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Problems
EP #1- The Permutation Symbol I
The alternating symbol is defined by

1 if abed is an even permutation of 1234
€abed = § —1 if abed is an odd permutation of 1234
0  otherwise

Show that if, T, X, Y, and Z are 4—vectors with
= (1,0), X =(0,%), Y = (0,%), and Z = (0, 2)
then
Eabed T XY CZ = - (7 x 2)
EP #2 - The Permutation Symbol II

Let e have components €qpcq (defined in EP #1) in every inertial coordinate
system

(a) Show that € is a tensor of rank 4

(b) Write down the values of the components of the contravariant tensor 20

(c) Show that £,pcac?®°? = —24 and that €4pcac®?® = —645

EP #3 - Electromagnetic Field Tensor

Let F** be an electromagnetic field tensor. Write down the components of the
dual tensor

1
F* == abe ch
ab 2E bed

in terms of the components of the electric and magnetic fields. By constructing
the scalars F,, F and Fr Feb show that E.-Band E-E — B B are invariants.

EP #4 - Vanishing Magnetic Field

An observer has 4—velocity U%. Show that U%U, = 1. The observer moves
through an electromagnetic field F%®. Show that she sees no magnetic field
if F*“bUb = 0, and show that this equation is equivalent to B-i@ = 0 and
B—ix E = 0. Hence show that there exists a frame in which the magnetic field
vanishes at an event if and only if in every frame E-B=0and E-E—B-B>0
at the event.



EP #5 - Null and Orthogonal

(a) Show that the sum of any two orthogonal (scalar product is zero) spacelike
vectors is spacelike.

(b) Show that a timelike vector and a null vector cannot be orthogonal.

EP #6 - Rindler Coordinates

Let Ap(¥) be a Lorentz boost associated with 3-velocity . Consider
A = AB(Ul) . AB(ITQ) . AB(—Q_)'l) . AB(—ﬁg)

where ¥ - U5 = 0. Assume that v; << 1, vo << 1. Show that A is a rotation.
What is the axis of rotation? What is the angle of rotation?

Let 20 = ¢, ' =z, 22 =y, 2 = 2 be inertial coordinates on flat space-time, so
the Minkowski metric has components

1 0 0 0
0 -1 0 0
(gab) 1o 0 -1 0
0 0 0 -1

(a) 20 =t, 3t =1, 3%2=0,3% =2

(b) i =t, 3l =r, 32 =0, =

1 2 3

() i =m al=p =y, 33 =2

where r, 0 in the first case, are plane polar coordinates in the x, y plane, in the
second case 1, 6, ¢ are spherical polars coordinates, and in the third, 7, are
Rindler coordinates, defined by ¢t = 7coshy, z = 7sinhp. In each case, say
which region of Minkowski space the coordinate system covers. A quick method
is to write the metric as ds? = dt? —dz? — dy? — dz? and substitute, for example,
dxr = cosfdr — rsinfdf, and so on. Of course, the penalty is that you must
convince yourself that this is legitimate!

EP #7 - 4—Velocities

In some reference frame, the vector fields U and D have the components

U* = (1+12,12,/2t,0)
D® = (z,5tx,/2t,0)

where ¢, z, and y are the usual Cartesian coordinates in the specified reference
frame. The scalar p has the value p = 22 + 2 — 2. The relationship "LHS =
RHS” means ”the object on the LHS is represented by the object on the RHS
in the specified reference frame”.



(a) Show that U is suitable as a 4—velocity. Is D?

(b) Find the spatial velocity ¢ of a particle whose 4—velocity is U, for arbitrary
t. Describe the motion in the limits ¢ = 0 and ¢t — oo.

(c) Find 9gU for all o, 8. Show that U,0sU® = 0. There is a clever way to
do this, which you are welcome to point out. Please do it the brute force
way as well as practice manipulating quantities like this.

(d) Find 0,D"

e) Find d5(U~D?) for all a

(
(f
g) Calculate 0,p for all a. Calculate 0%p

)
)
) Find U,95(U*D?). Why is answer so similar to that for (d)?
)
h)

(
(h) Find V;p and V5p
EP #8 - Projection Operators

Consider a timelike 4—vector U and the tensor P.g = 1nap + UsUg. Show that

this tensor is a projection operator that projects an arbitrary vector V into one
orthogonal to U. In other words, show that the vector V} whose components
are V¥ = PBO‘VB is

(a) orthogonal to U

(b) unaffected by further projections: V| = Pg‘Vf =V

(c) Show that P,g is the metric for the space of vectors orthogonal to U:
PosVeWw? =v, W,

(d) Show that for an arbitrary non-null vector ¢, the projection tensor is given

by
qaqp

q7qy

Do we need a projection operator for null vectors?

Pop(q®) = Nap —

EP #9 - Killing Vectors in Flat Space

Find the Killing vectors for flat space ds? = dz? + dx3 + dx3, i.e., write out
Killings equation in flat space, differentiate it once and then solve the resulting
differential equation.



EP #10 - Oblate Spheroidal Coordinates

Let x, y, z be the usual Cartesian coordinates in flat space. Oblate spheroidal
coordinates are defined by the relations

=12+ c?sinfcosp, y=Vr2+c%sinfsingp, z =rcosb

where c is a constant.
(a) What is the shape of surfaces of constant r?
(b) What is the metric in 7,6, ¢?

(c) What is the Laplacian operator on a scalar field, V2®, in these coordi-
nates?

(d) Show that V2® = 0 is separable in oblate spheroidal coordinates, ®(r, 0, ) =
R(r)0(0)é(p). Find the 6 and ¢ solutions explicitly, and write an equation
for R(r)

(e) If r = rg is the surface of a conducting disk that has net charge @), what
is the electrostatic potential exterior to ro? What is the surface charge
density as a function of p = /22 + 92 in the limit that the spheroid
becomes a flat disk, ro — 07

EP #11 - Uniformly Accelerating Observer A coordinate system for a
uniformly accelerating observer

Background definitions: A former physics 008 student is now an astronaut.
She moves through space with acceleration g in the x—direction. In other words,
her 4—acceleration @ = d@/dr (where T is time as measured on the astronauts
own clock) only has spatial components in the x—direction and is normalized
such that va-ad = g.

This astronaut assigns coordinates (¢, Z, 7, Z) as follows:

First, she defines spatial coordinates to be (Z, g, ), and sets the time coordinate
t to be her own proper time. She defines her position to be (z = g1, =0,% =
0) (not a unique choice, but a convenient one). Note that she remains fized with
respect to these coordinates - thats the point of coordinates for an accelerated
observer!

Second, at ¢ = 0, the astronaut chooses (£, Z, , ) to coincide with the Euclidean
coordinates (¢, z,y, z) of the inertial reference frame that momentarily coincides
with her motion. In other words, though the astronaut is not inertial, there is
an inertial frame that, at £ = 0, is momentarily at rest with respect to her. This
is the frame used to assign (Z,7, %) at £ = 0. The clocks of that frame are set
such that they are synchronized with her clocks at that moment.
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Observers who remain at fixed values of spatial coordinates are called coordinate-
stationary observers(CSOs). Note that CSOs are also accelerated observers,
though not necessarily accelerating at the same rate as the astronaut. The
astronaut requires the CSO worldlines to be orthogonal to hypersurfaces t =
constant. She also requires that for each £ there exists some inertial frame,
momentarily at rest with respect to the astronaut, in which all events with
t = constant are simultaneous. The accelerated motion of the astronaut can
thus be described as movement through a sequence of inertial frames which mo-
mentarily coincide with her motion.

It is easy to see that § = y and Z = z; henceforth we drop these coordinates
from the problem.

(a) What is the 4—velocity @ of the astronaut, as a function of £, as mea-
sured by CSOs in the initial inertial frame[the frame the uses coordinates
(t,x,y,2)]? HINT: by considering the conditions on @ - @, @ - @, and @ - @,
you should be able to find simple forms for ! and u®. After you have
worked out #, compute d.

(b) Integrate this 4—velocity to find the position [T'(£), X ()] of the astronaut
in the coordinates (¢,z). Recall that at t =¢ =0, X = % = 1/g. Sketch
the astronauts worldline on a spacetime diagram in the coordinates (¢, ).
You will return to and augment this sketch over the course of this problem,
so you may want to to do this on a separate piece of paper.

(c¢) Find the orthogonal basis vectors €; and €z describing the momentarily
inertial coordinate system at some time ¢. Add these vectors to the sketch
of your worldline.

We now promote t to a coordinate, i.e., give it meaning not just on the
astronauts worldline, but everywhere in spacetime, by requiring that ¢ =
constant be a surface of constant time in the Lorentz frame in which the
astronaut is instantaneously at rest.

(d) By noting that this surface must be parallel to €z and that it must pass
through the point [T'(£), X ()], show that it is defined by the line

x =t cosh gt

In other words, it is just a straight line going through the origin with slope
cosh gt.

We have now defined the time coordinate ¢ that the astronaut uses to
label spacetime. Next, we need to come up with a way to set her spatial
coordinates .

(e) Recalling that CSOs must themselves be accelerated observers, argue that
their worldlines are hyperbolae, and thus that a CSOs position in (¢, x)

5



must take the form
A - A -
t=—sinhgt , x = — coshgt
g g

From the initial conditions, find A.

(f) Show that the line element ds?> = d - d¥ in the new coordinates takes the
form
ds® = —dt* + da* = —(g2)2dt* + di?

This is known as the Rindler metric. As the problem illustrates, it is just
the flat spacetime of special relativity; but, expressed in coordinates that
introduce some features that will be very important in general relativity.

EP #12 - Jumping Seagull
A Newton-Galilean Problem - A seagull sits on the ground. The wind velocity
is ¥. How high can the gull rise without doing any work? The trick here is

a) to identify the most convenient reference frame

(c

(d) transform the result back again so that it is expressed in the original frame

(a)
(b) transform the problem to that frame
) solve the problem

)

EP #13 - Lagrange Equations for Kepler Orbits

Use Lagrange equations to solve the problem of Kepler planetary orbits in a
gravitational field. Work in 3 dimensions in spherical coordinates. Determine
the orbital equation r(6).

EP #14 - Lagrange Equations for Double Pendulum

Use Lagrange equations to solve the problem of the double pendulum in a grav-
itational field. The double pendulum is a fixed pivot O, a light rigid rod OA of
unit length at an angle « to the vertical, mass m at A, light rigid rod AB of
unit length at an angle 3 to the vertical, mass m at B, constant gravitational
field g downwards. Solve the equations in the small angle approximation.

EP #15 - Uniform Relativistic Circular Motion

A particle (in special relativity) moves in uniform circular motion, that is (with
c=1),
zt = (t,r coswt, rsinwt, 0)

(a) Write down its worldline according to an observer moving with velocity
¥ along the y—axis. You will need to use the old time ¢ as a parameter.
HINT: this follows directly from the Lorentz transformation.



(b) If the particle at rest decays with half-life 7, /5, what is its observed half-

life?

(¢) Show that the proper acceleration « is given by

T’(.L)2

o= ———
1 —r2w?

EP #16 - Accelerated Motion

(a)

Consider a particle moving along the x—axis with velocity v and acceler-
ation a, as measured in frame S. S moves relative to S with velocity v
along the same axis. Show that

du 1 1 ,
=—=——a

dt ¥ (14 u'v)®

Suppose that S is chosen to be the instantaneous rest frame of the particle
and a = 9.806 m/s?. That is, v’ = 0, a’ = g, and u = v. Using the result
from part (a), derive expressions for u (velocity as measured in S) and z as
a function of time. Write x as a function of 7, the proper time as measured
along the particles worldline, and evaluate for 7 = 20 years. Discuss the
significance of this result for space travel. You can use dt/dr = 7 to derive
an expression for 7 as a function of t.

EP #17 - High Energy Kinematics

(a)

(d)

In a high energy accelerator, the energy available to create new particles
is the energy in the center-of-mass(CM) frame. Consider a proton with
momentum 17eV/c incident on a target proton at rest. What is the
available CM energy?

Next consider a 17TeV proton heading east colliding with a 17TeV pro-
ton headed west. What is the available CM energy? What momentum
would be needed in a fixed-target experiment to obtain the same available
energy?

A A° baryon (ma = 1115.7 MeV') decays into a proton (m,, = 938.3 MeV)
anda negative pion (m, = 139.6 MeV). What is the momentum of the
proton or pion in the CM frame?

The decaying A° has momentum 28.5 GeV/c in the lab frame. What is
the maximum angle between the proton and the pion in the lab?

EP #18 - Tensor Properties

Consider a tensor Tj; in three-dimensional Euclidean space. Under an arbitrary
rotation of the three-dimensional coordinate space, the tensor is transformed.
Show that



(a) If T;; is symmetric and traceless, then the transformed tensor is symmetric
and traceless.

(b) If T;; is antisymmetric, then the transformed tensor is symmetric.

State the analogous result for a tensor T#" in four-dimensional Minkowski space.
Define carefully what you mean by a traceless tensor in this case.

EP #19 - Transforming Electromagnetic Fields

Under a Lorentz transformation, a tensor transforms as follows:
F'" = NLAGFOP

where A is the Lorentz transformation matrix. Consider an inertial frame
K at rest, and a second inertial frame K’ moving with velocity v along the
x—direction with respect to K. Using the explicit result for A corresponding
to the transformation between K and K’, determine the electric and magnetic
fields in frame K’ in terms of the corresponding fields in frame K.

EP #20 - Twins In Relativity

Consider a pair of twins that are born somewhere in spacetime. One of the
twins decides to explore the universe. She leaves her twin brother behind and
begins to travel in the z—direction with constant acceleration a = 10 m/s?
as measured in her rocket frame. After 10 years according to her watch, she
reverses the thrusters and begins to accelerate with a constant acceleration —a
for a while.

(a) At what time on her watch should she again reverse her thrusters so she
ends up home at rest?

(b) According to her twin brother left behind, what was the most distant
point on her trip?

(¢c) When the sister returns, who is older, and by how much?

EP #21 - Multiple Lorentz Transformations

A Lorentz transformation is the product of a boost with rapidity ¢ in the di-
rection nq, followed by a boost with rapidity ¢ in the direction ns, followed by
a boost with rapidity ¢ in the direction ng, where ( is the same in each case,
and the three directions n1, Ny, and 73 lie in the same plane separated by 120°.
What is the resulting transformation? To lowest order for small ¢, is it a boost
or a rotation? At what order does the other (boost or rotation) enter?

EP #22 - Tensor Transformations

(a) Observer O at rest sees a symmetric tensor T*” to be diagonal with com-
ponents (p, p,p,p). What are the components of T,
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(b) Frame O moves with speed v in the +z-direction with respect to O. What
are the components of T"*” in frame O? What are the components of T/’W?
How can the rest frame be identified? Suppose that p = —p in the original
frame O, what is 7" then? Make an insightful observation.

EP #23 - Newtonian Gravity

Poissons formulation of Newtonian gravity is
Vie=dmp , §=-Vop

where p is the matter density, ¢ is the gravitational potential and ¢ is the
acceleration due to gravity. Show that this gives the usual Newtonian formula
for a point-like source.

EP #24 - Tides

Tides occur because the force of gravity is slightly different at two nearby points,
such as a point at the earths surfaced and at its center.

(a) What is the difference between the gravitational acceleration induced by
a mass M (the sun or the moon) evaluated at the center and at a point on
the surface of a sphere of radius r (the earth) located a distance R from
M (take r << R). Write the radial component of this difference at the
surface as a function of the angle from the line joining the two objects.
How many high/low tides are there in a day?

(b) If the earth were a perfect sphere covered with water, compute or estimate
the height difference between high and low tides(ignoring complications
such as rotation, friction, viscosity) for spring tides (directions of sun and
moon aligned) and neap tides (sun and moon at right angles).

(c) A neutron star is a collapsed object of nuclear density with mass M =
1.4Mgyn,and radius R = 10km. In Larry Nivens short story Neutron
Star(1966), tidal forces in the neighborhood of the title object prove fatal
to the unwary. What is the tidal acceleration across the diameter of a
person (say a distance of 1m) at a distance of 100 km from a neutron
star?

EP #25 - An Invisible Sphere

A hollow sphere has density p, inner radius a and outer radius b. Find the
gravitational field in the region r < a. Suppose now that the sphere were
invisible. Could an observer at the center deduce its existence without leaving
the region r < a?



EP #26 - Gravitational Fields

(a) Compute the gradient of the gravitational field dg;/0z; (a nine component
object) corresponding to a sphere of density p and radius R centered at
the origin.

(b) Find a mass distribution p(x,y,2) on a bounded domain, that is, zero
whenever 22 + y2 + 22 > R? for some positive constant R; uniformly
bounded, i.e., |p(z,y,z)| < C for some positive constant C' independent
of position; and for which at least one component of the gradient of the
gravitational field is infinite at some point.

EP #27 - Riemann Tensor

Find an expression for
V VTy — ViV I

in terms of the Riemann tensor.

EP #28 - Isometries and Killing Vectors
(a) Define an isometry

(b) Define the Killing vector and show that it satisfies

Voky + Viks =0

(¢) Show how the Killing vector defines a constant along geodesics
(d) If k, and [, are Killing vectors, show that
[k,1], = K"Vyla — 1I"Vike

is also a Killing vector. It is useful to recall the symmetry properties of
the Riemann tensor Rgpcq = —Rpacd and Rapeq = Redap-

EP #29 - On a Paraboloid
A paraboloid in three dimensional Euclidean space
ds? = da® 4+ dy? + dz?

is given by
T=ucosp , Yy=using , z:u2/2

where v > 0 and 0 < ¢ < 2.

(a) Show that the metric on the paraboloid is given by

ds® = (1 + u?)du® + u?dyp?
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(b) Writing 2! = u and 2?2 = ¢ find the Christoffel symbols for this metric.

(c) Solve the equation for parallel transport
UV, VP =0
where
dz®
dt

for the curve u = wy where ug is a positive constant and with initial
conditions V! = 1 and V? = 0. HINT: the problem is simplified if you
take t = ¢. The equation of parallel transport will give you two coupled
equations for U' and U2, differentiating the dU! /dp equation again allows
you to decouple the U' equation.

a

EP #30 - A Two-Dimensional World

A certain two-dimensional world is described by the metric
dx? + dy?

ds? = —_—
I2+ 2
|:1 + 4a2y :|

(a) Compute the connection coefficients T,

(b) Let Ez —yéy + xéy. Show that gis a solution of Killings equation.

(c) What is the conserved quantity that corresponds to this symmetry? Show
from the geodesic equation that this quantity is indeed conserved.

(d) Compute the Riemann tensor Rg, the Ricci tensor Rj-, and the Ricci scalar

R. What is the shape of this world?
EP #31 - Timelike Geodesics

Find the timelike geodesics for the metric
ds? = = (—df® + da?
s° = = (— t° + dx )
EP #32 - More Geodesics

Consider the 2-dimensional metric
ds? = a? (dx2 + sinh? xd<p2)
(a) Compute the connection coefficients F;k

(b) Compute all components of the Riemann tensor RZ, the Ricci tensor R;,
and the Ricci scalar R.
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(c) A geodesic starts at x = b, ¢ = 0 with tangent dp/d\ = 1, dx/d\ = 0.
Find the trajectory x(¢).

(d) A second geodesic starts at x = b+ £(§ < 1), also initially in the 7¢-
direction. How does the separation initially increase or decrease along the
two curves.

(e) What is the shape of the geodesic trajectory as a — oo, x — 0 with r = ax
fixed.

EP #33 - Parallel Transport on a Sphere

On the surface of a 2—sphere of radius a
ds?® = a* (d92 + sin? 9d<p2)

Consider the vector /YO = ép at 0 = 0y, ¢ = 0. The vector is parallel transported
all the way around the latitude circle 8 = 6y (i.e., over the range 0 < ¢ < 27

o LN\ 1/2
at 0 = 0y). What is the resulting vector A? What is its magnitude (A . A) ?

HINT: derive differential equations for A% and A¢ as functions of ¢.

EP #34 - Curvature on a Sphere

(a) Compute all the nonvanishing components of the Riemann tensor R;jx; ((¢, 7, k,1) €
(0, )) for the surface of a 2—sphere.

(b) Consider the parallel transport of a tangent vector A= A%y + A¥é, on
the sphere around an infinitesimal parallelogram of sides é¢df and é,de.
Using the results of part (a), show that to first order in dQ2 = sin 0dfdyp,
the length of Ais unchanged, but its direction rotates through an angle
equal to df2.

(¢) Show that, if Ais parallel transported around the boundary of any simply
connected solid angle €, its direction rotates through an angle Q. (Simply
connected is a topological term meaning that the boundary of the region
could be shrunk to a point; it tells us that there are no holes in the manifold
or other pathologies). Using the result of part (b) and intuition from proofs
of Stokes theorem, this should be an easy calculation. Compare with the
result of EP #32.

EP #35 - Riemann Tensor for 141 Spacetimes

(a) Compute all the nonvanishing components of the Riemann tensor for the
spacetime with line element

ds® = —e2?®) 2 4 2¥(@) g2
(b) For the case ¢ =1 = 2 1In|g(z — z¢)| where g and z are constants, show
that the spacetime is flat and find a coordinate transformation to globally

flat coordinates (£, Z) such that ds? = —dt? + dz?.
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EP #36 - About Vectors Tangent to Geodesics

Let a*(7) represent a timelike geodesic curve in spacetime, where 7 is the proper
time as measured along the curve. Then u* = dz# /dr is tangent to the geodesic
curve at any point along the curve.

(a) If g, is the metric of spacetime, compute the magnitude of the vector u#.
Do not use units where ¢ = 1, but keep any factors of ¢ explicit. Compare
your result with the one obtained in flat Minkowski spacetime. HINT:
The magnitude of a timelike vector v* is given by (—ng”v”)l/2.

(b) Consider a contravariant timelike vector v* at a point P on the geodesic
curve. Move the vector v# from the point P to an arbitrary point Q on
the geodesic curve via parallel transport. Prove that the magnitude of the
vector v* at the point Q equals the magnitude of the vector v* at point
P.

(c) Suppose that at the point P on the geodesic curve, v* = u*. Now, parallel
transport the vector v along the geodesic curve to arbitrary point Q.
Show that v# = u* at the point Q. NOTE: This result implies that a
vector tangent to a geodesic at a given point will always remain tangent
to the geodesic curve when parallel transported along the geodesic.

EP #37 - Velocity of Light

The Schwarzschild metric is given by

2GM 2GM\
ds2—(1 C’; >c2dt2+(1 C’; > dr? + r?dp? + r? sin® 0d?
cer cer

As a function of r, what is the coordinate velocity of light in this metric (a)
in the radial direction? (b) in the transverse direction? What are the physical
consequences of these results.

EP #38 - Orbiting Photons

Consider a photon in orbit in a Schwarzschild geometry. For simplicity, assume
that the orbit lies in the equatorial plane (i.e., 6 = 7/2 is constant).

(a) Show that the geodesic equations imply that

o 1 (ar\? 2GM
2 [r— JR— [ —
B = c? (d)\) + c2r? (1 cAr )

where E and .J are constant of the motion and A is an affine parameter.

(b) Define the effective potential

72
vyt (1_ 2GM>

c2r? cr
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The effective potential yields information about the orbits of massive par-
ticles. Show that for photons there exists an unstable circular orbit of
radius 3rs/2, where ry = 2GM/c? is the Schwarzschild radius. HINT:
Make sure you check for minima and maxima.

(¢) Compute the proper time for the photon to complete one revolution of the
circular orbit as measured by an observer stationed at r = 3r,/2.

(d) What orbital period does a very distant observer assign to the photon?

(e) The instability of the orbit can be exhibited directly. Show, by perturbing
the geodesic in the equatorial plane, that the circular orbit of the photon
at r = 3r,/2 is unstable. HINT: in the orbit equation put r = 3rs/2 + 7,
and deduce an equation for 7. Keep only the first order terms in n << 1,
and solve the resulting equation.

EP #39 - Light Cones
Consider the 2-dimensional metric
ds? = —zdw? 4+ 2dwdzx

(a) Calculate the light cone at a point (w,z), i.e., find dw/dx for the light
cone. Sketch a (w,x) spacetime diagram showing how the light cones
change with . What can you say about the motion of particles, and in
particular, about whether they can cross from positive to negative z and
vice versa.

(b) Find a new system of coordinates in which the metric is diagonal.

EP #40 - Circular Orbit

An object moves in a circular orbit at Schwarzschild radius R around a spheri-
cally symmetric mass M. Show that the proper time 7 is related to coordinate

time t by
T_ . _3M
t R

HINT: It is helpful to derive a relativistic version of Keplers third law.
EP #41 - Space Garbage

In a convenient coordinate system, the spacetime of the earth is approximately

ds? — — <1 _ W) dt? + (1 + 2G]W> [dr2 + 72 (d92 + sin? 9d<p2)}
r r

— <1 - 2GM) dt® + (1 + 2GM> [da? + dy® + dz?]
r r
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where M is the earths mass. In the second version we remapped the spherical
coordinates to cartesian coordinates in the usual way:

x=rsinfcosy , y=rsinfsing , z=rcosh

Note that the Cartesian form of the spacetime metric is conveniently written
Gap = Nap + 2@1 where I = diag(1,1,1,1) and & = GM/r. We can assume
that & << 1 throughout this problem.

The space shuttle orbits the earth in a circular " = 0), equatorial (§ =
7/2, u’ = 0) orbit of radius R.

(a) Using the geodesic equation, show that an orbit which begins equatorial
remains equatorial: du’/dt = 0 if u’ = 0 and 6 = 7/2 at t = 0. HINT:
Begin by computing the non-zero connection coefficients; use the fact that
® << 1 to simplify your answer. We now require that the orbit must re-
main circular: du”/dt = 0. This has already been done in earlier problems
and in the text.

(b) By enforcing this condition with the geodesic equation, derive an expres-
sion for the orbital frequency

_dy/dt
~dt/dr
Does this result look familiar? This has been done in Problem #41 The

next part is most conveniently described in Cartesian coordinates; you
may describe the shuttles orbit as

= RcosQt, y= Rsin{t

An astronaut releases a bag of garbage into space, spatially displaced from

the shuttle by & = %, 1000 = Thussie:

(¢) Using the equations of geodesic deviation, work out differential equations
for the evolution of €%, £%, £¥, and £7 as a function of time. You may neglect
terms in (GM/r)?, and treat all orbital velocities as non-relativistic. You
will need the Cartesian connection coefficients for this.

(d) Suppose the initial displacement is &% = &Y = 0, £€* = L, d¢'/dt = 0.
Further, synchronize the clocks of the garbage and the space shuttle: £ =
0, 9;,£° = 0. Has the astronaut succeeded in getting rid of the garbage?

EP #42 - Astronauts in Orbit

Consider a spacecraft in a circular orbit in a Scharzschild geometry. As usual,
we denote the Schwarzschild coordinates by (ct,r,0,¢) and assume that the
orbit occurs in the plane where § = 7/2. We denote two conserved quantities

by
_ rs] dt _ odyp
e=[1-"] 0 and (=277
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where ry = 2GM/c? and 7 is the proper time.

(a) Write down the geodesic equation for the variable r. Noting that r is
independent of 7 for a circular orbit, show that:

L -]

c 2 r

(b) Show that for a timelike geodesic, g, @"i" = —c?, where @# = dx* /dr.
From this result, derive a second relation between ¢ and e for a circular or-
bit. Then, using the result of part (a) to eliminate e, obtain an expression
for dr/dy in terms of the radius r of the orbit.

(c) Using the result of part (b), determine the period of the orbit as measured
by an observer at rest inside the orbiting spacecraft, as a function of the
radius r of the orbit.

(d) Suppose an astronaut leaves the spacecraft and uses a rocket-pack to main-
tain a fixed position at radial distance r equal to the orbital radius and
at fixed 8 = 7/2 and ¢ = 0. The astronaut outside then measures the
time it takes the spacecraft to make one orbital revolution. Evaluate the
period as measured by the outside astronaut. Does the astronaut outside
the spacecraft age faster or slower than the astronaut orbiting inside the
spacecraft?

EP #43 - Weak Gravity

In weak gravity, the metric of a mass M at rest at the origin is
ds? = —(1+ 2¢)dt* + (1 — 20p)d; ;' da?
where « is a constant and ¢ = —GM/r.
(a) What is the value of « in general relativity?

(b) Instead of sitting at rest at the origin, the mass M moves in the +z—direction
with speed v, passing through the origin at time ¢ = 0, so that its position
as a function of time is x = vt. What is the metric in this case?

(¢) A photon moves along a trajectory originally in the +y—direction with
offset b behind the y—axis, so that its undeflected trajectory is zg =
—bz + ty. By what angle is the path of this test particle deflected?

(d) What is change in energy of deflected photon in part (c).
EP #44 - Star with Constant Density

The metric of a star with constant density is
2M 2M(r)\ !
ds* = — (1 — (T)> Adt? + (1 — (T)> dr? + r2d6? + 12 sin® Odp?
T T
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where

r 3 T

is the mass interior to radius r, M is the total mass of the star, and R is the
coordinate radius of the surface of the star. Assume R > 2M. We consider the
orbits of photons where g, u*u” = 0.

(a) Are there any singularities (coordinate or otherwise) of the metric?

(b) Write the timelike and spacelike Killing vectors for this spacetime. There
are actually two spacelike Killing vectors, but we will only need one since
the photon orbits are planar. You may set § = w/2. Write out the
associated conserved quantities.

