
Non-Cartesian Coordinates

The position of an arbitrary point P in space may be expressed 

in terms of the three curvilinear coordinates u1,u2 ,u3. If 

 

r (u1,u2 ,u3) is the position vector of the point P, at every such 
point there exist two sets of basis vectors


 
 
 
 
  

öei =
∂r
∂ui

    and    öei = ∇ui

where the öei  (subscripts) are tangent to the coordinate curves 

(the axes) and the öei  (superscripts) are normal to the coordinate 
curves. Thus, we can write a vector in two ways (we change our 
summation convention so that we now sum over repeated indices 
only if one is up and the other is down)


 
 
 
 
 
  

a = aiêi = aiê
i

The ai  are called the contravariant components of the vector  
!a 

and the ai  are called the covariant components of the vector  
!
a.

For cartesian coordinate systems there is no difference between 
these two sets of  basis vectors, which is why we were able to 
only use lower indices.  

The êi  are the covariant basis vectors and the öei  are the 
contravariant basis vectors.

In general, the vectors in each set are neither of unit length 
nor form an orthogonal basis. The sets êi   and  êi  are, however, dual 

systems of vectors, so that


 
 
 
 
 öei ! öe j = " i
j

We thus have



 
 
 
 
  

!a ! öei = a j öej ! öei = a j" j
i = ai

!a ! öei = aj öe
j ! öei = aj" i

j = ai
If we consider the components of higher rank tensors in non-
Cartesian coordinates, there are even more possibilities. For 
example, consider a second rank tensor T. Using the outer 
product notation we can write T in three different ways


 
 
 
 
 T = T ij öei ! öej = Tj
i öei ! öej = Tij öe

i ! öej
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where T ij , Tj
i   and  Tij  are called the contravariant, mixed and 

covariant components of T respectively. These three sets of 
quantities form the components of the same tensor T, but refer 
to different (tensor) bases made up from the basis vectors of 
the coordinate system. 

In Cartesian coordinates, all three sets are identical.

(13) The Metric Tensor

Any particular curvilinear coordinate system is completely 
characterized (at each point in space) by the nine quantities


 
 
 
 
 gij = öei ! öej

Since an infinitesimal vector displacement can be written as 

 d
!r = dui öei  we have these results


 
 
 
  
(ds)2 = d


r ⋅dr = duiêi ⋅duj êj = duiduj êi ⋅ êj = gijduiduj

Since (ds)2  is a scalar and the dui  are components of a 

contravariant vector, the quotient law says that the gij  are the 
covariant components of a tensor  g called the metric tensor.

The scalar product can be written in four different ways in 
terms of the metric tensor


 
 
 
 
  

!
a !

!
b = ai öei !bj öej = öei ! öeja

ibj = gija
ibj

      = ai öe
i !bj öe

j = öei ! öejaibj = gijaibj

      = ai öe
i !bj öej = öei ! öejaib

j = " j
i aib

j = aib
i

      = ai öei !bj öe
j = öei ! öejaibj = " i

jaibj = aibi

These imply that 


 
 
 
 
 gijbj = bi     and      gijb
j = bi

or that the covariant components of g can be used to lower in 
index and the contravariant components of g can be used to raise 
an index. 

In a similar manner we can show that


 
 
 

öei = gij öej    and   öei = gij öe

j

Now since öei    and   öei  are dual vectors, i.e., 


 
 
 
 
 öei ! öej = " i
j
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We have


 
 
 


! k
i ak = ai = gijaj = gijgjka

k

gijgjk = ! k
i

In terms of matrix representations this says that


 
 
 

G = gij⎡⎣ ⎤⎦,  G = gij⎡⎣ ⎤⎦,  I = δ j

i⎡⎣ ⎤⎦→ GG = I → G = G−1

or the matrix formed from the covariant components is the 
inverse of the matrix formed from the contravariant components.

