
Definitions

An event intuitively means something happening in a fairly 
limited region of space and for a short duration in time. 
Mathematically, we idealize this concept to become a point in 
space and an instant in time.  In the universe, as we understand 
it at this time, it requires 4 numbers to specify an event, 
namely, three numbers to describe spatial position and one 
number to describe time. This is called 4-dimensional spacetime. 
We will modify this later on.

Everything that happens in the universe is either an event or a 
collection of events. Events are independent of observers. The 
four numbers describing an event are not, as we shall see, 
independent of observers.

Spacetime is the collection of all possible events.

!                  
a meteor hi ts the moon

Al Bloom gets a hai rcut

an event

two cars
col lide on
College ave

How do we measure the "coordinates" of an event? 

One method is the so-called many-observer model. It works as 
follows:

     Synchronize clocks ahead.                                     
     Measure and label grid locations ahead.
     Observers move clocks to grid locations. 
      (assume has no effect on synchronization)
! Throw eraser into the air. If eraser passes an observerÕs 
      location then observer records local time
! Collection of such "where and when" information gives set !  
      of events representing motion being observed

This "operational definition" of each event is simply one 
possible prescription for assigning numbers to the associated 
where and when in a precise and reproducible way.
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For our  purposes, we will assume a two-dimensional spacetime 
consisting of one spatial dimension and one time dimension. All 
the physics that we derive in this restricted universe is easily 
extended to the real 4-dimensional universe.

A particular set of coordinate axes and associated scales are 
chosen inside spacetime at our convenience and only so that we 
can relate the events to measured quantities in experiments, 
i.e., so that the theorists can talk to the experimentalists.

We represent events using a spacetime diagram (as shown below in 
the 2-dimensional case). Note that we use ct rather than t for 
the vertical axis, where c is the speed of light(c=3.0x10 8 m/s). 
This is just a change in scale for the vertical axis and the 
reason for this will become clear later.

                         

x

ct

1 2 3 4 5

5

4

3

2

1

(meters)

(meters)

event (3,4)

parallel to x-axis

parallel to ct-axis
line  x = 0

line   ct = 0

origin

Note this is a parallel line definition of coordinate values 
rather than a perpendicular definition(they are different as we 
shall see). The definition of the coordinate axes is given by

! ct-axis is the line x=0 and x-axis is the line ct=0

The vertical scale is really time but rescaled by the speed of 
light, i.e.,

                ct = 1meter ! t =
1meter

3x108 meter / sec
=

1
3

x108 sec = 3.33nanosecond= 3.33ns

A collection of related events is called a worldline. Some 
examples of worldlines and other things are shown below:
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                x

ct

particle
at rest

particle moving towards
negative x values
v = constant < 0

particle moving towards
positive x values
v = constant > 0

what is this event ?

!      
x

ct

me wall

eraser thrown 
vertically

accelerating
particle

eraser
bouncing 
off a wall

! !         

ct

x

line of constant time
or line of simultaneity

line of constant position
or worldline of an object 
at rest

Let us now discuss these concepts in more detail. We start with 
things from everyday experience, which is something we hope that 
we know something about! Consider the diagram below

! ! ! x

ct

event #2

event #1

x x1 2

1

2

ct

ct
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The quantity "t=t 2-t 1 is called the time-separation or coordinate 
time between the events and the quantity "x=x 2-x 1 is called the 
spatial-separation between the events. 

Can we also say at this point that "t = time-interval between 
events and "x = distance between events?  

The answer is NO!  

We must be very careful not to make any such assumptions when we 
cannot prove the statements; a good rule is -- if we don’t know 
something is true, then we should not assume it!!

It is clear, however, that two events on the same vertical line 
take place at the same position and two events on the same 
horizontal line take place at the same time (they are 
simultaneous).

In the diagram below we have several objects all moving with 
different speeds.

! !
x

ct

fastest

slowest

backwards

at rest

still later

later

now

Δ

Δx

tc

In all cases, during any interval the speed is

! ! ! !
v =

! x
! t

=1/ slope

Now let us imagine a car on a track an create a diagram to 
represent the motion of the car. The diagram below shows the 
worldlines corresponding to a car at rest and a car moving with 
constant speed in the positive x-direction.
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! ! x

ct

car at rest

car
moving

end #1 end #2

Now let us attempt to measure the length of the car. First we 
consider the car at rest. The diagram below represents me 
walking (in your frame of reference) first to one end of the car 
and recording its position(x 1) and then walking to the other end 
and recording the position(x 2). Where are you on this diagram?

! ! ! x

ct

#1

#2

#3

#1'

#0

L

You are the ct-axis in your own frame of reference!!

At event #0, I am standing at rest and talking. I then walk over 
to one end of the car (event #1 = (x 1,ct 1)). I then walk over to 
the other end of the car (event #2 = (x 2,ct 2)). Alternatively, I 
could have delayed walking over to the other end of the car 
(event #1Õ = (x 1Õ,ct 1Õ)) and then gone over to the other end 
(event #3 = (x 3,ct 3)).

The length of the car is then L = x 2-x 1 or L = x 3-x 1 = x 2-x 1.

For a car at rest, the length measurement is the same no matter 
how long I delay (or whether I use event #2 or #3).

Notice how the car is just in spacetime. We do not have to be 
there!!. What is actually in spacetime for the car? Look 
carefully.... all of its past, all of its future --> everything 
about the car is in spacetime!!!!
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What is the difference if we use our many-observer model? Two 
observers are located at the ends of the car. They record the 
locations and we then calculate the length. There are no gains 
with this approach for a car at rest!!

At this point we do not seem to have any problems with a length 
measurement. 

Now consider a moving car as show below:

! ! ! x

ct

#0

#1

#2

#3

L

#4

t event #0, I am standing at rest and talking. I then walk over 
to one end of the car (event #1 = (x 1,ct 1)). I then walk over to 
the other end of the car (event #2 = (x 2,ct 2)). Alternatively, I 
could have walked over  more slowly to the other end of the car 
(event #3 = (x 3,ct 3)).

In this case, x 3 # x 2. Is the length of the car L 12 = x 2-x 1 or 
L13 = x 3-x 1 > L 12? As can be seen from the diagram, neither is the 
correct result L.

Is there an operational procedure that we can use to guarantee 
that we will always measure the correct length (defined to be 
the length measured at rest)?

The diagram indicates the answer. If we measure the location of 
the ends of the car at the same time (simultaneously), namely, 
events #1 and #4, then we get the correct length L(or along any 
other line of simultaneity).

Of course, this is an impossible measurement for a single 
observer, but not for the many-observer model. We just have all 
observers close their eyes and when their clock alarms go off 
(all set to go off simultaneously), then two of the observers 
will be located at the ends of the car (even if it is moving) 
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and the length is the spatial separation of their grid 
locations.

So we "define" a length measurement as

! the spatial separation between the endpoints of 

 the object measured simultaneously 

Philosophers would not let me use the word "define" for this 
"operational procedure", but they are not here now to challenge 
me!

A question: Have we just exchanged the unknown meaning of 
"length"  for a new unknown "simultaneityÓ ? 

The answer is YES! 

However, that is what operational procedures are all about and 
that is why they differ from "definitions".

We think, at this point, that we will be able to define 
simultaneity unambiguously and that is better than not knowing 
how to "measure"  length.

What about time intervals?  Consider the two events shown below:

! ! ! ! x

ct

#2

#1

light

!

!

t

T

The time-separation between events #1 and #2 is "t = t 2-t 1. Now 
my worldline is the ct-axis. Can I measure this quantity? 
Remember, I can only have confidence in measuring instruments 
that are always on my worldline(i.e., always with me). The 
answer is NO!. 

I can, however, measure the quantity

! ! !
! T = t2 +

x2

c

" 
# 
$ 

% 
& 
' ( t1 +

x1

c

" 
# 
$ 

% 
& 
' = ! t +

! x
c

 where "x = x 2-x 1 since that measurement can be made with a clock 
I am carrying with me on my worldline.
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It is clear that "T > "t. If I independently know the spatial 
separation between the two events, then I could infer(calculate) 
the time-separation, but this is not a measurement!

"T is the time I "see"  between the two events.

Is either of these the time interval? We just do not know! 

We must create an operational definition for the time interval. 
This is done as follows:

! ! ! x

#1

#2

my worldline(I am moving)
(carrying a clock)

my worldline(I am at rest)
(carrying a clock)

#2

#1 if you draw the axes

if I draw the axes

In both cases, the time interval is operationally defined as the 
difference in my clock readings, i.e., the clock and thus me 
must have a worldline that passes through both events in order 
to define the time-interval between the events in an unambiguous 
manner. 

This prescription assumes that nothing happens to a clock when 
it moves that changes this result. We do not know that this is 
true. 

Thus, to be safe, we "defineÓ

! time interval between two events = time-separation 

 when clock is at rest and thus, the two events take 

 place at the same position according to the observer

 carrying the clock

as shown below:

! ! ! ! x

#2

#1

clock worldline
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The two events in this case are

! ! ! ! event #1 = (x,ct 1)
! ! ! ! event #2 = (x,ct 2)

and the time interval or elapsed time between events is given by 
t 2-t 1.

Is this what you actually do? NO. 

You move between events usually (changing your speed in the 
process) and assume that this has no effect on the clock or you 
stay still and infer the time interval by measuring the time 
that you "see" between the two events. As we shall see from the 
theory we are developing, this is OK for the everyday world we 
live in but not in a world where objects move with large speeds. 

We are assuming that all of these measurement procedures are 
objective. Suppose there is a rotten core in the apple of 
scientific objectivity. Physics as we shall present it 
works .... it makes correct predictions.  Does it matter if we 
are really being subjective, i.e., that our entire view of 
spacetime might be dependent on human observation or that all 
measurements are "relative". Just food for thought at this 
point. More about this later when we study quantum physics.`

So we now have operational definitions that allows a single 
observer looking at the universe to describe events, measure 
distances and time intervals between events, and so on and 
report on what happened in some experiment. 

Our problem arises, however, when a second observer, who is 
moving relative to the first observer, appears and also tries to 
describe the experiment using the same procedures. 

Galilean Relativity

Central to any discussion of the relativity that prevailed 
alongside Newtonian (pre-Einstein) physics is the concept of  
absolute time. 

Newton and Galileo assumed that the passage of time was the same 
for all observers no matter what they were doing. Thus if two 
observers separately measured the time interval between two 
events, then it was assumed that "t = t 2-t 1 = tÕ 2-tÕ 1 = "tÕ.
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Suppose that two observers are moving with respect to each other 
(along a common x-direction) with relative speed u such that 
their respective origins coincide at t = tÕ = 0. Then, at some 
time t later we might have the situation shown below.

! ! !

x

O

O'

u

ut
v , v'

object

We know from everyday experience that if observer O' measures a 
velocity vÕ and observer O measures a velocity v for some 
object, the relationship between these two measured velocities 
is given by vÕ = v-u.

Now to measure the velocity(constant) of an object, each 
observer must observe two events in its motion. Suppose that has 
occurred and we have the measured results for the two events:

! ! !

#1! (x1,ct1)   and   (x'1 ,ct'1 )

#2 ! (x2,ct2)   and   (x'2 ,ct' 2 )

We then have

! ! !
v = velocity measured by  S =

x2 ! x1

t2 ! t1
=

" x
" t

! ! !
v' = velocity measured by  S' =

x' 2 ! x'1
t' 2 ! t'1

=
" x'
" t'

Now the absolute time concept says that "t = "tÕ and this then 
implies that

! ! ! !

v' = v − u

Δx'
Δt'

=
Δx'
Δt

=
Δx
Δt

− u

or

Δx' = Δx − uΔt
Now if we choose the events representing the measurement of the 
particle velocity to be

! ! ! !

Event #1! (x = 0,t = 0),(x' = 0,t' = 0)

Event #2! (x = x,t = t), (x' = x' ,t' = t)

which is just a choice of origin values for space and time 
measurements (always allowed because physical phenomena are not 
dependent on choice of origin), we then obtain the equations
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! ! ! !

ct' = ct

x' = x ! ut = x !
u
c

" 
# 

$ 
% 
ct

or

! ! ! !

c! t' = c! t

! x' = ! x " u! t = ! x "
u
c

# 
$ 

% 
& c! t

as the equations relating the two sets of observations. 

This relationship is shown below:

! ! !

x

O

O'

u

ut
v , v'

object

x

x'

These are called the equations of the Galilean transformation. 

They allow two observers in frames of reference moving with 
constant speed relative to each other to compare their 
respective observations under the assumption that Newtonian/
Galilean physics is valid.

Galilean relativity was the basis of Newtonian physics until 
1900. You have a deep understanding of Galilean relativity 
ingrained within your brain. If you did not, then you would not 
have survived to be attending Swarthmore College. Galilean 
relativity accurately describes the everyday world we live in.

The relative velocity formula is one of the signatures of the 
"old" classical physics and the everyday world.

This is the " Old Original World View" of 19th century physics 
circa 1900 .... a product of the finest minds developed over 
several centuries. Everyone was comfortable with the theory. It 
was internally consistent. It worked amazingly well(agreed with 
all experiments).

And then there was light.......... and Special Relativity

First, what went wrong?
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When measured by an observer at rest relative to the experiment, 
the speed of light is c = 3.0x10 8 m/s = 186,000 mi/s, which is 
very large compared to everyday speeds. What is the fastest we 
have launched any object?

Now if you measure that I can throw an object with a speed of
20 m/s when I am at rest relative to you, then what speed will 
you observe me throwing it if I am running at a speed of 10 m/s 
relative to you?

The Galilean velocity addition formula tells us the answer is
20 + 10 = 30 m/s.

Suppose instead that I am at rest and throw the object at 20 m/s 
and you are running in the direction opposite to that of the 
moving object(towards me) at 10 m/s. What speed will you 
measure? Again, the Galilean velocity addition formula tells us 
the answer 20 - 10 = 10 m/s.

So it is clear that in our everyday experience with objects 
moving at everyday speeds, that Galilean relativity works(or 
that classical theory is valid). The observed speed of objects 
depends on the motion of the source and observer of the object.

Michelson and Morley did an experiment of this sort with light. 
They found that the speed of light was always measured to be the 
same (c) no matter what the source or observer of the light was 
doing!

Their experiments gave the result that the speed of light = 
constant = c  (independent of source or observer)

This leads to a direct breakdown of Galilean relativity since 
Galilean relativity says that for two observers in relative 
motion both looking at light we must have cÕ = c-u # c.

Clearly, a new theory was needed. A very careful experiment was 
forcing us to make a paradigm shift in our theoretical 
understanding of the world.

We will derive this new theory assuming one general principle

[1] The Principle of Relativity

! ! the laws of physics are identical for all 

 
 observers in  uniform relative motion
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and the results of two experiments:

[2] The speed of light is a universal constant( c ) independent of 
    the motion of source or observer  
and
[3] It has been experimentally observed that when a source of 
    light and a detector of light are moving relative to each 
    other  with a speed v the wavelength of the observed light 
    changes with the relative speed. The experimental result is 
    given by the formula ! = k(v)! 0  where

! !

λ0 = observedwavelengthwhen v = 0   ,   k(v) = c + v
c − v

, c = speedof light

v > 0→ sourceand observermovingaway fromeachother

This is the famous galactic red shift observed by astronomers 
for light received on the earth from distant galaxies moving 
away from the earth.

The wavelength of the light is related to frequency and the 
period by the formula

! ! !
! f = c =

!
T

f = frequency, T = period

Other physicists might derive these results with a smaller 
number of assumptions. For clarity, however, at the level we are 
working, the derivations will be clearer if we use an extra 
experimental result. With a lot more work we could do the same 
derivation leaving out [3]. 

Review of Wave Properties
!
Waves are periodic phenomena in space and time. A sinusoidal 
wave illustrates a typical wave ... but we really  only need 
periodicity.

! ! !
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Wavelength = distance between like points
Frequency = 1/time(period) for a point to repeat
Amplitude = maximum displacement. Wave energy (intensity) is 
            related to square of amplitude. The energy content 
            of a classical wave is proportional to A 2 and is 
            independent of frequency.

