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Are critical phenomena relevant to large-scale 
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SUMMARY 

Recent theoretical studies, based on the theory of self-organized critical systems, seem to suggest that the 
dynamical patterns of macroevolution could belong to such class of critical phenomena. Two basic 
approaches have been proposed: the Kauffman-Johnsen model (based on the use of coupled fitness 
landscapes) and the Bak-Sneppen model. Both are reviewed here. These models are oversimplified 
pictures of biological evolution, but the (possible) validity of them is based on the concept of universality, 
i.e. that apparently very different systems sharing some few common properties should also behave in 
a very similar way. In  this paper we explore the current evidence from the fossil record, showing that some 
properties that are suggestive of critical dynamics would also be the result of random phenomema. Some 
general properties of the large-scale pattern of evolution, which should be reproduced by these models, 
are discussed. 

1. INTRODUCTION 

The large-scale extinction pattern of evolution, as 
obtained through the analysis of the fossil record, 
shows several non-trivial trends (see Briggs & Crowther 
1990 and references therein). First, there are some well 
defined mass-extinction events that are known to be 
associated with external causes. The fall of an asteroid 
at the cretaceous boundary, climate changes linked 
with the dynamics of tectonic plates and other 
regressional palaeogeographical events are examples of 
these physically induced catastrophes. 

But though these events might have annihilated up 
to 96% of species over a short period of time (Raup 
1986) they only represent the 5 %  of the total 
extinctions on Earth. In this sense, there is a 95 % of 
the extinction pattern, the so called background 
extinctions, which remain to be explained. The first 
striking fact is that, though we should expect from the 
two types of extinction events to behave very differ- 
ently, the study of the frequency distribution of 
extinction sizes seem to reveal a continuous connection 
from small to large events, as is shown in figure l a  
(Raup 1986). 

This result is a bit counterintuitive, as long as a two- 
peaked frequency distribution should be expected, 
instead of a fairly continuous one. Other measures, 
such as the life span of different genera (measured in 
millions of years, see figure 1 6 )  also shows a continuous 
decay. Both curves are relevant in our discussion. 
Which type of mathematical distribution do they 
follow? We see a well-defined statistical property of 
these data: they have a skewed shape (Raup 1993). 
Many biological data show this type of shape and can 
be obtained in several ways. A particularly well studied 

situation is the gambler's ruin problem, where the 
probability of total ruin for a gambler playing 
randomly can be calculated. This calculation is done in 
terms of how many steps are necessary before the ruin 
takes place (Raup 1993). In  terms of extinction, we 
may think of the gambler's stake as the number of 
species in an evolutionary group. The resulting 
distribution of extinctions will be skewed. 

In both figures, we have interpolated the available 
data with an exponential function and with a potential 
(power law) one. If we indicate by S the extinction size, 
we have N(S) z S-1.95 for the potential curve and 
N(S) z exp (-0.028s) for the exponential. And for 
the life span L, we get L, we get N(L) z L-1.84 and 
N(L) z exp ( -0.043L) respectively. 

Both curves fit quite well with the data (though the 
potential one is slightly better). But the dynamical 
interpetation of them is far from trivial. If a power law 
(potential) function is involved, then we could con- 
jecture that - at least to some extent - some basic 
mechanisms operate at different scales. This claim 
comes from the well-known fact that power-laws are a 
characteristic of fractal, self-similar objects (Schroeder 
1991). To see this, let us take an arbitrary power-law 
dependent quantity, say x. So we have N(x) = Cx-", 
where C is a given constant. If a given scale is 
considered, say x' = yx, where y > 0 defines the change 
of scale, we have N(x') = C(x')-" but by reordering 
terms, we get in fact N(xf) = C'x-" (here C' = Cy-"), 
and so we can extrapolate from a given scale to 
another. We say that the pattern is self-similar or scale- 
invariant. A very different situation is found if an 
exponential distribution is obtained: scale invariance 
is absent, and particular characteristic scales are 
relevant. 
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Figure 1. (a) Frequency distribution of extinction sizes for the 
79 geologic stages of Phanerozoic time, based on recorded 
times of extinction of 2316 marine animal families (redrawn 
from Raup 1986); (b )  distribution of geologic life spans of 
fossil genera (redrawn after Raup 1993). In both figures the 
exponential (continuous line) and the power law (dashed 
line) fits to data are shown. 

