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Chapter 3

Formulation of Wave Mechanics - Part 2

3.11 Problems

3.11.1 Free Particle in One-Dimension - Wave Functions

Consider a free particle in one-dimension. Let

ψ(x, 0) = Ne−
(x−x0)2

4σ2 ei
p0x
~

where x0, p0 and σ are real constants and N is a normalization constant.

(a) Find ψ̃(p, 0)

(b) Find ψ̃(p, t)

(c) Find ψ(x, t)

(d) Show that the spread in the spatial probability distribution

℘(x, t) =
|ψ(x, t)|2

〈ψ(t) | ψ(t)〉

increases with time.

3.11.2 Free Particle in One-Dimension - Expectation Val-
ues

For a free particle in one-dimension

H =
p2

2m

(a) Show 〈px〉 = 〈px〉t=0

(b) Show 〈x〉 =
[
〈px〉t=0

m

]
t+ 〈x〉t=0

1



(c) Show (∆px)
2

= (∆px)
2
t=0

(d) Find (∆x)2 as a function of time and initial conditions. HINT: Find

d

dt

〈
x2
〉

To solve the resulting differential equation, one needs to know the time
dependence of 〈xpx + pxx〉. Find this by considering

d

dt
〈xpx + pxx〉

3.11.3 Time Dependence

Given

Hψ = i~
∂ψ

∂t

with

H =
~p · ~p
2m

+ V (~x)

(a) Show that d
dt 〈ψ(t) | ψ(t)〉 = 0

(b) Show that d
dt 〈x〉 =

〈
px
m

〉
(c) Show that d

dt 〈px〉 =
〈
−∂V∂x

〉
(d) Find d

dt 〈H〉

(e) Find d
dt 〈Lz〉 and compare with the corresponding classical equation

(
~L = ~x× ~p

)
3.11.4 Continuous Probability

If p(x) = xe−x/λ is the probability density function over the interval 0 < x <∞,
find the mean, standard deviation and most probable value(where probability
density is maximum) of x.

3.11.5 Square Wave Packet

Consider a free particle, initially with a well-defined momentum p0, whose wave
function is well approximated by a plane wave. At t = 0, the particle is localized
in a region −a/2 ≤ x ≤ a/2, so that its wave function is

ψ(x) =

{
Aeip0x/~ −a/2 ≤ x ≤ a/2
0 otherwise

(a) Find the normalization constant A and sketch Re(ψ(x)), Im(ψ(x)) and

|ψ(x)|2

2



(b) Find the momentum space wave function ψ̃(p) and show that it too is
normalized.

(c) Find the uncertainties ∆x and ∆p at this time. How close is this to the
minimum uncertainty wave function.

3.11.6 Uncertain Dart

A dart of mass 1 kg is dropped from a height of 1m, with the intention to hit
a certain point on the ground. Estimate the limitation set by the uncertainty
principle of the accuracy that can be achieved.

3.11.7 Find the Potential and the Energy

Suppose that the wave function of a (spinless) particle of mass m is

ψ(r, θ, φ) = A
e−αr − e−βr

r

where A, α and β are constants such that 0 < α < β. Find the potential
V (r, θ, φ) and the energy E of the particle.

3.11.8 Harmonic Oscillator wave Function

In a harmonic oscillator a particle of mass m and frequency ω is subject to a
parabolic potential V (x) = mω2x2/2. One of the energy eigenstates is un(x) =
Axexp(−x2/x2

0), as sketched below.

Figure 3.1: A Wave Function

(a) Is this the ground state, the first excited state, second excited state, or
third?

(b) Is this an eigenstate of parity?

(c) Write an integral expression for the constant A that makes un(x) a nor-
malized state. Evaluate the integral.

3



3.11.9 Spreading of a Wave Packet

A localized wave packet in free space will spread due to its initial distribution of
momenta. This wave phenomenon is known as dispersion, arising because the
relation between frequency ω and wavenumber k is not linear. Let us look at
this in detail.

Consider a general wave packet in free space at time t = 0, ψ(x, 0).

(a) Show that the wave function at a later time is

ψ(x, t) =

∫ ∞
−∞

dx′K(x, x′; t)ψ(x′)

where

K(x, x′; t) =

√
m

2πi~t
exp

[
im(x− x′)2

2~t

]
is known as the propagator. [HINT: Solve the initial value problem in the
usual way - Decompose ψ(x, 0) into stationary states (here plane waves),
add the time dependence and then re-superpose].

(b) Suppose the initial wave packet is a Gaussian

ψ(x, 0) =
1

(2πa2)1/4
eik0xe−x

2/4a2

Show that it is normalized.

(c) Given the characteristic width a, find the characteristic momentum pc,
energy Ec and the time scale tc associated with the packet. The time tc
sets the scale at which the packet will spread. Find this for a macroscopic
object of mass 1 g and width a = 1 cm. Comment.

(d) Show that the wave packet probability density remains Gaussian with the
solution

P (x, t) = |ψ(x, t)|2 =
1√

2πa(t)2
exp

[
− (x− ~k0/m)2

2a(t)2

]
with a(t) = a

√
1 + t2/t2c .

3.11.10 The Uncertainty Principle says ...

Show that, for the 1-dimensional wavefunction

ψ(x) =

{
(2a)−1/2 |x| < a

0 |x| > a

the rms uncertainty in momentum is infinite (HINT: you need to Fourier trans-
form ψ). Comment on the relation of this result to the uncertainty principle.

4



3.11.11 Free Particle Schrodinger Equation

The time-independent Schrodinger equation for a free particle is given by

1

2m

(
~
i

∂

∂~x

)2

ψ(~x) = Eψ(~x)

It is customary to write E = ~2k2/2m to simplify the equation to(
∇2 + k2

)
ψ(~x) = 0

Show that

(a) a plane wave ψ(~x) = eikz

and

(b) a spherical wave ψ(~x) = eikr/r (r =
√
x2 + y2 + z2)

satisfy the equation. Note that in either case, the wavelength of the solution is
given by λ = 2π/k and the momentum by the de Broglie relation p = ~k.

3.11.12 Double Pinhole Experiment

The double-slit experiment is often used to demonstrate how different quantum
mechanics is from its classical counterpart. To avoid mathematical complica-
tions with Bessel functions, we will discuss two pinholes rather than two slits.
Consider the setup shown below

Figure 3.2: The Double Pinhole Setup
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Suppose you send in an electron along the z−axis onto a screen at z = 0 with two
pinholes at x = 0, y = ±d/2. At a point (x, y) on another screen at z = L� d, λ
the distance from each pinhole is given by r± =

√
x2 + (y ∓ d/2)2 + L2.

The spherical waves from each pinhole are added at the point on the screen and
hence the wave function is

ψ(x, y) =
eikr+

r+
+
eikr−

r−

where k = 2π/λ. Answer the following questions.

(a) Considering just the exponential factors, show that constructive interfer-
ence appears approximately at

y

r
= n

λ

d
(n ∈ Z) (3.1)

where r =
√
c2 + y2 + L2.

(b) Make a plot of the intensity |ψ(0, y)|2 as a function of y, by choosing k = 1,
d = 20 and L = 1000, Use the Mathematica Plot function. The intensity
|ψ(0, y)|2 is interpreted as the probability distribution for the electron to
be detected on the screen, after repeating the same experiment many,
many times.

(c) Make a contour plot of the intensity |ψ(x, y)|2 as a function of x and y,
for the same parameters, using the Mathematica ContourPlot function.

(d) If you place a counter at both pinholes to see if the electron has passed
one of them, all of a sudden the wave function collapses. If the electron
is observed to pass through the pinhole at y = +d/2, the wave function
becomes

ψ+(x, y) =
eikr+

r+

If it is oberved to pass through the pinhole at y = −d/2, the wave function
becomes

ψ−(x, y) =
eikr−

r−

After repeating this experiment many times with a 50:50 probability for
each of the pinholes, the probability on the screen will be given by

|ψ+(x, y)|2 + |ψ−(x, y)|2

instead. Plot this function on the y−axis and also show the contour plot
to compare its pattern to the case when you do not place a counter. What
is the difference from the case without the counter?

6



Chapter 4

The Mathematics of Quantum Physics:

Dirac Language

4.22 Problems

4.22.1 Simple Basis Vectors

Given two vectors

~A = 7ê1 + 6ê2 , ~B = −2ê1 + 16ê2

written in the {ê1, ê2} basis set and given another basis set

êq =
1

2
ê1 +

√
3

2
ê2 , êp = −

√
3

2
ê1 +

1

2
ê2

(a) Show that êq and êp are orthonormal.

(b) Determine the new components of ~A, ~B in the {êq, êp} basis set.

4.22.2 Eigenvalues and Eigenvectors

Find the eigenvalues and normalized eigenvectors of the matrix

A =

 1 2 4
2 3 0
5 0 3


Are the eigenvectors orthogonal? Comment on this.

4.22.3 Orthogonal Basis Vectors

Determine the eigenvalues and eigenstates of the following matrix

A =

 2 2 0
1 2 1
1 2 1
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Using Gram-Schmidt, construct an orthonormal basis set from the eigenvectors
of this operator.

4.22.4 Operator Matrix Representation

If the states {|1〉 , |2〉 |3〉} form an orthonormal basis and if the operator Ĝ has
the properties

Ĝ |1〉 = 2 |1〉 − 4 |2〉+ 7 |3〉
Ĝ |2〉 = −2 |1〉+ 3 |3〉
Ĝ |3〉 = 11 |1〉+ 2 |2〉 − 6 |3〉

What is the matrix representation of Ĝ in the |1〉 , |2〉 |3〉 basis?

4.22.5 Matrix Representation and Expectation Value

If the states {|1〉 , |2〉 |3〉} form an orthonormal basis and if the operator K̂ has
the properties

K̂ |1〉 = 2 |1〉
K̂ |2〉 = 3 |2〉
K̂ |3〉 = −6 |3〉

(a) Write an expression for K̂ in terms of its eigenvalues and eigenvectors (pro-
jection operators). Use this expression to derive the matrix representing
K̂ in the |1〉 , |2〉 |3〉 basis.

(b) What is the expectation or average value of K̂, defined as 〈α| K̂ |α〉, in the
state

|α〉 =
1√
83

(−3 |1〉+ 5 |2〉+ 7 |3〉)

4.22.6 Projection Operator Representation

Let the states {|1〉 , |2〉 |3〉} form an orthonormal basis. We consider the operator
given by P̂2 = |2〉 〈2|. What is the matrix representation of this operator? What
are its eigenvalues and eigenvectors. For the arbitrary state

|A〉 =
1√
83

(−3 |1〉+ 5 |2〉+ 7 |3〉)

What is the result of P̂2 |A〉?

4.22.7 Operator Algebra

An operator for a two-state system is given by

Ĥ = a (|1〉 〈1| − |2〉 〈2|+ |1〉 〈2|+ |2〉 〈1|)

where a is a number. Find the eigenvalues and the corresponding eigenkets.
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4.22.8 Functions of Operators

Suppose that we have some operator Q̂ such that Q̂ |q〉 = q |q〉, i.e., |q〉 is an
eigenvector of Q̂ with eigenvalue q. Show that |q〉 is also an eigenvector of the

operators Q̂2, Q̂n and eQ̂ and determine the corresponding eigenvalues.

4.22.9 A Symmetric Matrix

Let A be a 4 × 4 symmetric matrix. Assume that the eigenvalues are given by
0, 1, 2, and 3 with the corresponding normalized eigenvectors

1√
2


1
0
0
1

 ,
1√
2


1
0
0
−1

 ,
1√
2


0
1
1
0

 ,
1√
2


0
1
−1
0


Find the matrix A.

4.22.10 Determinants and Traces

Let A be an n× n matrix. Show that

det(exp(A)) = exp(Tr(A))

4.22.11 Function of a Matrix

Let

A =

(
−1 2
2 −1

)
Calculate exp(αA), α real.

4.22.12 More Gram-Schmidt

Let A be the symmetric matrix

A =

 5 −2 −4
−2 2 2
−4 2 5


Determine the eigenvalues and eigenvectors of A. Are the eigenvectors orthog-
onal to each other? If not, find an orthogonal set using the Gram-Schmidt
process.

4.22.13 Infinite Dimensions

Let A be a square finite-dimensional matrix (real elements) such that AAT = I.

(a) Show that ATA = I.

(b) Does this result hold for infinite dimensional matrices?

9



4.22.14 Spectral Decomposition

Find the eigenvalues and eigenvectors of the matrix

M =

 0 1 0
1 0 1
0 1 0


Construct the corresponding projection operators, and verify that the matrix
can be written in terms of its eigenvalues and eigenvectors. This is the spectral
decomposition for this matrix.

4.22.15 Measurement Results

Given particles in state

|α〉 =
1√
83

(−3 |1〉+ 5 |2〉+ 7 |3〉)

where {|1〉 , |2〉 , |3〉} form an orthonormal basis, what are the possible experi-
mental results for a measurement of

Ŷ =

 2 0 0
0 3 0
0 0 −6


(written in this basis) and with what probabilities do they occur?

4.22.16 Expectation Values

Let

R =

[
6 −2
−2 9

]
represent an observable, and

|Ψ〉 =

[
a
b

]
be an arbitrary state vector(with |a|2 + |b|2 = 1). Calculate

〈
R2
〉

in two ways:

(a) Evaluate
〈
R2
〉

= 〈Ψ|R2 |Ψ〉 directly.

(b) Find the eigenvalues(r1 and r2) and eigenvectors(|r1〉 and |r2〉) of R2 or
R. Expand the state vector as a linear combination of the eigenvectors
and evaluate 〈

R2
〉

= r2
1 |c1|

2
+ r2

2 |c2|
2

10



4.22.17 Eigenket Properties

Consider a 3−dimensional ket space. If a certain set of orthonormal kets, say
|1〉, |2〉 and |3〉 are used as the basis kets, the operators Â and B̂ are represented
by

Â→

 a 0 0
0 −a 0
0 0 −a

 , B̂ →

 b 0 0
0 0 −ib
0 ib 0


where a and b are both real numbers.

(a) Obviously, Â has a degenerate spectrum. Does B̂ also have a degenerate
spectrum?

(b) Show that Â and B̂ commute.

(c) Find a new set of orthonormal kets which are simultaneous eigenkets of
both Â and B̂.

4.22.18 The World of Hard/Soft Particles

Let us define a state using a hardness basis {|h〉 , |s〉}, where

ÔHARDNESS |h〉 = |h〉 , ÔHARDNESS |s〉 = − |s〉

and the hardness operator ÔHARDNESS is represented by (in this basis) by

ÔHARDNESS =

(
1 0
0 −1

)
Suppose that we are in the state

|A〉 = cos θ |h〉+ eiϕ sin θ |s〉

(a) Is this state normalized? Show your work. If not, normalize it.

(b) Find the state |B〉 that is orthogonal to |A〉. Make sure |B〉 is normalized.

(c) Express |h〉 and |s〉 in the {|A〉 , |B〉} basis.

(d) What are the possible outcomes of a hardness measurement on state |A〉
and with what probability will each occur?

(e) Express the hardness operator in the {|A〉 , |B〉} basis.

4.22.19 Things in Hilbert Space

For all parts of this problem, let H be a Hilbert space spanned by the basis kets
{|0〉 , |1〉 , |2〉 , |3〉}, and let a and b be arbitrary complex constants.

(a) Which of the following are Hermitian operators on H?

11



1. |0〉 〈1|+ i |1〉 〈0|
2. |0〉 〈0|+ |1〉 〈1|+ |2〉 〈3|+ |3〉 〈2|
3. (a |0〉+ |1〉)+(a |0〉+ |1〉)
4. ((a |0〉+ b∗ |1〉)+(b |0〉 − a∗ |1〉)) |2〉 〈1|+ |3〉 〈3|
5. |0〉 〈0|+ i |1〉 〈0| − i |0〉 〈1|+ |1〉 〈1|

(b) Find the spectral decomposition of the following operator on H:

K̂ = |0〉 〈0|+ 2 |1〉 〈2|+ 2 |2〉 〈1| − |3〉 〈3|

(c) Let ||Psi〉 be a normalized ket in H, and let Î denote the identity operator
on H. Is the operator

B̂ =
1√
2

(Î + |Ψ〉 〈Ψ|)

a projection operator?

(d) Find the spectral decomposition of the operator B̂ from part (c).

4.22.20 A 2-Dimensional Hilbert Space

Consider a 2-dimensional Hilbert space spanned by an orthonormal basis {|↑〉 , |↓〉}.
This corresponds to spin up/down for spin= 1/2 as we will see later in Chapter
9. Let us define the operators

Ŝx =
~
2

(|↑〉 〈↓|+ |↓〉 〈↑|) , Ŝy =
~
2i

(|↑〉 〈↓| − |↓〉 〈↑|) , Ŝz =
~
2

(|↑〉 〈↑| − |↓〉 〈↓|)

(a) Show that each of these operators is Hermitian.

(b) Find the matrix representations of these operators in the {|↑〉 , |↓〉} basis.

(c) Show that
[
Ŝx, Ŝy

]
= i~Ŝz, and cyclic permutations. Do this two ways:

Using the Dirac notation definitions above and the matrix representations
found in (b).

Now let

|±〉 =
1√
2

(|↑〉 ± |↓〉)

(d) Show that these vectors form a new orthonormal basis.

(e) Find the matrix representations of these operators in the {|+〉 , |−〉} basis.

(f) The matrices found in (b) and (e) are related through a similarity trans-
formation given by a unitary matrix, U , such that

Ŝ(↑↓)
x = U†Ŝ(±)

x U , Ŝ(↑↓)
y = U†Ŝ(±)

y U , Ŝ(↑↓)
z = U†Ŝ(±)

z U

where the superscript denotes the basis in which the operator is repre-
sented. Find U and show that it is unitary.

12



Now let

Ŝ± =
1

2

(
Ŝx ± iŜy

)
(g) Express Ŝ± as outer products in the {|↑〉 , |↓〉} basis and show that Ŝ†+ =

Ŝ−.

(h) Show that

Ŝ+ |↓〉 = |↑〉 , Ŝ− |↑〉 = |↓〉 , Ŝ− |↓〉 = 0 , Ŝ+ |↑〉 = 0

and find
〈↑| Ŝ+ , 〈↓| Ŝ+ , 〈↑| Ŝ− , 〈↓| Ŝ−

4.22.21 Find the Eigenvalues

The three matrices Mx, My, Mz, each with 256 rows and columns, obey the
commutation rules

[Mi,Mj ] = i~εijkMk

The eigenvalues of Mz are ±2~ (each once), ±2~ (each once), ±3~/2 (each 8
times), ±~ (each 28 times), ±~/2 (each 56 times), and 0 (70 times). State the
256 eigenvalues of the matrix M2 = M2

x +M2
y +M2

z .

4.22.22 Operator Properties

(a) If O is a quantum-mechanical operator, what is the definition of the cor-
responding Hermitian conjugate operator, O+?

(b) Define what is meant by a Hermitian operator in quantum mechanics.

(c) Show that d/dx is not a Hermitian operator. What is its Hermitian con-
jugate, (d/dx)+?

(d) Prove that for any two operators A and B, (AB)+ = B+A+,

4.22.23 Ehrenfest’s Relations

Show that the following relation applies for any operator O that lacks an explicit
dependence on time:

∂

∂t
〈O〉 =

i

~
〈[H,O]〉

HINT: Remember that the Hamiltonian, H, is a Hermitian operator, and that
H appears in the time-dependent Schrodinger equation.

Use this result to derive Ehrenfest’s relations, which show that classical me-
chanics still applies to expectation values:

m
∂

∂t
〈~x〉 = 〈~p〉 ,

∂

∂t
〈~p〉 = −〈∇V 〉

13



4.22.24 Solution of Coupled Linear ODEs

Consider the set of coupled linear differential equations ẋ = Ax where x =
(x1, x2, x3) ∈ R3 and

A =

0 1 1
1 0 1
1 1 0


(a) Find the general solution x(t) in terms of x(0) by matrix exponentiation.

(b) Using the results from part (a), write the general solution x(t) by expand-
ing x(0) in eigenvectors of A. That is, write

x(t) = eλ1c1v1 + eλ2c2v2 + eλ3c3v3

where (λi, vi) are the eigenvalue-eigenvector pairs for A and the ci are
coefficients written in terms of the x(0).

4.22.25 Spectral Decomposition Practice

Find the spectral decomposition of the matrix

A =

1 0 0
0 0 i
0 −i 0


4.22.26 More on Projection Operators

The basic definition of a projection operator is that it must satisfy P 2 = P . If
P furthermore satisfies P = P+ we say that P is an orthogonal projector. As
we derived in the text, the eigenvalues of an orthogonal projector are all equal
to either zero or one.

(a) Show that if P is a projection operator, then so is I − P .

(b) Show that for any orthogonal projector P and an normalized state, 0 ≤
〈P 〉 ≤ 1.

(c) Show that the singular values of an orthogonal projector are also equal to
zero or one. The singular values of an arbitrary matrix A are given by the
square-roots of the eigenvalues of A+A. It follows that for every singular
value σi of a matrix A there exist some unit normalized vector ui such
that

u+
i A

+Aui = σ2
i

Conclude that the action of an orthogonal projection operator never length-
ens a vector (never increases its norm).

14



For the next two parts we consider the example of a non-orthogonal pro-
jection operator

N =

(
0 0
−1 1

)
(d) Find the eigenvalues and eigenvectors of N . Does the usual spectral de-

composition work as a representation of N?

(e) Find the singular values of N . Can you interpret this in terms of the
action of N on vectors in R2?

15
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Chapter 5

Probability

5.6 Problems

5.6.1 Simple Probability Concepts

There are 14 short problems in this section. If you have not studied any prob-
ability ideas before using this book, then these are all new to you and doing
them should enable you to learn the basic ideas of probability methods. If you
have studied probability ideas before, these should all be straightforward.

(a) Two dice are rolled, one after the other. Let A be the event that the
second number if greater than the first. Find P (A).

(b) Three dice are rolled and their scores added. Are you more likely to get 9
than 10, or vice versa?

(c) Which of these two events is more likely?

1. four rolls of a die yield at least one six

2. twenty-four rolls of two dice yield at least one double six

(d) From meteorological records it is known that for a certain island at its
winter solstice, it is wet with probability 30%, windy with probability
40% and both wet and windy with probability 20%. Find

(1) Prob(dry)

(2) Prob(dry AND windy)

(3) Prob(wet OR windy)

(e) A kitchen contains two fire alarms; one is activated by smoke and the
other by heat. Experiment has shown that the probability of the smoke
alarm sounding within one minute of a fire starting is 0.95, the probability
of the heat alarm sounding within one minute of a fire starting is 0.91,
and the probability of both alarms sounding within one minute is 0.88.
What is the probability of at least one alarm sounding within a minute?

17



(f) Suppose you are about to roll two dice, one from each hand. What is
the probability that your right-hand die shows a larger number than your
left-hand die? Now suppose you roll the left-hand die first and it shows 5.
What is the probability that the right-hand die shows a larger number?

(g) A coin is flipped three times. Let A be the event that the first flip gives
a head and B be the event that there are exactly two heads overall. De-
termine

(1) P (A|B)

(2) P (B|A)

(h) A box contains a double-headed coin, a double-tailed coin and a conven-
tional coin. A coin is picked at random and flipped. It shows a head.
What is the probability that it is the double-headed coin?

(i) A box contains 5 red socks and 3 blue socks. If you remove 2 socks at
random, what is the probability that you are holding a blue pair?

(j) An inexpensive electronic toy made by Acme Gadgets Inc. is defective
with probability 0.001. These toys are so popular that they are copied
and sold illegally but cheaply. Pirate versions capture 10% of the market
and any pirated copy is defective with probability 0.5. If you buy a toy,
what is the chance that it is defective?

(k) Patients may be treated with any one of a number of drugs, each of which
may give rise to side effects. A certain drug C has a 99% success rate
in the absence of side effects and side effects only arise in 5% of cases.
However, if they do arise, then C only has a 30% success rate. If C is
used, what is the probability of the event A that a cure is effected?

(l) Suppose a multiple choice question has c available choices. A student
either knows the answer with probability p or guesses at random with
probability 1 − p. Given that the answer selected is correct, what is the
probability that the student knew the answer?

(m) Common PINs do not begin with zero. They have four digits. A computer
assigns you a PIN at random. What is the probability that all four digits
are different?

(n) You are dealt a hand of 5 cards from a conventional deck(52 cards). A
full house comprises 3 cards of one value and 2 of another value. If that
hand has 4 cards of one value, this is called four of a kind. Which is more
likely?

18



5.6.2 Playing Cards

Two cards are drawn at random from a shuffled deck and laid aside without
being examined. Then a third card is drawn. Show that the probability that
the third card is a spade is 1/4 just as it was for the first card. HINT : Consider
all the (mutually exclusive) possibilities (two discarded cards spades, third card
spade or not spade, etc).

5.6.3 Birthdays

What is the probability that you and a friend have different birthdays? (for
simplicity let a year have 365 days). What is the probability that three people
have different birthdays? Show that the probability that n people have different
birthdays is

p =

(
1− 1

365

)(
1− 2

365

)(
1− 3

365

)
.....

(
1− n− 1

365

)
Estimate this for n << 365 by calculating log(p) (use the fact that log(1+x) ≈ x
for x � 1). Find the smallest integer N for which p < 1/2. Hence show that
for a group of N people or more, the probability is greater than 1/2 that two of
them have the same birthday.

5.6.4 Is there life?

The number of stars in our galaxy is about N = 1011. Assume that the proba-
bility that a star has planets is p = 10−2, the probability that the conditions on
the planet are suitable for life is q = 10−2, and the probability of life evolving,
given suitable conditions, is r = 10−2. These numbers are rather arbitrary.

(a) What is the probability of life existing in an arbitrary solar system (a star
and planets, if any)?

(b) What is the probability that life exists in at least one solar system?

5.6.5 Law of large Numbers

This problem illustrates the law of large numbers.

(a) Assuming the probability of obtaining heads in a coin toss is 0.5, compare
the probability of obtaining heads in 5 out of 10 tosses with the probability
of obtaining heads in 50 out of 100 tosses and with the probability of
obtaining heads in 5000 out of 10000 tosses. What is happening?

(b) For a set of 10 tosses, a set of 100 tosses and a set of 10000tosses, calculate
the probability that the fraction of heads will be between 0.445 and 0.555.
What is happening?
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5.6.6 Bayes

Suppose that you have 3 nickels and 4 dimes in your right pocket and 2 nickels
and a quarter in your left pocket. You pick a pocket at random and from it
select a coin at random. If it is a nickel, what is the probability that it came
from your right pocket? Use Baye’s formula.

5.6.7 Psychological Tests

Two psychologists reported on tests in which subjects were given the prior
information:

I = In a certain city, 85% of the taxicabs

are blue and 15% are green

and the data:

D = A witness to a crash who is 80% reliable (i.e.,

who in the lighting conditions prevailing can

distinguish between green and blue 80% of the

time) reports that the taxicab involved in the

crash was green

The subjects were then asked to judge the probability that the taxicab was
actually blue. What is the correct answer?

5.6.8 Bayes Rules, Gaussians and Learning

Let us consider a classical problem(no quantum uncertainty). Suppose we are
trying to measure the position of a particle and we assign a prior probability
function,

p(x) =
1√

2πσ2
0

e−(x−x0)2/2σ2
0

Our measuring device is not perfect. Due to noise it can only measure with a
resolution ∆, i.e., when I measure the position, I must assume error bars of this
size. Thus, if my detector registers the position as y, I assign the likelihood that
the position was x by a Gaussian,

p(y|x) =
1√

2π∆2
e−(y−x)2/2∆2

Use Bayes theorem to show that, given the new data, I must now update my
probability assignment of the position to a new Gaussian,

p(x|y) =
1√

2πσ′2
e−(x−x′)2/2σ′2

20



where

x′ = x0 +K1(y − x0) , σ′2 = K2σ
2
0 , K1 =

σ2
0

σ2
0 + ∆2

, K2 =
∆2

σ2
0 + ∆2

Comment on the behavior as the measurement resolution improves. How does
the learning process work?

5.6.9 Berger’s Burgers-Maximum Entropy Ideas

A fast food restaurant offers three meals: burger, chicken, and fish. The price,
Calorie count, and probability of each meal being delivered cold are listed below
in Table 5.1:

Item Entree Cost Calories Prob(hot) Prob(cold)
Meal 1 burger $1.00 1000 0.5 0.5
Meal 2 chicken $2.00 600 0.8 0.2
Meal 3 fish $3.00 400 0.9 0.1

Table 5.1: Berger’s Burgers Details

We want to identify the state of the system, i.e., the values of

Prob(burger) = P (B)

Prob(chicken) = P (C)

Prob(fish) = P (F )

Even though the problem has now been set up, we do not know which state the
actual state of the system. To express what we do know despite this ignorance,
or uncertainty, we assume that each of the possible states Ai has some probabil-
ity of occupancy P (Ai), where i is an index running over the possible states. As
stated above, for the restaurant model, we have three such possibilities, which
we have labeled P (B), P (C), and P (F ).

A probability distribution P (Ai) has the property that each of the probabilities
is in the range 0 ≤ P (Ai) ≤ 1 and since the events are mutually exclusive and
exhaustive, the sum of all the probabilities is given by

1 =
∑
i

P (Ai) (5.1)

Since probabilities are used to cope with our lack of knowledge and since one
person may have more knowledge than another, it follows that two observers
may, because of their different knowledge, use different probability distributions.
In this sense probability, and all quantities that are based on probabilities are
subjective.
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Our uncertainty is expressed quantitatively by the information which we do not
have about the state occupied. This information is

S =
∑
i

P (Ai) log2

(
1

P (Ai)

)
(5.2)

This information is measured in bits because we are using logarithms to base
2.

In physical systems, this uncertainty is known as the entropy. Note that the en-
tropy, because it is expressed in terms of probabilities, depends on the observer.

The principle of maximum entropy (MaxEnt) is used to discover the probabil-
ity distribution which leads to the largest value of the entropy (a maximum),
thereby assuring that no information is inadvertently assumed.

If one of the probabilities is equal to 1, the all the other probabilities are equal
to 0, and the entropy is equal to 0.

It is a property of the above entropy formula that it has its maximum when
all the probabilities are equal (for a finite number of states), which the state of
maximum ignorance.

If we have no additional information about the system, then such a result seems
reasonable. However, if we have additional information, then we should be able
to find a probability distribution which is better in the sense that it has less
uncertainty.

In this problem we will impose only one constraint. The particular constraint
is the known average price for a meal at Berger’s Burgers, namely $1.75. This
constraint is an example of an expected value.

(a) Express the constraint in terms of the unknown probabilities and the prices
for the three types of meals.

(b) Using this constraint and the total probability equal to 1 rule find possible
ranges for the three probabilities in the form

a ≤ P (B) ≤ b
c ≤ P (C) ≤ d
e ≤ P (F ) ≤ f

(c) Using this constraint, the total probability equal to 1 rule, the entropy
formula and the MaxEnt rule, find the values of P (B), P (C), and P (F )
which maximize S.

(d) For this state determine the expected value of Calories and the expected
number of meals served cold.
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In finding the state which maximizes the entropy, we found the probability dis-
tribution that is consistent with the constraints and has the largest uncertainty.
Thus, we have not inadvertently introduced any biases into the probability es-
timation.

5.6.10 Extended Menu at Berger’s Burgers

Suppose now that Berger’s extends its menu to include a Tofu option as shown
in Table 5.2 below:

Entree Cost Calories Prob(hot) Prob(cold)
burger $1.00 1000 0.5 0.5
chicken $2.00 600 0.8 0.2

fish $3.00 400 0.9 0.1
tofu $8.00 200 0.6 0.4

Table 5.2: Extended Berger’s Burgers Menu Details

Suppose you are now told that the average meal price is $2.50.

Use the method of Lagrange multipliers to determine the state of the system
(i.e., P (B), P (C), P (F ) and P (T )).

You will need to solve some equations numerically.

5.6.11 The Poisson Probability Distribution

The arrival time of rain drops on the roof or photons from a laser beam on a
detector are completely random, with no correlation from count to count. If
we count for a certain time interval we won’t always get the same number - it
will fluctuate from shot-to-shot. This kind of noise is sometimes known as shot
noise or counting statistics.

Suppose the particles arrive at an average rate R. In a small time interval
∆t� 1/R no more than one particle can arrive. We seek the probability for n
particles to arrive after a time t, P (n, t).

(a) Show that the probability to detect zero particles exponentially decays,
P (0, t) = e−Rt.

(b) Obtain a differential equation as a recursion relation

d

dt
P (n, t) +RP (n, t) = RP (n− 1, t)

(c) Solve this to find the Poisson distribution

P (n, t) =
(Rt)n

n!
e−Rt
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Plot a histogram for Rt = 0.1, 1.0, 10.0.

(d) Show that the mean and standard deviation in number of counts are:

〈n〉 = Rt , σn =
√
Rt =

√
〈n〉

[HINT: To find the variance consider 〈n(n− 1)〉].

Fluctuations going as the square root of the mean are characteristic of
counting statistics.

(e) An alternative way to derive the Poisson distribution is to note that the
count in each small time interval is a Bernoulli trial(find out what this is),
with probability p = R∆t to detect a particle and 1− p for no detection.
The total number of counts is thus the binomial distribution. We need
to take the limit as ∆t → 0 (thus p → 0) but Rt remains finite (this is
just calculus). To do this let the total number of intervals N = t/∆t →
∞ while Np = Rt remains finite. Take this limit to get the Poisson
distribution.

5.6.12 Modeling Dice: Observables and Expectation Val-
ues

Suppose we have a pair of six-sided dice. If we roll them, we get a pair of results

a ∈ {1, 2, 3, 4, 5, 6} , b ∈ {1, 2, 3, 4, 5, 6}

where a is an observable corresponding to the number of spots on the top face
of the first die and b is an observable corresponding to the number of spots on
the top face of the second die. If the dice are fair, then the probabilities for the
roll are

Pr(a = 1) = Pr(a = 2) = Pr(a = 3) = Pr(a = 4) = Pr(a = 5) = Pr(a = 6) = 1/6

Pr(b = 1) = Pr(b = 2) = Pr(b = 3) = Pr(b = 4) = Pr(b = 5) = Pr(b = 6) = 1/6

Thus, the expectation values of a and b are

〈a〉 =

6∑
i=1

iPr(a = i) =
1 + 2 + 3 + 4 + 5 + 6

6
= 7/2

〈b〉 =

6∑
i=1

iPr(b = i) =
1 + 2 + 3 + 4 + 5 + 6

6
= 7/2

Let us define two new observables in terms of a and b:

s = a+ b , p = ab
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Note that the possible values of s range from 2 to 12 and the possible values
of p range from 1 to 36. Perform an explicit computation of the expectation
values of s and p by writing out

〈s〉 =

12∑
i=2

iPr(s = i)

and

〈p〉 =

36∑
i=1

iPr(p = i)

Do this by explicitly computing all the probabilities Pr(s = i) and Pr(p = i).
You should find that 〈s〉 = 〈a〉 + 〈b〉 and 〈p〉 = 〈a〉〈b〉. Why are these results
not surprising?

5.6.13 Conditional Probabilities for Dice

Use the results of Problem 5.12. You should be able to intuit the correct answers
for this problems by straightforward probabilistic reasoning; if not you can use
Baye’s Rule

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)

to calculate the results. Here Pr(x|y) represents the probability of x given y,
where x and y should be propositions of equations (for example, Pr(a = 2|s = 8)
is the probability that a = 2 given the s = 8).

(a) Suppose your friend rolls a pair of dice and, without showing you the re-
sult, tells you that s = 8. What is your conditional probability distribution
for a?

(b) Suppose your friend rolls a pair of dice and, without showing you the
result, tells you that p = 12. What is your conditional expectation value
for s?

5.6.14 Matrix Observables for Classical Probability

Suppose we have a biased coin, which has probability ph of landing heads-up
and probability pt of landing tails-up. Say we flip the biased coin but do not
look at the result. Just for fun, let us represent this preparation procedure by
a classical state vector

x0 =

(√
ph√
pt

)
(a) Define an observable (random variable) r that takes value +1 if the coin

is heads-up and −1 if the coin is tails-up. Find a matrix R such that

xT0 Rx0 = 〈r〉

where 〈r〉 denotes the mean, or expectation value, of our observable.
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(b) Now find a matrix F such that the dynamics corresponding to turning the
coin over (after having flipped it, but still without looking at the result)
is represented by

x0 7→ Fx0

and
〈r〉 7→ xT0 F

TRFx0

Does U = FTRF make sense as an observable? If so explain what values
it takes for a coin-flip result of heads or tails. What about RF or FTR?

(c) Let us now define the algebra of flipped-coin observables to be the set V
of all matrices of the form

v = aR+ bR2 , a, b ∈ R

Show that this set is closed under matrix multiplication and that it is
commutative. In other words, for any v1, v2 ∈ V , show that

v1, v2 ∈ V , v1v2 = v2v1

Is U in this set? How should we interpret the observable represented by
an arbitrary element v ∈ V ?

26



Chapter 6

The Formulation of Quantum Mechanics

6.19 Problems

6.19.1 Can It Be Written?

Show that a density matrix ρ̂ represents a state vector (i.e., it can be written
as |ψ〉 〈ψ| for some vector |ψ〉) if, and only if,

ρ̂2 = ρ̂

6.19.2 Pure and Nonpure States

Consider an observable σ that can only take on two values +1 or −1. The
eigenvectors of the corresponding operator are denoted by |+〉 and |−〉. Now
consider the following states.

(a) The one-parameter family of pure states that are represented by the vec-
tors

|θ〉 =
1√
2
|+〉+

eiθ√
2
|−〉

for arbitrary θ.

(b) The nonpure state

ρ =
1

2
|+〉 〈+|+ 1

2
|−〉 〈−|

Show that 〈σ〉 = 0 for both of these states. What, if any, are the physical
differences between these various states, and how could they be measured?

6.19.3 Probabilities

Suppose the operator

M =

 0 1 0
1 0 1
0 1 0
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represents an observable. Calculate the probability Prob(M = 0|ρ) for the
following state operators:

(a) ρ =

 1
2 0 0
0 1

4 0
0 0 1

4

 , (b) ρ =

 1
2 0 1

2
0 0 0
1
2 0 1

2

 , (c) ρ =

 1
2 0 0
0 0 0
0 0 1

2


6.19.4 Acceptable Density Operators

Which of the following are acceptable as state operators? Find the correspond-
ing state vectors for any of them that represent pure states.

