

dỹN−1 ∣det(∂(y1, ...., yn)
∂(ỹ1, ...., ỹn)

)∣ exp(i
n

∑
k

ãkkỹ
2
k
) (17.88)

where we have introduced the Jacobian matrix

J = ∂(y1, ...., yn)
∂(ỹ1, ...., ỹn)

(17.89)

with elements

Jjs =
∂yj

∂ỹs
(17.90)

According to equation(17.84), J = S and hence det(J) = 1. We then have

I =
∞

∫
−∞

dỹ1

∞

∫
−∞

dỹ2.....

∞

∫
−∞

dỹN−1 exp(i
n

∑
k

ãkkỹ
2
k)

=
∞

∫
−∞

dỹ1 exp (iã11ỹ
2
1) ............

∞

∫
−∞

dỹn exp (iãnnỹ2
n)

=
n

∏
k=1

∞

∫
−∞

dỹk exp (iãkkỹ2
k) (17.91)

which leaves us to determine integrals of the type

∞

∫
−∞

dx eicx
2

(17.92)

where c ≠ 0. We first consider the case c > 0. One can relate the integral (17.92)
to the standard Gaussian integral

∞

∫
−∞

dx e−cx
2

=
√
π

c
, c > 0 (17.93)
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Figure 17.6: Contour path in the complex plane

by considering the contour integral

J = ∮
γ

dz eicz
2

(17.94)

along the path γ = γ1 + γ2 + γ3 + γ4 shown in Figure 17.6 below.

The contour integral vanishes since eicz
2

is an analytic function, i.e., the inte-
grand does not have any singularities anywhere inside the contour. The contour
integral (17.94) can be written as the sum of the following path integrals

J = J1 + J2 + J3 + J4 , Jk = ∮
γk

dz eicz
2

(17.95)

The contributions Jk can be expressed through integrals along a real coordinate
axis by realizing that the paths γk can be parameterized by real coordinates x

γ1 ∶ z = x J1 =
p

∫
−p

dx eicx
2

(17.96)

γ2 ∶ z = ix + p J2 =
p

∫
0

i dx eic(ix+p)
2

(17.97)

γ3 ∶ z =
√
i x J3 =

−
√

2p

∫
√

2p

√
i dx eic(

√
i x)2

= −
√
i

√
2p

∫
−
√

2p

dx e−cx
2

(17.98)

γ4 ∶ z = ix − p J4 =
0

∫
−p

i dx eic(ix−p)
2

(17.99)

for x, p ∈R.

Substituting −x for x into integral J4 we get

J4 =
0

∫
p

(−i) dx eic(−ix−p)
2

=
p

∫
0

i dx eic(ix+p)
2

= J2 (17.100)
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We now show that the two integrals J2 and J4 vanish for p →∞. This follows
from the calculation below.

lim
p→+∞

∣J2 or 4∣ = lim
p→+∞

RRRRRRRRRRRR

p

∫
0

i dx eic(ix+p)
2

RRRRRRRRRRRR
≤ lim
p→+∞

RRRRRRRRRRRR

p

∫
0

∣i∣ dx ∣eic(p
2−x2)∣ ∣e−2cxp∣

RRRRRRRRRRRR

lim
p→+∞

∣J2 or 4∣ ≤ lim
p→+∞

RRRRRRRRRRRR

p

∫
0

dx ∣e−2cxp∣
RRRRRRRRRRRR
= lim
p→+∞

1 − e−2cp

2cp
= 0

Therefore, J2 and J4 do not contribute to the integral (17.95) for p → ∞. We
then have

∞

∫
−∞

dx eicx
2

=
√
i

∞

∫
−∞

dx e−cx
2

=
√

iπ

c
(17.101)

One can derive the same result for c < 0, if one chooses the same contour but
with a path γ that is reflected at the real axis. This gives

J =
∞

∫
−∞

dx eicx
2

−
√
−i

∞

∫
−∞

dx ecx
2

= 0 , c < 0

∞

∫
−∞

dx eicx
2

=
√

−iπ
− ∣c∣

=
√

iπ

c
(17.102)

Putting everything together we have

I =
n

∏
k=1

√
iπ

ãkk
=

¿
ÁÁÁÁÀ

(iπ)n
n

∏
k=1

ãkk

=

¿
ÁÁÀ (iπ)n

det(a)
(17.103)

This last result holds for a d−dimensional real, symmetric matrix (ajk) with
det(ajk) ≠ 0. In order to complete the evaluation of the propagator in equa-
tion(17.64) we split off the factor m/2h̵εN in the definition (17.79) of (ajk)
defining a new matrix (Ajk) through

ajk =
m

2h̵εN
Ajk (17.104)

Using

det(ajk) = ( m

2h̵εN
)
N−1

det(Ajk) (17.105)

which is a general property of determinants, we get

K(0, tN ; 0, t0) = lim
N→∞

( m

2πih̵εN
)
N/2

(2πih̵εN
m

)
(N−1)/2 1√

det(Ajk)
(17.106)
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In order to determine det(Ajk) we consider the dimension n of (Ajk), presently
N − 1, as a variable and let n = 1,2, ...... We seek to evaluate the determinant of
the n × n matrix

Dn = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 . . 0 0
−1 2 −1 . . 0 0
0 −1 2 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . 2 −1
0 0 0 . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17.107)

For this purpose, we expand (17.107) in terms of subdeterminants along the
last column. One can readily verify that this procedure leads to the following
recursion equation for the determinants

Dn = 2Dn−1 −Dn−2 (17.108)

To solve this three term recursion relationship one needs two starting values.
Using

D1 = det(2) = 2 , D2 = det( 2 −1
−1 2

) = 3 (17.109)

we get
Dn = n + 1 (17.110)

Therefore, we get
det(Ajk) = N (17.111)

which gives

K(0, tN ; 0, t0) = lim
N→∞

( m

2πih̵εNN
)

1/2
= ( m

2πih̵(tN − t0)
)

1/2

(17.112)

and from (17.76)

K(x, t;x0, t0) = ( m

2πih̵(t − t0)
)

1/2

exp( im
2h̵

(x − x0)2

t − t0
) (17.113)

which agrees with our earlier result (17.33).

The propagator allows us to predict the time evolution of any state function
ψ(x, t) of a free particle. The result can be generalized to three dimensions as

K(r⃗, t; r⃗0, t0) = ( m

2πih̵(t − t0)
)

3/2

exp( im
2h̵

(r⃗ − r⃗0)2

t − t0
) (17.114)
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17.6.2 Propagator for a Quadratic Lagrangian
We now need to develop equations to reproduce the result for a harmonic oscil-
lator in equations (17.40 and (17.41)).

We want to determine the propagator

K(xN , tN ;x0, t0) =
x(tN )=xN

∫
x(t0)=x0

D[x(t)] exp( i
h̵
S[x(t)]) (17.115)

for the quadratic Lagrangian

L(x, ẋ, t) = 1

2
mẋ2 − 1

2
c(t)x2 − e(t)x (17.116)

We need to determine the action integral

S[x(t)] =
tN

∫
t0

dt′ L(x, ẋ, t′) (17.117)

for an arbitrary path x(t) with end points x(t0) = x0 and x(tN) = xN . In order
to simplify this task we again define a new path y(t)

x(t) = xcl(t) + y(t) (17.118)

which describes the deviation from the classical path xcl(t) with end points
x(t0) = x0 and x(tN) = xN so that

y(t0) = y(tN) = 0 (17.119)

This gives

L(xcl + y, ẋcl + ẏ, t) = L(xcl, ẋcl, t) +L′(y, ẏ(t), t) + δL (17.120)

where

L(xcl, ẋcl, t) =
1

2
mẋ2

cl −
1

2
c(t)x2

cl − e(t)xcl (17.121)

L′(y, ẏ(t), t) = 1

2
mẏ2 − 1

2
c(t)y2 − e(t)y (17.122)

δL =mẋclẏ(t) − c(t)xcly − e(t)y (17.123)

We now show that the contribution of δL to the action integral (17.117) vanishes.
For this purpose we use

ẋclẏ =
d

dt
(ẋcly) − ẍcly (17.124)

and get

tN

∫
t0

dtδL =m (ẋcly)∣tNt0 −
tN

∫
t0

dt [mẍcl(t) + c(t)xcl(t) + e(t)]y(t) (17.125)
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According to (17.119) the first term on the RHS vanishes. Getting the Euler-
Lagrange equations from the Lagrangian (17.116) we have for the classical path

mẍcl(t) + c(t)xcl(t) + e(t) = 0 (17.126)

and hence, the second term on the RHS also vanishes. Thus,

tN

∫
t0

dtδL = 0 (17.127)

We then have

K(xN , tN ;x0, t0) = exp( i
h̵
S[xcl(t)]) K̃(0, tN ; 0, t0) (17.128)

where

K̃(0, tN ; 0, t0) =
x(tN )=xN

∫
x(t0)=x0

D[y(t)] exp
⎛
⎜
⎝
i

h̵

tN

∫
t0

dt L′(y, ẏ, t)
⎞
⎟
⎠

(17.129)

For the quadratic Lagrangian, we have achieved a separation in terms of a
classical action integral and a propagator connecting the end points y(t0) = 0
and y(tN) = 0 which is analogous to the result (17.76). A similar discretization
scheme gives in this case

K̃ (0, tN ; 0, t0)

= lim
N→∞

( m

2πih̵εN
)
N/2 ∞

∫
−∞

dy1

∞

∫
−∞

dy2.....

∞

∫
−∞

dyN−1 exp
⎛
⎝
iεN
h̵

N−1

∑
j=0

(
m(yj+1 − yj)2

2ε2
N

−
cjy

2
j

2
)
⎞
⎠

(17.130)

where cj = c(tj), tj = t0 + εN j. Again, we can write the exponent in (17.130)
using a quadratic form

E = i
N−1

∑
j,k=1

yjajkyk (17.131)
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where the ajk are the elements of the following symmetric (N − 1) × (N − 1)
matrix

(ajk) =
m

2h̵εN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 . . 0 0
−1 2 −1 . . 0 0
0 −1 2 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . 2 −1
0 0 0 . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

− εN
2h̵

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c1 0 0 . . 0 0
0 c2 0 . . 0 0
0 0 c3 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . cN−2 0
0 0 0 . . 0 cN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17.132)

In the case, det (ajk) ≠ 0, we can express the multiple integral in (17.130) using
(17.103) as

K̃ (0, tN ; 0, t0) = lim
N→∞

( m

2πih̵εN
)
N/2 ⎛

⎝
(iπ)N−1

det(a)
⎞
⎠

1/2

= lim
N→∞

⎡⎢⎢⎢⎢⎣

m

2πih̵

1

εN ( 2h̵εN
m

)N−1
det(a)

⎤⎥⎥⎥⎥⎦

1/2

(17.133)

Therefore we need to evaluate the function

f(t0, tN) = lim
N→∞

[εN (2h̵εN
m

)
N−1

det(a)] (17.134)

According to (17.132) we have

DN−1
def= (2h̵εN

m
)
N−1

det(a) (17.135)

= m

2h̵εN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 − ε2N
m
c1 −1 0 . . 0 0

−1 2 − ε2N
m
c2 −1 . . 0 0

0 −1 2 − ε2N
m
c3 . . 0 0

. . . . . . .

. . . . . . .

0 0 0 . . 2 − ε2N
m
cN−2 −1

0 0 0 . . −1 2 − ε2N
m
cN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In the following we will assume that the dimension n = N − 1 of the matrix
is a variable (as in the earlier derivation). One can then derive a recursion
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relationship for the Dn

Dn = (2 −
ε2
N

m
cn)Dn−1 −Dn−2 (17.136)

using the method of expanding a determinant in terms of subdeterminants as
earlier. Using the starting values

D0 = 1 ; D1 = (2 −
ε2
N

m
c1) (17.137)

this recursion relationship can be used to determineDn−1. We can write (17.136)
as a 2nd-order difference equation

Dn+1 − 2Dn +Dn−1

ε2
N

= −cN+1Dn

m
(17.138)

Since we are interested in the solution of this equation in the limit of vanish-
ing εN we can interpret (17.138) as a 2nd-order differential equation in the
continuous variable t = nεN + t0

d2f(t0, t)
dt2

= −c(t)
m

f(t0, t) (17.139)

The boundary conditions at t = t0 (according to (17.137)) are

f(t0, t0) = εND0 = 0 (17.140)

df(t0, t)
dt

∣
t=t0

= εN
D1 −D0

εN
= 2 −

ε2
N

m
c1 − 1 = 1 −

ε2
N

m
c1 = 1 (17.141)

We finally get for the propagator (17.115)

K(x, t;x0, t0) = ( m

2πih̵f(t0, t)
)

1/2

exp( i
h̵
S[xcl(t)]) (17.142)

where f(t0, t) is the solution of ((17.139)-(17.141)) and where S[xcl(t)] is deter-
mined by first solving the Euler-Lagrange equations for the Lagrangian (17.116)
to obtain the classical path xcl(t) with end points xcl(t0) = x0 and xcl(tN) = xN
and then evaluating (17.117) for this path. Note that the required solution
xcl(t) involves a solution of the Euler-Lagrange equations for boundary con-
dition which are different from those conventionally encountered in Classical
Mechanics where we usually find a solution for initial conditions xcl(t0) = x0

and ẋcl(t0) = v0.

17.6.3 Propagator of a Harmonic Oscillator
In order to illustrate the evaluation of (17.142) we consider the case of a har-
monic oscillator (we just quoted the result of the calculation earlier). In this
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case, the coefficients in the Lagrangian (17.116) are c(t) = mω2 and e(t) = 0,
i.e., the Lagrangian is

L(x, ẋ, t) = 1

2
mẋ2 − 1

2
mω2x2 (17.143)

We first determine f(t0, t). In this case we have

f̈ = −ω2f , f(t0, t0) = 0 , ḟ(t0, t0) = 1 (17.144)

The solution which obeys these boundary conditions is

f(t0, t) =
sinω(t − t0)

ω
(17.145)

We now determine S[xcl(t)]. For this purpose we first find the path xcl(t) which
obeys xcl(t0) = x0 and xcl(t) = x and satisfies the Euler-Lagrange equation for
the harmonic oscillator

mẍcl +mω2x2
cl = 0⇒ xcl(τ) = A sinω(τ − t0) +B cosω(τ − t0) (17.146)

Imposing the boundary conditions gives

B = x0 , A = x − x0 cosω(t − t0)
sinω(t − t0)

(17.147)

and the desired path is

xcl(τ) =
x − x0c

s
sinω(τ − t0) + x0 cosω(τ − t0) (17.148)

where we have introduced the notation

c = cosω(t − t0) , s = sinω(t − t0) (17.149)

We now determine the action integral associated with the path ((17.148),(17.149))

S[xcl(t)] =
t

∫
t0

dτ (1

2
mẋ2

cl(τ) −
1

2
mω2x2

cl(τ)) (17.150)

We assume that t0 = 0. From (17.148) the velocity along the classical path is

ẋcl(τ) = ω
x − x0c

s
sinωτ − ωx0 cosωτ (17.151)

and for the kinetic energy we get

m

2
ẋ2
cl(τ) =

mω2

2

(x − x0c)2

s2
cos2 ωτ

−mω2x0
x − x0c

s
cosωτ sinωτ + mω

2x2
0

2
sin2 ωτ (17.152)
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Similarly, we get the potential energy

mω2

2
x2
cl(τ) =

mω2

2

(x − x0c)2

s2
sin2 ωτ

−mω2x0
x − x0c

s
cosωτ sinωτ + mω

2x2
0

2
cos2 ωτ (17.153)

Using

cos2 ωτ = 1

2
+ 1

2
cos 2ωτ , sin2 ωτ = 1

2
− 1

2
cos 2ωτ (17.154)

cosωτ sinωτ = 1

2
sin 2ωτ (17.155)

the Lagrangian, considered as a function of τ , reads

g(τ) = 1

2
mẋ2

cl(τ) −
1

2
mω2x2

cl(τ)

= mω
2

2
((x − x0c)2

s2
− x2

0) cos 2ωτ −mω2 sin 2ωτ (17.156)

Evaluation of the action integral

S[xcl(t)] =
t

∫
0

dτg(τ) (17.157)

requires the integrals
t

∫
0

dτ cos 2ωτ = sin 2ωτ

2ω
= sc
ω

,

t

∫
0

dτ sin 2ωτ =1 − cos 2ωτ

2ω
= s

2

ω
(17.158)

where we have used the definitions (17.149). We finally get

S[xcl(t)] =
mω

2 sinω(t − t0)
[(x2

0 + x2) cosω(t − t0) − 2x0x] (17.159)

The expression for the propagator of the harmonic oscillator is then given by

K(x, t;x0, t0) =

( mω

2πih̵ sinω(t − t0)
)

1/2

exp( imω

2h̵ sinω(t − t0)
[(x2

0 + x2) cosω(t − t0) − 2x0x])

(17.160)

17.7 Problems

17.7.1 Path integral for a charged particle moving on a
plane in the presence of a perpendicular magnetic
field

Consider a particle of mass m and charge e moving on a plane in the presence of
an external uniform magnetic field perpendicular to the plane and with strength
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B. Let r⃗ = (x1, x2) and p⃗ = (p1, p2) represent the components of the coordinate
r⃗ and of the momentum p⃗ of the particle. The Lagrangian for the particle is

L = 1

2
m(dr⃗

dt
)

2

+ e
c

dr⃗

dt
⋅ A⃗(r⃗)

1. Find the relation between the momentum p⃗ and the coordinate r⃗ and
explain how the momentum is related to the velocity v⃗ = dr⃗/dt in this
case.

2. Show that the classical Hamiltonian of for this problem is

H(q, p) = 1

2m
(p⃗2 − e

c
A⃗(r⃗))

2

where A⃗(r⃗) is the vector potential for a uniform magnetic field, normal to
the plane, and of magnitude B. In what follows, we will always write the
vector potential in the gauge ∇ ⋅ A⃗(r⃗) = 0, where it is given by

A1(r⃗) = −
B

2
x2 , A2(r⃗) =

B

2
x1

3. Use canonical quantization to find the quantum mechanical Hamiltonian
and the commutation relations for the observables.

4. Derive the form of the path integral, as a sum over the histories of the
position r⃗(t) of the particle, for the transition amplitude of the process in
which the particle returns to its initial location r⃗0 at time tf having left
that point at ti, i.e.,

⟨r⃗0, tf ∣ r⃗0, ti⟩
where r⃗0 is an arbitrary point of the plain and ∣tf − ti∣ →∞. What is the
form of the action? What initial and final conditions should be satisfied
by the histories r⃗(t)?

17.7.2 Path integral for the three-dimensional harmonic
oscillator

Consdider a harmonic oscillator of mass m and frequency ω in three dimensions.
We will denote the position vector of the oscillator by r⃗ = (x, y, z). The classical
Hamiltonian is

H(r⃗, p⃗) = p⃗2

2m
+ 1

2
mω2r⃗ 2

Derive an expression for the path integral for the matrix element

⟨r⃗f = 0, tf ∣ r⃗i = 0, ti⟩

for this three-dimensional oscillator, where tf → +∞ and ti → −∞. Make sure
you explain how this limit is taken. HINT: you will find it convenient to write
the path integral in terms of the histories of the three components x(t), y(t)
and z(t).
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17.7.3 Transitions in the forced one-dimensional oscillator
Consider a one-dimensional oscillator of mass m and frequency ω, labeled by
the coordinate q(t) on an infinite line. The oscillator is subject to an external
force J(t) of the form

J(t) =W τ

t2 + τ2

1. What are the units of W? Use W and m to construct a quantity with
units of energy.

2. Using path integral methods calculate the amplitude

⟨q = 0, tf ∣ q = 0, ti⟩

for ti → −∞ and tf → +∞.

3. How does the expression you found depend on W , τ , m and ω? Give
a physical interpretation to this dependence by looking at the extreme
regimes of τ large and small (relative to what?).

4. What dependence on W would you have expected to find in the Born
approximation? And in higher orders in perturbation theory?

17.7.4 Green’s Function for a Free Particle
The Green’s function for the single-particle Schrodinger equation is defined as
the solution of the equation

[ih̵∂t − Ĥ]G(r⃗, t; r⃗′, t′) = ih̵δ(t − t′)δ(r⃗ − vecr′)

Find explicitly the expression for the green’s function, G0(t − t′, r⃗ − r⃗′), of a
free particle in one and two spatial dimensions in real space-time representation.
HINT: Use the Fourier transform to solve the above equation. Shift the pole in
the Green’s function, G(ε, p⃗), (ε→ ε+ i0) and use the inverse Fourier transform
to obtain the representation of interest.

17.7.5 Propagator for a Free Particle
The single-particle propagator that appears in the derivation of the Feynman
path integral is defined as the solution of the equation:

[ih̵∂t − Ĥ]K(x, t;xi, ti) = ih̵δ(t − ti)δ(x − xi)

which is to be complemented with the initial condition:

K(x, t + 0;xi, ti) = δ(x − xi)

We have derived the following path integral expression for the propagator:

K(x, t;xi, ti) = N ∫ [Dx(t)]exp( i
h̵
S[x(t)])
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where N is a normalization constant and S is the classical action understood
as a functional of x(t).

Using the above definition of the path integral, calculate explicitly the propaga-
tor for a free particle in one spatial dimension. Compare your result with that
of Problem 17.7.4.
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Chapter 18

Solid State Physics

18.1 Crystal Structure and Symmetry

Crystalline solids are regular periodic arrays of atoms and are characterized by
having long-range spatial order. The periodicity of crystals and the resultant
high symmetry makes it easier to study these systems.

We will use the Born-Oppenheimer approximation scheme we used earlier with
molecules. In this case, we assume that the motion of the electrons in the solid
can be dealt with separately from that of the nuclei.

The nuclear part of the problem involves several types of motion. For a solid
with N nuclei and hence 3N nuclear degrees of freedom we have

1. Translation of the solid as a whole (3 degrees of freedom). This is motion
of the center of mass of the entire crystal.

2. Rotation of the solid as a whole (3 degrees of freedom). This is rigid-body
rotation of the crystal (no nuclear motion) about the center of mass.

3. Vibration of the nuclei in the solid (3N − 6 degrees of freedom). This
motion is called lattice vibrations.

To study the electron motions in the crystal, we ignore the lattice vibrations
and the motion of the crystal as a whole. We assume that the nuclei are fixed at
their equilibrium positions (the crystal). The electronic Schrodinger equation is
then

Ĥ ′ψeε(r⃗i; R⃗α) = Eeεψeε(r⃗i; R⃗α) (18.1)
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where

Ĥ ′ = T̂e + V̂ee + V̂en (18.2)

T̂e = electron kinetic energy

V̂ee = electron − electroninteraction , V̂en = electron - nucleus interaction

ψeε(r⃗i; R⃗α) = electron wavefunctions
Eeε = electron energies

r⃗i = electroncoordinates , R⃗α = nuclear coordinates

Although we can formally write these equations, we have a problem. The solid
contains a very large number of electrons (and nuclei), i.e., for a solid 1 cm3

in volume we have on the order of 1023 electrons, which leads to an enormous
number of coupled equations. We cannot solve these equations.

We will use a one-electron approach to this multielectron system. We assume
the so-called orbital approximation where we write the full electronic wave func-
tion in terms of single-particle wave functions. This means that we approximate
the electron-electron interaction terms in the Hamiltonian with a smooth av-
erage potential, which reflects the periodicity of the crystal. It turns out that
the details of the approximation are not crucial as long as the periodicity is
accurately incorporated. This approach leads eventually to the band theory of
solids. Real crystals are extraordinarily complicated environments which make
the study of crystals very difficult. They are finite so that there are surface
effects and they contain defects and impurities which destroy the symmetry of
the crystal structure. While these complications lead to interesting effects, they
are not important for the study of the energy level structure. We will assume
ideal crystals, i.e., we confine our attention to regions deep inside the crystal
so that we can neglect surface effects. These are called bulk regions and their
properties are independent of any surface details. Essentially, we are assume
that the crystals are infinite in extent. We also assume that the crystals are
pure and without defects so that the crystal symmetry is perfect. Finally, we
only include electrostatic terms in the Hamiltonian. We will restrict our atten-
tion to those features of the crystal structure and associated symmetry that are
needed to study the electronic energy level structure.

18.1.1 Symmetry of the Crystal System

A symmetry operation is a coordinate transformation that leaves the system
unchanged or invariant. In crystals, we say that the system and the associated
Hamiltonian are invariant under some symmetry operations. Symmetry opera-
tions provide a scheme for classifying crystal structures and , in addition, will
give us a powerful method for determining the energy level structures.
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Translational Symmetry

A crystal(ideal) has translational symmetry. This means that we can pick it
up and move it through a specified vector and we cannot distinguish the final
crystal from the original. For example, we consider a one-dimensional crystal
as shown in Figure 18.1 below.

Figure 18.1: 1-dimensional crystal

In the one-dimensional crystal, which extends the entire length [−∞,+∞] of the
x−axis, each atom is separated from its nearest neighbor by a distance d. The
choice of origin is arbitrary. If we translate the crystal in either direction by an
amount nd where n = 1,2,3, .... the resulting crystal is indistinguishable from
the original. The crystal is then said to have translational symmetry and the
vectors

T⃗ = nêx , n = ±1,±2, ...... (18.3)

are called lattice translation vectors. The word lattice as used here refers to the
set of mathematical points which characterize the translational symmetry of the
crystal.

We say that two points on the are equivalent if the surrounding crystal looks
the same independent of which of the two points we stand on. Clearly, any two
such points must be connected by a lattice translation vector. The points do
not have to be lattice points.

We generalize to 3− (or 2−) dimensions by defining the general translation vector
as

T⃗ = n1a⃗ + n2b⃗ + n3c⃗ (18.4)

where

n1 , n2 , n3 are any integers

a⃗ , b⃗ , c⃗ are any 3 noncoplanar lattice translation vectors in the crystal

All of these vectors are defined with respect to some origin(arbitrary). This is
illustrated for a 2−dimensional crystal in Figure 18.2 below.
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Figure 18.2: 2-dimensional crystal

In Figure 18.3 below, translational invariance means that the interactions felt
by an electron at position r⃗ + T⃗ are identical to those felt at position r⃗.

Figure 18.3: Translation Invariance

The statement of translational invariance of the crystal in terms of the Hamil-
tonian operator means that

Ĥ(r⃗ + T⃗ ) = Ĥ(r⃗) (18.5)

The choice of the three vectors a⃗, b⃗ and c⃗ is not unique. In Figure 18.4 below
we illustrate several choices (all equally good).

Figure 18.4: Alternate Basis Vectors
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The vector pairs (a⃗, b⃗) and (a⃗′, b⃗′) are primitive lattice translation vectors(not
unique). The appellation primitive is attached because using the pair as a basis
we can reach all lattice points. On the other hand the pair (a⃗′′, b⃗′′) are not
primitive since a point like P cannot be reached.

The lattice, which is the set of all mathematical points that are equivalent under
translation by T⃗ = n1a⃗+n2b⃗+n3c⃗ where a⃗, b⃗ and c⃗ are primitive lattice translation
vectors, defines the structure of the crystal. The crystal consists of lattice +
basis, where a basis is one or more atoms that are attached to all the lattice
points.

As we have seen, the choice of basis is arbitrary. Sometimes one chooses a
region of the crystal as the basis, where the region chosen can be stacked to
generate the entire crystal. Such a region is called a unit cell. In Figure 18.4
above, the three sets of basis vectors each define a unit cell (a parallelogram in
2 dimensions).

A more detailed definition goes as follows: A volume of the crystal that when
translated through all translation vectors, just fills all of space without either
overlapping itself or leaving any gaps is called a primitive cell or primitive unit
cell. It must contain exactly one lattice point. In Figure 18.4 above, (a⃗, b⃗)
and (a⃗′, b⃗′) generate primitive unit cells, but (a⃗′′, b⃗′′) does not (it contains two
atoms).

In addition, every primitive cell has the same area (volume). In Figure18.5
below we have drawn several unit cells for a rectangular-centered lattice. The
cells labelled (a), (b) , and (d) are primitive while (c) is not.

Figure 18.5: Primitive Cells

Point Symmetry

There are another group of symmetry operations for a crystal which leave one
point fixed in space. They are called point symmetry operations. The three most
important point symmetry operations are rotation(R), reflection(F) and inver-
sion(V). Not all crystal structures are characterized by all of these operations.
In fact, they can be used to classify lattices and crystals.
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Digression to Group Theory

A group is a set of elements A,B,C, .... such that a group multiplication is
defined which associates a third element with any ordered pair of two elements.
The multiplication must satisfy these requirements:

1. The product of any two elements in the set is in the set also, i.e., the set
is closed under group multiplication.

2. The associative law holds, i.e., A(BC) = (AB)C.

3. There exists an identity element E such that EA = AE = A for any element
A.

4. There exists an inverse A−1 for every element in the group, i.e., AA−1 =
A−1A = E.

The order of the group is equal to the number of elements.

An example is the set of four elements (group of order 4) with the multiplication
table below

E A B C

E E A B C
A A E C B
B B C E A
C C B A E

Table 18.1: Group with 4 elements

If group multiplication is commutative, i.e., AB = BA for any pair of elements,
then the group is Abelian. The above table represents a 4 element Abelian
group.

Another example is the non-Abelian group of order 6 (6 elements) given by the
table below
If the group multiplication operation were ordinary matrix multiplication, then
a representation of this group (an explicit set of elements) is given by

E = ( 1 0
0 1

) , A = ( 1 0
0 −1

)

B = 1

2
( −1

√
3√

3 1
) , C = 1

2
( −1 −

√
3

−
√

3 1
)

D = 1

2
( −1

√
3

−
√

3 −1
) , F = 1

2
( −1 −

√
3√

3 −1
)
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E A B C D F

E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

Table 18.2: Group with 6 elements

Notice that each row/column only contains each element once. This is an ex-
ample of the rearrangement theorem, which says

In the sequence EAk,A1Ak,A2Ak,A3Ak, .....,AkAk, ....... each group element Aj
appears exactly once (as one of the products). The elements are merely rear-
ranged by multiplying each by Aj .

Returning to point symmetries, we first consider the 1−dimensional crystal,
which is particularly simple. Its point symmetry operations form an Abelian
group of order 2 given by

E F

E E F
F F E

Table 18.3: Abelian group of order 2

In this case, the two elements are

E = identity → does nothing

F = reflection→ takes x→ −x

In 2 dimensions, the possible point symmetry operations are

1. The identity operation.

2. Reflection through a mirror line in the plane of the crystal.

3. An n-fold rotation (through angle 2π/n) about an axis perpendicular to
the plane of the crystal where n = 2,3,4, or6.

Notice that n = 5isnotallowed. The symmetry elements corresponding to these
operations are the mirror line and the n−fold axes (inversion is equivalent to a
twofold rotation).

In 3 dimensions, the possible point symmetry operations are
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1. The identity operation.

2. Reflection through one or more "mirror planes.

3. An n−fold rotation about an axis where n = 2,3,4, or6.

4. Inversion through a center of symmetry (r⃗ → −r⃗).

The last operation, inversion, is actually equivalent to a rotation by π followed
by reflection through a plane perpendicular to the axis of rotation. Because, of
its importance, however, we keep it as a separate symmetry operation.

Since each point symmetry operation is a coordinate transformation, when we
say that the crystal has a particular symmetry element (e.g., a center of sym-
metry), we mean that the corresponding symmetry operation (e.g., inversion)
leaves the Hamiltonian of the crystal unchanged.

Classification of Two-Dimensional Lattices and Crystals

Lattices having different sets of point symmetries are labelled as distinct Bra-
vais lattices. We can understand what distinguishes Bravais lattices using
2−dimensional lattices as an example. In two dimensions there are 5 Bravais
lattices:

the oblique lattice, the primitive rectangular lattice,
the centered rectangular lattice, the square lattice,
and the hexagonal lattice.

The oblique lattice is the Bravais lattice of lowest symmetry. It is shown in
Figure 18.6 below:

Figure 18.6: Oblique Lattice

The only symmetry operations for this lattice is twofold rotations about axes
perpendicular to the plane of the crystal and passing through each lattice point
and about axes halfway between each pair of lattice points as shown above. The
primitive lattice translation vectors a⃗ and b⃗ have no simple relationship to each
other.

1400



Each of the other four Bravais lattices are special cases of the oblique lattice.
Each has more symmetry operations than the oblique lattice and, in each, the
primitive lattice translation vectors a⃗ and b⃗ have some definite relationships.

The primitive rectangular lattice shown in Figure 18.7 below has the same
twofold rotation axes as the oblique lattice and in addition has several mir-
ror line as shown. Reflection through mirror lines is a symmetry operation of

Figure 18.7: Primitive Rectangular Lattice

the lattice. The primitive lattice translation vectors a⃗ and b⃗ are orthogonal to
each other and their lengths are unrelated.

Another type of rectangular lattice is the centered rectangular lattice shown in
Figure 18.8 below.

Figure 18.8: Centered Rectangular Lattice

This lattice has the twofold rotation axes, mirror lines and glide lines as shown.
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A glide line is a symmetry element corresponding to a combined operation: to
get from one point in the crystal to an equivalent point via a glide line, we first
reflect across the glide line, and then translate along the glide line by 1/2 the
repeat distance of the crystal. The angle between the lattice translation vector
is as shown and their lengths are unrelated.

The square lattice is a special case of the primitive rectangular lattice where
∣a⃗∣ = ∣b⃗∣. It is shown in Figure 18.9 below. In addition to the twofold rotation

Figure 18.9: Square Lattice

axes, mirror lines and glide lines of the primitive rectangular lattice, the square
lattice has the fourfold rotation axes as shown in the diagram. The primitive
lattice translation vectors are orthogonal and equal in length.

The hexagonal lattice is derived from the centered rectangular lattice by setting
∣a⃗∣ = ∣⃗b∣ as shown in in Figure 18.10 below. This lattice has twofold , threefold
and sixfold axes of rotation as shown. It has a large number of mirror line and
glide lines as shown. The primitive lattice translation vectors are of equal length
and make an angle of 60○ with respect to each other.

1402



Figure 18.10: Hexagonal Lattice

Symmetry of the Crystal

Up to this point we have dealt exclusively with the classification of lattices ac-
cording to their point symmetry. As we stated earlier, however, a crystal is
composed of a lattice plus a basis at each lattice point. Because of the basis, the
point symmetry of the crystal may not be the same as that of the lattice, i.e.,
the symmetry of the crystal may be lower than that of the lattice. The lattice
may possess some symmetry elements not possessed by the crystal. This is a
very important point. Let us illustrate it with an example.

We consider a square lattice and, in particular, we look at the mirror lines
through a lattice point as shown in Figure 18.11 below.

Figure 18.11: Mirror Lines in Square Lattice

Reflection through any of these mirror lines yields a lattice that is indistinguish-
able from the original lattice.
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Now associating with each lattice point of this square lattice one of the two
different bases as shown in Figure 18.12 below

Figure 18.12: Possible Bases

we get the crystals shown in Figure 18.13 below.

Figure 18.13: Possible Crystals

It is clear that the crystal on left possesses all of the same mirror lines as the
original square lattice while the crystal on the right does not. The symmetry of
the crystal on the right is lower than that of its lattice.

Three-Dimensional Crystals

Our discussions will mostly involve one- and two-dimensional crystals. Three-
dimensional crystals are significantly more difficult to study and we will only
say some general things about them at the end.

In three dimensions there are 14 Bravais lattices. Three examples are shown in
Figure 18.14 below.

Figure 18.14: 3-Dimensional Crystals
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From each Bravais lattice we can construct crystals by associating a basis with
each lattice point.

Miller Indices

In order to discuss three dimensional crystals we need to be able to specify
particular directions (axes) and particular planes in the crystal.

A convention has been developed for dealing with this problem. Axes and planes
in a crystal are described by Miller indices.

For example, to specify a particular axis in a crystal, we first write a lattice
translation vector

T⃗ = n1a⃗ + n2b⃗ + n3c⃗ (18.6)

that points along this axis. We then determine any integer factor N common
to n1, n2 and n3.

The Miller indices of the axis are then given by the set of integers

[n1

N
,
n2

N
,
n3

N
] = [h, k, l] (18.7)

where negative indices are denoted by a bar over the integer.

An example is shown below for the body diagonal of a cubic lattice where

T⃗ = a⃗ + b⃗ + c⃗→ N = 1→ [1,1,1] (18.8)

as shown in Figure 18.15 below.

Figure 18.15: [111] axis in cubic lattice

To specify a particular plane in a crystal, we first determine the intercepts of
the plane on three noncoplanar lattice translation vectors a⃗, b⃗ and c⃗ and call
these intercepts a, b and c.

We then form the reciprocals of these intercepts. Finally, we multiply these
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reciprocals by a common factor that reduces them to the three smallest integers.
These are the Miller indices of the plane, written (h, k, l). Some examples are
shown in Figure 18.16 below.

Figure 18.16: [111] axis in cubic lattice

A slightly more complicated example is one where the intercepts are (3,4,12)
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so that

(a, b, c) = (3,4,12)→ (1

3
,
1

4
,

1

12
) × 12 = (4,3,1) = (h, k, l) (18.9)

The Miller indices for an axis represent all equivalent axes (all parallel). The
Miller indices for a plane represent all equivalent planes (all parallel).

This concludes our short introduction to crystal structure and symmetry. The
symmetry of the crystal is important beyond what it tells us about the clas-
sification of the crystal. It reflects the fundamental properties of the crystal
Hamiltonian and in particular, the crystal potential energy. We will use these
properties to deduce facts about the energy eigenfunctions for the electrons in
the crystal.

18.2 Bloch Theorem, the Reciprocal Lattice and
Brillouin Zones

We first study the general properties of electron wavefunctions in crystals that
are a consequence of the periodicity of the crystal.

The electronic Schrodinger equation for a single electron in the crystal is given
by

ĤψE(r⃗) = EψE(r⃗) (18.10)

In the orbital approximation, the potential energy of the electron consists of
terms describing its interaction with the static array of nuclei and average po-
tential energy terms that take into account interactions with the other electrons
in the crystal. The interaction potential with the nuclei clearly has the periodic-
ity of the crystal and we assume that the average potential energy is constructed
so that it also has the periodicity of the crystal. This means that the total po-
tential energy is invariant under translation, i.e.,

V̂ (r⃗ + T⃗ ) = V̂ (r⃗) (18.11)

for any lattice translation vector T⃗ . Since the kinetic energy operator is also
translation invariant we then have

Ĥ(r⃗ + T⃗ ) = Ĥ(r⃗) (18.12)

i.e., the electronic Hamiltonian is invariant under translations.

18.2.1 Translation Operators in Configuration Space

We now introduce the translation operator T̂op which we define by its action on
any function f(r⃗) as

T̂opf(r⃗) = f(r⃗ + T⃗ ) (18.13)
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Each lattice translation vector T⃗ = n1a⃗+n2b⃗+n3c⃗ has a corresponding translation
operator T̂op = T̂op(n1, n2, n3).

We define the product of two translation operators by the relation

T̂ ′opT̂opf(r⃗) = T̂ ′opf(r⃗ + T⃗ ) = f(r⃗ + T⃗ + T⃗ ′) = T̂ ′′opf(r⃗) (18.14)

i.e., the product of two translation operators is another translation operator
given by successive application of the two operators. T̂ ′′op corresponds to the
translation T⃗ + T⃗ ′. This means that

T̂op(n1, n2, n3)T̂ ′op(n′1, n′2, n′3) = T̂ ′′op(n1 + n′1, n2 + n′2, n3 + n′3) (18.15)

T⃗ ′′ = T⃗ + T⃗ ′ = (n1 + n′1)a⃗ + (n2 + n′2)b⃗ + (n3 + n′3)c⃗ (18.16)

This result will have important consequences later.

The invariance of Ĥ under translation by any lattice translation vector T⃗ is
expressed by the commutator relation

[Ĥ, T̂op] = 0 (18.17)

for any T̂op. In addition, from the definition we can see that

T̂ ′
opT̂op = T̂opT̂ ′

op (18.18)

i.e., the order of application is unimportant. This gives another commutator
relation

[T̂op, T̂ ′op] = 0 (18.19)

These commutators say that the set of operators (Ĥ,{T̂op}) not only form a
closed commutator algebra but also that the Hamiltonian Ĥ and all lattice trans-
lation operators T̂op are a set of mutually commuting operators. This means
that we can find a set of simultaneous eigenfunctions for all these operators. If
we assume that ψE is a particular non-degenerate eigenfunction we can write
the eigenvalue equation

T̂opψE = γψE = γ(n1, n2, n3)ψE (18.20)

where γ is a constant(the eigenvalue). This property of the energy eigenfunc-
tions is a direct consequence of the translational invariance of the crystal.

What can we say about the constant γ?
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18.2.2 Derivation of Bloch’s Theorem
All the energy eigenfunctions are normalized so that

∫ ∣ψE(r⃗)∣2d3r = 1 (18.21)

This says that the eigenfunction

ψE(r⃗ + T⃗ ) = T̂opψE(r⃗) = γψE(r⃗) (18.22)

must satisfy

∫ ∣ψE(r⃗ + T⃗ )∣
2
d3r = ∣γ∣2 ∫ ∣ψE(r⃗)∣2d3r = ∣γ∣2 = 1 (18.23)

Thus, we can always write γ = eiβ where β = β(n1, n2, n3) is a constant. There
is one γ (or β) corresponding to each lattice translation vector T̂ .

Applying successive translation operators we find that

T̂ ′opT̂opψE(r⃗) = T̂ ′opγψE(r⃗) = γ′γψE(r⃗)

= T̂ ′′opψE(r⃗) = γ′′ψE(r⃗) (18.24)

γ′′ = γ′γ → eiβ
′′

= eiβ
′

eiβ

→ β(n1, n2, n3) + β′(n′1, n′2, n′3) = β′′(n1 + n′1, n2 + n′2, n3 + n′3) (18.25)

i.e., not only is β′′ the sum of β′ and β but also the arguments of β′′ are the
sum of the arguments of β′ and β.

This says that we must have β(n1, n2, n3) = k1n1 + k2n2 + k3n3, i.e., linear in
all of its arguments (k1, k2 and k3 are constants). This, in turn, says that β is
proportional to T⃗ , i.e., β = k⃗ ⋅ T⃗ , where k⃗ is a constant vector that is not depend
on n1, n2 or n3. We can then write for the eigenvalue of the translation operator

γ = eiβ = eik⃗⋅T⃗ (18.26)

and the eigenvalue equation takes the form

T̂opψE(r⃗) = ψE(r⃗ + T⃗ ) = γψE(r⃗) = eik⃗⋅T⃗ψE(r⃗) (18.27)

This is Bloch’s theorem of the first form.

It tells us that we can choose solutions of the Schrodinger equation such that
for every Hamiltonian eigenfunction ψE(r⃗) there exists a vector k⃗ called a wave
vector, such that (18.27) holds for any translation operator T̂op, that is, that
ψE(r⃗ + T⃗ ) differs from ψE(r⃗) only by a multiplicative phase factor eik⃗⋅T⃗ . Any
function that satisfies Bloch’s theorem is called a Bloch function or Bloch wave.

Bloch’s theorem is a direct consequence of the translational symmetry of the
crystal.
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The Wave Vector

The proportionality constant k⃗ has units of inverse length. For each Hamilto-
nian eigenfunction ψE(r⃗), there is a wave vector k⃗. The relationship of k⃗ to the
wave function is given by Bloch’s theorem. This means that k⃗ can be viewed as
a quantum number for the function ψE(r⃗) and we can write ψE,k⃗(r⃗).

What are some of the properties of the wave vector k⃗?

We first consider the one-dimensional version of Bloch’s theorem. Suppose that
we have a one-dimensional crystal with equally spaced atoms (separation dis-
tance = d). We ask for the relation ship between ψE(r⃗) and k for a wave function
of the form

ψE(x) = eiαx (18.28)

where α is a real constant. In this case, Bloch’s theorem becomes

ψE(x + nd) = eiα(x+nd) = eiαndeiαx = eiαndψE(x) = eikndψE(x) (18.29)

It is clear that Bloch’s theorem is satisfied for an infinite set of k−values given
by

k = α + 2π

d
m , m = 0,±1,±2, ...... (18.30)

where we have used the fact that ei2πm = 1. This suggests that we cannot
uniquely define the wave vector k⃗, i.e., there are an infinite number of wave
vectors that are equivalent to each other in the way that they are related to
the wave function ψE(x). This result generalizes to three dimensions. For each
single-particle Hamiltonian eigenfunction ψE(r⃗) we can find a set of different
wave vectors k⃗ that impose a similar restriction on ψE(r⃗), i.e., for which

ψE(r⃗ + T⃗ ) = eik⃗⋅T⃗ψE(r⃗) (18.31)

In general, we choose the smallest of these wave vectors to label the eigenfunction
ψE,k⃗(r⃗).

Alternative Form of Bloch’s Theorem

We define a new function by

uE,k⃗(r⃗) = e
−ik⃗⋅r⃗ψE,k⃗(r⃗) (18.32)

Now from the definition of the translation operator we have

T̂opuE,k⃗(r⃗) = uE,k⃗(r⃗ + T⃗ ) = e−ik⃗⋅(r⃗+T⃗ )ψE,k⃗(r⃗ + T⃗ ) (18.33)

Using Bloch’s theorem we get

T̂opuE,k⃗(r⃗) = e
−ik⃗⋅(r⃗+T⃗ )eik⃗⋅T⃗ψE,k⃗(r⃗) = e

−ik⃗⋅r⃗ψE,k⃗(r⃗) = uE,k⃗(r⃗) (18.34)
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This says that the new function uE,k⃗(r⃗) is a periodic function invariant under
translation by T⃗ , i.e., it has the periodicity of the crystal. Using this result we
rewrite the Hamiltonian eigenfunction as

ψE,k⃗(r⃗) = e
ik⃗⋅r⃗uE,k⃗(r⃗) (18.35)

which is the second form of Bloch’s theorem. This form shows that the electronic
eigenfunction of the crystal can be chosen to have the form of a periodic function
uE,k⃗(r⃗) modulated by a plane-wave envelope eik⃗⋅r⃗.

Generally, this envelope varies more slowly with r⃗ then does uE,k⃗(r⃗). The real
part of ψE,k⃗(r⃗) is shown in Figure 18.17 below, where it has been assumed that
uE,k⃗(r⃗) is a real function.

Figure 18.17: Second form of Bloch function

We have determined the qualitative form of the Hamiltonian eigenfunction for
any crystal using only translational symmetry of the crystal. Bloch’s theorem
in the first form links the wave function and the wave vector and in the second
form describes an important property of the wave function.

The Reciprocal Lattice

The strangest feature of Bloch’s theorem is the proportionality constant k⃗. The
name (wave vector) and the symbol (k⃗) used for this vector suggest(in analogy
with the wave vector for free electrons) that k⃗ will be related to the energy.
This is, in fact, true as we shall show during the rest of this chapter. At this
point, however, we will just label the energy eigenfunctions by both energy and
wave vector.

Up to this point we have not restricted the magnitude of k⃗ in any way. Thus,
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there exists a continuum of values of k⃗ . We call this continuum k⃗−space or
reciprocal space.

Each vector in k⃗−space has three components, in general, and we write

k⃗ = kxx̂ + ky ŷ + kz ẑ (18.36)

where x̂, ŷ and ẑ are mutually orthogonal unit vectors in regular or coordinate or
direct space. The crystal exists in direct space and its lattice is called the direct
lattice. A lattice constructed in reciprocal space is called a reciprocal lattice.

Reciprocal Lattice Vectors

What do we mean precisely by the term reciprocal lattice?

Each crystal lattice in direct space has an associated reciprocal lattice in k⃗−space.
Bloch’s theorem says that for a particular energy eigenfunction of the electronic
Hamiltonian, there exists a vector k⃗ (actually an infinity of such vectors) such
that

T̂opψE,k⃗(r⃗) = T̂ope
ik⃗⋅r⃗uE,k⃗(r⃗) = e

ik⃗⋅(r⃗+T⃗ )uE,k⃗(r⃗) = e
ik⃗⋅T⃗ψE,k⃗(r⃗) (18.37)

We now consider a vector, say G⃗, that satisfies the condition

eiG⃗⋅T⃗ = 1 (18.38)

i.e., G⃗ is a special wave vector such that uE,k⃗(r⃗) is invariant under any transla-
tion T̂op. The condition implies

eiG⃗⋅T⃗ = cos(G⃗ ⋅ T⃗ ) + i sin(G⃗ ⋅ T⃗ ) = 1→ G⃗ ⋅ T⃗ = 2πn , n = integer (18.39)

or that
G⃗ ⋅ T⃗ = n1G⃗ ⋅ a⃗ + n2G⃗ ⋅ b⃗ + n3G⃗ ⋅ c⃗ = 2πn (18.40)

The integers n1, n2 and n3 which define a particular T⃗ , can take on any values.
For each set {n1, n2,n3} there exists some integer n for which the above equality
holds. Thus, n depends on n1, n2 and n3.

For example, suppose that n2 = 0, n3 = 0 and n1 some arbitrary nonzero integer.
Then we have

n1G⃗ ⋅ a⃗ = 2πn→ G⃗ ⋅ a⃗ = 2πna (18.41)

since the relation must be valid for any value of n1. n1 is another integer given
by n = nan1. Similarly, we must have

G⃗ ⋅ b⃗ = 2πnb and G⃗ ⋅ c⃗ = 2πnc (18.42)

These three relations allow us to write a general form for G⃗

G⃗ = naA⃗ + nbB⃗ + ncC⃗ (18.43)
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Although this looks like the expression for T⃗ , remember, however, that G⃗ is a
vector in k⃗−space, i.e., that it is a vector such that

eiG⃗⋅T⃗ = 1 (18.44)

Putting everything together we get the relations

A⃗ ⋅ a⃗ = 2π , B⃗ ⋅ a⃗ = 0 , C⃗ ⋅ a⃗ = 0

A⃗ ⋅ b⃗ = 0 , B⃗ ⋅ b⃗ = 2π , C⃗ ⋅ b⃗ = 0

A⃗ ⋅ c⃗ = 0 , B⃗ ⋅ c⃗ = 0 , C⃗ ⋅ c⃗ = 2π

The first column of relations say that A⃗ is orthogonal to both b⃗ and c⃗ or that
we can write

A⃗ = ηAb⃗ × c⃗ (18.45)

and
A⃗ ⋅ a⃗ = 2π = ηAa⃗ ⋅ (b⃗ × c⃗) (18.46)

so that

A⃗ = 2π
b⃗ × c⃗

a⃗ ⋅ (b⃗ × c⃗)
(18.47)

Similarly,

B⃗ = 2π
c⃗ × a⃗

a⃗ ⋅ (b⃗ × c⃗)
, C⃗ = 2π

a⃗ × b⃗
a⃗ ⋅ (b⃗ × c⃗)

(18.48)

The three vectors A⃗, B⃗ and C⃗ are the primitive reciprocal lattice translation vec-
tors. Used together with G⃗ = naA⃗+nbB⃗+ncC⃗ (the reciprocal lattice translation
vector) they generate a lattice of points in k⃗−space, called the reciprocal lattice.
By construction, we see that each reciprocal lattice is defined with respect to a
particular direct lattice(given by a⃗, b⃗ and c⃗) in coordinate space.

Since eiG⃗⋅T⃗ = 1, all vectors k⃗′ = k⃗ + G⃗ are equivalent in k⃗−space, i.e.,

eik⃗
′⋅T⃗ = ei(k⃗+G⃗)⋅T⃗ = eik⃗⋅T⃗ eiG⃗⋅T⃗ = eik⃗⋅T⃗ (18.49)

There are an infinite number of such equivalent wave vectors where

ψE,k⃗′(r⃗ + T⃗ ) = eik⃗
′⋅T⃗ψE,k⃗′(r⃗) (18.50)

The Reciprocal Lattice for a Square Direct Lattice

We consider a crystal with a square direct lattice as shown inn Figure 18.18
below.
where ∣a⃗∣ = ∣b⃗∣. We have

a⃗ = dx̂ and b⃗ = dŷ (18.51)
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Figure 18.18: Square direct lattice

The vector defining the reciprocal lattice in two dimensions is

G⃗ = naA⃗ + nbB⃗ (18.52)

In order to calculate expressions for A⃗ and B⃗ in terms of a⃗ and b⃗, the primitive
lattice translation vectors of the square direct lattice, we temporarily introduce
a third vector of the same length c⃗ = dẑ. This vector, which is orthogonal to
the plane of the direct lattice, is only a mathematical tool useful for the stated
purpose. Its properties will not enter the final answers.

We then have

a⃗ ⋅ (b⃗ × c⃗) = d3 , b⃗ × c⃗ = d2x̂ , c⃗ × a⃗ = d2ŷ (18.53)

so that
A⃗ = 2π

d
x̂ , B⃗ = 2π

d
ŷ (18.54)

This result shows that the reciprocal lattice of a square direct lattice is also a
square lattice with the spacing of adjacent lattice points in the x and y direction
given by 2π/d.

This is, in fact, a general property of two-dimensional Bravais lattices . They are
self-reciprocal, i.e., the reciprocal lattice of a particular two-dimensional Bravais
lattice is another lattice of the same Bravais type.

The reciprocal lattice is shown in Figure 18.19 below.

Some Other Properties

The reciprocal lattice of a particular direct lattice is unique, i.e., it is indepen-
dent of the choice of primitive lattice translation vectors. We note that, if we
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Figure 18.19: Reciprocal Lattice for Square direct lattice

start with a particular direct lattice in coordinate space, construct from it the
reciprocal lattice in k⃗−space, and then construct the reciprocal of the reciprocal
lattice, we obtain the original direct lattice in coordinate space.

Brillouin Zones Made Simple

The reciprocal lattice is a periodic array of mathematical points in k⃗−space,
where each point is defined by a lattice translation vector G⃗. Because of its
relationship to the electronic wave function ψE,k⃗(r⃗) via Bloch’s theorem, each
vector k⃗ even if it is not a G⃗ vector, is important.

As we noted earlier, a particular k⃗ vector is not unique. The infinity of vectors
k⃗′ = k⃗ + G⃗ are all equivalent for each vector k⃗.

We choose to label the wave functions by the smallest or most significant vector
in each of the sets of equivalent vectors.

We now ask the following question: Is there a particular region of the reciprocal
lattice that contains all of the significant k⃗ vectors for a particular crystal?

The First Brillouin Zone

Since k⃗ is the smallest vector in the set {k⃗′ = k⃗ + G⃗}, we know that

∣k⃗′∣ ≥ ∣k⃗∣ for any k⃗′ in {k⃗′ = k⃗ + G⃗} (18.55)

Consider the two different wave vectors k⃗1 and k⃗2 for a particular two-dimensional
crystal shown in Figure 18.20 and Figure 18.21 below. We also show the vectors

k⃗′1 = k⃗1 − G⃗ and k⃗′2 = k⃗2 − G⃗ (18.56)
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where G⃗ is a particular reciprocal lattice vector for the crystal. In the Figure

Figure 18.20: ∣k⃗′1∣ > ∣k⃗1∣

18.20 above, ∣k⃗′1∣ > ∣k⃗1∣ and in Figure 18.21below ∣k⃗′1∣ > ∣k⃗1∣. Thus, k⃗1 may be the

Figure 18.21: ∣k⃗′1∣ > ∣k⃗1∣

smallest vector in its set, but k⃗2 is certainly not the smallest vector in its set.

One difference between k⃗1 and k⃗2 is that the tip of k⃗1 lies to the left of the per-
pendicular bisector of G⃗, whereas the tip of k⃗2 lies to the right of the bisector.

It turns out that any wave vector whose tip lies on the side of the bisector away
from the origin, is equivalent to at least one smaller wave vector, which can be
generated by subtracting the lattice vector that was bisected. All the significant
wave vectors (i.e., those not equivalent to some smaller wave vector), lie on the
side of the perpendicular bisector closest to the origin.

Now, suppose that instead of bisecting one reciprocal lattice vector G⃗ , we bisect
all such vectors from the origin to nearby points. Then these bisectors enclose a
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particular region of reciprocal space that includes the origin. Figure 18.22 below
gives this construction for the square lattice(in reciprocal space) The enclosed

Figure 18.22: Construction of first zone

region (shaded) is called the first Brillouin zone. The solid arrows are lattice
vectors and the dotted lines are their bisectors.

Each vector in the first Brillouin zone is the smallest vector in the set of equiv-
alent vectors since it lies on the side toward the origin of every perpendicular
bisector of G⃗. Any vector whose tip lies outside the first zone is equivalent to
some smaller vector whose tip is inside the first zone. The first Brillouin zone
contains all k⃗−values closer to the origin than any other point of the reciprocal
lattice.

Higher Brillouin Zones

The k⃗−values inside the first Brillouin zone have special significance. We will
generally restrict our attention to these values and ignore the infinity of other
vectors outside this zone. Each vector outside the first Brillouin zone is, of
course, equivalent to a smaller vector inside the first zone.

We will, however, have to refer to these other vectors in certain situations and
it is useful to introduce a terminology for describing them. Suppose we wish,
for example, to discuss the second-smallest k⃗ vector for a particular electronic
state, i.e., the k⃗ vector that is smaller than all but one of the vectors in the set
of equivalent k⃗ vectors for this state. Where is this vector located in reciprocal
space? In Figure 18.23 below we have added several more bisectors to the Figure
18.22 that we used to describe the first zone. These extra bisectors also enclose
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Figure 18.23: Construction of higher zones

various regions of k⃗ space. Consider the shaded region in Figure 18.23. We reach
this region from the origin by crossing one boundary of the first zone. Each k⃗
vector in this region is inside all Brillouin zone boundaries (the bisectors) except
one - the one we crossed. Therefore, for each vector in this region there is one
and only one smaller k⃗ vector, namely, k⃗ − G⃗, where G⃗ is the reciprocal lattice
translation vector whose bisector we crossed. This region is part of the second
Brillouin zone.

The second Brillouin zone is defined as that region of k⃗ space containing each
wave vector that is smaller than all but one of the vectors equivalent to it.
Looking at Figure8.23, there are four parts of the second zone (labelled by II in
Figure 18.23). Crossing one more boundary - one of the boundaries of region II
- we enter a region of k⃗ space where each k⃗ vector is smaller than all but two
equivalent k⃗ vectors. This region is the third Brillouin zone (regions labelled
by III in Figure 18.23). In a similar manner the fourth zone can be identified
(labelled by IV in Figure 18.23).
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Properties of Brillouin Zones

Central to the construction of the first Brillouin zone was the choice of a point
as the origin. The selection of the origin point, however, is arbitrary. We could
have chosen any point of the reciprocal lattice as the origin and constructed a
zone identical to the first Brillouin zone.

Alternatively, we could have generated these other regions by translating the
first Brillouin zone for some arbitrary origin by various lattice translation vectors
G⃗ ........... eventually filling all of reciprocal space as shown in Figure 18.24
below. Thus, the first Brillouin zone is the primitive unit cell of k⃗ space.

Figure 18.24: First Brillouin zone as primitive cell

Another property of Brillouin zones that are higher than the first zone is that,
although they consist of several disjoint segments, using an appropriate choice
of reciprocal lattice translation vectors G⃗, we can translate each segment of
any higher zone into the first zone as shown in Figure 18.25 below. When
all segments have been translated, they will fully cover the first zone with no
overlap, i.e., the area (volume in 3 dimensions) of each zone is identical.

Brillouin Zones in Three Dimensions

We can use the same methods to construct the Brillouin zones for three-dimensional
lattices. The main difference is that the perpendicular bisectors of the recipro-
cal lattice vectors G⃗ are planes instead of lines. As an example we consider a
simple cubic lattice.
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Figure 18.25: Translating higher zone to first zone

Brillouin Zones of a Simple Cubic Lattice

The three-dimensional analog of the square lattice is the simple cubic lattice
which is described by three mutually orthogonal primitive lattice translation
vectors

a⃗ = dx̂ , b⃗ = dŷ , c⃗ = dẑ (18.57)

The reciprocal lattice of a simple cubic lattice is also simple cubic. The sepa-
ration distance between reciprocal lattice points is 2π/d. The primitive lattice
translation vectors defining the reciprocal lattice are

A⃗ = 2π

d
x̂ , B⃗ = 2π

d
ŷ , C⃗ = 2π

d
ẑ (18.58)

To construct the first Brillouin zone, we choose a point of the reciprocal lattice
as the origin and draw reciprocal lattice translation vectors to all adjacent points
of the lattice.

The perpendicular bisectors (planes) of these vectors defines a volume which is
the first Brillouin zone. The bisectors, in this case (see figure below) are six
planes perpendicular to the

x̂(100) , ŷ(010) , ẑ(001) (18.59)

axes and intersecting these axes at ±π/d. The first zone, as shown in Figure
18.26 below, forms a cube. The second Brillouin zone of the simple cubic lattice
is a little more difficult to visualize because it involves more intersecting planes.
It is defined by these boundaries
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Figure 18.26: First Brillouin zone of Simple Cubic Lattice

1. the 6 planes that enclose the first Brillouin zone

2. the 12 planes that are orthogonal to the (110) axes and intersect these
axes at ±

√
2(π/d) as shown in the Figure 18.27 below.

Figure 18.27: Second Brillouin zone of Simple Cubic Lattice
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Figure 18.28 below show three typical segments of the second Brillouin zone.

Figure 18.28: Parts of the Second Brillouin zone

The second zone is a dodecahedron with a cube(first zone) removed from its
center.

Electronic States in a Brillouin Zone

Keep in mind that the significance of each vector in k⃗ space resides in its effect
on the electronic state of the crystal ψE,k⃗(r⃗). In order to determine an analytic
form for this function we must solve the Schrodinger equation for the crystal.

Whatever the form of the wave function, however, we know that it satisfies
Bloch’s theorem

ψE,k⃗(r⃗ + T⃗ ) = eik⃗⋅T⃗ψE,k⃗(r⃗) (18.60)

Each different k⃗ vector in the first Brillouin zone corresponds to a different elec-
tron state. We now ask the question: How many distinct electronic states are
represented by wave vectors in the first Brillouin zone?

If the crystal were actually infinite, then there are an infinite number of different
wave vectors in the first zone and hence the number of electronic states is also
infinite. However, no real crystal is truly infinite. We now see how to take this
fact into account.
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We denote by N the number of primitive unit cells in the crystal. We will now
prove that there are exactly N electronic state in the first Brillouin zone, i.e., N
distinct k⃗ vectors in that zone. Since each electronic state can be occupied by
at most two electrons, one with spin up and one with spin down , the electronic
states in the first zone can be occupied by at most 2N electrons.

We do the proof in one dimension (it can easily be extended to 2− and 3−dimensions).
We consider a 1−dimensional crystal of length L with lattice spacing d (so that
L = Nd since there are N primitive cells). We associate a basis with each lattice
point. We are only interested in bulk properties so we neglect edge effects and
assume that L, the length of the crystal, is chosen so that we have periodic
boundary conditions

ψE,k⃗(0) = ψE,k⃗(L) (18.61)

i.e., the crystal repeats itself forever!

This gives, using Bloch’s theorem

ψE,k⃗(0) = ψE,k⃗(L⃗) = e
ik⃗⋅L⃗ψE,k⃗(L⃗) (18.62)

or that
eik⃗⋅L⃗ = 1→ k⃗ ⋅ L⃗ = kL = kNd = 2πn , n = integer (18.63)

Thus,

k = 2πn

L
= 2π

d
( n
N

) , n = 0,±1,±2, .......,±N
2

(18.64)

The reciprocal lattice of this direct lattice is a lattice in k⃗ space of equally spaced
points with separation of adjacent point equal to 2π/d.

The first Brillouin zone extends from −π/d to +π/d, such that

k = π/d→ n = N/2 (18.65)
k = −π/d→ n = −N/2 (18.66)

Thus, for the values of k⃗ in the first zone, the integer n can assume all integral
values in the range [−N/2,+N/2] and there are N integers in this range.

This result says that there are N electronic states in each Brillouin zone.

All of these ideas form the basis of the detailed discussion of the electronic states
and energies in a crystal, which we now begin.

18.3 Free-Electron andWeak-Binding Approximations;1-
Dimension

The complexity of the potential energy function for a real crystal makes direct
solution of the associated exact Schrodinger equation impossible. We must make

1423



approximations in order to learn something about the energies of the electronic
states.

We will use two approximations in these notes.

First, we will use the so-called free-electron approximation in which the crystal
potential energy function is replaced by a constant. This is a very simple and
a very crude approximation. It reflects only the fact that the electron is con-
strained to move within the crystal.

After learning as much as we can from the free-electron approximation, we
reintroduce the periodic nature of the crystal potential energy in the so-called
weak-binding approximation. In using the second approximation we will only
look for qualitative solution. We also start with a simple one dimensional sys-
tem for simplicity.

We will not attempt to find explicit forms for the electronic wave functions, but
instead concentrate on determining the energy eigenvalues. In particular, we
shall only attempt a determination of graphs for the energy versus the wave
vector and the density of states as a function of the energy. These features
will enable us to get a clear picture of what is happening in crystals due to
translational symmetry.

18.3.1 The Free-Electron Approximation

The potential energy of an electron in a crystal is a periodic function of vecr
and has singularities at the nuclear sites. The dominant effect of the potential
on the electron is to keep it confined inside the crystal. If this is the case,
then we can neglect the periodicity and the singularities in a the free-electron
approximation and determine what we might call a zero-order picture of the
energy as a function of the wave vector. This picture will then be modified in a
weak-binding approximation by reimposing periodicity and the singularities so
that the basis structure of the energy versus wave vector curve remains basically
unchanged except where the added constraints are dominant. That is the reason
for the name weak-binding.

We illustrate this approximation in Figure 18.29 below. The dashed line in the
figure represents V (x) in the free-electron approximation. It is just a finite
square well in one dimension. It is equivalent to replacing the periodic potential
with its average value.
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Figure 18.29: Free Electron Approximation

Electronic Wave Functions

In this finite square well approximation, the Schrodinger equation inside the
crystal is that of a free particle

− h̵2

2me
∇2ψE(r⃗) = EψE(r⃗) (18.67)

The solutions are the plane-wave eigenfunctions of the free-particle Hamiltonian

ψE(r⃗) = Aeik⃗
′⋅r⃗ (18.68)

with energy eigenvalues

E = h̵
2k′2

2me
(18.69)

where k⃗′ is the wave vector related to the linear momentum of the particle by
p⃗ = h̵k⃗′.
12pt] The solution is in the form of a Bloch function

ψE,k⃗′(r⃗) = e
ik⃗′⋅r⃗uE,k⃗′(r⃗)→ uE,k⃗′(r⃗) = A (18.70)

At this point, no limit has be imposed on k⃗′. It is called an extended-zone-
scheme wave vector. In this case, k⃗′ is a redundant label because the E and k⃗′

are simply related by the (18.69).

As we said earlier, however, we usually choose the wave vector k⃗ in Bloch’s
theorem to be the smallest of the set of equivalent wave vectors, which is called
a reduced-zone-scheme wave vector. This wave vector k⃗ is related to k⃗′ by
k⃗′ − k⃗ = G⃗, where G⃗ is a reciprocal lattice translation vector.

In the reduced zone scheme we can also write the wave function as a Bloch wave
using

ψE,k⃗(r⃗) = Ae
iG⃗⋅r⃗eik⃗⋅r⃗ → uE,k⃗(r⃗) = Ae

iG⃗⋅r⃗ (18.71)

In the reduced zone scheme, both the energy and k⃗ labels are required since these
two quantities are no longer simply related as in the extended zone scheme.
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E(k) for a One-Dimensional Crystal

We will use an E versus k graph to show the relationship between the energies
of the electronic states of a crystal and the allowed values of the wave vector
k⃗. For example, in the 1−dimensional crystal, if we let k take on all values, i.e.,
−∞ < k < +∞ and plot E = h̵2k2/2me, we obtain the parabola shown in Figure
18.30 below. On the horizontal axis - the k−axis - we find values of k from every

Figure 18.30: E versus k - Extended Zone Scheme

Brillouin zone of the lattice and corresponding to each k value there is an E
value.

The plot of E versus k above is in the extended zone scheme , i.e., it contains
values of k from all Brillouin zones. The labeled k values correspond to the
Brillouin zone boundaries.

Our earlier discussions imply that as far as Bloch’s theorem is concerned , the
only significant values of k are those in the first Brillouin zone.

As we saw earlier, for a 1−dimensional crystal with N primitive unit cells, the
allowed values of k in the first zone are given by

k = 2π

d
(m
N

) , m = 0,±1,±2, .......,±N
2

(18.72)

Since N is a very large number, in general, the values of k are very closely
spaced.

We can restrict our attention to the first Brillouin zone by plotting E versus k
in the reduced zone scheme. To do so we translate all k⃗ vectors in the higher
zones on the plot in the extended zone scheme (Figure 18.30 above) into the
first zone given by

−π
d
≤ k ≤ +π

d
(18.73)
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That means we add the appropriate reciprocal lattice translation vector to k⃗′

to generate a wave vector in this range,

k = k′ ± 2π

d
n′ , n′ = integer (18.74)

In Figure 18.31 below we show explicitly how to generate the reduced zone plot.

Figure 18.31: E versus k - Reduced Zone Scheme

The arrows labeled a correspond to n′ = 1 and the arrows labeled b correspond
to n′ = 2.

The final plot in the reduced zone scheme is shown in Figure 18.32 below.
We note that in the plot for the reduced zone scheme an infinite number of
energies correspond to each value of k in the first zone. There is an electronic
wave function corresponding to each energy.

For each k, we can specify a particular wave function by giving the energy,
i.e., ψE,k, or we can introduce a new quantum number to distinguish different
electronic states with the same value of k. This new quantum number, n,
is shown in Figure 18.32 above. We say that each of the ranges of energy
corresponding to k in the first Brillouin zone is a band and n labels the bands
and is called the band index. We write ψn,k(x). Figure 18.32 above shows the
first four bands and part of the fifth band of the 1−dimensional crystal.

The wave function for an electron in this crystal with energy E ≤ h̵2π2/2med
2
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Figure 18.32: E versus k - Final Plot in Reduced Zone Scheme

is

ψ1,k(x) = Aeikx , A2L =
L

∫
0

ψ ∗1,k (x)ψ1,k(x)dx = 1→ A = 1/
√
L (18.75)

For an energy in the second band, we have ψ2,k(x) = Aeik
′x where

k′ = k + 2π

d
, k < 0 , k′ = k − 2π

d
, k > 0 (18.76)

and so on for higher bands.

Summarizing the results we have found in this free-electron approximation:

1. We can represent the energy eigenvalues of the electron in a 1−dimensional
crystal in two ways, namely, the extended-zone (wave vectors take on all
values) and the reduced-zone (wave vectors in first Brillouin zone) schemes.

2. We defined bands, each representing N values of k and corresponds to
states that can be occupied by at most 2N electrons.

3. The bands are connected at the Brillouin zone boundaries.

The Density of States in the Free-Electron Approximation

We define wkdk = number of states with wave vectors between k and k+dk. As
we have seen, there are two states for each wave vector and the wave vectors
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are uniformly spaced along the k−axis since

k = 2π

d
(m
N

) , m = 0,±1,±2, .......,±N
2

(18.77)

This says that w(k) is a constant (neglecting the discreteness of k). Since there
are 2N states in the first Brillouin zone, where ∆k = 2π/d, we have

w(k)∆k = w(k)2π

d
= 2N → w(k) = Nd

π
= L
π

, L = length of crystal (18.78)

A more interesting physical quantity is D(E), the density of states as a function
of the energy. We define

D(E)dE = number of states with energy between E and E + dE (18.79)

For each interval dE we can find a corresponding interval in k space dk. Then
D(E) and w(k) are related by

D(E)dE = 2w(k)dk , k > 0 (18.80)

where the factor of 2 arises because each value of E corresponds to two values
of k - one positive and the other negative. We then have

D(E) = 2w(k)
dE
dk

(18.81)

In the free-electron approximation, E = h̵2k2/2me so that

dE

dk
= h̵2

me
k (18.82)

and the density of states in the free-electron approximation is

D(E) = L
√

2me

πh̵
E−1/2 (18.83)

Figure 18.33 above shows that the density of states is largest at small energies
and falls off as E increases. Note that we are not restricting k to the first
Brillouin zone in this discussion, although we are taking it to be positive.

The Fermi Energy

Each band in a crystal can be occupied by as many as 2N electrons. Elec-
trons have half-integral spin and are fermions. In the orbital approximation the
occupation of electronic states by these electrons is governed by Fermi-Dirac
statistics. We thus define f(E) = probability that an electronic state with en-
ergy E will be occupied by an electron(the distribution function). We then
have

f(E) = 1

e(E−µ)/kBT + 1
(18.84)
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Figure 18.33: Density of states D(E)

Figure 18.34: Fermi-Dirac Distribution Function

where kB = 1.380622 × 10−16erg/○K = Boltzmann’s constant, T is the tempera-
ture, and µ is a constant that is independent of T . The distribution function is
shown in Figure 18.34 below.
The dashed line corresponds to T = 0 and the solid line corresponds to kBT << µ.

The product D(E)f(E) is equal to the density of occupied electronic states. As
can be seen from Figure 18.34 above, at T = 0 we find that there is an energy
EF such that all states with E < EF are occupied but no states with E > EF
are occupied. EF is called the Fermi energy. At T = 0 the Fermi energy is the
maximum energy of the electrons in the crystal and is equal to the constant µ
in the distribution function. We can define a wave vector kF corresponding to
the Fermi energy (the Fermi wave vector).

To obtain an expression for kF we introduce a new quantity η, defined to be the
number of electrons per primitive unit cell in the crystal. The total number of
electrons in the crystal is given by Nη. At T = 0, the total number of occupied
states is given by

2

kF

∫
0

w(k)dk = Nη (18.85)

Using

w(k) = Nd
π

(18.86)
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we get

kF = π

2d
η (18.87)

The corresponding Fermi energy in the free-electron approximation is then

EF = h̵2

2me
k2
F = h̵2

32med2
η2 (18.88)

In the figures below we show the location of the Fermi energy on plots of E
versus k in the extended and reduced zone schemes and on a plot of D(E)
versus E. We also show the Fermi energies (and Fermi wave vectors) for various
values of η.

Figure 18.35: Fermi Energy in Extended Zone Scheme - Various η values

The arrows label the Fermi energies and Fermi wave vectors in the figures above
and below.

Notice that as the number of electrons per primitive unit cell increases, the
Fermi energy, and hence the number of occupied states, increases. The Fermi
energy enables us to describe the occupation of electronic states in the crystal (at
T = 0), and in the 1-dimensional free-electron approximation it can be calculated
knowing only the repeat distance d and the number of electrons per primitive
unit cell η.
The shaded region shows the occupied states for a crystal with η = 2.
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Figure 18.36: Fermi Energy in Reduced Zone Scheme - Various η values

Figure 18.37: Occupied states on D(E) plot - Various η values

18.4 Introduction to the Weak-Binding Approx-
imation

We must now introduce the periodicity of the crystal potential energy. We write

Ĥ = T̂ + V̂ (x) (18.89)

where V̂ (x) has the periodicity of the crystal. We assume that the electron in-
teractions due to the potential energy is weak and they still move easily within
the crystal, although they are now influenced by the periodic potential. This is
the so-called weak-binding approximation.
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We still cannot solve the exact Schrodinger equation. How can we introduce
the weak periodic potential and also use all the results of the free-electron ap-
proximation.

One possible approach is to use perturbation theory, where the free-electron ap-
proximation is used as the zeroth-order solution and V̂ (x) as the perturbation
Hamiltonian. For example, using

ψ
(0)
E,k(x) =

1√
L
eikx (18.90)

as the zeroth-order wave functions, the first-order perturbed wave function can
be written as

ψE,k(x) = ψ(0)
E,k(x) + ∑

k′≠k

⟨k′∣ V̂ ∣k⟩
E(0)(k) −E(0)(k′)

ψ
(0)
E,k′(x)

= 1√
L
eikx + ∑

k′≠k

Vk′k
(h̵2k2/2me) − (h̵2k′2/2me)

( 1√
L
eik

′x) (18.91)

where

Vk′k = ⟨k′∣ V̂ ∣k⟩ = 1

L

+L/2

∫
−L/2

ei(k−k
′)xV (x)dx (18.92)

This expression represents a mixing of the functions eik
′x with the zeroth-order

function eikx to form the first-order approximate wave function.

If perturbation theory is valid in this case, then the above result is a good
approximation to the electronic wave function.

Let us assume that this approximation is valid and investigate the summation
term. The summation is over all allowed wave vectors so it represents a large
number of terms. We ask the question - are there any terms where Vk′k = 0? If
so, then these functions do not mix with

ψ
(0)
E,k(x) =

1√
L
eikx

We can answer this question by applying the translation operator T̂op on the
integrand of Vk′k. This leaves Vk′k unchanged since it simply corresponds to
redefining the zero of the dummy variable of integration, x, and we may consider
the integral to extend from −∞ to +∞ if nd≪ L. For a 1−dimensional crystal,
any lattice translation vector can be written as nd so we have

Vk′k =
1

L

+L/2

∫
−L/2

T̂ope
i(k−k′)xV (x)dx = 1

L

+L/2

∫
−L/2

ei(k−k
′)(x+nd)V (x + nd)dx (18.93)
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Since V (x) is invariant under translation, we have

Vk′k =
1

L

+L/2

∫
−L/2

ei(k−k
′)(x+nd)V (x)dx = ei(k−k

′)ndVk′k (18.94)

This result says that the matrix element Vk′k = 0 unless

ei(k−k
′)nd = 1 (18.95)

This is the definition of a reciprocal lattice translation vector. Therefore, we
have shown that the only states that mix with ψ(0)

E,k(x) in a first-order pertur-
bation calculation are states with wave vectors k′ differing from k by reciprocal
lattice vectors. All other functions eik

′x can be discarded from the summation,
which can then be written

ψE,k(x) =
1√
L
eikx + ∑

G≠0

VG
(h̵2k2/2me) − (h̵2(k −G)2/2me)

( 1√
L
ei(k−G)x)

(18.96)
where

VG = 1

L

+L/2

∫
−L/2

eiGxV (x)dx (18.97)

Since both V (x) and eiGx are periodic, VG can be written as the integral over
one primitive unit cell

VG = 1

L
N

+d/2

∫
−d/2

eiGxV (x)dx = 1

d

+d/2

∫
−d/2

eiGxV (x)dx (18.98)

This important result - that the only free-electron wave functions that mix with
ψ

(0)
E,k(x) are those wave vectors k

′ satisfying k′−k = G for some reciprocal lattice
vector G - can be shown to hold in any order of perturbation theory. It is true,
in fact, even if perturbation theory breaks down!

The energy to second order can be written as

Ek ≈
h̵2k2

2me
+ ∑
G≠0

∣VG∣2

(h̵2k2/2me) − (h̵2(k −G)2/2me)
(18.99)

where k is the wave vector in the extended zone scheme and hence h̵2k2/2me is
the energy in zeroth order.