The first situation takes place in all systems poised at 
critical points. For example, in some magnets when 
cooled from high temperatures, there is a critical point 
(the so called Curie temperature) where sudden 
changes take place. At the critical point, fractal 
structures spontaneously form, and all relevant quan- 
tities show power law, scale free distributions. Those 
dynamical situations involving phase transitions shar- 
ing the previously mentioned properties are generically 
known as critical phenomena (Binney et al. 1993). The 
second situation, when exponential-like distributions 
are involved, is typical for physical systems at equi- 
librium, when interactions among units are not 
important and random phenomena are more relevant. 
Unfortunately, this separation is not so strong. Some- 
times, random systems (even a simple random walk) 
can show some power-law behaviour (Schroeder 199 1). 

Another trend in evolutionary dynamics is the 
constant probability of extinction shown by the 
survivorship curves of most known biological groups. 

0 20 40 60 80 100 

time / Ma 

Figure 2. Survivorship of Paleozoic Ammonoidea genus. A 
nearly constant decay is obtained, well fitted by an 
exponential curve (see text). 

In figure 2, we show such a plot for the planktonic 
foraminifera (Stenseth 1979; Stenseth & Maynard 
Smith 1984). 

How is this constancy interpreted? One of the most 
influential theoretical approaches was first developed 
by Leigh Van Valen (Van Valen 1973). I t  is known as 
the Red Queen hypothesis. The plots of species 
survivorship shows us that, contrary to our expecta- 
tions, the probability of extinction within any group 
remains basically constant through time. A species 
might disappear a t  any time, irrespective of how long 
it has already existed. We should expect species within 
a group to become longer-lived over time on average. 
The Van Valen's approach to this problem was a 
strongly dynamical view of evolution. The basic idea is 
that species in ecosystems are in a constantly evolving 
interaction. 

Both random-like phenomena and deterministic, 
dynamical causes are apparently consistent with the 
qualitative trends of macroevolution. Additionally, 
punctuationist biologists (see Gould & Eldredge 1993, 
and references therein) claim that micro- and macro- 
evolution can be decoupled. In this sense, the features 
upon which selection acts are those of entire species 
populations, which are irreducible to the level of 
individuals (see Skelton 1985). The basic proposal 
comes from the interpretation of the fossil record as the 
interplay of long periods of little evolutionary change 
(i.e. stasis) punctuated by spells of fast change. These 
rapid changes are linked with species diversification. 

2. CRITICALITY AND MACROEVOLUTION 

A macroscopic long-term theory of evolution is a 
challenging problem. Different fields, as genetics and 
ecology, should be integrated (if possible) and a 
coherent picture of extinction and diversification could 
then emerge. This is at least what some evolutionary 
biologists expect (for a review of this debate, see 
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Stenseth 1985). But some general questions are open. If 
punctuationists are right, then no general theory of 
macroevolution can be built from population genetics. 
We could say, following Philip Anderson, that macro- 
evolution is not applied population genetics. 

Recently, a new theoretical framework has been 
proposed by some researchers (Kauffman & Johnsen 
1991 ;Bak & Sneppen 1993). The underlying approach 
comes from the theory of self-organized critical 
phenomena (Bak et al. 1989). Bak and his colleagues 
analysed a striking result coming both from physical 
and biological systems: the widespread presence of 
fractal structures in nature (Sugihara & May 1990). 
Fractal, free-scale objects are observed at all scales of 
biological organization, from cells and organs 
(Goldberger et al. 1990) to rainforests (Sol6 & 
Manrubia 1995 a, b) .  Though the theory of fractal 
objects was highly developed, no theory of how these 
objects originate has been proposed since the BTW 

paper (Kadanoff 1986). 
As mentioned in the previous section, physical 

systems poised at critical points show fractal behaviour. 
This suggested to Bak an appealing possibility: perhaps 
those systems displayed scale-free properties were in 
fact the result of a self-organization process. Following 
this idea, they coined the concept of self-organized 
criticality (soc). Self-organized critical systems are able 
to drive themselves towards the phase transition points 
(called 'the edge of chaos' by some authors, see 
Kauffman 1992). Sandpiles, earthquakes and devel- 
oped turbulence seem to be good candidates of soc 
systems. 

Are biological systems poised at a critical state? The 
answer to this question, if affirmative, would be of 
enormous importance. If soc dynamics are involved, 
then a continuous, scale-free connection between small 
and large events naturally emerges. Some recent studies 
involving the dynamics of tropical rainforests (where 
several field data are available) seem to give support to 
this possibility, at least at some scales (Sol6 & 
Manrubia 1995 a, 6 ) .  