The above relations also give the result


 
 
 
 gj
i = öei ! öej = " j

i # components are identical

Finally, we have


 
 
 
 g = g = det[gij ] = g1i g2 j g3k! ijk = öe1 "(öe2 # öe3)

and 


 
 
 
 dV = du1öe1 ⋅ (du
2 öe2 × du

3öe3) = öe1 ⋅ (öe2 × öe3)du
1du2du3

or


 
 
 
 dV = g du1du2du3

General Coordinate Transformations and Tensors

We now discuss the concept of general transformations from one 
coordinate system u1,u2 ,u3  to another u '1,u '2,u '3. We can describe the 
coordinate transformation using the three equations


 
 
 
 u'i = u'i (u1,u2,u3)

for i = 1,2,3, in which the new coordinates u'i  can be arbitrary 

functions of the old ones ui
, rather than just represent linear 

orthogonal transformations (rotations) of the coordinate axes. 
We shall also assume that the transformation can be inverted, so 
that we can write the old coordinates in terms of the new ones 
as 


 
 
 
 ui = ui (u '1,u '2 ,u '3 )
An example is the transformation from spherical polar to 
Cartesian coordinates given by


 
 
 


x = r sinθ cosφ
y = r sinθ sinφ
z = r cosθ

which is clearly not a linear transformation.
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The two sets of basis vectors in the new coordinate system 
u'1,u'2,u'3 are given by


 
 
 
  

öe 'i =
!
r

! u 'i
and öe 'i = " u 'i

Considering the first set, we have from the chain rule that


 
 
 
  
êj =

!
!r

! u j =
! u 'i

! u j

!
!r

! u 'i
=

! u 'i

! u j ê 'i

so that the basis vectors in the old and new coordinate systems 
are related by


 
 
 
 

öej =

! u 'i

! u j
öe 'i

Now, since we can write any arbitrary vector  in terms of either 
basis as


 
 
 
 
  

a = a 'i öe 'i = a
j öej = a

j ∂u 'i

∂u j
öe 'i

it follows that the contravariant components of a vector must 
transform as


 
 
 
 

a'i =

! u 'i

! u j aj

In fact, we use this relation as the defining property that a 
set of quantities ai  must have if they are to form the 
contravariant components of a vector.

If we consider the second set of basis vectors, ê 'i = ∇u 'i , we have 
from the chain rule that 


 
 
 
 


∂uj

∂x
=
∂uj

∂u'i
∂u'i

∂x

and similarly for ∂uj / ∂y and ∂uj / ∂z.  So the basis vectors in the 

old and new coordinate systems are related by


 
 
 
 

ê j =

! u j

! u 'i
ê 'i

For any arbitrary vector  
a ,


 
 
 
 
  

!a = a 'i ê '
i = ajê

j = aj
! u j

! u 'i
ê 'i

and so the covariant components of a vector must transform as


 
 
 
 

a 'i =

! u j

! u 'i
a j

In a similar way to that used in the contravariant case, we take 
this result as the defining property that a set of quantities ai  
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must have if they are to form the covariant components of a 
vector.

We now generalize these two laws for contravariant and covariant 
components of a vector to tensors of higher rank. For example, 
the contravariant, mixed and covariant components, respectively, 
of a second-order tensor must transform as follows:


 
 
 


contravariant components T 'ij =
! u'i

! uk

! u' j

! ul T kl

           mixed components T ' j
i =

! u'i

! uk

! ul

! u' j Tl
k

      covariant components T 'ij =
! uk

! u'i
! ul

! u' j Tkl

It is important to remember that these quantities form the 
components of the same tensor T but refer to different tensor 
bases made up from the basis vectors of the different coordinate 
systems. For example, in terms of the contravariant components 
we may write


 
 
 
 T = T ij êi ! êj = T 'ij ê'i ! ê' j
We can clearly go on to define tensors of higher order, with 
arbitrary numbers of covariant (subscript) and contravariant 
(superscript) indices, by demanding that their components 
transform as follows:


 
 
 

T 'lm......n

ij .......k =
! u 'i

! ua

! u ' j

! ub """
! u 'k

! uc

! ud

! u 'l
! ue

! u 'm
"""

! u f

! u 'n
Tde......... f

ab.......c

Using the revised summation convention (matched contravariant 
and covariant indices summed over), the algebra of general 
tensors is completely analogous to that of Cartesian tensors 
discussed earlier.

For example, as with Cartesian coordinates, the Kronecker delta 
is a tensor, provided it is written as a mixed tensor δ j

i , since


 
 
 

! ' j

i =
" u'i

" uk

" ul

" u' j ! l
k =

" u'i

" uk

" uk

" u' j =
" u'i

" u' j = ! j
i

where we have used the chain rule to prove the third equality. 
Since we showed earlier that


 
 
 
 
 gj
i = öei ⋅ öej = δ j

i

δ j
i  can be considered as the mixed components of the metric tensor 

g.

