
Caltech – Ph106 – Fall 2001

Math for physicists: differential forms

Disclaimer: this is a first draft, so a few signs might be off.

1 Basic properties

Differential forms come up in various parts of theoretical physics, including advanced

classical mechanics, electromagnetism, thermodynamics, general relativity, and quan-

tum field theory. So they’re well worth knowing about. This is supposed to be a

self-contained exposition for someone who has some knowledge of multivariable calcu-

lus.

Forms are like infinitesimal objects, but this is (or can be made) a completely rigorous

subject. The most basic object is exterior derivative, d. For a function F (x1, . . . , xn),

dF =
∂F

∂xi
dxi (1)

by definition. Summation over i from 1 to n is implicit. In some subjects (particularly

relativity), there is a preference to write xi and/or dxi, but I will eschew this here. Eq.

(1) looks like an infinitesimal variation. The special thing about forms is that they

involve an anti-commuting wedge product, ∧, defined so that

dxi ∧ dxj = −dxj ∧ dxi . (2)

A general p-form (for p ≤ n) is

ω =
1

p!
ωi1...ipdxi1 ∧ dxi2 ∧ . . . ∧ dxip . (3)

Again there is an implicit sum on i1 through ip, each from 1 to n. The coefficient

functions ωi1∧ip may be assumed to be antisymmetric in i1 through ip. So for instance,

if p = 2, ωij = −ωji. The 1/p! is there in (3) because the sum contains p! copies of

each term. Again for the case of 2-forms, say now in 2 dimensions, we would have

ω =
1

2
ωijdxi ∧ dxj = ω12dx1 ∧ dx2 . (4)

The middle expression, explicitly, is 1
2
(ω12dx1 ∧ dx2 + ω21dx2 ∧ dx1), but the last ex-

pression is obviously equal to this.
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The exterior derivative of a p-form can be defined as

dω =
∂ωi1...ip
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxip . (5)

It’s crucial to put the dxj consistently where I did. You can verify the following product

rule for d:

d(µ(p) ∧ ν(q)) = dµ(p) ∧ ν(q) + (−1)pµ(p) ∧ dν(q) , (6)

where by µ(p) I mean a p-form. And you can show that d2 = 0, in the sense that if

µ = dω, then dµ = 0. An important and non-trivial theorem says that if dµ = 0, then

µ = dω for some ω.1

Differential forms were invented for integration. Here’s how it works. Suppose you

have some integration region M, which could be any smooth p-surface in Rn, and

suppose you have a set of smooth 1-1 functions, (ξ1, . . . , ξp)→ (x1, . . . , xn), which map

a fiducial p-dimensional integration region I intoM. For instance, I could be [0, 1]p in

Rp. Then, for any p-form ω, we define∫
M
ω =

∫
I

1
p!
ωi1...ip

∂(xi1 , . . . , xip)

∂(ξ1, . . . , ξp)
dpξ . (7)

Here ∂(xi1 , . . . , xip)/∂(ξ1, . . . , ξp) denotes a Jacobian: that is, the determinant of the

matrix of partial derivatives ∂xij/∂ξk, where j and k run from 1 to p. The definition

(7) would follow, formally, if we wrote dxi = ∂xi
∂ξj
dξj. (Try it!)

The most important theorem in this subject is Stokes’ Theorem, which says that if

ω is a (p− 1)-form and M is a p-suface, then∫
M
dω =

∫
∂M

ω , (8)

where ∂M is the boundary of M. Actually, there’s something a little tricky about

(8): bothM and ∂M have orientations which must be specified, and picking them in

some ways gives a minus sign in front of the right hand side of (8). To understand this

orientation business, note that if you replaced ξ1 by −ξ1, or swapped ξ1 and ξ2, in (7),

it would change the sign of the Jacobian, and hence the sign of the integral. It’s not

a priori obvious how to relate the orientations of M and ∂M in general, but this is

getting beyond the scope of what we really need to know.