In relation to evolution, criticality implies that large 
extinctions are likely to occur, being generated by the 
same mechanism as small extinctions. In this context, 
extinctions should be considered as an unavoidable 
and intrinsic part of the macroevolutionary dynamics. 
Thus, if somebody waits long enough, they are bound 
to see events that are as large as they had the patience 
to wait for (Bak & Paczuski 1995). This is one of the 
claims of Bak & Kauffman. These models have 
generated some controversy (Maddox 1994, 1995). A 
very important discussion is concerned with how to test 
these models as well as how to separate random effects 
from other deterministic phenomena. In the next 
section we review some basic properties and predictions 
of soc models. 

3. THEORETICAL MODELS 

(a)KauHman-Johnsen Model (KJM) 


Kauffmann and Johnsen start with a version of the 
well-known NK fitness landscapes (Kauffman & Levin 
1987). Here N stands for the number of binary elements 

or 'genes' which characterize the particular traits of a 
'species'. These units are coupled among them by 
means of a finite (fixed) number 1 < K < N of 
connections, which gives a measure of the richness of 
epistatic interactions among genes. Though a fixed 
connectivity K can seem a very restrictive constraint, it 
can be relaxed to more general situations, where 
distributions of K values are used (Solt & Luque 1995). 

For this model, the fitness landscape is defined by 
assigning to each possible configuration of connected 
genes a given random number (the fitness). A simple 
dynamical rule is applied: we take a given confi-
guration (a string of N binary units) and we switch at 
random a single unit. Then we compute the new fitness 
w .  If the change increases w it is accepted (an adaptive 
walk is done) if not, it is rejected (Maynard Smith 
1970; Kauffman & Levin 1987). The next step is to 
consider a set of Sspecies, each defined through an NK 
network, and couple them. To this end we consider C 
new interspecific couplings. Then 0 < C < N addi-
tional connections are made at random between the 
units of each species and C units of other species. So 
now adaptive walks of a single species modify the biotic 
environment of the other S- 1 species: coevolution 
occurs. Typically, the system evolves towards a kind of 
Nash equilibria : species reach local optima (Kauffman 
& Johnsen 1991). Finally, a source of external 
perturbations is used (the external environment) by 
adding some additional couplings. When such coupling 
is introduced, the external perturbations (involving a 
small change each time) can propagate through the 
system. Few, several or many changes can occur before 
a new Nash equilibria is reached. The number of 
changes defines the size of the so called 'evolutionary 
avalanche'. Measuring the frequency of such aval- 
anches, a power law can be obtained (Kauffman & 
Johnsen 1991 ;Kauffman 1992). An additional trait of 
the dynamics of the NKC model is that periods of 'stasis' 
(with small avalanches) are interrupted by coevo-
lutionary avalanches. 

(b)Bak-Sneppen model (BSM) 


The Bak-Sneppen model is defined by a simple set of 
rules (Bak & Sneppen 1993). It  is a very simple 
metaphor of an evolving ecosystem, and can be easily 
explained. We consider a string of N random numbers 
x i €  (0, l ) ,  which are the 'species' of our ecosystem, and 
the steps are: (i) we choose the minimum x j  and change 
it by a new random number x j €  (0, 1 ) ;  (ii) the 
two nearest neighbours are also changed : E (0, l ) ,  
xj-l  E (0, 1) (periodic boundaries are assumed) ; and 
(iii) the previous steps are repeated. 

This is a simple model of a set of species evolving in 
a fitness landscape. In this model the quantities { x i )  play 
the role of a 'barrier height', separating the local 
fitness maximum from other maxima. In other words, 
the barrier height is a measure of how far is the ith 
species from its maximum fitness. Then if the fitness x, 
is low, it is more likely to find nearby better states. In 
the BSM, the barriers are the measure of stability: 
smaller barriers are more unstable and easily changed. 
In  spite of the oversimplified nature of this model, it is 
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able to show punctuated equilibrium in terms of bursts 
of change into the ecosystem. I t  also shows power law 
distributions of several quantities. These properties are 
in fact shared by other complex systems as economics, 
and it has been conjectured that punctuated equi- 
librium is a common property of all complex systems. 