In the new (primed) coordinate system, we have
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 g'ij = öe'i ! öe' j

Using


 
 
 
 

êj =

∂u 'i

∂uj ê'i

we have


 
 
 


! uk

! u'i
! u' j

! uk
öe' j =

! u' j

! u'i
öe' j = " i

j öe' j = öe'i =
! uk

! u'i
öek

and similarly for ê' j . Thus, we can write


 
 

g'ij =

! uk

! u'i
! ul

! u' j
öek " öel =

! uk

! u'i
! ul

! u' j gkl

which shows that the gij  are indeed the covariant components of a 

second-order tensor (the metric tensor g).

A similar argument shows that the quantities gij  form the 
contravariant components of a second-order tensor, such that


 
 
 
 

g'ij =

! u 'i

! uk

! u ' j

! ul gkl

Earlier we saw that the components gij  and gij  could be used to 

raise and lower indices in contravariant and covariant vectors. 
This can be extended to tensors of arbitrary rank. In general, 
contraction of a tensor with gij  will convert the contracted index 

from being contravariant(superscript) to covariant (subscript), 
i.e., it is lowered. This can be repeated for as many indices as 
required. For example,


 
 
 
 
 
 Tij = gikTj
k = gikgjlT

kl

Similarly, contraction with gij  raises an index, i.e.,


 
 
 
 
 
 T ij = gikTk
j = gikgjlTkl

That these two relations are mutually consistent, can be shown 
by using the relation


 
 
 
 
 
 gikgkj = ! j
i

Derivatives of basis vectors and Christoffel symbols

In Cartesian coordinates, the basis vectors êi  are constant and 

so their derivatives with respect to the coordinates vanish. In 
general coordinate systems, however, the basis vectors êi  and êi  
are functions of the coordinates. In order that we may 
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differentiate general tensors, we must therefore first consider 
the derivatives of the basis vectors.

Let us consider the derivative


 
 
 
 
 


! öei

! u j

Since this is itself a vector, it can be written as a linear 
combination of the basis vectors öek , k = 1,2,3. If we introduce 

the symbol ! ij
k  to denote the coefficients in this combination, we 

have


 
 
 
 
 


∂êi

∂uj = Γ ij
kêk

The coefficient ! ij
k  is simply the kth component of the vector 

! öei

! u j

Using the reciprocity relation êi ! êj = " j
i  , these 27 numbers are 

given (at each point in space) by


 
 
 


êk !
" êi

" u j = # ij
mêk ! êm = # ij

m$m
k = # ij

k

# ij
k = êk !

" êi

" u j

Furthermore, we then have


 
 
 
 


! öei " öek( )
! u j = 0 = öei "

! öek

! u j +
! öei

! u j " öek

! öei

! u j " öek = # öei "
! öek

! u j = #$ kj
möei " öem = #$ kj

i

%
! öei

! u j = #$ kj
i öek

The symbol ! ij
k  is called a Christoffel symbol (of the second 

kind), but despite appearances to the contrary, these quantities 
do not form the components of a third-order tensor. 

In a new coordinate system


 
 
 
 

! 'ij

k = öe'k"
#öe'i
#u' j

Using


 
 
 

öe 'i =

∂ul

∂u 'i
öel and öe 'k =

∂u 'k

∂un
öen

we get
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! 'ij
k =

" u'k

" un
öen #

"
" u' j

" ul

" u'i
öel

$

%&
'

()

    =
" u'k

" un
öen #

" 2ul

" u' j " u'i
öel +

" ul

" u'i
" öel

" u' j

$

%&
'

()

    =
" u'k

" un

" 2ul

" u' j " u'i
öen #öel +

" u'k

" un

" ul

" u'i
öen #

" öel

" u' j

    =
" u'k

" un

" 2ul

" u' j " u'i
* l

n +
" u'k

" un

" ul

" u'i
" um

" u' j
öen #

" öel

" u'm

    =
" u'k

" ul

" 2ul

" u' j " u'i
+

" u'k

" un

" ul

" u'i
" um

" u' j ! lm
n

This result shows that the ! ij
k  do not form the components of a 

third-order tensor because of the presence of the first term on 
the right-hand side.

We note that in Cartesian coordinates it is clear from the 
relation


 
 
 
 

Γ ij
k = êk ⋅

∂ êi
∂u j

that ! ij
k = 0 for all values of the indices i, j and k.