(c) Derive an expression for dr/d\ where X is the affine parameter. Put your
expression in the form

11 [dr\?
2o <d)\) + Wegs(r)
and define b in terms of the constants of motion and Wey¢.

(d) Sketch W,y and describe the photon orbits. How do these differ from the
photon orbits in the standard Schwarzschild geometry?

(e) Calculate the coordinate time ¢ for a photon to travel from the center of
the star at » = 0 to the surface at r = R.

(f) Assume R >> M and find the approximate delay, i.e., the extra time
relative to the result from special relativity (¢ = R) to leading order.
What is the value for the Sun where M = 1.5km and R = 7.0 x 10 km.

EP #45 - In the Schwarzschild Geometry

Consider a spacetime described by the Schwarzschild line element:

2GM 2GM\
ds? = — (1 — ) Adt? + (1 — ) dr? + r2df? + r? sin? 9d902

c2r cr

(a) A clock at fixed (r,0, ¢) measures an (infinitesimal) proper time interval,
which we denote by dT. Express dT' (as a function of r) in terms of the
coordinate time interval dt.

(b) A stationary observer at fixed (¢, 0, ¢) measures an (infinitesimal) radial

distance, which we denote by dR. Express dR (as a function of r) in terms
of the coordinate radial distance dr.
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(c)

Consider the geodesic equations for free particle motion in the Schwarzschild
geometry. Write out explicitly the equation corresponding to the time
component. The equations corresponding to the space components will
not be required. The resulting equation can be used to determine dt/dr
(where 7 is the proper time and t = z%/c is the coordinate time). In
particular, show that the quantity

- <1_2GM> dt

cr ) dr

is a constant independent of 7. Using the time component of the geodesic
equation obtained earlier, compute the values of 1"3 3 for this geometry.
Consider all possible choices of « and .

Consider a particle falling radially into the center of the Schwarzschild
metric, i.e., falling in radially towards » = 0. Assume that the particle
initially starts from rest infinitely far away from r = 0. Since this is force-
free motion, the particle follows a geodesic. Using the results of part (c),
evaluate the constant & and thereby obtain a unique expression for dt/dr
that is valid at all points along the radial geodesic path. HINT: What is
the value of dt/dr at r — oo (where the initial velocity of the particle is
zero)?

Since ds? = —c?dr? = g, dz*dz” it follows that
datda” o
v dr dr

In this problem, g,, is determined from the Schwarzschild line element.
Using these results and the result obtained in part (d) for dt/dr, com-
pute the particles inward coordinate velocity, v = dr/dt, as a function of
the coordinate radial distance r. Invert the equation, and integrate from
r = rg to r = rg, where rqg is some finite coordinate distance such that
rg > rs and ry = 2GM /02 is the Schwarzschild radius. Show that the
elapsed coordinate time is infinite, independent of the choice of the start-
ing radial coordinate rg, i.e., it takes an infinite coordinate time to reach
the Schwarzschild radius. HINT: For radial motion, # and ¢ are constant
independent of 7. Note that for inward radial motion dt/dr is negative.

Compute the velocity dR/dT as measured by a stationary observer at a
coordinate radial distance r. Verify that |dR/dT| — ¢ as r — r,. HINT:
Use the result for dR and dT" obtained in parts (a) and (b).
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EP #46 - Lightcones and Embedding

A certain spacetime is describe by the metric
ds* = —(1 — H*r®)dt* + (1 — H*r*) " tdr? 4 r%(d6? + sin® 0dp?)
(a) Describe the lightcone structure in the (r,t) plane using both equations

and a spacetime diagram. Think carefully about the lightcone structure
for r > H=! versus r < H™L.

(b) Counstruct an embedding diagram for this spacetime. The following steps
will guide you through the process:

(1) Argue that it is sufficient to consider the 2-dimensional slice
d¥? = (1 — H*r*) Ldr? 4 r?dy?

(2) Pick one of the three common forms for the 3-dimensional flat space
line element:

dsip = dz® + dy® + d2*
dsip = dp® + p?dp?® + d2*
ds?p = dw? + w?(dO? + sin? Odd?)
and find the equations that describe the 2-dimensional surface cor-

responding to the 2-dimensional slice metric above. What is the
geometry of this surface?

EP #47 - Time delay to Jupiter

The Solar System is accurately described by the Schwarzschild metric

2GM 2GM\ !
ds® = — (1 — ) Adt® + (1 — ) dr? 4+ r2d6? + r? sin? 0dp?

c2r cr

where M is the mass of the Sun, ¢ the time coordinate, r the radial coordinate,
and 6 and ¢ are polar angles.

A radio pulse is sent from the Earth, reflected off a satellite of Jupiter (the
satellite is a point), and received on Earth. Jupiter is a distance 7o from the
Sun, the Earth is a distance r;. Assume that Jupiter is on the other side of the
Sun relative to the Earth. Let ry be the distance of closest approach of the radio
pulse to the Sun. Calculate the gravitational delay in the round-trip time of the
radio pulse as a function of 7y, to lowest order in G. Estimate very roughly the
magnitude of the effect, given that

mass of Sun ~ 2 x 1033gm

radius of Sun ~ 7 x 10%m

Sun — Earth distance ~ 1.5 x 10'3¢m
Sun — Jupiter distance ~ 8 x 103em
G ~ 6.67 x 10~8em3/gm — sec?
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EP #48 - Geodesic Effect

If in flat spacetime a spacelike vector A" is transported along a timelike geodesic
without changing its spatial orientation, then, in Cartesian coordinates, it sat-
isfies dA*/dtT = 0 where 7 is the proper time along the geodesic. That is, \*
is parallel transported through spacetime along the geodesic. Moreover, if at
some point A\* is orthogonal to the tangent vector @ = da* /dr to the geodesic,

then

NuwyA'&” = 0, and this relationship is preserved under parallel transport.

This orthogonality condition simply means that A* has no temporal component
in an instantaneous rest frame of an observer traveling along the geodesic. The
corresponding criteria for transporting a spacelike vector A\* in this fashion in
the curved spacetime of general relativity are, therefore,

(a)
(b)

AP
? + F/;U)\V.’ta = O 5 gHUA#II}V = 0

Explain why these are the correct equations.

Consider a spinning particle (perhaps a gyroscope) moving in a gravi-
tational field. No non-gravitational forces are present. Write down and
explain the equation which governs the behavior in time of the spin(vector)
of the particle.

Consider a slowly rotating thin spherical shell of mass M, radius R and
rotation frequency w. The metric of the field due to this shell can be
written as

1
H(r)

ds? = —H(r)dt* + [dr? + r?d6? + r? sin® §(dyp — Qdt)?]

where Q = 4GMw/3Rc? for r < R, Q — 0 for r — oo, and

1_ 26M
H(r)_{ re2 o >R

1—2561‘2/1 r<R

This form of the metric is valid if GM/Rc?> << 1. Consider a spinning
particle at rest at the center of the sphere(r = 0). Using the equation
from part (b), with what frequency will the spin of the particle precess?
What is the precession frequency quantitatively, if w is the rotational
frequency of the Earth and M and R, the mass and radius of the Earth,
are M =~ 6.0 x 10?7 gm and R ~ 6.4x 10% km? A rough estimate is enough.

EP #49 - Kruskal Coordinates

Consider the Schwarzschild metric, which in (¢, 7,0, ¢) coordinates is

2M oM\
ds* = — (1 - > Adt* + (1 - > dr® + r? (d6” + sin® fdy?)
r r
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(a) Show that if we define

o — (L _ 1)1/2 o(rHt)/4M o = — (L _ 1)1/2 o(r—t)/4M
’ 2M
the metric in u’,v’, 0, ¢) coordinates (Kruskal coordinates) is

32M

3
ds? = — e "/2M g/ dy’ + 12 (dG2 + sin? 9dg02)

r

(b) Find the locations in the (u,v) plane where this metric has singularities.

(¢) What are the possible u,v values for events that can send signals to an
event at (u = up,v = vg)?

(d) What are the possible u,v values for events that can receive signals to an
event at (u = ugp,v = vg)?

(e) Consider a timelike observer in a cicular orbit at » = 6M. How is this
described in Kruskal coordinates?

at part of the spacetime cannot send signals to this observer? a
f) What t of th ti t send signals to this ob ? What
part of the spacetime cannot receive signals from this observer?

EP #50 - Perturbing Circular Orbits

A particle is in a circular orbit around a black hole. It is perturbed so that
the angular momentum is the same, but the energy is slightly increased so that
there is a small velocity component outwards. Describe and sketch the resulting
behavior, for initial radii 3M, 4M, 5M, 6M and 7M. HINT: you need to
consider both the stability of the circular orbit and whether the particle has
sufficient energy to escape to infinity.

EP #51 - Null Geodesics in Strange Metric
Consider the metric
ds® = —dt® + (1 — Mr®)dr? + r? (d6* + sin® 0dp?)

where A is a positive constant. Consider the null geodesics, and choosing coor-
dinates so that the geodesics lie in the plane § = 7/2, show that they satisfy

(j;f =721 —Xr?) (ur® — 1)

where p is a constant. Integrate this and show that the paths of light rays are
ellipses.
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EP #52 - A Charged Black Hole

The metric for the spacetime around a static spherically symmetric source of
mass M and charge Q(in appropriate units) is

oM Q2 oM Q*\ !
ds* = — 1———1—@— dt* + 1———1—@— dr2+r2(d92+sin29dg02)
r r2 r r2
This is called the Reissner-Nordstrom metric.
(a) Show that if @ > M, this metric is only singular at » = 0.

(b) For @ < M, the metric in this coordinate system is also singular at r =
re(ry >r_). Find r4 in terms of Q, M.

(¢) Define a new coordinate u (analogous to Eddington-Finkelstein coordi-
nates) so that the metric in (u,r, 6, ¢) coordinates is regular at r.

EP #53 - Do Not Touch Anything!

An astronaut in command of a spaceship equipped with a powerful rocket motor
enters the horizon r = r, of a Schwarzschild black hole.

(a) Prove that in proper time no larger than ry7/2, the astronaut reaches the
singularity at r = 0.

(b) Prove that in order to avoid the singularity for as long as possible, the
astronaut ought to move in a purely radial direction. HINT: For purely
radial motion, with dr < 0 and dt = dyp = df = 0, show that the increment
in proper time is

dr = —— , forr <

and then integrate this between r = r5 and r = 0 to obtain

TTrs

A =
T

Finally, check that if dt, dy, df are different from zero, then the increment
dr, for a given value of —dr, is necessarily smaller than the value given
above.

(¢) Show that in order to achieve the longest proper time the astronaut must
use her rocket motor in the following way: outside the horizon, she must
brake her fall so as to arrive at r = ry with nearly zero radial velocity;
inside the horizon she must shut off her motor and fall freely. HINT:
show that AT = 7rs/2 corresponds to free fall from r = r, (do not do
anything!).

22



EP #54 - Escape from Black Hole by Ejecting Mass

A spaceship whose mission is to study the environment around black holes is
hovering at the Schwarzschild radius coordinate R outside a spherical black hole
of mass M. To escape back to infinity, the crew must eject part of the rest mass
of the ship to propel the remaining fraction to escape velocity. What is the
largest fraction f of the rest mass that can escape to infinity? What happens
to this fraction as R approaches the Schwarzschild radius of the black hole?

EP #55 - Gravitational Wave Stuff

(a) Explain briefly why in Einsteins theory of general relativity it is impossible
to have monopole or dipole gravitational radiation.

(b) Suppose two compact stars, each of one solar mass, are in circular orbit
around each other with a radius of one solar radius. What is the approx-
imate rate of energy loss due to gravitational radiation from this system?
What is the time scale for decay for this orbit? Take

solar mass = 2 x 1033gm
solar radius =7 x 10%0¢m

EP #56 - Waves from Masses on a Spring

Two equal masses M are at the ends of a massless spring of unstretched length
L and spring constant k. The masses started oscillating in line with the spring
with an amplitude A so that their center of mass remains fixed.

(a) Calculate the amplitude of gravitational radiation a long distance away
from the center of mass of the spring as a function of the angle 6 from the
axis of the spring to lowest non-vanishing order in A.

(b) Analyze the polarization of the radiation.

(c¢) Calculate the angular distribution of power radiated in gravitational waves.
EP #57 - Waves from Accelerating Particle
A particle of mass m moves along the z—axis according to z(t) = gt?/2 (g is
a constant) between times ¢ = —T and ¢t = +7T and is otherwise moving with

constant speed. Calculate the gravitational wave metric perturbations at a large
distance L along the positive z-axis.

EP #58 - Waves from Colliding Battleships

In a desperate attempt to generate gravitational radiation artificially, we take
two large battleships of 70,000 tons each, and we make them collide head-on
at 40 km/h. Assume that during the collision the battleships decelerate at a
constant rate and come to rest in 2.0 sec.
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(a) Estimate the gravitational energy radiated during the collision. Treat the
battleships as point masses.

(b) Could we detect these waves?

EP #59 - Waves from a Cannon

A cannon placed at the origin of coordinates fires a shot of mass 50kg in a
horizontal direction. The barrel of the cannon has a length of 2.0 m; the shot
has a uniform acceleration while in the barrel and emerges with a muzzle velocity
of 300m/s. Calculate the gravitational radiation field generated by the shot at
a point P on the z—axis at a vertical distance of 20 m above the cannon. What
is the maximum value of the wave field? Ignore the gravitational field of the
Earth.

EP #60 - Plane Wave Properties

Show that there is a coordinate choice so that the linearized vacuum Einstein
equations are
*hap, =0
where
Gab = Nab + Nab
Find the plane wave solutions to this equation and explain why there are only
two polarizations. The transverse trace-free polarization has basis

00 0 0 00 0 0
|01 00 and e — | 00 10
* 00 -1 0 - 01 00

00 0 0 00 00

By taking the e, polarization, describe the physical effect of a gravitational
plane wave.

EP #61 - Robertson-Walker = Minkowski

The Robertson-Walker line element for absolutely empty space, Tij = 0 and
A=0,is

2
d82 — dt2 _ @z(t) ( dr . +7”2 (d92 +Si1’l2 9d¢2))

1+7r

with a(t) oc t. Show that this describes flat space and find the coordinate
transformation that brings it to the Minkowski form.

EP #62 - Red Shift in Model Galaxy

Assume that the universe is isotropic and spatially flat. The metric then takes
the form
ds* = —dt* + a®(t) (dr® +r* (d6” + sin? 0de?))
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where r, 0, and ¢ are co-moving coordinates. By this is meant any galaxy will
have constant values of r, 8, p(peculiar motions of galaxies are neglected). The
universe is assumed to be matter-dominated with matter density p(¢) at time ¢.

(a)

(b)

Under this circumstance show that the Einstein equations are

4
d2:¥pa2 and dz—%Gpa

From the fact that light propagates along null geodesics, show that the
cosmological red shift of spectral lines emitted at time ¢, and received at
time tg, defined as

7 wavelength of received line — wavelength of emitted line

wavelength of emitted line

is a
z7=="2_1

Qe

where ag = a(ty), a. = a(t.).

In the cosmological model under discussion a given galaxy will decrease in
angular size with increasing distance from the observer - up to a critical
distance. Beyond this the angular size will increase with distance. What
is the red shift Z.,;; corresponding to the minimum in angular size?

EP #63 - Expanding Universe

The metric of the expanding universe has the form

ds* = dt* — R*(t) (dz” + dy® + d2?)

where the possible curvature of space has been neglected. The detailed form of
R(t) depends on the matter content of the universe.

(a)

A particle of mass m has energy Fy and momentum pg at time tg; assume
R(tp) = Rp. The particle thereafter propagates freely except for the effects
of the above metric. Calculate the energy and momentum as a function
of time.

Suppose that the early universe contained a gas of non-interacting massless
particle (perhaps photons) subject to gravitational effects only. Show that
if at time ty they were in a thermal distribution at temperature Tj, they
remained in a thermal distribution later, but with a temperature that
depends on time in a fashion you should determine. HINT: EP60 shows

that
v _ R@®)

photon frequencies change like :

volumes change like : “//((tt/)) = 1;2((2’))

25



(c) Show that, instead, a gas of non-interacting massive particles initially in
a thermal distribution would not remain in a thermal distribution under
the influence of the expansion of the universe.

(d) Suppose that the early universe contained a non-interacting gas of mass-
less photons and also a non-interacting gas of massive particles of mass m
(massive neutrinos to be definite). Suppose that at some early time the
photons and neutrinos were both in a thermal distribution with a tem-
perature kKT = mc? (m being the neutrino mass) for both photons and
neutrinos. It has been observed that in todays universe the photons are
in a thermal distribution with kT about 3 x 10™%eV. In terms of the
neutrino mass, what (roughly) would be the typical velocity and kinetic
energy of a neutrino today? Assume m >> 3 x 1074 ¢eV.

EP #64 - Homogeneous, Isotropic Universe

Consider a homogeneous, isotropic cosmological model described by the line

element
t

ds® = —dt® + (t > (da:Q +dy® + dz2)

where ¢, is a constant.
(a) Is the model open, closed or flat?
(b) Is this a matter-dominated universe? Explain.

(¢) Assuming the Friedmann equation holds for this universe, find p(t).

EP #65 - Matter-Dominated RW Universe

Suppose that a galaxy is observed to have a red-shift z = 1. Assuming a
matter-dominated RW cosmology, at what fraction t/tg of the present age of
the universe did the light leave this galaxy?

EP #66 - Flat Dust Universe

Consider a flat dust universe with zero cosmological constant.

(a) Solve the cosmological equations and derive the time evolution of the scale
parameter a(t).

(b) By considering light emitted at time ¢, and received at the present time
to, show that the distance to a star of red-shift z is given by

1
s—3t0<1>
1+ 2

(c¢) Explain why a flat universe with zero cosmological constant containing a
mixture of dust and radiation will eventually be dominated by the dust.
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EP #67 - Particle Horizon in Flat Dust Universe

The particle horizon is the radius of the sphere of all particles that could be
seen by us. It is the maximum straight line distance that could be travelled by
a light ray since the beginning of the universe. Obviously, in a static universe
this would be t5. What is it for a kK = 0 dust universe?

EP #68 - The Horizon inside a Collapsing Shell

Consider the collapse of a spherical shell of matter of very small thickness and
mass M. The shell describes a spherical three-surface in spacetime. Outside
the surface, the geometry is the Schwarzschild geometry with this mass. Inside
make the following assumptions:

1. The worldline of the shell is known as a function r(7) going to zero at
some finite proper time.

2. The geometry inside the shell is flat.

3. The geometry of the three-surface of the collapsing shell is the same inside
as outside.

(a) Draw two spacetime diagrams: one an Eddington-Finkelstein diagram and
the other corresponding to the spacetime inside in a suitable set of coordi-
nates. Draw the worldline of the shell on both diagrams and indicate how
points on the inside and outside correspond. Locate the horizon inside the
shell as well as outside.

(b) How does the area of the horizon inside the shell change moving along the
light rays which generate it?

EP #69 - Two Observers on a Kruskal Diagram

Two observers in two rockets are hovering above a Schwarzschild black hole of
mass M. They hover at fixed radius R such that

1/2
RN paw 1
2M 2
and fixed angular position. (In fact R &~ 2.16M). The first observer leaves this
position at ¢ = 0 and travels into the black hole on a straight line in a Kruskal

diagram until destroyed in the singularity at the point where the singularity
crosses u = 0. The other observer continues to hover at R.

(a) On a Kruskal diagram sketch the worldlines of the two observers.

(b) Is the observer who goes into the black hole following a timelike worldline?
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(c) What is the latest Schwarzschild time after the first observer departs that
the other observer can send a light signal which will reach the first before
being destroyed in the singularity?

EP #70 - k£ =1 Robertson-Walker Spacetime

Suppose that the universe is described by a k = 1 Robertson-Walker spacetime
with metric

ds* = —dt* + R*(t)d2® + sin® z (d6” + sin® 0dp?)

with R(t) = Rot?/3 at the present epoch. An observer at ¢ = t; observes a
distant galaxy of proper size D perpendicular to the line of sight at ¢ = ;.

(a) What is the observed red shift in terms of Ry, to, t17

(b) What is the angular diameter of the galaxy, J, in terms of the red shift?

(¢) Show that as the red shift increases ¢ reaches a minimum for fixed D and
then starts to increase.

EP #71 - General Robertson-Walker Spacetime

The Robertson-Walker metric

2 2 2 dr? 2 702
ds® = —dt* + a*(t) + r°d§)
1 — kr?

where 1 = 0,41, —1, according to whether the 3-dimensional space has zero,
positive or negative curvature, respectively, gives rise to the first order Einstein
field equation

-2 871G 3

a“+ k= Ta , pa” = constant

for a matter-dominated universe of density p.
(a) Derive the above field equation.

(b) Calculate the distance L, (t) from the origin(r = 0) to a particle with
coordinate r at time ¢, in terms of r, a(t).

Alternatively, we can formulate the theory in purely classical Newtonian terms
by ignoring curvature inside a spherical volume of sufficiently small radius, i.e.,
assume that the space is flat inside the sphere and that any isotropic distribution
of matter outside has no effect on curvature inside.

(c) Write down Newtons equation for the acceleration of a particle towards
the origin at a distance L away. HINT: Consider a uniform distribution
of matter inside a sphere of radius L.

(d) To conserve matter, we must also have pa® = constant. Combine this with
your result in (¢) to determine the equations satisfied by the expansion
parameter a(t) and compare your answer with the cosmological one.
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EP #72 - Spaceship in Robertson-Walker Spacetime

Assume that the geometry of the universe is described by Robertson-Walker
metric (c=1)

ds? = —dt* + R(¢) g0
1— kr2

A spaceship sets out with velocity v relative to cosmological observers. At a
later time when the universe has expanded by a scale factor (1 + z), find the
velocity v with respect to cosmological observers.

EP #73 - Equation of State
(a) The equation of state is often written in adiabatic form where p is pressure
and p is density and 0 < v < 2 is the adiabatic index with v = 0 for dust
and v = 4/3 for radiation. Calculate p(a) for general 7. For k = 0,

calculate a(t). Find the age of the universe for k = 0 and general .

(b) In the same notation as (a), find v so that the expansion rate is constant.
With this value of find a(t) for k=1 and k = —1.

(c) In the same notation as (a), show

O = (2 3y)HQ(1 - Q)

Define the logarithmic scale factor s = log(a) and write an equation for d€)/ds.
Notice that this formula gives a clear idea how € behaves.

EP #74 - Flat Universe with Period of Inflation

Consider a simplified model of the history of a flat universe involving a period
of inflation. The history is split into four periods

1. 0 < t < t3 radiation only

2. t3 <t <ty vacuum energy dominates with an effective cosmological
constant A = 3/(4t3)

3. ty <t < t; a period of radiation dominance

4. t1 <t <ty matter domination

(a) Show that in (3) p(t) = p.(t) = 3/(327t2) and in (4) p(t) = pm(t) =
1/(67t?). The functions p, and p,, are introduced for later convenience.

(b) Give simple analytic formulas for a(t) which are approximately true in the
four epochs.
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(¢) Show that during the inflationary epoch the universe expands by a factor

altz) _ exp to — 13
s
pelte) _ 9 <tl>2/3
pm(to) 16 to
(e) If t3 = 10735 seconds, ty = 10732 seconds, t; = 10% years and t, = 1010
years, give a sketch of log (a) versus log (¢) marking any important epochs.

(d) Show that

(f) Define what is meant by the particle horizon and calculate how it behaves
for this model. Indicate this behavior on the sketch you made. How does
inflation solve the horizon problem?

EP #75 - Worm-Hole Metric

Consider the worm-hole metric
ds* = dt* —dr* — (b* + r?)dQ*
Try and work out why this curve is known as a warp-drive.
(a) Find the Christoffel symbols for this geometry.
(b) Find the geodesic equations for this geometry.
EP #76 - Alcubierre Warp-Drive Spacetime

Consider the spacetime known as the Alcubierre Warp-Drive. The coordinates
are t,x,y,z and consider a (not necessarily time-like) trajectory given by z =
zs(t),y = 0,z = 0. Then the warp-drive spacetime is given by the following
metric

ds* = dt* — [dx — vs(t)f(rs)dt]2 —dy?* —d2*

where v,(t) = dxs(t)/dt is the velocity associated with the curve and r2 =
[(z — 25(t))? + y? + 2% determines the distance of any point from the curve.
The function f is smooth and positive with f(0) = 1 and vanishes whenever
rs > R for some R. Notice that if we restrict to a curve with constant ¢, then
the the metric is flat and that the metric is flat whenever a spacetime point is
sufficiently far away from x4(¢).

(a) Find the null geodesics ds? = 0 for this spacetime and draw a space-time
diagram with some forward and backward light cones along the path z(t).

(b) Check that the curve z4(t) is a geodesic and show that at every point
along this curve the 4—velocity of the ship lies within the forward light
cone.
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(c¢) Consider the path xs(f) that connects coordinate time 0 with coordinate
time 7. How much time elapses for a spaceship traveling along z4(¢)?

(d) Calculate the components of a 4—vectors normal to a surface of constant
t.

(e) Show that

Taﬁﬁa’?ﬂ =

102 (y2+22) [ df \?
T 2r2 drg
This is the energy density measured by observers at rest with respect to
the surfaces of constant ¢. The fact that it is negative means that the

warp-drive spacetime cannot be supported by ordinary matter!

EP #77 - General Relativistic Twins

Paul is orbiting a neutron star at a distance of 4GM/c?, in circular orbit. Patty,
his twin sister, is fired radially outward from the surface with less than escape
velocity. Her path crosses Paul’s orbit just as Paul comes by, so they synchronize
their clocks. On her way back down, Patty again encounters Paul as their tra-
jectories cross, Paul having completed 10 orbits between their meetings. They
again compare clocks. How much do their clocks disagree?

EP #78 - Hollow Ball in a Bucket

A hollow plastic ball is held at the bottom of a bucket of water and then re-
leased. As it is released, the bucket is dropped over the edge of a cliff. What
happens to the ball as the bucket falls?

EP #79 - Einstein’s Birthday Present

A version of this device (call an equivalence principle device was constructed
as a birthday present for Albert Einstein. Simplified, the device consists of a
hollow tube with a cup at the top, together with a metal ball and an elastic
string as shown below.

J

L1

When the tube is held vertical, the ball can rest in the cup. The ball is attached
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to one end of the elastic string, which passes through the hole in the bottom of
the cup, and down the hollow center of the tube to the bottom, where the other
end is secured. You hold the tube vertical, with your hand at the bottom, the
cup at the top, and with the ball out of the cup, suspended on the elastic string.
The tension in the string is not quite sufficient to draw the ball back into the
cup. The problem is to find an elegant way to get the ball back into the cup.

EP #80 - Accelerating Pendulum

A pendulum consists of a light rod and a heavy bob. Initially it is at rest in a
vertical stable equilibrium. The upper end is then made to accelerate down a
straight line which makes an angle o with the horizontal with constant acceler-
ation f. Show that in the subsequent motion, the pendulum oscillates between
the vertical and the horizontal positions if g = f(cosa + sina). This problem
is very easy if you apply the equivalence principle and think abou the direction
of the apparent gravitational field in an appropriate frame.

EP #81 - What is going on?

For each of the following, either write out the equation with the summation
signs included explicitly or say in a few words why the equation is ambiguous
or does not make sense.

(i) o = LgM ()
(ii

i) 20 = LOMSa
i) o = 026353

)
)
) 0 = 820505
)
)
)

(iii
(iv
(v) % = L§zb + Mgs?
(vi) 2® = Lga® + Mga°
(vii) x® = Le3° + MPze
EP #82 - Does It Transform Correctly?
Show that if X and Y are vector fields on a manifold, then so is

Z% = X9, Y — Vb9, X
i.e., show that Z transforms correctly under a change of coordinates.
EP #83 - Closed Static Universe

Einstein proposed the following metric as a model for a closed static universe

ds* = dt? — dr? — sin? r(d6? + sin? 0d¢?)
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Find the geodesic equation of the metric from Lagrange’s equations and hence
write down the Christoffel symbols (take 2° = ¢, 2! = r, 22 = 0, 2% = ¢). Show
that there are geodesics on which r and 6 are constant and equal to 7/2.

EP #84 - Strange Metric

Write down the geodesic equations for the metric
ds® = dudv + log (x? + y?)du® — dz® — dy?
(0 < 22 +y? < 1). Show that K = 2y — yd is a constant of the motion.

By considering an equivalent problem in Newtonian mechanics, show that no
geodesic on which K # 0 can reach z2 + y? = 0.

EP #85 - Clocks in Schwarzschild Spacetime

A clock is said to be at rest in the Schwarzschild space-time if the r, 6§, and ¢
coordinates are constant. Show that the coordinate time and the proper time
along the clock’s worldline are related by

e () 2m\7
dr T

Note that the worldline is not a geodesic.

Show that along a radial null geodesic, that is, one on which only ¢ and r are
varying, that

at r

dr  r—2m
Two clocks C; and Cy are at rest at (1,6, ¢) and (rq, 0, ¢). A photon is emitted
from C7 at event A and arrives at C at event B. A second photon is emitted
from C; at event A’ and arrives at Cy at event B’. Show that the coordinate
time interval At between A and A’ is the same as the coordinate time interval
between B and B’. Hence show that the time interval A7m; between A and A’
measured by C is related to the time interval A1y between B and B’ measured

by Ca b
e om\ "2 om\ "2
ATl (1—) :ATQ (1—)
1 T2

If you wear two watches, one on your wrist and one on your ankle, and you
synchronize them at the beginning of the year, by how much is the watch on
your wrist faster or slower than the one on your ankle at the end of the year?
(Assume that you spend the whole year standing upright without moving. In
general units, you must replace m/r by Gm/rc?).
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EP #86 - Particle Motion in Schwarzschild Spacetime

Show that along free particle worldlines in the equatorial plane of the Schwarzschild
metric, the quantities

J=r% and E:(1—2m>i
T

are constant. Remember the dot is the derivative with respect to proper time.
Explain why the particle cannot escape to infinity if £ < 1.