Example:

! ! !

y = Acos(kx ! " t)

k =
2#
$

, " = 2#f =
2#
T

y = Acos(
2#
$

x !
2#
T

t) = Acos2#(
x
$

!
t
T

)

v = wavespeed= $f

         ! Fix t   !  photograph of waveform in space !  wavelength.
! Fix x !  oscillation in time !  frequency or period

Interference between Waves

Consider two waves(same amplitude, same frequency, same 
wavelength) which start out at the same time and propagate in 
this room. We assume that they travel over different paths and 
eventually arrive at the same point say on a screen (we assume 
that the time of arrival is t = 0 for simplicity). We then have 
two waves arriving at the same point with different amplitudes 
given by
! ! ! y1 = Acoskx1 , y2 = Acoskx2

The effect of the waves at this point is given by the sum of the 
wave amplitudes(that is the way nature works).
! ! !
! ! ! y = y 1+y 2 = total amplitude

The quantity kx for each wave is called the phase.

We can visualize what happens at the point on the screen by 
looking at a different experiment. Suppose that we have two 
waves both traveling along the same line with different starting 
points.  The two traveling waves and their sum look like

! ! ! x 1 = x  and  x 2 = x + delta
we have 

! ! !

y1 = Acoskx y2 = Acosk(x + delta)

y = y1 + y2 = Acoskx+ Acosk(x + delta)
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So if the waves are in phase (max to max and min to min), which 
means that they have traveled the same distance (delta = 0) or

! ! !

x1 = x2 = x

y1 = Acoskx , y2 = Acoskx

y1 + y2 = 2Acoskx

In the same way, if the distances differ by an integral number 
of wavelengths (delta = n ! ) we have

! y = y1 + y2 = Acoskx + Acosk(x + n! ) = Acoskx + Acos(kx + 2n" ) = 2Acoskx

and we get a large amplitude (brighter spot) in both cases.

But if the waves get out of phase (if the path lengths do not 
differ by an integral number of wavelengths or zero) then we get 
smaller total amplitudes and less bright spots.

In particular, if the path difference is exactly 1/2 wavelength 
then the waves cancel, that is, we have

!    ! y = y1 + y2 = Acoskx + Acosk(x + ! / 2) = Acoskx + Acos(kx + " ) = 0
!
When we add waves, it turns out to be just a simple algebraic 
sum of their amplitudes at each space-time point 

This is called the principle of superposition.

As we shall see, this superposition principle will be a 
universal principle and will dominate much of our later 
discussions of quantum  states(although we will not call them 
waves...they will, however, be completely equivalent 
mathematical objects) 

Interference types:

! ! constructive! phase difference = 0! ! ! !  
! ! ! peaks line up with peaks

! ! destructive! phase difference = 1/2 wavelength! !  
               peaks line up with valleys

Mathematically this looks like
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! ! !

y = Acoskx + Acosk(x + d)

  = 2Acosk x +
d
2

! 
" 

# 
$ cos

kd
2

Now

! ! !

kd
2

= !
d
"

d = " #
kd
2

= ! # cos kd
2

= $1# maximum

d =
"
2

#
kd
2

=
!
2

# cos kd
2

= 0 # minimum

Therefore, we can write

! ! !

c =
!
T

  (for observer  at rest wrt source)

c' = c =
! '
T'

  (for observer  moving wrt source)

T' = Tobserver  moving wrt source= k(v)T = k(v)T0 = k(v)Tobserver at rest wrt source

Here we have explicitly assumed the result of experiment [2] and 
experiment [3] in writing this formula, namely, that c = speed 
of light = constant for all observers and the red-shift relation 
between time intervals. Using these results as our theoretical 
assumptions, we can now derive special relativity.

SpaceTime Diagrams
!
We consider two observers A and B. Observer B is moving away 
from observer A with constant speed v (we consider only 1-
dimensional motion for simplicity). This is represented by the 
spacetime diagram shown below:

! ! !
We have also included the worldline of a light beam that started 
at (0,0).

It is now clear why we choose the vertical axis to be ct rather 
than just t - the worldline of light is then always a 45 o line! 
We assume that each observer carries their own clock.
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As we shall see from the results of our derivation, each 
observer will need to determine the events on the worldline of 
the other observer using only measurements available on their 
own worldline. We will not be able to trust any information that 
is not recorded by instruments moving with us (on the same 
worldline). This means that we must figure out how A (or B) can 
measure the (x,ct) values for an event not on their own 
worldline. 

Remember, what is true on my own worldline,namely, that the time 
interval between events that I experience(my worldline passes 
through them) is directly measured by the clock that I carry and 
my position is constant (usually assumed to be zero). 

The method we now develop is called the "radar" method. Now 
consider the diagram below:

! ! ! !
Observer A assigns coordinates to the event P by bouncing a 
light signal off of whatever is occurring at P. The light signal 
is sent out at the event (0,ct 1) and received back at the event 
(0,ct 2).  Note the important fact that both of these events are 
on AÕs worldline. We then have (using "x = c"t for light)

! ! ! ! (xP ! 0) = c(tP ! t1) = c(t2 ! tP)

or

! ! ! !
ctP =

c(t2 + t1)
2

which is the average of sending and receiving times(makes 
sense). Then, substituting, we obtain

! ! ! !
x P   =   

c ( t 2   !  t1 ) 
2 

Thus, any observer (a particular worldline) can determine the 
coordinates of an event off that worldline by  only using light, 
which has constant speed, by assumption, for all observers and 
only measuring time values on their own clock (clock is on same 
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worldline). I emphasize again that this is crucial..... we must 
only use information about events we actually experience (that 
are on our worldline), otherwise we cannot be certain of their 
validity.

Special Relativity

We now use this procedure and our assumptions to derive a new 
theory called Special Relativity (this was done by Einstein in 
1905).

Consider the experiments represented by the worldlines in the 
spacetime diagrams below. In each case, observers A and B are 
assumed to be moving away from each other with speed v.

! !

x

ct

cT

cT'=kcT

pulse #1

pulse #2

A

B

Figure 1

x

ct

A
B

P

b

a

o

kcTcT

k(kcT)

Figure 2

x o

In figure 1, two pulses are sent from A to B. In figure 2, two 
pulses(one is sent at t=0) are sent from A to B and then B sends 
each of them back to A.

In figure 1, BÕs worldline is given by the equation

! ! !
x = x0 + vt = x0 +

v
c
ct

where B is at x 0 at t=0 and in figure 2 BÕs worldline is given by 
the equation

! ! !
x =

v
c

ct

where B is at x=0 at t=0. In both of these cases, we are 
assuming the light being sent out consists of a series of pulses 
separated by a time T in the frame of the source (A) as shown 
below.

! ! !
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For the first experiment, our assumptions say that the interval 
between reception of the two signals by B (according to a clock 
that is traveling with B), is cTÕ and that this interval is 
proportional to cT(see diagram) with the proportionality factor 
k that depends only on the relative velocity between A and B, 
that is,
! ! ! cT' = k(v)cT

In the second experiment, we see two pulses separated by T sent 
out by A (the first when they are at same spacetime point) and 
received by B separated by kT and then sent back to A and 
received separated by k(kT).

We have used the fact that the physical laws are independent of 
the relative motion (assumption [1]), which requires that the 
relationship between A and B be reciprocal, so that, if B emits 
two signals separated by an interval cT(according to B's clock), 
then A must receive them with an interval kcT (according to A's 
clock). Therefore the intervals go like 
! ! ! cT ! kcT ! k(kcT)

as shown in the diagram.

Now Consider the experiment below:

! ! !

B
A

P

ct

ctct

ct

2B

1B

2A

1A

light

O

a
a'

b
b'

Here is what is happening in this diagram.

A and B synchronize their clocks to zero when their worldlines        
cross at event O.

After a time T(according to A) A sends a light signal to P - !         
this is event a(a is on AÕs wordline).

B receives the light signal at event aÕ(aÕ is on BÕs wordline).

The signal is reflected back to A from event P.
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B receives the reflected signal at event bÕ(bÕ is on BÕs 
worldline).

A receives the reflected signal at event b(b is on AÕs 
worldline).

For event P observer A says(using the radar method) that

! ! ! xP =
c(t2A ! t1A)

2
, ctP =

c(t2A + t1A)
2

and observer B says(using the radar method) that (same 
experiment and same equations for both A and B)

! ! ! x'P =
c(t2B ! t1B)

2
, ct 'P =

c(t2B + t1B)
2

It is clear, using "x=c"t and "xÕ=c"tÕ that
! ! c(t2 A ! tP ) = xP = c(tP ! t1A)  and   c(t2B ! t' P ) = x' P = c(t' P ! t1B)

or

! !
ct2A = ctP + xP and ct2B = ct 'P+ x'P
ct1A = ctP ! xP and ct1B = ct 'P ! x'P

Our earlier experimental results(figure 2) now imply that
! ! ! ct1B = kct1A   and    ct2A = kct2 B

as shown in the diagram below

! ! !
i.e.,  for observer B, the interval OP = kcT(according to B's 
clock) and for observer A, the interval Ob = k(kcT)(according to 
A's clock). Therefore, A has sent out a signal to event P at 
ct 1A=cT and received it back at ct 2A=k 2cT.

Putting everything together and doing some algebra we get
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! ! !

ct' P +x' P =
ctP ! xP

k
ct' P ! x' P = k(ctP ! xP )

Further algebra then gives(dropping the subscript P since there 
is nothing special about that particular spacetime point) using 
the value of k from assumption [3]
! ! ! ct' = ! (ct " #x)     and     x' = ! (x " #ct )

where

! ! ! ! =
v
c

, " =
1

1# ! 2

These are the so-called Lorentz transformations. They allow the 
two observers to relate their experimental results. They are 
"translators" between experiments done in different frame moving 
relative to each other with constant velocity in the common 
x(xÕ) direction.

We note that for relative motion in the x-direction(as above) 
the y and z coordinates are unchanged,i.e., yÕ=y and zÕ=z. Thus, 
we have the relations

! ! !

ct' = ! (ct " #x) , x' = ! (x " #ct )

y' = y , z' = z

We first note that as v ! 0, k ! 1 which implies no difference 
between A and B (which is correct because they will then be at 
rest relative to each other). 

Note the mixing of space and time so that neither is any longer 
independent of the other. A very dramatic occurrence.

So the principle of relativity together with two experimental 
results allows us to derive these new relations which constitute 
basic equations of the theory of special relativity.

This is the way theoretical physics works. 

We take a mixture of general principles (things that no one can 
argue with) and experimental results and create a set of 
assumptions about the way the world works. We then derive the 
consequences of these assumptions, in this case, the Lorentz 
Transformations. 

We then have a theory that agrees with our assumptions (we will 
show that shortly). If the theory represents a new paradigm in 
physics then we should be able to make new predictions not 
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related to our assumptions that agree with all future 
experiments.

We can make the immediate prediction that nothing can travel 
faster than light. Look at the form of the " -factor. If it were 
possible for v > c, then one observer could measure two events 
separated by  "real"  time and space intervals while a second 
observer would have to measure "imaginary" intervals. Since this 
has never been observed to happen, we can confidently predict 
that all objects must have v < c so that "  is always real. This 
is corroborated by all known experiments.

This encourages the theorist to proceed further and see what 
other interesting features are lurking about. 

Features of the Theory

Now that we are confident about our theory, let us work out some 
other features it predicts.

Suppose that we now have three observers A, B and C, such that 
velocity of B relative to A is v BA > 0 and velocity of C relative 
to A is v CA > 0 and velocity of C relative to B is v CB > 0. A then 
sends out two light signals, separated by interval cT (according 
to A) that are received by both B and C (as shown in the diagram 
below).

! !

A
B C

cT kBA cT

kCA
cT = k k

CB BA ct( )

We know from previous discussions that B thinks the interval 
between signals is k BAcT and C thinks it is k CAcT, where

! ! !
kBA =

c + vBA

c ! vBA

    ,      kCA =
c + vCA

c ! vCA

    

In a similar manner, C could assume that the signals came from B 
and not A and therefore would think the interval is k Cb(k BAcT), 
where
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! ! ! !
kCB =

c + vCB
c ! vCB

But these two results must be identical(according to C) which 
means we must have

! ! ! !

kCAcT = kCB(kBAcT)
kCA = kCBkBA

This is the velocity addition formula.  Converting to velocities 
we have

! ! ! !

vCA =
vCB + vBA

1+
vCBvBA

c2

This reduces back to the Newton-Galileo result for v << c, as it 
must, i.e., 

! ! ! !

vCA = v   ,    vCB = v'    ,    vBA = u

vCA =
vCB + vBA

1+
vCBvBA

c2

! vCB + vBA

v = v' +u ! v' = v " u
Finally, if v CB = c(B is looking at a light signal) and v BA=u(B is 
moving relative to A), then we find that

! ! ! !

vCA =
u+ c

1+
uc
c2

= c

and we have the prediction ( or verification of our assumption) 
that if one observer measures something moving with the speed of 
light c, then all observers will also measure its speed to be c.

An alternative derivation of the velocity-addition formula:

Given the Lorentz transformations, we can derive velocity 
addition formulas in all three directions. Suppose we have two 
observers K and KÕ and they are observing a moving particle. The 
velocity of the particle in each frame is given by

! !

ux = lim
! t " 0

! x
! t

, uy = lim
! t " 0

! y
! t

, uz = lim
! t " 0

! z
! t

u' x = lim
! t' " 0

! x'
! t'

, u' y = lim
! t' " 0

! y'
! t'

, u' z = lim
! t '" 0

! z'
! t'

The Lorentz transformation give

! !
! x' = " (! x # v! t) , ! y' = ! y, ! z' = ! z , ! t' = " (! t #

v
c2 ! x)

Substitution gives

Special Relativity Notes               Fall 2008                  John Boccio

                                                                     Page 23



! !

u' x =
ux ! v

1!
vux

c2

, u' y =
uy

" 1!
vux

c2
# 
$ 

% 
& 

, u' z =
uz

" 1!
vux

c2
# 
$ 

% 
& 

To see that this agrees with our earlier result we make the 
associations K=B, KÕ=A, Particle = C. We then get (as before)

! ! !

u' x =
ux ! v

1!
vux

c2

= vCA =
vCB + vBA

1+
vCBvBA

c2

In this new picture, space and time merge into a new 4-
dimensional continuum. 

The most important variables in any theory are those that are 
unchanged for different observers. Such objects are called 
invariants. 

The speed of light is such an invariant. 

Another invariant is the so-called spacetime interval, which is 
constructed as follows. 

Observers A and B can independently measure the spacetime 
coordinates for two events

! !

Observer A: (ctA1, xA1, yA1, zA1)   and   (ctA2, xA2, yA2 ,zA2 )
Observer B: (ctB1, xB1, yB1,zB1)   and   (ctB2, xB2 , yB2, zB2)

The Lorentz transformations relate these coordinates by

! !

ctB1 = ! (ctA1 " #xA1) ,  xB1 = ! (xA1 " #ctA1) ,  yB1 = yA1   ,   zB1 = zA1

ctB2 = ! (ctA2 " #xA2) ,  xB2 = ! (xA2 " #ctA2) ,  yB2 = yA2   ,   zB2 = zA2    

Now the spacetime interval for an observer, is defined in 
general for any two events by 

! ! ! (! s)2 = c2(! t)2 " (! x)2 " (! y)2 " (! z)2

It is then easy to show using the Lorentz transformations that 
the corresponding spacetime intervals for any two observer for 
the two events above

! !

(! sA)2 = c2 tA2 " tA1( )2
" xA2 " xA1( )2

" yA2 " yA1( )2
" zA2 " zA1( )2

(! sB)2 = c2 tB2 " tB1( )2
" xB2 " xB1( )2

" yB2 " yB1( )2
" zB2 " zB1( )2

are invariant, i.e., 

! ! ! ! ! sA( )2
= ! sB( )2

We will investigate the powerful consequences of this result 
shortly.

Let me now present an alternative derivation (for the more 
mathematically and philosophically inclined) of special 
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relativity that illustrates the powerful methods of theoretical 
physics. 

We have the following postulates (postulates <— theory):

(1) All the laws of nature (not just mechanics) must be the same   
for all observers moving with constant velocity relative to each 
other.[if we were to write ÒAll the laws of nature must be the              
same for all observers" (with no qualification about speeds), 
then we could derive General Relativity(a much harder 
derivation)]. 