Validity of Perturbation Theory

This analysis depends on the question: Is perturbation theory valid for this
problem?
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The first-order expression for the wave function is a good approximation to the
true electronic wave function provided that none of the states in the summation
over G mixes strongly with ψ(0)

E,k(x), i.e., provided that

∣ VG
(h̵2k2/2me) − (h̵2(k −G)2/2me)

∣ << 1 (18.100)

for all G ≠ 0. If there are states that mix strongly, i.e., for which the above in-
equality is violated, then these states cannot be handled by perturbation theory.
We can rewrite the inequality as

∣VG∣ << h̵2

2me
∣G(2k −G)∣ (18.101)

Since this inequality is violated for any state with k ≈ G/2 there exist states for
which we cannot use perturbation theory (if VG ≠ 0). So, as long as VG is small
enough (V (x) is weak enough), there exist some states, i.e., those for which k is
not nearly equal to any G/2, for which the perturbation expansion can be used.
For these states the above expressions for the first-order wave function and the
second-order energy are valid and show that the wave functions and energies
differ from their zeroth-order counterparts, although not very much.

In the weak-binding approximation, we assume that the energies of these states
is essentially the same as in the free-electron approximation.

On the other hand, for states with k = G/2, perturbation theory cannot be used
since the function ei(k−G)x mixes strongly with eikx. We must treat these states
some other way.

It is precisely these cases for which the energy will differ most from the free-
electron energy in the dependence of E on k when we move from the free-electron
approximation to the weak-binding approximation.

Strongly Mixed States

Let us look back at the free-electron E versus k plots we developed earlier
and locate the states that are strongly mixed. We have found that states
with wave vector near k = G/2 will strongly mix with states with wave vec-
tor k′ = k−G ≈ −G/2, i.e., the strongly mixed states are those with wave vectors
near opposite Brillouin zone boundaries. The plots below show (in both the ex-
tended zone scheme and the reduced zone scheme) the states that are strongly
mixed.

The strongly mixed states are connected by an arrow (see Figure 18.38 and
18.39) and numbered for convenience(triangles indicate the state energies). Be-
cause of the restriction k′ − k = G, there are at most two electronic states that
are close to one another in energy and strongly mixed.
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Figure 18.38: Strongly mixed states in Extended Zone Scheme

Figure 18.39: Strongly mixed states in Reduced Zone Scheme

The strongly mixed states are

1↔ 2 , 3↔ 4 , 5↔ 6 (18.102)

Notice that states 1 and 6 are not strongly mixed even though their wave vectors
are near zone boundaries and related by a reciprocal lattice translation vector.
These states are widely separated in energy, so the denominator in the pertur-
bation expansion term corresponding to these two states is large, and the states
are weakly mixed.

Calculation of the Energy Shifts

We now do a simple calculation to show how the energies of the strongly
mixed states are affected by the periodic potential energy. We start with the
Schrodinger equation

(Ĥ −E)ψE(x) = 0 , Ĥ = T̂ + V̂ (x) (18.103)
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We are interested in an energy corresponding to two strongly mixed states with
wave vectors

k ≈ G/2 and k′ = k −G (18.104)

In this case, we can expand ψE(x)i n the complete set of free-particle states,
summing only over equivalent wave vectors, and keep only the terms with large
expansion coefficients for the energy of interest

ψE(x) ≈ a 1√
L
eikx + b 1√

L
eik

′x (18.105)

Note that the two free-particle states (see the reduced zone energy plot above)
kept in this expansion are nearly degenerate.

We solve this problem by substituting the two state expansion for the wave
function into the Schrodinger equation

(Ĥ −E)ψE(x)dx = 0 = (Ĥ −E) (a ∣k⟩ + b ∣k′⟩) (18.106)

⟨k∣ (Ĥ −E) (a ∣k⟩ + b ∣k′⟩) = 0 = a(Ĥkk −E) + bHkk′ (18.107)

⟨k′∣ (Ĥ −E) (a ∣k⟩ + b ∣k′⟩) = 0 = aĤk′k + b(Hk′k′ −E) (18.108)

These two homogeneous equation have a nontrivial solution only if

∣ Ĥkk −E Hkk′

Ĥk′k Ĥk′k′ −E
∣ = 0 (18.109)
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where

Ĥkk = ⟨k∣ Ĥ ∣k⟩

= 1

L

L/2

∫
−L/2

e−ikx ( h̵2

2me

d2

dx2
+ V (x)) eikxdx = h̵

2k2

2me
(18.110)

Ĥk′k′ = ⟨k′∣ Ĥ ∣k′⟩

= 1

L

L/2

∫
−L/2

e−ik
′x ( h̵2

2me

d2

dx2
+ V (x)) eik

′xdx = h̵
2k′2

2me
(18.111)

Ĥkk′ = ⟨k∣ Ĥ ∣k′⟩ = 1

L

L/2

∫
−L/2

e−ikx ( h̵2

2me

d2

dx2
+ V (x)) eik

′xdx

= 1

L

L/2

∫
−L/2

ei(k
′−k)xV (x)dx = V−G = V ∗

G (18.112)

Ĥk′k = ⟨k′∣ Ĥ ∣k⟩ = 1

L

L/2

∫
−L/2

e−ikx ( h̵2

2me

d2

dx2
+ V (x)) eikxdx

= 1

L

L/2

∫
−L/2

ei(k−k
′)xV (x)dx = VG (18.113)

Solving for the energy eigenvalues we get

(Ĥkk −E)(Ĥk′k′ −E) −Hkk′Ĥk′k = 0 (18.114)

E2 − (Ĥkk + Ĥk′k′)E −Hkk′Ĥk′k = 0 (18.115)

or

E = 1

2
[ h̵

2k2

2me
+ h̵

2k′2

2me
] ± 1

2

¿
ÁÁÀ[ h̵

2k2

2me
− h̵

2k′2

2me
]
2

+ 4 ∣VG∣2 (18.116)

We are especially interested in the behavior of these energies at or near a Bril-
louin zone boundary. At a zone boundary, we have

∣k∣ = ∣k′∣ = G/2 (18.117)

and thus

E = h̵
2k2

2me
± ∣VG∣ (18.118)

This result shows that the energies of the two strongly mixed states at a zone
boundary are split about their average energy

h̵2k2

2me
(18.119)
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by an energy separation of 2 ∣VG∣ which is called a band gap. As we shall see
shortly, it separates two nearly free-electron bands.

What happens near a zone boundary?

There we have k ≈ G/2 and k′ ≈ −G/2. If we introduce a new variable κ defined
by

κ = 1

2
G − k (18.120)

we can write

E = h̵2

2me
(G

2
)

2

+ h̵
2κ2

2me
± 1

2

¿
ÁÁÀ[ h̵

2Gκ

2me
]
2

+ 4 ∣VG∣2 (18.121)

This equation shows that as we move away from a zone boundary, and κ in-
creases, the splitting between the two states with wave vectors k and k′ increases.
In addition, the average energy of the two states increases.

As we get further away from the zone boundary, we eventually leave the region
of strongly mixed states.

Once far enough from the boundary so that perturbation theory is valid and
can be used to calculate the energy shift, we know that the energies of the
electronic states in the weak-binding approximation are nearly the same as the
corresponding energies in the free-electron approximation.

If we are only interested in the qualitative (or semiquantitative) behavior of E
versus k , we can simply use the free-electron energies far from the boundaries.

Figures 18.40 and 18.41 below show the effect of the periodic potential energy on
the first two bands of the free-electron E versus k plot of the one-dimensional
crystal in the reduced and extended zone schemes. The dashed lines are the
free-electron result.

Figure 18.40: Band Gaps in Reduced Zone Scheme

We can see from the figure that in the weak-binding approximation the energy
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Figure 18.41: Band Gaps in Extended Zone Scheme

splitting calculated using the results above, leads to a gap between the first and
second bands. The magnitude of the gap, 2 ∣VG∣ is dependent on the size of the
matrix element VG. This means that the magnitude of the gap between bands
2 and 3 will differ from that of the gap between 1 and 2 and so on.

Bands and band gaps for the first three bands are shown in both the extended
and reduced zone schemes in Figures 18.42 and 18.43 below. The dashed lines
are the free-electron result.

Figure 18.42: Band Gaps in Reduced Zone Scheme

Figure 18.43: Band Gaps in Extended Zone Scheme
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Qualitative Explanation of Band Gaps

Consider the approximate wave function

ψE(x) ≈ a 1√
L
eikx + b 1√

L
eik

′x (18.122)

At the first Brillouin zone boundary, we have

∣k′∣ = ∣k∣ = π
d

(18.123)

so that the two free-electron wave functions that mix are degenerate and are
given by

ψ
(0)
E,±π/d(x) =

1√
L
e±iπx/d (18.124)

where the zero superscript reminds us that these are free-electron approxima-
tions to the wave function. The two weak-binding wave functions ψE(x) at
the zone boundary, where ∣a∣ = ∣b∣ = 1/

√
2 from the solution of the eigenvalue

equation can be written as normalized standing-wave eigenfunctions

ψE,c(x) =
1√
2
(ψ(0)

E,+π/d(x) + ψ
(0)
E,−π/d(x)) =

√
2

L
cos(π

d
x) (18.125)

ψE,s(x) =
1√
2
(ψ(0)

E,+π/d(x) − ψ
(0)
E,−π/d(x)) =

√
2

L
sin s(π

d
x) (18.126)

The probability densities ∣ψE,c(x)∣2 and ∣ψE,s(x)∣2 for wave vectors at the first
Brillouin zone boundary in the case of one atom per primitive unit cell (with
the origin at one of the atoms) is shown in Figure 18.44 below.

Figure 18.44: Probability Densities

We see that ψE,c(x) has a maximum of probability density near each singularity
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of the strongly attractive potential energy of the crystal. On the other hand,
ψE,s(x) has a minimum of probability density near each singularity. Conse-
quently, we expect to see a splitting between the energies for these two wave
functions. This splitting is just the band gap 2 ∣VG∣.

Density of States in the Weak-Binding Approximation

How do we modify D(E) in the weak-binding approximation? Our original
derivation of w(K) is not dependent on the approximation V (x) = constant.
Thus, that derivation is also valid in the weak-binding approximation and we
still have

w(k) = Nd
π

= L
π

(18.127)

Similarly, the derivation of the Fermi wave vector is only based on

2

kF

∫
0

w(k)dk = Nη (18.128)

and does not use the assumption of free-electron behavior (it does assume a
monotonic increase of E with k in the extended zone scheme). So, in the weak-
binding approximation, we still have

kF = π

2d
η (18.129)

where η is the number of atoms per primitive unit cell. The expression for
the Fermi energy cannot be carried over into the weak-binding approximation
because we used the fact the the energy E was quadratic in the wave vector k
in the derivation.

Metallic and Nonmetallic Behavior

Now we consider a 1-dimensional crystal with one electron per primitive unit
cell (η = 1). The Fermi wave vector is kF = π/2d. For this wave vector the Fermi
energy is near the middle of the first band (see the earlier figure). For η = 1,
the first band is half-filled. Since the Fermi energy is the maximum energy for
the electrons at absolute zero, no states with E > EF are occupied. This means
that there exist empty states infinitesimally close to the energy of the highest
occupied state and an infinitesimal increment of energy can excite an electron to
one of these empty states (turn on a small electric field). Thus, for infinitesimal
electric fields we get infinitesimal currents (extra kinetic energy).

A crystal that exhibits such behavior is called a metal.

In contrast, consider a crystal, with two electrons per primitive unit cell. In this
case, kF = π/d, which corresponds to the edge of the band - the first band is full,
i.e., all the electronic states in this band are occupied at absolute zero. Since
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the next nearest empty state is separated from the first band by an energy gap
of magnitude 2 ∣VG∣, at least this much energy is required in order to excite an
electron into one of the empty states.

A crystal that exhibits such behavior is called an insulator.

18.5 The Kronig-Penney Model

18.5.1 Exact Analysis
The Kronig-Penney model of a crystal consists of an infinite series of square
wells as shown in Figure 18.45 below. Each well is of width d−s and depth V0.

Figure 18.45: Kronig-Penney Potential

Adjacent wells are separated by a distance s, the width of each barrier. The
repeat distance for this crystal - the length of the primitive unit cell - is d. The
only restrictions we place on the well parameters at this time are

s > 0, s < d, V0 > 0 (18.130)

We have not imposed either free-electron or weak-binding behavior. This will
be an exact solution.

The Eigenvalue Equation

The Kronig-Penney potential energy is a periodic function, which means that
we can use Bloch’s theorem to connect the wave functions from different regions
of the crystal. In one dimension, the second form of Bloch’s theorem says

ψE,k(x) = eikxuE,k(x) (18.131)

where uE,k(x) is a periodic function invariant under translation by any lattice
translation vector T = nd, i.e.,

uE,k(x + nd) = uE,k(x) (18.132)

the relationship between E and k is not known yet.
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From the graph(Figure 18.45) of the potential function, we see that there are
two regions of potential energy:

1. ranges of x for which V = 0→ nd ≤ x ≤ nd + (d − s)

2. ranges of x for which V = V0 → nd + (d − s) ≤ x ≤ (n + 1)d

where n = 0,±1,±2, ...... The form of the wave function is different in these two
regions.

In the region 0 ≤ x ≤ (d − s) the potential energy is zero and the electronic
Schrodinger equation is

d2ψE,k(x)
dx2

+ 2me

h̵2
EψE,k(x) = 0 (18.133)

with solutions

ψE,k(x) = Aeiαx +Be−iαx , α = 1

h̵

√
2meE (18.134)

The form of uE,k(x) is then

uE,k(x) = Aei(α−k)x +Be−i(α+k)x (18.135)

Using the same sort of arguments for the region (d− s) ≤ x ≤ d where V = V0 we
have the electronic Schrodinger equation

d2ψE,k(x)
dx2

− 2me

h̵2
(V0 −E)ψE,k(x) = 0 (18.136)

with solutions

ψE,k(x) = Ceβx +De−βx , β = 1

h̵

√
2me(V0 −E) (18.137)

The form of uE,k(x) is then

uE,k(x) = Ce(β−ik)x +De−(β+ik)x (18.138)

There are four unknowns in these solutions A, B, C and D, but there are also
four connecting equations - two for the periodicity conditions and two for the
continuity of u and du/dx.

The periodicity conditions give

u(0) = u(d) (18.139)

A +B = e−ikd(Ceβd +De−βd) (18.140)
du

dx
∣
0
= du

dx
∣
d

(18.141)

iα(A −B) = βe−ikd(Ceβd −De−βd) (18.142)
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The continuity conditions give

lim
ε→0

u(d − s + ε) = lim
ε→0

u(d − s − ε) (18.143)

Aeiα(d−s) +Be−iα(d−s) = Ceβ(d−s) +De−β(d−s) (18.144)

lim
ε→0

du

dx
∣
d−s+ε

= lim
ε→0

du

dx
∣
d−s−ε

(18.145)

iα(Aeiα(d−s) −Be−iα(d−s)) = β(Ceβ(d−s) −De−β(d−s)) (18.146)

These four equations have nontrivial solutions only if the determinant of the
matrix of the coefficients of A, B, C and D vanishes

RRRRRRRRRRRRRRRRRRR

1 1 e−ikdeβd e−ikde−βd

iα −iα βe−ikdeβd −βe−ikde−βd
eiα(d−s) e−iα(d−s) eβ(d−s) e−β(d−s)

iαeiα(d−s) −iαe−iα(d−s) βeβ(d−s) −βe−β(d−s)

RRRRRRRRRRRRRRRRRRR

= 0 (18.147)

Some algebra gives

coskd = cosα(d − s) coshβs + β
2 − α2

2αβ
sinα(d − s) sinhβs (18.148)

This is a transcendental equation relating the electronic energy E to the quan-
tum number k in the Kronig-Penney model.

Limiting Cases

1. In the limit V0 → 0, the particle will be confined to one of the square wells
in the model crystal. In this case the energy eigenvalue equation becomes

coskd

coshβs
= cosα(d − s) + β

2 − α2

2αβ
sinα(d − s) tanhβs

0 = cosα(d − s) + β

2α
sinα(d − s)

sinα(d − s) = 0→ α(d − s) = nπ

α2 = n2π2

(d − s)2
= 2meE

h̵2

E = n2π2h̵2

2me(d − s)2
(18.149)

which is the familiar result for a particle in an infinite box.

2. Now we keep V0 finite, fix the width of each well, and let the well separation
s → ∞. In this case, wells will be completely isolated from one another
and we expect the eigenvalue equation to reduce to the equation for a
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particle in a single finite square well. We find

0 = cosα(d − s) + β
2 − α2

2αβ
sinα(d − s)

cotα(d − s) = α
2 − β2

2αβ
(18.150)

which is the standard transcendental equation of the finite square well.

3. Let us remove the periodicity of V (x). There are three ways to do this

V0 → 0 or s→ 0 or s→ d (18.151)

In each case, we get

E = h̵
2k2

2me
(18.152)

which is the expected result for a free particle.

Confident that we have arrived at a sensible eigenvalue equation we now
look at solutions of the exact equation.

Solutions of the Eigenvalue Equation

A form of the eigenvalue equation that is particularly easy to work with is
obtained by considering cases where

V0 →∞ , s→ 0 such that V0s remains constant (18.153)

In this case we have

coskd = cosαd + β

2α
sinαd sinhβs (18.154)

coskd = cosαd +
1
h̵

√
2meV0

2α
sinαd sinh

1

h̵

√
2meV0s (18.155)

coskd = cosαd +
1
h̵

√
2meV0

2α
sinαd

1

h̵

√
2meV0s (18.156)

coskd = cosαd + meV0sd

h̵2

sinαd

αd
(18.157)

If we choose
meV0sd

h̵2
= 1 (18.158)

we have
coskd = cosαd + sinαd

αd
(18.159)

This result clearly shows the band structure, that is, since the value of the left
hand side of this equation is between 1 and −1, solutions only exist for energies
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E such that the magnitude of the right hand side is ≤ 1.

Energies violating this condition do not correspond to possible states of the
particle.

In Figure 18.46 below we plot the right hand side versus αd for αd ≤ 3π.

Figure 18.46: Kronig-Penney Model - Transcendental Plot

We find that the lowest allowed energy of the particle in this Kronig-Penny
crystal is

E = 0.174
π2h̵2

2med2
(18.160)

Looking at the regions lying between +1 and −1 we see the structure of energy
bands and band gaps clearly revealed. In particular, the particle can have any
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energy in the following ranges

0.174 ≤ E ≤ 1 → band 1

1.370 ≤ E ≤ 4 → band 2

4.490 ≤ E ≤ 9 → band 3

States of the system exist for any energy in one of these bands. No solution
exist if

1 ≤ E ≤ 1.37 → gap 1

4 ≤ E ≤ 4.49 → gap 2

These results are very different from those obtained by solution of the Schrodinger
equation for an atom or molecule. Instead of discrete bound levels, we find con-
tinuous bands of allowed energies and intervening gaps of forbidden energies.

A plot of E versus k can be made from the eigenvalue equation. An example is
shown in Figure 18.47 below.

Figure 18.47: Energy Bands and Gaps in the Kronig-Penney Model

The dashed line shows the free-electron approximation, i.e., treating the Kronig-
Penney model as a giant square well.
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Weak-Binding Limit

In this limit we let the well separation s get small. In particular, we assume that
s is sufficiently small that the barriers can be treated as a small perturbation
on a constant potential energy. In this way, we can approach the weak-binding
limit through the exact energies. If s is small we assume that

αs << 1 and βs << 1 (18.161)

In this case, we can write the electronic energy as

E = E0 + ε =
h̵2k2

2me
+ ε (18.162)

We want to expand the exact eigenvalue equation in the small parameter ε. We
write

α = α0 + α1 =
1

h̵

√
2meE0 + α1 =

1

h̵

√
2meE (18.163)

β = β0 + β1 =
1

h̵

√
2me(V0 −E0) + β1 =

1

h̵

√
2me(V0 −E) (18.164)

We then have

α1 =
1

h̵

√
2me(E0 + ε) −

1

h̵

√
2meE0 =

1

h̵

√
2meE0 ((1 + ε/E0) − 1)

= 1

h̵

√
2meE0 ((1 + ε/2E0 + ....) − 1) = meε

h̵2k
− m2

eε
2

2h̵4k3
(18.165)

and

β1 =
1

h̵

√
2me(V0 −E) − 1

h̵

√
2me(V0 −E0)

= −β0

2

ε

V0 −E0
− β0

8

ε2

(V0 −E0)2
(18.166)

Using trigonometric identities for sin(a± b) , cos(a± b) and Taylor series expan-
sions of cos, sin, cosh and sinh function, the eigenvalue equation becomes

coskd = cosαd + sα
2 + β2

2α
sinαd (18.167)

We can also write
α2 + β2

2α
= α

2
0 + β2

0

2α0
− α

2
0 + β2

0

2α2
0

α1 (18.168)

This only retains terms to order ε, but when multiplied by s sinαd the second
order terms are obtained.
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Substitution gives

(−1

2
α2

1d
2 + α

2
0 + β2

0

2α0
sα1d) coskd

+ (−α1d +
α2

0 + β2
0

2α0
s − α

2
0 + β2

0

2α2
0

α1s) sinkd = 0 (18.169)

Using this expression we can solve explicitly for the energy for wave vectors at
the Brillouin zone boundaries and determine the band gaps.

In the extended zone scheme the boundaries occur at

kd = nπ , n = integer (18.170)

For these values of k we have

sinkd = 0 , coskd = (−1)n (18.171)

Therefore, at zone boundaries the second term is zero and the first term gives
two conditions for α1

α1d = 0 or α1d =
α2

0 + β2
0

α0
s (18.172)

The first choice gives ε = 0 and the second choice gives ε = 2V0s/d and thus we
get a band gap of energy ∆E = 2V0s/d at the zone boundary in the weak-binding
approximation.

18.6 Free-Electron andWeak-Binding Approximations;2-
Dimensions

We will now study two-dimensional crystals, examining the behavior of energy
as a function of wave vector and of the density of states as a function of energy.

The study of electron band theory in one dimension was comparatively simple
for several reasons. First, there is only one Bravais lattice in one dimension;
thus the only difference between various one-dimensional problems arises from
such factors as the number of atoms per primitive unit cell, the strength of
the potential, and the separation of the lattice points. This situation contrasts
strikingly with that in two and three dimensions, where there are 5 and 14
Bravais lattices, respectively, each of which poses its own special problem.

Thus, there is a considerable increase in the complexity of any calculation in
band theory as the number of dimensions increases.
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18.6.1 The Free-Electron Approximation
Let us consider a two-dimensional crystal in the free-electron approximation,
that is, we shall neglect the periodic part of the crystal potential energy V (x, y)
and assume that the electrons are free to move about within the confines of the
crystal. In this approximation the equation relating the energy of an electronic
state to the wave vector is

E = h̵
2k2

2me
(18.173)

where the two-component wave vector can be expressed as

k⃗ = kxx̂ + ky ŷ (18.174)

In order to see the basic structure of such a crystal, we must examine plots of E
versus k. Since k is a two-component vector, E(k) is a paraboloid of revolution,
as shown in Figure 18.48 below in the extended zone scheme.

Figure 18.48: E(k) paraboloid

Eventually we will want to use the reduced zone scheme and identify E versus
k graphs so as to incorporate the periodic nature of V (r⃗). It is clear that each,
of these steps is rather difficult if we use the three-dimensional graph in Figure
18.48.

Moreover, even if we could draw the resulting diagrams, their complexity might
obscure some of the information they contain.

For this reason, we will now introduce two other ways of representing the energy
of the electronic states of a crystal.

E versus Path Distance

The first requires that we pick a path in k space (i.e., a continuous connected
set of line segments) and plot the energy as a function of the distance along this
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path. We will represent the distance along the path by the integral

∫
c

dk (18.175)

For example, suppose that we choose the path shown in Figure 18.49 below.

Figure 18.49: Path in k space
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Using the quadratic relation between E and k for the energy in the free-electron
approximation, we can sketch E as a function of distance along this path, ob-
taining the curve shown in Figure 18.50 below (in the extended zone scheme).

Figure 18.50: E versus path in k space

We shall return to this technique frequently.

Constant Energy Contours

An alternate representation of the energy can be obtained by choosing several
different values of energy and plotting curves in k space that correspond to
these constant values of E. Such curves are called constant energy contours.
In the free-electron approximation, where E(k) is quadratic in k, each curve of
constant energy is a circle of radius

k = 1

h̵

√
2meE (18.176)

As E increases, the radius of the circle increases. Thus we obtain a series of
concentric circles; several constant energy contours are shown in Figure 18.51
below, where the extended zone scheme is used.
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Figure 18.51: Constant energy contours in k space

Notice that E1 < E2 < E3 < E4 < E5.

Now, in going to the reduced zone scheme, we must specify a particular type
of Bravais lattice. Recall from our earlier discussion that there are five Bravais
lattices in two dimensions: the oblique lattice, the primitive rectangular lattice,
the centered rectangular lattice, the square lattice, and the hexagonal lattice.
To illustrate the preparation of graphs of E versus path distance and constant
energy contours, we choose the square lattice. Let d denote the spacing of
adjacent lattice points in the x or y direction in the square lattice. Then the
spacing of adjacent points in the x or y direction in the reciprocal lattice is 2π/d.

The Square Lattice

In order to plot E versus path length for the square lattice, we must first select
a path. The choice of path is somewhat arbitrary, but common sense can guide
us. Since we want to generate a plot in the reduced zone scheme, where only
values of k in the first Brillouin zone are considered, we should choose a path
contained in that zone or on one of its boundaries. We would like the path to
be as simple as possible, and, ideally, each segment of the path should provide
some new information about the behavior of E(k).

The reciprocal of the square lattice is square and possesses fourfold symmetry.
A path that passes through all points of high symmetry in the first zone but
that does not contain segments equivalent to one another under the symmetry
operations of the square lattice is shown in Figure 18.52 below.
We will now compute the value of E at points on this path and on equivalent
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Figure 18.52: Path in k space through high symmetry points

paths in the surrounding regions of the reciprocal lattice. In Figure 18.53 below,
we have translated the first Brillouin zone and the chosen path throughout a
portion of the reciprocal lattice.

Figure 18.53: Equivalent paths in k space by translation

The resulting squares are numbered (1) through (9) for purposes of identifica-
tion. We have also indicated the value of E in the free-electron approximation
at several points in k space - specifically, at the corners of each path (units of
energy are h̵2π2/2med

2).

1455



A typical point, say the 13 along the right edge in the (9) box has

k⃗ = 3π

d
x̂ + 2π

d
ŷ (18.177)

so that its energy, in the free-electron approximation, is

E = h̵
2k2

2me
= 13

h̵2π2

2med2
(18.178)

The origin is at the center of the (0) square.

The reason for considering values of k outside the first zone is that we wish
to take into account energies greater than h̵2π2/2med

2, the maximum value of
energy that corresponds to points all of which lie within the first zone. Notice
that each path in a region other than the first zone is equivalent to the path in
the first zone. The wave vectors k′ of these equivalent paths will be related to
wave vectors in the first zone by some reciprocal lattice translation vector

k⃗′ = k⃗ + G⃗ (18.179)

Several different methods exist to generate data like that shown in the above
figure - and hence the resulting free-electron energy bands. The following steps
will enable us to obtain the necessary information in a fairly organized way:

(1) Draw all paths with ∣k′∣ less than some maximum value corresponding to
an upper limit on the energy for which the resulting bands will be accurate (we
choose 3π/d for the upper limit on k′ in this example).

We will guarantee an accurate sketch of E versus ∫
c
dk only for energies below

h̵2k2
max/2me, where kmax is the maximum value of ∣k′∣. Above this energy, we

may not have included all the necessary path segments.

(2) Calculate the energy E in reduced units h̵2π2/2med
2.

E

h̵2π2/2med2
= ( k⃗

π/d
)

2

= ( kx
π/d

)
2

+ (
ky

π/d
)

2

(18.180)

for each important point on the path. (In this case, the three corners of the
triangular paths are the important points, for it is there that the path changes
direction and the relationship of E to ∫

c
dk is altered.

We now use the data in Figure 18.53 to plot the energy in the reduced zone
scheme for each path. These energies are then connected by segments of a
parabola. This process yields the desired plot of E versus path distance.

For this example, the plot is shown in Figures 18.54-18.60 below. Notice that
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in the free-electron approximation portions of some of the paths are degenerate
in energy. Most of this degeneracy will be lifted in the weak-binding approxi-
mation( degenerate curves in this figure have more than one number associated
with them). We have plotted a sequence of graphs showing each path being
added.

Figure 18.54: Step #1

Figure 18.55: Step #2

1457



Figure 18.56: Step #3

Figure 18.57: Step #4
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Figure 18.58: Step #5

Figure 18.59: Step #6
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Figure 18.60: Step #7

Above, we have shown the energy versus path distance for the nine paths in the
free-electron approximation. The energy is plotted in reduced units. The little
numbers beside each path segment correspond to the path indices (1) through
(9) of the earlier figure. The arrow indicates the upper energy limit correspond-
ing to ∣k′∣ = 3π/d.

Notice carefully that the figure does not show the energy bands explicitly. How-
ever, we can extract them from this sketch.

The curve of E versus path distance that is everywhere lowest in energy corre-
sponds to the first band, the curve that is second lowest in energy corresponds
to the second band, and so on.

Thus we need only examine the figure in each region of (d/π)(kx, ky) – (0, 0)
to (1, 0), (1, 0) to (1, 1), and (1, 1) to (0, 0) – and select the first, second....
lowest curves to obtain plots of E versus path distance for the first, second, ...
bands. We have extracted the first nine bands in Figure 18.61 below.
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Figure 18.61: First 9 Bands

The section of this graph between (0,0) and (1,0) shows the first nine bands in
the reduced zone scheme for the free-electron approximation.

We see from the figure that paths 1, 2, and 3 each correspond to a single energy
band, a fortuitous consequence of the triangular path chosen.

However, path 4 does not correspond everywhere to the fourth lowest energy.
Part of path 5 falls below path 4, and so the fourth energy band is made up of
contributions from paths 4 and 5.

In general, all bands higher than the first (lowest) have a complicated structure,
with contributions from parts of several paths. (This situation occurs because
a general path will cross at least one Brillouin zone boundary and so cannot
correspond to a single energy band).

Constant Energy Contours

Consider now the second representation of the E versus k relationship for the
square lattice, namely, constant energy contours.

The objective of this method is to display the variation of energy with k for
each band in the reduced zone scheme.
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We will begin in the extended zone scheme, with several Brillouin zones, and
draw constant energy contours. These contours can be translated into the first
zone by appropriate reciprocal lattice translation vectors. Such translation of
segments of higher zones into the first zone was discussed earlier.

The first four Brillouin zones of the square lattice were shown earlier in Figure
18.23.

In Figure 18.62 below, we have extended this sketch to show the first seven
zones and have also drawn contours of constant energy that lie entirely within
these zones in the free-electron approximation for the square lattice.

Figure 18.62: First 7 zones with energy contours - square lattice

In Figure 18.63 below we show the portions of these contours that lie in the
first zone, together with the free-electron energies (in reduced units) at several
points of the first zone. These are constant energy contours for the first band
of energy.

Figure 18.63: Energy contours in first band
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To obtain contours for the second band, we translate the segments of the second
Brillouin zone from the figure above into the first zone, carrying along the
appropriate arcs.

The sequence of steps and the resulting reduced zone scheme constant energy
contours are shown in Figures 18.64-18.66 below.

Figure 18.64: Energy contours in extended scheme

Figure 18.65: Translating contours to second band regions
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Figure 18.66: Energy contours in second band

Similar constructions yield the higher bands.

Notice the behavior of the energy for each band. For example, the second band
has a minimum in energy at the center of the edge of the Brillouin zone, As we
approach a corner of the zone, the energy increases monotonically to 2; as we
go toward the center of the zone, the energy increases to its maximum value of
4.

The Fermi Surface

Earlier we defined an energy EF called the Fermi energy, with the property
that, at absolute zero, states with energies E > EF are not occupied but states
with energies E < EF are occupied. Corresponding to the Fermi energy is the
Fermi wave vector kF . We saw that both quantities depend on η, the number
of electrons per primitive unit cell.

The wave vectors of the occupied states each satisfy ∣k⃗∣ < kF (in the extended
zone scheme). Therefore we can view the points ±kF , as defining a one-dimensional
surface enclosing values of k that correspond to occupied states. Similarly, we
can define a Fermi surface in two dimensions corresponding to the Fermi energy
EF . In the free-electron approximation this energy corresponds to one of the
constant energy circles introduced earlier (in the extended zone scheme). The
radius of this circle is kF , the Fermi wave vector. Again, each state with an
energy less than EF is occupied at absolute zero. The corresponding constant
energy contour will lie within the Fermi surface. Let us derive expressions for kF
and EF in the free-electron approximation and then locate the Fermi surfaces
for the square lattice. The derivations will be similar to their one-dimensional
counterparts we carried out earlier. We denote by q the area in k space of the
first Brillouin zone. The number of states in this zone is 2N , where N is the
number of primitive unit cells in the crystal. Thus w(k⃗) is equal to 2N/q, a
result completely equivalent to our earlier result. The total number of electrons
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in the crystal is [from earlier]

kF

∫
0

w(k⃗)dk⃗ = πk2
F

2N

q
(18.181)

But there are ηN electrons in the crystal, so we have

ηN = πk2
F

2N

q
(18.182)

which implies that the Fermi wave vector is

kF =
√

q

2π
η (18.183)

The Fermi energy in the free-electron approximation is

EF =
h̵2k2

F

2me
= h̵2

2me

q

2π
η (18.184)

These results apply to any two-dimensional crystal. To illustrate, we will apply
them to the square lattice.

The area of the first Brillouin zone of the square lattice is

q = (2π

d
)

2

(18.185)

where d is the lattice separation in coordinate space. Therefore, the Fermi wave
vector is

kF = π
d

√
2η

π
(18.186)

and the Fermi energy is

EF = h̵2

2me
(π
d
)

2 2η

π
(18.187)

Table 18.4 below shows values of kF and EF for η = 1 → η = 6 for the two-
dimensional square lattice.
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η kF (π/d) EF (h̵2π2/2med
2

1 0.798 0.637
2 1.128 1.273
3 1.384 1.910
4 1.596 2.546
5 1.784 3.183
6 1.954 3.820

Table 18.4: Two-dimensional square lattices values

The corresponding Fermi surfaces are shown in the extended zone scheme in
Figure 18.67 below.

Figure 18.67: Fermi surfaces

The circle with the smallest radius corresponds to η = 1; the one with the largest
radius to η = 6. In Figure 18.68 below these Fermi surfaces are translated into
the first Brillouin zone. The shaded parts correspond to occupied states at
absolute zero (wave vectors with energies less than EF .
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Figure 18.68: Fermi surfaces translated to first zone

Let us look at these sketches. For q = 1, the entire Fermi surface lies within
the first Brillouin zone. Thus all occupied states have energies within the first
band. Notice that there are states with energies in the first band that are not
occupied. This fact is also reflected by the E versus path distance graph for
the first four bands. This graph is reproduced in Figure 18.69 below, where we
show the location of the Fermi energies.
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Figure 18.69: First 4 bands with location of Fermi surfaces

For crystals with 2 or 3 electrons per primitive unit cell, we see from (b) in
Figure 18.68 and Figure 18.69 above that there are occupied states in the first
and second bands; neither of these bands is completely filled. In contrast, the
first band is filled for crystals with η ≥ 4.

The Weak-Binding Approximation

We will now improve on the free-electron approximation by introducing the
periodicity of the crystal potential energy. We approach this task via the weak-
binding approximation discussed earlier, which assumes that the electrons are
not too strongly bound to the individual nuclei of the crystal. In particular, we
will ignore states that can be treated by time-independent perturbation theory
and concentrate on the strongly mixed states.

As earlier, we can determine which states are strongly mixed by examining the
matrix elements of the crystal potential energy. As earlier, this matrix element
is defined as

Vk⃗′k⃗ = ⟨k⃗′∣ V̂ ∣k⃗⟩ = 1

A
∫ dr⃗e−ik⃗

′⋅r⃗V (r⃗)eik⃗⋅r⃗ (18.188)

where
⟨r⃗ ∣ k⃗⟩ = 1√

A
eik⃗⋅r⃗ , ⟨r⃗ ∣ k⃗′⟩ = 1√

A
eik⃗

′⋅r⃗ (18.189)

are normalized free-electron wave functions of energy

h̵2k2

2me
,

h̵2k′2

2me
(18.190)
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respectively, and where r⃗ = xx̂+yŷ is a vector in the two-dimensional coordinate
space of the direct lattice. Recall from earlier that these matrix elements also
appear in the calculation of the energy eigenvalues due to mixing of the strongly
mixed states.

An analysis identical to the perturbation discussions earlier reveals that the
only states that mix at all, strongly or weakly, with ψ

(0)
E,k⃗

(r⃗) are those with

wave vectors k⃗′ that are related to k⃗ by a reciprocal lattice translation vector
k⃗ − k⃗′ = G⃗. If this relation is not satisfied, then Vk⃗′k⃗ = 0.

We can write the nonzero matrix elements as

VG⃗ = 1

A
∫ eiG⃗⋅r⃗V (r⃗)dr⃗ if k⃗ − k⃗′ = G⃗ (18.191)

or in terms of the integral over one primitive unit cell (PUC) of area Q as

VG⃗ = 1

Q
∫

PUC

eiG⃗⋅r⃗V (r⃗)dr⃗ (18.192)

The strongly mixed states satisfying k⃗ − k⃗′ = G⃗ are those with wave vectors
near Brillouin zone boundaries. All other states can be treated by perturbation
theory. Let us be precise about what this statement means. If we introduce the
periodic potential energy as a perturbation, we obtain an expression for the first-
order perturbed wave function in terms of the ψ(0)

E,k⃗
(r⃗) and a sum over all other

free-electron wave functions with wave vectors k⃗′ = k⃗ − G⃗ for every reciprocal
lattice translation vector G⃗(as we found earlier). If k⃗ is not near a Brillouin
zone boundary, all the other free-electron states mix weakly with ψ(0)

E,k⃗
(r⃗) and

will not greatly affect the energy or wave function. If k⃗ is near a zone boundary,
one or more other states will mix strongly with ψ

(0)
E,k⃗

(r⃗). These states satisfy

the selection rule k⃗− k⃗′ = G⃗ and have energies very close to each other (∣k⃗∣ ≈ ∣k⃗′∣)
so that the energy denominator in the perturbation theory summation is small.
Thus, at or near a single Brillouin zone boundary, two states are strongly mixed.
At or near the intersection of two or more zone boundaries, more than two
states can be strongly mixed. For example, if k⃗ is near the intersection of two
boundaries, then we can associate two other equivalent wave vectors with k⃗,
each of which corresponds to a state nearly degenerate with ψ

(0)
E,k⃗

(r⃗). (Notice
that this situation did not arise in one dimension). For example, in Figure 18.70
below, we show the location of several strongly mixed states for the first four
Brillouin zones of the square lattice.
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Figure 18.70: Strongly mixing states

In one case, k⃗ is near a single zone boundary, and there is only one state that
mixes strongly with ψ(0)

E,k⃗
(r⃗). In the other case shown, k⃗ is near the intersection

of three zone boundaries, and we must contend with four strongly mixed states.
In Figure 18.70, the first four Brillouin zones of the square lattice in the reduced
zone scheme are shown. The arrows connect the k⃗ values for strongly mixed
states. Two cases are considered, one near the edge of one zone boundary (two
states) and one near the intersection of three boundaries (four states).

Calculation of Band Gaps

The calculation of the band gap for a two-dimensional crystal at any single
Brillouin zone boundary is analogous to the one-dimensional calculation we did
earlier. However, a somewhat more elaborate calculation is required when two
or more Brillouin zone boundaries intersect.

Let us focus on one of these cases in the square lattice and calculate the energy
gaps that arise from this strong mixing. In particular, suppose that we choose
k⃗ at the corner of the first Brillouin zone, k⃗ = (π/d) (1,1). At this point,
three Brillouin zone boundaries intersect, so four free-electron states are strongly
mixed. These states correspond to the k⃗ vectors

(π/d) (1,1) , (π/d) (1,−1) , (π/d) (−1,1) , (π/d) (−1,−1) (18.193)

and their negatives. In general, we can write these vectors as

G⃗ = (2π/d) (m,n) (18.194)

and can denote VG⃗ by Vmn.

The weak-binding wave function ψweakE can be written as a linear combination
of the strongly mixed free-electron wave functions

ψweakE (r⃗) =
4

∑
i=1

aiψ
(0)
E,i(r⃗) (18.195)

where the ψ(0)
E,i(r⃗) are the four free-electron wave functions corresponding to

the wave vectors of above. (Remember that these four free-electron states are
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degenerate). Substituting this expansion into the Schrodinger equation

ĤψE = EψE (18.196)

we obtain

Ĥ
4

∑
i=1

aiψ
(0)
E,i(r⃗) = E

4

∑
i=1

aiψ
(0)
E,i(r⃗) (18.197)

The corresponding eigenvalue equation is obtained by multiplying this equation
by ψ(0)∗

E,j (r⃗) and integrating over dr⃗ = dxdy (using orthonormality of the free-
electron wave functions)

4

∑
i=1

Hjiai = Eaj , j = 1,2,3,4 (18.198)

where Hji is the matrix element

Hji = ⟨j∣ Ĥ ∣i⟩ = ∫ dr⃗ψ
(0)∗
E,j (r⃗)Ĥψ(0)

E,i(r⃗) (18.199)

This result yields the determinant equation

det (Hji −Eδji) = 0 (18.200)

For convenience, we will measure the energy from V00, the constant part of
the crystal potential energy (taken as the zero of energy in the free-electron
approximation). The diagonal elements of the Hamiltonian matrix (Hji , i = j)
are due solely to the free-electron term corresponding to the various k⃗ values.
Thus the determinant equation becomes

RRRRRRRRRRRRRRRRRRRRRRR

h̵2k2

2me
−E V0−1 V−10 V−1−1

V01
h̵2k2

2me
−E V−11 V−10

V10 V1−1
h̵2k2

2me
−E V0−1

V11 V10 V0−1
h̵2k2

2me
−E

RRRRRRRRRRRRRRRRRRRRRRR

= 0 (18.201)

where k =
√

2(π/d). From an (18.191) or (18.192), Vmn is given by

Vmn =
1

d2 ∫
PUC

exp [i(2π

d
mx + 2π

d
ny)]V (x, y)dxdy (18.202)

Expanding the exponentials, we obtain

Vmn =
1

d2 ∫
PUC

cos
2π

d
mx cos

2π

d
nyV (x, y)dxdy (18.203)

+ 1

d2 ∫
PUC

( − sin 2π
d
mx sin 2π

d
ny + i cos 2π

d
mx sin 2π

d
ny

+i sin 2π
d
mx cos 2π

d
ny

)V (x, y)dxdy
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Clearly, we must know more about the form of V (x, y) in order to further
evaluate this matrix element. Since the crystal potential energy has fourfold
rotational symmetry, it satisfies

V (x, y) = V (y,−x) = V (−x,−y) = V (−y, x) (18.204)

If we consider only a square crystal with mirror symmetry such that

V (x, y) = V (−x, y) = V (x,−y) (18.205)

the second integral in the expression for Vmn is zero, and we conclude that

Vmn = Vn−m = V−m−n = V−nm (18.206)

Using this result, we can define two real quantities V1 and V2 by

V1 = V10 = V0−1 = V−10 = V01 , V2 = V11 = V1−1 = V−1−1 = V−11 (18.207)

Let us also define a quantity ε equal to the actual energy as measured from the
free-electron value,

ε = E − h̵
2k2

2me
(18.208)

Written in terms of V1, V2 and ε , the determinant equation takes on the far
simpler form

ε4 − 2(2V 2
1 + V 2

2 )ε2 − 8V 2
1 V2ε + V 2

2 (−4V 2
1 + V 2

2 ) = 0 (18.209)

Factoring this equation, we have

(ε + V2)2 (ε − V2 + 2V1) (ε − V2 − 2V1) = 0 (18.210)

This equation is a quartic equation, so it has four roots. The eigenvalues are

E =
⎧⎪⎪⎨⎪⎪⎩

h̵2k2

2me
− V2 twice

h̵2k2

2me
+ V2 ± V1

(18.211)

These are the energies of the four weak-binding states whose wave functions are
given by the linear combinations above. They arise from the mixing of four free-
electron states at the corner k⃗ = (π/d) (1,1) of the first Brillouin zone. Notice
that a twofold degeneracy remains in the weak-binding approximation.

E versus Path Distance

We can usually assume that ∣V2∣ < ∣V1∣, that is, that the matrix elements are
smaller for longer G⃗ vectors. Then we obtain four energies at the corner of the
first Brillouin zone, one above and one below a pair of degenerate levels.
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This result induces gaps in the E versus path distance plot for the square lattice
(remember that our earlier plot had no gaps). The modified plot of weak-binding
energy versus path distance for paths of the first four bands of the square lattice
(energy is shown in reduced units) is shown in Figure 18.71 below. The bands
are labeled.

Figure 18.71: Band Gaps create Distinct Bands

Compare this plot to the earlier plot in Figure 18.69.

Here splittings appear between every band for all values of k⃗ except at the zone
corner. But values of E do not exist for which no electronic states are allowed,
that is, there are no actual band gaps. In fact, the bands overlap in this example.
These features are characteristic of two- (and three-) dimensional systems.

Constant Energy Contours

We have seen that only near a Brillouin zone boundary is the weak-binding
energy appreciably different from the free-electron energy. Consequently, we
expect that, in the weak-binding approximation, constant energy contours for
a two-dimensional lattice would be altered significantly from the free-electron
contours we described earlier only near a zone boundary. For any given wave
vector k⃗ ear a single zone boundary, the energy in the weak-binding approxi-
mation is lower than the free-electron energy if k⃗ is inside the zone boundary.
Energies for k⃗ outside the Brillouin zone boundary are raised from their free-
electron values due to the mixing of the two free-electron states. In addition, if
we are close to only one zone boundary, the constant energy contours will strike
the boundary at a right angle. These effects bend the contours in toward the
boundaries, as shown in Figure 18.72 below.
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Figure 18.72: Constant energy contours bending toward zone boundaries

Above, we have shown a comparison of a weak-binding constant energy contour
(solid curve) and a free-electron constant energy contour (dashed curve) near a
Brillouin zone boundary.

Returning to the square lattice, we show in Figure 18.73 below how to modify
the free-electron constant energy contours. Contours are shown in the weak-
binding approximation for the first four bands in the reduced zone scheme.

Figure 18.73: Modified constant energy contours

Fermi Surfaces

The Fermi surfaces are simply particular constant energy contours correspond-
ing to the Fermi energies. Fermi surfaces for several values of η shown in Figure
18.74 below. These curves are obtained by modifying the surfaces we drew
earlier, using the bending at the boundary method shown above.
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Figure 18.74: Fermi surfaces for η = 1

For a crystal with a square lattice and η = 1, the Fermi surface in the weak-
binding approximation is a circle whose area is half that of the first zone. Since
this circle is far from the zone boundaries, it is unaltered from its free-electron
behavior. This feature is not true of other values of η, as the figure shows.

18.7 Born-Oppenheimer description of two atoms
in a combined oscillator and lattice trap

In this section, we analyze the quantum states of two atoms in a combined har-
monic oscillator and periodic lattice trap in one spatial dimension. In the case
of tight-binding and only nearest neighbor tunneling, the equations of motion
are conveniently represented in the momentum representation. We then show
that in the case of strong attraction between the particles, the different time
scales of relative and center-of- mass motion validate a separation of the prob-
lem similar to the Born-Oppenheimer approximation applied in the description
of electronic and nuclear motion in molecules.

18.7.1 Introduction

We will now study cold atoms(lattice trap) in periodic potentials formed by
standing wave laser beams.
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18.7.2 Lattice Hamiltonian

A. One-body Hamiltonian and Wannier states

We consider a particle moving in a sinusoidal potential, so that the Hamiltonian
can be written

Ĥlat = P̂ 2 + V0 sin2 (πX̂) (18.212)

where the scaled position and momentum operators have the dimensionless com-
mutator

[X̂, P̂ ] = i (18.213)

Since the potential is periodic with unit period, Bloch’s theorem ensures that
we can choose energy eigenstates

Ĥlat ∣ψ(n)
q ⟩ = E(n)

q ∣ψ(n)
q ⟩ (18.214)

with quasi-momenta q ∈ [−π,π] and band indices n = 0,1, ..... Another basis
- the Wannier states -can be obtained as the Fourier transform over a single
Brillouin zone of the eigenstates

∣w(n)
k ⟩ = 1√

2π
∫

+π

−π
dqe−ikq ∣ψ(n)

q ⟩ (18.215)

For sufficiently deep lattices, the Wannier states with different n are localized
around different lattice potential minima and are identical up to translation. We
note that, within each energy band, the overlap between the quasi-momentum
eigenstates and the Wannier states

⟨ψ(n)
q ∣w(n)

k ⟩ =
δm,n√

2π
e−ikq (18.216)

is similar to the usual overlap between position eigenstates and momentum
eigenstates.

The Hamiltonian is block-diagonal in the basis of Wannier states, and the cou-
pling of Wannier states at different locations is given by

⟨w(m)
k ∣ Ĥlat ∣w(n)

k ⟩ = δm,nJ(n)
∣j−k∣ (18.217)

where
J
(n)
k = − 1

2π
∫

+π

−π
dqeikqE(n)

q (18.218)

This shows that J(n)
k is the Fourier transform of the energy bands as a function

of q and the dispersion relations can be written as

E(n)
q = −

∞
∑
k=0

J
(n)
k e−ikq = −J(n)

0 − 2
∞
∑
k=1

J
(n)
k cos (kq) (18.219)
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For deep potentials the energy bands are relatively flat, and the higher order
cosine terms are suppressed. This justifies the tight binding approximation in
which one retains only the nearest lattice site coupling, and in the following we
will suppress the band index (n), and focus on the lowest band described by
the tight binding Hamiltonian

ĤTB = −J1

∞
∑
k=−∞

{∣wk−1⟩ ⟨wk ∣ + ∣wk+1⟩ ⟨wk ∣}

= −2J1 cos (P̂ ) (18.220)

B. Harmonic confinement

Adding a harmonic confinement to the lattice potential is adequately described
by adding the term kX̂2 with the spring constant k to the Hamiltonian. For
deep lattice potentials, the Wannier state Ketwj is well localized at X = j, so
we make the approximation to replace X̂ by the discrete quasi-position operator
of the lowest band

Ŵ =
∞
∑
j=−∞

j ∣wj⟩ ⟨wj ∣ (18.221)

Introducing a rescaling of the Hamiltonian by 4J1 and defining κ = k/4J1 we
end up with the Hamiltonian

Ĥ = ĤTB

4J1
+ kŴ

2

4J1
= κŴ 2 − cos (P̂ )

2
(18.222)

Similar to the usual relationship between continuous position and momentum
operators, the discrete position operator Ŵ acts as a differentiation in the con-
tinuous quasi-momentum representation

⟨ψq ∣ Ŵ ∣α⟩ = i ∂
∂q

⟨ψq ∣α⟩ (18.223)

which is easily derived by inserting a resolution of the identity in Wannier states
and using the overlap formula (18.216). Therefore, we arrive at the quasi-
momentum expression of the single particle Hamiltonian

⟨ψq ∣ Ĥ ∣α⟩ = (−κ ∂
2

∂q2
− cos (q)

2
) ⟨ψq ∣α⟩ (18.224)

At this point we make the curious observation that, after having restricted the
Hilbert space to the lowest energy band and having added a quasi-harmonic
confinement, the Hamiltonian in momentum space (18.224) has the same form
as the original optical lattice Hamiltonian (18.214) in position space. In both
cases, the Schrodinger equation takes the form of the Mathieu equation, but
instead of looking for eigenstates of (18.214) with any quasi-momentum, we will
only look for periodic eigenstates for (18.224), i.e. with zero "quasi-position".
C. Interacting particles
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In an ultra-cold gas of bosons, the interaction between the particles is adequately
described by the two-particle contact interaction operator Ûint with the matrix
elements

⟨X1;X2∣ Ûint ∣X3;X4⟩ = gδ(X1 −X3)δ(X2 −X4)δ(X3 −X4) (18.225)

for some interaction strength g. In the tight binding approximation, the Wannier
states are localized at different lattice sites, and one may neglect matrix elements
of the interaction potential with Wannier product states located on different
sites. We thus end up with the following effective interaction operator acting
on two-particle states

Ûeffint = G∑
j

∣wj ;wj⟩ ⟨wj ;wj ∣ (18.226)

where the strength parameter is given by

G = g∫ dX ∣w0(X)∣4 (18.227)

Using the relation (18.216), we can calculate the matrix elements of the effective
interaction operator in quasi-momentum space

⟨ψq1 ;ψq2 ∣ Û
eff
int ∣ψq3 ;ψq4⟩ =

G

2π
δ(q3 + q4 − q1 − q2) (18.228)

which shows that the interaction conserves the total quasi-momentum and is
independent of its value.

A system of two identical particles in an optical lattice with harmonic confine-
ment, which interact by the contact interaction is described by the Hamiltonian

Ĥ = κ(Ŵ 2
1 + Ŵ 2

2 ) −
cos (P̂1)

2
− cos (P̂2)

2
+ Û (18.229)

with Û = Ûeffint /4J1.

18.7.3 Relative- and Center-of-Mass Quasi-Momenta
In the quasi-momentum representation

cos (P̂1) + cos (P̂2)
2

∣ψq1 ;ψq2⟩

= cos (q1) + cos (q2)
2

∣ψq1 ;ψq2⟩

= cos(q1 + q2

2
) cos(q1 − q2

2
) ∣ψq1 ;ψq2⟩

≡ cos( Q̂+
2

) cos( Q̂−
2

) ∣ψq1 ;ψq2⟩ (18.230)
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where we have defined new operators by their action on quasi-momentum eigen-
states,

qiQ̂±/2 ∣ψq1 ;ψq2⟩ ≡ ei(q1+q2)/2 ∣ψq1 ;ψq2⟩ (18.231)

The introduction of these operators suggest to reparameterize the quasi-momentum
basis states ∣ψq1 ;ψq2⟩ in terms of their sum and difference:

q± = q2 ± q1 (18.232)

The quasi-momentum eigenstates states are defined for pairs of q1 and q2 in the
set

S12 = [−π;π] × [−π;π] (18.233)

corresponding to a diamond shaped area in the coordinate plane of q± as shown
in figure 18.75 below.

Figure 18.75: Quasi-momentum of the two particles vs. relative and center-of-
mass quasi-momentum. Left: The first Brillouin zone S12 in the (q1, q2)-plane is
emphasized and repeated in each direction. The color coding indicates the values
of a function that is periodic in both variables with period 2π and illustrates the
required periodicity. The set S± which contains exactly one representative of
each point from S12 is shown by the gray rectangle. Right: The same function
is shown but in the (q+, q?)-coordinate system. The set S± is emphasized and
repeated, but with a different tiling than for S12 in the left panel.
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If we choose the values of (q+, q?) in the set

S± = [−π;π] × [−2π; 2π] (18.234)

then each point from S12 is represented exactly once as is evident from figure
18.75. This means that we can reparametrize the quasi-momentum eigenstates
as

∣q+, q−⟩ =
1√
2
∣ψ(q+−q−)/2;ψ(q++q−)/2⟩

∣ψq1 ;ψq2⟩ =
√

2 ∣q1 + q2, q2 − q1⟩ (18.235)

where the front factor is chosen to preserve orthonormality, such that we have
the resolution of identity

1̂ = ∫
+π

−π
dq+ ∫

+2π

−2π
dq− ∣q+, q−⟩ ⟨q+, q−∣ (18.236)

The corresponding discrete relative and center-of-mass position coordinates

Ŵ± ≡
Ŵ2 + Ŵ1

2
(18.237)

act in the following way

⟨q+, q−∣ Ŵ± ∣α⟩ = i ∂
∂q±

⟨q+, q− ∣α⟩ (18.238)

and the interaction operator Û has the following matrix elements in terms of
the relative and center-of-mass quasi-momentum states

⟨q+, q−∣ Û ∣α⟩ = γ ∫
+2π

−2π
dq′− ⟨q+, q′− ∣α⟩ (18.239)

with γ = G/(16πJ1).

The two-atom Hamiltonian can now be written,

Ĥ = 2κ(Ŵ 2
+ + Ŵ 2

−) − cos( Q̂+
2

) cos( Q̂−
2

) + Û (18.240)

The Schrodinger equation with the Hamiltonian (18.240) can be solved accu-
rately for a wide range of parameters as in 18.241 below. The resulting eigenen-
ergies and the wave functions (18.246 below) will be used as reference for our
analysis by the Born-Oppenheimer separation of the motional degrees of free-
dom.

Solving the equations numerically

1. Solving the non-approximated equation
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To solve the two-atom Schrodinger equation in the tight binding approximation
we expand the state as

∣α⟩ =∑
j,k

Fj,k ∣wj ;wk⟩ (18.241)

The stationary Schrodinger equation with the Hamiltonian (18.240) yields the
equation for the expansion coefficients

EFj,k = 4πγδj,kFj,k + κ(j2 + k2)Fj,k

−
Fj−1,k + Fj+1,k + Fj,k−1 + Fj,k+1

4
(18.242)

The original Hamiltonian is invariant under parity inversion of both particles
so we can find a complete set of solutions of even and odd wave-functions. In
terms of the expansion (18.241) this means that we can find solutions where

F−j,−k = pFj,k (18.243)

where p can assume the values ±1. In addition, since we are dealing with two
identical bosons, only symmetrized wave functions are physically meaningful,
with implies that we have the symmetry

Fj,k = Fk,j (18.244)

For numerical purposes we enforce these requirements by hand in the following
way. Instead of looking at all pairs (j, k) ∈ Z2, we restrict our attention to those
in the subset

T = {(j, k) ∈ Z2∣∣k∣ ≤ j ≤ jmax} ⊂ Z2 (18.245)

for some manually chosen jmax. Using the symmetries we reformulate the re-
currence equation such that it only involves coefficients from T . The equation
can be expressed as a matrix eigenvalue equation which is amenable to standard
numerical diagonalization routines. When all coefficients have been found - and
properly normalized - the wave function in relative and center-of-mass quasi-
momenta is given by

⟨q+, q− ∣α⟩ =∑
j,k

Fj,k ⟨q+, q− ∣wj ;wk⟩

= 1√
2(2π)

∑
j,k

Fj,ke
−i(j+k)q+/2e−i(k−j)q−/2 (18.246)

18.7.4 Born-Oppenheimer Separation

A. Derivation

We write the Hamiltonian in (18.240) as

Ĥ = Ĥ− + 2κŴ 2
+ (18.247)
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where

Ĥ− = 2κŴ 2
− − cos( Q̂+

2
) cos( Q̂−

2
) + Û (18.248)

We note that eiQ̂+/2 commutes with Ĥ− and we define their joint eigenstates by
∣q+, n⟩:

Ĥ− ∣q+, n⟩ = εn(q+) ∣q+, n⟩ (18.249)

eiQ̂+/2 ∣q+, n⟩ = eiq+/2 ∣q+, n⟩ (18.250)

with the following orthogonality relations

⟨q+, n ∣ q′+, n′⟩ = δn,n′δ(q+ − q′+) (18.251)

The states ∣q+, n⟩ can be expanded

∣q+, n⟩ = ∫
+2π

−2π
dq′−A

(q+)
n (q′−) ∣q+, q−⟩ (18.252)

and the orthogonality relation (18.251) implies

∫
+2π

−2π
dq− [A(q+)

n (q−)]
∗
A

(q+)
n′ (q−) = δn,n′ (18.253)

Any eigenstate of the full Hamiltonian (18.247) can be expanded as

∣ψ⟩ = ∫
+π

−π
dq′+∑

n

C(n)(q′+) ∣q′+, n⟩ (18.254)

The expansion coefficients C(n)(q′+) are found by applying the Hamiltonian
(18.247) to the expanded wave function (18.254) and using (18.248)

Ĥ ∣ψ⟩ = ∫
+π

−π
dq′+∑

n

C(n)(q′+){εn(q′+) + 2κŴ 2
+} ∣q′+, n⟩ (18.255)

In the (q+, q?)-representation for the state vector, the eigenvalue equation takes
the form of coupled differential equations

E∑
n

A(q+)
n (q−)C(n)(q′+)

=∑
n

{εn(q′+) − 2κ
∂2

∂q2
+
}A(q+)

n (q−)C(n)(q′+) (18.256)

The goal of the following analysis is to find an approximation for the eigen-
states, which is easier to apply numerically and which offers insights into their
internal structure and dynamics. To this end, we assume that the states ∣q′+, n⟩
described by q− wave functions A(q+)

n (q−) depend only weakly on the argument
q+. Eliminating thus the partial derivatives of A(q+)

n (q−) with respect to q+ in
the evaluation of the right hand side of (18.256), and using the orthogonality
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of the A(q+)
n (q−) functions, we arrive at the following approximate equation for

the expansion coefficients

εn(q+)C(n)(q+) − 2κ
∂2C(n)(q+)

∂q2
+

= EC(n)(q+) (18.257)

This has the form of a Schrodinger equation for a single particle in the poten-
tial εn(q+). For each energy potential we can find discrete eigenenergies E(n)

m

and associated eigenfunctions C(n)
m that solve (18.257) and yield approximate

eigenstates ∣ψ(n)
m ⟩ for the full Hamiltonian (18.247)

⟨q+, q− ∣ψ(n)
m ⟩ = C(n)

m (q+)A(q+)
n (q−) (18.258)

Note the formal similarity of this reduction of the problem with the use of the
Born-Oppenheimer approximation in chemistry. In the latter, the wave function
is expanded as a product of wave functions in nuclear and electronic coordinates,
and due to the large difference in mass and hence in energy and time scales,
the electronic wave functions are supposed to follow changes in the slow nuclear
coordinates adiabatically.

In our case, the two particles have identical masses, and in the absence of mutual
interaction, the relative and center-of-mass motion occur on similar time scales,
and the Born-Oppenheimer approximation should not be valid. But, as we
increase the attractive interaction between the atoms, bounds states are formed,
and the relative position develops a new, faster time scale given by the binding
energy. Our separation is carried out and motivated in the quasi-momentum
picture, where a further observation may be in order: a strongly bound state in
the relative position coordinate corresponds to a very extended wave function
in the relative momentum, while the center-of-mass momentum may be well
defined. This supports the assumption that the dominant contribution to the
second derivative in (18.256) stems from the q+ wave function C

(n)
m (q+), and

hence that the derivative of A(q+)
n with respect to q+ may be neglected.

B. Application

Before we apply the Born-Oppenheimer approximation, let us consider how we
expand states onto the center-of-mass and relative quasi-momentum eigenstates.
Every state can be expanded in both the two-particle quasi-momentum basis,
and in the basis of relative and center-of-mass quasi-momenta.

∣φ⟩ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
+π
−π dq1 ∫

+π
−π dq2α(q1, q2) ∣ψq1 ;ψq2⟩

∫
+π
−π dq+ ∫

+2π
−2π dq−β(q+, q−) ∣q+, q−⟩

(18.259)

While ∣q1, q2⟩ and ∣q+, q−⟩ are defined for (q1, q2) ∈ S12 and (q+, q−) ∈ S±, re-
spectively, we can look for functions defined on the entire R2 and restrict the
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solution afterwards. The function α is periodic in both variables with period
2π, and this enforces β to obey the symmetry

β(q+ + 2π, q− ± 2π) = β(q=, q−) (18.260)

c.f. the tiling of R2 with replicas of S± in the right panel of figure 18.75. Thus,
a necessary - but not sufficient - condition is that β is periodic in both q+ and q−
with periodicity 4π. We are considering bosons and the state must be symmetric
under the exchange of the two particles, (q+, q−)↦ (q+,−q−), which implies the
further constraint

β(q+, q−) = β(q+,−q−) (18.261)

Using these arguments on (18.258) we conclude that we are looking for solutions
such that A(q+)

n (q−) is even and periodic in q− with period 4π, and such that
the product of C(n)

m (q+) and A(q+)
n (q−) is periodic in q+ with the same period.

Furthermore, the product must satisfy the relation (18.260).

1. The first Born-Oppenheimer equation

To apply the Born-Oppenheimer approximation, we must first find the eigen-
states of Ĥ− and their eigenenergies, and using the formal expansion of the
states (18.252), the eigenvalue equation (18.249) leads to the equation

εn(q+)A(q−)
n = [−2κ

∂2

∂q2
−
− F (q+) cos(q−

2
)]A(q+)

n (q−)

+ γ ∫
+2π

−2π
dq′−A

(q+)
n (q−) (18.262)

where F (q+) = cos ( q+
2
). For each value of q+ this equation has the form of a

Schrodinger equation with argument q−, and with a periodic cos ( q−
2
) potential

with amplitude F (q+) and a non-local potential with strength γ. Solutions
which are periodic in q− with period 4π are readily found by Fourier expansion
of A(q+)

n (q−) as in 18.246.

When solving (18.262) we are looking for solutions to a Schrodinger like equation
with a cosine potential with period 4π. Solutions which are periodic with the
same period - referred to as zero quasi-momentum states for periodic problems
in position space - can be chosen to be real-valued. The front factor F (q+) of
the cosine potential is itself a cosine function of q+ leading to two observations:

1. F (q+) is an even function of q+ so equation 18.262 is unaltered under the
transformation q+ ↦ −q+. Thus the solutions must be identical up to a
complex factor, and since they are real-valued we can choose the solutions
as

A(q+)
n (q−) = A(−q+)

n (q−) (18.263)

We could not have chosen a minus sign, since this would have made A(q+)
n

vanish for q+ = 0.
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2. F (q+) changes to values of opposite sign when q+ is increased by an amount
of 2π and the cosine potential cos (q−/2) in (18.262) is effectively translated
by half a period. For this translated potential the eigenvalues are the same,
while the eigenfunctions are translated and scaled

εn(q+) = εn(q+ + 2π) (18.264)

A(q+)
n (q−) = ξnA(q++2π)

n (q− ± 2π) (18.265)

The factor ξn may take the values ±1 sin A(q+)
n (q−) is real-valued for all

values of q+ and q−.

Applying the relations (18.263) and (18.265) for q+ = −π we get the relation

A(+π)
n (q−) = ξnA(+π)

n (q− ± 2π) (18.266)

so we can determine ξn from the translational symmetries of A(+π)
N .

2. The second Born-Oppenheimer equation

Eq. (18.262) yields the potential εn(q+) which is periodic with period 2π, and
we are looking for functions C(n)

m (q+) that are periodic in q+ with period 4π.
Therefore, Bloch’s theorem tells us that we can choose a complete set of solutions
as

C(n)
m (q+) = eiδnq+/2D(n)

m (q+) (18.267)

where D(n)
m is periodic with period 2π, and δn = 0,1. For δn = 0 the solution

C
(n)
m (q+) is thus periodic with period 2π, whereas for δn = 1, it is antiperiodic.

We require that the product of C(n)
m (q+) and A(q+)

n (q−) satisfies the symmetry
(18.260), and if we combine this with (18.265), we get the relation

C(n)
m (q+)A(q+)

n (q−) = ξnC(n)
m (q+ + 2π)A(q+)

n (q−) (18.268)

from which we conclude that C(n)
m (q+) must fulfill the symmetry

C(n)
m (q+ + 2π) = ξnC(n)

m (q+)A(q+)
n (18.269)

Comparing to (18.267) we see that this implies that for ξn = −1 we must choose
δn = 1 and for ξn = +1,we can use δ = 0. We can solve (18.257) by a Fourier
expansion of D(n)

m and εn(as shown below in 18.270).

2. Solving the first Born-Oppenheimer equation

The solutions of (18.262) are functions A(q+)
n (q−) which are periodic in q− with

period 4π. Therefore, for each value of q+ we make the expansion

A(q+)
n (q−) =

1√
4π
∑
j

α
(q+)
j,n eijq−/2 (18.270)
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and obtain the tridiagonal recurrence relation,

F (q+)
2

[α(q+)
j−1,n + α

(q+)
j+1,n]

= (κ
2
j2 + 4πγδj,0 − εn(q+))α(q+)

j,n (18.271)

To accommodate the bosonic nature of the particles, we only look for even
solutions to (18.262), so we only need to consider terms α(q+)

j,n with j ≥ 0, and
for j = 0 we use

F (q+)α(q+)
1,n = [4πγ − εn(q+)]α(q+)

0,n (18.272)

By expressing the recurrence relation as a matrix eigen- value equation, this can
be truncated and solved with good accuracy.

2. Solving the Second Born-Oppenheimer equation

We solve the second Born-Oppenheimer equation using the results from the first
Born-Oppenheimer equation. First, coefficients in the expansion

εn(q+) =∑
k

βnKe
ijq+ (18.273)

are determined by a discrete Fourier transformation. We then use the expansion

C(n)
m (q+) =

1√
2π
∑
l

γm,nl e
i(l+ δn2 )q+ (18.274)

in (18.257) together with the expansion (18.273) which yields the following equa-
tion for the γ-coefficients

∑
k

βnk γ
m,n
l−k + 2κ(l + δn

2
)

2

γm,nl = E(n)
m γm,nl (18.275)

Since the potential energy curves εn(q++) are even functions, the solutions can
be chosen to be either even or odd, and the coefficients then fulfill γm,nl = ±γm,n−l .
It suffices to only consider coefficients with m ≥ 0 and solve the recurrence
equations.

18.7.5 Exact and Born-Oppenheimer Approximate Solu-
tions

A. Wave functions

When solving the first Born-Oppenheimer equation (18.256) we find eigenval-
ues εn(q+) and eigenfunctions A(q+)

n (q−) for each value of q+ ∈ [−π,π]. In the
left-most panel in figure 18.76 below is shown the lowest few potential curves
εn(q+). The lowest potential curve is well separated from the higher ones which
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lie closer. Each of the potential curves has an energy variation which is typically
small compared to the energy distance between the bands. In the upper panels,
a magnified view of the curves are shown. In the lower panels eigenfunctions
A

(q+)
n (q−) to the first Born-Oppenheimer equation are shown for four different

values of n.

Figure 18.76: Energies and eigenfunctions found by solving the two Born-
Oppenheimer equations for κ = 0.5 and γ = −0.5. Left panel: The six lowest
potential curves εn(q+) found from the first Born-Oppenheimer equation. Upper
panels: Magnification of four of the potential curves in the left panel. Lower pan-
els: Eigenfunctions A(q+)

n (q−) for the first Born-Oppenheimer equation shown
for all values of q+ for the corresponding n-values. In the upper panels are shown
(horizontal dashed blue/red lines) the two lowest energies E(n)

j for j = 1,2 found
from solving the second Born-Oppenheimer equation in the potential εn(q+) and
the corresponding wave functions (solid blue/red lines).

The second Born-Oppenheimer equation uses the energies εn(q+) as potential
functions in a Schrodinger like equation, and each of the upper panels in Figure
18.76 show the energy levels of the two lowest eigenstates (m = 1,2) in these
potentials along with their eigenfunctions C(n)

m (q+). As we saw in the previous
section, the function C

(n)
m (q+) should be chosen periodic or anti-periodic de-

pending on the value of ξn. By studying the behavior of A(q+)
n (q−) at q+ = ±π
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one can see if ξn is +1 or −1 depending on whether the wave function A(q+)
n (q−)

changes sign when translated by π or not. For n = 0,2 the solutions C(n)
m (q+) to

the second Born-Oppenheimer equation must be periodic with period 2π, while
for n = 1,5 the solutions C(n)

m (q+) must be chosen antiperiodic.

Total Born-Oppenheimer solutions to the two-atom Hamiltonian are shown in
Fig. 18.77 Panels (A1-2) corresponds to the approximate solutions from the
n = 0 case of figure 18.76, panels (A3-4) corresponds to the n = 1 case, and pan-
els (A5-6) corresponds to the n = 2 case. In the lower panels of figure 18.77 the
corresponding exact two-atom eigenstates are shown. There is a good agreement
between the exact and approximate solutions, especially for the low excitations
of the lowest bands.

Figure 18.77: Upper panels: Quasi-momentum wave functions found by the
Born-Oppenheimer approximation for κ = 0.5 and γ = −0.5. Columns 1-2 show
the two lowest eigenstates in the lowest potential curve ε0(q+) corresponding to
the n = 0 column in figure 18.76. Columns 3-4 correspond to the n = 1 column
in figure 18.76 and columns 5-6 correspond to the n = 2 column in figure 18.76.
Lower panels: The corresponding exact solutions.

B. Energies

In figure 18.78 both the exact and the approximative energies are shown for
fixed κ as functions of the scaled interaction strength γ. Except in the region
where γ is numerically small, there is reasonable agreement between the exact
and the approximated energy levels. For negative γ there is a clear grouping of
the energy levels in two groups: Those that are nearly constant as a function of
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γ and those that depend linearly on γ. Comparing to the approximate energies
found by the Born-Oppenheimer approximation we see that the linear depen-
dence comes from the fact that the position of the lowest potential curve varies
linearly with γ.

Figure 18.78: Exact and approximate energies as a function of γ for κ = 1. Exact
energies are plotted by the black dashed lines, and or n = 0,1,2,3 the energies
E

(n)
j found from the Born-Oppenheimer equation is plotted in four different

colors.

1489



C. Approximate solution of the first Born-Oppenheimer equation

To understand the behavior of the energy spectra, we start by analyzing the
system in the limit where at least one of the two coefficients γ, κ is (numerically)
much larger than unity, so that we can find analytical approximations. This limit
enables us to treat the term

−F (q+) cos(q−
2
) (18.276)

in the first Born-Oppenheimer equation (18.256) as a perturbation. When we
neglect this term, we can choose a complete set of eigenfunctions as plane waves
with wave number k/2 for k = 1,±1,±2, .... and with energies

ε̃k =
κ

2
k2 + 4πγδk,0 (18.277)

Only the even linear combinations are physically relevant, and note that the k
does in general not coincide with the excitation number n as used in the first
Born-Oppenheimer equation, where the energy curves εn were sorted by energy.

The term 4πγ contributes only for k = 0 since all other plane waves integrate
to zero in the second line of Eq. (18.256). Even when the omission of (18.276)
is not valid, the integral still becomes substantial if A(q+)

n (q−) has no nodes,
whereas it is suppressed when there are sign changes in A(q+)

n (q−).

In figure 18.78 we notice some discontinuities in the approximate energies, which
can be explained in the following way. Due to the linear dependence of the
energy for the k = 0 plane wave, its energy becomes degenerate with the higher
levels, when γ varies. More precisely, ε̃0 will cross ε̃k at the γ-value

γk =
κk2

8π
(18.278)

Without the symmetry requirement (18.260) we could find two families of solu-
tions to the second Born-Oppenheimer equation for each potential curve εn(q+).
Depending on the symmetries of the solution A(q+)

n (q−) discussed in B. Energies
section earlier, we can only choose one of these families, and at each side of the
energy crossing (18.278), we must discard one or the other and thus obtain a
discontinuous energy dependence.

Even though figure 18.76 is obtained with moderate values of γ and κ, we see
the similarity between the numerically determined A(q+)

n (q−) and plane waves,
while the energy levels εn(q+) are clearly not constant. This is due to the term
(18.276), the effect of which we will approximate using non-degenerate pertur-
bation theory. Due to the orthogonality between the cosine functions, there are
no first-order corrections. The second order corrections, on the other hand, give
contributions of the form

∆ε̃k(q+) = akF (q+)2 (18.279)
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where the amplitude ak can be calculated

ak =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1
κ−8πγ

k = 0
1

2κ−16πγ
k = ±1

1
κ(4k2−1) otherwise

(18.280)

as shown below.

Calculation of perturbation terms

The second order perturbation terms for the potential curves ε̃k(q+) are found
by calculating the matrix elements of the terms (18.276) between pairs of un-
perturbed eigenfunctions which are plane waves:

Il,k ≡ −
F (q+)

4π
∫

+2π

−2π
dq−e

i(k−l)q−/2 cos(q−)
2

) (18.281)

Using the orthogonality of the cosine functions we see that only coefficients with
neighboring values of l and k are coupled

Il,k = − −
F (q+)

2
[δk−l+1 + δk−l−1] (18.282)

The resulting perturbative corrections then takes the form

δε̃k(q+) =
∞
∑
l≠k

∣Ilk ∣2

ε̃k − ε̃m
= akF (q+)2 (18.283)

where the amplitude of the oscillation is

ak =
∞
∑
l≠k

[δk−l+1 + δk−l−1]2

2κ(k2 − l2) + 16πγ(δk,0 − δl,0)
(18.284)

Here we can distinguish between the three cases k = 0, k = ±1 and ∣k∣ ≥ 2, where
we get the results summarized in Eq. (18.280).

This gives the perturbative approximation to the potential curves

ε̃k(q+) + δε̃k(q+) =
κ

2
k2 + 4πγδk,0 + akF (q+)2

= κ
2
k2 + 4πγδk,0 +

ak
2

(1 + cos (q+)) (18.285)

Due to the term 4πγ in the expression for ε̃0(q+), the energies of the eigenfunc-
tions in this potential change linearly with γ. For k ≥ 1 the position of ε̃n(q+)
depends less strongly on γ and the eigenstates in these potentials have almost
constant energy.

D. Approximate solution of the second Born-Oppenheimer equation
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To analyze in more detail how the eigenenergies E(n)
m are distributed we must

take a closer look at the second Born-Oppenheimer equation which has the form
of a Schrodinger equation for a particle of mass h̵2/4k in the potential εn(q+).
When the above perturbative treatment is valid, this potential is a cosine with
amplitude ∣ak ∣/2, so in order to estimate the eigenstates and energies, we must
compare κ and ∣ak ∣. In the limit where we can neglect the q+-dependence of
ε̃k(q+), the solutions can be well approximated by plane waves eimq+/

√
2π with

box potential -energies

Ẽ(k)
m = κ

2
k2 + 4πγδk,0 + 2κm2 (18.286)

which depend quadratically on m. In the opposite limit where ε̃k(q+) s a deep
potential in (18.257), we can approximate the cosine potential by a quadratic ex-
pansion around its minimum. The resulting equation is a Schrodinger equation
for a particle with mass h̵2/4k in a harmonic oscillator of frequency

ωk =
1

h̵

√
2κ∣ak ∣ (18.287)

For the lower part of the energy spectrum the solutions are then well approxi-
mated by the usual harmonic oscillator eigenstate wave functions and the ener-
gies are equidistantly spaced with spacing h̵ωk:

Ẽ(k)
m = (κ

2
k2 + 4πγδk,0 +

ak
2

) + (m + 1

2
)
√

2κ∣ak ∣ (18.288)

Figure 18.79 illustrates the transition between the particle in a box and the
harmonic oscillator regimes by showing the exact and approximate energies
E

(0)
m as functions of κ for fixed negative γ. Since the harmonic oscillator ap-

proximation is valid when the potential in (18.257) is deep, it requires that
κ≪ ∣a0∣ = ∣κ − 8πγ∣−1, so to capture the whole transition, the κ-axis is logarith-
mic. The energies are plotted after subtracting the ground state energy E0 and
scaling by the energy difference E1 −E0 between the first excited state and the
ground state. For κ ≪ 1 the harmonic oscillator spectrum is then revealed as
levels with unit spacing. For κ→ 1, on the other hand, the curves become con-
stant at 1,4,9, ... showing the quadratic dependence on m. We note that there
is a perfect agreement between the exact and approximate energies shown in
the figure. In the transition from the harmonic oscillator regime to the particle
in a box regime the energy levels group in pairs, which has the following ex-
planation: For a deep potential curve εn there is a significant energy difference
between the first excited even and odd states, but when the potential curve is
nearly constant, then even and odd solutions with a given wave number has
almost the same energy. This is exemplified in the eigenfunctions in the upper
panels of figure 18.76.
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Figure 18.79: Exact and approximate energies as a function of κ for γ = −10.
The black dashed curves show the exact energies En, while the solid red curves
show the approximate energies E(0)

m found from the lowest potential-curve in
the second Born-Oppenheimer equation. The green curve shows the position
of the maximum of the lowest potential curve ε0(q+) within the perturbative
approximation. The exact ground state energy E0, which varies with κ, has
been subtracted from all energies, and afterward, the energies is scaled by the
energy difference between the two lowest exact energy levels E1 −E0.

