
Review of Mechanics

Kinematics

Position vector; Description of the motion

We describe the position of a particle by specifying its 
coordinates with respect to a frame S. S is really a point, 
which serves as the origin, i.e., the point with coordinates 
(0,0,0). Thus, for a Cartesian coordinate system, a particle at 
a point P is described by three numbers, (x,y,z), the distances 
of P from the origin along the three axes. The vector from the 
origin to P is called the position vector,  

r , of the particle. 
The position vector contains all the information regarding this 
particle. If we know  

r  as a function of time, then we know 
everything we always wanted to know about this particle’s 
future. Let 

 

r = r (t) = x(t)x̂ + y(t)ŷ + z(t)ẑ . Then the velocity, 
 


v(t) , and 

the acceleration, 
 

a(t), of the particle at time t are given by


 


 

v(t) = dr (t)
dt

=
dx(t)
dt

x̂ +
dy(t)
dt

ŷ +
dz(t)
dt

ẑ = xx̂ + yŷ + zẑ

a(t) = dv(t)
dt

=
d 2r (t)
dt 2

=
d 2x(t)
dt 2

x̂ +
d 2y(t)
dt 2

ŷ +
d 2z(t)
dt 2

ẑ = xx̂ + yŷ + zẑ

⇒ a(t) = x2 + y2 + z2

Inverting the above equations, we can get the position vector if 
we know acceleration or the velocity as a function of time. If 
we know the velocity, 

 


v(t), as a function of time, then


 
 

 

!
r (t) = !

r (0) + !
v(t ')

0

t

∫ dt '

If we know the acceleration, 
 


a(t), as a function of time, then


 
 

 

r = v(t) = v(0) + a(t ')
0

t

∫ dt '

from which we can also get the position as a function of time


 
 

 

r (t) = r (0) + v(0)t + a(t ')
0

t '

∫
0

t

∫ dt"dt '

To summarize: we can get the position vector of a particle(if we 
know it velocity or acceleration as a function of time) by a 
simple integration, if we know the initial condition, i.e., the 
velocity and position vector at some point in time (say t = 0).
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Motion in a straight line

The above equations for the position vector can be applied to 
the case where the particle is moving in a straight line. There 
are a few useful cases:

Particle moving with constant velocity in the vacuum(i.e., no 
friction)

 

r = r (t) = r0 +
vt , where 

 

r0  is the initial position of the particle. In 
one-dimensional motion, say along the x-axis, this equation 
becomes x(t) = x0 + vt , i.e., the familiar equation from elementary 
kinematics.

Particle moving with constant acceleration

 

!v(t) =
!v0 +

!at and !r (t) =
!r0 +

!v0t +
1
2

!at 2 , where 
 


r0  and  

v0  are the initial 

position and velocity of the particle, respectively. For motion 

only along the x-axis we get v(t) = v0 + at and x(t) = x0 + v0t +
1
2

at2.

Deceleration is a negative acceleration. Example: a car is 
moving with constant speed u. At time t = 0, the driver uses the 
brakes to decelerate uniformly. The car comes to a haly after a 
distance s. What was the deceleration of the car?

The velocity of the car and the distance it has traveled at time 
t are given by 


 
 v = u − at and x = ut −
1
2
at 2

We are given the total distance it travels until it stops, i.e., 
until v = 0. From the velocity equation, this will take t = u/a 
sec. Substituting this value of time in the distance equation, 
we obtain


 
 s = u
u
a
−
1
2
a
u
a

⎛
⎝⎜

⎞
⎠⎟
2

=
u2

2a
⇒ a =

u2

2s
Another example: A gun fires a particle at an angle !  with 
respect to the horizontal with initial velocity V0. How far from 
the gun does the bullet land?

