
Random Numbers and Monte Carlo Methods

Random Number Methods

The integration methods discussed so far all are based upon 
making a polynomial approximations to the integrand. Another 
class of numerical methods relies upon using random numbers. 
These methods have come to be known under the general rubric 
Monte Carlo methods, after the famous gambling casino.  Before 
discussing Monte Carlo integration, we must digress to learn 
about random numbers.

Random Number Generators

Any standard random number generator produces a set of uniformly 
distributed (equal probability) numbers on some interval.  For 
the interval [a,b] we define

 P(r)dr = probability of generating a random number in the 
     interval dr near r

For this probability idea to make sense we must have

 P(r)dr = 1
a

b

∫ = total probability of generating a random number

In the case of a uniform distribution, P(r) = constant and hence

   
P(r) = 1

b − a

All such numerical random number generators give a sequence of 
numbers with a large repeat cycle on some interval. A good 
generator will have a very large repeat cycle(108 −109  non-
repeating numbers).
   
In MATLAB, the rand(n,m) function generates uniformly 
distributed pseudo-random numbers. We illustrate the uniform 
distribution of 100,000 random numbers below:

>> hist(rand(1,100000),10)
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which obviously shows the uniform distribution on the interval 
[0,1].

MATLAB also generate normally (Gaussian) distributed random 
numbers using the randn function.

>> hist(randn(1,100000),20))

which is obviously a normal or gaussian distribution.
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These two methods are examples of "simple sampling" techniques. 
In many problems we need to use probability distributions that 
reflect the appropriate physics of the system under study. In 
this case we use a different technique called "importance 
sampling".

The algorithm for  generating random numbers with a specified 
distribution(not uniform) goes this way. Suppose that we have a 
set of uniformly distributed numbers (as above) in the interval 
[0,1]. Then the rule 

     
rj = dx 'w(x ')

0

x j

∫
will generate a set of numbers xi{ }  distributed according to the 
rule w(x). For example, suppose w(x) = e− x  0 ≤ x ≤ 4. Then we 
obtain

    rj = 1− e
− x j → x j = − log(1− rj )

which is the desired result. This is illustrated in the plot 
below: 

>> hist((-log(1-rand(1,100000))),20)

Integration using Importance Sampling (Monte Carlo Method)

Now consider a function to be integrated, as shown below:
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The integral is just the area under the curve. The width of the 
interval (b-a) times the average value of the function is also 
the value of the integral, that is,

   
f (x)dx = (b − a) faverage

a

b

∫ = (b − a) f

So if we had some independent way of calculating the average 
value of the integrand, then we could evaluate the integral.

That is where we can use random numbers. 

Imagine that we have a list of random numbers, xj, uniformly 
distributed between a and b.

To calculate the function average, we simply evaluate f(x) at 
each of the randomly selected points, and divide by the number 
of points:

   
f N =

1
N

f (xi )
i=1

N

∑
As the number of points used in calculating the average 
increases, f N  approaches the true average value, f . 

Therefore, as a numerical approximation we can write

   
f (x)dx = b − a

N
f (xi )

i=1

N

∑
a

b

∫
Alternatively, we can look at this so-called Monte Carlo 
integration method in the following way:

To integrate the function f(x) over the interval [a,b] we 

x
a b

f(x)

y
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[1] find some value M such that f(x) < M over the interval [a,b]
[2] select a random number x from a uniform distribution over    
    the interval [a,b]
[3] select a random number y from a uniform distribution over 
    the interval [0,M]
[4] determine if y > f(x) or y ≤ f(x)
[5] repeat this process N times, keeping track of the number of 
    times y ≤ f(x) or under the curve (= successes); call the   
    total number of successes S.

The estimated probability of success is then

 

S
N

=
Area under curve

Total area inside rectangle
=

f (x)dx
a

b

∫
M (b − a)

where the rectangle used is shown in the figure below:

After a number of trials, the value of the integral can be 
calculated from the above formula

  
f (x)dx

a

b

∫ = M (b − a) S
N

Think about throwing darts and counting the number of darts that 
land in the area representing the integral.

Your program above only works if the integrand is greater than 
or equal to zero everywhere over the range of integration. 
Suppose, in fact, that the function f(x) was not always greater 
than zero in the interval [a,b] as shown below.

x
a b

f(x)

y
y = M
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We can modify the Monte Carlo integration method to handle such 
cases, i.e., fix the problem with f(x) possibly being less than 
zero as follows. To integrate the function f(x) over the 
interval [a,b] we 

[1] find some value M such that f(x) < M over the interval [a,b]
[2] find some R such that f(x) > - R over the interval [a,b]
[2] select a random number x from a uniform distribution over    
    the interval [a,b]
[3] select a random number y from a uniform distribution over 
    the interval [-R,M]
[4] determine if y > f(x) or y ≤ f(x)
[5] repeat this process N times, keeping track of the number of 
    times y ≤ f(x) or under the curve (= successes); call the   
    total number of successes S.

