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Here I attempt to make a brief introduction to what f(R) gravities are, and how they work,
trying to avoid (as long as it is possible) complicated mathematical treatments. The objective, is to
introduce the reader to the different types of f(R) gravity and its manipulation, keeping in mind that
the reader is an undergraduate student that, even when he or she has some knowledge of General
Relativity and Cosmology, is far from being an expert in the area.

I. INTRODUCTION

Recent observations show that the universe is expand-
ing at an accelerating rate. This, of course, introduces
the problem that GR does not predict this to happen,
at least not in a Universe composed only by matter. To
attack this problem, two general ways have been taken:
Introducing a new type of energy (such as the cosmo-
logical constant Λ, dark energy) or modifying the theory
of gravitation (such as MOND). Here, we review f(R)
gravity, a modification to GR that, even when it’s initial
motivation wasn’t solving the problem of the accelerat-
ing Universe (the first f(R) gravities were prior to this
observation), it seems that it might help us.

II. ACTION AND LAGRANGIAN CONCEPTS
ON GR

The concept of action, as well as the concept of la-
grangian, is very familiar in the context of classical me-
chanics, but not as much in the context of GR. However,
both are very important concepts in further discussions,
so we must introduce them in this section.

A. The action in classical mechanics

Let us first recall some things about the classical ac-
tion that will be important in some later analogies. The
action in classical mechanics is defined as:

S =

∫

L(q, q̇)dt (2.1)

Where L is the lagrangian of the system wrote in the
form:

L = L(q, q̇) (2.2)

The action it’s a quantity that, using Hamilton’s prin-
ciple (which you can review on [1]), states the ”trajec-
tory” that a body will follow. Hamilton’s principle states
that a body will follow the trajectory which satisfies:

δS = 0 (2.3)

It can be demonstrated (a careful derivation may be
found in [1]):

∂L

∂q
− d

dt

(

∂L

∂q̇

)

= 0 ⇒ δS = 0 (2.4)

Which means that, if the left side of relation (2.4) is
satisfied, then so is eq. (2.3). This comes in handy in
classical mechanics, giving us the chance to use a much
more practical mathematical treatment of the problem,
avoiding variational calculus. However we will see later,
that this is not an option in GR.

B. Lagrangian and action in GR

The lagrangian’s definition it’s not very different in
GR than in classical mechanics. The main difference
between classical and relativistic lagrangians, lies in the
fact that, in GR, we have a curved space-time, and so,
we must associate a lagrangian to the vacuum space.
Note that this is a completely new idea of what we know
from the lagrangian to be in classical mechanics. The
derivation of the lagrangian associated to the vaccum
is complicated and requires a lot of mathematical work
(the fact that we are now working in fields theory makes
the whole deal much more complicated), in which we are
not interested here, so, we are going to state some things
that may give us a intuition of why the lagrangian is
what it is. A detailed derivation can be found on [2].

We are trying to associate a lagrangian to the vacuum
and we know that our curved space-time is characterized
by the metric tensor gαβ , so the lagrangian must depend
on nothing else that the metric tensor and it’s derivates.
It’s also very natural to think that we must introduce in-
formation related to the curvature of the space-time, so
we also must include the Riemman and Ricci tensors in
our lagrangian. Since the lagrangian is a scalar quantity,
we must think of a scalar quantity that can be derivated
from the metric tensor and contains information about
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the curvature of the space-time. So it’s completely nat-
ural to think that the Ricci scalar is the quantity we are
looking for (at least, at first order). This brings two prob-
lems to our analysis. First, the Ricci scalar depends on
second order derivates of the metric tensor (note that the
first order derivates of the metric tensor are zero) and so,
we will not be able to write the lagrangian in the form
of eq. (2.2), which means we won’t be able either to use
the relation (2.4). Second, we must keep in mind that we
are going to integrate the lagrangian, but the differential
that we must consider to do this, is not invariant, so we
must add a term to the lagrangian that helps us with
this. This is as far as we can go with non mathemati-
cal arguments. But even then is intuitive to write the
lagrangian of the vacuum as:

δL =
√
−gR (2.5)

Where R is the Ricci scalar and
√
−g is the square

root of the determinant of the metric tensor (this is the
term we have added in order to be able to integrate the
lagrangian). With this, we can write the action.
It might call your attention that, we assumed the la-
grangian to be proportional to R (not considering pos-
sible dependence on powers or functions of R), and the
argument for this is simplicity. We have built the sim-
plest lagrangian that contents all the information neces-
sary about the space-time.
In GR, the main difference lies in the fact that we are
working in a four dimension manifold, so the action has
the form:

S =
1

2κ

∫

Ld4x (2.6)

Where we are integrating the four dimensions and:

κ =
8πG

c2
(2.7)

The factor 1
2κ

appears as a normalization that will
throw the right terms in Einstein and Friedman equa-
tions.
Using eq. (2.3) (with variation respect to the metric
tensor) from this lagrangian, will give us Einstein’s field
equations for the vacuum. If we want to obtain Einstein’s
equations in the presence of matter, all we need to do is
adding a term to the action, associated with matter, i.e:

S =
1

2κ

∫ √
−gRd4x + SM (2.8)

This is known as the Einstein-Hilbert action, where:

SM =

∫ √
−gLMd4xd4x (2.9)

And then define the stress-energy tensor as:

Tµν =
−2√
−g

δLM

δgµν
= −2

δLM

δgµν
+ gµνLM (2.10)

Now that we are more familiarized with the concepts of
action and lagrangian in GR (and therefore, cosmology)
we may attempt to understand how f(R) gravities work.

III. F(R) GRAVITIES

f(R) gravities are all about modifying the Einstein-
Hilbert action and taking it to higher orders in R so the
lagrangian will take the form:

L =
√
−gf(R) (3.1)

f(R) gravities were not born to explain the accelerating
universe, in fact, they first appeared as questioning of the
simplicity argument we talked about previously. More
than one person, was not convinced that the lagrangian
should have the form of eq. (2.5), just because it is the
simplest form that involves enough information about
the curvature. In this spirit, some people introduced
new lagrangians in the form of eq. (3.1).

You might wonder why we aren’t introducing terms
like RαβRαβ , and the answer is very simple: because
we are trying to maintain simplicity. f(R) gravities
are useful to help us understand this problem from a
mathematical point of view, so we can latter associate
a physical model that fits. Including terms with Ricci’s
tensor, make this process extremely complicated and so
f(R) gravities lose their utility. This might seem a little
ridiculous, since the motivation for f(R) gravity was that
people didn’t rely in the argument of simplicity, but that
doesn’t mean that we are going to take things at the
most complicated level. Here we are trying sort of an
equilibrium: we are not reducing things to the simplest
case of all, but we are neither taking them to the hardest
case.

There are three types of f(R) gravities, and here we
review them.

A. Metric f(R) gravity

In this formalism we write the action as:

S =
1

2κ

∫ √
−gf(R)d4x + SM (3.2)

Variation with respect to the inverse metric tensor
yields the field equation:
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f ′(R)Rαβ−
f(R)

2
gαβ = ∇α∇βf ′(R)−gαβ∇µ∇µf ′(R)+κTαβ

(3.3)
The process leading to eq. (3.3) is highly non trivial,

but since it’s not in our best interest to show a detailed
mathematical process, we will give some hints you
can follow to get there. In order to achieve a better
understanding of this, you may review the derivation
of Einstein’s field equations from the Einstein-Hilbert
action in [3]. What we have done here is very similar.

In order to get to eq. (3.3) from eq. (3.2), you should
recall what you (hopefully) learned from the derivation
of Einstein’s field equations. This is:

δ(f(R)) =
∂f(R)

∂R
δR = f ′(R)δR (3.4)

δ
√
−g = −1

2

√
−ggµνδgµν (3.5)

δR = Rµνδgµν + gµν(∇ρδΓ
ρ
νµ −∇νδΓρ

ρµ) (3.6)

Note that, in this case (not as in the derivation using
Einstein-Hilbert action), the second term won’t vanish
since this time, we can’t write as a total derivative and
use Stoke’s theorem (there will be a partial derivate of
f(R) that will bother us). Then you will need to express
the second term on eq. (3.6) in terms of variations respect
to the inverse metric tensor, to do so, resort to:

δΓρ
µν =

1

2
gλα(∇µδgαν + ∇νδgαµ −∇αδgµν) (3.7)

After which you should obtain:

δR = Rµνδgµν + gµν∇α∇αδgµν −∇µ∇νδgµν (3.8)

Then recall eq. (2.3) and, integrating by parts, you
should obtain eq. (3.3).