2 Div, grad, and curl

Let’s now consider some examples. Start with a function f on R3. Its exterior deriva-

tive, v = df , can be written as v = vidxi, where ~v = (v1, v2, v3) = ∇f is the gradient.
1This is true up to cohomology. So it’s precisely true if we’re working on Rn, or on any other space

that’s contractable to a point.
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So vectors can be turned into one-forms. Now take v to be any one-form, and you get

dv =
∂vi
∂xj

dxj ∧ dxi

=

(
∂v3

∂x2

− ∂v2

∂x3

)
dx2 ∧ dx3 +

(
∂v1

∂x3

− ∂v3

∂x1

)
dx3 ∧ dx1 +

(
∂v2

∂x1

− ∂v1

∂x2

)
dx1 ∧ dx2

= w1dx2 ∧ dx3 + w2dx3 ∧ dx1 + w3dx1 ∧ dx2 ≡ w
(9)

where ~w = (w1, w2, w3) = ∇× ~v. Observe that if ~v = ∇f , then ~w = ∇× ~v = 0. And

recall that if a vector field has no curl, then it’s the gradient of some function: that’s

why we can write ~E = −∇Φ in electrostatics. These statements are special cases of

d2 = 0 and the deeper theorem that if dµ = 0 then µ = dω for some ω. An important

point is that a vector ~w is naturally associated to a 2-form, in the way we wrote in

(9). This is a special property of three dimensions: in n dimensions, a vector would be

naturally associated to either a 1-form or a (n− 1)-form.

Continuing on, let’s consider any ~w and the associated 2-form w. Differentiating

once more gives

dw =

(
∂w1

∂x1

+
∂w2

∂x2

+
∂w3

∂x3

)
dx1 ∧ dx2 ∧ dx3 = (∇ · ~w)dx1 ∧ dx2 ∧ dx3 . (10)

Obviously, if w = dv, then dw = 0. This is precisely the statement that the curl of

a vector field has no divergence. And recall also that if a vector field is divergence-

free, then it’s the curl of something: that’s why we can always write ~B = ∇ × ~A in

electromagnetism. Again, these statements are special cases of d2 = 0 and dµ = 0 ⇒
µ = dω.

We can pursue our vector calculus examples further to get a couple of special cases

of Stokes’ Theorem. For instance, if we have a vector field ~w on R3, then we know how

to integrate its divergence over a simply connected region M (simply connected just

means, no holes): ∫
M
∇ · ~w d3x =

∫
∂M

n̂ · ~w√g d2ξ , (11)

where n̂ is the outward-pointing unit vector normal to the boundary ∂M. This is

sometimes called Gauss’s Theorem. Saying that n̂ points outward amounts to specify-

ing the orientation of ∂M. In (11),
√
g d2ξ is by definition the area element on ∂M.

So if M were a ball, and we used angular coordinates, then
√
g d2ξ = sin θdθdφ. I’ve

slipped in the
√
g because something has to tell you that there’s a non-trivial measure

on the surface. A more concise way to phrase (11), which avoids needing to discuss

complicated things like measures, is just∫
M
dw =

∫
∂M

w . (12)
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The left side hardly needs explaining: we just plug in (10) for dw. On the right hand

side, to integrate over ∂M, we require a map (ξ1, ξ2) → (x1, x2, x3), and then we use

the definition (7). For the case where M is a unit ball, we could take (ξ1, ξ2) = (θ, φ),

and ~x = (r sin θ cosφ, r sin θ sinφ, r cos θ). With some work, you can show that the

right hand side of (12) is the same as our previous expression in (11).2

Another example, in two dimensions, is Green’s theorem: if we have a vector field

~v = (vx, vy), and a simply connected region M, then

∫
M

(
∂vy
∂x
− ∂vx

∂y

)
=
∫
∂M

~v · d~̀=
∫
∂M

(vxdx+ vydy) , (13)

where we traverse ∂M counterclockwise (this is the specification of orientation). You

should be able to convince yourself in short order that this can be concisely rephrased

as
∫
M dv =

∫
∂M v, where the right hand side is defined via a map that circles around

∂M counterclockwise as ξ ranges from 0 to 1. We could give a similar treatment of the

classic statement of Stokes’ Theorem (really another small special case of (8)) relating

with a line integral over the boundary of a curved surface in three dimensions... but

hopefully the basic ideas are by now obvious.