This is the Principle of Relativity and restricts the  form of 
the laws in each frame.

(2) The speed of light is an invariant.

(3) The motion of a particle observed to be linear in one 
inertial frame must be linear in all inertial frames. 

! ! ! ! x = x0 + vt ! x' = x' 0 +v' t'

This implies that the Lorentz transformations must be linear. 
Our imposition of the red shift experiment in the first 
derivation is equivalent to this postulate.

We now do a Gedanken or thought experiment. 

We consider two frames K and K' moving relative to each other 
with speed v. At the instant that the two origins coincide, we 
set both clocks to zero, i.e., their worldlines cross at the 
event (x=0,ct=0), (xÕ=0,ctÕ=0) and a light pulse is emitted. The 
equations that describe the propagation of the light pulse (a 
sphere in space where r=ct and rÕ=ctÕ (note same c)) must be of 
the same form in each frame (Postulate 1). We then have

! ! !

c2t2 ! x2 ! y2 ! z2 = " s2 = 0    in  K

c2t' 2 ! x'2 ! y' 2 ! z' 2 = " s'2 = 0     in K'  

We have explicitly used the second postulate at this point (same 
c).

These equations state that the vanishing of the spacetime 
interval between two events in any inertial frame implies the 
vanishing of the interval between the same two events in any 
other inertial frame. However, we want to prove a more powerful 
statement, namely, that 
! ! ! ! ! s2 = ! s' 2
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in general(not just when it is zero)! 

We now use the third postulate. A general theorem from the 
mathematics of quadratic forms or a lot of messy algebra then 
says that, under the above conditions,  these two quadratic 
forms

! ! ! ! ! s2 and ! s'2

can be connected, at most, by a proportionality factor
! ! ! !  ! s'2 = g(x,y,z,t,

!
v)! s2

Now all physical theories assume that for a free particle

  the laws of motion are independent of the choice of origin for 
  the coordinate system

  the laws of motion are independent of the orientation of the !     
  coordinate system 

  its velocity during any time interval is the same 

These are rules that correspond to the statement spacetime is 
homogeneous. 

This implies that the proportionality factor can only depend on 

 
!
v , i.e.,   ! s'2 = g(

!
v)! s2 .

Physicists also assume that space is isotropic, which means we 
cannot have a dependence on the direction of  

!
v . Thus we have 

! s'2 = g(v)! s2  where v = the magnitude of  
!
v .

Now, if we transform from K' back to K we must have the inverse 
result ! s2 = g(v)! s'2  since  !

!
v  has the same magnitude as  

!v .

Putting these two results together we have that g 2 = 1 or g = ±1 
are the only possibilities. g is a constant, but which one?

If we let v ! 0 then the systems K and K' become identical and 
hence g(0) = 1 and since g is a constant, we must have g(v)=+1. 
We have thus proved that ! s'2 = ! s2  in general.

Once we have invariance of the spacetime interval and the 
linearity of the transformation equations between frames it is 
straightforward to derive the Lorentz transformations and all 
the other results follow, which is what most textbooks(like 
Moore) do.
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Minkowski Diagrams

We can visualize the Lorentz transformation by superposing the 
(xÕ,ctÕ) and (x,ct) planes into a common diagram called a 
Minkowski or spacetime diagram by following these steps:

Choose the (x,ct) axes to be perpendicular(we are always free to 
do this for one set of axes).

Calibrate these axes(arbitrary choice).

Locate the xÕ and ctÕ axes within the framework of the (x,ct) 
axes.

The xÕ axis is the line ctÕ=0 and the ctÕ axis is the line xÕ=0. 
From the Lorentz transformations these lines correspond to the        
equations:

! ! !

x' = ! (x " #ct ) = 0 $ ct =
1
#

x $ ct' " axis

ct' = ! (ct " #x) = 0 $ ct = #x $ x' " axis

Thus, the xÕ-axis is a straight line with slope 1/ # in the 
(x,ct) plane and the ctÕ axis is a straight line with slope # in 
the (x,ct) plane as shown in the diagram below for the case 
#=3/4: 

! ! ! x

ct

1 2 3 4 5

5

4

3

2

1

(meters)

(meters)

ct'

x'

slope =

slope = 1
!

! = 3/4

= 4/3

Thus, we can only choose one set of axes as perpendicular!! We        
have no choice for the second set of axes if we want them to        
coexist on the same diagram!! 

Now we see why we had to make the correct choice about parallel        
versus perpendicular for determining the coordinates of an 
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event. They give very different results for non-perpendicular 
axes.

Calibrate the primed axes using the invariance of the interval 
as follows:

Consider two events, namely (0,0) and (x,ct) such that

! ! ! (! S)2 = c2(! t)2 " (! x)2 = c2t 2 " x2 = " 1

For the second observer, these events are (0,0) and (xÕ,ctÕ) 
such that
! ! ! (! S')2 = c2(! t ')2 " (! x')2 = c2t '2" x'2 = " 1

where

! ! ! !

x' = ! (x " #ct )

ct' = ! (ct " #x)

and we have used the invariance of the spacetime interval. The 
set of all events that satisfy these equations is a curve on the 
spacetime diagram.

This curve is a hyperbola (see the diagram below). It intersects 
the x-axis at x=1(when ct=0) and the xÕ-axis at xÕ=1(when ctÕ=0) 
and allows us to calibrate the xÕ-axis once we have calibrated 
the x-axis (or vice versa). For diagram construction convenience 
we note that the point (ct= #" ,x= " ) corresponds to the 
intersection determining the point xÕ=1 as shown in the diagram.

! !
In a similar manner, the ctÕ-axis is calibrated in terms of the 
ct-axis using the curves

! ! ! (! S)2 = c2(! t)2 " (! x)2 = c2t 2 " x2 = +1
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! ! ! (! S')2 = c2(! t ')2 " (! x')2 = c2t '2" x'2 = +1

It intersects the ct-axis at ct=1(when x=0) and the ctÕ-axis at 
ctÕ=1(when xÕ=0) and allows us to calibrate the ctÕ-axis once we 
have calibrated the ct-axis(or vice versa). For diagram 
construction convenience we note that the point (ct= " ,x= #" ) 
corresponds to the intersection determining the point ctÕ=1.
Note that light rays are 45 o lines on the Minkowski 
diagram(because of our scale choice).

Alternatively, we can use an experimental result to calibrate 
the time axis and then assume by symmetry that the space axis 
calibrates in the same manner. This experiment involves the 
decay of an elementary particle called a mu-meson.

A mu-meson is a short-lived elementary particle that is produced 
in large numbers at the top of the atmosphere when the 
atmosphere is struck by a high-energy cosmic ray particle. Mu-
mesons can also be produced in large numbers at any accelerator 
laboratory. 

Experimentally, if the mu-mesons are produced in the laboratory 
at rest(v=0), then they only live for a very short time of about 
$0=2x10 -6  sec = 2 microseconds = 2 %s = their lifetime at rest. 
Since we have already decided that no object can have a speed 
greater than c=3x10 8 m/s, the maximum distance the mu-mesons can 
travel during their lifetime before they decay into an electron 
and a neutrino is about c $0=600 m. In this calculation, we have 
explicitly assumed absolute time, which says that the lifetime 
of a moving mu-meson is the same as that of a mu-meson at rest 
(we now know this is not true). 

The first experimental indication that absolute time was a false 
concept came from these mu-mesons produced by cosmic rays. Since 
they are produced at the top of the atmosphere and can only live 
to travel a maximum of 600 m and since the atmosphere is about 
10,000 m thick, no mu-mesons should be observed on the ground 
(certainly only a small number compared to the number at the top 
of the atmosphere). 

Experimentally, however, the number at the top is the same as 
the number at the bottom. So something is extending the lifetime 
of the mu-mesons.

In the laboratory we can do this experiment with precision. The 
setup is as shown below:
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! !

source of mu-mesons

mu-meson beam

detectors

L

velocity = v

movable detector

D

A beam of mu-mesons a sent from the source to a movable detector 
a distance D away. Along the way two detectors a distance L 
apart measure the time "t it takes the mu-mesons to travel the 
distance L. This determines their velocity

! ! ! !
v =

L
! t

If absolute time were correct, then after a distance d=v $0 all 
the mu-mesons should decay and none should be seen in the 
movable detector if D > d. The experimental result is that the 
mu-mesons travel a maximum distance = v $ where $ is the lifetime 
of the moving mu-meson. The experiments found that

! ! ! !

! = "! 0 =
1

1#
v2

c2

! 0

A plot of this result looks like:

! ! !

v

c

!
! o

The lifetime gets larger and larger the closer the velocity 
approaches the speed of light!!!!

If we let $0=1 tick of a clock(the clock vanishes after a single 
tick!) and let the mu-meson travel with the primed observer, 
then these experimental results are represented by the diagram 
below:
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! !

x

ct

1 2

2

1

(meters)

(meters)

ct'

x'

! = 0.75

"  = 1.51

!" = 1.13

1

mu-meson
worldline lifetime in rest frame

lifetime when it
is moving

So we see that the calibration procedure using the invariance of 
the spacetime interval agrees with this experimental result.

! ! !

x

ct

1 2

2

1

(meters)

(meters)

ct'

x'

! = 0.75

"  = 1.51

!" = 1.13

1

calibration hyperbola

c t -x 222 = +1

General Spacetime Diagram Construction Procedure

! ! x

ct

1 2

2

1

(meters)

(meters)

ct'

x'

! = 0.75

"  = 1.51

!" = 1.13

1

"  = 1.51

!" = 1.13

1

As shown in the diagram above we carry out these steps:

(1) Set up orthogonal(perpendicular) x- and ct-axes.
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(2) Choose identical scales for these axes (units(meters, light-  
    seconds, light-years, etc) are chosen appropriate to the        
    problem at hand).
(3) Locate the point ( #" , " ) on the axes.
(4) Draw a line from the origin (0,0) through this point. This   
    is xÕ-axis. The point ( #" , " ) is the point (xÕ=1,ctÕ=0) so 
    this calibrates the ctÕ-axis.
(5) Locate the point ( " , #" ) on the axes.
(6) Draw a line from the origin (0,0) through this point. This 
    is ctÕ-axis. The point ( " , #" ) is the point (xÕ=0,ctÕ=1) so 
    this calibrates the xÕ-axis.

The diagram is just a visual representation of the Lorentz 
transformation equations. It is a view of all spacetime (past, 
present and future). 

To see that it it agrees with the Lorentz transformations let us 
do an example. Suppose that #=0.75. Then we have " =1.51 and 
#" =1.13. The spacetime diagram looks like the figure above. Now 
consider an event (x=2.0,ct=1.75). The Lorentz transformations 
say that the other observer sees the event

! ! !

x' = ! (x " #ct ) = 1.51(2.0" 0.75(1.75))= 1.04

ct' = ! (ct " #xt) =1.51(1.75" 0.75(2.0))= 0.38

This result is confirmed by the diagram below:

! ! !
1 2 3

1

2

3

1.75

event

1

1

ct' = 0.38

x' = 1.04

Note that in order to find the primed coordinate values we must 
draw lines parallel to the primed-axes.

We now have a theory  called Special Relativity. We can 
represent it either by the Lorentz transformations, the 
invariance of the interval or the Minkowski spacetime diagram. 
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All representations of the theory are equivalent. It was 
discovered by Albert Einstein in 1905. 

What is a theory? A theory is a set of assumptions that

(1) agree with a set of known experiments (three in our case)
(2) lead to predictions (correct) for all new experiments

Newton-Galileo physics lasted over 250 years before any 
experiment was sophisticated enough to show that it was invalid.  
Special Relativity has now lasted 100 years. 

It has been subjected to significantly more experiments than was 
case for the Newton-Galileo theory. These experiments are 
significantly more sophisticated and more precise also.

What are the new predictions of the theory?

The Strange World of Special Relativity

Why are intervals called timelike or spacelike?

From the diagram below it is clear that:

! ! ! !

ct'

x''

ct

x

45o line

ct''

x'

1

2

3

4

For any timelike pair of events (1 and 2) it is always possible 
to find some observer (corresponding to a new ctÕ-axis ) such 
that the two events takes place at the same location and hence 
represent a pure time interval. Hence the name timelike.

For any spacelike pair of events (3 and 4) it is always possible 
to find some observer (a new xÕ-axis) such that the two events 
takes place simultaneously and hence represent a pure space 
interval. Hence the name spacelike.
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Timelike and spacelike events are radically different. As the 
diagram below clearly shows:

! ! ! !

ct

x

1

2

3

4

light linetimelike

spacelike

v < c

> cv

signal

signal

Event #2, which is timelike relative to event #1, is in the 
future or forward light cone of event #1

Event #4, which is spacelike relative to event #3, is in the 
elsewhere region of event #3

Events 1 and 2 can be connected with a signal traveling with a 
speed less than that of light. 

Events 3 and 4 require a signal speed greater than that of 
light.

Now consider the events labeled  O, A, B, C, D, E, F, and  G on 
the spacetime diagram below:!

! !
The corresponding intervals have the following properties:
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! !

! S( )AO
2 = c2(tA " tO )2 " (xA " xO)2 > 0 # a "timelike"  interval

! S( )DO
2

= c2(tD " tO)2 " (xD " xO)2 < 0 # a "spacelike" interval

! S( )CO
2

= c2(tC " tO )2 " (xC " xO)2 = 0# a "lightlike"  or " null"  interval

! S( )FG
2 = c2(tF " tG )2 " (xF " xG )2 = " (xF " xG )2 #  F and G are simultaneous in (x,ct) frame

! S( )ED
2 = c2(tE " tD )2 " (xE " xD )2 = c2(tE " tD )2 #  D and E are at the same place in (x,ct) frame

Now we consider these same events from the viewpoint of the 
(xÕ,ctÕ) frame. Look at the diagram below where we have marked 
off all of the coordinate values:

! !
Looking carefully at this diagram we can draw the following 
conclusions:

(1) events that are simultaneous in one frame are not 
simultaneous in other frames (see events F & G) - 

! ! simultaneity is a relative concept!
(2) events occurring at the same place in one frame do not occur 

at the same place in other frames (see events E & D)       
(3) the time order of timelike events (events with a timelike       

interval) does not change between frames (see events 0 & A)
(4) the time order of spacelike events (events with a spacelike  

interval) can have their time order reversed (see events O & 
B); in the (x,ct) frame B occurs after O, but in the 
(xÕ,ctÕ) frame O occurs after B.
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(5) numerical values of spatial separations and time separations 
are different in different frames

(6) note that the line x=ct which represents a light ray 
starting at the origin in the unprimed frame is also the 
line xÕ=ctÕ, which represents a light ray starting at the 
origin in the primed frame. 

! ! Light is the only physical object that 

 
 both observers see in identical fashion.

Let us consider in more detail the reversal in time order of two 
events. 

This seems to be a very serious problems since it could possibly 
lead to a violation of the idea of  causality. The concept of 
causality is connected with the idea of  cause and effect, i.e., 
that an event should not occur before its own cause, for 
example, a firecracker should not explode before we light the 
fuse!

Suppose that we have two events in the (x,ct) frame with 
coordinates (x 1,ct 1) and (x 2,ct 2) and suppose, in addition, that
! ! ! ! x = (x2 " x1) > 0 , ! t = (t2 " t1) > 0

so that event 2 comes after event 1 in the unprimed frame. Then 
the Lorentz transformations give the result (in the (xÕ,ctÕ) 
frame) that

! !

! t' =
1
c

ct' 2 " ct'1( ) =
1
c

#(ct2 " $x2) " #(ct1 " $x1)( ) = #((t2 " t1) "
$
c

(x2 " x1))

   = #(! t "
$
c

! x)

It is easy to see that "tÕ can be negative, which means that the 
time order of the two events is reversed, if the two events are 
related such that we have

! !
! t "

#
c

! x < 0
      

or
       

! x
! t

>
c
"

> c

or the events must be connected by a signal with v > c, which 
means that they are spacelike separated!

Now, for all timelike related pairs of events we have

! ! ! ! !

! x
! t

< c

and thus we cannot reverse their time order. 

It is important to note that it is only for timelike related 
events that can event #1 cause event #2 (since all signals must 
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have v < c). Thus, all cause/effect related events cannot have 
their time order reversed, preserving the idea of causality.  