Show that
2
2
f2+<1+‘]2)<1m = E?
T T
. om J? mJ?
T+T727T73+37:0

For a circular orbit at radius r = R, show that
mR? do m\1/2
JP= = (=

R—-3m = dt (R3 )

Show by letting 7(7) = R + €(7), with € small, that the circular orbit is stable
if and only if R > 6m.

EP #87 - Meter Stick Near Black Hole

A standard meter stick lies on the surface shown below(AB). The surface is
the two-dimensional riemannian surface defined by the Schwarzschild metric
with two coordinates held constant (¢ = constant, § = 7/2 = constant) as
viewed(embedded) in three-dimensional euclidean space. The meter stick is
oriented in the radial direction. It is then slid inward toward the symmetry
axis. The location of its two ends at a given instant in ¢ are reported to a record
keeper who plots the the two points shown in the (r, ¢) plane.
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(a) What does the record keeper actually see?

(b) How is the record keeper able to keep track of what is happening physi-
cally?

EP #88 - Clocks and Rockets

A rocket of proper lengthL leaves the earth vertically at speed 4¢/5. A light
signal is sent vertically after it which arrives at the rocket’s tail at t = 0 accord-
ing to both the rocket and earth based clocks. When does the signal reach the
nose of the rocket according to (a) the rocket clocks and (b) according to the
earth clocks?

EP #89 - Events in Two Frames

In an inertial frame two events occur simultaneously at a distance of 3 meters
apart. In a frame moving with to the inertial or laboratory frame, one event
occurs later than the other by 1078 sec. By what spatial distance are the two
events separated in the moving frame? Solve this problem in two ways: first by
finding the Lorentz boost that connects the two frames, and second by making
use of the invariance of the spacetime interval between two events.

EP #90 - Geometry in a Curved Space

In a certain spacetime geometry the metric is
ds® = —(1 — Ar?)2dt62 + (1 — Ar?)2dr? + r?(d6* + sin® 0d¢?)

(a) Calculate the proper distance along a radial line from the center » = 0 to
a coordinate radius r = R.
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(b) Calculate the area of a sphere of coordinate radius r = R.
(c) Calculate the three-volume of a sphere of coordinate radius r = R.

(d) Calculate the four-volume of a four-dimensional tube bounded by the
sphere of coordinate radius R and two t = constant planes separated
by time T.

EP #91 - Rotating Frames

The line element of flat spacetime in a frame (¢, z,y, z) that is rotating with an
angular velocity € about the z—axis of an inertial frame is

ds? = —[1 — Q*(2® + y?)]dt* + 2Q(ydx — xdy)dt + dz* + dy? + dz*
(a) Find the geodesic equations for x, y, and z in the rotating frame.

(b) Show that in the non-relativistic limit these reduce to the usual equations
of Newtonian mechanics for a free particle in a rotating frame exhibiting
the centrifugal force and the Coriolis force.

EP #92 - Negative Mass

Negative mass does not occur in nature. But just as an exercise analyze the
behavior of radial light rays in a Schwarzschild geometry with a negative value
of mass M. Sketch the Eddington-Finkelstein diagram showing these light rays.
Is the negative mass Schwarzschild geometry a black hole?
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Solutions
EP #1

No solution yet.
EP #2

No solution yet.
EP #3

No solution yet.
EP #4

No solution yet.
EP #5

(a) If we have two spacelike vectors, @ and ¥, which are orthogonal, then we
know the following about the various inner products we can construct:

- d=u’>0
T-T=0v>>0
T-7=0

W0 = (i + V) (@4 V) =u® 420 -7+ 0> >0
So w is spacelike, too

(b) If we have a timelike vector, @, we know we can find a coordinate system in
which @ = (u°,0,0). Further, we can choose this coordinate system such
that the null vector 7 = (v°,v°,0). Note that both u° # 0 and v" # 0.
Then

ﬁw’;’:u“v}t:fuovo #0
Because @ - ¥ # 0, @ and ¢ are not orthogonal.
EP #6
Since 77 - v = 0, without loss of generality, we can choose a coordinate system

which has ) = (v1,0,0) and ¥ = (0,v2,0), i.e., given any coordinate system,
a rotation and possibly a parity inversion will produce the coordinate system
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required. Then we have

1+% Fu1 0 0
AB(iﬁl) — Fv1 1+ % 0 0 + O(’Ui)
0 0 1 0
0 0 0 1
and
1+ 3 Foo 0 0
- 1
AB (i’l}g) = T2 0 2 0 + O(’US)
0 0 1+=% O
0 0 0 1
Multiplying out the matrices, we see that
1 0 0 0
N S o . 0 1 0
AB(Ul)AB(’UQ)AB(—Ul)AB(—UQ) = 0 0o vlva O
0 0 0 1

to second-order in v; and ve. We recognize this as a rotation described by the
vector U X ¥} = —v1v2Z in our special coordinate system. (the rotation described
by a vector is a right-handed rotation about the axis defined by that vector with
angle equal to the vector’s magnitude). Because our special coordinate system
is related to any arbitrary coordinate system by a rotation and possibly a parity
inversion, and U X ¥ is covariant with respect to these operations, we see that

AB(ﬁl)AB(Q_fQ)AB(—f}a)AB(—172) = R(Y_}b X ’171)
Second part of problem - No solution yet.
EP #7

(a) To be a suitable 4-velocity, a vector must have magnitude —1. We see
that U does:

U? =, UPUY = —(1+ 32 +t* + 262 = —1
Unfortunately, D does not:
D? =1, D"D" = —z? + 25t%2” + 2t*
which is not identically —1. However, if we restrict ourselves to the 3-
dimensional sub-manifold of spacetime where —z? + 25t222 4 212 = —1,

then D is a suitable 4-velocity. However, it is not a 4-vector velocity for
all of spacetime.
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(b) A 4-velocity can be written a (y,77), so we have

vi—g— £ 7\/% 0
TUY T V1421

At t = 0, we have ¥ = 0. The velocity will initially increase most rapidly
in the y—direction, and then, as ¢ — co, will asymptote to v = Z.

(c) Representing 0gU®* as a matrix(5 indexes rows and « indexes columns),

we have
2t 2t V2 0
« |0 0 0 0
GBU=14 0 0 o0
0 0 0 0

Because the components of U depend only on ¢, only terms of the form
OpU? are nonzero. We find that

UnOpU® = (=2t(1 + t?) + 2¢* + 2¢,0,0,0) = (0,0,0,0)

(note that only the first component required any computation). A labor-
saving realization is that

UndsU® = %5‘5(UQUO‘) —0

because the norm of U is independent of ¢, z, y, and z.

(d)
9aD* = 5t

(e) We have
5(U*DP) = U,03DP + DP9sU,

We can compute this sum by reference to parts (c¢) and (d). The result is

2t 2t V2 0
ds(U*DP) = 5t(1 4 t2,12,v/2t,0) + (z, 5tx, V/2t, 0) 8 8 8 8
0 0 0 0

= (5% 4 2tz + 5t, 5% + 2tx, 5v/2t + /2, 0)

(f) Contracting U with the result of (e) gives
UaO(UDP) = —(14+42) (53 +2tx+5t)+12 (5¢3 42tz ) +v/2t (52t +v/22) = —5t
This must be so because
UaO3(U*DP) = 05(UY*DP) — U*DP9,U,,
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The second term on the right is zero(see (c)), and the first reduces to
Un03(U*D?) = —9,D°
which has been computed in (d).

(g) We have
Oup = (2t,2z, —2y,0)

Raising the index (contracting with 7, we obtain

aup = (72t7 21’7 72y7 0)

(h) We have
Vip=U"dup = 2t(1 + %) + 221> — 2yV/2t
and
Visp=D"o,p=2tr + 10tz — 2v/2yt
EP #8

(a)
UV = Uy PSVP = U PapV?
= NapUVP? + UU UV = UV, —UPVz =0
(b)
Pg =n""P,5 =05 +U"Up
Applying this, we have
Pgvy = PgPivY
= (0505 + 65UU, + UUpdt + U UU U,V
= (65 +UU)VT =P}V =V}
(c) , ,
PugVEW] = Ve, PJW
But, W is unaffected by the projection (see (b)), so we have

PogVEW? = Ven W) =V, - W,

(d) We must verify the properties in (a) and (b) for the general Pg(g); then
the property (c) will follow automatically (we never used that U*U, = —1
in the proof of (c)). First we show that ¢®P.s(¢) = 0:

9“4aq
4" Pap(q) = a5 — qyz P =qs—g5=0
Y
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The, we show that Pg (q")Pf (@) = Py(q):
o B
a _ a q-4qp B q~ 4y
ot~ (5-22) - £2)
5P (@ b e, T
B o et B
P e 7 aPq, T (gPg,)?

« qaq’Y [
T (gPg)* T @

EP #9
The Killing’s equation in flat space is
ka,b + kb,a =0

Clearly three solutions are given by (1,0,0), (0,1,0) and (0,0, 1). Also, ifa =b
we have kg, = 0 where there is no sum on the a. Differentiating the above
equation we find that

Ko + ki = Kilo =0

so the k; are all harmonic functions, ignoring the constant part, already men-
tioned, this give k = (a1y + a2z, a3z + a4z, a5x + agy). Now, substitute this
back into the Killing’s equations, remembering that the three a = b equations
have already been solved,

a1+az3 =0, ac+a5s=0, ag+ag=0
Thus, a basis is given by (y, —z,0), (—2,0,z) and (0, z, —y).
EP #10
Consider the oblate spherical coordinates given by:

x=vr2+c?sinfcosp , y=+vr2+c2sinfsing , z=rcosb

(a) If r = R, then we have the relation
Z\? o ? ) ? 02 02 2 2
= +|—=——— )] +| === ] =cosf +sinf"(cosyp” +sin
<R) <\/r2+c2> <w2+c2> (cose )
=1

Thus, surfaces with constant R are ellipsoids that have a squashed vertical
or an oblate spheroid.

(b) In z,y, z coordinates, the metric is given by

1 ifi=g
Jii = 0 otherwise
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or
100
lgi] = {0 1 0
00 1

Transform to oblate spherical coordinates we have
_ ox™ dx™ T
9ii = i ggri Imn = ()" gmnd";

where

H 0 . .
=L g S"anjzz 2 rZ 4+ 2cosfcosyp —Vr?+ cZsinfsing
mo __ 7 sin ¢ sin M 3
J = ch V12 4 ccosfsing V12 4 ¢?sinfcos p
cos 6 —rsinf 0

Then the metric is

2 2 2
T t§+cl:%%9 0 0
[9i5] = 0 r2 4+ 2 cos 62 0
0 0 (r? + ¢?) sin 6?

or
72 + 2 cos 62

2 dr® + (r* + ? cos 6%)d6? + (12 + ¢?) sin 6% dyp?
r2+4c

daz® + dy? + dz* =

Either way, not too bad!
The determinant of the metric is
g = det g;; = (r* + ¢* cos 6?)* sin 6*

and using the formula
VA0 = (VG )
V9

the Laplacian is

1 ) r? +c? 0P
25 — 912, 2 2y o it \o®
v (r2 + % cos 62)sin§ Or [(T + ¢ cos6”)sind <r2+0200502> 87"}
1 O 0 5 1 0%
(r2 + 2 cos 62) sin 6 O {(T + ¢ cos ") sind (1"2 +02cost92> 69]
1 21,4 o 2 . 1 0P
(r2 + c2 cos 02) sin 0 Dy {(T + ¢ cos§7)sing (r2 +c2)sinf? ) 0yp

This simplifies to

S S £ N AR R
v(I)_(rQJchCOSOQ) or (r +C>8r +sin089 Sme@@

N 1 0*®
(r2 + ¢2) sin 62 0p?
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Alternatively, the Laplacian is given by
V.(VE) = (VO),,

As always,

d? .

0 =-m?Q — Q =¢"

dp?
The 6 operator looks a lot like what you get in spherical coordinates, so
we try the same Legendre function solution P;"(cos#),

1 d . dP m?
o (blnede> + {ﬁ(ﬁ—&— 1) — sin92} P=0

Remarkably, these combine to leave

d 9 o dR m?c?

Thus, the potential separates into ® = Ry, (1) Yem (0, ¢), where the func-
tions satisfy the equations above

If the spheroidal disk is conducting, then ® must be independent of  and
© on the surface, so £ = m = 0. For this case,

d (o 9 dRY _ 2, 2dR _
d7‘<<r —|—c)dr>—0—>(r +C)dr_K

where K is an integration constant. The solution that vanishes as r — co

is %
O =— (f —tan™! i)
c \2 c

We determine K from the behavior as r — oo, ® — Q/r, where @ is the
charge on the disk. The potential is then

o (5o

The surface charge density is found from the (proper) normal electric field
at the surface,

1 1 0D Q [ r2+4c2
= 7E,i; = ——/ ™™ — =
O ir V9 ar Ar(r2 + ) V r2 + c? cos? §

to be integrated over the proper surface area,

d?a = \/r2 + 2 cos? 9\/1"2 + 2 sin0dfdy

Thus,
dQ = g sin 0dfdy = o(p)pdpde
T
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and so (adding upper and lower surfaces) the charge density is

_ Qsinfdf
21 p dp

a(p)

The polar radius is p? = 22 + y?> — ¢?sin? 0 as r — 0, and so
Q 1 Q 1

o(p) = 22 cosf  2mc? [{1_ e
c2

EP #11

(a) We know that u? = —1, a® = g2, and @ - @ = 0. Writing these in terms of
components of 4, we find

(uw)2 _ (ut)2 -1

dut? _du'®
dr  dr g
dut L, du®

“ar T ar

These equations reduce to

d x
T = VI @)

which has the solution with initial condition «*(0) = 0 (initially the accel-
erated axes agree with (¢, z), so the motion is purely in the time direction

u” = sinh (g7) = sinh (gt)

which implies that
u' = cosh (g1)

Given these results, we have

a' = gsinh (gf) , a” = gcosh (gf)

(b) Integrating, we obtain

T(t) = /0 cosh (gs) ds = ésinh (gt)

and

- ¢ 1 1 .
X(t)= / sinh (gs) ds + — = — cosh (gt)
0 g 9

Figure 1 below shows a plot of this trajectory
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Trajectory of Accelerated Astronaut i (1x) Plane

Figure 1: The trajectory of an accelerated observer who accelerates with a® = 1
and begins at the point (0, 1) in the (¢, z) plane.
(¢) A good vector for €; is 4. We want then to find €; such that
ggéjzo and gjgjzl
These equations tell us that we must have
et =sinh (gf) and e% = cosh (gf)
Note that €z is parallel to the acceleration, @ (since we are in two dimen-

sions, all vectors perpendicular to @ ar parallel). Figure 2 below shows
these basis vectors attached to the trajectory from part (b).

Trajactiocy of Accolrated Astronaut in (Lx) Plane

Figure 2: Trajectory and basis vectors for an accelerated observer who begins
at the point (0,1) in the (¢,) plane and accelerates with a? = 1.
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(d) To be parallel to €z, we require that the surface be a line with slope
m = el /eZ = tanh(gt). The unique line with this slope which passes
through the point (T'(t), X (¢)), is given by the equation

t = tanh (gf)z or x = coth (gt)t

These are surfaces of constant £. Up to this point, the vectors €; and
€z lived only on the trajectory. We have now extended €; to the entire
spacetime (it is everywhere perpendicular to surfaces of constant £, which
we just defined). It has now become a vector field.

(e) There was nothing special about our derivation of the trajectory in part
(b) except the initial condition that = 1/g when ¢t = ¢ = 0. For an
accelerated observer with z = 7 when t = £ = 0 (these are the CSOs in
question), we have

t = Zsinh (gt) and x = % coth (gt)

You can verify this by noting that it solves the differential equations in (b)
and, when specialized to the initial condition in (b) reproduces the result
we derived there). We see that A = gz. Now that we have the complete
coordinate transforamtion between the barred and un-barred coordinates,
we have extended both €7 and €3 to be vectors on spacetime.

(f) We have the differentials of the coordinate transformation from (%, %) to
(t,z) given in (e):

dt = sinh (gt)dZ + g cosh (gt)dt
dx = cosh (gt)dZ + g sinh (gt)dt

from which
ds? = —dt* + dz? = —(g2)*dt* + di*

EP #12 (Solution due to Erin Martell - Class of 2009)

We consider a seagull on the ground. The wind is blowing with velocity Uy ing =
¥ and the seagull is going to rise without doing any work.

In this case, we consider an ideal seagull. The seagull will rise according to the
lift force, which normally requires a dissipative component. However, we neglect
dissipation of energy from the force.

We first consider the case where the wind is in the transverse direction and
look in the wind frame. The seagull will initially by moving with a velocity
—Uwind = —U in this frame and it will have kinetic energy m“ﬁ;md/z Since
the seagull is moving with respect to the air surrounding it, there is a lift force
generated. This lift force in the case that the seagull is still moving. We can
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thus say, in the frame of the wind, using conservation of energy, that the greatest
height that the seagull attains may be found by

2
Vwind

29
Since we have allowed the seagull to experience a pure lift force, no work has
been done, and the seagull has risen a distance v?umd /2g.

1
mgh = §vfumd — h =

What if there is a vertical component of gravity, which also contributes to the
force on the bird? There are two possible cases:

1. The lift force from an upward vertical component of the wind velocity is
sufficient to overcome gravity or is equally strong. In this case, the bird
will rise due to the lift force from the wind. If the initial wind velocity
were upward, it will accelerate the bird until its velocity matches that of
the wind. The bird will no longer be accelerated at that point by the lift
force. However, the bird will then begin to fall, which will restore the lift
force. Therefore, the bird will again be accelerated to match the velocity
of the wind. The bird still has an upward velocity but will slow. This
slowing, however, results in an accelerating lift force, so the bird ends up
maintaining an upward velocity.

If the initial wind velocity were downward, the wind velocity will become
even greater relative to ... ... as it rises and the bird will continue to
accelerate upward, escaping from the gravitational field of the Earth.

2. The lift component from the vertical component of the wind is less strong
than gravity. In this case, if the transverse components are strong enough
to generate a lift force, the bird will rise. If the initial wind velocity was
upward, then the bird will come to match that velocity, at which point it
will slow its upward velocity and eventually begin to fall - the transverse
components are irrelevant now because the bird is moving with the wind
and the lift force from the vertical component is not strong enough to
overcome gravity.

If the initial wind velocity were downward, then the bird will be accelerated
upward until its transverse components are the same as the initial velocity.
At this point, the bird may fall if the bird’s velocity does not generate a
strong enough force to overcome gravity, or it may be accelerated upward
forever.

EP #13 (Solution due to Ben Good - Class of 2010)

Consider two particles with masses my and ms interacting via the gravitational
potential. If their positions are given by 7 and 75, then the Lagrangian is
1 .

1 .

Gm1m2
|—» —

To —T1
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If we introduce the center of mass (CM) and relative coordinates defined by

My + maofs

R = Vi ,

F = R
and so we have

. 2 .
N 3 ma\“ - ma 5 -
7"12:R2+< ) P2 —2——=R-T

M M
. 5 2.
=R (T0) P2t R

and so the Lagrangian becomes

1 - 1 mym3 - mims 5 -
L[ == R2 - 252 R-7
SRR Yo M
1 2 lmgm%- mims = - Gmima
- R2 - -2 R_—'
+ 2m2 + 5 2 T i 7"4—7|ﬂ

or
1 = 1 . Gmime
L=-MR?+ —ur?4+ —=

2 +2ur + E

Now, L is cyclic in R, so we obtain

M ﬁ: constant = ]3 or ﬁ = = constant

ST

Thus, up to an additive constant,

1 - Gm1m2
L=-pr?+ ——2=
S HT + 7

Now the Lagrangian is rotationally invariant, so we must then have conservation
of angular momentum, defined by

Fxmf“':Fxﬁ: constant = ¢
Then if we consider 7 at times ¢t and t + dt, we have
F(t + dt) ~ 7(t) + 7 dt

Using this, we see that the plane swept out by  at two successive moments,
whose normal is given by

) x Pt dt)  FxF+Txrdt (% i
n = = = = ~ = = =
|7(t) x 7(t + dt)| [P x 7+ 7 x 7dt| |€ﬂ|



is constant. Thus, all motion occurs in the plane whose normal is 7

If we define our axes by

L R (U S O RO LR, ()
OIS [7(0) — (7(0) - #)2] [7(0)]
then this basis is orthonormal(as we can check) and

7 = (&2 + g + 22) - (22 + 99 + £2)
=i+ 9% + 2
and
7 = /2% + 2 + 22

Now if we introduce spherical polar coordinates r, 8, ¢ such that
x=rsinfcosp , y=rsinfsinp , z=rcosh

then we have |#] = r and due to our choice of basis vector all motion is in the
x — y plane or § = /2 for all ¢. Thus, we have

r=rcosp , y=rsing , z=0

and
72 =32 + 9% + 2% = (F cos o — rsing@)? + (7 sin ¢ + r cos )2
= 72 cos? w+ 72 sin? p+ 7"2(@2 sin? p+ r2<p2 cos? %)
— 2rr¢sin @ cos p + 217 sin ¢ cos @
— 2 422
Thus, the Lagrangian becomes

1. 1 . GM
L= _pi? + -pur?d? + =K
2 2 T
and the equations of motion are

GM,LL =
2 T M

prd? —
.

prg? = constant = /¢
Thus, we can eliminate ¢ to obtain
2 GMp

pr=—s —
m‘3 ’I“2

Now, if we consider r as a function of ¢ rather than ¢t and we change the variables
to r = 1/u, then we obtain
du
. ! - !/
r=—-——u where v’ = —
wzt? dy
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and

2 12 -2 u/ . Y
r=-—=u-p *ﬁ@*ﬁuw
where
‘ 202/
p=t—uwp = ——1u
L
Thus,
. u? "
T —7

so that we get (the previous equation)

52 2 €2
——Zu” = ;u?’ — GM pu?

I
or (assuming u # 0)
W P GMp?
— 7
If we now let
GM p?
U2 = U — £2
then we obtain
uly = —ugnotayg
or
us = Acos(p +90)
and thus
162
7,( 1 _ GMpu?

°) = Acos(p+ 6) + S22 1+ ecos(p +9)

which is the Kepler orbital equation.

EP #14 (Solution due to Markus Kliegel - Class of 2010)

I o |
I
I
I
I
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Note we have chosen the string length to be equal to 1 for convenience. We then
have referring to the figures above)
v% =62 + 52 + 246 cos (a — )

The kinetic and potential energies are:

1 1 . .
T= imc'u2 + gm(o'z2 + B2 + 2af cos (a — B))

U=mg(l—cosa)+mg(l —cosB)+1—cosa)

Thus, the Lagrangian is

1 . .
L=T-U=md*+ imﬂg + maf cos (o — ) + 2mg cos a + mg cos 3

oL _d (oL
dq  dt \ 9¢

where ¢ = «, 3, we then have two Lagrange equations:

Using

—2mgsin o — mafsin (o — B) = 2mé +mf cos (o — B) — mB(& — fB) sin (o — B)

—2mgsin 8 + mafB sin (a—p) = mp3 + mé cos (o — B) — ma(& — B) sin (a — 3)

For small angles we have the two equations:
—2mga = 2ma + mB

—mgB = mé + mp3

This corresponds to the equation(matrix)

e () ()-8 90
The standard normal modes methods then give the characteristic frequencies:
Wi =(2+V2)g , wi=(2-V2)y
and the mode behavior
B=-V2a , B=+V2a

Thus, the general solution is

(ggg) —A (%) cos (\/(2 +V2)gt — 51> + Beos ( (2 - V2)gt — 52>
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EP #15

(a) The Lorentz transformation gives t' = y(t — vy), v = y(y — vt), ¢’ = =z,
z' = z. Thus we have

7" = (y(t — vrsinwt), r coswt, y(r sinwt — vt), 0)

where ¢ is now a parameter (not time in the new frame).

(b) We have dr = ds = dt/~, so the observed half-life in the laboratory frame
ist =7/v1=w?r? > 7 since the velocity is rw.

(¢) We differentiate to find

dz® dz®
u® = di = 7% = (1, —rwsinwt, rw cos wt, 0)
T
where v = 1/v/1 — r2w?.
du® du®
¥ = dL = 7% = ~%(0, —rw? cos wt, —rw? sinwt, 0)
.

2
gl rw
a:\/—a~a:72rw2=

1 —r2w2

This calculation is very straightforward because v does not depend on t.
EP #16
(a) The velocity addition law is

u 4+ v
U=——-
1+ uv

This gives
du’ u 4+ v
du = - du’
R (1—|—u’v)2vu
du’ 1—?
% n 'y —12) = ——
(1+u’v)2( +u'v — u'v —v?) A a)? u

We also have
dt = y(dt' + vdx') = vdt' (1 + u'v)

Thus,
du  (1—0?)32 du/

dt (1 +u'v)3 dt’
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(b) Using the given conditions, we have

dv

= (1)
which gives
dv
(1—v2)3/2 = gdt
Integrating we have
v 2 2 2 gt
=gt —=>v(1l—0v")=(gt)" 2 v="—"T——7
(=27 ) = o= = gy e
We have

_ gt
=T g™

Integrating we get

Tr =

1

=+ g2 - 1]
g

Check: For gt < 1, we get

1 1
= —[14+(gt)?/2 1] = =gt?
v=C[+@P2-1] =50

For gt > 1, we get x =+¢.

Now we have

a1
dr T (1)
Then
_git _ 2_; _ 2\1/2
U_(1+(gt)2)1/2_>1 v —1+(gt)2—>7—(1—|—(gt))

Therefore, integrating we get

dt

@ £)2)1/2

=" (1+(gt)%)
dt

7(1 FPIENTE =dr — gt = sinhgr

Thus,
2

x = c—(coshgr -1
g

Numerically, this corresponds to a travel distance of 8.57 x 108 light-years
for 7 = years.

EP #17
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(a)

The square of the total energy-momentum 4-vector is invariant. In the
CM system we have P4, = (Eca,0) which gives P- P = P2 = E2,,
where we have set ¢ = 1.

For an incident particle(1) + a fixed target(2) (same mass) we have P} =
(E,p) and P} = (m,0) and P* = P! + P} = (E + m, p). Therefore,

P.P=P?=FE2, = (E+m)*—p* = (E*—p*)+2Em+m? = 2mE+2m?
where we have used E? — p? = m2. Thus the available CM energy is

Ecym = V2mE + 2m? (2)

Head-On Collision: We have P{" = (E,p) and P}’ = (E, —p). Therefore,
Protat.zap = 0 — text LAB = CM and thus, in the LAB P# = P/ + Pl =
(2E,0) and as always in the CM P* = (Ecas,0). Thus by invariance of
square of 4-vector we get E% = 4F? in this case.

Therefore we have

For fixed target accelerator: Ecy = v 2mE + 2m?
For colliding beam accelerator: Eopyr = 2F

For E=1TeV, m =1GeV we get

For fixed target accelerator: Eqcpy = 44.7GeV
For colliding beam accelerator: Eopr = 2TeV

This means that in order to have Ecys = 2TeV for a fixed-target accel-
erators would require a beam energy F = EZ,,/2m = 2000 TeV !l

In the CM frame the total momentum vanishes. This implies that the
proton and pion momenta are equal in magnitude and opposite in di-
rection. This is also the rest frame of the A in this case. Therefore
Eiotar = Ep + Er = my. This gives

PP My PP mE = ma

This gives

4 4 4 2, 2 2, 2 2. 2
mi +m, +m>: —2mimz — 2msmz — 2msm
= e T T 100.53 MeV
LN

This part can be solved using energy and momentum conservation in the
lab frame, i.e.,
EA:EP+E7T 5 ﬁA:ﬁp+ﬁW
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but it is better to apply a boost to the solution in part (c).
For the proton:

ELAB :’y(Ep—FUpCOSG)
P =Y(pcost +vE,)
pL =psinf

where 6§ = angle between the proton momentum and the beam direction
in CM frame (see diagram below).

For the A to have momentum 28.5 GeV, the boost has v = 0.99923 — ~ =
25.56.

proton

pion
For the pion we have

Erap =v(Er —vpcosb)
p| =(—pcost +vEy)
pL = psinf

Therefore (see diagram above) we have

; pL psin 6
anq, = —= ——————
P p; v(pcost+vEy)
DL psinf
tana, = — =

| v(=pcos + vE;)

Now

tan o, + tan «
tan ap + a; = z =

1 — tan o, tan o,
Using Mathematica:

f1[x-] := 100.53*Sin[x]/(25.56*(100.53*Cos[x]+0.99923*987.13)) tangent (proton angle)
f2[x_] := 100.53*Sin[x]/(25.56*(-100.53*Cos[x]40.99923*172.35)) tangent (pion angle)
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3[x] := (f1[x]+£2[x])/(1-f1[x]*f2[x]) tangent(angle between pion and proton)
Solve[f3’[x] == 0,x] find maximum of tangent(angle between pion and proton)
x — 1.0045941941150183 angle in CM giving maximum
£3[1.0045941941150183] = 0.0312544 radians angle between = maximum
angle small so tan(x) ~ x
maximum angle between proton and pion =1.80 degrees

EP #18

Under rotations we have
ﬂj = Rilemﬂm

(a) If T;; is symmetric, then T;; = T);.
If T3; is traceless, then TrT = 6;;T1;; = T3 = 0.