3 Partial derivatives and forms

An important aspect of differential forms is their relation to partial derivatives. Sup-

pose we have different ways of coordinatizing the same space: say (x1, x2) and (y1, y2).

If you like, the x coordinates could be Cartesian coordinates on R2 while the y coordi-

nates are polar coordinates. But this is only an example. Another example is for the x

coordinates to be q and p for a classical system with one degree of freedom, while the

y coordinates are some other Q and P related by a canonical transformation. What

we want in general is for there to be a smooth 1-1 map from the x coordinates to the

y coordinates. In generic situations (that is, barring some “accident” like x1 = y2),

we can choose any two of the four variables (x1, x2, y1, y2) to parametrize R2. So if

we start with a function f(x1, x2), we could write it instead as a function of y1 and

y2, or x1 and y2, or whatever we please. With this in mind, we should write partial

derivatives of f like this:

df =

(
∂f

∂x1

)
x2

dx1 +

(
∂f

∂x2

)
x1

dx2 , (14)

2The best way to go about this is to say (ξ0, ξ1, ξ2) = (r, θ, φ), and then show
∂(x1, x2, x3)/∂(ξ0, ξ1, ξ2) = r2 sin θ. Now the result should be obvious at least for w = f(r) sin θdθ∧dφ,
which corresponds to ~w pointing in the radial direction.
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where the ()u notation means that u is held fixed. But it seems we could as well have

written

df =

(
∂f

∂y1

)
y2

dy1 +

(
∂f

∂y2

)
y1

dy2 . (15)

Equating these two reproduces the well-known multi-variable chain rule:(
∂f/∂y1

∂f/∂y2

)
=
(
∂x1/∂y1 ∂x2/∂y1

∂x1/∂y2 ∂x2/∂y2

)(
∂f/∂x1

∂f/∂x2

)
, (16)

where now to avoid clutter I just leave it implicit that the partials on the left hand

side hold either y1 or y2 fixed, whereas the ones on the right hand side hold either x1

or x2 fixed. A less obvious application of forms is to prove the relation(
∂f

∂x1

)
y1

=

(
∂f

∂x1

)
x2

−
(
∂f

∂x2

)
x1

(∂y1/∂x1)x2

(∂y1/∂x2)x1

(17)

To prove this, we can set

dy1 =

(
∂y1

∂x1

)
x2

dx1 +

(
∂y1

∂x2

)
x1

dx2 = 0 , (18)

solve for dx2, and plug back into (14) to get

df =

[(
∂f

∂x1

)
x2

−
(
∂f

∂x2

)
x1

(∂y1/∂x1)x2

(∂y1/∂x2)x1

]
dx1 with dy1 = 0. (19)

Now dividing by dx1 gives (17). That wasn’t quite rigorous, since I switched from

regarding df and dx1 as one-forms to regarding them as infinitesimals. A more rigorous

method would be to equate (14) to

df =

(
∂f

∂x1

)
y1

dx1 +

(
∂f

∂y1

)
x1

dy1 (20)

and then set dy1 = 0, using (18). A special case of (17) is to set f = x2; then we obtain(
∂x2

∂x1

)
y1

= −(∂y1/∂x1)x2

(∂y1/∂x2)x1

= −
(
∂x2

∂y1

)
x1

(
∂y1

∂x1

)
x2

. (21)

Plugging back into (17), we obtain the simpler identity(
∂f

∂x1

)
y1

=

(
∂f

∂x1

)
x2

+

(
∂f

∂x2

)
x1

(
∂x2

∂x1

)
y1

(22)
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4 Applications to physics

The relations (21) and (22) are quite useful in thermodynamics. For instance, we could

them to relate specific heats at fixed volume versus fixed pressure:

CP = T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

= CV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

= CV − T
(
∂P

∂V

)
T

(
∂V

∂T

)2

P

.