Decompose the motion along two independent axes, the horizontal 
(x) and vertical (y). We take the origin to be at the gun.
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Along the x-axis: motion with constant velocity Vx = V0cos! "
x = Vxt. Thus, we need to find how long it will take the bullet 
to strike the ground. This is given by twice the time it takes 
to reach its maximum height H. Now along the y-axis, we have a 
particle that is moving with constant acceleration -g, and with 
initial velocity Vy = V0sinθ . We have already computed the time 
it will take the bullet to reach its maximum height (i.e., the 
time it will take to stop moving in the vertical direction) in 

the example above with the decelerating car: t =
Vy
g
. Thus, the 

total travel time is twice that and the thus the horizontal 
distance from the gun will be


 
 
 x =Vxt =Vx
2Vy
g

= 2V0
2 sin! cos!

g
=
V0
2 sin2!
g

Motion in a circle

Since the velocity is a vector, one can have a change of 
velocity without a change in speed(i.e., the magnitude of the 
velocity vector). A particle moving with constant speed in a 
circle of radius R accelerates continually!

With our origin at the center of the circle, the position vector 
at time t and t + dt is given by 

 

r and r + dr  respectively. The 
velocity vector is 

 

v and v + dv  as shown below,
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To find the acceleration, we need to compute the vector  d
v . From 

the figure below 
 
dv = ! vd" ör . 

Therefore,


 
 
 

 

a =
dv
dt

= −v
dφ
dt

ör⎛
⎝⎜

⎞
⎠⎟
= −vω ör

Finally, since v =ωR, we get, for a particle moving in a circle 
with constant speed v (or angular velocity ω )


 
 
 

 

a = −
v2

R
ω r̂ = −ω 2Rr̂

We can also prove this by using straightforward derivatives:


 


 

r (t) = Rr̂ = R(cosωtx̂ + sinωtŷ)⇒ v(t) = dr (t)
dt

= Rω (− sinωtx̂ + cosωtŷ)

a(t) = dv(t)
dt

= −Rω 2 (cosωtx̂ + sinωtŷ) = −Rω 2r̂

Example: a particle of mass m moving on a frictionless table 
with constant speed v. It is connected to a string supporting a 
mass M. What is the radius R of the circle?
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The particle is moving in a circle. Thus, it is accelerating and 
there must be a net force acting on it - the tension in the 
string T. Thus,


 
 
 T = ma = −m
v2

R
= −Mg⇒ R =

mv2

Mg
Forces 

Newton and Gravity

According to Newton, force is the “thing” that causes the 
momentum of an object to change.


 
 

 

!
F =

d!p
dt

!
!p = a constant when

!
F = 0

From this, and for the special case of a constant mass, we get 
the familiar Force = mass x acceleration formula:


 
 

 

!
F =

d!p
dt

=
dm!v
dt

= m
d!v
dt

= m!a

While we are on the subject of Newton, let us remember his third 
law also, i.e., that Action = Reaction:  

!
F21 = −

!
F12 or the force on 

particle 2 due to particle 1,  
!
F21, is equal and opposite to the 

force on particle 1 due to particle 2, 
 


F12 .

A most familiar example of a force is gravity. The gravitational 
force between two bodies with masses m1 and m2 is


 
 
 
 F = ! G
m1m2

r2

where the - sign indicates that the force is attractive. In the 
case of the earth and an apple, which is a height h above the 
earth’s surface, the magnitude of the force is given by


 
 
 F = G
Mm
R + h( )2

=
GMm
R2

1+ h
R

⎛
⎝⎜

⎞
⎠⎟
−2

≅
GMm
R2

1− 2h
R

⎛
⎝⎜

⎞
⎠⎟

where R is the radius of the earth. A typical apple tree is 
about a few meters tall and the radius of the earth is 
approximately 6400 km. Thus, the second term in the parenthesis 
is of order 10-6 and is thus negligible compared to the first 
term. Thus, 


 
 
 
 F =
GMm
R2

= mg

where g = acceleration due to gravity at the earth’s surface = 
9.80 m/s2.
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Conservation of momentum and collisions

If the total external force on a system of particles is zero, 
then the total momentum of the system is constant. 