Both models involve changes at the species level 
(Maddox 1994) instead of at the level of individuals, 
which is what we expect selection to act upon. This is 
linked with the timescale under consideration, and has 
been used in other earlier theories. Maynard Smith & 
Stenseth have distinguished among three timescales, 
the largest one being the so called speciation-extinction 
timescale (Stenseth 1985). Here the number of co-
existing species becomes variable, and theories for the 
behaviour of the fossil record refer to this timescale. If 
universal properties are involved, the specific details of 
the elements and their interactions becomes less 
relevant. This could justify this approach based upon a 
higher level of interaction. 

4. l/f-DYNAMICS AND RANDOMNESS 

A characteristic fingerprint of complex systems 
poised at a critical state is provided by the observation 
of a widely extended type of temporal self-similarity: 
the so called one-over-f ( l l f )  noise. These type of 
fluctuations are characterized by a power spectrum 
P (f )with a power-law distribution, P (  f )z f -@ with 

/?z 1. Though l/f-fluctuations are detected in the B ~ M ,  
as far as we know there is no study of real data 
involving the analysis of this property. 

In figure (3a), we show the fluctuations, over 
320 Ma of family diversity of the Ammonoidea (House 
1989), shown from the early Devonian to the end of 
Cretaceous (when they became extinct). The corre- 
sponding Fourier spectrum (FS) was calculated, and 
it is shown in figure (3 b) .  Interestingly, it is not far 
from the l/f spectrum. We have found an exponent 
p = 0.87. Though the time series is small, and the FS 

quite noisy, this seem to give support to the conjecture 
of critical states. But as mentioned in previous sections, 
power laws can also be present in random-like 
processes. So we have to explore whether or not a 
similar pattern would be obtained from a random 
process. Let us consider two examples. 

We have plotted in figure (3c) a sample of a 
computer simulation of a random walk. Here we start 
with N(0) = 1. The rules are very simple. At each time 
step t, a random number is generated (with uniform 
distribution) x,E (0, 1). If x, < 0.5, we add a unit to 
N(t) otherwise, we subtract one unit. The only 
restriction is that N(t) cannot be less than one (if 
N(t) = 1 and x, > 0.5, we take N(t+ 1) = 1) (i.e. we 
have a reflecting boundary). Then let us take a random 
sample which look similar to the Ammonoidea time 
series (figure (36)). Though it is well known that the 
random walk with no restrictions exhibits l/f2 dy- 
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Figure 3. (a) Fluctuations of Ammonoidea family numbers over time. Here the scale is x 2 Ma,  over a period of 
320 M a  (redrawn from House 1989); the corresponding Fourier spectrum is shown in ( b ) ,  with a power-law shape. 
(c) Time fluctuations of a random walk with a reflecting boundary at N = 1. The  Fourier spectrum for this sample 
is shown in (d). 
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diversity 

Figure 4. (a )  Random phylogenetic tree obtained following 
the general approach by Raup (Raup  1985). T h e  corre- 
sponding dynamics o f  the diversity o f  lineages is shown in  
(b) (see text).  

namics (Peitgen & Saupe 1988; Shroeder 1991) we 
cannot be sure of what kind of FS will be obtained from 
this finite-time simulation. The resulting P(f )is shown 
in figure (3d). For this particular sample, we have 
p = 0.87, close to the Ammonoidea spectrum. Is the 
Ammonoidea time series a random walk? 

Let us finally consider a further model, more close to 
the natural pattern of evolution. I t  is described by the 
well-known mathematical models of cladogenesis 
(Raup 1985; see also Skelton 1993). These are models 
of clade dynamics i.e. of the processes of lineage 
branching and termination, leding to phylogenetic 
trees. They are very simple. We start from a single 
lineage, which can become extinct with some prob- 
ability P, or can persist to the next time step. Then it 
can branch to produce a second lineage (with some 
probability Pb) or persist without branching. So both 
extinction and diversification are involved. A simple 
example of this phylogeny is shown in figure (4a) 

together with the evolution in time of diversity, 
measured as the number of lineages (figure (4 6)).  If 
speciation and extinction occurs at similar rates, it is 
not difficult to obtain fluctuations similar to those from 
the Ammonoidea time series. An example is shown in 
figure 5a, together with the corresponding Fourier 
spectrum. For this sample, we get /3 z 0.97. Again, a 
random model can lead to an apparently self-organized 
phenomenon. Can the Ammonoidea time series be 
explained from a random model of cladogenesis 
dynamics? 