No matter how deep the potential curve ε̃k(q+) is, the harmonic approximation is
not perfect, and above some energy the spectrum is ill-described by a harmonic
oscillator spectrum. A simple estimate suggests that the description is good for
eigenstates whose energies lie below the maximum of the potential curve, which
is approximated by the unperturbed energies plus a term depending on the sign
of ak

tk(γ, κ) =
κ

2
k2 + 4πγδk,0 +

ak + ∣ak ∣
2

(18.289)

In figure 18.79 this (solid green) curve is shown for k = 0 and agrees systemati-
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cally with the border where the harmonic oscillator energy spectrum is signifi-
cantly altered.

18.7.6 Conclusions

n the present paper we have considered two identical bosons on an infinite,
discrete lattice with an additional harmonic confinement. In the tight bind-
ing approximation, the single particle physics in terms of quasi- momenta is
described by the same equation as a single particle in a continuous cosine po-
tential - namely the Mathieu equation. Adding a contact interaction yields a
Hamiltonian which does not separate in relative and center-of-mass coordinates,
even though the two-body interaction problem separates in both a homogeneous
discrete lattice Hamiltonian and in a continuous harmonic oscillator.

By formulating the problem in quasi-momentum representation we can make an
approximation which is mathematically equivalent to the Born-Oppenheimer ap-
proximation performed in position space in molecular physics: We thus find ap-
proximate solutions by first solving an equation for the relative quasi-momentum
wave function that depends parametrically on the center-of-mass quasi-momentum.
This yields potential curves for a Schrodinger equation for the center-of-mass
coordinate, which is readily solved. Contrary to the Born-Oppenheimer approx-
imation used to separate slow nuclear and fast electronic motion in molecules,
in our system we have a tunable adiabaticity parameter, namely the strength
of the inter-particle interaction.

In the solution of both the first and second Born-Oppenheimer equations we can
identify the excitation degrees of freedom in the system. This provides physi-
cally motivated quantum numbers valid also for the exact eigenstates together
with rules for which quantum numbers are allowed by symmetry considerations.

Finally, from the good agreement between the exact and approximate solutions
we conclude that the Born-Oppenheimer is well justified when the energy scales
for the relative and the center-of-mass motion of the two-particle quantum state
are well-separated. We imagine that a similar separation may be useful for ap-
proximate first principle calculations on many other cold atom systems, e.g.,
with more particles and possibly with mixtures of different species.

18.8 Spontaneous symmetry breaking in quan-
tum mechanics

We now present a mathematically simple procedure to explain spontaneous sym-
metry breaking in quantum systems. The procedure is applicable to a wide range
of models and can be easily used to explain the existence of a symmetry bro-
ken state in crystals, antiferromagnets, and even superconductors. It has the
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advantage that it automatically brings to the fore the main players in spon-
taneous symmetry breaking: the symmetry-breaking field, the thermodynamic
limit, and the global excitations of a thin spectrum.

18.8.1 Introduction

In quantum mechanics symmetry has a much more powerful role than in classi-
cal mechanics. Translational invariance in a classical system causes momentum
to be conserved; in quantum mechanics it immediately implies that all eigen-
states of the Hamiltonian are spread out with equal amplitude over all of space.
It could be argued that because a chair is built of many microscopic particles
that all obey the rules of quantum mechanics, the chair as a whole should also
respect the symmetry of its Hamiltonian and be spread out over all of space.
Clearly this situation is not physically realized. The way out of the seeming
paradox is the spontaneous symmetry breaking of the collective system. The
description of spontaneous symmetry breaking in macroscopic systems that are
constructed from microscopic, quantum mechanical constituents is one of the
highlights of condensed matter theory. It is used to explain the classical features
of macroscopic systems ranging from crystals and antiferromagnets to supercon-
ductors.

In this section, we present a simple mathematical procedure that can be applied
to the spontaneous breaking of any continuous symmetry and that naturally em-
phasizes the roles of the key players (the symmetry-breaking field, the thermo-
dynamic limit, and the global excitations of a thin spectrum) in this symmetry
breaking. The procedure is described by considering the example of a quantum
harmonic crystal that spontaneously breaks translational symmetry. All of the
methods, that is, bosonization, using the Bogoliubov transformation to identify
the thin spectrum of states involved in spontaneous symmetry breaking, intro-
ducing a symmetry-breaking field in the collective dynamics, and considering a
noncommuting order of limits, can be applied to other systems as well.

18.8.2 The Harmonic Crystal

As a basic example of spontaneous symmetry breaking, we consider how trans-
lational symmetry is broken in a crystalline lattice. Consider a harmonic crystal
with the Hamiltonian

H =∑
j

p2
j

2m
+ κ

2
∑
j

(xj − xj+1)2 (18.290)

where j labels the N atoms in the lattice, which have mass m, momentum pj ,
and position xj . We consider here only a one-dimensional chain of atoms, but all
of the following can be straightforwardly generalized to higher dimensions. The
parameter κ gives the strength of the harmonic potential between neighboring
atoms. The results on spontaneous symmetry breaking that follow are equally
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valid for anharmonic potentials.

In the standard treatment of the harmonic oscillator a Fourier transformation
of the Hamiltonian is used to identify its eigenstates. We follow a slightly longer
route by introducing boson (phonon) operators from the outset and diagonaliz-
ing them using the Bogoliubov transformation discussed earlier. This approach
has the advantages that it naturally brings to the fore the thin spectrum of the
crystal and enables us to keep track of the center of mass motion of the crystal
as a whole. The momentum and position operators can be expressed(as we have
seen earlier) in terms of boson operators as

pj = iC
√

h̵

2
(b†j − bj) (18.291)

xj =
1

C

√
h̵

2
(b†j + bj) (18.292)

so that the commutation relation [xj , pj′] = ih̵δj,j′ is satisfied.

We choose C2 =
√

2mκ so that the Hamiltonian reduces to

H = h̵
4

√
2κ

m
∑
j

[2(b†jbj + bjb
†
j) − (b†j + bj)(b

†
j+1 + bj+1)] (18.293)

After a Fourier transformation we have

H =
√

h̵2κ

2m
∑
k

[Akb†kbk +
Bk
2

(b†kb
†
−k + bkb−k) + 1] (18.294)

where Ak = 2 − 2 cos (ka), Bk = − cos (ka), and a is the lattice constant. This
Hamiltonian is still not diagonal, because the terms b†kb

†
−k and bkb−k create and

annihilate two bosons at the same time. We get rid of these terms by introducing
transformed operators βk = cosh (uk)b−k+sinh (uk)b†k and choosing uk such that
the resulting Hamiltonian is diagonal. After this Bogoliubov transformation, the
Hamiltonian in terms of transformed bosons is given by

H = h̵
√

κ

m
∑
k

[2 sin ∣ka
2

∣ (β†
kβk +

1

2
) + 1

4

√
2 cos (ka)]

= 2h̵

√
κ

m
∑
k

sin ∣ka
2

∣ [nk +
1

2
] (18.295)

because ∑k cosk = (N/2) ∫
π
−π dk cosk = 0.

18.8.3 The Thin Spectrum
The form (18.295) of the Hamiltonian in terms of phonon operators coincides
with the standard textbook results. The use of the Bogoliubov transformation
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to obtain Eq. (18.295) has the advantage that it draws attention to a rather
subtle point. When k → 0 the excitation energy ωk → 0, and the two parameters
in the Bogoliubov transformation diverge [sinh (uk) →∞ and cosh (uk) →∞].
Thus, at k = 0 the canonical transformation is no longer well defined, and we
should treat the k = 0 part of the Hamiltonian (18.290) separately from the rest.
The excitations with k = 0 are the ones that describe the collective dynamics of
the crystal as a whole, and therefore they are also the states that are involved
in the collective symmetry breaking. The k = 0 part of the Hamiltonian, written
in terms of the original operators, is given by

Hcoll =
p2
tot

2Nm
+ const. (18.296)

where ptot ≡ ∑j pj =
√
Npk=0 is the total momentum of the system. It can

easily be checked that this part of the Hamiltonian, which describes the external
dynamics of the crystal as a whole, commutes with the rest of the Hamiltonian,
which describes the internal dynamics of the phonon modes inside the crystal.
We therefore focus on the collective part of the Hamiltonian and disregard the
phonon spectrum given by Eq. (18.295).

Notice that by considering only the collective part of the Hamiltonian, we have
effectively reduced the problem to a single-particle problem. The single particle
in Eq. (18.296) with mass Nm and momentum ptot describes the dynamics
of the crystal as a whole. Its momentum and position are the center of mass
momentum and position of the crystal. In contrast, Eq. (18.295) describes the
internal degrees of freedom of the crystal and includes all many-body effects
that arise from the coupling of the N individual atoms.

The relevant eigenstates of the collective Hamiltonian (18.296) are very low in
energy: their excitation energies scale as 1/N , where N is the number of atoms
in the crystal. In the thermodynamic limit all of these states thus become
nearly degenerate. Because of this property a combination of these states that
break the symmetry of the Hamiltonian can be spontaneously formed in the
thermodynamic limit. At the same time, these collective eigenstates are so few
in number and of such low energy that their contribution to the free energy
completely disappears in the thermodynamic limit. This vanishing contribution
can be seen by looking at their contribution to the partition function

Zthin =∑ e−βHcoll ∝
√
N (18.297)

and the free energy
Fthin = −T ln (Zthin)∝ ln (N) (18.298)

The free energy of the total system is an extensive quantity, so that Fthin/Ftot ∝
ln (N)/N disappears in the limit N → ∞. The states of this part of the spec-
trum are thus invisible in thermodynamically measurable quantities such as for
instance the specific heat of macroscopic crystals, and it is consequently called
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the thin spectrum of the quantum crystal.

To see how the states in the thin spectrum can conspire to break the translational
symmetry, we need to add a small symmetry-breaking field to the Hamiltonian:

HSB
coll =

p2
tot

2Nm
+ B

2
x2
tot (18.299)

Here the symmetry-breaking field B is introduced as a mathematical tool and
need not actually exist. We will send the value of B to zero at the end of the
calculation. The Hamiltonian (18.299) is the standard form of the Hamiltonian
for a quantum harmonic oscillator, and its eigenstates are well known. The
ground state wavefunction can be written as

ψ0(xtot) = (mωN
πh̵

)
1/4

e−(mωN/2h̵)x2
tot (18.300)

with ω =
√
B/mN . This ground state is a wavepacket of the total momentum

states that make up the thin spectrum. Apart from the ground state configu-
ration there are also collective eigenstates that are described by the excitations
of the harmonic oscillator Eq. (18.299). These excitations describe the collec-
tive motion of the crystal as a whole. As N becomes larger, the ground state
wavepacket becomes more and more localized at the position xtot = 0, until it is
completely localized as N →∞. That this localization can occur spontaneously
without the existence of a physical symmetry-breaking field B can be seen by
considering the noncommuting limits

lim
N→∞

lim
B→0

∣ψ0(xtot)∣2 = const. (18.301)

lim
B→0

lim
N→∞

∣ψ0(xtot)∣2 = δ(xtot) (18.302)

If we do not include any symmetry-breaking field, then the crystal is always com-
pletely delocalized and respects the symmetry of the Hamiltonian. If we do allow
for a symmetry-breaking field, then it turns out that in the limit of having in-
finitely many constituent particles, an infinitesimally small symmetry-breaking
field is enough to completely localize the crystal at a single position. This math-
ematical instability implies that the symmetry breaking happens spontaneously
in the thermodynamic limit.

Notice that once the crystal has been localized at a specific position and the
unphysical symmetry-breaking field has been sent to zero, the delocalization of
the crystal due to the spreading of its wavefunction will take a time proportional
to N and can thus never be observed.

To see more rigorously whether or not the crystal as a whole is localized, we
should look at the spatial fluctuations of the crystal ⟨x2

tot⟩. The absolute size
of these fluctuations by itself is meaningless. Their size becomes meaningful
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only if it is compared to the size of the crystal. Because the size of the crystal
is proportional to the number of particles in the system, the appropriate order
parameter in this case is ⟨x2

tot⟩/N . This order parameter has a noncommuting
order of limits a N →∞,

lim
N→∞

lim
B→0

⟨x2
tot⟩/N =∞ (18.303)

lim
B→0

lim
N→∞

⟨x2
tot⟩/N = 0 (18.304)

which again signals the spontaneous localization of the crystal as a whole.

18.8.4 Subtleties
In the derivation of the spontaneous symmetry breaking of a harmonic crystal
we have been somewhat sloppy in the definition of the symmetry-breaking field.
After all, the collective model of Eq. (18.296) was only the k = 0 part of the
full blown Hamiltonian in Eq. (18.290), but we did not consider the symmetry-
breaking field to be only the k = 0 part of some other field acting on all atoms
individually. It would there- fore be better to start with a microscopic model,
which al- ready includes a symmetry-breaking field such as

HSB =∑
j

[
p2
j

2m
+ κ

2
(xj − xj+1)2 +B(1 − cos (xj))]

→HSB
coll ≃

p2
tot

2Nm
+ B

2
x2
tot (18.305)

In Eq. (18.305) we again consider only the k = 0 part of the Hamiltonian and
have expanded the cosine to quadratic order. The fact that the symmetry-
breaking field now scales as 1/N is a direct consequence of our definition of
the microscopic symmetry-breaking field. The factor 1/N cannot be avoided
if we insist that the microscopic Hamiltonian be extensive. This factor might
seem to imply an end to the localization of the total wavefunction ψ0(xtot),
but spontaneous symmetry breaking is still possible as long as we con- sider the
correct order parameter. Even though the wavefunction itself does not reduce to
a Dirac delta function anymore, the spatial fluctuations of the crystal compared
to its size still become negligible in the thermodynamic limit if an infinitesimal
symmetry-breaking field is included:

lim
N→∞

lim
B→0

⟨x2
tot⟩/N =∞ (18.306)

lim
B→0

lim
N→∞

⟨x2
tot⟩/N = 0 (18.307)

Once again the disappearance of fluctuations in the thermo- dynamic limit sig-
nals the spontaneous localization of the crystal as a whole.

This digression into extensivity and the correct choice for the symmetry-breaking
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field seems unnecessary for understanding the essential ingredients of sponta-
neous symmetry breaking, and therefore we have ignored these subtleties in our
main treatment of quantum spontaneous symmetry breaking. In the application
of this procedure to other systems, such as antiferromagnets and superconduc-
tors, these issues don’t arise because we are forced to consider extensive models
from the outset. In these cases, however, the mathematics of diagonalizing the
collective Hamiltonian is a bit more involved.

18.8.5 Discussion
We have presented a simple way of explaining the appearance of spontaneous
symmetry breaking in quantum systems. The procedure starts with the bosoniza-
tion of the microscopic Hamiltonian. The quadratic part of the bosonized Hamil-
tonian can in principle be diagonalized using a Bogoliubov transformation, but
in doing so we find that there are some modes for which the transformation is
ill-defined. These singular modes are the ones that describe the dynamics of the
system as a whole (in contrast to the dynamics of constituent particles within
the system). These collective excitations should be treated separately from all
other modes, and together they define the collective part of the Hamiltonian
of the system. The eigenstates of this collective Hamiltonian that scale as 1/N
form the thin spectrum. It is a combination of these states that make up the
symmetry broken wavefunction. As a mathematical tool necessary to be able
to see the symmetry breaking explicitly, we introduced the symmetry-breaking
field B. If we look at the new ground state wavefunction or at a suitably defined
order parameter for the system, we see that in the thermodynamic limit an
infinitesimally small field B is enough to completely break the symmetry of the
underlying Hamiltonian. It is thus argued that symmetry breaking can happen
spontaneously in the limit N →∞.

The method as presented here can be adapted to describe rotors, antiferromag-
nets, and even superconductors, and should in principle be applicable to all
quantum systems that spontaneously break some continuous symmetry.

18.9 Problems

18.9.1 Piecewise Constant Potential Energy
One Atom per Primitive Cell

Consider a one-dimensional crystal whose potential energy is a piecewise con-
stant function of x. Assume that there is one atom per primitive unit cell - that
is, we are using the Kronig-Penney model as shown below.

(a) Let s = d/2 (same spacing as in the text) and explain why no energy
gap occurs at the second Brillouin zone boundary in the weak-binding
limit, using physical argument based on sketches of the electron probability
density.
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Figure 18.80: Piecewise Constant Potential - 1 Atom per Primitive Cell

(b) For s = d/3, what are the magnitudes of the lowest six band gaps in the
weak binding limit?

18.9.2 Piecewise Constant Potential Energy
Two Atoms per Primitive Cell

Consider a one-dimensional crystal with two atoms per primitive unit cell as
shown below.

Figure 18.81: Piecewise Constant Potential - 2 Atoms per Primitive Cell

(a) Using the weak-binding approximation, determine the band gap for an
arbitrary Brillouin zone boundary.

(b) Use the results of part (a) to obtain an expression for the band gaps for
w ≪ d and zone boundaries corresponding to small values of G. Are any
of these band gaps zero? Use physical arguments to explain why or why
not.

(c) Use the results of part(a) to determine the magnitude of the lowest eight
band gaps for w = d/4. Are any of these band gaps zero? Use physical
arguments to explain why or why not.

(d) In the weak-binding approximation, the energies for wave vectors k that
are far from the Brillouin zone boundaries are given by the free-electron
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energies E = h̵2k2/2me. In relation to the zero of V (x) above, from what
value of the energy are the free-electron energies measured? Does any-
thing unusual happen when the energies exceed zero - the beginning of
the continuum for the isolated atoms? Determine how many band gaps
occur below E = 0. Answer these questions using the weak-binding ap-
proximation.

18.9.3 Free-Electron Energy Bands for a Crystal with a
Primitive Rectangular Bravais Lattice

Consider a two-dimensional crystal with a primitive rectangular Bravais lattice.
Take the ratio of sides of the rectangular primitive cell to be 2:1, where the
larger side is along the y−axis.

(a) Working in the reduced zone scheme, sketch the free-electron energy for
the four lowest bands as a function of the distance in k⃗ space (starting at
k⃗ = 0) along the path in the first Brillouin zone shown in the figure below.

Figure 18.82: Paths in the First Brillouin Zone

(b) Sketch free-electron constant energy contours in the reduced zone scheme
for the lowest four bands.

(c) Sketch the free-electron density of states, D(n)(E), for each of the four
lowest bands individually. Sketch D(E) for the total of the four lowest
bands.

(d) Sketch the free-electron Fermi surfaces in the reduced zone scheme for
η = 1 to 6. Indicate the positions of the various Fermi energies on the
density-of-states graphs of part (c). Use quantitatively correct values for
kF and EF in this part.

18.9.4 Weak-Binding Energy Bands for a Crystal with a
Hexagonal Bravais Lattice

Consider a two-dimensional crystal with an hexagonal rectangular Bravais lat-
tice oriented so that two nearest lattice points can lie along the y−axis but not
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along the x−axis.

(a) Using the reduced zone scheme, sketch the energy versus distance in k⃗
space (starting at k⃗ = 0) along the path in the first Brillouin zone shown
in the figure below. Do this for the six lowest bands in both the free-
electron and weak-binding approximations (assuming (incorrectly) that
all degeneracies are absent in the latter case).

Figure 18.83: Paths in the First Brillouin Zone

(b) Sketch constant energy contours in the reduced zone scheme for the lowest
six bands. Do so in both the free-electron and weak-binding approxima-
tions. Indicate the location in k⃗ space of all distinct maxima, minima and
saddlepoints (only one of a set that are equivalent by symmetry need be
shown).

(c) Sketch the Fermi surface in the reduced zone scheme for η = 1 to 7. Do so
in both the free-electron and weak-binding approximations. Use quanti-
tatively correct values for kF in the free-electron sketches.

(d) Sketch the density of states, D(n)(E), for each of the five lowest bands
individually and D(E) for the total of the five lowest bands.. Do so in
both the free-electron and weak-binding approximations. Assume all de-
generacies are absent in the latter case and make reasonable assumptions
about the sense of the energy shifts from the free-electron values at the
singular points.

(e) For which integral value of η would insulating properties be most likely to
first occur as the strength of the periodic potential energy is increased?
Why?

18.9.5 A Weak-Binding Calculation #1

Consider a two-dimensional crystal with a primitive rectangular Bravais lattice
and two identical atoms per primitive unit cell. Take the structure to be as
shown below with a ∶ b ∶ c ∶∶ 4 ∶ 2 ∶ 1. Take the potential energy to be the sum of
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the potential energies for the individual atoms located at the atom sites given
in the figure. Use the weak-binding approximation.

Figure 18.84: 2-Dimensional Crystal - Rectangular Bravais Lattice with 2 Atoms
per Primitive Unit Cell

(a) Find expressions for the matrix elements VG that describe the band gaps
in the weak-binding limit. Under what circumstances, if any, is VG = 0?

(b) Use the results of part (a) to draw qualitatively correct constant energy
contours in the reduced zone scheme for the lowest three bands.

(c) Sketch qualitatively correct individual band densities of states for the low-
est three bands.

18.9.6 Weak-Binding Calculations with Delta-Function Po-
tential Energies

Consider a two-dimensional crystal for which the potential energy consists of
delta functions, one for each atom. Use the weak-binding approximation .

(a) For the case of one atom per primitive cell, obtain a general expression for
the energy difference between adjacent bands at a Brillouin zone bound-
ary where they would be degenerate in the free-electron approximation
(ignoring the intersections of two or more boundaries). How does this
result depend on the Bravais lattice (assuming the area of a primitive cell
is the same for each different case)?

(b) For a crystal with a square lattice and one atom per primitive unit cell,
what are the energies of the lowest four bands at k⃗ = (π/d)(1,1)? Explain
your result in a physical and qualitative way.

(c) For a crystal with a centered rectangular Bravais lattice and two different
delta-function atoms per primitive unit cell as shown in the figure below,
evaluate the energy splittings between the bands for all zone boundaries in
the extended zone scheme for the five lowest bands (ignore all intersections
of two or more boundaries).
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Figure 18.85: 2-Dimensional Crystal - Centered Rectangular Bravais Lattice
with 2 Atoms per Primitive Unit Cell

18.9.7 Is the spectrum of the harmonic crystal example
really thin?

Check that the thin spectrum of a harmonic crystal is indeed thin. That is,

(a) Show that only the lowest
√
N total momentum states are not exponen-

tially suppressed in the symmetry broken wavefunction (18.300). (This
result implies that only the lowest

√
N total momentum states contribute

to the symmetry broken wavefunction, and these states all be-come de-
generate in the thermodynamic limit).

(b) Calculate the partition function of the thin spectrum states and show that
it scales as

√
N , so that the contribution of these states to the free energy

vanishes in the thermodynamic limit.

18.9.8 Are the limits really noncommutative in the har-
monic crystal example?

Show the noncommutativity of the limits in Eq. (18.304) explicitly, by going
through the following steps:

(a) Formulate the Hamiltonian of Eq. (18.299) in terms of the boson (raising
and lowering) operators b† =

√
C/(2h̵)(xtot−(i/C)ptot) and b =

√
C/(2h̵)(xtot+

(i/C)ptot) (where C is some constant).

(b) Choose C such that the Hamiltonian becomes diagonal and find its ground
state.

(c) Evaluate the limits of Eq. (18.304) by expressing x2
tot in terms of boson

operators and taking the expectation value with respect to the ground
state of HSB

coll.
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18.9.9 The Bogoliubov transformation in the harmonic
crystal example.

Work out the Bogoliubov transformation of Eqs. (18.294) and (18.295) explic-
itly.

(a) Write the Hamiltonian of Eq. (18.294) in terms of the trans- formed
bosons βk = cosh (uk)b−k + sinh (uk)b†k.

(b) Which value should be chosen for uk in order for the Bogoliubov trans-
formation to yield the diagonal Hamiltonian of Eq. (18.295)? [Answer:
tanh (2uk) = Bk/Ak]

1506



Chapter 19

Second Quantization

19.1 Identical Particles Revisited

When dealing with a system that contains only a few identical particles, we
were easily able to explicitly construct appropriately symmetrized state vectors.
However, when the number of identical particles in the system gets very large
as with electrons in a metal, superfluids or superconductors and so on, these
methods become too cumbersome to use effectively.

To see how to proceed in these cases, we will step back, revisit the subject
of identical particles and look for an alternative way of thinking about such
systems.

19.1.1 Indistinguishability

As we saw earlier, in quantum mechanics, the state of a system with identical
particles can be described by a set of quantum numbers corresponding to the
eigenvalues of a commuting set of single-particle operators representing single-
particle observables.

When we specify a state vector we designate how many particles have certain
sets of quantum numbers, i.e.,

n1 particles have quantum number set K1

n2 particles have quantum number set K2

and so on

More complicated states are then superpositions of these states.

The important fact is that, for identical or indistinguishable particles, it is
impossible to state which particle has K1, which particle has K2, etc. As we
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saw in atoms, this indistinguishability has measurable effects on energy levels
arising from particle exchange symmetries.

19.1.2 State Vectors

When we define a state vector for a system of n identical particles we are work-
ing under the following assumption

any complete set of quantum numbers (observables) that can be
used to describe the behavior of a single particle can also be
used for n non-interacting particles of the same type

This assumption is postulated to be true even if the n particles are interacting.
The assumption implies that composite systems somehow retain the information
related to single-particle properties.

Mathematically it says that

for each set of quantum numbers Ki there exists an
occupation number operator N̂i such that the
eigenvectors of N̂i imply states in which a definite
number, ni, of particles has the quantum numbers Ki

and that the eigenvalues of the N̂i are the occupation
numbers ni.

We make the fundamental postulate that the set of all N̂i forms a complete set
of commuting Hermitian operators for any system of identical particles.

We now construct the state vector space appropriate for the many particle
system by generalizing one-particle quantum mechanics and building in indis-
tinguishability from the start.

Our postulates imply that the state vector space for the many particle system
(called Fock space) has the basis vectors

∣n1, n2, n3, ........⟩ (19.1)

where the notation implies that

n1 particles have quantum number set K1

n2 particles have quantum number set K2

and so on

As we said, we assume this set is a complete orthonormal basis.
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In this vector space, we define

∣0⟩ = ∣0,0,0,0, ............⟩ = zero particle or vacuum state (19.2)

and one-particle states are of the form

∣0,0,0, .......,0, ni = 1,0,0, ........⟩ (19.3)

These one-particle states span the one-particle subspace of the much larger state
space of the many particle system.

Most of the quantum mechanics we have developed so far applies to these one-
particle states.

We now ask whether the postulate implies enough formalism to construct a
quantum mechanics of a many-particle interacting system?

To answer this question yes, we must show that a consistent framework exists
that makes predictions in agreement with experiment.

The fundamental assumption that the states of an interacting system can be
written in terms of states for noninteracting single particles comes from our
experience with perturbation theory. It will fail to work if the noninteracting
and interacting states are two inequivalent representations of the Hilbert space
for the many particle system. Standard perturbation theory implicitly assumes
that the zero-order or unperturbed states and the exact states are equivalent
representations of the Hilbert space.

19.2 Occupation Number Space

19.2.1 Creation and Annihilation Operators
Earlier we studied the â , â+ operators in conjunction with the harmonic oscil-
lator problem. In that system we found that â lowered the energy of the system
by 1 quantum = h̵ω, while â+ raised the energy of the system by h̵ω.

In terms of the eigenvalues and eigenvectors of the number operator N̂ = â+â
where N̂ ∣n⟩ = n ∣n⟩ we found that

â ∣n⟩ =
√
n ∣n − 1⟩ and â+ ∣n⟩ =

√
n + 1 ∣n + 1⟩ (19.4)

In some sense, we can think of the â , â+ as annihilation/creation operators for
a quantum of the energy associated with a single particle system.

Another appearance of operators of this type with similar properties will occur
when we study the interaction of radiation with matter in Chapter 20. We will
be able to introduce photon annihilation/creation operators which remove/add a
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single photon with particular quantum numbers (k⃗, λ⃗) corresponding to photon
momentum and polarization. The photon operators will have same mathemat-
ical structure(commutators) as the â , â+ operators of the harmonic oscillator
system.

In the photon case, as we will see, the states of the system will be the photon
number states given by

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

,Nk⃗3λ⃗3
, ..........⟩ (19.5)

We will base our generalization on these examples. The generalization will al-
low us eventually to define the most general Fock space for any many particle
system.

Suppose that we have a potential well V (r⃗) with single particle energy eigen-
states given by

φ0(r⃗) = ⟨r⃗ ∣ 0⟩ , φ1(r⃗) = ⟨r⃗ ∣ 1⟩ , φ2(r⃗) = ⟨r⃗ ∣ 2⟩ , ......... (19.6)

We start the discussion by considering a system of n bosons.

We assume that all n particles are in the lowest level (ground state) φ0(r⃗) of
the well. We label this state by the symbol ∣n⟩ where n = 0,1,2,3, ......, i.e., ∣0⟩
is the state with no particles in the lowest level.

We now introduce the operators â0 , â
+
0 such that

â0 ∣n⟩ =
√
n ∣n − 1⟩ and â+0 ∣n⟩ =

√
n + 1 ∣n + 1⟩ (19.7)

By definition, these operators relate states of the n−boson system with all n
particles in φ0(r⃗) to those states of an n ± 1 particle system with all particles
in φ0(r⃗). In this sense, we say that

â0 = a particle annihilation operator
which removes a particle in the state φ0(r⃗) from the system

â+0 = a particle creation operator
which adds a particle in the state φ0(r⃗) to the system

These operators, by construction, have the same algebra as the harmonic oscil-
lator operators, i.e.,

[â0, â
+
0] = 1 , [â0, â0] = 0 = [â+0 , â+0] (19.8)

and

∣n⟩ = (â+0)
n

√
n!

∣0⟩ , â0 ∣0⟩ = 0 (no particles to be annihilated) (19.9)
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This says that

the state with n particles in the lowest level, ∣n⟩, is generated
by adding n particles, in φ0(r⃗), to the vacuum state ∣0⟩

Acting to the left (instead of to the right) these operators reverse their roles,
i.e.,

⟨n∣ â0 =
√
n + 1 ⟨n + 1∣→ adds particles in the state φ0(r⃗)

⟨n∣ â+0 =
√
n ⟨n − 1∣→ removes particles in the state φ0(r⃗)

The operator
N̂0 = â+0 â0 (19.10)

measures the number of particles in a state since

N̂0 ∣n⟩ = â+0 â0 ∣n⟩ = n ∣n⟩ (19.11)

This is a very appealing picture, but really all we have done is rewrite the
harmonic oscillator story using a lot of new words. We do not have any new
physics yet!

Before introducing the new physical ideas, we carry out this same discussion for
fermions.

In this case, the only allowed states are

∣0⟩ = no particles in φ0(r⃗)
∣1⟩ = 1 particle in φ0(r⃗)

since we cannot, according to the PEP, have two particles with the same quan-
tum numbers (in the same state).

We can still introduce annihilation/creation operators but they must have a
very different algebra. We must have

â0 ∣0⟩ = 0 there are no particles to be annihilated
â0 ∣1⟩ = ∣0⟩ we can remove a particle when there is a particle
â+0 ∣0⟩ = ∣1⟩ we can add a particle when there are no particles
â+0 ∣1⟩ = 0 we cannot have two particles in the same state

The last relation is necessary to satisfy the PEP.

We can figure out the operator algebra by using a special representation of these
states and operators. We let the two states (only allowed states) be a basis and
select the 2-dimensional representation

∣0⟩ = ( 1
0

) and ∣1⟩ = ( 0
1

) (19.12)
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In this representation we have

⟨0∣ â0 ∣0⟩ = 0 , ⟨1∣ â0 ∣0⟩ = 0 , ⟨0∣ â0 ∣1⟩ = 1 , ⟨1∣ â0 ∣1⟩ = 0

â0 = ( 0 1
0 0

)

⟨0∣ â+0 ∣0⟩ = 0 , ⟨1∣ â+0 ∣0⟩ = 1 , ⟨0∣ â+0 ∣1⟩ = 0 , ⟨1∣ â+0 ∣1⟩ = 0

â+0 = ( 0 0
1 0

)

Another way of representing these operators is via outer products,i.e.,

â0 = ∣0⟩ ⟨1∣ , â+0 = ∣1⟩ ⟨0∣ (19.13)

The operator algebra is then given by

â0â
+
0 = ∣0⟩ ⟨0∣ = projection operator on the ∣0⟩ state

â+0 â0 = ∣1⟩ ⟨1∣ = projection operator on the ∣1⟩ state

â0â
+
0 + â+0 â0 = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ = Î

This last relation was derived, in general, earlier and is just the sum over all
projection operators.

Therefore we get
{â0, â

+
0} = â0â

+
0 + â+0 â0 = Î (19.14)

Thus, the algebra involves anticommutators instead of commutators. That is
the only change we need to make!!

We also have
{â0, â0} = 0 = {â+0 , â+0} (19.15)

These anticommutators imply that

(â0)2 = 0→ we cannot remove two fermions from the
same state (maximum of one allowed)

(â+0)
2 = 0→ we cannot put fermions into the

same state (maximum of one allowed)

Summary:

For one single particle level in a potential well, we can define annihilation/creation
operators such that:

bosons have
[â0, â

+
0] = Î , [â0, â0] = 0 = [â+0 , â+0] (19.16)
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and

fermions have

{â0, â
+
0} = Î , {â0, â0} = 0 = {â+0 , â+0} (19.17)

We now expand our view and consider the case where particles can occupy two
levels of the potential well, say φ0(r⃗) and φ1(r⃗).

For bosons, we write the state of a many particle system as

∣n0, n1⟩ (19.18)

which implies

n0 particles in φ0(r⃗) and n1 particles in φ1(r⃗) (19.19)

We now define a pair of boson annihilation/creation operators by the relations

â0 ∣n0, n1⟩ =
√
n0 ∣n0 − 1, n1⟩

â+0 ∣n0, n1⟩ =
√
n0 + 1 ∣n0 + 1, n1⟩

â1 ∣n0, n1⟩ =
√
n1 ∣n0, n1 − 1⟩

â+1 ∣n0, n1⟩ =
√
n1 + 1 ∣n0, n1 + 1⟩

which imply that

â0 annihilates a particle in the state φ0(r⃗)
â+0 creates a particle in the state φ0(r⃗)
â1 annihilates a particle in the state φ1(r⃗)
â+1 creates a particle in the state φ1(r⃗)

In the same manner as in the one level case, we must have the commutator
algebra

[â0, â
+
0] = 1 , [â0, â0] = 0 = [â+0 , â+0] (19.20)

and
[â1, â

+
1] = 1 , [â1, â1] = 0 = [â+1 , â+1] (19.21)

For bosons, the order in which we create or annihilate particles in a state does
not matter, i.e.,

â0â1 ∣n0, n1⟩ = â1â0 ∣n0, n1⟩ (19.22)

which says
[â0, â1] = 0 (19.23)

In a similar way all the other mixed commutators are also zero

[â0, â
+
1] = 0 = [â1, â

+
0] = [â+1 , â+0] (19.24)
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All allowed states can be constructed from the vacuum state ∣0,0⟩ by using

∣n0, n1⟩ =
(â+1)

n1

√
n1!

(â+0)
n0

√
n0!

∣0,0⟩ (19.25)

Finally,

N̂0 = â+0 â0 → the number of particles in state φ0(r⃗)
N̂1 = â+1 â1 → the number of particles in state φ1(r⃗)

and
N̂ = N̂0 + N̂1 → the total particle number operator (19.26)

Therefore,

N̂0 ∣n0, n1⟩ = n0 ∣n0, n1⟩
N̂1 ∣n0, n1⟩ = n1 ∣n0, n1⟩
N̂ ∣n0, n1⟩ = (n0 + n1) ∣n0, n1⟩

Thus, for bosons we are able to just glue two single level many particle systems
together to create a two-level many particle system. We are really constructing
direct product states.

For fermions,however, there are some extra complications that we have to deal
with.

We start off by following a similar procedure. For the two-level system we have
only four possible fermion states, namely,

∣0,0⟩ , ∣0,1⟩ , ∣1,0⟩ , ∣1,1⟩ (19.27)

We are completely free to define one set of creation/annihilation operators.

We define the â1 , â
+
1by

â1 ∣0,0⟩ = 0 , â1 ∣1,0⟩ = 0

â1 ∣0,1⟩ = ∣0,0⟩ , â1 ∣1,1⟩ = ∣1,0⟩
â+1 ∣0,0⟩ = ∣0,1⟩ , â+1 ∣1,0⟩ = ∣1,1⟩
â+1 ∣0,1⟩ = 0 , â+1 ∣1,1⟩ = 0

For â0 , â
+
0 we can freely define the operation on state with no particles in level

φ1(r⃗)

â0 ∣0,0⟩ = 0 , â0 ∣1,0⟩ = ∣0,0⟩
â+0 ∣0,0⟩ = ∣1,0⟩ , â+0 ∣1,0⟩ = 0
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We must take care, however, in the fermion case when a particle exists in level
φ1(r⃗), i.e., for the operations

â0 ∣0,1⟩ , â0 ∣1,1⟩
â+0 ∣0,1⟩ , â+0 ∣1,1⟩

The reason we must worry about these cases is connected with our earlier dis-
cussion of a totally antisymmetric state vector for fermions,i.e., if we interchange
any two identical fermions we must get a minus sign.

In this formalism, how do we interchange two fermions in the state ∣1,1⟩? Using
only the defined relations we have.....

Step 1: ∣1,1⟩→ ∣1,0⟩ = â1 ∣1,1⟩→ remove a particle from state φ1(r⃗) using â1

Step 2: ∣1,0⟩→ ∣0,1⟩ = â+1 â0 ∣1,0⟩→ transfer the particle from state φ0(r⃗) to φ1(r⃗)
by applying â+1 â0 (â0 followed by â1)

Step 3: put the leftover particle back into φ0(r⃗) using â+0 which gives the state
relationship

â+0 â
+
1 â0â1 ∣1,1⟩ = â+0 ∣0,1⟩ (19.28)

However, all we have done is switch the particles in the original state ∣1,1⟩,
which means that a minus sign must appear or

â+0 ∣0,1⟩ = − ∣1,1⟩ (19.29)

In this way, the state is completely antisymmetric under particle exchange.

In a similar manner, the other relations that complete the definition of the
annihilation and creation operators are

â0 ∣1,1⟩ = − ∣0,1⟩ , â0 ∣0,1⟩ = 0 = â+0 ∣1,1⟩ (19.30)

Since â0 = (â+0)
+ we have

â+0 ∣0,1⟩ = − ∣1,1⟩ , â0â
+
0 ∣0,1⟩ = −â0 ∣1,1⟩ = ∣0,1⟩ (19.31)

so that â0 completely undoes the operation of â+0 .

These definitions, which are now consistent with complete antisymmetry corre-
spond to the anticommutation relations

{â0, â
+
0} = 1 {â0, â0} = 0 {â+0 , â+0} = 0

{â1, â
+
1} = 1 {â1, â1} = 0 {â+1 , â+1} = 0

{â0, â1} = 0 {â0, â
+
1} = 0 {â+0 , â1} = 0

{â+0 , â+1} = 0
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We get anticommutators instead of commutators because of the complete anti-
symmetry under particle interchange(see argument below).

The rule for constructing the allowed states is

∣n0, n1⟩ = (â+1)
n1 (â+0)

n0 ∣0,0⟩ (19.32)

Note the order, â+0 acts first and we have no factorial factors since 0! = 1! = 1.

The connection between the minus sign and the anticommutators is now clear,
i.e.,

â0 ∣1,1⟩ = â0â
+
1 â

+
0 ∣0,0⟩ = −â+1 â0â

+
0 ∣0,0⟩

= −â+1[1 − â+0 â0] ∣0,0⟩ = −â+1 ∣0,0⟩
= − ∣0,1⟩

So we could have assumed the anticommutators and derived the state operations
instead of going the other way.

The generalization to the many particle system where particles can occupy all
of the levels is now straightforward.

In generalizing, we will not only let the particles occupy all of the levels, but
also have all spin orientations.

Once again the states will be labeled

∣n0, n1, n2, ........⟩ (19.33)

where now

ni = the number of particles in φi(r) with a
given spin orientation (if the particles have spin)

We define creation and annihilation operators â+i and âi for each different single
particle state.

For boson operators we have commutation relations

[âi, â+j ] = δij , [âi, âj] = 0 = [â+i , â+j ] (19.34)

and

∣n0, n1, n2, ....⟩ = ..........
(â+2)

n2

√
n2!

(â+1)
n1

√
n1!

(â+0)
n0

√
n0!

∣0⟩ (19.35)

where
∣0⟩ = ∣0,0,0,0, .........⟩ = the vacuum state (19.36)
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To within numerical factors, as we will see, these are the same relations we will
find in Chapter 20 for photons. Therefore, photons must be bosons !!

For fermion operators we have anticommutation relations

{âi, â+j } = δij , {âi, âj} = 0 , {â+i , â+j } = 0 (19.37)

and

∣n0, n1, n2, ....⟩ = .......... (â+2)
n2 (â+1)

n1 (â+0)
n0 ∣0⟩ , ni = 0,1 only (19.38)

In both cases
N̂ =∑

i

N̂i =∑
i

â+i ai (19.39)

and
[N̂i, N̂j] = 0 (19.40)

19.2.2 An Example
We now consider the complete set of plane wave states in a box using periodic
boundary conditions. We have

Ĥ =
p⃗2
op

2m
(19.41)

Since
[Ĥ, p⃗op] = 0 (19.42)

we have a common eigenbasis that we will label by ∣p⃗⟩. We then have

p⃗op ∣p⃗⟩ = p⃗ ∣p⃗⟩ , Ĥ ∣p⃗⟩ = p⃗2

2m
∣p⃗⟩ = E ∣p⃗⟩ (19.43)

so that

E = p⃗2

2m
(19.44)

The corresponding wave functions are

φp⃗(r⃗) = ⟨r⃗ ∣ p⃗⟩ = e
ik⃗⋅r⃗
√
V

(19.45)

where p⃗ = h̵k⃗ and V = volume of the box. The factor 1/
√
V normalizes the

wavefunction in the box.

Periodic boundary conditions are imposed by the relations

φp⃗(0, y, z) = φp⃗(Lx, y, z)
φp⃗(x,0, z) = φp⃗(x,Ly, z)
φp⃗(x, y,0) = φp⃗(x, y,Lz)
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which imply that

eikxLx = 1→ kx =
2πnx
Lx

, nx = 0,±1,±2, ....

eikyLy = 1→ ky =
2πny

Ly
, ny = 0,±1,±2, ....

eikzLz = 1→ kz =
2πnz
Lz

, nz = 0,±1,±2, ....

We now define

â+p⃗s = the operator that creates (adds) a particle of

momentum p⃗ and spin orientation s in(to) the box

âp⃗s = the operator that annihilates (removes) a particle of

momentum p⃗ and spin orientation s in(from) the box

The probability amplitude for finding the particle added by â+p⃗s to the box at
position r⃗ ′ is

eik⃗⋅r⃗
′

√
V

= ⟨r⃗ ′ ∣ p⃗⟩ (19.46)

The operator

ψ+s (r⃗) =∑
p⃗

e−ik⃗⋅r⃗√
V
â+p⃗s (19.47)

adds a particle to the system in a superposition of momentum states (â+p⃗s) each
with amplitude

e−ik⃗⋅r⃗√
V

(19.48)

This implies that the probability amplitude for finding the particle added to the
box by ψ+s (r⃗) at the position r⃗ ′ is

⟨r⃗ ′∣∑
p⃗

e−ik⃗⋅r⃗√
V
â+p⃗s ∣0⟩ =∑

p⃗

e−ik⃗⋅r⃗√
V

⟨r⃗ ′ ∣ p⃗⟩

=∑
p⃗

e−ik⃗⋅r⃗√
V

e−ik⃗⋅r⃗
′

√
V

= δ(r⃗ − r⃗ ′) (19.49)

This says that the operator ψ+s (r⃗) adds all the amplitude at the position r⃗ or
we say

ψ+s (r⃗) adds(creates) a particle at position r⃗ with spin orientation s

In a similar manner, the operator

ψs(r⃗) = (ψ+s (r⃗))
+∑
p⃗

eik⃗⋅r⃗√
V
âp⃗s (19.50)
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removes (annihilates) a particle at point r⃗.

The ψ+s (r⃗) and ψs(r⃗) are called field operators.

In this new formalism, position and momentum are once again just numbers,
but the wave functions are now operators. Hence the name second quantization.

For bosons we have

[ψs(r⃗), ψs′(r⃗′)] = 0 = [ψ+s (r⃗), ψ+s′(r⃗′)] (19.51)

and for fermions we have

{ψs(r⃗), ψs′(r⃗′)} = 0 = {ψ+s (r⃗), ψ+s′(r⃗′)} (19.52)

These relations imply that

for bosons adding(removing) a particle at r⃗
is an operation that commutes with
adding(removing) a particle at r⃗ ′

and

for fermions adding(removing) a particle at r⃗
is an operation that anticommutes with
adding(removing) a particle at r⃗ ′ (change of sign)

Finally, for bosons we get

[ψs(r⃗), ψ+s′(r⃗ ′)] =∑
p⃗p⃗′

eik⃗⋅r⃗e−ik⃗⋅r⃗
′

V
[âp⃗s, â+p⃗ ′s′]

=∑
p⃗p⃗ ′

eik⃗⋅r⃗e−ik⃗⋅r⃗
′

V
δp⃗p⃗ ′δss′ = δ(r⃗ − r⃗ ′)δss′ (19.53)

and similarly for fermions we get

{ψs(r⃗), ψ+s′(r⃗ ′)} =∑
p⃗p⃗ ′

eik⃗⋅r⃗e−ik⃗⋅r⃗
′

V
{âp⃗s, â+p⃗ ′s′}

=∑
p⃗p⃗ ′

eik⃗⋅r⃗e−ik⃗⋅r⃗
′

V
δp⃗p⃗ ′δss′ = δ(r⃗ − r⃗ ′)δss′ (19.54)

These relations imply that creating particles commutes(bosons) or anticom-
mutes(fermions) with annihilating particles unless the two, operations occur at
the same point in space.
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In this case, if there are no particles at r⃗, then

ψ+s (r⃗)ψs(r⃗)→ 0 (19.55)

i.e., we cannot annihilate a particle at a point if none exists there.

On the other hand
ψs(r⃗)ψ+s (r⃗) does not → 0 (19.56)

since ψ+s (r⃗) adds a particle that ψs(r⃗) then removes!

Suppressing spin indices for simplicity, the state vector

∣r⃗1, r⃗2, ......., r⃗n⟩ =
1√
n!
ψ+(r⃗n).......ψ+(r⃗2)ψ+(r⃗1) ∣0⟩ (19.57)

represents the state with one particle at r⃗1, one particle at r⃗2, and so on.

We will use these states as a basis for the many particle, many level system.
The states have the properties:

1. for bosons
∣r⃗2, r⃗1, ......., r⃗n⟩ = ∣r⃗1, r⃗2, ......., r⃗n⟩ (19.58)

due to the commutation relations which imply

ψ+(r⃗1)ψ+(r⃗2) = ψ+(r⃗2)ψ+(r⃗1) (19.59)

2. for fermions
∣r⃗2, r⃗1, ......., r⃗n⟩ = − ∣r⃗1, r⃗2, ......., r⃗n⟩ (19.60)

due to the anticommutation relations which imply

ψ+(r⃗1)ψ+(r⃗2) = −ψ+(r⃗2)ψ+(r⃗1) (19.61)

Since

ψ+(r⃗) ∣r⃗1, r⃗2, ......., r⃗n⟩ =
√
n + 1√
n + 1!

ψ+(r⃗)ψ+(r⃗n).......ψ+(r⃗2)ψ+(r⃗1) ∣0⟩

=
√
n + 1 ∣r⃗1, r⃗2, ......., r⃗n, r⃗⟩ (19.62)

the commutation/anticommutation properties of the ψ+ imply that the new
state is automatically correctly symmetric or antisymmetric. This is one of the
great advantages of the annihilation/creation operator formalism. We can show
this important property this way:

ψ(r⃗) ∣r⃗1, r⃗2, ......., r⃗n⟩ =
1√
n!
ψ(r⃗)ψ+(r⃗n).......ψ+(r⃗2)ψ+(r⃗1) ∣0⟩ (19.63)

= 1√
n!

[δ(r⃗ − r⃗n) ± ψ+(r⃗n)ψ(r⃗)]ψ+(r⃗n−1).......ψ+(r⃗2)ψ+(r⃗1) ∣0⟩
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where

±→ [ bosons
fermions

] (19.64)

We now continue commuting ψ(r⃗) with the ψ+’s to the right until we have

............ψ(r⃗) ∣0⟩ = 0 (19.65)

since ψ(r⃗) ∣0⟩ = 0. If we actually carry out this process we obtain

ψ(r⃗) ∣r⃗1, r⃗2, ......., r⃗n⟩ =
1√
n!

[δ(r⃗ − r⃗n) ∣r⃗1, r⃗2, ......., r⃗n−1⟩

± δ(r⃗ − r⃗n−1) ∣r⃗1, r⃗2, ......., r⃗n−2, r⃗n⟩

+ ........... + (±1)n−1 ∣r⃗2, ......., r⃗n⟩] (19.66)

This says that

removing a particle at r⃗ is only
possible if r⃗ = r⃗n or r⃗ = r⃗n−1 or ............. or r⃗ = r⃗1

and if one of these conditions is true, then

what remains is the correctly symmetrized
combination of (n − 1) particle states

Because ψ+ = (ψ)+, i.e., they are Hermitian conjugate operators, we have

ψ(r⃗) ∣r⃗1, r⃗2, ......., r⃗n⟩ removes a particle
ψ+(r⃗) ∣r⃗1, r⃗2, ......., r⃗n⟩ adds a particle } when acting to the right

but

⟨r⃗1, r⃗2, ......., r⃗n∣ψ(r⃗) adds a particle
⟨r⃗1, r⃗2, ......., r⃗n∣ψ+(r⃗) removes a particle } when acting to the left (19.67)

i.e.,

⟨r⃗1, r⃗2, ......., r⃗n∣ = [ 1√
n!
ψ+(r⃗n).......ψ+(r⃗2)ψ+(r⃗1) ∣0⟩]

+

= 1√
n!

⟨0∣ψ(r⃗1)ψ(r⃗2).......ψ(r⃗n) (19.68)

Note the reversal in the order of the operators.

According to these rules the basis states are normalized as follows:

⟨r⃗′1, r⃗′2, ......., r⃗′n′ ∣ r⃗1, r⃗2, ......., r⃗n⟩

= δnn
′

n!
∑
P

(±1)P P [δ(r⃗1 − r⃗′1)δ(r⃗2 − r⃗′2)......δ(r⃗n − r⃗′n)] (19.69)
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where
∑
P

= sum over all permutations if the coordinates (19.70)

and

(±)P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1 bosons
+1 fermions - even permutation
−1 fermions - odd permutation

(19.71)

What is the state ∣ϕ⟩ where the particles have a wave function φ(r⃗1, ....., r⃗n)?

Since the correctly symmetrized wave function must be

⟨r⃗1, r⃗2, ......., r⃗n ∣ ϕ⟩ (19.72)

we must have

∣ϕ⟩ = ∫ d3r⃗1
′d3r⃗2

′....d3r⃗n
′φ(r⃗1

′, ....., r⃗n
′) ∣r⃗1

′, r⃗2
′, ......., r⃗n

′⟩ (19.73)

which implies that

⟨r⃗1, r⃗2, ......., r⃗n ∣ ϕ⟩ = 1

n!
∑
P

(±1)P Pφ(r⃗1, ....., r⃗n) (19.74)

and thus the true wave function is properly symmetrized.

This result is true even if φ(r⃗1, ....., r⃗n) is not already properly symmetrized.
When it already properly symmetrized, then all n! terms are identical and

⟨r⃗1, r⃗2, ......., r⃗n ∣ ϕ⟩ = φ(r⃗1, ....., r⃗n) (19.75)

We must have
⟨ϕ ∣ ϕ⟩ = 1 (19.76)

if φ(r⃗1, ....., r⃗n) is symmetrized and

1 = ∫ d3r⃗1d
3r⃗2....d

3r⃗nφ ∗ (r⃗1, ....., r⃗n)φ(r⃗1, ....., r⃗n) (19.77)

i.e.,

⟨ϕ ∣ ϕ⟩ = ∫ d3r⃗1d
3r⃗2....d

3r⃗nφ ∗ (r⃗1, ....., r⃗n)

× ⟨r⃗1, r⃗2, ......., r⃗n∣∫ d3r⃗1
′d3r⃗2

′....d3r⃗n
′φ(r⃗1

′, ....., r⃗n
′) ∣r⃗1

′, r⃗′2, ......., r⃗n
′⟩

= ∫ d3r⃗1d
3r⃗2....d

3r⃗nφ ∗ (r⃗1, ....., r⃗n)φ(r⃗1
′, ....., r⃗n

′)

× 1

n!
∑
P

(±1)P P [δ(r⃗1 − r⃗1
′)δ(r⃗2 − r⃗2

′)......δ(r⃗n − r⃗n ′)]

= ∫ d3r⃗1d
3r⃗2....d

3r⃗nφ ∗ (r⃗1, ....., r⃗n)φ(r⃗1, ....., r⃗n) = 1
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Now ⟨r⃗1, r⃗2, ......., r⃗n ∣ ϕ⟩ is the amplitude for observing particles at r⃗1, r⃗2, ......., r⃗n.
It implies that

∣ϕ⟩ = ∫ d3r⃗1d
3r⃗2....d

3r⃗n ∣r⃗1, r⃗2, ......., r⃗n⟩ ⟨r⃗1, r⃗2, ......., r⃗n ∣ ϕ⟩ (19.78)

which says that

∫ d3r⃗1d
3r⃗2....d

3r⃗n ∣r⃗1, r⃗2, ......., r⃗n⟩ ⟨r⃗1, r⃗2, ......., r⃗n∣ = În (19.79)

as it should for a complete set within the n−particle subspace, i.e., it is În only
when operating on properly symmetrized n−particle states.

We then have for ∣ϕ⟩ and n−particle states

În′ ∣ϕ⟩ = δnn′ ∣ϕ⟩ (19.80)

which implies that

Î =
∞
∑
n=0

În = ∣0⟩ ⟨0∣ +
∞
∑
n=1

În (19.81)

is the identity operator when acting on properly symmetrized states for any
number of particles.

19.3 Second Quantized Operators

How do we write operators in this formalism?

As a first example, let us consider the operator

ρ(r⃗) = ψ+(r⃗)ψ(r⃗) (19.82)

To see what this represents physically we calculate the matrix element

⟨ϕ′∣ρ(r⃗) ∣ϕ⟩ (19.83)

where ∣ϕ⟩ and ∣ϕ′⟩ are n−particle states. We obtain

⟨ϕ′∣ρ(r⃗) ∣ϕ⟩ = ⟨ϕ′∣ψ+(r⃗)ψ(r⃗) ∣ϕ⟩ = ⟨ϕ′∣ψ+(r⃗)Îψ(r⃗) ∣ϕ⟩

= ⟨ϕ′∣ψ+(r⃗)(∣0⟩ ⟨0∣ +
∞
∑
n′=1

În′)ψ(r⃗) ∣ϕ⟩ (19.84)

Now the state
ψ(r⃗) ∣ϕ⟩→ an (n − 1) − particlestate (19.85)

and therefore,
∣0⟩ ⟨0∣ψ(r⃗) ∣ϕ⟩ = 0 (19.86)
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and ∞
∑
n′=1

În′ψ(r⃗) ∣ϕ⟩ = 0 unless n′ = n − 1 (19.87)

We thus obtain

⟨ϕ′∣ρ(r⃗) ∣ϕ⟩ = ⟨ϕ′∣ψ+(r⃗)În−1ψ(r⃗) ∣ϕ⟩

= ∫ d3r⃗1........d
3r⃗n−1 ⟨ϕ′∣ψ+(r⃗) ∣r⃗1, ........, r⃗n−1⟩ ⟨r⃗1, ........, r⃗n−1∣ψ(r⃗) ∣ϕ⟩

= ∫ d3r⃗1........d
3r⃗n−1 ⟨ϕ′ ∣ r⃗1, ........, r⃗n−1, r⃗⟩ ⟨r⃗1, ........, r⃗n−1, r⃗ ∣ ϕ⟩

(19.88)

Now, since the ⟨r⃗1, ........, r⃗n ∣ ϕ⟩ are completely symmetrized (or antisymmetrized)
this can be written as

⟨ϕ′∣ρ(r⃗) ∣ϕ⟩ = ∫ d3r⃗1........d
3r⃗n ⟨ϕ′ ∣ r⃗1, ........, r⃗n⟩

n

∑
i=1

δ(r⃗ − r⃗i) ⟨r⃗1, ........, r⃗n ∣ ϕ⟩

= ⟨ϕ′∣
n

∑
i=1

δ(r⃗ − r⃗i) ∣ϕ⟩ (19.89)

Since these two objects have all their matrix elements are identical, they must
be equal. Therefore,

ρ(r⃗) =
n

∑
i=1

δ(r⃗ − r⃗i) (19.90)

or
ρ(r⃗) = a representationof thedensity operator in this formalism

The way to think about this operator is as follows:

ψ+(r⃗)ψ(r⃗) tests the density of particles at r⃗
by attempting to remove a particle located
at r⃗ and then to putting it back

If the particles have spin, the density operator for particles at r⃗ with spin s is

ψ+s (r⃗)ψs(r⃗) (19.91)

and

ρ(r⃗) =∑
s

ψ+s (r⃗)ψs(r⃗) = the total density operator (19.92)

N̂ = ∫ d3r⃗ρ(r⃗) =∑
s
∫ d3r⃗ψ+s (r⃗)ψs(r⃗) = total number operator (19.93)

This agrees with our earlier result as can be seen below:

N̂ =∑
s
∫ d3r⃗ψ+s (r⃗)ψs(r⃗) =∑

s
∫ d3r⃗

⎛
⎝∑p⃗

e−ik⃗⋅r⃗√
V
â+p⃗s

⎞
⎠
⎛
⎝∑p⃗

eik⃗
′⋅r⃗

√
V
âp⃗′s

⎞
⎠

=∑
s
∑
p⃗p⃗′
â+p⃗sâp⃗′s ∫ d3r⃗

ei(k⃗
′−k⃗)⋅r⃗

V
=∑

s
∑
p⃗p⃗′
â+p⃗sâp⃗′sδp⃗p⃗′ =∑

p⃗s

â+p⃗sâp⃗s
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Now to figure out other operators

Any operator that is given by the relation f(p⃗op) is easily written down in
this formalism, i.e., such an operator is given by the number of times p⃗ occurs
(N̂p⃗ = â+p⃗sâp⃗s) times the value of the operator (f(p⃗)) summed over (p⃗ s) or

f(p⃗op) =∑
p⃗s

f(p⃗)â+p⃗sâp⃗s (19.94)

Therefore, the kinetic energy operator T̂ is given by

T̂ =∑
p⃗s

p⃗2

2m
â+p⃗sâp⃗s (19.95)

We can rewrite this expression in a form involving the field operators that will
then lead to a prescription for writing any operator in this formalism.

If we invert the equations for ψ+s (r⃗) and ψs(r⃗) we get

â+p⃗s = ∫ d3r⃗
eik⃗⋅r⃗√
V
ψ+s (r⃗) , âp⃗s = ∫ d3r⃗

e−ik⃗⋅r⃗√
V
ψs(r⃗) (19.96)

Physically, the first of this pair of equations implies that

to create a particle with momentum p⃗ we create particles
at different points r⃗ with relative amplitudes eik⃗⋅r⃗/

√
V

and so on for the second equation of the pair, which is exactly what we have
been assuming all along!

Using these equations we get

T̂ = 1

2m

1

V
∑
p⃗s
∫ d3r⃗d3r⃗,′ (p⃗eik⃗⋅r⃗) ⋅ (p⃗e−ik⃗⋅r⃗,

′

)ψ+s (r⃗)ψs(r⃗,′ )

= h̵2

2m

1

V
∑
p⃗s
∫ d3r⃗d3r⃗′ (∇r⃗eik⃗⋅r⃗) ⋅ (∇r⃗,′e−ik⃗⋅r⃗,

′

)ψ+s (r⃗)ψs(r⃗,′ )

We now integrate by parts, assuming that ψ+s (r⃗) → 0 and ψs(r⃗) → 0 as r → ∞
so that surface terms → 0. We get

T̂ = h̵2

2m

1

V
∑
p⃗s
∫ d3r⃗d3r⃗,′ eik⃗⋅r⃗e−ik⃗⋅r⃗,

′

(∇r⃗ψ+s (r⃗)) ⋅ (∇r⃗,′ψs(r⃗,′ )) (19.97)

Using
1

V
∑
p⃗s

eik⃗⋅r⃗e−ik⃗⋅r⃗
′

= δ(r⃗ − r⃗ ′) (19.98)
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and doing the r⃗ ′ integration we get

T̂ = h̵2

2m
∫ d3r⃗∇ψ+(r⃗) ⋅ ∇ψ(r⃗) (19.99)

This is very similar to the expectation value of the kinetic energy operator for
a single particle, i.e.,

⟨T̂ ⟩ = h̵2

2m
∫ d3r⃗∇φ ∗ (r⃗) ⋅ ∇φ(r⃗) (19.100)

Similarly, the density operator resembles the probability density φ∗ (r⃗)φ(r⃗) for
finding a single particle with wave function φ at the point r⃗.

This leads to the general concept of second quantization where

one-particle wavefunctions appear to have become
operators that create/annihilate particles

single-particle expectation values appear to have
become operators for physical observables

position and momentum appear to have become
ordinary numbers

We can now exploit this similarity to write down other operators, for example,

the current density operator is given by

j(r⃗) = 1

2im
[ψ+(r⃗)(∇ψ(r⃗)) − (∇ψ+(r⃗))ψ(r⃗)] (19.101)

the operator for the density of spin at point r⃗ is given by

S⃗(r⃗) = 1

2
∑
ss′
ψ+s (r⃗)σ⃗ss′ψs′(r⃗) (19.102)

where
σ⃗ = (σ̂x, σ̂y, σ̂z) (19.103)

19.3.1 Example - Gas of N Non-Interacting Spin 1/2 Fermions
We assume that the system is in its ground state.

As we discussed earlier, the ground state ∣ϕ0⟩ corresponds to all momentum
states (energy levels) being filled starting from the lowest level. Since we have
a finite number of particles, there will be a maximum momentum value, pF =
the Fermi momentum.
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In the new formalism, we describe the ground state via a set of occupation
numbers

np⃗ ↑ = np⃗ ↓ = ⟨ϕ0∣ â+p⃗ ↑âp⃗ ↑ ∣ϕ0⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 ∣p⃗∣ ≤ pF
0 ∣p⃗∣ ≥ pF

(19.104)

Now
N =∑

p⃗s

np⃗s = 2 ∑
∣p⃗∣≤pF

1 (19.105)

Converting the sum to an integral we have

N = 2V

pF

∫
0

d3p⃗

(2πh̵)3
=

p3
F

3π2h̵3
V (19.106)

where we have used the properties

spacing between px values is
2πh̵

Lx

spacing between py values is
2πh̵

Ly

spacing between pz values is
2πh̵

Lz

which imply

∑
px

→ Lx
2πh̵
∫ dpx (19.107)

and, thus,

∑
p⃗

→ V

(2πh̵)3 ∫ d3p⃗ (19.108)

We then get

pF = h̵ (3π2n)1/3
(19.109)

where

n = N
V

= average particle density (19.110)

The expectation value of the density operator is

⟨ρ(r⃗)⟩ =∑
s

⟨ϕ0∣ψ+s (r⃗)ψs(r⃗) ∣ϕ0⟩

= ∑
sp⃗p⃗ ′

e−ik⃗⋅r⃗eik⃗
′⋅r⃗

V
⟨ϕ0∣â+p⃗s(r⃗)âp⃗ ′s(r⃗) ∣ϕ0⟩ (19.111)

Now
⟨ϕ0∣ â+p⃗s(r⃗)âp⃗ ′s(r⃗) ∣ϕ0⟩ = δp⃗p⃗ ′np⃗s (19.112)
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since if we remove a particle of momentum p⃗ from the ground state, we can only
get the ground state back if we add a particle of the same momentum p⃗. Where
we have used

n̂p⃗s = â+p⃗s(r⃗)âp⃗s(r⃗) (19.113)

Therefore,

⟨ρ(r⃗)⟩ = 1

V
∑
p⃗s

np⃗s = n = constant (19.114)

Thus, the density of the non-interacting fermion gas is uniform.

A useful physical quantity is defined by

Gs(r⃗ − r⃗ ′) = ⟨ϕ0∣ψ+s (r⃗)ψs(r⃗ ′) ∣ϕ0⟩ (19.115)

which is

the amplitude for removing(annihilating) a particle
with spin s at r⃗ ′ from the ground state and then
returning to the ground state by replacing(creating)
a particle with spin s at r⃗

We have

Gs(r⃗ − r⃗ ′) =∑
p⃗p⃗ ′

e−ik⃗⋅r⃗eik⃗
′⋅r⃗

V
⟨ϕ0∣â+p⃗s(r⃗)âp⃗ ′s(r⃗) ∣ϕ0⟩

= 1

V
∑
p⃗p⃗ ′

e−ik⃗⋅r⃗eik⃗
′⋅r⃗

V
δp⃗p⃗ ′np⃗s =

1

V
∑
p⃗

e−ik⃗⋅(r⃗−r⃗
′)np⃗s (19.116)

Changing to an integral we obtain

Gs(r⃗ − r⃗ ′) =
pF

∫
0

∫ ∫
d3p⃗

(2πh̵)3
e−ik⃗⋅(r⃗−r⃗

′) = 1

4π2h̵3

pF

∫
0

p2dp

1

∫
−1

dµe
−ik∣←r−r⃗ ′∣µ

= 1

4π2h̵3

pF

∫
0

p2dp(e−ik∣
←

r−r⃗ ′∣µ − eik∣
←

r−r⃗ ′∣µ)

= 3n

2

sinx − x cosx

x3
(19.117)

where

x = pF
h̵

∣r⃗ − r⃗ ′∣ , n = 1

3π2

p3
F

h̵3
(19.118)

As a function of x this looks as shown in Figure 19.1 below (for n = 1000)

The single-particle correlation function oscillates with a characteristic period
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Figure 19.1: G(x) - Single Particle Correlation Function

1/kF under an envelope which falls to zero. We have for r⃗ = r⃗ ′, Gs(0) = n/2 =
density of particles with spin orientation s. For small ∣r⃗ − r⃗ ′∣ we have

Gs(r⃗ − r⃗ ′) =
3n

2

sinx − x cosx

x3

≈ 3n

2

⎡⎢⎢⎢⎢⎢⎣

(x − x3

6
+ x5

120
) − x (1 − x2

2
+ x4

24
)

x3

⎤⎥⎥⎥⎥⎥⎦

≈ 3n

2
[

1
3
x3 − 1

30
x5

x3
] = n

2
(1 − x

2

10
)

=
⎡⎢⎢⎢⎢⎣
1 − 1

10
(pF ∣r⃗ − r⃗ ′∣

h̵
)

2⎤⎥⎥⎥⎥⎦
(19.119)

Gs(r⃗ − r⃗′) is called the one-particle density matrix.

19.4 Pair Correlation Function

As we have seen earlier, in a system of fermions, there is a tendency, due to the
PEP, for particles with the same spin to avoid each other. This says that the
amplitude for being close together must be small.

How do we calculate the relative probability of finding a particle at r⃗ ′ if we
know there is a particle at r⃗?

One way is as follows:

1. Remove (mathematically) a particle with spin s at r⃗ from the system. We
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are then left in the N − 1 particle state

∣ϕ′(r⃗, s)⟩ = ψs(r⃗) ∣ϕ0⟩ (19.120)

2. Calculate the density distribution of the particles with spin s′ in the new
state. The density is

⟨ϕ′(r⃗, s)∣ψ+s′(r⃗′)ψs′(r⃗′) ∣ϕ′(r⃗, s)⟩

= ⟨ϕ0∣ψ+s (r⃗)ψ+s′(r⃗′)ψs′(r⃗′)ψs(r⃗) ∣ϕ0⟩ = (n
2
)

2

gss′(r⃗ − r⃗′) (19.121)

where gss′(r⃗ − r⃗ ′) ≡ the pair correlation function.

An equivalent way of asking the same question is the following:

1. Remove(annihilate) a particle from r⃗ using ψs(r⃗)

2. Remove(annihilate) a particle from r⃗ ′ using ψ′s(r⃗) ′ The relative amplitude
for ending up in some N − 2 particle state ∣ϕ′′i ⟩ is

⟨ϕ′′i ∣ψs′(r⃗ ′)ψs(r⃗) ∣ϕ0⟩ (19.122)

3. Sum over a complete set of N − 2 particle states

This gives the total probability of removing two particles and ending up in any
N − 2 particle state. We get

∑
i

∣⟨ϕ′′i ∣ψs′(r⃗ ′)ψs(r⃗) ∣ϕ0⟩∣
2

= ⟨ϕ0∣ψ+s (r⃗)ψ+s′(r⃗ ′)∑
i

∣ϕ′′i ⟩ ⟨ϕ′′i ∣ψs′(r⃗ ′)ψs(r⃗) ∣ϕ0⟩

= ⟨ϕ0∣ψ+s (r⃗)ψ+s′(r⃗ ′)ψs′(r⃗ ′)ψs(r⃗) ∣ϕ0⟩ = (n
2
)

2

gss′(r⃗ − r⃗ ′)

= total probability of removing two particles (19.123)

We can evaluate gss′(r⃗ − r⃗ ′) by shifting to the creation/annihilation operator
formalism. We get

(n
2
)

2

gss′(r⃗ − r⃗ ′) = ∑
p⃗p⃗ ′q⃗q⃗ ′

e−i(p⃗−p⃗
′)⋅r⃗/h̵e−i(q⃗−q⃗

′)⋅r⃗′/h̵

V 2
⟨ϕ0∣â+p⃗sâ+q⃗s′ âq⃗ ′s′ âp⃗ ′s ∣ϕ0⟩

(19.124)
Now

⟨ϕ0∣ â+p⃗s(r⃗)â+q⃗s′(r⃗ ′)âq⃗ ′s′(r⃗ ′)âp⃗ ′s(r⃗) ∣ϕ0⟩ = 0 (19.125)

unless we put back particles with the same spin and same momentum that we
remove, i.e.,

if s ≠ s′, then p⃗ ′ = p⃗ and q⃗ ′ = q⃗ (19.126)
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This implies that

⟨ϕ0∣ â+p⃗sâ+q⃗s′ âq⃗ ′s′ âp⃗ ′s ∣ϕ0⟩ = ⟨ϕ0∣ â+p⃗sâp⃗sâ+q⃗s′ âq⃗s′ ∣ϕ0⟩ = np⃗snq⃗s′ (19.127)

We then get

(n
2
)

2

gss′(r⃗ − r⃗ ′) =
1

V 2 ∑
p⃗q⃗

np⃗snq⃗s′ = nsns′ = (n
2
)

2

(19.128)

or
gss′(r⃗ − r⃗ ′) = 1 for s ≠ s′ (19.129)

This implies that the relative probability for finding particles at r⃗ and r⃗ ′ for
different spins is independent of ∣r⃗ − r⃗ ′∣. This is the same result as one obtains
in a classical non-interacting gas.

The PEP does not influence particles of different(opposite in this case) spins.

On the other hand, if the spins are the same, s = s′, then we have two possibil-
ities, namely,

p⃗′ = p⃗ and q⃗′ = q⃗ or p⃗′ = q⃗ and q⃗′ = p⃗

Note that if p⃗ ′ = q⃗ ′, then ⟨ϕ0∣ â+p⃗sâ+q⃗sâq⃗ ′sâp⃗ ′s ∣ϕ0⟩ = 0 since

âq⃗ ′sâp⃗ ′s → (âp⃗ ′s)2 = 0 (for fermions) (19.130)

Therefore, we have

⟨ϕ0∣ â+p⃗sâ+q⃗sâq⃗ ′sâp⃗ ′s ∣ϕ0⟩ = δp⃗p⃗ ′δq⃗q⃗ ′ ⟨ϕ0∣ â+p⃗sâ+q⃗sâq⃗sâp⃗s ∣ϕ0⟩
+ δp⃗q⃗ ′δq⃗p⃗ ′ ⟨ϕ0∣ â+p⃗sâ+q⃗sâp⃗sâq⃗s ∣ϕ0⟩ (19.131)

We must use the superposition of both (indistinguishable)possibilities.

This becomes

⟨ϕ0∣ â+p⃗sâ+q⃗sâq⃗ ′sâp⃗ ′s ∣ϕ0⟩ = (δp⃗p⃗ ′δq⃗q⃗ ′ − δp⃗q⃗ ′δq⃗p⃗ ′) ⟨ϕ0∣ â+p⃗sâp⃗sâ+q⃗sâq⃗s ∣ϕ0⟩
= (δp⃗p⃗ ′δq⃗q⃗ ′ − δp⃗q⃗ ′δq⃗p⃗ ′)np⃗snq⃗s (19.132)

where we have used the anticommutation relations for fermion operators

q⃗ ≠ p⃗ {âp⃗s, â+q⃗s} = 0 = {âp⃗s, âq⃗s}
q⃗ = p⃗ ⟨......⟩ = 0

We finally obtain

(n
2
)

2

gss′(r⃗ − r⃗ ′) =
1

V 2 ∑
p⃗
←

q

[1 − e−i(p⃗−q⃗
′)⋅(r⃗−r⃗ ′)/h̵]np⃗snq⃗s

= (n
2
)

2

− [Gs(r⃗ − r⃗ ′)]
2 (19.133)
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where Gs(r⃗ − r⃗ ′) is the single particle density function. This then becomes

gss′(r⃗ − r⃗ ′) = 1 − 9

x6
(sinx − x cosx)2 (19.134)

where
x = pF

h̵
∣r⃗ − r⃗ ′∣ (19.135)

As a function of x this looks as shown in Figure 19.2 below.

Figure 19.2: g(x) - Two Particle Correlation Function - Fermions

This result implies a substantial reduction in the probability for finding two
fermions of the same spin at distances less than h̵/pF .

The PEP causes large correlations in the motion of the particles with the same
spin. It seems like fermions of the same spin repel each other at short distances.
This effective repulsion is due to the exchange symmetry (PEP) of the wave
function and not from any real additional potentials.
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At large ∣r⃗ − r⃗ ′∣, gss → gss′ = 1 as we might have guessed since at large separa-
tions the PEP should have no effect and spin effects should drop out.

What happens if we consider a system of non-interacting bosons instead?

Suppose the system is in the state

∣ϕ⟩ = ∣np⃗0 , np⃗1 , .........⟩ (19.136)

The density in this state is

⟨ϕ∣ψ+(r⃗)ψ(r⃗) ∣ϕ⟩ = 1

V
∑
p⃗

np⃗ = n (19.137)

The calculation of the pair correlation function is the same as for fermions up
to this point.

n2g(r⃗ − r⃗ ′) = ∑
p⃗p⃗ ′q⃗q⃗ ′

e−i(p⃗−p⃗
′)⋅r⃗/h̵e−i(q⃗−q⃗

′)⋅r⃗′/h̵

V 2
⟨ϕ0∣â+p⃗ â+q⃗ âq⃗ ′ âp⃗ ′ ∣ϕ0⟩ (19.138)

In this case,
⟨ϕ0∣ â+p⃗ â+q⃗ âq⃗′ âp⃗′ ∣ϕ0⟩ ≠ 0 (19.139)

only if
p⃗ = p⃗ ′ , q⃗ = q⃗ ′ or p⃗ = q⃗ ′ , q⃗ = p⃗ ′

These two cases are not distinct if p⃗ = q⃗.

Therefore, in the same manner as before, we have

⟨ϕ0∣ â+p⃗ â+q⃗ âq⃗ ′ âp⃗ ′ ∣ϕ0⟩
= (1 − δp⃗q⃗) [δp⃗p⃗ ′δq⃗q⃗ ′ ⟨ϕ0∣ â+p⃗ â+q⃗ âq⃗âp⃗ ∣ϕ0⟩ + δp⃗q⃗ ′δq⃗p⃗ ′ ⟨ϕ0∣ â+p⃗ â+q⃗ âp⃗âq⃗ ∣ϕ0⟩]

+ δp⃗q⃗δp⃗p⃗ ′δq⃗q⃗ ′ ⟨ϕ0∣ â+p⃗ â+p⃗ âp⃗âp⃗ ∣ϕ0⟩
= (1 − δp⃗q⃗) (δp⃗p⃗ ′δq⃗q⃗ ′ + δp⃗q⃗ ′δq⃗p⃗ ′)np⃗nq⃗ + δp⃗q⃗δp⃗p⃗ ′δq⃗q⃗ ′np⃗(np⃗ − 1) (19.140)

where we have used [âp⃗, â+p⃗] = 1 in the last term. Therefore, we obtain

n2g(r⃗ − r⃗ ′) = ⟨ϕ∣ψ+(r⃗)ψ+(r⃗ ′)ψ(r⃗ ′)ψ(r⃗) ∣ϕ⟩

= n2 +
RRRRRRRRRRR

1

V
∑
p⃗

np⃗e
−ik⃗⋅(r⃗−r⃗ ′)

RRRRRRRRRRR

2

− 1

V 2 ∑
p⃗

np⃗(np⃗ + 1) (19.141)

This differs from the fermion result in

1. the sign of the second term (+ instead of −), which is due to different
exchange symmetry properties.

2. the existence of the third term, which is due to the fact that we can have
many bosons in the same state.
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If all the particles are in only one state, p⃗0, then we have

n2g(r⃗ − r⃗ ′) = ⟨ϕ∣ψ+(r⃗)ψ+(r⃗ ′)ψ(r⃗ ′)ψ(r⃗) ∣ϕ⟩

= n2 + n2 − 1

V 2
N(N + 1) = N(N − 1)

V 2
(19.142)

The pair distribution function is position independent. The above result implies
that the relative amplitude for removing the first particle is N/V , while the
amplitude for removing a second particle is (N −1)/V since there are only N −1
remaining after removing the first particle.

Now suppose that

np⃗ = smoothly varying distribution = Ce−
α(p⃗−p⃗0)

2

2 (19.143)

This could be a beam of particles of momentum centered at p⃗0 with a Gaussian
spread about p⃗0.

If we let V → large, with N/V = n fixed, then the third term is of order 1/V
smaller than the first two terms and we can neglect it.

Converting the remaining terms to integrals we have

n2g(r⃗ − r⃗′) = ⟨ϕ∣ψ+(r⃗)ψ+(r⃗′)ψ(r⃗′)ψ(r⃗) ∣ϕ⟩

= n2 + ∣∫
d3p⃗

(2πh̵)3
np⃗e

−ik⃗⋅(r⃗−r⃗′)∣
2

= n2 [1 + e−
(r−r′)

2

α ] (19.144)

A plot of this result is shown in Figure 19.3 below.