Application: two colliding masses ma and mb with initial 
velocities va and vb respectively, collide head-on and stick 
together. What is the velocity V of the two masses after the 
collision?


 
 
 mava ! mbvb = (ma +mb )V " V =
mava ! mbv
ma +mb

Work and Energy

Suppose that we know the total force 
 


F(r ,t) acting on a particle 

of mass m as a function of the particle’s position and time. 
Classical mechanics addresses the problem of predicting the 
motion of this particle: given this force and some initial 
conditions(e.g. the position and velocity of the particle at 
some previous time).

Let us look at this problem in the one-dimensional case first 
and let us assume that the force does not vary with time, i.e., 
F = F(x). To solve for the motion, we integrate with respect to 
x:

  
F(x) = m

dv
dt

⇒ F(x)dx= m
dv
dt

dx= m
dv
dt

vdt = m vdv=
xa

xb

∫
xa

xb

∫
xa

xb

∫
xa

xb

∫
1
2

m d v2( ) =
xa

xb

∫
1
2

m vb
2 − va

2( )
Thus, if we know the velocity, v0 at some position x0, then the 
velocity v at position x is given by


 
 

1
2
mv2 =

1
2
mv0

2 + F(x)dx
x0

x

∫
Since we have the velocity, we can now find the position as a 
function of time by integrating the velocity with respect to 
time.

Nomenclature:



1
2
mv2 =  Kinetic energy K of the particle


 F(x)dx =
x0

xb

∫  work Wba done by the force F on the particle as it     

              moves from a to b
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Work-Energy Theorem

 
 
 
 Kb - Ka = Wba

We can generalize this to 3-dimensional motion where the 
particle displacement in an infinitesimal time dt is not just dx 
but  d


r . Forming the dot product between the vectors  


F  and  d

r  
and integrating we get

  

!
F(!r ) = m d!v

dt
⇒

!
F(!r ) ⋅d!r = m

d!v
dt

⋅d!r = m
d!v
dt

⋅ !vdt = m !v ⋅d!v =
!ra

!rb

∫
!ra

!rb

∫
!ra

!rb

∫
!ra

!rb

∫
1
2
m d v2( ) =

!ra

!rb

∫
1
2
m vb

2 − va
2( )

i.e., the same result as before - the work done by the force is 
equal to the change in kinetic energy of the object.

Note how the work is now a funny integral, namely, it is not a 
usual integral like


 
 
 
 F(x)dx
xa

xb

∫
but rather, the integral of a vector function dotted with the 
infinitesimal displacement, over the path followed by the 
particle, i.e.,


 
 
 

 


F(r ) ⋅dr

ra

rb

∫
This is our first example of a line integral. It is different 
from a normal integral in that we have to evaluate the integrand 
along a particular path that joins points a and b.

Example: Energy of a particle of mass m in a gravitational field

The field is generated by an object of mass M. The work that we 
do in transporting the particle from infinity(where the force is 
zero) to a distance r from M is


 
 
 

 

W = −

FG (
r ) ⋅dr

∞

r

∫
where the minus sign accounts for the fact that the force we 
exert is opposite to the gravitational force between the two 
masses. Then


 
 
 
 W = − −
GMm
r2

⎛
⎝⎜

⎞
⎠⎟
dr

∞

r

∫ = −
GMm
r

This work appears as the potential energy of the particle m. W 
is independent of the path we use in transporting m from 
infinity to the point P. 
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For the apple at a height h above the earth’s surface

In other words, apart from a constant factor,
 

 
 
 potential energy = mgh

Line Integrals, Work-Energy Theorem

In general, the line integral of a vector function  


A  along a 

path of integration C is written as


 
 
 

 


A !d

l

C
"

where  d

l  denotes the element of path along C. The remarkable 

property of the gravitational field that


 
 

 


FG ⋅d


l =

C1
∫


FG ⋅d


l

C2
∫

i.e., the work done in transporting a particle of any mass from 
point a to point b is independent of the path used. The 
gravitational field is an example of a conservative field.