Special relativity is consistent with causality without us 
having to impose the consistency!

On the other hand, all spacelike related pairs of events have

! ! ! ! !

! x
! t

> c

and thus, their time order might be reversed in different 
frames. 

Since they cannot be cause/effect related, this does not affect 
the idea of causality. It does, however, lead to a number of 
strange  "paradoxes", as we shall discuss later.

Another way to look at these ideas is via the concept of the 
light cone. 

Since the maximum allowed speed for any physical object is the 
speed of light c, we can use the world lines of light emanating 
from an event to delineate distinct regions of spacetime for any 
object having that event on its worldline. 

Consider the diagram below:

! ! !
Suppose that you experience the event (that is, it is on your 
worldline) as indicated on the diagram above. Since neither you 
nor any signals you send or receive can travel faster than the 
speed of light and since the light ray worldlines containing 
this event are 45 o lines as shown, the region labeled "future" 
represents all the events that you can either experience or 
influence with a signal at a later time(all events in this 
region are timelike separated from the event you experienced), 
the region labeled "past"  represents all the events you could 
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have experienced or that could have influenced you(all events in 
this region are timelike separated from the event you 
experienced). The regions labeled  "elsewhere" are such that you 
can neither experience them nor influence them with any signal 
(all events in these regions are spacelike separated from the 
event you experienced). 

If we draw this picture in a 3-dimensional world (x,y,ct) then 
the corresponding regions would look like:!

and hence the name "light cone".

What has happened to your possible future while we have been 
discussing these light cones?

! ! ! !

your worldline

successive lightcones

1

4 an event

The event labelled above was in your possible future when you 
were experiencing event #1, but is no longer in your possible 
future when you are experiencing event #4. So be careful about 
wasting time doing nothing!!

Example: Let us explicitly show the invariance of the spacetime 
interval.
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Suppose that we have two events with unprimed coordinates

! ! !

x1 = 2.0, ct1 =1.0 ; x2 = 4.0, ct2 = 2.0

! x = x2 " x1 = 2.0 ; c! t = c(t2 " t1) = 1.0

and we assume that

! ! ! !
! = 0.8" # =

1

1$ ! 2
= 1.67

Using the Lorentz transformations we have
x'1 = ! (x1 " #ct1) =1.67(2.0" 0.8(1.0))= 2.00 , ct'1 = ! (ct1 " #x1) = 1.67(1.0" 0.8(2.0)) = " 1.00

x' 2 = ! (x2 " #ct2) = 1.67(4.0" 0.8(2.0))= 4.00 , ct' 2 = ! (ct2 " #x2) = 1.67(2.0" 0.8(4.0))= " 2.00

$x' = ! ($x " #c$t) =1.67(2.0" 0.8(1.0))= 2.00 , c$t' = ! (c$t " #$x) = 1.67(1.0" 0.8(2.0))= " 1.00

Therefore,

! ! !

(ΔS)2 = (cΔt)2 − (Δx)2 = 1.00− 4.00= −3.00

(ΔS' )2 = (cΔt' )2 − (Δx' )2 = 1.00− 4.00= −3.00

The interval has the same numerical value, even though the time 
order between the two events is reversed!!!!

Measurements in Special Relativity

Now let us turn to the measurement properties of spacetime, in 
particular, the measurement of length and time. First, we need 
to restate the definitions we decided on earlier:

Length of an object = spatial separation of the two events 
representing the endpoints of an object measured simultaneously 
(the two events are on a line of simultaneity in a given frame)

Time interval between two events = time separation of the two 
events measured by a clock at rest with respect to the two 
events (the two events are on the worldline of the clock)

With these definitions we can represent these measurements as 
follows. Suppose we have two events (ct 1,x 1) and (ct 2,x 2) that 
correspond to the events of the worldlines of the endpoints of 
the object being measured, crossing a line of simultaneity (see 
diagram below). Then the length of the object is given by 
L=x 2-x 1.

Special Relativity Notes               Fall 2008                  John Boccio

                                                                     Page 39



! ! !
We note as shown in the diagram below that this is not the 
length as measured in the other reference frame. In fact,
! ! ! L' = x' 2 ! x'1 = L/ " < L

which is the famous " length contraction". Do not be deceived by 
it looking longer, remember the scales are different.

The proper length is the length measured in the objectÕs rest 
frame (the unprimed frame in this case, because that is where 
the endpoint worldlines are parallel to the time axis, which is 
the definition of being at rest). The proper length is the 
maximum measured length. 

We note that we have not said that any object has physically 
"contracted", but instead we have said its measured length is 
less! 
The measured length is less because the two observers do not 
agree about simultaneity, i.e., they have different lines of 
simultaneity. So even though we use the word "contraction", we 
must understand that the effect is due to a disagreement about 
simultaneity and no physical contraction has actually occurred.

If the object is at rest in the primed frame, then we get an 
identical result just exchanging the roles of the two frames. As 
can be seen from the diagram below, in this case,
! ! ! ! L = x2 ! x1 = L' / " < L'
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! ! !
Time dilation is handled in the same way. Consider the diagram 
below representing a system that is at rest in the unprimed 
frame and only lives for a finite amount of time(like mu-
mesons). The proper time interval for this system is the time 
separation T between the events (its birth(event #1) and its 
death(event #2)) as measured by a clock at rest with respect to 
the system or, in this case, at rest in the unprimed frame. 

As can be seen from the diagram the time separation for an 
observer in the primed frame is
! ! ! ! T' = ! T > T

The proper time is the shortest time interval.

This result is identical to the mu-meson experiment we discussed 
earlier, which was just an example of time-dilation as can be
seen from the diagram reproduced below:

!

x

ct

1 2

2

1

(meters)

(meters)
ct'

x'

β = 0.75

γ  = 1.51

βγ = 1.13

1

mu-meson
worldline lifetime in rest frame

lifetime when it
is moving
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where in this case, T=1 and T= " T=" . We can also see both of these 
results directly using the Lorentz transformations or the 
invariance of the interval.

Lorentz Transformations

Length Contraction 

The relevant events representing on the worldlines of the ends 
of an object are

For unprimed observer
! ! ! (x1,ct1) = (0.0,0.0)   and   (x2,ct2) = (1.0,0.0)

For primed observer

! ! ! (x1,ct1) = (0,0)   and   (x3,ct3) = (1.0,! ) = (1.0,0.60)

Where are these events on a diagram?

Then the length this object, by definition, is the spatial 
separation along a line of simultaneity for the unprimed 
observer
! ! ! L = x2 ! x1 = " x = 1

For the other observer, the length is the spatial separation is 
along a line of simultaneity for the primed observer

!
L' = x' 3 ! x' 1= " ((x3 ! x1) ! #c(t3 ! t1)) =1.25(1.0! 0.6(0.6))= 0.8=

1
"

=
L
"

What is the spatial separation between events 1 and 2 for the 
primed observer? Does it have any physical meaning?

Time Dilation 

Suppose the clock is at rest in the primed frame. Then the 
relevant events representing on the worldlines of the ends of an 
object are

For the primed observer
! ! ! (x'1 ,ct'1) = (0.0,0.0)   and   (x' 2 ,ct'2 ) = (0.0,1.0)

Then for unprimed observer we have
! ! ! x = " (! x' +#c! t' ) = "# , c! t = " (c! t' +#! x' ) = " $ time   dilation

Note the change in signs in the Lorentz transformations when we 
go from the primed to the unprimed coordinates. Why?

Let us now return to the k-factor. Our original k-factor 
assumption says that, if the unprimed observer is sending out 
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signals every T seconds and the primed observer is receiving 
them every TÕ seconds where TÕ=kT, then we have the relationship

! ! !
f ' =

1
T'

=
1

kT
=

1
k

f =
c ! v
c + v

f

between the frequency f as measured in the unprimed frame and 
the frequency fÕ as measured in the primed frame. The case above 
corresponds to the two observers moving away from each other. In 
this case fÕ < f and hence the primed observer sees the 
wavelength increase (wavelength= ! =c/f), which is the famous "red 
shift". 

If they move towards each other, then v !  -v or k !  1/k and the 
frequency increases (wavelength decreases) and we get a "blue 
shift".

This is  called the relativistic Doppler effect for light.

Let us look at the important Doppler effect in more detail.

The Doppler Effect

Sound and the Acoustic Doppler Effect

Sound travels through a medium such as air with a speed w. This 
speed is determined by the properties of the medium and is 
independent of the motion of the source. We consider a source of 
sound that is moving with velocity  through the medium towards 
an observer at rest. We assume for simplicity that the observer 
(detector) lies along the line of motion of the source.

! ! !
source

detector

wv

L

As shown in the diagram, we represent the sound wave as a 
regular series of pulses. These pulses are separated in time by 
an amount $0=1/f 0 where f 0 is the frequency of the sound from the 
source. In a time T the sound travels a distance wT and if the 
pulses are separated by a distance L, the number reaching the 
detector is wT/L. The rate at which pulses arrive is

! !

w
L

= frequency (
number

T
) of sound at the detector =  fD

To determine L, we consider a pulse emitted at 0 and a second 
pulse emitted at t= $0. During the interval $0 the first pulse 
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travels a distance w $0 in the medium and the source travels a 
distance v $0. As shown in the figure below the distance between 
the pulses is given by

! ! !
L = w! 0 " v! 0 = (w" v)! 0 =

(w " v)
f0

and

! ! !

fD = f0
1

1!
v
w

        for a moving source

! ! !

v

w ! o

! o

! o

L

v

t=0

t=

For an approaching source, v > 0 and thus f D > f 0. For a receding 
source, v < 0 and thus f D < f 0.

If the source is at rest and the detector is moving (as shown 
below) the situation is different.

! ! !
source detector

w v

L
The speed of the pulses relative to the detector is w+v. The 
rate at which the pulses arrive is

! ! ! !
fD =

w+ v
L

Since the source is at rest,

! ! ! !
L =w! 0 =

w
f0

and thus

! ! !
fD = f0(1+

v
w

)        for a moving detector

The two results are not symmetric. They are approximately the 
same for small v/w. If we know f D, then we can tell whether it is 
the source or the detector that is moving!!   
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This is so because the speed of sound is not a universal 
constant, but only has a definite value relative to the medium 
where it is propagating.

Light and the Relativistic Doppler Effect

Suppose a light source flashes with period $0=1/f 0  in its rest 
frame and that the source is moving towards the 
observer(detector) with velocity v.! ! ! ! !  

! !    L

v

light source detector

Due to time dilation, the period in the detector rest frame is
$="$ 0. Since the speed of light is a universal constant, the 
pulses arrive at the detector with speed c.  As shown in the 
diagram below the frequency of the pulses is f D =c/L, where L is 
the pulse separation in the detector frame. Since the source is 
moving towards the detector we have (see diagram below)

! ! ! L

v

c

v

!

!

! ! !
L = c! " v! = (c " v)! = (c " v)#!0 = #

(c " v)
f0

and

! ! !

fD = f0

1 !
v2

c2

1!
v
c

= f0
c + v
c ! v

Here f D is the frequency in the detector frame and  is the 
relative velocity of the source and the detector. It does not 
matter which one is actually moving!!

This result is just the red shift formula we started with 
earlier, as expected.
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Now consider the spacetime diagram below. We have two observers 
in relative motion and the unprimed observers is sending signals 
to the primed observer at regular interval (separated by a time 
T).

! ! !

A

B

pulse 1

pulse 2

pulse n

ncT

2cT

cT

cT'

2cT'

ncT'

x =   ctβ

The reception of the last pulse occurs at the point of 
intersection of the lines

! ! ! !

x = c(t ! nT)

x = " ct

or at

! ! !
ct =

cnT
1! "

, x =
" cnT
1! "

n pulses are sent out by the unprimed observer in nT seconds and 
thus the period is T seconds and the frequency is 1/T.

n pulses(same number) are received by the primed observer in nTÕ 
seconds and thus the period is TÕ seconds and the frequency is 
1/TÕ.

Now, the reception point also corresponds to

! ! !

ct' = ! (ct " #x) = ! cnT
1" #

"
# 2cnT
1" #

$ 

% 
& ' 

( 

   = ! cnT
1" # 2

1" #
= ncT' = ! cnT(1+ #)

Using

! ! ! !
! =

1

1" # 2

we get
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! ! ! ! T ' =
1+ !
1" !

T = kT

which is the standard Doppler effect for light. 

How Do We Talk to Each Other in this New Relativistic World?

In this new world what happens if we try to tell a story?

In particular, these are some of the words are no longer usable?

! where, when, speed, distance, time interval, 
! simultaneous, same place, length, etc ...

If we want to use such words, then each reader (other observers) 
must first use the Lorentz transformations to translate the 
story before trying to read it!

The only words (concepts) that we are allowed to use if we do 
not want to do any translations are

! ! interval, c, number of events

Not having grown up in this new world, we would find it very 
difficult to tell such a story.

The Famous Paradoxes

The Twin Paradox - Let me state this problem in a "bad" way, 
i.e., a way that leads to the so-called paradox. Then we will 
state it correctly and the paradox will disappear and we will be 
able to draw the correct conclusions. This might be a lesson for 
life also !

Statement #1 - Two twins are traveling relative to each other 
with speed v. Time dilation says that the clock of the "moving"  
twin should tick slower (the time between ticks is larger). 
Since each twin considers herself to be at rest, the other twin 
should have a clock that runs slower and hence the other twin 
should be younger. Which twin is younger? There is no definite 
answer to the question as posed since we do not know which twin 
is moving (changed reference frames - has accelerated) and hence 
we have a supposed paradox.

Statement #2 - Two twins have been together since birth (they 
have been on the same worldline - in the same frame of 
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reference). At one point in time, one of the twins, gets into a 
rocket ship and changes her frame of reference - changes her 
velocity - experiences a period of acceleration). The twin in 
the rocket ship travels to a distant star and then changes her 
frame of reference again ( reverses her velocity - accelerates 
for a period of time). The twin in the rocket ship travels back 
to the earth and then  changes her frame of reference again 
( come to rest on the earth - accelerates for a period of time). 
Finally, the two twins remain together again (in the same frame 
of reference - on the same worldline).

Which twin, if any, is younger? This description is represented 
by the spacetime diagram below:

! !
1 2 4 653

1

2

3

4

5

6

7

8

9

10

ct

x

light-years

light-years

! = 0.8

worldline
of stay at
home twin

no reference
frame
changes

outgoing worlding
of moving twin

reference frame change

incoming worldline
of moving twin

reference frame change

distance to star

1

2

4

6

3

"

5

On this diagram #=0.8 and " =1.67. The respective time axes have 
been calibrated. Each twin sends one signal per year (by their 
own clock) to the other twin.

While they are separating, the k-factor says that

! ! !
fobserved= freduced=

1! "
1+ "

1 =
1
3

 per year

While they are coming back together, the k-factor says that

! ! !
fobserved= fincreased=

1+ !
1" !

1= 3 per year

It is clear from the diagram that both twins see these different 
rates during the designated periods. 

For both twins the reduced rate starts immediately. 
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However, the switch over to the increased rate takes place at 
different times according to each observer. They are not 
identical observers and thus we should not expect identical 
results from their measurements.

For the moving twin, the switchover takes place exactly at the 
midpoint of the trip or at year 3 (as can be seen in the 
diagram). For the stay-at-home twin, however, the switchover 
take place at year 9.

Thus the moving twin sees 3 x 1/3 + 3 x 3 = 10 signals from the 
stay-at-home twin and thus knows that the stay at home twin is 
10 years older and she is only 6 years older

The stay-at-home twin sees 9 x 1/3 + 1 x 3 = 6 signals from the 
moving twin and thus knows that the moving twin is 6 years older 
and that she is 10 years older

Both agree and this there is no paradox. The traveler ages less 
because moving clocks(clocks that have changed frames of 
reference) run slower. 

Pole in the Barn

In this case we have the following situation - two farmers have 
a barn which is 10 meters long in their rest frame (unprimed). 
The farmers are standing at the left and right doors of the barn 
(the doors are open).

A pole carrier has a pole of length 12 meters in her rest frame 
and is carrying it horizontally while she runs towards the barn 
with a speed given by #=0.8. This means that " =1.67.