Figure 19.3: g(r) - Two Particle Correlation Function - Bosons

The e−(r⃗−r⃗
′)2/α term is due to exchange symmetry. In this case, exchange sym-

metry increases the probability that two bosons will be found at small separa-
tions.
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In fact,

the probability of finding two bosons on top of each other is equal
to two times the probability of finding two bosons with a large separation

19.5 Hanbury-Brown and Twiss Experiment

Do bosons really tend to clump together?

At this point we will discuss the Hanbury-Brown and Twiss(HBT) experiment
that shows that they do tend to clump. The HBT experiment measures the
probability of observing 2 photons simultaneously at different points in a beam
of incoherent light. Incoherent light, as we saw earlier, can be described in terms
of occupation numbers of photon states. The apparatus is shown in Figure 19.4
below.

Figure 19.4: Hanbury-Brown and Twiss Boson Clumping Experiment

The half-silvered mirror splits the beam into two identical beams. The am-
plitude for a photon to be transmitted/reflected by the mirror is 1/

√
2 (the

probability is 1/2).

HBT measured the following

I1(t) = light intensity at detector 1 at time t
I2(t + τ) = light intensity at detector 2 at a later time t + τ

and then they averaged the quantity I1(t)I2(t + τ) over t, keeping τ fixed.

This is the same as measuring the relative probability of observing two photons
separated by a distance cτ in the beams (c = speed of light).

The experimental result is just g(r⃗ − r⃗ ′) for ∣r⃗ − r⃗ ′∣ = cτ . This confirmed the
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theory or so one thought at that time.

We ask the following question: Is this experiment a verification of the quantum
mechanical theory for identical bosons? The answer might, in fact, be no!

Can we understand the result completely using classical electromagnetic theory
and wave superposition? The experiment might imply that the boson properties
of the photon follow from the superposition principle obeyed by classical fields
and we might not need the quantum mechanical concept of a photon in this
experiment.

Let us see how. Consider the setup shown in Figure 19.5 below:

Figure 19.5: Classical or Quantum?
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We have two sources of photons, A and B. A emits coherent light with amplitude
α and wave number k. B emits coherent light with amplitude β and wave number
k′. We assume that the relative phase of the two coherent beams is random and
that they have the same polarization.

The amplitude for light (A → 1) → αeikr1 and the amplitude for light (B →
1)→ βeik

′r′1 . Therefore, the superposition principle implies that

a1 = total amplitude at detector 1

= αeikr1 + βeik
′r′1 (19.145)

and that

I1 = intensity at detector 1

= ∣αeikr1 + βeik
′r′1 ∣

2
= ∣α∣2 + ∣β∣2 + 2Real (α ∗ βei(k

′r′1−kr1)) (19.146)

Therefore,

Ī1 = I1 averaged over the random phase

= ∣α∣2 + ∣β∣2 (19.147)

Similarly,

a2 = total amplitude at detector 2

= αeikr2 + βeik
′r′2 (19.148)

and that

I1 = intensity at detector 2

= ∣αeikr2 + βeik
′r′2 ∣

2
= ∣α∣2 + ∣β∣2 + 2Real (α ∗ βei(k

′r′2−kr2)) (19.149)

Therefore,

Ī1 = I2 averaged over the random phase

= ∣α∣2 + ∣β∣2 (19.150)

The product of the averaged intensities Ī1Ī2 is clearly independent of the sepa-
ration distance between the two detectors.

The product of the intensities, however, behaves very differently, however, i.e.,

I1I2 = ∣a1a2∣2

= ∣α2eik(r1+r2) + β2eik
′(r′1+r

′

2) + αβ (eikr1eik
′r′2 + eik

′r′1eikr2)∣
2

(19.151)
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Multiplying out and averaging over the random phases of α and β eliminates
the terms proportional to αβ ∣α2∣ and αβ ∣β2∣, etc and we get

I1I2 = ∣α∣4 + ∣β∣4 + ∣α∣2 ∣β∣2 ∣eikr1eik
′r′2 + eik

′r′1eikr2 ∣
2

= Ī1Ī2 + 2 ∣α∣2 ∣β∣2 cos [k′(r′1 − r′2) − k(r1 − r2)] (19.152)

For well-collimated beams r′1 − r′2 ≈ r1 − r2, which gives

I1I2 = Ī1Ī2 + 2 ∣α∣2 ∣β∣2 cos [(k′ − k)(r1 − r2)] (19.153)

Therefore, the correlated intensities have a term that depends on the detector
separation.

This term is a maximum when the detectors are at the same point.

If we average over all the different k and k′ present in the beam (using a Gaus-
sian distribution) we get the same form as the quantum result.

This seems to imply that the photon bunching effect seen in the HBT experi-
ment is a consequence of the superposition principle applied to light from noisy
sources.

The quantum mechanical interpretation of the classical result is

1st term = amplitude for both photons from A
2nd term = amplitude for both photons from B
3rd term = amplitude for one photon from A and the other from B

There are two ways to do this

1. A→ 1 , B → 2

2. A→ 2 , B → 1

These two ways are indistinguishable and the interference between them gives
the cosine term.

So, we corroborate superposition and bunching, but we do not seem to need the
quantum concept of a photon to do it. When one studies this problem in more
detail one can prove that a photon with quantum properties must exist.

19.6 The Hamiltonian

Finally, we write the Hamiltonian in second quantized form.
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Suppose the particles interact via a two-particle potential V (r⃗ − r⃗ ′). The inter-
action energy operator then becomes

ν = 1

2
∑
ss′
∫ d3r⃗d3r⃗ ′ V (r⃗ − r⃗ ′)ψ+s (r⃗)ψ+s′(r⃗ ′)ψs′(r⃗ ′)ψs(r⃗) (19.154)

The order of the operators in this expression is very important. This form for
ν can be confirmed by comparing its matrix elements to the matrix elements in
the standard formalism.

We interpret ν in this way:

1. it tries to remove particles from r⃗ and r⃗ ′

2. if successful it counts V (r⃗ − r⃗ ′) and then replaces the particles

3. it replaces the last particle removed first

4. it sums over all pairs (the factor 1/2 avoids double counting of pairs) of
points r⃗ and r⃗ ′

The second quantized Hamiltonian for particles of mass m with such a pairwise
interaction potential is then

H =∑
s
∫ d3r⃗

h̵2

2m
∇ψ+s (r⃗) ⋅ ∇ψs(r⃗)

+ 1

2
∑
ss′
∫ d3r⃗d3r⃗ ′V (r⃗ − r⃗ ′)ψ+s (r⃗)ψ+s′(r⃗′)ψs′(r⃗′)ψs(r⃗) (19.155)

We now calculate the ground state energy of our gas of spin = 1/2 fermions.

We will treat the interaction potential as a perturbation. To lowest(zeroth)
order we have

E(0) = T =∑
p⃗s

p2

2m
np⃗ = 2∑

p⃗

p2

2m
= 2V

pF

∫
0

d3p⃗

(2πh̵)3

p2

2m

= 3

5

p2
F

2mh̵2
N = 3

5
EF (19.156)

The first order energy correction E(1) is the expectation value of ν in the un-
perturbed ground state. We get

E(1) = 1

2
∫ d3r⃗d3r⃗ ′V (r⃗ − r⃗′)∑

ss′
⟨ϕ0∣ψ+s (r⃗)ψ+s′(r⃗′)ψs′(r⃗ ′)ψs(r⃗) ∣ϕ0⟩

= 1

2
∫ d3r⃗d3r⃗ ′V (r⃗ − r⃗ ′)∑

ss′
(n

2
)

2

gss′(r⃗ − r⃗ ′)

= 1

2
∫ d3r⃗d3r⃗ ′V (r⃗ − r⃗ ′) [n2 −∑

s

G2
s(r⃗ − r⃗ ′)] (19.157)
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If we let
v0 = ∫ d3r⃗V (r⃗) (19.158)

then we have
1

2
∫ d3r⃗d3r⃗ ′V (r⃗ − r⃗ ′)n2 = Nnv0

2
(19.159)

This is the average interaction of a uniform density of particles with itself (no
correlations). It is called the direct or Hartree energy.

The second term represents the exchange energy

Eex = −
1

2
∫ d3r⃗d3r⃗ ′ V (r⃗ − r⃗ ′)∑

s

G2
s(r⃗ − r⃗ ′) (19.160)

This term takes account of the tendency of particles of the same spin to stay
apart. The effects of the short-range part of V (r⃗ − r⃗ ′) are overcorrected in the
direct energy and fixed up in exchange energy.

We have

Eex
N

= −9n

4
∫ d3r

(sin pF r
h̵

− pF r
h̵

cos pF r
h̵

)2

(pF r
h̵

)6
V (r) (19.161)

and to first order

E0 =
3

5

p2
F

2m
+ nv0

2
+ Eex
N

(19.162)

19.6.1 An Example

Consider a gas of electrons of average density ? interacting via a Coulomb
potential

V (r⃗ − r⃗ ′) = e2

∣r⃗ − r⃗ ′∣
(19.163)

The conduction electrons in a metal form such a gas.

We note that in a real physical system of this type, we never have an isolated
electron gas. There always exists enough positive charges to make the overall
system electrically neutral.

To first approximation in a metal or a plasma we can replace the positive ions
by a uniform background of positive charge of density +ne.

The electrostatic self-energy of this background

1

2
∫ d3rd3r ′

e2n2

∣r⃗ − r⃗ ′∣
(19.164)
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plus the average electrostatic interaction between the positive background and
the electrons

−∫ d3rd3r ′
e2n2

∣r⃗ − r⃗ ′∣
(19.165)

exactly cancels the Hartree energy as it must because the electrostatic energy of
a neutral system can only be proportional to the volume for a large system(not
a higher power of the volume!).

Therefore, the net interaction energy of the electron gas (to first order) is

Eex
N

= −9πne2

p2
F

∞

∫
0

dx

x5
(sinx − x cosx)2 (19.166)

For a typical electron gas, this energy is written in terms of a parameter

rs =
d

a0
= average interparticle spacing

Bohr radius
(19.167)

Now, we also have

a0 =
h̵2

me2
, n(4π

3
d3) = 1 (19.168)

Therefore,

rs = (9π

4
)

1/3 me2

pF
(19.169)

and

E = (2.21

r2
s

− 0.916

rs
) e

2

a0
(19.170)

where the first term is the kinetic energy and the second term is the exchange
energy.

Finally, if we writeν in the creation/annihilation operator formalism we get

v = 1

2V
∑
p⃗p⃗ ′
∑
q⃗q⃗ ′
∑
ss′
Ṽp⃗ ′−p⃗δp⃗+q⃗,p⃗ ′+q⃗ ′ â

+
p⃗ ′sâ

+
q⃗ ′s′ âq⃗s′ âp⃗s (19.171)

where
Ṽk⃗ = ∫ d3r e−ik⃗⋅r⃗V (r⃗) (19.172)

This is a sum over scattering processes. Feynman developed a clever diagram-
matic method of thinking about such terms.

1. The delta-function represents conservation of energy and momentum in
the scattering process.

2. The process itself is represented by the diagram in Figure 19.6 below.

We shall return to this idea later in Chapter 21 and develop a method of
thinking about the universe as expressed by these diagrams.
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Figure 19.6: Feynman Diagram

19.7 Bogoliubov Transformation, Quasiparticles
and Superfluidity

Let us consider a weakly interacting Bose gas. From our earlier discussions we
have, in general,

v = 1

2V
∑
p⃗p⃗ ′
∑
q⃗q⃗ ′
Vp⃗ ′−p⃗δp⃗+q⃗,p⃗ ′+q⃗ ′ â

+
p⃗ ′ â

+
q⃗ ′ âq⃗âp⃗

= 1

2V
∑
k⃗p⃗

∑
q⃗

Vq⃗â
+
k⃗+q⃗â

+
k⃗−q⃗âp⃗âq⃗ (19.173)

so that
Ĥ =∑

k⃗

h̵ωk⃗â
+
k⃗
âk⃗ +

1

2V
∑
k⃗p⃗

∑
q⃗

Vq⃗â
+
k⃗+q⃗â

+
p⃗−q⃗âp⃗âk⃗ (19.174)

where we have used the delta function (which corresponds to momentum con-
servation). This corresponds to the process

k⃗ + p⃗→ (k⃗ + q⃗) + (p⃗ − q⃗) (19.175)

or we have momentum transfer of q⃗ between the two interacting bosons.

At low temperatures, a Bose-Einstein condensation takes place in the k⃗ = 0
mode, i.e., the k⃗ = 0 mode is macroscopically occupied or

N0 = ⟨Φ0∣a+a ∣Φ0⟩ ≈ N , N −N0 = # excited particles << N0 (19.176)

This means that we can neglect the interaction of excited particles with one
another and restrict our attention to the interaction of the excited particles
with the condensed particles.

This gives

Ĥ =∑
k⃗

h̵ωk⃗â
+
k⃗
âk⃗ +

1

2V
V0â

+
0 â

+
0 â0â0

+ 1

V
∑
k⃗≠0

(V0 + Vk⃗)â
+
0 â0â

+
k⃗
âk⃗ +

1

2V
∑
k⃗≠0

Vk⃗(â
+
k⃗
â+−k⃗â0â0 + â+0 â+0 âk⃗â−k⃗) + ....

(19.177)
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The effect of â+0 and â0 on the state with N0 particles in the condensate is

â0 ∣......,N0, ....⟩ =
√
N0 ∣......,N0 − 1, ....⟩ (19.178)

â+0 ∣......,N0, ....⟩ =
√
N0 + 1 ∣......,N0 + 1, ....⟩ (19.179)

Since N0 is a very large number (≈ 1023), both of these relations correspond to
multiplication by

√
N0. It is physically clear that the removal or addition of one

particle from the condensate will make no difference to the physical properties
of the system.

In comparison to N0, the effect of the commutator [â0, â
+
0] = 1 is negligible.

This says that, in this case, the operators â+0 and â0 can be approximated by a
number

√
N0.

We then have

Ĥ = ∑
k⃗≠0

h̵2k2

2m
â+
k⃗
âk⃗ +

1

2V
N2

0V0

+ N0

V
∑
k⃗≠0

(V0 + Vk⃗)â
+
k⃗
âk⃗ +

N0

2V
∑
k⃗≠0

Vk⃗(â
+
k⃗
â+−k⃗ + âk⃗â−k⃗) (19.180)

We can write
N = N0 +∑

k⃗≠0

â+
k⃗
âk⃗ (19.181)

which says that (carrying out the necessary algebra)

1

2V
N2

0V0 =
1

2V
N2V0 +

N

V
∑
k⃗≠0

Vk⃗â
+
k⃗
âk⃗ +

V0

2V
∑

k⃗,k⃗′≠0

â+
k⃗
âk⃗â

+
k⃗′
âk⃗′ (19.182)

The Hamiltonian then becomes

Ĥ = ∑
k⃗≠0

h̵2k2

2m
â+
k⃗
âk⃗ +

N

V
∑
k⃗≠0

Vk⃗â
+
k⃗
âk⃗

+ N
2

2V
V0 +

N

2V
∑
k⃗≠0

Vk⃗(â
+
k⃗
â+−k⃗ + âk⃗â−k⃗) (19.183)

up to terms with 4 creation/annihilation operators, which are of order n′2 where

n′ = N −N0

V
= density of particles not in condensate (19.184)

We make the approximation of neglecting these anharmonic terms, which is
good for n′ ≪ n.

The remaining Hamiltonian is a quadratic form which we need to diagonalize
to solve the problem.
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We use the so-called Bogoliubov transformation. We assume that

âk⃗ = uk⃗α̂k⃗ + vk⃗α̂
+
−k⃗ , â+

k⃗
= uk⃗α̂

+
k⃗
+ vk⃗α̂−k⃗ (19.185)

with real coefficients. We then require that the operators α̂ satisfy Bose com-
mutation relations

[α̂k⃗, α̂k⃗′] = [α̂+
k⃗
, α̂+

k⃗′
] = 0 , [α̂k⃗, α̂

+
k⃗′
] = δk⃗k⃗′ (19.186)

This requires that u2
k⃗
− v2

k⃗
= 1. The inverse transformations are

α̂k⃗ = uk⃗âk⃗ − vk⃗â
+
−k⃗ , α̂+

k⃗
= uk⃗â

+
k⃗
− vk⃗â−k⃗ (19.187)

We also have that

â+
k⃗
âk⃗ = u

2
k⃗
α+
k⃗
αk⃗ + v

2
k⃗
α−k⃗α

+
−k⃗ + uk⃗vk⃗(α

+
k⃗
α+−k⃗ + αk⃗α−k⃗)

â+
k⃗
â+−k⃗ = u

2
k⃗
α+
k⃗
α+−k⃗ + v

2
k⃗
αk⃗α−k⃗ + uk⃗vk⃗(α

+
k⃗
αk⃗ + α−k⃗α

+
−k⃗)

âk⃗â−k⃗ = u
2
k⃗
αk⃗α−k⃗ + v

2
k⃗
α+
k⃗
α+−k⃗ + uk⃗vk⃗(α

+
−k⃗α−k⃗ + αk⃗α

+
k⃗
)

The Hamiltonian becomes

Ĥ = 1

2V
N2V0

+∑
k⃗≠0

( h̵
2k2

2m
+ nVk⃗) [u2

k⃗
α+
k⃗
αk⃗ + v

2
k⃗
αk⃗α

+
k⃗
+ uk⃗vk⃗(α

+
k⃗
α+−k⃗ + αk⃗α−k⃗)]

+ N

2V
∑
k⃗≠0

Vk⃗ [(u
2
k⃗
+ v2

k⃗
)(α+

k⃗
α+−k⃗ + αk⃗α−k⃗) + 2uk⃗vk⃗(α

+
k⃗
αk⃗ + αk⃗α

+
k⃗
)]

(19.188)

In order for the non-diagonal terms to vanish, we must have

( h̵
2k2

2m
+ nVk⃗)uk⃗vk⃗ +

N

V
Vk⃗(u

2
k⃗
+ v2

k⃗
) = 0 (19.189)

This equation together with u2
k⃗
− v2

k⃗
= 1 is sufficient to determine u2

k⃗
and v2

k⃗
. If

we define

h̵ωk⃗ =
⎡⎢⎢⎢⎢⎣
( h̵

2k2

2m
+ nVk⃗)

2

− (nVk⃗)
2
⎤⎥⎥⎥⎥⎦

1/2

=
⎡⎢⎢⎢⎢⎣
( h̵

2k2

2m
)

2

+
nk2Vk⃗
m

⎤⎥⎥⎥⎥⎦

1/2

(19.190)

then we get

u2
k⃗
=
h̵ωk⃗ + ( h̵

2k2

2m
+ nVk⃗)

2h̵ωk⃗
, v2

k⃗
=
−h̵ωk⃗ + ( h̵

2k2

2m
+ nVk⃗)

2h̵ωk⃗
(19.191)
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and

uk⃗vk⃗ = −
nVk⃗
2h̵ωk⃗

, v2
k⃗
=

(nVk⃗)
2

2h̵ωk⃗ (h̵ωk⃗ +
h̵2k2

2m
+ nVk⃗)

(19.192)

Finally, the Hamiltonian becomes

Ĥ = 1

2V
N2V0 −

1

2
∑
k⃗≠0

( h̵
2k2

2m
+ nVk⃗ − h̵ωk⃗) +∑

k⃗≠0

h̵ωk⃗α
+
k⃗
αk⃗ (19.193)

where

1

2V
N2V0 −

1

2
∑
k⃗≠0

( h̵
2k2

2m
+ nVk⃗ − h̵ωk⃗) = ground state energy E0 (19.194)

∑
k⃗≠0

h̵ωk⃗α
+
k⃗
αk⃗ = sum of oscillators or excitations (19.195)

The excitations (oscillators) or quanta that are created by the α+
k⃗
are called

quasiparticles.

All the excited states correspond to different numbers of noninteracting bosons
where each boson has the excitation energy

Ek⃗ = h̵ωk⃗ =
⎡⎢⎢⎢⎢⎣
( h̵

2k2

2m
+ nVk⃗)

2

− (nVk⃗)
2
⎤⎥⎥⎥⎥⎦

1/2

=
⎡⎢⎢⎢⎢⎣
( h̵

2k2

2m
)

2

+
nk2Vk⃗
m

⎤⎥⎥⎥⎥⎦

1/2

(19.196)

Quasiparticles appear in all kinds of physical systems at all energy scales.

The ground state of the system ∣0⟩ is fixed by the condition that no quasiparticles
are excited,

αk⃗ ∣0⟩ = 0 for all k⃗ (19.197)

The number of particles outside the condensate(the ground state) is given by

N ′ = ⟨0∣∑
k⃗≠0

â+
k⃗
âk⃗ ∣0⟩ = ⟨0∣∑

k⃗≠0

α̂k⃗α̂
+
k⃗
∣0⟩ = ∑

k⃗≠0

v2
k⃗

(19.198)

For small ∣k⃗∣ we have
Ek⃗ = h̵ωk⃗ ≈ csh̵k (19.199)

where

cs =
√

nV0

m
= speed of sound in fluid (19.200)

This says that the long wavelength excitations have a linear dispersion relation
(E versus k).
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For large ∣k⃗∣ we have

Ek⃗ = h̵ωk⃗ =
h̵2k2

2m
+ nVk⃗ (19.201)

This corresponds to the dispersion relation for free particles whose energy is
shifted by a mean potential nVk⃗.

We can now understand qualitatively how superfluidity comes about.

Consider a small particle(call it a cluster) which could be several dirt atoms or a
piece of a surrounding wall moving through a quantum liquid with the dispersion
relations just described for the quasiparticle excitations, i.e., the quasiparticle
energy rises linearly with k at low k and quadratically with k at large k.

The cluster can lose energy (experience friction) only by causing excitations
in the fluid. For T > 0, there are already excitations present in the fluid at
which the cluster may scatter and thus lose energy, but at T = 0, this is not the
case. Let the initial momentum of the cluster be h̵q⃗ and the momentum of the
excitations be h̵k⃗. In a scattering event of the cluster with the fluid, energy and
momentum are conserved.

h̵q⃗ = h̵q⃗ ′ + h̵k⃗ ,
h̵2q2

2m
= h̵

2q′2

2m
+E(k) (19.202)

where h̵q⃗ ′ is the momentum of the cluster after the scattering. The elementary
excitations of the fluid (quasiparticles) are given by

Ek⃗ = h̵ωk⃗ =
⎡⎢⎢⎢⎢⎣
( h̵

2k2

2m
)

2

+
nk2Vk⃗
m

⎤⎥⎥⎥⎥⎦

1/2

(19.203)

Consider the energy conservation equation. We have

h̵2q2

2m
= h̵

2(q⃗ − k⃗)2

2m
+E(k) (19.204)

or

0 = − h̵
2

2m
q⃗ ⋅ k⃗ + h̵

2k2

2m
+E(k) (19.205)

This says that (let α be the angle between q⃗ and k⃗)

cosα = 1

v

E(k)
h̵k

+ 1

v

h̵k

2m
+E(k) (19.206)

where
v = h̵q

m
= initial velocity of the cluster (19.207)

Now for the quasiparticle excitations

E(k)
h̵k

> cs (19.208)
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therefore, for the excitation(emission) of a quasiparticle the cluster velocity must
be larger than cs, i.e., v > cs. This follows from the above relation as k → 0 or
the angle α becomes imaginary!

A cluster moving with v < vcritical = cs (in this model) cannot lose energy to
the fluid. Thus, there is no friction and one has superfluidity. For liquid helium
vcritical << cs and the physics is even more dramatic.

19.8 Spontaneous Symmetry Breaking in Quan-
tum Mechanics

In quantum mechanics symmetry has a much more powerful role than in classi-
cal mechanics. Translational invariance in a classical system causes momentum
to be conserved; in quantum mechanics it immediately implies that all eigen-
states of the Hamiltonian are spread out with equal amplitude over all of space.
It could be argued that because a chair is built of many microscopic particles
that all obey the rules of quantum mechanics, the chair as a whole should also
respect the symmetry of its Hamiltonian and be spread out over all of space.
Clearly this situation is not physically realized. The way out of the seeming
paradox is the spontaneous symmetry breaking of the collective system. The
description of spontaneous symmetry breaking in macroscopic systems that are
constructed from microscopic, quantum mechanical constituents is one of the
highlights of condensed matter theory. It is used to explain the classical features
of macroscopic systems ranging from crystals and antiferromagnets to supercon-
ductors.

The general idea behind spontaneous symmetry breaking is easily formulated:
as a collection of quantum particles becomes larger, the symmetry of the system
as a whole becomes more unstable against small perturbations. In the limit of
an infinite system an infinitesimal perturbation is enough to cause the system
to break the underlying symmetry of the Hamiltonian. The fact that the sym-
metry breaking can happen spontaneously is signaled by a set of noncommuting
limits: In the complete absence of perturbations even a macroscopic system
should conform to the symmetry of the Hamiltonian. However, in the presence
of an infinitesimal perturbation a macroscopic system will be able to break the
symmetry and end up in a classical state. This intuitive picture of spontaneous
symmetry breaking is not always easy to demonstrate in an equally clear math-
ematical description of the process.

In this section we present a simple mathematical procedure that can be applied
to the spontaneous breaking of any continuous symmetry and that naturally em-
phasizes the roles of the key players (the symmetry-breaking field, the thermo-
dynamic limit, and the global excitations of a thin spectrum) in this symmetry
breaking. The procedure is described by considering the example of a quantum
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harmonic crystal that spontaneously breaks translational symmetry. All of the
methods, that is, bosonization, using the Bogoliubov transformation to identify
the thin spectrum of states involved in spontaneous symmetry breaking, intro-
ducing a symmetry-breaking field in the collective dynamics, and considering a
noncommuting order of limits, can be applied to other systems as well.

19.8.1 The Harmonic Crystal
As a basic example of spontaneous symmetry breaking, we consider how trans-
lational symmetry is broken in a crystalline lattice. Consider a harmonic crystal
with the Hamiltonian

H =∑
j

p2
j

2m
+ κ

2
∑
j

(xj − xj+1)2 (19.209)

where j labels the N atoms in the lattice, which have mass m, momentum pj ,
and position xj . We consider here only a one- dimensional chain of atoms, but
all of the following can be straightforwardly generalized to higher dimensions.
The parameter κ gives the strength of the harmonic potential between neigh-
boring atoms. The results on spontaneous symmetry breaking that follow are
equally valid for anharmonic potentials.

In the standard treatment of the harmonic oscillator a Fourier transformation
of the Hamiltonian is used to identify its eigenstates. We follow a slightly
longer route by introducing boson (phonon) operators from the outset and di-
agonalizing them using the Bogoliubov transformation. This approach has the
advantages that it naturally brings to the fore the thin spectrum of the crystal
and enables us to keep track of the center of mass motion of the crystal as a
whole. The momentum and position operators can be expressed in terms of
boson operators as

pj = iC
√

h̵

2
(b+j − bj) , xj =

1

C

√
h̵

2
(b+j + bj) (19.210)

so that the commutation relation [xj , pk] = ih̵δjk is satisfied. We choose C2 =√
2mκ so that the Hamiltonian reduces to

H = h̵
4

√
2κ

m
∑
k

[2 (b+j bj + bjb+j ) − (b+j + bj) (b+j+1 + bj+1)] (19.211)

After a Fourier transformation we have

H =
√

h̵2κ

2m
∑
k

[Akb+kbk +
Bk
2

(b+kb+−k + bkb−k) + 1] (19.212)

where Ak = 2 − cos (ka), Bk = − cos (ka), and a is the lattice constant. This
Hamiltonian is still not diagonal, because the terms b+kb

+
−k and bkb−k create
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and annihilate two bosons at the same time. We get rid of these terms by
introducing Bogoliubov transformed operators βk = cosh (uk)bk + sinh (uk)b+k
and choosing uk such that the resulting Hamiltonian is diagonal. After this
Bogoliubov transformation, the Hamiltonian in terms of transformed bosons is
given by

H = h̵
√

κ

m
∑
k

[2 sin ∣ka
2

∣ (β+kβk +
1

2
) +

√
2

4
cos (ka)]

= 2h̵

√
κ

m
∑
k

sin ∣ka
2

∣ [nk +
1

2
] (19.213)

because ∑k cosk = (N/2π) ∫
π
−π dk cosk = 0.

19.8.2 The Thin Spectrum

The form Eq. (5) of the Hamiltonian in terms of phonon operators coincides
with the standard textbook result. The use of the Bogoliubov transformation
to obtain Eq. (5) has the advantage that it draws attention to a rather subtle
point. When k → 0 the excitation energy ωk → 0, and the two parameters in
the Bogoliubov transformation diverge [sinh (uk)→∞ and cosh (uk)→∞. This
at k = 0 the canonical transformation is no longer well defined, and we should
treat the k = 0 part of the Hamiltonian Eq. (1) separately from the rest. The
excitations with k = 0 are the ones that describe the collective dynamics of the
crystal as a whole, and therefore they are also the states that are involved in
the collective symmetry breaking. The k = 0 part of the Hamiltonian, writ- ten
in terms of the original operators, is given by

Hcoll =
p2
tot

2Nm
+ constant (19.214)

where ptot =
√
Npk=0 is the total momentum of the system. It can easily be

checked that this part of the Hamiltonian, which describes the external dy-
namics of the crystal as a whole, commutes with the rest of the Hamiltonian,
which describes the internal dynamics of the phonon modes inside the crystal.
We therefore focus on the collective part of the Hamiltonian and disregard the
phonon spectrum given by Eq. (5).

Notice that by considering only the collective part of the Hamiltonian, we have
effectively reduced the problem to a single-particle problem. The single particle
in Eq. (6) with mass Nm and momentum ptot describes the dynamics of the
crystal as a whole. Its momentum and position are the center of mass momen-
tum and position of the crystal. In contrast, Eq. (5) describes the internal
degrees of freedom of the crystal and includes all many-body effects that arise
from the coupling of the N individual atoms.

The relevant eigenstates of the collective Hamiltonian Eq. (6) are very low in
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energy: their excitation energies scale as 1/n, where N is the number of atoms
in the crystal. In the thermodynamic limit all of these states thus become
nearly degenerate. Because of this property a combination of these states that
break the symmetry of the Hamiltonian can be spontaneously formed in the
thermodynamic limit. At the same time, these collective eigenstates are so few
in number and of such low energy that their contribution to the free energy
completely disappears in the thermodynamic limit. This vanishing contribution
can be seen by looking at their contribution to the partition function.

Digression on the Partition Function

In statistical mechanics, the partition function Z is an important quantity that
encodes the statistical properties of a system in thermodynamic equilibrium. It
is a function of temperature and other parameters, such as the volume enclosing
a gas. Most of the aggregate thermodynamic variables of the system, such as
the total energy, free energy, entropy, and pressure, can be expressed in terms
of the partition function or its derivatives.

There are actually several different types of partition functions, each correspond-
ing to different types of statistical ensemble (or, equivalently, different types of
free energy.) The canonical partition function applies to a canonical ensem-
ble, in which the system is allowed to exchange heat with the environment
at fixed temperature, volume, and number of particles. The grand canonical
partition function applies to a grand canonical ensemble, in which the system
can exchange both heat and particles with the environment, at fixed temper-
ature, volume, and chemical potential. Other types of partition functions can
be defined for different circumstances; see partition function (mathematics) for
generalizations.

Canonical Partition Function - Definition

As a beginning assumption, assume that a thermodynamically large system is in
constant thermal contact with the environment, with a temperature T , and both
the volume of the system and the number of constituent particles fixed. This
kind of system is called a canonical ensemble. Let us label with s (s = 1,2,3, ...)
the exact states (microstates) that the system can occupy, and denote the total
energy of the system when it is in microstate s as Es. Generally, these mi-
crostates can be regarded as discrete quantum states of the system.

The canonical partition function is

Z =∑
s

e−βEs

where the inverse temperature β is conveniently defined as

β = 1

kBT
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where kB denotes Boltzmann’s constant.

In quantum mechanics, the partition function can be more formally written as
a trace over the state space (which is independent of the choice of basis):

Z = Tr (e−βH)

where H is the quantum Hamiltonian operator. The exponential of an operator
can be defined using the exponential power series.

Meaning and Significance

It may not be obvious why the partition function, as we have defined it above, is
an important quantity. Firstly, let us consider what goes into it. The partition
function is a function of the temperature T and the microstate energies E1, E2,
E3, etc. The microstate energies are determined by other thermodynamic vari-
ables, such as the number of particles and the volume, as well as microscopic
quantities like the mass of the constituent particles. This dependence on mi-
croscopic variables is the central point of statistical mechanics. With a model
of the microscopic constituents of a system, one can calculate the microstate
energies, and thus the partition function, which will then allow us to calculate
all the other thermodynamic properties of the system.

The partition function can be related to thermodynamic properties because it
has a very important statistical meaning. The probability Ps that the system
occupies microstate s is

Ps =
1

Z
e−βEs

The partition function thus plays the role of a normalizing constant (note that
it does not depend on s), ensuring that the probabilities sum up to one:

∑
s

Ps =
1

Z
∑
s

e−βEs = 1

Z
Z = 1

This is the reason for calling Z the partition function: it encodes how the
probabilities are partitioned among the different microstates, based on their
individual energies.

Calculating the Thermodynamics Total Energy

In order to demonstrate the usefulness of the partition function, let us calculate
the thermodynamic value of the total energy. This is simply the expected value,
or ensemble average for the energy, which is the sum of the microstate energies
weighted by their probabilities:

⟨E⟩ =∑
s

EsPs =
1

Z
∑
s

Ese
−βEs = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
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or, equivalently,
⟨E⟩ = kBT 2∂ lnZ∂T

Incidentally, one should note that if the microstate energies depend on a pa-
rameter λ in the manner

Es = E(0)
s + λAs for all s

then the expected value of A is

⟨A⟩ =∑
s

AsPs = −
1

β

∂

∂λ
lnZ(β,λ)

This provides us with a method for calculating the expected values of many mi-
croscopic quantities. We add the quantity artificially to the microstate energies
(or, in the language of quantum mechanics, to the Hamiltonian), calculate the
new partition function and expected value, and then set λ to zero in the final
expression.

Relation to Thermodynamic Variables

We now state the relationships between the partition function and the various
thermodynamic parameters of the system. These results can be derived using
the method of the previous section and the various thermodynamic relations.
As we have already seen, the thermodynamic energy is

⟨E⟩ = −∂ lnZ

∂β

The variance in the energy (or energy fluctuation) is

⟨(∆E)2⟩ = ⟨(E − ⟨E⟩)2⟩ = ∂
2 lnZ

∂β2

The heat capacity is

Cv =
∂⟨E⟩
∂T

= frac1kBT 2⟨(∆E)2⟩

The entropy is

S = −kB∑
s

Ps lnPs = kB (lnZ + β⟨E⟩) = ∂

∂T
(kBT lnZ) = −∂F

∂T

where F is the Helmholtz free energy defined as F = U − TS, where U = ⟨E⟩ is
the total energy and S is the entropy, so that

F = ⟨E⟩ − TS = −kBT lnZ
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Returning to our discussion. We have

Zthin =∑ e−βHcoll ∝
√
N

Fthin = −kBT ln (Zthin)∝ ln (N) (19.215)

The free energy of the total system is an extensive quantity, so that Fthin/Ftot ∝
ln (N)/N disappears in the limit N →∞, which is the so-called thermodynamic
limit. The states of this part of the spectrum are thus invisible in thermodynam-
ically measurable quantities such as for instance the specific heat of macroscopic
crystals, and it is consequently called the thin spectrum of the quantum crystal.

To see how the states in the thin spectrum can conspire to break the translational
symmetry, we need to add a small symmetry-breaking field to the Hamiltonian:

HSB
coll =

p2
tot

2Nm
+ B

2
x2
tot (19.216)

Here the symmetry-breaking field B is introduced as a mathematical tool and
need not actually exist. We will send the value of B to zero at the end of the
calculation. The Hamiltonian Eq. (8) is the standard form of the Hamiltonian
for a quantum harmonic oscillator, and its eigenstates are well known. The
ground state wavefunction can be written as

ψ0(xtot) = (mωN
πh̵

)
1/4

e−(mωN/2h̵)x2
tot (19.217)

where ω =
√
B/mN . This ground state is a wavepacket ofthe total momentum

states that make up the thin spectrum. Apart from the ground state configura-
tion there are also collective eigenstates that are described by the excitations of
the harmonic oscillator Eq. (8). These excitations describe the collective motion
of the crystal as a whole. As N becomes larger, the ground state wavepacket
becomes more and more localized at the position xtot = 0, until it is completely
localized as N →∞. That this localization can occur spontaneously without the
existence of a physical symmetry-breaking field B can be seen by considering
the noncommuting limits

lim
N→∞

lim
B→0

∣ψ0(xtot)∣2 = constant (19.218)

lim
B→0

lim
N→∞

∣ψ0(xtot)∣2 = δ(xtot) (19.219)

If we do not include any symmetry-breaking field, then the crystal is always com-
pletely delocalized and respects the symmetry of the Hamiltonian. If we do allow
for a symmetry-breaking field, then it turns out that in the limit of having in-
finitely many constituent particles, an infinitesimally small symmetry-breaking
field is enough to completely localize the crystal at a single position. This math-
ematical instability implies that the symmetry breaking happens spontaneously
in the thermodynamic limit(spontaneous symmetry breaking).
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Notice that once the crystal has been localized at a specific position and the
unphysical symmetry-breaking field has been sent to zero, the delocalization of
the crystal due to the spreading of its wavefunction will take a time proportional
to N and can thus never be observed.

To see more rigorously whether or not the crystal as a whole is localized, we
should look at the spatial fluctuations ⟨x2

tot⟩. The absolute size of these fluc-
tuations by itself is meaningless. Their size becomes meaningful only if it is
compared to the size of the crystal. Because the size of the crystal is propor-
tional to the number of particles in the system, the appropriate order parameter
in this case is of the crystal ⟨x2

tot⟩/N . This order parameter has a noncommuting
order of limits as

lim
N→∞

lim
B→0

⟨x2
tot⟩/N =∞ (19.220)

lim
B→0

lim
N→∞

⟨x2
tot⟩/N = 0 (19.221)

which again signals the spontaneous localization of the crystal as a whole.

19.8.3 Subtleties
In the derivation of the spontaneous symmetry breaking of a harmonic crystal
we have been somewhat sloppy in the definition of the symmetry-breaking field.
After all, the collective model of Eq.(6) was only the k = 0 part of the full blown
Hamiltonian in Eq. (1), but we did not consider the symmetry-breaking field
to be only the k = 0 part of some other field acting on all atoms individually.
It would therefore be better to start with a microscopic model, which already
includes a symmetry-breaking field such as

HSB =∑
j

[
p2
j

2m
+ κ

2
(xj − xj+1)2 +B(1 − cos (xj))] (19.222)

→HSB
coll ≈

p2
tot

2Nm
+ B

2N
x2
tot (19.223)

In Eq. (15) we again consider only the k = 0 part of the Hamiltonian and
have expanded the cosine to quadratic order. The fact that the symmetry-
breaking field now scales as 1/N is a direct consequence of our definition of
the microscopic symmetry-breaking field. The factor 1/N cannot be avoided
if we insist that the microscopic Hamiltonian be extensive. This factor might
seem to imply an end to the localization of the total wavefunction ψ0(xtot),
but spontaneous symmetry breaking is still possible as long as we consider the
correct order parameter. Even though the wavefunction itself does not reduce to
a Dirac delta function anymore, the spatial fluctuations of the crystal compared
to its size still become negligible in the thermodynamic limit if an infinitesimal
symmetry-breaking field is included:

lim
N→∞

lim
B→0

⟨x2
tot⟩/N =∞ (19.224)
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lim
B→0

lim
N→∞

⟨x2
tot⟩/N = 0 (19.225)

Once again the disappearance of fluctuations in the thermodynamic limit sig-
nals the spontaneous localization of the crystal as a whole.

This digression into extensivity and the correct choice for the symmetry-breaking
field seems unnecessary for understanding the essential ingredients of sponta-
neous symmetry breaking, and therefore we have ignored these subtleties in our
main treatment of quantum spontaneous symmetry breaking. In the application
of this procedure to other systems, such as antiferromagnets and superconduc-
tors, these issues don’t arise because we are forced to consider extensive models
from the outset. In these cases, however, the mathematics of diagonalizing the
collective Hamiltonian is a bit more involved.

Summarizing, this section provides a simple way of explaining the appearance
of spontaneous symmetry breaking in quantum systems. The procedure starts
with the bosonization of the microscopic Hamiltonian. The quadratic part of
the bosonized Hamiltonian can in principle be diagonalized using a Bogoliubov
transformation, but in doing so we find that there are some modes for which
the transformation is ill-defined. These singular modes are the ones that de-
scribe the dynamics of the system as a whole (in contrast to the dynamics of
constituent particles within the system). These collective excitations should be
treated separately from all other modes, and together they define the collective
part of the Hamiltonian of the system. The eigenstates of this collective Hamil-
tonian that scale as 1/N form the thin spectrum. It is a combination of these
states that make up the symmetry broken wavefunction. As a mathematical
tool necessary to be able to see the symmetry breaking explicitly, we introduced
the symmetry-breaking field B. If we look at the new ground state wavefunction
or at a suitably defined order parameter for the system, we see that in the ther-
modynamic limit an infinitesimally small field B is enough to completely break
the symmetry of the underlying Hamiltonian. It is thus argued that symmetry
breaking can happen spontaneously in the limit N →∞.

This method as presented can be adapted to describe rotors, antiferromagnets,
and even superconductors, and should in principle be applicable to all quantum
systems that spontaneously break some continuous symmetry.

19.9 Problems

19.9.1 Bogoliubov Transformations

Consider a Hamiltonian for Bosonic operators b̂+k , b̂k of the form

Ĥ = E(k)b̂+k b̂k +A(k) [b̂+k b̂+−k + b̂k b̂−k]
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Define a Bogoliubov transformation to new Bosonic operators α̂+k , α̂k as follows:

b̂k = cosh 2θkα̂k + sinh 2θkα̂
+
−k , b̂+k = cosh 2θkα̂

+
k + sinh 2θkα̂−k

(a) Assume that E(k), A(k), θK are all even functions of k and find the form
of sinh 2θk as a function of A(k), E(k) so that

Ĥ = Ω(k)α̂+kα̂k + F (k)

and find Ω(k) and F (k).

(b) Show that if [b̂+k , b̂k] = 1, [b̂k, b̂k] = [b̂+k , b̂+k] = 0, then [α̂+k , α̂k] = 1, [α̂k, α̂k] =
[α̂+k , α̂+k] = 0.

(c) Show that if the operators b̂+k , b̂k are Fermionic instead of Bosonic, the
Bogoliubov transformation must have cosh θk → cos θk and sinh θk → sin θk
so that the new operators α̂+k , α̂k now obey anticommutation rules.

19.9.2 Weakly Interacting Bose gas in the Bogoliubov Ap-
proximation

In this case we have the Hamiltonian

Ĥ =∑
k

ε(k)â+k âk +
1

2V
∑
q

Vq∑
p,k

â+p+qâ
+
k−qâkâp

Consider the operator K̂ = Ĥ −µN̂ where N̂ = ∑k â+k âk. Defineâ0 =
√
N0e

iθ + b̂0,
âk≠0 = b̂k≠0.

(a) Separate the terms of order N2
0 , N0

√
N0, N0 in the interaction term, show

that these are quadratic in b̂, b̂+, and show that terms of order
√
N0 and

1 are cubic and quartic in b̂, b̂+. Neglect the terms of O(
√
N0) and O(1),

which is the Bogoliubov approximation, and write down K̂ only keeping
terms up to quadratic order in b̂, b̂+.

(b) Show that in this Bogoliubov approximation that K̂ = K̂Q+K̂cl where K̂Q

is quadratic and linear in b̂, b̂+ and K̂cl is purely classical and independent
of b̂, b̂+. Establish a relation µ = µ(N0) by minimization of K̂cl, i.e.,

∂K̂cl

∂N0
∣
µ

= 0

This is the Gross-Pitaevskii equation. Show that imposing this condition
leads to the cancellation of the terms linear in b̂, b̂+ in K̂Q.

(c) Diagonalize the resulting quadratic form for K̂Q by a Bogoliubov trans-
formation:

b̂+ke
iθ = ĉk coshφk + ĉ+−k sinhφk
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Find coshφk, sinhφk by requesting the cancellation of terms ĉ+k ĉ
+
−k, ĉk ĉ−k.

Show that in this Bogoliubov transformation,

K̂Q =∑
k

ĉ+k ĉkh̵Ω(k) +K0

Find Ω(k) and K0, consider Vq = V0 constant and evaluate the integral for
K0.

19.9.3 Problem 19.9.2 Continued
(a) Invert the Bogoliubov transformation in part (c) of Problem 19.9.2 and

show that
ĉk = b̃k coshφk − b̃+−k sinhφk

where b̃k = b̂ke−iθ. Use

eABe−A = B + [A,B] + 1

2!
[A, [A,B]] + .....

to show that
ĉk = U(φ)b̃kU−1(φ)

where U(φ) is the unitary operator

U(φ) = e∑k>0 φk(b̃
+

k b̃
+

−k−b̃k b̃−k)

(b) Show that the ground state of K̂ in the Bogoliubov approximation is
∣GS⟩ = U(φ) ∣0̃⟩ where ∣0̃⟩ is the vacuum of the operators b̃k ∶ b̃k ∣0̃⟩ = 0 for
all k. Argue that ∣GS⟩ is a linear superposition of states with a pair of
momenta k⃗,−k⃗ respectively. This is a squeezed quantum state (see Chapter
14 example). These states are ubiquitous in quantum optics and quantum
controlled nanoscale systems.

19.9.4 Mean-Field Theory, Coherent States and the Grtoss-
Pitaevkii Equation

Consider the pair potential V (x⃗ − y⃗) = V0δ
3(x⃗ − y⃗) and introduce the coher-

ent states of the Bosonic operator ∣ψ(x⃗)⟩ such that ψ̂(x⃗) ∣ψ(x⃗)⟩ = ψ(x⃗) ∣ψ(x⃗)⟩.
Include a one-body trap potential in the Hamiltonian Ĥ:

Ĥ = ∫ d3x ψ̂+(x⃗)(− h̵
2∇2

2m
+U(x⃗)) ψ̂(x⃗)

+ 1

2
∫ ∫ d3xd3y ψ̂+(x⃗)ψ̂+(y⃗)V (x⃗ − y⃗)ψ̂(y⃗)ψ̂(x⃗)

(a) Minimize the energy E(ψ) = ⟨ψ∣ K̂ ∣ψ⟩ where ∣ψ⟩ is the coherent state
above with ⟨ψ ∣ψ⟩ = 1 and show that

∂E

∂ψ∗(x⃗)
= 0

1557



leads to the Gross-Pitaevskii equation

[− h̵
2∇2

2m
+U(x⃗) − µ]ψ(x⃗) + V0∣ψ(x⃗)∣2ψ(x⃗) = 0

with the constraint that ∫ ∣ψ(x⃗)∣2 d3x = N .

(b) Define new operators ψ̂(x⃗) → ψ(x⃗) + η̂(x⃗) where ψ(x⃗) is the solution
to the Gross-Pitaevskii equation and write K̂ up to quadratic order in
η̂(x⃗), η̂+(x⃗). Show that terms linear in η̂(x⃗), η̂+(x⃗) are cancelled by ψ(x⃗)
being a solution to the Gross-Pitaevskii equation.

(c) Introduce the Bogoliubov transformation:

φ̂(x⃗) = u(x⃗)η̂(x⃗) + v(x⃗)η̂+(x⃗) , φ̂+(x⃗) = u∗(x⃗)η̂+(x⃗) + v∗(x⃗)η̂(x⃗)

Show that [φ̂(x⃗), φ̂+(y⃗)] = δ3(x⃗ − y⃗) if ∣u(x⃗)∣2 + ∣v(x⃗)∣2 = 1.

(d) Write K̂ up to quadratic order in η̂, η̂+ found in part (b) in terms of φ̂, φ̂+.
What is the equation that U ,V must obey so that the terms of the form
φ̂2, φ̂+2 are cancelled? These are the Bogoliubov-DeGennes equations!

19.9.5 Weakly Interacting Bose Gas
Consider a homogeneous, weakly interacting Bose gas with Hamiltonian

Ĥ = ∫ d3x ψ̂+(x⃗)(− h̵
2∇2

2m
) ψ̂(x⃗)+∫ ∫ d3xd3y ψ̂+(x⃗)ψ̂+(y⃗)V (x⃗− y⃗)ψ̂(y⃗)ψ̂(x⃗)

(a) Consider V (x⃗ − y⃗) = −∣V0∣δ3(x⃗ − y⃗) and assume a condensate with N0

particles. Obtain the operator for K̂ = Ĥ − µN̂ in the Bogoliubov ap-
proximation. By a canonical Bogoliubov transformation bring it to the
form

K̂ =∑
k

h̵Ω(k)ĉ+k ĉk +K0

Show that Ω(k) becomes imaginary for some values of 0 < k < kmax.

(b) What is kmax? What is the physical reason for this imaginary value and
what do they mean?

19.9.6 Bose Coulomb Gas
Consider the same problem as Problem 19.9.1, but now with

V (x⃗ − y⃗) = e2

∣x⃗ − y⃗∣
(19.226)

which is the Coulomb potential. Namely, consider a weakly interacting Bose ga
of charged particles (and assume a homogeneous neutralizing background like
in the so-called Jellium model).
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(a) Obtain the energy eigenvalues h̵Ω(k) in the Bogoliubov approximation.
Show that now limk→0 Ω(k) = Ω(0) ≠ 0. What is Ω(0)? Compare to the
result for plasma oscillations in an electron gas.

(b) Give the behavior of the Bogoliubov coefficients for small k. This is related
to long-range behavior of the forces. Goldstone’s theorem states that
any theory with an exact symmetry other than that of the vacuum must
contain a massless particle. Does this case violate Goldstone’s theorem?

19.9.7 Pairing Theory of Superconductivity
The B(ardeen)C(ooper)S(chrieffer) Hamiltonian in the mean-field approxima-
tion is

K̂ = Ĥ − µN̂ =∑
k

ε(k) (â+k↑âk↑ + â+k↓âk↓) +∑
k

[∆â+k↑â−k↓ +∆∗â+−k↓âk↑]

where â+k↑,↓ are creation operators of an electron of spin up or down and mo-
mentum k⃗ and

∆ = − g
V
∑
k′

′ ⟨GS∣ â−k↓âk↑ ∣GS⟩

∣GS⟩ is the ground state of K̂ and ∑k′ ′ is a sum over states with

0 ≤ ε(k′) ≤ h̵ωm and ε(k′) = ε(k) − µ = h̵
2k2

2m
− µ

(a) Diagonalize K̂ by a Bogoliubov transformation, i.e., introduce new oper-
ators

Âk = ukâk↑ − vkâ+−k↓ , B̂k = vkâk↑ + ukâ+−k↓
and their respective Hermitian conjugates with uk, vk and even in k. Show
that the transformation is canonical, namely, that Â, B̂ obey the usual
commutation relations if u2

k + v2
k = 1. It is convenient to write

uk = [1

2
(1 + αk)]

1/2
, vk = − [1

2
(1 − αk)]

1/2

Invert the Bogoliubov transformation and write K̂ in terms of Â, Â+, B̂, B̂+.
Choose αk so that K̂ becomes

K̂ =∑
k

E(k) [hatA+
kÂk + B̂+

k B̂k] +K0

that is, choose αk to make terms like ÂB̂ vanish. Find E(k).

(b) Obtain a self-consistent equation for ∆ by evaluating ⟨GS∣ â−k↓âk↑ ∣GS⟩
and solve this equation by replacing

1

V
∑
k′

′ → ∫
h̵ωm

0
N(ε)dε
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where N(ε) is the density of states so that

N(ε)dε = d3k

(2π)3

and assume that N(ε) ≈ N(0).

(c) Obtain the distribution function ⟨GS∣ â+k↑âk↑ ∣GS⟩

(d) Show that E(0) = ∆ = gap and evaluate the resulting integral in part (b)
to give the gap ∆ as a function of gN(0) for gN(0) ≪ 1.

19.9.8 Second Quantization Stuff
1. Quantum Chain of Oscillators

Consider a chain of atoms with masses m connected by springs of rigidity
γ:

Hph =
∞
∑
n=−∞

[ p
2
n

2m
+ γ

2
(un − un+1)2]

where un are the displacements of atoms from their equilibrium positions,
and pn are the corresponding conjugate momenta.

Consider the problem in quantum mechanics, i.e., treat ûn and p̂n as op-
erators satisfying the canonical commutation relation [p̂n, ûn′] = −ih̵δn,n′

Diagonalize the quantum Hamiltonian above. In order to do this, first do
the Fourier transform: ûn → ûk, p̂n → p̂k and then introduce the creation
and annihilation operators of phonons â+k and âk by the following formula:

ûk =
√

h̵

2mω(k)
(âk + â+k) , p̂k = −i

√
h̵mω(k)

2
(âk − â+k)

Write the Hamiltonian in terms of â+k and âk and determine the phonon
spectrum ω(k). Calculate the ground state energy of the system.

2. Interaction between Phonons

Suppose the springs have small anharmonicity γ′, so the Hamiltonian of
the system has the additional term

H ′
ph =

∞
∑
n=−∞

γ′(un − un+1)3

Rewrite the Hamiltonian in terms of the phonon operators â+k and âk
introduced in part (1). What can you say about momentum conservation
of the phonons in the new Hamiltonian?
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3. Electron-Phonon Interaction

Suppose electrons are also present on the same chain of atoms. Suppose
that the electrons can make transitions between neighboring lattice sites
with the probability amplitude tn so that

Hel =
∞
∑
n=−∞

tnψ̂
+
n+1ψ̂n + h.c.

where ψ̂+n and ψ̂n are the fermion operators creating and annihilating
electrons on the site n.

In the case tn = t = constant, diagonalize the electron Hamiltonian by
Fourier transform ψ̂n → ψ̂k, and determine the spectrum ε(k) of electronic
excitations.

In general, the amplitude of electron tunneling tn depends on the relative
diosplacement of the nearest neighboring atoms un −un+1. Let us expand
tn as a function of (un − un+1) to the first order: tn = t + (un − un+1)t′.
When substituted into the electron Hamiltonian, the second term gives
the following Hamiltonian:

Hel−ph = t′
∞
∑
n=−∞

(un − un+1)ψ̂+n+1ψ̂n + h.c.

Rewrite this last Hamiltonian in terms of phonon and electron operators
âk and ψ̂k and their conjugates. Comment on conservation of momentum.
This Hamiltonian describes the electron-phonon interaction. Phonons are
excitations of the lattice or lattice vibrations.

19.9.9 Second Quantized Operators

Write down the second-quantized form of the following first-quantized operators
describing N particles in both a position space basis (ψ̂(r⃗)) and a momentum
space basis (âk):

(a) particle density at r⃗: ρ(r⃗) = ∑` δ(r⃗ − r⃗`)

(b) total number of particles: ∑` 1 = N

(c) charge current density at r⃗: j⃗e(r⃗) = e
2m ∑`[p⃗`δ(r⃗ − r⃗`) + δ(r⃗ − r⃗`)p⃗`]

(d) magnetic moment density at r⃗: m⃗(r⃗) = (g/2)∑` σ⃗`δ(r⃗ − r⃗`)

19.9.10 Working out the details in Section 19.8

(1) Check that the thin spectrum of a harmonic crystal is indeed thin, that is,
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(a) Show that only the lowest
√
N total momentum states are not expo-

nentially suppressed in the symmetry broken wavefunction (19.217).
(This result implies that only the lowest

√
N total momentum states

contribute to the symmetry broken wavefunction, and these states
all become degenerate in the thermodynamic limit).

(b) Calculate the partition function of the thin spectrum states and show
that it scales as

√
N , so that the contribution of these states to the

free energy vanishes in the thermodynamic limit.

(2) Show the noncommutativity of the limits in Eq.(19.221) explicitly, by
going through the following steps:

(a) Formulate the Hamiltonian of Eq.(19.216) in terms of the boson
raising and lowering operators b+ =

√
C/(2h̵)(xtot − (i/C)ptot) and

b =
√
C/(2h̵)(xtot + (i/C)ptot) where C is some constant.

(b) Choose C such that the Hamiltonian becomes diagonal and find its
ground state.

(c) Evaluate the limits of Eq. (19.221) by expressing x2
tot in terms of

boson operators and taking the expectation value with respect to the
ground state of HSB

coll.

(3) Work out the Bogoliubov transformation of Eqs.(19.212) and (19.213) ex-
plicitly.

(a) Write the Hamiltonian of Eq. (19.212) in terms of the transformed
bosons βk = cosh (uk)b−k + sinh (uk)b+k .

(b) Which value should be chosen for uk in order for the Bogoliubov
transformation to yield the diagonal Hamiltonian of Eq. (19.213)
[Answer: tanh (2uk) = Bk/Ak].
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Chapter 20

Relativistic Wave Equations

Electromagnetic Radiation in Matter

20.1 Spin 0 particles: Klein-Gordon Equation

A classical nonrelativistic free particle has an energy-momentum relation E =
p2/2m. Under a Galilean transformation to a new coordinate system traveling
with −v⃗ with respect to the first system, we have

r⃗ ′ = r⃗ + v⃗t , t′ = t (20.1)

which gives

u⃗ ′ = dr⃗
′

dt′
= dr⃗
dt

+ v⃗ = u⃗ + v⃗

m′ =m
p⃗ ′ = p⃗ +mv⃗

We then have
F⃗ ′ = dp⃗

′

dt′
= dp⃗
dt

= F⃗ (20.2)

which implies the invariance of the form E = p2/2m, i.e.,

E ′ = ∫ F⃗ ′ ⋅ dr⃗ ′ = 1

m′ ∫ p⃗ ′ ⋅ dp⃗ ′ = p⃗ ′2

2m′

E = ∫ F⃗ ⋅ dr⃗ = 1

m
∫ p⃗ ⋅ dp⃗ = p⃗2

2m

and

E ′ = p⃗ ′2

2m′ =
(p⃗ +mv⃗)2

2m
= E + p⃗ ⋅ v⃗ + 1

2
mv2 (20.3)

Thus, the final Galilean transformation relations are

E ′ = E + p⃗ ⋅ v⃗ + 1

2
mv2 , p⃗ ′ = p⃗ +mv⃗ (20.4)
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which, as shown, leaves the quadratic form E = p2/2m invariant, i.e., if E =
p⃗2/2m, then E ′ = p⃗ ′2/2m′ and we derive the transformation rules for E and p⃗
from that condition.

The non-relativistic Schrodinger equation for the free particle then follows from
the standard identifications

E → ih̵
∂

∂t
, p⃗→ h̵

i
∇

Hψ = Eψ , H = p2

2m

which gives

ih̵
∂ψ

∂t
= − h̵

2

2m
∇2ψ (20.5)

It is clear from the form of the Schrodinger equation for a free particle that the
equation cannot be invariant under Lorentz transformation (Lorentz covariant),
i.e., the time derivative is first order and the space derivatives are second order.

20.1.1 How to find correct form of relativistic wave equa-
tion?

Before proceeding let us recall some results from special relativity. Components
of spacetime four-vectors will be labeled by Greek indices and the components
of spatial three-vectors will be labeled by Latin indices and we will use Einstein
summation convention.

Starting from xµ(s) = (ct, x⃗) = (x0, x⃗), the contravariant 4-vector representation
of the worldline as a function of the proper time s, we first obtain the 4-velocity,
i.e.,

ẋµ(s) = dx
µ(s)
ds

= dx
µ(s)

1
γ
dx0

= γ (dx
0

dx0
,
dx⃗

dx0
) = γ (1, v⃗/c) (20.6)

where
γ = 1

√
1 − v2

c2

, v⃗ = dx⃗
dt

= c dx⃗
dx0

(20.7)

The 4-momentum vector is then given by

pµ =mcẋµ(s) = γm (c, v⃗) = (E/c, p⃗) (20.8)

where we have used the fact that

p0 = E
c
= γmc , m = rest mass (20.9)

This says that the energy E and momentum p⃗ transform as the components of a
contravariant 4-vector and we know that the square of any 4-vector is invariant.
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The metric tensor defined by

gµν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

(20.10)

allows the construction of the covariant components(using Einstein summation
convention)

pµ = gµνpν = (E
c
,−p⃗) (20.11)

We can then calculate the invariant square or the invariant scalar product of
the 4-momentum with itself as

pµp
µ = gµνpνpµ =

E2

c2
− p⃗2 =m2c2 (20.12)

We therefore have the relativistic energy momentum relation

E = (p⃗2c2 +m2c4)1/2
(20.13)

If we use this expression to construct a new wave equation by operator substi-
tution we would have

ih̵
∂ψ

∂t
= (−h̵2c2∇2 +m2c4)1/2

ψ (20.14)

Although the energy formula is now relativistically correct, the time and space
derivatives still do not appear symmetrically. In fact, a Taylor expansion of
the square root gives infinitely high-order derivatives leading to a very difficult
mathematical equation to deal with.

This fact, in itself, is not a valid reason for rejecting the equation.

There are, however, strong physical reasons for rejecting this equation. The
equation says that the momentum space amplitude

ψp⃗(t) = ∫ d3r e−ip⃗⋅r⃗/h̵ψ(r⃗, t) (20.15)

obeys the equation

ih̵
∂ψp⃗(t)
∂t

= (p2c2 +m2c4)1/2
ψp⃗(t) (20.16)

If we Fourier transform both sides back to position space we get

ih̵
∂ψ(r⃗, t)
∂t

= ∫ d3r′K(r⃗ − r⃗ ′)ψ(r⃗ ′, t) (20.17)
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where

K(r⃗ − r⃗ ′) = ∫
d3p

(2πh̵)3
eip⃗⋅(r⃗−r⃗

′)/h (p2c2 +m2c4)1/2
(20.18)

This equation for ψ(r⃗, t) is nonlocal, which means that the value of the integral
at vecr depends on the value of ψ at the other points vecr ′. The function
K(r⃗ − r⃗ ′) is large as long as vecr ′ is within a distance

≈ h̵

mc
= Compton wavelength (20.19)

from vecr. As a consequence of the nonlocality, the rate of change in time of ψ
at the spacetime point (r⃗, t) depends on the values of ψ at points (r⃗ ′, t) outside
the light cone centered on (r⃗, t).

If we construct a wave packet localized well within a Compton wavelength of
the origin, then the packet will be nonzero an arbitrarily short time later at
points as distant as the Compton wavelength.

Thus, this equation leads to violations of relativistic causality when used to
describe particles localized to within more than a Compton wavelength, which
is unacceptable.

Instead, we will start from an equation involving E2, i.e., we have

E2ψ = (ih̵ ∂
∂t

)
2

ψ = (p⃗2c2 +m2c4)ψ = (−h̵2c2∇2 +m2c4)ψ

(∇2 − (mc
h̵

)
2

)ψ = 1

c2
∂2ψ

∂2t
(20.20)

which looks like a classical wave equation with an extra term of the form

(mc
h̵

)
2

(20.21)

It is called the Klein-Gordon equation. In 4-vector notation it looks like

(∂µ∂µ + (mc
h̵

)
2

)ψ = 0 , ∂µ =
∂

∂xµ
(20.22)

The equation can be generalized in a relativistically invariant way to include the
coupling of charged particles to the electromagnetic field by the substitutions
(corresponding to minimal coupling we discussed earlier in Chapter 8)

ih̵
∂

∂t
→ ih̵

∂

∂t
− eΦ ,

h̵

i
∇→ h̵

i
∇− e

c
A⃗ (20.23)

to obtain

1

c2
(ih̵ ∂

∂t
− eΦ(r⃗, t))

2

ψ(r⃗, t) = (( h̵
i
∇− e

c
A⃗(r⃗, t))

2

+m2c2)ψ(r⃗, t) (20.24)
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The Klein-Gordon equation has several unusual features.

First, it is second-order in time (space and time derivatives are now the same
order). This means we need to specify twice as much initial information (the
function and its derivative) at one time to specify the relativistic solution as
compared to the nonrelativistic solution which only required specification of the
function at one time. .

This will mean that the equation has an extra degree of freedom. We will see
shortly that this extra degree of freedom corresponds to specifying the charge
of the particle and that the Klein-Gordon equation actually describes both a
particle and its antiparticle together. .

Second, since the equation is second order in time, the functions

ψ = ei(p⃗⋅r⃗−Et)/h̵ (20.25)

satisfy the free particle equation with either sign of E, i.e.,

E = ± (p⃗2c2 +m2c4)1/2
(20.26)

The Klein-Gordon equation has negative energy solutions for a free particle!
For these solutions when we increase the magnitude of the momentum p⃗, then
the energy of the particle decreases! As we will see later, these negative energy
solutions are real and will correspond to antiparticles, while the positive energy
solutions will be particles.

In nonrelativistic Schrodinger theory we were able to interpret ψ∗ψ as a positive
probability density that was conserved in time (no sinks or sources of probability
in nonrelativistic Schrodinger theory). Let us see what happens in the case of
the Klein-Gordon equation.

For the Klein-Gordon equation

∫ ψ∗ψd3r (20.27)

changes in time and thus, we cannot interpret ψ∗(r⃗, t)ψ(r⃗, t) as being the prob-
ability of finding a particle at r⃗ at time t.

We can, however, construct a different conserved density as follows. We write

ψ∗ (∂µ∂µ + (mc
h̵

)
2

)ψ = 0 (20.28)

and

ψ (∂µ∂µ + (mc
h̵

)
2

)ψ∗ = 0 (20.29)
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which give(subtracting)

ψ∗∂µ∂
µψ − ψ∂µ∂µψ∗ = 0 (20.30)

∂µ (ψ∗∂µψ − ψ∂µψ∗) = 0 (20.31)

Expanding these expressions, we have the continuity equation

∂ρ

∂t
+∇ ⋅ j⃗ = 0 (20.32)

where

ρ(r⃗, t) = ih̵

2mc2
(ψ∗ ∂ψ

∂t
− ψ∂ψ

∗

∂t
) (20.33)

j⃗(r⃗, t) = h̵

im
(ψ∗∇ψ − ψ∇ψ∗) (20.34)

We have inserted a multiplicative constant so that the current density vector
j⃗(r⃗, t) is identical to the nonrelativistic case. Because this density ρ(r⃗, t) sat-
isfies a continuity equation, its integral over all space does not change in time.
Clearly, however, it is not necessarily positive. In particular, ρ < 0 for a negative
energy free particle eigenstate.

This means that we cannot interpret this new ρ(r⃗) as being the particle (prob-
ability) density at r⃗ and we cannot interpret j⃗(r⃗) as a particle current.

The interpretation that will eventually emerge is that for charged particles eρ(r⃗)
represents the charge density at r⃗, which can have either sign and ej⃗(r⃗) repre-
sents the electric current at r⃗.

20.1.2 Negative Energy States and Antiparticles
How do we interpret the Klein-Gordon equation and its solutions?

Consider a free particle at rest, i.e., p⃗ = 0. The wave function for the positive
energy solution is

ψ(r⃗, t) = e−imc
2t/h̵ (20.35)

where the energy of a particle at rest is E = mc2. The density for this state is
ρ(r⃗, t) = +1.

Now make a Lorentz transformation to a new frame moving with velocity −v⃗
with respect to the particle at rest. The particle now appears to have a velocity
v⃗ in this new frame. It, therefore, has

momentum = p⃗ = γmv⃗ and energy = E = γmc2 (20.36)

where
γ = 1√

1 − v2/c2
(20.37)
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This result follows because

pµx
′µ = Lorentz scalar

= −mc2t in the rest frame
= p⃗ ⋅ r⃗ ′ −Et ′ in the moving frame

The new wave function

ψ(r⃗ ′, t′) = ei(p⃗⋅r⃗
′−Et′)/h̵ = ei(p⃗⋅r⃗

′−Ep⃗t′)/h̵ (20.38)

is the result we expect for a particle of momentum p⃗ and energy Ep⃗. If we
calculate the density ρ for this wave function we get

ρ(r⃗ ′, t′) =
Ep⃗

mc2
(20.39)

and the current is

j⃗(r⃗ ′, t′) = p⃗

m
= p⃗c

2

Ep⃗
ρ(r⃗ ′, t′) = v⃗ρ(r⃗ ′, t′) (as expected) (20.40)

where

v⃗ = p⃗c
2

Ep⃗
(20.41)

We see that ρ(r⃗, t) transforms like Ep⃗ or as the time component of a 4-vector,
which makes physical sense. Since a unit volume in the rest frame appears
smaller by a factor

1/γ =
√

1 − v2/c2 (20.42)

when observed from the moving frame, a unit density in the rest frame will
appear as a density

1

γ
=
Ep⃗

mc2
(20.43)

in a frame in which the particle is moving.

What about the negative energy solutions? For a particle at rest we have, in
this case,

ψ(r⃗, t) = eimc
2t/h̵ (20.44)

where the energy of this particle at rest is E = −mc2.

The density for this state is ρ(r⃗, t) = −1.

It turns out that one way to interpret a state with a negative particle density
is to say that it is a state with a positive density of antiparticles.

We will make the interpretation that a particle at rest with energy E = −mc2
is actually an antiparticle with positive energy E = mc2. As we shall see,
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this interpretation of negative energy states will lead to a consistent theoretical
picture that is confirmed experimentally.

In a Lorentz frame traveling with velocity −v⃗ with respect to the antiparticle,
the wave function is

ψ(r⃗ ′, t′) = e−i(p⃗⋅r⃗
′−Et′)/h̵ = eimc

2t/h̵ (20.45)

where
momentum = p⃗ = γmv⃗ and energy = E = γmc2 (20.46)

In this new frame the particle has velocity v⃗, momentum p⃗ and energy Ep⃗. The
wave function, however, describes a particle of energy −Ep⃗ and momentum −p⃗.

The density in the moving frame is

ρ(r⃗ ′, t′) = −
Ep⃗

mc2
(20.47)

and the current is

j⃗(r⃗ ′, t′) = − p⃗
m
ρ(r⃗ ′, t′) = p⃗c

2

Ep⃗
ρ(r⃗ ′, t′) (20.48)

Thus, an antiparticle moving with velocity v⃗ has associated with it a current
moving in the opposite direction, i.e., a flow of antiparticles in one direction is
equivalent to a flow of particles in the opposite direction.

For a charged particle eρ(r⃗, t) is the charge density. It is positive for a free
particle with e > 0 and negative for a free antiparticle, which has opposite
charge to the particle.

The quantity ej⃗(r⃗, t) is the electric current of the state ψ. For a particle the
electric current is in the direction of the particle velocity. For the antiparticle
with e < 0, the electric current is opposite to the velocity.

This says that the interpretation of the negative energy solutions as antiparticles
is consistent with the interpretation of the density ρ as a charge density and j⃗
as an electric current.

Is this interpretation consistent with the way charged particles interact with the
electromagnetic field?

The Klein-Gordon equation with an electromagnetic field present is given by

1

c2
(ih̵ ∂

∂t
− eΦ(r⃗, t))

2

ψ(r⃗, t) = (( h̵
i
∇− e

c
A⃗(r⃗, t))

2

+m2c2)ψ(r⃗, t) (20.49)
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Taking the complex conjugate we have

1

c2
(ih̵ ∂

∂t
+ eΦ(r⃗, t))

2

ψ∗(r⃗, t) = (( h̵
i
∇+ e

c
A⃗(r⃗, t))

2

+m2c2)ψ∗(r⃗, t) (20.50)

These equations say that if ψ(r⃗, t) is a solution to the Klein-Gordon equation
with a certain sign of the charge, then ψ∗(r⃗, t) is a solution of the Klein-Gordon
equation with the opposite sign of the charge and the same mass.

Thus, the relativistic theory of a spin zero particle predicts the existence of its
antiparticle with the opposite charge and same mass, i.e., the theory contains
solutions for both particles and antiparticles.
12pt] Relativistic invariance requires

the existence of antiparticles

The complex conjugate of a negative energy solution is a positive energy solu-
tion with the opposite sign of the charge. The operation of taking the complex
conjugate of the wave function will be called charge conjugation. Charge conju-
gation changes particles into antiparticles and vice versa. If we label quantities
calculated with the complex conjugate wave function by a subscript c , we find

ρ(r⃗, t) = −ρc(r⃗, t) , j⃗(r⃗, t) = −j⃗c(r⃗, t) (20.51)

as expected.

The solutions are normalized by the requirement that the total associated charge
equals ±1 unit, i.e.,

∫ d3rρ(r⃗, t) = +1 = −∫ d3rρc(r⃗, t) (20.52)

This normalization is conserved in time and invariant under a Lorentz transfor-
mation.

20.2 Physics of the Klein-Gordon Equation

We first transform the Klein-Gordon equation into two equations, each first
order in time.

We define

ψ0(r⃗, t) = ( ∂
∂t

+ ie
h̵

Φ(r⃗, t))ψ(r⃗, t) (1st - order equation #1) (20.53)

We then have

( ∂
∂t

+ ie
h̵

Φ(r⃗, t))ψ0(r⃗, t) = ( ∂
∂t

+ ie
h̵

Φ(r⃗, t))
2

ψ(r⃗, t) (20.54)

1571



Now using the Klein-Gordon equation we have

( ∂
∂t

+ ie
h̵

Φ(r⃗, t))
2

ψ(r⃗, t) = c2 ((∇+ ie

h̵c
A⃗(r⃗, t))

2

− m
2c4

h̵2
)ψ(r⃗, t) (20.55)

so we get

( ∂
∂t

+ ie
h̵

Φ(r⃗, t))ψ0(r⃗, t)

= c2 ((∇+ ie

h̵c
A⃗(r⃗, t))

2

− m
2c4

h̵2
)ψ(r⃗, t) (1st - order equation #2)

(20.56)

These two new first-order equations involve the two functions ψ0(r⃗, t) and
ψ(r⃗, t).

Now define the linear combinations

φ = 1

2
[ψ + ih̵

mc2
ψ0] , χ = 1

2
[ψ − ih̵

mc2
ψ0] (20.57)

Substitution then gives the more symmetric equations

(ih̵ ∂
∂t

− eΦ)φ = 1

2m
[ h̵
i
∇− e

c
A⃗]

2

(φ + χ) +mc2φ (20.58)

(ih̵ ∂
∂t

− eΦ)χ = − 1

2m
[ h̵
i
∇− e

c
A⃗]

2

(φ + χ) +mc2χ (20.59)

Now define a two-component wave function

Ψ(r⃗, t) = ( φ(r⃗, t)
χ(r⃗, t) ) (20.60)

and three 2 × 2 matrices

τ1 = ( 0 1
1 0

) , τ2 = ( 0 −i
i 0

) , τ3 = ( 1 0
0 −1

) (20.61)

The two symmetric equations can then be combined into the single equation

ih̵
∂Ψ

∂t
= [[ h̵

i
∇− e

c
A⃗]

2

(τ3 + iτ2) +mc2τ3 + eΦ]Ψ (20.62)

This equation is completely equivalent to the original Klein-Gordon equation
where

ψ = φ + χ , ψ0 = mc
2

ih̵
(φ − χ) (20.63)

The internal degree of freedom represented by these two components is the
charge of the particle(one component represents the particle and the other the
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antiparticle).

Using the two component equation, we can write the density as

ρ(r⃗, t) = ∣φ∣2 − ∣χ∣2 = Ψ+τ3Ψ (20.64)

where Ψ+ = (φ∗, χ∗). A very simple expression. The current density, however,
becomes less transparent

j⃗(r⃗, t) = h̵

2im
[Ψ+τ3(τ3 + iτ2)∇Ψ − (∇Ψ+)τ3(τ3 + iτ2)Ψ]

− eA⃗

mc
Ψ+τ3(τ3 + iτ2)Ψ (20.65)

The normalization condition becomes

∫ d3rΨ+τ3Ψ = ±1 (20.66)

The scalar product between two such wave functions Ψ and ∣Psi′ is defined by

⟨Ψ ∣ Ψ ′⟩ = ∫ d3rΨ+(r⃗, t)τ3Ψ ′(r⃗, t) (20.67)

Finally, the wave equation is of the form

ih̵
∂Ψ

∂t
= ĤΨ (20.68)

where the Hamiltonian is

Ĥ = [ h̵
i
∇− e

c
A⃗]

2

(τ3 + iτ2) +mc2τ3 + eΦ (20.69)

Since (τ3 + iτ2)+ = τ3 − iτ2, we find that Ĥ+ ≠ Ĥ, which seems to indicate that
Ĥ is not Hermitian. It is Hermitian, however, when we use the proper scalar
product definition of hermiticity, i.e.,

⟨Ψ∣ (Ĥ ∣Ψ′⟩) = [⟨Ψ′∣ (Ĥ ∣Ψ⟩)]
∗

(20.70)

This relation requires that
τ3Ĥ

+τ3 = Ĥ (20.71)

All required properties of Hermitian operators, i.e., real eigenvalues and so on,
follow from the scalar product definition so that is all that is actually required.

Under the charge conjugation operation

φ→ χ∗

χ→ φ∗
}→ Ψc = τ1Ψ∗ (20.72)
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which is the form of the charge conjugation operation in two-component lan-
guage.

We can now see the physical meaning of charge conjugation. Using

p⃗∗ = ( h̵
i
∇)

∗
= − h̵

i
∇ = −p⃗ (20.73)

and τ3 + iτ2 = real matrix, we find that

Ĥ∗(e) = [−p⃗ − e
c
A⃗]

2

(τ3 + iτ2) +mc2τ3 + eΦ (20.74)

We then have

τ1Ĥ
∗(e)τ1 = − [p⃗ + e

c
A⃗]

2

(τ3 + iτ2) −mc2τ3 + eΦ = −Ĥ(−e) (20.75)

This means that, if Ψ solves the equation

ih̵
∂Ψ

∂t
= Ĥ(e)Ψ (20.76)

we have
−ih̵∂Ψ∗

∂t
= Ĥ∗(e)Ψ∗ = −τ1Ĥ(−e)τ1Ψ∗ (20.77)

Multiplying by τ1 we get

ih̵
∂Ψc

∂t
= Ĥ(−e)Ψc (20.78)

which is the two-component statement of the fact that Ψc solves the Klein-
Gordon equation with the opposite sign of the charge.

What can we say about the two-component solutions for free particles and
antiparticles?