This independence of the line integral on the path C is not a 
property of all vector fields. As an example, suppose a particle 
of mass m is acted upon by a force which is a function of 
position on the x-y plane given by

 
 
 
  

!
F(x, y) = x2yx̂ + xy2 ŷ

Then if the particle moves from the origin to point P=(x0,y0) via 
path 1 as shown in the figure below
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the work done along this path W1 is


 
 
 
 W1 = x2y0dx
0

x0

∫ =
1
3

x0
3y0

However, if we compute the work done W2 by the same force along 
the path 2 we get


 
 
 
 W2 = x0y
2dy

0

y0

∫ =
1
3

x0y0
3

i.e., W1 ≠ W2. The field  in this case is not a conservative 
field.

When the field is conservative, the line integral from point a 
to point b is dependent only on the positions of these two end 
points, i.e., 


 
 
  

 

!

F "d

r =

C
# U(rb) ! U(ra)

In other words, there exists a scalar function U(r) which is 
given by


 
 
 

 
U(r) =U(rO ) −

!
F ⋅d!r

C
∫

where C is any path that joins the reference point O and the 
point P at radial position r. Using the work-energy theorem,


 
 Kb - Ka = Wba = -(Ub - Ua)
or

 
 Kb + Ub = Ka + Ua = constant

This constant we call the total mechanical energy of the 
particle, E. It is a constant of the motion:


 
 
 E = K + U = constant

The idea of a field; Potential

The gravitational field due to a sphere of mass M and radius R 
for distances r > R is given by


 
 
 

 

!
EG = −

GM
r2

r̂

and the force on a mass m is 

 
 
 


 


F = m


EG

Note that in the above equation, the field due to the mass M is 
independent of any other field sources! Thus, for any collection 
of point masses, we can claim that we know the total field due 
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to gravity - by simply applying the superposition principle. As 
an example, given two masses M1 and M2, what is the field at the 
position of some other mass m?

The field at the position of the mass m is the sum of the fields 
due to each source mass separately:


 

 

!
EG (total) =

!
EG (M1)+

!
EG (M 2 ) = !

GM1

r1
3

!r1 !
GM 2

r2
3

!r2

The force on m is thus

 
 


 


F = m


EG (total)

The moral of the story is: Given the field at any point, we can 
compute the force on any small “charge” of mass m at that point. 
Given that we know how to get from the force to the velocity of 
the test charge (i.e., through the work-energy theorem) and then 
from the velocity to the position of the test charge as a 
function of time, we conclude that all we need to do to solve 
for the motion of a small test charge m is to find the 
gravitational field at all points in space.

Having defined the field this way, we can now define the 
potential of the field, φ , so that the potential energy, U, of a 
particle of mass m in the field is given by U = mφ . Just like the 
field is the force per unit charge, the potential is the 
potential energy per unit charge. (Charge in this case refers to 
mass, i.e., the “charge” of the gravitational field). So what is 
left now? We need to establish a relationship for calculating 
the field (and the force also) given the potential of a field. 
Since


 
 

 

φ =
U
m

= −

F
m
⋅dr =

C
∫ −


EG ⋅dr

C
∫

we conclude that the potential of the field is the line integral 
of the field(let us not bother for the moment with the reference 
point, i.e., the point for which we know the value of the 
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potential). The the question is - how do we get the field if we 
know the potential?

For an infinitesimal path, the line integral is equal to

 
 


 
−

EG ⋅d

r = −EG ,xdx − EG ,ydy − EG ,zdz = dφ

But we know that


 
 
 φ = φ(x, y, z)⇒ dφ =
∂φ
∂x
dx +

∂φ
∂y
dy +

∂φ
∂z
dz

Therefore


 
 
 EG,x = !
"#
"x

, EG,y = !
"#
"y

, EG,z = !
"#
"z

and since

 
 
 Fx = mEG ,x , Fy = mEG ,y , Fz = mEG ,z

we get


 
 

 


F = −

∂U
∂x

x̂ −
∂U
∂y

ŷ −
∂U
∂z

ẑ

In other words, given the potential energy of a particle due to 
an external field, we can compute the force on this particle.