If we believe all this relativity and length contraction stuff, 
then the farmers think the pole is

! ! ! !
Lpole =

L' pole

!
= 9.8meters

However, the pole carrier thinks the barn is only

! ! ! !
L' barn=

Lbarn

!
= 8.0meters

This means that, according to the farmers, the pole should be 
able to fit into the barn. The pole carrier, however, say no 
way, the barn is much too small. 
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A possible spacetime diagram for this experiment is shown below.

! ! ! 1 2 4 653

1

2

3

4

5

6

7

8

9

ct

x

! = 0.8

000000

0

0

0

0

0

0

0

0

0

ct'

x'

10

event #4

event #3

event #2

event #1

time
pole
in the
barn

worldline
of left
door of
barn

worldline
of right
door of
barn

worldline of rear of pole

worldline of
front of pole

Is there any correct answer to this dilemma? To answer the 
question, we label 4 crucial events:

! ! event #1 = front of the pole enters the barn
! ! event #2 = rear of the pole enters the barn
! ! event #3 = front of the pole leaves the barn
! ! event #4 = rear of the pole leaves the barn

These events are clearly shown on the diagram.

Now if t 3 > t 2 then the pole is completely within the barn for 
the period of time t 3-t 2.

It is clear from the diagram, that according to the farmers the 
pole is within the barn for a short period of time!

The pole carrier disagrees, however. For the pole carrier, 
tÕ 2 > tÕ 3 and the pole is never completely within the barn. 

There is a disagreement between the two sets of observers 
because the time order of the two crucial events (namely 2 and 
3) has reversed.

Thus, both are correct. 
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The pole is within the barn and not within the barn depending on 
your frame of reference. Relativity is subjective, that is, 
dependent on the observer information in certain cases. 
Relativity allows different observers to tell differing stories 
like this when time order reverses. The time order reversal is 
OK in this case because events 2 and 3 are spacelike separated 
and thus reversing their time order cannot upset causality. 
There is no paradox! 

Faster than Light

What happens if we allow some signal to go faster than the speed 
of light?

Consider the following story. 

Sam is walking down the path towards Sharples. As he passes near 
Clothier tower a stone block falls off the tower and lands on 
his head, killing him. So Sam is now lying in heap at the base 
of Clothier tower. Soon after that incident, Sally comes along. 
Sam is Sally's good friend and she is distraught when she sees 
Sam lying in a heap. Sally is walking past Sam with some speed  
u  (she is in a different frame of reference). Now, Sally 
understands Special Relativity. Sally has in her possession a 
special device that can send a signal to someone on the other 
side of the universe at a speed > c if they are in the same 
frame of reference. So Sally sends out a signal indicating what 
happened to Sam. The signal is received on the other side of the 
universe by George(in the same frame of reference as Sally). He 
is  now desperate to tell Sam so he can avoid the stone block, 
but Sam is in a different frame and cannot receive his signal. 
So he tells the story to someone in Sam's frame, namely, 
Samantha. Samantha also happens to have one of those devices 
that sends the speedy signal and she sends a signal to Sam.

The entire sequence of worldlines with the associated events is 
shown in the diagram below:
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! !

Sam

Samantha

George

Sally

line of
constant
time for
Sam and Samantha

line of constant
time for George and Sally

signal with v > c
moving forward
in time for
Sam and Samantha

signal with v > c
moving forward
in time for
George and Sally

worldline

worldline

worldline

worldline

2

3

4

5

6

7

1

The events are:

! ! event #1 - Sam gets killed
! ! event #2 - Sally sees Sam
! ! event #3 - After patiently waiting Sally sends a v > c 
                     signal to George
! ! event #4 - George receives the signal
! ! event #5 - George tells Samantha
! ! event #6 - Samantha patiently waits and then send a 
                     v > c signal to Sam
! ! event #7 - Sam receives the signal from Samantha,  
                     realizes he is about to die and stops 
                     walking, thus avoiding the block and 
                     subsequent death

Questions:

If Sam is not dead, why would Sally send any signal?

If Sally does not send a signal making all the other stuff 
happen, then why would Sam stop?

If Sam has no reason to stop, he then gets killed and Sally has 
a reason to send the signal.
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Which is it?

We have what is called a closed causal loop here. There is no 
logical way out of this loop. 

Does that mean it cannot occur, i.e., that no signal can travel 
faster than light?

or

Is there some other explanation?

General Relativity

In special relativity we found that the spacetime interval or 
just "interval" between two events

! ! !

#1: (x, y,z,ct )

#2: (x + ! x, y + ! y,z+ ! z,c(t + ! t))

is given by

! ! ! ! s2 = c2! t2 " ! x2 " ! y2 " ! z2

We can generalize this result to

! ! !
Δs2 = gijΔxiΔxj

j =0

3

∑
i =0

3

∑
where

! ! !

x0 = t , x1 = x , x2 = y , x3 = z

g0 0 = 1= ! g1 1 = ! g2 2 = ! g3 3

gij = 0 if i " j

In the case of special relativity, this is just a change in 
notation and all the g ij  (called the metric components) are 
constants.

The equation for the light cone for the event (x,y,z,ct) can be 
expressed 

! ! ! ! s2 = c2! t2 " ! x2 " ! y2 " ! z2 = 0

This says that spacetime itself is "flat". This means that the 
shortest distance between two points in space is a straight 
line.

Now what happens if the metric components g ij  are not constants 
but are functions of space and time?

First, the Lorentz transformations are no longer valid. 
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Second, the "light cone" will look different at different points 
in spacetime.

Third, spacetime itself is "curved". This means that the 
shortest distance between two points in space is not a straight 
line.

Einstein in his theory of gravitation (called General 
Relativity) proposed that

! ! ! ! F(gij ) = G(Energy, Momentum)

i,e., that the metric components g ij , which determine the shape 
of the light cones in spacetime, are determined by the 
distribution of energy and momentum in spacetime 

or 

the very structure of spacetime is determined by the energy 
density in spacetime.

A result of the theory is that light would be affected by 
gravitational fields.  The following predictions were made and 
have been confirmed experimentally :

If we place a light source at the top of a tower and shine the        
light downwards, then the change in the strength of the        
gravitational field as we go from the top to the bottom of the        
tower causes a gravitational redshift such that

! ! !

fh+! h " fh
fh

#
GM
Rearth

2 ! h # 10"1 4   for a 10 m tower

If we place a clock at the top of a tower and a clock at the        
bottom, then because of the difference in the strength of the        
gravitational field between the top and the bottom of the tower        
the clocks run at different rates - called the gravitational 
time dilation

! ! !

! h+ " h # ! h

! h

$
GM
Rearth

2 " h

If light passes by a large mass (like a star) it does not travel        
in a straight line but is bent. The amount of bending has two        
observable consequences:
      If a star is observed when the sun is not in the way and              
      then when the light would just pass by the sun, the 
      observed difference in direction to the star is about 1.75 
      seconds of arc.

!  If a signal is sent from Earth to Venus with the sun in             
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      between, there is a time delay due to longer(bent) paths 
      of motion of about 1.1x10 -4  sec.

Galaxies can cause gravitational lensing which results in double        
images for distant stars.

The long axis of the planetary orbit ellipse in the solar system        
precesses - for mercury this is about 43 seconds of arc per        
century.

All particles in this theory are free particles, i.e., there are 
no forces. 

All particles move along geodesics, which are the path of 
shortest interval in spacetime. 

The geodesics for a given spacetime are determined by the metric 
components. So the distribution of energy determines the metric 
components which in turn determines the geodesics and particles 
move on geodesics.

In flat spacetime (think of a plane in space) the geodesic is a 
"straight"  line. In fact, the geodesic is always the 
"straightest" line in a given spacetime. In curved spacetime 
(think of the surface of a sphere) the geodesic is not a 
straight line(great circle on the sphere).

If we move a vector "parallel" to itself over a closed curve in 
flat spacetime it does not change its direction.

If we move a vector "parallel" to itself over a closed curve in 
curved spacetime it does change its direction.

If I turn off gravity and throw an eraser, then it follows the 
geodesic in this "flat" spacetime which is a straight line.

If gravity is present, then it follows the geodesic in this 
"curved" spacetime which is a parabola.

The planetary elliptical orbits in space are the geodesics for 
the 4-dimensional spacetime near the sun.

All of these result have been confirmed experimentally.
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Black Holes

In special relativity the light cone structure of spacetime 
looks like

! ! !
This what we mean by "flat space" ....the light cones are the 
same everywhere.

What happens, however, if we observe a light cone structure of 
spacetime that looks like

! !
Then, to the left we have flat spacetime, but to the right 
something strange is happening. The left side of the light cone 
is rotating clockwise. 

This means that access to regions to the left is being 
restricted (takes longer to get there). 

As we go further to the right, we reach a point (arrow) where 
the left side of the cone is vertical and all of space to the 
left is no longer accessible. This point is on a surface called 
an "event horizon". 

Once some observer crosses this surface we can no longer see 
them(there is an infinite redshift) and they (and light) can no 
longer get to the back across the surface (hence the name 
"black" hole).  

The observer can only proceed(remember must stay inside forward 
cone) to the right where the light cones tilts even further.  
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The end result is the light cone being a single line and the 
observer having no choice about future motion. This point is 
called a "singularity". 

Long before reaching the singularity, the tidal forces become so 
large that any object is torn apart.

These radical solutions to Einstein's equation have now been 
confirmed experimentally (via the radiation coming from matter 
falling into the black hole) and are thought to exist at the 
center of all galaxies.

In a static black hole as just describe, the event horizon and 
the infinite red shift surface are the same surface and energy 
can only pass through in one direction.  

If the black hole is rotating, however, the event horizon and 
the infinite red shift surface are not necessarily the same 
surface. The regions between an infinite red shift surface and a 
event horizon is called the ergosphere. 

It is possible to extract energy from the ergosphere as follows:

! a spaceship falls from infinity into ergosphere along an 
     orbit with positive energy

     once there, using a spring-loaded device we eject a brick 
! into an orbit with negative energy

     the spaceship recoils into a new orbit with larger positive 
! energy

     energy is constant(conserved) so the spaceship emerges with 
! more energy then it went in, but the black hole + brick 
     have lost energy

A very tricky and dangerous maneuver.

Now it is possible to follow a worldline that is everywhere 
timelike(allowed) such that one passes through the ergosphere 
and the particle emerges before it entered ("t< 0).

The time change can be made arbitrarily large by completing 
orbits inside the ergosphere   ..... this is a model of a time 
machine for travel to the past!!
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This violates causality, however, and results in a logical 
contradiction.

Consider the particle to be a signal (a signal rocket) that is 
emitted at t=0 by an apparatus located far from the rotating 
black hole (where spacetime is flat), but is received by this 
same apparatus at an earlier time, say t = -2.

Suppose the apparatus is programmed with the following 
instructions:

(1) emit a signal if the signal is not received before t=0
(2) do not emit a signal if the signal is received before t=0

This implies a logical contradiction with emission at t=0 and 
reception at t=-2!

Basic Ideas of Classical Kinematics and Dynamics (A Quick Tour)

Kinematics (or the study of motion in time)

Position  
!
r (t)  is defined as a vector from the coordinate origin to 

the 3-dimensional point where the object is located. In 1-
dimension we have x(t).!

The goal of all classical physics is to determine the position 
of an object as function of time.
!
Position answers the "Where" question for the events we have 
been discussing.
!
Velocity  

!
v(t)  is defined as a vector in the direction of the 

change of the position vector and having a magnitude given by

! ! !
 

!
v(t) = lim

! t" 0

!
!
r

! t
or v(t) = lim

! t" 0

! x
! t

(1 dimension)

The direction of the velocity is always tangent to the path of 
motion.
! !
Velocity tells us how fast the object is moving and in what 
direction.

If the velocity is constant this means both its magnitude 
(speed) and direction are constant because it is vector. This is 
the easy case, for example, suppose v=+10 m/s toward+x and x=2m, 
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where will the particle be 1 sec later? Clearly, the answer is 
x=12m since 12=2+10x1 = x(0)+v"t.

If the velocity is not constant the situation is more 
complicated (Physics 7). If, however, I can tell you that the 
average velocity over the next second = 8 m/s, then the rule
12=2+10x1 = x(0)+v"t still works.
  ! !
So, in general, we have
! ! ! x(t + ! t) = x(t) + v(t)! t

in 1-dimension where v(t) = the average velocity in the interval 
"t. In 1-dimension direction is indicated by ± signs.

In 2-dimensions, we must use vectors, so that we write
! ! !  

!
r (t + ! t) =

!
r (t) +

!
v(t)! t

Why can we still write "t?

Acceleration is defined as a vector in the direction of the 
change of the velocity vector and having a magnitude given by

! !
 


a(t) = lim

! t" 0

!

v

! t
or v(t) = lim

! t" 0

! v
! t

(1 dimension)

It is a generalization of previous equation for velocity. 

Physicists (along with everyone else) like to generalize ideas 
as long as they can get away with it ... it is easy...and you do 
not have to think up anything new.

We then have (as with velocity)
! ! !  

!
v(t + ! t) =

!
v(t) +

!
a(t)! t

Now, suppose I interact with 2 different bodies in "same"  
manner, i.e., hang the same object over a pulley and attach it 
to the 2 bodies with a string.

We define stuff in each body by seesaw balancing such that the 
amount of stuff in 2 bodies is identical if the seesaw balances 
and ratio of the stuff in two bodies is given by the inverse 
ratio of the distance from the pivot when the seesaw balances. 
Stuff = mass = m!

We note that(experiment) says

! ! !

a1

a2

= constant=
stuff in 2
stuff in 1

=
m2

m1
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Whenever simple results like that come out of an experiment, 
physicists(Newton and Galileo in this case) say that something 
profound must be going on here........

In this case, they turned the equations around and said
! ! ! m1a1 = m2a2

which has something to do with my "same" interaction!!!

So given the acceleration, we can calculate the velocity and 
then calculate the position and get the answer we are looking 
for .... the process uses calculus  ......   that is why Newton 
invented it.

But how do we find the acceleration from first principles .... 
remember that is what theorists do !

This leads us into a discussion of  Dynamics ........

Newton’s Laws (the crowning achievement of classical physics)

A body at rest is not moving! There is no difference between a 
body at rest and a body moving with constant velocity since we 
can always change our frame of reference and then the body with 
constant velocity looks like it is at rest (and the body that 
was at rest now looks like it has a constant velocity).
! !
A body is interacting with its surroundings in some manner when 
we see a changing velocity or an acceleration.
!
Now push(or pull) on object and watch it accelerate. It is clear 
that is clear that I can make the body have a smaller or larger 
acceleration depending on the strength of my interaction with 
it. It is also clear that my interaction is directional ... it 
produces a directional or vector quantity  ... the acceleration.
! ! !
This leads to the concept of a force. Force is a vector quantity 
that somehow represents and quantifies my interaction with the 
body. Since in the earlier experiment, my interaction in the two 
cases was the "same", I must have been exerting the same force. 
! !
This led Newton to postulate the relationship
! ! ! !  

!
F = m

!
a

so that in the earlier experiment I was exerting the same force!
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Be careful here! Is there any new physical content to the 
introduction of the concept of force or is all the physics 
contained in the acceleration? I can measure the acceleration! 
Can I measure the force or do I just infer it from a measured 
acceleration?

Newton’s Laws

(1)  An isolated body has no acceleration
(1Õ) A body at rest or moving with constant velocity 
       remains at rest or moving with constant velocity 
       unless it interacts with something
     Is there any real content?
(2)  

!
F = m

!
a   Is this simply a definition of the force!

(3) If body A exerts a force on body B, then body B exerts an             
equal and opposite force on body A (here is real content!)

Energy
!
Most dynamics problems of the everyday world can be solved using 
NewtonÕs laws. But they are not suitable for generalization 
beyond the realm of everyday experience.

In order to find the rules and laws that are appropriate in 
other regimes of interest like very high speeds (SR) and very 
small distances (QM) we must find a different way of thinking 
about the universe. This new way is based on NewtonÕs laws so 
there is no new physical content, but it will be possible to 
extend to meaning of the new laws so that new physical content 
and thus new physical theories can be formulated.