(23)

In the third equality we used a Maxwell relation, (∂S/∂V )T = (∂P/∂T )V , which follows

from the fact that both sides can be expressed as −∂2F/∂V ∂T , where F = F (V, T ) is

the Helmholtz free energy. Defining the isothermal compressibility, KT = − 1
V

(
∂V
∂P

)
T

,

and the expansion coefficient β0 = 1
V

(
∂V
∂T

)
P

, we find (c.f. Mandl, p. 123ff)

CP − CV = TV β2
0/KT , (24)

which has been called “the most beautiful relation in thermodynamics” (I think because

it’s hard to remember how to derive it). The crucial step in the derivation is the

second equality in (23), which came from parametrizing the possible equilibrium states

of the system either by (V, T ) (the canonical ensemble) or by (P, T ) (which we might

call the Gibbs ensemble since it’s associated with the Gibbs free energy—but don’t

get confused between this and the grand canonical ensemble, where particle number

fluctuates). Specializing to an ideal gas, we have PV = NkT , and (24) becomes

CP = CV +Nk , (25)

which you probably learned in high school. Incidentally, the equipartition theorem

applies most directly to CV .

After all this, hopefully the exposition of canonical transformations given in class

makes better sense. It’s worth making a few additional comments. The Poisson bracket

structure is equivalent in information content to specifying a so-called “symplectic

form” on phase space:

ω =
N∑
k=1

dqk ∧ dpk . (26)

Canonical transformations by definition preserve the symplectic form: that is, if the

canonically transformed coordinates are Qk and Pk, then

ω =
N∑
k=1

dQk ∧ dPk (27)
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is the same form as we had in (26). Once we realize that Hamiltonian flow generates

canonical transformations, we can give an intuitive proof of Liouville’s Theorem in just

a few lines. Observe that

vol =
1

N !

N times︷ ︸︸ ︷
ω ∧ . . . ∧ ω = ± dq1 ∧ . . . ∧ dqN ∧ dp1 ∧ . . . ∧ dpN . (28)

Ignoring the sign (which only depends on N), we see that vol is precisely the volume

element on phase space. It is preserved by Hamiltonian flow because ω is. This is the

essential content of Liouville’s Theorem: phase space volume is invariant.

Differential forms give a very natural formulation of electromagnetism. In R3,1

(Minkowski space), suppose we construct

F = dt ∧ (Exdx+ Eydy + Ezdz)−Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy
F̃ = dt ∧ (Bxdx+Bydy +Bzdz) + Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy
J = ρdx ∧ dy ∧ dz − dt ∧ (Jxdy ∧ dz + Jydz ∧ dx+ Jzdx ∧ dy)

A = Φdt− Axdx− Aydy − Azdz .

(29)

Here ~E and ~B are the electric and magnetic fields; ρ and ~J are charge and current

density; and Φ and ~A are the electrostatic potential and vector potential. F is called

the field strength tensor; F̃ is its “Hodge dual;” and A is called the gauge potential. It’s

straightforward to verify that the basic equations of electromagnetism (in conventions

where c = 1—c.f. Jackson p. 548ff),

∇ · ~E = 4πρ ∇× ~E +
∂ ~B

∂t
= 0

∇ · ~B = 0 ∇× ~B − ∂ ~E

∂t
= 4π ~J

~E = −∇Φ− ∂ ~A

∂t
~B = ∇× ~A

∂ρ

∂t
+∇ · ~J = 0 ,

(30)

can be rephrased as
dF = 0 dF̃ = 4πJ

F = dA dJ = 0 .
(31)

Note that the second line is entirely a consequence of the first, given d2 = 0 and

dµ = 0 ⇒ µ = dω. Incidentally, it’s also obvious now that sending A → A + dλ,

for any function λ(t, ~x), doesn’t change F at all. This is a gauge transformation.
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