ρ1 =

[
1
4

3
4

3
4

3
4

]
, ρ2 =

[
9
25

12
25

12
25

16
25

]

ρ3 =

 1
2 0 1

4
0 1

2 0
1
4 0 0

 , ρ4 =

 1
2 0 1

4
0 1

4 0
1
4 0 1

4


ρ5 =

1

3
|u〉 〈u|+ 2

3
|v〉 〈v|+

√
2

3
|u〉 〈v|+

√
2

3
|v〉 〈u|

〈u | u〉 = 〈v | v〉 = 1and 〈u | v〉 = 0

6.19.5 Is it a Density Matrix?

Let ρ̂1 and ρ̂2 be a pair of density matrices. Show that

ρ̂ = rρ̂1 + (1− r)ρ̂2

is a density matrix for all real numbers r such that 0 ≤ r ≤ 1.

6.19.6 Unitary Operators

An important class of operators are unitary, defined as those that preserve

inner products, i.e., if
∣∣∣ψ̃〉 = Û |ψ〉 and |ϕ̃〉 = Û |ϕ〉, then

〈
ϕ̃
∣∣∣ ψ̃〉 = 〈ϕ | ψ〉 and〈

ψ̃
∣∣∣ ϕ̃〉 = 〈ψ | ϕ〉.

(a) Show that unitary operators satisfy Û Û+ = Û+Û = Î, i.e., the adjoint is
the inverse.

(b) Consider Û = eiÂ, where Â is a Hermitian operator. Show that Û+ = e−iÂ

and thus show that Û is unitary.

(c) Let Û(t) = e−iĤt/~ where t is time and Ĥ is the Hamiltonian. Let |ψ(0)〉
be the state at time t = 0. Show that |ψ(t)〉 = Û(t) |ψ(0)〉 = e−iĤt/~ |ψ(0)〉
is a solution of the time-dependent Schrodinger equation, i.e., the state
evolves according to a unitary map. Explain why this is required by the
conservation of probability in non-relativistic quantum mechanics.
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(d) Let {|un〉} be a complete set of energy eigenfunctions, Ĥ |un〉 = En |un〉.
Show that Û(t) =

∑
n
e−iEnt/~ |un〉 〈un|. Using this result, show that

|ψ(t)〉 =
∑
n
cne
−iEnt/~ |un〉. What is cn?

6.19.7 More Density Matrices

Suppose we have a system with total angular momentum 1. Pick a basis corre-
sponding to the three eigenvectors of the z−component of the angular momen-
tum, Jz, with eigenvalues +1, 0, −1, respectively. We are given an ensemble of
such systems described by the density matrix

ρ =
1

4

 2 1 1
1 1 0
1 0 1


(a) Is ρ a permissible density matrix? Give your reasoning. For the remainder

of this problem, assume that it is permissible. Does it describe a pure or
mixed state? Give your reasoning.

(b) Given the ensemble described by ρ, what is the average value of Jz?

(c) What is the spread (standard deviation) in the measured values of Jz?

6.19.8 Scale Transformation

Space is invariant under the scale transformation

x→ x ′ = ecx

where c is a parameter. The corresponding unitary operator may be written as

Û = e−icD̂

where D̂ is the dilation generator. Determine the commutators
[
D̂, x̂

]
and[

D̂, p̂x

]
between the generators of dilation and space displacements. Determine

the operator D̂. Not all the laws of physics are invariant under dilation, so the
symmetry is less common than displacements or rotations. You will need to use
the identity in Problem 6.11.

6.19.9 Operator Properties

(a) Prove that if Ĥ is a Hermitian operator, then U = eiH is a unitary oper-
ator.

(b) Show that detU = eiTrH .
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6.19.10 An Instantaneous Boost

The unitary operator

Û(~v) = ei~v·̂~G

describes the instantaneous (t = 0) effect of a transformation to a frame of
reference moving at the velocity ~v with respect to the original reference frame.
Its effects on the velocity and position operators are:

Û̂~V Û−1 =~̂V − ~vÎ , Û̂~QÛ−1 =~̂Q

Find an operator Ĝt such that the unitary operator Û(~v, t) = ei~v·̂~Gt will yield
the full Galilean transformation

Û̂~V Û−1 =~̂V − ~vÎ , Û̂~QÛ−1 =~̂Q− ~vtÎ

Verify that Ĝt satisfies the same commutation relation with ~P , ~J and Ĥ as does
Ĝ.

6.19.11 A Very Useful Identity

Prove the following identity, in which Â and B̂ are operators and x is a param-
eter.

exÂB̂e−xÂ = B̂ +
[
Â, B̂

]
x+

[
Â,
[
Â, B̂

]] x2

2
+
[
Â,
[
Â,
[
Â, B̂

]]] x3

6
+ ......

There is a clever way(see Problem 6.12 below if you are having difficulty) to do
this problem using ODEs and not just brute-force multiplying everything out.

6.19.12 A Very Useful Identity with some help....

The operator U(a) = eipa/~ is a translation operator in space (here we consider
only one dimension). To see this we need to prove the identity

eABe−A =

∞∑
0

1

n!
[A, [A, ...[A,︸ ︷︷ ︸

n

B ]....]]︸︷︷︸
n

= B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + .....

(a) Consider B(t) = etABe−tA, where t is a real parameter. Show that

d

dt
B(t) = etA[A,B]e−tA

(b) Obviously, B(0) = B and therefore

B(1) = B +

∫ 1

0

dt
d

dt
B(t)

Now using the power series B(t) =
∑∞
n=0 t

nBn and using the above inte-
gral expressio, show that Bn = [A,Bn−1]/n.
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(c) Show by induction that

Bn =
1

n!
[A, [A, ...[A,︸ ︷︷ ︸

n

B ]....]]︸︷︷︸
n

(d) Use B(1) = eABe−A and prove the identity.

(e) Now prove eipa/~xe−ipa/~ = x + a showing that U(a) indeed translates
space.

6.19.13 Another Very Useful Identity

Prove that

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂]

provided that the operators Â and B̂ satisfy[
Â,
[
Â, B̂

]]
=
[
B̂,
[
Â, B̂

]]
= 0

A clever solution uses Problem 6.11or 6.12 result and ODEs.

6.19.14 Pure to Nonpure?

Use the equation of motion for the density operator ρ̂ to show that a pure state
cannot evolve into a nonpure state and vice versa.

6.19.15 Schur’s Lemma

Let G be the space of complex differentiable test functions, g(x), where x is real.
It is convenient to extend G slightly to encompass all functions, g̃(x), such that
g̃(x) = g(x) + c, where g ∈ G and c is any constant. Let us call the extended
space G̃. Let q̂ and p̂ be linear operators on G̃ such that

q̂g(x) = xg(x)

p̂g(x) = −idg(x)

dx
= −ig′(x)

Suppose M̂ is a linear operator on G̃ that commutes with q̂ and p̂. Show that

(1) q̂ and p̂ are hermitian on G̃

(2) M̂ is a constant multiple of the identity operator
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6.19.16 More About the Density Operator

Let us try to improve our understanding of the density matrix formalism and
the connections with information or entropy.We consider a simple two-state
system. Let ρ be any general density matrix operating on the two-dimensional
Hilbert space of this system.

(a) Calculate the entropy, s = −Tr(ρ ln ρ) corresponding to this density ma-
trix. Express the result in terms of a single real parameter. Make a clear
interpretation of this parameter and specify its range.

(b) Make a graph of the entropy as a function of the parameter. What is
the entropy for a pure state? Interpret your graph in terms of knowledge
about a system taken from an ensemble with density matrix ρ.

(c) Consider a system with ensemble ρ a mixture of two ensembles ρ1 and ρ2:

ρ = θρ1 + (1− θ)ρ2 , 0 ≤ θ ≤ 1

As an example, suppose

ρ1 =
1

2

(
1 0
0 1

)
, ρ2 =

1

2

(
1 1
1 1

)
in some basis. Prove that

s(ρ) ≥ ρ = θs(ρ1) + (1− θ)s(ρ2)

with equality if θ = 0 or θ = 1. This the so-called von Neumann’s mixing
theorem.

6.19.17 Entanglement and the Purity of a Reduced Den-
sity Operator

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Let |ΨAB〉 be the state

|ΨAB〉 = cos θ |0A〉 ⊗ |0B〉+ sin θ |1A〉 ⊗ |1B〉

For 0 < θ < π/2, this is an entangled state. The purity ζ of the reduced density
operator ρ̃A = TrB [|ΨAB〉 〈ΨAB |] given by

ζ = Tr[ρ̃2
A]

is a good measure of the entanglement of states in HAB . For pure states of the
above form, find extrema of ζ with respect to θ (0 ≤ θ ≤ π/2). Do entangled
states have large ζ or small ζ?

32



6.19.18 The Controlled-Not Operator

Again let HA and HB be a pair of two-dimensional Hilbert spaces with given
orthonormal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Consider the controlled-not
operator on HAB (very important in quantum computing),

UAB = PA0 ⊗ IB + PA1 ⊗ σBx

where PA0 = |0A〉 〈0A|, PA1 = |1A〉 〈1A| and σBx = |0B〉 〈1B |+ |1B〉 〈00|.

Write a matrix representation for UAB with respect to the following (ordered)
basis for HAB

|0A〉 ⊗ |0B〉 , |0A〉 ⊗ |1B〉 , |1A〉 ⊗ |0B〉 , |1A〉 ⊗ |1B〉

Find the eigenvectors of UAB - you should be able to do this by inspection. Do
any of them correspond to entangled states?

6.19.19 Creating Entanglement via Unitary Evolution

Working with the same system as in Problems 6.17 and 6.18, find a factorizable
input state ∣∣Ψin

AB

〉
= |ΨA〉 ⊗ |ΨB〉

such that the output state ∣∣Ψout
AB

〉
= UAB

∣∣Ψin
AB

〉
is maximally entangled. That is, find any factorizable

∣∣Ψin
AB

〉
such that Tr[ρ̃2

A] =
1/2, where

ρ̃A = TrB [
∣∣Ψout

AB

〉 〈
Ψout
AB

∣∣]
6.19.20 Tensor-Product Bases

LetHA andHB be a pair of two-dimensional Hilbert spaces with given orthonor-
mal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Consider the following entangled state
in the joint Hilbert space HAB = HA ⊗HB ,

|ΨAB〉 =
1√
2

(|0A1B〉+ |1A0B〉)

where |0A1B〉 is short-hand notation for |0A〉 ⊗ |1B〉 and so on. Rewrite this
state in terms of a new basis {

∣∣0̃A0̃B
〉
,
∣∣0̃A1̃B

〉
,
∣∣1̃A0̃B

〉
,
∣∣1̃A1̃B

〉
}, where∣∣0̃A〉 = cos

φ

2
|0A〉+ sin

φ

2
|1A〉∣∣1̃A〉 = − sin

φ

2
|0A〉+ cos

φ

2
|1A〉

and similarly for {
∣∣0̃B〉 , ∣∣1̃B〉}. Again

∣∣0̃A0̃B
〉

=
∣∣0̃A〉⊗ ∣∣0̃B〉, etc. Is our partic-

ular choice of |ΨAB〉 special in some way?
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6.19.21 Matrix Representations

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Let |0A0B〉 = |0A〉 ⊗ |0B〉, etc.
Let the natural tensor product basis kets for the joint space HAB be represented
by column vectors as follows:

|0A0B〉 ↔


1
0
0
0

 , |0A1B〉 ↔


0
1
0
0

 , |1A0B〉 ↔


0
0
1
0

 , |1A1B〉 ↔


0
0
0
1


For parts (a) -(c), let

ρAB =
3

8
|0A〉 〈0A| ⊗

1

2
(|0B〉+ |1B〉) (|0B〉+ |1B〉)

+
5

8
|1A〉 〈1A| ⊗

1

2
(|0B〉 − |1B〉) (|0B〉 − |1B〉)

(a) Find the matrix representation of ρAB that corresponds to the above vec-
tor representation of the basis kets.

(b) Find the matrix representation of the partial projectors IA ⊗ PB0 and
IA⊗PB1 9see problem 6.18 for definitions) and then use them to compute
the matrix representation of(

IA ⊗ PB0
)
ρAB

(
IA ⊗ PB0

)
+
(
IA ⊗ PB1

)
ρAB

(
IA ⊗ PB1

)
(c) Find the matrix representation of ρ̃A = TrB [ρAB ] by taking the partial

trace using Dirac language methods.

6.19.22 Practice with Dirac Language for Joint Systems

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Let |0A0B〉 = |0A〉 ⊗ |0B〉, etc.
Consider the joint state

|ΨAB〉 =
1√
2

(|0A0B〉+ |1A1B〉)

(a) For this particular joint state, find the most general form of an observable
OA acting only on the A subsystem such that

〈ΨAB |OA ⊗ IB |ΨAB〉 = 〈ΨAB |
(
IA ⊗ PB0

)
OA ⊗ IB

(
IA ⊗ PB0

)
|ΨAB〉

where
PB0 =

∣∣0B〉 〈0B∣∣
Express your answer in Dirac language.
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(b) Consider the specific operator

XA =
∣∣0A〉 〈1A∣∣+

∣∣1A〉 〈0A∣∣
which satisfies the general form you should have found in part (a). Find
the most general form of the joint state vector |Ψ′AB〉 such that

〈Ψ′AB |XA ⊗ IB |Ψ′AB〉 6= 〈ΨAB |
(
IA ⊗ PB0

)
XA ⊗ IB

(
IA ⊗ PB0

)
|ΨAB〉

(c) Find an example of a reduced density matrix ρ̃A for the A subsystem such
that no joint state vector |Ψ′AB〉 of the general form you found in part (b)
can satisfy

ρ̃A = TrB [|Ψ′AB〉 〈Ψ′AB |]

6.19.23 More Mixed States

Let HA and HB be a pair of two-dimensional Hilbert spaces with given or-
thonormal bases {|0A〉 , |1A〉} and {|0B〉 , |1B〉}. Let |0A0B〉 = |0A〉 ⊗ |0B〉, etc.
Suppose that both the A and B subsystems are initially under your control and
you prepare the initial joint state

∣∣Ψ0
AB

〉
=

1√
2

(|0A0B〉+ |1A1B〉)

(a) Suppose you take the A and B systems prepared in the state
∣∣Ψ0

AB

〉
and

give them to your friend, who then performs the following procedure. Your
friend flips a biased coin with probability p for heads; if the result of the
coin-flip is a head your friend applies a transformation

Uh = |0A0B〉 〈0A0B | − |1A1B〉 〈1A1B |

If the result of the coin-flip is tails, your friend does nothing. After this
procedure what is the density operator you should use to represent your
knowledge of the joint state?

(b) Suppose you take the A and B systems prepared in the state
∣∣Ψ0

AB

〉
and

give them to your friend, who then performs the alternate procedure. Your
friend performs a measurement of the observable

O = IA ⊗ Uh

but does not tell you the result. After this procedure, what density opera-
tor should you use to represent your knowledge of the joint state? Assume
that you can use the projection postulate (reduction) for state condition-
ing (preparation).
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6.19.24 Complete Sets of Commuting Observables

Consider a three-dimensional Hilbert space H3 and the following set of opera-
tors:

Oα ↔

1 1 0
1 0 0
0 0 0

 , Oβ ↔

1 0 0
0 1 0
0 0 0

 , Oγ ↔

0 0 0
0 1 0
0 0 1


Find all possible complete sets of commuting observables(CSCO). That is, de-
termine whether or not each of the sets

{Oα}, {Oβ}, {Oγ}, {Oα, Oβ}, {Oα, Oγ}, {Oβ , Oγ}, {Oα, Oβ , Oγ}

constitutes a valid CSCO.

6.19.25 Conserved Quantum Numbers

Determine which of the CSCO’s in problem 6.24 (if any) are conserved by the
Schrodinger equation with Hamiltonian

H = ε0

2 1 0
1 1 0
0 0 0

 = ε0 (Oα}+ {Oβ)
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Chapter 7

How Does It really Work:
Photons, K-Mesons and Stern-Gerlach

7.5 Problems

7.5.1 Change the Basis

In examining light polarization in the text, we have been working in the {|x〉 , |y〉}
basis.

(a) Just to show how easy it is to work in other bases, express {|x〉 , |y〉} in
the {|R〉 , |L〉} and {|45◦〉 , |135◦〉} bases.

(b) If you are working in the {|R〉 , |L〉} basis, what would the operator rep-
resenting a vertical polaroid look like?

7.5.2 Polaroids

Imagine a situation in which a photon in the |x〉 state strikes a vertically oriented
polaroid. Clearly the probability of the photon getting through the vertically
oriented polaroid is 0. Now consider the case of two polaroids with the photon
in the |x〉 state striking a polaroid oriented at 45◦ and then striking a vertically
oriented polaroid.

Show that the probability of the photon getting through both polaroids is 1/4.

Consider now the case of three polaroids with the photon in the |x〉 state striking
a polaroid oriented at 30◦ first, then a polaroid oriented at 60◦ and finally a
vertically oriented polaroid.

Show that the probability of the photon getting through all three polaroids is
27/64.
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7.5.3 Calcite Crystal

A photon polarized at an angle θ to the optic axis is sent through a slab of
calcite crystal. Assume that the slab is 10−2 cm thick, the direction of photon
propagation is the z−axis and the optic axis lies in the x− y plane.

Calculate, as a function of θ, he transition probability for the photon to emerge
left circularly polarized. Sketch the result. Let the frequency of the light be

given by c/ω = 5000
◦
A, and let ne = 1.50 and no = 1.65 for the calcite indices

of refraction.

7.5.4 Turpentine

Turpentine is an optically active substance. If we send plane polarized light into
turpentine then it emerges with its plane of polarization rotated. Specifically,
turpentine induces a left-hand rotation of about 5◦ per cm of turpentine that
the light traverses. Write down the transition matrix that relates the incident
polarization state to the emergent polarization state. Show that this matrix is
unitary. Why is that important? Find its eigenvectors and eigenvalues, as a
function of the length of turpentine traversed.

7.5.5 What QM is all about - Two Views

Photons polarized at 30◦ to the x−axis are sent through a y−polaroid. An
attempt is made to determine how frequently the photons that pass through the
polaroid, pass through as right circularly polarized photons and how frequently
they pass through as left circularly polarized photons. This attempt is made as
follows:

First, a prism that passes only right circularly polarized light is placed between
the source of the 30◦ polarized photons and the y−polaroid, and it is determined
how frequently the 30◦ polarized photons pass through the y−polaroid. Then
this experiment is repeated with a prism that passes only left circularly polarized
photons instead of the one that passes only right.

(a) Show by explicit calculation using standard amplitude mechanics that the
sum of the probabilities for passing through the y−polaroid measured in
these two experiments is different from the probability that one would
measure if there were no prism in the path of the photon and only the
y−polaroid.

Relate this experiment to the two-slit diffraction experiment.

(b) Repeat the calculation using density matrix methods instead of amplitude
mechanics.
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7.5.6 Photons and Polarizers

A photon polarization state for a photon propagating in the z−direction is given
by

|ψ〉 =

√
2

3
|x〉+

i√
3
|y〉

(a) What is the probability that a photon in this state will pass through a
polaroid with its transmission axis oriented in the y−direction?

(b) What is the probability that a photon in this state will pass through a
polaroid with its transmission axis y′ making an angle ϕ with the y−axis?

(c) A beam carrying N photons per second, each in the state |ψ〉, is totally
absorbed by a black disk with its surface normal in the z-direction. How
large is the torque exerted on the disk? In which direction does the disk
rotate? REMINDER: The photon states |R〉 and |L〉 each carry a unit
~ of angular momentum parallel and antiparallel, respectively, to the di-
rection of propagation of the photon.

7.5.7 Time Evolution

The matrix representation of the Hamiltonian for a photon propagating along
the optic axis (taken to be the z−axis) of a quartz crystal using the linear
polarization states |x〉 and |y〉 as a basis is given by

Ĥ =

(
0 −iE0

iE0 0

)
(a) What are the eigenstates and eigenvalues of the Hamiltonian?

(b) A photon enters the crystal linearly polarized in the x direction, that is,
|ψ(0)〉 = |x〉. What is |ψ(t)〉, the state of the photon at time t? Express
your answer in the {|x〉 , |y〉} basis.

(c) What is happening to the polarization of the photon as it travels through
the crystal?

7.5.8 K-Meson oscillations

An additional effect to worry about when thinking about the time development
of K-meson states is that the |KL〉 and |KS〉 states decay with time. Thus, we
expect that these states should have the time dependence

|KL(t)〉 = e−iωLt−t/2τL |KL〉 , |KS(t)〉 = e−iωSt−t/2τS |KS〉

where

ωL = EL/~ , EL =
(
p2c2 +m2

Lc
4
)1/2

ωS = ES/~ , ES =
(
p2c2 +m2

Sc
4
)1/2
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and
τS ≈ 0.9× 10−10 sec , τL ≈ 560× 10−10 sec

Suppose that a pure KL beam is sent through a thin absorber whose only effect
is to change the relative phase of the K0 and K̄0 amplitudes by 10◦. Calculate
the number of KS decays, relative to the incident number of particles, that will
be observed in the first 5 cm after the absorber. Assume the particles have
momentum = mc.

7.5.9 What comes out?

A beam of spin 1/2 particles is sent through series of three Stern-Gerlach mea-
suring devices as shown in Figure 7.1 below: The first SGz device transmits

Figure 7.1: Stern-Gerlach Setup

particles with Ŝz = ~/2 and filters out particles with Ŝz = −~/2. The second
device, an SGn device transmits particles with Ŝn = ~/2 and filters out particles
with Ŝn = −~/2, where the axis n̂ makes an angle θ in the x − z plane with
respect to the z−axis. Thus the particles passing through this SGn device are
in the state

|+n̂〉 = cos
θ

2
|+ẑ〉+ eiϕ sin

θ

2
|−ẑ〉

with the angle ϕ = 0. A last SGz device transmits particles with Ŝz = ~/2 and
filters out particles with Ŝz = −~/2.

(a) What fraction of the particles transmitted through the first SGz device
will survive the third measurement?

(b) How must the angle θ of the SGn device be oriented so as to maximize the
number of particles the at are transmitted by the final SGz device? What
fraction of the particles survive the third measurement for this value of θ?

(c) What fraction of the particles survive the last measurement if the SGn
device is simply removed from the experiment?

7.5.10 Orientations

The kets |h〉 and |v〉 are states of horizontal and vertical polarization, respec-
tively. Consider the states

|ψ1〉 = −1

2

(
|h〉+

√
3 |v〉

)
, |ψ2〉 = −1

2

(
|h〉 −

√
3 |v〉

)
, |ψ2〉 = |h〉
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What are the relative orientations of the plane polarization for these three
states?

7.5.11 Find the phase angle

If CP is not conserved in the decay of neutral K mesons, then the states of
definite energy are no longer the KL , KS states, but are slightly different states
|K ′L〉 and |K ′S〉. One can write, for example,

|K ′L〉 = (1 + ε)
∣∣K0

〉
− (1− ε)

∣∣K̄0
〉

where varepsilon is a very small complex number
(
|ε| ≈ 2× 10−3

)
that is a

measure of the lack of CP conservation in the decays. The amplitude for a
particle to be in |K ′L〉 (or |K ′S〉) varies as e−iωLt−t/2τL

(
or e−iωSt−t/2τS

)
where

~ωL =
(
p2c2 +m2

Lc
4
)1/2 (

or ~ωS =
(
p2c2 +m2

Sc
4
)1/2)

and τL � τS .

(a) Write out normalized expressions for the states |K ′L〉 and |K ′S〉 in terms
of |K0〉 and

∣∣K̄0

〉
.

(b) Calculate the ratio of the amplitude for a long-lived K to decay to two
pions (a CP = +1 state) to the amplitude for a short-lived K to decay
to two pions. What does a measurement of the ratio of these decay rates
tell us about ε?

(c) Suppose that a beam of purely long-lived K mesons is sent through an
absorber whose only effect is to change the relative phase of the K0 and
K̄0 components by δ. Derive an expression for the number of two pion
events observed as a function of time of travel from the absorber. How well
would such a measurement (given δ) enable one to determine the phase of
ε?

7.5.12 Quarter-wave plate

A beam of linearly polarized light is incident on a quarter-wave plate (changes
relative phase by 90◦) with its direction of polarization oriented at 30◦ to the
optic axis. Subsequently, the beam is absorbed by a black disk. Determine the
rate angular momentum is transferred to the disk, assuming the beam carries
N photons per second.

7.5.13 What is happening?

A system of N ideal linear polarizers is arranged in sequence. The transmission
axis of the first polarizer makes an angle ϕ/N with the y−axis. The transmission
axis of every other polarizer makes an angle ϕ/N with respect to the axis of the
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preceding polarizer. Thus, the transmission axis of the final polarizer makes an
angle ϕ with the y−axis. A beam of y−polarized photons is incident on the
first polarizer.

(a) What is the probability that an incident photon is transmitted by the
array?

(b) Evaluate the probability of transmission in the limit of large N .

(c) Consider the special case with the angle 90◦. Explain why your result is
not in conflict with the fact that 〈x | y〉 = 0.

7.5.14 Interference

Photons freely propagating through a vacuum have one value for their energy
E = hν. This is therefore a 1−dimensional quantum mechanical system, and
since the energy of a freely propagating photon does not change, it must be
an eigenstate of the energy operator. So, if the state of the photon at t = 0
is denoted as |ψ(0)〉, then the eigenstate equation can be written Ĥ |ψ(0)〉 =
E |ψ(0)〉. To see what happens to the state of the photon with time, we simply
have to apply the time evolution operator

|ψ(t)〉 = Û(t) |ψ(0)〉 = e−iĤt/~ |ψ(0)〉 = e−ihνt/~ |ψ(0)〉
= e−i2πνt |ψ(0)〉 = e−i2πx/λ |ψ(0)〉

where the last expression uses the fact that ν = c/λ and that the distance it
travels is x = ct. Notice that the relative probability of finding the photon at
various points along the x-axis (the absolute probability depends on the number
of photons emerging per unit time) does not change since the modulus-square of
the factor in front of |ψ(0)〉 is 1. Consider the following situation. Two sources
of identical photons face each other an emit photons at the same time. Let the
distance between the two sources be L.

Figure 7.2: Interference Setup

Notice that we are assuming the photons emerge from each source in state
|ψ(0)〉. In between the two light sources we can detect photons but we do
not know from which source they originated. Therefore, we have to treat the
photons at a point along the x−axis as a superposition of the time-evolved state
from the left source and the time-evolved state from the right source.

(a) What is this superposition state |ψ(t)〉 at a point x between the sources?
Assume the photons have wavelength λ.
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(b) Find the relative probability of detecting a photon at point x by evaluating

|〈ψ(t) | ψ(t)〉|2 at the point x.

(c) Describe in words what your result is telling you. Does this correspond to
anything you have seen when light is described as a wave?

7.5.15 More Interference

Now let us tackle the two slit experiment with photons being shot at the slits one
at a time. The situation looks something like the figure below. The distance
between the slits, d is quite small (less than a mm) and the distance up the
y−axis(screen) where the photons arrive is much,much less than L (the distance
between the slits and the screen). In the figure, S1 and S2 are the lengths of the
photon paths from the two slits to a point a distance y up the y−axis from the
midpoint of the slits. The most important quantity is the difference in length
between the two paths. The path length difference or PLD is shown in the
figure.

Figure 7.3: Double-Slit Interference Setup

We calculate PLD as follows:

PLD = d sin θ = d

[
y

[L2 + y2]
1/2

]
≈ yd

L
, y � L

Show that the relative probability of detecting a photon at various points along
the screen is approximately equal to

4 cos2

(
πyd

λL

)

7.5.16 The Mach-Zender Interferometer and Quantum In-
terference

Background information: Consider a single photon incident on a 50-50 beam
splitter (that is, a partially transmitting, partially reflecting mirror, with equal
coefficients). Whereas classical electromagnetic energy divides equally, the pho-
ton is indivisible. That is, if a photon-counting detector is placed at each of the
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Figure 7.4: Beam Splitter

output ports (see figure below), only one of them clicks. Which one clicks is
completely random (that is, we have no better guess for one over the other).
The input-output transformation of the waves incident on 50-50 beam splitters
and perfectly reflecting mirrors are shown in the figure below.

Figure 7.5: Input-Output transformation

(a) Show that with these rules, there is a 50-50 chance of either of the detectors
shown in the first figure above to click.

(b) Now we set up a Mach-Zender interferometer(shown below):
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Figure 7.6: Input-Output transformation

The wave is split at beam-splitter b1, where it travels either path b1-m1-
b2(call it the green path) or the path b1-m2-b2 (call it the blue path).
Mirrors are then used to recombine the beams on a second beam splitter,
b2. Detectors D1 and D2 are placed at the two output ports of b2.

Assuming the paths are perfectly balanced (that is equal length), show
that the probability for detector D1 to click is 100% - no randomness!

(c) Classical logical reasoning would predict a probability for D1 to click given
by

PD1 = P (transmission at b1|green path)P (green path)

+ P (reflection at b2|blue path)P (blue path)

Calculate this and compare to the quantum result. Explain.

(d) How would you set up the interferometer so that detector D2 clicked with
100% probability? How about making them click at random? Leave the
basic geometry the same, that is, do not change the direction of the beam
splitters or the direction of the incident light.

7.5.17 More Mach-Zender

An experimenter sets up two optical devices for single photons. The first, (i)
in figure below, is a standard balanced Mach-Zender interferometer with equal
path lengths, perfectly reflecting mirrors (M) and 50-50 beam splitters (BS).
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Figure 7.7: Mach-Zender Setups

A transparent piece of glass which imparts a phase shift (PS) φ is placed in one
arm. Photons are detected (D) at one port. The second interferometer, (ii) in
figure below, is the same except that the final beam splitter is omitted.

Sketch the probability of detecting the photon as a function of φ for each device.
Explain your answer.
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Chapter 8

Schrodinger Wave equation
1-Dimensional Quantum Systems

8.15 Problems

8.15.1 Delta function in a well

A particle of mass m moving in one dimension is confined to a space 0 < x <
L by an infinite well potential. In addition, the particle experiences a delta
function potential of strength λ given by λδ(x − L/2) located at the center of
the well as shown in Figure 8.1 below.

Figure 8.1: Potential Diagram

Find a transcendental equation for the energy eigenvalues E in terms of the
mass m, the potential strength λ, and the size of the well L.
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8.15.2 Properties of the wave function

A particle of mass m is confined to a one-dimensional region 0 ≤ x ≤ a (an
infinite square well potential). At t = 0 its normalized wave function is

ψ(x, t = 0) =

√
8

5a

(
1 + cos

(πx
a

))
sin
(πx
a

)
(a) What is the wave function at a later time t = t0?

(b) What is the average energy of the system at t = 0 and t = t0?

(c) What is the probability that the particle is found in the left half of the
box(i.e., in the region 0 ≤ x ≤ a/2 at t = t0?

8.15.3 Repulsive Potential

A repulsive short-range potential with a strongly attractive core can be approx-
imated by a square barrier with a delta function at its center, namely,

V (x) = V0Θ(x− |a|)− ~2g

2m
δ(x)

(a) Show that there is a negative energy eigenstate (the ground-state).

(b) If E0 is the ground-state energy of the delta-function potential in the
absence of the positive potential barrier, then the ground-state energy
of the present system satisfies the relation E ≥ E0 + V0. What is the
particular value of V0 for which we have the limiting case of a ground-
state with zero energy.

8.15.4 Step and Delta Functions

Consider a one-dimensional potential with a step-function component and an
attractive delta function component just at the edge of the step, namely,

V (x) = VΘ(x)− ~2g

2m
δ(x)

(a) For E > V , compute the reflection coefficient for particle incident from
the left. How does this result differ from that of the step barrier alone at
high energy?

(b) For E < 0 determine the energy eigenvalues and eigenfunctions of any
bound-state solutions.
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8.15.5 Atomic Model

An approximate model for an atom near a wall is to consider a particle moving
under the influence of the one-dimensional potential given by

V (x) =

{
−V0δ(x) x > −d
∞ x < −d

as shown in Figure 8.2 below.

Figure 8.2: Potential Diagram

(a) Find the transcendental equation for the bound state energies.

(b) Find an approximation for the modification of the bound-state energy
caused by the wall when it is far away. Define carefully what you mean
by far away.

(c) What is the exact condition on V0 and d for the existence of at least one
bound state?

8.15.6 A confined particle

A particle of mass m is confined to a space 0 < x < a in one dimension by
infinitely high walls at x = 0 and x = a. At t = 0 the particle is initially in the
left half of the well with a wave function given by

ψ(x, 0) =

{√
2/a 0 < x < a/2

0 a/2 < x < a
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(a) Find the time-dependent wave function ψ(x, t).

(b) What is the probability that the particle is in the nth eigenstate of the
well at time t?

(c) Derive an expression for average value of particle energy. What is the
physical meaning of your result?

8.15.7 1/x potential

An electron moves in one dimension and is confined to the right half-space
(x > 0) where it has potential energy

V (x) = − e
2

4x

where e is the charge on an electron.

(a) What is the solution of the Schrodinger equation at large x?

(b) What is the boundary condition at x = 0?

(c) Use the results of (a) and (b) to guess the ground state solution of the
equation. Remember the ground state wave function has no zeros except
at the boundaries.

(d) Find the ground state energy.

(e) Find the expectation value 〈x̂〉 in the ground state.

8.15.8 Using the commutator

Using the coordinate-momentum commutation relation prove that∑
n

(En − E0) |〈En| x̂ |E0〉|2 = constant

where E0 is the energy corresponding to the eigenstate |E0〉. Determine the
value of the constant. Assume the Hamiltonian has the general form

Ĥ =
p̂2

2m
+ V (x̂)

8.15.9 Matrix Elements for Harmonic Oscillator

Compute the following matrix elements

〈m| x̂3 |n〉 , 〈m| x̂p̂ |n〉
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8.15.10 A matrix element

Show for the one dimensional simple harmonic oscillator

〈0| eikx̂ |0〉 = exp
[
−k2 〈0| x̂2 |0〉 /2

]
where x̂ is the position operator.

8.15.11 Correlation function

Consider a function, known as the correlation function, defined by

C(t) = 〈x̂(t)x̂(0)〉

where x̂(t) is the position operator in the Heisenberg picture. Evaluate the
correlation function explicitly for the ground-state of the one dimensional simple
harmonic oscillator.

8.15.12 Instantaneous Force

Consider a simple harmonic oscillator in its ground state.

An instantaneous force imparts momentum p0 to the system such that the new
state vector is given by

|ψ〉 = e−ip0x̂/~ |0〉

where |0〉 is the ground-state of the original oscillator.

What is the probability that the system will stay in its ground state?

8.15.13 Coherent States

Coherent states are defined to be eigenstates of the annihilation or lowering
operator in the harmonic oscillator potential. Each coherent state has a complex
label z and is given by |z〉 = ezâ

+ |0〉.

(a) Show that â |z〉 = z |z〉

(b) Show that 〈z1 | z2〉 = ez
∗
1z2

(c) Show that the completeness relation takes the form

Î =
∑
n

|n〉 〈n| =
∫
dxdy

π
|z〉 〈z| e−z

∗z

where |n〉 is a standard harmonic oscillator energy eigenstate, Î is the identity
operator, z = x+ iy, and the integration is taken over the whole x−y plane(use
polar coordinates).
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8.15.14 Oscillator with Delta Function

Consider a harmonic oscillator potential with an extra delta function term at
the origin, that is,

V (x) =
1

2
mω2x2 +

~2g

2m
δ(x)

(a) Using the parity invariance of the Hamiltonian, show that the energy
eigenfunctions are even and odd functions and that the simple harmonic
oscillator odd-parity energy eigenstates are still eigenstates of the system
Hamiltonian, with the same eigenvalues.

(b) Expand the even-parity eigenstates of the new system in terms of the
even-parity harmonic oscillator eigenfunctions and determine the expan-
sion coefficients.

(c) Show that the energy eigenvalues that correspond to even eigenstates are
solutions of the equation

(d)

2

g
= −

√
~

mπω

∞∑
k=0

(2k)!

22k(k!)2

(
2k +

1

2
− E

~ω

)−1

You might need the fact that

ψ2k(0) =
(mω
π~

)1/4
√

(2k)!

2kk!

Consider the following cases:

(1) g > 0, E > 0

(2) g < 0, E > 0

(3) g < 0, E < 0

Show the first and second cases correspond to an infinite number of energy
eigenvalues.

Where are they relative to the original energy eigenvalues of the harmonic os-
cillator?

Show that in the third case, that of an attractive delta function core, there ex-
ists a single eigenvalue corresponding to the ground state of the system provided
that the coupling is such that[

Γ(3/4)

Γ(1/4)

]2

<
g2~

16mω
< 1
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You might need the series summation:

∞∑
k=0

(2k)!

4k(k!)2

1

2k + 1− x
=

√
π

2

Γ(1/2− x/2)

Γ(1− x/2)

You will need to look up other properties of the gamma function to solve this
problem.

8.15.15 Measurement on a Particle in a Box

Consider a particle in a box of width a, prepared in the ground state.

(a) What are then possible values one can measure for: (1) energy, (2) posi-
tion, (3) momentum ?

(b) What are the probabilities for the possible outcomes you found in part
(a)?

(c) At some time (call it t = 0) we perform a measurement of position. How-
ever, our detector has only finite resolution. We find that the particle is
in the middle of the box (call it the origin) with an uncertainty ∆x = a/2,
that is, we know the position is, for sure, in the range −a/4 < x < a/4,
but we are completely uncertain where it is within this range. What is
the (normalized) post-measurement state?

(d) Immediately after the position measurement what are the possible values
for (1) energy, (2) position, (3) momentum and with what probabilities?

(e) At a later time, what are the possible values for (1) energy, (2) position,
(3) momentum and with what probabilities? Comment.

8.15.16 Aharonov-Bohm experiment

Consider an infinitely long solenoid which carries a current I so that there is a
constant magnetic field inside the solenoid(see Figue 8.3 below).

Figure 8.3: Aharonov-Bohm Setup
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Suppose that in the region outside the solenoid the motion of a particle with
charge e and mass m is described by the Schrodinger equation. Assume that
for I = 0 , the solution of the equation is given by

ψ0(~r, t) = eiE0t/~ψ0(~r)

(a) Write down and solve the Schrodinger equation in the region outside the
solenoid in the case I 6= 0.

(b) Consider the two-slit diffraction experiment for the particles described
above shown in Figure 8.3 above. Assume that the distance d between
the two slits is large compared to the diameter of the solenoid.

Compute the shift ∆S of the diffraction pattern on the screen due to the
presence of the solenoid with I 6= 0. Assume that L� ∆S.