Energy is one of these new concepts that allows generalization.
!
We first define kinetic energy or energy due to motion as

! ! !
K =

1
2

mv2

Now we do an experiment. We take any object raise it up to some 
height h above the ground and then release it. We find the 
following relationships:

! ! !

vground
2 = 2gh           g= 9.8 m/s2

v(t) = gt

y(t) = h !
1
2

gt2

v2(t) + 2gy(t) = constant
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This last result is the key. As we said earlier, much of 
theoretical physics is a search for invariants. We saw a couple 
in SR. When studying dynamics, invariants are quantities that 
are constant in time. The last experimental relation can be 
written

! ! !
1
2

mv2 (t)+ mgy(t) = constant

K +V = E
where we have defined two new energies

Potential energy:
! ! ! V = mgy

Total energy:
               E = K + V
The last experimental result then allows us to postulate

! ! The total energy is a constant of the motion

The kinetic energy K and the potential energy V are not constant 
during the motion. In fact, they are constantly changing into 
one another,i.e., there is an exchange between K and V during 
the motion.

Momentum  is another one of the new concepts. It is a vector 
quantity.

It turns out that velocity is not the important dynamic 
variable. How can we see this?

Suppose we have a hill with two dump trucks at the top. One of 
the dump trucks is filled with sand and the other is empty.
! ! ! !
We know from experiment that the velocity is the same for 
different trucks when they reach the bottom of the hill or they 
have the same acceleration ... the acceleration seems to be 
independent of the amount of stuff in the trucks (a property of 
the gravitational interaction).

Now we ask this question?

Which of these two trucks would you want to attempt to stop at 
the bottom of the hill?

Clearly the answer is the truck with the least stuff or the 
smaller mass.

Special Relativity Notes               Fall 2008                  John Boccio

                                                                     Page 62



So we define a new dynamical quantity
! ! !  

!
p = m

!
v =  linear momentum

NewtonÕs second law then becomes

! ! !
 


F = lim

! t" 0

!

p

! t
= lim

! t" 0

! (m

v)

! t
which for a constant mass system becomes

! ! !
 

!
F = lim

! t " 0

!
!
p

! t
= lim

! t " 0

! (m!
v)

! t
= m lim

! t " 0

!
!
v

! t
= m

!
a

as before.

Therefore we now restate NewtonÕs laws as:

    The linear momentum is conserved for an isolated body  !
!
p = 0  

     

!
F = lim

! t" 0

!
!
p

! t

The total momentum of an isolated system is a constant

               

 

!
p1 +

!
p2 = constant

!
!
p1 + !

!
p2 = 0

!
!
p1

! t
= "

!
!
p2

! t
0

!
F12 = "

!
F21

So for an isolated system we have a conservation law for linear 
momentum, which we can generalize to a much wider range of 
phenomena.

So, here is the way scientists of that day thought....

The classical universe followed well-defined laws. Everything 
was, and is, predictable. If we only find the force, know the 
masses,positions,and velocities of all the objects under 
consideration at one single time, then all is predictable from 
then on!!

The universe is a gigantic Newtonian clockwork. Cause and effect 
rule. Nothing is by chance. Everything is ultimately 
accountable.

Perfect determinism. The laws of physics are to be obeyed, 
because it is impossible to disobey them. The is no room for 
free will, salvation and damnation, or love and hate. Even the 
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most trifling thought has been determined long ago. You might 
have imagined that you are a free-thinking person, but even that 
imagination is nothing but the universal clockwork turning in 
some yet-to-be-discovered way.  So now you are probably 
thinking...glad they found out those ideas were wrong and got 
rid of them! Just remember it is always dangerous to make quick 
judgements like that, especially when you are not sure what will 
come along to replace it.
!
And then there was light.......... and Special Relativity 

Our derivation of SR has shown that:

(1) We lose position and time as separate quantities, which is 
an indication that everyday experience may not carry over into 
these new realms.
! !
Why didnÕt physicists notice before? It generally is simply a 
matter of the accuracy and precision available to 
experimentalists, i.e., prior to this century, experimental 
measurements of the speed of light could not say that it was not 
infinite. If it were infinite, then SR would reduce to GR and 
Newtonian physics would still be valid.
! !
(3) We must choose our observables with some care.....
! ! !
(4) We must use conservation laws to give us the physical 
quantities that  represent really what we can know about 
systems.
! !
(5) We can fully extend classical physics validity to all 
speeds.

(6) We must rethink our world view (happens all the time in 
physics)
!
    Everyday experience cannot be our guide
! !
    Fine for world of everyday objects
!
    We must be prepared to give up preconceived ideas because 
    they are based on our experiences
!
    We must trust measurements to tell us what is going on but 
    we must define them carefully 
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But classical physics still hangs on, albeit modified....... 

Everything works so well ...............

What does that statement really means to a physicist..........

! We only know what we measure ................. philosophy?

In this world motion is a continuous blend of changing 
positions. The object moves in a flow from one point to another.

Science is a reasonable, orderly process of observing nature and 
describing the observed ÒobjectivelyÓ.

There is a conviction that whatever one observed as being out 
there was really out there. The idea of objectivity being absent 
from science is abhorrent to any rational physicist.

One firmly believes in the passive(non-disruptive) observer. 
Humans are creatures of the eye. They  believe what they see.

So summarizing, classically

[1] Things move in a continuous manner.
[2] Things move for reasons. The reasons are earlier causes and 
    all motion is determined and predictable.
[3] All motion can be analyzed or broken down into its 
    component parts. Each part plays a role in the giant 
    machine called the universe. The complexity of this machine 
    can be understood in terms of the simple movement of its 
    various component parts.
[4] The observer observes and never disturbs. All experimental        
    errors can be analyzed and understood.

All of these ideas will turn out to be false!!!!!

Now back to SR.

What happens to momentum and energy when we enter the realm of 
SR?

First pass we will use experiment to point the way. Later we 
will derive these results from first principles using the 
interval and linear algebra.

The following result has been confirmed by experiment. 
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The force felt by a charged particle in electric and magnetic 
fields is given by the Lorentz force law

! ! !
 

!
F = q

!
E +

!
v
c

!
B!

"#
$
%&

where  
!
v  is the particle velocity. Consider the experimental 

setup below.

! ! !

E

B     into paper

R

In the box region the electric and magnetic fields are adjusted 
so that the force = 0 for a particle moving along the dotted 
line with a definite velocity. The electric force always points 
downward and the magnetic force is always perpendicular to the 
velocity direction(upward in the box for a particle moving along 
the dotted line). This means that particles with a particular 
velocity, namely,

! ! !
q(−E +

v
c

B) = 0→
v
c
=

E
B

pass undeflected though the box. The box is called a velocity 
selector. Outside the box there is no electric field, so the 
particle moves on a circular path (Force always perpendicular to 
the velocity) with a radius of

! ! ! !
R =

pc
qB

So that measuring the radius corresponds to measuring the 
relativistic momentum. Thus, in the same experiment we can 
measure both the velocity and momentum independently and thus 
determine the relationship between them. 

A plot of the experimental results looks like
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! ! !

p

v

m vo (Newton)

c

This corresponds to the result

! ! !
p = ! m0v     where   ! =

1

1" # 2

instead of the Newtonian assumption that

! ! ! ! p = m0v

where m 0 is the rest mass.  It is the only valid mass for a 
particle since we measure mass when a body is at rest. Any 
measurement of mass when a particle is moving is really a 
measurement of its momentum and thus it would be incorrect for 
us to assume that any different mass value can be used for a 
moving object. Thus, there is no such thing as the  "relativistic 
mass".

An alternative (more rigorous theoretical derivation):

In Newtonian physics we had 
 


p = m0


v . We start by figuring out how 

the relationship between momentum and velocity is modified by 
special relativity.

We assume the momentum and energy are conserved in each frame 
(they are not invariants however) and we assume that the 
relationship between velocity and momentum is given by  

!
p = m0! (v)

!
v  

where for agreement with the Newtonian result for small 
velocities we must have lim

v! 0
" (v) = 1. Now consider a glancing 

elastic collision(only affects y-velocities) of the form

! ! !

A

B x

y

In a frame moving along the x-axis with A, A looks like
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! ! !
x

y
before after

u o u'

and in a frame moving along the x-axis with B, B looks like

! ! !

x

y
before after

u o u'

These two frames are assumed to move with relative velocity v 
along the x-axis.  We have assume above that the collision is 
completely symmetrical. Each particle has the same y speed u 0 in 
its own frame before the collision and uÕ after the collision. 
The complete collision looks like the figure below

! !

before after

A

B

B

B

B

A

A

A

v

vv

v

u'

u'
!

u'

u'
!

u

u
!
o

o

u o

u
!
o frame moving with A

frame moving with B

After the collisions the y-velocities have reversed their 
directions as shown. The situation remains symmetrical. 

The y-velocities of the other particle in each case follow from 
the velocity addition formula for motion perpendicular to the 
relative motion of the frames. If the speed of A and B in their 
own frames is u y and the relative velocity is v, then the 
y-velocity of the other particle is
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! ! ! !

u' y =
uy

! 1"
v(0)
c2

# 
$ 

% 
& 

=
uy

!

In the frame moving with A, the x-momentum is due entirely to B.
Before the collision BÕs speed is

! ! ! !
w = v2 +

u0

!

" 

# 
$ % 

& 

2" 

# 
$ 

% 

& 
' 

1 / 2

and after the collision it is

! ! ! !
w' = v2 +

u'
!

" 

# 
$ % 

& 

2" 

# 
$ 

% 

& 
' 

1/2

Conservation of x-momentum (as seen in the A frame) gives

! ! ! !

m0α (w)v = m0α (w' )v

w = w'→ u' = u0

Note that the factor !  is a function of the total velocity 
magnitude and not just the x-velocity. Conservation of 
y-momentum (as seen in the A frame) gives

! ! !

! m0" (u0)u0 + m0" (w)
u0

#
= m0" (u0)u0 ! m0" (w)

u0

#

" (w) = #" (u0)

Now in the limit u0 ! 0  we have α(u0)→1 and w ! v  which says that

! ! ! !

! (v) = " (v) =
1

1#
v2

c2

Therefore the relativistically correct form of the momentum is 

 
!
p = m0! (v)

!
v .

Now what about relativistic energy? What is the relativistically 
correct form of the energy of a particle?

One way to generalize the concept of energy is to use the 
Newtonian definition of kinetic energy in conjunction with the 
relativistically correct definition of momentum. After Physics 7 
you should be able to follow all steps in the derivation. We 
proceed as follows: the formal definition of kinetic energy is 
given as

!      
 
! K = K " K0 = work doneby force=

!
F #d

!
r

!
r0

!
r

$ =
d
!
p

dt
#d

!
r

!
r0

!
r

$

We found that
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! !
 

!
p = m0! (v)

!
v where ! (v) = (1" #2)" 1/2, # =

v
c

Therefore we have

! !
 
K ! K0 =

d m0" (v)
!
v( )

dt
#
!
vdt =

!
r0

!
r

$ m0

!
v #d " (v)

!
v( )

0

v

$

Since the kinetic energy is zero when the velocity is zero we 
finally have

! ! !
 
K =m0

!
v !d " (v)

!
v( )

0

v

#
Now since
! ! !

 
d(! v2) = d(!


v "

v) =

v "d !


v( ) + !


v "d

v

we can write

!

 

K =m0 (d(! v2) "
0

v

# !
!
v $d

!
v) = m0 d(! v2)

0

v

# " m0 !
!
v $d

!
v

0

v

# = m0 d(! v2)
0

v

# "
1
2

m0 ! d(v2)
0

v

#

   = m0! v2 "
1
2

m0c
2 du

1" u0

v2 /c2

# = m0! v2 + m0c
2 1

!
" 1

%

&'
(

)*

   = m0c
2 !+2 +

1
!

%

&'
(

)*
" m0c

2 = m0c
2(! " 1)

The first thing we should do is check that this makes sense. 
What is the low  velocity limit of this expression?

Using

! ! ! ! = (1" #2)" 1/2 $ 1+
1
2

#2 = 1+
1
2

v2

c2

we have

! ! !
K = m0c

2(! " 1) # m0c
2 1

2
v2

c2 =
1
2

m0v2

as expected. 

If we rearrange this result we have

! ! ! m0c
2 = K + m0c

2 = Energy(motion) + Energy(rest) = Total Energy= E

It is only the total energy that is conserved! 

We thus obtain EinsteinÕs famous relation

! ! ! ! Erest = m0c
2

What is the connection to momentum? Some algebra gives the 
following results for relativistic objects
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! !
pc
E

=
m0! vc
! m0c

2 =
v
c

= " and
E
c

#
$%

&
'(

2

) p2 = m0c( )2

Some questions arise:

How come we do not notice the rest energy in everyday 
experience?

Some numbers:

! ! !

typical kinetic energy = 0.5(1)(1)2 ! 1 Joule
typical rest energy =  (1)(3x108 )2 ! 101 7 Joules

We typically ignore the significantly larger quantity!! The 
reason for this is that in everyday situations the rest energy 
does not change; all the same mass is remains in the system at 
all times. Thus, the rest energy is not a source of possible 
energy to do other things.

However, in microscopic systems like atoms and nuclei, etc, the 
rest mass changes in many interactions and thus this energy 
becomes available for other purposes. Two examples are nuclear 
fission and fusion.

Are there any new predictions we can make from these results?

The two relations above make the following interesting 
prediction:

! ! ! v = c ! " = 1! E = pc#
E
c

$
%&

'
()

2

* p2 = 0 = m0c( )2

or the only objects that can travel at the speed of light must 
have a rest mass equal to zero! However, even though they have a 
zero rest mass, they still possess energy and momentum defying 
the classical equations!

Such a particle has been observed .... it is the photon or the 
particle of light.

Now, in general, when the velocity is changing both its 
magnitude and direction we have 

! ! !

 

!
F =

d
!
p

dt
=

d m0! (v)
!
v( )

dt
= m0

d
dt

!
v

1"
v2

c2

#

$

%
%
%
%

&

'

(
(
(
(

Rectilinear Motion
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!        

 

!
F = m0

d
dt

v

1!
v2

c2

"

#

$
$
$
$

%

&

'
'
'
'

= m0

dv
dt

1

1!
v2

c2

"

#

$
$
$
$

%

&

'
'
'
'

+ m0v
!

1
2

! 2
v
c2

"
#$

%
&'

dv
dt

1!
v2

c2

"

#$
%

&'

3/2

  = m0

dv
dt

1

1!
v2

c2

"

#$
%

&'

3/2 = m0(
3 dv

dt

NewtonÕs law is modified by the factor ! 3  which has a dramatic 

effect as v ! c .  Now suppose that we have a constant force  
F = constant. We can then integrate the equation as follows:

! ! !
Fdt = m0!

3(v)dv " Ft = m0 ! 3(v)dv
0

v

#
Now

! ! !

d
dv

(! v) = ! + v
d!
dv

d!
dv

=
d
dv

1"
v2

c2

#

$%
&

'(

" 1/2

=

v
c2

1"
v2

c2

#

$%
&

'(

3/2 = ! 3 v
c2

d
dv

(! v) = ! + ! 3 v2

c2 = ! 3 1
! 2 +

v2

c2

#

$%
&

'(
= ! 3

Therefore,

! !

Ft = m0 d(!v) = m0

0

v

" !v = m0
v

1#
v2

c2

F2t2 = m0
2 v2

1#
v2

c2

$ v2 =

Ft
m0

% 

& 
' ( 

) 
* 

2

1+
Ft

m0c

% 

& 
' ( 

) 
* 

2 $ v =
dx
dt

=
F

m0c
ct

1+
F

m0c

% 

& 
' ( 

) 
* 

2

t 2

A plot of v versus t is shown below.
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! ! t

v

c

v= F
mo

t (Newton)

relativity

It is clear that no matter how long a constant force is applied 
we still have v < c. Continuing the integration

    

dx =
F

m0c
ct

1+
F

m0c

! 

" 
# # 

$ 

% 
& & 

2

t2

dt ' x =
F
m0

t

1+
F

m0c

! 

" 
# # 

$ 

% 
& & 

2

t2

dt
0

t

( =
F
m0

m0c
F

! 
" 
# 

$ 
% 
& 

2

)
u

1+ u2
du

0

Ft / m0 c

(

 x =
m0c

2

F
) d( 1+ u2 )

0

Ft / m0c

( =
m0c

2

F
1+

F
m0c

! 