In a given coordinate system we can, in principle, calculate the 
! ij

k  using the relation 


 
 
 
 

! ij

k = êk "
#êi

#u j

In practice, however, it is often quicker to use an alternative 
expression, which we now derive, for the Christoffel symbol in 
terms of the metric tensor gij  and its derivatives with respect to 

the coordinates.

First, we note that the Christoffel symbol ! ij
k  is symmetric with 

respect to the interchange of its two subscripts i and j. This 
is easily shown, since


 
 
 
 
  

! öei

! u j =
! 2!

r
! u j! ui =

! 2!
r

! ui! u j =
! öej

! ui

This gives
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! öei
! u j = " ij

k öek = " ji
k öek =

! öej
! ui

" ij
k öek #öel = " ji

k öek #öel

" ij
l = " ji

l

To obtain an expression for Γ ij
k  we then use gij = êi ! êj  and consider 

the derivative


 
 
 
 


∂gij

∂uk =
∂êi

∂uk ⋅ êj + êi ⋅
∂êj

∂uk = Γ ik
l êl ⋅ êj + êi ⋅ Γ jk

l ⋅ êl

      = Γ ik
l glj + Γ jk

l gil

By cyclically permuting the free indices i,j,k in this relation 
we obtain two further equivalent relations


 
 
 
 


! gjk

! ui = " ji
l glk + " ki

l gjl

! gki

! u j = " kj
l gli + " ij

l gkl

where we have used the symmetry properties of both ! ij
k  and gij .

Contracting both sides with gmk  leads to the required expression 
for the Christoffel symbol in terms of the metric tensor and its 
derivatives, namely


 
 
 
 

! ij

m =
1
2

gmk " gjk

" ui +
" gki

" u j #
" gij

" uk

$
%&

'
()

Example: cylindrical polar coordinates


 
 
 
 


(u1,u2 ,u3) = (! ," ,z)
ds2 = d! 2 + ! 2d" 2 + dz2 = gijduiduj

# g11 =1,g22 = ! 2 ,g33 =1,all others = 0
This implies that the only non-zero Christoffel symbols are 
Γ12

2 = Γ21
2  and Γ22

1 . These are given by


 
 
 


Γ12
2 = Γ21

2 =
g22

2
∂g22

∂u1 =
1

2g22

∂g22

∂ρ
=

1
2ρ2

∂ρ2

∂ρ
=

1
ρ

Γ22
1 = −

g11

2
∂g22

∂u1 = −
1

2g11

∂g22

∂ρ
=

1
2
∂ρ2

∂ρ
= −ρ

Alternatively, we can use

                                                                      Page 9




 
 
 


öe1 = öeρ = cosφöex + sinφöey
öe2 = öeφ = −sinφöex + cosφöey
öe3 = öez
∂ öeρ
∂φ

=
1
ρ

öeφ →
∂ öe1

∂u2 =
1
u1

öe2 → Γ12
2 =

1
u1 =

1
ρ
= Γ21

2

∂ öeφ
∂φ

= −ρöeρ →
∂ öe2

∂u2 = −u1öe1 → Γ22
1 = −u1 = −ρ

as expected.

Covariant differentiation

For Cartesian tensors, we noted that the derivative of a scalar 
is a (covariant) vector. This is also true for general tensors, 
as may be shown by considering the differential of a scalar


 
 
 
 

d! =

" !
" ui dui

Since the dui
 are the components of a contravariant vector, and 

d!  is a scalar, we have by the quotient rule that the quantities


 
 
 
 


∂φ
∂ui

must form the components of a covariant vector.

It is straightforward to show, however, that (unlike in 
Cartesian coordinates) the differentiation of the components of 
a general tensor, other than a scalar, with respect to the 
coordinates does not, in general, result in the components of 
another tensor.