The wave function of a free particle (positive energy solution) of momentum p⃗
(normalized to 1) is given by

ψ
(+)
p⃗ (r⃗, t) =

¿
ÁÁÀmc2

Ep⃗
ei(p⃗⋅r⃗−Ep⃗t)/h̵ (20.79)

where
Ep⃗ =

√
p2c2 +m2c4 (20.80)

Using

ψ0(r⃗, t) = ( ∂
∂t

+ ie
h̵

Φ(r⃗, t))ψ(r⃗, t) (20.81)

and
φ = 1

2
[ψ + ih̵

mc2
ψ0] , χ = 1

2
[ψ − ih̵

mc2
ψ0] (20.82)
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we find (in two-component language)

Ψ
(+)
p⃗ (r⃗, t) = Ψ

(+)
p⃗ ei(p⃗⋅r⃗−Ep⃗t)/h̵ (20.83)

where the two-component vector Ψ
(+)
p⃗ is given by

Ψ
(+)
p⃗ = 1

2
√
Ep⃗mc2

( mc2 +Ep⃗
mc2 −Ep⃗

) (20.84)

In a similar manner, we can write for the negative energy solutions (free an-
tiparticles)

ψ
(−)
p⃗ (r⃗, t) =

¿
ÁÁÀmc2

Ep⃗
e−i(p⃗⋅r⃗−Ep⃗t)/h̵ (20.85)

Ψ
(−)
p⃗ (r⃗, t) = Ψ

(−)
p⃗ e−i(p⃗⋅r⃗−Ep⃗t)/h̵ (20.86)

Ψ
(−)
p⃗ = 1

2
√
Ep⃗mc2

( mc2 −Ep⃗
mc2 +Ep⃗

) = τ1Ψ
(+)
p⃗ (20.87)

We note that in the nonrelativistic limit

Ep⃗ =
√
p2c2 +m2c4 =mc2 (1 + p2

m2c2
)

1/2

≈mc2 (1 + p2

2m2c2
) (20.88)

mc2 ±Ep⃗ ≈ { 2mc2

−p2/2m (20.89)

so that

Ψ
(+)
p⃗ = ( 1

−v2/4c2 ) , Ψ
(−)
p⃗ = ( −v2/4c2

1
) (20.90)

This shows that in the nonrelativistic limit

χ is ≈ v2/c2 times φ for a particle (20.91)

If we drop χ, then φ satisfies the nonrelativistic Schrodinger equation with the
constant mc2 included in the energy.

Similarly, dropping φ in the antiparticle solution shows that χ satisfies the
nonrelativistic Schrodinger equation for the opposite charge with the constant
mc2 included in the energy.

The particle and antiparticle solutions are orthogonal in the sense that

Ψ
(+)
p⃗ τ3Ψ

(−)
p⃗ = 0 = Ψ

(−)
p⃗ τ3Ψ

(+)
p⃗ (20.92)

which should be the case since they represent different energy eigenstates of the
same Hamiltonian.
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The free particle solutions form a complete set since any wave function Ψ can be
expanded as a linear combination of the free particle and antiparticle solutions.

We first write Ψ as a Fourier transform

Ψ(r⃗, t) = ∫
d3p

(2πh̵)3
eip⃗⋅r⃗/h̵ ( φp⃗

χp⃗
) (20.93)

Since the two vectors Ψ
(+)
p⃗ and Ψ

(−)
p⃗ are linearly independent, we can write

Ψp⃗(t) = ( φp⃗
χp⃗

) = up⃗(t)Ψ(+)
p⃗ + v∗−p⃗(t)Ψ

(−)
−p⃗ (20.94)

Good reasons for the choice of −p⃗ and ∗ will appear shortly.

Substituting we get

Ψ(r⃗, t) = ∫
d3p

(2πh̵)3
eip⃗⋅r⃗/h̵ [up⃗(t)Ψ(+)

p⃗ + v∗−p⃗(t)Ψ
(−)
−p⃗ ]

= ∫
d3p

(2πh̵)3
[up⃗(t)Ψ(+)

p⃗ eip⃗⋅r⃗/h̵ + v∗p⃗(t)Ψ
(−)
p⃗ e−ip⃗⋅r⃗/h̵] (20.95)

where a change of variables was made in the second term. From the form of this
result, up⃗(t) is the amplitude for a particle in the state Ψ to have momentum p⃗
and positive charge and vp⃗(t) is the amplitude for a particle in the state Ψ to
have momentum p⃗ and negative charge.

Using the orthonormality of Ψ
(±)
p⃗ we get

up⃗(t) = ∫ d3rΨ
(+)+
p⃗ e−ip⃗⋅r⃗/h̵τ3Ψ(r⃗, t) (20.96)

v∗p⃗(t) = −∫ d3rΨ
(−)+
p⃗ eip⃗⋅r⃗/h̵τ3Ψ(r⃗, t) (20.97)

The normalization integral for Ψ then becomes

∫
d3p

(2πh̵)3
(∣up⃗∣2 − ∣vp⃗∣2) = ±1 (20.98)

This says that there is no restriction on the magnitude of either up⃗ or vp⃗. Only
the integral of the difference(above) is fixed.

Physically, we can then say that one can have a state with an arbitrarily large
amplitude for finding a particle with a certain momentum, which is the first
indication that we are dealing with bosons or that spin zero particles must be
bosons.
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We can write some expectation values in this formalism, i.e.,

Ĥ0 =
p2

2m
(τ3 + iτ2)2 +mc2τ3 = Kineticenergy (20.99)

∫ Ψ+(r⃗)τ3Ĥ0Ψ(r⃗)d3r = ∫
d3p

(2πh̵)3
Ep⃗ (∣up⃗∣2 + ∣vp⃗∣2) (20.100)

and

p⃗ = h̵
i
∇ = momentum (20.101)

∫ Ψ+(r⃗)τ3 ( h̵
i
∇)Ψ(r⃗)d3r = ∫

d3p

(2πh̵)3
p⃗ (∣up⃗∣2 + ∣vp⃗∣2) (20.102)

20.3 Free Particles as Wave Packets

A wave packet formed from the positive energy solutions is given by

Ψ(+)(r⃗, t) = ∫
d3p

(2πh̵)3
up⃗e

i(p⃗⋅r⃗−Ep⃗t)/h̵Ψ
(+)
p⃗ (20.103)

Let us assume that up⃗ is peaked about p⃗ = p⃗ ′. Then, using arguments similar to
our earlier discussions on stationary phase, the center of the wave packet moves
with a group velocity

v⃗g = (∇p⃗Ep⃗)p⃗=p⃗ ′ =
p⃗ ′c2

Ep⃗ ′
(20.104)

and similarly for a free wave packet made of the negative energy solutions for
antiparticles.

Can we construct a free particle wave packet perfectly localized at the origin?
It would have the form

Ψ(r⃗) = ( a
b

) δ(r⃗) (20.105)

We then have

up⃗ = ∫ d3rΨ
(+)+
p⃗ e−ip⃗⋅r⃗/h̵τ3Ψ(r⃗)

= ∫ d3rΨ
(+)+
p⃗ e−ip⃗⋅r⃗/h̵τ3 ( a

b
) δ(r⃗) = Ψ

(+)+
p⃗ τ3 ( a

b
)

= 1

2
√
Ep⃗mc2

( mc2 +Ep⃗
mc2 −Ep⃗

)
+

( 1 0
0 −1

)( a
b

)

=
Ep⃗(a + b) +mc2(a − b)

2
√
Ep⃗mc2

(20.106)
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and similarly

v∗p⃗ = −Ψ
(−)+
p⃗ τ3 ( a

b
) =

Ep⃗(a + b) −mc2(a − b)
2
√
Ep⃗mc2

(20.107)

Looking at these results we can see that independent of the choice of a and
b, the wave packet will always have both particle and antiparticle components.
This means that it is impossible to construct a perfectly localized wave packet
from positive energy solutions alone.

Suppose that we take a general wave packet made up of positive energy solutions
and try to squeeze it(make it more localized) with real-world devices such as
collimators. To see what might happen we multiply the wave packet by the
position operator r⃗. We then have

r⃗Ψ(+)(r⃗, t) = ∫
d3p

(2πh̵)3
up⃗(t)Ψ(+)

p⃗ r⃗eip⃗⋅r⃗/h̵

= ∫
d3p

(2πh̵)3
up⃗(t)Ψ(+)

p⃗

h̵

i
∇p⃗eip⃗⋅r⃗/h̵ (20.108)

Integrating by parts we have

r⃗Ψ(+)(r⃗, t) = ∫
d3p

(2πh̵)3
(ih̵∇p⃗up⃗(t))Ψ(+)

p⃗ eip⃗⋅r⃗/h̵

+ ∫
d3p

(2πh̵)3
up⃗(t)(ih̵∇p⃗Ψ(+)

p⃗ )eip⃗⋅r⃗/h̵ (20.109)

Using

∇p⃗Ψ(±)
p⃗ = − p⃗c

2

2E2
p⃗

Ψ
(∓)
p⃗ (20.110)

we get
r⃗Ψ(+)(r⃗, t) = r⃗+Ψ(+)(r⃗, t) + r⃗−Ψ(+)(r⃗, t) (20.111)

where

r⃗+Ψ(+)(r⃗, t) = ∫
d3p

(2πh̵)3
(ih̵∇p⃗up⃗(t))Ψ(+)

p⃗ eip⃗⋅r⃗/h̵ (20.112)

r⃗−Ψ(+)(r⃗, t) = −∫
d3p

(2πh̵)3
up⃗(t)

ih̵p⃗c2

2E2
p⃗

Ψ
(−)
p⃗ eip⃗⋅r⃗/h̵ (20.113)

This says that multiplying a wave packet of positive energy states by the position
operator mixes in negative energy solutions, i.e.,

r⃗+ generates positive energy solutions while r⃗− generates negative energy
solutions

or changes free particles in free antiparticles and vices versa
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The same result occurs for any function of the position operator.

Suppose that r⃗Ψ(+)(r⃗) = r⃗0Ψ(+)(r⃗), i.e., it is an eigenstate of r⃗ with eigenvalue
r⃗0. This says that

ih̵∇p⃗up⃗ = r⃗0up⃗ → up⃗ = e−ip⃗⋅r⃗0/h̵ (20.114)

and the state

Ψ+
r⃗0(r⃗) = ∫

d3p

(2πh̵)3
eip⃗⋅(r⃗−r⃗0)/h̵Ψ

(+)
p⃗ (20.115)

is an eigenstate of r⃗+.

This eigenstate is not normalizable. It is large over a region of space within
h̵/mc (a Compton wavelength) of r⃗0 or, in other words, the theory with positive
energy solutions cannot describe particles localized to a region smaller than a
Compton wavelength.

The presence of the r⃗− part in the position operator says that putting a wave
packet made from positive energy solutions (a particle) through a potential
Φ(r⃗) (which multiplies by functions of r) causes the creation of antiparticles
and because charge must be conserved, creates new particles also.

Thus, the relativistic spin-zero theory of the Klein-Gordon equation has built
into it the mechanism of particle-antiparticle production by external potentials.

An example of this phenomenon is Klein’s paradox. Suppose we have a beam of
positively charged particles with momentum p hitting an electrostatic potential
barrier of height eϕ from the left as shown in Figure 20.1 below.

Figure 20.1: Electrostatic Potential Barrier - Klein Paradox

The solution follows the same lines as the nonrelativistic problem. For x < 0 we
have

ψ(x) = aeipx/h̵ + be−ipx/h̵ , Energy = Ep (20.116)

This corresponds to incident and reflected waves. For x > 0, the Klein-Gordon
equation is

(Ep − V )2ψ(x) = −h̵2c2
∂2ψ(x)
∂x2

+mc2ψ(x) , V = eϕ (20.117)
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The solution takes the form ψ(x) = deikx where substitution gives

(Ep − V )2 = h̵2c2k2 +m2c4 (20.118)

We have the boundary conditions at x = 0 (since potential only has a finite
discontinuity)

ψ(x) , ∂ψ
∂x

continuous (20.119)

Note that ψ0 is given by

ψ0(r⃗, t) = ( ∂
∂t

+ ie
h̵

Φ(r⃗, t))ψ(r⃗, t) (20.120)

is not continuous at x = 0.

We obtain
b = p − h̵k

p + h̵k
a , d = 2p

p + h̵k
a (20.121)

We consider three cases:

1. If Ep > V +mc2, then the particle can pass the over the barrier and the
results are identical to the nonrelativistic case, i.e., part of the wave is
reflected and part is transmitted.

2. If we have a stronger potential such that Ep +mc2 > V > Ep −mc2, then k
must be imaginary so that the wave function goes to zero as x →∞. We
then have

k = iκ→ κ =
√
m2c4 − (Ep − V )2

h̵c
(20.122)

and the wave is totally reflected at the barrier. The charge density on the
right (x > 0) is given by

ρ(x) =
Ep − V
2mc2

∣d∣2 e−2κx (20.123)

For Ep > V , there exists a positive, exponentially decaying charge density
to the right of the barrier. For Ep < V , however, the density is negative
(remember it is a beam of positive particles). We reflect positively charged
particles from the barrier and find negative particles inside the barrier.

3. We make the potential even stronger so that V > Ep +mc2. Nonrelativis-
tically it would be even more impossible for the particles to pass over the
barrier. In the relativistic case, however, k is real again, This says that
once again there is a particle current to the right of the barrier. The group
velocity of the waves for x > 0 is

vg =
∂Ep

∂(h̵k)
(20.124)
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Using (Ep − V )2 = h̵2c2k2 +m2c4 we get

(Ep − V )
∂Ep

∂k
= h̵c2k → vg =

h̵c2k

Ep − V
(20.125)

Since Ep − V < 0, we must have k < 0 (negative!) in order to have a
wave(packet) traveling from the barrier towards positive x.

This says that the reflection coefficient b/a is greater than one, i.e., more
wave is reflected than is incident! In addition, the charge density on the
right is

ρ(x) =
Ep − V
2mc2

∣d∣2 < 0 (20.126)

and the current on the right is negative.

One possible explanation is to say that the incident particle induces the
creation of particle-antiparticle pairs at the barrier. The created antiparti-
cles, having the opposite charge, find x > 0 a region of attractive potential
and thus travel towards the right, which explains the negative current on
the right. The created particles travel to the left and together with the
incident particles (wave) which are(is) totally reflected, they add up to an
outgoing current on the left that is larger than the incident current.

The total outgoing current on the left and right equals the incident current
since total charge must be conserved.

This pair creation solution does not violate conservation of energy. The
energy of a created particle on the left is Ep. The energy of a created
antiparticle on the right is

√
h̵2c2k2 +m2c4 − V since the electrostatic po-

tential energy has the opposite sign for a particle of opposite charge.

Adding the two energies we get Ep +
√
h̵2c2k2 +m2c4 −V = 0, i.e., it takes

zero energy to create a particle-antiparticle pair. This happens because
the potential V is so large that the energy of the antiparticle on the right
is not only less than mc2 but is negative.

20.4 Bound State Problems

We now study the bound states of spin zero relativistic particles in a static
potential Φ(r⃗). For a positively charged particle with energy E the bound state
wave function is

ψ(r⃗, t) = e−iEt/h̵ψ(r⃗) (20.127)

and the charge density of the bound state particle is

eρ(r⃗) = e [E − eΦ(r⃗)]
mc2

∣ψ(r⃗)∣2 (20.128)
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This says that in regions where E > eΦ(r⃗), which includes classically accessible
regions, the charge density is positive. But, in regions where E < eΦ(r⃗), the
charge density is negative. The way to think about this is to say the particle in
the potential is a linear combination of free particle and free antiparticle states.

Because we are considering an electrostatic potential, the positively charged
parts will be found mainly in regions of smaller eΦ(r⃗) while the negatively
charged parts will be found in regions of larger eΦ(r⃗). A relativistic particle
seems to have an internal structure that can be polarized by and electric field.

Alternatively, we might say that the potential produces particle-antiparticle
pairs in the vacuum, The positively charged particles are attracted to regions
of smaller eΦ(r⃗) while the negatively charged particles are attracted to regions
of larger eΦ(r⃗). We say that the electric potential has polarized the vacuum.
This polarization modifies the effective potential felt by the bound particle.

This interaction cannot be taken into account in the present one-particle rela-
tivistic theory(requires quantum field theory).

We now turn to the problem of a spin zero particle bound in a Coulomb poten-
tial. An example is a π− bound to a nucleus. We have

eΦ(r⃗) = −Ze
2

r
(20.129)

which leads to the Klein-Gordon equation
⎡⎢⎢⎢⎢⎣
(E + Ze

2

r
)

2

+ h̵2c2∇2 −mc2
⎤⎥⎥⎥⎥⎦
ψ(r⃗) = 0 (20.130)

Since this is a central potential, we can assume that the eigenstates have definite
values of total orbital angular momentum. We then have

[(E
2

c2
−m2c2) + h̵2 (1

r

∂2

∂r2
r − `(` + 1) − (Zα)2

r2
) + 2Ze2

r

E

c
]ψ(r) = 0 (20.131)

or

[−1

r

∂2

∂r2
r + `(` + 1) − (Zα)2

r2
− 2ZαE

h̵cr
− (E

2 −m2c4

h̵2c2
)]ψ(r) = 0 (20.132)

where

α = e2

h̵c
= fine structure constant (20.133)

Now we define

γ = Zα , ` ′(` ′ + 1) = `(` + 1) − γ2

λ = 2Eγ

h̵cσ
,

4(m2c4 −E2)
h̵2c2

= σ2 , ρ = σr
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and we get

[ d2

d(ρ/2)2
+ 2λ

ρ/2
− 1 + `

′(` ′ + 1)
(ρ/2)2

]ρψ(ρ) = 0 (20.134)

which is identical to the radial equation for the nonrelativistic Coulomb problem
for the function u = ρψ(ρ). The difference is that ` ′ is not necessarily an
integer (remember that it is an integer in the nonrelativistic problem), which
causes the orbits of the relativistic Coulomb (Kepler) problem to no longer be
closed, i.e., the orbits precess. This also means that the extra degeneracy of
the nonrelativistic problem which causes the energy to be independent of ` is
broken in the relativistic problem. We now solve this equation in the standard
way. For

ρ→ 0 ψ(ρ)→ ρ`
′

ρ→∞ ψ(ρ)→ e−ρ/2

Therefore, we guess a solution of the form

u = ρψ(ρ) = (ρ
2
)
`′+1

e−ρ/2w(ρ/2) (20.135)

The solution method is identical to the nonrelativistic hydrogen atom. We get
a power series which must terminate (so that the solution is normalizable) when

λ = N + ` ′ + 1 , N = 0,1,2,3, ......

E =mc2 (1 + γ
2

λ2
)
−1/2

→ E = mc2
¿
ÁÁÀ1 + γ2

[N+ 1
2
+
√

(`+ 1
2
)2−γ2]

2

(20.136)

If we define the principal quantum number n = N + `+1 = integer, then we have

En` =
mc2

¿
ÁÁÀ1 + γ2

[n−(`+ 1
2
)+

√
(`+ 1

2
)2−γ2]

2

(20.137)

The principal quantum number has the possible values n = 1,2,3, ...... For
a given n the possible values of the total orbital angular momentum are ` =
0,1,2,3, ...., n − 1.

The degeneracy that was present in the nonrelativistic theory with respect to
orbital angular momentum ` is clearly removed.

If we expand the energy in a power series in the fine structure constant α (or
γ) we get

En` =mc2 −Ry
1

n2
−Ryγ

2

n3
( 1

` + 1
2

− 3

4n
) +O(Ryγ4) (20.138)
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The first term is the rest energy. The second term is the nonrelativistic Rydberg
formula. The third term is the relativistic correction due to using the relativistic
form of the kinetic energy, which as we saw earlier in Chapter 10 took the form

Ĥrel = −
p4

8m3c2
(20.139)

It is this correction that removes the degeneracy in `, i.e.,

En,`=0 −En,`=n−1 = Ry
4γ2

n3

n − 1

2n − 1
(20.140)

As we shall see later when we derive the Dirac equation, there are more correc-
tions to this formula due to the fact that the electron has spin = 1/2.

20.4.1 Nonrelativistic Limit
The Klein-Gordon equation in the presence of an electromagnetic field is

1

c2
(ih̵ ∂

∂t
− eΦ(r⃗, t))

2

ψ(r⃗, t) = (( h̵
i
∇− e

c
A⃗(r⃗, t))

2

+m2c2)ψ(r⃗, t) (20.141)

and using

ψ(r⃗, t) = ( φ(r⃗, t)
χ(r⃗, t) ) (20.142)

we have as earlier

(ih̵ ∂
∂t

− eΦ)φ = 1

2m
[ h̵
i
∇− e

c
A⃗]

2

φ +mc2φ + 1

2m
[ h̵
i
∇− e

c
A⃗]

2

χ (20.143)

(ih̵ ∂
∂t

− eΦ)χ = − 1

2m
[ h̵
i
∇− e

c
A⃗]

2

(φ + χ) −mc2χ (20.144)

Remember that in the nonrelativistic limit the dominant term in the energy will
be mc2 so that we expect the zeroth order equation for χ to be

ih̵
∂χ

∂t
=mc2χ (20.145)

which then implies in the next approximation that

χ = − 1

4m2c2
[ h̵
i
∇− e

c
A⃗]

2

φ (20.146)

and that φ satisfies the equation

(ih̵ ∂
∂t

− eΦ)φ = 1

2m
[ h̵
i
∇− e

c
A⃗]

2

φ +mc2φ − 1

8m3c2
[ h̵
i
∇− e

c
A⃗]

4

φ (20.147)

The operator on the right-hand side is just the kinetic energy operator
¿
ÁÁÀm2c4 + c2 ( h̵

i
∇− e

c
A⃗)

2

(20.148)
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expanded to second order in 1/mc2. This agrees with our earlier result that the
first relativistic correction for a spinless particle is entirely due to the relativistic
modification of the kinetic energy.

For a weak magnetic field B⃗ this becomes (to order (v/c)3) after much algebra

ih̵
∂φ

∂t
= − h̵

2∇2

2m
[1 + h̵2∇2

2m2c2
]φ+(mc2 +eΦ)φ− e

2mc
B⃗ ⋅ L⃗ [1 + h̵2∇2

2m2c2
]φ (20.149)

where L⃗ is the orbital angular momentum of the particle. The term

[1 + h̵2∇2

2m2c2
]→ [1 − p2

2m2c2
] (20.150)

represents the relativistic correction to the magnetic moment.

20.5 Relativistic Spin 1/2 Particles - The Dirac
Equation

20.5.1 Lorentz Transformation of Spin
The contravariant and covariant components of the position 4-vector in space-
time are:

xµ ∶ x0 = ct , x1 = x , x2 = y , x3 = z
xµ ∶ x0 = ct , x1 = −x , x2 = −y , x3 = −z

The flat spacetime metric tensor is defined by

g = (gµν) = (gµν) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

(20.151)

The metric tensor relates covariant and contravariant components by

xµ = gµνxν , xµ = gµνxν (20.152)

We also have

gµν = gµαgαν ≡ δµν , (δµν ) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(20.153)

Under the action of a Lorentz transformation along the z-axis with velocity
v = βc, a 4-vector (any type) since it is a first-rank tensor, transforms as

V ′µ = ΛµνV
ν (20.154)
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where

(Λµν ) =
⎛
⎜⎜⎜
⎝

γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

⎞
⎟⎟⎟
⎠

, γ = 1√
1 − β2

, β = v
c

(20.155)

This corresponds to the standard transformation relations for the position and
momentum 4-vectors

ct′ = γ(ct − βz) , x′ = x , y′ = y , z′ = γ(z − βct)
E′

c
= γ (E

c
− βpz) , p′x = px , p′y = py , p′z = γ (pz − β

E

c
)

Spin is an angular momentum corresponding to internal degrees of freedom of
the system. This means, as we showed earlier, that spin must have the same
transformation properties as any other angular momentum.

Nonrelativistically, we think of angular momentum as a vector and, in fact,
under a simple spatial rotation it does transform as a vector (as we saw earlier).
Consider, however, the behavior of an orbital angular momentum

L⃗ = r⃗ × p⃗→ Li = εijkxjpk (20.156)

under the action of a Lorentz transformation along the z−direction. We find
that

L′z = x′p′y − y′p′x = xpy − ypx = Lz (20.157)

since the components of vectors orthogonal to the z−axis are unchanged. This
is clearly not the transformation property of a vector.

In fact, L⃗ is the product of two vectors and therefore should have the transfor-
mation properties of a second-rank tensor, i.e., as

Q′ µν = ΛµαΛνβQ
αβ (20.158)

Relativistic electrodynamics can be written in terms of a second-rank field tensor

(Fµν) =
⎛
⎜⎜⎜
⎝

0 ε1 ε2 ε3

−ε1 0 B3 −B2

−ε2 −B3 0 B1

−ε3 B2 −B1 0

⎞
⎟⎟⎟
⎠

(20.159)

as Maxwell’s equations

∂Fµν

∂xµ
= 4π

c
Jν

∂Fµν

∂xα
+ ∂F

να

∂xµ
+ ∂F

αµ

∂xν
= 0
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where the current density 4-vector is

Jµ = (cρ, Jx, Jy, Jz) (20.160)

and the Lorentz force law is

dpµ

dτ
= q

m
pνF

µν (20.161)

The transformation rule then says that the fields transform according to the
relations

F ′ 01 = ε′1 = ΛµαΛνβF
αβ = Λ0

αΛ1
βF

αβ = Λ0
αΛ1

1F
α1 = Λ0

αF
α1

= Λ0
0F

01 +Λ0
3F

31 = γε1 − βγB2 = γ(ε1 − ((v⃗/c) × B⃗)1)

or
ε′1 = γ(ε1 + ((v⃗/c) × B⃗)1) where v⃗ = vêz (20.162)

Similarly, we find

ε′2 = γ(ε2 + ((v⃗/c) × B⃗)2) , ε′3 = ε3

B′
1 = γ(B1 − ((v⃗/c) × ε⃗)1) , B′

2 = γ(B2 − ((v⃗/c) × ε⃗)2) , B′
3 = B3

We can summarize these results for an arbitrary (direction) Lorentz transfor-
mation applied to a second-rank tensor by

B′
∣∣ = B∣∣ , ε′∣∣ = ε∣∣ ∣∣ = component parallel to v⃗

B⃗′
� = γ (B⃗� − (v⃗/c) × ε⃗)

ε⃗′� = γ (ε⃗� + (v⃗/c) × B⃗) � = component perpendicular to v⃗

Thus, a pure magnetic field in one frame is a mixture of magnetic and electric
fields in the new frame.

Now, under a spatial inversion transformation, we have

ε⃗→ −ε⃗ , B⃗ → B⃗

r⃗ → −r⃗ , p⃗→ −p⃗⇒ L⃗→ L⃗

Therefore, an angular momentum(including spin) has the same transformation
properties as the magnetic field.

Since spin,

S̄ = 1

2
σ⃗ (20.163)

must transform as an angular momentum, which transforms like a magnetic
field and the magnetic field is part of second-rank tensor with the electric field,
we must conclude that there exists another set of dynamical variables generated
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by the internal degrees of freedom of the particle that will be analogous to
the electric field. Do not think of the operator σ⃗ as the standard 2 × 2 Pauli
matrices; we shall see later that σ⃗ will need to be represented by 4 × 4 matrices
relativistically.

We define these new variables as iα⃗/2 where the i/2 factor is chosen for later
convenience. We then have that S⃗ and iα⃗/2 or σ⃗ and iα⃗ transform as B⃗ and ε⃗,
i.e.,

σ ′
∣∣ = σ∣∣ , σ⃗ ′

� = γ (σ⃗� − (v⃗/c) × iα⃗)
iα ′

∣∣ = iα∣∣ , iα⃗ ′
� = γ (iα⃗� + (v⃗/c) × σ⃗)

and they form a second-rank tensor σµν analogous to Fµν , i.e.,

(σµν) =
⎛
⎜⎜⎜
⎝

0 iα1 iα2 iα3

−iα1 0 σ3 −σ2

−iα2 −σ3 0 σ1

−iα3 σ2 −σ1 0

⎞
⎟⎟⎟
⎠

(20.164)

We must now investigate the dynamical properties of the new variables α⃗ and
also ask this question - where have these objects been hiding in all of previous
discussions?

Since spin is an angular momentum, we know its algebraic properties (commu-
tators). In addition, spin generates rotations of the internal degrees of freedom.
Spin commutes with spatial degrees of freedom like r⃗ and p⃗ and, thus, so does
α⃗.

Since α⃗ behaves like a vector under spatial rotations (it is like the electric field
vector), it must have the standard commutation relations with S⃗

[αi, Sj] = iεijkαk → [αi, σj] = 2iεijkαk (20.165)

Since σ⃗ is angular momentum, it satisfies the relations

σiσj = iεijkσk + δij (20.166)

which must be true in all Lorentz frames, i.e., since σ2
1 = 1, we must have σ′21 = 1.

Let us now determine all the properties of α⃗.

For a Lorentz transformation along the z−direction we have

σ ′
x = γ (σx + ivαy/c)

σ ′
y = γ (σy − ivαx/c)

Squaring σ ′
x we get

σ′2x = 1 = γ2 (σ2
x + iv(σxαy + αyσx)/c − (v/c)2)α2

y)
= γ2 (1 − (v/c)2)α2

y) + γ2 (iv(σxαy + αyσx)/c)
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Since this must be true for all v, the coefficient of v/c must vanish. Thus,

σxαy + αyσx = 0 (20.167)

We then have
1 = γ2 (1 − (v/c)2)α2

y) (20.168)

Since
1 = γ2 (1 − (v/c)2)α2

y) (20.169)

we must also have
α2
y = 1 (20.170)

These results generalize to the following:

i ≠ j σiαj = −αjσi (20.171)
i = j [σi, αi] = 0 (20.172)

Multiplying σ′y by σ′x we get

σ′xσ
′
y = iσ′z = iσz = γ2 (σx + ivαy/c) (σy − ivαx/c)

iσz = γ2 (σxσy + (v/c)2αyαx + i(v/c)(αyσy − σxαx)

Multiplying σ′x by σ′y we get

σ′yσ
′
x = −iσ′z = −iσz = γ2 (σy − ivαx/c) (σx + ivαy/c)

− iσz = γ2 (σyσx + (v/c)2αxαy + i(v/c)(σyαy − αxσx)

Adding, we have

(σyσx + σxσy) + (v/c)2(αxαy + αyαx) = 0

(αxαy + αyαx) = 0→ (αiαj + αjαi) = 0 i ≠ j

Continuing, we find these other relations

αyαx = −iσz = −αxαy → αiαj − αjαi = 2iεijkσk (20.173)

or summarizing we have

{αi, αj} = 2δij , [αi, αj] = 2iεijkσk (20.174)
[αi, σj] = 2iεijkαk , {αi, σj} = 0 , i ≠ j (20.175)

So α obeys exactly the same algebraic relations as σ. How do we know that
α is not equal to σ? If we apply a parity transformation, we find that σ⃗ → σ⃗
since angular momentum is unchanged by spatial inversion, i.e., the space-space
components of a second-rank tensor do not change sign under parity. On the
other hand, the time-space components such as the electric field or iα⃗ do change
sign, i.e., α⃗ → −α⃗. So they cannot be the same operator!
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Let β be the operator that corresponds to the parity transformation in spin
space. Now two successive inversions brings us back to the starting configura-
tion. Remember, however, that the spin representation of rotations is doubled
valued, i.e., a rotation by 2π produces a minus sign. We have a choice of letting
the square of the parity operation include a 2π rotation(about any axis) or not.
This means that we can have β2 = +1 or − 1.

In the first case, the eigenvalues of β are ±1 and in the second case ±i. We
choose β2 = +1→ β−1 = β. The properties under parity become

β−1σ⃗β = σ⃗ → βσ⃗ = σ⃗β (20.176)

β−1α⃗β = −α⃗ → βα⃗ = −α⃗β (20.177)

We can now construct an explicit matrix representation for the operators α⃗, β
and σ⃗ similar to the two-dimensional Pauli matrix representation in the nonrel-
ativistic case.

Consider the determinant of the matrix for β−1αiβ. Using βα⃗ = −α⃗β we have

det(β−1αiβ) = det(−β−1βαi) = det(−αi) = (−1)N det(αi) (20.178)

where N is the dimension of the matrix representation. However, using the
cyclic property of determinants, i.e.,

detABC = detBCA = detCAB (20.179)

we get
det(β−1αiβ) = det(ββ−1αi) = det(αi) (20.180)

Putting these results together we get

(−1)N det(αi) = det(αi)→ (−1)N = 1→ N = 2,4,6, ..... (20.181)

We have used the fact that det(αi) ≠ 0, since α2
i = 1.

Now, N = 2 is not possible as we show below.

All 2 × 2 matrices can be constructed from the set {I, σ⃗} and [β, σ⃗] = 0. This
means that β would have to commute with all 2 × 2 matrices. Since α⃗ would
then have to commute with β, we would then violate the relation βα⃗ = −α⃗β.

This means N must be at least as large as 4. This says that a relativistic spin
1/2 particle would have 4 internal states (the nonrelativistic case has 2). This is
similar to the Klein-Gordon case and it will turn out here also that this doubling
signals the appearance of antiparticles.

An explicit representation(not unique) using the 2 × 2 matrices

I = ( 1 0
0 1

) , τ1 = ( 0 1
1 0

) , τ2 = ( 0 −i
i 0

) , τ3 = ( 1 0
0 −1

)

1590



where the the last three matrices are the standard Pauli matrices. It is given
by

σ⃗ = ( τ⃗ 0
0 τ⃗

) , α⃗ = ( 0 τ⃗
τ⃗ 0

) , β = ( I 0
0 −I ) (20.182)

Note that the trace of each of these matrices is zero, which is a general property
of matrices that obey anticommutation relations.

We can make the following physical interpretations of the components of the
tensor σµν .

It follows from earlier discussions that the space-space components, i.e., the
spin operators σj , generate (in the spin degrees of freedom) a rotation of the
coordinate system.

This implies that the operators σ⃗ ′, α⃗ ′, β′ in a spatially rotated frame are given
by the operator relations

σ⃗ ′ = Rϕσ⃗R−1
ϕ , α⃗ ′ = Rϕα⃗R−1

ϕ , β′ = RϕβR−1
ϕ (20.183)

where
Rϕ = e−iσ⃗⋅n̂ϕ/2 (20.184)

and

n̂ = unit vector in direction of axis of rotation
ϕ = angle of rotation

We then assume that time-space components generate a rotation of the space
axes with the time axis, which is a Lorentz transformation and that the operators
in the new frame are given by

σ⃗ ′ = Lvσ⃗L−1
v , α⃗ ′ = Lvα⃗L−1

v , β′ = LvβL−1
v (20.185)

where
Lv = e−i(iα⃗)⋅ω⃗/2 = eα⃗⋅ω⃗/2 → L−1

v = e−α⃗⋅ω⃗/2 (20.186)

and

ω⃗ = vector in direction of velocity of primed frame
with respect to unprimed frame and of magnitude

tanh(ω) = v
c

Proof : First,

σ′∣∣ = Lσ∣∣L
−1 = eα∣∣ω/2σ∣∣e−α∣∣ω/2 = eα∣∣ω/2e−α∣∣ω/2σ∣∣ = σ∣∣ (20.187)

where we have used

[αi, σj] = 2iεijkαk → [α∣∣, σ∣∣] = 0 (20.188)
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This agrees with our earlier result.

Second,

σ′� = Lσ�L−1 = eα∣∣ω/2σ�e−α∣∣ω/2 = eα∣∣ω/2eα∣∣ω/2σ� = eα∣∣ωσ� = eα⃗⋅ω⃗σ� (20.189)

where we have used

{αi, σj} = 0 , i ≠ j → {α∣∣, σ�} = 0 (20.190)

Now using ω⃗ = ωω̂ , ω̂ ⋅ ω̂ = 1 and (α⃗ ⋅ ω̂)2 = 1 we get

eα⃗⋅ω⃗ = coshω + α⃗ ⋅ ω̂ sinhω (20.191)

This derivation is the analog of

eiσ⃗⋅n̂θ = cos θ + iσ⃗ ⋅ n̂ sin θ (20.192)

Therefore,

σ′� = eα⃗⋅ω⃗σ� = coshω [1 + α⃗ ⋅ ω̂ tanhω]σ� = γ [1 + α⃗ ⋅ ω̂ tanhω]σ� (20.193)

where we have used

cosh2 ω = 1

1 − tanh2 ω
= 1

1 − (v/c)2
= γ2 (20.194)

Using ω̂ tanhω = v⃗/c we then get

σ′� = γ [1 + α⃗ ⋅ ω̂ tanhω]σ� = γ [1 + α⃗ ⋅ v⃗/c]σ� (20.195)

Finally, assuming v⃗ = vêz and using αiσj = iεijkαk, i ≠ j we get

(α⃗ ⋅ v⃗/c)σ� = i
v⃗

c
× α⃗ (20.196)

so that
σ′� = γ [σ� + i

v⃗

c
× α⃗] (20.197)

which agrees with our earlier result. Thus, σ⃗ transforms correctly. A similar
calculation shows that α⃗ transforms correctly also and, thus, our interpretation
is correct.

What about the operator β? In a new Lorentz frame we get

β′ = LvβL−1
v = eα⃗⋅ω⃗β (20.198)

since β anticommutes with α⃗. We then get (as above)

β′ = γ [β − (v⃗/c) ⋅ βα⃗] (20.199)

1592



where we have used β α⃗ = − α⃗β. From the form of this transformation relation,
it looks like β transforms as the time-component of a 4-vector of which βα⃗ is
the space part.

Some algebra shows that

β′α′� = Lβα�L−1 = βα� (20.200)

since both β and α� anticommute with L and therefore βα� commutes with L.
In addition, we can show that

β′α′∣∣ = γ [βα∣∣ − (v/c)β] (20.201)

Therefore, (β,β α⃗) does transform like a 4-vector.

This 4-vector is called γµ = (β,β α⃗). In our earlier notation the space part is

γ⃗ = βα⃗ = ( I τ⃗
−τ⃗ I

) (20.202)

γ⃗ is anti-Hermitian and γ0 is Hermitian.

Some properties

(γ0)2 = 1 , (γi)2 = −1 , i = 1,2,3 (20.203)
{γµ, γν} = 0 , µ ≠ ν (20.204)

which are summarized by the relation

{γµ, γν} = 2gµν (20.205)

We also have
σµν = i

2
[γµ, γν] (20.206)

In fact, any 4 × 4 matrix can be written as a unique linear combination of the
γµ. The set of 16 matrices

I , γµ , σµν , γ5γ
µ , γ5 , where γ5 = γ0γ1γ2γ3 (20.207)

are linearly independent and complete. All are traceless except for the identity
matrix.

The new operator γ5 commutes with the γµ. This implies that it commutes with
αi = γ0γi and is invariant under a Lorentz transformation. It is not a scalar,
however, since under parity

βγ5β = −γ5 (20.208)

This means that it is a pseudoscalar.
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Similarly, γ5γ
µ is a pseudovector (or axial vector), which is a 4-vector whose

space part does not change sign under parity and whose time component does.

We see that the set I , γµ , σµν , γ5γ
µ , γ5 transforms as a scalar or zeroth-

rank tensor, a vector or first-rank tensor, a second-rank tensor, a pseudovector
or axial vector or a first-rank pseudotensor and a pseudoscalar or a zeroth-rank
pseudotensor.

This is a clear indication that they are linearly independent.

20.6 The Dirac Equation

The scalar product of two 4-vectors is a Lorentz invariant. We have identified
two 4-vectors, namely,

γµ = (β,βα⃗) , pµ = (E/c, p⃗) (20.209)

Their scalar product is

β
E

c
− βα⃗ ⋅ p⃗ (20.210)

Since it is an invariant, it has the same value in all frames. What is that value?
We can find out by looking at its square

(βE
c
− βα⃗ ⋅ p⃗)

2

= β2 (E
c
)

2

+ (βα⃗ ⋅ p⃗)2 − β (βα⃗ + α⃗β) ⋅ p⃗E
c

= (1) (E
c
)

2

+∑
i

(βαipi)2 − β (0) ⋅ p⃗E
c

= (E
c
)

2

−∑
i

(βαi)2
p2
i

= (E
c
)

2

−∑
i

(1)2
p2
i = (E

c
)

2

− p2 (20.211)

This says that

β
E

c
− βα⃗ ⋅ p⃗ =

¿
ÁÁÀ(E

c
)

2

− p2 = ±mc (20.212)

The sign depends on the sign we choose for β. If we had interpreted β2 = 1 to
mean β = −1 instead of +1, which is equivalent to choosing the parity operator
as −β, no physics would have changed. This means we are free to choose the
sign. We choose

β
E

c
− βα⃗ ⋅ p⃗ = +mc (20.213)

or
βE − βcα⃗ ⋅ p⃗ =mc2 (20.214)

This operator equation involves 4 × 4 matrices which implies that any physical
state vectors must be 4-component spinors.
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We make the standard operator correspondence

E → ih̵
∂

∂t
, p⃗→ ih̵∇ (20.215)

and obtain a wave equation

ih̵β
∂ψ

∂t
= βcα⃗ ⋅ h̵

i
∇ψ +mc2ψ (20.216)

or multiplying by β we get

ih̵
∂ψ

∂t
= [cα⃗ ⋅ h̵

i
∇+ βmc2]ψ (20.217)

which is the Dirac equation for a relativistic spin 1/2 particle.

The form of the result says that the Hamiltonian of a relativistic spin 1/2 particle
is

Ĥ = cα⃗ ⋅ p⃗ + βmc2 (20.218)

In the presence of an electromagnetic field we use minimal coupling to get

(ih̵ ∂
∂t

− eΦ)ψ(r⃗, t) = [cα⃗ ⋅ ( h̵
i
∇− e

c
A⃗) + βmc2]ψ(r⃗, t) (20.219)

We note that the vector potential A⃗ (corresponding to spatial degrees of free-
dom) is directly coupled to α⃗ corresponding to internal degrees of freedom).

20.6.1 Nonrelativistic Limit
First, we separate time using

ψ(t) = ψe−iEt/h̵ (20.220)

to get

(E − eΦ)ψ = [cα⃗ ⋅ ( h̵
i
∇− e

c
A⃗) + βmc2]ψ (20.221)

We then write

ψ = ( ψA
ψB

) (20.222)

where ψA and ψB are still two-component functions and use the explicit Dirac
matrices to obtain

(E − eΦ)( ψA
ψB

) = [( 0 τ⃗
τ⃗ 0

) ⋅ (cp⃗ − eA⃗) + ( I 0
0 −I )mc2]( ψA

ψB
) (20.223)

This is equivalent to two coupled equations

τ⃗ ⋅ (cp⃗ − eA⃗)ψB +mc2ψA = (E − eΦ)ψA (20.224)

τ⃗ ⋅ (cp⃗ − eA⃗)ψA −mc2ψB = (E − eΦ)ψB (20.225)
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Letting E = E ′ +mc2 the second equation of the pair becomes

ψB = 1

E ′ − eΦ + 2mc2
τ⃗ ⋅ (cp⃗ − eA⃗)ψA (20.226)

Inserting this result into the first equation of the pair we get

1

2mc2
τ⃗ ⋅ (cp⃗ − eA⃗) 1

1 + E ′−eΦ
2mc2

τ⃗ ⋅ (cp⃗ − eA⃗)ψA = (E′ − eΦ)ψA (20.227)

These last two equations are exact and very useful substitutes for the Dirac
equation.

We now make some approximations relevant to the nonrelativistic case. We
assume that

E ′ <<mc2 , eΦ <<mc2

eigenvalues of p⃗ are of order mv <<mc

This says that the components satisfy

ψB ≈ v
c
ψA (20.228)

Or that the 4-component wavefunction ψ has two large components ψA and two
small components ψB .

If we ignore terms of order (v/c)2 the equation for ψA becomes

1

2mc2
(τ⃗ ⋅ (cp⃗ − eA⃗))2

ψA + eΦψA = E′ψA (20.229)

Now, earlier we derived the identity

(τ⃗ ⋅ a⃗)(τ⃗ ⋅ b⃗) = a⃗ ⋅ b⃗ + iτ⃗ ⋅ (a⃗ × b⃗) (20.230)

We then have

(τ⃗ ⋅ (cp⃗ − eA⃗))2
= (cp⃗ − eA⃗)2

+ iτ⃗ ⋅ ((cp⃗ − eA⃗) × (cp⃗ − eA⃗)) (20.231)

Now
(τ⃗ ⋅ (cp⃗ − eA⃗))2

= (cp⃗ − eA⃗)2
(20.232)

and

(cp⃗ − eA⃗) × (cp⃗ − eA⃗) = −ec (p⃗ × A⃗ + A⃗ × p⃗) = +ieh̵c (∇× A⃗ + A⃗ ×∇) (20.233)

Now

(∇× A⃗ + A⃗ ×∇)iψA = εijk (∂jAk −Ak∂j)ψA
= εijk ((∂jAk)ψA +Ak(∂jψA) −Ak(∂jψA))

= εijk(∂jAk)ψA = (∇× A⃗)ψA = B⃗ψA (20.234)
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Putting everything together we get

1

2m
(p⃗ − e

c
A⃗)

2

ψA −
e

mc

h̵

2
τ⃗ ⋅ B⃗ + eΦψA = E′ψA (20.235)

This the Pauli equation. The term involving the magnetic field has the form of
a magnetic dipole interaction energy

− e

mc
S⃗ ⋅ B⃗ (20.236)

with a gyromagnetic ratio
2 × e

mc
→ g = 2 (20.237)

The full time-dependent form of the nonrelativistic limit is given by

1

2m
( h̵
i
∇− e

c
A⃗)

2

ψA −
e

mc

h̵

2
τ⃗ ⋅ B⃗ + (eΦ +mc2)ψA = ih̵∂ψA

∂t
(20.238)

20.6.2 Currents and Continuity Equations
Going back to the full equation

(ih̵ ∂
∂t

− eΦ)ψ(r⃗, t) = [cα⃗ ⋅ ( h̵
i
∇− e

c
A⃗) + βmc2]ψ(r⃗, t) (20.239)

we take the Hermitian conjugate to get

(−ih̵ ∂
∂t

− eΦ)ψ+(r⃗, t) = c(− h̵
i
∇− e

c
A⃗)ψ+(r⃗, t) ⋅ α⃗ + βmc2ψ+(r⃗, t) (20.240)

Note that the Hermitian conjugate operation reverses matrix order. Now multi-
ply the first equation by ψ+(r⃗, t) on the left and the second equation by ψ(r⃗, t)
on the right and subtracting we get the continuity-type equation

∂ (ψ+ψ)
∂t

+∇ ⋅ (ψ+cα⃗ψ) = 0 (20.241)

This says that the quantity ψ+ψ is a positive conserved quantity that can be
interpreted as a probability density and then

j⃗ = ψ+cα⃗ψ (20.242)

is the corresponding probability current. The operator cα⃗ corresponds to the
velocity operator, which is the derivative of the Hamiltonian with respect to p⃗.

What happens to the Dirac equation under a Lorentz transformation?

In one frame we have

ih̵β
∂ψ

∂t
= βcα⃗ ⋅ h̵

i
∇ψ +mc2ψ (20.243)

1597



and in a new frame we have

ih̵β′
∂ψ̂(r⃗ ′, t′)

∂t′
= β′cα⃗ ′ ⋅ h̵

i
∇′ψ̂(r⃗ ′, t′) +mc2ψ̂(r⃗ ′, t′) (20.244)

where ψ̂(r⃗ ′, t′) is the wave function in the new frame.

We already determined, however, that

ih̵β′
∂

∂t′
− β′cα⃗ ′ ⋅ h̵

i
∇′ = ih̵β ∂

∂t
− βcα⃗ ⋅ h̵

i
∇ (20.245)

since the scalar product of two 4-vectors is an invariant. This implies that

ψ̂(r⃗ ′, t′) = ψ(r⃗, t) = Lorentz scalar (20.246)

i.e., they both satisfy the same equation when r⃗ ′, t′ and r⃗, t are the same space-
time point.

It turns out, however, that a more convenient equation to use in the new frame
is one that still involves the old β and α⃗ matrices, i.e., β′ and α⃗ ′ are represented
by the same matrices as β and α⃗. We can find this other equation as follows.
We have

ih̵β′
∂ψ̂(r⃗ ′, t′)

∂t′
= β′cα⃗ ′ ⋅ h̵

i
∇′ψ̂(r⃗ ′, t′) +mc2ψ̂(r⃗ ′, t′)

ih̵LvβL
−1
v

∂ψ̂(r⃗ ′, t′)
∂t′

= Lvβcα⃗L−1
v ⋅ h̵

i
∇ ′ψ̂(r⃗′, t′) +mc2ψ̂(r⃗ ′, t′)

ih̵βL−1
v

∂ψ̂(r⃗ ′, t′)
∂t′

= βcα⃗L−1
v ⋅ h̵

i
∇′ψ̂(r⃗ ′, t′) +mc2L−1

v ψ̂(r⃗ ′, t′)

If we define
ψ′(r⃗ ′, t′) = L−1

v ψ̂(r⃗ ′, t′) = L−1
v ψ(r⃗, t) (20.247)

we have the equation

ih̵β
∂ψ′(r⃗ ′, t′)

∂t′
= βcα⃗ ⋅ h̵

i
∇′ψ′(r⃗ ′, t′) +mc2ψ′(r⃗ ′, t′) (20.248)

This form of the equation has the same matrices β and α⃗ in all frames with the
wave function in the new frame related to the wave function in the old frame
by the Lorentz transformation.

Alternatively, we can write the Dirac equation in covariant form. The Dirac
equation is

ih̵
∂ψ

∂t
= [cα⃗ ⋅ h̵

i
∇+ βmc2]ψ (20.249)

which we can rewrite as

−ih̵β∂0ψ − ih̵βαi∂iψ +mcψ = 0 (20.250)
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using the definition of the Dirac gamma matrices we have

(−iγµ∂µ +
mc

h̵
)ψ = 0 (20.251)

which is clearly covariant.

20.6.3 Free Particle Solutions

We start off by constructing solutions for a particle at rest. In this case, we
have

ψ(r⃗, t) = e−iEt/h̵u (20.252)

where u is a spinor independent of space and time. Substituting into the Dirac
equation we have

Eu = βmc2u (20.253)

The eigenvalues of β are ±1. If u is an eigenstate of β with eigenvalue +1, then
E = +mc2 and if u is an eigenstate of β with eigenvalue −1, then E = −mc2.
So we find negative energy solutions again and we will associate them with
particles and antiparticles as before. Their properties in the spin 1/2 case will
be different, however.

We choose to write four linearly independent solutions to the free particle Dirac
equation as:

u
(+)
0↑ =

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠

, u
(+)
0↓ =

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠

, u
(−)
0↓ =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠

, u
(−)
0↑ =

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

where the upper index (±) denotes the eigenvalue of β, the 0 denotes that the
particle is at rest p⃗ = 0, and the arrow denotes the value of the spin associated
physically with these states.

The spinors u(+)0↑ and u(−)0↓ are eigenstates of σz with eigenvalue +1 and u(+)0↓ and
u
(−)
0↑ are eigenstates of σz with eigenvalue −1.

We are saying here that while u(−)0↑ is the spinor of a negative energy particle
with spin up, we will associate it with a positive energy antiparticle with spin
down.

The states with β = +1 vary in time as e−imc
2t/h̵ and those with β = −1

vary in time as e+imc
2t/h̵. The positive and negative states have opposite par-

ity(intrinsic).

We can now construct states for a particle with momentum p⃗ by starting with
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the particle at rest and applying a Lorentz transformation to take us to a frame
moving with velocity

v⃗ = − p⃗c
2

Ep
where Ep = +

√
p2c2 +m2c4 (20.254)

We showed earlier that

ψ′(r⃗ ′, t′) = L−1
v ψ(r⃗, t) = e−α⃗⋅ω⃗/2ψ(r⃗, t) = e−α⃗⋅ω⃗/2e∓imc

2t/h̵u
(±)
0,σ (20.255)

Now E′
pt
′ − p⃗ ′ ⋅ r⃗ ′ is a Lorentz scalar (scalar product of two 4-vectors). In the

rest frame it is equal to mc2t. Therefore we can write

e∓imc
2t/h̵ = e±i(p⃗

′⋅r⃗ ′−E′

pt
′)/h̵ (20.256)

Dropping the superfluous primes we then have

ψ(r⃗, t) = e±i(p⃗⋅r⃗−Ept)/h̵e−α⃗⋅ω⃗/2u(±)0,σ (20.257)

as the wave function for nonzero momentum. The new spinors are given by

u
(±)
p⃗,σ = e

−α⃗⋅ω⃗/2u
(±)
0,σ = [cosh

ω

2
− α⃗ ⋅ v̂ sinh

ω

2
]u(±)0,σ (20.258)

Using

v⃗ = − p⃗c
2

Ep
(20.259)

we get

cosh
ω

2
=
√

Ep +mc2
2mc2

, v̂ tanh
ω

2
= − p⃗c

Ep +mc2
(20.260)

so that

u
(±)
p⃗,σ =

√
Ep +mc2

2mc2
[1 + cp⃗ ⋅ α⃗

Ep +mc2
]u(±)0,σ (20.261)

We then have (in the standard representation)

u
(+)
p⃗,↑ =

√
Ep +mc2

2mc2
[1 + c

Ep +mc2
p⃗ ⋅ α⃗]u(+)0,↑ (20.262)

Now

p⃗ ⋅ α⃗ = px
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
+ py

⎛
⎜⎜⎜
⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎟
⎠

+ pz
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟
⎠

, u
(+)
0,↑ =

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
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and we get

u
(+)
p⃗,↑ =

√
Ep +mc2

2mc2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠

+ c
Ep+mc2

⎛
⎜⎜⎜
⎝
px

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
+ py

⎛
⎜⎜⎜
⎝

0
0
0
i

⎞
⎟⎟⎟
⎠
+ pz

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
√

Ep +mc2
2mc2

⎛
⎜⎜⎜⎜
⎝

1
0
cpz

Ep+mc2
c(px+ipy)
Ep+mc2

⎞
⎟⎟⎟⎟
⎠

(20.263)

and similarly

u
(+)
p⃗,↓ =

√
Ep +mc2

2mc2

⎛
⎜⎜⎜⎜
⎝

0
1

c(px−ipy)
Ep+mc2
− cpz
Ep+mc2

⎞
⎟⎟⎟⎟
⎠

(20.264)

u
(−)
p⃗,↓ =

√
Ep +mc2

2mc2

⎛
⎜⎜⎜⎜
⎝

cpz
Ep+mc2
c(px+ipy)
Ep+mc2

1
0

⎞
⎟⎟⎟⎟
⎠

(20.265)

u
(−)
p⃗,↑ =

√
Ep +mc2

2mc2

⎛
⎜⎜⎜⎜
⎝

c(px−ipy)
Ep+mc2
− cpz
Ep+mc2

0
1

⎞
⎟⎟⎟⎟
⎠

(20.266)

Remember that the arrow refers to the spin associated with the state in the
rest frame, which is minus the σz eigenvalue for the (−) spinors. We see that a
particle in a σz eigenstate in its rest frame appears to be in a σz eigenstate to
an observer moving with respect to the particle only if the observer is moving
along the z−direction, i.e., if px = py = 0 we have

u
(+)
p⃗,↑ =

√
Ep +mc2

2mc2

⎛
⎜⎜⎜
⎝

1
0
cpz

Ep+mc2
0

⎞
⎟⎟⎟
⎠
=
√

Ep +mc2
2mc2

[u(+)0,↑ +
cpz

Ep +mc2
u
(−)
0,↓ ] (20.267)

which is a sum of a particle and an antiparticle where both have spin up!

The positive energy solutions u(+)p⃗σ e
i(p⃗⋅r⃗−Ept)/h̵ correspond to particles with mo-

mentum p⃗, energy Ep and spin orientation σ. The negative energy solutions
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u
(−)
p⃗σ e

−i(p⃗⋅r⃗−Ept)/h̵ correspond to particles with momentum −p⃗, energy −Ep and
spin orientation −σ which we will soon associate with antiparticles with momen-
tum p⃗, energy Ep and spin orientation σ.

The nonzero momentum spinors are orthogonal but not normalized to one (as
is the case with the zero momentum spinors). Since L+ ≠ L−1, in general, the
Lorentz transformations are not represented by a unitary operator and hence the
lengths of vectors or normalizations change. In particular. The normalization
is given by

u
(±)+
p⃗σ u

(±)
p⃗σ =

Ep

mc2
(20.268)

Since α⃗ is Hermitian, we have L+ = L.

Thus, if up⃗ = L−1u0, then (up⃗)+ = (u0)+(L−1)+ = (u0)+L−1 and u+p⃗up⃗ = u+0(L−1)2u0.

It is possible to define a normalization that is invariant under a Lorentz trans-
formation. Since β anticommutes with α⃗, we can write

(L−1)+β = L−1β = eα⃗⋅ω⃗/2β = βe−α⃗⋅ω⃗/2 = βL (20.269)

Now, if the spinor u transforms as u′ = L−1u, then the spinor ū = u+β is given
in the new frame by

ū′ = u′+β′ = u′+β = u+(L−1)+β = u+L−1β = u+βL = ūL (20.270)

This means that the product ū1u2 of any two spinors is a Lorentz invariant, i.e.,

ū′1u
′
2 = (ū1L)(L−1u2) = ū1u2 (20.271)

In the rest frame
u
(b)+
0σ u

(b′)
0σ′ = bδbb′δσσ′ , b = ± (20.272)

which says that the same relation is true for all momentum p⃗

u
(b)+
p⃗σ u

(b′)
p⃗σ′ = bδbb′δσσ′ , b = ± (20.273)

The spinors u(±)p⃗σ obey the completeness relation that says that the 4×4 identity
matrix can be written as the sum of the outer products of the four spinors, i.e.,

∑
b,σ

bu
(b)
p⃗σ ū

(b)
p⃗σ = 1 (20.274)

The spinors u(±)p⃗σ obey

(βEp − cβα⃗ ⋅ p⃗)u(±)p⃗σ = ±mc2u(±)p⃗σ (20.275)

and
u
(±)+
p⃗σ (βEp − cα⃗ ⋅ p⃗β) = ±mc2u(±)+p⃗σ (20.276)

Multiplying the last equation on the right by β we have the equation satisfied
by ū(±)p⃗σ

ū
(±)
p⃗σ (βEp − cβα⃗ ⋅ p⃗) = ±mc2ū(±)p⃗σ (20.277)
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20.6.4 More About Currents
As we have seen, the solution of the Dirac equation ψ(r⃗, t) has the following
behavior under a Lorentz transformation

ψ(r⃗, t)→ ψ′(r⃗′, t′) = L−1ψ(r⃗, t) (20.278)

The spinor ψ̄(r⃗, t) = ψ+(r⃗, t)β transforms like

ψ̄(r⃗, t)→ ψ̄′(r⃗′, t′) = [L−1ψ(r⃗, t)]+β = ψ̄(r⃗, t)L (20.279)

This says that the product ψ̄(r⃗, t)ψ(r⃗, t) transforms like a Lorentz scalar.

Now the γµ transform as the components of a 4-vector, i.e., γµ → LγµL−1.
Therefore, the product

ψ̄(r⃗, t)γµψ(r⃗, t) = (ρ(r⃗, t), 1

c
j⃗(r⃗, t)) (20.280)

transforms like a 4-vector under a Lorentz transformation. It is the particle
4-current multiplied by 1/c. In the same manner,

ψ̄σµνψ → second -rank tensor
ψ̄γ5γ

µψ → axial vector
ψ̄γ5ψ → pseudo - scalar

The positive density ρ(r⃗, t) = ψ+(r⃗, t)ψ(r⃗, t) and the current j⃗(r⃗, t) = cψ+(r⃗, t)α⃗ψ(r⃗, t)
satisfy the continuity equation

∂ρ

∂t
+∇ ⋅ j⃗ = 0 (20.281)

which implies that the quantity

∫ ρ(r⃗, t)d3r (20.282)

is a constant of the motion.

In this case, we can interpret ρ(r⃗, t) as a probability density (same as in non-
relativistic case). Remember in the spin zero case this was not so since the
corresponding conserved density needed to be interpreted as a charge density
which could be positive and negative.

One important consequence in the spin zero case was that it is impossible for
a particle to make a transition from a state normalized to +1 to a state nor-
malized to −1 since the normalization remains constant in time. We associated
the negative energy states with particles and the negatively normalized states
with antiparticles. We then see that the impossibility of a transition between
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positive and negative energy states just corresponds to charge conservation.

In the spin−1/2 case, however, both positive and negative energy states have
positive normalization so that there is nothing in the theory (so far) that pre-
vents a particle in a positive energy state from making a transition to a negative
energy state radiating away several high energy photons in the process. A dif-
ficulty in the theory that we must return to later!

Let us say some more about the position and velocity operators in the Dirac
theory.

The position operator has strange features similar to those of the Klein-Gordon
theory. If we apply the position operator to a wave packet made up of positive
energy free particle states we get

r⃗ψ(+)(r⃗) = r⃗ (∑
σ
∫

d3p

(2πh̵)3
ap⃗σu

(+)
p⃗σ e

ip⃗⋅r⃗/h̵) =∑
σ
∫

d3p

(2πh̵)3
ap⃗σu

(+)
p⃗σ

h̵

i
∇p⃗eip⃗⋅r⃗/h̵

=∑
σ
∫

d3p

(2πh̵)3
(ih̵∇p⃗ap⃗σ)u(+)p⃗σ e

ip⃗⋅r⃗/h̵ +∑
σ
∫

d3p

(2πh̵)3
ap⃗σ(ih̵∇p⃗u(+)p⃗σ )eip⃗⋅r⃗/h̵

where we have integrated by parts to get the last two terms. The first term
contains only positive energy components. The second term, however, contains
the factor ih̵∇p⃗u(+)p⃗σ , which generates both positive and negative components
(explicitly do the derivatives on the column vectors we derived earlier). If we
define, as before

r⃗ = r⃗(+) + r⃗(−) (20.283)

then, as before, the even part r⃗(+) acting on the wave packet of positive energy
free particle states produces only positive energy free particle states and acting
on the wave packet of negative energy free particle states produces only negative
energy free particle states, while the odd part r⃗(−) turns positive positive energy
states to negative energy states and vice versa.

As in the Klein-Gordon case, both positive and negative energy free particle
solutions are needed to produce a localized wave packet.

Looking at the current expression j⃗(r⃗, t) = cψ+(r⃗, t)α⃗ψ(r⃗, t) we see that the
operator cα⃗ acts as a velocity operator. This interpretation also agrees with the
commutator relation

−ih̵ [r⃗, Ĥ] = cα⃗ (20.284)

which leads to the Heisenberg representation operator equation

dr⃗

dt
= cα⃗ (20.285)

If, however, we consider the z−component of this velocity operator we get
(cαz)2 = c2α2

z = c2. Thus the eigenvalues of each component of the velocity
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operator are ±c, which says that a particle in an eigenstate of the velocity op-
erator travels at the speed of light!

This means that the velocity operator is not simply related to the momentum
operator relativistically. The eigenstates of any component of α⃗ are linear com-
binations of positive and negative energy free particle states and thus cannot be
realized in any physical situation! For any arbitrary state the expectation value
of cα⃗ has a magnitude between 0 and c.

20.6.5 Non-relativistic Limit
We now derive corrections to the Pauli equation. Earlier we had

τ⃗ ⋅ (cp⃗ − eA⃗)ψB +mc2ψA = (E − eΦ)ψA (20.286)

τ⃗ ⋅ (cp⃗ − eA⃗)ψA −mc2ψB = (E − eΦ)ψB (20.287)

or

τ⃗ ⋅ ( h̵
i
∇− e

c
A⃗)ψB +mcψA = 1

c
(ih̵ ∂

∂t
− eΦ)ψA (20.288)

τ⃗ ⋅ ( h̵
i
∇− e

c
A⃗)ψA −mcψB = 1

c
(ih̵ ∂

∂t
− eΦ)ψB (20.289)

The second equation of the above pair gives (an exact equation)

ψB = 1

2mc
( h̵
i
∇− e

c
A⃗) ⋅ τ⃗ψA −

1

2mc2
(ih̵ ∂

∂t
−mc2 − eΦ)ψB (20.290)

Now the ψA term is much larger than the ψB term on the right. Thus, we get
the first correction by iterating once, i.e.

ψB = 1

2mc
( h̵
i
∇− e

c
A⃗) ⋅ τ⃗ψA

− 1

4m2c3
(ih̵ ∂

∂t
−mc2 − eΦ)( h̵

i
∇− e

c
A⃗) ⋅ τ⃗ψA (20.291)

Substituting this expression into the first equation of the pair we get the first
relativistic correction term to the Pauli equation

− 1

4m2c3
( h̵
i
∇− e

c
A⃗) ⋅ τ⃗ (ih̵ ∂

∂t
−mc2 − eΦ)( h̵

i
∇− e

c
A⃗) ⋅ τ⃗ψA (20.292)

which is ≈ (v/c)2 smaller than the kinetic energy term p2/2m.

The correction term can be rewritten as

− 1

4m2c3
(( h̵
i
∇− e

c
A⃗) ⋅ τ⃗)

2

(ih̵ ∂
∂t

−mc2 − eΦ)ψA

− ieh̵

4m2c3
(( h̵
i
∇− e

c
A⃗) ⋅ τ⃗) (ε⃗ ⋅ τ⃗)ψA
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where

ε⃗ = −∇Φ − 1

c

∂A⃗

∂t
= electric field (20.293)

To lowest order in (v/c) we have

(ih̵ ∂
∂t

−mc2 − eΦ)ψA = p2

2m
ψA (20.294)

Using this relation with the identity

(τ⃗ ⋅ a⃗)(τ⃗ ⋅ b⃗) = a⃗ ⋅ b⃗ + iτ⃗ ⋅ (a⃗ × b⃗) (20.295)

the correction becomes

− [ p4

8m3c2
+ eh̵

4m2c2
τ⃗ ⋅ (ε⃗ × p⃗) + ieh̵

4m2c2
p⃗ ⋅ ε⃗] (20.296)

The first term is the relativistic correction to the kinetic energy. The second
term is the spin-orbit coupling. The third term is new and is not even Hermi-
tian!

The reason for this non-Hermitian term is that we are only working to order
(v/c)2. Such a non-Hermitian term in the wave equation means that the nor-
malization integral

∫ ψ+AψAd
3r

can change in time. Now the full Dirac equation obeys the normalization con-
dition

∫ ψ+ψd3r = ∫ [ψ+AψA + ψ+BψB]d3r = 1 (20.297)

To lowest order, however,

ψB = h̵

2imc
∇ ⋅ τ⃗ψA → ψ+BψB = ψ+A

p2

4m2c2
ψA (20.298)

Thus, the integral stays constant to order (v/c)2. It is the integral

∫ ψ+A [1 + p2

4m2c2
]ψAd3r = ∫ [[1 + p2

8m2c2
]ψA]

+

[[1 + p2

8m2c2
]ψA]d3r

to order (v/c)2, that remains constant and equal to 1. This implies that the
correct nonrelativistic limit of the Dirac wave function (the limit whose normal-
ization remains constant in time) is

ψ(r⃗, t) = [1 + p2

8m2c2
]ψA(r⃗, t)→ ∫ ψ+ψd3r = 1 (20.299)
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The equation for this form of the wave function will not have any non-Hermitian
terms. A large amount of algebra gives the equation for ψ(r⃗, t) as

ih̵
∂ψ

∂t
= [mc2 + 1

2m
(p⃗ − e

c
A⃗)

2

− p4

8m3c2
]ψ (20.300)

− [ eh̵

2mc
τ⃗ ⋅ B⃗ + eh̵

4m2c2
τ⃗ ⋅ (ε⃗ × p⃗)]ψ + [eΦ + h̵2

8m2c2
(∇2eΦ)]

This is the correct nonrelativistic limit of the Dirac equation. All terms are
Hermitian.

The terms on the right-hand side are

[rest energy + kinetic energy(to order (v/c)2)]
− [Pauli magnetic moment energy + spin-orbit energy]
+ [correction to the potential energy term]

Spin-Orbit Term - Letting A⃗ = 0 for simplicity we have

eh̵

4m2c2
τ⃗ ⋅ (ε⃗ × p⃗) = − eh̵

4m2c2
τ⃗ ⋅ (∇Φ × p⃗) (20.301)

If we assume the potential is spherically symmetric, then

∇Φ = 1

r

dΦ

dr
r⃗ (20.302)

and we get

eh̵

4m2c2
τ⃗ ⋅ (ε⃗ × p⃗) = − eh̵

4m2c2r

dΦ

dr
τ⃗ ⋅ (r⃗ × p⃗) = − e

2m2c2r

dΦ

dr
S⃗ ⋅ L⃗ (20.303)

which is the spin-orbit energy. It correctly contains the Thomas precession
correction! We do not have to add any terms in an ad hoc manner!

Correction to the Potential - This is called the Darwin term. Now, from
Poisson’s equation we have

∇2eΦ(r⃗) = −4πeQ(r⃗) , Q(r⃗) = charge density producing Φ(r⃗)

For a Coulomb potential we get

h̵2

8m2c2
(∇2eΦ) = πh̵2

2m2c2
Ze2δ(r⃗) (20.304)

This term tends to raise the energy of s-states since they do not vanish at the
origin.
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20.6.6 The Dirac Hydrogen Atom
We start with the equations

σ⃗ ⋅ (cp⃗ − eA⃗)ψB +mc2ψA = (E − eΦ)ψA (20.305)

σ⃗ ⋅ (cp⃗ − eA⃗)ψA −mc2ψB = (E − eΦ)ψB (20.306)

where we have substituted σ⃗ for τ⃗ . The potential function is eΦ = −Ze2/r and
we let A⃗ = 0. Writing

ψA = ( u1

u2
) , ψB = ( u3

u4
) (20.307)

we get

− i

h̵c
[E + Ze

2

r
−mc2]u1 +

∂u4

∂x
− i∂u4

∂y
+ ∂u3

∂z
= 0 (20.308)

− i

h̵c
[E + Ze

2

r
−mc2]u2 +

∂u3

∂x
+ i∂u3

∂y
− ∂u4

∂z
= 0 (20.309)

− i

h̵c
[E + Ze

2

r
+mc2]u3 +

∂u2

∂x
− i∂u2

∂y
+ ∂u2

∂z
= 0 (20.310)

− i

h̵c
[E + Ze

2

r
+mc2]u4 +

∂u1

∂x
+ i∂u1

∂y
− ∂u2

∂z
= 0 (20.311)

We now use another clever trick I learned from Professor Hans Bethe at Cornell
University to find a solution.

If we consider only large components, i.e., set the small components to zero,
then [L⃗, Ĥ], which is proportional to α⃗ × p⃗, will be zero, since α⃗ connects the
small and large components. This means that ψA will be an eigenfunction of L⃗.
In addition, it must contain one spin component with spin up and another with
spin down.

Of course, j⃗ and jz are constants of the motion. Hence, for j = ` + 1/2 we can
set

u1 = g(r)

√
` +m + 1

2

2` + 1
Y
m− 1

2
` (Ω) (20.312)

u2 = −g(r)

√
` −m + 1

2

2` + 1
Y
m+ 1

2
` (Ω) (20.313)

where the unknown function g(r) will be the solution of some relativistic radial
equation.

To get the small components we recall the equation

ψB = 1

E′ − eΦ + 2mc2
τ⃗ ⋅ (cp⃗ − eA⃗)ψA (20.314)
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and note that the operator which gives the small component from the large
component has odd parity (p⃗ is odd, A⃗ = 0 and everything else is even) and
commutes with j⃗. Hence, ψB must belong to the same j value as ψA but must
have a different `.

Corresponding to j = `+ 1/2 the only other possible value of the orbital angular
momentum is `′ = `+1. Therefore, we set (remembering the appropriate Clebsch-
Gordon coefficients)

u3 = if(r)

√
` −m + 3

2

2` + 3
Y
m− 1

2
`+1 (Ω) (20.315)

u4 = −if(r)

√
` +m + 3

2

2` + 3
Y
m+ 1

2
`+1 (Ω) (20.316)

where the unknown function f(r) will be the solution of some relativistic radial
equation. Inserting these solution guesses into the 4 coupled equations we find
that for j = ` + 1/2 the connection between f and g is given by

1

h̵c
[E + Ze

2

r
+mc2] f = dg

dr
− `g

r
(20.317)

1

h̵c
[E + Ze

2

r
−mc2] g = −df

dr
− (` + 2)f

r
(20.318)

In an analogous way for j = ` − 1/2 we have

u1 = g(r)

√
` −m + 1

2

2` + 1
Y
m− 1

2
` (Ω) (20.319)

u2 = g(r)

√
` +m + 1

2

2` + 1
Y
m+ 1

2
` (Ω) (20.320)

u3 = −if(r)

√
` +m − 1

2

2` − 1
Y
m− 1

2
`−1 (Ω) (20.321)

u4 = if(r)

√
` −m − 1

2

2` − 1
Y
m+ 1

2
`−1 (Ω) (20.322)

and

1

h̵c
[E + Ze

2

r
+mc2] f = dg

dr
+ (` + 1)g

r
(20.323)

1

h̵c
[E + Ze

2

r
−mc2] g = −df

dr
+ (` − 1)f

r
(20.324)

We now define

k =
⎧⎪⎪⎨⎪⎪⎩

−(` + 1) if j = ` + 1/2
` if j = ` + 1/2

(20.325)
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i.e.,

k =
⎧⎪⎪⎨⎪⎪⎩

−1,−2, .... if j = ` + 1/2
1,2, .... if j = ` + 1/2

(20.326)

We can then combine the 4 equations for f and g into 2 equations as

1

h̵c
[E + Ze

2

r
+mc2] f − (dg

dr
+ (1 + k)g

r
) = 0 (20.327)

1

h̵c
[E + Ze

2

r
−mc2] g + (df

dr
+ (1 − k)f

r
) = 0 (20.328)

Setting

F = rf , G = rg

α1 =
mc2 +E
h̵c

, α2 =
mc2 −E
h̵c

α = (α1α2)1/2 , γ = Ze
2

h̵c
, ρ = αr

we get

( d
dρ

+ k
ρ
)G − (α1

α
+ γ
ρ
)F = 0 (20.329)

( d
dρ

− k
ρ
)F − (α2

α
− γ
ρ
)G = 0 (20.330)

We now solve these coupled equations using the standard series method to obtain
the positive energy bound state solutions.

We substitute
F = φ(ρ)e−ρ , F = χ(ρ)e−ρ (20.331)

and obtain

χ′ − χ + k
ρ
χ − (α1

α
+ γ
ρ
)φ = 0 (20.332)

φ′ − φ − k
ρ
φ − (α2

α
− γ
ρ
)χ = 0 (20.333)

We now substitute the series

φ = ρs
∞
∑
m=0

amρ
m , a0 ≠ 0 , χ = ρs

∞
∑
m=0

bmρ
m , b0 ≠ 0 (20.334)

the requirement that f and g be finite everywhere turns out to be impossible
to satisfy. Instead, we require that the integrated probability density be finite,
i.e.,

∞

∫
0

[∣F (ρ)∣2 + ∣G(ρ)∣2]dρ <∞ (20.335)
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This makes sure that s ≠ −∞. Substituting the series and equating coefficients
of the same power of ρ we get the recursion relations

(s + ν + k)bν − bν−1 − γaν −
α1

α
aν−1 = 0 (20.336)

(s + ν − k)aν − aν−1 + γbν −
α2

α
bν−1 = 0 (20.337)

For ν = 0 we get
(s + k)b0 − γa0 = 0 = (s − k)a0 + γb0 (20.338)

These equations have a nontrivial solution if and only if

s = ±(k2 − γ2)1/2 (20.339)

First we look at the negative root. For small ρ the integrand for the integrated
probability density is ∼ ρ2s and we must have 2s > −1 or (k2 −γ2)1/2 > 1/2. The
minimum s occurs when k2 = 1. This corresponds to Z ≥ 109. For k2 > 1, no
value of Z will permit the negative root.

Restricting ourselves to Z < 109, we choose the positive root s = (k2 − γ2)1/2.
For k = 1, s < 1, f and g diverge at the origin. The probability density integral
converges, however.

The recursion relations lead to function of the order e2ρ (the probability density
integral would diverge) unless the series terminate. Suppose the series terminate
for ν = n′, i.e., an′+1 = bn′+1 = 0. We then have from the recursion relations that

α1an′ = −αbn′ , n′ = 0,1,2, ..... (20.340)

We now multiply the first recursion relation by α and the second by α1 and
subtract them to get

bν[α(s + ν + k) − α1γ] = aν[α1(s + ν − k) + αγ] (20.341)

Inserting ν = n′ and using α1an′ = −αbn′ we get

2α(s + n′) = γ(α1 − α2) =
2Eγ

h̵c
(20.342)

Putting everything together we get

E =mc2 [1 + γ2

(s + n′)2
]
−1/2

=mc2
⎡⎢⎢⎢⎢⎢⎣
1 + γ2

(n′ +
√
k2 − γ2)

2

⎤⎥⎥⎥⎥⎥⎦

−1/2

(20.343)

Since ∣k∣ = j + 1
2
we get

E =mc2
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + γ2

(n′ +
√

(j + 1
2
)2 − γ2)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1/2

, n′ = 0,1,2... j + 1
2
= 1,2,3, ...

(20.344)
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where γ = Ze2/h̵c.

Before looking at the physics in this result let us investigate an alternative ap-
proach involving a second-order Dirac Equation. The first-order Dirac equation
is

β (ih̵ ∂
∂t

− Ĥ)ψ(r⃗, t) = 0 , Ĥ = cα⃗ ⋅ ( h̵
i
∇− e

c
A⃗) + βmc2 + eΦ (20.345)

We now define the projection operator P̂ as

P̂ =
β (ih̵ ∂

∂t
− Ĥ) + 2mc2

2mc2
(20.346)

and operate on the Dirac equation from the left. After some algebra we get

[ 1

c2
(ih̵ ∂

∂t
− eΦ)

2

− ( h̵
i
∇− e

c
A⃗)

2

−m2c2 + eh̵
c

(σ⃗ ⋅ B⃗ − iα⃗ ⋅ ε⃗)]ψ = 0 (20.347)

where we have used the relations

[α⃗ ⋅ ( h̵
i
∇− e

c
A⃗)]

2

= ( h̵
i
∇− e

c
A⃗)

2

− eh̵
c
σ⃗ ⋅ B⃗ (20.348)

and
[ h̵
i
∇− e

c
A⃗, ih̵

∂

∂t
− eΦ] = −ih̵eε⃗ (20.349)

The new second-order equation is just the Klein-Gordon equation with an ad-
ditional term (σ⃗ ⋅ B⃗ − iα⃗ ⋅ ε⃗), which represents the direct coupling of the electro-
magnetic fields to the magnetic(and electric) moments of the particle.

Every solution of the Dirac equation is a solution of this new second-order equa-
tion, but every solution of the second-order equation in not necessarily a solution
of the Dirac equation.

If, however, ψ is a solution of the second-order equation, then φ = P̂ψ is a
solution of the Dirac equation. We can see this as follows. The second-order
equation can be written as

P̂ β (ih̵ ∂
∂t

− Ĥ)ψ(r⃗, t) = β (ih̵ ∂
∂t

− Ĥ) P̂ψ(r⃗, t) = 0 (20.350)

or the second order equation is equivalent to

(ih̵ ∂
∂t

− Ĥ)ψ(r⃗, t) = (ih̵ ∂
∂t

− Ĥ)φ(r⃗, t) = 0 (20.351)

This says that P̂ acts as a projection operator, which reduces solutions of the
second-order equation to solutions of the first-order Dirac equation.
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Let us now use the second-order equation to find the energy levels of the Dirac
hydrogen atom (Glauber, et al PR 109,1307(1958)). For a stationary state of
energy E in the Coulomb potential the second-order equation becomes

⎡⎢⎢⎢⎢⎣

1

c2
(E + Ze

2

r
)

2

− ( h̵
i
∇)

2

−m2c2 + ih̵Ze
2

r2c
αr

⎤⎥⎥⎥⎥⎦
ψ = 0 (20.352)

where αr = α⃗ ⋅ r̂. We now write

( h̵
i
∇)

2

= − h̵
2

r2

∂2

∂r2
r2 + L̂

2

r2
(20.353)

and get the equation

⎡⎢⎢⎢⎢⎢⎣

E2 −m2c4

c2
+ 2EZe2

rc2
+ h̵

2

r2

∂2

∂r2
r2 −

L̂2 − (Ze
2

c
)

2
− ih̵ (Ze

2

c
)αr

r2

⎤⎥⎥⎥⎥⎥⎦
ψ = 0 (20.354)

We now use a few tricks to change this equation, which is almost in the same
form as the Klein-Gordon equation for the Coulomb potential, into exactly the
same form.