These results are fairly typical. So a direct conse- 
quence is that, though the time series of evolution of 
family diversity of Ammonoidea is quite suggestive of 
soc, it could be also the result of a random process. 
Other additional measures can be used, also derived 
from the previous data (House 1989). If we plot the 
frequency distribution in the appearance of new 
families, as well as the extinct ones, we also find power 
laws, i.e. N ( S )  z S" which are slightly better than the 
exponential fit (see figure (6a, b)). An important 
difference is present: the exponent for the power law of 
extinction sizes is rather different from the previous one 
(7 z 1.95), based on the recorded times of extinction of 
2316 marine animal families (Raup 1986). Now we 
have 7 z 1.35. The slope for the new families is 7 % 

1.85. So the slope for the whole recorded marine 
families is not the same as the one for a particular 
group (the Ammonoidea) assuming a power-law fit. 
This is an important point for further theoretical 
models based on soc theories. I t  suggests that more 
detailed data, involving different scales, have to be 
taken into account. 

Are power-laws also obtained from the previous 
model of cladogenesis? By following through time the 
branching of these cladograms, we can compute the 
frequency distribution of new branches as well as the 
extinct ones. The answer is negative. All our simu-
lations have shown that the resulting distributions are 
exponential or even Gaussian-like. So even if a l/f-like 
dynamics can be observed when short time series are 
studied, some other statistical properties behave in a 
very different way. So we have obtained an interesting 
result: the time evolution and the extinction-

time frequency 

Figure 5. (a)  T ime  fluctuations o f  diversity in a random model o f  phylogenetic dynamics (see figure 4 ) .  Here the 
branching probability isp, = 0.40 and the extinction probability ( o f  a lineage) isp, = 0.38. In (6)  the corresponding 
Fourier spectrum is shown. 
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new / extinct families 

Figure 6. Frequency distribution of new (filled symbols) and 
extinct (open symbols) Ammonoidea families (see text). In  
(a) a power-law fit has been used; in (6) an exponential fit 
has been used. 

diversification pattern both seem compatible with a 
self-organized critical phenomenon. 

5. T H E  FRACTAL NATURE OF TAXONOMY 

There is a further evidence of power-law behaviour 
in the dynamics of macroevolution. This evidence 
comes from the fractal properties underlying taxo-
nomic systems (Burlando 1990, 1993). In a series of 
remarkable studies both from living and fossil taxa, it 
has been shown that the numbers of subtaxa (S) within 
fossil taxa (T)  (families within orders, species within 
genera, etc) are organized (now very clearly) in a 
power-law manner, i.e. T(S) % S-7. Similar values 
occur for the same group in taxonomic lists from 
distant world areas, usually studied by different 
taxonomists. The finding that similar exponents are 
observed at different taxonomic levels supports the 
idea of a free-scale phenomenon underlying evolution. 
These are probably the most relevant data sets 
supporting a critical phenomenon. As stated by 

Burlando, this arrangement of life taxonomy leads to 
the conclusion that such a pattern reflects evolutionary 
features (see also Green 1991). I t  is important to 
mention that a scaling pattern has never been 
considered in evolutionary studies, though the results 
of Burlando strongly support the presence of self- 
similarity in the dynamics of evolution. A recent study, 
based on a derivation of the BSM has shown that self- 
similar phylogenetic trees can be generated 
(Vandewalle & Ausloos 1995) from a self-organized 
critical process. This is not what we obtain from a 
random model of phylogeny. As a consequence, fractal 
taxonomic patterns are probably the result of a non- 
random process but a critical one. 

6. DISCUSSION 

In  this paper we have reviewed some of the basic 
ideas underlying the theoretical approaches to macro- 
evolution based upon the theory of self-organized 
critical phenomena. We have seen that some data from 
the fossil record, such as the distribution of extinctions, 
seem to suggest the existence of power laws. That is 
what should be expected in systems poised at a critical 
state. But these data are not conclusive. They could be 
the result of random processes. Other data, as those 
obtained from the study of the taxonomy, shows that a 
fractal organization of taxonomic trees is present. 
These studies cannot be trivially interpreted from 
random processes. 