" 
# # 

$ 

% 
& & 

2

t2 * 1
! 

" 

# 
# # 

$ 

% 

& 
& & 

A plot of x versus t is shown below.

! !

x

t

relativity

x=ct-
m o

F

c 2

x=
2

1 F
m o

t
2

(Newton)

Whenever, one does complex calculation you should check your 
results by calculating limits where the answer is known.

Letting t !  0 we get
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! !

1+
F

m0c

! 

" 
# # 

$ 

% 
& & 

2

t2 ' 1+
1
2

F
m0c

! 

" 
# # 

$ 

% 
& & 

2

t2

v '
F
m0

t     , a '
F
m0

     , x '
1
2

F
m0

t2     as expected

Letting t !  $ we get
! ! ! v ! c    and    x ! ct   as expected

Digression to 4-Vectors

What is an ordinary vector in 3-dimensional space? 

A vector has many levels of complexity and is a very abstract 
mathematical object. A vector is a mathematical(geometrical) 
object that is representable by two numbers in two dimensions, 
three numbers in three dimensions, and so on. One 
characterization is to specify its magnitude or length and 
orientation or direction - imagine that it is a directed line 
segment. As we shall see, quantum mechanics will be formulated 
in terms of vectors, but they will not be directed line 
segments. 

The Standard Language of Vectors

As we said, in ordinary space, we can represent a vector by a 
directed line segment(an arrow). A straightforward property of a 
vector is multiplication of the vector by a scalar (a real 
number)  

!
C = !

!
A . In this case the magnitude of the vector changes 

and the direction stays the same (it might reverse if & < 0).

Now given two vectors as shown below

! ! ! !

A

B

we define the sum and difference of the two vectors or the 
general property vector addition by the diagrams shown below:
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!     !    A B+                  

A B_

Clearly vector addition as defined above, i.e.,

! ! ! !
 

!
C =

!
A +

!
B

!
D =

!
A !

!
B =

!
A + (!

!
B)

yields a new vector in each case. This new vector can have both 
a different direction and a different magnitude than either of 
the two vectors that are used to create it.

These two properties allow us to define a linear combination of 
vectors as  

!
C = !

!
A + "

!
B , which is also a well-defined vector.

Although this is a perfectly good way to proceed, it will not 
allow us to generalize the notion of a vector beyond ordinary 
space, which is an arena that will turn out to be much too 
confining in our effort to understand quantum mechanics later.

We need to formulate these same concepts in another way. 

Consider the vector shown below:

! ! !

A

x

y

A

A y

x1

1

e

e

^

^

x

y !

In this figure, we have also defined two special vectors, 
namely, 

! ! !

ö e x = unit(length= 1) vector in x- direction

ö e y = unit(length= 1) vector in y- direction

In terms of these unit vectors we can write
! ! !

 
!
A = Ax öex + Ayöey ! !     

where
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! ! !

Ax ö e x = vector of length  Ax  in the x- direction

Ay ö e y = vector of length  Ay  in the y- direction

and the sum of these two vectors equals  
!
A  because of the rule 

for adding vectors that we stated earlier. 
! ! ! !
We now define

! ! !
 

Ax =  component of vector  
!
A  in the x-direction

Ay =  component of vector  
!
A  in the y-direction

From the diagram it is also clear that
! ! ! Ax = Acos! and Ay = Asin!

where

! ! A =  length of vector = Ax
2 + Ay

2   (Pythagorean theorem)

We can then redefine vector addition in terms of components and 
unit vectors as follows:

! !

 


A = Ax öex + Ay öey ,


B = Bx öex + By öey


A +

B = (Ax + Bx)öex + (Ay + By)öey


A !

B = (Ax ! Bx)öex + (Ay ! By)öey

i.e., we can just add and subtract components.

We now define an important new mathematical object using unit 
vectors. It is the scalar or inner product and its symbol is a . 
(dot). We define this operation with a set of rules involving 
the unit vectors:

! !

ö e x ! ö e x = 1= ö e y ! ö e y
ö e x ! ö e y = 0 = ö e y ! ö e x
or

ö e i ! ö e j = " ij =
1        i= j

0        i# j

$ 
% 
& 

        =  Kronecker delta

The inner product satisfies the following relations;

! !
! öei( ) " # öej( ) = ! # öei " öej

! öei + $ öek( ) " # öej +%öem( ) = ! # öei " öej + ! %öei " öem + $# öek " öej + $%öek " öem

Using these defining relations we can determine the scalar 
product of any two vectors as follows
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! !

 

!
A = Axêx + Ayêy ,

!
B = Bxêx + Byêy

!
A!

!
B = Axêx + Ayêy( ) ! Bxêx + Byêy( )

       = AxBxêx ! êx + AxByêx ! êy + AyBxêy ! êx + AyByêy ! êy

       = AxBx(1) + AxBy(0) + AyBx(0) + AyBy(1)
       = AxBx + AyBy

We note that

! !

 

!
A ⋅

!
A = AxAx + AyAy = Ax

2 + Ay
2 = A2 = norm of  

!
A

A =
!
A ⋅

!
A = length of  

!
A

Now looking at the diagram below we can derive another important 
result.

!      !

A

B

!

!
!

A
B

y

x
A

A

B

B

x

y

y

x

We have

! !
 

!
A!

!
B = AxBx + AyBy = AB cos" A cos" B + sin" A sin" B( )

       = ABcos(" A # " B) = ABcos"

so that

! !

 

!
A!

!
B = ABcos"

       = length of  
!
A( ) length of  

!
B( )cos anglebetween

!
A and

!
B( )

       = length of  
!
A( ) length of  

!
B in the direction of  

!
A( )

       = length of  
!
A( ) projection of  

!
B onto the direction of  

!
A( )

Therefore, we have

! !

 

!
B =

!
A ! " = 0¡ !

!
A#

!
A = A2 asbefore

!
B perpendicular(orthogonal) to

!
A ! " = $ / 2 = 90¡ !

!
A#

!
B = 0

or viceversa

if
!
A#

!
B = 0, then

!
A is orthogonalto

!
B
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If two vectors satisfy  
!
A!

!
B = 0 , then they are said to orthogonal. 

If a vector satisfies  
!
A!

!
A = 1, then it is said to normalized to 

one.!

We also have for any vector

! ! !

 

!
A = Ax öex + Ay öey
!
A! öex = Ax öex + Ay öey( ) ! öex = Ax
!
A! öey = Ax öex + Ay öey( ) ! öey = Ay
!
A =

!
A! öex( ) öex +

!
A! öey( ) öey

Generalizing to 3 dimensions we have 
! ! !

 
!
A = Ax öex + Ay öey + Azöez

where the set of three orthonormal vectors   are called a basis 
for the vector space (any vector can be written as a linear 
combination of the basis vectors) and we have

! ! !
ˆ e i ! ˆ e j =

1        i = j
0        i " j

# 
$ 
% 

         i ,  j =  x, y, z

The number of required basis vectors is the number of numbers 
needed to characterize a general vector = the dimension of the 
space.  

The entire collection of vectors we can generate from a basis 
set is called a vector space. 

So in this room, I would need 3 numbers to characterize each 
vector. This room is a small part of a 3-dimensional vector 
space, which is called the universe at an instant of time. 

Completely removing (x,y,z) from our notation(because it limits 
us to a maximum of 3 dimensions) we have

! ! !

 

!
A = Aj

j =1

3

∑ öej

öek ⋅
!
A = öek ⋅ Aj

j =1

3

∑ öej = Aj
j =1

3

∑ öek ⋅ öej = Aj
j =1

3

∑ δkj = AK

so that

! ! !
 

!
A = Aj

j =1

3

! êj = êj "
!
A( )

j =1

3

! êj

Returning to the Discussion of 4-Vectors
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Consider a vector  
!
A  representing some physical variable. Using 

cartesian unit vectors we can write

! ! !
 

!
A = Aj

j =1

3

! öej

The components of the vector Ai , i = 1,2,3 are its representation in 

a given coordinate system. We must choose a coordinate system in 
order to define the unit vectors. The coordinate system is not 
an essential part of the physics however. We can just as well 
use any other coordinate system to define unit vector and the 
vector  

!
A .

In particular, we consider another coordinate system with the 
same origin, but rotated from the first system. In another 
coordinate system we would write

! ! !
 

!
A = A' j

j =1

3

! öe' j

Note that the vector  
!
A  has not changed; only its representation 

(components) in the new system (new basis) has changed. We 
relate the two representations (components) as follows:

! ! !

Ai
i

! ö e i = A' i
i
! ö e ' i

ö e ' j " Ai
i
! ö e i = ö e ' j " A' i

i
! ö e ' i = A' i

i
! ö e ' i "ö e ' j A' i

i
! #ij = A' j

A' j = Ai
i
! ( ö e ' j "ö e i )

The coefficients öe' j ! öei( )  are numbers that are determined by the 

specific rotation. They are independent of the vector  
!
A . We now 

redefine a vector:

! ! A vector in 3 dimensions is a set of 3 numbers Ai{ }

 
 (components) which transform under a rotation 

 
 of the coordinate system according to


 
 
 

A' j = Ai

i
! ( ö e ' j "ö e i )

Any quantity which is unchanged by a coordinate transformation 
is called an invariant of the transformation. Since the 
principle of relativity requires that the results of physical 
theories (physical laws) be independent of the choice of 
coordinate system (must be inertial however), all physical laws 
must involve only invariants.
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The dot product of two vectors is a scalar. Scalars are numbers 
that are independent of our choice of coordinate system. This 
gives us a method for constructing invariants. The dot product 
produces an invariant in the sense that
! ! !  

!
A'!

!
B' =

!
A!

!
B

In particular, the norm or length-squared of a vector,  A
2 =

!
A!

!
A ,  

is a scalar invariant. We now define a rotation.

! ! A rotation is any transformation which

 
 leaves  r

2 =
!
r !

!
r = x2 + y2 + z2  invariant

In Minkowski 4-dimensional spacetime we define vectors in a 
different manner. Both the ordinary space 3-dimensional and the 
Minkowski 4-dimensional vector definitions are special cases of 
a more general definition. The ordinary 3-dimensional definition 
corresponds to Euclidean geometry.

In Minkowski 4-dimensional spacetime we write the spacetime 
4-vector in this way
! ! ! !  

!
s = (ct,x,y,z)

and the scalar product of the vector with itself (its norm) as
! ! !  

!
s !

!
s = c2t 2 " x2 " y2 " z2 (note the minus signs)

This is a scalar invariant under Lorentz transformations(it is 
the spacetime interval). In fact, any set of 4 numbers 

 
!
A = (A0,A1,A2,A3)  represents a Minkowski 4-vector if  its norm 

defined by
! ! !  

!
A!

!
A = A0

2 " A1
2 " A2

2 " A3
2

is a scalar invariant. In addition, if a set of 4 numbers is a 
4-vector then the components transform between frames via the 
Lorentz transformations as

! ! !

A'0 = ! (A0 " #A1)

A'1= ! (A1 " #A0)

A'2 = A2

A'3 = A3

for relative motion along the 1-axis.

It is in this sense that spatial and time variables are not 
distinct entities but are simply different components of the 
same vector and transform into each other under Lorentz 
transformations.

This corresponds to a non-Euclidean geometry.
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Another 4-vector is  d
!
s = (cdt,dx,dy,dz)  since it is the difference of 

two 4-vectors. Hence, its norm
! ! ! ds2 = c2dt 2 ! dx2 ! dy2 ! dz2

is a Lorentz invariant.

A related quantity of great importance is

! ! !
d! 2 =

ds2

c2

(dividing an invariant by an invariant means that we still have 
an invariant). In particular,

! ! !
d! 2 = dt2 "

1
c2 (dx 2 + dy2 + dz2)

Consider a displacement  d
!
s  between two events on the worldline of 

a moving particle. In the rest frame of the particle, 
dx = dy= dz= 0  and hence d! = dt  in the particle rest frame (the 

events are separated only by time). d!  is the time interval 
between the two events measured in the rest frame and is thus 
the proper time. It is a Lorentz invariant.

Time Dilation (the easy way)

Consider and observer at rest in x',y',z',t '   system. In this system 

the proper time between two events is d! = dt ' . In the x,y,z,t  system 

moving with velocity v relative to the first frame, the time 
interval between the same two events is given by

! ! !
dt 2 −

1
c2 (dx2 + dy2 + dz2)

But d!  is an invariant or its value is the same in all frames. We 
therefore have

! ! !

dt'2 = dt2 !
1
c2 (dx2 + dy2 + dz2)

dt'
dt

" 
# 

$ 
% 

2

= 1!
1
c2

dx
dt

" 
# 

$ 
% 

2

+
dy
dt

" 
# 

$ 
% 

2

+
dz
dt

" 
# 

$ 
% 

2" 

# 
& $ 

% 
' 

         = 1!
v2

c2 =
1
( 2

Therefore, dt = ! dt '  which is the time dilation formula. 
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We did not need to introduce hypothetical experiments or  
discussions of simultaneity to obtain this result. That is an 
example of the power of using 4-vectors.

Other 4-Vectors

Using  d
!
s = (cdt,dx,dy,dz)  and dividing by the Lorentz invariant dτ  

yields another 4-vector

! ! !
 

d
!
s

d!
= c

dt
d!

,
dx
d!

,
dy
d!

,
dz
d!

"
#$

%
&'

=
!
u = 4 ( vector velocity

Its norm is an invariant so it can be calculated by in any 
frame. We pick the rest frame where
! ! !  

!
u = c,0,0,0( )→ u2 = c2 = invariant

For a moving particle where the x,y,z,t system moves with 
velocity -v relative to the rest frame of the particle we have 
dt = ! d"  and thus

! ! !
 

!
u = c

dt
d!

,
dx
d!

,
dy
d!

,
dz
d!

"
#$

%
&'

= ( c,(
"
v( )

Since the rest mass m0  is a Lorentz invariant,  m0

!
u  is a 4-vector 

with dimensions of momentum. We define the 4-momentum as

! ! !
 


! = m0


u = m0" c,


v( ) =

E
c

,

p#

$%
&
'(

We already saw that

! ! ! ! 2 =
E
c

"
#$

%
&'

2

( p2 = m0c( )2
= invariant

Since the variables  E and
!
p  are components of a 4-vector the must 

obey the Lorentz transformations

! ! !

E'
c

= ! E
c

" #px
$ 
% 

& 
' 

p' x = ! px " #
E
c

$ 
% 

& 
' 

p' y = py

p' z = pz

We will use these relations to prove that a magnetic field is 
observed in frames moving relative to fixed charged particles 
whereas only electric fields are observed in the rest frame of 
the charged particles. Magnetic fields are a consequence of 
special relativity!!
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Finally we confirm our identification of the energy. We define 
the 4-vector Minkowski force as

! ! !
 

!
! =

d
!
"

d#
=

d$m0c
d#

,
d
"
p

d#
%
&'

(
)*

If dt is the time interval in the observerÕs frame corresponding 
to the interval of proper time d! , then dt = ! d"  and we get

! ! !
 

!
φ = γ dγ m0c

dt
,
d
"
p

dt
⎛
⎝⎜

⎞
⎠⎟
= γ dγ m0c

dt
,
"
F⎛

⎝⎜
⎞
⎠⎟

With this construction, the 4-momentum is conserved(constant) 
when the 4-force is zero. This corresponds to energy and 
momentum conservation. If the 4-force is zero in one frame then 
it is zero in all frames and hence if energy and momentum are 
conserved in one frame they are conserved in all frames. In 
Newtonian physics

! ! ! !
 

!
F !

!
v =

dE
dt

where E = total energy. Let us look at the corresponding 
quantity in 4-dimensions

! ! !
 

!
! "

!
u = #

d#m0c
dt

,
"
F$

%&
'
()

"#(c,
"
v) = #2 d#m0c

2

dt
*

"
F "

"
v

$

%&
'

()

Now the scalar product is an invariant and thus we can evaluate 
it in the rest frame of the particle. In this frame  

!
F !

!
v = 0  since 

 
!
v = 0 . We also have

! ! !

d! m0c
2

dt
= ! m0v

dv
dt

" 
# 

$ 
% = 0

since v=0. Therefore

! !
 