We first define the operator

K̂ = β (1 + σ⃗ ⋅ L⃗
h̵
) (20.355)

with these properties

[K̂, α⃗ ⋅ p⃗] = 0 , [K̂, α⃗ ⋅ r⃗] = 0 , [K̂, r2] = 0 (20.356)

[K̂, J⃗] = 0 , J⃗ = L⃗ + h̵
2
σ⃗ (20.357)

These imply that K̂ commutes with the Hamiltonian

Ĥ = cα⃗ ⋅ p⃗ + βmc2 − Ze
2

r
(20.358)

for the relativistic hydrogen atom.

This says that K̂ is a constant of the motion and since it also commutes with the
total angular momentum we can label the common eigenstates or energy levels
of the hydrogen atom by the eigenvalues of K̂, Ĵ2 and Ĵz. K̂ is a constant of the
motion for any spherically symmetric, spin-independent potential and physically
it measures the degree to which the spin and the orbital angular momentum of
the particle are aligned.
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Let us find the eigenvalues k of K̂. We note that

K̂2 = (1 + σ⃗ ⋅ L⃗
h̵
)

2

= 1 + (σ⃗ ⋅ L⃗
h̵
)

2

+ 2σ⃗ ⋅ L⃗
h̵

= 1 + ( L⃗ ⋅ L⃗
h̵2

+ i

h̵2
σ⃗ ⋅ (L⃗ × L⃗)) + 2σ⃗ ⋅ L⃗

h̵

= 1 + ( L⃗ ⋅ L⃗
h̵2

+ i

h̵2
σ⃗ ⋅ (ih̵L⃗)) + 2σ⃗ ⋅ L⃗

h̵

= 1 + L
2

h̵2
+ σ⃗ ⋅ L⃗

h̵
= 1

h̵2
(L⃗ + h̵

2
σ⃗)

2

+ 1

4

= Ĵ
2

h̵2
+ 1

4
(20.359)

where we have used

(σ⃗ ⋅ A⃗)(σ⃗ ⋅ B⃗) = A⃗ ⋅ B⃗ + iσ⃗ ⋅ (A⃗ × B⃗)

L⃗ × L⃗ = ih̵L⃗ , J⃗ = L⃗ + S⃗ , S⃗ = h̵
2
σ⃗

Therefore, we have

k2 = j(j + 1) + 1

4
= (j + 1

2
)2 (20.360)

Now, since {K̂, γ5} = 0 we find that, if k is an eigenvalue of K̂, i.e.,

K̂ ∣k⟩ = k ∣k⟩ (20.361)

then
K̂γ5 ∣k⟩ = −γ5K̂ ∣k⟩ = −kγ5 ∣k⟩ (20.362)

which says that −k is also an eigenvalue of K̂. The eigenvalues are then

k = ±1 , ±2 , ±3 , ....... (20.363)

since j = 1/2, 3/2, 5/2, ........ Note that zero is not an eigenvalue of K̂. In addi-
tion, an eigenstate of K̂ with eigenvalue k is an eigenstate of Ĵ2 with eigenvalue
j = ∣k∣ − 1/2.

We now find the energy eigenvalues. Define the operator

Λ̂ = −βK̂ − iZe
2

h̵c
αr (20.364)

with the properties

[Λ̂, K̂] = 0 , [Λ̂, J⃗] = 0 , Λ2 =K2 − (Ze
2

h̵c
)

2

(20.365)
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A little algebra then shows that

h̵2Λ̂(Λ̂ + 1) = L̂2 − (Ze
2

c
)

2

− ih̵(Ze
2

c
)αr (20.366)

which is the operator in the last term of the second-order equation. We can
then write

[E
2 −m2c4

c2
+ 2EZe2

rc2
+ h̵

2

r2

∂2

∂r2
r2 − h̵

2Λ̂(Λ̂ + 1)
r2

]ψ = 0 (20.367)

This is exactly the same form as the Klein-Gordon equation except that

`′(`′ + 1)→ Λ̂(Λ̂ + 1) (20.368)

or a number has been replaced by an operator. Now if ψ(r⃗) is an eigenstate of
Λ̂(Λ̂+1) then the operator Λ̂(Λ̂+1) in the equation is replaced by its eigenvalue
which we can write as `′(`′ +1). This says that the energy eigenvalues are given
by the same formula as in the spin zero case, i.e.,

E = mc2

[1 + ( Ze2
h̵cn′

)2
]
1/2 , n′ = `′ + 1 + ν , ν = 0,1,2, ..... (20.369)

Since Λ̂, K̂, Ĵ2 and Ĵz all commute, we can construct solutions which are
eigenstates of K̂, Ĵ2 and Ĵz as well as Λ̂.

Λ̂ does not commute with Ĥ however. This means that the solutions we have
found for the second order equation cannot directly be eigenfunctions of Ĥ.
Instead, since

Ĥ(P̂ψ) = E(P̂ψ) (20.370)

i.e., the energy eigenvalues from the second-order equation are also the eigen-
values of Ĥ, we can find eigenfunctions of Ĥ by using the projection operator
P̂ . Since P̂ and Λ̂ do not commute, the eigenfunction of Ĥ, namely P̂ψ, will
generally be a linear combination of different Λ̂ eigenfunctions.

To find the energy eigenvalues we need to know the eigenvalues of Λ̂. Consider
an eigenstate of Λ̂ and K̂ with eigenvalues k. We then have

Λ̂2 ∣k⟩ = λ2 ∣k⟩ =
⎛
⎝
K̂2 − (Ze

2

h̵c
)

2⎞
⎠
∣k⟩ =

⎛
⎝
k2 − (Ze

2

h̵c
)

2⎞
⎠
∣k⟩ (20.371)

or

λ =
⎛
⎝
k2 − (Ze

2

h̵c
)

2⎞
⎠

1/2

(20.372)
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and the possible eigenvalues of Λ̂ are ±λ. When Λ̂(Λ̂ + 1) acts on a (Λ̂ , K̂)
eigenstate it has the eigenvalue ±λ(±λ+1) = `′(`′+1). This leads to two possible
`′ values for each eigenvalue of Λ̂:

`′ =
⎧⎪⎪⎨⎪⎪⎩

λ, −λ − 1 for Λ = λ
−λ, λ − 1 for Λ = −λ

(20.373)

For each eigenvalue of Λ̂, the two `′ solutions add up to −1. The smaller of
the two solutions −lambda and −λ − 1 are eliminated because they are not
normalizable (behavior near the origin). This leave two cases to consider:

(1) Λ = λ , `′ = λ
(2) Λ = −λ , `′ = λ − 1

The possible energy eigenvalues are given by

E = mc2

[1 + ( Ze2
h̵cn′

)2
]
1/2 , n′ = `′ + 1 + ν , ν = 0,1,2, ..... (20.374)

or redefining some quantities

n′ = n − ∣k∣ + λ = n − j − 1
2
+

¿
ÁÁÀ(j + 1

2
)2 − (Ze

2

h̵c
)

2

(20.375)

so that n takes on the values

n = ∣k∣ , ∣k∣ + 1 , ∣k∣ + 2 , ...........forΛ = −λ
n = ∣k∣ + 1 , ∣k∣ + 2 , ∣k∣ + 3 , ...........forΛ = λ

the energy levels are then given by

E =mc2
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 +
(Ze

2

h̵c
)

2

[n − j − 1
2
−
√

(j + 1
2
)2 − (Ze2

h̵c
)2

]
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1/2

(20.376)

The quantum number n is just the principal quantum number of the hydrogen
atom.

The energy level structure looks like Figure 20.2 below.

1616



Figure 20.2: Dirac hydrogen energy level structure

where the left sequence corresponds to Λ = −λ and the right sequence to Λ = λ.

Some Features

The energy levels for the spin 1/2 particle are the same as those found for the
spin 0 particle with `→ j.

The energy is real only if

j + 1
2
< Ze

2

h̵c
(20.377)

which corresponds to Z < 137 for j = 1/2.

The Dirac theory leads to an accidental degeneracy in `, i.e., states with the
same j but different ` have the same energy. This degeneracy is removed by the
Lamb shift, which is due to the interaction of the electron with its own field. As
we shall see later, for j = 1/2, the effect is one order of magnitude smaller then
the fine structure splitting. For j ≥ 3/2, it is two orders of magnitude smaller.

An expansion in powers of Zα, where

α = e2

h̵c
= fine structure constant (20.378)

looks like

En,j =mc2 [1 − Z
2α2

2n2
− (Zα)4

2n3
( 1

j + 1
2

− 3

4n
) +O((Zα)6)] (20.379)

which agrees with the perturbation calculations we carried out earlier.

Some Details about the Energy Levels

The solutions of the Dirac equation are not Λ̂ eigenstates but they are K̂ eigen-
states and K̂ is a constant of the motion (it commutes with the Hamiltonian).
The total orbital angular momentum L⃗ is not a constant of the motion and
neither is L̂2. We need to come up with some way to classify the energy levels
in the relativistic hydrogen atom using the eigenvalues k.
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To get a handle on how to proceed we look at the nonrelativistic limit where

Λ̂→ −βK̂ → −K̂ for positive energy states (20.380)

We expect the solutions of the second order equation with one sign of Λ̂ to
correspond to solutions of the first-order equation with the opposite sign of K̂.
This means that

n = ∣k∣ , ∣k∣ + 1 , ∣k∣ + 2 , ........... for Λ = −λ→ k > 0

n = ∣k∣ + 1 , ∣k∣ + 2 , ∣k∣ + 3 , ........... for Λ = λ→ k < 0

It turns out to be convenient to still label the solutions by the ` value that they
would have in the nonrelativistic limit. To find this ` value we use

K̂2 = 1 + L̂
2

h̵2
+ σ⃗ ⋅ L⃗

h̵
= βK̂ + L̂

2

h̵2

K̂(K̂ − β) = L̂
2

h̵2

In the nonrelativistic limit, β → 1 and we have

K̂(K̂ − 1) = L̂
2

h̵2
→ k(k − 1) = `(` + 1) (20.381)

so that ` becomes the total orbital angular momentum quantum number in the
nonrelativistic limit. Solving for ` in terms of k we get

` =
⎧⎪⎪⎨⎪⎪⎩

k − 1 = j − 1/2 for k > 0

∣k∣ = j + 1/2 for k < 0
(20.382)

Now K measures the alignment of the spin and the orbital angular momentum.
The above results say that for k > 0, they are essentially parallel and so j = `+1/2
and for k < 0 they are essentially antiparallel so j = ` − 1/2.

A detailed calculation of the wave functions shows that the upper two com-
ponents of the wave function (the large components) are eigenstates of total
orbital angular momentum with eigenvalue `, while the lower two components
(the small components) are eigenstates of total orbital angular momentum with
eigenvalue ` + 1 for k > 0 and with ` − 1 for k < 0.

The complete energy level scheme for the relativistic hydrogen atom for n = 1,
2, and 3 looks like Figure 20.3 below.
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Figure 20.3: Energy level structure for relativistic hydrogen

The complete degeneracy of a given n in the nonrelativistic case is lifted by
relativistic effects. The degeneracy between states like 1S1/2, 2P3/2, 3D5/2,
4F7/2, etc is now broken. The degeneracy still remains between states like 2S1/2
and 2P1/2, 3S1/2 and 3P1/2, 3P3/2 and 3D3/2, etc., levels.

All levels except 1S1/2, 2P3/2, 3D5/2, etc., are 2-fold degenerate because they are
the eigenstates of of K with opposite eigenvalues, i.e., 2P3/2 → k = 2, 2D3/2 →
k = −2.

Hyperfine Structure

The are two corrections that modify the energy level results from the Dirac
equation. The two-fold degeneracy is removed by the interaction of the electron
with vacuum fluctuations of the electromagnetic radiation field. This effect is
called the Lamb shift. In addition, there is also a hyperfine interaction which
splits every level into two, It is due to the interaction of the electron with the
magnetic moment of the proton. We consider hyperfine splitting first.

As an example we derive the hyperfine splitting of an s−state using nonrelativis-
tic first-order perturbation theory. The interaction of the electron spin with the
magnetic moment of the proton is given by

Ĥ ′ = ∣e∣ h̵
2mc

σ⃗ ⋅ B⃗(r⃗) = µBσ⃗ ⋅ B⃗(r⃗) (20.383)

where B⃗(r⃗) is the magnetic field due to the magnetic moment of the proton.
This magnetic moment is given by

M⃗p =
∣e∣ h̵gp
4mpc

σ⃗p =
1

2
gpµpσ⃗p (20.384)

where gp is the gyromagnetic ratio of the proton, mp is the proton mass and
h̵σ⃗p/2 is the spin of the proton. The magnetic field from this magnetic moment
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(assuming the proton is fixed at the origin) is given by the relations

A⃗(r⃗) = −M⃗p ×∇(1

r
) = vector potential (20.385)

B⃗(r⃗) = ∇× A⃗(r⃗) (20.386)

B⃗(r⃗) = −∇ × (σ⃗p ×∇)
gpµp

2r
(20.387)

This gives

Ĥ ′ = −gpµBµpσ⃗ ⋅ (∇× (σ⃗p ×∇) 1

2r
)

= −gpµBµpσ⃗ ⋅ (σ⃗p(∇ ⋅ ∇) −∇(σ⃗p ⋅ ∇)) 1

2r

= −gpµBµp ((σ⃗ ⋅ σ⃗p)(∇ ⋅ ∇) − (σ⃗ ⋅ ∇)(σ⃗p ⋅ ∇)) 1

2r
(20.388)

The first-order shift of the level is

⟨Ĥ ′⟩ = −gpµBµp ∫ d3r ∣ψ(r⃗)∣2 [(⟨σ⃗ ⋅ σ⃗p⟩ (∇ ⋅ ∇) − ⟨(σ⃗ ⋅ ∇)(σ⃗p ⋅ ∇)⟩) 1

2r
]

(20.389)
where the brackets ⟨.....⟩ denote the expectation value in the relative spin state
of the electron and proton and ψ(r⃗) is the nonrelativistic wave function of the
level. If we only consider s−states, which are spherically symmetric, then

⟨(σ⃗ ⋅ ∇)(σ⃗p ⋅ ∇)⟩ = 1

3
⟨(σ⃗ ⋅ σ⃗p)⟩∇2 (20.390)

and we get

⟨Ĥ ′⟩ = −1

3
gpµBµp ∫ d3r ∣ψ(r⃗)∣2 ⟨(σ⃗ ⋅ σ⃗p)⟩ (∇2 1

2r
)

= 4π

3
gpµBµp ⟨(σ⃗ ⋅ σ⃗p)⟩∫ d3r ∣ψ(r⃗)∣2δ(r⃗)

= 4π

3
gpµBµp ⟨(σ⃗ ⋅ σ⃗p)⟩ ∣ψ(0)∣2 (20.391)

where we have used
∇2 1

r
= −4πδ(r⃗) (20.392)

For the hydrogen atom s−state

∣ψ(0)∣2 = 1

π(na0)3
(20.393)

and we get

⟨Ĥ ′⟩ = 2

3
( e2

2a0
) gp

m

mp

α2

n3
⟨(σ⃗ ⋅ σ⃗p)⟩ (20.394)
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We then have
F⃗ = S⃗ + I⃗ = total spin (20.395)

For S = 1
2
, I = 1

2
, we have F = 0(singlet) , 1(triplet). But

F⃗ = S⃗ + I⃗ → F⃗ 2 = S⃗2 + I⃗2 + 2S⃗ ⋅ I⃗ (20.396)

S⃗ ⋅ I⃗ = h̵
2

4
σ⃗ ⋅ σ⃗p =

h̵2

2
(F (F + 1) − 3/2) (20.397)

We then have for a relative triplet state ⟨(σ⃗ ⋅ σ⃗p)⟩ = 1 and for a relative singlet
state ⟨(σ⃗ ⋅ σ⃗p)⟩ = −3. This says that the singlet state lies lower than the triplet.

The total splitting of the ground state is

∆E = 8

3
( e2

2a0
) gp

m

mp
α2 (20.398)

between the triplet and singlet. The transition between these two levels gen-
erates radiation with a frequency of 1420MHz and a wavelength of 21.4 cm.
This radiation is very important in astronomy. From its intensity, Doppler
broadening, and Doppler shift, one obtains information concerning the density,
temperature, and motion of interstellar and intergalactic hydrogen clouds.

The Lamb Shift

The coupling

Ĥint = −
e

c
∫ d3rj⃗(r⃗) ⋅ A⃗(r⃗) (20.399)

of the electron to the quantum mechanical radiation field causes a shift in the
energy levels of the hydrogen atom. Although not an exact calculation, we can
get some idea of the fundamental difficulties in quantum electrodynamics by
doing a nonrelativistic second-order perturbation calculation.

We consider an electron in the state ∣n⟩ with energy εn. Because of the above
interaction (see last part of this chapter) the electron is able to spontaneously
emit a photon thereby going to some state ∣n′⟩. This produces a second-order
shift in the energy given by

∆En =∑
n′
∑
k⃗λ⃗

∣⟨n′, k⃗λ⃗∣ Ĥint ∣n,0⟩∣
2

εn − εn′ − ck
(20.400)

where ∣n,0⟩ is the initial state with the electron in ∣n⟩ with no photons present,
and ∣n′, k⃗λ⃗⟩ is the intermediate state with an electron in ∣n′⟩ and on photon of
momentum k⃗ and polarization λ⃗ present. The energy of this intermediate state
is εn′ + ck.
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From the quantum theory of electromagnetic radiation (see end of this chapter)
we have that

⟨n′, k⃗λ⃗∣ Ĥint ∣n,0⟩ = −
e

c

√
2πh̵2c2

ωkV
⟨n′∣ j⃗k⃗ ⋅ λ⃗

∗ ∣n⟩ (20.401)

where j⃗k⃗ is the kth Fourier component of the current j⃗(r⃗). Therefore,

∆En = ∫
d3k

(2πh̵)3

2πh̵2e2

ck
∑
n′

∑
λ⃗

∣⟨n′∣ j⃗k⃗ ⋅ λ⃗
∗ ∣n⟩∣

2

εn − εn′ − ck

= ∫
k2dk

4π2h̵

e2

ck
∑
n′

∫ dΩ∑
λ⃗

∣⟨n′∣ j⃗k⃗ ⋅ λ⃗
∗ ∣n⟩∣

2

εn − εn′ − ck
(20.402)

In the dipole approximation, we can use

j⃗k⃗ → j⃗0 =
p⃗

m
, p⃗ = electron momentum operator (20.403)

The angular integration over the polarizations is given by

∫ dΩ∑
λ⃗

∣⟨n′∣ j⃗k⃗ ⋅ λ⃗
∗ ∣n⟩∣

2
= 1

m
∫ dΩ∑

λ⃗

∣⟨n′∣ p⃗ ⋅ λ⃗∗ ∣n⟩∣
2
= 4π

m

2

3
∣⟨n′∣ p⃗ ∣n⟩∣2

where the factor 2/3 comes from the fact that there are only 2 independent
polarizations for each k⃗ value. This gives

∆En =
2e2

3πh̵c3m2

∞

∫
0

ωdω∑
n′

∣⟨n′∣ p⃗ ∣n⟩∣2

εn − εn′ − ω
, ω = ck (20.404)

The first problem we encounter is that the ω integral diverges!! This means that
the interaction with the radiation field produces an infinite shift downward in
the energy of the electron.

This result presented theoretical physics with a great difficulty for many years.
In the late 1940’s it was resolved due to the work of Feynman, Schwinger and
Tomonaga in producing new calculation rules within the context of quantum
electrodynamics and by Bethe and Weisskopf who actually carried out the cal-
culation using the new rules and got a finite number agreeing with experiment.

Let us try to understand some aspects of what happened.

If we do a similar calculation for a free electron, then one gets an infinite result
again. In the dipole approximation, we can evaluate the energy shift for a free
electron in a momentum state ∣p⃗⟩. We get

∆Ep⃗ =
2e2

3πh̵c3m2

∞

∫
0

ωdω∑
q⃗

∣⟨q⃗∣ p⃗ ∣p⃗⟩∣2

εq − εp − ω
(20.405)
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Since this is a free particle εq − εp = 0 and we have

∆Ep⃗ = −
2e2

3πh̵c3m2

∞

∫
0

ωdω
∣⟨p⃗∣ p⃗ ∣p⃗⟩∣2

ω
= − 2e2

3πh̵c3m2
p2

∞

∫
0

dω (20.406)

which is infinite. What Bethe and Weisskopf noticed was that this expression
is proportional to p2. In their development of quantum electrodynamics, Feyn-
man, Schwinger and Tomonaga had similar problems which they were able to
deal with be redefining the electron parameters that appeared in the theory
(like mass and charge). The process is called renormalization. In this process
all infinite expression are consistently incorporated into the mass or charge pa-
rameters and then these are defined to have the known experimental values.

In our case, we can interpret the infinite result as redefining the mass, i.e., as
representing a shift of the mass of the electron. In terms of the mathematics,
this means the following. If we say thatm0 is the mass and p2/2m0 is the kinetic
energy of a free electron of momentum p⃗ neglecting the electromagnetic interac-
tions, then the energy including the effects of the electromagnetic interactions
is given by

p2

2m0
+∆Ep⃗ =

⎛
⎝

1

m0
− 2e2

3πh̵c3m2

∞

∫
0

dω
⎞
⎠
p2

2
= 1

m

p2

2
(20.407)

i.e., we have renormalized the electron mass. The so-called electromagnetic self-
energy of the electron can thus be interpreted as giving a shift of the mass of the
electron from its bare (no electromagnetic interactions) value m0 to its observed
(measured in the laboratory where all interactions are present) value m.

We then argue that the reason the interacting electron has an infinite energy shift
is that it includes the infinite energy change that we already have counted once
when we use the observed mass m rather than the bare mass in the calculation
and, thus, we are double counting. In other words, we should really start out
with the Hamiltonian for the hydrogen atom in the presence of the radiation
field given by

Ĥ = p2

2m0
− e

2

r
+ Ĥint (20.408)

Then using the corrected expression for m we get

Ĥ = p2

2m
− e

2

r
+
⎛
⎝
Ĥint +

2e2

3πh̵c3m2

∞

∫
0

dω
⎞
⎠

(20.409)

This means that if we write the observed free particle mass in the kinetic energy
(which we always do) we should not count that part of Ĥint that produces the
infinite mass shift, i.e., we should regard

Ĥint +
2e2

3πh̵c3m2

∞

∫
0

dω (20.410)
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as the effective interaction of an electron of renormalized mass m with the
radiation field. It is now finite to second-order of our calculation. Feynman, et
al, showed that this could be done to all orders of perturbation theory!!

We therefore modify our calculation by adding in the required term. We get

∆E′
n =

2e2

3πh̵c3m2

∞

∫
0

ωdω (∑
n′

∣⟨n′∣ p⃗ ∣n⟩∣2

εn − εn′ − ω
+ ∣⟨n∣ p⃗ ∣n⟩∣2

ω
) (20.411)

Using completeness, we have

⟨n∣p2 ∣n⟩ =∑
n′

⟨n∣p ∣n′⟩ ⟨n′∣p ∣n⟩ =∑
n′

∣⟨n′∣p ∣n⟩∣2 (20.412)

so that

∆E′
n =

2e2

3πh̵c3m2 ∑
n′

∣⟨n′∣p ∣n⟩∣2
∞

∫
0

dω
εn′ − εn

εn − εn′ − ω
(20.413)

The integral is still divergent but only logarithmically and, in fact, not at all
in more sophisticated relativistic calculations. We can imagine that the correct
calculation would yield a similar result but with a convergent integral. We can
simulate this result by integrating to some cutoff value (and not to infinity) say
at h̵ω =mc2. We then get

∆E′
n =

2e2

3πh̵c3m2 ∑
n′

∣⟨n′∣p ∣n⟩∣2(εn′ − εn)`n ∣ mc2

εn′ − εn
∣ (20.414)

where we have neglected quantities the size of εn′ − εn in comparison to mc2.

Bethe evaluated this result numerically and obtained ∆E′
n = +1040 megacycles

(the 2P1/2 level turns out to be shifted downward) and the observed value equals
+1057 megacycles, which is remarkable agreement!

Taking into account both the Lamb shift and the hyperfine splitting we have
the level scheme shown in Figure 20.4 below for n = 2:
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Figure 20.4: n = 2 Energy level structure for relativistic hydrogen

Dirac Hole Theory

Finally, we tackle the problem of the negative energy states in the Dirac theory.

As we said earlier, there is no simple conservation law that prevents an electron
or any other spin 1/2 particle in a positive energy state from making a radiative
transition to a negative energy state. This means all atoms must be unstable!
An energy diagram is shown in Figure 20.5 below.

Figure 20.5: n = 2 Energy level structure for relativistic hydrogen

The properties of the positive energy states show remarkable agreement with
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experiment. Can we simply ignore the negative energy states? The answer is no
because an arbitrary wave packet, as we saw earlier will always contain negative
energy components via interactions even if we start off only with positive energy
components.

Dirac proposed a clever way out of this dilemma : since spin 1/2 particles obey
the exclusion principle, all one needs to do to insure stability is to say that the
negative energy states are completely filled. Then a particle cannot make a tran-
sition from a positive to a negative energy state for this would put two particles
into the same (negative energy) state. The vacuum state in this picture consists
of an infinite sea of particles in negative energy states. The particle and charge
density at every point is infinite. This is not a problem for the physical theory
since Dirac contended that we only measure deviations from the vacuum. In the
absence of any potential, the charge density of the negative sea is uniform and
Dirac argued that this charge density can produce no forces, since by isotropy,
the forces have no special direction to point!

Now this theory has some very useful special property. Suppose that we remove
a negative energy electron from the vacuum. What is left behind is a hole in
the negative energy sea. Measured with respect to the vacuum, the hole would
appear to have positive charge and positive energy,i.e., since it is the absence of
negative charge and negative energy. Dirac interpreted it as a positron, which
is the electron antiparticle.

Figure 20.6: A hole appears

Let me say that again..... an excited state of the vacuum arises as shown in the
figure. A negative energy electron is excited into a positive energy state, leaving
behind a hole with charge −(−e) = +e and the same mass as the electron, which
is the antiparticle. It looks like a positive charge since if we apply an electric
field the infinite sea of electron translates opposite to the field direction, which
is unobservable since the sea is infinite. However, the hole seems to be traveling
in the direction of the field like a positive charge!
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In this way, antiparticles appear in the Dirac theory as unoccupied negative
energy states, which is very different from the way they appear in the spin zero
theory.

This Dirac hole theory gives a simple description for pair production. Suppose
that a photon of energy > 2mc2 traveling through the vacuum is absorbed by
a negative energy electron and the negative energy electron gets excited to a
positive energy state. What remains, as we have said, is a hole in the negative
energy sea, i.e., a positive energy positron and a positive energy electron. This
says that pair production is simply the excitation of a particle from a negative
to a positive energy state.

Since we could exchange the roles of positrons and electrons in the entire Dirac
theory, electrons would appear as holes in a positron sea. This forces us to
conclude that negative energy seas cannot have any physical reality. The hole
theory is simply a mathematical model that allows us to do the correct book-
keeping within the framework of a single-particle Dirac theory.

With a filled negative energy sea, the Dirac theory would become a many-
particle theory in which we are unable to take into account the interactions
between these particles. The Dirac theory gives valid results only when these
interactions can be neglected. For example, in the hydrogen atom, the mod-
ification of the Coulomb potential by vacuum polarization accounts for about
2.5% of the Lamb shift.

If we second-quantized the Dirac theory, we can treat both particles and an-
tiparticles on the same basis.

The full relativistic quantum field theory of the electrons and positrons and
their interactions with photons was carried out by Feynman, et al in a theory
which is beyond the scope of these volumes.

20.7 Electromagnetic Radiation and Matter

20.7.1 Interacting with the Classical Radiation Field

We assume classical EM radiation in the transverse gauge, where

φ(r⃗, t) = 0 , ∇ ⋅ A⃗(r⃗, t) = 0 (20.415)

The electric and magnetic fields are given in terms of the vector potential (in
this gauge) by

ε⃗(r⃗, t) = −1

c

∂A⃗(r⃗, t)
∂t

, B⃗(r⃗, t) = ∇× A⃗(r⃗, t) (20.416)
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The electromagnetic energy is given by

E = ∫ d3r⃗
ε2(r⃗, t) +B2(r⃗, t)

8π
(20.417)

and the rate and direction of energy transport is given by the Poynting vector

℘⃗(r⃗, t) = c

4π
ε⃗(r⃗, t) × B⃗(r⃗, t) (20.418)

The radiation field generated by a classical current j⃗(r⃗, t) is given by

(∇2 − 1

c2
∂2

∂t2
) A⃗(r⃗, t) = −4π

c
j�(r⃗, t) (20.419)

where � means the transverse/divergence-free part.

We first consider the monochromatic plane wave solution of this equation. It
takes the form

A⃗(r⃗, t) = αλ⃗eik⃗⋅r⃗−iωt + α∗λ⃗∗e−ik⃗⋅r⃗+iωt (20.420)

where

ω = ck

λ⃗ = polarization vector with ∣λ⃗∣
2
= 1

α = amplitude = constant

To insure that ∇⋅ A⃗(r⃗, t) = 0 we require λ⃗ ⋅ k⃗ = 0 which corresponds to transverse
polarizations only.

The energy per unit volume in the electromagnetic wave is

ε2 +B2

8π
= ω2

2πc2
[∣α∣2 −Re (α2λ2e2ik⃗⋅r⃗−2iωt)] (20.421)

The quantity Re(..) oscillates in time and averages to zero so that the average
energy density is

E

volume
= ω2

2πc2
∣α∣2 (20.422)

In a similar way the time average of the Poynting vector is

ω2

2πc
∣α∣2 k̂ (20.423)

Any general wave solution is a linear superposition of these monochromatic wave
solutions.

A⃗(r⃗, t) =∑
k⃗λ⃗

⎡⎢⎢⎢⎣
Ak⃗λ⃗λ⃗

eik⃗⋅r⃗−iωt√
V

+A∗
k⃗λ⃗
λ⃗∗
e−ik⃗⋅r⃗+iωt√

V

⎤⎥⎥⎥⎦
(20.424)
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where the sum is over all allowed k⃗ values and over the two orthogonal λ⃗ polar-
izations for each k⃗ such that λ⃗ ⋅ k⃗ = 0 and we have assumed that the universe is
a very large box of volume V . The total energy in this wave solution is

E =∑
k⃗λ⃗

ω2

2πc2
∣Ak⃗λ⃗∣

2
(20.425)

How does this classical electromagnetic field interact with a quantum mechanical
particle?

In general (no transverse gauge at this point), the classical Hamiltonian is

Ĥ =
(p⃗ − e

c
A⃗(r⃗, t))

2

2m
+ eφ(r⃗, t) + V (r⃗, t) (20.426)

where V (r⃗, t) represents all the other potentials seen by the particle.

We get to quantum mechanics via the standard substitutions

r⃗ → r⃗op , p⃗→ p⃗op =
h̵

i
∇ (20.427)

Substituting, we get the Schrodinger equation for an electron in an electromag-
netic field

ih̵
∂ψ(r⃗, t)
∂t

= [ 1

2m
( h̵
i
∇− e

c
A⃗(r⃗, t))

2

+ eφ(r⃗, t) + V (r⃗, t)]ψ(r⃗, t) (20.428)

20.7.2 Relation to Gauge Invariance
In order to have the Schrodinger equation invariant under a gauge transforma-
tion, the wave function has to change by a phase factor,i.e.,

ψ′(r⃗, t) = ei
e
h̵cχ(r⃗,t)ψ(r⃗, t) (20.429)

where χ(r⃗, t) is the some scalar function.

This means that the solutions of the gauge-transformed Schrodinger equation
will still describe the same physical states.

The wave functions or state vectors differ by a phase factor that depends on
space and time and thus, the invariance is LOCAL rather than GLOBAL (a
phase factor independent of space and time).

It is then clear that it is NOT the canonical momentum p̂ → −ih̵∇ (whose
expectation value is NOT gauge invariant), but the genuine kinetic momentum

p̂ − q
c
A⃗(r̂, t) (20.430)
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(whose expectation value IS gauge invariant), that represents a measurable
quantity.

In any physical system, if the momentum operator p̂ appears, then it must
always be replaced by

ψ′(r⃗, t) = ei
e
h̵cχ(r⃗,t)ψ(r⃗, t) (20.431)

if we turn on an electromagnetic fields. This is the only way to guarantee gauge
invariance in quantum mechanics.

Quantum mechanics + electromagnetism requires minimal coupling for gauge
invariance to be valid.

20.7.3 Interactions
We now write

Ĥ = Ĥ0 + Ĥint (20.432)

where

Ĥ0 =
p⃗2

2m
+ V (r⃗, t) (20.433)

is the Hamiltonian in the absence of electromagnetic fields and

Ĥint = −
e

2mc
(p⃗ ⋅ A⃗(r⃗, t) + A⃗(r⃗, t) ⋅ p⃗) + e2

2mc2
A⃗2(r⃗, t) + eφ(r⃗, t) (20.434)

is the operator giving the interaction between matter and radiation.

One must treat the term p⃗ ⋅ A⃗(r⃗, t)+ A⃗(r⃗, t) ⋅ p⃗ with care since [xi, pj] = ih̵δij . In
general, we can show that

p⃗ ⋅ A⃗(r⃗, t) − A⃗(r⃗, t) ⋅ p⃗ = −ih̵ (∇ ⋅ A⃗(r⃗, t)) (20.435)

which says that

p⃗ ⋅ A⃗(r⃗, t) = A⃗(r⃗, t) ⋅ p⃗ only when ∇ ⋅ A⃗ = 0 (20.436)

or when we are operating in the transverse gauge.

For multi-electron atoms we have

Ĥ =
N

∑
i=1

(p⃗i − e
c
A⃗(r⃗i, t))

2

2m
+ e

N

∑
i=1

φ(r⃗i, t) + V (20.437)

and

Ĥint =
N

∑
i=1

{− e

2mc
(p⃗i ⋅ A⃗(r⃗i, t) + A⃗(r⃗i, t) ⋅ p⃗i) +

e2

2mc2
A⃗2(r⃗i, t) + eφ(r⃗i, t)}

(20.438)
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We now define a particle number density

ρ(r⃗) =∑
i

δ(r⃗ − r⃗i) (20.439)

and a current density

j⃗(r⃗) = 1

2
∑
i

( p⃗i
m
δ(r⃗ − r⃗i) + δ(r⃗ − r⃗i)

p⃗i
m

) (20.440)

where we constructed a symmetric combination of the terms so that the operator
would be Hermitian.

These quantities imply that

∑
i

eφ(r⃗i, t) =∑
i
∫ d3r⃗ eδ(r⃗ − r⃗i)φ(r⃗, t) = ∫ d3r⃗ eρ(r⃗)φ(r⃗, t) (20.441)

where φ(r⃗, t) ≠ operator (all operators are in ρ(r⃗)) and

∫ d3r⃗ρ(r⃗) = N = total number of particles (20.442)

Finally, we have

N

∑
i=1

{− e

2mc
(p⃗i ⋅ A⃗(r⃗i, t) + A⃗(r⃗i, t) ⋅ p⃗i)} = −e

c
∫ d3r⃗j⃗(r⃗) ⋅ A⃗(r⃗, t) (20.443)

Since
v⃗i =

p⃗i
m
− e

mc
A⃗ (20.444)

when an electromagnetic field is present, the true current operator is

J⃗(r⃗) = j⃗(r⃗) − e

mc
A⃗(r⃗, t)ρ(r⃗) = (paramagnetic + diamagnetic) currents

(20.445)
and therefore,

Ĥint = ∫ d3r⃗ [−e
c
j⃗(r⃗) ⋅ A⃗(r⃗, t) + e2

2mc2
ρ(r⃗)A⃗2(r⃗, t) + eφ(r⃗, t)ρ(r⃗)] (20.446)

20.7.4 Induced Absorption and Emission

We will now use the transverse gauge, which says that the φ(r⃗, t) term is zero.
We also assume that the radiation fields are small compared to the fields inside
the atom, i.e., ∣A⃗∣ << e2/a0, which implies that we can neglect the A⃗2 term
compared to the j⃗ ⋅ A⃗ term. Therefore, we have

Ĥint = −
e

c
∫ d3r⃗ j⃗(r⃗) ⋅ A⃗(r⃗, t) (20.447)
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For A⃗ as a linear superposition of monochromatic plane waves we then have

Ĥint = −
e

c
∫ d3r⃗ (1

2
∑
i

( p⃗i
m
δ(r⃗ − r⃗i) + δ(r⃗ − r⃗i)

p⃗i
m

))

×
⎛
⎝∑
k⃗λ⃗

⎡⎢⎢⎢⎣
Ak⃗λ⃗λ⃗

eik⃗⋅r⃗−iωt√
V

+A∗
k⃗λ⃗
λ⃗∗
e−ik⃗⋅r⃗+iωt√

V

⎤⎥⎥⎥⎦

⎞
⎠

= − e

2c
√
V
∑
k⃗λ⃗

∑
i

⎛
⎝
Ak⃗λ⃗λ⃗

p⃗i
m
eik⃗⋅r⃗i−iωt +A∗

k⃗λ⃗
λ⃗∗ p⃗i

m
e−ik⃗⋅r⃗i+iωt

+Ak⃗λ⃗λ⃗e
ik⃗⋅r⃗i−iωt p⃗i

m
+A∗

k⃗λ⃗
λ⃗∗e−ik⃗⋅r⃗i+iωt p⃗i

m

⎞
⎠

= − e

c
√
V
∑
k⃗λ⃗

[Ak⃗λ⃗j⃗−k⃗ ⋅ λ⃗e
−iωt +A∗

k⃗λ⃗
j⃗k⃗ ⋅ λ⃗

∗eiωt] (20.448)

where
j⃗k⃗ =

1

2
∑
i

( p⃗i
m
e−ik⃗⋅r⃗i + e−ik⃗⋅r⃗i p⃗i

m
) = ∫ d3r⃗e−ik⃗⋅r⃗ j⃗(r⃗) (20.449)

As we saw in the discussion of time-dependent perturbation theory for a har-
monic perturbation, the e−iωt term implies an absorption of radiation process
and the eiωt term implies and emission of radiation process. Following the same
steps as that case, we have for the absorption transition rate

Γabs
0→n;k⃗λ⃗

= 2π

h̵
δ(εn − ε0 − h̵ω)

e2

V c2
∣Ak⃗λ⃗∣

2 ∣⟨n∣ j⃗k⃗ ⋅ λ⃗ ∣0⟩∣
2

(20.450)

To find the total rate of transition we must sum over k⃗ and λ⃗ (2 polarizations
for each k⃗) to get

Γabs0→n =
2π

h̵V
∑
k⃗λ⃗

δ(εn − ε0 − h̵ω)
e2

c2
∣Ak⃗λ⃗∣

2 ∣⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩∣
2

(20.451)

Now we can write
1

V
∑
k⃗

→ ∫
k2dkdΩ

(2π)3
=∫

ω2dωdΩ

(2πc)3
(20.452)

so that

Γabs0→n =
2πe2

h̵2c2
ω2

2πc3
∫ dΩ∑

λ⃗

∣Ak⃗λ⃗∣
2 ∣⟨n∣ j⃗k⃗ ⋅ λ⃗ ∣0⟩∣

2
(20.453)

where
ω = εn − ε0

h̵
(from the δ − function) (20.454)

If the incident light beam subtends a solid angle dΩ and it is polarized with
polarization vector λ⃗ , then the total rate of energy transport in the beam is
the time average of the Poynting vector which is given by

1

V
∑
k⃗

ω2

2πc
∣Ak⃗λ⃗∣

2 = dΩ∫ dω
ω4

(2πc)4
∣Ak⃗λ⃗∣

2
(20.455)
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Now

I(ω) = dΩ
ω4

(2πc)4
∣Ak⃗λ⃗∣

2

= intensity of the incident beam per unit frequency (20.456)

In a similar way

Γind emisn→0 = 4π2e2

h̵2cω2
I(ω) ∣⟨n∣ j⃗k⃗ ⋅ λ⃗

∗ ∣0⟩∣
2

(20.457)

Since
⟨n∣ j⃗k⃗ ⋅ λ⃗

∗ ∣0⟩ = ⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩∗ (20.458)

we have
Γabs0→n = Γind emisn→0 (20.459)

(this is the origin of the Einstein A and B coefficients).

In the absorption process, the absorption of one photon of energy h̵ω = εn − ε0

causes an upward transition. The electron gains energy and the electromagnetic
field loses energy. Induced emission is just the opposite.

Now a photon of frequency ω and energy h̵ω and therefore, the total energy in
the incident beam is

E =∑
k⃗λ⃗

h̵ωNk⃗λ⃗ (20.460)

where Nk⃗λ⃗ = the number of photons in the (k⃗, λ⃗) mode in the beam. But we
already have

E =∑
k⃗λ⃗

ω2

2πc2
∣Ak⃗λ⃗∣

2
(20.461)

which says that

∣Ak⃗λ⃗∣
2 = 2πh̵c2

ω
Nk⃗λ⃗ (20.462)

and thus

Γabs0→n = Γind emisn→0 =∑
k⃗λ⃗

4π2e2

ωV
δ(εn − ε0 − h̵ω) ∣⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩∣

2
Nk⃗λ⃗ (20.463)

20.7.5 Quantized Radiation Field and Spontaneous Emis-
sion

Up to this point we have been treating the electromagnetic field classically as a
wave. We have mentioned the idea of photons, but have not created any formal
quantum mechanical structure to describe them, i.e., we have been considering
what happens to the atom and ignoring what is happening to the EM field
during these processes.
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To bring out the structure of the theory in terms of photons, we must now
describe these processes in terms of state vectors, such that, in the absorption
process the atom makes a transition from ∣0⟩ → ∣n⟩ while the electromagnetic
field makes a transition from an initial state to a state with one less photon (it
has been absorbed).

All of our development so far has involved what is physically called an incoherent
beam of light.

We related ∣Ak⃗λ⃗∣ and Nk⃗λ⃗ so that knowledge of the Nk⃗λ⃗ clearly does not imply
any information about the relative phases of the Ak⃗λ⃗ which is the meaning of
the term incoherent.

An incoherent beam, therefore, is completely specified by the photon numbers,
i.e., the Nk⃗λ⃗. It is in this sense that we can write the initial state(normalized)
of the electromagnetic field as

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗, ........⟩ (20.464)

where, as before, the Nk⃗λ⃗ = the number of photons in the mode (k⃗, λ⃗).

Any two of these states are orthogonal if they differ in the number of photons
in any mode.

The final state of the electromagnetic field after photon absorption of a photon
in the mode (k⃗, λ⃗) is

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗ − 1, ........⟩ (20.465)

We assume that there exists some Ĥint that causes both transitions (atom and
electromagnetic field) as it couples the electromagnetic field to matter. We
define

initial state = ∣0⟩ ∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗, ........⟩ (20.466)

final state = ∣n⟩ ∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗ − 1, ........⟩ (20.467)

so that

Einitial = ε0 + ∑
k⃗ ′λ⃗ ′

h̵ck′Nk⃗ ′λ⃗ ′ (20.468)

Efinal = εn + ∑
k⃗ ′λ⃗ ′

h̵ck′Nk⃗ ′λ⃗ ′ − h̵ck (20.469)

The transition rate between the two states is given by Fermi’s golden rule as

2π

h̵
δ(εn − ε0 − h̵ω) ∣⟨final∣ Ĥint ∣initial⟩∣

2
(20.470)
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This must be the same as our earlier result (20.463) which implies that we must
have

∣⟨final∣ Ĥint ∣initial⟩∣
2
= e2

V c2
∣Ak⃗λ⃗∣

2 ∣⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩∣
2

= e2

V c2
2πh̵c2

ω
Nk⃗λ⃗ ∣⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩∣

2
(20.471)

This implies that as yet undetermined operator Ĥint must have the following
properties:

1. it must include a part j⃗−k⃗ ⋅ λ⃗ that acts on the atom

2. it must have a part that decreases the number of photons in the (k⃗, λ⃗)
mode by 1

3. it must be Hermitian

One way of doing this is to write

Ĥint =
e

c
√
V
∑
k⃗ ′λ⃗ ′

(j⃗−k⃗ ′ ⋅ λ⃗
′A

(op)
k⃗ ′λ⃗ ′

+ j⃗k⃗ ′ ⋅ λ⃗
′∗A

(op)+
k⃗ ′λ⃗ ′

) (20.472)

where A(op)
k⃗λ⃗

reduces the number of photons in the (k⃗, λ⃗) mode by 1. It is a
photon in mode (k⃗, λ⃗) annihilation operator.

The second term is required to make Ĥint Hermitian. Using this model we then
have

⟨final∣ Ĥint ∣initial⟩
= ⟨n;Nk⃗1λ⃗1

,Nk⃗2λ⃗2
, ...,Nk⃗λ⃗ − 1, ....∣ Ĥint ∣0;Nk⃗1λ⃗1

,Nk⃗2λ⃗2
, ....,Nk⃗λ⃗, ....⟩

= −e
c
⟨n∣ j⃗−k⃗ ⋅ λ⃗ ∣0⟩

× ⟨Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ....,Nk⃗λ⃗ − 1, ....∣A(op)
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ....,Nk⃗λ⃗, ....⟩
(20.473)

For agreement with the earlier result we must have

⟨Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗ − 1, ...∣A(op)
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...⟩

=
√

2πh̵c2

ω

√
Nk⃗λ⃗ (20.474)

This matrix element of A(op)
k⃗λ⃗

corresponds to the Ak⃗λ⃗ term in the classical field
picture.

1635



The matrix element implies that

⟨Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗ − 1, ...∣A(op)
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...⟩
∗

= ⟨Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...∣A
(op)+
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗ − 1, ...⟩

=
√

2πh̵c2

ω

√
Nk⃗λ⃗ (20.475)

which says that A(op)+
k⃗λ⃗

is an operator that increases the number of photons in
the (k⃗, λ⃗) mode by 1. It is a photon in mode (k⃗, λ⃗) creation operator. We thus
have

A
(op)
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...⟩

=
√

2πh̵c2

ω

√
Nk⃗λ⃗ ∣Nk⃗1λ⃗1

,Nk⃗2λ⃗2
, ...,Nk⃗λ⃗ − 1, ...⟩ (20.476)

A
(op)+
k⃗λ⃗

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...⟩

=
√

2πh̵c2

ω

√
Nk⃗λ⃗ + 1 ∣Nk⃗1λ⃗1

,Nk⃗2λ⃗2
, ...,Nk⃗λ⃗ + 1, ...⟩ (20.477)

This behavior is identical (aside from the
√

2πh̵c2/ω factor) to that of the â and
â+ operators in the harmonic oscillator problem.

This model gives a quantum mechanical picture of the electromagnetic radiation
field as an infinite number of harmonic oscillators - one per mode and the quanta
associated with these oscillators are photons.

If we define a Hermitian electromagnetic field operator as

A⃗(op)(r⃗) =∑
k⃗λ⃗

⎡⎢⎢⎢⎣
A

(op)
k⃗λ⃗

λ⃗
eik⃗●r⃗√
V

+A(op)+
k⃗λ⃗

λ⃗∗
e−ik⃗●r⃗√
V

⎤⎥⎥⎥⎦
(20.478)

we have

Ĥint = ∫ d3r⃗ [−e
c
j⃗(r⃗) ⋅ A⃗(op)(r⃗) + e2

2mc2
ρ(r⃗) (A⃗(op)(r⃗))

2
] (20.479)

In the interaction representation A⃗(op)(r⃗, t) has the time dependence

A⃗(op)(r⃗, t) = e
i
h̵ ĤemtA⃗(op)(r⃗)e−

i
h̵ Ĥemt (20.480)

where Ĥem = Hamiltonian for free radiation. We then have

Ĥem = 1

8π
∫ d3r⃗ (ε⃗2 + B⃗2) =∑

k⃗λ⃗

h̵ck (A(op)+
k⃗λ⃗

A
(op)
k⃗λ⃗

+ 1

2
) (20.481)
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The operator algebra similarity to the â and â+ problem then allows us to write

[A(op)
k⃗λ⃗

,A
(op)+
k⃗ ′λ⃗ ′

] = 2πh̵c2

ω
δk⃗k⃗ ′δλ⃗λ⃗ ′ , [A(op)

k⃗λ⃗
,A

(op)
k⃗ ′λ⃗ ′

] = 0 (20.482)

and

∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, ...,Nk⃗λ⃗, ...⟩ =
1√
Nk⃗λ⃗!

(A(op)+
k⃗λ⃗

)
Nk⃗λ⃗ ∣Nk⃗1λ⃗1

,Nk⃗2λ⃗2
, ...,0, ...⟩

(20.483)
and Ĥ = Ĥ0 + Ĥem + Ĥint where Ĥ0 = Hamiltonian for the electrons.

We then have

e
i
h̵ ĤemtA

(op)
k⃗λ⃗

e−
i
h̵ Ĥemt ∣.....,Nk⃗λ⃗, ......⟩

= e
i
h̵ ĤemtA

(op)
k⃗λ⃗

e−i(Nk⃗λ⃗+
1
2 )t ∣.....,Nk⃗λ⃗, ......⟩

= e
i
h̵ Ĥemte−i(Nk⃗λ⃗+

1
2 )t

√
Nk⃗λ⃗ ∣.....,Nk⃗λ⃗ − 1, ......⟩

= ei(Nk⃗λ⃗−1+ 1
2 )te−i(Nk⃗λ⃗+

1
2 )t

√
Nk⃗λ⃗ ∣.....,Nk⃗λ⃗ − 1, ......⟩

= e−icktA(op)
k⃗λ⃗

∣.....,Nk⃗λ⃗, ......⟩ (20.484)

or
e
i
h̵ ĤemtA

(op)
k⃗λ⃗

e−
i
h̵ Ĥemt = e−icktA(op)

k⃗λ⃗
(20.485)

and similarly
e
i
h̵ ĤemtA

(op)+
k⃗λ⃗

e−
i
h̵ Ĥemt = eicktA(op)+

k⃗λ⃗
(20.486)

Putting this all together we have

A⃗(op)(r⃗, t) =∑
k⃗λ⃗

⎡⎢⎢⎢⎣
A

(op)
k⃗λ⃗

λ⃗
eik⃗⋅r⃗−iωt√

V
+A(op)+

k⃗λ⃗
λ⃗∗
e−ik⃗⋅r⃗+iωt√

V

⎤⎥⎥⎥⎦
(20.487)

By construction, we have forced the quantum mechanical description
of absorption of the electromagnetic field in terms of the photon to be
identical to the description in terms of the classical electromagnetic
field for the induced absorption process.

We now apply the formalism to the emission process. This corresponds to the
transition between the states

initial state = ∣0⟩ ∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗, ........⟩ (20.488)

final state = ∣n⟩ ∣Nk⃗1λ⃗1
,Nk⃗2λ⃗2

, .......,Nk⃗λ⃗ + 1, ........⟩ (20.489)

so that

Einitial = ε0 + ∑
k⃗ ′λ⃗ ′

h̵ck′Nk⃗ ′λ⃗ ′ (20.490)

Efinal = εn + ∑
k⃗ ′λ⃗ ′

h̵ck′Nk⃗ ′λ⃗ ′ + h̵ck (20.491)
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The transition rate is

2π

h̵
δ(εn − ε0 − h̵ck) ∣⟨0; ........Nk⃗λ⃗ + 1, .....∣ Ĥint ∣n; ........Nk⃗λ⃗, ....⟩∣

2
(20.492)

where

⟨0; ........Nk⃗λ⃗ + 1, .....∣ Ĥint ∣n; ........Nk⃗λ⃗, ....⟩

= − e

c
√
V

⟨0∣ j⃗k⃗ ⋅ λ⃗
∗ ∣n⟩ ⟨........Nk⃗λ⃗ + 1, .....∣A(op)+

k⃗λ⃗
∣........Nk⃗λ⃗, ....⟩

= −e
c

√
2πh̵c

ωV
⟨0∣ j⃗k⃗ ⋅ λ⃗

∗ ∣n⟩
√
Nk⃗λ⃗ + 1 (20.493)

We no longer have any features that are unknown and hence ad-
justable. Forcing agreement with induced absorption makes the re-
sults for the emission process a prediction!

We get

Γemis
n→0;k⃗λ⃗

= 4π2e2

ωV
δ(εn − ε0 − h̵ck) ∣⟨0∣ j⃗k⃗ ⋅ λ⃗

∗ ∣n⟩∣
2
(Nk⃗λ⃗ + 1) ≠ Γabs

0→n;k⃗λ⃗
(20.494)

which disagrees with the classical field result but agrees with experi-
ment.

The Nk⃗λ⃗ part corresponds to the classical result.

The +1 part is a purely quantum mechanical effect.

This term implies that there is an emission process that can take place even if
there is no external field present.

This process is called spontaneous emission. A clear victory for the quantum
approach.

20.8 Problems

20.8.1 Dirac Spinors

The Dirac spinors are (with E =
√
p⃗2 +m2)

u(p, s) = /p +m√
E +m

(ϕs
0
) , v(p, s) =

−/p +m√
E +m

( 0
χs

)

where /p = γµpµ, ϕs(s = ±1/2) are orthonormalized 2-spinors and similarly for
χs. Prove(using ū = u+γ0, etc):

(a) ū(p.s)u(p.s′) = −v̄(p, s)v(p, s′) = 2mδss′
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(b) v̄(p, s)u(p, s′) = 0

(c) ū(p, s)γ0u(p, s′) = 2Eδss′

(d) ∑s u(p.s)ū(p, s) = /p +m

(e) ∑s v(p.s)v̄(p, s) = /p −m

(f) ū(p, s)γµu(p′, s′) = 2Eδss′ = 1
2m
ū(p, s) [(p + p′)µ + iσµν(p − p′)ν]u(p′, s′)

(TheGordonIdentity)

20.8.2 Lorentz Transformations

In a Lorentz transformation x′ = Λx the Dirac wave function transforms as
ψ′(x′) = S(Λ)ψ(x), where S(Λ) is a 4 × 4 matrix.

(a) Show that the Dirac equation is invariant in form, i.e., (iγµ∂′µ −m)ψ′(x′) =
0, provided

S−1(Λ)γµS(Λ) = Λµνγ
ν

(b) For an infinitesimal transformation Λµν = gµν + δωµν , where δωµν = −δωνµ.
The spin dependence of S(Λ) is given by I − iσµνδωµν/4. Show that σµν =
i[γµ, γnu] satisfies the equation in part (a). For finite transformations we
then have S(Λ) = e−iσµνω

µν/4.

20.8.3 Dirac Equation in 1 + 1 Dimensions

Consider the Dirac equation in 1 + 1 Dimensions (i.e., one space and one time
dimension):

(iγ0 ∂

∂x0
+ iγ1 ∂

∂x1
−m)ψ(x) = 0

(a) Find a 2 × 2 matrix representation of γ0 and γ1 which satisfies {γµ, γν} =
2gµν and has correct hermiticity. What is the physical reason that ψ can
have only two components in 1 + 1 dimensions?

(b) Find the representation of γ5 = γ0γ1, γ5γ
µ and σµν = 1

2
i [γµ, γν]. Are they

independent? Define a minimal set of matrices which form a complete
basis.

(c) Find the plane wave solutions ψ+(x) = u(p1)e−ip⋅x and ψ−(x) = v(p1)eip⋅x
in 1 + 1 dimensions, normalized to ūu = −v̄v = 2m (where ū = u+γ0).

20.8.4 Trace Identities

Prove the following trace identities for Dirac matrices using only their property
{γµ, γν} = gµν (i.e., do not use a specific matrix representation)

(a) Tr(γµ) = 0
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(b) Tr(γµγν) = 4gµν

(c) Tr(γµγνγρ) = 0

(d) Tr(γµγνγργσ) = 4gµνgρσ − 4gµρgνσ + 4gµσgνρ

(e) Tr(γ5) = 0 where γ5 = iγ0γ1γ2γ3

20.8.5 Right- and Left-Handed Dirac Particles

The right (R) and left (L) -handed Dirac particles are defined by the projections

ψR(x) =
1

2
(1 + γ5)ψ(x) , ψL(x) =

1

2
(1 − γ5)ψ(x)

In the case of a massless particle (m=0):

(a) Show that the Dirac equation (i /∂ − e /A)ψ = 0 does not couple ψR(x) to
ψL(x), i.e., they satisfy independent equations. Specifically, show that in
the chiral representation of the Dirac matrices

γ0 = ( 0 −I
−I 0

) , γ = ( 0 σ
−σ 0

)

we have

ψ = (φR
φL

) e−ip⋅x

i.e., that the lower(upper) two components of ψR (ψL) vanish.

(b) For the free Dirac equation (Aµ = 0) show that φR and φL are eigenstates of
the helicity operator 1

2
σ ⋅p with positive and negative helicity, respectively,

for plane wave states with p0 > 0.

20.8.6 Gyromagnetic Ratio for the Electron

(a) Reduce the Dirac equation (i /∂ − e /A − m)ψ = 0 by multiplying it with
(i /∂ − e /A +m)ψ = 0 to the form

[(i∂ − eA)2 − e
2
σµνFµν −m2]ψ = 0

where σµν = i
2
[γµ, γν] and the field strength Fµν = ∂µAν − ∂νAµ.

(b) Show that the dependence in the magnetic field B = ∇ ×A in the spin-
dependent term σµνFµν is of the form −(ge/2m) 1

2
Σ ⋅B when the kinetic

energy is normalized to −∇2/2m (Σ = γ5γ
0γ is the spin matrix). Deter-

mine the value of the gyromagnetic ration g for the electron.
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20.8.7 Dirac → Schrodinger

Reduce tyhe Dirac equation (i /∂ − e /A −m)ψ = 0 for the Hydrogen atom (A0 =
−Ze/4πr , A = 0) to the standard Schrodinger equation

i
∂

∂t
Ψ(t, boldsymbolx) = (−∇

2

2m
+ eA0)Ψ(t, boldsymbolx)

in the non-relativistic limit, where ∣p∣ , A0 ≪ m. HINT: You may start from
the reduced form of the Dirac equation in Problem 20.6(a). Extract the leading
time dependence by writing ψ(x) = Ψ(t,x)e−imt.

20.8.8 Positive and Negative Energy Solutions
Positive energy solutions of the Dirac equation correspond to the 4-vector cur-
rent Jµ = 2pµ = 2(E, p⃗), E > 0. Show that the negative energy solutions
correspond to the current Jµ = −2(E, p⃗) = −2(∣E∣,−p⃗) = −2pµ, E < 0.

20.8.9 Helicity Operator
(1) Show that the helicity operator commutes with the Hamiltonian:

[Σ⃗ ⋅ p̂,H] = 0

(2) Show explicitly that the solutions to the Dirac equation are eigenvectors
of the helicity operator:

[Σ⃗ ⋅ p̂]Ψ = ±Ψ

20.8.10 Non-Relativisitic Limit
Consider

Ψ = (uA
uB

)

to be a solution of the Dirac equation where uA and uB are two-component
spinors. Show that in the non-relativistic limit uB ∼ β = v/c.

20.8.11 Gyromagnetic Ratio
Show that in the non-relativisitc limit the motion of a spin 1/2 fermion of charge
e in the presence of an electromagnetic field Aµ = (A0, A⃗) is described by

[(p⃗ − eA⃗)2

2m
− e

2m
σ⃗ ⋅ B⃗ + eA0]χ = Eχ

where B⃗ is the magnetic field, σi are the Pauli matrices and E = p0−m. Identify
the g-factor of the fermion and show that the Dirac equation predicts the correct
gyromagnetic ratio for the fermion. To write down the Dirac equation in the
presence of an electromagnetic field substitute: pµ → pµ − eAµ.
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20.8.12 Properties of γ5
Show that:

(a) Ψ̄γ5Ψ is a pseudoscalar.

(b) Ψ̄γ5γ
µΨ is an axial vector.

20.8.13 Lorentz and Parity Properties
Comment on the Lorentz and parity properties of the quantities:

(a) Ψ̄γ5γ
µΨΨ̄γµΨ

(b) Ψ̄γ5ΨΨ̄γ5Ψ

(c) Ψ̄ΨΨ̄γ5Ψ

(d) Ψ̄γ5γ
µΨΨ̄γ5γµΨ

(e) Ψ̄γµΨΨ̄γµΨ

20.8.14 A Commutator
Explicitly evaluate the commutator of the Dirac Hamiltonian with the orbital
angular momentum operator L̂ for a free particle.

20.8.15 Solutions of the Klein-Gordon equation
Let φ(r⃗, t) be a solution of the free Klein-Gordon equation. Let us write

φ(r⃗, t) = ψ(r⃗, t)e−imc
2t/h̵

Under what conditions will ψ(r⃗, t) be a solution of the non-relativistic Schrodinger
equation? Interpret your condition physically when φ is given by a plane-wave
solution.

20.8.16 Matrix Representation of Dirac Matrices
The Dirac matrices must satisfy the anti-commutator relationships:

{αi, αj} = 2δij , {αi, β} = 0 with β2 = 1

(1) Show that the αi, β are Hermitian, traceless matrices with eigenvalues ±1
and even dimensionality.

(2) Show that, as long as the mass term mis not zero and the matrix β is
needed, there is no 2 × 2 set of matrices that satisfy all the above rela-
tionships. Hence the Dirtac matrices must be of dimension 4 or higher.
First show that the set of matrices {I, σ⃗} can be used to express any 2× 2
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matrix, i.e., the coefficients c0, ci always exist such that any 2 × 2 matrix
can be written as:

(A B
C D

) = c0I + ciσi

Having shown this, you can pick an intelligent choice for the αi in terms
of the Pauli matrices, for example αi = σi which automatically obeys
{αi, αj} = 2δij , and express β in terms of {I, σ⃗} using the relation above.
Show then that there is no 2 × 2 β matrix that satisfies {αi, β} = 0.

20.8.17 Weyl Representation

(1) Show that the Weyl matrices:

α⃗ = (−σ⃗ 0
0 σ⃗

) , β = (0 I
I 0

)

satisfy all the Dirac conditions of Problem 20.16. Hence, they form just
another representation of the Dirac matrices, the Weyl representation,
which is different than the standard Pauli-Dirac representation.

(2) Show that the Dirac matrices in the Weyl representation are

γ⃗ = ( 0 σ⃗
−σ⃗ 0

) , γ0 = (0 I
I 0

)

(3) Show that in the Weyl representation γ5 = iγ0γ1γ2γ3 = (−I 0
0 I

)

(4) Solve the Dirac equation [α⃗ ⋅ p⃗ + βm]Ψ = EΨ in the particle rest frame
using the Weyl representation.

(5) Compute the result of the chirality operators

1 ± γ5

2

when they are acting on the Dirac solutions in the Weyl representation.

20.8.18 Total Angular Momentum

Use the Dirac Hamiltonian in the standard Pauli-Dirac representation

H = α⃗ ⋅ p⃗ + βm

to compute [H, L̂] and [H, Σ̂] and show that they are zero. Use the results to
show that:

[H, L̂ + Σ̂/2] = 0
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where the components of the angular momentum operator are given by:

L̂i = εijkx̂j p̂k

and the components of the spin operator are given by:

Σ̂i = (σ
i 0

0 σi
)

Recall that the Pauli matrices satisfy σiσj = δij + iεijkσk.

20.8.19 Dirac Free Particle
The Dirac equation for a free particle is

ih̵
∂ ∣ψ⟩
∂t

= (cαxpx + cαypy + cαzpz + βmc2) ∣ψ⟩

Find all solutions and discuss their meaning. Using the identity

(σ⃗ ⋅ A⃗)(σ⃗ ⋅ B⃗) = A⃗ ⋅ B⃗ + iσ⃗ ⋅ (A⃗ × B⃗)

will be useful.
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Chapter 21

Interacting Fields and Feynman Diagrams

21.1 Relativistic QuantumMechanics of Free Par-
ticles

21.1.1 Hilbert Space
In a quantum mechanical description, the state of a free, spinless particle is
completely specified by its three-momentum since its energy follows from the
energy-momentum relation. This is called the momentum-space description. A
particle with well-defined momentum (and energy) is described by a plane wave
and E = hν.

In addition, we will assume superposition is valid for quantum mechanical states.
Finally, we will assume that only particles of one type exist. Let us now imple-
ment these statements mathematically. We will set h̵ = 1 and c = 1 from now
on.

We assume the existence of an infinite dimensional Hilbert space and that for
every possible physical state there is a vector in the space. We choose the vec-
tors corresponding to a particle with momentum p⃗, ∣p⃗⟩ as basis vectors of length
1. The Hilbert space basis is thus:

∣0⟩ corresponding to the vacuum
∣p⃗1⟩ corresponding to a particle of momentum p⃗1

∣p⃗2⟩ corresponding to a particle of momentum p⃗2

.....................................................................

∣p⃗1, q⃗1⟩ corresponding to two particles one of momentum p⃗1 , the other q⃗1

and so on

The basis vectors are orthonormal, i.e.,

⟨p⃗ ∣ q⃗⟩ = δp⃗q⃗ (21.1)
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Since the range of momenta is infinite the subspace of the single particles is
infinite dimensional.

For mathematical convenience, we will assume that the universe is a cube with
volume V and we allow only those wave functions whose value on the boundary
is the same as the value on the opposite boundary (called periodic boundary
conditions). This means that we are working with a infinite, but denumerable,
dimensional Hilbert space, where the momenta are restricted to the discrete
values (L = length of a side of the cube) given by

p1 = ±
2πn1

L
, p2 = ±

2πn2

L
, p3 = ±

2πn3

L
n1 , n2 , n3 = 0,1,2, .... (21.2)

At the end of any calculations, we take the limit V →∞ thus returning to the
true continuous case. In the limit any sum over momenta becomes an integral
by the rule

∑
p⃗

→ V

(2π)3 ∫ d3p (21.3)

The factor
V

(2π)3
(21.4)

arises because in a little box d3p there will be that many possible states(possible
momentum values in phase space).

In addition we have

lim
V→∞

V

(2π)3
δp⃗ip⃗j = δ(3)(p⃗i − p⃗j) (21.5)

What we are doing here is of course quite horrible for any relativistic theory.
We are violating Lorentz invariance.

A cubical box of volume V is not Lorentz invariant. However, we assume that
our final results will be Lorentz invariant in the limit of infinite V . This plague,
having to abandon Lorentz invariance in order to define the formalism, is com-
mon to all approaches to quantum field theory(QFT). One always needs some
kind of grid to work on. The final results, the Feynman rules, do not suffer,
however, from the breaking of Lorentz invariance.

Since quantum mechanics will form the basis of our derivation of QFT and the
Feynman rules, a review(from a different point of view) of the basic concepts is
in order.

The wave function of a non-relativistic particle is

ψ(x, t) = 1√
V
ei(p⃗⋅x⃗−Ept) (21.6)
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where

Ep = non - relativistic kinetic energy = 1

2
mv⃗2 = p⃗2

2m
(21.7)

and the normalization is such that the total probability (integrating over the
whole universe of volume V is 1. This wave function describes one particle in
the universe and it is a solution of Schrodinger’s equation

1

2m
∇2ψ = −i∂ψ

∂t
(21.8)

The relativistic generalization of the wave function is simple:

ψ(x) = 1√
V
ei(px) = 1√

V
ei(p⃗⋅x⃗−Et) (21.9)

where
E = relativistic kinetic energy =

√
p⃗2 +m2 (21.10)

and the wave function is now a solution of the Klein-Gordon equation:

(− ∂
2

∂t2
+∇2 −m2)ψ(x) = (E2 − p2 −m2)ψ(x) = 0 (21.11)

In making the relativistic transition, the definition of probability needs some
revision. In the non-relativistic theory the probability density to find a particle
at some point x within a small box d3x is given by

∣ψ(x)∣2 d3x (21.12)

where the integral of this expression over the whole volume must be equal to
1. However, since the volume is not a Lorentz invariant, we cannot maintain
this definition of probability density. Probability density does not need to be
a Lorentz invariant, only the total probability must be Lorentz invariant (and
equal to 1). This is very much like electric charge. In fact, if we assume that like
electric charge density and current, the probability density (P0) and its associ-
ated probability current (P⃗ = (P1, P2, P3)) satisfies a conservation (continuity)
equation, then we have (pushing on the analogy)

∂µPµ = 0↔ ∂µjµ = 0 (21.13)

It then follows that the total probability (like total electric charge) is given by

P = ∫ d3xP0(x) (21.14)

In the same manner that we can prove total charge is constant, we can then
prove that P is a constant or ∂P /∂t = 0 (assumes that P is zero on the boundary
of a surface integral).

For consistency, we must have that the charge density is proportional to prob-
ability density.
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The formal definition of Pµ is

Pµ(x) = i
∂ψ∗(x)
∂xµ

ψ(x) − iψ∗(x)∂ψ(x)
∂xµ

(21.15)

In this case, since, in the low energy limit, E ≈m and P0 ≈ 2mψ∗ψ, by normal-
izing ψ as follows

ψ(x) = 1√
2V p0

ei(px) (21.16)

we have normalization equal to 1 when integrating P0 over the whole volume
V .

Since particles do have a location in space, we must now consider states that
are not pure plane waves. A particle that we know is precisely at the point x⃗
at time x0 (we will take x0 = 0) is described at time 0 by a δ−function

ψ(x⃗,0) = Cδ(3)(x⃗) (21.17)

where C is a normalization constant. This can be seen as a superposition of
pure momentum states:

ψ(x⃗,0) = C

(2π)3 ∫ d3p eip⃗⋅x⃗ (21.18)

which we generalize to

ψ(x⃗, t) = ψ(x) = C

(2π)3 ∫ d3p ei(px) (21.19)

where
px = p0x0 − p⃗ ⋅ x⃗ = Et − p⃗ ⋅ x⃗ , E2 = p⃗2 +m2 (21.20)

so that it satisfies the Klein-Gordon equation.

If the location is not a δ−function but more smeared out, then we have, in
general:

ψ(x) = C

(2π)3 ∫ d3pf(p)ei(px) , p2
0 = p⃗2 +m2 (21.21)

For example, if f(p) = 1, we have a δ−function in space and if f(p) = δ(3)(p⃗− q⃗)
we have a state with sharply defined momentum q⃗. Therefore, the vector in
Hilbert space that corresponds to a sharply defined location at some time will
be a superposition of sharp momentum states with equal weight:

∣x⃗, x0⟩ =∑
p⃗

Cei(px) ∣p⃗⟩ (21.22)

What happens to a state in Hilbert space when we apply a Lorentz transforma-
tion? The Lorentz transformation L directly transforms any momentum p into
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p′ where Lp = p′. It is a 4× 4 matrix in a 4-dimensional space. In Hilbert space
vectors, it must transform the arguments of all of the different ket vectors,i.e.,

∣p⃗1⟩→ ∣p⃗′1⟩
∣p⃗2⟩→ ∣p⃗′2⟩
∣p⃗1, q⃗1⟩→ ∣p⃗′1, q⃗′1⟩

and so on.

This is an ∞ × ∞ transformation matrix. Luckily we never need to write it
down, but only know what it does. Let us consider a simpler example, namely,
the behavior under translations. Under a space-time translation b = (b0, x⃗)
a particle sharply located at place x⃗, time x0, will become a particle sharply
located at place x⃗ + b⃗ and time x0 + b0. Thus

T (b) ∶ ∣x⟩→ ∣x + b⟩ (21.23)

and
∑
p⃗

ei(px) ∣p⃗⟩→∑
p⃗

ei(px)+i(pb) ∣p⃗⟩ (21.24)

Therefore, under a translation the state ∣p⃗⟩ goes over into the state eipb ∣p⃗⟩. This
shows explicitly how the transformation of the vectors in Hilbert space differs
from what happens in ordinary space. The vector just gets a phase factor, that
is, it stays normalized and represents, physically speaking, the same state.

General Rule

To every Lorentz transformation there corresponds a transformation in Hilbert
space.

Our physics must be unique, so we insist that we have a 1-1 correspondence.
This means that labeling the Hilbert space transformation by X,

L1 →X1

L2 →X2

L3 = L1L2 →X1X2 =X3

which implies that the transformations in Hilbert space are a representation of
the Lorentz group.

Matrices in Hilbert Space

In order to describe physical processes we must introduce operators (matrices)
in the Hilbert space. A typical process, for example electrons scattering off a
proton, involves different states from the point of view of Hilbert space. Thus
initially we may have an electron of momentum p⃗ and a proton of momentum k⃗,
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which corresponds the basis vector ∣p⃗, k⃗⟩ in Hilbert space and the final state may
then contain an electron and proton of momenta p⃗ ′ and a proton of momentum
k⃗ ′, corresponding to the vector ∣p⃗ ′, k⃗ ′⟩ in Hilbert space. It seems like we might
think of this as if the physical system corresponds to a vector in Hilbert space
that rotates as a function of time from ∣p⃗, k⃗⟩ to ∣p⃗ ′, k⃗ ′⟩.

We cannot, however, describe things in this way. The reason is that scattering
clearly involves interaction between particles, and we have set up our Hilbert
space for free particles only. We must rethink our procedures if we want to
introduce interactions.

Right now it suffices to say that physical quantities will correspond to the el-
ements of a certain matrix defined in Hilbert space. What we need is basic
building blocks, in some sense matrices like the Pauli spin matrices that can be
used to describe the full set of 2 × 2 matrices. The matrices that we need will
fulfill certain basic requirements, in particular the requirement of locality. This
is the requirement that physical processes cannot influence each other if they
are outside each other’s light cone, i.e., if speeds larger than that of light are
needed to connect the events.

This we hope will be achieved by insisting that the operator (matrix) describing
a process at the space-time point x will commute with a similar operator for
the space-time point y if x and y are outside each other’s light cone.

Locality is a touchy point of quantum theory, and to a large extent it remains,
in its formulation, an article of faith. There is however, at this time, no reason
to suspect anything wrong with the procedure adopted above.

To explain what we are going to do let us first consider three-dimensional space.

What would be the most elementary building blocks that can be used to build
up any 3 × 3 matrix? We can do this with two matrices:

a =
⎛
⎜
⎝

0 1 0

0 0
√

2
0 0 0

⎞
⎟
⎠

, ā =
⎛
⎜
⎝

0 0 0
1 0 0

0
√

2 0

⎞
⎟
⎠

(21.25)

This can be seen by working out the various products involving a and ā and
showing that any 3 × 3 matrix can be obtained as a linear combination of these
matrices and associated products. The factor

√
2 was introduced for reasons

that will become transparent later.

We now turn to Hilbert space.

The above example can be used for the subspace referring to a definite momen-
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tum p⃗ . A matrix a as above can be constructed in the subspace of states:

∣0⟩ =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

, ∣p⃗⟩ =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

, ∣p⃗, p⃗,⟩ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(21.26)

These matrices represent a universe with n particles all with the same momen-
tum p⃗ where 0 ≤ n ≤ 2 as can be seen from the relations

a ∣0⟩ = 0 , a ∣p⃗⟩ = ∣0⟩ , a ∣p⃗, p⃗⟩ =
√

2 ∣p⃗⟩

ā ∣0⟩ = ∣p⃗⟩ , ā ∣p⃗⟩ =
√

2 ∣p⃗, p⃗⟩ , ā ∣p⃗, p⃗⟩ = 0

āa ∣0⟩ = 0 , āa ∣p⃗⟩ = 1 ∣p⃗⟩ , āa ∣p⃗, p⃗⟩ = 2 ∣p⃗, p⃗⟩

We may extend the example to more dimensions. In a large dimensional space
we still can do everything with two matrices a and ā with

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 . . .

0 0
√

2 0 0 . . .

0 0 0
√

3 0 . . .

0 0 0 0
√

4 . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(21.27)

The above example can be used for the subspace referring to a definite momen-
tum p⃗. A matrix a as above can be constructed in the subspace of states

∣0⟩ , ∣p⃗⟩ , ∣p⃗, p⃗,⟩ , etc (21.28)

The matrix a when applied to a state vector with n particles of momentum p⃗
then gives the vector for a state with n − 1 particles of momentum p⃗ with a
factor

√
n as we saw in the special case 0 ≤ n ≤ 2 above.

Examples

Consider
a ∣p⃗, p⃗, p⃗⟩ =

√
3 ∣p⃗, p⃗⟩ , a ∣0⟩ = 0 (21.29)

This particular matrix operating in the p⃗ subspace will be denoted by a(p⃗).
Similarly, we will have matrices for any other subspace, and we then have an
infinite set of matrices a(p⃗) and a+(p⃗) (with a+ = a∗T which is the same as aT

since a is real here).

Having done this, we do not need to introduce new matrices for that part of
Hilbert space where we have particles of different momenta, such as the state
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∣p⃗, p⃗, q⃗, q⃗, q⃗⟩ with p⃗ ≠ q⃗. The matrices a(p⃗) and a(q⃗) will by definition act on
these states as if the other particles are not there. Thus (with p⃗ ≠ q⃗):

a(p⃗) ∣q⃗, q⃗, q⃗, q⃗, q⃗⟩ = 0

a(p⃗) ∣p⃗, p⃗, q⃗, q⃗, q⃗⟩ =
√

2 ∣p⃗, q⃗, q⃗, q⃗⟩

a(q⃗) ∣p⃗, p⃗, q⃗, q⃗, q⃗⟩ =
√

3 ∣p⃗, p⃗, q⃗, q⃗⟩

and so on.

We now have a set of matrices a(p⃗) and a+(p⃗), called annihilation and creation
operators respectively, defined over the whole Hilbert space, that can be used
to build up any other matrix(operator). Note that by construction a(p⃗)a(q⃗) =
a(q⃗)a(p⃗) if p⃗ ≠ q⃗ and of course also if p⃗ = q⃗. They do not interfere with each
other.

The matrix
H =∑

p⃗

p0a
+(p⃗)a(p⃗) , p0 =

√
p⃗2 +m2 (21.30)

is diagonal(as seen from the relations in the above example) and it is the energy
operator, that is:

H ∣α⟩ = Eα ∣α⟩ (21.31)

where Eα is the total energy of the state ∣α⟩. Here α may be any number of
particles of any momentum. Explicitly, we have

H ∣0⟩ = 0 , H ∣q⃗⟩ = q0 ∣q⃗⟩ ,

H ∣p⃗, p⃗⟩ = 2p0 ∣p⃗, p⃗⟩ , H ∣p⃗, q⃗⟩ = (p0 + q0) ∣p⃗, q⃗⟩

and so on.

21.1.2 Fields
The Fourier transforms of the matrices a and a+ are called fields. To be precise
we have the field A(x):

A(x) =∑
p⃗

1√
2V p0

a(p⃗)e−ipx (21.32)

Similarly

A+(x) =∑
p⃗

1√
2V p0

a+(p⃗)e−ipx (21.33)

Notice that A(x) is no longer a real matrix due to the complex factors exp(−ipx).
The matrices A(x) and A+(x) can be taken as basic building blocks also since
a can be recovered from A. For example, a(q⃗) can be obtained from A(x) by
another Fourier transformation:

∫ d3xeiqxA(x) = 1√
2V p0

a(q⃗) (21.34)
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The Hermitian combination

ϕ(x) = A(x) +A+(x) (21.35)

is called the field corresponding to the particles considered. This field has a
number of properties that make it very useful for the construction of physical
quantities. The main property is that it is local.