8.15.17 A Josephson Junction

A Josephson junction is formed when two superconducting wires are separated
by an insulating gap of capacitance C. The quantum states ψi , i = 1, 2 of the
two wires can be characterized by the numbers ni of Cooper pairs (charge =
−2e) and phases θi, such that ψi =

√
nie

iθi (Ginzburg-Landau approximation).
The (small) amplitude that a pair tunnel across a narrow insulating barrier is
−EJ/n0 where n0 = n1 +n2 and EJ is the the so-called Josephson energy. The
interesting physics is expressed in terms of the differences

n = n2 − n1 , ϕ = θ2 − θ1

We consider a junction where

n1 ≈ n2 ≈ n0/2

When there exists a nonzero difference n between the numbers of pairs of charge
−2e, where e > 0, on the two sides of the junction, there is net charge −ne on
side 2 and net charge +ne on side 1. Hence a voltage difference ne/C arises,
where the voltage on side 1 is higher than that on side 2 if n = n2 − n1 > 0.
Taking the zero of the voltage to be at the center of the junction, the electrostatic
energy of the Cooper pair of charge −2e on side 2 is ne2/C, and that of a pair
on side 1 is −ne2/C. The total electrostatic energy is C(∆V )2/2 = Q2/2C =
(ne)2/2C.

The equations of motion for a pair in the two-state system (1, 2) are

i~
dψ1

dt
= U1ψ1 −

EJ
n0
ψ2 = −ne

2

C
ψ1 −

EJ
n0
ψ2

i~
dψ2

dt
= U2ψ2 −

EJ
n0
ψ1 =

ne2

C
ψ2 −

EJ
n0
ψ1
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(a) Discuss the physics of the terms in these equations.

(b) Using ψi =
√
nie

iθi , show that the equations of motion for n and ϕ are
given by

ϕ̇ = θ̇2 − θ̇1 ≈ −
2ne2

~C

ṅ = ṅ2 − ṅ1 ≈
EJ
~

sinϕ

(c) Show that the pair(electric current) from side 1 to side 2 is given by

JS = J0 sinϕ , J0 =
πEJ
φ0

(d) Show that

ϕ̈ ≈ −2e2EJ
~2C

sinϕ

For EJ positive, show that this implies there are oscillations about ϕ = 0
whose angular frequency (called the Josephson plasma frequency)is given
by

ωJ =

√
2e2EJ
~2C

for small amplitudes.

If EJ is negative, then there are oscillations about ϕ = π.

(e) If a voltage V = V1 − V2 is applied across the junction(by a battery), a
charge Q1 = V C = (−2e)(−n/2) = en is held on side 1, and the negative
of this on side 2. Show that we then have

ϕ̇ ≈ −2eV

~
≡ −ω

which gives ϕ = ωt.

The battery holds the charge difference across the junction fixed at V C −
en, but can be a source or sink of charge such that a current can flow in
the circuit. Show that in this case, the current is given by

JS = −J0 sinωt

i.e., the DC voltage of the battery generates an AC pair current in circuit
of frequency

ω =
2eV

~
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8.15.18 Eigenstates using Coherent States

Obtain eigenstates of the following Hamiltonian

Ĥ = ~ω(̂a)+â+ V â+ V ∗â+

for a complex V using coherent states.

8.15.19 Bogliubov Transformation

Suppose annihilation and creation operators satisfy the standard commutation
relations [â, â+] = 1. Show that the Bogliubov transformation

b̂ = â cosh η + â+ sinh η

preserves the commutation relation of the creation and annihilation operators,
i.e., [b̂, b̂+] = 1. Use this fact to obtain eigenvalues of the following Hamiltonian

Ĥ = ~ω(̂a)+â+
1

2
V
(
ââ+ â+â+

)
(There is an upper limit on V for which this can be done). Also show that the
unitary operator

Û = e(ââ+â+â+)η/2

can relate the two sets of operators as b̂ = Û âÛ−1.

8.15.20 Harmonic oscillator

Consider a particle in a 1−dimensional harmonic oscillator potential. Suppose
at time t = 0, the state vector is

|ψ(0)〉 = e−
ip̂a
~ |0〉

where p̂ is the momentum operator and a is a real number.

(a) Use the equation of motion in the Heisenberg picture to find the operator
x̂(t).

(b) Show that e−
ip̂a
~ is the translation operator.

(c) In the Heisenberg picture calculate the expectation value 〈x〉 for t ≥ 0.

8.15.21 Another oscillator

A 1−dimensional harmonic oscillator is, at time t = 0, in the state

|ψ(t = 0)〉 =
1√
3

(|0〉+ |1〉+ |2〉)

where |n〉 is the nth energy eigenstate. Find the expectation value of position
and energy at time t.
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8.15.22 The coherent state

Consider a particle of mass m in a harmonic oscillator potential of frequency ω.
Suppose the particle is in the state

|α〉 =

∞∑
n=0

cn |n〉

where

cn = e−|α|
2/2 α

n

√
n!

and α is a complex number. As we have discussed, this is a coherent state or
alternatively a quasi-classical state.

(a) Show that |α〉 is an eigenstate of the annihilation operator, i.e., â |α〉 =
α |α〉.

(b) Show that in this state 〈x̂〉 = xcRe(α) and 〈p̂〉 = pcIm(α). Determine xc
and pc.

(c) Show that, in position space, the wave function for this state is ψα(x) =
eip0x/~u0(x − x0) where u0(x) is the ground state gaussian function and
〈x̂〉 = x0 and 〈p̂〉 = p0.

(d) What is the wave function in momentum space? Interpret x0 and p0.

(e) Explicitly show that ψα(x) is an eigenstate of the annihilation operator
using the position-space representation of the annihilation operator.

(f) Show that the coherent state is a minimum uncertainty state (with equal
uncertainties in x and p, in characteristic dimensionless units.

(g) If a time t = 0 the state is |ψ(0)〉 = |α〉, show that at a later time,

|ψ(t)〉 = e−iωt/2
∣∣αe−iωt〉

Interpret this result.

(h) Show that, as a function of time, 〈x̂〉 and 〈p̂〉 follow the classical trajectory
of the harmonic oscillator, hence the name quasi-classical state.

(i) Write the wave function as a function of time, ψα(x, t). Sketch the time
evolving probability density.

(j) Show that in the classical limit

lim
|α|→∞

∆N

〈N〉
→ 0

(k) Show that the probability distribution in n is Poissonian, with appropriate
parameters.

(l) Use a rough time-energy uncertainty principle , to find an uncertainty
principle ∆E∆t > ~ between the number and phase of a quantum oscil-
lator.
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8.15.23 Neutrino Oscillations

It is generally recognized that there are at least three different kinds of neutrinos.
They can be distinguished by the reactions in which the neutrinos are created
or absorbed. Let us call these three types of neutrino νe, νµ and ντ . It has been
speculated that each of these neutrinos has a small but finite rest mass, possibly
different for each type. Let us suppose, for this exam question, that there is
a small perturbing interaction between these neutrino types, in the absence of
which all three types of neutrinos have the same nonzero rest mass M0. The
Hamiltonian of the system can be written as

Ĥ = Ĥ0 + Ĥ1

where

Ĥ0 =

 M0 0 0
0 M0 0
0 0 M0

→ no interactions present

and

Ĥ1 =

 0 ~ω1 ~ω1

~ω1 0 ~ω1

~ω1 ~ω1 0

→ effect of interactions

where we have used the basis

|νe〉 = |1〉 , |νµ〉 = |2〉 , |ντ 〉 = |3〉

(a) First assume that ω1 = 0, i.e., no interactions. What is the time develop-
ment operator? Discuss what happens if the neutrino initially was in the
state

|ψ(0)〉 = |νe〉 =

 1
0
0

 or |ψ(0)〉 = |νµ〉 =

 0
1
0

 or |ψ(0)〉 = |ντ 〉 =

 0
0
1


What is happening physically in this case?

(b) Now assume that ω1 6= 0, i.e., interactions are present. Also assume that
at t = 0 the neutrino is in the state

|ψ(0)〉 = |νe〉 =

 1
0
0


What is the probability as a function of time, that the neutrino will be in
each of the other two states?

(c) An experiment to detect the neutrino oscillations is being performed. The
flight path of the neutrinos is 2000 meters. Their energy is 100GeV . The
sensitivity of the experiment is such that the presence of 1% of neutrinos
different from those present at the start of the flight can be measured with
confidence. Let M0 = 20 eV . What is the smallest value of ~ω1 that can
be detected? How does this depend on M0? Don’t ignore special relativity.
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8.15.24 Generating Function

Use the generating function for Hermite polynomials

e2xt−t2 =

∞∑
n=0

Hn(x)
tn

n!

to work out the matrix elements of x in the position representation, that is,
compute

〈x〉nn′ =

∞∫
−∞

ψ∗n(x)xψn′(x)dx

where
ψn(x) = NnHn(αx)e−

1
2α

2x2

and

Nn =

(
α√
π2nn!

)1/2

, α =
(mω

~

)1/2

8.15.25 Given the wave function ......

A particle of mass m moves in one dimension under the influence of a potential
V (x). Suppose it is in an energy eigenstate

ψ(x) =

(
γ2

π

)1/4

exp
(
−γ2x2/2

)
with energy E = ~2γ2/2m.

(a) Find the mean position of the particle.

(b) Find the mean momentum of the particle.

(c) Find V (x).

(d) Find the probability P (p)dp that the particle’s momentum is between p
and p+ dp.

8.15.26 What is the oscillator doing?

Consider a one dimensional simple harmonic oscillator. Use the number basis
to do the following algebraically:

(a) Construct a linear combination of |0〉 and |1〉 such that 〈x̂〉 is as large as
possible.

(b) Suppose the oscillator is in the state constructed in (a) at t = 0. What
is the state vector for t > 0? Evaluate the expectation value 〈x̂〉 as a
function of time for t > 0 using (i)the Schrodinger picture and (ii) the
Heisenberg picture.

(c) Evaluate
〈

(∆x)
2
〉

as a function of time using either picture.
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8.15.27 Coupled oscillators

Two identical harmonic oscillators in one dimension each have a mass m and
frequency ω. Let the two oscillators be coupled by an interaction term Cx1x2

where C is a constant and x1 and x2 are the coordinates of the two oscillators.
Find the exact energy spectrum of eigenvalues for this coupled system.

8.15.28 Interesting operators ....

The operator ĉ is defined by the following relations:

ĉ2 = 0 , ĉĉ+ + ĉ+ĉ =
{
ĉ, ĉ+

}
= Î

(a) Show that

1. N̂ = ĉ+ĉ is Hermitian

2. N̂2 = N̂

3. The eigenvalues of N̂ are 0 and 1 (eigenstates |0〉 and |1〉)
4. ĉ+ |0〉 = |1〉 , ĉ |0〉 = 0

(b) Consider the Hamiltonian

Ĥ = ~ω0(ĉ+ĉ+ 1/2)

Denoting the eigenstates of Ĥ by |n〉, show that the only nonvanishing
states are the states |0〉 and |1〉 defined in (a).

(c) Can you think of any physical situation that might be described by these
new operators?

8.15.29 What is the state?

A particle of mass m in a one dimensional harmonic oscillator potential is in a
state for which a measurement of the energy yields the values ~ω/2 or 3~ω/2,
each with a probability of one-half. The average value of the momentum 〈p̂x〉
at time t = 0 is (mω~/2)1/2. This information specifies the state of the particle
completely. What is this state and what is 〈p̂x〉 at time t?

8.15.30 Things about particle in box

A particle of mass m moves in a one-dimensional box Infinite well) of length `
with the potential

V (x) =


∞ x < 0

0 0 < x < `

∞ x > `
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At t = 0, the wave function of this particle is known to have the form

ψ(x, 0) =

{√
30/`5x(`− x) 0 < x < `

0 otherwise

(a) Write this wave function as a linear combination of energy eigenfunctions

ψn(x) =

√
2

`
sin
(πnx

`

)
, En = n2 π

2~2

2m`2
, n = 1, 2, 3, ....

(b) What is the probability of measuring En at t = 0?

(c) What is ψ(x, t > 0)?

8.15.31 Handling arbitrary barriers.....

Electrons in a metal are bound by a potential that may be approximated by a
finite square well. Electrons fill up the energy levels of this well up to an energy
called the Fermi energy as shown in the figure below:

Figure 8.4: Finite Square Well

The difference between the Fermi energy and the top of the well is the work
function W of the metal. Photons with energies exceeding the work function
can eject electrons from the metal - this is the so-called photoelectric effect.

Another way to pull out electrons is through application of an external uniform
electric field ~E , which alters the potential energy as shown in the figure below:

Figure 8.5: Finite Square Well + Electric Field

?By approximating (see notes below) the linear part of the function by a series
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of square barriers, show that the transmission coefficient for electrons at the
Fermi energy is given by

T ≈ exp

(
−4
√

2mW 3/2

3e |~ε| ~

)

How would you expect this field- or cold-emission current to vary with the ap-
plied voltage? As part of your problem solution explain the method.

This calculation also plays a role in the derivation of the current-voltage char-
acteristic of a Schottky diode in semiconductor physics.

Approximating an Arbitrary Barrier

For a rectangular barrier of width a and height V0, we found the transmission
coefficient

T =
1

1 +
V 2
0 sinh2 γa

4E(V0−E)

,γ2 = (V0 − E)
2m

~2
,k2 =

2m

~2
E

A useful limiting case occurs for γa� 1. In this case

sinh γa =
eγa − e−γa

2
→

γa>>1

eγa

2

so that

T =
1

1 +
(
γ2+k2

4kγ

)2

sinh2 γa

→
γa>>1

(
4kγ

γ2 + k2

)2

e−2γa

Now if we evaluate the natural log of the transmission coefficient we find

lnT →
γa>>1

ln

(
4kγ

γ2 + k2

)2

− 2γa →
γa�1

−2γa

where we have dropped the logarithm relative to γa since ln(almost anything)
is not very large. This corresponds to only including the exponential term.

We can now use this result to calculate the probability of transmission through
a non-square barrier, such as that shown in the figure below:

Figure 8.6: Arbitrary Barrier Potential
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When we only include the exponential term, the probability of transmission
through an arbitrary barrier, as above, is just the product of the individual
transmission coefficients of a succession of rectangular barrier as shown above.
Thus, if the barrier is sufficiently smooth so that we can approximate it by a
series of rectangular barriers (each of width ∆x) that are not too thin for the
condition γa� 1 to hold, then for the barrier as a whole

lnT ≈ ln
∏
i

Ti =
∑
i

lnTi = −2
∑
i

γi∆x

If we now assume that we can approximate this last term by an integral, we find

T ≈ exp

(
−2
∑
i

γi∆x

)
≈ exp

(
−2

∫ √
2m

~2

√
V (x)− Edx

)

where the integration is over the region for which the square root is real.

You may have a somewhat uneasy feeling about this crude derivation. Clearly,
the approximations made break down near the turning points, where E = V (x).
Nevertheless, a more detailed treatment shows that it works amazingly well.

8.15.32 Deuteron model

Consider the motion of a particle of mass m = 0.8×10−24 gm in the well shown
in the figure below:

Figure 8.7: Deuteron Model

The size of the well (range of the potential) is a = 1.4×10−13 cm. If the binding
energy of the system is 2.2MeV , find the depth of the potential V0 in MeV .
This is a model of the deuteron in one dimension.

8.15.33 Use Matrix Methods

A one-dimensional potential barrier is shown in the figure below.
Define and calculate the transmission probability for a particle of mass m and
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Figure 8.8: A Potential Barrier

energy E (V1 < E < V0) incident on the barrier from the left. If you let
V1 → 0 and a → 2a, then you can compare your answer to other textbook
results. Develop matrix methods (as in the text) to solve the boundary condition
equations.

8.15.34 Finite Square Well Encore

Consider the symmetric finite square well of depth V0 and width a.

(a) Let k0 = sqrt2mV0/~2. Sketch the bound states for the following choices
of k0a/2.

(i) k0a
2 = 1 , (ii)k0a2 = 1.6 , (iii)k0a2 = 5

(b) Show that no matter how shallow the well, there is at least one bound
state of this potential. Describe it.

(c) Let us re-derive the bound state energy for the delta function well directly
from the limit of the the finite potential well. Use the graphical solution
discussed in the text. Take the limit as a → 0, V0 → ∞, but aV0 →
U0(constant) and show that the binding energy is Eb = mU2

0 /2~2.

(d) Consider now the half-infinite well, half-finite potential well as shown be-
low.

Figure 8.9: Half-Infinite, Half-Finite Well

Without doing any calculation, show that there are no bound states unless
k0L > π/2. HINT: think about erecting an infinite wall down the center
of a symmetric finite well of width a = 2L. Also, think about parity.
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(e) Show that in general, the binding energy eigenvalues satisfy the eigenvalue
equation

κ = −k cot kL

where

κ =

√
2mEb
~2

and k2 + κ2 = k2
0

8.15.35 Half-Infinite Half-Finite Square Well Encore

Consider the unbound case (E > V0) eigenstate of the potential below.

Figure 8.10: Half-Infinite, Half-Finite Well Again
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Unlike the potentials with finite wall, the scattering in this case has only one
output channel - reflection. If we send in a plane wave towards the potential,
ψin(x) = Ae−ikx, where the particle has energy E = (~k)2/2m, the reflected
wave will emerge from the potential with a phase shift, ψout(x) = Aeikx+φ,

(a) Show that the reflected wave is phase shifted by

φ = 2 tan−1

(
k

q
tan qL

)
− 2kL

where

q2 = k2 + k2
0 ,

~2k2
0

2m
= V0

(b) Plot the function of φ as a function of k0L for fixed energy. Comment on
your plot.

(c) The phase shifted reflected wave is equivalent to that which would arise
from a hard wall, but moved a distance L′ from the origin.

Figure 8.11: Shifted Wall

What is the effective L′ as a function of the phase shift φ induced by our
semi-finite well? What is the maximum value of L′? Can L′ be negative?
From your plot in (b), sketch L′ as a function of k0L, for fixed energy.
Comment on your plot.

8.15.36 Nuclear α Decay

Nuclear alpha−decays (A,Z)→ (A− 2, Z − 2) + α have lifetimes ranging from
nanoseconds (or shorter) to millions of years (or longer). This enormous range
was understood by George Gamov by the exponential sensitivity to underlying
parameters in tunneling phenomena. Consider α = 4He as a point particle in
the potential given schematically in the figure below.
The potential barrier is due to the Coulomb potential 2(Z − 2)e2/r. The prob-
ability of tunneling is proportional to the so-called Gamov’s transmission coef-
ficients obtained in Problem 8.31

T = exp

[
−2

~

∫ b

a

√
2m(V (x)− E) dx

]
where a and b are the classical turning points (where E = V (x)) Work out
numerically T for the following parameters: Z = 92 (Uranium), size of nucleus
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Figure 8.12: Nuclear Potential Model

a = 5 fm and the kinetic energy of the α particle 1MeV , 3MeV , 10MeV ,
30MeV .

8.15.37 One Particle, Two Boxes

Consider two boxes in 1-dimension of width a, with infinitely high walls, sepa-
rated by a distance L = 2a. We define the box by the potential energy function
sketched below.

Figure 8.13: Two Boxes

A particle experiences this potential and its state is described by a wave function.

The energy eigenfunctions are doubly degenerate,
{
φ

(+)
n , φ

(−)
n |n = 1, 2, 3, 4, ....

}
so that

E(+)
n = E(−)

n = n2 π
2~2

2ma2

where φ
(±)
n = un(x± L/2) with

un(x) =


√

2/a cos
(
nπx
a

)
, n = 1, 3, 5, .... −a/2 < x < a/2√

2/a sin
(
nπx
a

)
, n = 2, 4, 6, .... −a/2 < x < a/2

0 |x| > a/2

Suppose at time t = 0 the wave function is

ψ(x) =
1

2
φ

(−)
1 (x) +

1

2
φ

(−)
2 (x) (8.1)
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At this time, answer parts (a) - (c)

(a) What is the probability of finding the particle in the state φ
(+)
1 (x)?

(b) What is the probability of finding the particle with energy π2~2/2ma2?

(c) CLAIM: At t = 0 there is a 50-50 chance for finding the particle in either
box. Justify this claim.

(d) What is the state at a later time assuming no measurements are done?

Now let us generalize. Suppose we have an arbitrary wave function at
t = 0, ψ(x, 0), that satisfies all the boundary conditions.

(e) Show that, in general, the probability to find the particle in the left box
does not change with time. Explain why this makes sense physically.

Switch gears again ......

(f) Show that the state Φn(x) = c1φ
(+)
n (x) + c2φ

(−)
n (x) (where c1 and c2 are

arbitrary complex numbers) is a stationary state.

Consider then the state described by the wave function ψ(x) = (φ
(+)
1 (x)+

c2φ
(−)
1 (x))/

√
2.

(g) Sketch the probability density in x. What is the mean value 〈x〉? How
does this change with time?

(h) Show that the momentum space wave function is

ψ̃(p) =
√

2 cos (pL/2~)ũ1(p)

where

ũ1(p) =
1√
2π~

∫ ∞
−∞

u1(x)e−ipx/~

is the momentum-space wave function of u1(x).

(i) Without calculation, what is the mean value 〈p〉? How does this change
with time?

(j) Suppose the potential energy was somehow turned off (don’t ask me how,
just imagine it was done) so the particle is now free.

Without doing any calculation, sketch how you expect the position-space
wave function to evolve at later times, showing all important features.
Please explain your sketch.
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8.15.38 A half-infinite/half-leaky box

Consider a one dimensional potential

V (x) =

{
∞ x < 0

U0δ(x− a) x > 0

Figure 8.14: Infinite Wall + Delta Function

(a) Show that the stationary states with energy E can be written

u(x) =


0 x < 0

A sin (ka+φ(k))
sin (ka) sin (kx) 0 < x < a

A sin (kx+ φ(k)) x > a

where

k =

√
2mE

~2
, φ(k) = tan−1

[
k tan (ka)

k − γ0 tan (ka)

]
, γ0 =

2mU0

~2

What is the nature of these states - bound or unbound?

(b) Show that the limits γ0 → 0 and γ0 →∞ give reasonable solutions.

(c) Sketch the energy eigenfunction when ka = π. Explain this solution.

(d) Sketch the energy eigenfunction when ka = π/2. How does the probability
to find the particle in the region 0 < x < a compare with that found in
part (c)? Comment.

(e) In a scattering scenario, we imagine sending in an incident plane wave
which is reflected with unit probabiklity, but phase shifted according to
the conventios shown in the figure below:
Show that the phase shift of the scattered wave is δ(k) = 2φ(k).

There exist mathematical conditions such that the so-called S-matrix ele-
ment eiδ(k) blows up. For these solutions is k real, imaginary, or complex?
Comment.
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Figure 8.15: Scattering Scenario

8.15.39 Neutrino Oscillations Redux

Read the article T. Araki et al, ”Measurement of Neutrino Oscillations with Kam
LAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005),
which shows the neutrino oscillation, a quantum phenomenon demonstrated at
the largest distance scale yet (about 180 km).

(a) The Hamiltonian for an ultrarelativistic particle is approximated by

H =
√
p2c2 +m2c4 ≈ pc+

m2c3

2p

for p=|~p|. Suppose in a basis of two states, m2 is given as a 2× 2 matrix

m2 = m2
0I +

∆m2

2

(
− cos (2θ) sin (2θ)
sin (2θ) cos (2θ)

)
Write down the eigenstates of m2.

(b) Calculate the probability for the state

|ψ〉 =

(
1
0

)
to be still found in the same state after time interval t for definite momen-
tum p.

(c) Using the data shown in Fig. 3 of the article, estimate approximately
values of ∆m2 and sin2 2θ.

8.15.40 Is it in the ground state?

An infinitely deep one-dimensional potential well runs fro x = 0 to x = a. The
normalized energy eigenstates are

un(x) =

√
2

a
sin (

nπx

a
) , n = 1, 2, 3, ......
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A particle is placed in the left-hand half of the well so that its wavefunction is
ψ = constant for x < a/2. If the energy of the particle is now measured, what
is the probability of finding it in the ground state?

8.15.41 Some Thoughts on T-Violation

Any Hamiltonian can be recast to the form

H = U


E1 0 . . . 0
0 E2 . . . 0
...

...
. . .

...
0 0 . . . En

U+

where U is a general n× n unitary matrix.

(a) Show that the time evolution operator is given by

e−iHt/~ = U


e−iE1t/~ 0 . . . 0

0 e−iE2t/~ . . . 0
...

...
. . .

...
0 0 . . . e−iEnt/~

U+

(b) For a two-state problem, the most general unitary matrix is

U = eiθ
(

cos θeiφ − sin θeiη

sin θe−iη cos θe−iφ

)
Work out the probabilities P (1 → 2) and P (2 → 1) over time interval t
and verify that they are the same despite the the apparent T-violation
due to complex phases. NOTE: This is the same problem as the neutrino

oscillation (problem 8.39) if you set Ei =
√
p2c2 +m2c4 ≈ pc+ m2c3

2p and
set all phases to zero.

(c) For a three-state problem, however, the time-reversal invariance can be
broken. Calculate the difference P (1 → 2) − P (2 → 1) for the following
form of the unitary matrix

U =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


where five unimportant phases have been dropped. The notation is s12 =
sin θ12, c23 = cos θ23, etc.

(d) For CP-conjugate states (e.g.., anti-neutrinos(ν̄) vs neutrinos(ν), the Hamil-
tonian is given by substituting U∗ in place of U . Show that the proba-
bilities P (1 → 2) and P (1̄ → 2̄) can differ (CP violation) yet CPT is
respected, ie., P (1→ 2) = P (2̄→ 1̄).
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8.15.42 Kronig-Penney Model

Consider a periodic repulsive potential of the form

V =

∞∑
n=−∞

λδ(x− na)

with λ > 0. The general solution for −a < x < 0 is given by

ψ(x) = Aeiκx +Be−iκx

with κ =
√

2mE/~. Using Bloch’s theorem, the wave function for the next
period 0 < x < a is given by

ψ(x) = eika
(
Aeiκ(x−a) +Be−iκ(x−a)

)
for |k| ≤ π/a. Answer the following questions.

(a) Write down the continuity condition for the wave function and the required
discontinuity for its derivative at x = 0. Show that the phase eika under
the discrete translation x→ x+ a is given by κ as

eika = cosκa+
1

κd
sinκa± i

√
1−

(
cosκa+

1

κd
sinκa

)2

Here and below, d = ~2/mλ.

(b) Take the limit of zero potential d → ∞ and show that there are no gaps
between the bands as expected for a free particle.

(c) When the potential is weak but finite (lartge d) show analytically that
there appear gaps between the bands at k = ±π/a.

(d) Plot the relationship between κ and k for a weak potential (d = 3a) and
a strong potential (d = a/3) (both solutions together).

(e) You always find two values of k at the same energy (or κ). What discrete
symmetry guarantees this degeneracy?

8.15.43 Operator Moments and Uncertainty

Consider an observable OA for a finite-dimensional quantum system with spec-
tral decomposition

OA =
∑
i

λiPi

(a) Show that the exponential operator EA = exp(OA) has spectral decom-
position

EA =
∑
i

eλiPi

Do this by inserting the spectral decomposition of OA into the power series
expansion of the exponential.
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(b) Prove that for any state |ΨA〉 such that ∆OA = 0, we automatically have
∆EA = 0.

8.15.44 Uncertainty and Dynamics

Consider the observable

OX =

(
0 1
1 0

)
and the initial state

|ΨA(0)〉 =

(
1
0

)
(a) Compute the uncertainty ∆OX = 0 with respect to the initial state
|ΨA(0)〉.

(b) Now let the state evolve according to the Schrodinger equation, with
Hamiltonian operator

H = ~
(

0 i
−i 0

)
Compute the uncertainty ∆OX = 0 as a function of t.

(c) Repeat part (b) but replace OX with the observable

OZ =

(
1 0
0 −1

)
That is, compute the uncertainty ∆OZ as a function of t assuming evolu-
tion according to the Schrodinger equation with the Hamiltonian above.

(d) Show that your answers to parts (b) and (c) always respect the Heisenberg
Uncertainty Relation

∆OX∆OZ ≥
1

2
|〈[OX , OZ ]〉|

Are there any times t at which the Heisenberg Uncertainty Relation is
satisfied with equality?
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Chapter 9

Angular Momentum; 2- and 3-Dimensions

9.7 Problems

9.7.1 Position representation wave function

A system is found in the state

ψ(θ, ϕ) =

√
15

8π
cos θ sin θ cosϕ

(a) What are the possible values of L̂z that measurement will give and with
what probabilities?

(b) Determine the expectation value of L̂x in this state.

9.7.2 Operator identities

Show that

(a)
[
~a · ~L,~b · ~L

]
= i~

(
~a×~b

)
· ~L holds under the assumption that ~a and ~b

commute with each other and with ~L.

(b) for any vector operator ~V (x̂, p̂) we have
[
~L2, ~V

]
= 2i~

(
~V × ~L− i~~V

)
.

9.7.3 More operator identities

Prove the identities

(a)
(
~σ · ~A

)(
~σ · ~B

)
= ~A · ~B + i~σ ·

(
~A× ~B

)
(b) eiφ

~S·n̂/~~σe−iφ
~S·n̂/~ = n̂(n̂ · ~σ) + n̂× [n̂× ~σ] cosφ+ [n̂× ~σ] sinφ
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9.7.4 On a circle

Consider a particle of mass µ constrained to move on a circle of radius a. Show
that

H =
L2

2µa2

Solve the eigenvalue/eigenvector problem of H and interpret the degeneracy.

9.7.5 Rigid rotator

A rigid rotator is immersed in a uniform magnetic field ~B = B0êz so that the
Hamiltonian is

Ĥ =
L̂2

2I
+ ω0L̂z

where ω0 is a constant. If

〈θ, φ | ψ(0)〉 =

√
3

4π
sin θ sinφ

what is 〈θ, φ | ψ(t)〉? What is
〈
L̂x

〉
at time t?

9.7.6 A Wave Function

A particle is described by the wave function

ψ(ρ, φ) = Ae−ρ
2/2∆ cos2 φ

Determine P (Lz = 0), P (Lz = 2~) and P (Lz = −2~).

9.7.7 L = 1 System

Consider the following operators on a 3-dimensional Hilbert space

Lx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Ly =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , Lz =

 1 0 0
0 0 0
0 0 −1


(a) What are the possible values one can obtain if Lz is measured?

(b) Take the state in which Lz = 1. In this state, what are 〈Lx〉,
〈
L2
x

〉
and

∆Lx =

√
〈L2

x〉 − 〈Lx〉
2
.

(c) Find the normalized eigenstates and eigenvalues of Lx in the Lz basis.

(d) If the particle is in the state with Lz = −1 and Lx is measured, what are
the possible outcomes and their probabilities?
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(e) Consider the state

|ψ〉 =
1√
2

 1/
√

2

1/
√

2
1


in the Lz basis. If L2

z is measured and a result +1 is obtained, what is
the state after the measurement? How probable was this result? If Lz is
measured, what are the outcomes and respective probabilities?

(f) A particle is in a state for which the probabilities are P (Lz = 1) = 1/4,
P (Lz = 0) = 1/2 and P (Lz = −1) = 1/4. Convince yourself that the
most general, normalized state with this property is

|ψ〉 =
eiδ1

2
|Lz = 1〉+

eiδ2√
2
|Lz = 0〉+

eiδ3

2
|Lz = −1〉

We know that if |ψ〉 is a normalized state then the state eiθ |ψ〉 is a phys-
ically equivalent state. Does this mean that the factors eiδj multiplying
the Lz eigenstates are irrelevant? Calculate, for example, P (Lx = 0).

9.7.8 A Spin-3/2 Particle

Consider a particle with spin angular momentum j = 3/2. The are four sublevels
with this value of j, but different eigenvalues of jz, |m = 3/2〉,|m = 1/2〉,|m = −1/2〉
and |m = −3/2〉.

(a) Show that the raising operator in this 4−dimensional space is

ĵ+ = ~
(√

3 |3/2〉 〈1/2|+ 2 |1/2〉 〈−1/2|+
√

3 |−1/2〉 〈−3/2|
)

where the states have been labeled by the jz quantum number.

(b) What is the lowering operator ĵ−?

(c) What are the matrix representations of Ĵ±, Ĵx, Ĵy, Ĵz and Ĵ2 in the jz
basis?

(d) Check that the state

|ψ〉 =
1

2
√

2

(√
3 |3/2〉+ |1/2〉 − |−1/2〉 −

√
3 |−3/2〉

)
is an eigenstate of Ĵx with eigenvalue ~/2.

(e) Find the eigenstate of Ĵx with eigenvalue 3~/2.

(f) Suppose the particle describes the nucleus of an atom, which has a mag-
netic moment described by the operator ~µ = gNµN~j, where gN is the
g-factor and µN is the so-called nuclear magneton. At time t = 0, the
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system is prepared in the state given in (c). A magnetic field, pointing
in the y direction of magnitude B, is suddenly turned on. What is the

evolution of
〈
ĵz

〉
as a function of time if

Ĥ = −µ̂ · ~B = −gNµN~ ~J · ~Bŷ = −gNµN~BĴy

where µN = e~/2Mc = nuclear magneton? You will need to use the
identity we derived earlier

exÂB̂e−xÂ = B̂ +
[
Â, B̂

]
x+

[
Â,
[
Â, B̂

]] x2

2
+
[
Â,
[
Â,
[
Â, B̂

]]] x3

6
+ ......

9.7.9 Arbitrary directions

Method #1

(a) Using the |z+〉 and |z−〉 states of a spin 1/2 particle as a basis, set up
and solve as a problem in matrix mechanics the eigenvalue/eigenvector

problem for Sn = ~S · n̂ where the spin operator is

~S = Ŝxêx + Ŝy êy + Ŝz êz

and
n̂ = sin θ cosϕêx + sin θ sinϕêy + cos θêz

(b) Show that the eigenstates may be written as

|n̂+〉 = cos
θ

2
|z+〉+ eiϕ sin

θ

2
|z−〉

|n̂−〉 = sin
θ

2
|z+〉 − eiϕ cos

θ

2
|z−〉

Method #2

This part demonstrates another way to determine the eigenstates of Sn = ~S · n̂.

The operator

R̂(θêy) = e−iŜyθ/~

rotates spin states by an angle θ counterclockwise about the y−axis.

(a) Show that this rotation operator can be expressed in the form

R̂(θêy) = cos
θ

2
− 2i

~
Ŝy sin

θ

2

(b) Apply R̂ to the states |z+〉 and |z−〉 to obtain the state |n̂+〉 with varphi =
0, that is, rotated by angle θ in the x− z plane.
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9.7.10 Spin state probabilities

The z-component of the spin of an electron is measured and found to be +~/2.

(a) If a subsequent measurement is made of the x−component of the spin,
what are the possible results?

(b) What are the probabilities of finding these various results?

(c) If the axis defining the measured spin direction makes an angle θ with
respect to the original z−axis, what are the probabilities of various possible
results?

(d) What is the expectation value of the spin measurement in (c)?

9.7.11 A spin operator

Consider a system consisting of a spin 1/2 particle.

(a) What are the eigenvalues and normalized eigenvectors of the operator

Q̂ = Aŝy +Bŝz

where ŝy and ŝz are spin angular momentum operators and A and B are
real constants.

(b) Assume that the system is in a state corresponding to the larger eigenvalue.
What is the probability that a measurement of ŝy will yield the value
+~/2?

9.7.12 Simultaneous Measurement

A beam of particles is subject to a simultaneous measurement of the angular
momentum observables L̂2 and L̂z. The measurement gives pairs of values

(`,m) = (0, 0) and (1,−1)

with probabilities 3/4 and 1/4 respectively.

(a) Reconstruct the state of the beam immediately before the measurements.

(b) The particles in the beam with (`,m) = (1,−1) are separated out and
subjected to a measurement of L̂x. What are the possible outcomes and
their probabilities?

(c) Construct the spatial wave functions of the states that could arise from
the second measurement.
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9.7.13 Vector Operator

Consider a vector operator ~V that satisfies the commutation relation

[Li, Vj ] = i~εijkVk

This is the definition of a vector operator.

(a) Prove that the operator e−iϕLx/~ is a rotation operator corresponding to
a rotation around the x−axis by an angle ϕ, by showing that

e−iϕLx/~Vie
iϕLx/~ = Rij(ϕ)Vj

where Rij(ϕ) is the corresponding rotation matrix.

(b) Prove that
e−iϕLx |`,m〉 = |`,−m〉

(c) Show that a rotation by π around the z−axis can also be achieved by
first rotating around the x−axis by π/2, then rotating around the y−axis
by π and, finally rotating back by −π/2 around the x−axis. In terms of
rotation operators this is expressed by

eiπLx/2~e−iπLy/~e−iπLx/2~ = e−iπLz/~

9.7.14 Addition of Angular Momentum

Two atoms with J1 = 1 and J2 = 2 are coupled, with an energy described by
Ĥ = ε ~J1 · ~J2, ε > 0. Determine all of the energies and degeneracies for the
coupled system.

9.7.15 Spin = 1 system

We now consider a spin = 1 system.

(a) Use the spin = 1 states |1, 1〉, |1, 0〉 and |1,−1〉 (eigenstates of Ŝz) as a
basis to form the matrix representation (3× 3) of the angular momentum
operators Ŝx, Ŝy, Ŝz, Ŝ

2, Ŝ+, and Ŝ−.

(b) Determine the eigenstates of Ŝx in terms of the eigenstates |1, 1〉, |1, 0〉
and |1,−1〉 of Ŝz.

(c) A spin = 1 particle is in the state

|ψ〉 =
1√
14

 1
2
3i


in the Ŝz basis.
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(1) What are the probabilities that a measurement of Ŝz will yield the

values ~, 0, or −~ for this state? What is
〈
Ŝz

〉
?

(2) What is
〈
Ŝx

〉
in this state?

(3) What is the probability that a measurement of Ŝx will yield the value
~ for this state?

(d) A particle with spin = 1 has the Hamiltonian

Ĥ = AŜz +
B

~
Ŝ2
x

(1) Calculate the energy levels of this system.

(2) If, at t = 0, the system is in an eigenstate of Ŝx with eigenvalue ~,

calculate the expectation value of the spin
〈
ŜZ

〉
at time t.

9.7.16 Deuterium Atom

Consider a deuterium atom (composed of a nucleus of spin = 1 and an electron).

The electronic angular momentum is ~J = ~L+ ~S, where ~L is the orbital angular
momentum of the electron and ~S is its spin. The total angular momentum of
the atom is ~F = ~J + ~I, where ~I is the nuclear spin. The eigenvalues of Ĵ2 and
F̂ 2 are J(J + 1)~2 and F (F + 1)~2 respectively.

(a) What are the possible values of the quantum numbers J and F for the
deuterium atom in the 1s(L = 0) ground state?

(b) What are the possible values of the quantum numbers J and F for a
deuterium atom in the 2p(L = 1) excited state?