The estimated probability of success is then

 

S
N

=
Area under curve

Total area inside rectangle
=

f (x)dx
a

b

∫
(M + R)(b − a)

  
f (x)dx

a

b

∫ = (M + R)(b − a) S
N

This must now be corrected for the fact that the line y = -R has 
been used as the baseline for the integral instead of the line 
y = 0. This is accomplished by subtracting the rectangular area
R(b-a). The final integral is then 

  
f (x)dx

a

b

∫ = (M + R)(b − a) S
N

− R(b − a)

xa b

f(x)

y
y = M

y = -R
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The Metropolis Algorithm

Suppose that we want to generate a set of points in some, 
possibly multidimensional, space of variables X distributed with 
probability density w(X) (not necessarily uniform). The 
Metropolis algorithm generates a set of points X0 ,X1,X2 ,........ as 
those visited successively by a random walker moving through the 
X space. As the walk becomes longer and longer, the points it 
connects will approximate closely the desired distribution.

The rules for the random walk are as follows:

[1] Suppose that the walker is at a point Xn  in the sequence. To        

generate Xn+1 it makes a trial step to a new point Xt . This new        

point can be chosen in any convenient manner, for example,        
uniformly at random within a multidimensional cube of small side
 δ  about Xn .

[2] This trial step is then "accepted" or "rejected" according 
to the ratio

    
r =

w(Xt )
w(Xn )

that is, if r is larger than one, then the step is always        
accepted (i.e., we put Xn+1 = Xt , while if r is less than one, the        

step is accepted with probability r.

This latter step is conveniently accomplished by comparing r 
with a random number η uniformly distributed in the interval  
and accepting the step if η < r . If the trial step is not 
accepted, then it is rejected, and we put Xn+1 = Xn . This generates

Xn+1, and we may proceed to generate Xn+2  by the same process. Any 

arbitrary point Xn  can be used to start this random walk.

A MATLAB code to use the Metropolis algorithm for the case 

w(X) = e−0.2X
2

 looks like:

x=[];
X0=0;
delta=4;
naccept=0;

                                                                      Page 7



n=0;
while (naccept < 5000)
   n=n+1;
   XT = X0 + delta*(2*rand(1,1)-1);
   ratio=exp(0.5*(X0^2-XT^2));
   if (ratio > rand)
          x=[x,XT];
          X0=XT;
           naccept=naccept+1;
    end
end
hist(x,40)

which clearly reflects the proposed Gaussian distribution.

A good rule is to choose δ  so that about 1/3 of the trials is 
accepted and to choose X0  such that w(X) is near a maximum.

Because successive points in this distribution are not 
statistically independent of each other, some care must be taken 
when choosing a set of points to use from a larger set that has 
been generated earlier.  Generally, the accepted method is to 
choose points separated by some interval, say every kth point,  
where k is such that any correlations are washed out. 
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A simple Metropolis method function is :

function z=metropolis(input)
% must have another funct.m file defined
rand('seed',sum(100*clock));
x=input(1);
delta=input(2);
xtrial=x+delta*(2*rand(1)-1);
w=funct(xtrial)/funct(x);
if (rand < w)
     z=xtrial;
else
     z= x;
end

The code below tests this function for w(X) = e−0.2X
2

:

zz=zeros(100000)
z=metropolis([0.0,4.0]);
for j=1:100000
 z=metropolis([z,4.0]);
 zz(j)=z
end
hist(zz,40);

Again this clearly reflects the correct distribution.

Simple Simulation Example Using Random Numbers
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Another example of using random numbers to simulate particles in 
a box with two distinct sides. 

Suppose a particle can be at only two positions XR and XL and 
that

   
w(X) = nR

N
δX ,XL +

nL
N
δX ,XR

that is, the probability of being on a given side of the box is 
given by the ratio of the number of particles on that side of 
the box to the total number of particles.

Consider the program below. We have N = 1000 particles in a box. 
We start with a random fraction of the N particles on the LHS of 
the box. 

If all particles on the LHS, then we send one to the RHS. In all 
other cases, we then use the Metropolis algorithm to decide 
whether we decrease the number of particles on the LHS by 1 
(increase the number on the RHS by 1) or vice versa. The ratio r 
in this case is the probability of being on the LHS.

   
ratio = r = w(XL) = nL

N
Consider the program below:

% Metropoplis simulation 
rand('seed',sum(100*clock));
N=1000;
tmax=10000;
nl=round(rand*N);
t=0;
p=plot(t,nl,'.','EraseMode','none');
axis([0,tmax,0,N]);
while (t <= tmax)
   t=t+1;
   ratio=nl/N;
   if (ratio >= 1)
     nl=nl-1;
   else
     if (rand <= ratio)
       nl=nl-1;
     else
       nl=nl+1;
     end
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   end
   set(p,'XData',t,'YData',nl)
   drawnow
end

The result is:

When we run this simulation, we always end up with approximately 
1/2 of the particles on each side(the equilibrium configuration) 
and the simulation accurately represents the fluctuations 
present at equilibrium. 

This example illustrates how chance or random motion can 
generate deterministic behavior.
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