For example, in Cartesian coordinates, if the vi  are the 
contravariant components of a vector, then the quantities


 
 
 
 


∂vi

∂xj

form the components of a second-order tensor. In general 
coordinates, however, this is not the case. We may show this 
directly by considering


 
 
 


∂vi

∂u j

⎛
⎝⎜

⎞
⎠⎟

'
=
∂v 'i

∂u ' j
=
∂uk

∂u ' j
∂v 'i

∂uk
=
∂uk

∂u ' j
∂
∂uk

∂u 'i

∂ul
vl

⎛
⎝⎜

⎞
⎠⎟

          = ∂uk

∂u ' j
∂u 'i

∂ul
∂vl

∂uk
+
∂uk

∂u ' j
∂ 2u 'i

∂uk∂ul
vl
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The presence of the second term on the right-hand side shows 
that the 


 
 
 
 


! vi

! u j

do not form the components of a second-order tensor. This term 
arises because the "transformation matrix" ∂u 'i / ∂u j⎡⎣ ⎤⎦  changes with 

position in space. This is not true in Cartesian coordinates, 
for which the second term vanishes, and


 
 
 
 


∂vi

∂uj

is a second-order tensor.

We can, however, use the Christoffel symbols to define a new 
covariant derivative of the components of a tensor, which does 
result in the components of another tensor.

Let us first consider the derivative of a vector  
!v  with respect 

to the coordinates. Writing the vector in terms of its 
contravariant components  

!
v = vi öei , we find


 
 
 
 
  

∂ !v
∂u j =

∂vi

∂u j
öei + v

i ∂ öei
∂u j

where the second term arises because, in general, the basis 
vectors öei  are not constant (this term vanishes in Cartesian 

coordinates). Using the definition of the Christoffel symbol we 
can write


 
 
 
 
  

!
!
v

! u j =
! vi

! u j êi + vi" ij
kêk

Since i and k are dummy indices in the last term on the 
right-hand side, we may interchange them to obtain


 
 
 
 
  

!
!v

! u j =
! vi

! u j êi + vk" kj
i êi =

! vi

! u j + vk" kj
i#

$%
&

'(
êi

The reason for interchanging the dummy indices is that we may 
then factor out öei . The quantity in the bracket is called the 
covariant derivative, for which the standard notation is


 
 
 
 

v; j
i =

! vi

! u j + " kj
i vk

where the semicolon denotes covariant differentiation; a similar 
short-hand notation also exists for the simple partial 
derivative, in which a comma is used instead of a semicolon. For 
example
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v, j
i =

! vi

! u j

so that


 
 
 
 
  
v; j

i = v, j
i + ! kj

i vk "
#

!
v

#uj = v; j
i êi = $

!
v

Using the quotient rule, it is then clear that the v; j
i
 are the 

(mixed) components of a second-order tensor.

In Cartesian coordinates, all the Γ ij
k  are zero, and so the 

covariant derivative reduces to the simple partial derivative


 
 
 
 
 


! vi

! u j

Example: cylindrical polar coordinates

Contracting the definition of the covariant derivative we have


 
 
 
 

v;i

i = v,i
i + ! ki

i vk =
" vi

" ui + ! ki
i vk

Using the Christoffel symbols we worked out earlier we find


 
 
 
 


! 1i
i = ! 11

1 + ! 12
2 + ! 13

3 =
1
"

! 2i
i = ! 21

1 + ! 22
2 + ! 23

3 = 0

! 3i
i = ! 31

1 + ! 32
2 + ! 33

3 = 0

and


 
 

v;i
i =

∂vρ

∂ρ
+
∂vφ

∂φ
+
∂vz

∂z
+
1
ρ
vρ =

1
ρ
∂(ρvρ )
∂ρ

+
∂vφ

∂φ
+
∂vz

∂z
which is the standard expression for the divergence of a vector 
field in cylindrical polar coordinates.

So far we have considered only the covariant derivative of the 
contravariant components of a vector. The corresponding result 
for the covariant components vi  may be found in a similar way, by 

considering the derivative of 
 

v = vi öe
i . We obtain


 
 
 
 

vi ; j =

! vi

! u j " # ij
kvk

Following a similar procedure we can obtain expressions for the 
covariant derivatives of higher-order tensors.

Expressing T in terms of its contravariant components, we have
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! T
! uk

=
!