!
! "

!
u = 0 = #2 d#m0c

2

dt
$

"
F "

"
v

%

&'
(

)*
+

"
F "

"
v =

d#m0c
2

dt
+ E = #m0c

2

as we indicated earlier. In this sense the momentum and energy 
variables are not distinct entities but are simply different 
components of the same vector and transform into each other 
under Lorentz transformations.

Transformation of the Force

We have

! ! ! !

 


F =

d

p

dt

Fx =
dpx

dt
, Fy =

dpy

dt
, Fz =

dpz

dt
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The Lorentz transformations for 
 


p  and t are given by

! ! !
! p'x = "! px # $"! E / c , ! p'y = ! py , ! p'z = ! pz

! t ' = "! t # $"! x / c

Therefore,

! F 'x =
dp'x
dt '

= lim
! t '" 0

! p'x
! t '

= lim
! t '" 0

#! px $ %#! E / c
#! t $ %#! x / c

= lim
! t '" 0

! px

! t
=

dpx

dt
= Fx

or the force component parallel to the relative frame motion is 
unchanged. It has the same value in both frames.

The transverse components behave differently.

! F 'y =
dp'y
dt '

= lim
! t '" 0

! p'y
! t '

= lim
! t '" 0

! py

#! t $ %#! x / c
= lim

! t '" 0

! py

#! t
=

1
#

dpy

dt
=

1
#

Fy

or a force component perpendicular to the relative frame motion 
observed in the moving frame is smaller by a factor 1/ !  than the 

value determined by observers in the rest frame of the particle.

In this derivation we have used the fact that for small Δt  both 

Δx  and ! E  are proportional to (Δt )2 .

High Energy Particle Physics

A special reference frame is the center of mass or zero momentum 
system frame. It is very useful when discussing high energy 
particle reactions. 

We consider a collision between two particles with rest masses 
m1 and   m2 .  We assume that particle 1 is moving with velocity  

!
u  

in the laboratory system and that particle 2 is at rest in that 
system. We have the energy-momentum 4-vectors

! ! !
 

!
p1 =

E1

c
, p1,0,0!

"#
$
%&

and
!
p2 =

E2

c
,0,0,0!

"#
$
%&

and the total energy-momentum

! ! !
 

!
P =

!
p1 +

!
p2 =

E1 + E2

c
, p1,0,0!

"#
$
%&

In a new frame moving along the x-axis with speed V we have

! ! ! P'1 = ! p1 "
V
c

E1 + E2

c
#
$%

&
'(

, P'2 = P'3 = 0

where 
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! ! ! ! = 1"
V2

c2

#

$%
&

'(

" 1/2

In the center of mass system, V=V CM and  
!
P = 0. This says that

! ! ! P'1 = ! p1 "
VCM

c
E1 + E2

c
#
$%

&
'(

= 0 ) VCM =
p1c

2

E1 + E2

The energy available for physical processes such as the 
production of new particles or inelastic events is the total 
energy in the center of mass system, EÕ. In the center of mass 
system the total energy-momentum 4-vector is

! ! !

E'
c

,0,0,0
! 
" 
# 

$ 
% 
& 

We can find EÕ  by using the fact that the norm of the energy-
momentum 4-vector is invariant

! ! !

E'
c

! 
" 
# 

$ 
% 
& 

2

=
E1 + E2

c
! 
" 
# 

$ 
% 
& 

2

' p1
2

or

! !

E'2 = E1
2 + E2

2 + 2E1E2 − p1
2c2 = E1

2 + E2
2 + 2E1E2 − E1

2 − m1
2c4( )

    = m1
2c4 + 2E1E2 + E2

2

We have

! !
E1 = ! m1c

2    and    E2 = m1c
2        ,       ! = 1"

u2

c2

# 
$ 
% & 

' 

" 1/ 2

Therefore
! ! E' = ! m1 + m2( )c2 =  total energy in laboratory system

and

! ! ! E' = m1
2 + m2

2 + 2! m1m2( )1/2
c2

The fraction of energy available for physical processes is

! ! !

E'
E

=
m1

2 + m2
2 + 2! m1m2( )1/ 2

! m1 + m2

For the special case m1 = m2 = m we have

! ! ! !
E'
E

=
2

1+ !

At low velocity or low energy of the incident particle (the one 
that is moving), we have

! ! ! ! " 1#
E '
E

= 1#  all energy available

Special Relativity Notes               Fall 2008                  John Boccio

                                                                     Page 85



In this case, most of the energy is rest energy and kinetic 
energy is unimportant. In the high speed or high energy limit we 
have

! ! !
E '
E

=
2

1+
E1

mc2

!
2mc2

E1

Thus, the useful fraction of energy decreases as E1
! 1/2 . For 

example, in a 300 GeV accelerator ( 1GeV = 109eV = 1.6! 10" 3J ) an 

accelerated proton ( mc2 ≈1GeV ) colliding with a hydrogen 

target(protons) has

! ! ! !

E'
E

=!
2

300
= 0.082

or only 25 GeV is available for reactions!!! We will show how to 
fix this up shortly.

Let us look at production reactions in another way. Suppose that 
we have two particles that interact with each other(one is at 
rest -- the target) and produce N final particles. The high 
energy available from the incident particle is converted into 
mass of newly created particles. We ask the question: What is 
the minimum energy needed by the incident particle in order to 
produce the final state of N particles?

In the initial state we have

! !

Einc

c
,pinc,0,0! 

" 
# 
$ 

+ mtargetc,0,0,0( ) =
Einc

c
+ mtargetc, p1,0,0! 

" 
# 
$ 

Einc
2 = pinc

2 c2 + minc
2 c4

In the final state we have

! !

 

Ei
i =1

N

!
c

,
!
pi

i =1

N

!

"

#

$
$
$
$

%

&

'
'
'
'

where Ei
2 = pi

2 + mi
2c4 , i = 1,2,3....,N

Now, the norm of the energy-momentum 4-vector is invariant in 
time and across different frames. Therefore

! norm in laboratory before = norm in center of mass after

This gives
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! !

 

Einc

c
+ mtargetc

!
"#

$
%&

2

' p1
2 =

Ei,CM
i =1

N

(
c

!

"

#
#
#
#

$

%

&
&
&
&

2

'
!
pi ,CM

i =1

N

(!
"#

$
%&

2

By definition, however,
 


pi,CM = 0

i =1

N

! . After some algebra we have

! ! ! Einc =
Ei,CM

i =1

N

∑⎛⎝⎜
⎞
⎠⎟

2

− mincc
2( )2

− mtargetc
2( )2

2mtargetc
2

This is a minimum when

! ! ! !
Ei,CM

i =1

N

!
is a minimum or when  

! ! ! Ei ,CM = mic
2

i =1

N

!
i =1

N

!
or all the particles are at rest in the center of mass system 
after the collision (what are they doing in the laboratory 
system?).

Therefore the minimum energy needed by the incident particle 
(this is called the threshold energy) is 

! !
Einc,threshold =

mic
2

i=1

N

!"
#$

%
&'

2

( mincc
2( )2

( mtargetc
2( )2

2mtargetc
2

For example, consider the reaction 
! ! ! ! p+ p ! p + p +" +" +"

where a proton is incident on another proton producing two 
protons and three pi mesons. The threshold energy is

! ! Ep,threshold =
2mp + 3m!( )2

" 2mp
2

2mp

= mp + 6m! +
9
2

m!
2

mp

#

$
%

&

'
( c2

Clearly, this is a very non-intuitive answer!!!

Now let us consider the difference between a particle 
accelerator where one particle is accelerated and collides with 
a second particle at rest (as above=laboratory system) and two 
particle accelerators where each particle is accelerated in the 
same way (colliding beams=center of mass system). We have

Single Accelerator
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! !
 

Etotal,lab

c
,
!
ptotal,lab

!
"#

$
%&

=
E1 + m2c

2

c
,
!
p1

!

"#
$

%&
, E1

2 = p1
2c2 + m1

2c4

Colliding Beams


 

 

Etotal,CM

c
,
!
ptotal,CM

!
"#

$
%&

=
2E
c

,0!
"#

$
%&

, E = energy of each particle

In the first case the accelerator must produce energy E1 and in 

the second case each accelerator must produce energy E.

The two accelerators are equivalent (same energy available for 
physical processes) if

! ! !
 

E1 + m2c
2

c
, !p1

!

"#
$

%&

2

=
2E
c
,0!

"#
$
%&

2

Algebra gives the result

! ! !
E =

1
2

m1
2c4 + m2

2c4 + 2m2c
2E1

If we consider the case of very high energy accelerators where

! ! ! ! E1 >>mi c
2

we have

! ! ! !
E =

1
2

2m2c
2E1

Suppose we want to build a single 10 TeV accelerator(1 TeV = 10 3 
GeV) so that E1 = 104 GeV . This is very difficult to design and 

requires the development of significant new equipment($$$$$$).

If instead we build two smaller accelerators and use them in the 
colliding beams configuration, then we get the same available 
energy with

! ! ! !
E =

1
2

2E1 = 5000= 71GeV

which we already know how to build. In fact, if we use an old 
single accelerator of this size that already exists, we then 
only have to build one small new accelerator ($$).

High Energy Collisions

Let us look at the collision processes at high energy using 
conservation of energy and momentum. We consider a collision in 
which the incident particle has zero rest mass (photon) and the 
target particle is at rest. If the target particle is an 
electron, then this is the so-called  Compton Effect. The 
process looks like
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! !

m oE o

u

E

θ
φ

y

x

!
The photon momentum is E0 / c . After the collision the photon is 

scattered through an angle !  with energy E and the electron 
recoils at an angle !  with velocity  

!
u . The final electron energy 

is

! ! !

Ee = ! (u)m0c
2 =

m0c
2

1"
u2

c2

Conservation of energy gives E0 + m0c
2 = E + Ee . Conservation of 

momentum gives (x and y directions)

! ! !

E0

c
=

E
c

cosθ + pcosφ

0 =
E
c

sinθ − psinφ

where 
! ! !  

!
p = ! m0

!
u or Ee

2 = p2c2 + m0
2c4!

We want to eliminate reference to the electron and find the new 
photon energy(that is what is detected in the experiment).

!

E0

c
=

E
c

cos! + pcos" # pcos" =
E0

c
$

E
c

cos! # p2 cos2 " =
E0

c
$

E
c

cos!%
&'

(
)*

2

0 =
E
c

sin! $ psin" # psin" =
E
c

sin! # p2 sin2 " =
E
c

sin!%
&'

(
)*

2

Adding these equations we get

! ! ! p2c2 = Ee
2 ! m0

2c4 = E0
2 ! 2E0Ecos" + E2

Using the energy conservation equation we have (after algebra)

! ! !

E =
E0

1+
E0

m0c
2

! 

" 
# $ 

% 
& (1' cos( )

The first thing to note is that E > 0. This means that a free 
electron cannot absorb a photon completely; there will always be 
a scattered photon of some energy. If we convert to wavelengths 
using
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! ! !
E = h! = h

c
"

we get

! ! !
! " ! 0 =

h
m0c

(1" cos#)

The shift in wavelength at a given angle is independent of the 
incident photon energy. You will do this experiment in Physics 
14.

Doppler effect as a Collision with Photons

We consider an atom with a rest mass of M0 . If held stationary 

and the atom emits a photon of energy h! 0 , then its rest mass 

must change (it is losing energy)

! ! ! M'0 c2 = M0c
2 ! h" 0

Suppose that it is moving as shown in the top part of the figure 
below and then emits a photon as shown in the bottom part of the 
figure.

! ! ! !

E

M o
E'

M o

p

p'

h!

Before photon emission we have

! ! !

E = !M0c
2 =

M0c
2

1"
u2

c2

, p = !M0u =
M0u

1"
u2

c2

After emission, the atom has energy EÕ and momentum pÕ while the 
emitted photon has

! ! ! ! E! = h! = p! c

Conservation of energy and momentum says that

! ! ! !

E = E' +h!

p = p' +
h!
c

Therefore

! ! ! E'2 = p'2 c2 = E ! h"( )2 ! (pc! h" )2 = M '0
2 c4 = M0c

2 ! h" 0( )2

Some algebra gives

Special Relativity Notes               Fall 2008                  John Boccio

                                                                     Page 90



! ! ! !
! = ! 0

2M0c
2 " h! 0

2(E " pc)
But

! ! ! E ! pc=
M 0c

2

1 !
u2

c2

1 !
u
c

"
#$

%
&'

= M 0c
2 c ! u

c + u

Thus,

! ! ! ! = ! 0

2M0c
2 " h! 0

2M0c
2 c " u

c + u

= ! 0 1"
h! 0

2M0c
2

#

$%
&

'(
c + u
c " u

The term h! 0 / 2M0c
2  represents a decrease in the photon energy due 

to the recoil energy of the atom. For massive atoms, this is 
negligible and thus

! ! ! !
! = ! 0

c +u
c " u

which is the standard Doppler formula.

We note for the future that we have shown that two completely 
different pictures of light, wave and particle, lead exactly to 
the same prediction for the shift in the frequency of radiation 
from a moving source.

The Mass of a Photon

Pulsars are collapsed stars that emit regular bursts of energy 
at repetition frequencies from 30 to 0.1 Hz. The are collapsed 
stars with intense magnetic fields that are rotating rapidly. 
The pulsar in the Crab nebula has the a frequency of 30 Hz and 
pulses in the optical and x-ray regions, as well as at radio 
frequencies. The pulses are extremely sharp and their arrival 
times can be measured to an accuracy of microseconds or better. 
Experimentally, the radiation from the pulsar at all different 
wavelengths seems to arrive simultaneously (or all within the 
experimental resolving time). 

Let us use this data to set a limit on the rest mass of the 
photon.

It takes light about 5000 years to arrive at the earth from the 
Crab nebula. Suppose that signals at two different frequencies 
travel with a small difference in speed, ! v , and thus arrive at 
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slightly different times, T and T+ ! T. Since T=L/v, where L = 
distance to the Crab nebula, we have

! ! ! v =
L
T

! " v = #
L

T 2 " T !
" v
v

= #
" T
T

No such velocity difference has been observed, but by estimating 
the sensitivity of the experiment we can set an upper limit on 
the quantity ! v .

! T can be measured to an accuracy of about 2x10 -3  sec and using 
T=5x10 3 years = 1.5x10 11 sec we have

! ! !
! v
c

=
! T
T

<
2 " 10#3

1,5 " 1011 $ 10#14

where we have assumed that v ! c . 

Now we translate this limit on ! v  into a limit on the possible 
rest mass of the photon.

If the photon had a nonzero rest mass, the velocity of light 
would be different from c. If we let m p represent the rest mass 
of the photon, then we would have

! ! ! ! ! E = ! mpc
2

If we assume that the photon energy frequency relation E = h!  is  
still valid, then we have

! ! ! h!( )2 = mpc
2( )2 1

1"
v2

c2

#
v2

c2 = 1"
! 0

2

! 2

where h! 0 = mpc
2 . ! 0  plays the role of a characteristic frequency 

for the photon. h! 0  is the rest energy of the photon. If ! 0 = 0 , 

then we have v=c. Otherwise the velocity of light depends on 
frequency.

Now consider two frequencies ! 1 and ! 2 . We then have

! !      

! 1
2

c2 "
! 2

2

c2 = ! 0
2 1

! 2
2 "

1
! 1

2

#

$%
&

'(

1
c2 ! 1

2 " ! 2
2( ) =

1
c2 ! 1 " ! 2( ) ! 1 + ! 2( ) = ! 0

2 1
! 2

2 "
1

! 1
2

#

$%
&

'(

1
c2 ) ! 2c( ) = 2

) !
c

= ! 0
2 1

! 2
2 "

1
! 1

2

#

$%
&

'(

For observations made in the optical regions we can use
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! ! ! ! 1 = 8" 101 4Hz(blue)   and    ! 2 = 5" 101 4Hz(red)

Then we have

! ! !

2 ! 10" 14 > 2
#v
c

= $0
2 1

$2
2 "

1
$1

2

% 

& 
' ( 

) 
* =

1
102 8

1
52 "

1
82

% 
& 

( 
) 

$0 <107Hz

This gives and upper limit to the photon rest mass of

! ! !
mp =

h! 0

c2 < 10" 40kg
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