The commutator

[ϕ(x), ϕ(y)] = ϕ(x)ϕ(y) − ϕ(y)ϕ(x) (21.36)

is zero if x and y are outside of each other’s light cone. To see this we compute
things step by step:

[A(x),A(y)] = 0 This follows because a(p⃗)a(q⃗) = a(q⃗)a(p⃗)
[A+(x),A+(y)] = 0 This follows because a+(p⃗)a+(q⃗) = a+(q⃗)a+(p⃗)

[A(x),A+(y)] =∑
p⃗

1

2V p0
e−ip(x−y) (21.37)

[A+(x),A(y)] = −∑
p⃗

1

2V p0
eip(x−y) (21.38)

These last two results follow from the equations

[a(p⃗), a+(q⃗)] = δp⃗q⃗ = − [a+(p⃗), a(q⃗)] (21.39)

Altogether we find:

[ϕ(x), ϕ(y)] =∑
p⃗

1

2V p0

(eip(x−y) − e−ip(x−y)) (21.40)

We now show that the right hand side is zero if x and y are outside each other’s
light cone. First we take the continuum limit, V →∞:

∑
p⃗

→ ∫ d3p
V

(2π)3

Calling the right hand side of the above commutator the function ∆c(x− y) we
have,

∆c(x − y) =
1

(2π)3 ∫ d3p
1

2p0

(eip(x−y) − e−ip(x−y)) (21.41)

To prove that this is zero if the four vector z = x − y is outside the light cone
(which means (zz > 0) we proceed in two steps. First we will show that ∆c is
Lorentz invariant. Then we will show that ∆c(z) is zero for any z with z0 = 0
by a Lorentz transformation (that leaves ∆c unchanged) we will have proven
the required result. The argument is illustrated in Figure 21.1 below.
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Figure 21.1: Light Cone Arguments

If the function is zero at the location of the cross it is zero in the whole
shell(formed from curve shown) going through that point, because all the points
in the shell can be obtained from the cross point by means of a Lorentz transfor-
mation, and the function is Lorentz invariant. If the function is zero along the
whole horizontal axis (the equal time line) then the function is zero everywhere
outside the light cone.

To show the Lorentz invariance we first rewrite the three-dimensional integral
as a four-dimensional integral. This may be done as follows.

Note that in the above p0 =
√
p⃗2 +m2. We write

1

2p0
=

q

∫
−q

dξδ(ξ2 − p⃗2 −m2)θ(ξ) (21.42)

where

θ(ξ) =
⎧⎪⎪⎨⎪⎪⎩

1 if ξ > 0

0 if ξ < 0
(21.43)

Indeed, the only points contributing to the integral are

ξ = ±
√
p⃗2 +m2 (21.44)

We may write

δ(ξ2 − p⃗2 −m2) = δ((ξ −
√
p⃗2 +m2)(ξ +

√
p⃗2 +m2)) (21.45)

Now

δ(ab) = 1

∣a∣
δ(b) + 1

∣b∣
δ(a) (21.46)
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Furthermore, the solution ξ = −
√
p⃗2 +m2 will not give anything because the

θ−function restricts us to positive values for ξ. Thus, we get

1

2p0
=

q

∫
−q

dξ
1

ξ +
√
p⃗2 +m2

δ(ξ −
√
p⃗2 +m2)θ(ξ) = 1

2
√
p⃗2 +m2

(21.47)

which is in agreement with what we stated above.

Although it might cause some confusion we are going to use for ξ the name p0,
and the above result is

1

2p0
=

q

∫
−q

dp0δ(p2
0 − p⃗2 −m2)θ(p0) (21.48)

Using this result, the function ∆c becomes

∆c(z) =
1

(2π)3 ∫ d3p

q

∫
−q

dp0δ(p2
0 − p⃗2 −m2)θ(p0) (eip(z) − e−ip(z))

= 1

(2π)3 ∫ d4pδ(p2 −m2) (eipz − e−ipz) θ(p0) (21.49)

where we have used δ(a) = δ(−a).

We now show that this integral is Lorentz invariant. Thus, we will let z = Lz′,
where L is some Lorentz transformation, and we will show that

∆c(z) = ∆c(z′) (21.50)

We have

∆c(z) = ∆c(Lz′) =
1

(2π)3 ∫ d4pδ(p2 −m2) (eipLz
′

− e−ipLz
′

) θ(p0) (21.51)

Now introduce four new variables q1, q2, q3, q4 related to the p by p = Lq. This is
as if we did a Lorentz transformation on p, but it is really a change of integration
variables. The integration volume element d4p becomes d4q times the Jacobian
of transformation

d4p = det(L)d4q (21.52)

Since det(L) = 1 that gives no change. Furthermore:

(p,Lz′) = (Lq,Lz′) = (q, z′)
p2 = (p, p) = (Lq,Lq) = (q, q) = q2

Finally, what happens with θ(p0)? This is more subtle and requires a detailed
investigation of the action of a Lorentz transformation on the vector p. This
vector is restricted to values inside the upper light cone, because we must have
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p2 =m2 (p is said to be on the mass-shell) and the θ−function restricts us to the
upper light cone. Since any four-vector in the upper light cone transforms into
another vector in the upper light cone, q will also be in the upper light cone.
Therefore, θ(q0) will also be non-zero if θ(p0) was nonzero and zero if θ(p0)
was zero. In other words, θ(p0) = θ(q0) if p = Lq, but for this the δ−function is
crucial, because otherwise there would not be the restriction to the upper light
cone. The result of all this is:

∆c(z) =
1

(2π)3 ∫ d4qδ(q2 −m2) (eiqz
′

− e−iqz
′

) θ(q0) = ∆c(z′) (21.53)

The last step follows since this differs from the original expression only by a
different notation for the integration variables.

Now step 2. Let us suppose z0 = 0. Then

∆c(z)z0=0 =
1

(2π)3 ∫ d4qδ(q2 −m2) (eiqz
′

− e−iqz
′

) θ(q0) (21.54)

The θδ actor restricts the q0 integration but not the q⃗ integration. The q⃗ integral
goes from −∞ to +∞ for every component. Therefore

∫ d3qf(q⃗) = ∫ d3qf(−q⃗) (21.55)

and we see that the two terms cancel and thus

∆c(z)z0=0 = 0 (21.56)

This concludes the proof.

Another important property of the field ϕ is that it obeys the Klein-Gordon
equation. The complete expression for the field ϕ(x) is:

ϕ(x) =∑
p⃗

1√
2V p0

(a(p⃗)e−ipx + a+(p⃗)eipx) , p0 =
√
p⃗2 +m2 (21.57)

It is easy to see that

(− ∂
2

∂t2
+∇2 −m2)ϕ(x) = 0 (21.58)

due to the mass-shell relation for p0. Finally, operating with ϕ(x) on the vacuum
state we obtain the state for a particle located at the point x at time x0 = 0 we
have

ϕ(x) ∣0⟩ =∑
p⃗

1√
2V p0

(a(p⃗)e−ipx + a+(p⃗)eipx) ∣0⟩ =∑
p⃗

1√
2V p0

eipx ∣p⟩ (21.59)

We can also derive commutation rules for equal times.

[ϕ(x), ϕ(y)]x0=y0
= ∆c(z)z0=0 = 0 , z = x − y (21.60)

[∂ϕ(x)
∂x0

, ϕ(y)]
x0=y0

= i(∂∆c(z)
∂x0

)
z0=0

= −iδ(3)(x⃗ − y⃗) (21.61)
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21.1.3 Structure of Hilbert Space

The connection between vectors in Hilbert space and measurements in quantum
mechanics is through probability. Physical states correspond to vectors(of unit
length) in Hilbert space, where length is defined by the usual scalar-product in
complex space. If a vector ∣ξ⟩ has the components ξ1, ξ2, ..., that is

∣ξ⟩ = ξ1 ∣1⟩ + ξ2 ∣2⟩ + ...... (21.62)

where ∣1⟩ , ∣2⟩ , ..., etc, represent the first, second, etc, basis vectors. Then the
scalar-product of ∣ξ⟩ with itself is given by

⟨ξ ∣ ξ⟩ = ξ∗1ξ1 + ξ∗2ξ2 + ...... (21.63)

Similarly,
⟨η ∣ ξ⟩ = η∗1ξ1 + η∗2ξ2 + ...... =∑

i

η∗i ξi (21.64)

The connection with physical measurements is now as follows. Suppose we have
a vector ∣c⟩ corresponding to some physical system. Now, let there be two other
mutually orthogonal vectors ∣a⟩ and ∣b⟩, also corresponding to physical systems.
Suppose now ∣c⟩ = α ∣a⟩ + β ∣b⟩. Remember that ∣a⟩, ∣b⟩ and ∣c⟩ must all be of
unit length, because they represent physical states.

Now, if the system is in the state described by ∣c⟩ and one tries to measure
whether the system is in state ∣a⟩ or ∣b⟩ one will find:

probability to find system in state ∣a⟩ = ∣α∣2 (21.65)

probability to find system in state ∣b⟩ = ∣β∣2 (21.66)

Here in means that the system is measured to have the same properties as state
a or state b.

More generally, if a system is in a state ∣c⟩, then the probability to observe the
state ∣a⟩ is given by

∣⟨a ∣ c⟩∣2 (21.67)

This is the fundamental connection between Hilbert space and physical mea-
surements. Since ⟨c ∣ c⟩ = 1 we must have

∣α∣2 + ∣β∣2 = 1 (21.68)

The two probabilities add up to 1, as should, of course, be the case.

There is some potential trouble here in connection with Lorentz invariance,
quite different from the trouble arising from dealing with a finite volume. As
noted before, states in Hilbert space are generally not invariant under Lorentz
transformations, but they transform according to some representation of these
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Lorentz transformations. The trouble now is that we certainly want probabil-
ities to be invariant under Lorentz transformations, in other words, the above
defined scalar-product must be invariant.

In addition, since the scalar-products are no longer necessarily positive, we must
then insist that states with negative probability are unphysical.

By itself this is not new: even in ordinary space there are restrictions, and mo-
menta of particles are physical only if their scalar-product with themselves is
positive (corresponding to real mass). Particles with momenta such that (pp)
is negative have not been seen.

So, much the same as in ordinary space where some domains seem to be ex-
cluded for physics, the same might happen in Hilbert space. In Hilbert space, we
would be truly in difficulty if we had to allow for physical systems with negative
probability. No consistent theory can then be constructed, because probability
is positive by its very definition.

For scalar or pseudoscalar particles there is not yet any problem, the transfor-
mations in Hilbert space are rather trivial (as for example the Hilbert space
vector ∣p⃗⟩ transforming to the vector ∣q⃗⟩ where q⃗ is the Lorentz transform of p⃗.
In dealing with particles with spin, such as electrons and photons, the transfor-
mation of the states in Hilbert space becomes more complicated and we leave
that for a more advanced text.

21.2 Interacting Fields - Part 1

21.2.1 Physical System

We will now discuss systems of interacting particles.

We use the Lehmann-Symanzik-Zimmermann formalism, and Kallen’s method
to derive the S-matrix from the equations of motion.

For definiteness, we assume the existence of two kinds of particles called π and σ.
Both are spinless, since including that complication is not needed to understand
the derivation of Feynman rules. We assume masses M and m for the π and σ
respectively. This model is a simplified version of electrodynamics of electrons
and photons. The π will play the role of the photon.

To begin we will focus on a specific problem, namely ππ scattering. The physical
process is shown in Figure 21.2 below.

Two pions with momenta p and q (with p2 = q2 = M2) meet and scatter, and
we are interested in the probability that a final configuration of two pions with
momenta p′ and q′ (with p ′2 = q ′2 = M2) is produced. This probability, when
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Figure 21.2: ππ scattering

multiplied with the appropriate flux factors, will be the differential cross section
for this process.

21.2.2 Hilbert Space

This aspect needs very careful consideration. A vector in Hilbert space repre-
sents a physical state.

What is a physical state?

A physical state is simply a possible physical system, with particles moving here
and there, with collisions, with dogs chasing cats, with people living and dying,
with all kinds of things happening.

Often people make the mistake of identifying a physical state with the system
at a given moment, one picture from a movie, but that is not what we call the
physical state. The system at some moment may be seen as a boundary condi-
tion, that is, if one knows the whole system at some moment, and one knows
the laws of nature, then in principle we can deduce the rest!

Thus a physical state may be characterized by the system at a definite moment,
but the state itself refers to the whole world including its progress in time.

Conveniently, especially for scattering processes one may use the time points
±∞. Thus the above process corresponds to a vector in Hilbert space, and we
can denote that vector by

∣p, q⟩in (21.69)

By this we mean: that physical system that has two pions of momenta p and q at
time t = −∞ (the in configuration). It must be understood that ∣p, q⟩in contains
everything, including how the system looks at other times. For example, we
could define the state ∣p, q⟩0 as that physical system which has at time t = 0
exactly two pions of momenta p and q. The above described state, ∣p, q⟩in, has
two such pions at t = −∞, but it may well be that they scatter before t = 0, and,
thus, the probability that we have still two pions with that same momentum at
t = 0 is smaller than one.
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The above discussion leads up to the following identification.

Let ∣p, q⟩in and ∣p, q⟩0 be the systems as described above. They are different
systems. Let the system be in the state ∣p, q⟩in (two pions at t = −∞). The
probability of having two pions with momenta p and q at t = 0 is the square of
the absolute value of the scalar-product between the states:

∣0 ⟨p, q ∣ p, q⟩in∣
2 (21.70)

If some collision took place before t = 0 we may actually still have two pions but
with different momenta, say k and r. A state with two pions with momenta k
and r at time t = 0 is denoted by ∣k, r⟩0. If the system is in the state ∣p, q⟩in
then the probability of observing two pions of momenta k and r at t = 0 is given
by:

∣0 ⟨k, r ∣ p, q⟩in∣
2 (21.71)

Thus the state ∣p, q⟩in when viewed at time t = −∞ contains two pions of mo-
menta p and q, but if we look to it at time t = 0 we see with some probability
two pions that may or may not have the momenta p and q. More generally, new
particles may be produced in a collision, so we may also see three, four, etc.
pion configurations. For example,

∣0 ⟨k, r, s ∣ p, q⟩in∣
2 (21.72)

gives the probability of observing three pions of momenta k, r and s at time
t = 0 if we know that the system is in a state characterized by the fact that at
time t = −∞ there were two pions of momenta p and q.

Magnitude of Hilbert Space

It follows from the above that we can have as many states in Hilbert space as
possible systems at t = −∞.

We now assume the following asymptotic condition: if particles are sufficiently
far apart in space they do not interact and behave as free particles. If we go
sufficiently far back in time, particles will be separated. Therefore, we may
assume that the possible systems at t = −∞ are precisely the systems of non-
interacting particles.

Thus the Hilbert space of interacting systems is by this assumption equally as
large as the Hilbert space of free particles.

Clearly, we will have to modify this if we want to consider stable bound states.
No matter how far back we go in time, the electron and proton in a hydrogen
atom do not separate. To describe such systems properly we must enlarge
Hilbert space and allow states containing hydrogen atoms. Of course, such
atoms again can just be considered as a new kind of particle, and the Hilbert
space becomes then effectively the free Hilbert space of three (in this case)
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particles (electrons, protons and hydrogen atoms). We will consider, however,
only simple particle states.

Now that we are clear about the meaning of states and their representation in
Hilbert space we can proceed and postulate equations that will describe particles
in interactions. Experiment must then decide which equations describe nature.
Of course, whatever we postulate, it will be within the framework of Lorentz
invariant quantum mechanics. Only a limited degree of freedom is left.

U-matrix, S-matrix

In describing scattering problems, where one typically considers initial and final
configurations of widely separated particles, the description in terms of in and
out states is advantageous. A vector ∣a⟩in in Hilbert space corresponds to a
physical system characterized by the configuration a at time t = −∞. Similarly
a vector ∣b⟩out corresponds to a system characterized by the configuration b at
time t = +∞. The states ∣a⟩in can be counted in the same way as the free particle
states:

∣0⟩in = vacuum at t = −∞
∣p⃗1⟩in = one particle (pion) with momentum p⃗1 at t = −∞
..............................................................

∣p⃗1, p⃗2, ..., q⃗1, q⃗2, ......⟩in = pions with momenta p⃗1, p⃗2, ... and
σ − particles with momenta q⃗1, q⃗2, ...... at t = −∞

A remark needs to be made here.

Since for free particles the energy is known if the three-momentum is known
the state is characterized by the three-momenta only. That is why we used the
three-vector as argument in ∣p⃗1⟩ rather than ∣p1⟩. In the following we will often
drop the arrow, assuming that the reader is aware that the particles indicated
are on mass shell(p2 = m2). Note that for finite times, when the particles are
not necessarily far apart, the energy is not simply given by the usual mass shell
relation.

Similarly, for out states.

Of course, in general if there is interaction the in states are different from the
out states, although both are in the same Hilbert space. Thus

∣p⃗1, p⃗2⟩in ≠ ∣p⃗1, p⃗2⟩out (21.73)

because a system that at t = −∞ has two pions with momenta p⃗1 and p⃗2 is
unlikely to still have two pions with momenta p⃗1 and p⃗2 at t = +∞. There is
some probability that the pions do not scatter; it is given by the absolute value
squared of the scalar-product between the two states, that is,

∣out ⟨p⃗1, p⃗2 ∣ p⃗1, p⃗2⟩in∣
2 (21.74)
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is the probability that, starting with two pions with momenta p⃗1 and p⃗2 at
t = −∞ we will still find two pions with momenta p⃗1 and p⃗2 at t = +∞.

Similarly,
∣out ⟨p⃗ ′, q⃗ ′ ∣ p⃗, q⃗⟩in∣

2 (21.75)

is the probability that when measuring on a system characterized by there being
two particles of momenta p⃗ and q⃗ at t = −∞ we will find two particles of momenta
p⃗ ′ and q⃗ ′ at t = +∞.

We thus have two sets of basis vectors in the same Hilbert space, namely the in
basis (∣0⟩in , ∣p⃗1⟩in , .....) and the out basis (∣0⟩out , ∣p⃗1⟩out , .....). Since a system
without any particles at t = −∞ will still not have any particles at t = +∞, we
have ∣0⟩in = ∣0⟩out. Similarly for one particle states, ∣p⃗1⟩in = ∣p⃗1⟩out. But for two
or more particle states this is not true if there is any interaction.

Since physical states correspond to vectors of unit length both the in and out
bases are orthonormal. Therefore, there must exist a matrix that transforms
the in basis into the out basis:

∣a⟩out = S
+ ∣a⟩in (21.76)

for any configuration a. We have used S+ (complex conjugation + transpose =
Hermitian) here purely by convention. The S-matrix clearly must contain all
physical information for any scattering process. For instance, the probability to
have configuration a at t = −∞ and to find configuration b at t = +∞ is given by

∣out ⟨b ∣ a⟩in∣
2 = ∣in ⟨a ∣ b⟩out∣

2 = ∣in ⟨a∣S+ ∣b⟩out∣
2 = ∣in ⟨b∣S ∣a⟩in∣

2 (21.77)

The first step is because ⟨a ∣ b⟩ = ⟨b ∣ a⟩∗, and the last step is nothing but the
very definition of S+ relative to S. Since both in and out states are orthonormal
sets, the S-matrix is unitary (scalar-products are unchanged), so that S+S = I.

Later we will interpret this relation as conservation of probability. If there is no
interaction the S-matrix is I(the identity). One therefore often writes

S = I + iT (21.78)

and the relation S+S = I becomes

i(T − T +) = −T +T (21.79)

Exactly the same as in the case of free particle states, we may define matrices
a and a+ in Hilbert space. We can do that on both in and out bases. Thus,
ain(p⃗) is a matrix such that

ain(p⃗)

RRRRRRRRRRRRRRRR

p⃗, p⃗, ...
´¹¹¹¹¹¹¸¹¹¹¹¹¶
n p⃗′s

, q⃗, , ......⟩

in

=
√
n

RRRRRRRRRRRRRRRR

p⃗, p⃗, ...
´¹¹¹¹¹¹¸¹¹¹¹¹¶
n−1 p⃗′s

, q⃗, , ......⟩

in

(21.80)
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Similarly aout(p⃗) is defined by its action on the unit vectors of the out basis.

Note that at this point we have no idea what happens when we apply ain(p⃗) on
some out basis vector.

From the ain(p⃗) and aout(p⃗) we may construct fields ϕin(x) (and ϕout(x)) as
before:

ϕin(x) =∑
1√

2V p0

(ain(p⃗)e−ipx + a+in(p⃗)eipx) (21.81)

The momentum p refers here to a momentum that can be found with the parti-
cles at t = −∞, when they are presumably far apart, and thus their energy will
be purely kinetic(no potential energy).

Thus, we then have p0 =
√
p⃗2 +M2 for pions and p0 =

√
p⃗2 +m2 for σ−particles,

which have the field σin(x).

Since the S-matrix transformsthe in basis into out basis it must also transform
ain(p⃗) into aout(p⃗)

Saout(p⃗)S+ ∣p⃗, p⃗, .....⟩in = Saout(p⃗) ∣p⃗, p⃗, .....⟩out
=
√
nS ∣p⃗, .....⟩out =

√
n ∣p⃗, .....⟩in

= ain(p⃗) ∣p⃗, p⃗, .....⟩in

We used S−1 = S+ to transform out into in state. We thus see that

ain(p⃗) = Saout(p⃗)S+ (21.82)

Similarly
ϕin(x) = Sϕout(x)S+ (21.83)

Both fields, ϕin and ϕout satisfy the Klein-Gordon equation.

It must be understood that ϕin and ϕout are well defined for all space and time.
Thus ϕin(x) for example is perfectly well defined and non-zero for x0 = +∞.

The essence of the above may be put as follows.

The assumption that for t = −∞ any physical system becomes a system of free
particles allows a mapping of all possible physical systems (by how they are
at −∞) on all possible free particle systems. Then we can use the formalism
developed for those systems, and build fields. The fields so constructed are the
in fields. Similarly out fields, related to labeling physical systems by how they
are at +∞. This then exhibits the role of assumptions on asymptotic behavior,
which are clearly of fundamental importance.

Let us formulate this once more in different terms.
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Consider a physical system as a movie, showing a lot of action as it is projected.
This movie is in a can, and the can may be labeled in different ways. The
labeling may be on the basis of the opening scene of the movie, or alternatively,
on the basis of the final scene.

Clearly, these are very different ways of labeling.

Only empty movies (the vacuum) or movies containing just one actor (one par-
ticle of some momentum) are likely to have identical in and out scenes.

A physical state in Hilbert space is like a movie in a can. It is the whole movie,
not just the opening scene, even if the can is labeled that way. Seeing things
this way it hopefully becomes clear that a progressing physical system is not a
vector in Hilbert space (such as ∣p⃗, q⃗⟩in rotating to another state (∣p⃗, q⃗⟩out) in
the course of time.

A vector in Hilbert space has no time dependence, but, like in a movie, all action
is contained in that state.

In that sense the S-matrix is a cross-index register, showing the relation between
two labeling systems. Given the beginning scene of a movie, the S-matrix tells
us what the final scene is.

21.3 Interacting Fields - Part 2

21.3.1 Interpolating Fields

We are now in a position to formulate equations of motion that describe an
interaction.

We assume the existence of a field ϕ(x) (no in or out index) that is equal to
ϕin(x) if x0 (the time) is −∞ and is equal to ϕout(x) at x0 = +∞. Again, ϕin(x)
is well defined at x0 = +∞, but then it will be very different from ϕ(x). Thus,
we have

lim
x0→−∞

ϕ(x) = ϕin(x) , lim
x0→+∞

ϕ(x) = ϕout(x) (21.84)

Figure 21.3 below shows some attempt to visualize the system.

Note that ϕin(x) and ϕout(x) are well defined for all times. Now, ϕ(x) will
also satisfy an equation of motion, but it will not be a simple Klein-Gordon
equation. We therefore write:

(− ∂
2

∂t2
+∇2 −M2)ϕ(x) = −j(x) (21.85)
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Figure 21.3: Visualizing ”in” to ”out”

The minus sign is part of the definition. The quantity j(x) is called a current,
and j(x) is such that if we solve this equation with the boundary condition

ϕ(x) = ϕin(x) at x0 = −∞ (21.86)

then for
x0 = +∞ we will have ϕ(x) = ϕout(x) (21.87)

If we know j(x), and can solve this equation then we can find ϕout from ϕin,
and thus also determine the S-matrix since S relates in- and out-fields.

Unfortunately, the equation can be solved only in successive approximations(perturbation
theory). We start by assuming that j(x) can be constructed from the ϕ them-
selves. This assumption has its basis in the fact that the a and a+. Since ϕ(x) is
to be local (nothing moving with speeds exceeding the speed of light), it makes
sense to build up j(x) from the ϕ(x).

Basically all this is one big assumption. The system is really very complicated,
even for the simplest cases as we will see. Only for those simple cases can the
above equation be solved, and even then only in terms of successive iterations
(perturbation theory). Thus the scheme developed below is to a large extent
determined simply by the requirement that we can solve it. Fortunately these
methods give rise to results that agree very well with experimental observations.
One truly may be thankful to nature for this, that is, limiting itself to something
that we can compute!

Let us now write down a simple expression for j(x) and solve the equation.
Since we want the pions to interact with the σ−particles we will also include
σ−fields in j(x). We assume

j(x) = −2gσ(x)ϕ(x) (21.88)

The constant g is called the coupling constant. We will now write π(x) instead
of ϕ(x) to exhibit more clearly the fact that this particular field is associated
with pions.

The above choice is really the simplest non-trivial form for j(x) since if we chose
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only π(x) or σ(x) we could, with some reshuffling of the equation, make j(x)
zero and, therefore, this would not correspond to any interactions.

Of course, there is also an equation of motion for the σ−fields:

(− ∂
2

∂t2
+∇2 −m2)ϕ(x) = −j̄(x) (21.89)

with some other current j̄(x) instead of j(x). As we will see one cannot freely
choose j̄(x) if j(x) is already fixed. There is a strong interconnection.

Intuitively, this is simple to see. If j(x) determines how pions interact with σ’s
then evidently this fixes also the interaction of σ’s with π’s. In fact, one can
determine the S-matrix from either j(x) or j̄(x) above, and this better be the
same S-matrix! We will see later that the choice j = 2gσπ implies j̄ = gπ2.

It should be stressed here that the field σ(x) in j(x) is not σin or σout but also
an interpolating field (interpolating between σin and σout) just as π(x) is an
interpolating field (interpolating between πin and πout).

To find the S-matrix we assume the existence of a matrix U(x0), time-dependent,
but not space-dependent, such that:

π(x) = U+(x0)πin(x)U(x0) , σ(x) = U+(x0)σin(x)U(x0) (21.90)

Clearly U(−∞) = I and U(+∞) = S. Since we will explicitly find U(x0), there
is no point in discussing whether this assumption makes sense.

To be complete, it should be noted that from a strict mathematical point of
view one can raise many questions and objections, relating to the fact that we
are dealing with infinite matrices. But being physicists, we, as usual, ignore
these potential problems.

From the fact that π(x) satisfies an equation of motion we should be able to
deduce an equation of motion for U(x0). Here we need to be careful because all
the objects that we are dealing with are big, generally non-commuting, matrices.
Basic equations, derived earlier, that we will use are:

[π(x), π(y)]x0=y0
= 0 , [∂π(x)

∂x0
, π(y)]

x0=y0

= −iδ(3)(x⃗ − y⃗) (21.91)

We will now show that, if U(x0) satisfies the following differential equation:

∂U(x0)
∂x0

= ig∫ d3y π2
in(y)σin(y)U(x0) with y0 = x0 (21.92)

then π(x) as defined above satisfies

(− ∂
2

∂t2
+∇2 −M2)π(x) = −2gσ(x)π(x) (21.93)
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The proof of this statement is not particularly difficult, just a little cumbersome.
It is important to remember that U(x0) is time dependent, not space dependent.
In other words

∂U(x0)
∂xµ

= 0 , µ = 1,2,3 (21.94)

First we introduce a notation:

H(x0) = g∫ d3y π2(y)σ(y) with y0 = x0 (21.95)

and
Hin(x0) = g∫ d3y π2

in(y)σin(y) with y0 = x0 (21.96)

It follows that
H(x0) = U−1Hin(x0)U (21.97)

The equation to be solved is now:

∂U(x0)
∂x0

= iHin(x0)U(x0) (21.98)

The time derivative of π(x) and σ(x) can be computed. Remember, in general:

∂(I) = 0 = ∂(U−1U) = ∂(U−1)U +U−1∂(U)
→ ∂(U−1) = −U−1∂(U)U−1 (21.99)

We then find:
π = U−1πinU (21.100)

and

∂π

∂x0
= ∂(U

−1πinU)
∂x0

= ∂(U
−1)

∂x0
πinU +U−1 ∂(πin)

∂x0
U +U−1πin

∂(U)
∂x0

= −U−1 ∂(U)
∂x0

U−1πinU +U−1 ∂(πin)
∂x0

U +U−1πiniHinU

= −U−1iHinUU
−1πinU +U−1 ∂(πin)

∂x0
U +U−1πiniHinU

= U−1i [πin,Hin]U +U−1 ∂(πin)
∂x0

U (21.101)

We can see a general rule here. The second time derivative of the π−field
becomes:

∂2π

∂x2
0

= −U−1 [[πin,Hin] ,Hin]U +U−1 ∂

∂x0
i [πin,Hin]U

+U−1i [∂πin
∂x0

,Hin]U +U−1 ∂
2πin
∂x2

0

U (21.102)
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As noted before the spatial derivatives of U vanish. Considering now the Klein-
Gordon equation for π(x) we find

(− ∂
2

∂t2
+∇2 −M2)π(x) = (− ∂

2

∂t2
+∇2 −M2)(U−1πinU)

= ((− ∂
2

∂t2
−M2)U)πinU

+U−1 ((− ∂
2

∂t2
+∇2 −M2)πin)U

+U−1πin ((− ∂
2

∂t2
−M2)U)

= ((− ∂
2

∂t2
−M2)U−1)πinU

+U−1πin ((− ∂
2

∂t2
−M2)U) (21.103)

and finally

(− ∂
2

∂t2
+∇2 −M2)π(x) = −U−1 [[πin,Hin] ,Hin]U

+U−1 ∂

∂x0
i [πin,Hin]U

+U−1i [∂πin
∂x0

,Hin]U (21.104)

Since the field πin satisfies the free Klein-Gordon equation, the first term on the
right hand side vanishes. Also, the second and third terms vanish because πin(x)
and πin(y) commute for x0 = y0 (as far as πin(x) and σin(x) are concerned, they
commute always because the matrices a and a+ for the π and σ fields commute).
The last term gives

[∂πin
∂x0

,Hin] = ig∫ d3yσ(y) [∂πin
∂x0

, π2
in]

x0=y0

= −2ig ∫
x0=y0

d3yσin(y)δ(3)(x⃗ − y⃗)πin(y)

= −2igσin(y)πin(y) (21.105)

The final result is:

(− ∂
2

∂t2
+∇2 −M2)π(x) = −2gU−1σin(x)πin(x)U

= −2gσ(x)π(x) (21.106)

because

U−1σin(x)πin(x)U = U−1σin(x)UU−1πin(x)U = −2gσ(x)π(x) (21.107)
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which is precisely what we set out to prove.

It is then straightforward(same techniques) to show that

(− ∂
2

∂t2
+∇2 −m2)σ(x) = −gπ2(x) (21.108)

This is the moment to consider the question of the connection between j and
j̄. It is clear from the above derivation that they follow from the same U , i.e.,
from the same H. As a matter of fact one notes the formal rules:

j(x) = ∂H(x)
∂π

and j̄(x) = ∂H(x)
∂σ

(21.109)

with
H(x) = ∫ d3yH(y) , H(y) = gπ2(y)σ(y) (21.110)

The quantities H and H are called the interaction Hamiltonian and the interac-
tion Hamiltonian density respectively. It is clear that it is better to start from
a Hamiltonian and then to derive the equations of motion to avoid inconsisten-
cies. This is what we will do in general. In fact, at this point we do not really
need the equations of motion for the fields any more. We will simply take some
Hamiltonian, and we then know that the U−matrix satisfies the equation

∂

∂x0
U(x0) =Hin(x0)U(x0) (21.111)

and solve U from that. Once we have U we have the S-matrix, namely, S =
U(∞).

It should be clearly understood what we have here. The solution of the equation
for U will give us the matrix U as a function of πin and σin. Thus we will obtain
S as a function of πin and σin. This is precisely what we need. As noted before,
the probability to find the configuration c at time t = +∞ if at time t = −∞ we
have the configuration b, is given by

∣out ⟨c ∣ b⟩in∣
2 = ∣in ⟨c∣S ∣b⟩in∣

2 (21.112)

We need in ⟨c∣S ∣b⟩in since if S is given in terms of in fields we know exactly
what S gives when operating on an in basis vector.

Thus, in principle there is no problem here. However, the actual calculation of
matrix elements in ⟨c∣S ∣b⟩in remains a complicated matter.

The diagram technique introduced by Stuckelberg and Feynman is a very pow-
erful tool to analyze this system. This technique is generally useful for solving
equations of the type

∂X

∂t
= AX (21.113)
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where A is a given, time dependent, quantity. If A s a constant the solution is
simple:

X = eAt (21.114)

If A is time-dependent, but not a matrix, just some function, then the solution
is:

X = exp
⎛
⎝

t

∫
c

A(t ′)dt ′
⎞
⎠

(21.115)

where c is an arbitrary constant. If A(t) is a matrix such that A(t1) and A(t2) do
not necessarily commute, then the solution is more complicated and essentially
can be given only in terms of a series expansion that looks very much like an
expansion of the above exponential, but not exactly (see Chapter 11).

To be precise, it is easy to verify(Chapter 11) that a solution in this case is

X = 1 +
∞
∑
n=1

1

n!

t

∫
−∞

dt1

t

∫
−∞

dt2.........

t

∫
−∞

dtnT (A(t1)A(t2).....) (21.116)

We have taken the constant c as −∞, to avoid a number of irrelevant complica-
tions. The time ordered product T is defined as follows. For the product of two
A’s

T (A(t1)A(t2)) =
⎧⎪⎪⎨⎪⎪⎩

A(t1)A(t2) if t1 > t2
A(t2)A(t1) if t2 > t1

(21.117)

For any number of A’s it works similarly, i.e., the A’s must be arranged in order
of decreasing time. Obviously, if A(t1) and A(t2) commute for any t1 and t2
then the above expression reduces to an exponential function.

We now proceed to show the correctness of the above solution. It can of course
be verified directly by putting the above solution into the equation, but we will
use iteration instead. Suppose we want to find X as a power series in A. Let
us find the lowest order term. We write X = 1+α1, where α1 is of first order in
A. Neglecting terms of order A2 such as Aα1 the equation for X becomes

dα1

dt
= A→ α1 =

t

∫
−∞

A(t1)dt1 (21.118)

To obtain the next iteration we write:

X = 1 +
t

∫
−∞

A(t1)dt1 + α2 (21.119)

where α2 is of second order in A. The equation for X becomes (to second order
in A)

dα2

dt
= A(t)

t

∫
−∞

A(t1)dt1 (21.120)
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The solution is

α2 =
t

∫
−∞

dt2A(t2)
t2

∫
−∞

dt1A(t1) (21.121)

Notice that t2 > t1, that is, the matrices A appear in descending order of time.
To further proceed with this integral we claim that

α2 =
t

∫
−∞

dt2

t

∫
t2

dt1A(t1)A(t2) (21.122)

also. Note the order of the A and the integration limits of the second integral
where again the A appear in descending order. This may be verified either by
direct insertion into the equation for dα/dt or by transforming the integral. This
becomes very easy by considering Figure 21.4 below showing the integration do-
mains.

Figure 21.4: Integration Domains

Taking c as lower integration limit, with c some number, the first integral corre-
sponds to domain I in the figure and the second to domain II. It is clear that the
two domains can be obtained from each other by exchanging t1 and t2. Since
indeed the integrands have t1 and t2 interchanged we see that the two integrals
are equal. We may therefore take also for α2 half the sum of both expressions
and thus obtain

α2 =
1

2

t

∫
−∞

dt1

t

∫
−∞

dt2T (A(t1)A(t2)) (21.123)

For the sake of clarity we will show directly that the above is the correct solution.
First,

T (A(t1)A(t2)) = θ(t − t2)A(t1)A(t2) + θ(t2 − t1)A(t2)A(t1) (21.124)
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This shows explicitly the meaning of the T−product. Now,

dα2

dt
= 1

2

t

∫
−∞

dt2(θ(t − t2)A(t)A(t2) + θ(t2 − t)A(t2)A(t))

+ 1

2

t

∫
−∞

dt1(θ(t1 − t)A(t1)A(t) + θ(t − t1)A(t)A(t1)) (21.125)

Essentially the first part is obtained by setting t1 = t, the second by setting
t2 = t. The very first term contains θ(t − t2) and is zero unless t2 < t which is
always true since t2 runs from −∞ to t. We can therefore omit the θ−function
in that term, to get

1

2
A(t)

t

∫
−∞

dt2A(t2) (21.126)

The second term is zero unless t2 > t, which is never true, and that term is zero.
Similarly the last two terms, which really differ from the first two only in that
the integration variable is called t1 instead of t2. Together we get the desired
result.

Similarly, one finds in general:

αn =
1

n!

t

∫
−∞

dt1

t

∫
−∞

dt2.......

t

∫
−∞

dtnT (A(t1)A(t2)........A(tn)) (21.127)

In this case one must consider n! domains of integration, all obtained from each
other by some permutation of t1t2......tn, but there is no essential difference from
the case of just two variables.

21.4 Interacting Fields - Part 3

21.4.1 Feynman Rules
We will now work out the lowest non-vanishing order of the S−matrix for the
case of the π and σ fields given before. We have

∂U(x0)
∂x0

= iHin(x0)U(x0) (21.128)

or
∂U(x0)
∂x0

= i ∫
x0=y0

d3yHin(y)U(x0) (21.129)

In first approximation we find:

U(x0) = 1 + i
x0

∫
−∞

dt1 ∫
y0=t1

d3yHin(y) (21.130)
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where we used y0 directly instead of t1. Note that d4y = d3ydy0. The S−matrix
follows by taking the limit x0 = +∞.

S = 1 + i∫ d4yHin(y) + ....... (21.131)

The general expression for S is:

S = 1 +
∞
∑
n=1

in

n!
∫ d4y1d

4y2......d
4ynT (Hin(y1).......Hin(yn)) (21.132)

Let us now concentrate on a specific process. Consider the scattering of two
pions with momenta p and q giving rise to two pions with momenta p′ and q′.
We must calculate:

out ⟨p ′, q ′ ∣ p, q⟩in = out ⟨p
′, q ′∣S ∣p, q⟩in (21.133)

with S as above, and
H(y) = gπ2

in(y)σin(y) (21.134)

Remember also that

πin(y) =∑
k

1√
2V p0

(ain(k)e−iky + a+in(k)eiky) (21.135)

where ain(k) transforms a state with m pions into a state with m−1 pions, and
gives zero if no pions are present, while a+in(k) gives the opposite result.

Let us first consider the lowest order term of S. As we have now exclusively in
type objects we will drop this subscript. We have:

⟨p ′, q ′∣S ∣p , q⟩ = ⟨p ′, q ′ ∣ p , q⟩ + i∫ d4y ⟨p ′, q ′∣H(y) ∣p , q⟩ (21.136)

plus terms of higher order in H. Now, if p′, q′ is different from p,q then the
first term is zero (orthogonal vectors). The second term contains one H and
therefore only one σ field. This applied to a state without σ particles gives zero
(for the a(k) part) or a state containing a σ particle. But the dot product of
such a state with the state ∣p′, q′⟩, containing no σ particle is zero. Therefore
also the second term is zero.

Generally, any product of an odd number of H’s gives zero between states with-
out σ particles, by similar arguments.

Let us now consider the second order term. It is given by:

ig2

2
∫ d4yd4y ′ ⟨p ′, q ′∣T (π2(y)σ(y)π2(y ′)σ(y ′)) ∣p , q⟩ (21.137)

Now we will have non-zero terms. For instance, some a+ term in the σ−field
can transform the state ∣p, q⟩ into a state containing in addition a σ particle of,
say, momentum k, i.e.,

σ ∣p, q⟩ = ∣p, q, k⟩ (21.138)
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Then two a−type terms in the following two π fields may transform this state
into a state containing no pions, i.e.,

π2σ ∣p, q⟩ = ∣k⟩ (21.139)

Next the appropriate a(k) term in the σ field transforms this state into the state

σπ2σ ∣p, q⟩ = ∣0⟩ (21.140)

Finally, selecting the terms with a+(p′) and a+(q′) in the last two pion fields
transforms the state ∣0⟩ into the state ∣p′, q′⟩. The scalar product of this state
with ∣p′, q′⟩is non-zero; in fact it is one.

This may be graphically depicted in the following way. Particles are described
by lines, and the action of σ and π fields is to either end or start a line. The
action of H is thus to start or end two π lines and one σ line. The above exam-
ple, drawn in the opposite direction (i.e. with y′ left of y) is shown in Figure
21.5 below.

Figure 21.5: Feynman diagram for ππ scattering

H(y ′) ends two π lines and starts a σ line corresponding to π2σ ∣p, q⟩ = ∣k⟩ and
H(y) ends a σ line and starts two π lines.

We now can draw pictures corresponding to all possibilities. They are shown in
Figure 21.6 below.

We have drawn the vertices as visible dots, to avoid confusion with crossing
lines. The last case shown differs from the first only by the interchange of y and
y′. Since the whole is symmetric in y and y′ it follows that both cases give the
same result. Also the first four diagrams all correspond to the same expression.

All together we get the contributions shown in Figure 21.7 below:
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+ further permutations

Figure 21.6: All Possible Feynman diagrams for ππ scattering

Figure 21.7: Different Feynman diagrams for ππ scattering
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Generally, in higher orders one gets the same result for all permutations of
y,y′,y′′, ...... , which gives a factor n! for the nth order. This cancels against the
factor 1/n! in front.

So far we have not worried about the various factors going with the a and a+.
This is not very difficult.

Let us take the first diagram shown in Figure 21.8 below.

Figure 21.8: First Feynman diagrams for ππ scattering

We find:

( 1√
2V p0

eipy
′ 1√

2V q0

eiqy
′

)( 1√
2V k0

e−iky
′ 1√

2V k0

eiky)

×
⎛
⎝

1√
2V p′0

e−ip
′y ′ 1√

2V q′0
e−iq

′y ′⎞
⎠

(21.141)

This is for y0 > y′0. For y′0 > y0 the order of the H is reversed, which is of no
consequence to the π part, but now the σ starts in the point y and ends in y′.

All together we get:

∫ d4yd4y ′
ig2

4V 2
√
p0q0p′0q

′
0

e−i(p+q)y
′

ei(p
′+q′)y

× (θ(y0 − y′0)∑
k

1

2V k0
e−ik(y−y

′) + θ(y′0 − y0)∑
k

1

2V k0
e−ik(y

′−y)) (21.142)

Let us now first work out the expression in brackets. The sum over k may be
written as an integral over d3k, and by methods as described before we may
rewrite the whole in terms of a 4-dimensional integral.

∑
k

1

2V k0
e−ik(y−y

′) → 1

(2π)3 ∫ d4ke−ik(y−y
′)θ(k0)δ(k2 +m2) (21.143)

This function is denoted by ∆+(y − y ′). Similarly the second term, differing
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only by the interchange of y and y′.

∑
k

1

2V k0
e−ik(y

′−y) → 1

(2π)3 ∫ d4ke−ik(y
′−y)θ(k0)δ(k2 +m2) (21.144)

= 1

(2π)3 ∫ d4keik(y−y
′)θ(k0)δ(k2 +m2)

= ∆−(y − y ′) (21.145)

In the last step we replaced k by −k. One has evidently

∆+(z) = ∆−(−z) (21.146)

The combination

∆F (y − y′) = θ(y0 − y′0)∆+(y − y′) + θ(y′0 − y0)∆−(y − y′) (21.147)

is called the propagator of the σ−field. It can be worked out easily using a
Fourier expression for the θ−function. On has

θ(z) = 1

2πi

∞

∫
−∞

dτ
eiτz

τ − iε
, lim ε→ 0 , ε > 0 (21.148)

You can confirm this equation by considering the poles of the integrand in the
complex τ plane. Add an integral over a large half circle to make a closed
contour; take this circle either in the upper or lower τ plane depending on the
sign of z such that the exponential becomes very small on the circle.

With this expression we have:

∆F (z) = 1

(2π)4i
∫ d4k∫ dτe−ikz+iτz0 (θ(k0)δ(k2 +m2)

τ − iε
+ θ(−k0)δ(k2 +m2)

−τ − iε
)

(21.149)
The trick is to get τ out of the exponential. This may be achieved by a change
of variable for the k0 integration. We take

k0 = k′0 + τ (21.150)

Note that kz = k0z0 − k⃗ ⋅ z⃗. We then find

∆F (z) = 1

(2π)4i
∫ d4k∫ dτe−ikz

⎛
⎝

θ(k0+τ)δ(k⃗2−(k0+τ)2+m2)
τ−iε

+ θ(−k0−τ)δ(k⃗2−(k0+τ)2+m2)
−τ−iε

⎞
⎠

(21.151)

where we renamed k′0 to k0. Next we do the τ integral. The argument of the
δ−functions is zero if

k0 + τ = ±
√
k⃗2 +m2 = ±√ (21.152)

The θ−functions select the + root for the first term and the − root for the second.
The argument of the δ−function can be rewritten

k⃗2 − (k0 + τ)2 +m2 = (√ − (k0 + τ)) (
√ + (k0 + τ)) (21.153)
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Remember again

δ(ab) = 1

∣a∣
δ(b) + 1

∣b∣
δ(a) (21.154)

We find

∆F (z) = 1

(2π)4i
∫ d4ke−ikz

1

2
√
k⃗2 +m2

⎛
⎝

1

−k0 +√ − iε
+ 1

k0 +√ − iε
⎞
⎠

(21.155)

The complete expression for the diagram considered is

ig2

(2π)4iV 2
√

16p0q0p′0q
′
0

∫ d4k∫ d4yd4y ′
e−i(p+q)y

′

ei(p
′+q′)ye−ik(y−y

′)

k2 −m2 − iε
(21.156)

Both y and y′ occur only in the exponents, and the integrals can be done using

δ(a) = 1

2π

∞

∫
−∞

dxe−iax (21.157)

and we find

−g2

(2π)4iV 2
√

16p0q0p′0q
′
0

(2π)8 ∫ d4k
1

k2 −m2 − iε
δ(4)(p + q − k)δ(4)(k − p′ − q′)

(21.158)
The integral over k can be done

−g2(2π)8

(2π)4iV 2
√

16p0q0p′0q
′
0

δ(4)(p + q − p′ − q′)
(p + q)2 −m2 − iε

(21.159)

From the above calculation we can see how things go in general. Write down
all possible diagrams, and then for any diagram write down the correct factors.
As much as possible factors relating to permutations should be absorbed into
some easy rules. This is not always possible, but in most cases that one meets
there is really not much of a problem.

First, the combinatorial factor relating to there being two pion lines in a vertex
that can be interchanged, is easily taken care of by including a factor of 2 in
the vertex. The factor of two relating to the symmetry in y,y′ interchange
cancels against the factor 1/2! in front of the second order term of the S-matrix
expansion. Now we have three essentially different diagrams left:

The contribution due to the first diagram has been computed rules for the
theory that we are considering here. Here are the Feynman rules for the case
H(x) = gπ2(x)σ(x):

1. To every incoming or outgoing π or σ of momentum p corresponds a factor
1/

√
2V p0
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Figure 21.9: The Essentially Different Feynman diagrams for ππ scattering

2. To every vertex corresponds a factor 2i(2π)4gδ(4)(.....). Note: 2 for two
pion lines, i from the original equation for the S−matrix, (2π)4 from the
integral giving the δ−function, and g as found in the interaction Hamilto-
nian

3. To every propagator corresponds a factor

1

(2π)4i
∫ d4k

1

k2 −m2 − iε
(21.160)

For the pion field one has M2 instead of m2

Many of the propagator integrals can usually be done, thereby getting rid of
the δ−functions due to the vertices. The general rule is that one δ(4)(.....)
remains, assuring that the sum of incoming momenta equals the total of the
outgoing momenta, thus guaranteeing conservation of energy and momentum
in any process. In the first non-trivial order (as we are considering here) no
momentum integral remains. In the next order one four-dimensional integral
remains non-trivial, and in every next order there is one more four-integral.
This is what makes it so hard to do higher order calculations.

21.5 Interacting Fields - Part 4

21.5.1 Feynman Propagator
This is the moment to reflect on the most important central quantity, the Feyn-
man propagator ∆F . Its definition was

∆F (y − y′) = θ(y0 − y′0)∆+(y − y′) + θ(y′0 − y0)∆−(y − y′) (21.161)

The functions ∆+ and ∆− are

∆±(y − y′) = 1

(2π)3 ∫ d4k eik(y−y
′)θ(±k0)δ(k2 +m2) (21.162)
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In words, one may understand, the Feynman propagator as follows:

If the time y0 is larger than the time y′0 then this propagator equals a function
containing plane waves for a particle of positive energy on mass shell. We can
literally say that if the time y0 > y′0 then the Feynman propagator represents
a physical particle moving from the space-time point y′ to the space-time point
y. In fact, the exponential is nothing else but the wave function for a plane
wave for a particle leaving y′ multiplied by the wave function for a particle of
the same mass and momentum arriving at y. This product is the overlap of
these functions, something that relates to the probability for this to happen. The
total propagator is obtained when integrating over all possible physical momenta
(positive energy, on mass shell). If the time y′0 > y0, then the particle moves in
the opposite direction.

There is a causality idea in there: energy moves from the earlier point to the
later. There is another feature: the probability for this to happen must not be
negative, which is embodied in the sign of the ∆±. Indeed, having a theory with
∆± as above but with a − sign in front would give rise to negative probabilities.
This then is the physical content of the Feynman propagator.

The appearance of the θ−functions in ∆F and ∆± thus relates closely to physical
concepts. It turns out that these same θ−functions are crucial for the study of
unitarity of the S−matrix, i.e., conservation of probability. And the sign of the
∆± relates to the sign of probability: if it happens to be minus for some particle,
then that particle better be a ghost, meaning that the sum total of its effects
must somehow cancel. Things like that happen in gauge theories, where then
the symmetry of the theory guarantees the necessary cancellations.

21.5.2 Scattering Cross Section

We now introduce a new particle in addition to the π and σ, and we will call it
P . Apart from the spin, which one usually neglects in first approximation, this
P is to play the role of the proton.

It interacts with the σ in the same way as the π(the electron). Thus the inter-
action Hamiltonian becomes:

H = gπ2σ − gP 2σ (21.163)

The minus sign reflects the fact that the proton charge is opposite to the electron
charge.
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We then obtain the following equations of motion:

(− ∂
2

∂t2
+∇2 −M2)π(x) = −2gπσ (21.164)

(− ∂
2

∂t2
+∇2 −m2)σ(x) = −gπ2 + gP 2 (21.165)

(− ∂
2

∂t2
+∇2 −M2

P)P (x) = 2gPσ (21.166)

These follow from previous results, as well as the fact that the P field commutes
with all π and σ fields, including time derivatives of these fields. The Feynman
rules are as before, except we now have an extra particle, the P , to be denoted
by a broken line. There is also a new kind of vertex, showing the σ−P coupling
as shown in Figure 21.10 below.

Figure 21.10: New Particle Additions

Next we consider πP scattering as shown in Figure 21.11 below.

Figure 21.11: πP Scattering
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In this case, to second order, we wind up with only one diagram as shown in
Figure 21.12 below.

Figure 21.12: Only 2nd−order diagram in πP Scattering

and the corresponding expression for the S−matrix element, or amplitude, is

⟨S⟩ = (2g)(−2g)i2(2π)8

(2π)4iV 2
√

16p0q0p′0q
′
0

δ(4)(p + q − p′ − q′)
(p − p′)2 −m2 − iε

(21.167)

where m is the σ−mass.

To obtain a cross section we must take the absolute value squared of this expres-
sion, which is not immediately clear because of the δ−function. To get around
this we first go back to finite volume V , which amounts to the replacement

δ(3)(p⃗ + q⃗ − p⃗′ − q⃗′)→ V

(2π)3
δp⃗+q⃗,p⃗′+q⃗′ (21.168)

Thus,

(δ(3)(....))2 → V 2

(2π)6
δp⃗+q⃗,p⃗′+q⃗′ (21.169)

since there is nothing difficult about squaring a Kronecker−δ, but we now have
V 2 instead of V . Recombining one V factor with the δ we have

(δ(3)(....))2 → V

(2π)3
δ(3)(....) (21.170)

Now what about the fourth δ−function (relating to energy conservation)? Here
we must introduce a time interval T . Since with plane waves as we consider
here there is really no beginning and end to the scattering process we limit our

1682



observations to a time interval T , and will compute the transition probability
per unit of time. Essentially, now things are entirely the same for time and
space, and squaring the fourth δ−function gives us a factor T /2π. The transition
probability is therefore

∣⟨S⟩∣2 =
RRRRRRRRRRR

−4ig2(2π)4

V 2
√

16p0q0p′0q
′
0

1

(p − p′)2 −m2 − iε

RRRRRRRRRRR

2
V T

(2π)4
δ(4)(....) (21.171)

We want to compare our results to the classical Rutherford scattering cross
section formula, thus we must work this over to a cross section. Imagine the
(proton) P to be at rest (q = (MP ,0,0,0)) and the (electron) π comes in along
the z−axis (p = (p0,0,0, pz)). We thus have a stream of π coming along the
z−axis. Since we have one particle in the whole universe the flux (= number of
particles per unit surface per unit of time) is v/V where v is the velocity of the
π. This velocity is given by

v = ∣p⃗∣
p0

(21.172)

The cross section is the probability per unit of time, for unit flux, summed over
all possible final states. Thus,

σtot =
V

(2π)3 ∫ d3p′
V

(2π)3 ∫ d3q′
V p0

∣p⃗∣
∣⟨S⟩∣2 1

T
(21.173)

The integrals with the factors in front are simply the continuum limit of sum-
mation over all p′ and q′. Thus, we arrive at the equation

σtot =
V

(2π)3 ∫ d3p′
V

(2π)3

× ∫ d3q′
V p0

∣p⃗∣

RRRRRRRRRRR

−4ig2(2π)4

V 2
√

16p0q0p′0q
′
0

1

(p − p′)2 −m2 − iε

RRRRRRRRRRR

2
V T

(2π)4
δ(4)(....) 1

T

(21.174)

or

σtot =
16g2

(2π)2

1

4p0q0
∫ d3p′

1

2p′0
∫ d3q′

× 1

2q′0

p0

∣p⃗∣
∣ 1

(p − p′)2 −m2 − iε
∣
2

δ(4)(p + q − p′ − q′) (21.175)

The integral over q′ can be done, using up three of the δ−functions. We get

σtot =
16g2

(2π)2

1

4p0q0
∫ d3p′

× 1

4p′0q
′
0

p0

∣p⃗∣
∣ 1

(p − p′)2 −m2 − iε
∣
2

δ(p0 + q0 − p′0 − q′0) (21.176)
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where q′0 =
√
q⃗2 +M2 with q⃗ ′ = p⃗ + q⃗ − p⃗ ′.

We now make the non-relativistic approximation and also the no-recoil approx-
imation, which is the approximation that the P mass MP is much heavier than
the mass M of the π.

We then introduce polar coordinates for p⃗ ′, the outgoing π momentum as shown
in Figure 21.13 below.

Figure 21.13: π momentum polar coordinates

Then we can write
∫ d3p′ = ∫ dΩ∫ y2d3y (21.177)

where y = ∣p⃗∣. Conservation of momentum tells us that q′0, the energy of the
outgoing P , is given by

q′0 =
√
Q⃗2 +M2

P (21.178)

with Q = p + q − p′, and thus

Q⃗ = p⃗ + q⃗ − p⃗ ′ = p⃗ − p⃗ ′ (21.179)

because q⃗ = 0, as the initial proton is at rest. The quantity Q⃗ is called the
momentum transfer. It is the amount of momentum given by the π to the P .

If MP is very large we may approximate

q′0 =MP +
Q⃗2

2MP
+ ..... (21.180)

The no-recoil approximation is to neglect the term

Q⃗2

2MP
(21.181)

with respect to MP . Thus, to this approximation the proton remains at rest,
q′0 =MP . The expression for σtot now becomes

σtot =
g4

4π2

1

p0q0
∫ dΩ∫ y2d3y

1

4p′0q
′
0

p0

∣p⃗∣
∣ 1

Q2 −m2 − iε
∣
2

δ(p0 − p′0) (21.182)
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Now y = ∣p⃗∣, thus p′0 =
√
y2 +M2. It then follows that

dp′0
dy

= 1

2

1√
y2 +M2

2y = y

p′0
(21.183)

or ydy = p′0dp′0 or ∣p⃗ ′∣d ∣p⃗ ′∣ = p′0 dp′0. Furthermore, the δ−function assures us
that p0 = p′0. Thus √

p⃗2 +M2 =
√
p⃗ ′2 +M2 (21.184)

so that ∣p⃗∣ = ∣p⃗ ′∣. We therefore arrive at

σtot =
g4

4π2

1

p0q0
∫ dΩ∫ dp′0

1

4p′0q
′
0

yp′0p0

∣p⃗∣
∣ 1

Q2 −m2 − iε
∣
2

δ(p0 − p′0) (21.185)

Using the fact that y = ∣p⃗∣ = ∣p⃗ ′∣ and doing the now trivial p′0 integration we get

σtot =
g4

4π2

1

p0q0
∫ dΩ

p0

q′0
∣ 1

Q2 −m2 − iε
∣
2

(21.186)

It should be noted that in the no-recoil approximation Q0 << ∣Q⃗∣. This follows
because Q0 is the difference between the initial and final P energy

Q0 = q′0 − q0 =
√
Q⃗2 +M2

P −MP ≈ Q⃗2

2MP
(21.187)

Therefore Q2 = Q⃗2 to a good approximation. Replacing, nonrelativistically, q0

by MP and p0 by M we have the final result

σtot =
g4

4π2M2
P
∫ dΩ ∣ 1

Q2 −m2
∣
2

(21.188)

We have omitted the iε in the propagator, because both Q⃗2 and m2 are positive,
so the infinitesimal ε is of no relevance here. If we take the σ mass to be zero
we have

σtot =
g4

4π2M2
P
∫ dΩ

1

Q⃗4
(21.189)

Now Q⃗ = p⃗ − p⃗ ′ and

Q⃗2 = 2 ∣p⃗∣2 (1 − cos θ) = 4 ∣p⃗∣2 sin2 θ

2
(21.190)

where we used ∣p⃗∣ = ∣p⃗ ′∣ and θ is the angle that the outgoing makes with the
z−axis (the direction of the incoming π), Thus

σtot =
g4

4π2M2
P
∫ dΩ

1

16 ∣p⃗∣4 sin4 θ
2

= g4

64π2M2
PM

4 ∫ dΩ
1

v4 sin4 θ
2

= 2πg4

64π2M2
PM

4 ∫
sin θdθ

v4 sin4 θ
2

(21.191)

which is indeed the angular distribution as given by the Rutherford scattering
formula. In here v is the velocity of the initial π, with ∣p⃗∣ = Mv as usual and
dΩ = sin θdθdϕ.
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21.5.3 Lifetime
In this last section we will consider another application of the theory developed
so far, namely the calculation of a decay rate, or a lifetime for an unstable
particle.

In principle we have here a contradiction. An unstable particle lives a finite time,
and therefore it is impossible to be present at either minus or plus infinite time.
In other words, an unstable particle will not occur in in-states or out-states.
We will do as if it can be in an in-state and then calculate its decay probability.
The full justification for that requires a complete treatment of unstable particles,
which we will not do here.

Going back to the interaction Hamiltonian described before, H = gπ2σ, we will
now consider the case that the σ−particle is heavier than two pions, so that it
normally will decay. The decay probability per unit time is called the decay
rate, and the inverse of the decay rate is the lifetime.

The process of interest has initially a σ and finally two pions. We therefore
must consider

⟨p, q∣S ∣k⟩ (21.192)

where k denotes the momentum of the initial σ and p and q are the momenta
of the final pions.

In lowest order there is one non-vanishing Feynman diagram is shown in Figure
21.14 below.

Figure 21.14: Feynman diagram for σ decay
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The corresponding expression is

⟨S⟩ = i (2π)4
2g√

8p0q0k0V 3
δ4 (k − p − q) (21.193)

The transition probability is

∣⟨S⟩∣2 = (2π)8
4g2

8p0q0k0V 3

V

(2π)3

T

2π
δ4 (k − p − q) (21.194)

The transition probability per unit of time follows by dividing by T . We must
also sum over all final states if we want the total decay rate. This rate is
therefore

Γ(σ → 2π) = 1

2

V

(2π)3 ∫ d3p
V

(2π)3 ∫ d3q
(2π)84g2

8p0q0k0V 3

V

(2π)3

1

2π
δ(4)(k − p − q)

= g2

(2π)2k0
∫ d3p

1

2p0
∫ d3q

1

2q0
δ(4)(k − p − q) (21.195)

There is a subtlety here, we have divided by 2. This is because the two pions in
the final state are identical, and if we integrate over all momenta we will count
double, because the final state with the two pions interchanged is the same state
(Bose-Einstein statistics). To work out the above expression we go to the a rest
system. In this system k0 = m and k⃗ = 0. This makes the q⃗ integral trivial,
giving q⃗ = −p⃗ and therefore q0 = p0. We get

Γ(σ → 2π) = g2

4π2m
∫ p2dp

1

4p2
0

δ(m − 2p0) (21.196)

We go to polar coordinates. The integral over angles is also trivial giving a
factor 4π. We have

Γ(σ → 2π) = g2

4πm
∫ p2dp

1

p2
0

δ(m − 2p0) (21.197)

Now p = ∣p⃗∣. Using the relation pdp = p0dp0 this last integral is trivial and we
obtain

Γ(σ → 2π) = g2

8πm

p

p0
(21.198)

with p0 =m/2 and p =
√
p2

0 −M2. Thus

Γ(σ → 2π) = g2

8πm

√
m2 − 4M2 (21.199)

The lifetime is the inverse of this, τ = 1/Γ.
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Numerical Evaluation

Generally one wants a cross section in terms of cm2 and a lifetime in seconds.
We have used h̵ = c = 1 and will express everything else in MeV . The cross
section will have the dimension of (MeV )−2, the decay rate is of dimension
MeV and lifetime (MeV )−1. To go to cm2 the cross section must be multiplied
by (hc)2 = 1.97327 × 10−11 (MeV − cm)2. To go from MeV to sec−1 the decay
rate must be divided by h = 6.582122× 10−22MeV − sec and the lifetime is thus
h/Γ. Note that in the examples above the coupling constant g has the dimension
MeV .
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Chapter 22

The Measurement Problem

The solution to the so-called “quantum measurement” problem is fully developed
within the standard structure of quantum mechanics (4 postulates). I have col-
lected together and organized the thoughts of many other physicists (especially
Hobson), filled in many details and derivations and generally produced a unified
picture of the solution.

22.1 Basic Quantum Mechanics Reviewed

I am assuming that you have already studied the basics of quantum mechanics
prior to this discussion.

We can then state the standard formulation of quantum mechanics based on
the 4 postulates listed below(with some embellishments):

●● All physical systems are represented by ket vectors ∣ψ⟩ normalized to 1,
⟨ψ ∣ψ⟩ = 1. The ket labels represent everything that we know about
the system.

●● Measurable properties of physical systems are represented by linear oper-
ators called observables.

So restating part of the first postulate, the ket labels represent the values
of all observables of the system that have been measured.

If vector associated with particular physical state ∣ψ⟩ is an eigenvector,
with eigenvalue α, of operator Â associated with particular measurable
property of system, i.e., if Â ∣ψ⟩ = α ∣ψ⟩, then the system in that state has
the value α of that measurable property.

This implies that if one performs a measurement corresponding to the ob-
servable represented by Â on a system in the state ∣ψ⟩, then with certainty
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(probability =1) the measurement yields the value α for that measurable
property.

Observables are represented by Hermitian operators (real eigenvalues).
Since the eigenvectors of any Hermitian operator form a complete, or-
thonormal set, they can be used as a basis for the Hilbert space of the
system.

Finally, if the system is in the state ∣ψ⟩ and one measures an observable
B̂, where ∣ψ⟩ is not an eigenvector of B̂, the the only possible results of
the measurement are one of the eigenvalues {bk} of B̂.

●● Dynamics of state vectors

The state vectors of any system change with time via deterministic laws
(similar to classical rules).

We define the time evolution or development operator that governs
how a state vector changes in time by the relationship

∣A, t +∆t⟩ = Û(∆t) ∣A, t⟩ (22.1)

or the state vector at time t + ∆t is given by the time evolution opera-
tor(Unitary) Û operating on the state vector at time t.

In general, ket labels(which contain whatever we know(have measured)
about state) are the only thing that changes.

The time evolution operator is a unitary operator since the state vector
must remain normalized to 1, i.e, the vector length cannot change, which
is guaranteed by using a Unitary operator. The only changes to state
vectors in quantum mechanics are changes in direction.

The time evolution operator is related to the energy operator

Û(t) = eiĤt/h̵ (22.2)

●● Connection with Experiment/Measurements

We have specified above what happens when one measures a certain prop-
erty of physical system at a moment when state vector of system is an
eigenvector of the operator representing that property?

What if one measures a certain property of physical system at a moment
when state vector of system does not happen to be an eigenvector of the
operator representing that property (which is most of the time)? We need
a new assumption.
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Suppose the system is in the state ∣ψ⟩, and one carries out a measure-
ment of a property (observable) associated with the operator B̂. We as-
sume the eigenvectors of B̂ are the vectors(states) ∣bi⟩, which means that
B̂ ∣bi⟩ = bi ∣bi⟩, i = 1,2, ,3... where the bi are the corresponding eigenvalues.

Quantum theory now assumes that the outcome of measurement is strictly
matter of probability.

Quantum theory stipulates that the probability that the outcome of mea-
surement of B̂ on the state ∣ψ⟩ (not an eigenvector) will yield the result bi
(remember the only possible results of measurement are the eigenvalues of
B̂ no matter what state the system is in), is equal to ∣ ⟨bi ∣ψ⟩ ∣2 (the Born
rule). The probability is given by the absolute square of of the
corresponding component!

The quantum mechanics formalism based on these postulates + em-
bellishments correctly predicts experimental results for all known ex-
periments.

Some ideas implied by these rules are:

These rules imply that one cannot say anything definite about the
value of the observable represented by B̂ when system is in a state
∣ψ⟩, which is NOT an eigenvector of B̂.

One can only make probability statements.

Before one measures the observable represented by B̂ when the sys-
tem is in a state ∣ψ⟩, which is NOT an eigenvector of B̂, the system
does not have a value of that observable, according to quantum the-
ory!

Our information about any state is only set of probabilities.

But all of your experience says that objects have values for measured
quantities before they are measured, i.e., your experience tells you
that the observable represented by B̂ has a value even if we do not
measure it.

That is your view (standard classical view) about what is real and
what is not real.

Quantum theory implies you are wrong in both cases!!
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22.1.1 Where is the “collapse” postulate?

Since the system has a definite value of the observable represented by B̂ after
the measurement, i.e., a pointer points to a value or a counter clicks or a mark is
registered on a piece of paper (note that these are all irreversible occurences)
and there is no mechanism to produce a single value in the rules as presented so
far. Most presentations add another rule at this point called collapse of the
state vector.

It is proposed that the effect of a measurement is to irreversibly change(collapse)
the state vector (which was not an eigenvector of B̂) into an eigenvector of
B̂(corresponding to the eigenvalue jsut measured) so that it would be observed
to have a definite (probability = 1) value for a subsequent measurement of the
operator B̂.

This extra rule says that state vector changes(discontinuously) during measure-
ment from representing range of possibilities (superposition of all possible states)
to definite state or only one possible outcome.

Which particular eigenvector it gets changed into is determined by
outcome of measurement and cannot be known until then!. It cannot
be predicted!

I believe that this last rule should not be added.

First of all, no real mechanism is ever given for “how” this process actually takes
place, and second no specifications are given as to exactly “when” it occurs.

I will now proceed to develop a proposal for “definite outcomes“ without using
any “collapse” rule.

22.2 The Measurement Process

We consider a system consisting of a quantum system (Q-system) and a mea-
surement system (M-system).

If the meter, which we assume is initially OFF (state ∣0⟩M ) was turned ON
when system was in ∣+⟩Q state, then according to the above rules the combined
system evolves to

∣+⟩Q ∣0⟩M → ∣+⟩Q ∣+1⟩M i.e., meter (a good working meter) reads +1 (22.3)

Similarly, if the meter turned ON when the system is in the ∣−⟩Q state, then
combined system evolves to

∣−⟩Q ∣0⟩M → ∣−⟩Q ∣−1⟩M i.e., meter (a good working meter) reads -1 (22.4)
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This indicates that measurement, within framework of our rules, CORRE-
LATES or ENTANGLES the dynamical variables (Q-system) being measured
and the macroscopic (M-system) indicator of the meter, which we assume can
be directly (macroscopically) observed.

Let us expand the discussion a bit. We have supposed above that the meter has
eigenvectors (labelled by the corresponding eigenvalues)

∣+1⟩M →meter on: reading +1 (22.5)

∣−1⟩M →meter on: reading -1 (22.6)

∣0⟩M →meter off (22.7)

and the system has eigenvectors (labelled by eigenvalues)

∣+⟩Q → value = +1 (22.8)

∣−⟩Q → value = -1 (22.9)

Now suppose that the initial state of the system is a superposition

∣ψ⟩ = a ∣+⟩Q + b ∣−⟩Q (22.10)

and thus the initial state of the combined system is given by

∣initial⟩ = (a ∣+⟩Q + b ∣−⟩Q) ∣0⟩M (22.11)

which represents the system in a superposition state and the meter OFF. We
are interested in the evolution of this state according to QM. We note as we
stated above that, if, instead of above initial state, we started with the initial
states

∣A⟩ = ∣+⟩Q ∣0⟩M OR ∣B⟩ = ∣−⟩Q ∣0⟩M (22.12)

and then turn on the meter, these states must evolve as

∣A⟩ = ∣+⟩Q ∣0⟩M → ∣A′⟩ = ∣+⟩Q ∣+⟩M (22.13)

∣B⟩ = ∣−⟩Q ∣0⟩M → ∣B′⟩ = ∣−⟩Q ∣−⟩M (22.14)

respectively, indicating that the meter measured the appropriate value (the
definition of good meter) since system is in eigenstate and has definite value
with certainty.

If system is in initial state corresponding to a superposition, however, then the
linearity of quantum mechanics says it must evolve

∣initial⟩ = (a ∣+⟩Q + b ∣−⟩Q) ∣0⟩M → ∣final⟩ = a ∣+⟩Q ∣+⟩M + b ∣−⟩Q ∣−⟩M (22.15)

We note the problem immediately, i.e., the meter has not ended up in a state
with a definite value - it remains in a superposition of two macroscopically
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different pointer readings, which is never observed in the real world.

Hence, if as most physicists assume, the state vector represents a complete
description of the Q-system, there seems to be a need for the “collapse” rule to
fix the result and obtain “definite” values!

Since we will not be incorporating the “collapse” rule, we must proceed in a
different way.

22.2.1 The Density Operator

The problem, as we will now see, lies with assuming that the state vector is the
proper way to represent the Q-system during the measurement process.

The expectation value is the average of set of measurement results taken from a
collection of systems in same state. A straightforward calculation of the expec-
tation value takes the following form, with Ô being an operator representing the
measurement of specific physical variable and ∣φ⟩ state vector of each system in
collection:

⟨Ô⟩ = ⟨φ∣ Ô ∣φ⟩ (22.16)

If we choose any set of basis vectors {∣i⟩}, i = 1,2, .... for our vector space, we
can expand ∣φ⟩ and ⟨φ∣ as

∣φ⟩ =∑
i

ai ∣i⟩ , ⟨φ∣ =∑
j

a∗j ⟨j∣ (22.17)

where
ai = ⟨i ∣φ⟩ , a∗j = ⟨φ ∣ j⟩ (22.18)

Plugging these expansions into the expression for the expectation value:

⟨Ô⟩ =∑
j

a∗j ⟨j∣ Ô∑
i

ai ∣i⟩ =∑
j

(∑
i

a∗jai ⟨j∣ Ô ∣i⟩)

=∑
j

(∑
i

⟨φ ∣ j⟩ ⟨i ∣φ⟩ ⟨j∣ Ô ∣i⟩) =∑
j

(∑
i

[⟨i ∣φ⟩ ⟨φ ∣ j⟩ ⟨j∣ Ô ∣i⟩]) (22.19)

Now we define a new operator ρ̂ = ∣φ⟩ ⟨φ∣, which is just the projection operator
onto the state ∣φ⟩. We can then write the expectation value as

⟨Ô⟩ =∑
i

⎛
⎝∑j

⟨i∣ ρ̂ ∣j⟩ ⟨j∣ Ô ∣i⟩
⎞
⎠

(22.20)

Using the relation
∑
j

∣j⟩ ⟨j∣ = Î

1694



one finds that the expectation value can be written in a very interesting form

⟨Ô⟩ =∑
i

⟨i∣ ρ̂Ô ∣i⟩ = Tr(ρ̂Ô) (22.21)

i.e., the expectation value is given by the sum over the diagonal matrix elements
of the operator product ρ̂Ô (the symbol Tr = Trace is just shorthand for the
diagonal sum).

The new operator ρ̂ is called the density operator.

Why bother?

The real power of density operator approach to QM comes when have to deal
with situation in which we cannot be sure what state system is in(as in
the measurement problem).

Imagine we have a whole collection of identical systems, some in ∣φ1⟩, some in
∣φ2⟩, etc. We might not know which system in which state, and might not even
know how many systems are in any one state.

Example: Think about a beam of electrons that has not passed through any
Stern-Gerlach(S-G) magnets. Chances are that the spin states of the electrons
are completely random. Perhaps the best one can know is the probability of
finding an electron in any state.

P1 = Prob(∣φ1⟩) , P2 = Prob(∣φ2⟩) , P3 = Prob(∣φ3⟩) , ........ (22.22)

These probabilities have nothing to do with quantum theory; they simply rep-
resent our ignorance of the details of what is happening. Thus, they are not
related to any quantum amplitudes.

Given a situation like this, one should be able to do some useful calculations.

For example, one could work out expectation value of any measurement as fol-
lows.

If one can calculate the expectation value of each individual state, then the
overall expectation value is simply given by

⟨Ô⟩ = P1 ⟨φ1∣ Ô ∣φ1⟩ + P2 ⟨φ2∣ Ô ∣φ2⟩ + P3 ⟨φ3∣ Ô ∣φ3⟩ +⋯ + Pn ⟨φn∣ Ô ∣φn⟩ (22.23)

Think back to original definition of expectation value which just represents the
average value of measurement. What we have done here is put together the
weighted average of the average value for each state, which is just the definition
of the overall average value. Now if one constructs a density operator that is
given by

ρ̂ = P1 ∣φ1⟩ ⟨φ1∣ + P2 ∣φ2⟩ ⟨φ2∣ + P3 ∣φ3⟩ ⟨φ3∣ +⋯ + Pn ∣φn⟩ ⟨φn∣ (22.24)
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then the expectation value is still given by

⟨Ô⟩ = Tr(ρ̂Ô) (22.25)

as expected.

Some notation: when the density operator takes the form ρ̂ = ∣φ⟩ ⟨φ∣ it is
said to represent a pure state and when the density operator takes the form
P1 ∣φ1⟩ ⟨φ1∣+P2 ∣φ2⟩ ⟨φ2∣+P3 ∣φ3⟩ ⟨φ3∣+⋯+Pn ∣φn⟩ it is said to represent a mixed
state

22.2.2 A Crucial Example
Consider a box containing a very large number of electrons, each having spin =
1/2. This means that each electron spin can have measurable component ±1/2
along any direction. Now, suppose the box has a hole so that the electrons can
get out and go into a Stern-Gerlach device oriented to measure the z-components
of spin(arbitrary choice).

In order to proceed, we need to know how the box of electrons was prepared.

Let us consider two very different cases:

1. In the first case, we fill the box with electrons that have been prepared in
a superposition state

∣ψ⟩1 =
1√
2
(∣↑z⟩ + ∣↓z⟩) (22.26)

This preparation can be done by sending the electrons through an x-
oriented magnet and choosing one of the resulting beams. Thus, in this
case, each electron is in the indicated state - each electron is in a super-
position of “up” and “down” in the z-direction. We then fill the box with
these electrons.

2. In the second case, we send electrons through a z-oriented magnet and
collect electron from both beams “z-up” and “z-down”. In this case we
know that the electrons are either “z-up” OR “z-down”, i.e., they each
have a definite value - they are not in a superposition. We then fill the
box with the two collections of electrons. Remember the electrons in the
box in this case are EITHER in the state ∣↑z⟩ OR in the state ∣↓z⟩.

Now we proceed with the experiment. In case (1) we observe “z-up” 50% of the
time and “z-down” 50% of the time and we know that in order to describe this
system by a state vector we must say

∣ψ⟩BOX(1) =
1√
2
(∣↑z⟩ + ∣↓z⟩)→ 50-50 up-down (22.27)

i.e., every electron in the box is in this superposition state.
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In case (2) ) we observe “z-up” 50% of the time and “z-down” 50% of the time.
But we now have a problem. If I did not know that each electron in the box in
this case had a definite value, I would be tempted to describe the this system
by the same state vector as in case (1). However, we know that is not true!
The electrons in case (2) are not each in a superposition but they have definite
values!

So, if I measure z-components I cannot tell whether I have case (1) or case (2)
and I do not know how to write the state vector for the box in case (2),

But remember how I created the electron in case (1). They all have a definite
value of the x-component, namely, “x-up’. So if I subject the electrons coming
out of the box in case (1) to a x-measurement instead of a z-measurement, I
will end up with only one beam!

However, in case (2), the electron coming out of the box are either “z-up” OR
“z-down” each of which is 50-50 in the x-direction and thus I would end up with
two beams after the extra measurement!

The different results mean that their states must be described differently in QM.

State vectors do not give us the freedom to do this unless we want to monkey
around with relative phases, i.e., we would need to write

∣ψ⟩BOX(1) =
1√
2
(∣↑z⟩ + ∣↓z⟩) , ∣ψ⟩BOX(2) =

1√
2
(∣↑z⟩ + eiα ∣↓z⟩) (22.28)

where α is a completely unknown relative phase factor, which must be averaged
over during any calculations since it is different for each separate measurement
(each member of ensemble). I actually do not think such an object is a legitimate
state vector!

If we use density matrices, we have a very different story. For pure state a
density operator (or matrix) is defined as

ρ̂ = ∣ψ⟩ ⟨ψ∣ (22.29)

for some state vector ∣ψ⟩, i.e., it is the pure state projection operator.