! uk
T ij öei " öej( ) =

! T ij

! uk
öei " öej +T ij ! öei

! uk
" öej +T ij öei "

! öej
! uk

Using the definition of the Christoffel symbols we can write


 
 


∂T
∂uk

=
∂T ij

∂uk
öei ⊗ öej + T

ijΓ ik
l öel ⊗ öej + T

ij öei ⊗Γ jk
l öel

Interchanging dummy indices i and l in the second term and j and 
l in the third term on the right-hand side this becomes


 
 


! T
! uk =

! T ij

! uk + " lk
i T lj + " lk

j T il#

$%
&

'(
öei ) öej

where the expression in brackets is the required covariant 
derivative 


 
 

T;k

ij =
! T ij

! uk + " lk
i T lj + " lk

j T il = T,k
ij + " lk

i T lj + " lk
j T il

In a similar way we can write the covariant derivative of the 
mixed and covariant components. Summarizing we have


 
 
 
 


T;k
ij = T,k

ij + Γ lk
i T lj + Γ lk

j T il

Tj ;k
i = Tj ,k

i + Γ lk
i Tj

l − Γ jk
l Tl

i

Tij ;k = Tij ,k − Γ ik
l Tlj − Γ jk

l Til

We note that the quantities T;k
ij , Tj ;k

i andTij ;k  are the components of 

the same third-order tensor ∇T  with respect to different tensor 
bases, i.e.,


 
 
 
 ∇T = T;k
ij öei ⊗ öej ⊗ öek = Tj;k

i öei ⊗ öej ⊗ öek = Tij ;k öei ⊗ öej ⊗ öek

We conclude by considering the covariant derivative of a scalar. 
The covariant derivative differs from the simple partial 
derivative with respect to the coordinates only because the 
basis vectors of the coordinate system change with position in 
space (hence for Cartesian coordinates there is no difference). 
However, a scalar function φ  does not depend on the basis 
vectors at all, so its covariant derivative must be the same as 
its partial derivative, i.e.,


 
 
 
 
 

! ; j =

" !
" u j = ! , j

(17) Vector Operators in tensor form 

We now use tensor methods to obtain expressions for the grad, 
div, curl and Laplacian that or valid in all coordinate systems.

Gradient. The gradient of a scalar !  is simply given by
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∇φ = φ;i öe

i =
∂φ
∂ui

öei

since the covariant derivative of a scalar is the same as its 
partial derivative.

Divergence. The divergence of a vector field  
!
v  in a general 

coordinate system is given by


 
 
 
 
  
!

!
v = v;i

i =
" vi

" ui + # ki
i vk

Using


 
 
 
 

! ki
i =

1
2
gil

" gil
" uk

+
" gkl
" ui

#
" gki
" ul

$
%&

'
()

=
1
2
gil

" gil
" uk

The last two terms cancel because


 
 
 
 

gil ∂gkl

∂ui = gli ∂gki

∂ul = gil ∂gki

∂ul

where in the first equality we have interchanged the dummy 
indices i and l, and in the second equality we have used the 
symmetry of the metric tensor.

We also have


 
 
 
 


! g
! uk = ggij ! gij

! uk

Finally, we get


 
 
 
 

Γki

i =
1
2

gil ∂gil

∂uk =
1

2g
∂g
∂uk =

1

g

∂ g

∂uk

which gives the result


 
 
 
  
∇!

v = v;i
i =

∂vi

∂ui +
1

g

∂ g

∂uk vk =
1

g

∂
∂uk gvk( )

Laplacian. 


 
 
 
 

∇2φ =

1

g

∂
∂uj ggjk ∂φ

∂uk

⎛
⎝⎜

⎞
⎠⎟

Curl. The special vector form of the curl of a vector field 
exists only in three dimensions. We therefore consider its more 
general form, which is also valid in higher-dimensional spaces. 
In a general space the operation  curl

!
v  is defined by


 
 
 
 
  
(curl

!
v)ij = vi; j ! vj ;i

which is an antisymmetric covariant tensor.

The difference of derivatives can be simplified since
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vi; j − vj;i =

∂vi

∂uj − Γ ij
l vl −

∂vj

∂ui + Γ ji
l vl =

∂vi

∂uj −
∂vj

∂ui

using the symmetry properties of the Christoffel symbols. Thus,


 
 
 
 
  

(curl

v)ij =

! vi

! u j "
! vj

! ui = vi , j " vj ,i

Absolute derivatives along curves

We now consider the problem of calculating the derivative of a 
tensor along a curve  


r (t) parameterized by some variable t.

Let us begin by considering the derivative of a vector  
!
v  along 

the curve. If we introduce an arbitrary coordinate system ui  with 
basis vectors öei , i = 1, 2,3, then we can write  

!
v = vi öei , and we 

have


 
 
 
  

d!v
dt

=
dvi

dt
öei + vi

döei
dt

=
dvi

dt
öei + vi

! öei
! uk

duk

dt
where we have used the chain rule to rewrite the last term on 
the right-hand side.