9.7.17 Spherical Harmonics

Consider a particle in a state described by

ψ = N(x+ y + 2z)e−αr

where N is a normalization factor.

(a) Show, by rewriting the Y ±1,0
1 functions in terms of x, y, z and r that

Y ±1
1 = ∓

(
3

4π

)1/2
x± iy√

2r
, Y 0

1 =

(
3

4π

)1/2
z

r

(b) Using this result, show that for a particle described by ψ above

P (Lz = 0) = 2/3 , P (Lz = ~) = 1/6 , P (Lz = −~) = 1/6
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9.7.18 Spin in Magnetic Field

Suppose that we have a spin−1/2 particle interacting with a magnetic field via
the Hamiltonian

Ĥ =

{
−~µ · ~B , ~B = Bêz 0 ≤ t < T

−~µ · ~B , ~B = Bêy T ≤ t < 2T

where ~µ = µB~σ and the system is initially(t = 0) in the state

|ψ(0)〉 = |x+〉 =
1√
2

(|z+〉+ |z−〉)

Determine the probability that the state of the system at t = 2T is

|ψ(2T )〉 = |x+〉

in three ways:

(1) Using the Schrodinger equation (solving differential equations)

(2) Using the time development operator (using operator algebra)

(3) Using the density operator formalism

9.7.19 What happens in the Stern-Gerlach box?

An atom with spin = 1/2 passes through a Stern-Gerlach apparatus adjusted
so as to transmit atoms that have their spins in the +z direction. The atom
spends time T in a magnetic field B in the x−direction.

(a) At the end of this time what is the probability that the atom would pass
through a Stern-Gerlach selector for spins in the −z direction?

(b) Can this probability be made equal to one, if so, how?

9.7.20 Spin = 1 particle in a magnetic field

[Use the results from Problem 9.15]. A particle with intrinsic spin = 1 is placed

in a uniform magnetic field ~B = B0êx. The initial spin state is |ψ(0)〉 = |1, 1〉.
Take the spin Hamiltonian to be Ĥ = ω0Ŝx and determine the probability that
the particle is in the state |ψ(t)〉 = |1,−1〉 at time t.

9.7.21 Multiple magnetic fields

A spin−1/2 system with magnetic moment ~µ = µ0~σ is located in a uniform
time-independent magnetic field B0 in the positive z−direction. For the time
interval 0 < t < T an additional uniform time-independent field B1 is applied in
the positive x−direction. During this interval, the system is again in a uniform
constant magnetic field, but of different magnitude and direction z′ from the
initial one. At and before t = 0, the system is in the m = 1/2 state with respect
to the z−axis.
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(a) At t = 0+, what are the amplitudes for finding the system with spin
projections m′ = 1/2 with respect to the z′−axis?

(b) What is the time development of the energy eigenstates with respect to
the z′ direction, during the time interval 0 < t < T?

(c) What is the probability at t = T of observing the system in the spin state
m = −1/2 along the original z−axis? [Express answers in terms of the
angle θ between the z and z′ axes and the frequency ω0 = µ0B0/~]

9.7.22 Neutron interferometer

In a classic table-top experiment (neutron interferometer), a monochromatic
neutron beam (λ = 1.445Å) is split by Bragg reflection at point A of an inter-
ferometer into two beams which are then recombined (after another reflection)
at point D as in Figure 9.1 below:

Figure 9.1: Neutron Interferometer Setup

One beam passes through a region of transverse magnetic field of strength B
(direction shown by lines)for a distance L. Assume that the two paths from A
to D are identical except for the region of magnetic field.

(a) Find the explicit expression for the dependence of the intensity at point D
on B, L and the neutron wavelength, with the neutron polarized parallel
or anti-parallel to the magnetic field.

(b) Show that the change in the magnetic field that produces two successive
maxima in the counting rates is given by

∆B =
8π2~c
|e| gnλL

where gn (= −1.91) is the neutron magnetic moment in units of−e~/2mnc.
This calculation was a PRL publication in 1967.
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9.7.23 Magnetic Resonance

A particle of spin 1/2 and magnetic moment µ is placed in a magnetic field ~B =
B0ẑ + B1x̂ cosωt − B1ŷ sinωt, which is often employed in magnetic resonance
experiments. Assume that the particle has spin up along the +z−axis at t = 0
(mz = +1/2). Derive the probability to find the particle with spin down (mz =
−1/2) at time t > 0.

9.7.24 More addition of angular momentum

Consider a system of two particles with j1 = 2 and j2 = 1. Determine the
|j,m, j1, j2〉 states listed below in the |j1,m1, j2,m2〉 basis.

|3, 3, j1, j2〉 , |3, 2, j1, j2〉 , |3, 1, j1, j2〉 , |2, 2, j1, j2〉 , |2, 1, j1, j2〉 , |1, 1, j1, j2〉

9.7.25 Clebsch-Gordan Coefficients

Work out the Clebsch-Gordan coefficients for the combination

3

2
⊗ 1

2

9.7.26 Spin−1/2 and Density Matrices

Let us consider the application of the density matrix formalism to the problem
of a spin−1/2 particle in a static external magnetic field. In general, a particle
with spin may carry a magnetic moment, oriented along the spin direction (by
symmetry). For spin−1/2, we have that the magnetic moment (operator) is
thus of the form:

µ̂i =
1

2
γσ̂i

where the σ̂i are the Pauli matrices and γ is a constant giving the strength of
the moment, called the gyromagnetic ratio. The term in the Hamiltonian for
such a magnetic moment in an external magnetic field, ~B is just:

Ĥ = −~µ · ~B

The spin−1/2 particle has a spin orientation or polarization given by

~P = 〈~σ〉

Let us investigate the motion of the polarization vector in the external field.
Recall that the expectation value of an operator may be computed from the
density matrix according to 〈

Â
〉

= Tr
(
ρ̂Â
)

In addition the time evolution of the density matrix is given by

i
∂ρ̂

∂t
=
[
Ĥ(t), ρ̂(t)

]
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Determine the time evolution d~P/dt of the polarization vector. Do not make
any assumption concerning the purity of the state. Discuss the physics involved
in your results.

9.7.27 System of N Spin−1/2 Particle

Let us consider a system of N spin−1/2 particles per unit volume in thermal

equilibrium, in an external magnetic field ~B. In thermal equilibrium the canon-
ical distribution applies and we have the density operator given by:

ρ̂ =
e−Ĥt

Z

where Z is the partition function given by

Z = Tr
(
e−Ĥt

)
Such a system of particles will tend to orient along the magnetic field, resulting
in a bulk magnetization (having units of magnetic moment per unit volume),
~M .

(a) Give an expression for this magnetization ~M = Nγ〈~σ/2〉(dont work too
hard to evaluate).

(b) What is the magnetization in the high-temperature limit, to lowest non-
trivial order (this I want you to evaluate as completely as you can!)?

9.7.28 In a coulomb field

An electron in the Coulomb field of the proton is in the state

|ψ〉 =
4

5
|1, 0, 0〉+

3i

5
|2, 1, 1〉

where the |n, `,m〉 are the standard energy eigenstates of hydrogen.

(a) What is 〈E〉 for this state? What are
〈
L̂2
〉

,
〈
L̂x

〉
and

〈
L̂x

〉
?

(b) What is |ψ(t)〉? Which, if any, of the expectation values in (a) vary with
time?

9.7.29 Probabilities

(a) Calculate the probability that an electron in the ground state of hydrogen
is outside the classically allowed region(defined by the classical turning
points)?

(b) An electron is in the ground state of tritium, for which the nucleus is
the isotope of hydrogen with one proton and two neutrons. A nuclear
reaction instantaneously changes the nucleus into He3, which consists of
two protons and one neutron. Calculate the probability that the electron
remains in the ground state of the new atom. Obtain a numerical answer.
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9.7.30 What happens?

At the time t = 0 the wave function for the hydrogen atom is

ψ(~r, 0) =
1√
10

(
2ψ100 + ψ210 +

√
2ψ211 +

√
3ψ21−1

)
where the subscripts are the values of the quantum numbers (n`m). We ignore
spin and any radiative transitions.

(a) What is the expectation value of the energy in this state?

(b) What is the probability of finding the system with ` = 1 , m = +1 as a
function of time?

(c) What is the probability of finding an electron within 10−10 cm of the
proton (at time t = 0)? A good approximate result is acceptable.

(d) Suppose a measurement is made which shows that L = 1 , Lx = +1.
Determine the wave function immediately after such a measurement.

9.7.31 Anisotropic Harmonic Oscillator

In three dimensions, consider a particle of mass m and potential energy

V (~r) =
mω2

2

[
(1− τ)(x2 + y2) + (1 + τ)z2

]
where ω ≥ 0 and 0 ≤ τ ≤ 1.

(a) What are the eigenstates of the Hamiltonian and the corresponding eigenen-
ergies?

(b) Calculate and discuss, as functions of τ , the variation of the energy and
the degree of degeneracy of the ground state and the first two excited
states.

9.7.32 Exponential potential

Two particles, each of mass M , are attracted to each other by a potential

V (r) = −
(
g2

d

)
e−r/d

where d = ~/mc with mc2 = 140MeV and Mc2 = 940MeV .

(a) Show that for ` = 0 the radial Schrodinger equation for this system can
be reduced to Bessel’s differential equation

d2Jρ(x)

dx2
+

1

x

dJρ(x)

dx
+

(
1− ρ2

x2

)
Jρ(x) = 0

by means of the change of variable x = αe−βr for a suitable choice of α
and β.

86



(b) Suppose that this system is found to have only one bound state with a
binding energy of 2.2MeV . Evaluate g2/d numerically and state its units.

(c) What would the minimum value of g2/d have to be in order to have two
` = 0 bound state (keep d and M the same). A possibly useful plot is
given below in Figure 9.2.

Figure 9.2: Jρ(α) contours in the α− ρ plane

9.7.33 Bouncing electrons

An electron moves above an impenetrable conducting surface. It is attracted
toward this surface by its own image charge so that classically it bounces along
the surface as shown in Figure 9.3 below:

(a) Write the Schrodinger equation for the energy eigenstates and the energy
eigenvalues of the electron. (Call y the distance above the surface). Ignore
inertial effects of the image.
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Figure 9.3: Bouncing electrons

(b) What is the x and z dependence of the eigenstates?

(c) What are the remaining boundary conditions?

(d) Find the ground state and its energy? [HINT: they are closely related to
those for the usual hydrogen atom]

(e) What is the complete set of discrete and/or continuous energy eigenvalues?

9.7.34 Alkali Atoms

The alkali atoms have an electronic structure which resembles that of hydrogen.
In particular, the spectral lines and chemical properties are largely determined
by one electron(outside closed shells). A model for the potential in which this
electron moves is

V (r) = −e
2

r

(
1 +

b

r

)
Solve the Schrodinger equation and calculate the energy levels.

9.7.35 Trapped between

A particle of massm is constrained to move between two concentric impermeable
spheres of radii r = a and r = b. There is no other potential. Find the ground
state energy and the normalized wave function.

9.7.36 Logarithmic potential

A particle of mass m moves in the logarithmic potential

V (r) = C`n

(
r

r0

)
Show that:

88



(a) All the eigenstates have the same mean-squared velocity. Find this mean-
squared velocity. Think Virial theorem!

(b) The spacing between any two levels is independent of the mass m.

9.7.37 Spherical well

A spinless particle of mass m is subject (in 3 dimensions) to a spherically sym-
metric attractive square-well potential of radius r0.

(a) What is the minimum depth of the potential needed to achieve two bound
states of zero angular momentum?

(b) With a potential of this depth, what are the eigenvalues of the Hamiltonian
that belong to zero total angular momentum? Solve the transcendental
equation where necessary.

9.7.38 In magnetic and electric fields

A point particle of mass m and charge q moves in spatially constant crossed
magnetic and electric fields ~B = B0ẑ and ~E = E0x̂.

(a) Solve for the complete energy spectrum.

(b) Find the expectation value of the velocity operator

~v =
1

m
~pmechanical

in the state ~p = 0.

9.7.39 Extra(Hidden) Dimensions

Lorentz Invariance with Extra Dimensions

If string theory is correct, we must entertain the possibility that space-time
has more than four dimensions. The number of time dimensions must be kept
equal to one - it seems very difficult, if not altogether impossible, to construct
a consistent theory with more than one time dimension. The extra dimensions
must therefore be spatial.

Can we have Lorentz invariance in worlds with more than three spatial dimen-
sions? The answer is yes. Lorentz invariance is a concept that admits a very
natural generalization to space-times with additional dimensions.

We first extend the definition of the invariant interval ds2 to incorporate the
additional space dimensions. In a world of five spatial dimensions, for example,
we would write

ds2 = c2dt2 − (dx1)2 − (dx2)2 − (dx3)2 − (dx4)2 − (dx5)2 (9.1)
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Lorentz transformations are then defined as the linear changes of coordinates
that leave ds2 invariant. This ensures that every inertial observer in the six-
dimensional space-time will agree on the value of the speed of light. With more
dimensions, come more Lorentz transformations. While in four-dimensional
space-time we have boosts in the x1, x2 and x3 directions, in this new world
we have boosts along each of the five spatial dimensions. With three spatial
coordinates, there are three basic spatial rotations - rotations that mix x1 and
x2, rotations that mix x1 and x3, and finally rotations that mix x2 and x3.
The equality of the number of boosts and the number of rotations is a special
feature of four-dimensional space-time. With five spatial coordinates, we have
ten rotations, which is twice the number of boosts.

The higher-dimensional Lorentz invariance includes the lower-dimensional one.
If nothing happens along the extra dimensions, then the restrictions of lower-
dimensional Lorentz invariance apply. This is clear from equation (9.1). For
motion that does not involve the extra dimensions, dx4 = dx5 = 0, and the
expression for ds2 reduces to that used in four dimensions.

Compact Extra Dimensions

It is possible for additional spatial dimensions to be undetected by low energy
experiments if the dimensions are curled up into a compact space of small vol-
ume. At this point let us first try to understand what a compact dimension is.
We will focus mainly on the case of one dimension. Later we will explain why
small compact dimensions are hard to detect.

Consider a one-dimensional world, an infinite line, say, and let x be a coordinate
along this line. For each point P along the line, there is a unique real number
x(P ) called the x−coordinate of the point P . A good coordinate on this infinite
line satisfies two conditions:

(1) Any two distinct points P1 6= P2 have different coordinates x(P1) 6= x(P2).

(2) The assignment of coordinates to points are continuous - nearby points
have nearly equal coordinates.

If a choice of origin is made for this infinite line, then we can use distance from
the origin to define a good coordinate. The coordinate assigned to each point
is the distance from that point to the origin, with sign depending upon which
side of the origin the point lies.

Imagine you live in a world with one spatial dimension. Suppose you are walking
along and notice a strange pattern - the scenery repeats each time you move a
distance 2πR for some value of R. If you meet your friend Phil, you see that
there are Phil clones at distances 2πR, 4πR, 6πR, ....... down the line as shown
in Figure 9.4 below.

In fact, there are clones up the line, as well, with the same spacing.
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Figure 9.4: Multiple friends

There is no way to distinguish an infinite line with such properties from a circle
with circumference 2πR. Indeed, saying that this strange line is a circle explains
the peculiar property - there really are no Phil clones - you meet the same Phil
again and again as you go around the circle!

How do we express this mathematically? We can think of the circle as an open
line with an identification, that is, we declare that points with coordinates that
differ by 2πR are the same point. More precisely, two points are declared to be
the same point if their coordinates differ by an integer number of 2πR:

P1 ∼ P2 ↔ x(P1) = x(P2) + 2πRn , n ∈ Z (9.2)

This is precise, but somewhat cumbersome, notation. With no risk of confusion,
we can simply write

x ∼ x+ 2πR (9.3)

which should be read as identify any two points whose coordinates differ by 2πR.
With such an identification, the open line becomes a circle. The identification
has turned a non-compact dimension into a compact one. It may seem to you
that a line with identifications is only a complicated way to think about a circle.
We will se, however, that many physical problems become clearer when we view
a compact dimension as an extended one with identifications.

The interval 0 ≤ x ≤ 2πR is a fundamental domain for the identification (9.3)
as shown in Figure 9.5 below.

Figure 9.5: Fundamental domain

A fundamental domain is a subset of the entire space that satisfies two condi-
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tions:

(1) no two points in are identified

(2) any point in the entire space is related by the identification to some point
in the fundamental domain

Whenever possible, as we did here, the fundamental domain is chosen to be a
connected region. To build the space implied by the identification, we take the
fundamental domain together with its boundary, and implement the identifica-
tions on the boundary. In our case, the fundamental domain together with its
boundary is the segment 0 ≤ x ≤ 2πR. In this segment we identify the point
x = 0 with the point x = 2πR. The result is the circle.

A circle of radius R can be represented in a two-dimensional plane as the set of
points that are a distance R from a point called the center of the circle. Note
that the circle obtained above has been constructed directly, without the help
of any two-dimensional space. For our circle, there is no point, anywhere, that
represents the center of the circle. We can still speak, figuratively, of the radius
R of the circle, but in our case, the radius is simply the quantity which multi-
plied by 2π gives the total length of the circle.

On the circle, the coordinate x is no longer a good coordinate. The coordinate
x is now either multi-valued or discontinuous. This is a problem with any coor-
dinate on a circle. Consider using angles to assign coordinates on the unit circle
as shown in Figure 9.6 below.

Figure 9.6: Unit circle identification

Fix a reference point Q on the circle, and let O denote the center of the
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circle. To any point P on the circle we assign as a coordinate the angle
θ(P ) = angle(POQ). This angle is naturally multi-valued. The reference point
Q, for example, has θ(Q) = 0◦ and θ(Q) = 360◦. If we force angles to be
single-valued by restricting 0◦ ≤ θ ≤ 360◦, for example, then they become
discontinuous. Indeed, two nearby points, Q and Q−, then have very different
angles θ(Q) = 0◦, while θ(Q−) ∼ 360◦. It is easier to work with multi-valued
coordinates than it is to work with discontinuous ones.

If we have a world with several open dimensions, then we can apply the identi-
fication (9.3) to one of the dimensions, while doing nothing to the others. The
dimension described by x turns into a circle, and the other dimensions remain
open. It is possible, of course, to make more than one dimension compact.

Consider the example, the (x, y) plane, subject to two identifications,

x ∼ x+ 2πR , y ∼ y + 2πR

It is perhaps clearer to show both coordinates simultaneously while writing the
identifications. In that fashion, the two identifications are written as

(x, y) ∼ (x+ 2πR, y) , (x, y) ∼ (x, y + 2πR) (9.4)

The first identification implies that we can restrict our attention to 0 ≤ x ≤ 2πR,
and the second identification implies that we can restrict our attention to
0 ≤ y ≤ 2πR. Thus, the fundamental domain can be taken to be the square
region 0 ≤ x, y < 2πR as shown in Figure 9.7 below.

Figure 9.7: Fundamental domain = square

The identifications are indicated by the dashed lines and arrowheads. To build
the space implied by the identifications, we take the fundamental domain to-
gether with its boundary, forming the full square 0 ≤ x, y < 2πR, and implement
the identifications on the boundary. The vertical edges are identified because
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they correspond to points of the form (0, y) and (2πR, y), which are identified
by the first equation (9.4). This results in the cylinder shown in Figure 9.8
below.

Figure 9.8: Square → cylinder

The horizontal edges are identified because they correspond to points of the
form (x, 0) and (x, 2πR), which are identified by the second equation in (9.4).
The resulting space is a two-dimensional torus.

We can visualize this process in Figure 9.9 below.

Figure 9.9: 2-dimensional torus

?or in words, the torus is visualized by taking the fundamental domain (with its
boundary) and gluing the vertical edges as their identification demands. The
result is first (vertical) cylinder shown above (the gluing seam is the dashed
line). In this cylinder, however, the bottom circle and the top circle must also
be glued, since they are nothing other than the horizontal edges of the funda-
mental domain. To do this with paper, you must flatten the cylinder and then
roll it up and glue the circles. The result looks like a flattened doughnut. With a
flexible piece of garden hose, you could simply identify the two ends and obtain
the familiar picture of a torus.

We have seen how to compactify coordinates using identifications. Some com-
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pact spaces are constructed in other ways. In string theory, however, compact
spaces that arise from identifications are particularly easy to work with.

Sometimes identifications have fixed points, points that are related to themselves
by the identification. For example, consider the real line parameterized by the
coordinate x and subject to the identification x ∼ −x. The point x = 0 is the
unique fixed point of the identification. A fundamental domain can be chosen
to be the half-line x ≥ 0. Note that the boundary point x = 0 must be included
in the fundamental domain. The space obtained by the above identification is
in fact the fundamental domain x ≥ 0. This is the simplest example of an orb-
ifold, a space obtained by identifications that have fixed points. This orbifold
is called an R1/Z2 orbifold. Here R1 stands for the (one-dimensional) real line,
and Z2 describes a basic property of the identification when it is viewed as the
transformation x→ −x - if applied twice, it gives back the original coordinate.

Quantum Mechanics and the Square Well

The fundamental relation governing quantum mechanics is

[x̂i, p̂j ] = i~δij

In three spatial dimensions the indices i and j run from 1 to 3. The general-
ization of quantum mechanics to higher dimensions is straightforward. With d
spatial dimensions, the indices simply run over the d possible values.

To set the stage for for the analysis of small extra dimensions, let us review the
standard quantum mechanics problem involving and infinite potential well.

The time-independent Schrodinger equation(in one-dimension) is

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

In the infinite well system we have

V (x) =

{
0 if x ∈ (0, a)

∞ if x /∈ (0, a)

When x ∈ (0, a), the Schrodinger equation becomes

− ~2

2m

d2ψ(x)

dx2
= Eψ(x)

The boundary conditions ψ(0) = ψ(a) = 0 give the solutions

ψk(x) =

√
2

a
sin

(
kπx

a

)
, k = 1, 2, ......,∞
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The value k = 0 is not allowed since it would make the wave-function vanish
everywhere. The corresponding energy values are

Ek =
~2

2m

(
kπ

a

)2

Square Well with Extra Dimensions

We now add an extra dimension to the square well problem. In addition to x,
we include a dimension y that is curled up into a small circle of radius R. In
other words, we make the identification

(x, y) ∼ (x, y + 2πR)

The original dimension x has not been changed(see Figure 9.10 below). In the
figure, on the left we have the original square well potential in one dimension.
Here the particle lives on the the line segment shown and on the right, in the
(x, y) plane the particle must remain in 0 < x < a. The direction y is identified
as y ∼ y + 2πR.

Figure 9.10: Square well with compact hidden dimension
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The particle lives on a cylinder, that is, since the y direction has been turned into
a circle of circumference 2πR, the space where the particle moves is a cylinder.
The cylinder has a length a and a circumference 2πR. The potential energy
V (x, y) is given by

V (x) =

{
0 if x ∈ (0, a)

∞ if x /∈ (0, a)

that is, is independent of y.

We want to investigate what happens when R is small and we only do experi-
ments at low energies. Now the only length scale in the one-dimensional infinite
well system is the size a of the segment, so small R means R << a.

(a) Write down the Schrodinger equation for two Cartesian dimensions.

(b) Use separation of variables to find x−dependent and y−dependent solu-
tions.

(c) Impose appropriate boundary conditions, namely, and an infinite well in
the x dimension and a circle in the y dimension, to determine the allowed
values of parameters in the solutions.

(d) Determine the allowed energy eigenvalues and their degeneracy.

(e) Show that the new energy levels contain the old energy levels plus addi-
tional levels.

(f) Show that when R << a (a very small (compact) hidden dimension)
the first new energy level appears at a very high energy. What are the
experimental consequences of this result?

9.7.40 Superfluid Flow

We can discuss macroscopic motions of a superfluid by regarding ψ(~x, t) as
a classical wave. We are particularly interested in time-independent and z-
independent solutions of the form

ψ(x, y) = f(r)einθ

where f(r) is a real function. Answer the following questions.

(a) Write down the velocity field ~v = ~j/ρ using the number density ρ = ψ∗ψ
and the momentum density ~j = ~

2mi (ψ∗∇ψ − ψ∇ψ∗).

(b) Write down the equation of motion

i~ψ̇ +
~2

2m
∇2ψ + µψ − λψ∗ψψ = 0

in terms of f(r). Note that this equation allows a monotonic solution with
f(0) = 0 and f(∞) =

√
µ/λ. This solution is called the vortex solution.
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(c) Show that the velocity field circles around the origin.

(d) Show that the circulation defined by

κ =

∮
~v · d~l

is quantized.

NOTE: An n-vortex actaully breaks up into n single vortices to lower the energy.
Look at the pictures of vortices in regular arrays in rotating superfluid Helium
in a paper by E.J. Yarmchuk, M.J.V. Gordon, and R.E Packard, Observation of
Stationary Vortex Arrays in Rotating Superfluid Helium, Phys. Rev. Lett. 43,
214-217 (1979).

9.7.41 Spin−1/2 Particle in a D-State

A particle of spin−1/2 is in a D-state of orbital angular momentum. What
are its possible states of total angular momentum? Suppose the single particle
Hamiltonian is

H = A+B~L · ~S + C~L · ~L

What are the values of energy for each of the different states of total angular
momentum in terms of the constants A, B, and C?

9.7.42 Two Stern-Gerlach Boxes

A beam of spin−1/2 particles traveling in the y−direction is sent through a
Stern-Gerlach apparatus, which is aligned in the z−direction, and which divides
the incident beam into two beams withm = ±1/2. Them = 1/2 beam is allowed
to impinge on a second Stern-Gerlach apparatus aligned along the direction
given by

ê = sin θx̂+ cos θẑ

(a) Evaluate ~S = (~/2)~σ · ê, where ~σ is represented by the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Calculate the eigenvalues of ~S.

(b) Calculate the normalized eigenvectors of ~S.

(c) Calculate the intensities of the two beams which emerge from the second
Stern-Gerlach apparatus.
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9.7.43 A Triple-Slit experiment with Electrons

A beam of spin-1/2 particles are sent into a triple slit experiment according to
the figure below.

Figure 9.11: Triple-Slit Setup

Calculate the resulting intensity pattern recorded at the detector screen.

9.7.44 Cylindrical potential

The Hamiltonian is given by

Ĥ =
~̂p2

2µ
+ V (ρ̂)

where ρ =
√
x2 + y2.

(a) Use symmetry arguments to establish that both p̂z and L̂z, the z−component
of the linear and angular momentum operators, respectively, commute
with Ĥ.

(b) Use the fact that Ĥ, p̂z and L̂z have eigenstates in common to express the
position space eigenfunctions of the Hamiltonian in terms of those of p̂z
and L̂z.

(c) What is the radial equation? Remember that the Laplacian in cylindrical
coordinates is

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂ϕ2
+
∂2ψ

∂z2

A particle of mass µ is in the cylindrical potential well

V (ρ) =

{
0 ρ < a

∞ ρ > a
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(d) Determine the three lowest energy eigenvalues for states that also have p̂z
and L̂z equal to zero.

(e) Determine the three lowest energy eigenvalues for states that also have p̂z
equal to zero. The states can have nonzero L̂z.

9.7.45 Crazy potentials.....

(a) A nonrelativistic particle of mass m moves in the potential

V (x, y, z) = A(x2 + y2 + 2λxy) +B(z2 + 2µz)

where A > 0, B > 0, |λ| < 1. µ is arbitrary. Find the energy eigenvalues.

(b) Now consider the following modified problem with a new potential

Vnew =

{
V (x, y, z) z > −µ and any x and y

+∞ z < −µ and any x and y

Find the ground state energy.

9.7.46 Stern-Gerlach Experiment for a Spin-1 Particle

A beam of spin−1 particles, moving along the y-axis, passes through a sequence
of two SG devices. The first device has its magnetic field along the z−axis and
the second device has its magnetic field along the z′−axis, which points in the
x− z plane at an angle θ relative to the z−axis. Both devices only transmit the
uppermost beam. What fraction of the particles entering the second device will
leave the second device?

9.7.47 Three Spherical Harmonics

As we see, often we need to calculate an integral of the form∫
dΩY ∗`3m3

(θ, ϕ)Y`2m2
(θ, ϕ)Y`1m1

(θ, ϕ)

This can be interpreted as the matrix element 〈`3m3| Ŷ (`2)
m2 |`1m1〉, where Ŷ

(`2)
m2

is an irreducible tensor operator.

(a) Use the Wigner-Eckart theorem to determine the restrictions on the quan-
tum numbers so that the integral does not vanish.

(b) Given the addition rule for Legendre polynomials:

P`1(µ)P`2(µ) =
∑
`3

〈`30 | `10`20〉2P`3(µ)
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where 〈`30 | `10`20〉 is a Clebsch-Gordon coefficient. Use the Wigner-
Eckart theorem to prove∫

dΩY ∗`3m3
(θ, ϕ)Y`2m2

(θ, ϕ)Y`1m1
(θ, ϕ)

=

√
(2`2 + 1)(2`1 + 1)

4π(2`3 + 1)
〈`30 | `10`20〉 〈`3m3 | `2m2`1m1〉

HINT: Consider 〈`30| Ŷ (`2)
0 |`10〉.

9.7.48 Spin operators ala Dirac

Show that

Ŝz =
~
2
|z+〉 〈z+| − ~

2
|z−〉 〈z−|

Ŝ+ = ~ |z+〉 〈z−| , Ŝ− = ~ |z−〉 〈z+|

9.7.49 Another spin = 1 system

A particle is known to have spin one. Measurements of the state of the particle
yield 〈Sx〉 = 0 = 〈Sy〉 and 〈Sz〉 = a where 0 ≤ a ≤ 1. What is the most general
possibility for the state?

9.7.50 Properties of an operator

An operator f̂ describing the interaction of two spin−1/2 particles has the form

f̂ = a+ b~σ1 ·~σ2 where a and b are constants and ~σj=σxj x̂+σyj ŷ+σzj ẑ are Pauli
matrix operators. The total spin angular momentum is

~j = ~j1 +~j2 =
~
2

(~σ1 + ~σ2)

(a) Show that f̂ , ~j2 and ĵz can be simultaneously measured.

(b) Derive the matrix representation of f̂ in the |j,m, j1, j2〉 basis.

(c) Derive the matrix representation of f̂ in the |j1, j2,m1,m2〉 basis.

9.7.51 Simple Tensor Operators/Operations

Given the tensor operator form of the particle coordinate operators

~r = (x, y, z); R0
1 = z , R±1 = ∓x± iy√

2

(the subscript ”1” indicates it is a rank 1 tensor), and the analogously defined
particle momentum rank 1 tensor P q1 , q = 0,±1, calculate the commutator
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between each of the components and show that the results can be written in the
form

[Rq1, P
m
1 ] = simple expression (9.5)

9.7.52 Rotations and Tensor Operators

Using the rank 1 tensor coordinate operator ? in Problem 9.51, calculate the
commutators

[L±, R
q
1] and [Lz, R

q
1]

where ~L is the standard angular momentum operator.

9.7.53 Spin Projection Operators

Show that P1 = 3
4 Î + (~S1 · ~S2)/~2 and P0 = 1

4 Î − (~S1 · ~S2)/~2 project onto the
spin−1 and spin−0 spaces in 1

2 ⊗
1
2 = 1 ⊕ 0. Start by giving a mathematical

statement of just what must be shown.

9.7.54 Two Spins in a magnetic Field

The Hamiltonian of a coupled spin system in a magnetic field is given by

H = A+ J
~S1 · ~S2

~2
+B

S1z + S2z

~

where factors of ~ have been tossed in to make the constants A, J , B have
units of energy. [J is called the exchange constant and B is proportional to the
magnetic field].

(a) Find the eigenvalues and eigenstates of the system when one particle has
spin 1 and the other has spin 1/2.

(b) Give the ordering of levels in the low field limit J � B and the high field
limit B � J and interpret physically the result in each case.

9.7.55 Hydrogen d States

Consider the ` = 2 states (for some given principal quantum number n, which is
irrelevant) of the H atom, taking into account the electron spin= 1/2 (Neglect
nuclear spin!).

(a) Enumerate all states in the J , M representation arising from the ell = 2,
s= 1/2 states.

(b) Two states have mj = M = +1/2. Identify them and write them precisely
in terms of the product space kets |`,m`; s,ms〉 using the Clebsch-Gordon
coefficients.
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9.7.56 The Rotation Operator for Spin−1/2
We learned that the operator

Rn(Θ) = exp
(
−iΘ(~en · Ĵ)/~

)
(9.6)

is a rotation operator, which rotates a vector about an axis ~en by and angle Θ.
For the case of spin 1/2,

Ĵ = Ŝ =
~
2
~̂σ → Rn(Θ) = exp (−iΘσ̂n/2)

(a) Show that for spin 1/2

Rn(Θ) = cos

(
Θ

2

)
Î − i sin

(
Θ

2

)
σ̂n

(b) Show Rn(Θ = 2π) = −Î; Comment.

(c) Consider a series of rotations. Rotate about the y−axis by θ followed by
a rotation about the z−axis by φ. Convince yourself that this takes the
unit vector along ~ez to ~en. Show that up to an overall phase

|↑n〉 = Rz(φ)Ry |↑z〉

9.7.57 The Spin Singlet

Consider the entangled state of two spins

|ΨAB〉 =
1√
2

(|↑z〉A ⊗ |↓z〉B − |↓z〉A ⊗ |↑z〉B)

(a) Show that (up to a phase)

|ΨAB〉 =
1√
2

(|↑n〉A ⊗ |↓n〉B − |↓n〉A ⊗ |↑n〉B)

where |↑n〉, |↓n〉 are spin spin-up and spin-down states along the direction
~en. Interpret this result.

(b) Show that 〈ΨAB | σ̂n ⊗ σ̂n′ |ΨAB〉 = −~en · ~en′

9.7.58 A One-Dimensional Hydrogen Atom

Consider the one-dimensional Hydrogen atom, such that the electron confined
to the x axis experiences an attractive force e2/r2.

(a) Write down Schrodinger’s equation for the electron wavefunction ψ(x) and
bring it to a convenient form by making the substitutions

a =
~2

me2
, E = − ~2

2ma2α2
, z =

2x

αa
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(b) Solve the Schrodinger equation for ψ(z). (You might need Mathematica,
symmetry arguments plus some properties of the Confluent Hypergeomet-
ric functions).

(c) Find the three lowest allowed values of energy and the corresponding
bound state wavefunctions. Plot them for suitable parameter values.

9.7.59 Electron in Hydrogen p−orbital

(a) Show that the solution of the Schrodinger equation for an electron in a
pz−orbital of a hydrogen atom

ψ(r, θ, φ) =

√
3

4π
Rn`(r) cos θ

is also an eigenfunction of the square of the angular momentum operator,
L̂2, and find the corresponding eigenvalue. Use the fact that

L̂2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Given that the general expression for the eigenvalue of L̂2 is `(` + 1)~2,
what is the value of the ` quantum number for this electron?

(b) In general, for an electron with this ` quantum number, what are the
allowed values of m`? (NOTE: you should not restrict yourself to a pz
electron here). What are the allowed values of s and ms?

(c) Write down the 6 possible pairs of ms and m` values for a single elec-
tron in a p−orbital. Given the Clebsch-Gordon coefficients shown in the
table below write down all allowed coupled states |j,mj〉 in terms of the

|j,mj〉
mj1 mj2 |3/2, 3/2〉 |3/2, 1/2〉 |1/2, 1/2〉 |3/2,−1/2〉 |1/2,−1/2〉 |3/2,−3/2〉

1 1/2 1

1 -1/2
√

1/3
√

2/3

0 1/2
√

2/3 −
√

1/3

0 -1/2
√

2/3
√

1/3

-1 1/2
√

1/3 −
√

2/3
-1 -1/2 1

Table 9.1: Clebsch-Gordon coefficients for j1 = 1 and j2 = 1/2

uncoupled states |m`,ms〉. To get started here are the first three:

|3/2, 3/2〉 = |1, 1/2〉

|3/2, 1/2〉 =
√

2/3 |0, 1/2〉+
√

1/3 |1,−1/2〉

|1/2, 1/2〉 = −
√

1/3 |0, 1/2〉+
√

2/3 |1,−1/2〉
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(d) The spin-orbit coupling Hamiltonian, Ĥso is given by

Ĥso = ξ(~r)ˆ̀· ŝ

Show that the states with |j,mj〉 equal to |3/2, 3/2〉, |3/2, 1/2〉 and |1/2, 1/2〉
are eigenstates of the spin-orbit coupling Hamiltonian and find the cor-
responding eigenvalues. Comment on which quantum numbers determine
the spin-orbit energy. (HINT: there is a rather quick and easy way to do
this, so if you are doing something long and tedious you might want to
think again .....).

(e) The radial average of the spin-orbit Hamiltonian∫ ∞
0

ξ(r)|Rn`(r)|2r2dr

is called the spin-orbit coupling constant. It is important because it gives
the average interaction of an electron in some orbital with its own spin.
Given that for hydrogenic atoms

ξ(r) =
Ze2

8πε0m2
ec

2

1

r3

and that for a 2p−orbital

Rn`(r) =

(
Z

a0

)3/2
1

2
√

6
ρe−ρ/2

(where ρ = Zr/a0 and a0 = 4πε0~2/mec
2) derive an expression for the

spin-orbit coupling constant for an electron in a 2p−orbital. Comment on
the dependence on the atomic number Z.

(f) In the presence of a small magnetic field, B, the Hamiltonian changes by
a small perturbation given by

Ĥ(1) = µBB(Îz + 2ŝz)

The change in energy due to a small perturbation is given in first-order
perturbation theory by

E(1) = 〈0| Ĥ(1) |0〉

where |0〉 is the unperturbed state (i.e., in this example, the state in the
absence of the applied field). Use this expression to show that the change
in the energies of the states in part (d) is described by

E(1) = µBBgjmj (9.7)

and find the values of gj . We will prove the perturbation theory result in
the Chapter 10.
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(g) Sketch an energy level diagram as a function of applied magnetic field
increasing from B = 0 for the case where the spin-orbit interaction is
stronger than the electron’s interaction with the magnetic field. You can
assume that the expressions you derived above for the energy changes of
the three states you have been considering are applicable to the other
states.

9.7.60 Quadrupole Moment Operators

The quadrupole moment operators can be written as

Q(+2) =

√
3

8
(x+ iy)2

Q(+1) = −
√

3

2
(x+ iy)z

Q(0) =
1

2
(3z2 − r2)

Q(−1) =

√
3

2
(x− iy)z

Q(−2) =

√
3

8
(x− iy)2

Using the form of the wave function ψ`m = R(r)Y `m(θ, φ),

(a) Calculate 〈ψ3,3|Q(0) |ψ3,3〉

(b) Predict all others 〈ψ3,m′ |Q(0) |ψ3,m〉 using the Wigner-Eckart theorem in
terms of Clebsch-Gordon coefficients.