Suppose Ty, is traceless and symmetric, then
TrT" = 6;5T}; = 0ij Rt RjmTim = RjtRjmTim

Thus, TrT transforms as a scalar. Moreover, if TrT = 0, then TrT’ = 0.

Next, we compute (using T}, = T, and relabeling dummy indices where
needed)

T]/z = leimﬂm = leRimel
= Riijlel = RilemTlm = Tilj
Hence, the transformed tensor is both traceless and symmetric.

(b) If T;; is antisymmetric, then T;; = —Tj;. Thus, we compute

T}; = RjiRimTim = —RjiRin Tyt
= _Riijlel = _Rilemﬂm = _T‘i/j

Hence, the transformed tensor is antisymmetric.

We can repeat the above analysis for second-rank Lorentz tensors, which
transform under Lorentz transformations according to

T/ = A# A TP
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The trace of a second-rank tensor is now defined as
TrT = 0, T
It is easy to check that this is a scalar:
TrT’ =0T = 0, A AT
Remembering the defining property for A:
T];WAMQAug = Gap

it follows that
TrT' = gopT*” = TrT

In particular, we see that TrT = 0 implies that Tr7T" = 0. One can also
show that if TH” = T"#, then T'** = T'"#. Similarly, if T = —T"*, then
T'" = —T'"F. The proofs are similar to the ones above. For example, if
TP = TP then

TH = A A TP = A AY, TP
= N AT =T

where we have relabeled the dummy indices @ — 8, § — « in the next-
to-last step above.

EP #19
In this problem we evaluate

v AMQAVBFQB

with
v =By 00
_ |8y ~ 00
A=1 g 0 1 0
0 0 0 1

where v = (1 — v?/c*)"%/2 and B = v/c. It corresponds to a boost in the
xl-direction. In SI units

0 E,/c E,/c E,/c
~E,Je 0 B, -B,
-E,/c —-B, 0 B,
~E.Je B, -B, 0

FHY —

Thus,
FIlO _ AlaAOﬂFaﬁ — A10A01F01 4 A11A00F10
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All the other terms in the sum over « and S vanish. Thus,

E.Qii 2& 27&f7&2,2
——* = (-p) c+7( C> ;=5

c
Using 72 = (1 — 8?)7! = 42(1 — %) = 1 we have E, = E,.

Next,
F/2O _ A2QA05FQB — A22AOOF2O + A22A01 F21

All the other terms in the sum over o and S vanish. Thus,
B

E
C C

Using v = fc we have E; = y(E, —vB,).

Similarly, we get (choosing (30)) that E, = v(E, + vB,) and (from choosing
(32) we get Bj = B, and (from choosing (13) we get B;, = v(B, 4+ vE./c¢* and
(from choosing (21) we get B, = v(B, —vE,/c%.

EP #20

(a) There is an obvious symmetry in this problem: if it took her 10 years by
her watch to go from rest to her present state, then 10 years of reverse ac-
celeration will bring her to rest, at her farthest point from home. Because
of the constant negative acceleration, after reaching her destination at 20
years, she will begin to accelerate towards home again. In 10 more years,
when her watch reads 30 years, she will be in the same state as when her
watch read 10 years, only going in the opposite direction. Therefore, at
30 years, she should reverse her thrusters again so she arrives home in her
home’s rest frame.

(b) To do this, we need only solve the equations for the traveling twin’s po-
sition and time as seen in the stationary twin’s frame. We know that her
4-acceleration is normal to her velocity: aSug = 0 everywhere along her
trip, and a§a5 = a? is constant. This leads us to conclude that

t T
¢ du du ¢

=au® and a*=—=aqau
dr

aQ = — =
dr
where 7 is the proper time as observed by the traveling twin. This system
is quickly solved for an appropriate choice of origin (we consider the twin
to begin at (t =0,z = 1)):

1 1
t= o sinh (a7) and z = o cosh (ar)

This is valid for the first quarter of the twin’s trip - all four legs can be
obtained explicitly by gluing together segments built out of the above.
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For the purpose of calculating, it is necessary to make a7 dimensionless.
This is done simply by

a = 10m/sec® = 1.053 year ™

So the distance at 10 years is

1
x(10 years) = 1053 cosh 10.53 = 17710 light years

The maximum distance traveled by the twin as observed by her (long-
deceased) brother is therefore twice this distance, or maxz(x) = 35420 light years.

Well, in the brother’s frame, his sister’s trip took four legs, each requiring

sinh 10.53 = 17710 years

1
t(10 years) = 1053

which means that ;) = 70838 years. In contrast, his sister’s time was
her proper time, or 40 years. Therefore, the brother who stayed behind is
now 70798 years older than his twin sister.

EP #21

The Pauli matrix version of the transformation is

A = (¢l — sig - G)(cl — shg - &)(cl — siy - G)
= C3f - CQS(ﬁl + ng + ’fL3) -0
+ ¢s? [(f - &) (2 - &) + (A - &) (3 - &) + (A2 - &) (A5 - &)]

— 82(ﬁ1 5)(’&2 5)(’&3 5)

where ¢ = cosh (/2 and s = sinh (/2. This can be reduced using the relation

-, -

(G-@)G-b)y=ad-bl+i(@xb) &

Geometrically, ﬁl + flz + ﬁg = 0, ﬁl . ﬁQ = ﬁQ . ﬁg = ﬁg . ’fll = 71/2 and
fi X g = fig X N3 = iz X 1y = (v/3/2)7 where 7/ is perpendicular to the plane.
The net transformation is then

A= <c3 — gcs2> I+ ics2§(ﬁ’ -F) — 53(ng - 7)

For small ¢, we get

~ 3 T Z\/§C2 Al = ~ —
A~<1—128<4>I+2 2 (TL'O')—SB(TLQ'O')

Then lowest non-trivial contribution is imaginary, a rotation about an axis nor-
mal to the plane by angle § = —v/3¢?/4. There is also a residual boost in the
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plane, in the direction of 7y, with rapidity ¢3/8.

For arbitrary ¢, we can write

A = cosh %f — sinh g(ﬁ - 3)
where
3 1
coshg = cosh® g —3 coshg , sinh % =1 sinh? % (cosh2 % — 4)

The coefficient of I is real, and so z is either purely real of purely imaginary.
The transformation is more rotation, z is imaginary, for cosh (¢/2) < 2, or
¢ < 2.63392, and is more boost for ¢ > 2.63392.

EP #22

(a) Indices are lowered using the metric, T, = 1,717

-1 0 0 O p 0 0 O -1 0 0 O p 0 0 O
T 0 1 0 0 0 p 00 0 1. 00f_J0p 00
i 0 0 1 0 00 p O 0 0 1 0 00 p O
0 0 0 1 00 0 p 0 0 0 1 00 0 p
The components are the same.
is time, T"*¥ = A¥ 7,or T = ,
b) This ti T = KA, TP T' = ATAT
v vy 0 O p 0 0 O v vy 0 O
v _ [0Y 0 0 0O p 0 O vy v 0 0
0 1 0 0 0 p O 0 0 1 0
0 0 01 0 0 0 p 0 0 01
Y(p+pv®) Av(p+p) 0 0
e _ | Yulo+p) P+p?) 00
0 0 p 0
0 0 0 p
V(p+pv?) —*v(p+p) 0 0
|t Ppter?) 000
my 0 0 p 0
0 0 0 p

The rest frame is the frame where there is no flow, 7% = 0, or the frame
where T" is isotropic.

If p = —p, both T"” and T},,, are diagonal, with components (p, —p, —p, —p).
This form is invariant under any Lorentz transformation, because it is

T = —pn, and Lortentz transformation are those transformations for which

AnAT = 5. In this case, there is no unique rest frame. The transforma-

tions also follow easily from TH" = (p + p)uru” + pnH”.
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EP #23

The normal Newtonian formula is that the acceleration due to gravity in the
field of point-like source of strength M is

=g

Now, away from r = 0 we have

e T
—-V.§=V <p——MV73
and
o x 1 32
oxrs 73 7o
SO

J dy 0 z
dxr3 " dyrd T 9z
and thus p = 0 except at r = 0. In fact, for a point source, we expect p =
d(z)0(y)d(z)M, so, if S is a 2-sphere around the origin and B the ball it contains,

we expect
///pdxdydz:M
B
Now,
///V2<pdxdydz:—///V-g’dxdydz:—//gﬂiﬂdﬁ
B B S T

by Gauss theorem. Hence

///V2<pdxdydz://MdQ:47rM
B S

=0

as required.

EP #24

(a) Let R be the position of the center of the sphere relative to the sun/moon
and 7 be the position of a point on the surface relative to the center. The
difference between the acceleration at the surface and at the center is

Vg — CGM(R+7) (_GMR) _GM [SE(Fﬁ) —F}

= )
the last for » < R. This is a dipole angular distribution. The radial

component is
2G'Mr 3 1
2 A 2

This is a stretching force along the line joining centers and a squeeze in
the perpendicular directions: there are two bulges, pointing towards and
away from the sun/moon, or two high tides per day.
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(b)

The water surface will deform until the force induced by the deformation
balances the external tidal force. Let the deformed surface have r =
re + h(0). Expanded in multipoles(with azimuthal symmetry only m = 0
appears), the exterior potential is

_ —GZCZPZ (cos @)

T€+1

The multipole moments are C;, = [ d®r'pr'*Py(cos0'). We expect that the
distortion will have the dipole shape of the tidal force h(6) = hPs(cos®).
(Note that to lowest order in h, this distortion preserves volume). Taking
p to be constant, the two largest Cy’s are Cy = 4mrdp/3 = Mg and
Cy = 3Mgrgh/5. If the displaced water has density p; and the average
density of the earth is rhog, this becomes Cy = 3Mgrgh(p1/po)/5. If
pressure plays a negligible role in supporting the fluid, the gravitational
forces must balance. Equating the radial forces, the amplitude h is

For pg = p1, the distortion from the sun alone has an amplitude h =
19.3 em; from the moon alone h = 42.3 cm. With po/p1 = 5.52, these are
107 em and 233 ¢m. Aligned (spring tides), the total distortion is 5.1 m,
or 17 feet. At right angles(neap tides), they partially cancel (recall, at
cos@ = 0,P, = —1/2), leaving h = 1.8 m, or 5.9 feet. All those effects left
out (rotation, friction, viscosity, etc) make the observed tides somewhat
less than these numbers.

A back of the envelope or dimensional analysis estimate, Ag/g = Ar/r,
gives this result except for the factor 10/9 !!

The numbers give a relative acceleration over a distance of 1 meter (be-
tween your head and your toes) of

Ag— 2GMr  2(6.6742 x 103 em3g~1s72)(2.786 x 10** ¢)(100 cm)
9= "R T (107 em)3

=3.7x 10" em/s? = 38000 g

This is grim enough, but in the Niven story the protagonist ventures to
R = 12mi ~ 20 km, where Ag~ 4 x 10°¢g

The radius of the neutron star does not enter into this, but note that the
neutron star is not much larger than its Schwarzschild radius; we expect
that relativistic effects must be taken into account for a full understanding
of neutron stars.
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EP #25

Gauss’ law (derived from spherical symmetry and the divergence theorem) states
that the gravitational field is given by |§| = GM/r? where M is the mass
interior to the given radius (zero in this case). The observer cannot do any local
measurements to infer the existence of the hollow sphere, but can observe its
effect on distant objects, hence a blue shift of incoming light.

EP #26

(a)

Use Gauss’s law to obtain

- 3
—%prR?’L r>R ®)

r3

B {—gwpaf r<R
g:

where 7= zi + yj + zk and r = \/2% + y2 + 22. Differentiating we find

; —4 Gojs <R
agz:{ i . )

3xw;—128;;
(933]' %WpGR?’ix ersr L r>R

We note that the answer in (a) is scale invariant, i.e., we get the same
answer if we divide both R and r by two. Thus, the mass distribution
given by an infinite number of spheres j = 0,1,2, ......... of fixed density p,
centered at x; = 277 and of radius R; = 27772 Jeads to an infinite gravity
gradient at the origin. This singularity is relatively weak (logarithmic with
distance from the origin), so it is probably not of physical importance. It
is possible to create similar curvature singularities in GR, again of minor
physical interest. Much stronger singularities are created in black holes,
but we can never observe them, as we will see later, due to the cosmic
censorship conjecture.

EP #27

So, the thing to remember here is that V4T¢ is a three-indexed tensor and must
be differentiated accordingly. Hence

Ve(VaT5) = 0:(VaT5) + Tee(VaTy) = Tea(VeTh) =I5 (VaT')

We also know that

VT =04T%+ 1,15 —T5T4

Expanding out the whole lot

Ve(VaT$) = (0%, + T8I )T + (T, + T/ 05T

+ terms symmetric in ¢ and d
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where we have not written out the terms symmetric in ¢ and d because we know
they will cancel when we subtract V4(V.T%). Now

Ve(VaT§) = Va(VeT) = (T8, — To g+ T4, — T30 )T
+ (Tepa—Tape+ berflf - ngFif)TZ
= Recda % + RcdbeTi

EP #28

(a)
(b)
(c)

(In Text) Define an isometry.
(in Text) Define Killing vector and show it satisfies V kp + Vipk, = 0.
Consider C = k*U,. Along a geodesic we have

UV ,C = U o (KU,) = (UV k°)Uy, 4+ UV Uy k?

Now the second term is zero by the geodesic equation and the first term
can be made equal to the geodesic equation by symmetrizing

1
(U U, = UUY(Voky) = §U“U”(Vakb + Vika) =0

Thus, the Killing vector has defined a constant along a geodesic.
Next, consider substituting the commutator into the Killing equation
Valk, o + Volk, o = Va(k°Vely — IV kp) + Vi (k°Viela — 19V k)
= VokVely + kEV Vel — VolViky — 1V Viky 4 (a < )

Now, the big trick is to swap the summed index off the nabla onto the
Killing vector using the Killing equation

Valk, Do+ Volk, o = —VakVple—koV Vo ly+V o[V koY oV okip+(a ¢ b)

We also swap the double nabla terms using the definition of the Riemann
tensor

Valk, )y + Vilk, 1o = =VakVil, — k°V . Valy — k°Raepal®
+ Val°Vike + 1°Racpak® + 1V Voky + (a < b)

Now, add in the (a <> b) part, the bits with the nabla’s separate cancel
using the Killing equation, the double nabla terms are also zero by the
Killing equation and we are left with

va[ka l]b + Vb[ki, l]a = _chacbdld + lcRacbdkd - chbcadld + lCRbcadkd
= k°l(Racbd + Rocad + Radbe + Rbdac)
= kcld(*Racbd + Radbc - Radbc + Racbd) =0

Thus, [k,1], is a Killing vector.
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EP #29
(a) To get the metric do the usual chain rule on the coordinate change:

r=wucos¢ , dxr=cospdu— usinpdp
y=using , dy=sin@pdu + ucos pdp

z=— , dz=udu
2

and then substitute into ds? = dx? + dy? + dz? and use the Pythagorous
theorem.

ds* = (cos ¢pdu — usin ¢dp)? + (sin pdu 4 u cos ¢pde)? + (udu)?
= cos? pdu? + u? sin? pdp? + sin? ddu? + u? cos? pde? + udu®
= (1 + u?)du® + u?d¢?

Now let 2! = u and 22 = ¢ and we get
(gas] = 1+u? 0
Gab] = 0 U2

(b) Now for the connection coefficients you just use the formula and the inverse

metric. Therefore,
1
— 0
ab] _ [ T+u?
1= (7 3)

and .
Fgc = §gad(abgdc + acgbd - adgbc)
This gives
U
1—‘11 = _F:%2 ) T2
1

Iy,=T3 =~
12 21 w
F%z :F%z :Fél = F%l =0

(¢) Now, in the parallel transport equation the curve has constant u so it is
given by (ug, ¢) and hence assuming that ¢t = ¢

_ (du o\ _ (du do) _
(U17U2)_(dtadt>_<d¢7d¢)_(071)

and the equation of parallel transport is
UV VP = U Ve + VoVl =0 = VoV = 0

65



or
dv?b
+T8. Ve = s + 5,V +15,V2=0

From (b) we have the I'’s so this yields the differential equations

dv’®
b
VQV - w

av?t u

_— = VZ=0
do 1+ u?

av? 1
4yl =

do +u

We differentiate the first equation to obtain

VY u dv?

— =0
d¢? 1+u2? do
or -
av 1
Vvi=0
d¢? + 1+ u
Therefore,
1 . 1
V' =Acosko¢+ Bsink¢ where k= 5
14+ ug

With the initial condition we have V1(0) = A+0=1— A = 1. Then we
can find V2.

_ 14ugadvt 1+u3k

2
v () dd) ()

(—sink¢ + Bcos ko)

and using the initial conditions

1+ud
Up

V2(0) = kB=0—B=0

Therefore,
1
Vi=cosk¢ , V?=——sinks
kuo
Notice that V(27) = V(0).

EP #30

We have, (using #! = 2 and 22 = y in calculations),
1
93] = 30
X
|:1 + 4a2y :|
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(a) Then we can calculate the I'y, using

1
be = §gad(3bgdc + 0cgbd — Odgne)

Tedious algebra (use fact that the metric tensor is diagonal)

F%l = F§1 = F%2 = _Féz = _ﬁ
202 [1+ Z
F%z = F%l = F%z = _F§2 = - Y

202 [1+ 2

(b) We define vector ¢ such that ¢! = —y = —22 and ¢2 = 2 = z!. Killing’s
equation is then
Vaé-b + vbga =0

Now,
1 a
§a = gabfb = ﬁf
7]
Thus,
Y x
e T AL S I

[+ =] 1+ 2]

and using

Vo = 0.5 — &Ly

Killing’s equation becomes
aaé-b + 8b£a - 256 ga =0
Tedious calculations then show that 5 satisfies Killing’s equation.

(c) If we consider a vector field V*(x%) and consider its time derivative along
a geodesic, then
dv® = v, Veda®
so that
ave o da®

= V*
o VoV

Thus, if V¢ is a velocity 4-vector along a geodesic, i.e., V¢V,V? = 0 and
€Y is a Killing vector, i.e., V&, + V€, = 0, then

d, oo dVe Jdé,
a(v ga) - dt £a+v dt

= (VPVpV*)a + VIV Vigag?)

1 1
= VvtV = 5vavbva@, + §vavbvbga

1
= SV (Va& + Vika) = 0
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Thus, V%, is a conserved quantity along any geodesic. Now

VO, = gagVeEL = g V'€ + gaV2E
= g (Ve + V) = gu ((2)(—y) + )
Ty — YT
» 2
[

Note that in flat space, V¢, = zy — y& is the magnitude of the angular
momentum vector, so we suppose that V%, is related to the angular
momentum vector for this curved space. This makes sense because (—y, x)
is the generator of rotations and we already know that there is a deep
connection between rotational symmetry and angular momentum.

We now compute Rkl using

=0,T% — o7, — + 14,

abc be ac

After tedious algebra we get (easy to see that only a # b, ¢ # d can be
nonzero)

1

2 2
R121 = *ﬁ = *R1212 = *Rzn = R2112
2ty
a? {1 + 55 ]
Therefore
la 11 1
R12 = R12a =49 R121 )
1
2p 1 11p 2
R21 =97 Rios =—9 Ryg = P
1
22 1 11p 2
R21 =97 Ry =9 Ry51 = T2
1
21 11p 2 11p 2
Ris =9 " Ryi = -9 Ryg1 = a2

The others are zero. Now R,. = R, = R,L + R, 2. If a = ¢, then
Reo = R

b + Rus, = Rops = R332 because either a = 1 or a = 2.

Thus, R11 = Ra2 and
Ri=g¢""Ria=g" "Ry =g"' Ry = —— = R
a

If a # ¢, then Ry = R,% + R,
a=1lorc=2ora=2. Thus

4o = 0 since in both terms either ¢ = 1 or

R}:R%:—ﬁ , RA=R?=0
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Finally,
2

j 1 2
R:R§:R1+R2:—a—2
which is constant everywhere. However, strangely enough, the definition
I used for R,,2 is the negative of the standard definition in other texts(see
next problem solution), so in this case R = 2/a? and it this world is the 2-
dimensional surface of a sphere! Formally, we have shown that the sphere

is conformally flat.

EP #31
For a timelike geodesic we have
1 1
2 _ 2 _ 2 2
ds® = —dr* = —t2dt + t2d:1:

for real proper time dr. Using dots for differentiation with respect to 7 this
gives

1. .
—1= —t—Q(xz —1?)
Now the corresponding Lagrangian L = gq,4%° is
1. .
L= _72( 217

and since this is independent of z, one of the Euler-Lagrange equations is a
conservation equation:

d 2%
iy
dr t2
Integrating, this means that @ = ct? for some constant c¢. Substituting back into
Lo o
—-1= ft—g(x —t%)
we get
2 =31+ ct?)
or

Integrating we have

VIt c2+1

where the integration constant has been set to zero - which says that ¢t = 0
corresponds to 7 = —oo. Solving for /1 + ct2 gives

T e

9y V1+4ct2 -1
e

eT —e T
or
B 1
~ T csinhT
EP #32
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(a)

The metric is diagonal, and the only nonvanishing derivative is gg¢ . =
2a? sinh x cosh x. Therefore, the connections are

_T9 _TX _1% _
F§X—FXX—F¢X—F¢¢—O

1
F;qﬁ = 5.2 (2a? sinh x cosh ) = — sinh y cosh x
1 cosh y
' — —— _ (24%sinhycoshy) = -
X? 9242 sinh? y ( X X) sinh

These are the same as for a sphere with trig functions replaced by the
corresponding hyperbolic functions.

The symmetries of the Riemann tensor leave only one nonvanishing com-
ponent Rif; Thus, we have

X _ X X X 19 X 179 71X X ¢
R ¢X¢_F ¢>¢>,X_F ¢X’¢+F XjF ¢>¢>_F ¢jF X<¢>_F ¢¢,X_F ¢¢F X¢
cosh x

= (— sinh x cosh X),x — (= sinh x cosh x) sinh x

= (= cosh? x — sinh® x) + cosh? y = —sinh? x
Raise the second index to put it in the proper form, i.e.,

1
RX¢ - _
x¢ a?

The nonvanishing componentns of the Ricci tensor are

1 1
X _ pxX¢ _ _ ¢ _ pdx  _
Rx_Rw_ 2 R¢—R ox = T2
and the scalar curvature is
2
_ ¢ _
R7R§+R =-2

This is a space with constant negative curvature.

The geodesic equation gives

42 dé

2
d? hx dx d
X—sinhxcoshx<> =0 |, ¢ coshy dx dé _

d\2 " “sinhy d\d\

d\? dX
The second equation is equivalent to

d (. 9 do\ . o d’¢ cosh x dx d¢
X (Smh XdA) = sinh™x (dxz T2 by dx da

The first quantity in parentheses is a constant, which can also be obtained
by noting that since the metric does not depend on ¢, the momentum pg
is constant. Name this constant .

d¢

sinh? Xﬁ =

B
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Now, use this to replace d¢/dA in the first equation,

d*x 5 cosh x

=0
dx? sinh® y

This is equivalent to

d |[(dx\* B dy [dx . do\?
— (= = | =22 |=2 —sinhycoshy [— | | =
X [(d/\) T amZy | T T |l TSmO gy 0

The first quantity in brackets is constant; name this constant a:

dx\* 2
<X) T3 62 =«
dA sinh®

Now, change the variable from the parameter A\ to the coordinate ¢:

dx _dxd¢ _dx p?
d\ — dpd\  d¢sinh® ¢

sinh® y \ d¢ sinh?

Using the hyperbolic identities

1

d coth x _ 1
sinh? y

— , coth®’y —1=
dx sinh? y X

this becomes

dcoth y «
dx p?
The solution of this equation consistent with the boundary condition is

1 (cothbcos¢+1>

COthX:COtthOS(b 5 X:§ O W

2
> +coth? y =1+

The function cothbd is always greater than 1, so the logarithm is well
defined at ¢ = 0. Not all values of ¢ are realized; y — oo as cos¢ —
tanh b.

The equation of geodesic deviation with tangent u® = dx’/d\ states
D2fi
D)2

With u? = (0,1) and using the results of (b) for the Riemann tensor we
have

VuVu€' = =R’ julute

D2¢x

D)2
The angular separation £? remains zero, and the initial radial separation
&X increases exponentially, and more quickly the larger b is.

| D%
_ _ o1 b _ po ¢ _
_RX¢¢X§X—+51nh & T =R ¢¢¢§ =0
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(e) The proper distance from the origin along a ray of fixed ¢ is r = ay. For
X = r/a with a — oo, the geodesic becomes

r b a a
coth — = coth —cos¢p - — = —cos¢
a a r b

or rcos ¢ = b. As the space becomes flat, the geodesic becomes the straight
line x = b.

Another view of what happens comes from looking at the metric,
ds® — a*(dx* + x*d¢?) = dr® 4 r2d¢?
where r = ay: flat space in polar coordinates.

The figure below shows the shape of two geodesics in a polar coordinate system
with radial coordinate x and angular coordinate ¢. The inner curve has b = 0.5a
and the outer curve has b = 0.6a.

o

]

oo

o

EP #33
On the surface of a 2-sphere of radius a we have
ds* = a?(dh* + sin® Odg?
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Thus,
goo =0a® | Gpp =a’sin’0 | gap = gep =0

so we then have

1 1
g 2 0 9 a?sin? 0 g g

Now we must calculate the I'j, where
a 1 ad
be = 39 (Ocgab + Ovgde — Oagne)

Since g is diagonal, wer must have d = a or

1
;;Lc = §gaa(acgab + abgac - 8agbc)

Some algebra then gives I‘$¢ =0= I‘ge, I‘g¢ =0= I‘ia, FZZ =cotf = 1"29 and
%, = —sinfcosf.

Now consider the vector A = & at 6 = 6y, ¢ = 0, which say that Althete =1
A? = 0.

Now, if this vector is parallel transported around the curve 8 = 6y, ¢ = free,
then we take 7 = ¢ and the velocity is

dx® dby d¢
Ut = Ul=—=0 Ub=-—"=1
ar é ’ é
The equation of parallel transport is
U*V,A" =0

For b = 6: we have

VpA? = 0,A° + TG A% +T9,A% =0
For b = ¢: we have

VA? = 0,A% + TG, A% +T9 A% =0

Using the results for the connections calculated above we then have two coupled
ODEs

dAf .

w — sinfy cos By A® =0
dA

Tf + cot 00149 =0
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If we differentiate the second equation and then use the first equation we have

A2 Ad dAf d2Ad
d¢2 +C0t00w:04) d¢2

+cos? 0 A% =0
Therefore,
A® = Qsink¢+ Rcosk¢ where k= cosfy
The initial condition, A?(0) = 0 then says that A® = 0 = R so that A? =
Qsin ko.

Then we have for A?:

A
A% = —tan 90dd—¢¢ = —sin 6yQ cos k¢

The other initial condition A?(0) = 1 then gives Q = —1/sinfy and we finally
obtain the solutions

A%(¢) = cos(cosbpg) , A%(¢p) = — 10 sin (cos Hy¢)

S to

The magnitude of A is given by

A= JA"A, = AP Ay + A9 A,

where
Ag = gop A’ = a® A% = a*sin 6, cos (cos fy¢)
Ay = g¢¢,A¢ = —a?sin? 6, A® = —a®sin 6y sin (cos By9)
Thus,
A= a\/cos2 cos (Bp¢) + sin® cos (Ap¢) = a
EP #34

(a) On the surface of a 2-sphere of radius a we have
ds® = a*(db? + sin? Ad¢>
We want to calculate Rij i for the 2-sphere where
Now, if i = j or k = [, then Rijkl = 0. Therefore we consider i = 0, j = ¢,
k=0,1l=¢:
0 0 6 0 m 0 m
= Op(—sinfcosf) — 0+ 0 — (—sinf cosb)(cot §)

= —cos? 0 +sin? 0 + cos® § = sin? § = —R9¢¢9
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We then have
Ry = 9" Roaos = —9”* Rogos

= *g¢¢g99R0¢9¢ = a?sin’f = —1 = fRd)%g

a? sin® 0

(b) Now consider a vector A = A%¢y + A?é, parallel transported around an
infinitesimal parallelogram with sides €ydf and €3d¢, as shown below, then

<
Bl

]
D
o
D
g

\

i 1 j
AA - —iR jklA{)Slk
where )
st=3 f{ (adg” — q"dq') — §%* = 5% =0
L

and Ay is the value of the vector at the center of the parallelogram. We

then have
AA° — _%RG)J_MA%S”“ (terms are 0 unless j = ¢)
— _%R%MA?SM (terms are 0 when [ = k)
= —%R%MS’SW - %Rawe“lgsw
_ _R9¢0¢Ags¢'9
and

1 .
AA? = —iRﬁklA{)Slk
Lo 40
= *§R9k1AoSlk
1 ] 0 g 1 0 Qo
= — 5 R A05" — 51;1‘1;9¢AOS¢5

0 0
= R, A0S?