B. Palatini f(R) gravity

In Palatini f(R) gravity we assume that both, the met-
ric tensor (gαβ) and the Levi-Civita connection (Γρ

µν) are
independent variables, and so we have two Ricci scalars.
We shall denote the Ricci scalar obtained from the inde-
pendent Levi-Civita connection as R̃ = gµνR̃µν , where

R̃µν is the Ricci tensor constructed with the independent
Levi-Civita connection. The action is written as:

S =
1

2κ

∫ √
−gf(R̃)d4x + SM (3.9)

Where we have assumed that the matter part of the
action does not depends of the independent Levi-Civita
connection, but, what does this means? It means that
we will consider a Levi-Civita connection (yet unknown)
that cannot be constructed form the metric tensor, note
that this is the reason that the Ricci scalar it’s not the
same as in metric f(R) gravity. Then, how we define
the independent Levi-Civita connection? In the math-
ematical process leading to the field equations (that we
won’t cover here for being much more complicated than
the process followed in the case of metric f(R) gravity) it
comes up a term that suggest a definition. We define a
conformal metric as:

hµν = f ′(R̃)gµν (3.10)

From here, similarly to what we do with the common
metric tensor we define:

Γλ
µν = hλσ(hνσ,µ + hµσ,ν − hµν,σ) (3.11)

After quite some work, you get to the field equations:

f ′(R̃)R̃αβ − f(R̃)

2
gαβ = κT

β(3.12)

∇̃γ(
√
−gf ′(R̃)gαβ) − ∇̃δ(

√
−gf ′(R̃)gδ(α)δβ

γ
) (3.13)

The second field equation is obtained by varing the
action with respect to the independent connection. If
you remember that, under some conditions, you must
recover GR, then eq. (3.13) becomes the definition of
the independent Levi-Civita connection.

Note that this brings the advantage that the differ-
ential equation contains derivates none higher than sec-
ond order (not as eq. (3.3) that contains fourth order
derivates).

C. Metric-affine f(R) gravity

Metric-affine f(R) gravity is similar to Palatini f(R)
gravity, in the sense that also assumes both, the metric
tensor and the Levi-Civita connection as independent
variables. The difference lies in the fact that now, we
allow the matter part of the action to depend on the
Levi-Civita connection as well.

This modified gravity model is still quite new and the
mathematics associated to it require the introduction
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of several concepts and definitions. Such complications
makes unviable to make an adequate treatment of the
theory in this article, so we will only refer the reader to
[4] in the case he or she is interested to learn more about
this, but we will not go further in this particular f(R)
gravity.

D. Successes and challenges

We have already introduced what f(R) gravities are,
but we have not mentioned at all what are they useful for.

The main objective that f(R) gravities persecute is
giving a viable alternative to dark energy theories. Many
people feel uncomfortable with the idea of introducing a
new fluid (in order to explain the accelerating universe)
that cannot be detected or have ever been observed in
any way. An alternative to avoid this, is modifying the
theory of gravitation. The situation is quite similar to
what happened years ago with Mercury’s perihelion:
Several people thought that it should be an invisible
mass near Mercury when, in fact, what was happening
there was that the relativistic corrections to Newtonian
gravity were becoming important. Similarly, we may
think that GR is not completely exact and needs some
corrections on big scales, and those corrections may be
given by f(R) theories of gravitation. However we must
be careful about this idea. Dark energy models satisfy
lots of experimental observations, and we shouldn’t
discard a theory simply because we feel uncomfortable

about it.

There are many things that a good f(R) gravity must
satisfy. For example, it must predict the early universe
inflation or some other method to explain some of the
observations (i.e. it must produce the same cosmological
dynamics of dark energy models). It also must have
a well posed Cauchy problem, meaning it must have
predictive power (this may seem obvious, but in some
pathological cases, the theory can’t be extended in the
temporal direction, given an initial condition)

Nowadays, f(R) gravities have accomplished a lot, but
we are probably very far away yet to be able to claim any
f(R) gravity as the correct theory. However, even if f(R)
gravities turn out not to be the answer we are looking
for, we shouldn’t feel disappointed, since it has helped us
to a better understanding of GR.

IV. CONCLUSIONS

After reading this article, hopefully, you have a better
understanding of the concepts of action, lagrangian and
f(R) gravity and how they work. For what is worth,
nowadays, f(R) gravity has gave us some alternative to
dark energy model that, in some cases, have a good fitting
with experimental data, however, we are far from saying
it is the right theory.
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