(c) Verify them with explicit calculations for 〈ψ3,1|Q(0) |ψ3,0〉, 〈ψ3,−1|Q(0) |ψ3,1〉
and 〈ψ3,−2|Q(0) |ψ3,−3〉.

Note that we leave 〈r2〉 =
∫∞

0
r2 drR2(r)r2 as an overall constant that drops

out from the ratios.

9.7.61 More Clebsch-Gordon Practice

Add angular momenta j1 = 3/2 and j2 = 1 and work out all the Clebsch-Gordon
coefficients starting from the state |j,m〉 = |5/2, 5/2〉 = |3/2, 3/2〉 ⊗ |1, 1〉.

9.7.62 Spherical Harmonics Properties

(a) Show that L+ annihilates Y 2
2 =

√
15/32π sin2 θe2iφ.

(b) Work out all of Y m2 using successive applications of L− on Y 2
2 .

(c) Plot the shapes of Y m2 in 3-dimensions (r, θ, φ) using r = Y m2 (θ, φ).
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9.7.63 Starting Point for Shell Model of Nuclei

Consider a three-dimensional isotropic harmonic oscillator with Hamiltonian

H =
~p 2

2m
+

1

2
mω2~r 2 = ~ω

(
~a+ · ~a+ frac32

)
where ~p = (p̂1, p̂2, p̂3), ~r = (x̂1, x̂2x̂2), ~a = (â1, â2, â3). We also have the com-
mutators [x̂i, p̂j ] = i~δij , [x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [âi, âj ] = 0, [â+

i , â
+
j ] = 0, and

[âi, â
+
j ] = δij Answer the following questions.

(a) Clearly, the system is spherically symmetric, and hence there is a con-

served angular momentum vector. Show that ~L = ~r × ~p commutes with
the Hamiltonian.

(b) Rewrite ~L in terms of creation and annihilation operators.

(c) Show that |0〉 belongs to the ` = 0 representation. It is called the 1S
state.

(d) Show that the operators ∓(a+
1 ± a

+
2 ) and a+

3 form spherical tensor opera-
tors.

(e) Show that N = 1 states, |1, 1,±1〉 = ∓(a+
1 ± a

+
2 ) |0〉 /

√
2 and |1, 1, 0〉 =

a+
3 |0〉, form the ` = 1 representation. (Notation is |N, `,m〉) It is called a

1P state because it is the first P−state.

(f) Calculate the expectation values of the quadrupole moment Q = (3z2−r2)
for N = ` = 1, m = −1, 0, 1 states, and verify the Wigner-Eckart theorem.

(g) There are six possible states at the N = 2 level. Construct the states
|2, `,m〉 with definite ` = 0, 2 and m. They are called 2S (because it is
second S−state) and 1D (because it is the first D−state).

(h) How many possible states are there at the N = 3, 4 levels? What `
representations do they fall into?

(i) What can you say about general N?

(j) Verify that the operator Π = eiπ~a
+·~a has the correct property as the parity

operator by showing that Π~rΠ+ = −~r and Π~pΠ+ = −~p.

(k) Show that Π = (−1)N

(l) Without calculating it explicitly, show that there are no dipole transitions
from the 2P state to the 1P state. As we will see in Chapter 11, this
means, show that 〈1P |~r |2P 〉 = 0.
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Figure 9.12: Axially Symmetric Rotor

9.7.64 The Axial-Symmetric Rotor

Consider an axially symmetric object which can rotate about any of its axes but
is otherwise rigid and fixed. We take the axis of symmetry to be the z−axis, as
shown below.
The Hamiltonian for this system is

Ĥ =
L̂2
x + L̂2

y

2I⊥
+
L̂2
z

2I‖

where I⊥ and I‖ are the moments of inertia about the principle axes.

(a) Show that the energy eigenvalues and eigenfunctions are respectively

E`,m =
~2

2I⊥

(
`(`+ 1)−m2

(
1− I⊥

I‖

))
, ψ`,m = Y m` (θ, φ)

What are the possible values for ` and m? What are the degeneracies?

At t = 0, the system is prepared in the state

ψ`,m(t = 0) =

√
3

4π

x

r
=

√
3

4π
sin θ cosφ

(b) Show that the state is normalized.

(c) Show that

ψ`,m(t = 0) =
1√
2

(
−Y 1

1 (θ, φ) + Y −1
1 (θ, φ)

)
(d) From (c) we see that the initial state is NOT a single spherical harmonic

(the eigenfunctions given in part (a)). Nonetheless, show that the wave-
function is an eigenstate of Ĥ (and thus a stationary state) and find the
energy eigenvalue. Explain this.

(e) If one were to measure the observable L̂2 (magnitude of the angular mo-
mentum squared) and L̂z, what values could one find and with what prob-
abilities?
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9.7.65 Charged Particle in 2-Dimensions

Consider a charged particle on the x − y plane in a constant magnetic field
~B = (0, 0, B) with the Hamiltonian (assume eB > 0)

H =
Π2
x + Π2

y

2m
, Πi = pi −

e

c
Ai

(a) Use the so-called symmetric gauge ~A = B(−y, x)/2, and simplify the
Hamiltonian using two annihilation operators âx and ây for a suitable
choice of ω.

(b) Further define âz = (âx + iây)/2 and âz̄ = (âx − iây)/2 and then rewrite
the Hamiltonian using them. General states are given in the form

|n,m〉 =
(â+
z )
n

√
n!

(
â+
z̄

)m
√
m!
|0, 0〉

starting from the ground state where âz |0, 0〉 = âz̄ |0, 0〉 = 0. Show that
they are Hamiltonian eigenstates of energies ~ω(2n+ 1).

(c) For an electron, what is the excitation energy when B = 100 kG?

(d) Work out the wave function 〈x, y | 0, 0〉 in position space.

(e) |0,m〉 are all ground states. Show that their position-space wave functions
are given by

ψ0,m(z, z̄) = Nzme−eBz̄z/4~c

where z = x+ iy and z̄ = x− iy. Determine N.

(f) Plot the probability density of the wave function for m = 0, 3, 10 on the
same scale (use ContourPlot or Plot3D in Mathematica).

(g) Assuming that the system is a circle of finite radius R, show that there are
only a finite number of ground states. Work out the number approximately
for large R.

(h) Show that the coherent state efâ
+
z |0, 0〉 represents a near-classical cy-

clotron motion in position space.

9.7.66 Particle on a Circle Again

A particle of mass m is allowed to move only along a circle of radius R on a
plane, x = R cos θ, y = R sin θ.

(a) Show that the Lagrangian is L = mR2θ̇2/2 and write down the canonical
momentum pθ and the Hamiltonian.

(b) Write down the Heisenberg equations of motion and solve them, (So far
no representation was taken).
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(c) Write down the normalized position-space wave function ψk(θ) = 〈θ | k〉 for
the momentum eigenstates p̂θ |k〉 = ~k |k〉 and show that only k = n ∈ Z
are allowed because of the requirement ψ(θ + 2π) = ψ(θ).

(d) Show the orthonormality

〈n |m〉 =

∫ 2π

0

ψ∗nψm dθ = δnm

(e) Now we introduce a constant magnetic field B inside the radius r < d < R
but no magnetic field outside r > d. Prove that the vector potential is

(Ax, Ay) =

{
B(−y, x)/2 r < d

Bd2(−y, x)/2r2 r > d
(9.8)

Write the Lagrangian, derive the Hamiltonian and show that the energy
eigenvalues are influenced by the magnetic field even though the particle
does not see the magnetic field directly.

9.7.67 Density Operators Redux

(a) Find a valid density operator ρ for a spin−1/2 system such that

〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0

Remember that for a state represented by a density operator ρ we have
〈Oq〉 = Tr[ρOq]. Your density operator should be a 2 × 2 matrix with
trace equal to one and eigenvalues 0 ≤ λ ≤ 1. Prove that ρ you find does
not correspond to a pure state and therefore cannot be represented by a
state vector.

(b) Suppose that we perform a measurement of the projection operator Pi and
obtain a positive result. The projection postulate (reduction postulate)
for pure states says

|Ψ〉 7→ |Ψ〉i =
Pi |Ψ〉√
〈Ψ|Pi |Ψ〉

Use this result to show that in density operator notation ρ = |Ψ〉 〈Ψ| maps
to

ρi =
PiρPi
Tr[ρPi]

9.7.68 Angular Momentum Redux

(a) Define the angular momentum operators Lx, Ly, Lz in terms of the po-
sition and momentum operators. Prove the following commutation result
for these operators: [Lx, Ly]− i~Lz.

110



(b) Show that the operators L± = Lx ± iLy act as raising and lowering oper-
ators for the z component of angular momentum by first calculating the
commutator [Lz, L±].

(c) A system is in state ψ, which is an eigenstate of the operators L2 and Lz
with quantum numbers ell and m. Calculate the expectation values 〈Lx〉
and 〈L2

x〉. HINT: express Lx in terms of L±.

(d) Hence show that Lx and Ly satisfy a general form of the uncertainty
principle:

〈(∆A)2〉〈(∆B)2〉 ≥ −1

4
〈[A,B]〉

9.7.69 Wave Function Normalizability

The time-independent Schrodinger equation for a spherically symmetric poten-
tial V (r) is

− ~2

2µ

[
1

r2

∂

∂r

(
r2 ∂R

∂r

)
− `(`+ 1)

r2

]
= (E − V )R

where ψ = R(r)Y m` (θ, φ), so that the particle is in an eigenstate of angular
momentum.

Suppose R(r) ∝ r−α and V (r) ∝ −r−β near the origin. Show that α < 3/2
is required if the wavefunction is to be normalizable, but that α < 1/2 (or
α < (3 − β)/2 if β > 2) is required for the expectation value of energy to be
finite.

9.7.70 Currents

The quantum flux density of probability is

~j =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ)

It is related to the probability density ρ = |ψ|2 by ∇ ·~j + ρ̇ = 0.

(a) Consider the case where ψ is a stationary state. Show thet ρ and ~j are
then independent of time/ Show that, in one spatial dimension, ~j is also
independent of position.

(b) Consider a 3D plane wave ψ = Aexp(i~k · ~x). What is ~j in this case? Give
a physical interpretation.

9.7.71 Pauli Matrices and the Bloch Vector

(a) Show that the Pauli operators

σx =
2

~
Sx , σy =

2

~
Sy , σz =

2

~
Sz
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satisfy
Tr[σi, σj] = 2δij

where the indices i and j can take on the values x, y or z. You will
probably want to work with matrix representations of the operators.

(b) Show that the Bloch vectors for a spin−1/2 degree of freedom

~s = 〈Sx〉x̂+ 〈Sy〉ŷ + 〈Sz〉ẑ

has length~/2 if and only if the corresponding density operator represents
a pure state. You may wish to make use of the fact that an arbitrary
spin−1/2 density operator can be parameterized in the following way:

ρ =
1

2
(I + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz)
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Chapter 10

Time-Independent Perturbation Theory

10.9 Problems

10.9.1 Box with a Sagging Bottom

Consider a particle in a 1−dimensional box with a sagging bottom given by

V (x) =

{
−V0sin(πx/L) for 0 ≤ x ≤ L
∞ for x < 0 and x > L

(a) For small V0 this potential can be considered as a small perturbation of
an infinite box with a flat bottom, for which we have already solved the
Schrodinger equation. What is the perturbation potential?

(b) Calculate the energy shift due to the sagging for the particle in the nth

stationary state to first order in the perturbation.

10.9.2 Perturbing the Infinite Square Well

Calculate the first order energy shift for the first three states of the infinite
square well in one dimension due to the perturbation

V (x) = V0
x

a

as shown in Figure 10.1 below.

Figure 10.1: Ramp perturbation
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10.9.3 Weird Perturbation of an Oscillator

A particle of mass m moves in one dimension subject to a harmonic oscillator
potential 1

2mω
2x2. The particle is perturbed by an additional weak anharmonic

force described by the potential ∆V = λ sin kx , λ << 1. Find the corrected
ground state.

10.9.4 Perturbing the Infinite Square Well Again

A particle of mass m moves in a one dimensional potential box

V (x) =


∞ for |x| > 3a

0 for a < x < 3a

0 for −3a < x < −a
V0 for |x| < a

as shown in Figure 10.2 below.

Figure 10.2: Square bump perturbation

Use first order perturbation theory to calculate the new energy of the ground
state.

10.9.5 Perturbing the 2-dimensional Infinite Square Well

Consider a particle in a 2-dimensional infinite square well given by

V (x, y) =

{
0 for 0 ≤ x ≤ a and 0 ≤ y ≤ a
∞ otherwise

(a) What are the energy eigenvalues and eigenkets for the three lowest levels?

(b) We now add a perturbation given by

V1(x, y) =

{
λxy for 0 ≤ x ≤ a and 0 ≤ y ≤ a
0 otherwise

Determine the first order energy shifts for the three lowest levels for λ� 1.

(c) Draw an energy diagram with and without the perturbation for the three
energy states, Make sure to specify which unperturbed state is connected
to which perturbed state.
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10.9.6 Not So Simple Pendulum

A mass m is attached by a massless rod of length L to a pivot P and swings
in a vertical plane under the influence of gravity as shown in Figure 10.3 below.

Figure 10.3: A quantum pendulum

(a) In the small angle approximation find the quantum mechanical energy
levels of the system.

(b) Find the lowest order correction to the ground state energy resulting from
the inaccuracy of the small angle approximation.

10.9.7 1-Dimensional Anharmonic Oscillator

Consider a particle of mass m in a 1−dimensional anharmonic oscillator poten-
tial with potential energy

V (x) =
1

2
mω2x2 + αx3 + βx4

(a) Calculate the 1st−order correction to the energy of the nth perturbed
state. Write down the energy correct to 1st−order.

(b) Evaluate all the required matrix elements of x3 and x4 needed to deter-
mine the perturbed energy levels and the wave function of the nth state
perturbed to 1st−order.

10.9.8 A Relativistic Correction for Harmonic Oscillator

A particle of mass m moves in a 1−dimensional oscillator potential

V (x) =
1

2
mω2x2

In the nonrelativistic limit, where the kinetic energy and the momentum are
related by

T =
p2

2m

the ground state energy is well known to be E0 = ~ω/2.
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Relativistically, the kinetic energy and the momentum are related by

T = E −mc2 =
√
m2c4 + p2c2 −mc2

(a) Determine the lowest order correction to the kinetic energy (a p4 term).

(b) Consider the correction to the kinetic energy as a perturbation and com-
pute the relativistic correction to the ground state energy.

10.9.9 Degenerate perturbation theory on a spin = 1 sys-
tem

Consider the spin Hamiltonian for a system of spin = 1

Ĥ = AŜ2
z +B(Ŝ2

x − Ŝ2
y) , B << A

This corresponds to a spin = 1 ion located in a crystal with rhombic symmetry.

(a) Solve the unperturbed problem for Ĥ0 = AŜ2
z .

(b) Find the perturbed energy levels to first order.

(c) Solve the problem exactly by diagonalizing the Hamiltonian matrix in
some basis. Compare to perturbation results.

10.9.10 Perturbation Theory in Two-Dimensional Hilbert
Space

Consider a spin−1/2 particle in the presence of a static magnetic field along the
z and x directions,

~B = Bz êz +Bxêx

(a) Show that the Hamiltonian is

Ĥ = ~ω0σ̂z +
~Ω

2
σ̂x

where ~ω0 = µBBz and ~Ω0 = 2µBBx.

(b) IfBx = 0, the eigenvectors are |↑z〉 and |↓z〉 with eigenvalues±~ω0respectively.
Now turn on a weak x field with Bx � Bz. Use perturbation theory to
find the new eigenvectors and eigenvalues to lowest order in Bx/Bz.

(c) Suppose now Bz = 0. What are the eigenvectors and eigenvalues in terms
of |↑z〉 and |↓z〉. Relate this result to degenerate perturbation theory.

(d) This problem can actually be solved exactly. Find the eigenvectors and
eigenvalues for arbitrary values of Bz and Bx. Show that these agree with
your results in parts (b) and (c) by taking appropriate limits.

(e) Plot the energy eigenvalues as a function of Bz for fixed Bx. Label the
eigenvectors on the curves when Bz = 0 and when Bz → ±∞.
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10.9.11 Finite Spatial Extent of the Nucleus

In most discussions of atoms, the nucleus is treated as a positively charged
point particle. In fact, the nucleus does possess a finite size with a radius given
approximately by the empirical formula

R ≈ r0A
1/3

where r0 = 1.2 × 10−13 cm (i.e., 1.2 Fermi) and A is the atomic weight or
number (essentially the number of protons and neutrons in the nucleus). A
reasonable assumption is to take the total nuclear charge +Ze as being uniformly
distributed over the entire nuclear volume (assumed to be a sphere).

(a) Derive the following expression for the electrostatic potential energy of an
electron in the field of the finite nucleus:

V (r) =

{
−Ze

2

r for r > R
Ze2

R

(
r2

2R2 − 3
2

)
for r < R

Draw a graph comparing this potential energy and the point nucleus po-
tential energy.

(b) Since you know the solution of the point nucleus problem, choose this as
the unperturbed Hamiltonian Ĥ0 and construct a perturbation Hamilto-
nian Ĥ1 such that the total Hamiltonian contains the V (r) derived above.
Write an expression for Ĥ1.

(c) Calculate(remember that R � a0 = Bohr radius) the 1st−order per-
turbed energy for the 1s (n`m) = (100) state obtaining an expression in
terms of Z and fundamental constants. How big is this result compared to
the ground state energy of hydrogen? How does it compare to hyperfine
splitting?

10.9.12 Spin-Oscillator Coupling

Consider a Hamiltonian describing a spin−1/2 particle in a harmonic well as
given below:

Ĥ0 =
~ω
2
σ̂z + ~ω

(
â+â+ 1/2)

)
(a) Show that

{|n〉 ⊗ |↓〉 = |n, ↓〉 , |n〉 ⊗ |↑〉 = |n, ↑〉}
are energy eigenstates with eigenvalues En,↓ = n~ω and En,↑ = (n+1)~ω,
respectively.

(b) The states associated with the ground-state energy and the first excited
energy level are

{|0, ↓〉 , |1, ↓〉 , |0, ↑〉}
What is(are) the ground state(s)? What is(are) the first excited state(s)?
Note: two states are degenerate.
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(c) Now consider adding an interaction between the harmonic motion and the
spin, described by the Hamiltonian

Ĥ1 =
~Ω

2

(
âσ̂+ + â+σ̂−

)
so that the total Hamiltonian is now Ĥ = Ĥ0 + Ĥ1. Write a matrix
representation of Ĥ in the subspace of the ground and first excited states
in the ordered basis given in part (b).

(d) Find the first order correction to the ground state and excited state energy
eigenvalues for the subspace above.

10.9.13 Motion in spin-dependent traps

Consider an electron moving in one dimension, in a spin-dependent trap as
shown in Figure 10.4 below:

Figure 10.4: A spin-dependent trap

If the electron is in a spin-up state (with respect to the z−axis), it is trapped in
the right harmonic oscillator well and if it is in a spin-down state (with respect to
the z−axis), it is trapped in the left harmonic oscillator well. The Hamiltonian
that governs its dynamics can be written as:

Ĥ =
p̂2

2m
+

1

2
mω2

osc(ẑ −∆z/2)2 ⊗ |↑z〉 〈↑z|+
1

2
mω2

osc(ẑ + ∆z/2)2 ⊗ |↓z〉 〈↓z|

(a) What are the energy levels and stationary states of the system? What are
the degeneracies of these states? Sketch an energy level diagram for the
first three levels and label the degeneracies.

(b) A small, constant transverse field Bx is now added with |µBBx| << ~ωosc.
Qualitatively sketch how the energy plot in part (a) is modified.

(c) Now calculate the perturbed energy levels for this system.

(d) What are the new eigenstates in the ground-state doublet? For ∆z macro-
scopic, these are sometimes called Schrodinger cat states. Explain why.
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10.9.14 Perturbed Oscillator

A particle of mass m is moving in the 3−dimensional harmonic oscillator po-
tential

V (x, y, z) =
1

2
mω2(x2 + y2 + z2)

A weak perturbation is applied in the form of the function

∆V (x, y, z) = kxyz +
k2

~ω
x2y2z2

where k is a small constant. Calculate the shift in the ground state energy to
second order in k. This is not the same as second-order perturbation theory!

10.9.15 Another Perturbed Oscillator

Consider the system described by the Hamiltonian

H =
p2

2m
+
mω2

2α
(1− e−αx

2

)

Assume that α << mω/~
(1) Calculate an approximate value for the ground state energy using first-

order perturbation theory by perturbing the harmonic oscillator Hamilto-
nian

H =
p2

2m
+
mω2

2
x2

(2) Calculate an approximate value for the ground state energy using the

variational method with a trial function ψ = e−βx
2/2.

10.9.16 Helium from Hydrogen - 2 Methods

(a) Using a simple hydrogenic wave function for each electron, calculate by
perturbation theory the energy in the ground state of the He atom asso-
ciated with the electron-electron Coulomb interaction. Use this result to
estimate the ionization energy of Helium.

(b) Calculate the ionization energy by using the variational method with an
effective charge λ in the hydrogenic wave function as the variational pa-
rameter.

(c) Compare (a) and (b) with the experimental ionization energy

Eion = 1.807E0 , E0 =
α2mc2

2
, α = fine structure constant

You will need

ψ1s(r) =

√
λ3

π
exp(−λr) , a0 =

~2

me2
,

∫ ∫
d3r1d

3r2
e−β(r1+r2)

|~r1 − ~r2|
=

20π2

β5

That last integral is very hard to evaluate from first principles.
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10.9.17 Hydrogen atom + xy perturbation

An electron moves in a Coulomb field centered at the origin of coordinates. The
first excited state (n = 2) is 4−fold degenerate. Consider what happens in the
presence of a non-central perturbation

Vpert = f(r)xy

where f(r) is some function only of r, which falls off rapidly as r →∞. To first
order, this perturbation splits the 4−fold degenerate level into several distinct
levels (some might still be degenerate).

(a) How many levels are there?

(b) What is the degeneracy of each?

(c) Given the energy shift, call it ∆E, for one of the levels, what are the values
of the shifts for all the others?

10.9.18 Rigid rotator in a magnetic field

Suppose that the Hamiltonian of a rigid rotator in a magnetic field is of the
form

Ĥ = A~L2 +BL̂z + CL̂y

Assuming that A , B � C, use perturbation theory to lowest nonvanishing order
to get approximate energy eigenvalues.

10.9.19 Another rigid rotator in an electric field

Consider a rigid body with moment of inertia I, which is constrained to rotate
in the xy−plane, and whose Hamiltonian is

Ĥ =
1

2I
L̂2
z

Find the eigenfunctions and eigenvalues (zeroth order solution). Now assume

the rotator has a fixed dipole moment ~p in the plane. An electric field ~E is
applied in the plane. Find the change in the energy levels to first and second
order in the field.

10.9.20 A Perturbation with 2 Spins

Let ~S1 and ~S2 be the spin operators of two spin−1/2 particles. Then ~S = ~S1+~S2

is the spin operator for this two-particle system.

(a) Consider the Hamiltonian

Ĥ0 = α(Ŝ2
x + Ŝ2

y − Ŝ2
z )/~2

Determine its eigenvalues and eigenvectors.

(b) Consider the perturbation Ĥ1 = λ(Ŝ1x− Ŝ2x). Calculate the new energies
in first-order perturbation theory.
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10.9.21 Another Perturbation with 2 Spins

Consider a system with the unperturbed Hamiltonian Ĥ0 = −A(Ŝ1z+ Ŝ2z) with
a perturbing Hamiltonian of the form Ĥ1 = B(Ŝ1xŜ2x − Ŝ1yŜ2y).

(a) Calculate the eigenvalues and eigenvectors of ?Ĥ0

(b) Calculate the exact eigenvalues of Ĥ0 + Ĥ1

(c) By means of perturbation theory, calculate the first- and the second-order
shifts of the ground state energy of Ĥ0, as a consequence of the perturba-
tion Ĥ1. Compare these results with those of (d).

10.9.22 Spherical cavity with electric and magnetic fields

Consider a spinless particle of mass m and charge e confined in spherical cavity
of radius R, that is, the potential energy is zero for r < R and infinite for r > R.

(a) What is the ground state energy of this system?

(b) Suppose that a weak uniform magnetic field of strength B is switched on.
Calculate the shift in the ground state energy.

(c) Suppose that, instead a weak uniform electric field of strength E is switched
on. Will the ground state energy increase or decrease? Write down, but
do not attempt to evaluate, a formula for the shift in the ground state
energy due to the electric field.

(d) If, instead, a very strong magnetic field of strength B is turned on, ap-
proximately what would be the ground state energy?

10.9.23 Hydrogen in electric and magnetic fields

Consider the n = 2 levels of a hydrogen-like atom. Neglect spins. Calculate to
lowest order the energy splittings in the presence of both electric and magnetic
fields ~B = Bêz and ~E = E êx.

10.9.24 n = 3 Stark effect in Hydrogen

Work out the Stark effect to lowest nonvanishing order for the n = 3 level of
the hydrogen atom. Obtain the energy shifts and the zeroth order eigenkets.

10.9.25 Perturbation of the n = 3 level in Hydrogen - Spin-
Orbit and Magnetic Field corrections

In this problem we want to calculate the 1st-order correction to the n=3 un-
perturbed energy of the hydrogen atom due to spin-orbit interaction and mag-
netic field interaction for arbitrary strength of the magnetic field. We have
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Ĥ = Ĥ0 + Ĥso + Ĥm where

Ĥ0 =
~p2
op

2m
+ V (r) , V (r) = −e2

(
1

r

)
Ĥso =

[
1

2m2c2
1

r

dV (r)

dr

]
~Sop · ~Lop

Ĥm =
µB
~

(~Lop + 2~Sop) · ~B

We have two possible choices for basis functions, namely,

|n`sm`ms〉 or |n`sjmj〉

The former are easy to write down as direct-product states

|n`sm`ms〉 = Rn`(r)Y
m`
` (θ, ϕ) |s,ms〉

while the latter must be constructed from these direct-product states using ad-
dition of angular momentum methods. The perturbation matrix is not diagonal
in either basis. The number of basis states is given by

n−1=2∑
`=0

(2`+ 1)× 2 =10 + 6 + 2 = 18

All the 18 states are degenerate in zero-order. This means that we deal with an
18× 18 matrix (mostly zeroes) in degenerate perturbation theory.

Using the direct-product states

(a) Calculate the nonzero matrix elements of the perturbation and arrange
them in block-diagonal form.

(b) Diagonalize the blocks and determine the eigenvalues as functions of B.

(c) Look at the B → 0 limit. Identify the spin-orbit levels. Characterize them
by (`sj).

(d) Look at the large B limit. Identify the Paschen-Bach levels.

(e) For small B show the Zeeman splittings and identify the Lande g−factors.

(f) Plot the eigenvalues versus B.

10.9.26 Stark Shift in Hydrogen with Fine Structure

Excluding nuclear spin, the n = 2 spectrum of Hydrogen has the configuration:

where ∆EFS/~ = 10 GHz (the fine structure splitting) and ∆ELamb/~ =
1 GHz (the Lamb shift - an effect of quantum fluctuations of the electromag-
netic field). These shifts were neglected in the text discussion of the Stark effect.
This is valid if ea0Ez >> ∆E. Let x = ea0Ez.
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Figure 10.5: n = 2 Spectrum in Hydrogen

(a) Suppose x < ∆ELamb, but x << ∆EFS . . Then we need only consider
the (2s1/2, 2p1/2) subspace in a near degenerate case. Find the new energy
eigenvectors and eigenvalues to first order. Are they degenerate? For what
value of the field (in volts/cm) is the level separation doubled over the
zero field Lamb shift? HINT: Use the representation of the fine structure
eigenstates in the uncoupled representation.

(b) Now suppose x > ∆EFS . We must include all states in the near degener-
ate case. Calculate and plot numerically the eigenvalues as a function of
x, in the range from 0 GHz < x < 10 GHz.

Comment on the behavior of these curves. Do they have the expected
asymptotic behavior? Find analytically the eigenvectors in the limit x/∆EFS →
∞. Show that these are the expected perturbed states.

10.9.27 2-Particle Ground State Energy

Estimate the ground state energy of a system of two interacting particles of
mass m1 and m2 with the interaction energy

U(~r1 − ~r2) = C
(
|~r1 − ~r2|4

)
using the variational method.

10.9.28 1s2s Helium Energies

Use first-order perturbation theory to estimate the energy difference between
the singlet and triple states of the (1s2s) configuration of helium. The 2s single
particle state in helium is

ψ2s(~r) =
1√
4π

(
1

a0

)3/2(
2− 2r

a0

)
e−r/a0

10.9.29 Hyperfine Interaction in the Hydrogen Atom

Consider the interaction

Hhf =
µBµN
a3
B

~S1 · ~S2

~2
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where µB , µN are the Bohr magneton and the nuclear magneton, aB is the
Bohr radius, and ~S1 , ~S2 are the proton and electron spin operators.

(a) Show that Hhf splits the ground state into two levels:

Et = −1 Ry +
A

4
, Es = −1 Ry − 3A

4

and that the corresponding states are triplets and singlets, respectively.

(b) Look up the constants, and obtain the frequency and wavelength of the
radiation that is emitted or absorbed as the atom jumps between the
states. The use of hyperfine splitting is a common way to detect hydrogen,
particularly intergalactic hydrogen.

10.9.30 Dipole Matrix Elements

Complete with care; this is real physics. The charge dipole operator for the
electron in a hydrogen atom is given by

~d(~r) = −e~r

Its expectation value in any state vanishes (you should be able to see why
easily), but its matrix elements between different states are important for many
applications (transition amplitudes especially).

(a) Calculate the matrix elements of each of the components between the
1s ground state and each of the 2p states(there are three of them). By
making use of the Wigner-Eckart theorem (which you naturally do without
thinking when doing the integral) the various quantities are reduced to a
single irreducible matrix element and a very manageable set of Clebsch-
Gordon coefficients.

(b) By using actual H-atom wavefunctions (normalized) obtain the magnitude
of quantities as well as the angular dependence (which at certain points
at least are encoded in terms of the (`, m) indices).

(c) Reconstruct the vector matrix elements

〈1s| ~d |2pj〉

and discuss the angular dependence you find.

10.9.31 Variational Method 1

Let us consider the following very simple problem to see how good the variational
method works.

(a) Consider the 1−dimensional harmonic oscillator. Use a Gaussian trial

wave function ψn(x) = e−αx
2

. Show that the variational approach gives
the exact ground state energy.
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(b) Suppose for the trial function, we took a Lorentzian

ψn(x) =
1

x2 + α

Using the variational method, by what percentage are you off from the
exact ground state energy?

(c) Now consider the double oscillator with potential

V (x) =
1

2
mω2(|x| − a)2

as shown below:

Figure 10.6: n = 2 Spectrum in Hydrogen

Argue that a good choice of trial wave functions are:

ψ±n (x) = un(x− a)± un(x+ a)

where the un(x) are the eigenfunctions for a harmonic potential centered
at the origin.

(d) Using this show that the variational estimates of the energies are

E±n =
An ±Bn
1± Cn

where

An =

∫
un(x− a)Ĥun(x− a)dx

Bn =

∫
un(x− a)Ĥun(x+ a)dx

Cn =

∫
un(x+ a)Ĥun(x− a)dx
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(e) For a much larger than the ground state width, show that

∆E0 = E
(−)
0 − E(+)

0 ≈ 2~ω
√

2V0

π~ω
e−2V0/~ω

where V0 = mω2a2/2. This is known as the ground tunneling splitting.
Explain why?

(f) This approximation clearly breaks down as a→ 0. Think about the limits
and sketch the energy spectrum as a function of a.

10.9.32 Variational Method 2

For a particle in a box that extends from −a to +a, try the trial function (within
the box)

ψ(x) = (x− a)(x+ a)

and calculate E. There is no parameter to vary, but you still get an upper
bound. Compare it to the true energy. Convince yourself that the singularities
in ψ′′ at x = ±a do not contribute to the energy.

10.9.33 Variational Method 3

For the attractive delta function potential

V (x) = −aV0δ(x)

use a Gaussian trial function. Calculate the upper bound on E0 and compare
it to the exact answer −ma2V 2

0 /2h
2.

10.9.34 Variational Method 4

For an oscillator choose

ψ(x) =

{
(x− a)2(x+ a)2 |x| ≤ a
0 |x| > a

calculate E(a), minimize it and compare to ~ω/2.

10.9.35 Variation on a linear potential

Consider the energy levels of the potential V (x) = g |x|.

(a) By dimensional analysis, reason out the dependence of a general eigenvalue
on the parameters m = mass, ~ and g.
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(b) With the simple trial function

ψ(x) = cθ(x+ a)θ(a− x)

(
1− |x|

a

)
compute (to the bitter end) a variational estimate of the ground state
energy. Here both c and a are variational parameters.

(c) Why is the trial function ψ(x) = cθ(x+ a)θ(a− x) not a good one?

(d) Describe briefly (no equations) how you would go about finding a varia-
tional estimate of the energy of the first excited state.

10.9.36 Average Perturbation is Zero

Consider a Hamiltonian

H0 =
p2

2µ
+ V (r)

H0 is perturbed by the spin-orbit interaction for a spin= 1/2 particle,

H ′ =
A

~2
~S · ~L

Show that the average perturbation of all states corresponding to a given term
(which is characterized by a given L and S) is equal to zero.

10.9.37 3-dimensional oscillator and spin interaction

A spin= 1/2 particle of mass m moves in a spherical harmonic oscillator poten-
tial

U =
1

2
mω2r2

and is subject to the interaction

V = λ~σ · ~r

Compute the shift of the ground state energy through second order.

10.9.38 Interacting with the Surface of Liquid Helium

An electron at a distance x from a liquid helium surface feels a potential

V (x) =

{
−K/x x > 0

∞ x ≤ 0

where K is a constant.

In Problem 8.7 we solved for the ground state energy and wave function of this
system.

Assume that we now apply an electric field and compute the Stark effect shift
in the ground state energy to first order in perturbation theory.
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10.9.39 Positronium + Hyperfine Interaction

Positronium is a hydrogen atom but with a positron as the ”nucleus” instead of
a proton. In the nonrelativistic limit, the energy levels and wave functions are
the same as for hydrogen, except for scaling due to the change in the reduced
mass.

(a) From your knowledge of the hydrogen atom, write down the normalized
wave function for the 1s ground state of positronium.

(b) Evaluate the root-mean-square radius for the 1s state in units of a0. Is
this an estimate of the physical diameter or radius of positronium?

(c) In the s states of positronium there is a contact hyperfine interaction

Ĥint = −8π

3
~µe · ~µpδ(~r)

where ~µe and ~µp are the electron and positron magnetic moments and

~µ =
ge

2mc
~̂S

Using first order perturbation theory compute the energy difference be-
tween the singlet and triplet ground states. Determine which lies lowest.
Express the energy splitting in GHz. Get a number!

10.9.40 Two coupled spins

Two oppositely charged spin−1/2 particles (spins ~s1=~~σ1/2 and ~s2=~~σ2/2 )
are coupled in a system with a spin-spin interaction energy ∆E. The system
is placed in a uniform magnetic field ~B = Bẑ. The Hamiltonian for the spin
interaction is

Ĥ =
∆E

4
~σ1 · ~σ2 − (~µ1 + ~µ2) · ~B

where ~µj = gjµ0~sj/~ is the magnetic moment of the jth particle.

(a) If we define the 2-particle basis-states in terms of the 1-particle states by

|1〉 = |+〉1 |+〉2 , |2〉 = |+〉1 |−〉2 , |3〉 = |−〉1 |+〉2 , |4〉 = |−〉1 |−〉2

where

σix |±〉i = |∓〉i , σix |±〉i = ±i |∓〉i , σiz |±〉i = ± |±〉i

and

σ1xσ2x |1〉 = σ1xσ2x |+〉1 |+〉2 = (σ1x |+〉1)(σ2x |+〉2) = |−〉1 |−〉2 = |4〉

then derive the results below.
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The energy eigenvectors for the 4 states of the system, in terms of the
eigenvectors of the z−component of the operators ~σi = 2~si/~ are

|1′〉 = |+〉1 |+〉2 = |1〉 , |2′〉 = d |−〉1 |+〉2 + c |+〉1 |−〉2 = d |3〉+ c |2〉
|3′〉 = c |−〉1 |+〉2 − dc |+〉1 |−〉2 = c |3〉 − d |2〉 , |4′〉 = |−〉1 |−〉2 = |4〉

where
~σzi |±〉i = ± |±〉i

as stated above and

d =
1√
2

(
1− x√

1 + x2

)1/2

, c =
1√
2

(
1 +

x√
1 + x2

)1/2

, x =
µ0B(g2 − g1)

∆E

(b) Find the energy eigenvalues associated with the 4 states.

(c) Discuss the limiting cases

µ0B

∆E
� 1 ,

µ0B

∆E
� 1

Plot the energies as a function of the magnetic field.

10.9.41 Perturbed Linear Potential

A particle moving in one-dimension is bound by the potential

V (x) =

{
ax x > 0

∞ x < 0

where a > 0 is a constant. Estimate the ground state energy using first-order
perturbation theory by the following method: Write V = V0 +V1 where V0(x) =
bx2, V1(x) = ax − bx2 (for x > 0), where b is a constant and treat V1 as a
perturbation.

10.9.42 The ac-Stark Effect

Suppose an atom is perturbed by a monochromatic electric filed oscillating at
frequency ωL, ~E(t) = Ez cosωLtêz (such as from a linearly polarized laser),
rather than the dc-field studied in the text. We know that such a field can be
absorbed and cause transitions between the energy levels: we will systematically
study this effect in Chapter 11. The laser will also cause a shift of energy levels
of the unperturbed states, known alternatively as the ac-Stark effect, the light
shift, and sometimes the Lamp shift (don’t you love physics humor). In this
problem, we will look at this phenomenon in the simplest case that the field
is near to resonance between the ground state |g〉 and some excited state |e〉,
ωL ≈ ωeg = (Ee − Eg)/~, so that we can ignore all other energy levels in the
problem (the two-level atom approximation).
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Figure 10.7: Lorentz Oscillator

(i) The classical picture. Consider first the Lorentz oscillator model of
the atom - a charge on a spring - with natural resonance at ω0. The
Hamiltonian for the system is

H =
p2

2m
+

1

2
mω2

0z
2 − ~d · ~E(t)

where d = −ez is the dipole.