(0]



Now since the loop is infinitesimal, we have vecA = ffo, so that
AA® = (=R%,,8%%)A?
AA? = (R%,,5"") A
where R9¢9¢ =sin?6, R¢9¢9 = 1. Thus,
AA? = —sin? 9599 A?
AA? = 57 A°
and so
A? =A% + AA® = A% —sin? 957 A?
A'? = A? 1 AA® = A? 4 S0 A°

Now, if we want to treat ¢ and @ like cartesian coordinates, we must give
them units of length - rA% rsin@A? - then (if ¢ ~ x , 6 ~ —y), we have

rsingA’® _ (rsin HA? + rsin S0 A?
—rA”? o —rA? 4+ rsin? 999 A9

_ 1 —rsin 599 rsinA?®
~ \+sinhS?? 1 —rA?

Thus, this is like a rotation with infinitesimal angle ¢ = +sin 5%¢ (597
will be determined later). For the length of the new vector we have

|A'| = \JARAl = \JAs A, + 2A9AA, + AAAA,
Now
AAA, = A?AA, + A AAg = gy AP AA? + gog A’ AA°
= a%sin? A?(S%A%) + a2 A% (—sin? 0S5?P A?) = 0
Thus, to first order in S%?, we have |A’| &~ |A|.

If we take it as given that the £ from earlier is & = sin 0dfd¢p = d)(see
derivation below), we can approach the following problem: Imagine par-
allel transporting a vector around a simply connected solid angle Q2. We
can think of this as equivalent to parallel transporting this around lots
of infinitesimal solid angles as shown below because their path integral is
equivalent to the path integral around the edge (a la Stoke’s theorem).
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Thus, to first order, the change in length is 0 and the change in angle is

/dQ:Q

in the counterclockwise direction.

Evaluation of S%?: Now

1
§% =3 j{ (4pdq” — ¢"dq?)
L

Consider the path shown below.

T 0

A
A

0

\ i

We then have
S50 — f/ (gdq” — ¢°dg?) + ......
2 top

For the top path we have ¢ = d¢ — 7d¢, ¢° = df. Therefore d¢’ = 0, dg® =
—d¢dT and thus

1
! / (gpdq” — ¢°dq®) = 1 / (—dO(—dgdr)) = L 0do
2 top 2 0 2

For the bottom we have ¢’ = 0, ® = 7d¢ and thus

/ =0
bottom

7

DN | =



On the left we have ¢’ = df — 7df, d¢ = 0 and thus

o
e

Finally, on the right we have ¢’ = 7d6, ¢® = d¢ and thus
1 o o, 1 [ 1

5 (9pdq” — ¢"dg®) = 5 [ (dOdpdr)) = dOds

2 right 2 0 2

Therefore, S = dfd¢ as required.

EP #35

We have the metric given by
ds? = —e2?@ 12 4 2@ dp2

(a) We set 2° =t and #! = x. The metric tensor is given by ds? = gg,dz*dx®
so therefore the covariant components of the metric tensor are

—e20(x) 0
[gab] = 0 621[)(9:)

and the contravariant components are

—e29(=) 0
b1 e
[ga ] - ( 0 62111(:1:))

We note that the metric features dependence only on z' and is diagonal.
Hence any nonzero element of the affine connection must have either one
1 or two Q’s or three 1’s if it is to have nonzero components. The affine
connection is given by

1
be = §9ad[ab9dc + Ocgvd — Oagnc]
First consider a = 0. We have '}, = I'), = 0 since there is no dependence

on 2°. We also have I'{; = T'); = ¢'(x).

Now consider the a = 1 terms. We have I'}; =T}, = 0, T'{; = ¢'(x) and
[}, = 2@ =@ g/ (g),
We now compute the components of the Riemann tensor using

Rijkl = (6lr§'k + Flim ;rllf) - (akrzl + FZm ;Tll)

Since the Riemann tensor is symmetric in its first and last two indices, we
must have

0 _ pl _ o _ po _ po _ po
ROOO*ROOO*Rloﬂ *R010 *R001 7R011

_ pl _ o _ pl _ pl _ pl _ pl _
_RIOO_Rlll_ROll_Rllo_RIOI_Rlll_O
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This leaves only four terms of the Riemann tensor, of which we can con-
clude only one is independent. We have

Rouo = _Roun = Rlo(n = _R1010
= (01T + T39I + T9,T10) — (QoI'Yy +ThIYy + T, I1y)
= ¢ (x) + ¢"*(x) — ¢/ ()¢ (x)

We now assume that ¢ = —¢ = 1 In|g(z — xo)| where g and z, are con-
stants. We start by calculating some derivatives
(o) = 5t = () > (@) = 5
2(x — x0) 2(x — x0)?

Using these results we have R%;, = 0.

Since every element of the Riemann tensor is zero, we can conclude that
the space is globally flat.

We now look for the coordinate transformation . The tensor transforma-
tion law is

_ oz° 0z’
Gab = %@gcd
Since the metric is diagonal we have

0zY 9z° ozt ozt

goo = 920 570900 + 920 90 I = -1
g1 = %ﬁ%ﬁ%o + %%911 =+1
go1 = %%Qm + %%911 =
g0 = %%900 + %%911 =0

Now goo = —g(x — x0) and g11 = 1/g(x — x¢). Therefore we have
o\’ ar\? 1
I e _ oty - 4
() oo+ (%) sotm

_87{87{ (x—x)—i—@@ 1 =0
ot 97 Y0t 0x g(x — o)
_875875 (.’L‘—SU)—‘,-@@ 1 =0
oz ot? O Bz ot g(x —x0)
bt o o oz oz
T T
=Y e = =P
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We then have the equations
— A2g2(ac —x0)+C? = —g(x — x0)
— B*¢*(x — x0) + D* = g(x — x0)
— ABg*(x — x0) + CD = g(x — o)
For convenience choose A=1. We then have
— g% (x — m9) + C* = —g(x — )
— B%¢*(x — x9) + D? = g(x — Zo)
— Bg*(z — x0) + CD = g(x — o)
Thus we have
C? = g*(x — wo) — g(x — m0)
- B2g2(x —x) + D? = g(z — o)
— Bg*(z — x0) + (9°(z — x0) — g(& — 0)) D = g(x — x0)
The last equation gives

b= (1_9($i$0)>D_9($ifﬂo)

so that we have for D

((“mlzo>)D‘g<x1xo>>292(””‘”3°”D2:9(“”50)

Solve last equation for D, which then gives B and C.
EP #36
(a) We have u* = dz*/dr and

i dz* dz¥
Gt = Gy
But g, dxtdx” = ds®> = —c?dr?. Therefore, —guutu’ = ¢ and ¢ =

/=g uPu”. This is the same result as in Minkowski space, where ut =
(ye,y¥) and
—guufu” = =7 (= + %) =

(b) We know that if a vector ¥ is parallel propagated along a curve ¢#(7), then
VaV® = 0 where @ is the tangent vector u” = dz”/dr. We also note that
Vﬁva = UBVﬁVa.

Now consider

Vi(gapVVP) = gap(VOVZVP + VIVV?)
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where we have used the Leibniz rule for differentiation of a product and
made use of the fact that Vizg.g = 0.

Now, by assumption, V;V* = 0. Therefore, Vi(gasV*V#) = 0 which
can be written as u'V, (gasVeV?) = 0.

Now, since gagV“VB is a scalar, we have

VoGV V) = 5 (gasVV)
Thus, using the chain rule we have
dz¥ 0
dr 827

Therefore, we have proved that

d
0= "V, (gasV V") = —— 5 (gasV V) = ——(gasVV?)

d
—(gapVVP) =0
7 (9as )
which implies that for a timelike vector (for which g,sV*V# < 0),

el V(xvﬂ 1/2 =0

This means that the length of V* is constant along the curve z*(7).
NOTE: We did not need to assume that z#(7) is a geodesic curve. Any
curve along which ¢/ is parallel propagated has the property that the length
of ¥ is constant along the curve.

(¢) We know that the condition for a geodesic curve is Vzu® = 0 where
u® = dx®/dr. From part (b), this means that the tangent vector u® is
parallel propagated along the geodesic curve x®(7). Since u® is tangent
to the geodesic curve at all points along the geodesic, we conclude that a
vector tangent to the geodesic at a given point will always remain tangent
to the geodesic curve when parallel transported along the geodesic.

In case it is not clear that Vzu® = 0 is equivalent to the geodesic equation, here

is the proof.
ou®

oxB

Now, u? = dz”/dr, so by the chain rule we have

ﬂau dzP du®  du® _d (d:ﬂ") B d?ze

Vgua:uﬁv,guazu [ —|—F }

ozB — dr 928 dr dr \ dr dr?
Thus,
d2
Vau® = N —I—F
d2xe daP dx

(e

BT
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Setting Vzu® = 0 then is equivalent to the geodesic equation

d%z® o dxP dxy
+ — =
dr? B dr dr
EP #37

(a) The coordinate velocity in the radial direction is dr/dt. Light travels along
a path characterized by ds? = 0. Setting dfd¢ = 0 for the radial path we

have
2GM 2GM\ !
0= (1-"—"—)cldt®>—(1— dr?
cr cr
Thus,
2 2
dr (1 2G M
dt c2r
or

dr_ (, 26M
dt_c c2r

(b) In the transverse direction, set dr = d¢ = 0. Then

2GM
0= (1 - — ) Adt? — r2de?
cr

Thus,
o L 20M 1/2
P < c?r >
(¢) The physical consequences of these results is the slowing of light as it passes
a massive body. This leads to measurable time delays for light passing the
sun, etc. It has been confirmed experimentally. In addition, in both cases
we see that as r — oo, the coordinate velocity approaches c. Furthermore,
we can see that as the radius approaches the Schwarzschild radius, the
coordinate velocity goes to zero. This just restates the familiar idea that
light cannot escape from inside the event horizon of a black hole. We
note several peculiar, but related, effects. First, inside the Schwarzschild
radius the radial velocity becomes negative. Second, in the same regime,
the tangential velocity becomes complex!

EP #38

(a) Start from the Lagrangian

I : -1 :
I dz* dx 02<1—2GM>1€2—<1—2GM> 2 122

- _g’“’ﬁﬁ - c3r cr
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where we have already set §# = /2 = constant (so that § = 0. The
parameter \ is an affine parameter. Two of Lagrange’s equations are:

d (OL\ 0L _ . -
ix(55) =55~ ré=7

A (LN _OL  d ) 2GMAG g, (oMY g
dax\ ot ) ot " dr Ar B 2r N

where J and E are constants of the motion. Finally for photon orbits we

use ds? = 0 = —g"dz*dx” which gives the equation
2GM \ . 2GM\ ! :
A(1- ?—(1- i? —r?¢* =0
c2r c2r

Inserting ¢ = £ (1 — 2521:/[)_1 and ¢ = J/r? gives

—1 —1 72
E%c? <1 - 2GM) - (1 - 2GM> 27 g

c2r c2r

Solving for E gives

o Lo J? (1_2GM)

+ -
c? c2r? c3r

We define an effective potential by

_ 1 J? 2GM
2 -2 _
E —g?‘ —|—V€ff—>Veff(r)_ 2,2 (1— 2, )

First, let us compute the extremum of the potential Vs (r):

AVers(r) _, _2J° (1 B 2GM) J? 2GM

dr c2r3 cr c2r2 c2r2

This simplifies to
< 2GM > GM 3GM 3
r{1— = —

Compute the second derivative:

dr? c2rd cr c2r3 c2r? cArd c2rd r

d*Vogs(r)  6J7 ( B QGM) 2J2 2GM  8J°GM _ 6J? <1 3'rs)
At r = 3r/2,
d*Vegp(r) _ 6J7
dr? T <0

Thus r = 3r,/2 is a maximum of V,¢¢(r) (see figure below)
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Ve O &

That is, the point » = 3r;/2 corresponds to an unstable circular orbit.

Since -
J
Veff(T) = 37@
at r = 3rs/2, we see that if
o A7
27¢2r2

then at r = 3r;/2 we have 7 = 0 corresponding to circular motion.
(c) Start from the result

-1
A (1— 2GM)fi2— (1— 2GM) i — 2% =0

c3r c3r

For circular motion dotr = 0. Thus,

r2 c2r
Now, _
@_d¢/d)\_?_ 2 ¢
dt — dt/d\ {337
Therefore,
t= 3—\/3 do
2c

Integrating over one revolution yields a period of

_ 337,

c

At

Now in the Schwarzschild geometry, an observer at a fixed point (r, 6, ¢)
measures a proper time equal to

1/2 1/2
AT = (1—QGM> At = (1—15) At

c2r r
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At r = 3r,/2, the observer measures the time to complete one revolution
as

1 3rr
AT = —At = :
V3 c

The very distant observer measures Schwarzschild time, so the orbital
period measured is
_ 3\/§7r7"5

At
c
The orbit equation for the photon is
dz—u +u= 3GM u?
d¢? 2

where u = 1/r. In terms of r,

d_d (Y _ 1
6 _dr\r)de 2 db
d*u 1 d%r 2 <dr>2

a2~ rrdg 7 \dg

2r 2 [(dr\? 3GM 3r,
A L Y
dg?  r \do c2 2

Note that r = 3r;/2 is a solution to this equation.

r

Therefore,

If we substitute r = 3rs/2 4+ 1, we obtain an equation for 7, which repre-
sents the deviations from a circular orbit

&y 2 (m§2_n

i~ Ty \do

If |n/rs| < 1, the we can neglect the term proportional to (dn/d¢)? which
is quadratic in 7. We are then left with

d2n _

e
The solution of this equation is n = Aelphi + Be~?, which exhibits ex-
ponetial growth in ¢. Thgus, the size of the perturbation grows without

bound (rather than oscillating as in the case of a stable orbit). Hence, the
circular orbit at r = 3r,/2 is unstable.
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EP #39
(a) The metric is given by
ds® = —zdw? + 2dwdz
The light cone is given by
ds* = —zdw?® + 2dwdx =0

which gives
dw =0 and d—w = 2
dx T

These equations represent the two sides of the light cone as shown below.

Thus, one can cross from =z > 0 to z < 0 but not vice versa.

(b) We can write

2
1 1 1 1

ds® = —zdw?® + 2dwdx — =dz® + =da? = -z (dw — dx) + —dz?
T T T T

If we then choose
1
dv=dw— —dr —wv=w-—1Inz
x
the metric equation becomes diagonal, i.e.,

1
ds® = —zdv® + +=dz?
T
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EP #40

Consider a particle in circular orbit around a point mass M (we set G = ¢ = 1).
The Schwarzschild metric is

oM oM\ !
ds? — — (1 _ ) de? + (1 — ) dr? + r2d6? + r? sin® 0d¢?
T T

If a particle is following a geodesic, then ds? = —dr2. Thus, dividing through
by dt?, we get

dr? 2M oM\ "t dr?  Lde? , , dg?
— = (1-=)-(1-=— r sin? 60—
dt? r r
Since we are in circular orbit (in a plane) we have 7 = 0, 0 = 0 and if we choose
0 = w/2, we have
dr> _ (1_ 2M> _ 209

ar P227
dt? r dt?
or

ar _ 2%
dt r dt?

We now need to determine d¢/dt. Consider the radial component of the geodesic
equation

dr \/1_2M dg?

d*r LT da® dz®
a2 ' dr dr
Now for the the circular orbit we have

dr

dt?

Also since dff = dr = 0, only I'y ,, ', and I';; will contribute to the sum. For a
diagonal metric the affine connection is given by

) 1 .
;)c = 59” (abg'rc + 8cgrb - a’r‘gbc)

Clearly, because the metric is diagonal, only I'; ; and I'}; will be nonzero. Fi-
nally, we note that the contravariant component of the metric will be

grr:]__i
r

Thus, calculating these quantities, we have

1 M 2M
If = _igrrargtt =2 (1 - )

T 1 rr 2M
o0 = 59 Orggp =T (1 - >
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Thus, rearranging the geodesic equation, we have

L (deN\? . (dt\?
et <dT> + 1 <d7’> =0 (5)
do/dr\> Ty do\> M
(dt/d7> I T <dt> T

w_\/l_W_Tz‘W_\/l_W
dt r a2 r

Since this is constant with respect to coordinate time, we can easily integrate

to obtain
T_ . j M
t T

or

We finally have

as required.

EP #41
(a) Done in earlier problems and in text.

(b) Done in Problem #40.

Q_d(/)/dr_@_ oy /M 2n
S odt/dr  dt It ~ V r3  period

which is the same as the Newtonian result.

(¢) Now if we have two nearby geodesics, then they have close values of affine
parameter \. If we let u* = dx®/d\ be the tangent to one of the geodesics
and we let 77 be the differential vector connecting points of equal affine
parameter on the two geodesics, then it is proved in the text that the
equation of geodesic deviation is

D2na

W + Roéw;uﬂu”u‘s =0

where D =0 +1T.
We are required in the problem to the vector 5 defined in the problem,

which is the separation of points on the two geodesics at a given coordinate
time. From the diagram below
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Skylab Garbage

it is clear that the fractional difference vetween 77 and E is proportional
to the relative velocity of the grabage and the space shuttle or SkyLab,
and hence can be ignored to lowest order. Now, since all the Christoffel
symbols in the t,,y, z system are of order M/r?, and d/dr is of order
w~ (M/r)Y/2r=1 we can approximate

2 = i +Tu~ i
dr — dr Tdr
Furthermore p J \ p
— 2 =1 - -
ar " at [ O\ )| @ (©)

so we can approximate D?/dr? ~ d?/dt?. Using these approximations in

the equation of geodesic deviation for the vector £ we have
d2§i . . )
W + Réjo(uo)ng =0 L=T,Y,%

To lowest order the Riemann components are

Réjo ~ Ff)o,j - Féj,o = —%gooﬂ‘j = % (51'1’ - 396;?)
If we choose to describe the Skylab or space shuttle orbit as
r=rcosQlt , y=rsinQt
then the equations of motion for E become
£% 4+ Q%" = 302 cos Qt(cos QE® + sin QtgY)
&Y + Q2¢Y = 302 sin Qt(cos QEE” + sin Qt€Y)
E+Q¢ =0
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The relative motion in the z—direction is clearly
& = LcosQt

if the garbage was jettisoned at t = 0 and £*(0) = L. To find the relative
motion in the 2 — y plane introduce new variables n', n? defined by

& =nlcosQt +n?sinQt |, & =n'sinQt —n? cos Ut
and the equations of motion become

i? —20m' =0
it + 2057 — 3%t =0

These can be solved easily to find the four independent solutions

3
', n?) = [1, QQt} ,10,1], [cos Qt, 2 sin O], [sin Qt, —2 cos ]

The linear combination of solution which correspond to the garbage jetti-
soned at ¢ = 0 with £7(0) = £¥(0) =0 is

&% = Alcos 2Qt — 3 + 2 cos Qt 4+ 3Ot sin Q] + B[4 sin Qt — sin 2]
&Y = Alsin 20t + 2sin Qt — 3Q¢ cos Qt] + Blcos 2Qt + 3 — 4 cos Q]

(d) The constants A and B depend on the z and y components of the velocity
with which the garbage was jettisoned. The nonperiodic terms in the
solution correspond to the fact that the two orbits are of slightly different
period, so the relative distance will exhibit a secular growth in time . They
get rid of the garbage!

EP #42

(a) The Schwarzschild line element is

—1
ds? = — (1 _ M > 2di? 4 (1 _ oM > dr® + r2(d6® + sin® dg?)

c2r c2r
The geodesics are computed from the Lagrangian L = —g,,, 2#2".
2GMY . 2GM\ . :
L=(1- A2 —(1-"=5—) 72 —r*6* +sin?09%)
c2r c2r

The geodesic equation for variable r follows from

@ (o) _o
dr \or )  or
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This gives

A . (,_ 2GM\T _2GM () 2GM TeMY
dr c2r o2 c2r c2r?

- 27"(92 + sin? 9&2)

Thus, doing the derivative and rearranging we have

2GM\ .. GM ., 2GM
1- it~ 2 — 1
T

—2
2, ) 72— 1"(9.2 + sin? 9(;.52) =0

c2r

For a circular orbit in the plane § = 7/2, we have 7 = # = 0 and 6 =0.

Thus,
GM,, ., ¢ (GM\Y?
72 F=re" = i\

Now the constants of motion are

e:(l—E)i . L=1%)

r

Thus,

€=7‘2 (1_7;8)_1?:(6']\47“)1/2 (1_7;8)_

€ T T

Finally, we note that GM = ¢?r,/2. thus,

Y4 1 1/2 re\ 1
-=c (’I‘ﬂ‘) (1 — *)
e 2 r

The relationship g, @"@" = —c? gives

2GM\ . 2GM\ ! . .
(1= ZEMY ey (126 % +1%(07 + sin® 04%) = —c?
c2r c2r

Again, we insert 7 = 6 = 0 and 6 = 7/s for the circular orbit. Thus,

WGMY\ 41 o
- (1 = ) A+ 12t = —c?
cr

Inserting

we get



From part (a)

ce =1/ (1 — 7;—3) (;TST) o

efo-) k-4 -2

Simplifying the last expression yields

202 <137"S) _ 2
T 2r

Hence,

or 1/2 1/2
ézc(éry’) (1— g?)
Now,
dr 1 762
dé — déJdr
Hence,

dr 2 /1 —1/2 3r 1/2
— = — | =r, 1—-225
do c<2“”> ( 2r>

The observer at rest inside the orbiting spacecraft measures proper time.
Thus, the period of an orbit as measured by the orbiting astronaut, Ty, is

given by
27
dr dr
0 one period 0 d(b d¢

2mr? (1 —1/2 37, 1/2
= 1y 1228
To c (2T T) ( 2 1")

Consider an astronaut outside the spacecraft at fixed r, § = 7/2 and
¢ = 0. This astronaut also measures proper time, but in this case

or

car® = (1-12) a1 - %)71 dr® =13 (d6*+sin’ 0dg?) = (1 - =2 ) c2ar?

Since dr = df = d¢ = 0 for the outside astronaut. This stationary
astronaut outside the spacecraft measures a period Ty given by

r.\1/2
TS:/ ar=(1-2) / dt
one period r one period

Now t is Schwarzschild time, so any observer can agree on the value of
fone period dt. Since the orbiting spacecfraft has angular velocity d¢/dt in
Schwarzschild coordinates,

27
dt
= 7d¢
/one period ~/0 dd)
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By the chain rule,

dt & (GM\TYP ez TP
w3\ ) =ole

where we have used the result for ¢/¢ from part (a). Hence

212 (1 -1/
/ dt = (rsr)
one period c 2

202 (1 \ V2 1/2
Ts = il (rsr) (1 — T—S)
c 2 r

Comparing the measurements of the period

Ts_ r—="Ts 1/2>1
To_ T—%T‘S

and

This indicates that the stationary astronaut ages more than the the or-
biting astronaut, i.e., the stationary astronaut outside the spacecraft ages
faster than the orbiting astronaut.

EP #43

(a) The text derives the weak field metric or you can derive it yourself. We
get g;; = (1 — 2¢)d;; so that a = 1.

(b) For a boost with speed v in the z—direction, we have z/# = A* 2" or
t' =~(t+vx), ' =y(x 4+ vt), y =y, 2/ = z. The transformed metric is

v v 0 0 —(1+2¢) 0 0 0 vy v
lf] = yv v 0 0 0 1—2a¢ 0 0 Yoy
91=10 0 1 0 0 0 1—2a¢ 0 0 0

0O 0 0 1 0 0 0 1—2a0¢ 0 0
or

—1-=292¢(1 + av?)  —27%vp(1+a) O 0
/] = —27v20¢(1 + @) 1—29%¢(a+2v?) 0 0
g1= 0 0 1-2a¢ 0

0 0 0  1-26

(¢) There are (at least) two ways to do this. First, use the geodesic equation
in the geometry of part (b). Let the undeflected trajectory be t = A,
x = —b, y = A, with tangent p* = (1,0,1,0). The geodesic equation gives

dpy

(07 1 (%
- = Taupp P = Zhapp®p”

2
1
= §(h00 + 2h02 + h22),u = _’72(1 + a)d)nu
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The derivatives are

(vt —=b)M o (b—vt)M _yM
¢,t—7r73 , ¢,z—7r73 ) ¢,y—r73
On integrating over the full trajectory, the net changes are
Apy = —yvAby , Ap, =vAbly , Ap, =yvAby (7)

Or, second, boost to the rest frame, where the mass M sits at the origin
and where we know from the text that Afy = 2(1 + a)M/b. In the rest
frame

' =q(t—ve)=y(A+bv) , p'=90"—vp") =1
o' =qy(z—vt) = —y(b+ovd) , PT=A0" —vp') =
yY=y=Xx , pU=p'=1

The distance of closest approach is still b, achieved now at ¢’ = 0 in the

rest frame or at ¢ = —vb in the moving frame. The deflection is a rotation
by A#y about the z—axis,

p//t — p/t — ’Y
p//z :plx + Aaop/y — _,Y,U + Aeo
p"Y = pV — ABgp’® =1+ yvAby

Finally, boost this back to the original frame,

p///t — ,y(pl/t + Upl/x) — 1 +'YUA9()

/1 /1

P =" +op™) = —vAby
p/l/y _ p//y =1+ yvAf

The deflection angle is 660 = Ap,/py,

(14 a)M

AO = yAby = ;

(d) The same two calculations give

W= (1 + yvAby)w

EP #44

(a) the factor
L 2M(r) _ 1—2M r>R
r - (R)" r<R
Since R > 2M, this factor is never 0, i.e.,
2M 1 \2
7 (7) <1

for r < R and 2M/R < 1.
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(b) Given £&* = (1,0,0,0) , n*=1(0,0,0,1), we have

eg.ﬂ(12M(T))§i

r

0=m/2

o249 ()" -2 (84

or )
dr 72 2M (r)
2
(= Z (1= _
() e () o
or ,
e 1 1 [dr
e:w_ﬁ<w>+m”
where

p P

1 2M
TR T<R

1 2M(7‘)_{1—2M r>R

(d) In the standard point mass Schwarzschild case we would have

1 2M

Werr =52 =55

which looks like

1/rr2

-1/rA3

Recall that in the standard Schwarzschild case we have

dWe; 1 6M

dr 73

In this problem, however, we have for the case 2M < R < 3M
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ellipse

stable
circular

bending

unstable
circular

and for the case R > 3M

bending

Thus, there is no horizon where photons fall in and cannot escape!

(e) We have

dt 1

dr 1

and since r < R, we have

which gives

Thus,

2M (r)

2M(r)  2M r*

r R R2

2x 1.5km
3xTx10%°km
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EP #45
(a) For fixed r, § and ¢ we have

26 M 2G M\ M/?
ds® = — (1 — ) Adt? = —2dT? - dT = (1 — ) dt

cr c2r

(b) For fixed ¢, 6 and ¢ we have

—1 —-1/2
ds* = <1 2GM> dr* = dR® — dR = (1 2GM> dr

c2r cr
(c) The geodesic equation is obtained from L = —g,,2*&", i.e.,
2GMY , 2GM\ ! : ,
L(l (z >62t2<1 GQ ) 72 —r26% — r?sin® 042
c?r c?r
Then using
d (0L oL
(=) -Z==0 8
dr ( ot ) ot ®)
with oL
— =0 9
o 9)
we obtain J O
—1-==— )il =0 10
dr {( c2r ) ] (10)

where ¢ = dt/dr. This means that

k<12GM) dt

c2r ) dr

is a constant of the motion independent of 7. Writing out the component
of the geodesic equation in more detail,

(1 B 2GM> . 2GM

ir=0
c2r c2r?

which we can write as

T+ = tr =0
c2r? c3r

2GM (1_2GM>1..

Comparing this with the formal expression for the geodesic
B4+ Th i =0

we conclude that

t _ 1t _
Ftr_rrt_

GM ( - 2GM>1

22

c3r cr
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and
t
F(Xﬂ —

for any other choice of «, 5.

Assume that the particle follows a radial geodesic in which the particle
initially starts at rest when r — oco. Since

2GM\ dt
= (1-22) %
< C2T>d7'

is independent of 7, we can evaluate k at any point along its trajectory.
In particular, as r — oo, we assert that dt/dr = 1 since the particle is
initially at rest (so v — as r — o0). From dt = ~dr, our assertion is
verified. Hence k = 1 for » — 0o and since k is constant, we can conclude
that k = 1 everywhere along the radial path. Thus,

dt _(,_26GM -
dr c2r

To compute v = dr/dt, we start from

dx dx” 9

o
Since df/dr = d¢/dT = 0 for a radial path, we have

2 2
o (A (Y
00 dr T\ dr

But for the Schwarzschild metric

2GM 2GM\
goo = — 1- 2r s Grr = 1-—- 2r

Therefore,

L 2GMY (dtNE L 2GMN T ()t
cr dr c? c2r dr )

Using dr/dr = (dr/dt)(dt/dT) we get
dt\? L _26GM 1/ 2GM ~fdr\? _,
dr c2r c? c2r dt B

dt_ ( 26M\"
dr c3r
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from part(d) we obtain

L_2GM 1 (0 2GMN\T'(dr\®_ (| 2GM\?
c2r c? c2r dt ) c2r

Divide both sides by 1 — ZSM to get

2y

L L (,_26MN\T(dr\*_  2GM
c2 c2r at ) c2r

dr\®  2GM | 2GM 2
a)  r cAr
Taking the square root
dr__(,_2GM)\ (26M)\"?
dt Ar r
We have taken the negative root since dr/dt < 0 for radial motion toward
the origin. Inverting this equation yields

-1 1/2
ﬁ _ (1 2G M ( T )
dr c3r 2GM

t=— 1 1/2/7'5 ri/2dr
- \2GM e 1—2GM

cer

Therefore,

or

where t is the elapsed coordinate time it takes the particle to move from
ro to rs. If 1y = 2GM/c? is the Schwarzschild radius, then

1 12 pre 13/2 gy
t=—(=——
(QGM > /TO r—rs
Note that rg > rg, so t is positive. But, due to the singularity in the
integrand at r = rg, the integral diverges logarithmically, i.e., t = oo,

meaning that it takes an infinite coordinate time for the particle to reach
the Schwarzschild radius, r = ;.