In  table 1, the previous points discussed through this 
paper are summarized. Different aspects of the macro- 
evolutionary pattern together with the observed trends 
are given. What should be expected from a random 
process and from a soc state is also outlined. These 
properties have been discussed in previous sections. 
The field evidence analysed by Bak and his colleagues 
(Sneppen et al. 1995; Bak & Paczuski 1995) and by 
Kauffman & Johnsen (Kauffman & Johnsen 1991) is 
mostly based upon the statistical properties of ex-
tinction patterns and life spans. Though a power law 
can be well fitted to these data sets, the fit is also correct 
for an exponential distribution. The analysis of the 
dynamical evolution of Ammonoidea families per-
formed in this paper also shows evidence of temporal 

Table 1 .  Some basic trends of macroevolutionary patterns 

. random 
property observed process soc 

extinction skewed" exponential power-law 
pattern 

dynamics punctuated random punctuated 
(rate) 

dynamics l / f b  
walk 

l / f 2  1/f 
(time) 

taxonomy self-similar non-fractal self-similar 
mass few events virtually expected 

extinctions impossible 

a Available data compatible both with exponential and 
power-law fits, with better agreement with the second 
distribution. 

Based only in the Ammonoidea data studied in this paper. 
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self-similarity. But a further exploration of models 
based on random rules can lead to similar results, 
though some data (as the new-extinct family distri- 
butions of Ammonoidea) together with l/f-dynamics, 
are more consistent with soc dynamics. 

I t  is our belief that some general facts should be 
taken into account in further models of large-scale 
evolution. 

1. Though the biotic environment is extremely 
important for the biological organization, a species 
might go extinct for different reasons, both biotic and 
physical (external). There is little doubt that the 
external, physical environment, has played a promi- 
nent role. This coupling with the external world is 
considered in the Kauffman (NKC) model (Kauffman 
1984) but not in the BSM. Future models have to test 
how important is the introduction of such a type of 
coupling in relation to the strictly biotic interactions 
(see the work by Newman & Roberts 1995a, 6, for an 
excellent discussion). In  this context we have to 
mention that small amounts of external 'noise' (i.e. the 
extinction of single species) could in fact induce phase 
transitions. These are known as noise-induced phase 
transitions and play a very important role in many 
physical and biological systems (Horsthemke & Lefever 
1977; SolC & Luque 1995). In particular, power-laws 
would result from such a noise-induced critical phen- 
omenon. 

2. Evolution takes place at different scales in space 
and time. Large extinctions are likely in those models 
exhibiting soc (and by means of identical mechanisms 
as the small ones). On the other hand, the largest 
extinction events (so called mass-extinctions) are 
convincingly associated with global changes. But the 
interplay between the external effect and the response 
of the species network is clearly nonlinear. It  is very 
important to understand which scales are linked with 
criticality (i.e. with linear interactions) and which with 
random events. 

3. We need a theory where both extinction and 
diversification should be involved (Maddox 1994; SolC 
et al. 1996). There is an enormous amount of data on 
biological diversity at many scales. Diversity is a well 
defined concept in ecology and many data should be 
used as a source of validation of soc models. An 
additional phenomenon (as stressed by Maynard Smith 
1989) is a surprisingly constant diversity (as measured 
by numbers of genera or families) which has been 
reported within particular taxa over many millions of 
years, despite continued extinction and speciation. At 
a smaller timescale, tested in actual ecosystems, 
biological diversity is bounded and related with 
network connectivity (May 1972). In fact, self-
organized critical patterns have been recently detected 
from the study of rainforest ecosystems (Sol6 & 
Manrubia, 1995a,  6). Those events, extinction and 
diversification, would be linked with the generic 
stability properties of network ecosystems (May 1972; 
Sol6 et al. 1992; Bascompte & Sol6 1993) and so soc 
models should benefit from these studies. 

To sum up, the simple models introduced by 
Kauffman & Bak have a potential power for explaining 
one of the most fascinating problems of evolution: the 

nature of patterns of extinction and diversification. 
The underlying hypothesis is that in systems exhibiting 
soc, the details of the underlying rules are rather 
irrelevant. Once the key ingredients are introduced, 
the dynamical outcome is quite universal. Here 
universality (a well known concept in the theory of 
critical phenomena; see Binney et al. 1993; SolC et al. 
1996) means that the slope of power laws, which 
characterize the macroscopic pattern (and the basic 
laws) are the same. This result, confirmed by several 
models (consistent with real data) is rather important 
in our discussion. Though more detailed models would 
be of interest, simplicity is desirable and could be fully 
justified. The challenge of understanding macro-
evolution deserves new types of theoretical approaches 
such as those conjectured by self-organized criticality. 
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