(a) Ignoring damping of the oscillator, use Newton’s Law to show that
the induced dipole moment is

~dinduced(t) = α~E(t) = αEz cosωLt

where

α =
e2/m

ω2
0 − ω2

L

≈ −e2

2mω0∆

is the polarizability with ∆ = ωL − ω0 the detuning.

(b) Use your solution to show that the total energy stored in the system
is

H = −1

2
dinduced(t)E(t) = −1

2
αE2(t)

or the time average value of H is

barH = −1

4
αE2

z

Note the factor of 1/2 arises because energy is required to create the
dipole.

(ii) The quantum picture. We consider the two-level atom described above.
The Hamiltonian for this system can be written in a time independent form
(equivalent to the time-averaging done in the classical case).

Ĥ = Ĥatom + Ĥint

where Ĥatom = −~∆ |e〉 〈e| is the unperturbed atomic Hamiltonian and

Ĥint = −~Ω
2 (|e〉 〈g|+ |g〉 〈e|) is the dipole-interaction with ~Ω = 〈e| ~d |g〉 ·

~E.
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(a) Find the exact energy eigenvalues and eigenvectors for this simple
two dimensional Hilbert space and plot the levels as a function of ∆.
These are known as the atomic dressed states.

(b) Expand your solution in (a) to lowest nonvanishing order in Ω to find
the perturbation to the energy levels. Under what conditions is this
expansion valid?

(c) Confirm your answer to (b) using perturbation theory. Find also
the mean induced dipole moment (to lowest order in perturbation
theory), and from this show that the atomic polarizability, defined

by 〈~d〉 = α~E is given by

α = −| 〈e|
~d |g〉 |2

~∆

so that the second order perturbation to the ground state is E
(2)
g =

−αE2
z as in part (b).

(d) Show that the ratio of the polarizability calculated classically in (b)
and the quantum expression in (c) has the form

f =
αquantum
αclassical

=
| 〈e| z |g〉 |2

(∆z2)SHO

where
(
∆z2

)
SHO

is the SHO zero point variance. This is also known
as the oscillator strength.

We see that in lowest order perturbation theory an atomic resonance looks
just like a harmonic oscillator with a correction factor given by the oscilla-
tor strength and off-resonance harmonic perturbations cause energy level
shifts as well as absorption and emission(Chapter 11).

10.9.43 Light-shift for multilevel atoms

We found the ac-Stark (light shift) for the case of a two-level atom driven by a
monchromatic field. In this problem we want to look at this phenomenon in a
more general context, including arbitrary polarization of the electric field and
atoms with multiple sublevels.

Consider then a general monochromatic electric field ~E(~x, t) = <( ~E(~x)e−iωLt),
driving an atom near resonance on the transition |g; Jg〉 → |e; Je〉, where the
ground and excited manifolds are each described by some total angular momen-
tum J with degeneracy 2J + 1. The generalization of the ac-Stark shift is now
the light-shift operator acting on the 2Jg + 1 dimensional ground manifold:

V̂LS(~x) = −1

4
~E∗(~x) · ˆ̈α · ~E(~x)
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Here,

ˆ̈α = −
~̂dge ~̂deg
~∆

is the atomic polarizability tensor operator, where ~̂deg = P̂e ~̂dP̂g is the dipole
operator, projected between the ground and excited manifolds; the projector
onto the excited manifold is

P̂e =

Je∑
Me=−Je

|e; Je,Me〉 〈e; Je,Me|

and similarly for the ground manifold.

(a) By expanding the dipole operator in the spherical basis(±, 0), show that
the polarizability operator can be written

ˆ̈α = α̃


∑
q,Mg

∣∣∣CMg+q
Mg

∣∣∣2 ~eq |g, Jg,Mg〉 〈g, Jg,Mg|~eq ∗

+
∑

q 6=q′,Mg

C
Mg+q
Mg+q−q′ C

Mg+q
Mg

~eq′ |g, Jg,Mg + q − q′〉 〈g, Jg,Mg|~eq ∗


where

α̃ = −|〈e; Je ‖d‖ g; Jg〉|2

~∆

and
CMe

Mg
= 〈JeMe | 1qJgMg〉

Explain physically, using dipole selection rules, the meaning of the expres-
sion for ˆ̈α.

(b) Consider a polarized plane wave, with complex amplitude of the form
~E(~x) = E1~εLe

i~k·~x where E1 is the amplitude and ~εL the polarization
(possibly complex). For an atom driven on the transition |g; Jg = 1〉 →
|e; Je = 2〉 and the cases (i) linear polarization along z, (ii) positive helicity
polarization, (iii) linear polarization along x, find the eigenvalues and
eigenvectors of the light-shift operator. Express the eigenvalues in units
of

V1 = −1

4
α̃|E1|2.

Please comment on what you find for cases (i) and (iii). Repeat for
|g; Jg = 1/2〉 → |e; Je = 3/2〉 and comment.

(c) A deeper insight into the light-shift potential can be seen by expressing
the polarizability operator in terms of irreducible tensors. Verify that the
total light shift is the sum of scalar, cvector, and rank-2 irreducible tensor
interactions,

V̂LS = −1

4

(
| ~E(~x)|2 ˆα(0) + ( ~E∗(~x)× ~E(~x) · ˆα(1) + ~E∗(~x) · ˆα(2) · ~E(~x)

)
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where

ˆα(0) =
~̂dge · ~̂deg
−3~∆

, ˆα(1) =
~̂dge × ~̂deg
−2~∆

and

ˆα(2)
ij =

1

−~∆

 ~̂dige
~̂djge + ~̂djge

~̂dige
2

− ˆα(0)δij


(d) For the particular case of |g; Jg = 1/2〉 → |e; Je = 3/2〉, show that the

rank-2 tensor part vanishes. Show that the light-shift operator can be
written in a basis independent form of a scalar interaction (independent
of sublevel), plus an effective Zeeman interaction for a fictitious B-field
interacting with the spin−1/2 ground state,

V̂LS = V0(~x)Î + ~Bfict(~x) · ~̂σ

where

V0(~x) =
2

3
U1|~εL(~x)|2 → proportional to field intensity

and

~Bfict(~x) =
1

3
U1

(
~εL
∗(~x)× ~εL(~x)

i

)
→ proportional to field ellipticity

and we have written ~E(~x) = E1~εL(~x). Use this form to explain your
results from part (b) on the transition |g; Jg = 1/2〉 → |e; Je = 3/2〉.

10.9.44 A Variational Calculation

Consider the one-dimensional box potential given by

V (x) =

{
0 for |x| < a

∞ for |x| > a

Use the variational principle with the trial function

ψ(x) = |a|λ − |x|λ

where λ is a variational parameter. to estimate the ground state energy. Com-
pare the result with the exact answer.

10.9.45 Hyperfine Interaction Redux

An important effect in the study of atomic spectra is the so-called hyperfine
interaction – the magnetic coupling between the electron spin and the nuclear
spin. Consider Hydrogen. The hyperfine interaction Hamiltonian has the form

ĤHF = gsgiµBµN
1

r3
ŝ · î
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where ŝ is the electron’s spin−1/2 angular momentum and î is the proton’s
spin−1/2 angular momentum and the appropriate g-factors and magnetons are
given.

(a) In the absence of the hyperfine interaction, but including the electron and
proton spin in the description, what is the degeneracy of the ground state?
Write all the quantum numbers associated with the degenerate sublevels.

(b) Now include the hyperfine interaction. Let f̂ = î+ ŝ be the total spin an-
gular momentum. Show that the ground state manifold is described with
the good quantum numbers |n = 1, ` = 0, s = 1/2, i = 1/2, f,mf 〉. What
are the possible values of f and mf?

(c) The perturbed 1s ground state now has hyperfine splitting. The energy
level diagram is sketched below.

Figure 10.8: Hyperfine Splitting

Label all the quantum numbers for the four sublevels shown in the figure.

(d) Show that the energy level splitting is

∆EHF = gsgiµBµN 〈
1

r3
〉1s

Show numerically that this splitting gives rise to the famous 21 cm radio
frequency radiation used in astrophysical observations.

10.9.46 Find a Variational Trial Function

We would like to find the ground-state wave function of a particle in the potential
V = 50(e−x − 1)2 with m = 1 and ~ = 1. In this case, the true ground state
energy is known to be E0 = 39/8 = 4.875. Plot the form of the potential.
Note that the potential is more or less quadratic at the minimum, yet it is
skewed. Find a variational wave function that comes within 5% of the true
energy. OPTIONAL: How might you find the exact analytical solution?

10.9.47 Hydrogen Corrections on 2s and 2p Levels

Work out the first-order shifts in energies of 2s and 2p states of the hydrogen
atom due to relativistic corrections, the spin-orbit interaction and the so-called

134



Darwin term,

− p4

8m3
ec

2
+ g

1

4m2
ec

2

1

r

dVc
dr

(~L · ~S) +
~2

8m2
ec

2
∇2Vc , Vc = −Ze

2

r

where you should be able to show that ∇2Vc = 4πδ(~r). At the end of the
calculation, take g = 2 and evaluate the energy shifts numerically.

10.9.48 Hyperfine Interaction Again

Show that the interaction between two magnetic moments is given by the Hamil-
tonian

H = −2

3
µ0(~µ1 · ~µ2)δ(~x− ~y)− µ0

4π

1

r3

(
3
rirj
r2
− δij

)
µi1µ

j
2

where ri = xi − yi. (NOTE: Einstein summation convention used above). Use
first-order perturbation to calculate the splitting between F = 0, 1 levels of
the hydrogen atoms and the corresponding wavelength of the photon emission.
How does the splitting compare to the temperature of the cosmic microwave
background?

10.9.49 A Perturbation Example

Suppose we have two spin−1/2 degrees of freedom, A and B. Let the initial
Hamiltonian for this joint system be given by

H0 = −γBz
(
SAz ⊗ IB + IA ⊗ SBz

)
where IA and IB are identity operators, SAz is the observable for the z−component
of the spin for the system A, and SBz is the observable for the z−component
of the spin for the system B. Here the notation is meant to emphasize that
both spins experience the same magnetic field ~B = Bz ẑ and have the same
gyromagnetic ratio γ.

(a) Determine the energy eigenvalues and eigenstates for H0

(b) Suppose we now add a perturbation term Htotal = H0 +W , where

W = λ~SA · ~SB = λ
(
SAx ⊗ SBx + SAy ⊗ SBy + SAz ⊗ SBz

)
Compute the first-order corrections to the energy eigenvalues.

10.9.50 More Perturbation Practice

Consider two spi−1/2 degrees of freedom, whose joint pure states can be rep-
resented by state vectors in the tensor-product Hilbert space mathcalHAB =
mathcalHA ⊗ mathcalHB , where mathcalHA and mathcalHB are each two-
dimensional. Suppose that the initial Hamiltonian for the spins is

H0 =
(
−γABzSAz

)
⊗ IB + IA ⊗

(
−γBBzSBz

)
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(a) Compute the eigenstates and eigenenergies of H0, assuming γA 6= γB and
that the gyromagnetic ratios are non-zero. If it is obvious to you what the
eigenstates are, you can just guess them and compute the eigenenergies.

(b) Compute the first-order corrections to the eigenstates under the pertur-
bation

W = αSAx ⊗ SBx
where α is a small parameter with appropriate units.
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Chapter 11

Time-Dependent Perturbation Theory

11.5 Problems

11.5.1 Square Well Perturbed by an Electric Field

At time t = 0, an electron is known to be in the n = 1 eigenstate of a
1−dimensional infinite square well potential

V (x) =

{
∞ for |x| > a/2

0 for |x| < a/2

At time t = 0, a uniform electric field of magnitude E is applied in the direction
of increasing x. This electric field is left on for a short time τ and then removed.
Use time-dependent perturbation theory to calculate the probability that the
electron will be in the n = 2, 3 eigenstates at some time t > τ .

11.5.2 3-Dimensional Oscillator in an electric field

A particle of mass M , charge e, and spin zero moves in an attractive potential

V (x, y, z) = k
(
x2 + y2 + z2

)
(11.-1)

(a) Find the three lowest energy levels E0, E1, E2 and their associated degen-
eracy.

(b) Suppose a small perturbing potential Ax cos ω̄t causes transitions among
the various states in (a). Using a convenient basis for degenerate states,
specify in detail the allowed transitions neglecting effects proportional to
A2 or higher.

(c) In (b) suppose the particle is in the ground state at time t = 0. Find the
probability that the energy is E1 at time t.
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11.5.3 Hydrogen in decaying potential

A hydrogen atom (assume spinless electron and proton) in its ground state is
placed between parallel plates and subjected to a uniform weak electric field

~E =

{
0 for t < 0
~E0e−αt for t > 0

Find the 1st−order probability for the atom to be in any of the n = 2 states
after a long time.

11.5.4 2 spins in a time-dependent potential

Consider a composite system made up of two spin = 1/2 objects. For t < 0, the
Hamiltonian does not depend on spin and can be taken to be zero by suitably
adjusting the energy scale. For t > 0, the Hamiltonian is given by

Ĥ =

(
4∆

~2

)
~S1 · ~S2

Suppose the system is in the state |+−〉 for t ≤ 0. Find, as a function of time,
the probability for being found in each of the following states |+ +〉, |−+〉 and
|−−〉.

(a) by solving the problem exactly.

(b) by solving the problem assuming the validity of 1st−order time-dependent
perturbation theory with Ĥ as a perturbation switched on at t = 0. Under
what conditions does this calculation give the correct results?

11.5.5 A Variational Calculation of the Deuteron Ground
State Energy

Use the empirical potential energy function

V (r) = −Ae−r/a

where A = 32.7MeV , a = 2.18× 10−13 cm, to obtain a variational approxima-
tion to the energy of the ground state energy of the deuteron (` = 0).

Try a simple variational function of the form

φ(r) = e−αr/2a

where α is the variational parameter to be determined. Calculate the energy
in terms of α and minimize it. Give your results for α and E in MeV . The
experimental value of E is −2.23MeV (your answer should be VERY close! Is
your answer above this? [HINT: do not forget about the reduced mass in this
problem]
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11.5.6 Sudden Change - Don’t Sneeze

An experimenter has carefully prepared a particle of mass m in the first excited
state of a one dimensional harmonic oscillator, when he sneezes and knocks the
center of the potential well a small distance a to one side. It takes him a time
T to blow his nose, and when he has done so, he immediately puts the center
back where it was. Find, to lowest order in a, the probabilities P0 and P2 that
the oscillator will now be in its ground state and its second excited state.

11.5.7 Another Sudden Change - Cutting the spring

A particle is allowed to move in one dimension. It is initially coupled to two
identical harmonic springs, each with spring constant K. The springs are sym-
metrically fixed to the points ±a so that when the particle is at x = 0 the
classical force on it is zero.

(a) What are the energy eigenvalues of the particle when it is connected to
both springs?

(b) What is the wave function in the ground state?

(c) One spring is suddenly cut, leaving the particle bound to only the other
one. If the particle is in the ground state before the spring is cut, what is
the probability that it is still in the ground state after the spring is cut?

11.5.8 Another perturbed oscillator

Consider a particle bound in a simple harmonic oscillator potential. Initially(t <
0), it is in the ground state. At t = 0 a perturbation of the form

H ′(x, t) = Ax2e−t/τ

is switched on. Using time-dependent perturbation theory, calculate the prob-
ability that, after a sufficiently long time (t� τ), the system will have made a
transition to a given excited state. Consider all final states.

11.5.9 Nuclear Decay

Nuclei sometimes decay from excited states to the ground state by internal
conversion, a process in which an atomic electron is emitted instead of a photon.
Let the initial and final nuclear states have wave functions ϕi(~r1, ~r2, ..., ~rZ) and
ϕf (~r1, ~r2, ..., ~rZ), respectively, where ~ri describes the protons. The perturbation
giving rise to the transition is the proton-electron interaction,

W = −
Z∑
j=1

e2

|~r − ~rj |

where ~r is the electron coordinate.
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(a) Write down the matrix element for the process in lowest-order perturba-
tion theory, assuming that the electron is initially in a state characterized
by the quantum numbers (n`m), and that its energy, after it is emitted,
is large enough so that its final state may be described by a plane wave,
Neglect spin.

(b) Write down an expression for the internal conversion rate.

(c) For light nuclei, the nuclear radius is much smaller than the Bohr radius
for a give Z, and we can use the expansion

1

|~r − ~rj |
≈ 1

r
+
~r · ~rj
r3

Use this expression to express the transition rate in terms of the dipole
matrix element

~d = 〈ϕf |
Z∑
j=1

~rj |ϕi〉

11.5.10 Time Evolution Operator

A one-dimensional anharmonic oscillator is given by the Hamiltonian

H = ~ω
(
a†a+ 1/2

)
+ λa†aa

where λ is a constant. First compute a+ and a in the interaction picture and
then calculate the time evolution operator U(t, t0) to lowest order in the per-
turbation.

11.5.11 Two-Level System

Consider a two-level system |ψa〉 , |ψb〉 with energies Ea , Eb perturbed by a
jolt H ′(t) = Ûδ(t) where the operator Û has only off-diagonal matrix elements
(call them U). If the system is initially in the state a, find the probability Pa→b
that a transition occurs. Use only the lowest order of perturbation theory that
gives a nonzero result, or solve the problem exactly.

11.5.12 Instantaneous Force

Consider a simple harmonic oscillator in its ground state. An instantaneous
force imparts momentum p0 to the system. What is the probability that the
system will stay in its ground state?

11.5.13 Hydrogen beam between parallel plates

A beam of excited hydrogen atoms in the 2s state passes between the plates
of a capacitor in which a uniform electric field exists over a distance L. The
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Figure 11.1: Hydrogen beam between parallel plates

hydrogen atoms have a velocity v along the x−axis and the electric field ~E is
directed along the z−axis as shown in the figure.
All of the n = 2 states of hydrogen are degenerate in the absence of the field ~E ,
but certain of them mix (Stark effect) when the field is present.

(a) Which of the n = 2 states are connected (mixed) in first order via the
electric field perturbation?

(b) Find the linear combination of the n = 2 states which removes the degen-
eracy as much as possible.

(c) For a system which starts out in the 2s state at t = 0, express the wave
function at time t ≤ L/v. No perturbation theory needed.

(d) Find the probability that the emergent beam contains hydrogen in the
various n = 2 states.

11.5.14 Particle in a Delta Function and an Electric Field

A particle of charge q moving in one dimension is initially bound to a delta
function potential at the origin. From time t = 0 to t = τ it is exposed to a
constant electric field E0 in the x−direction as shown in the figure below:

Figure 11.2: Electric Field

The object of this problem is to find the probability that for t > τ the particle
will be found in an unbound state with energy between Ek and Ek + dEk.

(a) Find the normalized bound-state energy eigenfunction corresponding to
the delta function potential V (x) = −Aδ(x).
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(b) Assume that the unbound states may be approximated by free particle
states with periodic boundary conditions in a box of length L. Find the
normalized wave function of wave vector k, ψk(x), the density of states as
a function of k, D(k) and the density of states as a function of free-particle
energy Ek, D(Ek).

(c) Assume that the electric field may be treated as a perturbation. Write
down the perturbation term in the Hamiltonian, Ĥ1, and find the matrix
element of Ĥ1 between the initial and the final state 〈0| Ĥ1 |k〉.

(d) The probability of a transition between an initially occupied state |I〉 and
a final state |F 〉 due to a weak perturbation Ĥ1(t) is given by

PI→F (t) =
1

~2

∣∣∣∣∣∣
t∫

−∞

〈F | Ĥ1(t′) |I〉 eiωFIt
′
dt′

∣∣∣∣∣∣
2

where ωFI = (EF−EI)/~. Find an expression for the probability P (Ek)dEk
that the particle will be in an unbound state with energy between Ek and
Ek + dEk for t > τ .

11.5.15 Nasty time-dependent potential [complex integra-
tion needed]

A one-dimensional simple harmonic oscillator of frequency ω is acted upon by
a time-dependent, but spatially uniform force (not potential!)

F (t) =
(F0τ/m)

τ2 + t2
, −∞ < t <∞

At t = −∞, the oscillator is known to be in the ground state. Using time-
dependent perturbation theory to 1st−order, calculate the probability that the
oscillator is found in the 1st excited state at t = +∞.

Challenge: F (t) is so normalized that the impulse∫
F (t)dt

imparted to the oscillator is always the same, that is, independent of τ ; yet
for τ >> 1/ω, the probability for excitation is essentially negligible. Is this
reasonable?

11.5.16 Natural Lifetime of Hydrogen

Though in the absence of any perturbation, an atom in an excited state will stay
there forever(it is a stationary state), in reality, it will spontaneously decay to the
ground state. Fundamentally, this occurs because the atom is always perturbed
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by vacuum fluctuations in the electromagnetic field. The spontaneous emission
rate on a dipole allowed transition from the initial excited state |ψe〉 to all
allowed ground states |ψg〉 is,

Γ =
4

3~
k3
∑
g

∣∣∣〈ψg |̂~d |ψe〉∣∣∣2
where k = ωeg/c = (Ee − Eg)/~c is the emitted photon’s wave number.

Consider now hydrogen including fine structure. For a given sublevel, the spon-
taneous emission rate is

Γ(nLJMJ )→(n′L′J′) =
4

3~
k3
∑
M ′J

∣∣∣〈n′L′J ′M ′J | ~d |nLJMJ〉
∣∣∣2

(a) Show that the spontaneous emission rate is independent of the initial MJ .
Explain this result physically.

(b) Calculate the lifetime (τ = 1/Γ) of the 2P1/2 state in seconds.

11.5.17 Oscillator in electric field

Consider a simple harmonic oscillator in one dimension with the usual Hamil-
tonian

Ĥ =
p̂2

2m
+
mω2

2
x̂2

Assume that the system is in its ground state at t = 0. At t = 0 an electric field
~E = E x̂ is switched on, adding a term to the Hamiltonian of the form

Ĥ ′ = eE x̂

(a) What is the new ground state energy?

(b) Assuming that the field is switched on in a time much faster than 1/ω,
what is the probability that the particle stays in the unperturbed ground
state?

11.5.18 Spin Dependent Transitions

Consider a spin= 1/2 particle of mass m moving in three kinetic dimensions,
subject to the spin dependent potential

V̂1 =
1

2
k |−〉 〈−| ⊗ |~r|2

where k is a real positive constant, ~r is the three-dimensional position operator,
and {|−〉 , |+〉} span the spin part of the Hilbert space. Let the initial state of
the particle be prepared as

|Ψ0〉 = |−〉 ⊗ |0〉

where |0〉 corresponds to the ground state of the harmonic (motional) potential.
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(a) Suppose that a perturbation

Ŵ = ~Ω
(
|−〉 〈+|+ |+〉 〈−| ⊗ |~r|2

)
⊗ ÎCM

where ÎCM denotes the identity operator on the motional Hilbert space,
is switched on at time t = 0.

Using Fermi’s Golden Rule compute the rate of transitions out of |Ψ0〉.

(b) Describe qualitatively the evolution induced by Ŵ , in the limits Ω �√
k/m and Ω�

√
k/m. HINT: Make sure you understand part(c).

(c) Consider a different spin-dependent potential

V̂2 = |+〉 〈+| ⊗ Σ+(~x) + |−〉 〈−| ⊗ Σ−(~x)

where Σ±(~x) denote the motional potentials

Σ+(~x) =

{
+∞ |x| < a

0 |x| ≥ a

Σ−(~x) =

{
0 |x| < a

+∞ |x| ≥ a

and a is a positive real constant. Let the initial state of the system be
prepared as

|Ψ0〉 = |−〉 ⊗ |0′〉

where |0′〉 corresponds to the ground state of Σ−(~x). Explain why Fermi’s
Golden Rule predicts a vanishing transition rate for the perturbation Ŵ
specified in part (a) above.

11.5.19 The Driven Harmonic Oscillator

At t = 0 a 1−dimensional harmonic oscillator with natural frequency ω is driven
by the perturbation

H1(t) = −Fxe−iΩt

The oscillator is initially in its ground state at t = 0.

(a) Using the lowest order perturbation theory to get a nonzero result, find
the probability that the oscillator will be in the 2nd excited state n = 2
at time t > 0. Assume ω 6= Ω.

(b) Now begin again and do the simpler case, ω = Ω. Again, find the prob-
ability that the oscillator will be in the 2nd excited state n = 2 at time
t > 0

144



(c) Expand the result of part (a) for small times t, compare with the results
of part (b), and interpret what you find.

In discussing the results see if you detect any parallels with the driven
classical oscillator.

11.5.20 A Novel One-Dimensional Well

Using tremendous skill, physicists in a molecular beam epitaxy lab, use a graded
semiconductor growth technique to make a GaAs(Gallium Arsenide) wafer con-
taining a single 1-dimensional (Al,Ga)As quantum well in which an electron is
confined by the potential V = kx2/2.

(a) What is the Hamiltonian for an electron in this quantum well? Show that

ψ0(x) = N0e
−αx2/2 is a solution of the time-independent Schrodinger

equation with this Hamiltonian and find the corresponding eigenvalue.
Assume here that α = mω/~, ω = sqrtk/m and m is the mass of the
electron. Also assume that the mass of the electron in the quantum well
is the same as the free electron mass (not always true in solids).

(b) Let us define the raising and lowering operators â and â+ as

â+ =
1√
2

(
d

dy
− y
)

, â =
1√
2

(
d

dy
+ y

)
where y =

√
mω/~x. Find the wavefunction which results from operating

on ψ0 with â+ (call it ψ1(x)). What is the eigenvalue of ψ1 in this quantum
well? You can just state the eigenvalue based on your knowledge - there
is no need to derive it.

(c) Write down the Fermi’s Golden Rule expression for the rate of a transition
(induced by an oscillating perturbation from electromagnetic radiation)
occuring between the lowest energy eigenstate and the first excited state.
State the assumptions that go into the derivation of the expression.

(d) Given that k = 3.0 kg/s2, what photon wavelength is required to excite
the electron from state ψ0 to state ψ1? Use symmetry arguments to decide
whether this is an allowed transition (explain your reasoning); you might
want to sketch ψ0(x) and ψ1(x) to help your explanation.

(e) Given that

â |ν〉 =
√
ν |ν − 1〉 , â+ |ν〉 = −

√
ν + 1 |ν + 1〉

evaluate the transition matrix element 〈0|x |1〉. (HINT: rewrite x in terms
of â and â+). Use your result to simplify your expression for the transition
rate.
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11.5.21 The Sudden Approximation

Suppose we specify a three-dimensional Hilbert space HA and a time-dependent
Hamiltonian operator

H(t) = α

1 0 0
0 2 0
0 0 3

+ β(t)

0 0 1
0 0 0
1 0 −2


where α and β(t) are real-valued parameters (with units of energy). Let β(t)
be given by a step function

β(t) =

{
α t ≤ 0

0 t > 0

The Schrodinger equation can clearly be solved by standard methods in the
intervals t = [−∞, 0] and t = (0,+∞], within each of which H remains constant.
We can use the so-called sudden approximation to deal with the discontinuity
in H at t = 0, which simply amounts to assuming that

|Ψ(0+)〉 = |Ψ(0−)〉

Suppose the system is initially prepared in the ground state of the Hamiltonian
at t = −1. Use the Schrodinger equation and the sudden approximation to
compute the subsequent evolution of |Ψ(t)〉 and determine the function

f(t) = 〈|Ψ(0)〉 | |Ψ(t)〉〉 , t ≥ o

Show that |f(t)|2 is periodic. What is the frequency? How is it related to the
Hamiltonian?

11.5.22 The Rabi Formula

Suppose the total Hamiltonian for a spin−1/2 particle is

H = −γ [B0Sz + b1 (cos (ωt)Sx + sin (ωt)Sy)]

which includes a static field B0 in the z direction plus a rotating field in the
x− y plane. Let the state of the particle be written

|Ψ(t)〉 = a(t) |+z〉+ b(t) |−z〉

with normalization |a|2 + |b|2 = 1 and initial conditions

a(0) = 0 , b(0) = 1

Show that

|a(t)|2 =
(γb1)2

∆2 + (γb1)2
sin2

(
t

2

√
∆2 + (γb1)2

)
where ∆ = −γB0 − ω. This expression is known as the Rabi Formula.
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11.5.23 Rabi Frequencies in Cavity QED

Consider a two-level atom whose pure states can be represented by vectors in a
two-dimensional Hilbert spaceHA. Let |g〉 and |e〉 be a pair of orthonormal basis
states of HA representing the ground and excited states of the atom, respec-
tively. Consider also a microwave cavity whose lowest energy pure states can be
described by vectors in a three-dimensional Hilbert space HC . Let {|0〉 , |1〉 , |2〉}
be orthonormal basis states representing zero, one and two microwave photons
in the cavity.

The experiment is performed by sending a stream of atoms through the mi-
crowave cavity. The atoms pass through the cavity one-by-one. Each atom
spends a total time t inside the cavity (which can be varied by adjusting the
velocities of the atoms). Immediately upon exiting the cavity each atom hits a
detector that measures the atomic projection operator Pe = |e〉 〈e|.

Just before each atom enters the cavity, we can assume that the joint state of
that atom and the microwave cavity is given by the factorizable pure state

|Ψ(0)〉 = |g〉 ⊗ (c0 |0〉+ c1 |1〉+ c2 |2〉)

where |c0|2 + |c1|2 + |c2|2 = 1

(a) Suppose the Hamiltonian for the joint atom-cavity system vanishes when
the atom is not inside the cavity and when the atom is inside the cavity
the Hamiltonian is given by

HAC = ~ν |e〉 〈g|⊗
(
|0〉 〈1|+

√
2 |1〉 〈2|

)
+~ν |g〉 〈e|⊗

(
|1〉 〈0|+

√
2 |2〉 〈1|

)
Show that while the atom is inside the cavity, the following joint states
are eigenstates of HAC and determine the eigenvalues:

|E0〉 = |g〉 ⊗ |0〉

|E1+〉 =
1√
2

(|g〉 ⊗ |1〉+ |e〉 ⊗ |0〉)

|E1−〉 =
1√
2

(|g〉 ⊗ |1〉 − |e〉 ⊗ |0〉)

|E2+〉 =
1√
2

(|g〉 ⊗ |2〉+ |e〉 ⊗ |1〉)

|E2−〉 =
1√
2

(|g〉 ⊗ |2〉 − |e〉 ⊗ |1〉)

The rewrite |Ψ(0)〉 as a superposition of energy eigenstates.

(b) Use part (a) to compute the expectation value

〈Pe〉 = 〈Ψ(t)|Pe ⊗ IC |Ψ(t)〉

147



as a function of atomic transit time t. You should find your answer is of
the form

〈Pe〉 =
∑
n

P (n) sin2 [Ωnt]

where P (n) is the probability of having n photons in the cavity and Ωn is
the n−photon Rabi frequency.
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Chapter 12

Identical Particles

12.9 Problems

12.9.1 Two Bosons in a Well

Two identical spin-zero bosons are placed in a 1−dimensional square potential
well with infinitely high walls, i.e., V = 0 for 0 < x < L, otherwise V =∞. The
normalized single particle energy eigenstates are

un(x) =

√
2

L
sin (nπx/L)

(a) Find the wavefunctions and energies for the ground state and the first two
excited states of the system.

(b) Suppose that the two bosons interact with each other through the per-
turbing potential

H ′(x1, x2) = −LV0δ(x1 − x2)

Compute the first-order correction to the ground state energy of the sys-
tem.

12.9.2 Two Fermions in a Well

Two identical spin−1/2 bosons are placed in a 1−dimensional square potential
well with infinitely high walls, i.e., V = 0 for 0 < x < L, otherwise V =∞. The
normalized single particle energy eigenstates are

un(x) =

√
2

L
sin (nπx/L)

(a) What are the allowed values of the total spin angular momentum quantum
number, J ? How many possible values are there fore the z−component
of the total angular momentum?
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(b) If single-particle spin eigenstates are denoted by |↑〉 = u and |↓〉 = d,
construct the two-particle spin states that are either symmetric or anti-
symmetric. How many states of each type are there?

(c) Show that the j = 1, m = 1 state must be symmetric. What is the
symmetry of the J = 0 state?

(d) What is the ground-state energy of the two-particle system, and how does
it depend on the overall spin state?

12.9.3 Two spin−1/2 particles

The Hamiltonian for two spin−1/2 particles, one with mass m1 and the other
with m2, is given by

Ĥ =
~p2

1

2m1
+

~p2
2

2m2
+ Va (r) +

(
1

4
−
~S1 · ~S2

~2

)
Vb (r)

where |~r| = ~r1 − ~r2, |~r| = r and

Va(r) =

{
0 for r < a

V0 for r > a
, Vb(r) =

{
0 for r < b

V0 for r > b

with b < a and V0 very large (assume V0 is infinite where appropriate) and
positive.

(a) Determine the normalized position-space energy eigenfunction for the ground
state. What is the spin state of the ground state? What is the degeneracy?

(b) What can you say about the energy and spin state of the first excited
state? Does your result depend on how much larger a is than b? Explain.

12.9.4 Hydrogen Atom Calculations

We discuss here some useful tricks for evaluating the expectation values of cer-
tain operators in the eigenstates of the hydrogen atom.

(a) Suppose we want to determine 〈1/r〉n`m. We can interpret 〈λ/r〉n`m as the
1st−order correction due to the perturbation λ/r (same dependence on r
as the potential energy). Show that this problem can be solved exactly
by just replacing e2 by e2 − λ everywhere in the original solution. So, the
exact energy is

E (λ) = −
m
(
e2 − λ

)2
2n2~2

the 1st−order correction is the term linear in λ, that is,

E(1) =
me2λ

n2~2
= 〈λ/r〉n`m
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Therefore we get

〈1/r〉n`m =
me2

n2~2
=

1

n2a0

We note (for later use) that

E(λ) = E(0) + E(1) + .... = E(λ = 0) + λ

(
dE

dλ

)
λ=0

+ ....

so that one way to extract E(1) from the exact answer is to calculate

λ

(
dE

dλ

)
λ=0

(b) Evaluate, in a manner similar to part (a),
〈
~p2/2µ

〉
n`m

by considering the
Hamiltonian

Ĥ =
p̂2

2µ
− Ze2

r
+ λ

p̂2

2µ

(c) Consider now
〈
λ/r2

〉
n`m

. In this case, an exact solution is possible since
the perturbation just modifies the centrifugal term as follows:

~2`(`+ 1)

2mr2
+
λ

r2
=

~2`′(`′ + 1)

2mr2

where `′ is a function of λ. Now go back to the original hydrogen atom
solution and show that the dependence of E on `′(λ) is

E(`′) = − mZ2e4

2~2(k + `′ + 1)2
= E(λ) = E(0) + E(1) + ....

Then show that〈
λ/r2

〉
n`m

= E(1)λ

(
dE

dλ

)
λ=0

= λ

(
dE

d`′

)
`′=`

(
d`′

dλ

)
`′=`

=
λ

n3a2
0(`+ 1/2)

or 〈
1/r2

〉
n`m

=
1

n3a2
0(`+ 1/2)

(d) Finally consider
〈
λ/r3

〉
n`m

. Since there is no such term in the hydrogen
Hamiltonian, we resort to different trick. Consider the radial momentum
operator

pr = −i~
(
∂

∂r
+

1

r

)
Show that in terms of this operator we may write the radial part of the
Hamiltonian

− ~2

2m

(
1

r2

∂

∂r
r2 ∂

∂r

)
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as
p2
r

2m

Now show that
〈[H, pr]〉 = 0

in the energy eigenstates. Using this fact, and by explicitly evaluating the
commutator, show that〈

1/r3
〉
n`m

=
Z

a0`(`+ 1)

〈
1/r2

〉
n`m

and hence 〈
1/r3

〉
n`m

=
Z3

n3a3
0`(`+ 1)(`+ 1/2)

12.9.5 Hund’s rule

Explain on the basis of Hunds rules why the ground state of carbon is 3P0 and
that of oxygen is 3P2.

12.9.6 Russell-Saunders Coupling in Multielectron Atoms

Consider a configuration of k equivalent p electrons outside a closed shell, which
we denote simply by pk, i.e., carbon= p2, nitrogen= p3 and oxygen= p4.

(a) Use the implied-terms method to determine all the terms that can arise
from p3. Which of them will have the lowest energy?

(b) Repeat this calculation for p4 and show that we get the same result as for
p2

12.9.7 Magnetic moments of proton and neutron

The magnetic dipole moment of the proton is

µ̂p = gp
e

2mp
Ŝp

with a measured magnitude corresponding to a value for the gyromagnetic ratio
of

gp = 2× (2.792847337± 0.000000029)

We have not studied the Dirac equation yet, but the prediction of the Dirac
equation for a point spin−1/2 particle is gp = 2. We can understand the fact
that the proton gyromagnetic ratio is not two as being due its compositeness,
i.e., in a simple quark model, the proton is made up of three quarks, two ups
(u), and a down (d). The quarks are supposed to be point spin−1/2, hence,
their gyromagnetic ratios should be gu = gd = 2 (up to higher order corrections,
as in the case of the electron). Let us see if we can make sense out of the proton
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magnetic moment.

The proton magnetic moment should be the sum of the magnetic moments of
its constituents, and any moments due to their orbital motion in the proton.
The proton is the ground state baryon, so we assume that the three quarks are
bound together (by the strong interaction) in a state with no orbital angular
momentum. The Pauli principle says that the two identical up quarks must
have an overall odd wave function under interchange of all quantum numbers.
We must apply this rule with some care since we will be including color as one
of these quantum numbers.

Let us look at some properties of color. It is the strong interaction analog
of electric charge in the electromagnetic interaction. However, instead of one
fundamental dimension in charge, there are three color directions, labeled as
red (r), blue (b), and green (g). Unitary transformations in this color space(up
to overall phases) are described by elements of the group SU(3), the group of
unimodular 3 × 3 matrices (electromagnetic charge corresponds to the group
U(1) whose elements are local phase changes). Just like combining spins, we
can combine these three colors according to a Clebsch-Gordon series, with the
result

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

These are different rules than for the addition of spin case because that case
uses the rotation group instead. We do not need to understand all aspects of
the SU(3) group for this problem. The essential aspect here is that there is a
singlet in the decomposition, i.e., it is possible to combine three colors in a way
as to get a color singlet state or a state with no net color charge. These turn
out to be the states of physical interest for the observed baryons according to a
postulate of the quark model.

(a) The singlet state in the decomposition above must be antisymmetric under
the interchange of any two colors. Assuming this is the case, write down
the color portion of the proton wave function.

(b) Now that you know the color wave function of the quarks in the proton,
write down the spin wave function. You must construct a total spin state
|1/2, 1/2〉 total spin angular momentum state from three spin−1/2 states
where the two up quarks must be in a symmetric state.