Using the results of parts (a) and (b),

dR (. 2GM\dr
dr dt

c2r

Thus, from the result of part (e),

()" (2)”

Indeed, |[dR/dT| — c as r — 75.
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EP #46
(a) The light cone structure in the (r,t) plane is determined by

dt

at 2.2\
dr_i(l H?r?)

which has these properties

dt dt

— — 400 forr — H? andd——>0f0rr—>oo
r

dr
This looks like

flat

X LX) e

ol

(b) (1) We have spherical symmetry, so pick § = /2 plane and df = 0. No
time-dependence, so let ¢t = constant, dt = 0.

(2) We pick
dsip = dp® + p?dp* + d2*

Choose ¢ = ¢, p =1, z = z(r) so that
dsip = dr® +1r°d¢® + (¢)’dr® = (1 + (2)?)dr® + 1°d¢”

We thus require

1
N2 __
I+ (=)= 1— H2p2
This gives
1 rH
N2 __ I __
() T 1— H?p2 1=z _(1—H2r2)1/2



Integrating we get

rHdr 1 2 9y1/2
= | e = w0

Thus z = 1/H at r = 0. This is a sphere!

EP #47
Let
=ttt =r, 22=0,2%=¢
Then
k K\
9002—02(1—>,911=—<1—> , g2 =17
r r
g3z = r2sin’0 , 90 for p # v
where k = 2GM/c?. For convenience we choose coordinates such that the

Earth(E), the Sun(S) and Jupiter(J) are in the § = 7/2 plane. The equations
of the geodesic along which the radio pulse propagates are

A de\ 1 datda?
ds Guuw ds _2ga5’” ds ds

where s is some orbital parameters. These equations give two first integrals

dx¥ da? d d
931/% = 9330% = r2 sin? ed—f = rzd—f = constant
dz¥ dz® 2 (4 kY dt tant
y— = ¢ — — | — = constan
9o ds goo ds r ) ds
since
agaﬁ — agaﬁ =

9ap,3 = 8¢ =0 ’ 9ap,0 = ot 0
Taking the ratio of the integrals gives

r2 @
1—kdt

T

= F = constant

The time taken for one round trip of the pulse if the sun did not exert any effect
on the speed of light is

2
TO:C<\/7‘%—T8—|— r%—r%)

while the actual time is

T:2/ d—,£+2/ dé
0 0

C C
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where€ = /12 —12. As d¢ = rdr/&, we get

T,ﬂ_/” (H’f)?“dr+/” (H’C)’"dr
¢ |Jro r) \/r?—rd o r r?—r3

2 / (H’f)rdr+/” (Hk)rdr

¢ |Jro r) \/r?—rk o r r?—rd

Q
\

9 [ Vo — Vo —
== \/rf—rg—i— r3—r¢+kln <T1+ " TO)—i—k‘ln <T2+ 2 TO)]
c 7o To
27 4
S \/r%—rg—k r%—r%—kkln( T12T2)]
c| 2

Hence, the delay time is

AGM . (4
AT =T Ty~ 2C m(””)

c3 ré
Taking r¢ ~ the Sun’s radius and using the given data we find
AT = 2.7 x 10™* sec

Alternative solution: Consider the figure below

Jupiter -~ —

If 7o is small compared to r., r;, then we can say d =~ r. + r;. We want to
find the gravitational correction to the time it takes for the signal to travel (to
lowest order in G).

We can parameterize the worldline of the photon via o - the distance the photon
has traveled. Then we have

z(o) =1 —0 = dx = —do
ylo) =19 = dy =0
2(0)=0—dz=0

In SR, the metric is (w/o gravitation)
ds? = —2dt? + dz® + dy? + d2*
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For a photon, ds? = 0, so we have

so then

dt 1

do ¢

C c c

t:/"lda:d_w
0

is the time it takes for half the journey.

For weak fields we have

2GM

ds*=—(1-—
8 ( c2r

2GM
> Adt* + <1 + 2, ) (da? + dy? + dz?)

and again for photons ds? = 0 so that

or

1/2
de 1 (1R EGNTT 1 2GMY (1 2GMN\\Y
do ¢ \1-26M T c2r c2r T

c2r

(&) = &1
do 21— 2g}r\4

Then t for half the journey is

47
= [0
OC

2GM 4 oqM
¢ >d0=d+/ Gido
0o ¢c3

Thus, the correction for bot
At

Plugging in numbers we get

To
2GM e s
+ G3 {Sinh_1 <T> +sinh ™! (”)}
C To To

h halves is

AGM
- G3 [sinh_l <T> +sinh~? (”)]
C To To

AT =2.73 x 1074 sec
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EP #48

(a)

The spinning motion of the particle is given by the equation

ds, \ o dz¥
b TR oF S il
dr pPAT
where S, is the spin vector. The left-hand side is the time rate of change of
the spin vector and the right-hand side gives the effect of the gravitational
force, the whole equation describing the precession of the spinning body
in free fall. If gravitational forces are absent, F/)Iu =0, giving dS,,/dr = 0.
Hence a particle under not force will have a constant spin.
Let 2° = ¢, 2! =r, 22 = 0, 23 = ¢. As the particle is at rest at r < R,
H = constant and _

dad

P Oforj=1,2,3

dr

the equation of motion reduces to
asS, dax
dr  HOPAT
or

das;
dt

= FE\OSA

1
= ig)\p(aigpo + 009pi — 0pgio)Sx

1 .
55"’(82-9/)0 —0,0i0) (1=1,2,3)

as g, does not depend on z° explicitly. Note that Sy = 0 as the particle
is at rest. This can be written in 3-dimensional form as

s 1. .

E = 55 X (V X g)
where Ji0
&=
Gii

In the given metric if we set ¢’ = ¢ — Qt, then the space and time parts
of the line element separate out, showing that the spherical shell rotates
with angular frequency 2 about the z—axis. Th equation of motion in 3D
form shows that the spin vector S precesses with angular velocity

. 1 .
Q =—-=-V
gV x ¢
As
B Qr2sin’0 B r2sin’ 6
gso = i y 933 = H
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we have

Qrsind
= _ ~ —Qrsind
=T
since 12
2GM \ GM
H 2= (1- ~1l1+—~1
< Rc? T ke
Hence we can write
E=7xQ

Then )
Q’:75V><(F><Q):ﬁ

Hence, the precession angular velocity is in the z—direction and has mag-

nitude
4GMw

3Rc?
For a rough estimate take the Earth as a spherical shell of M = 6.0x 1027 g,

R =6.4x108%cm. Then ' = 6.74x 10~ rad/sec = 1.39 x 10—8 second —
of — arc/sec.

==

Actually, the coordinate transformation
=t , v=r , =0, ¢=0-0

would give rise to an Euclidean space-time in which S is constant. Then
in the original frame S will precess with angular velocity 2 about the
zZ—axis.

EP #49

(a) Tt is easiest to work backwards:

1 r 1/2 1 r ~1/2
r - (1 _ (r+t)/4M e (r+t)/4M
du i (QM 1) e (dT+dt)+4M( 1) e dr

/ !

1 / d
(dr+dt)+ 1 (552 = 1) dr= - [17;M+dt

T AM AM \2M AM 2
1 r 1/2 1 r -1/2
v — — (7 _ ) (r=t)/AM (. g0\ _ (7 _ ) (r—t)/aM
v YA 1 e (dr — dt) YACIY: 1 e dr
! v r -1 v dr
= " (dr —dt L) dr= |
A+ g (2M ) "= aM [1—2‘7{” dt}
SO

10,/ 2
du'dy = —— l( dr )Q—dtﬂ
1—2M



Now u/v' = —(r/2M — 1)e"/*M 5o

32M3 2M s r
25 o 2M gty = 22 <7 _ 1)
r € wav r \2M

dr?
g dt2]
(1-2%)

r

S (1 - L) a2 + (1 - L)_ldr2
- 2M 2M
Thus, the two metrics are the same.

(b) There is a singularity at » = 0, which corresponds to v'v’ = 1, where
the du’dv’ component of the metric blows up. Although it’s not properly
speaking a place in spacetime, we might be worried about using this metric
for r — oo, as the determinant goes to zero there, so the inverse metric is
blowing up.

(c) Since the radial light rays in these coordinates are v’ = constant and v’ =
constant, to be able to send signals to v’ = ug, v = vg, an event must
lie at v’ < ug, v < vg. Note that this is a necessary, but not a sufficient
condition; some events that satisfy this condition will still not be able to
send signals to a given event if their angular separation is large enough.

(d) By symmetry, it must lie at v’ > ug, v' > vp.

(e) From the coordinate transformation, we see that w'v’ is a function of r
only. Thus,

v = — (ﬁ — 1) "M — _9¢8
That is, the orbit follows a hyperbola in the u/v’ plane. Assuming we are
initially in the region «' > 0, v’ < 0 (as opposed to v’ < 0, v' > 0), we
will always stay in this region.

(f) The region v’ > 0 cannot send signals to this observer. The region v’ < 0
cannot receive signals from this observer.

EP #50
First approach: Using equations of motion and numerical solution of ODEs.

We have the following orbital (motion in the plane § = 7/2) equations from the
text (7.47) and (7.52):

1 .5 J? T GMm
Zmi 1_7) - —E
oM + 2mr? < r r

J =mr?p

In addition, from the Schwarzschild Lagrangian we can write the r Lagrange
equation as

s\ L. TSCQ ) Ts\ 2 Ts .2 )
<1_7) r+2r2t_<1_7) 2" —rét=0
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The energy equation can be re-written using r, = 2GM/c? as

1, 2 Ts 1 o7y
L 12 7) LT _p
er + 2mr? ( r 2mc r
or
IR 2GM\ _GMm _
—mr — — =
2 2mr2 c3r r

Using the equation for # we can consider circular motion, where #* = 7 = 0. This
gives

2

TsC

2r2

dg\*_ GM
) — r3
Thus the change in coordinate time ¢ for one revolution is
3\ V2
At =2 | ——
”(GM)

which is the same as the Newtonian expression, i.e., Kepler’s third law is un-
changed.

t'2—7’¢.72:0

or

We also have

MrsC” 9 o J 2
2Rz mip mR3
or
J? dt
t= = — =1
m2GMR  dr
This implies that
m2GMR
We then have the two ODEs
o _ |GM
dt r3

and

dr §+2GM_ J? (_2GM>

dt m T m2r2 cr

To determine the initial conditions (initially start in circular orbit) we use the
effective potential energy approach. We have

1
—mi? + =F

2

r

J? 2GM\ GMm
omr2 B

c3r
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which we can write as 1
g’mi‘? + Veff(T) =F

where

Vers(r) i <1 -

2GM GMm
= omr? B

c2r r

The condition for circular motion is an extremum of the effective potential
energy. Therefore we calculate

dVepp(r) 0— _ J? 1 2GM J? _2GMY\  GMm
dr T md c2r 2mir? c3r r
2
T =my |
2(1-%%)

and
GMm  GMm (1—1%)

R T T2R (1- %)

E=-—

Re-writing the ODEs and re-inserting rs we have

@ _[rec?
dat  V 2r3

dr 2E+r502 J? (1 rs)
d  Vm r m2r? r

with initial conditions
$(0)=0 and r(0)=R

and
rsRc? me?r 1(1-1%)
= ° d E=— S [ LB
J=m 21— ) M 2R < 2(1 3;;))
so that
do _ |7
dt 273

dr Ts 1( *%ﬁ) rs TsR Ts 3rs -1
@ ‘m(l‘m_%))ﬂ‘zrz (1—7«)(1— )

with initial conditions
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MATLAB Code:

phi=0;

n=4;

GM=1.327%10720;

c=3*10"8;

rs=2*xGM/c"2;

R=nx*rs;

r=R;

m=50000;

dt=0.000001;

x=zeros(1,m+1) ;y=zeros(1l,m+1);

x(1)=r*cos(phi) ;y(1)=r*sin(phi);

for k=1:m

phi=phi+c*sqrt(rs/(2%r~3))*dt;

r=r+c*sqrt (-(rs/(2*R))*(1-0.5%(1-rs/R)/(1-3*rs/R))
+rs/r-((rs*R)/(2*r~2))*(1-rs/R)/(1-3*rs/R)) *dt;

x(k+1)=real (r*cos(phi));y(k+1)=real(r*sin(phi));

end

plot(x,y)

axis(’square’);

Second approach: Using effective potential energy. We have

J? 2GM GMm
‘/;ff(r) = 22 <1 - ) -

Ar T
The condition for circular motion is an extremum of the effective potential

energy. Therefore we calculate

dVes(r) _,_ (| 2GM J2 (. 2GM\ GMm
dr T 3 cr 2mir? cr r
reRc?
J=my | ——m—
2(1-%)

and
GMm  GMm (1-1)

R T T2R (1- %)

E=-—

The solution I have goes as follows: We use the values for a circular orbit:

o MP g o 102

r—3M r r—3M

+ €
The term € is a small perturbation.
For r = 3M, the particle must have zero mass. It escapes with impact parameter

b=L/E = 3v/3M as shown below
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10 r v

| "bh3* ——
\
"I
5+ | 1
|
7 .l
0- I '/ 1
S5k 1
<10 . A A i J
-10 -5 0 5 10

For r = 4 M, the particle has reduced energy FE slightly greater than 1 so it barely
escapes to infinity. It has L = 4 so its impact parameter will be b = 4M /u for
some nonrelativistic velocity u < 1 as shown below.

10 -
"bh‘l
5¢ 4
0 {/ \
|
\
5}
.
10 L A A _s— —.
-10 -5 (4] 5 10

For r = 5M, the particle has reduced energy E = v/9/10 < 1 so it cannot
escape: it will reach a maximum radius determined by E? = 172, that is, r =
10M (it is a cubic equation, but we can divide through y our known solution
r = 5M). Upon reflection by the effective potential barrier, it will return to

110



r = 5M and pass over it (having slightly more energy than the unsatble orbit
there), falling into the black hole as shown below.

10
sl
° L
5
10 P 0 s 10

For r = 6M, the orbit is marginally stable, i.e., the effective potential has a
point of inflection. Any perturbation will move outwards slightly before falling
into the black hole as shown below.

0r v v v R

\ \ _ /)
dNT/
SN—

For r = 7TM, the orbit is stable, so the particle will remain in a stable orbit.
The ratio of the oscillation periods in the ¢ and r directions is

L__ 1 _ 5
Ty 1— M

T
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so the particle will go around about two and a half times between each closest
approach as shown below.

‘Or

5 -

-10 & A A A .
-10 5 0 5 10

EP #51

Choosing 6 = /2, the conserved energy and angular momentum in the metric
are £ =t and L = r2¢. For null geodesics,

2

1.0, L
0=—FE>+(1-\?) 1r2+r—2

that is,

Now,

dr\* * E?-I? rt
) g "

where = E?/L?. Thus,

¢_—/ dr _1/ dv _1/ dv'’
- r(l— /\T2)1/2(ur2 — 1)1/2 9 (v — )\)1/2(M _ v)1/2 9 (a? — 012)1/2

where we have set r2 = 1/v and then v = v/ + (A + p)/2 and a = (A — p)/2.
Performing the integral gives

¢ = %sin_1 (U—I> + oo
a
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which can be written as

1 A+p  A—p
2T Ty

sin (2¢ — o)

Let us take ¢g = 0, and move to Cartesian coordinates x = r cos ¢, y = rsin ¢.

Then \
+
1= 2@ ) + (0 - pay

which is the equation for an ellipse.

EP #52

(a) Zeros of 1 —2M /r + Q2% /r? occur at
re =M+ /M2 —Q?

If @ > M, there are no real roots, so the metric components are bounded
until we reach r = 0.

(b) If @ < M, there are zeros as given above. At these values or 7, g,
diverges, so there is a singularity in the metric in these coordinates.

(¢) As witht he Schwarzschild case, we look for a coordinate adapted to the
causal structure. We define the so-called tortoise coordinate r, by

oM Q2 "
dmz(l——l—%) dr
T T

which can be solved to obtain

2 2
r r
Pe=1r+4+—T ln(r—l)— ln(r—1>
ry —Tr— T4+ Ty —T— T_—

If we then define u = t+r,, ingoing light rays will be given by u = constant,
so this coordinate is adapted to the causal structure in the desired way,
and

2M 2
ds® = — (1 - + ?2) du? + 2dudr + r2(d92 + sin? 9d¢2)

so the metric is regular at 7 = r1 in these coordinates (in fact, it is also
regular at r = r_).

EP #53

(a) For any particle we must have v*v, =1 > 0. Thus,

1= (1-2)2-(1- Ti)_laﬁ — 2(6% + sin? 02)

T r
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so if 7 < ry, the coefficient of #? is negative and the coefficient of 72 is
positive. This means that 7 must be nonzero so that the RHS is positive
and equal to 1.

Thus, 7 can never go from negative to positive because it would have to
pass through 0 first, which is not allowed by the above argument.
Moreover, 72 can never decrease because it would throw off the delicate
balance. Further, as r — 0, 72> must increase because the coefficient of
2 grows more negative while the coefficient of 72 grows less positive. 72
must increase to fill this gap.

Finally, if 62, ¢§2 are positive, then 7 must simply be bigger to compensate
for the more negative contributions.

Thus, we see that: accelerating in the +7 direction is not allow; acceler-
ating in the 0, ¢ directions only makes 7 increase faster.

Therefore, we want no acceleration, which implies that the particle follows
a geodesic.

Now, the energy is conserved and

SO we can rewrite

- E2 B T2
I1—22 112

or

=2 o1t R2

r

This gives

dr -1

dr N \/m
and

0 _ Ts
Ar — / dr _ / dr
which decreases for larger E. So we want to have £ = 0 and then

Ts d
7T
ATmaz = 57s

.
0o V-1 2
If we start from rest at r = ry and we move in a radial motion with

dt = df = d¢ = 0, then
—dr

JEr—1
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where negative sign is to keep d7 positive. We then get as before
Ts d
AT = / —— =1
0o V-1 2
Thus apparently this situation attains the maximum. We should start at
ry at rest because

Ts

d
o —(1—E> =0atr=r;
dr r
Since starting from rest at r = r, attains the maximum A7, all other

initial conditions must yield equal or smaller values. Thus, the astronaut
should slow down to rest before she reaches r = r;.

EP #54

The key to this problem is to recognize that in the ejection event, energy-
momentum is conserved, but rest mass in not necessarily conserved. Let m and
U be the rest mass and 4-velocity of the rocket hovering at radius R. Thus,

oM\ !
o _ 1-— ==
u [( R) ,0,0,0]

Let Mmese, Uese and mej, te; be the corresponding quantities for the escaping
and ejected fragment. The minimum 4-velocity for escape corresponds to an
orbit with £ =1 and L = 0 and is

oM\ ! oM\ /2
O i el ) 0,0
UGSC [( R> 5+<R)

Derivation: in order for the observer to escape with the maximum rest mass,
they will want to escape radially. In this case, we must have (df = d¢ = 0)

oM oM\
ds? = (1 - ) dt? — (1 — ) dr? — r2(d92 + sin? 0d¢?

() (-2 @)
(-2 (2
() == (%)

For a particle to escape radially, we must have £ =1, L = 0. Therefore

R (I

r

dr < 2M> 2M it  E 1
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Continuing, we have from conservation of three-momentum

2M -
0= mese\| — + Mejle;
T

_— Mese 2M
Ug; = — | —— —_—
’I’I’Lej r

where we have assumed that the fragment was ejected in the radial direction.
Then, imposing the condition 4 - © = —1, the 4-velocity of the ejected fragment

has the time component
1 2\ 711/2
wto=(1—= % 1— % 1— Mesc
el r R Mej
mut = mescu’ésc + mejut

Conservation of energy gives
ej
which implies that

/
(-2 -2 (- (52))]

The largest fragment that can escape is the largest value of m.s./m that can
satisfy this relation as m.;/m varies from 0 to 1. Plotting the function for a few
cases shows that ms./m is maximized when me; = 0, i.e., all the rest mass is

turned into energy. Then
Mese  |R—2M
m ~ VR+2M

or

This vanishes for R = 2M.

EP #55

(a) The total mass-energy of an isolated system is conserved, so it is not pos-
sible to radiate monopole gravitational radiation. Also, since the total
momentum of an isolated system is conserved, which means that the sec-
ond time derivative of the mass dipole moment > mf# is zero, it is not
possible to radiate dipole gravitational radiation. The lowest multipole
gravitational radiation is quadrupole.

(b) For a system of two stars in a circular orbit around their common center
of mass, the rate of energy loss by radiation of gravitational waves is

B _pa
dt ~ 5cdrd



where 7 is their mutual distance, which is constant for motion in a circular
orbit. With m; = ms = m and the data given we have

dE  64G*
= 5,7,7715 = 1.57 x 10* erg/sec
core

With
Gm?
2r
dr 2r2 dE B 128Gm?
dt — Gm2 dt 53
Since dr/dt is the rate at which the two stars approach each other, the
time taken for a complete collapse of the orbit is

_ O dr _ 5¢5 0 3
T () T 28GR ), rdr

dt
_ 5¢°
T 512G3m3

E=-—

r* =24 x 10" sec.

EP #56

Take the center of mass to be the origin of a Cartesian reference frame whose
z—axis is oriented along the spring. If the mass at z = +L/2 is displaced by
an amount 0z, and the mass at z = —L/2 by —dz, then the center of mass is
unchanged and the magnitude of the restoring force on either mass is

|F.| = 2kdz

The masses oscillate with a frequency w = (2k/M)'/?

according to
02(t) = Acoswt

The only non-vanishing component of the second mass moment I;; is I.. because
the masses never stray from the z—axis. This is

I 2
1,,=2M (2 + 5z(t))
We then find to lowest non-vanishing order in A that
T .. =2MALw? coswt (11)

We can write the gravitational wave amplitude far from the source as

- 2.
hY(t, &) lim =IY(t —r/c)

r—oo T

This expression, however, is not in the transverse traceless gauge. To put the
result into the transverse traceless gauge for a direction making an angle 8 with
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the z—axis, in the y — z plane, we make a rotation about the r—axis to a new
set of axes in which the z’—axis makes an angle # with respect to the z—axis.
This rotation is given by the analog of the equations below:

=z
y = —zsinf +ycosb
2 = zcosf + ysinf

and the fact that I;; transforms according to

oxk ozt
(') = Wwfkl(@")
The result is
0 0 0
;=10 sin? 0 —cosfsinb | I,
0 —cosfsinf cos? 6

The simple algorithm for transforming to the transverse-traceless gauge is as
follows:

1. Set all non-transverse parts of the metric to zero

2. Subtract out the trace from the remaining diagonal elements to make it

traceless
We get
) —1sin®’¢ 0 0
hiy = = 0 $sin®0 0| I..
" 0 0 0

Evidently the wave is linearly polarized. The time-averaged luminosity radiated
into a solid angle df),, is then

dL 2 . 2 1
. ::;7 (IZZ sin® 9) = S MPAPL2 sin' 9
EP #57

Consider a particle moving on the z—axis with position (0,0,z(t)) in non-
relativistic approximation. Then using

1
We then have

. Lo 2 2

Ijk =0 for J 75 k 5 Iu = 122 = —gz(t) 5 133 = gz(t)
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so that we have for the reduced inertia tensor

—232_ 23, 0
3 3 2 .2 2..
0 —54° — 5%z

0
0
4 - 4 .
0 0 522 + 322

~n
Il

Then in the transverse traceless gauge, when observing at (0,0, L), we have

AT A 1
" =pip - 3 P Uik Pix
where Py, = dqp — ngny and ng, = x,/7 for the point of observation. We then
have n, = d,, and

1 0 0
Py = 5ab - 6az5az =({0 1 0
0 0 O

We thus have

- 0 0 0 1 —2:2— 23, 0 0
I'=(0 —222-232 0 -3 0 —2:2 232 0
0 0 0 0 0 0
382+ 322 0 0
= 0 —322— 352 0
0 0 0
The radiation is then approximately given by
1=
Il ~ ZITT(t —r/c)
3%2’2(75—1"/6)—l—s%é(t—r/c)z(t—r/c) 0
= 0 —3%2"2(75—7“/0)—?%Lé(t—r/c)z(t—r/c)
0 0

Now we have
constant t>T,t < -T
z(t) =

1gt? -T<t<T
Thus,
. 0 t>T,t<-T
i(t) =
gt T <t<T
and
. 0 t>T,t<-T
i(t) =
g -T'<t<T
Therefore,

h']'] __h]] — 22(t I‘)Q L 1 <t<L+T
T yy
0 elsewhere
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EP #58

We consider two battleships on the axis that collide. We have m = 70000 tons =
6.34 x 10" kg, vo = 40km/h = 11.1m/s, vy = 0m/s, and At = 2 sec. Then

djk
Ijk =mi <1‘1j171k — L(ZE%l + SL‘%Q + 13%3)) + mo ( ........ )

3
=0 whenj#k
Thus,
2m
Ioo = ?(xf(t) + z3(t))
— __m 2
Ly = e = =2 @300) + 23(0)
The power radiated is given by
e 1 ... ..
P = — = — . .
dt 5 < IJk’ Ijk>
Note that T jx has units of J/sec.
Now a; = Av/At = 5.55m/sec? = constant = i; and ay = —5.55m/sec® =

Zo. Therefore, © = 0. We then integrate to get
i‘i = ait + Vo
L
xr; = iait + vot + ;0

We also have
-

2a
Since vy = 0 and 2y = 0 we have z¢g = v3/2a and then

Az =

=Tf —To

vl L9
l‘z(t) = 2% + ’Uiot + iaﬂit
(3

Then

I ji = constant [#F + %3]

Now

(] + %3] = 6141 + 6iads
= 6[(11 (alt + ’U10) + CLQ(OQt + ’Ugo)] = 6[@% + ai1vg + (—a1)2t—|—) — (11)(—’()0)]
= 12[a3t + ajvo)

Then
2
Ize = ?m12[a%t + a1vo] = 8mla3t + ajvo)
0es 0ee m
Iyy = Izz = _512[0,%15 —+ alvo] = —4m[a%t + (ll'l)o]

120



We then get (putting constants back)

G
P = 5F [16m2[a?t + a1vo] + 16m? a3t + ayvo] + 64m?[att + ayvo]]

96
= EmQ(a‘lth + a2v2 + 2a3vgt)

We then have the total energy radiated as

2.0 4 3
96 2
E = Pdt = €m2 (alg ) + U:?Ug(Q) + G§U0(2)2>
0
=537x10733J

Using F = fiw = hv = he/\ we get
h

A= EC = 1.06 x 10°m
This is approximately three times the earth-moon distance.
EP #59
No solution yet.
EP #60
We have the following relations:

1
Wabh = hab - §h77ab

which is called the trace-reversal of hyp (see below)
The gauge is fixed up by

hab — hab + 8azb + abza

where Oz, = 0.

Now
Wap = Agp €08 (Nex¢) + Bap sin (nez€)

are the harmonic plane wave solutions to Owg, = 0
Aside: We have

W = WOO — Wae — Wyy - W,
= (hoo — 1/2) — (hgy + h/2) — (hyy + h/2) — (h., + h/2)
— (hoo — haw — hyy —hos) —2h = h —2h = —h
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which is why wgp is called the trace-reversal of hg,,. Note also that hg, =
Wap — Napw/2. Note that is h = 0, then wqp = hap, which is good. So let us see
if we can comer up with a gauge transformation to make h,p traceless.

For clarity, we do a simple example. Assume the wave is propagating in the z
direction. Then n¢ = (1,0,0,1), n. = (1,0,0,—1) and n.z¢ = ¢t — z. Let us
assume that B, = 0 so that we have

Wap = Agp cos (t — z)
Now consider a gauge transformation of the form
Za = Cgsin (t — 2)
We then have

00za = Cq cO8 (t — 2)
Oz2q = Oy2q =0

0,24 = —cqcos (t — 2)
and thus
hf)o = hoo + 20024 = hoo + 2¢o cos (t — 2)
oy = haa 5 hiy = hyy
h., =h.,—2c,cos(t—z)
and hence

W = h()O - h;m - h;y - hlzz
= (hoo — hyp — hyy — hzz) + 2(60 + Cz) Ccos (t — Z)
—W 4 2(co + ¢;) cos (t — 2)
= —(Aoo — Agz — Ayy — Azz)cos (t — 2) +2(co + ¢z) cos (t — 2)

So it suffices to choose 2(co + ¢.) = Aoy — Azz — Ayy — A, to make b’ =0 and
hence w!,, traceless.

Let us now take a look at the independent components of A,p. First, note that
since wgp is symmetric, then Ag;, is also symmetric. This leave 10 independent
components. Next we use the Lorentz gauge condition d,w?® = 0, which says
that

Aabnb = AaO + Aaz =0

This gives us
AOO = _AOZ = _AzO =A..
AacO = _sz
Ay =—A4A,.
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These eliminate 4 components and we are left with:

Ao Aoz Aoy  —Aoo
Ap A A —Ap
Aa _ T T Ty T
[ b] AOy Azy Ayy *AOy
—Agg  —Age _AOy Ago

i.e., we have 6 independent components.