Now, using the definition of the Christoffel symbols we obtain


 
 
 
  

d

v

dt
=

dvi

dt
öei + ! ik

j vi duk

dt
öej

Interchanging the dummy indices i and j in the last term we get


 
 
 
  

dv
dt

=
dvi

dt
+ ! jk

i v j
duk

dt
"

#$
%

&'
êi

The expression in the brackets is called the absolute (or 
intrinsic) derivative of the components vi  along the curve  

!r (t)  
and is usually denoted by


 
 
 


! vi

! t
"
dvi

dt
+ # jk

i v j
duk

dt
=

$vi

$uk
+ # jk

i v j
%

&'
(

)*
duk

dt
= v;k

i du
k

dt
so that


 
 
 
  

d!v
dt

=
! vi

! t
êi = v;k

i du
k

dt
êi

Similarly, we can show that the absolute derivative of the 
covariant components vi  of a vector is given by


 
 
 


! vi

! t
" vi;k

duk

dt
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and the absolute derivatives of the contravariant, mixed and 
covariant components of a second-order tensor T are


 
 
 


! T ij

! t
" T;k

ij du
k

dt
! Tj

i

! t
" Tj;k

i duk

dt
! Tij
! t

" Tij;k
duk

dt
The derivative of T along the curve  

!r (t) may then be written in 
terms of, for example, its contravariant components as


 
 
 


dT
dt

=
! T ij

! t
öei " öej = T;k

ij duk

dt
öei " öej

(19) Geodesics

As an example of the use of the absolute derivative, we conclude 
our discussion of tensors with a short discussion of geodesics. 

A geodesic  in real three-dimensional space is a straight line, 
which has two equivalent defining properties. First, it is the 
curve of shortest length between two points and, second, its 
tangent vector always points along the same direction (along the 
line).

Although we have explicitly considered only the familiar three 
dimensional space in our discussions, much of the mathematical 
formalism developed can easily be generalized to more abstract 
spaces of higher dimensionality in which the familiar ideas of 
Euclidean geometry are no longer valid. It is often of interest 
to find geodesic curves in such spaces by using the properties 
of straight lines in Euclidean space that define a geodesic.

Consideration of these more complicated space is left for a 
future seminar in general relativity. Instead, we will derive 
the equation that a geodesic in Euclidean three dimensional 
space(i.e., a straight line) must satisfy, in a sufficiently 
general way that it may be applied with little modification, to 
find the equations satisfied by geodesics in more abstract 
spaces.
Let us consider a curve 

 

r (s), parameterized by the arc length s 
from some point on the curve, and choose as our defining 
property for a geodesic that its tangent vector 


 
 
 
 
 
  

!
t =

d!r
ds  

                                                                      Page 16



always points in the same direction everywhere on the curve, 
i.e., 


 
 
 
 
 
  

d

t

ds
= 0

This is called parallel transport of the tangent vector, i.e., 
the vector is always moved parallel to itself along the curve, 
which is the same as its direction not changing for a straight 
line.

If we now introduce an arbitrary coordinate system ui  with basis 
vectors öei , i = 1, 2,3, then we can write  

!
t = t i êi , and we have


 
 
 
 
  

d
!
t

ds
= t;k

i duk

ds
öei = 0

Writing out the covariant derivative, we obtain


 
 
 
 


dti

ds
+ Γ jk

i t j duk

ds

⎛
⎝⎜

⎞
⎠⎟

êi = 0

But since


 
 
 
 

t j =

du j

ds
we find that the equation satisfied by a geodesic is


 
 
 
 


d2ui

ds2 + ! jk
i duj

ds
duk

ds
= 0

Example: cartesian coordinates

All Christoffel symbols are zero. Therefore, the equations of a 
geodesic are


 
 
 
 


d2x
ds2 = 0 ,

d2y
ds2 = 0 ,

d2z
ds2 = 0

which correspond to a straight line.

Example: cylindrical polar coordinates

The only non-zero Christoffel symbols are


 
 
 
 

! 22

1 = " # and ! 12
2 = ! 21

2 =
1
#

The geodesic equations are then
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d2u1

ds2
+ ! 22

1 du2

ds
du2

ds
= 0 "

d2#
ds2

$ #
d%
ds

&
'(

)
*+

2

= 0

d2u2

ds2
+ 2! 12

2 du1

ds
du2

ds
= 0 "

d2%
ds2

+
2
#

d#
ds

d%
ds

= 0

d2u3

ds2
= 0 "

d2z
ds2

= 0

On the surface of a cylinder given by ! = constant  we have


 
 
 


d2!
ds2 = 0 ,

d2"
ds2 = 0 ,

d2z
ds2 = 0

which also corresponds to a straight line. Think if unrolling 
the cylinder. It is then just a plane!