Example: for the gravitational field


 
 
 
 U = !
GMm

r
we have


 

∂U
∂x

=
∂
∂x

−
GMm

x2 + y2 + z2
⎛

⎝
⎜

⎞

⎠
⎟ =

GMmx

x2 + y2 + z2( )3/2
=
GMm
r3

x

From a similar calculation for the y and z components, we 
finally get


 
 

 


F = −

GMm
r3

xx̂ + yŷ + zẑ( ) = −
GMm
r2

r̂

i.e., we recover the familiar gravitational force.

The final step is to recognize that using the gradient operator, 
we write all of the above in a nice shorthand notation, namely,

 
 


 


F = ! " U and


E = ! " #

Angular Momentum; Torque

The idea is simple: there are cases in which the total force on 
an object is zero, but the object is accelerating.
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An example is given in the figure below where two forces are 
applied to a cylinder attached to a frictionless axis through 
its center.

It is clear that the cylinder will rotate with respect to its 
axis. We define the angular momentum of a particle with respect 
to an axis to be  

!
L = !r × !p , where  

!
r  is the vector from the axis to 

the particle and 
 


p is the momentum of the particle as shown 

below.

The magnitude of the angular momentum of a particle is thus

 
 
 


 

!
L = rpsinθ = pd

where d is the perpendicular distance from the axis to the 
momentum of the particle. The torque with respect to the axis is 
defined in a similar way:  


τ = r ×


F . But then


 
    

 


τ = r ×


F = r ×

dp
dt

+
dr
dt

× p

=0


=
d
dt
r × p( ) = d


L
dt

There is one more quantity that we need to complete the 
discussion of rotations of rigid bodies - the moment of inertia.
Suppose a body is rotating with angular velocity !  with respect 
to some fixed axis O. Then, the total kinetic energy of the body 
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is given by the sum of the kinetic energies of the infinitesimal 
particles into which we can divide it:


 
 Ek = limN→∞

1
2i=1

N

∑ mivi
2 = lim

N→∞

1
2i=1

N

∑ miri
2ω 2 = lim

N→∞

1
2i=1

N

∑ miri
2⎛

⎝⎜
⎞
⎠⎟
ω 2

The quantity in parentheses clearly depends only on the 
geometrical distribution of the mass in the body. The sum can be 
turned into an integral:


 
 
 
 I = r2∫ dm = r2∫ ρdV

where ρ  is the density of the body and dV is the element of 
volume. But then, the kinetic energy of the rigid body is given 
by


 
 
 
 Ek =
1
2
Iω 2

whereas the angular momentum is given by


 

 


L = lim

N→∞

ri ×
pi

i=1

N

∑ = lim
N→∞

ri × mi
vi

i=1

N

∑ = lim
N→∞

mi
ri ×

ω × ri

i=1

N

∑
Utilizing 

 

a × (

b × c) = (

a ⋅ c)

b − (
a ⋅

b)
c , we finally get


 


 

!
L = lim

N! "
mi (

!
ri #

!
ri )

!
$ %(!ri #

!
$ )

=0
" # $

!
ri

&

'
(
(

)

*
+
+

= lim
N! "

miri
2

i =1

N

,-
./

0
12i =1

N

,
!
$ = I

!
$

In other words, there is a one-to-one correspondence between 
translations and rotations:

 


 
 
 mass !  moment of inertia

 
 
 velocity !  angular velocity

 
 
 force !  torque

Summarizing


 
 


 

v =
dx
dt

! " =
d#
dt

a =
dv
dt

! $ =
d"
dt

p = mv !

L = I


"


F = mv !


%= I


$


F =

dp
dt

!

%=

d

L
dt

Ek =
1
2
mv2 ! Ek =

1
2
I" 2
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