Now, imposing the transverse gauge condition, i.e., t*h,, = 0 where t* is a unit
vector along the time axis, gives t%wg, = 0 = t*Ag = 0 — Agp = 0 for all b.
Finally imposing the traceless gauge condition above yields A,, = —A,,. We
are thus left with just two degrees of freedom:

00 0 0 000 0

01 0 0 00 1 0
Aa]=Aw | g 3 o T4 1 0 of =% tbeo

00 0 0 00 0 0

There are nice animations of these polarizations in a Wolfram Mathematica
Player app. (see URL below)

http://demonstrations.wolfram.com/Gravitational WavePolarization And Test Particles/

€g makes particles particles in a circle in the  — y plane oscillate like this: eg
does the same rotated by 45°. Linear combinations can yield circular polariza-
tion, etc.

EP #61
The line element can be written in the form
ds* = A(dz®)? + B(dx')? + C(d2?)? + D(da®)?
where
with

t2

A=1, B=-——"_
1472

, C=—t*r? | D= —t*r?sin0

where we have used a(t) =t for convenience. To prove that the space is flat we
have to show that the curvature or the Riemann-Christoffel tensor vanishes:

1/ 0% 0%g 0%g 0%g
Riuvpo = = Lo L L o op (9,75 —T2TP ) =0
HoPT 9 <5x”(9xp * Penoee  dzvoxe  dardar ) Y AU

a _ 1,.ax (99w 99rs _ 99us
where I}, = 59 (—mg + 357 — 5 ), ete.
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The curvature tensor has the symmetry properties
Ruvpe = —Ruppo » Ruvpo = Ruvop , Ruvpo = Rpopw
and satisfies the identities
Ryvpo + Ruovp + Ruper =0

Then it follows that all components R, s in which 4 = v or p = o are zero
and that for 4-dimensional space the curvature tensor has only 20 independent
components

0101 0112 0202 0213 0312 1212 1313
0102 0113 0203 0223 0313 1213 1323
0103 0123 0212 0303 0323 1223 2323

with Ro123 + Roz12 + Ro231 = 0.

The RobertsonWalker spacetime has

go=A, gu=B, go=C, gs3=D , gu=0forp#v

We denote
1 1 1
a*ﬂaﬂ*@a’Y*%a (12)
1

delta = —

elta 5D
A _ 0A 0B B 9%A ote
N, V0, Ve

Then by direct computation we find
Rp123 =0
1
Roi02 = 5(—1412 + A1 As + BA1A; +vA2C1) =0

1
Ro101 = 5(—1411 — Boo + a(AgBy + A?) + B(A1 By + B3) — vA2By — 0A3B3)
1 1 2 2
= 2 (-B B =|—0 = )=
5 (B0 +55) 2(1+r2 1—|—r2> 0

Since the assignment of the indices is arbitrary, we can obtain the other compo-
nents by interchanging indices. For example, Rgo02 can be obtained from Ryg1q
by the interchange (1, B, 8) <> (2,C, ), which gives

1
Rog20 = 5(ﬂ422 — Coo + a(AgCo + A2) + y(AsCy + C2) — BA,Cy — 6A3C3)

= 3(~Cu+9CR) = 5 (22 = 2%) =0
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In this manner, we rfind all R,,,- = 0. showing that the space is indeed flat.

Let R = rt and the coefficient of d§? + sin® #d¢? becomes —R?. The remaining
part of the line element can be rewritten

tdr)? (tdR — Rdt)?
dt* — ( =dt? -
L+72 2+ R2
_ (tdR + Rdt)? 5
B+ R? i
=dr* — DR?

if we set
T=v1t>+R?

Hence the transformation

R=rt , 7=+t?+ R?

can reduce the Robertson-Walker line element to the Minkowski form.

EP #62
(a) Einstein’s equations are
3(k + a?) d 2ai + a* + k
=—— an =
8ra’G b 8mwa?
Since £ = 0 in a flat universe, the first one gives us
342 a2 8rG
= — a = ——pa
P~ 8ra2G 3 "
Combining this with the second equation, we get

i 4rG@3p+p)
a 3
In a matter-dominated universe, the p term is much larger than the p

term, and we have

i _47rG u

(b) For light moving radially, we have
ds* = —dt* + a*(t)dr* =0

Therefore,

to To
/ — = / dr = d = spatial separation
te a(t) Te
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Now, consider light emitted one period later. Then emitted at t, = ¢, +
Ae/c and received at t! = t, + A\,/c. The distance between the emitter
and observer is unchanged, so the RHS is still d. We thus have

to gt totAo/c gy
/ _— = d = _—
¢, a(t) tetre/e alt)

If we assume that a(t) is constant over small time periods, we get

to  te  tot+Aojc  tedA/c

Qo Qe 2 Qe

or

&l

Therefore,
A
s=20 =%
Ae Qe
The proper diameter D of a galaxy at a distance r away at a constant
angle ¢ is measured to be

D
ds®> = a®r?d0®> 5 D=arAd - A== =4

ar

Now consider a light ray traveling to us from the galaxy. We then have

tgdt T
—/ —z/dr:r
t a 0

as before. Now, since D is constant, for § to be minimum, a(¢t)r must be
a maximum. Thus, at minimum §,

d( )= ar + aF = ¢ a_,
ar) = ar ar = aqr — — = - r = —
dt a a

Since
d, .. dada 1 da?

= —(q)= —— = ———
dt( ) dt da 2 da
Einstein’s two equations combine to give

i

d d
_dp _ da
p a
or
pa’® = b= a constant

The first equation then gives

87Gb

a*?da = dt
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which integrates to
a(t) = Ct?/3

1/3 .
where C' = (GWTGZ’) / is a constant. Hence,

1 [, 3 .1/3
— = | 7Bar = Z(ty/® - /3
r C/t C(O )

Therefore, minimum § occurs when

1 3 3 .1/3 1
=== 13 = D0 — /3
"Taac ¢ (fo )
i.e., at
t1 élfo
27
when ,
2/3
L, %l _5
Zl—zcmt—a1 1<t1> 1—4
EP #63

(a) In polar coordinates, the metric is
ds? = dt* — R*(t)(dr? + r2d6? + r? sin® 0dp?)
Letting 2° = ¢, ' =, 22 = 0, 23 = ¢, we have
go=1, gu=-R*, goo=—-Rr* | gs3=—R*’sin’6
guv =0 for p # v
Since g,,,, is diagonal, for which g* = g,,,,, we have

Iy =0for p#a#p

Dh e lguu O9un _ 1 O9up
B B9 dzP  2g,, OxP

0
= W(log |guu|1/2)

where there is no summation for repeated indices above. Therefore, the
Christoffel symbols are

10R
Fgu:FﬁO:EE (/1’:17273)
1
FAIL/J,ZFZIZ; (M:273)

Fgu:FZ2:F§u:FZ3:PZu:O (M:O717273)
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The motion of a particle is described by the geodesic equation
d?z+ u dz® dz”
- 4+ P —
dr? B dr dr
where dr = ds, T being the local proper time. For p = 1, the above

becomes
d?r  21dR dt dr

T Ratdrdr
Multiplying both sides by R? gives

d (dr dR? dr d dr
2 & (% - = - 22 ) =
R dr (dT) * dr dr 0= dr (R dT) 0

dr
R?>— = constant

dr

The momentum 4-vector of the particle is by definition

Hence

dz®
¢ =mu® =m——
p dr
Pa = GapD’ = gapmu’
Then,
dz® daP
« — a B 2 -
P Poa = GapP P m-gap dr dr
or

dt\? dr\?
2 2,2 2
=) _R - =
(i)~ ()
where we have used the metric equation. Writing the LHS as E? — p?, we

have the momentum

= R—
P de

and the energy
E = /m? + p?

Initially, p = pg, E = Ej, so that

RQ@ _ @ — ROPO

dr m m

or
Ry

p(t) = T Po



and thus

where RO = R(to).

If the gas of photons is in thermal equilibrium at time %, then according
to Planck’s theory of black body radiation, the number in volume V' (tg)
of photons with frequencies between v and v + dv are

812V (tg)dv

where h and k are Planck’s and Boltzmann’s constants and Ty = T'(tg)
is the temperature. At a later time ¢’, photons with original frequency v
have frequency v/’ given by (EP-62)

dN(to) =

Ul R(to)

v R(t)

Also, the volume of the gas has changed as the scaling factor R(t) changes:

Hence
’ ’ 2 3 ’ ’
8 v R(t ) R3 (t ) V(t/) R(t )dl//
dN(#') = dN (ty) = i) )
3 |:e( EToR(tg) 1):|
If we set Rito)
)= =Y

the distribution will still retain the black body form:

8t 2V () dv'

& {e(k%’»—l)]

dN(t") =

129



(c)

Consider non-interacting massive particles as an ideal gas. In thermal
equilibrium the number of particles with momenta between p and p + dp

is
V 2d E—pn -1
v, S [
where F = /m? + p2? and p the chemical potential, can be set to zero
since the particles are non-interacting. Since the expansion of the gas is
adiabatic, TV~ = constant, and hence T'ox R~30~1 as V « R2. Since
px 1/R and E = \/m? + p?, the initial thermal equilibrium distribution
cannot be maintained as the universe expands.

Considering the photon gas, we have from (b)

R(t)  T(to) mc?

R(to) T 3x104

For neutrinos, we then have

p(t) _ R(to) _ 3x 10~4

p(to)  R(¢) mc?
At the initial time ¢, the neutrinos have kinetic energy ~ mc?, i.
VD2 + m2ct —me? = mc®
Hence, p(tp) =~ v/3me. It follows that at the present time t,
p(t) =~ 3v3 x1074eV/c
u(t) = @ ~ 73\/3 . 10_40

m mc2
isin eV. As v < ¢, the kinetic energy is approximately

e.,

where mc?

2 2 1 10—
m o mc (v) _ 1.35x10 7eV

—vf = 5

2 2 c mc

EP #64

(a)
(b)

(c)

The model is evidently flat since k = 0.

This is not a matter dominated universe where we would have a(t) o t/3.
Here we have a(t) o t1/2.

Using the k& = 0 solution of the FRW model we get

RENCA
P= 8T \a
But a(t) o< t1/2 from the given metric, which gives

3
p(t) = 327t2

Are the dimensions right?
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EP #65

We already have shown that

1+2z=

For a matter-dominated FRW cosmology we have R(t) oc t2/3. Hence

to 2/3
1 =(—=
+z (t)

2/3
t t
<°> -2 70 —9273/2 = 0.354

If z =1, then

t

Therefore, the light left its galaxy when the universe was about 35% its current
size.

EP #66

(a) A flat dust universe with zero cosmological constant has k = 0 and ds? is
of the form

ds® = dt* — a*(t)(dr? + r62d6? + r? sin? 0d¢?)

. 1 0 0 0
0 —alt) 0 0
dl=1o0 o —a(t) 0

0 0 0 —alt)

Calculation of the Ricci tensor yields the equations:

N\ 2
Gtt =3 (Z) = 87TTtt = 87Tp(t)

in the rest frame of the fluid. We now need an expression for p(t) so we
can solve for a(t).

From relativistic hydrodynamics, we have
i (V-T)=0
which actually yields the first law of thermo

d 1%
ar (pV) = _pE

where V' is the volume of any fluid element.
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If the matter density is small enough, then p,, ~ 0. For a given radiation
density, p, = p,/3. Thus, we set p = p, + pr and p = p, + pr =~ p, and

obtain p p 1 dv
E(pm‘/j + %(PTV) + gprﬁ =0

We can separate these equations to obtain

d d 1 dVv
E(pmv) =0 and E(prv) + gpr% =0

These give the two solutions

pmV = constant and pTV4/ 3 = constant

Now we know that V o< a3(t), which shows that

3 3 a®(0)
pm(t)a’(t) = constant = p,,(0)a”(0) — pp(t) = me(O)
o
pr(t)a*(t) = constantp,(0)a*(0) — p,(t) = Cfl(((z))pr(())

Thus, the equation for a(t) becomes

a\> 8t . 8md?(0) 87 a(0)
(a) = ?p(t) = ?aTt)pm(o) t3 (@) pr(0)

This is a nonlinear, nonseparable ODE and is not solvable in general.
However, if p,.(0) = 0, then we can solve it to obtain

p 8mpm (0)a3(0
(a)a1/2 _ P (3) (0) :71/2 _ g3/2 :71/2(15_150)

Therefore, we have arrived at
a(t) = 7' (t — t9)*/*
for a k = 0 dust universe with 2 = 0.

Consider a photon emitted at t. and received at t,.. We know that

A_a

A a

so that . .
3&:/‘3ﬁ
te A te @

which implies that

)\T tr 9 1/3(4 _ —-1/3 -
hli:/ ,M—to)dt:gln tr = to
Ae o 3 Bt —tg)?/3 3
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Therefore,

Ar te—to\

Ae te — to
Now in a small amount of time dt, a photon travels a distance dictated by
ds? = 0. Since

dt
ds®* =0 =dt* —a®*(t)dr* — dr = ——

a(t)

this piece of space expands with time after the photon travels it. The new
length is
a(t

( now) dt

a(t)

This means the distance to the emitter, s, is
t.)
t

s:/dm:/;r (()dtz/tt“wdt:i%(u—to) {1—

a
a ,yl/B(t_tU)Q/S

This becomes the answer in the problem for the choice ¢, = tg, tg = 0. 1

do not know why!

drnow =

1+z]

(¢) If py(0) # 0, then the equations are difficult to solve. If, however, ¢ > 0
for all ¢, we can say that since

pm(t) ca™ and p.(t) xa?
then
pr(®) xa !t —=0ast— oo
pm(t)

Thus, the universe will eventually be dominated by the dust!

EP #67

If a photon is emitted it recedes for two reasons. It is traveling through space
and space itself is expanding. Assume a photon was emitted at t = 0, how far
has it gone in a time ¢t = ¢y/ Since ds®> = 0, we have

dr 1

:——>Dz€6°

1
dt — af(t) a(t)

a(t)

This is the present distance to the photon in the fixed 3-space metric. The
physical distance at fixed times is given by

dt = 3y13(t) /3

hy = a(0)D = 3t
EP #68
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(a) If the metric inside is flat, then there are coordinates (7', R, ©, ®) in which
the metric can be written

ds? = —dT® + dR? + R*(dO® + sin® ©d?) (13)

The world line of the shell will be the curve R(7). The metric in the
three-surface of the collpasing shell is then,

ds? = —dT? + R*(7)(dO? + sin® ©dP?) (14)

Outside the story is similar using Schwarzschild (¢,r,0,¢) coordinates.
The metric on the surface of the collapsing shell is

ds® = —dt? + r?(r)(d6? + sin? 0d¢?) (15)

The inside and outside geometries will match if r = R, 0 =0, ¢ = ®. In
particular, R(7) = r(7). The function T'(7) can then be computed from
the normalization condition

(AT (N
dr dr)
and the given r(7). We can then plot a (T, ) diagram .

T A

Ty

2M A r 2M A
only inside shell only outside shell
is physical is physical

The figure on the left refers to the geometry inside the shell. The figure
on the right is an Eddington-Finkelstein diagram referring to the outside.

The world line of the collpasing shell is shown schematically in both dia-
grams. It’s not the same curve because, although R(7) = r(7), T(7) and
t(7) will be different. That’s why two separate plot are required. They
match up across the surface of the shell. For example, points A, B, and C
match.
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(b) The horizon H is the surface generated by light rays that neither escape
to infinity nor collapse to the singularity. Inside the shell, those are radial
light rays that just make it to the surface at » = 2M as shown. After
passing through the shell, they remain stationary at » = 2M. The area
increases from zero inside the shell and remains stationary outside.

EP #69

(a) The figure below shows the solution:

observer

’
1/2 U

(b) The straight line has a slope of 2 which means the observer is within the
45° lines which are the light cones.

(c) The latest time is the value of ¢ at which the 45° dotted line from U = 0,
V = 1 intersects the curve r = R. The equation of the 45° line is V =

1-U, so
R 1/2 " R 1/2 "
(2]\/[ — 1) e sinh (4]\4) =1- (2]\/[ — 1) €7 cosh (4]\/[)

or ) )

t t

5 sinh (W) =1 5 cosh <4]\4)

so that

t =4M log (2)
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EP #70

(a) Suppose in the coordinate frame of the galaxy and observer successive
crests of a light wave are emitted by the galaxy at times tg, tg + Aty and
received by the observer at times tq, t; + At;. The world line of each crest
is a radial null geodesic along which # and ¢ remain constant so that

0 = —dt? + R%da?

or

dt
R(t)

along each world line. Integrating for each crest gives

/wo gt t1+At dt
To = dr = / _— = / -
0 t) R(t) to+Ato R(t)

Since Atg, Aty are small, the above equation implies that

Aty Ak
R(t))  R(t1)

dr =

If Ao, A1 are the emitted and received wavelengths then

AL _ At R(t)
X Aty R(to)

and the red shift is

B 2/3
z:)\l )\Ozﬁ_lz ti —1
Ao Ao to

since R(t) = Rot?/>.

(b) The angular diameter of the galaxy is by definition

5= D __ D 23

R(to)l‘o R()LL'() 0

Now . N 18
A :i/ 234t = > <tl> ~1
ty R(t) RO t Ro tO
and . 1/
(1> = (z+1)/2

to

we have
D(z+1)3/2

O SGT 1 2=1  3h+1i2-1]
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(c) Differentiating the above gives

s R
where A(z) > 0. Hence

do 5
@ZO whenz:z

For z < 5/4, d§/dz < 0 and the angular diameter decreases as the red
shift increases. For z > 5/4, dd/dz > 0 and the angular diameter increases
as the red shift increase. Thus, the angular diameter reaches a minimum
at z =5/4.

EP #71
(a) For the metric in this problem

a’(t) 2(1),.2 2042 qipn2
go=-1, gu=7—"p5 gn=a (t)r® , gs3 =a"(t)r"sin" 0

One can then calculate G, to get

3(k + a? 1
GO(): ( 2 ) ) GTT': 2
a r
1 k +a% + 2ad
Gog = ——— Gpp = —————
0= San?o oo 1— kr2

Gij:()fori;éj

We have a matter-dominated universe, i.e., Too = p, T;; = 0 otherwise.
Therefore the field equations G, = 8m7GT, give only two equations

I. S(sz) =8n1Gp
Il k+ a®+2aid =0
Now using a trick we have

d@?)  dtd@®) 1, .. ..
da " da 4l g\ad)=2a

Thus, (II) becomes
d(a?
kta?+a29) g
da
Integrating with respect to a, we have

.2 -2
ak+/d2da+/a%da:ak+/d2da+ad2—/amda:C

a da
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or C
k+a*= — (16)

for some constant C'. We have used integration by parts in the above
derivation.

Substituting this into (I) yields

3G 3C
— = 871'Gp - pa3 = —— = constant
a G

8T
So we can describe the field equations by

_8nG

W+ k 3 P pa® = constant

as desired.

Let L, be the distance(radial) from the origin to a particle at position r
at a fixed time ¢. Then, from the metric, we have

ds = a(t)L =
Viokez VO
Thus,
a(t)r itk=0
a(t)sin™tr  if k=41

L, = aft) / T
T N
o V1-—ke a(t)sinh™'r if k= -1

We now attempt a classical (Newtonian) derivation. Consider a sphere of
uniform density p and radisu L. A particle a distance L from the origin
will experience an acceleration

. 4G
—_— P— — 3 = —_———
L=-— 5 = 2,037TL = 3 pL

If M is to be conserved, we must have

4 4
P(t)gﬂL?)(t) = p(t’)ng?’(t’) — pL3 = constant

Again using the trick that

. 1d(L?)
L=574L

and integrating the equation for L with respect to L, gives

1., GM GM
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where we have used M o< pL? is constant and C' is a constant. This implies

that °GM 2G4 871G
P2yo=20 2 s 2 T
+0=—7 LP3" 3

These equations are equivalent to those found in part (a).

pL?

EP #72

If we use the transformations r = sinx and r = sinhx for k = +1 and Kk = —1,
respectively, we have

ds? —dt? + R*(t)[dx? +sin? 2dQ?] k= +1
ST =
—dt? + R2(t)[dx? + sinh® 2dQ?] = —1
Suppose the spaceship is launched along a radial directions so that df = d¢ =
dQ = 0. If we introduce the proper time by —dr? = ds?, the metric then

becomes
dr? = dt* — R%*(t)da?

Since all gog do not depend on x explicitly, the geodesic equation

d < d:r”) 1 dx® dzP

ar \9ar ) " 39wy gy =0

gives for p =1
d dz\ 0
dr . dr )

dr dz (dr\ " R2(1) G
RO =FOgg) = )
= dt <dt> 1 R2(t) (%)

or

= constant

2

Since the length element is dl = R(t4x and the velocity is thus

dl dx
=—=R(t)—
veg T RO
the above can be written as
R(t)v

= constant

Vv1—0?

or

Rt R(t)v
V1— 02 N V1 — 02
Since R(t') = (1 + 2)R(t), we have

v’ v 1

VI—o? VI-2l+z
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or

1)/2 _ v
(1 —=02)(1+2)% + 02
ie.,
, v v
v = ~
2 1+z2
(1 +2)\/1 -0+ <1+z)
for v < 1.
EP #73

(a) To calculate p(a) we use the fluid equation

. 3a
pt+—(p+p)=0

which in this problem reads

Iy
p+ —ap: 0
a
or p
i(ahp)zo

and therefore

(1) = plto) (((’;)))

To find a(t), we use the Friedmann equation with & = 0 and substituting
for p this is
a\>  8mp(te) ((alte)\*
(2) -5 (@)

20 = ¥ )l

which gives

where we have chosen the positive root. Hence, integrating gives

a3V/2 — S%HOGS'Y/Qt

where we have chosen the integration constant by requiring a(0) = 0 and

we have used
Hy = /8mpo
3

which follows from the definition of H and the Friedmann equation. Fi-
nally, putting ¢ = tg gives the age of the universe




(b)

From part (a) we have
42— 87 poay
3 q37—2

Therefore, @ is constant if 3v = 2. With this value of ~y, the Friedmann
equation for general k reads

@k _ 87 poag
a2 a® 3 a2
or
W+ k=C
where g
T
C= ?PO‘I(Q)
and therefore
a=(C -k

From the definition of 2 we have

_ 8rp _ 8mpa?
T 3H? 342

Thus, by differentiating we get

. 8mpa® 16 16mpa?i
O - m.)a n 7r.,0a_ W{)a a
3a? 3a 3a3
Now we replace p in terms of Q, a/a with H and use the acceleration
equation to replace a:
é 47

47 1
= - — )= —ZQH?*3vy -2
" 3 (p+3p) 3 p(3y —2) 5 (3vy—2)

and this gives

O = (2 37)HQ1 - Q)

Now if we change to s = loga we have

dQ _ odi _Q

ds ds H
and therefore 40
—=12-37)2(1 -9
e
We can see from this that if v > 2/3, then dQ/ds is positive for Q@ > 1
and negative for Q < 1 and so |1 — Q| always gets bigger. For v < 2/3,

the opposite is true.
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EP #74

We consider a flat universe involving a period of inflation. The history is split
into 4 periods ....

1. 0 <t < t3 radiation only

2. tg < t < ty vacuum energy dominates with an effective cosmological
constant A = 3t3/4

3. ty <t < t; a period of radiation dominance
4. t1 <t <ty matter domination
(a) For a flat universe, the Einstein equations tell us that
(a)? — @cﬁ =0, p+3 (Z) (p—i— %)

If we set p = wpc? with w # —1, then

p = poa~31+w)

On the other hand, if w = —1, then p = 0 and thus p is constant with
time, i.e., the energy density associated with a cosmological constant is
constant in time, where py = A/87G.
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Plugging into the Friedmann equation, we get for w # —1

a2 = 87T3GPa2
a2 = LC:F)OGQ_g(ler)
3
a2 = 8mGpo o~ (1+3w)
3
a4 = \/&Tgm)a—(1+31u)/2

a13w)/2 g = \/ @dt

a (34+3w)/2 B ¢
ap - to

@ _ <t)2/(3+3“’)

(1)) fo
and for w = —1 we get
2:87TGPAG2
3
A
2 Ao
@ =za

alt) _ o(A/3)1/2 (t=t0)
Qo

where g is the time at which the period of dominance by a given type of

matter begins.

We see, therefore, that in time period (3) above (radiation-dominated so
w=1/3),
a(t) oc t1/?

while in period (4) (matter-dominated so w = 0)
a(t) o t2/3

Now from manipulating the equations above we can write

o(t) = oo ()

for a flat universe. Then using (in period(3)) a = Ct'/? we have

(t) — i
P = 300G
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and similarly(in period (4)) using a = Ct?/3, we get

1
p(t) = 6mGt2

From the formalism presented in part(a), we see that for the radiation-
dominated universes, period(1) and period(3), where w = 1/3, we have
a o< t*/2. For the matter-dominated universe, period(4), where w = 0, we
have a o ¢2/3. Finally, for w = —1, where the universe is dominated by
vacuum energy, we have

0 oc N3P ot/ (2ts)
More specifically, we have
t1/2 0<t<ts
alt) = a(tz)e™1/2et/ () 3 <t <ty
a(ts)(t/ta)'/? to <t <t
a(ty)(t/ty)?/3 t <t <t
or
t1/2 0<t<ts
a(t) = t%;ze—i/%t/@m ty <t <t
t3' “em1/2et2/(2ta) (1 /t,)1/2 ty <t <t

1812 1/2et2/ (2a) (1 [1,)V/2(/11)2/3 1 <t <ty
We have shown that for epoch (2)
a(t) = a(tg)efl/zet/(zt?’)

Therefore
@ = elt2—t3)/2ts
a(tg)

We have derived above that

p = poa 21T
Therefore
-4
pr(to) = pr(t1) (ZEZ);)
3 1o\ ~%/3
328} <t1>
Then,




(e) Using the definitions of a(t) above for a universe expanding from a singu-
larity, we get

at t3 = 1073 sec
a(ts) = 3.16 x 10—18 log(a) = —17.5

at to = 10732 sec
a(ty) = 1.77 x 104¢99-5 log(a) = 199.43

at t; = 10% years = 3.14 x 10 sec
a(ty) = 1.77 x 104e19%® log(a) = 221.18

at tg = 10'° years = 3.14 x 1017 sec
a(to) = 1.37 x 108e99:5 log(a) = 225.17

which looks like

matter

log(@) dominance
A (different slope)
225 ——
inflation
ends
radiation
200 —— dominance
E 17
10% o 10
| | | -
0 WA 1 I >
log(t)
inflation

-20 __T begins

radiation
only

(f) The particle horizon is defined by the relation

/t dt, _ /’r‘ d,r,/
o o) Jo V1= kr'2
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Since k = 0 in this universe, we have

t dt/
B /to a(t')

is the particle horizon. - the farthest distance at which light emitted at
time ¢t — 0 can have a causal influence. We have shown above that during
inflation, the scale factor is proportional ef’*. Therefore, we see that the
change in the particle horizon from t3 to ts is

t /

2 dt
A = _——
" /tg a’(t?))eH(tlitS)

I ,
— / €7H(t 7t3)dtl
a)ts) i3

_ 1 e~ H(t2—t3) 1
a(ts)H a(ts)H
1

" a(ts)H (1-emtem)

If H=(A/3)"3 = 1/(2t3) as above and t, = 10732 sec, t3 = 1073 sec,
then the second term is negligible and

1 s

(l(tg)H a(tg)

If we put in numbers we find for the increase in the physical distance
between one end of the horizon and the other
a(ty) 1
g At2)

_ — —92x 10—35 499.5
(l(tg) H ¢

and
log (Ad) = 182.23

which is a very significant increase in the physical horizon distance!
EP #75
(a) We can find the Christoffel symbols using the relation

1
Fuun = 5(61/9&” + 8ugm/ - &cgm/)

One could also use the Euler-Lagrange equations. We have
go=1, gui=-1, go=—0>+71%) , gs3=—(b>+7r?)sin’0
The non-zero partial derivatives are then
01922 = —2r
01933 = —2rsin® 0
D233 = —2(b* + 1?) sinf cos 0
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All others are zero.

Remember that the Christoffel symbols are symmetric in the first pair of
indices, and the metric is diagonal, also only one and two derivatives are
ever non-zero. We find (Roman indices are spatial)

T'ogo =0
Iooi =0
Fpio =0

1 1
Lijr = 5(%1‘7]‘ + Gkji — ijk) = 5(5ki9ki,j + OkjGrj,i — 9ijGij k)

So we always need to keep some pair of indices equal to get a non-zero
result. We then find the non-zero Christoffel symbols

Tigo = —r
33 = —rsin®é
Togr =7

To33 = —(b* 4 %) sin @ cos O
F331 =T Sin2 0

T30 = (b* + %) sinf cos
plus all thus related to these six by symmetry.
For the geodesic equations we need to raise the third index using
Iy, = [ PN

Since the metric is diagonal, this is straightforward. We have

1 1
00 11 22 33
=1 s = —1 s = —— 557 > = -
! ! I (0 +12) g (b2 4 r2) sin® 0
which give
I3y =g"'Tos = —r
Fé?) = glnggl = —-T sin2 0
T
I3, = g%l = W
2, = g**T'330 = —sinf cos
T
I3, =g Tz = GRS
cosf
Py = g7 Tass = sin 6
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Finally, the geodesic equations have the form

d2zH B " dx® da
dr2 ~ "Ndr o dr

which gives

dit
dr?