Example: spherical polar coordinates

The metric tensor is


 
 
 


g =

! 1 0 0

0 ! r2 0

0 0 ! r2 sin2"

#

$

%
%

&

'

(
(

The non-zero Christoffel symbols are


 
 
 


! 22
1 = " r , ! 33

1 = " r sin2# , ! 33
2 = " sin# cos#

! 12
2 = ! 21

2 =
1
r
, ! 13

3 = ! 31
3 =

1
r
, ! 23

3 = ! 32
3 = cot#

The corresponding geodesic equations on the surface of the 
sphere r = constant  are


 
 
 
 


d 2r
ds2

= 0

d 2!
ds2

" sin! cos! d#
ds

$
%&

'
()

2

= 0

d 2#
ds2

+ 2cot! d#
ds

d!
ds

= 0

which correspond to the equations of a great circle!
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Parallel Transport and the  Riemann Tensor

If a vector is parallel transported along a curve, the geodesic 
equations tells us how the vector components change during the 
transport.


 
 
 


d2ui

ds2 + Γ jk
i du

j

ds
duk

ds
= 0

It also can be shown that for a covariant vector field A!  we 

have this result


 
 
 
 A! ;µ;" # A! ;" ;µ = R! µ"
$ A$

that is, in a general curved spacetime the covariant derivatives 
do not commute (order is important). In a Cartesian or flat 
space the difference would be zero. Thus the fourth-rank tensor
Rβµν

α , which is called the Riemann curvature tensor is a measure 

of the curvature of spacetime. It is given by


 
 
 R! µ"
# = $%! µ,"

# + %! " ,µ
# $ %! "

& %&µ
# $ %! µ

& %&"
#

If a vector field is parallel transported around a closed path 
in a curved spacetime, the vector components do not return to 
the same values at the end (as they would do in flat space). In 
fact, parallel transport around a parallelogram gives the result

 



 
 
 
 ! A" = R#µ$
" A#d%$d%µ

where the d! µ  represent the sides of the parallelogram. Thus, 

once again the Riemann tensor serves as a measure of the 
curvature of spacetime.

The second-rank Ricci tensor is defined by a contraction over 
the first and last indices of the Riemann tensor


 
 
 
 R! µ = R! µ"
"

In addition we define the curvature scalar R by


 
 
 
 R= R!
! = R! "

" !

Einstein Field Equation for Metric Coefficients

The gravitational field equations developed by Einstein are


 
 

Rµ! " 1

2 gµ! R= "
8#G
c4 Tµ!
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where the inclusion of the Riemann scalar term is necessary for 
energy-momentum conservation.
where Tµν  is a second-rank tensor that gives the energy-momentum 

content of spacetime. It represent 16 coupled differential 
equations for the metric coefficients gµ! .

An alternative form of these field equations originally proposed 
by Einstein but later discarded by him as his worst mistake, is 
now coming back into favor. It contains the so-called 
cosmological constant ! .


 
 

Rµν − 1

2 gµνR+ Λgµν = −
8πG
c4 Tµν

It predicts the existence of a repulsive gravitational force on 
a cosmological scale and is of interest now that data seems to 
indicated that the universal expansion is accelerating.

Schwarzschild Solution

For a spherically symmetric point mass at the origin, the filed 
equations are given by (for r > 0)


 
 
 Rµν − 1
2 gµνR= 0

Schwarzschild solved these equations in 1915. His solution 
written as the square of the spacetime interval looks like


 


ds2 = 1 !
2GM

r
"
#$

%
&'

c2dt2 !
dr2

1 !
2GM

r
"
#$

%
&'

! r 2 (d( 2 + sin2 ( d) 2 )

where M is the central mass.

This solution accounts for bending of light around the sun, the 
advance of the perihelion of mercury, gravitational redshift, 
radar time delays from signals bounced off of planets, 
precession of spinning satellites in earth orbit and black 
holes, where the radius r=2GM is the radius of the event horizon 
or the boundary where nothing can escape the mass, even light.
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