In case (1) this gives

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨1/2∣ + ∣1/2⟩ ⟨−1/2∣ + ∣−1/2⟩ ⟨−1/2∣) (22.30)

Derivation of the ρ̂ matrix in the (+1/2,−1/2) basis:

ρ = ( ⟨1/2∣ ρ̂ ∣1/2⟩ ⟨1/2∣ ρ̂ ∣−1/2⟩
⟨−1/2∣ ρ̂ ∣1/2⟩ ⟨−1/2∣ ρ̂ ∣−1/2⟩) (22.31)
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Now

⟨1/2∣ ρ̂ ∣1/2⟩

= ⟨1/2∣ 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨1/2∣ + ∣1/2⟩ ⟨−1/2∣ + ∣−1/2⟩ ⟨−1/2∣) ∣1/2⟩

= 1

2
(22.32)

and so on, so that

ρ = 1

2
(1 1

1 1
) (22.33)

where the diagonal matrix elements represent probabilities and the off-diagonal
matrix elements imply that one will observe quantum interference effects in this
system. It is clear that any pure state density operator cannot be written as
the sum of pure state projection operators.

In case (2), however, have

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨−1/2∣) (22.34)

and

ρ = 1

2
(1 0

0 1
) (22.35)

which clearly is sum of pure state projection operators. This corresponds to
a mixed state. Note that off-diagonals are zero so that this density operator
cannot lead to any quantum interference effects.

Remember, this system(case (2)) is such that electrons have values
so that the density operator take this form (sum of projection oper-
ators)!!

Note that when electrons DO NOT HAVE VALUES (case (1)) the density op-
erator has interference terms and cannot be written as a sum of projection
operators - A DIFFERENCE that does not show up when using state vectors!!

We note that if we treat case (2) as pure state with the extra relative phase
factor we would obtain:

ρ = 1

2
( 1 eiα

eiα 1
) (22.36)

which becomes

ρ = 1

2
(1 0

0 1
) (same result as before) (22.37)

when we average over α.

Now, let us digress to see what happens in a real classical system.
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Consider rolling a die which has possible values = 1,2,3,4,5,6 where the prob-
ability of occurrence of each value = 1/6. In this case, the die has a value
before/after each roll so that we have a mixed state where

ρ̂ = 1

6
(∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣ + ∣3⟩ ⟨3∣ + ∣4⟩ ⟨4∣ + ∣5⟩ ⟨5∣ + ∣6⟩ ⟨6∣) mixed state (22.38)

and the expectation value of the R̂OLL operator is given by

⟨R̂OLL⟩ = 1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5 standard definition (22.39)

Now any operator can be written as sum of eigenvalues × projections oper-
ators(called the spectral decomposition), i.e., for the B̂ operator introduced
earlier we can write

B̂ =∑
i

bi ∣bi⟩ ⟨bi∣

so that we have for the R̂OLL operator

R̂OLL = 1 ∣1⟩ ⟨1∣ + 2 ∣2⟩ ⟨2∣ + 3 ∣3⟩ ⟨3∣ + 4 ∣4⟩ ⟨4∣ + 5 ∣5⟩ ⟨5∣ + 6 ∣6⟩ ⟨6∣ (22.40)

The operator product of the density operator and the R̂OLL operator can be
written(using the orthonomality of the basis state vectors) as

ρ̂ R̂OLL = 1

6
(1 ∣1⟩ ⟨1∣ + 2 ∣2⟩ ⟨2∣ + 3 ∣3⟩ ⟨3∣ + 4 ∣4⟩ ⟨4∣ + 5 ∣5⟩ ⟨5∣ + 6 ∣6⟩ ⟨6∣) (22.41)

Thus, the expectation or average value is

⟨R̂OLL⟩ = Tr(ρ̂R̂OLL) =∑
k

⟨k∣ ρ̂R̂OLL ∣k⟩ = 1

6
(1+2+3+4+5+6) = 3.5 (22.42)

But, in this case, we know the values are real before the measurement, i.e., we
are using a macroscopic die with numbers we can see!

Thus, this particular form of a density operator represents that case. The same
was true earlier for the electrons in the box when we knew they were either “up”
or “down”! REMEMBER this fact for later.

If we were to add the “collapse” rule it raises a host of questions: What exactly
do we mean, physically and mathematically, by a “collapse during measurement”
of quantum system?

Does collapse occur all at one instant?

Wouldn’t instantaneous collapse contradict special relativity?

If collapse occurs during a time interval, then what equation describes its time-
evolution during that interval?
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Quantum states are presumed to follow the Schrödinger equation, which pre-
scribes continuous time evolution; how can instantaneous state collapse be rec-
onciled with smooth evolution?

How can we resolve “problem of outcomes” that appears to arise when a su-
perposed quantum’s state is measured by “which-state” detector, creating a
so-called entangled state of the quantum and the detector that appears to be
an indefinite superposition of two macroscopically distinct states of a composite
system?

Such questions comprise the quantum measurement problem.

We will now continue this discussion of the measurement problem and finally
suggest a resolution of problem of definite outcomes that lies entirely within
standard quantum physics.

A “quantum measurement” means any quantum process that results in a macro-
scopic effect, regardless of whether humans or laboratories are involved.

Thus not only is an electron striking a laboratory viewing screen and creating a
visible flash a measurement, but also a cosmic-ray muon striking and macroscop-
ically moving a sand grain on a planet in some other galaxy is a measurement.

To analyze a measurement, we look at a specific experiment: suppose an electron
beam passes through a pair of double slits and then impacts a viewing screen.
Just as in Thomas Young’s similar double-slit experiment using light, performed
in 1801, a pattern is formed on the viewing screen that shows interference be-
tween two portions of electron beam which are seemingly coming through the
two slits: a broad dark-and-bright striped pattern spreads out widely on the
screen - much wider than slits - indicating regions of destructive (dark) and
constructive (bright) interference.

On closer inspection, the bright lines are formed by a very large number of tiny
individual electron impacts, each one making a small flash on the screen.

According to above definition, each flash is measurement of the position of an
electron as hits the screen.

Each electron’s flash on screen is a measurement!

For the purposes of this analysis, however, it is better to consider a related
example of measurement, still based on the double-slit experiment.

Suppose an electron detector is installed at the slits and assume that the detector
can detect the electron’s position as it passes through slits while disturbing each
electron only minimally (in the precise sense described below). Measurement,
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even by such a minimally-disturbing “which-path detector”, changes everything.

Exactly when the detector turns on, the pattern on screen changes from a striped
interference pattern to a smoothly-spread-out sum of two single-slit patterns,
each showing diffraction but no interference.

The interference pattern abruptly vanishes.

An analogous experiment has been done using light (photons) instead of elec-
trons, and using an interferometer rather than double-slit interference setup.

A which-path detector was randomly switched on or off as each photon passed
through this experiment; photons for which the detector was "off" formed an
interference pattern while photons for which the detector was "on" formed the
expected no-interference pattern.

Reminder:

If the system is in a “pure” superposition state, then the density operator take
form

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨1/2∣ + ∣1/2⟩ ⟨−1/2∣ + ∣−1/2⟩ ⟨−1/2∣) (22.43)

i.e., sum of projection operators and “cross-terms” (interference terms) or the
matrix form

ρ = 1

2
(1 1

1 1
) (22.44)

where the diagonal matrix elements represent probabilities and the off-diagonal
matrix elements imply that one will observe quantum interference effects in this
system. Clearly, any pure state density operator cannot be written as the sum
of pure state projection operators.

If in a “mixed state”, then the density operator takes the form

ρ̂ = 1

2
(∣1/2⟩ ⟨1/2∣ + ∣−1/2⟩ ⟨−1/2∣) (22.45)

or the matrix form

ρ = 1

2
(1 0

0 1
) (22.46)

i.e., sum of projection operators (no interference terms).

As we found in the dice example:

ρ̂ = 1

6
(∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣ + ∣3⟩ ⟨3∣ + ∣4⟩ ⟨4∣ + ∣5⟩ ⟨5∣ + ∣6⟩ ⟨6∣) mixed state (22.47)
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When we see a quantum system evolve into a “mixed state” den-
sity operator, then the quantum system can be interpreted “classi-
cally”, i.e., a measurement has taken place and it has be irreversibly
recorded.

This is the important point!!

22.3 Look closely at “which-path” experiments

In the so-called “delayed-choice” two-slit experiment mentioned above, collapses
were instantaneous to within the accuracy of fast switching between the two
states; in addition, each collapse is executed entirely while the photon was in-
side the interferometer.

We can gain considerable insight by studying how quantum theory describes a
which-path measurement. Note: it is a measurement as defined earlier, because
the detector registers “slit 1” or “slit 2” macroscopically for each electron.

We denote the state of one electron passing through slit 1 as ∣ψ1⟩ and the state
of one electron passing through slit 2 as ∣ψ2⟩ . John von Neumann, who was
the first to carefully analyze measurement in purely quantum-theoretical terms,
insisted on treating not only the measured quantum but also the macroscopic
detector as quantum systems because, after all, detectors are made of atoms
and they perform a quantum function by detecting individual quanta.

Now let us repeat the earlier discussion again, filling in any remaining gaps and
confusions.

Accordingly, one represents the “ready to detect" quantum state of detector by
∣ready⟩, and the state of detector after detecting an electron by ∣1⟩ if ∣ψ1⟩ was
detected, and by ∣2⟩ if ∣ψ2⟩ was detected. A properly operating detector will
surely transition from ∣ready⟩ to ∣1⟩ upon measurement of an electron that has
been prepared (perhaps by simply shutting slit 2) in state ∣ψ1⟩.

As a limiting idealization, we assume, with von Neumann, that the measure-
ment of an electron prepared in state ∣ψ1⟩ leaves electron still in state ∣ψ1⟩ after
detection. Such a minimally-disturbing measurement would cause the electron-
plus-detector composite system, initially in composite state ∣ψ1⟩ ∣ready⟩, to tran-
sition into the final state ∣ψ1⟩ ∣1⟩.

We summarize the process as

∣ψ1⟩ ∣ready⟩→ ∣ψ1⟩ ∣1⟩ (22.48)
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Similarly, a minimally-disturbing measurement of and electron initially prepared
in ∣ψ2⟩ is described mathematically by

∣ψ2⟩ ∣ready⟩→ ∣ψ2⟩ ∣2⟩ (22.49)

Now suppose that both slits are open so each electron can pass through either
slit, and suppose the preparation and experiment (e.g. slit widths) is symmetric
with respect to two slits. Then the state of each electron as it approaches the
slits prior to detection must be described by symmetric superposition

∣ψ⟩ = 1√
2
(∣ψ1⟩ + ∣ψ2⟩) (22.50)

But quantum physics, including its time dependence, is linear. This imply that
∣ψ⟩ ∣ready⟩ evolves according to

∣ψ⟩ ∣ready⟩ = 1√
2
(∣ψ1⟩ + ∣ψ2⟩) ∣ready⟩

= 1√
2
(∣ψ1⟩ ∣ready⟩ + ∣ψ2⟩ ∣ready⟩)

→ 1√
2
(∣ψ1⟩ ∣1⟩ + ∣ψ2⟩ ∣2⟩) (22.51)

The final state
∣Ψ⟩ = 1√

2
(∣ψ1⟩ ∣1⟩ + ∣ψ2⟩ ∣2⟩) (22.52)

following detection said to be “entangled” because it cannot be factored into
simple product of states of two sub-systems. As indicated in Figure 22.1
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Figure 22.1:

when two independent quanta pass near each other, interact, and subsequently
separate, the interaction generally entangles the two quanta and entanglement
then persists after interaction regardless of how far apart two quanta might
eventually travel, provided only that two quanta experience no further interac-
tions.

Despite possibly wide spatial separation, entangled quanta have a unity not
possessed by non-entangled quanta.

This unity is source of quantum non-locality.

Entanglement is ubiquitous in nature.

The entangled "measurement state" (22.52) that is at the heart of quantum
measurement is remarkably subtle.

To fully understand “entanglement”, we first need to understand “superposition”.

The quantum principles says that any linear combination of possible quantum
states of a system, as in (22.50) and (22.52) for example, is also a possible quan-
tum state of that system. Figure 22.2 pictures an experiment that demonstrates
such a superposition of states.
This represents a layout of optical paths called a “Mach-Zehnder interferome-
ter.”.

1704



Figure 22.2:

A light beam enters at the lower left passing through the “beam splitter” BS1;
the reflected beam makes a right angle with the incoming direction, while the
transmitted beam passes straight through. So the beam splits and each “half”
traverses one of two paths; mirrors M bring the paths back to crossing point as
shown.

Devices called “phase shifters”, denoted by ϕ1 and ϕ2, are placed into each path.
The phase shifter can add a short variable length to a path. The second beam
splitter BS2 can be placed at crossing point. Without BS2, each “half”-beam
moves straight ahead along one path to detector on that path.

Things get more interesting with BS2 in place.

Because 50% of each of two beams then goes to each detector, BS2 mixes two
beams together so one can show interference.

The interferometer is constructed so that, when the phase shifters are set to
zero, the two “optical paths” (number of wavelengths, after accounting for phase
changes upon reflection and refraction) from entry point to D1 are equal while
two optical paths to D2 differ by half a wavelength.

It is thus found that the light interferes constructively at D1 and destructively at
D2, i.e., all light goes to D1. If one then uses ϕ1 or ϕ2 to add a half wavelength
to either path, the light then interferes constructively at D2 and destructively
at D1, i.e., all light goes to D2.

As one continuously varies the length of one or other path by varying one or
other phase shifter, one finds that the amount of light arriving at D1 varies
continuously from 100% down to 0%, while amount arriving at D2 varies from
0% to 100%.

The two paths are clearly interfering!
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The experiment is an interferometer-based analog of Young’s double-slit inter-
ference experiment demonstrating the wave nature of light.

But, as we know, light is really just photons, and photons are indivisible.

How does nature explain this experiment when we dim the light to point where
only one photon at a time traverses the interferometer?

After all, the photon still traverses BS1, yet it cannot split in two because a
quantum is unified and cannot be split!

With BS2 removed, one finds either D1 or D2 registers a single entire photon,
randomly, with 50-50 probabilities, regardless of how the phase shifters are set.

The randomness is absolute. It is more random than any human macroscopic
game, such as coin flips, that only mimics randomness. Nature invents quantum
randomness to deal with obstacles such as beam splitters while preserving unity
of quantum.

The detectors never register half of a photon. They get either a whole photon
or no photon.

What happens in the single-photon experiment with BS2 present?

As discussed earlier, beginning from equal path lengths, which gives construc-
tive interference at D1 and destructive interference at D2, as phase shifters vary,
probabilities of detecting photon at D1 and D2 vary as Figure 22.3 which gives
the percentage of photons impacting D1.
Importantly, the results do not depend on which phase shifter the experimenter
chooses to vary. Since each photon responds to changes in either path length,
each photon must follow both paths! This verifies the superposition principle
and shows that quanta can be in two places at same time!

This seems paradoxical if we assume photons are tiny particles, but if we assume
the photons are waves it is not paradoxical, i.e., each photon simply spreads
along both paths, interfering with itself at D1 and D2. One must conclude that
each photon travels both paths even when BS2 is not present because once pho-
ton enters interferometer must behave in same manner regardless of whether
BS2 is placed or not placed at far end.

A delayed-choice experiment provides further evidence for conclusion:

Since photons “do not know” whether BS2 will be inserted, they must travel
both paths on all trials including those for which BS2 not inserted - this is con-
nected with entanglement.
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Figure 22.3:

With BS2 removed, the situation is like the double-slit experiment with a which-
slit detector present:

Each photon is entangled with the macroscopic detectors D1 or D2 as in (22.52).
With BS2 present, the two paths mix and we have a situation like double-slit
experiment with no which-slit detector:

Each photon follows two paths to each detector where it interferes with itself,
and one detects the interference state (22.50).

All of this suggests that measurements affect superposed quantum states via
entanglement of the superposed quantum with a detector.

22.4 Resolving Paradoxes and Understanding Mea-
surement

22.4.1 The apparent paradox of Schrödinger’s cat

A cat is penned up in a steel chamber, along with the following device:

In a Geiger counter there is tiny bit of radioactive substance, so small, that
perhaps in course of an hour one of its atoms decays, but also, with equal
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probability, perhaps none decay; if it happens, the counter tube discharges and
through a relay releases a hammer which shatters a small flask of hydrocyanic
acid(poisonous).

If one left the entire system to itself for hour, we would say that cat still lives if
no atom has decayed!

If one uses a state vector approach to understanding the entire system, one would
express this by having a living and a dead cat mixed or smeared out in equal
parts - a superposition of “dead” and “alive”! It is typical of these cases, that the
indeterminacy originally restricted to the atomic domain becomes transformed
into macroscopic indeterminacy, which can only then be resolved by direct ob-
servation, which prevents us from naively accepting as valid the “blurred model”
for representing reality.

Mathematically, the nucleus and the cat have become entangled in measurement
state (22.52), with ∣ψ1⟩ and ∣ψ2⟩ representing undecayed and decayed states of
nucleus and ∣1⟩ and ∣2⟩ representing alive and dead cat.

According to Schrödinger’s understanding of situation, the indeterminacy of the
nuclear state “becomes transformed into macroscopic indeterminacy” of cat, and
since he could not comfortably accept this as “blurred" state”, i.e., a cat that
is in a superposition of being both alive and dead, he hoped this would say
something is wrong with QM.

As we will show, according to standard quantum physics, Schrödinger’s 1937
understanding was incorrect:

The composite system (cat-plus-nucleus) is not predicted to be in superposition
of two states of a cat, or a nucleus, or a composite system.

Instead, the composite system is predicted to be in a superposition of two cor-
relations between cat and nucleus, one in which a live cat is 100% correlated
with an undecayed nucleus, and second in which a dead cat is 100% correlated
with a decayed nucleus.

Entanglement has transformed a pure state superposition of nuclear
states to pure state superposition of correlations between subsystem
states.

We will see that this is precisely what one expects, and it is not paradoxical!!

This so-called “problem of definite outcome” applies of course to more than
Schrödinger’s dramatized example.

Regardless of whether the measuring instrument is a which-slit detector, a
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Geiger counter, or a cat, the entangled state (22.52) applies. This state ap-
pears at first glance to represent a quantum superposition in which the detector
is in two macroscopically different states simultaneously. If so, then there is an
inconsistency within quantum physics, because obviously it cannot be this easy
to create a macroscopic superposition.

Is it true that (22.52) really represents a macroscopic superposition?

There is more to this entangled state than meets the eye.

If one assumes the detector to be in superposed state a ∣1⟩+ b ∣2⟩, one finds that
(22.52) necessitates either a = 0 or b = 0, implying that detector is not in an
individually superposed state within its own Hilbert space.

The same applies to detected quantum:

It is not in a superposed state a ∣ψ1⟩ + b ∣ψ2⟩ with both a ≠ 0 and b ≠ 0.

The entanglement process leaves neither sub-system superposed!

So far as I know, this simple fact has long been ignored by analysts of measure-
ment problem.

22.4.2 Density Operator to the Rescue

The density operator formalism(discussed earlier) for quantum physics provides
a stronger version of this conclusion.

The density operator for a quantum system whose state is ∣ψ⟩ is simply the
projection operator

ρ̂ = ∣ψ⟩ ⟨ψ∣ (22.53)

As we saw earlier, if the system is in state whose density operator is ρ̂, then
standard quantum expectation value ⟨Ô⟩ of arbitrary observable Ô is found from

⟨Ô⟩ = Tr(ρ̂Ô) (22.54)

This approach is especially useful if the quantum system is a composite of two
subsystems A and B.

We define the density operator ρ̂A for subsystem A alone by by

ρ̂A = TrB(ρ̂) (22.55)

where TrB means that trace taken only over states of subsystem B.

It is then easy to show(see later) that standard quantum expectation values for
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subsystem A alone (values obtained by an observer of A without any knowledge
of B) are

⟨ÔA⟩ = Tr(ρ̂AÔA) (22.56)

where ÔA means any observable operating on system A alone (i.e., operating
within A’s Hilbert space). Applying this formulation to measurement state
(22.52), the reduced density operators for the quantum system (call it A) and
its detector (call it B), respectively, are

ρ̂A = 1

2
(∣ψ1⟩ ⟨ψ1∣ + ∣ψ2⟩ ⟨ψ2∣) (22.57)

ρ̂B = 1

2
(∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣) (22.58)

The plus signs in (22.57) and (22.58) make one think of superpositions such as
(22.50), but these are not superpositions. The density operator for the super-
position (22.50) has cross-terms:

ρ̂ = (∣ψ⟩ ⟨ψ∣) = 1

2
(∣ψ1⟩ ⟨ψ1∣ + ∣ψ1⟩ ⟨ψ2∣ + ∣ψ2⟩ ⟨ψ1∣ + ∣ψ2⟩ ⟨ψ2∣) (22.59)

The two cross-terms, involving both ∣ψ1⟩ and ∣ψ2⟩, are missing from (22.57). So
(22.57) does not describe system in superposition of two quantum states.

However, (22.57) is precisely the density operator one should use if one knows
the quantum system is either in state ∣ψ1⟩ or in state ∣ψ2⟩ but one didn’t know
which and so, due your own to lack of information, you simply assign probability
of 1/2 to each of two possibilities.

The same goes for (22.58).

(22.57) and (22.58) are “classical” probabilistic states - analogous to the “states
of knowledge” one would assign to coin flip when you know the outcome to be
either heads or tails with equal probability but don’t know which has occurred.

The situation described by a density operator such as (22.57) is known as “mix-
ture” of states ∣ψ1⟩ and ∣ψ2⟩, as distinct from “superposition” of states as ob-
served in the Mach-Zehnder experiment and represented by (22.50).

Equation (22.56) tells us that all correct statistics for subsystem A alone can
be found from standard formula (22.54) applied to subsystem A alone.

But we have just seen that (22.57) is the density operator one should use if one
knows A to be in either ∣ψ1⟩ or ∣ψ2⟩ without knowing which.

The same goes for subsystem B and (22.58).

In the case of Schrödinger’s cat, it follows that the observer of the cat alone sees
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outcomes appropriate to a cat that is either alive or dead, not both.

For subsystems, the interference terms are missing, and an “ensemble” of re-
peated trials must exhibit a nonsuperposed mixture rather than superposition.

This is the clear prediction of quantum physics for the entangled state (22.52).

But one must be careful, because (22.57) and (22.58) are not complete descrip-
tions of quantum states of nucleus or cat.

In fact, (22.57) and (22.58) are not quantum states at all but merely “reduced
states” arising from actual state (22.52) of composite system when one part of
the composite system is removed from the equations.

In case of Schrödinger’s cat, (22.57) and (22.58) give the correct predictions for
observations of either nucleus alone or cat alone, but do not represent the state
of either subsystem because this is given by (22.52).

In fact, when two quanta entangled, neither one has a quantum state of its own!

Physicists, philosophers and mathematicians who specialize in quantum foun-
dations have in past objected to argument that reduced density operators can
be adduced in this manner to clarify measurement problem.

They offer two key objections:

First, “basis ambiguity”, charges that ‘the ‘basis set” (set of orthogonal eigenvec-
tors) for operator (22.58) (for example) is entirely ambiguous, so (22.58) cannot
represent true quantum state.

It is true that (22.58) doesn’t represent true state of the subsystem, because
(22.58) is actually just identity operator ∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣ in B’s subspace, divided
by 2, so that any other orthogonal basis set could be used instead. Given only
the description (22.58), subsystem B could just as well be described by any
other pair of orthonormal vectors in B’s subspace, for example

1√
2
(∣1⟩ ± ∣2⟩) (22.60)

But B’s state of affairs is certainly not entirely described by (22.58). Rather,
it is described by composite state (22.52). Equation (22.58) merely tells us fol-
lowing:

If the cat and the nucleus are in state (22.52) then, when one looks at the cat,
one is going to see cat that is either alive or dead. There is no claim that (22.58)
represents complete quantum state of the cat.
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That is, there is no claim that cat is really in either state ∣1⟩ or state ∣2⟩, because
the state it’s really in is admittedly (22.52).

Thus, the basis ambiguity objection to our conclusion (namely, that Schrödinger’s
cat is either alive or dead, not both) fails.

The second key objection is that (22.57) and (22.58) are “improper density
operators” because they arise not from insufficient knowledge (as classical prob-
abilities arise) but from reductions of the full density operator for state (22.52)
to Hilbert subspaces of each subsystem. It’s true that these reduced density
operators do not arise from insufficient knowledge about an actual state.

In fact, we do have complete knowledge of the state of both A and B, namely,
the measurement state (22.52). So this objection fails not because it is false but
because it is irrelevant:

Reduced operators admittedly do not represent the state of the composite sys-
tem. They tell us only what we will observe at the nucleus and at the cat and
they tell us nothing about the correlations between these observations, so these
density operators do not tell us the real state of system.

And so plot thickens.

The entangled state (22.52) properly describes both individual subsystems.

However, the plus sign in (22.52) signifies superposition of two terms. We know,
however, that neither subsystem A nor subsystem B is superposed.

What then is meaning of plus sign?

This superposition arose from the superposition represented by (22.50).

We cannot logically ignore this fact - a strategy known as the “shut up and
calculate” approach to quantum measurement.

Instead, we must ask: Exactly what is superposed when the two subsystems are
in this entangled state?

Superpositions preserve the all-important unity of quantum.

When Max Planck proposed in 1900 that electromagnetic radiation occurs in
energy steps of magnitude E = hν, he tacitly implied the central quantum prin-
ciple:

The unity of an individual quantum.

Energy (electromagnetic energy in case of radiation) comes in spatially extended
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bundles, each having a definite and identical quantity of energy. One cannot
have half a quantum, or 2.7 quanta!

You must have either 0 or 1 or 2 etc., quanta. In its own way, this is a fairly
natural notion - apparently nature prefers to sub-divide the universe into a
countable or even a finite set of entities as opposed to an uncountable continuum!

The spatial extension of these bundles then implies nonlocality:

If we have one quantum and destroy it (by transforming it to something else),
we must destroy all of it everywhere simultaneously, because we cannot, at any
time, have just part of quantum in existence.

Louis de Broglie put it perfectly in 1924, regarding another kind of quantum
namely the electron:

The energy of an electron is spread over all space with a
strong concentration in a very small region....That which
makes an electron an atom of energy is not the small volume
that it occupies in space - I repeat it occupies all space -
but the fact that it is indivisible, that it constitutes a unit.

When one transforms the state of a quantum, one must transform the entire
extended quantum all at once. Hence there are quantum jumps. Furthermore,
composite entangled systems such as atoms also behave in unified fashion.

This unity is the source of the nonlocality seen in experiments involving entan-
gled pairs of photons.

Nonlocality is exactly what one would expect, given the unity and spatial ex-
tension of quantum and unitary (i.e. unity-preserving) nature of entanglement
process.

Standard nonrelativistic quantum theory prescribes two kinds of time evolution:
collapse upon measurement, and Schrödinger equation between measurements.

The key feature of Schrödinger equation is that it prescribes a so-called "uni-
tary" time evolution, meaning time evolution that preserves pure states, i.e.,
transforms unit Hilbert space vectors into other unit vectors.

Ideas required physically by unity of quantum: If quantum described by pure
quantum state at t = 0, should remain pure at later times. This notion prompts
us to ask whether measurement process also preserves pure states.

At least in case of the idealized process described in (22.51), the answer is “yes”
because both “before” and “after” states are pure.
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Measurement state (22.52), since it is pure, represents a highly unified state
of affairs, even though one of its subsystems is a macroscopic detector. Thus
one suspects that this state, like its progenitor (22.50), is truly a superposition
in which the superposed terms represent two situations or states of the same
object.

But precisely what is that object, i.e., what is superposed?

We have seen that the states of subsystem A are not superposed, nor are states
of subsystem B.

The conventional interpretation (which, as we will see, is subtly incorrect) of a
product state such as ∣ψ1⟩ ∣1⟩ is that it represents a state of a composite system
AB in which subsystem A is in state ∣ψ1⟩ while B is in state ∣1⟩.

In this case, (22.52) would represent a superposition in which AB is simultane-
ously in state ∣ψ1⟩ ∣1⟩ and also in state ∣ψ2⟩ ∣2⟩.

The situation of Schrödinger’s cat would be: live cat and undecayed nucleus
superposed with dead cat and decayed nucleus.

This is at least as physically outrageous as a live cat superposed with a dead
cat, and it contradicts the physical implications (a cat that is either alive or
dead) of reduced states (22.57) and (22.58) as described earlier.

Something is still wrong!

22.5 Repetition and Intricate Details

Proposal:

The solution to the so-called quantum measurement problem is completely con-
tained within standard quantum mechanics and needs no elaborate new struc-
tures and interpretations.

22.5.1 Remember the standard discussion from earlier:
Total system T = quantum system S (states ∣si⟩) + measuring device A (states
∣ai⟩) , where ∣a0⟩ = state of measuring device “OFF”. The unitary time evolution
rule says that ∣s1⟩ ∣a0⟩ → ∣s1⟩ ∣a1⟩ and ∣s2⟩ ∣a0⟩ → ∣s2⟩ ∣a2⟩. The linearity of QM
the says that

∣ψ⟩SA = (c1 ∣s1⟩ + c2 ∣s2⟩) ∣a0⟩ = c1 ∣s1⟩ ∣a0⟩ + c2 ∣s2⟩ ∣a0⟩→ c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩

In this derivation
∣ψ⟩S = (c1 ∣s1⟩ + c2 ∣s2⟩
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is state of the quantum system(superposition), while

∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩

is state of the combined system(superposition).

The quantum measurement problem is the observation that the state

∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩

is not observed as the outcome of the measurement!

What is seen is not a so-called superposition, but either

∣s1⟩ ∣a1⟩ or ∣s2⟩ ∣a2⟩

That is “problem of outcomes”.

State
∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩

is usually referred to as a superposition, which is misleading.

Entanglement outweighs superposition as the defining feature of this state.
Without entanglement-correlations, we would not have a measurement prob-
lem!

Careful investigation of this state in a 2007 experiment(Roch) (Wheeler delayed
choice experiment) demonstrates its strikingly non-local character:

A photon jumps from state ∣ψ⟩S = (c1 ∣s1⟩ + c2 ∣s2⟩ to state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ +
c2 ∣s2⟩ ∣a2⟩ precisely when A(the measuring device) switches on and while photon
is still inside the interferometer, and jumps from ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+ c2 ∣s2⟩ ∣a2⟩
to ∣ψ⟩S = (c1 ∣s1⟩ + c2 ∣s2⟩ when A switches off.

Quantum jumps, removal of interferences, and the observed non-locality are due
to entanglement.

Of course, an entangled state = superposition, but it is a very special superpo-
sition.

To call ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+c2 ∣s2⟩ ∣a2⟩ simply a “superposition” misses the crucial
physics of entanglement and makes all the difference in the understanding of the
state.

Entanglement is a characteristic trait of quantum mechanics; one that enforces
the entire departure from classical lines of thought.
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It is well known that, for 2-part systems, all non-product states exhibit non-
locality (Bell inequality).

Thus when S and A are entangled ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩, they share a
non-local channel.

The measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ is subtle. Although
∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ is called a superposition of S and/or superpo-
sition of A, neither is true.

When S and A in measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ neither S
nor A in superposition. ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ = superposition, but
neither a superposition of S nor of A and also not superposition of states of the
composite system SA.

In ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+c2 ∣s2⟩ ∣a2⟩, S is in both states ∣s1⟩ and ∣s2⟩ simultaneously,
as we know from the observed interference between 2 states.

However, in case of ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ experiment shows that SA
is not in both two-part states ∣s1⟩ ∣a1⟩ and ∣s2⟩ ∣a2⟩ simultaneously, but only in
two correlations simultaneously.

The entanglement of two systems is quite different from superposition of one
system.

Experiments(Rarity et al) have demonstrated the precise sense in which ∣ψ⟩SA =
c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ represents superposition.

Experiments answer question “given that S and A are in state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+
c2 ∣s2⟩ ∣a2⟩, what (if any) entities interfere and what is nature of interference?”

22.5.2 Local State Solution of the Problem of Definite
Outcomes

Consider a single quantum S(electron or photon), passing through double-slit
experiment, with a “downstream” viewing screen.

Suppose an ideal “which-slit detector” A is present so that, upon detection, S
and A become entangled in measurement state with orthogonal detection states
∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩. Imagine S and A separated by meters or kilo-
meters.

Complete observation of the experiment requires two “local observers”, 1st ob-
server is S and 2nd observer is A.

Such non-local setup has been carried out experimentally.
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What did the local observers observe?

A well-known prediction of quantum physics says that first observer observes
implications of “local state of S”, represented by “reduced” density operator,
where the degrees of freedom 2nd system are averaged over by the “trace” (Tr)
operation (see derivation below)

ρS = TrA(ρSA) = ∣c1∣2 ∣s1⟩ ⟨s1∣ + ∣c2∣2 ∣s2⟩ ⟨s2∣

and 2nd observer would observe implications of “local state of A”, represented
by the reduced density operator

ρA = TrS(ρSA) = ∣c1∣2 ∣a1⟩ ⟨a1∣ + ∣c2∣2 ∣a2⟩ ⟨a2∣

where the density operator gives probabilities via the relation

P (q) = Tr(ρPq) = Tr(ρ ∣q⟩ ⟨q∣)

The “local state of S” is found by completely removing from the density operator
any effects of A and vice versa. This is the important idea!

Derivation of reduced density operator

ρSA = ∣ψSA⟩ ⟨ψSA∣ = (c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩)(c∗1 ⟨s1∣ ⟨a1∣ + c∗2 ⟨s2∣ ⟨a2∣)

ρS = TrA(ρSA) =
2

∑
k=1

⟨ak ∣ρSA ∣ak⟩

=
2

∑
k=1

⟨ak ∣ (∣ψ⟩SA ⟨ψ∣SA ) ∣ak⟩

=
2

∑
k=1

⟨ak ∣ ((c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩)(c∗1 ⟨s1∣ ⟨a1∣ + c∗2 ⟨s2∣ ⟨a2∣)) ∣ak⟩

=
2

∑
k=1

(c1 ∣s1⟩ δk1 + c2 ∣s2⟩ δk2)(c∗1 ⟨s1∣ δk1 + c∗2 ⟨s2∣ δk2)

= ∣c1∣2 ∣s1⟩ ⟨s1∣ + ∣c2∣2 ∣s2⟩ ⟨s2∣ (22.61)

where we have used orthonormality via ⟨ai ∣aj⟩ = δij . We note that the Tr
(trace) operation = sum over all designated states removes all knowledge of
designated system from equation. This is clearly useful if do not know much
about reduced system. A similar derivation holds for ρA.

Continuing our discussion.

Reduced states are mixtures, not superpositions. QM predicts both LOCAL
observers find mixtures not superpositions. Ensemble of experimental trials
verifies this via mixed-state pattern in agreement with assertion made earlier
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that neither S nor A is in a superposition.

For different example, ρA = ∣c1∣2 ∣a1⟩ ⟨a1∣ + ∣c2∣2 ∣a2⟩ ⟨a2∣ predicts Schrödinger’s
cat is in mixture of either dead or alive, not superposition of both dead and
alive.

The local states ρS = TrA(ρSA) = ∣c1∣2 ∣s1⟩ ⟨s1∣+∣c2∣2 ∣s2⟩ ⟨s2∣ and ρA = TrS(ρSA) =
∣c1∣2 ∣a1⟩ ⟨a1∣+∣c2∣2 ∣a2⟩ ⟨a2∣ must be taken seriously as implying the outcomes pre-
dicted to be observed at the two sites.

The local states cannot be dismissed simply by the argument that the only “real”
state is “global state” ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩.

There is no contradiction between the predicted local mixtures ρS = TrA(ρSA) =
∣c1∣2 ∣s1⟩ ⟨s1∣ + ∣c2∣2 ∣s2⟩ ⟨s2∣ and ρA = TrS(ρSA) = ∣c1∣2 ∣a1⟩ ⟨a1∣ + ∣c2∣2 ∣a2⟩ ⟨a2∣ and
the unitarily-evolving global pure state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩.

Important: To consider the combined system SA as single system only evolv-
ing unitarily misses the essential physics of nonlocality.

Haroche and Raimond weighed in on question of when a two-part system should
be considered as a composite of two subsystems, versus when it should be con-
sidered single system B = SA.

The composite system should be considered a single system whenever the bind-
ing between the parts is much stronger than the interactions involved in the
dynamics, so that internal structure of composite system is left unchanged as it
travels through the experiment.

By this criterion, SA is not single system. Not only does the relation between
S and A change during experiment, the relation is entangled and thus nonlocal.

The implication is that ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ must be considered an
entanglement of two separate systems S and A, not superposition of a single
composite system SA.

That’s the basics of the theory! It follows completely from standard QM.

22.5.3 Now for even more details

Roch’s “delayed choice” experiments used a Mach-Zehnder interferometer(Figure
22.4) rather than the logically equivalent double-slit setup, to observe photons.

As shown in detail in Figure 22.5, while a photon is on the 48-meter-long inter-
ferometer paths, a quantum-based random number generator “decided” whether
the second beam splitter (positioned at the end of paths - note the spatial sepa-
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Figure 22.4:

Figure 22.5:

ration) would be incorporated or omitted, i.e., it decided whether the detectors
would not or would (respectively) determine “which path”.

In trials incorporating the second beam splitter, an interference pattern is ob-
served, indicating the photon passed as a superposition along both paths.

On trials omitting the second beam splitter, no interference is observed, indi-
cating the photon passed as a mixture along one or the other path.

The two parallel paths were 5 millimeters apart.

Precisely (so far as the experiment could determine) when the second beam-
splitter switched from “on” to “off”, the photon changed in mid-flight from being
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on both paths to being on one or the other path.

The quantum jump was correlated with and coincident with the incorporation
or the omission of the second beam splitter (i.e., with the decision to not entan-
gle or to entangle the detectors with the photon).

All experimental results are just as predicted by the reduced states ρS = TrA(ρSA) =
∣c1∣2 ∣s1⟩ ⟨s1∣ + ∣c2∣2 ∣s2⟩ ⟨s2∣ and ρA = TrS(ρSA) = ∣c1∣2 ∣a1⟩ ⟨a1∣ + ∣c2∣2 ∣a2⟩ ⟨a2∣.

Switching the second beam-splitter off entangles the photon and the detector
in the measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ causing photon to col-
lapse from superposition ∣ψ⟩S = (c1 ∣s1⟩+c2 ∣s2⟩ into the mixture ρS = TrA(ρSA) =
∣c1∣2 ∣s1⟩ ⟨s1∣ + ∣c2∣2 ∣s2⟩ ⟨s2∣ that is observed at the detector.

At the diagonal density matrix stage, we are doing a classical mea-
surement and it should be interpreted as such.

This resolves problem of definite outcomes!

Quantum theory predicts and experiment verifies that, with the detector in
operation, observers of S and of A find them to be in definite mixtures, not
indefinite superpositions!

Any strategy of imagining the quantum and the detector to be widely separated
obviously changes nothing - it does not matter whether the quantum and the
detector are close together or far apart.

The key to understanding quantum measurements comes from understanding
the nonlocal relationship that develops between S and A when they evolve uni-
tarily into entangled measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩.

In experiments, global state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ violates Bell’s in-
equality, implying an instantaneous non-local transfer of correlations across
arbitrarily large distances. Without entanglement one would observe different
results - the interferences would not disappear as in the experiments. But en-
tanglement “decoheres-collapses” coherent states so that S and A impact their
detectors randomly. Locally, entanglement decoheres each photon so that they
exhibit definite outcomes.

But quantum dynamics is unitary, implying that the global state ∣ψ⟩SA =
c1 ∣s1⟩ ∣a1⟩ + c2 ∣s2⟩ ∣a2⟩ remains coherent despite the incoherence of subsystems.

Since the individual photons are now incoherently mixed, what has happened
to coherence?

Answer: it is the experimentally observed global coincidence measurements
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which compare the impact points of entangled pairs.

In a double-slit experiment with two screens, each photon “knows” the impact
point (i.e., phase shift) of the other photon and instantly adjusts its own impact
point in order to form an interference pattern as a function of the difference
between the two photons’ phase shifts!

This is strikingly non-local, and the experimental results violate Bell’s inequal-
ity.

Thus the coherence of the entangled state resides in the correlations between
subsystems, rather than in subsystems themselves!!

Entanglement transforms the coherence of states of S into coherence of correla-
tions between states of S and A, allowing S and A to exhibit definite outcomes
while preserving the global coherence as demanded by unitary evolution.

We can now answer the question: Precisely what is superposed and what inter-
feres in measurement state?

The answer is surprisingly simple: Only the correlations between S and A are
superposed. Thus the measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+ c2 ∣s2⟩ ∣a2⟩ should
be read as:

The state ∣s1⟩ is positively correlated with the state ∣a1⟩, and the
state ∣s2⟩ is positively correlated with the state ∣a2⟩

Only correlations are superposed, not states.

When the superposition ∣ψ⟩S = (c1 ∣s1⟩+ c2 ∣s2⟩ of S entangles with the states of
A, the superposition shifts from a superposition of states of S to a superposition
of correlations between S and A, so S can be in an incoherent mixture while
maintaining unitary global dynamics!

This is how nature resolves problem of definite outcomes.

So the coherence exhibited by measurement state ∣ψ⟩SA = c1 ∣s1⟩ ∣a1⟩+c2 ∣s2⟩ ∣a2⟩
must be invisible to local observers, and yet show up in the global measurement
state in order to preserve unitary dynamics.

One could regard this as the underlying reason why entanglement (i.e., measure-
ment) must shift the coherence from the states of S and A to the correlations be-
tween S and A. “Collapse” can be viewed as consequence of measurement state’s
nonlocality plus special relativity’s ban on instant signaling. We note that the
global measurement state is a very different animal from local states. While
the local mixed states are immediately observed at both local sites, the global
state can be “observed” only at some time after measurement by traveling

1721



to both local sites, gathering data from both, and then assembling information
and noting the correlations between two sets of data.

Another difficulty often raised in conjunction with measurement problem: “ba-
sis ambiguity” or “the preferred basis problem”. The argument is that the local
state solution based on reduced states is mathematically ambiguous in the spe-
cial case that ∣c1∣2 = ∣c2∣2 = 1/2 because the reduced density operators become
ρS = IS/2 and ρA = IA/2, where IS and IA are identity operators in the two
reduced Hilbert spaces. Measurement does not determine a unique pair of sub-
system basis vectors; any orthonormal basis can be used for each subsystem
implying an ambiguous situation.

This is specious criticism because the measurement device is not constructed
to pick out particular basis set in the subsystem’s Hilbert space. It is designed
instead to correlate with the particular physical state of measured quantum sys-
tem. Regardless of what basis is used, the detector is designed to transition into
∣ai⟩ upon detecting S to be in ∣si⟩, (i = 1,2). It’s not designed to transition into
some other states such as (∣s1⟩+∣s2⟩)/

√
2. The particular physical states ∣s1⟩ and

∣s2⟩ determine, unambiguously, the “natural” basis of the measurement. In the
double-slit experiment, these states are for example “quantum comes through
slit 1” and “quantum comes through slit 2”. The ambiguity of basis sets for
the reduced density operators isn’t important. What’s important is the specific
correlations established by detector!

Our conclusions so far:

When the detector measures the superposed quantum, quantum physics pre-
dicts that the states actually observed are local (i.e., mixed or reduced) states
of subsystems, not the superposed global state that follows from Schrödinger’s
equation.

The local states directly observed in the measurement must contain no hint of
nonlocal correlations between two subsystems since this would violate relativ-
ity’s prohibition on instant signaling.

Thus the local states describe what actually happens at both subsystems.

The global state predicts these local states(can be derived from), and also pre-
dicts indirectly-observable (by gathering global data at later time) nonlocal
correlations between these states.

22.5.4 An even more dramatic experiment

The unity of the quantum suggests that the measurement state (22.52) repre-
sents a unified, hence superposed and pure, quantum state of composite system.
We asked the question: precisely what is superposed?
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We answered this question by studying the simple (i.e., non-composite) super-
position (22.50) via interference exhibited in a Mach-Zehnder experiment.

Varying the lengths of either path 1 or path 2 created varying interference ef-
fects in detectors, demonstrating each photon really must travel both paths to
its detector.

Quantum theory agrees entirely with these conclusions, as can be shown by
using photon wavelengths to show that path differences correctly predict the
interferences observed at each detector.

This implies that to understand the measurement state, one needs to find and
analyze entanglement experiments that demonstrate interference. This has been
done for several decades in connection with quantum non-locality. The key theo-
retical analysis was done by John Bell. Many nonlocal interference experiments
have been done beginning with Clauser and Freedman culminating in experi-
ments demonstrating nonlocality across great distances and that simultaneously
closed all possible loopholes in all previous experiments.

By now, it is well known that the entangled state (22.52) predicts nonlocal ef-
fects between two subsystems, and that phase variations of either subsystem
cause instantaneous, i.e., non-local, readjustments(correlations) of the possibly-
distant other subsystem.

When macroscopic systems are involved (i.e., cats) we have a problem.

It is not easy to vary the phase of cat, and, as we saw in the Mach-Zehnder
experiment, one cannot understand superposition without varying the phases of
superposed parts.

Thus, all nonlocality experiments are carried out with pairs of simpler quanta
such as photons.

The most recent nonlocal entanglement experiments most appropriate for in-
vestigating measurement were conducted nearly simultaneously by Rarity and
Tapster and Ou. Figure 22.6 shows the layout for these “RTO” experiments.

The “source” creates entangled photon pairs by “parametric down-conversion”.
The RTO experiment is two back-to-back interferometer experiments but with
first beam splitter for each photon located inside the source of entangled pho-
tons.

Without entanglement, each single photon (either A or B) would interfere with
itself at own detectors according to own phase shift ϕA or ϕA.

Two entangled photons are emitted into a superposition of the solid paths con-
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Figure 22.6:

necting detectors A1 and B1, and the dashed paths connecting detectors A2
and B2.

Note that the two photons are already entangled when emitted.

Entanglement changes everything.

No longer does either photon interfere with itself at its own detectors.

Instead, photons are entangled in measurement state (22.52) with ∣ψ1⟩ and ∣ψ2⟩
representing (say) the solid-line and the dashed-line states of A and ∣1⟩ and ∣2⟩
representing the solid-line and the dashed-line states of B, although in the RTO
experiments neither subsystem is macroscopic.

Each photon now acts like which-path detector for other photon.

Recall the double-slit experiment:

When the which-slit detector is switched on, the pattern on screen switches
abruptly from striped interference pattern indicating the pure state nature
of each electron across both slits, to the phase-independent sum of two non-
interfering single-slit patterns.

Entanglement between the electron and the which-slit detector breaks the pure
state into two single-slit parts, so that the measured electron comes through
either slit 1 or slit 2.

This suggests that in the RTO experiment, the entanglement should break the
pure-state superposition into two non-interfering parts.

This is exactly what is observed. Both photons impact their detectors as ran-
dom 50-50 mixtures, just like a flipped coin.
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Entanglement breaks the single-photon pure state (22.50) observed in the Mach-
Zehnder experiment, causing each photon to behave “incoherently” with no de-
pendence on its phase setting.

But (22.52) is pure state.

Where has phase dependence gone?

The answer lies in the phase-dependent but nonlocal relationship observed be-
tween the solid and the dashed branches. This phase dependence is observed
experimentally in coincidence (or correlation) measurements comparing the de-
tections of entangled pairs.

The “flipped coins” mentioned above turn out to be correlated with each other.

This phase dependence across two separated subsystems is essential to preserve
the unity of the (now entangled) quantum.

This is not an easy experiment to perform:

The source creates a stream of photon pairs, and one must compare the impact
of single photon A at detectors A1, A2 with the impact of corresponding entan-
gled photon B at detectors B1, B2. RTO figured out how to do this, with the
result shown in Figure 22.7.

Figure 22.7:

The figure graphs the degree of correlation between A and B. This is a measure
of the agreement between the outcomes at A’s detectors and B’s detectors.

A correlation of +1 means perfect, or 100%, agreement: Either both sets of
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detectors register outcome 1 (i.e., A1 and B1 click) or both register outcome 2.

The opposite extreme is a correlation of -1, meaning 100% disagreement: If one
detector registers 1, the other registers 2.

Either correlation, +1 or -1, implies that either photon’s outcome is predictable
from the other photon’s outcome.

A correlation of zero means one photon’s outcome does not at all determine
other’s outcome: Each photon has random 50-50 chance of either outcome re-
gardless of the other photon.

Correlations between 0 and +1 mean the outcomes are more likely to agree than
to disagree, with larger correlations denoting higher probability of agreement;
for example, correlation of +0.5 means 75% probability of agreement.

Similarly, correlations between 0 and -1 mean outcomes are more likely to dis-
agree than to agree; a correlation of -0.5 means a 75% probability of disagree-
ment.

The RTO experiment agrees entirely with predictions of standard quantum
physics.

When accounting is made of the optical paths for both photons, they obtain the
following result:

P (correlated) = P (A1andB1)+P (A2andB2) = 1

2
[1+ cos (ϕB − ϕA)] (22.62)

P (anticorrelated) = P (A1andB2) + P (A2andB1) = 1

2
[1 − cos (ϕB − ϕA)]

(22.63)
where P(correlated) is a single-trial probability that A’s and B’s detectors will
agree, and P(anticorrelated) is a single-trial probability that A’s and B’s detec-
tors will disagree.

The degree of correlation, defined as P(correlated) - P(anticorrelated), is then
simply cos (ϕB − ϕA), as graphed in Figure 7.

In 1964, John Bell published a ground-breaking article stating the sufficient
condition for a statistical theory such as quantum physics to meet condition
known as “locality”. He defined locality to mean “that result of measurement
on one system be unaffected by operations on distant system with which it has
interacted in past”.

Bell expressed a sufficient condition in form of inequality that any local theory
must obey.
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He demonstrated that certain statistical predictions of quantum physics violate
Bell’s inequality, i.e., quantum physics makes nonlocal predictions.

The results in Figure 7 implies the case in point: Figure 7 violates Bell’s in-
equality at all phase differences ϕB − ϕA other than 0, π, and 2π.

Let me underline meaning of this:

Violation of Bell’s inequality means that the statistics of the measurements on
photon A - photon A’s “statistical behavior” - is necessarily affected by the set-
ting of photon B’s phase shifter.

In fact, even without Bell’s condition, the nonlocality of the experiment intu-
itively obvious.

Here’s why:

Suppose we set the phase shifters to zero and that all four optical paths (two
solid, two dashed) are then equal; thus ϕB − ϕA is zero.

Without the two beam splitters BS, the two photons emitted into the solid pair
and the dashed pairs of paths would impact either detectors A1 and B1 or A2
and B2 because of symmetry of experiment and conservation of momentum.
This is neither surprising nor nonlocal, and would happen even if the photons
were not entangled.

But the beam splitter is a randomizing device that mixes the solid and dashed
paths; any photon passing through it has a 50-50 chance of reflection or trans-
mission.

With non-entangled photons and both beams splitters in place, there would
then be no correlation between photon A’s outcome and B’s outcome because
the two photons are independent of each other.

With entanglement, correlation is perfect.

How does one photon “know” which path the other photon took at the other
photon’s beam splitter?

Each photon is now “detecting” the quantum state of the other photon, from a
distance that could be large.

Perfect correlation certainly “feels” nonlocal even though (as mentioned above)
this perfect correlation at ϕB − ϕA = 0 does not violate Bell’s inequality. Note
that such a violation is a sufficient but not a necessary condition for nonlocality.
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Non-locality is written all over the RTO experiment.

Each photon “knows” which direction the other photon takes at its beam splitter
and adjusts its selection accordingly.

The key nonlocal feature of graph, which is simply a cosine function, has
(ϕB−ϕA) as its independent variable. Thus any desired shift in correlations can
be made by an observer at either of possibly-widely-separated phase shifters.

Bell suspected that this situation meant that observer A (call her Alice) could
use her phase shifter to alter outcomes that would have occurred at both her own
and observer B’s (call him Bob) detector and, following up on this hypothesis,
derived his inequality involving probabilities at both Alice’s and Bob’s detectors
which, if violated, implied that both photons must have readjusted their states.

Such a readjustment is just what we expect, given the unity of quantum and
thus the unity of atoms and other entangled systems such as our two photons.

Two photons form a single “bi-quantum”, an “atom of light”, in the pure state
(22.52).

When Alice varies her phase shifter, both photons “know” both path lengths
and readjust their behavior accordingly to produce the proper correlations.

Analogously, a single photon “knows” both path lengths in single-photon inter-
ferometer experiment.

Finally, we come to the central question of the discussion:

What is actually superposed in entangled superposition (22.52)?

A Mach-Zehnder experiment tests the simple superposition (22.50), while the
RTO experiment tests the entangled superposition (22.52).

We know what is superposed in Mach-Zehnder, namely quantum states ∣ψ1⟩
(path 1) and ∣ψ2⟩ (path 2). This is deduced from the effect that either phase
shifter has on both states.

Now consider the RTO experiment. What is the effect of shifting either phase
shifter?

One thing that does not change is the state (“local state” would be a better
term, as discussed earlier) of either photon A or photon B:

As we know, both photons remain in 50-50 mixtures regardless of either phase
setting.
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What does change with variations in either phase shifter is the correlations be-
tween A and B.

With ϕB − ϕA = 0 we have perfect correlation: Either A1 and B1 (which we
denote (11)) or A2 and B2 (denoted (22)).

As we vary either ϕB or ϕA we obtain non-zero probabilities of anti-correlated
individual trials, denoted (12) (outcomes A1 and B2) and (21) (A2 and B1).

When non-local phase angle difference (ϕB − ϕA) reaches ?π/2, we have zero
correlation, and when it eaches π have perfect anti-correlation.

Table 1 summarizes the crucial points in more detail.

The column titled “simple superposition” shows how the superposition state of
single photon (M-Z) varies from “100% state 1” to “100% state 2” as the phase
angle between two states varies.

The column titled “entangled superposition of two subsystems” shows that the
state of each photon remains unchanged throughout the entire range of both
phase settings, while the nonlocal correlation between states of two photons
varies from “100% correlated” to “zero correlation” and then to “100% anticor-
related” as either of the two local phase angles varies.

So once again, what is superposed in RTO experiment?

The hallmark of a superposition is the dependence on phase difference between
the objects superposed.

But Table 1 exhibits no such phase dependence of states of two photons.

Each photon remains in unchanging 50-50 mixture of their own “path 1” and
“path 2” states - a situation that is radically at odds with the true superposition
of path 1 and path 2 exhibited by M-Z experiment.
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Thus, in the entangled RTO state, neither photon is superposed.

We see here the source of the “classical” or non-superposed nature of reduced
density operators (22.57) and (22.58)), not to mention the non-superposed and
hence non-paradoxical nature of Schrödinger’s cat.

Examination of the phase-dependence of the measurement state (22.52), as
demonstrated by nonlocality experiments such as RTO experiment, reveals the
true nature of Schrödinger’s cat. The last column of Table 1 shows us what ac-
tually is superposed when two subsystems are entangled in measurement state
(22.52).

Since the correlations between two photons vary sinusoidally as the non-local
phase angle between the two photons varies, clearly these are correlations be-
tween the states of two photons, and not the states themselves, that are inter-
fering.

Entanglement has shifted superposition, from states of one photon A ((22.50),
M-Z) to correlations between photon A and photon B ((22.52), RTO).

More Details and Conclusions

In order to resolve problem of definite outcomes of measurements, aka Schrödinger’s
cat, the discussion analyzes the entangled state (22.52) of a microscopic quan-
tum and its macroscopic measuring apparatus.

This state is a superposition of two composite entities ∣ψ1⟩ ∣1⟩ and ∣ψ2⟩ ∣2⟩, with
a phase angle between these entities that can range over 2π radians.

In the measurement, this phase angle is fixed at zero because they designed the
detector so that the two basis states of measured quantum are 100% positively
correlated with the basis states of measurement apparatus.

To resolve problem of definite outcomes we must ask(as we have already done
several times):

Precisely what does the composite superposition (22.52) actually superpose,
physically?

In order to understand a simple non-composite superposition (22.50), we looked
at the effect of varying the phase angle between superposed entities ∣ψ1⟩ and
∣ψ2⟩ in experimental setting such as M-Z interferometer.

The theoretically predicted and experimentally observed results then made it
obvious that the quantum whose state is (22.50) flows simultaneously along two
separate paths described by ∣ψ1⟩ and ∣ψ2⟩.
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To understand the superposition (22.52), one should proceed similarly by study-
ing situations in which phase angle between superposed entities ∣ψ1⟩ ∣1⟩ and
∣ψ2⟩ ∣2⟩ varies.

One lesson of this analysis is that, in order to understand the measurement
problem, one must understand the significance of nonlocality.

This is because the key measurement state (22.52) that caused Schrödinger and
decades of experts so much concern has nonlocal characteristics.

It must be understood as a superposition of correlations, rather than a superpo-
sition of states, but this cannot become apparent until one considers the effect
of variations in phase angle between its superposed terms.

Such variations are not part of the measurement process itself because measure-
ments are designed to take place at zero phase angle.

Experimental or theoretical studies of such phase variations will have nonlocal
ramifications, because such variations are inherently nonlocal!!

It’s worth emphasizing that, when two subsystems are entangled in
measurement state (22.52), neither subsystem is superposed - only
the correlations between subsystems are superposed.

In RTO experiments, the two correlations in question are represented by the
solid and the dashed paths connecting pairs of outcomes. A pair of photons
entangled in state (22.52) follows both of these paths simultaneously.

The subsystems themselves, however, are not in superpositions but instead in
indeterminate mixtures of definite states. Thus observers of either subsystem
will observe only definite outcomes, as predicted by the local mixtures (22.57)
and (22.58).

RTO experiments are the entangled analog of the M-Z interferometer experi-
ment: a pair of back-to-back interferometer experiments, with entangled pair of
quanta of which one quantum passes through each interferometer.

As we said earlier, the experiment and its theoretical analysis shows that, when
a superposed photon A becomes entangled with second photon B to form state
(22.52), the nonlocal aspect of A’s superposition is transferred to the correla-
tions between A and B.

Thus, an entangled state such as (22.52) is neither a superposition of states of
A nor of states of B, but instead superposition of correlations between states of
A and states of B.
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To see this most clearly, we compare the simple superposition (22.50) with the
entangled superposition (22.52).

In the simple superposition, the state observed by a “which-state” detector varies
smoothly from 100% ∣ψ1⟩, through 50% ∣ψ1⟩ and 50% ∣ψ2⟩, and finally to 100%
∣ψ1⟩ as the phase angle ϕ between ∣ψ1⟩ and ∣ψ2⟩ varies from 0 to π.

In the entangled superposition, neither the state of A nor the state of B varies
as ϕA or ϕB varies; both A and B remain in 50-50 mixtures throughout. What
does vary is the correlation between A and B.

A non-local “correlation detector” (i.e., an RTO-type of experiment!) would
find relation between the two subsystems varies from 100% positively correlated
(either pair state 11 or 22, pictured by solid and dashed paths in Figure 6),
to 50% positively correlated and 50% anti-correlated, and finally to 100% anti-
correlated (12 or 21), as the nonlocal phase difference ϕB −ϕA varies from 0 to
π.

This is a superposition of correlations, not a superposition of composite states
or of non-composite (single-system) states.

At least in the idealized case of a minimally-disturbing von Neumann measure-
ment, the initial stage of measurement process (through formation of measure-
ment state (22.52)) can be described as follows:

A quantum in a simple superposition such as (22.50) entangles with a macro-
scopic which-path detector.

At the instant of entanglement, the local states of both the quantum and the
detector undergo a radical change, a quantum jump.

Locally, the detector and the quantum jump into mixtures (22.57) and (22.58).

Simultaneously, the global state (22.52) continues evolving smoothly according
to Schrödinger equation.

Entanglement causes the superposed single quantum to be instantly transformed
into superposed correlations between the quantum and the detector.

This stage of measurement process is entirely describable in terms of a pure
global states following Schrödinger equation.

“Collapse” from the local superposition to the local mixtures occurs because
of the formation of the entangled state (22.52) and the resulting formation of
subsystems whose local states ((22.57) and (22.58)) have definite outcomes.
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Note that the phenomenon of nonlocality is essential to preserving the pure-
state nature (the unity) of the composite system.

To put this more intuitively, a reorganization throughout the entire extent of
the composite entangled system is required in order to preserve the unity of the
(now entangled) quantum.

According to Table 1, when two systems entangle to form the state (22.52), both
“collapse” into phase-independent local mixtures.

Relativity requires this phase independence:

If any phase-dependent aspect of entangled state were locally observable, instant
information-containing messages could be sent, violating special relativity. Lo-
cal states of entangled subsystems must be invariant to phase changes.

Thus, only the relationship - the correlations - between A and B, but not A or B
themselves, can vary with phase angle. Since local observers cannot detect these
correlations, the entangled state cannot be used to send superluminal signals.

This is, ultimately, the reason Schrödinger’s cat must be either alive or dead
rather than superposition of both. A phase-dependent superposition involving
both local states would permit nonlocal signaling, violating relativity.

This conclusion implies that standard physical description of composite non-
entangled (i.e., factorable) product state such as ∣ψ1⟩ ∣1⟩ has been long mistaken.

Usually we regard ∣ψ1⟩ ∣1⟩ as state of the composite system AB, where subsys-
tem A is in state ∣ψ1⟩ and subsystem B is in state ∣1⟩. But this leads us into
the paradox of Schrödinger’s cat, where (22.52) represents a state in which two
macroscopically different composite states exist simultaneously as a superposi-
tion.

According to present discussion, quantum theory and quantum experiments im-
ply this entangled state to be a superposition of correlations between states
rather than a superposition of composite states.

Thus ∣ψ1⟩ ∣1⟩ is not a state of composite system, but instead a correlation be-
tween two subsystems. That is, ∣ψ1⟩ ∣1⟩ means “subsystem A is in state ∣ψ1⟩
if and only if subsystem B is in state ∣1⟩", an important departure from usual
description.

Even if one of two subsystems happens to be a macroscopic detector, the entan-
gled state (22.52) is simply a non-paradoxical superposition of correlations. It
says merely that state ∣ψ1⟩ of A is correlated with state ∣1⟩ of B, and state ∣ψ2⟩
of A is correlated with the state ∣2⟩ of B, with non-local phase angle ϕB − ϕA
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determining the degree of each correlation.

In the case of a measurement, this phase angle is fixed at zero.

Regardless of the phase angle, neither subsystem is in superposition.

The entangled measurement state (22.52) is best described as a “macroscopic
correlation”: a pair of superposed (i.e., phase-dependent) quantum correlations
in which one subsystem happens to be macroscopic. It is technically very diffi-
cult to create a macroscopic superposition, but macroscopic which-path detec-
tors routinely achieve the state (22.52). It’s not paradoxical, even though many
analyses have puzzled over it.

In entanglement, nature employs an ingenious tactic. She must not violate rel-
ativistic causality, yet she must be nonlocal in order to maintain the pure-state
nature of original single-quantum superposition over composite objects such as
bi-photons.

Thus, she accomplishes nonlocality entirely via the superposition of correlations,
because correlations cannot be locally detected and thus their superposition
cannot violate relativity. This tactic lies behind the nonlocal spread of phase-
dependence over large spatial distances.

By means of the superposition of correlations - entanglement - nature creates
a phase-dependent pure-state quantum structure across extended quantum sys-
tems such as bi-photons.

I’ve frequently used the term “local” as contrasted with “global”. For composite
systems, and especially the entangled measurement state, it’s a crucial distinc-
tion.

Entangled states such as (22.52) have distinct local and global (nonlocal) as-
pects.

The local description corresponds to two observers, each observing only one
subsystem. In the case of (22.52), this “local description” is fully captured by
the reduced density operators (22.57) and (22.58) - each local observer detects
a mixture, not a superposition, of one subsystem.

The “global description” means the evolving pure state of the entire compos-
ite system, in our case (22.52). It is a superposition of nonlocal correlations
that can only be detected by observing both subsystems and, via an ensemble
of trials that individually record corresponding outcomes at both subsystems,
determining the state of the correlations between them.

Although the global state implies the local description, the local description
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cannot hint at the global correlations because any such hint would violate Ein-
stein causality.

Thus, when an electron shows up in your lab, neither an examination of the
electron nor an examination of an ensemble of identically-created electrons can
give you the least hint of whether or how this electron is entangled with other
quanta elsewhere in the universe.

This clarification of entanglement resolves problem of definite outcomes, aka
Schrödinger’s cat.

An ideal measurement of a superposed microscopic system A by a macroscopic
detector B establishes the measurement state (22.52) at 100% positive correla-
tion. This state is equivalent to the logical conjunction “A is in local state ∣ψ1⟩
if and only if B is in local state ∣1⟩, AND A is in local state ∣ψ2⟩ if and only if B
is in local state ∣1⟩”, where AND indicates the superposition. This conjunction
is precisely what we want following a measurement.

Schrödinger’s cat is not in the least paradoxical.

This analysis does not entirely resolve the quantum measurement problem.

It resolves the problem of definite outcomes associated with the measurement
state (22.52), but this state continues to obey Schrödinger’s equation and, hence,
is reversible.

In fact, the entangled state between a quantum and its which-path detector can
actually be reversed in the Stern-Gerlach experiment.

In my view, a quantum measurement must result in a macroscopic indication
such as a recorded mark, and a mark is irreversible.

The above analysis shows the entangled state (22.52) describes a mixture of def-
inite, not superposed, outcomes of measurements, but these outcomes remain
indeterminate and the global state remains reversible.

The irreversibility problem is the question of how this nonlocal superposition of
correlations then further “collapses” irreversibly to just one of its possible out-
comes, a “collapse” that occurs in the RTO experiment only when one photon
impacts a detector.

The present analysis does not seem to resolve this problem.

In the case of the RTO experiment, however, it seems fairly clear that the non-
local superposition described by Eq. (22.52) must irreversibly decohere(register
a value) when either of its subsystems A or B interacts with a detector.
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The RTO experiment furnishes a particularly good setting for this question, be-
cause the two photons remain in the reversible entangled state (22.52) through-
out their flights from the source to detectors, and thus the two key questions of
the measurement problem (the problem of definite outcomes and the problem
of irreversibility) can be analyzed individually.

22.6 Closing Story #1

Let us look at EPR again now that we understand what is happening in entan-
gled quantum systems.

Depending on basis used (language chosen) we have one of two states for a pair
of electrons:

∣ψ⟩ = 1√
2
(∣↑z⟩ ∣↓z⟩ − ∣↓z⟩ ∣↑z⟩) or ∣ψ⟩ = 1√

2
(∣↑x⟩ ∣↓x⟩ − ∣↓x⟩ ∣↑x⟩) (22.64)

Let us once again consider the EPR reasoning to see whether it leads to the
conclusion of incompleteness of quantum mechanics. If Alice performs a mea-
surement on spin along the z direction and the outcome is spin up, the state
vector after measurement is updated to ∣↑z⟩ ∣↓z⟩.

This just means that if Bob were to measure the z-component of spin, the spin
value would be DOWN according to Alice. This description of physical reality
is true only relative to Alice.

From Bob’s perspective, before he knows the Alice’s measurement result, he
still views the composite system in the original state, i.e., no quantum event
happened yet. In other words, Bob still predicts that future measurement spin
will find the UP state with fifty percentage of chance.

Since the spins of the two electrons are entangled, Alice’s spin is a measuring
apparatus for Bob’s spin.

Since Alice performed a spin measurement, she effectively reads the measuring
apparatus. Therefore, she is the intrinsic observer, and Bob is an external ob-
server. At this point, both observers are out of synchronization on the relational
information of the two particles, thus they give different predictions of the Bob
particle spin value.

To verify the physical description Alice obtained for the Bob spin value after
measuring the Alice particle spin value, Alice can travel to Bob’s location to
perform a measurement, or can send the measurement result to Bob and ask
Bob to perform a measurement.

Suppose Alice sends the measurement outcome to Bob. Bob updates state to
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∣↑z⟩ ∣↓z⟩, the same as state relative to Alice.

He now can confirm the physical reality that the Bob spin value is DOWN with
unit probability.

However, in this state, he cannot predict deterministically that Bob particle spin
value is would be in the x-direction, since ∣↓z⟩ is superposition of x-components.

Similarly, if Alice performs a measurement on the Alice particle spin along the
x-direction and the outcome is spin UP, then the Bob particle spin value is
deterministically DOWN(x-direction) relative to Alice, but nothing happened
from Bob’s view.

If Alice sends the measurement result to Bob, Bob updates the state vector
accordingly to ∣↑x⟩ ∣↓x⟩. He now can confirm the physical reality that the Bob
particle spin value is the right state ∣↓x⟩.

However, in this state, he cannot predict deterministically that the Bob par-
ticle spin value would be in the z-direction, since ∣↓x⟩ is superposition of z-
components.

Since Alice cannot perform measurement on the Alice spin value along z and
x directions at the same time, Bob cannot confirm the Bob spin value has spin
values in both z and x directions simultaneously. The reality that the Bob spin
value simultaneously have definite values for Sz and Sx cannot be verified.

This is consistent with the Heisenberg Uncertainty Principle. There is no in-
completeness issue for quantum mechanics. Hence the original EPR argument.

However, there is still a puzzle here, namely, a non-causal correlation.

It appears Bob’s measurement outcome on the Bob spin value “depends” on
which direction Alice chooses to measure the Alice spin value.

Since Alice’s measurement does not impact the physical property of particle
Bob spin value, we can ask exactly what spin state is Bob spin value in before
Alice’s measurement?

To answer this subtle question, first note that it is Alice’s new knowledge of the
Bob spin value, not the physical reality of the Bob spin value, that depends on
the axis along which the measurement is performed.

One cannot assume there exists an absolute reality for Bob spin value.

To confirm the new found reality of the Bob spin value relative to Alice, Alice
sends the measurement result to Bob who performs a subsequent measurement.
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There is no faster-than-light action here.

Secondly, it is true that Bob’s measurement outcome correlates to the Alice’s
measurement result. But this is an informational correlation, not a causal rela-
tion.

This correlation is encoded in the entangled state of the composite system ∣ψ⟩.
Since the entanglement is preserved even when both particles are space-like sep-
arated, the correlation is preserved.

Such an entangled quantum state contains not only the classical correlation, but
also the coherence information of the composite system.

When Alice measures the Alice particle spin value, she effectively measures the
composite system, because she obtains information not only about the Alice
spin value, but also about the correlation between the Alice spin value and the
Bob spin value.

In addition, the measurement induces the decoherence of the composite system.

Before Alice performs the measurement, it is meaningless to speculate what spin
state the Bob particle spin is in.

When Alice measures the Alice spin value along the z direction and obtains
result of spin up, she knows that in this condition, the Bob spin value is in spin
down and later this is confirmed by Bob.

If instead, she measures the Alice spin value along the x direction and obtains
result of spin left, she knows that in this new condition, the Bob spin value is
in spin right and is later confirmed by Bob.

To better understand this non-causal relation, suppose we have many identical
copies of the entangled pairs described by ∣ψ⟩.

Alice measures the Alice particle spin values sequentially along the z direction
and she does not send measurement results to Bob. Bob independently mea-
sures the Bob particle spin values along z direction as well.

Both of them observe their own measurement results for Sz as randomly spin
up or spin down, but with fifty percent of chance for each. When later they
meet, compare measurement results.They find two sequences of Sz values that
are exactly opposite.

They can even choose a random sequence of z or x directions but both follow
exact sequence in their independent measurements. When later they meet and
compare measurement results, they still find their measured values are the op-
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posite sequentially.

What does this all mean?

Special Relativity forces us to abandon the concept of absolute time.

Measurement of time is observer-dependent.

Similarly, in relativistic QM, the idea of an observer independent quantum state
must be abandoned.

Space-like separated observers, however, can reconcile the different descriptions
of the same quantum system through classical communication of information
obtained from local measurements.

22.7 Closing Story #2 - Some Provocative Thoughts

Quantum mechanics began with Heisenberg’s “Umdeutung(Reinterpretation)”
paper, i.e., his proposed “reinterpretation” of physical quantities at the funda-
mental level as non-commutative.

To say that the algebra of physical quantities is commutative is equivalent to
saying that the projection operators form a Boolean algebra (Boolean algebra
is the branch of algebra in which the values of the variables are the truth values
true and false, usually denoted 1 and 0 respectively).

They represent yes-no observables, or properties (for example, the property that
the energy of the system lies in a certain range of values), or propositions (the
proposition asserting that the value of the energy lies in this range), with the
two eigenvalues corresponding to the truth values, true and false.

Heisenberg’s insight amounts to the proposal that certain phenomena in our
Boolean macroworld that defy a classical physical explanation can be explained
probabilistically as a manifestation of collective behavior at a non-Boolean
micro-level.

The Boolean algebra of physical properties of classical mechanics is replaced
by a family of “intertwined” Boolean algebras, one for each set of commuting
observables.

The intertwinement precludes the possibility of embedding the whole collection
into one inclusive Boolean algebra, so you can’t assign truth values consistently
to the propositions about observable values in all these Boolean algebras.

Putting it differently: there are Boolean algebras in the family of Boolean alge-

1739



bras of a quantum system, notably the Boolean algebras for position and mo-
mentum, or for spin components in different directions, that don’t fit together
into a single Boolean algebra, unlike the corresponding family for a classical
system.

The intertwinement of commuting and noncommuting observables in Hilbert
space imposes objective pre-dynamic probabilistic constraints on correlations
between events.

The probabilistic constraints encoded in the geometry of Hilbert space provide
the framework for the physics of a genuinely indeterministic universe.

They characterize the way probabilities fit together in a world in which there
are nonlocal probabilistic correlations that violate Bell’s inequality.

Quantum probabilities don’t quantify incomplete knowledge about a state, but
reflect the irreducibly probabilistic relation between the non-Boolean microlevel
and the Boolean macrolevel.

This means that quantum mechanics is quite unlike any theory we have dealt
with before in the history of physics, and there is no reason, apart from tra-
dition, to assume that the theory can provide the sort of explanation we are
familiar with in a theory that is commutative or Boolean at the fundamental
level.

Quantum probabilities can’t be understood in the Boolean sense as quantifying
ignorance about the pre-measurement value of an observable, but give results
in terms of what you’ll find if you “measure”, which involves considering the
outcome, at the Boolean macrolevel, of manipulating a quantum system in a
certain way.

A quantum “measurement” is a bit of a misnomer and not really the same sort
of thing as a measurement of a physical quantity of a classical system.

It involves putting a microsystem, like a photon, in a situation, say a beamsplit-
ter or an analyzing filter, where the photon is forced to make an intrinsically
random transition recorded as one of two macroscopically distinct alternatives
in a device like a photon detector.

The registration of the measurement outcome at the Boolean macrolevel is cru-
cial, because it is only with respect to a suitable structure of alternative possi-
bilities that it makes sense to talk about an event as definitely occurring or not
occurring, and this structure is a Boolean algebra.

From this perspective, Heisenberg’s theory provides a way of deriving probabil-
ities and probabilistic correlations with no causal explanation.
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They are “uniquely given from the start” as a feature of the non-Boolean struc-
ture, related to the angles in Hilbert space, not measures over states as they are
in a classical or Boolean theory.

The really significant thing about a noncommutative mechanics is the novel pos-
sibility of correlated events that are intrinsically random, not merely apparently
random like coin tosses, where the probabilities of “heads” and “tails” represent
an averaging over differences among individual coin tosses that we don’t keep
track of for practical reasons.

This intrinsic randomness allows new sorts of nonlocal probabilistic correlations
for “entangled” quantum states of separated systems.

The view that Hilbert space is fundamentally a theory of probabilistic corre-
lations that are structurally different from correlations that arise in Boolean
theories is, in effect, an information-theoretic interpretation of quantum me-
chanics.

On this way of understanding quantum mechanics, as a non-classical theory of
information or a new way of generating probabilities and probabilistic corre-
lations between intrinsically random events, probabilities are defined with re-
spect to a single Boolean frame, the Boolean algebra generated by the “pointer-
readings” - the “ultimate measuring instruments”, which are “kept outside the
system subject to quantum mechanical treatment”

It’s not that unitarity is suppressed at a certain level of complexity, where non-
Booleanity becomes Booleanity and quantum becomes classical.

Rather, there is a macrolevel, which is Boolean, and there are actual events at
the macrolevel.

Any system, of any complexity, is fundamentally a quantum system and can be
treated as such, in principle, which is to say that a unitary dynamical analysis
can be applied to whatever level of precision you like.

The crucial assumption in this probabilistic interpretation of the theory is that
the outcome of a measurement is an intrinsically random event at the macrolevel,
something that actually happens, not described by the deterministic unitary dy-
namics, so outside the theory, or “irrational”.

Putting it differently, the “collapse”, as a conditionalization of the quantum
state, is something you put in by hand after recording the actual outcome.

The physics doesn’t give it to you.

Special relativity, as a theory about the structure of space-time, provides an
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explanation for length contraction and time dilation through the geometry of
Minkowski space-time, but that’s as far as it goes.

This explanation didn’t satisfy Lorentz, who wanted a dynamical explanation
in terms of forces acting on physical systems used as rods and clocks.

Quantum mechanics, as a theory about randomness and nonlocality, provides
an explanation for probabilistic constraints on events through the geometry of
Hilbert space, but that’s as far as it goes.

22.8 Last Thoughts

When a detector measures a superposed quantum, quantum physics predicts
that states actually observed are local (i.e., mixed or reduced) states of subsys-
tems, not the superposed global state that follows from Schrödinger’s equation.
The local states that are directly observed in a measurement must contain no
hint of the nonlocal correlations between the two subsystems, lest relativity’s
prohibition on instant signaling be violated.

Thus the local states describe what actually happens in both subsystems.

The global state predicts these local states, and also predicts the indirectly-
observable (by gathering global data at a later time) nonlocal correlations be-
tween these states.

Experiments confirm both the local and the global predictions, namely that
outcomes are definite but unpredictable, and correlations between these defi-
nite outcomes are as described by the entangled measurement state.

This resolves problem of definite outcomes of measurements.

Nonlocality experiments demonstrate the precise nature of superposition inher-
ent in the global measurement state:

This state is a superposition only of correlations between the detector and its
observed quantum, not a superposition of states of the detector or quantum. It
should be read as “first the quantum state is correlated with the first detector
state AND the second quantum state is correlated with the second detector
state”.

The word AND indicates superposition. By this shifting of coherence from states
of subsystems to correlations between subsystems that evolution of global state
can remain unitary, and global state can remain coherent, while both subsys-
tems collapse into incoherent mixtures of unpredictable but definite outcomes.
This is the way nature resolves problem of definite outcomes.
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Analyses such as this are sometimes called “no-collapse” solutions of measure-
ment problem, but this is a misnomer. There is a physically real, instantaneous,
and observable collapse - a quantum jump- of observed local states, as verified
quite explicitly by Roch’s delayed-choice experiment.

The global state cannot collapse because it obeys unitary dynamics; it accord-
ingly entangles rather than collapses upon measurement. Observed phenomena
collapse, while the global state continues smoothly evolving as predicted by
Schrödinger’s equation.

The notion of “collapse of the quantum state” must be replaced by “collapse of
the local state, and unitary evolution of the global state”.

Both aspects, local and global, are correctly predicted by standard quantum
theory and verified by experiments.

There is no problem with standard quantum mechanics!
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