(c) Since the proton is uud and its partner the neutron (the are just two states
of the same particle) is ddu and mp ' mn, we can make the simplifying
assumption that mu ' md. Given the measured value of gp, what does
you model give for mu? Remember that the up quark has electric charge
2/3 and the down quark has electric charge −1/3, in units of positron
charge.

(d) Finally, use your results to predict the gyromagnetic moment of the neu-
tron(neutron results follows from proton results by interchanging u and d
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labels) and compare with observation.

12.9.8 Particles in a 3-D harmonic potential

A particle of mass m moves in a 3−dimensional harmonic oscillator well. The
Hamiltonian is

Ĥ =
~p2

2m
+

1

2
kr2

(a) Find the energy and orbital angular momentum of the ground state and
the first three excited states.

(b) If eight identical non-interacting (spin 1/2) particles are placed in such
a harmonic potential, find the ground state energy for the eight-particle
system.

(c) Assume that these particles have a magnetic moment of magnitude µ. If a
magnetic field B is applied, what is the approximate ground state energy
of the eight-particle system as a function of B (what is the effect of a closed
shell?). Determine the magnetization −∂E/∂B for the ground state as a
function of B. What is the susceptibility? Don’t do any integrals.

12.9.9 2 interacting particles

Consider two particles of masses m1 6= m2 interacting via the Hamiltonian

Ĥ =
p2

1

2m
+

p2
2

2m
+

1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
K (x1 − x2)

2

(a) Find the exact solutions.

(b) Sketch the spectrum in weak coupling limit K << µω2 where µ = reduced
mass.

12.9.10 LS versus JJ coupling

Consider a multielectron atom whose electron configuration is

1s22s22p63s23p63d104s24p4d

(a) To what element does this configuration belong? Is it the ground state or
an excited state? Explain.

(b) Suppose that we apply the Russell-Saunders coupling scheme to this atom.
Draw and energy level diagram roughly to scale for the atom, beginning
with the single unperturbed configuration energy and taking into account
the various interactions one at a time in the correct order. Be sure to
label each level at each stage of your diagram with the appropriate term
designation, quantum numbers and so on.

154



(c) Suppose instead we apply pure jj−coupling to the atom. Starting again
from the unperturbed n = 4 level, draw a second energy level diagram.
[HINT: Assume that for a given level (j1, j2), the state with the lowest J
lies lowest in energy]

12.9.11 In a harmonic potential

Two identical, noninteracting spin= 1/2 particles of mass m are in a one dimen-
sional harmonic oscillator potential for which the Hamiltonian is

H =
p2

1x

2m
+

1

2
mω2x2

1 +
p2

2x

2m
+

1

2
mω2x2

2

(a) Determine the ground-state and first-excited state kets and the corre-
sponding energies when the two particles are in a total spin= 0 state.
What are the lowest energy states and the corresponding kets for the
particles if they are in a total spin= 1 state?

(b) Suppose that the two particles interact with a potential energy of interac-
tion

V (|x1 − x2|) =

{
−V0 |x1 − x2| < a

0 elsewhere

Argue what the effect will be on the energies that you determined in (a),
that is, whether the energy of each state moves up, moves down, or remains
unchanged.

12.9.12 2 particles interacting via delta function

Two particles of mass m are placed in a rectangular box of sides a > b > c in the
lowest energy state of the system compatible with the conditions below. The
particles interact with each other according to the potential V = Aδ(~r1 − ~r2).
Using first order perturbation theory calculate the energy of the system under
the following conditions:

(a) particles are not identical

(b) identical particles of spin= 0

(c) identical particles of spin= 1/2 with spins parallel

12.9.13 2 particles in a square well

Two identical nonrelativistic fermions of massm, spin= 1/2 are in a 1−dimensional
square well of length L with V infinitely large outside the well. The fermions
are subject to a repulsive potential V (x1 − x2), which may be treated as a
perturbation.
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(a) Classify the three lowest-energy states in terms of the states of the indi-
vidual particles and state the spin of each.

(b) Calculate to first-order the energies of the second- and third- lowest states;
leave your result in the form of an integral. Neglect spin-dependent forces
throughout.

12.9.14 2 particles interacting via a harmonic potential

Two particles, each of mass M are bound in a 1−dimensional harmonic oscillator
potential

V =
1

2
kx2

and interact with each other through an attractive harmonic force F12 = −K(x1−
x2). Assume that K is very small.

(a) What are the energies of the three lowest states of this system?

(b) If the particles are identical and spinless, which of the states of (a) are
allowed?

(c) If the particles are identical and have spin= 1/2, which of the states of (a)
are allowed?

12.9.15 The Structure of helium

Consider a Helium atom in the 1s2p configuration. The total angular momen-
tum is L = 1 (a P−state). Due to the Fermi-Pauli symmetry this state splits
into singlet and triplet multiplets as shown below.

Figure 12.1: Fermi-Pauli Splittings

where the superscripts 1 and 3 represent the spin degeneracy for the singlet/triplet
respectively.

(a) Explain qualitatively why the triplet state has lower energy.

Now include spin-orbit coupling described by the Hamiltonian ĤSO =
f(r)L̂ · Ŝ, where L̂ and Ŝ are the total orbital and spin angular momentum
respectively.

(b) Without the spin-orbit interaction, good quantum numbers for the angu-
lar momentum degrees of freedom are |LMLSMS〉. What are the good
quantum numbers with spin-orbit present?
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(c) The energy level diagram including spin-orbit corrections is sketched be-
low.

Figure 12.2: Including Spin-Orbit

Label the states with appropriate quantum numbers. NOTE: Some of the
levels are degenerate; the sublevels are not shown.
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Chapter 13

Scattering Theory and Molecular Physics

13.3 Problems

13.3.1 S-Wave Phase Shift

We wish to find an approximate expression for the s-wave phase shift, δ0, for
scattering of low energy particles from the potential

V (r) =
C

r4
, C > 0

(a) For low energies, k ≈ 0, the radial Schrodinger equation for ` = 0 may be
approximated by (dropping the energy term):[

− 1

r2

d

dr
r2 d

dr
+

2mC

~2r4

]
Rinside`=0 (r) = 0

By making the transformations

R(r) =
1√
r
ϕ(r) , r =

i

~

√
2mC

x

show that the radial equation may be solved in terms of Bessel functions.
Find an approximate solution, taking into account behavior at r = 0.

(b) Using the standard procedure o fmatching this to Routside`=0 (r) at r = a

(where a is chosen such that ~a�
√

2mC and ka� 1) show that

δ0 = −k
√

2mC

~
which is independent of a.

13.3.2 Scattering Slow Particles

Determine the total cross section for the scattering of slow particles (ka < 1)
by a potential V (r) = Cδ(r − a).
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13.3.3 Inverse square scattering

Particles are scattered from the potential

V (r) =
g

r2

where g is a positive constant.

(a) Write the radial wave equation and determine the regular solutions.

(b) Prove that the phase shifts are given by

δ` =
π

2

`+
1

2
−

√(
`+

1

2

)2

+
2µg

~2


(c) Find the energy dependence of the differential cross section for a fixed

scattering angle.

(d) Find δ` for 2µg/~2 � 1 and show that the differential cross section is

dσ

dθ
=

π3

2~2

g2µ

E
cot

(
θ

2

)
where E is the energy of the scattered particle.

(e) For the same potential, calculate the differential cross section using the
Born approximation and compare it with the above results. Why did this
happen?

13.3.4 Ramsauer-Townsend Effect

What must V0a
2 be for a 3-dimensional square well potential in order that

the scattering cross section be zero in the limit of zero bombarding energy
(Ramsauer-Townsend effect)?

13.3.5 Scattering from a dipole

Consider an electric dipole consisting of two electric charges e and −e at a
mutual distance 2a. Consider also a particle of charge e and mass m with an
incident wave vector ~k perpendicular to the direction of the dipole, i.e., choose
the incident particle along the z−axis ~k = kẑ and the dipole set along he x−axis
or the charges are at ±ax̂.

Calculate the scattering amplitude in Born approximation, Find the directions
at which the differential cross-section is maximum.
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13.3.6 Born Approximation Again

(a) Evaluate, in the Born approximation, the differential cross section for the
scattering of a particle of mass m by a delta-function potential V (~r) =
Bδ(~r).

(b) Comment on the angular and velocity dependence.

(c) Find the total cross section.

13.3.7 Translation invariant potential scattering

Show that if the scattering potential has a translation invariance property
V (~r + ~R) = V (~r), where ~R is a constant vector, then the Born approxima-

tion scattering vanishes unless ~q · ~R = 2πn, where n is an integer and ~q is the
momentum transfer. This corresponds to scattering from a lattice. For any vec-
tor ~R of the lattice, the set of vectors ~k that satisfy ~k · ~R = 2πn constitutes the
reciprocal lattice. This prove then shows that the scattering amplitude vanishes
unless the momentum transfer ~q is equal to some vector of the reciprocal lattice.
This is the Bragg-Von Laue scattering condition.

13.3.8 ` = 1 hard sphere scattering

Consider the hard sphere potential of the form

V (r) =

{
0 r > r0

∞ r < r0

(13.-7)

where kr0 � 1. Write the radial Schrodinger equation for ` = 1, and show that
the solution for the p-wave scattering is of the form

χk1(r) = rRk1(r) = A

[
sin(kr)

kr
− cos(kr) + a

(
cos(kr)

kr
+ sin(kr)

)]
where A and a are constants. Determine δ1(k) from the condition imposed on
χk1(r0). Show that in the limit k → 0, δ1(k) ≈ (kr0)3 and δ1(k)� δ0(k).

13.3.9 Vibrational Energies in a Diatomic Molecule

The nuclei of a diatomic molecule are moving in a potential field given as

Veff (R) = −2D

[(a0

R

)
−
(a0

R

)2
]

+

(
~2

2µR2

)
J(J + 1)

Express this potential near its minimum by a harmonic oscillator potential and
determine the vibrational energies of the molecule.
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13.3.10 Ammonia Molecule

In the ammonia molecule, NH3, the three hydrogen atoms lie in a plane at
the vertices of an equilateral triangle. The single nitrogen atom can lie either
above or below the plane containing the hydrogen atoms, but in either case the
nitrogen atom is equidistant from each of the hydrogen atoms (they form an
equilateral tetrahedron). Let us call the state of the ammonia molecule when
the nitrogen atom is above the plane of the hydrogen atoms |1〉 and let us call
the state of the ammonia molecule when the nitrogen atom is below the plane
of the hydrogen atoms |2〉.

How do we determine the energy operator for the ammonia molecule? If these
were the energy eigenstates, they would clearly have the same energy (since
we cannot distinguish them in any way). So diagonal elements of the energy
operator must be equal if we are using the (|1〉 , |2〉) basis. But there is a
small probability that a nitrogen atom above the plane will be found below
the plane and vice versa (called tunneling). So the off-diagonal element of
the energy operator must not be zero, which also reflects the fact that the
above and below states are not energy eigenstates. We therefore arrive with the
following matrix as representing the most general possible energy operator for
the ammonia molecule system:

Ĥ =

(
E0 A
A E0

)
where E0 and A are constants.

(a) Find the eigenvalues and eigenvectors of the energy operator. Label them
as (|I〉 , |II〉)

(b) Let the initial state of the ammonia molecule be |I〉, that is, |ψ(0)〉 = |I〉.
What is |ψ(t)〉, the state of the ammonia molecule after some time t?
What is the probability of finding the ammonia molecule in each of its
energy eigenstates? What is the probability of finding the nitrogen atom
above or below the plane of the hydrogen atoms?

(c) Let the initial state of the ammonia molecule be |1〉, that is, |ψ(0)〉 = |1〉.
What is |ψ(t)〉, the state of the ammonia molecule after some time t?
What is the probability of finding the ammonia molecule in each of its
energy eigenstates? What is the probability of finding the nitrogen atom
above or below the plane of the hydrogen atoms?

13.3.11 Ammonia molecule Redux

Treat the ammonia molecule shown in the figure
?as a symmetric rigid rotator. Call the moment of inertia about the z−axis I3
and the moments about the pairs of axes perpendicular to the z−axis I1.

(a) Write down the Hamiltonian of this system in terms of ~L, I3 and I1.
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Figure 13.1: Ammonia Molecule

(b) Show that
[
Ĥ, L̂z

]
= 0

(c) What are the eigenstates and eigenvalues of the Hamiltonian?

(d) Suppose that at time t = 0 the molecule is in the state

|ψ(0)〉 =
1√
2
|0, 0〉+

1√
2
|1, 1〉

What is |ψ(t)〉?

13.3.12 Molecular Hamiltonian

A molecule consists of three atoms located on the corners of an equilateral
triangle as shown below

Figure 13.2: A Molecule

The eigenstates of the molecule can be written as linear combinations of the
atomic states |αi〉 , i = 1, 2, 3, such that

〈αi| Ĥ |αj〉 =

{
ε if i = j

−β if i 6= j
(13.-11)

where Ĥ is the Hamiltonian and ε, β > 0. Now define an operator R̂ such that

R̂ |α1〉 = |α2〉 , R̂ |α2〉 = |α3〉 , R̂ |α3〉 = |α1〉
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(a) Show that R̂ commutes with Ĥ and find the eigenvalues and eigenvectors
of R̂.

(b) Find the eigenvalues and eigenvectors of Ĥ.

13.3.13 Potential Scattering from a 3D Potential Well

A 3D stepwise constant potential is given by

V (~r) =

{
V1 0 < |~r| < R1

V2 R1 < |~r| < R2

(13.-12)

and zero outside R2.

(1) Calculate the differential cross-section in the Born approximation as a

function of the momentum transfer q, where ~q = ~k′ − ~k.

(2) Verify your expression is correct by showing that it reduces to the result
for the spherical square well when V1 = V2, i.e., calculate separately the
spherical square well result and set V1 = V2 → V0.

(3) Plot the result of the square well(part(2)) as a function of qR2 over a suf-
ficient region to understand its behavior (i.e., qR2 → 0 , qR2 ∼ 1 , qR2 �
1). Note and explain any noteworthy features.

(4) Now plot not simply versus q, but versus θ, 0 < θ < π, for four represen-
tative values of the energy. Use atomic scales: R2 = 3aB , V0 = 1 Ry. You
have to decide on relevant energies to plot; it should be helpful to plot on
the same graph with different line styles or colors.

(5) Return to the potential of part(1). Let R2 = 21/3R1, so there is an equal
volume inside R1 and between R1 and R2. Then set V1 = −V2, this means
the volume integral of the potential vanishes, and also that it has strong
~r dependence (step function). Determine the differential cross-section in
this case. Plot versus energy and angle.

(6) Finally, consider a Gaussian potential that has the same range parameter
and the same volume integral as the simple square well of part(2). Cal-
culate the differential cross-section in this case. Can you identify possible
effects due to the sharp structure (discontinuity) that occurs in only one
of them.

13.3.14 Scattering Electrons on Hydrogen

From measurements of the differential cross section for scattering electrons off
protons (in atomic hydrogen) it was found that the proton had a charge density
given by

ρ(r) = ae−br

where a and b are constants.

164



(a) Find a and b such that the proton charge equals e, the charge on the
electron.

(b) Show that the proton mean square radius is given by〈
r2
〉

=
12

b2

(c) Assuming a reasonable value for
〈
r2
〉1/2

calculate a in esu/cm2.

13.3.15 Green’s Function

Consider a particle of mass m which scatters off a potential V (x) in one dimen-
sion.

(a) Show that the free-particle Green’s function for the time-independent
Schrodinger equation with energy E and outgoing-wave boundary con-
ditions is

GE(x) =
1

2π

∞∫
−∞

dk
eikx

E − ~2k2

2m + iε

with ε a positive infinitesimal.

(b) Write that the equation for the energy eigenfunction corresponding to an
incident wave traveling in the positive x−direction. Using this equation
find the reflection probability in the first Born approximation for the po-
tential

V (x) =

{
V0 |x| < a/2

0 |x| > a/2
(13.-15)

For what values of E do you expect this to be a good approximation?

13.3.16 Scattering from a Hard Sphere

In this case we have

V (x) =

{
0 r > b

∞ r ≤ b
(13.-15)

which is a repulsive potential. Determine the low energy differential and total
cross sections. Discuss your results.

13.3.17 Scattering from a Potential Well

In this case

V (x) =

{
0 r > b

= V0 r ≤ b
(13.-15)

Determine δ0, the total cross section and the existence of resonances.
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13.3.18 Scattering from a Yukawa Potential

Use the Born approximation to determine the differential cross section for a
Yukawa potential

V (~r) = a
e−µr

r

Discuss the limit µ→ 0.

13.3.19 Born approximation - Spin-Dependent Potential

Use the Born approximation to determine the differential cross section for the
spin-dependent potential

V (~r) = e−µr
2

[A+B~σ · ~r]

13.3.20 Born approximation - Atomic Potential

Use the Born approximation to determine the differential cross section for the
atomic potential seen by an incoming electron, which can be represented by the
function

V (r) = −Ze2

∫
ρT (

←
r
′
)d3~r′

|~r − ~r′|
where

ρT (~r′) = ρnuclear(~r
′) + ρelectronic(~r

′) = δ(~r′)− ρ(~r′)

13.3.21 Lennard-Jones Potential

Consider the Lennard-Jones potential (shown below) used to model the binding
of two atoms into a molecule.

Figure 13.3: Lennard-Jones Potential
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It is given by

V (r) =
C12

r12
− C6

r6

(a) Near the minimum r0, the potential looks harmonic. Including the first
anharmonic correction, show that up to a constant term

V (x) =
1

2
mω2x2 + ξx3

where r0 = (2C12/C6)
1/6

, x = r−r0, mω2/2 = V ′′(r0) and ξ = V ′′′(r0)/6.

Let us write Ĥ = Ĥ0 + Ĥ1, where Ĥ0 = p̂2

2m + 1
2mω

2x2 and Ĥ1 = ξx3.

(b) What is the small parameter of the perturbation expansion?

(c) Show that the first energy shift vanishes(use symmetry).

(d) Show that the second energy shift (first nonvanishing correction) is

E(2)
n =

ξ2
( ~

2mω

)3
~ω

∑
m6=n

∣∣∣〈m| (â+ â+)
3 |n〉

∣∣∣2
n−m

(e) Evaluate the matrix elements to show that

E(2)
n =

ξ2~2

m3ω4

[
(n− 2)(n− 1)(n)

3
+

(n+ 3)(n+ 2)(n+ 1)

−3
+

9n3

1
+

9(n+ 1)3

−1

]
= − ξ2~2

m3ω4

[
15

4
(n+ 1/2)2 +

7

16

]

(f) Consider carbon C-C bonds take Lennard-Jones parameters C6 = 15.2 eV Å
6

and C12 = 2.4×104 eV Å
12

. Plot the potential and the energy levels from
the ground to second excited state including the anharmonic shifts.

13.3.22 Covalent Bonds - Diatomic Hydrogen

Consider the simplest neutral molecule, diatomic hydrogen H2, consisting of
two electrons and two protons.

Figure 13.4: Diatomic Molecule
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(a) Classically, where would you put the electrons so that the nuclei are at-
tracted to one another in a bonding configuration? What configuration
maximally repels the nuclei (anti-bonding)?

(b) Consider the two-electron state of this molecule. When the nuclei are far
enough apart, we can construct this state out of atomic orbitals and spins.
Write the two possible states as products of orbital and spin states. Which
is the bonding configuration? Which is the anti-bonding?

(c) Sketch the potential energy seen by the nuclei as a function of the inter-
nuclear separation R for the two different electron configurations. Your
bonding configuration should allow for bound-states of the nuclei to one
another. This is the covalent bond.

13.3.23 Nucleus as sphere of charge - Scattering

To a first approximation, the potential that a charged particle feels from a
hydrogen atom can be thought of as due to a positive point charge at the origin
(the proton) plus a uniform region of negative charge occupying a sphere of
radius a0 (the so-called electron cloud).

(a) Calculate, in the Born approximation, the differential cross section for
scattering a charged particle from the hydrogen atom as modeled above
(neglect the recoil of the hydrogen atom).

(b) What is the form of the differential cross section for low energy? Compare
with the pure Coulomb cross section.

(c) Show that the differential cross section becomes more and more like a
pure Coulomb cross section as the energy of the incident particle increases.
Explain why this happens.
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Chapter 15

States and Measurement

15.6 Problems

15.6.1 Measurements in a Stern-Gerlach Apparatus

(a) A spin−1/2 particle in the state |Sz+〉 goes through a Stern-Gerlach an-
alyzer having orientation n̂ = cos θẑ − sin θx̂ (see figure below).

Figure 15.1: Tilted Stern-Gerlach Setup
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What is the probability of finding the outgoing particle in the state?

(b) Now consider a Stern-Gerlach device of variable orientation as in the figure
below.

Figure 15.2: Variable Orientation Stern-Gerlach Setup

More specifically, assume that it can have the three different directions

n̂1 = n̂ = cos θẑ − sin θx̂

n̂2 = cos
(
θ + 2

3π
)
ẑ − sin

(
θ + 2

3π
)
x̂

n̂3 = cos
(
θ + 4

3π
)
ẑ − sin

(
θ + 4

3π
)
x̂

with equal probability 1/3. If a particle in the state |Sz+〉 enters the
analyzer, what is the probability that it will come out with spin eigenvalue
+~/2?

(c) Calculate the same probability as above but now for a Stern-Gerlach an-
alyzer that can have any orientation with equal probability.

(d) A pair of particles is emitted with the particles in opposite directions in
a singlet state |0.0〉. Each particle goes through a Stern-Gerlach analyzer
of the type introduced in (c); see figure below. Calculate the probability
of finding the exiting particles with opposite spin eigenvalues.

Figure 15.3: EPR Stern-Gerlach Setup

15.6.2 Measurement in 2-Particle State

A pair of particles moving in one dimension is in a state characterized by the
wave function

ψ(x1, x2) = N exp

[
− 1

2α
(x1 − x2 + a)2

]
exp

[
− 1

2β
(x1 + x2)2

]
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(a) Discuss the behavior of ψ(x1, x2) in the limit a→ 0.

(b) Calculate the momentum space wave function and discuss its properties
in the above limit.

(c) Consider a simultaneous measurement of the positions x1 and x2 of the
two particles when the system is in the above state. What are the ex-
pected position values? What are the values resulting from simultaneous
measurement of the momenta p1 and p2 of the two particles?

15.6.3 Measurements on a 2 Spin-1/2 System

(a) Consider a system of two spin-1/2 particles in the singlet state

|1, 0〉 =
1√
2

(
|↑〉(1) |↓〉(2) − |↓〉(1) |↑〉(2)

)
(15.-4)

and perform a measurement of S
(1)
z . Comment on the fact that a simulta-

neous measurement of S
(2)
z gives an outcome that can always be predicted

form the first-mentioned measurement. Show that this property, entan-
glement, is not shared by states that are tensor products. Is this state

|ψ〉 =
1

2

(
|1, 1〉+

√
2 |1, 0〉+ |1,−1〉

)
entangled, i.e., is it a tensor product?

(b) Consider now the set of four states |a〉, a = 0, 1, 2, 3:

|0〉 =
1√
2

(|1, 1〉+ i |1,−1〉)

|1〉 =
1√
2

(|1,−1〉+ i |1, 1〉)

|2〉 =
1√
2

(
e−iπ/4 |1, 0〉 − eiπ/4 |0, 0〉

)
|3〉 =

1√
2

(
e−iπ/4 |1, 0〉+ eiπ/4 |0, 0〉

)
Show that these states are entangled and find the unitary matrix Uaα such
that

|a〉 = Uaα |α〉
where {|α〉} = |1, 1〉 , |1,−1〉 , |1, 0〉 , |0, 0〉.

(c) Consider a one-particle state |ψ〉 = C+ |↑〉+C− |↓〉 and one of the entangled
states considered in (b), for example |0〉. Show that the product state can
be written as

|ψ〉 |0〉 =
1

2
(|0〉 |ψ〉+ |1〉 |ψ′〉+ |2〉 |ψ′′〉+ |3〉 |ψ′′′〉)

where the states |ψ ′〉, |ψ ′′〉, |ψ ′′′〉, are related to |ψ〉 through a unitary
transformation
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15.6.4 Measurement of a Spin-1/2 Particle

A spin−1/2 electron is sent through a solenoid with a uniform magnetic field
in the y direction and then measured with a Stern-Gerlach apparatus with field
gradient in the x direction as shown below:

Figure 15.4: EPR Stern-Gerlach Setup

?The time spent inside the solenoid is such that Ωt = ϕ, where Ω = 2µBB/~ is
the Larmor precession frequency.

(a) Suppose the input state is the pure state |↑z〉. Show that the probability
for detector DA to fire as a function of ϕ is

PDA =
1

2
(cos(ϕ/2) + sin(ϕ/2))

2
=

1

2
(1 + sinϕ)

Repeat for the state |↓z〉 and show that

PDA =
1

2
(cos(ϕ/2)− sin(ϕ/2))

2
=

1

2
(1− sinϕ)

(b) Now suppose the input is a pure coherent superposition of these two states,

|↑x〉 =
1√
2

(|↑z〉+ |↓z〉)

Find and sketch the probability for detector DA to fire as a function of ϕ.

(c) Now suppose the input state is the completely mixed state

ρ̂ =
1

2
(|↑z〉 〈↑z|+ |↓z〉 〈↓z|)

Find and sketch the probability for detector DA to fire as a function of ϕ.
Comment on the result.

15.6.5 Mixed States vs. Pure States and Interference

A spin-interferometer is shown below:
?Spin−1/2 electrons prepared in a given state (pure or mixed) are separated
into two paths by a Stern-Gerlach apparatus( gradient field along z). In one
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Figure 15.5: Spin-Interferometer Setup

path, the particle passes through a solenoid, with a uniform magnetic field along
the x−axis. The two paths are then recombined, sent through another Stern-
Gerlach apparatus with field gradient along x, and the particles are counted in
detectors in the two emerging ports.

The strength of the magnetic field is chosen so that Ωt = ϕ, for some phase ϕ,
where Ω = 2µBB/~ is the Larmor frequency and t is the time spent inside the
solenoid.

(a) Derive the probability of electrons arriving at detector DA as a function
of ϕ for the following pure state inputs:

(i) |↑z〉 , (ii) |↓z〉 , (iii) |↑x〉 , (iv) |↓x〉

Comment on your results.

(b) Remember that for a mixed state we have

ρ̂ =
∑
i

pi |ψi〉 〈ψi|

where pi is the probability of |ψi〉.

This is a statistical mixture of the states {|ψi〉}, not a coherent superpo-
sition of states. We should think of it classically, i.e., we have one of the
set {|ψi〉}, we just do not know which one.

Prove that
PDA = Tr [|↑x〉 〈↑x| ρ̂] =

∑
i

pi |〈↑x | ψi〉|2

where |〈↑x | ψi〉|2 = the probability of detector B firing for the given input
state (we figured these out in part (a)). Repeat part (a) for the following
mixed state inputs:

(i) ρ̂ =
1

2
|↑z〉 〈↑z|+

1

2
|↓z〉 〈↓z| , (ii) ρ̂ =

1

2
|↑x〉 〈↑x|+

1

2
|↓x〉 〈↓x| ,

(iii) ρ̂ =
1

3
|↑z〉 〈↑z|+

2

3
|↓z〉 〈↓z|
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15.6.6 Which-path information, Entanglement, and Deco-
herence

If we can determine which path a particle takes in an interferometer, then we
do not observe quantum interference fringes. But how does this arise?

Consider the interferometer shown below:

Figure 15.6: Spin-Interferometer Setup

Into one arm of the interferometer we place a which-way detector in the form
of another spin−1/2 particle prepared in the state |↑z〉W . If the electron which
travels through the interferometer, and is ultimately detected (denoted by sub-
script D), interacts with the which-way detector, the which-way electron flips
the spin |↑z〉W → |↓z〉W , i.e, the ”which-way” detector works such that

If |ψ〉D = |↑z〉D nothing happens to |↑z〉W
If |ψ〉D = |↓z〉D, then |↑z〉W → |↓z〉W (a spin flip)

Thus, as a composite system

|↑z〉D |↑z〉W → |↑z〉D |↑z〉W |↓z〉D |↑z〉W → |↑z〉D |↓z〉W

(a) The electron D is initially prepared in the state |↑x〉D = (|↑z〉D + |↓z〉D) /
√

2.
Show that before detection, the two electrons D and W are in an entangled
state

|ΨDW 〉 =
1√
2

(|↑z〉D |↑z〉W + |↓z〉D |↓z〉W )

(b) Only the electron D is detected. Show that its marginal state, ignoring
the electron W, is the completely mixed state,

ρ̂D =
1

2
|↑z〉D D 〈↑z|+

1

2
|↓z〉D D 〈↓z|

This can be done by calculating

Prob(mD) =
∑
mW

|〈mD,mW | ΨDW 〉|2

for some observable.
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This state shows no interference between |↑z〉D and |↓z〉D. Thus, the
emphwhich-way detector removes the coherence between states that ex-
isted in the input.

(c) Suppose now the which-way detector does not function perfectly and does
not completely flip the spin, but rotates it by an angle θ about x so that

|↑θ〉W = cos (θ/2) |↑z〉W + sin (θ/2) |↓z〉W
Show that in this case the marginal state is

ρ̂D =
1

2
|↑z〉D D 〈↑z|+

1

2
|↓z〉D D 〈↓z|

+ cos (θ/2) |↑z〉D D 〈↓z|+ sin (θ/2) |↓z〉D D 〈↑z|

Comment on the limits θ → 0 and θ → π.

15.6.7 Livio and Oivil

Two scientists (they happen to be twins, named Oivil and Livio, but never
mind .....) decide to do the following experiment. They set up a light source,
which emits two photons at a time, back-to-back in the laboratory frame. The
ensemble is given by

ρ =
1

2
(|LL〉 〈LL|+ |RR〉 〈RR|)

where L refers to left-handed polarization and R refers to right-handed polar-
ization. Thus, |LR〉 would refer to the state in which photon number 1 (defined
as the photon which is aimed at Oivil, say) is left-handed and photon number
2 (the photon aimed at scientist Livio) is right-handed.

These scientists(one of whom has a diabolical bent) decide to play a game with
Nature: Oivil (of course) stays in the lab, while Livio treks to a point a light-
year away. The light source is turned on and emits two photons, one directed
toward each scientist. Oivil soon measures the polarization of his photon; it is
left-handed. He quickly makes a note that his sister is going to see a left-handed
photon, about a year from that time.

The year has passed and finally Livio sees her photon, and measures its po-
larization. She sends a message back to her brother Oivil, who learns in yet
another year what he know all along; Livio’s photon was left-handed.

Oivil then has a sneaky idea. He secretly changes the apparatus, without telling
his forlorn sister. Now the ensemble is

ρ =
1

2
(|LL〉+ |RR〉) (〈LL|+ 〈RR|)

He causes another pair of photons to be emitted with this new apparatus and
repeats the experiment. The result is identical to the first experiment.
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(a) Was Oivil lucky, or will he get the right answer every time, for each ap-
paratus? Demonstrate the answer explicitly using the density matrix for-
malism.

(b) What is the probability that Livio will observe a left-handed photon, or a
right-handed photon, for each apparatus? Is there a problem with causal-
ity here? How can Oivil know what Livio is going to see, long before
she sees it? Discuss what is happening here. Feel free to modify the
experiment to illustrate any points you wish to make.

15.6.8 Measurements on Qubits

You are given one of two quantum states of a single qubit(physical system
representing a 2-valued state): either |φ〉 = |0〉 or |φ〉 = cos θ |0〉 + sin θ |1〉.
You want to make a single measurement that best distinguishes between these
two states, i.e., you want to find the best basis for making a measurement to
distinguish the two states. So let us measure the qubit in the basis {|ν〉 =
α |0〉 + β |1〉 ,

∣∣ν⊥〉}, where α, β are to be determined for optimal success. For

outcome |ν〉 we guess that the qubit was in state |0〉; for outcome
∣∣ν⊥〉 we guess

that the qubit was in state |φ〉. Determine the optimal measurement basis
given this procedure. You can take α and β to be real numbers, in which case
the normalization |α|2 + |β|2 = 1 implies that you can write α and β as, e.g.
α = sin γ and β = cos γ. HINT: you will need to first construct the probability
of a correct measurement in this situation. You should convince yourselves that
this is given by

Pr[qubit was |0〉]Pr[|ν〉 |qubit was |0〉]+Pr[qubit was |ψ〉]Pr[
∣∣ν⊥〉 |qubit was |ψ〉]

where, e.g.

Pr[|ν〉 |qubit was |0〉] = | 〈ν | 0〉 |2

If the state you are presented with is either |φ〉 or |ψ〉 with 50% probability each,
what is the probability that your measurement correctly identifies the state?

15.6.9 To be entangled....

Let HA = span{|0A〉 , |1A〉} and HB = span{|0B〉 , |1B〉} be two-dimensional
Hilbert spaces and let |ΨAB〉 be a factorizable state in the joint space HA⊗HB .
Specify necessary and sufficient conditions on |ΨAB〉 such that UAB |ΨAB〉 is an
entangled state where

UAB = |0A〉 〈0A| ⊗ |0B〉 〈0B | − |1A〉 〈1A| ⊗ |1B〉 〈1B |

15.6.10 Alice, Bob and Charlie

Let Alice, Bob and Charlie be in possession of quantum systems whose states live
inHA = span{|0A〉 , |1A〉},HB = span{|0B〉 , |1B〉} andHC = span{|0C〉 , |1C〉},
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respectively. Suppose that a joint state of these systems has been prepared as
the (three-way) entangled state

|ΨABC〉 =
1√
2

(|0A0B0C〉+ |1A1B1C〉)

(a) What is the reduced density operator on HA ⊗ HB if we take a partial
trace over HC?

(b) Suppose Charlie performs a measurement specified by the partial projec-
tors 1A⊗1B⊗|0C〉 〈0C | and 1A⊗1B⊗|1C〉 〈1C |. Compute the probabilities
of the possible outcomes, as well as the corresponding post-measurement
states. Show that this ensemble is consistent with your answer to part (a)

(c) Suppose Charlie performs a measurement specified by the partial projec-
tors 1A ⊗ 1B ⊗ |xC〉 〈xC | and 1A ⊗ 1B ⊗ |yC〉 〈yC |, where

|xC〉 =
1√
2

(|0C〉+ |1C〉) , |yC〉 =
1√
2

(|0C〉 − |1C〉)

Again, compute the probabilities of the possible outcomes and the corre-
sponding post-measurement states and show that this ensemble is consis-
tent with your answer from part (a).

(d) Suppose Alice and Bob know that Charlie has performed one of the two
measurements from parts (b) and (c), but they do not know which (as-
sume equal probabilities) measurement he performed nor do they know
the outcome. Write down the quantum ensemble that you think Alice
and Bob should use to describe the post-measurement state on HA⊗HB .
Is this consistent with the reduced density operator from part (a)? How
should Alice and Bob change their description of the post-measurement
state if Charlie subsequently tells them which measurement he performed
and what the outcome was?
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Chapter 16

The EPR Argument and Bell Inequality

16.10 Problems

16.10.1 Bell Inequality with Stern-Gerlach

A pair of spin−1/2 particles is produced by a source. The spin state of each
particle can be measured using a Stern-Gerlach apparatus (see diagram below).

Figure 16.1: EPR Stern-Gerlach Setup

(a) Let n̂1 and n̂2 be the field directions(arrows in diagram) of the Stern-
Gerlach magnets. Consider the commuting observables

σ(1) =
2

~
n̂1 · ~S1 , σ(2) =

2

~
n̂2 · ~S2

corresponding to the spin component of each particle along the direction
of the Stern-Gerlach apparatus associated with it. What are the possible
values resulting from measurement of these observables and what are the
corresponding eigenstates?
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(b) Consider the observable σ(12) = σ(1)⊗σ(2) and write down its eigenvectors
and eigenvalues. Assume that the pair of particles is produced in the
singlet state

|0, 0〉 =
1√
2

(
|Sz+〉(1) |Sz−〉(2) − |Sz−〉(1) |Sz+〉(2)

)
What is the expectation value of σ(12)?

(c) Make the assumption that it is meaningful value to the spin of a particle
even when it is not being measured. Assume also that the only possible
results of the measurement of a spin component are ±~/2. Then show that
the probability of finding the spins pointing in two given directions will be
proportional to the overlap of the hemispheres that these two directions
define. Quantify this criterion and calculate the expectation value of σ(12).

(d) Assume the spin variables depend on a hidden variable λ. The expectation
value of the spin observable σ(12) is determined in terms of the normalized
distribution function f(λ):〈

σ(12)
〉

=
4

~2

∫
dλf(λ)S(1)

z (λ)S(2)
ϕ (λ)

Prove Bell’s inequality∣∣∣〈σ(12)(ϕ)
〉
−
〈
σ(12)(ϕ′)

〉∣∣∣ ≤ 1 +
∣∣∣〈σ(12)(ϕ− ϕ′)

〉∣∣∣
(e) Consider Bell’s inequality for ϕ ′ = 2ϕ and show that it is not true when

applied in the context of quantum mechanics.

16.10.2 Bell’s Theorem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
â, the other a polaroid with axis parallel to the unit vector b̂. Let P++(â, b̂) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly, P−−(â, b̂) is the probability that both photons are absorbed

by their respective polaroids, P+−(â, b̂) is the probability that the photon at

the â polaroid is transmitted and the other is absorbed, and finally, P−+(â, b̂)
is the probability that the photon at the â polaroid is absorbed and the other
is transmitted.

The classical realist assumption is that these probabilities can be separated:

Pij(â, b̂) =

∫
dλρ(λ)Pi(â, λ)Pj(b̂, λ)

where i and j take on the values + and −, where λ signifies the so-called hidden
variables, and where ρ(λ) is a weight function. This equation is called the
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separable form.

The correlation coefficient is defined by

C(â, b̂) = P++(â, b̂) + P−−(â, b̂)− P+−(â, b̂)− P−+(â, b̂)

and so we can write

C(â, b̂) =

∫
dλρ(λ)C(â, λ)C(b̂, λ)

where

C(â, λ) = P+(â, λ)− P−(â, λ) , C(b̂, λ) = P+(b̂, λ)− P−(b̂, λ)

It is required that

(a) ρ(λ) ≥ 0

(b)
∫
dλρ(λ) = 1

(c) −1 ≤ C(â, λ) ≤ 1 , −1 ≤ C(b̂, λ) ≤ 1

The Bell coefficient

B = C(â, b̂) + C(â, b̂′) + C(â′, b̂)− C(â′, b̂′)

combines four different combinations of the polaroid directions.

(1) Show that the above classical realist assumptions imply that |B| ≤ 2

(2) Show that quantum mechanics predicts that C(â, b̂) = 2
(
â · b̂

)2

− 1

(3) Show that the maximum value of the Bell coefficient is 2
√

2 according to
quantum mechanics

(4) Cast the quantum mechanical expression for C(â, b̂) into a separable form.
Which of the classical requirements, (a), (b), or (c) above is violated?