> do\? do\ > do\> do\ >
£ (2 (5 (2 ()
ﬁ — 2 2 ¢
dr? dr
2 do\”
> _'_:02 ( ) ( >+51n90050(d7_>
R0 g () () Care, () (%)
dr? dr dr
o =2r do 2cos do
INGCERS) (dT) <d7> sind (d’T) (d’]’)

Notice factors of two which come from summing over off-diagonal elements
and using the symmetry of the Christoffel symbols.

=0

EP #76 Consider as path through spacetime given by x4(t). The velocity
associated with the curve is given by vs(t) = dxs(t)/dt and the distance from
any point (z,v, 2) from the curve is determined by 72 = [(z — x4(t))? + 3 + 2?].
We now define a smooth, positive function f(rs) such that f(0) = 1 and there
exists an r such that f(rs) = 0 for all r¢ > R. We then consider the metric(warp-
drive spacetime) given by

ds* = dt* — [dx — vs(t) f(rs)dt]* — dy?® — dz?

or

1—02f% wvsf 0 0
| v -1 0 0
9= 0 0 -1 0
0 0 0 -1
and

1 vs f 0 0
1 |wsf VEfP-1 0 0
971 o 0o -1 0
0 0 0 -1
(a) Null geodesics are given by ds? = 0. If we look for null geodesics only in
the z—direction (dy = dz = 0), then we have

ds* = 0= (1 —02f?)dt* + (2vs fdx)dt + (—da?)
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Then by the quadratic equation we have

_ —2uf £ VA0 — 41— 02 /) (1)
B 2(1 =3 f?)

dt dzx

or
de  v2f*—1

dt  vef+1

Thus, the forward light cones are tilted along the path x4(t) so that as we
will see shortly this path is timelike. Far away from xz4(t) where rs > R
and thus f(rs) = 0 we have

==+1+ ’Usf<rs>

dzr
— ==+l
dt

and the light cones are vertical just as in flat spacetime. Note also that
we move faster than light in one direction and slower then light in the
other!

We consider the path z# (¢, zs(t),0,0). First, let us check that this path
is inside the forward light cone for this metric. For this path we have

dx

i vs(t)

and light paths that pass through the points on z4(¢) and moving on the
t — x plane have velocities +1 4 v, f(rs = 0) = +1 4 v,. Since

—14vs <vs <14 vy
the particle is moving at less than the local speed of light and thus the

path is inside the forward light cone.

Alternatively, we can check that the path is timelike all along its length.
This is also sufficient to say it is inside the forward light cone. If & = x4(t),
y=2=0, t = free, then

dx = d%pdt =vs(t)dt and f(rs=0)=0

We then have
ds® = (1 —v2)dt? = 2v,(vedt)dt — (vsdt)? = dt62o02dt* — 20%dt? = dt* > 0

Thus it is timelike. We also have d7? = dt? so that

dt @t 0— t+ tant
— =1, — = T = constan
dr dr?
The equation for a geodesic then becomes
d*z® o dab dz 0— d?z® LT da® dx©
ar2 ' "dr dr 0 a2 " dt dt
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(¢)

Now the velocities are zero for b,¢ = 2,3(y, z) so nonzero contributions
come only for b,c¢ =t,z. Thus,

dea a a a
W + Ftt + Fzzv2 -+ 2Fxtv =0

Now, clearly, if a = y,2, ', = 0 because 049z, = 0 and gz = 0 for
a # x,t.

It can be shown(see later) that

I, =Tt =Tt, =0 (along path z4(t))
vYi. =0 (along path z,(t))
Iy, =I% =0 (along path z,(t))

- A’z

Iy, = —W (along path x4(t))

so that all geodesic conditions are satisfied.

We saw earlier that 7 = t + constant for a particle moving along the
geodesic x4(t). Thus, if A =T, then A7 = At = T as well so that there
is no time dilation!

A normal vector n* to the surface of constant time is a vector orthogonal
to the three spatial directions z* = (0,1,0,0), y* = (0,0,1,0), a2+ =
(0,0,0,1). Orthogonal means orthogonal in our metric n*n, = g,,n"n”
and so on.

We seek a 4-vector n* = n® n' n? n3) orthogonal to the surface or which
satisfies

7 - S
n'z, =-n>=0
nty, = —n? =0
o _ 1 0 _
ntr, = —n" +vsfn” =0

Therefore, we find
n* = (n°, vsfn’,0,0)

If this is a unit vector, then we must have
nkn, = guntn” =1 = (1—-0v2f?)(n°)* + 20, fn’n' — (n')?
= ()2 (1 = v f?) + 201 f* — vl f?) = (n°)?
so that n° = 1 and thus n* = (1, v,f,0,0).
We note that the energy density seen by an observer at rest is

v v
Pobs = T nuny = uun#n
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Using Einstein’s equation

1
R, — igw,R) =81GT,,

we find

Pobs =

&G &G

1 1 1
(an“n” - 2gm,n”n”R) = (an“n” - 2R>
We now need to calculate all the curvature quantities involved.

Calculation of Christoffel Symbols and Riemann tensors

We have
ds* = dt* — [dx — vs(t) f(rs)dt]* — dy?® — dz?

We make the simplifying change of variables
ff=t, y=y, =2, 2 =02,
We can then use the change of variables formula for the metric

dz® dz?

my _
Jap(a™) = gHAMW

to find the new metric

1—02(f(rl) —1)* w(f—=1) 0 0

B vs(f — 1) 1 0 0
G = 0 0 1 0
0 0 0 -1

where now 77, is independent of t', v, = /2’2 + y2 + 2/2. From now on we drop
the prime notation and also use f = f — 1, which is a function that has the
same derivatives as the original f. We write f’ = df /dr. Finally we use the fact
that there is a pretty clear cylindrical symmetry and use the coordinates p, 6,
such that y = pcosf and z = psin@. This gives the final metric

1—-v2f2 w,f 0 0

| owf -1 0 o0

G = 0 0 -1 0
0 0 0 —p

A final simplification is that we will imagine that the path z4(t) has no acceler-
ation, so that dvs/dt = 0. This has the effect of making the metric independent
of time. This simplification would be fairly easy to correct in the following but
does simplify the calculations without giving up the fact that it is possible to
connect any two points in space-time along some trajectory xs(t).
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The inverse of the metric gives

1_ vsf B 0 0
o vs f _1+v§f2 0 0
g 0 0 1 0
0 0 0 —1/p?

Now we evaluate the curvature scalar in terms of the elements of the Ricci
tensor. (using Rig = Ro1)

R) = ¢"" R,o = Roo + vs fRo1
Rl =g¢"R,1 =vsfRo1 — (1 —v2f*)Ryy
R3 = —Ryy , R3=—Ra3/p’

which gives us
R =Ry + 2vsfRo1 — (1 = v2f?)R11 — Roz — Ra3/p”

Substituting into the formula for the energy density gives

1 _
Pobs = @(Roo + 2vsfRo1 + (1 + Ugf_‘?)Rll + Roo + R33/p2)
Christoffel Symbols
Notice that
—x
01900 = *ZUff/fT*
o 207 P
02900 = —2v5 f f?
01901 = Ugfli
Ts
02901 = Ufflﬁ
Ts
02933 = —2p
with all other derivatives being zero. We can then use the formula

1
prn = 5(61/91»;;1, + ap,gm/ - ang/w)

So, for example, I'oog = Jogoo/2 = 0, while

1 —x
Loor = 5(30901 + 0ogo1 — O1900) = U?f’fr

1 _
Loo2 5(50902 + Qogo2 — O2900) = Uff’frﬁ
and F003 =0.
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In general, the pairs (0, 0), (0, 1), (3, 3) must occur in the three indices since these
are the only entries in the metric with non-zero derivatives, and the remaining
index of the triple must be 1 or 2 since these are the only variables with which
we can differentiate and get something non-zero. Also since the symbols are
symmetric in the first two indices we only need to consider cases where v > pu.
Working in alphabetical ordering this gives the following combinations as the
remaining possibilities (010), (011), (012), (020), (021), (110), (120), (133),
(233), (331), (332). Working through these we get

1 —T
Lo = 5(31900 + dogo1 — Oogo1) = —Uff/fr

Lo = 5(81901 + 0ogo1 — 01go1) =0
1 1

To12 = = (01902 + Gogoz — O2901) = —*Usf/ﬁ
2 2 Ts

Lo = 5(02900 + 0ogo2 — Oogo2) = —Uff/frﬁ
1 1

Loor = 5(32901 + 0ogr12 — O1902) = §Usf/7,£

1 x
o= 5(31901 + 01901 — a0911) = Usflr

s
[ig0 = %(32901 + 01902 — Gog12) = %Usflé
33 = %(33913 + 01933 — 03912) = 0

o33 = %(33923 + 02933 — 03923) = —rho
331 = %(33913 + 03913 — 01933) = 0

P332 = %(33923 + 03923 — Oa2g33) = p
with all other values zero or related by symmetry.
Now we need to use the metric to raise one index using
| W

Some care needs to be taken since the off-diagonal makes for some non-zero
terms that are not matched with all the indices lowered. So we get for example

x
o = 9”To00 + ¢”' Too1 = Uffljarf
S

Clearly, this only affects the cases k = 0,1. We find the following non-zero
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Christoffel symbols
oo = vaf'f? z
Ts

0 22
Ty = v f' f*—
Ts

1 w2 P

1—\0 o212 P

02 2Usff y
(18)

Notice that we have I}, = —T¢,, Iy, = —I'};, T, = —T1,, and TY, = T3,
which will help simplify the expressions below.

Curvature Tensor Elements
EP #77

The meetings of the siblings must occur at common values of space-time coor-
dinates. Thus, we know that they meet at

t=t;=0 , r=R , ¢=0 , O=m/2

and again at
t=ty , r=R , ¢=20r , O=m/2

In general, we have

20GM 2 M\ !
dr’=(1- G > — (1 - G dr? — r2d6? — r? sin? Odg?
c2r c2r

For Paul’s circular orbit we have r = R = constant, dr = 0 and if we choose the
plane of the orbit to be plane 8 = 7/2, df = 0. Therefore, we have for Paul’s
orbital motion we have

2GM
2 2 2 742
dT=<1— czR)dt — R*d¢

and therefore we get using R = 4GM/c?

2 2
1
T (U R
2 \dr dr
Now in general we also have

2G M\ dt
(1 — G> — = k = constant

02’[“ dT
and d
T2£ = h = constant
dr
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Remember h is related to the angular momentum(L) and & is given in terms of
the angular momentum(L) and the energy(E). In Paul’s orbit we choose k and
h such that

LMY L
er )dr T 2dr
Therefore, we get
dt dop 1
L9 P2
ir “ " dr R
This then gives(Paul moves through A¢ = 207)

M
ATpaul = RAd) = 807’('C;072

Finally since

2GM 1 M
Ar=[1- G dt — ATpaul = —dt — to = QATpaul = 1607TG7
c2r 2 c2

Now let us consider Patty’s orbit. Patty is going along a radial path (out and
back). Therefore we have

w_,

0=m/2 , dd=0
n/2 2

We have

2G M\ dt
1— 5 — =TI = constant
c*r dr

which is just the energy conservation equation. Therefore, we get
L 2GMN (diN® (0 2GMN\ T (dr\?
c2r dr cAr dr)

dr\? 2GM
r—(—) =(1- =B
(dT) ( c?r ) (r)
Clearly, I'? = B(r-, where r~ is the aphelion, which is the maximum height
Patty reaches and where dr/dr = 0. We also see that

dt  dt (dr>_1 _ T (1 = B(r) ™2

Thus,

dr — dr \dr B(r)
o > I GM
ty =2 (M2 - Br) Y =160
9 /R dTB(r) ( (7’)) 607 2
Now for Patty we have
dt B(r
B(’I")E:F—)Apatty— 1(_‘)dt



or r
> 9 —1/2
ATPatty = 2/ dr (F — B(’I"))
R

Define a new variable u = 2GM /r, then

A _2/1/2 du 1—us 1/2
TPatty = v 21— ) \u—us

Gamma (1 —us)'/?

B(r) — 1-u

The factor

is never much larger than 1 (since the integrand is dominated by small v near

us ), hence
M
to = 16077 ~ ATPatty - ATPatty ~ 2ATpaul

EP #78
Consider a hollow ball in a bucket filled with water.

The ball feels the force of gravity as well as the bouyancy force due to the
pressure created by the weight of the water above it.

If the ball is released and the bucket is dropped, the system accelerates with g.

In the frame of the bucket, g’ = 0, so the water above the ball has no weight
and so exerts no pressure.

Thus, bouyancy and gravity are 0 and the ball stays at rest relative to the
bucket.

EP #79

If the elastic string obeys Hooke’s law and has an equilibrium length of L, then
the forces on the ball are

ZFyz—mg—l—k(s—L)

where s is the stretched length of the string. Since the ball is not moving,
> F, =0, and thus

k(s—L)=mg
Now, if we drop the apparatus vertically, the entire apparatus accelerates with

—

g.

In this frame,
Z Fy=-mg +F;
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Bit, ¢’ = 0, so that
> F,=F.#0

and thus the string pulls the ball back into the cup.
EP #380

We have the following situation:

Initial Later

m

The equivalence principle tells us there is no way to distinguish between gravity
and constant acceleration with a local measurement. Therefore, we can consider
the problem in a frame where the base of the pendulum is at rest and there is
a gravitational force in the direction given by the vector sum of g and the force
felt by the pendulum f.

§'=f+g=fcosai+ (—fsina+g)j

as shown below (in a frame accelerating with @).

yaA R

f
X
VX

-
g|

N

9
N
f

A

If fcosa =g — fsina, then g = f(cosa + sina) and §" makes a 45° with the
vertical. (The pendulum is initially at rest in the vertical position). Thus, the
pendulum oscillates between the vertical and the horizontal.
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EP #81
(i) This makes sense.

3 3
2 = LaMl(x) =" > LiME(a)°

b=0 c=0

ii) 2% = LPM¢2¢; This makes not sense because the index on the LHS does
c*d
not match the un-contracted index on the RHS.

(iii) This makes sense.
3 3
8y = 680508 = 0p =D Y 680508
c¢=0 d=0

(iv) of = 626505 ; This makes no sense because the repeated summation index
c makes the expression ambiguous.

(v) This makes sense.

(vi) This makes sense.
3 3
ot = Lgat + Mt = Lya’+)  Miac
b=0 c=0

(vii) ¢ = L%° + MP#°; This makes no sense because the non-contracted
summation index in the second term on the RHS does not match the free
summation index on the LHS or in the other terms.

EP #82

‘We have
7% = X9, Y — Y9, X

Under a change of coordinates we get
oxb -\ 0 [0z . oxb -\ 0 [0z% -,
U I s v B T i v 2 I il 1o
(8£iX) Oxb (85cjy> <6a~siy> Oxb (851){)

~. 0 [0x%~.; -0 [0z% ~.
7 7 7 J
X oz’ <aijy) Y oxt ((’)QEjX)

02z 0z ~. 0

Za

2,.a a
. 0w Gina

= Xiyi ~ Xty _yixd T X
9705 0w o0& 9705 051 o
020 [ D i i D o\ 20
9 (% 9 i i 9 %) Xy yix) L
07 ( o7 07 ) + ) 970w
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When we sum over ¢ and j, the last term will cancel out (since the order of
mixed partials is irrelevant) and we are left with

0z 5,

7%= —7)
0xJ

Thus, it transforms correctly.
EP #83

We have the line element
ds® = dt* — dr? — sin® r(df? + sin® 8d¢?)
This gives a Lagrangian
L=—g,d's" = 2 — 72 — sin? 7"(92 + sin? 9@{52)

The geodesic equations are the Lagrange equations

d (LN oL
dr \9it) Ozt

and the geodesic equation can also be written as

dzl'a

2b e
— +I'}.2%z
dr? ¢

The Lagrange equations are

d*t o
F:O—>Fbc:Oforallbandc
d*r . 52 . -2 72
Pl —2sinrcosr6° — 2sinr cosrsin” 6 ¢
— T3y =2sinrcosr , T3y =2sinrcosrsin®@ and all others are zero
d . .
. (sin? rf) = sin® r sin 6 cos 0 ¢*
-
. d20 .
— 2sinr cosr 70 + sin? rﬁ = sin® r sin 0 cos 0 ¢°
T

d*0 . .
- - = sin @ cos 0 $? — 2 cot r 70

dr
— T3, = —sinfcos® , TI,=T3 =cotr and all others are zero
d .
d—(sim2 rsin®0¢) =0 — T3, =0 for all b and ¢
-

. .. d?
— 2sin 7 cos rsin? 07¢ + 2sin 0 cos f sin® rf¢ + sin? r sin® Gd—f =0
T

d? . ..
— —(5 = —2cotrr¢ —2cot 8 6¢

dr
— T3, =T3 =cotr , T3;=T5, =cotf and all others are zero
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If we impose the constraints r and 6 constant or 7 = 0 =0 we get the equations
sinrcosrsin?¢> =0 , sinfcosfg’ =0 (19)

or r = 0 = 7/2 Thus, there exists a geodesic where r and 6 are constant and
equal to /2.

EP #384
We have

ds® = dudv + log (x? + y?)du® — da® — dy?
0<z?+y? <)

We find g, from ds? = g.pdz®da®

log(z%+y?) 1/2 0 0
_ 1/2 0 0 0
Yab = 0 0 -1 0
0 0 0 -1
The geodesic equation is
dat g daldat _
dr? be dr dr
We also have We find g4 from ds? = gqpda®da®
0 2 0 0
|2 —dlog(z?+y%) 0 0
9= 1o 0 -1 0
0 0 0 -1

and

a 1 ad

be = 59 (Obged + Ocgbd — Oagbe)
The only derivatives that are non-zero are

2z 2y

Oz Guu = W o OyGun = m
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This gives

I, =0
re, =T =0
I, =15, = %gml(augxd + 0y Gud — Oagau)

= %9““(%996“ + 0 Guu — Oubau) + %9“”(%%@ + 0vguv — OvGau) = 0
Loy =Ty, = %gml(augyd + 0y Gud — Oagyu)

1 1 ..
I, —TY, =0

re, =Tu, =0
Iy, =T%, =0
e, =0
Iy, =0
re, =0

Therefore we have for the u equation
i+ T =i =0
For the v variable we have
b4 TP.a%¢ =0
Now I'y, vanishes unless (b, ¢) = (z,u) or (y,u). Therefore we have
O+ Ty, 20 +Ty,90=0

where 1 :
v Z v Y
Low= 222 Ly = 22 + 42

and therefore
4z 4y

x2+y2m+ x2+y2yu:

URS 0
which gives
4 11')—1—10 (2 +y*)u) =0
dr \ 2 & Y N
Finally we have
F+TEabic =0
Only I'?,, = /(2% + y?) is nonzero so we have

x .
2 2“2
T4 +y

T+
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and similarly for y we have

Yy ’1:62
x? + y?

g+
Now if we define K = zy — y&, then we have

dr yoyr=

and thus, K is a constant of the motion.
Now consider the following Newtonian Lagrangian

1 1 .
L= 5(59 + 9% — A%log (2% +4%) = 5(# +726% — A%log (r?)

where A? is the constant value of (u) and r, 6 are plane polar coordinates.

From this we see that angular momentum is conserved since

oL .
0 = 0 — r’theta = x3) — y& = K = constant of the motion

Also L has no explicit time dependence so energy is conserved. L is the La-
grangian for a central force problem with potential V = A%log (1?), so energy
conservation yields

1 K?
3 (1’“2 + 7‘2) + A%log (r?) = constant

Thus, for K # 0, we have

2
14210g(7“2)—i—r—2 — 00 as r—0

Hence, for K # 0, there is no geodesic that can reach r = 0.
EP #385
In the Schwarzschild metric

2 om\ !
ds® = (1 - m) dt® — <1 — m) dr? — r2d6? — r?sin? 0d¢?
r r

In the frame of a particle at rest
dt
Uu*=1-—-,0,0,0
<d7_7 b ) )

i\
U“Ua = 4doo () =1
dr

Since
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we get
e () _2m\7
dr r

If we are along a radial null geodesic, then ds? = df? = d¢? = 0 and we have

-1
2 2
o:(l_m)dt2_(1_m) i
T T

ﬁ_ r
dr  r—2m

or

Thus, if a photon leaves Cy = (r1,0, ¢) at time t; and arrives at Co = (12,0, @)
at time t5, integrating the above equation we obtain

Tdr

to —t; =€.2
2 ! "o —2m

Since the RHS is independent of time, the coordinate time t5 —¢; which elapses
between the photon leaving C; and arriving at Cy is always the same.

Therefore, if two photons are emitted from C; at events A and A’, which arrive
at Cy at events B and B’. respectively, we see

t(B) —t(A) =t(B") —t(A") = t(A") —t(A) = t(B") — t(B)

and so the coordinate time interval between A and A’ is the same as the coor-
dinate time interval between B and B’.

Then, since At; = Aty and dt/dr = (1 — 2m/r)~'/2, we see
Aty Aty
An | — )| =An | —
n (ATl) 2 (ATQ)

—-1/2 —1/2
2 2
AT1 (1—m> :ATQ (1_7’71)

1 r2

We now consider the difference in proper time between two watches, one on the
wrist and one on the ankle of an observer, in the presence of the Earth. In this
metric, and in SI units,

—1/2 —-1/2
AT (1 — 2GME> = An (1 — 2GME>

r1c2 roc2

or

—1/2
2GMpg /
ric?

AT2 = ATl

1— 2GME>_1/2

roc?
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Since 2GMpg < ric? and 2GMg < roc?, we can write

ATQ = ATl (1+ GME) (1 — GME) = ATl <1—|— GME — %>

ric2 roc? r1c2 roc?

to first order. We then have

ATQ = ATl (1+ GME> <1 — GME> = ATl <1+ C;YME (TQ Tl))
C°Tr1Tro

ric? roc2

Now since the distance between one’s wrist and ankle is ~ 1m, so that r; ~
ro = Rp and we get

GMp g
Ary = ATy (1 + PR (12 —7“1)) = A7 (1 +3 (72 —7"1))

On earth, g =~ 10m/sec?, ro — 71 = 1m and ¢ = 3 x 103m/sec. If Ar =
1lyear = 3.15 x 107 sec, we get Ary = 3.5 x 1072 sec = 3.5 ns.

EP #86

For free particle worldlines in the equatorial plane(dfd = 0, § = pi/2) we have
the Lagrangian

—1
2 T r

The Lagrange equations for ¢ and ¢ are

oL d 0L d 2m\ . 2m\ .
8t_d7'8t_>0_d7'((1_'r)t>_><1_r)t_E_ constant

L L : :
% = Z_Z¢ —0= % (r2¢) — r%¢p = J = constant
If £ <1, then

1> 1—2— f—).Qﬂ—H'bounded
r t—1

Now the 4-velocity squared gives

or

which implies that

. 2
E2:7‘2+(1—2m> (1+r2¢2)=¢2+(1—2m> <1+J2>
T T T



Now

Now
di?  dr di? dr d
ar _dar i 7 a7
so we have
J>2 m J?
7”—734—?4-3*4_0

We now consider a circular orbit » = R.In this case we have 7 = # = 0. From
earlier we have

. JE m _J?

which gives

J? m J? mR2
et 3, =0 J =
BtttV R—3m

We also have

2 2
E2:f«2+(1—m) <1+J2>
r T

(Y [y, ) R
o R R2) R(R —3m)
and

E2:<1—2;n)i—>t':\/ﬁ

so that

o\ 2
dp\* _ (¢ _ P R-3m _m _do_ [m
d) \i{] R* R = R3 dt — \ R3
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Now suppose that 7(7) = R + ¢(7), €(7) small. This implies that
. JP m J?
0 =7r— Y +
T
J? m J?

0= " "Rt TP EE e

m 2e J? e J? de
e+ —=(l1-=|—-—=(1-—= —(1—- =
omerg(1-%) -5 (1- %)+ (- 5)

. 2m  3J%  12J7

O~ €e+e _ﬁ—’_ﬁ_ﬁ +C
. e (3J? 122

0”+m<3‘2m‘32>+c

0~ it € 9+ mR? 3 12m
RNE+— | — - = —

R3 R—3m \ R R2

. m(R—6m)

O~ = TC

Therefore, circular orbits exhibit small oscillations (not exponential behavior)
around the circle and are thus stble for R > 6m.

EP #87

We are considering the surface for § = 7/2 = constant, ¢ = constant so that the
metric is just
dr?
2
-

ds? = +r2d¢?

The embedding of this surface in a flat 3-dimensional space looks like
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The = — y plane is the screen of a record keeper. The meter stick is positioned
as shown (AB).

(a)

(b)

Now rp —rg = dr = \/1 — Rg/rds since d¢ = 0 between the ends of the
rod. If ds = 1m, the record keeper sees something that is less than 1m
long on her screen.

However, the record keeper knows that the physical distance between the
ends of the rod is given by ds and not dr. She can use the metric to

calculate ds: s
ds = (1 — RS) dr
r

We note that r and ¢ are coordinates that parameterize the surface. Dif-
ferences between coordinates are not physical differences, however. It is
the metric that gives the physical interpretation of differences between
coordinates.

EP #88

(a)

(b)

In the rocket frame, as in all inertial frames, the velocity of light is ¢, so
the time to traverse the proper length L is ¢/ = L/ec.

There are at least two instructive ways to do this problem:

Direct Calculation in the Earth Frame - Let ¢ be the time as read
on Earth clocks that the light signal reaches the nose of the rocket. The
signal has traveled a distance equal to the contracted length of the rocket
plus the distance (4/5)ct it has traveled in the time ¢. Thus,

ot = L(1—(4/5)2)"* + (4/5)ct

Solving for t, one finds ¢t = 3L/c

Transforming Back From the Rocket Frame - The event of the signal
reaching the nose occurs at ' = L/c, 2’ = L in the rocket frame if ¢ is in
the vertical direction. Therefore in the Earth frame

t'+ (4/5)cz’

tzm:?)L/c

EP #89

The interval between the two events

(As)? = —(cAt)? + (Ax)?

must be the same in both frames. In the laboratory frame

(As)? = (0)* + (3m)? = 9m?
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In the moving frame
9m? = —(3 x 108m/secl07® sec)? + (Ax)?
which gives Az = 18 m?2 = 4.24m
Let (t,z) be coordinates of the inertial frame in which the events are simulta-

neous, and (¢, 2’ coordinates of a frame moving with respect to this one along
the x—axis. The Lorentz boost connecting the two frames implies

(v
ty—th =7 ((fz —t1) — g(@ - m1)>

In the unprimed frame, the two events are simultaneous (At = t3 —t; = 0) and
separated by Az = 9 — 1 = 3m. Then

At =t —t] = —W%Aaj =10"% sec
c

and solving for v? gives

At ?
2_q1.2(28) o
v te Ax

Therefore, the separation of the two events in the moving frame is
Az’ = yAz =V2(3) =4.24m

EP #90

T 27
A= / (RdO)(Rsin 0dg) = / do / R?sin0d¢ = 47 R?
sphere 0 0

V= / (1 — Ar?)dr)(rd) (r sin 0dg)
sphere

R ™ 27
:/ dr/ d@/ dér?(1 — Ar®)sin 6
0 0 0

3
:47TR <1§AR2)

3
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= — Ar? — Ar®)dr)(r rsin
Vi [0-a ’dt/s,,hm(“ Ar®)dr) (rd)(r sin 6do)

T R L 2m
:/ (1- Arz)dt/ dr/ d9/ dor*(1 — Ar?)sin
0 0 0 0

ATR3T 6 3
= 1— —AR?> + ZA%R*
3 ( 5 t7

EP #91

(a) The geodesic equations can be found using the standard Lagrangian equa-
tion approach or by calculating I's or the conditions for extremal proper
time. They are

— & — 20t + Q%22 = 0
— i+ 2Qat + Q?yi* =0
£=0
(b) For example, in the non-relativistic limit, the x equation becomes

Pz dy
C8_ 9% 2
dr? at T

The second term on the RHS is the x—component of the centrifugal force
O x (Qx &) when @ = Q2. The first term is the Coriolis force 20 x (dZ/dt).

EP #92
In Eddington-Finkelstein coordinates the equation for radial (df = d¢ = 0) null
geodesics (the light cone equation) is

2M
ds> =0=— (1 — ) dv? + 2dvdr
'

An immediate consequence is that some radial light rays move along the curves
v = constant ingoing radial light rays

These are seen to be ingoing light rays because as t increases, » must decrease
to keep v constant. The other possible solution is

0:—<1—W>dv+2dr
r

This can be solved for dv/dr and the result integrated to find that these radial
light rays move on the curves

v—2 (r + 2Mlog\ﬁ - 1|) = constant
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so that we have radial outgoing light rays for » > 2M and radial ingoing light
rays for r < 2M.

Now when M is negative, we get

dv 1 2| M|
=-(1+ >0

dr 2 r
The light rays are always outgoing! The v = constant light rays are ingoing.

We then get the equation

r

U—2<r—2|M|10g|2|M|

+ 1|> = constant

The resulting Eddington-Finkelstein plot of T = = v — r versus r is shown
below.

T=v-r

18—
16 —
14 —

12 —

10 —

s

From each point there is an outgoing light ray which escapes to infinity. The
negative mass Schwarzschild geometry is therefore not a black hole.
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