16.10.3 Bell’s Theorem with Neutrons

Suppose that two neutrons are created in a singlet state. They fly apart; the
spin of one particle is measured in the direction a, the other in the direction b.

(a) Calculate the relative frequencies of the coincidencesR(up, up), R(up, down),
R(down, up) and R(down, down), as a function of θ, the angle between a
and b.

(b) Calculate the correlation coefficient

C(a, b) = R(up, up)−R(up, down)−R(down, up) +R(down, down)
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(c) Given two possible directions, a and a′, for one measurement, and two
possible directions, b and b′, for the other, deduce the maximum possible
value of the Bell coefficient, defined by

B = C(a, b) + C(a′, b) + C(a′, b′)− C(a, b′)

(d) Show that this prediction of quantum mechanics is inconsistent with clas-
sical local realism.

16.10.4 Greenberger-Horne-Zeilinger State

The Greenberger-Horne-Zeilinger (GHZ) state of three identical spin−1/2 par-
ticles is defined by

|GHZ〉 =
1√
2

(|za+〉 |zb+〉 |zc+〉 − |za−〉 |zb−〉 |zc−〉)

where za+ is the eigenvector of the z−component of the spin operator of particle
a belonging to eigenvalue +~/2 (z−spin up), za− is the eigenvector of the
z−component of the spin operator of particle a belonging to eigenvalue −~/2
(z−spin down), and similarly for b and c. Show that, if spin measurements are
made on the three particle in the x− or y−directions,

(a) the product of three spins in the x−direction is always −~3/8

(b) the product of two spins in the y−direction and one spin in the x−direction
is always +~3/8

(c) Consider a prize game for a team of three players, A, B, and C. The players
are told that they will be separated from one another and that each will
be asked one of two questions, say X or Y, to which each must give one of
two allowed answers, namely, +1 or −1. Moreover, either

(a) all players will be asked the same question X

or

(b) one of the three players will be asked X and the other two Y

After having been asked X or Y, no player may communicate with the
others until after all three players have given their answers, +1 or −1. To
win the game, the players must give answers such that, in case (a) the
product of the three answers is −1, whereas in case (b) the product of the
three answers is +1.

(a) Show that no classical strategy gives certainty of a win for the team

(b) Show that a quantum strategy, in which each player may take one of
the GHZ particles with her, exists for which a win is certain
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Chapter 17

Path Integral Methods

17.7 Problems

17.7.1 Path integral for a charged particle moving on a
plane in the presence of a perpendicular magnetic
field

Consider a particle of mass m and charge e moving on a plane in the presence of
an external uniform magnetic field perpendicular to the plane and with strength
B. Let ~r = (x1, x2) and ~p = (p1, p2) represent the components of the coordinate
~r and of the momentum ~p of the particle. The Lagrangian for the particle is

L =
1

2
m

(
d~r

dt

)2

+
e

c

d~r

dt
· ~A(~r)

1. Find the relation between the momentum ~p and the coordinate ~r and
explain how the momentum is related to the velocity ~v = d~r/dt in this
case.

2. Show that the classical Hamiltonian of for this problem is

H(q, p) =
1

2m

(
~p 2 − e

c
~A(~r)

)2

where ~A(~r) is the vector potential for a uniform magnetic field, normal to
the plane, and of magnitude B. In what follows, we will always write the
vector potential in the gauge ∇ · ~A(~r) = 0, where it is given by

A1(~r) = −B
2
x2 , A2(~r) =

B

2
x1

3. Use canonical quantization to find the quantum mechanical Hamiltonian
and the commutation relations for the observables.
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4. Derive the form of the path integral, as a sum over the histories of the
position ~r(t) of the particle, for the transition amplitude of the process in
which the particle returns to its initial location ~r0 at time tf having left
that point at ti, i.e.,

〈~r0, tf |~r0, ti〉
where ~r0 is an arbitrary point of the plain and |tf − ti| → ∞. What is the
form of the action? What initial and final conditions should be satisfied
by the histories ~r(t)?

17.7.2 Path integral for the three-dimensional harmonic
oscillator

Consdider a harmonic oscillator of mass m and frequency ω in three dimensions.
We will denote the position vector of the oscillator by ~r = (x, y, z). The classical
Hamiltonian is

H(~r, ~p) =
~p 2

2m
+

1

2
mω2~r 2

Derive an expression for the path integral for the matrix element

〈~rf = 0, tf |~ri = 0, ti〉

for this three-dimensional oscillator, where tf → +∞ and ti → −∞. Make sure
you explain how this limit is taken. HINT: you will find it convenient to write
the path integral in terms of the histories of the three components x(t), y(t)
and z(t).

17.7.3 Transitions in the forced one-dimensional oscillator

Consider a one-dimensional oscillator of mass m and frequency ω, labeled by
the coordinate q(t) on an infinite line. The oscillator is subject to an external
force J(t) of the form

J(t) = W
τ

t2 + τ2

1. What are the units of W? Use W and m to construct a quantity with
units of energy.

2. Using path integral methods calculate the amplitude

〈q = 0, tf | q = 0, ti〉

for ti → −∞ and tf → +∞.

3. How does the expression you found depend on W , τ , m and ω? Give
a physical interpretation to this dependence by looking at the extreme
regimes of τ large and small (relative to what?).

4. What dependence on W would you have expected to find in the Born
approximation? And in higher orders in perturbation theory?
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17.7.4 Green’s Function for a Free Particle

The Green’s function for the single-particle Schrodinger equation is defined as
the solution of the equation[

i~∂t − Ĥ
]
G(~r, t;~r′, t′) = i~δ(t− t′)δ(~r − vecr′)

Find explicitly the expression for the green’s function, G0(t − t′, ~r − ~r′), of a
free particle in one and two spatial dimensions in real space-time representation.
HINT: Use the Fourier transform to solve the above equation. Shift the pole in
the Green’s function, G(ε, ~p), (ε→ ε+ i0) and use the inverse Fourier transform
to obtain the representation of interest.

17.7.5 Propagator for a Free Particle

The single-particle propagator that appears in the derivation of the Feynman
path integral is defined as the solution of the equation:[

i~∂t − Ĥ
]
K(x, t;xi, ti) = i~δ(t− ti)δ(x− xi)

which is to be complemented with the initial condition:

K(x, t+ 0;xi, ti) = δ(x− xi)

We have derived the following path integral expression for the propagator:

K(x, t;xi, ti) = N
∫

[Dx(t)]exp

(
i

~
S[x(t)]

)
where N is a normalization constant and S is the classical action understood
as a functional of x(t).

Using the above definition of the path integral, calculate explicitly the propaga-
tor for a free particle in one spatial dimension. Compare your result with that
of Problem 17.7.4.
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Chapter 18

Solid State Physics

18.7 Problems

18.7.1 Piecewise Constant Potential Energy
One Atom per Primitive Cell

Consider a one-dimensional crystal whose potential energy is a piecewise con-
stant function of x. Assume that there is one atom per primitive unit cell - that
is, we are using the Kronig-Penney model as shown below.

Figure 18.1: Piecewise Constant Potential - 1 Atom per Primitive Cell

(a) Let s = d/2 (same spacing as in the text) and explain why no energy
gap occurs at the second Brillouin zone boundary in the weak-binding
limit, using physical argument based on sketches of the electron probability
density.

(b) For s = d/3, what are the magnitudes of the lowest six band gaps in the
weak binding limit?

18.7.2 Piecewise Constant Potential Energy
Two Atoms per Primitive Cell

Consider a one-dimensional crystal with two atoms per primitive unit cell as
shown below.
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Figure 18.2: Piecewise Constant Potential - 2 Atoms per Primitive Cell

(a) Using the weak-binding approximation, determine the band gap for an
arbitrary Brillouin zone boundary.

(b) Use the results of part (a) to obtain an expression for the band gaps for
w � d and zone boundaries corresponding to small values of G. Are any
of these band gaps zero? Use physical arguments to explain why or why
not.

(c) Use the results of part(a) to determine the magnitude of the lowest eight
band gaps for w = d/4. Are any of these band gaps zero? Use physical
arguments to explain why or why not.

(d) In the weak-binding approximation, the energies for wave vectors k that
are far from the Brillouin zone boundaries are given by the free-electron
energies E = ~2k2/2me. In relation to the zero of V (x) above, from
what value of the energy are the free-electron energies measured? Does
anything unusual happen when the energies exceed zero - the beginning
of the continuum for the isolated atoms? Determine how many band
gaps occur below E = 0. Answer these questions using the weak-binding
approximation.

18.7.3 Free-Electron Energy Bands for a Crystal with a
Primitive Rectangular Bravais Lattice

Consider a two-dimensional crystal with a primitive rectangular Bravais lattice.
Take the ratio of sides of the rectangular primitive cell to be 2:1, where the
larger side is along the y−axis.

(a) Working in the reduced zone scheme, sketch the free-electron energy for

the four lowest bands as a function of the distance in ~k space (starting at
~k = 0) along the path in the first Brillouin zone shown in the figure below.

188



Figure 18.3: Paths in the First Brillouin Zone

(b) Sketch free-electron constant energy contours in the reduced zone scheme
for the lowest four bands.

(c) Sketch the free-electron density of states, D(n)(E), for each of the four
lowest bands individually. Sketch D(E) for the total of the four lowest
bands.

(d) Sketch the free-electron Fermi surfaces in the reduced zone scheme for
η = 1 to 6. Indicate the positions of the various Fermi energies on the
density-of-states graphs of part (c). Use quantitatively correct values for
kF and EF in this part.

18.7.4 Weak-Binding Energy Bands for a Crystal with a
Hexagonal Bravais Lattice

Consider a two-dimensional crystal with an hexagonal rectangular Bravais lat-
tice oriented so that two nearest lattice points can lie along the y−axis but not
along the x−axis.

(a) Using the reduced zone scheme, sketch the energy versus distance in ~k

space (starting at ~k = 0) along the path in the first Brillouin zone shown
in the figure below. Do this for the six lowest bands in both the free-
electron and weak-binding approximations (assuming (incorrectly) that
all degeneracies are absent in the latter case).

(b) Sketch constant energy contours in the reduced zone scheme for the lowest
six bands. Do so in both the free-electron and weak-binding approxima-
tions. Indicate the location in ~k space of all distinct maxima, minima and
saddlepoints (only one of a set that are equivalent by symmetry need be
shown).

(c) Sketch the Fermi surface in the reduced zone scheme for η = 1 to 7.
Do so in both the free-electron and weak-binding approximations. Use
quantitatively correct values for kF in the free-electron sketches.

(d) Sketch the density of states, D(n)(E), for each of the five lowest bands
individually and D(E) for the total of the five lowest bands.. Do so in
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Figure 18.4: Paths in the First Brillouin Zone

both the free-electron and weak-binding approximations. Assume all de-
generacies are absent in the latter case and make reasonable assumptions
about the sense of the energy shifts from the free-electron values at the
singular points.

(e) For which integral value of η would insulating properties be most likely to
first occur as the strength of the periodic potential energy is increased?
Why?

18.7.5 A Weak-Binding Calculation #1

Consider a two-dimensional crystal with a primitive rectangular Bravais lattice
and two identical atoms per primitive unit cell. Take the structure to be as
shown below with a : b : c :: 4 : 2 : 1. Take the potential energy to be the sum of
the potential energies for the individual atoms located at the atom sites given
in the figure. Use the weak-binding approximation.

Figure 18.5: 2-Dimensional Crystal - Rectangular Bravais Lattice with 2 Atoms
per Primitive Unit Cell

(a) Find expressions for the matrix elements VG that describe the band gaps
in the weak-binding limit. Under what circumstances, if any, is VG = 0?
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(b) Use the results of part (a) to draw qualitatively correct constant energy
contours in the reduced zone scheme for the lowest three bands.

(c) Sketch qualitatively correct individual band densities of states for the low-
est three bands.

18.7.6 Weak-Binding Calculations with Delta-Function Po-
tential Energies

Consider a two-dimensional crystal for which the potential energy consists of
delta functions, one for each atom. Use the weak-binding approximation .

(a) For the case of one atom per primitive cell, obtain a general expression for
the energy difference between adjacent bands at a Brillouin zone bound-
ary where they would be degenerate in the free-electron approximation
(ignoring the intersections of two or more boundaries). How does this
result depend on the Bravais lattice (assuming the area of a primitive cell
is the same for each different case)?

(b) For a crystal with a square lattice and one atom per primitive unit cell,

what are the energies of the lowest four bands at ~k = (π/d)(1, 1)? Explain
your result in a physical and qualitative way.

(c) For a crystal with a centered rectangular Bravais lattice and two different
delta-function atoms per primitive unit cell as shown in the figure below,
evaluate the energy splittings between the bands for all zone boundaries in
the extended zone scheme for the five lowest bands (ignore all intersections
of two or more boundaries).

Figure 18.6: 2-Dimensional Crystal - Centered Rectangular Bravais Lattice with
2 Atoms per Primitive Unit Cell
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Chapter 19

Second Quantization

19.9 Problems

19.9.1 Bogoliubov Transformations

Consider a Hamiltonian for Bosonic operators b̂+k , b̂k of the form

Ĥ = E(k)b̂+k b̂k +A(k)
[
b̂+k b̂

+
−k + b̂k b̂−k

]
Define a Bogoliubov transformation to new Bosonic operators α̂+

k , α̂k as follows:

b̂k = cosh 2θkα̂k + sinh 2θkα̂
+
−k , b̂+k = cosh 2θkα̂

+
k + sinh 2θkα̂−k

(a) Assume that E(k), A(k), θK are all even functions of k and find the form
of sinh 2θk as a function of A(k), E(k) so that

Ĥ = Ω(k)α̂+
k α̂k + F (k)

and find Ω(k) and F (k).

(b) Show that if [b̂+k , b̂k] = 1, [b̂k, b̂k] = [b̂+k , b̂
+
k ] = 0, then [α̂+

k , α̂k] = 1,
[α̂k, α̂k] = [α̂+

k , α̂
+
k ] = 0.

(c) Show that if the operators b̂+k , b̂k are Fermionic instead of Bosonic, the
Bogoliubov transformation must have cosh θk → cos θk and sinh θk →
sin θk so that the new operators α̂+

k , α̂k now obey anticommutation rules.

19.9.2 Weakly Interacting Bose gas in the Bogoliubov Ap-
proximation

In this case we have the Hamiltonian

Ĥ =
∑
k

ε(k)â+
k âk +

1

2V

∑
q

Vq
∑
p,k

â+
p+qâ

+
k−qâkâp
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Consider the operator K̂ = Ĥ−µN̂ where N̂ =
∑
k â

+
k âk. Defineâ0 =

√
N0e

iθ+

b̂0, âk 6=0 = b̂k 6=0.

(a) Separate the terms of order N2
0 , N0

√
N0, N0 in the interaction term, show

that these are quadratic in b̂, b̂+, and show that terms of order
√
N0 and

1 are cubic and quartic in b̂, b̂+. Neglect the terms of O(
√
N0) and O(1),

which is the Bogoliubov approximation, and write down K̂ only keeping
terms up to quadratic order in b̂, b̂+.

(b) Show that in this Bogoliubov approximation that K̂ = K̂Q+K̂cl where K̂Q

is quadratic and linear in b̂, b̂+ and K̂cl is purely classical and independent
of b̂, b̂+. Establish a relation µ = µ(N0) by minimization of K̂cl, i.e.,

∂K̂cl

∂N0

∣∣∣∣∣
µ

= 0

This is the Gross-Pitaevskii equation. Show that imposing this condition
leads to the cancellation of the terms linear in b̂, b̂+ in K̂Q.

(c) Diagonalize the resulting quadratic form for K̂Q by a Bogoliubov trans-
formation:

b̂+k e
iθ = ĉk coshφk + ĉ+−k sinhφk

Find coshφk, sinhφk by requesting the cancellation of terms ĉ+k ĉ
+
−k, ĉk ĉ−k.

Show that in this Bogoliubov transformation,

K̂Q =
∑
k

ĉ+k ĉk~Ω(k) +K0

Find Ω(k) and K0, consider Vq = V0 constant and evaluate the integral
for K0.

19.9.3 Problem 19.9.2 Continued

(a) Invert the Bogoliubov transformation in part (c) of Problem 19.9.2 and
show that

ĉk = b̃k coshφk − b̃+−k sinhφk

where b̃k = b̂ke
−iθ. Use

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + .....

to show that
ĉk = U(φ)b̃kU

−1(φ)

where U(φ) is the unitary operator

U(φ) = e
∑
k>0 φk(b̃

+
k b̃

+
−k−b̃k b̃−k)
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(b) Show that the ground state of K̂ in the Bogoliubov approximation is
|GS〉 = U(φ)

∣∣0̃〉 where
∣∣0̃〉 is the vacuum of the operators b̃k : b̃k

∣∣0̃〉 = 0
for all k. Argue that |GS〉 is a linear superposition of states with a pair

of momenta ~k,−~k respectively. This is a squeezed quantum state (see
Chapter 14 example). These states are ubiquitous in quantum optics and
quantum controlled nanoscale systems.

19.9.4 Mean-Field Theory, Coherent States and the Grtoss-
Pitaevkii Equation

Consider the pair potential V (~x − ~y) = V0δ
3(~x − ~y) and introduce the coher-

ent states of the Bosonic operator |ψ(~x)〉 such that ψ̂(~x) |ψ(~x)〉 = ψ(~x) |ψ(~x)〉.
Include a one-body trap potential in the Hamiltonian Ĥ:

Ĥ =

∫
d3x ψ̂+(~x)

(
−~2∇2

2m
+ U(~x)

)
ψ̂(~x)

+
1

2

∫ ∫
d3x d3y ψ̂+(~x)ψ̂+(~y)V (~x− ~y)ψ̂(~y)ψ̂(~x)

(a) Minimize the energy E(ψ) = 〈ψ| K̂ |ψ〉 where |ψ〉 is the coherent state
above with 〈ψ |ψ〉 = 1 and show that

∂E

∂ψ∗(~x)
= 0

leads to the Gross-Pitaevskii equation[
−~2∇2

2m
+ U(~x)− µ

]
ψ(~x) + V0|ψ(~x)|2ψ(~x) = 0

with the constraint that
∫
|ψ(~x)|2 d3x = N .

(b) Define new operators ψ̂(~x) → ψ(~x) + η̂(~x) where ψ(~x) is the solution
to the Gross-Pitaevskii equation and write K̂ up to quadratic order in
η̂(~x), η̂+(~x). Show that terms linear in η̂(~x), η̂+(~x) are cancelled by ψ(~x)
being a solution to the Gross-Pitaevskii equation.

(c) Introduce the Bogoliubov transformation:

φ̂(~x) = u(~x)η̂(~x) + v(~x)η̂+(~x) , φ̂+(~x) = u∗(~x)η̂+(~x) + v∗(~x)η̂(~x)

Show that
[
φ̂(~x), φ̂+(~y)

]
= δ3(~x− ~y) if |u(~x)|2 + |v(~x)|2 = 1.

(d) Write K̂ up to quadratic order in η̂, η̂+ found in part (b) in terms of φ̂, φ̂+.
What is the equation that U ,V must obey so that the terms of the form
φ̂2, φ̂+ 2 are cancelled? These are the Bogoliubov-DeGennes equations!
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19.9.5 Weakly Interacting Bose Gas

Consider a homogeneous, weakly interacting Bose gas with Hamiltonian

Ĥ =

∫
d3x ψ̂+(~x)

(
−~2∇2

2m

)
ψ̂(~x)+

∫ ∫
d3x d3y ψ̂+(~x)ψ̂+(~y)V (~x−~y)ψ̂(~y)ψ̂(~x)

(a) Consider V (~x − ~y) = −|V0|δ3(~x − ~y) and assume a condensate with N0

particles. Obtain the operator for K̂ = Ĥ − µN̂ in the Bogoliubov ap-
proximation. By a canonical Bogoliubov transformation bring it to the
form

K̂ =
∑
k

~Ω(k)ĉ+k ĉk +K0

Show that Ω(k) becomes imaginary for some values of 0 < k < kmax.

(b) What is kmax? What is the physical reason for this imaginary value and
what do they mean?

19.9.6 Bose Coulomb Gas

Consider the same problem as Problem 19.9.1, but now with

V (~x− ~y) =
e2

|~x− ~y|
(19.-18)

which is the Coulomb potential. Namely, consider a weakly interacting Bose ga
of charged particles (and assume a homogeneous neutralizing background like
in the so-called Jellium model).

(a) Obtain the energy eigenvalues ~Ω(k) in the Bogoliubov approximation.
Show that now limk→0 Ω(k) = Ω(0) 6= 0. What is Ω(0)? Compare to the
result for plasma oscillations in an electron gas.

(b) Give the behavior of the Bogoliubov coefficients for small k. This is related
to long-range behavior of the forces. Goldstone’s theorem states that
any theory with an exact symmetry other than that of the vacuum must
contain a massless particle. Does this case violate Goldstone’s theorem?

19.9.7 Pairing Theory of Superconductivity

The B(ardeen)C(ooper)S(chrieffer) Hamiltonian in the mean-field approxima-
tion is

K̂ = Ĥ − µN̂ =
∑
k

ε(k)
(
â+
k↑âk↑ + â+

k↓âk↓

)
+
∑
k

[
∆â+

k↑â−k↓ + ∆∗â+
−k↓âk↑

]
where â+

k↑,↓ are creation operators of an electron of spin up or down and mo-

mentum ~k and
∆ = − g

V

∑
k′

′
〈GS| â−k↓âk↑ |GS〉
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|GS〉 is the ground state of K̂ and
∑
k′
′

is a sum over states with

0 ≤ ε(k′) ≤ ~ωm and ε(k′) = ε(k)− µ =
~2k2

2m
− µ

(a) Diagonalize K̂ by a Bogoliubov transformation, i.e., introduce new oper-
ators

Âk = ukâk↑ − vkâ+
−k↓ , B̂k = vkâk↑ + ukâ

+
−k↓

and their respective Hermitian conjugates with uk, vk and even in k. Show
that the transformation is canonical, namely, that Â, B̂ obey the usual
commutation relations if u2

k + v2
k = 1. It is convenient to write

uk =

[
1

2
(1 + αk)

]1/2

, vk = −
[

1

2
(1− αk)

]1/2

Invert the Bogoliubov transformation and write K̂ in terms of Â, Â+, B̂, B̂+.
Choose αk so that K̂ becomes

K̂ =
∑
k

E(k)
[
hatA+

k Âk + B̂+
k B̂k

]
+K0

that is, choose αk to make terms like ÂB̂ vanish. Find E(k).

(b) Obtain a self-consistent equation for ∆ by evaluating 〈GS| â−k↓âk↑ |GS〉
and solve this equation by replacing

1

V

∑
k′

′
→
∫ ~ωm

0

N(ε) dε

where N(ε) is the density of states so that

N(ε) dε =
d3k

(2π)3

and assume that N(ε) ≈ N(0).

(c) Obtain the distribution function 〈GS| â+
k↑âk↑ |GS〉

(d) Show that E(0) = ∆ = gap and evaluate the resulting integral in part
(b) to give the gap ∆ as a function of gN(0) for gN(0)� 1.

19.9.8 Second Quantization Stuff

1. Quantum Chain of Oscillators

Consider a chain of atoms with masses m connected by springs of rigidity
γ:

Hph =

∞∑
n=−∞

[
p2
n

2m
+
γ

2
(un − un+1)2

]
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where un are the displacements of atoms from their equilibrium positions,
and pn are the corresponding conjugate momenta.

Consider the problem in quantum mechanics, i.e., treat ûn and p̂n as op-
erators satisfying the canonical commutation relation [p̂n, ûn′ ] = −i~δn,n′

Diagonalize the quantum Hamiltonian above. In order to do this, first do
the Fourier transform: ûn → ûk, p̂n → p̂k and then introduce the creation
and annihilation operators of phonons â+

k and âk by the following formula:

ûk =

√
~

2mω(k)
(âk + â+

k ) , p̂k = −i
√

~mω(k)

2
(âk − â+

k )

Write the Hamiltonian in terms of â+
k and âk and determine the phonon

spectrum ω(k). Calculate the ground state energy of the system.

2. Interaction between Phonons

Suppose the springs have small anharmonicity γ′, so the Hamiltonian of
the system has the additional term

H ′ph =

∞∑
n=−∞

γ′(un − un+1)3

Rewrite the Hamiltonian in terms of the phonon operators â+
k and âk

introduced in part (1). What can you say about momentum conservation
of the phonons in the new Hamiltonian?

3. Electron-Phonon Interaction

Suppose electrons are also present on the same chain of atoms. Suppose
that the electrons can make transitions between neighboring lattice sites
with the probability amplitude tn so that

Hel =

∞∑
n=−∞

tnψ̂
+
n+1ψ̂n + h.c.

where ψ̂+
n and ψ̂n are the fermion operators creating and annihilating

electrons on the site n.

In the case tn = t = constant, diagonalize the electron Hamiltonian by
Fourier transform ψ̂n → ψ̂k, and determine the spectrum ε(k) of electronic
excitations.

In general, the amplitude of electron tunneling tn depends on the relative
diosplacement of the nearest neighboring atoms un−un+1. Let us expand
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tn as a function of (un − un+1) to the first order: tn = t+ (un − un+1)t′.
When substituted into the electron Hamiltonian, the second term gives
the following Hamiltonian:

Hel−ph = t′
∞∑

n=−∞
(un − un+1)ψ̂+

n+1ψ̂n + h.c.

Rewrite this last Hamiltonian in terms of phonon and electron operators
âk and ψ̂k and their conjugates. Comment on conservation of momentum.
This Hamiltonian describes the electron-phonon interaction. Phonons are
excitations of the lattice or lattice vibrations.

19.9.9 Second Quantized Operators

Write down the second-quantized form of the following first-quantized operators
describing N particles in both a position space basis (ψ̂(~r)) and a momentum
space basis (âk):

(a) particle density at ~r: ρ(~r) =
∑
` δ(~r − ~r`)

(b) total number of particles:
∑
` 1 = N

(c) charge current density at ~r: ~je(~r) = e
2m

∑
`[~p`δ(~r − ~r`) + δ(~r − ~r`)~p`]

(d) magnetic moment density at ~r: ~m(~r) = (g/2)
∑
` ~σ`δ(~r − ~r`)

19.9.10 Working out the details in Section 19.8

(1) Check that the thin spectrum of a harmonic crystal is indeed thin, that
is,

(a) Show that only the lowest
√
N total momentum states are not expo-

nentially suppressed in the symmetry broken wavefunction (19.217).
(This result implies that only the lowest

√
N total momentum states

contribute to the symmetry broken wavefunction, and these states
all become degenerate in the thermodynamic limit).

(b) Calculate the partition function of the thin spectrum states and show
that it scales as

√
N , so that the contribution of these states to the

free energy vanishes in the thermodynamic limit.

(2) Show the noncommutativity of the limits in Eq.(19.221) explicitly, by
going through the following steps:

(a) Formulate the Hamiltonian of Eq.(19.216) in terms of the boson
raising and lowering operators b+ =

√
C/(2~)(xtot − (i/C)ptot) and

b =
√
C/(2~)(xtot + (i/C)ptot) where C is some constant.

(b) Choose C such that the Hamiltonian becomes diagonal and find its
ground state.
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(c) Evaluate the limits of Eq. (19.221) by expressing x2
tot in terms of

boson operators and taking the expectation value with respect to the
ground state of HSB

coll.

(3) Work out the Bogoliubov transformation of Eqs.(19.212) and (19.213) ex-
plicitly.

(a) Write the Hamiltonian of Eq. (19.212) in terms of the transformed
bosons βk = cosh (uk)b−k + sinh (uk)b+k .

(b) Which value should be chosen for uk in order for the Bogoliubov
transformation to yield the diagonal Hamiltonian of Eq. (19.213)
[Answer: tanh (2uk) = Bk/Ak].
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Chapter 20

Relativistic Wave Equations

Electromagnetic Radiation in Matter

20.8 Problems

20.8.1 Dirac Spinors

The Dirac spinors are (with E =
√
~p2 +m2)

u(p, s) =
/p+m
√
E +m

(
ϕs
0

)
, v(p, s) =

−/p+m
√
E +m

(
0
χs

)
where /p = γµpµ, ϕs(s = ±1/2) are orthonormalized 2-spinors and similarly for
χs. Prove(using ū = u+γ0, etc):

(a) ū(p.s)u(p.s′) = −v̄(p, s)v(p, s′) = 2mδss′

(b) v̄(p, s)u(p, s′) = 0

(c) ū(p, s)γ0u(p, s′) = 2Eδss′

(d)
∑
s u(p.s)ū(p, s) = /p+m

(e)
∑
s v(p.s)v̄(p, s) = /p−m

(f) ū(p, s)γµu(p′, s′) = 2Eδss′ = 1
2m ū(p, s) [(p+ p′)µ + iσµν(p− p′)ν ]u(p′, s′)

(TheGordon Identity)

20.8.2 Lorentz Transformations

In a Lorentz transformation x′ = Λx the Dirac wave function transforms as
ψ′(x′) = S(Λ)ψ(x), where S(Λ) is a 4× 4 matrix.

(a) Show that the Dirac equation is invariant in form, i.e.,
(
iγµ∂′µ −m

)
ψ′(x′) =

0, provided
S−1(Λ)γµS(Λ) = Λµνγ

ν
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(b) For an infinitesimal transformation Λµν = gµν + δωµν , where δωµν =
−δωνµ. The spin dependence of S(Λ) is given by I − iσµνδωµν/4. Show
that σµν = i[γµ, γnu] satisfies the equation in part (a). For finite transfor-
mations we then have S(Λ) = e−iσµνω

µν/4.

20.8.3 Dirac Equation in 1 + 1 Dimensions

Consider the Dirac equation in 1 + 1 Dimensions (i.e., one space and one time
dimension): (

iγ0 ∂

∂x0
+ iγ1 ∂

∂x1
−m

)
ψ(x) = 0

(a) Find a 2×2 matrix representation of γ0 and γ1 which satisfies {γµ, γν} =
2gµν and has correct hermiticity. What is the physical reason that ψ can
have only two components in 1 + 1 dimensions?

(b) Find the representation of γ5 = γ0γ1, γ5γ
µ and σµν = 1

2 i [γµ, γν ]. Are
they independent? Define a minimal set of matrices which form a complete
basis.

(c) Find the plane wave solutions ψ+(x) = u(p1)e−ip·x and ψ−(x) = v(p1)eip·x

in 1 + 1 dimensions, normalized to ūu = −v̄v = 2m (where ū = u+γ0).

20.8.4 Trace Identities

Prove the following trace identities for Dirac matrices using only their property
{γµ, γν} = gµν (i.e., do not use a specific matrix representation)

(a) Tr(γµ) = 0

(b) Tr(γµγν) = 4gµν

(c) Tr(γµγνγρ) = 0

(d) Tr(γµγνγργσ) = 4gµνgρσ − 4gµρgνσ + 4gµσgνρ

(e) Tr(γ5) = 0 where γ5 = iγ0γ1γ2γ3

20.8.5 Right- and Left-Handed Dirac Particles

The right (R) and left (L) -handed Dirac particles are defined by the projections

ψR(x) =
1

2
(1 + γ5)ψ(x) , ψL(x) =

1

2
(1− γ5)ψ(x)

In the case of a massless particle (m=0):
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(a) Show that the Dirac equation (i/∂ − e /A)ψ = 0 does not couple ψR(x) to
ψL(x), i.e., they satisfy independent equations. Specifically, show that in
the chiral representation of the Dirac matrices

γ0 =

(
0 −I
−I 0

)
, γ =

(
0 σ
−σ 0

)
we have

ψ =

(
φR
φL

)
e−ip·x

i.e., that the lower(upper) two components of ψR (ψL) vanish.

(b) For the free Dirac equation (Aµ = 0) show that φR and φL are eigen-
states of the helicity operator 1

2σ · p with positive and negative helicity,
respectively, for plane wave states with p0 > 0.

20.8.6 Gyromagnetic Ratio for the Electron

(a) Reduce the Dirac equation (i/∂ − e /A − m)ψ = 0 by multiplying it with
(i/∂ − e /A+m)ψ = 0 to the form[

(i∂ − eA)2 − e

2
σµνFµν −m2

]
ψ = 0

where σµν = i
2 [γµ, γν ] and the field strength Fµν = ∂µAν − ∂νAµ.

(b) Show that the dependence in the magnetic field B = ∇×A in the spin-
dependent term σµνFµν is of the form −(ge/2m) 1

2Σ ·B when the kinetic

energy is normalized to −∇2/2m (Σ = γ5γ
0γ is the spin matrix). Deter-

mine the value of the gyromagnetic ration g for the electron.

20.8.7 Dirac → Schrodinger

Reduce tyhe Dirac equation (i/∂ − e /A−m)ψ = 0 for the Hydrogen atom (A0 =
−Ze/4πr , A = 0) to the standard Schrodinger equation

i
∂

∂t
Ψ(t, boldsymbolx) =

(
−∇2

2m
+ eA0

)
Ψ(t, boldsymbolx)

in the non-relativistic limit, where |p| , A0 � m. HINT: You may start from
the reduced form of the Dirac equation in Problem 20.6(a). Extract the leading
time dependence by writing ψ(x) = Ψ(t,x)e−imt.

20.8.8 Positive and Negative Energy Solutions

Positive energy solutions of the Dirac equation correspond to the 4-vector cur-
rent Jµ = 2pµ = 2(E, ~p), E > 0. Show that the negative energy solutions
correspond to the current Jµ = −2(E, ~p) = −2(|E|,−~p) = −2pµ, E < 0.
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20.8.9 Helicity Operator

(1) Show that the helicity operator commutes with the Hamiltonian:[
~Σ · p̂,H

]
= 0

(2) Show explicitly that the solutions to the Dirac equation are eigenvectors
of the helicity operator: [

~Σ · p̂
]

Ψ = ±Ψ

20.8.10 Non-Relativisitic Limit

Consider

Ψ =

(
uA
uB

)
to be a solution of the Dirac equation where uA and uB are two-component
spinors. Show that in the non-relativistic limit uB ∼ β = v/c.

20.8.11 Gyromagnetic Ratio

Show that in the non-relativisitc limit the motion of a spin 1/2 fermion of charge

e in the presence of an electromagnetic field Aµ = (A0, ~A) is described by[
(~p− e ~A)2

2m
− e

2m
~σ · ~B + eA0

]
χ = Eχ

where ~B is the magnetic field, σi are the Pauli matrices and E = p0−m. Identify
the g-factor of the fermion and show that the Dirac equation predicts the correct
gyromagnetic ratio for the fermion. To write down the Dirac equation in the
presence of an electromagnetic field substitute: pµ → pµ − eAµ.

20.8.12 Properties of γ5

Show that:

(a) Ψ̄γ5Ψ is a pseudoscalar.

(b) Ψ̄γ5γ
µΨ is an axial vector.

20.8.13 Lorentz and Parity Properties

Comment on the Lorentz and parity properties of the quantities:

(a) Ψ̄γ5γ
µΨΨ̄γµΨ

(b) Ψ̄γ5ΨΨ̄γ5Ψ
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(c) Ψ̄ΨΨ̄γ5Ψ

(d) Ψ̄γ5γ
µΨΨ̄γ5γµΨ

(e) Ψ̄γµΨΨ̄γµΨ

20.8.14 A Commutator

Explicitly evaluate the commutator of the Dirac Hamiltonian with the orbital
angular momentum operator L̂ for a free particle.

20.8.15 Solutions of the Klein-Gordon equation

Let φ(~r, t) be a solution of the free Klein-Gordon equation. Let us write

φ(~r, t) = ψ(~r, t)e−imc
2t/~

Under what conditions will ψ(~r, t) be a solution of the non-relativistic Schrodinger
equation? Interpret your condition physically when φ is given by a plane-wave
solution.

20.8.16 Matrix Representation of Dirac Matrices

The Dirac matrices must satisfy the anti-commutator relationships:

{αi, αj} = 2δij , {αi, β} = 0 with β2 = 1

(1) Show that the αi, β are Hermitian, traceless matrices with eigenvalues ±1
and even dimensionality.

(2) Show that, as long as the mass term mis not zero and the matrix β is
needed, there is no 2 × 2 set of matrices that satisfy all the above rela-
tionships. Hence the Dirtac matrices must be of dimension 4 or higher.
First show that the set of matrices {I, ~σ} can be used to express any 2×2
matrix, i.e., the coefficients c0, ci always exist such that any 2× 2 matrix
can be written as: (

A B
C D

)
= c0I + ciσi

Having shown this, you can pick an intelligent choice for the αi in terms
of the Pauli matrices, for example αi = σi which automatically obeys
{αi, αj} = 2δij , and express β in terms of {I, ~σ} using the relation above.
Show then that there is no 2× 2 β matrix that satisfies {αi, β} = 0.
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20.8.17 Weyl Representation

(1) Show that the Weyl matrices:

~α =

(
−~σ 0
0 ~σ

)
, β =

(
0 I
I 0

)
satisfy all the Dirac conditions of Problem 20.16. Hence, they form just
another representation of the Dirac matrices, the Weyl representation,
which is different than the standard Pauli-Dirac representation.

(2) Show that the Dirac matrices in the Weyl representation are

~γ =

(
0 ~σ
−~σ 0

)
, γ0 =

(
0 I
I 0

)

(3) Show that in the Weyl representation γ5 = iγ0γ1γ2γ3 =

(
−I 0
0 I

)
(4) Solve the Dirac equation [~α · ~p + βm]Ψ = EΨ in the particle rest frame

using the Weyl representation.

(5) Compute the result of the chirality operators

1± γ5

2

when they are acting on the Dirac solutions in the Weyl representation.

20.8.18 Total Angular Momentum

Use the Dirac Hamiltonian in the standard Pauli-Dirac representation

H = ~α · ~p+ βm

to compute [H, L̂] and [H, Σ̂] and show that they are zero. Use the results to
show that:

[H, L̂+ Σ̂/2] = 0

where the components of the angular momentum operator are given by:

L̂i = εijkx̂j p̂k

and the components of the spin operator are given by:

Σ̂i =

(
σi 0
0 σi

)
Recall that the Pauli matrices satisfy σiσj = δij + iεijkσk.
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20.8.19 Dirac Free Particle

The Dirac equation for a free particle is

i~
∂ |ψ〉
∂t

=
(
cαxpx + cαypy + cαzpz + βmc2

)
|ψ〉

Find all solutions and discuss their meaning. Using the identity

(~σ · ~A)(~σ · ~B) = ~A · ~B + i~σ · ( ~A× ~B)

will be useful.
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