
Solving Ordinary Differential Equations

The study of the dynamic behavior of systems is fundamental to
all areas of science. An equation that involves one or more
ordinary derivatives of some unknown function is called an
ordinary differential equation (ODE). The order of the equation
= order of highest derivative. ODEs are commonly used for
mathematical modeling in many diverse fields. Often there is no
known analytic solution to the equation and numerical
approximations are required. A good way to express the actual
real world situation with differential equations is

! "all interesting equations are either trivial,
! or impossibly difficult to solve analytically"

Traditional analysis solves the trivial cases, and can yield
invaluable insight into the solution of the difficult ones. But
the bottom line is that the difficult cases usually must be
treated numerically.

We will mostly study ODEs in the time domain (the solutions give
the system behavior in time). These ODEs are initial-value
problems, where all the specified system conditions are given at
some initial time, say t = t0 .

First-Order ODEs

Imagine we have a problem where we seek y(t), where
y(t) is described by a first order ODE:

! ! ! ! !

dy
dt

= f (y,t)

You probably know a lot about equations like this already from
class, i.e., if they are linear, we know how to arrive at an
analytical solution. Even if the equation is nonlinear, if it
is inspired by a real physical situation, we expect it will have
a unique solution.

Since it is first order, it requires one initial condition in
order to specify that solution, i.e., y(t0) = y0 .

The most basic algorithm for solving these equations is Euler’s
method.

 Page 1

Whenever we approximate a derivative by a difference equation,
as we did in the laboratory on numerical differentiation, we say
we are using a finite-difference method. EulerÕs method is of
this type, and it uses the 2-point approximation for the
derivative. Let us call our time step h, and let us use the
notation

! ! ! y(tn) = y(t0 + nh) = yn , h = Δt = time step

We set out to find a set of lattice points (tn , yn){ } which are an

approximate solution for the function y(t). Thus, we have the
approximation

! ! ! !

dy
dt

≈
yn+1 − yn

h
= f (yn ,tn)

and the Euler method gives us:

! ! ! ! yn+1 = yn + f (yn ,tn)h
For first-order equations thatÕs it!

The method is said to be self-starting, all you need is the

initial condition y0 in order to start to iterate the equation
and thus build up your solution at successively later times.

Let us use EulerÕs method to solve the ODE for the for the
following example:

A skydiver of mass M kg jumps into the air from an airplane at
t = 0. We assume the initial vertical velocity of the sky diver
is zero at t = 0 and that the skydiver falls vertically. We
assume that the aerodynamic drag is given by

! ! Fair = Cv
2 , C = cons tant , v = vertical velocity(+ downwards)

We can then use Newton's 2nd law to derive the ODE governing
this physical system:

! ! !
M
dv
dt

= −Fair + Mg⇒
dv
dt

= −
C
M
v2 + g , v(0) = 0

In terms of our earlier notation this is:

! ! ! ! !
f (v,t) = −

C
M
v2 + g

Let us use M = 70 kg, C = 0.27 kg/m and h = 0.1 second and
solve the ODE for 0 ≤ t ≤ 20 seconds .

Sample MATLAB script:

 Page 2

clear;clf;hold off;
t=0;n=0;v=0;
C=0.27; M=70; g=9.8;h=0.1;
t_rec(1)=t;v_rec(1)=v;
while t <= 20
 n=n+1;
 v=v+h*(-C*v*v/M + g);
 t=t+h;
 v_rec(n+1)=v;
 t_rec(n+1)=t;
end
plot(t_rec,v_rec)
xlabel('time (seconds)')
ylabel('velocity (m/s)')
title('Skydiver Model')

Alternative script:

clear;clf;hold off;
t=0;v=0;tmin=0;tmax=20;
C=0.27; M=70; g=9.8;h=0.1;
V=[];T=[];
V=[V,v];
T=[T,t];
n=(tmax-tmin)/h;
for k=1:n
 t=t+h;
 v=v+h*fnv(g,M,C,v,t);

 Page 3

 V=[V,v];
 T=[T,t];
end
plot(T,V)
xlabel('time (seconds)')
ylabel('velocity (m/s)')
title('Skydiver Model')

function z=fnv(g,M,C,v,t)
z=-C*v*v/M + g;

Handle graphics script:

clear;clf;hold off;
t=0;v=0;
C=0.27; M=70; g=9.8;h=0.1;
p=plot(t,v,'EraseMode','none','MarkerSize',2);
axis([0,20,0,60]);
xlabel('time (seconds)')
ylabel('velocity (m/s)')
title('Skydiver Model')
while t<=20
 t=t+h;
 v=v+h*fnv(g,M,C,v,t);
 set(p,'XData',t,'YData',v)
 drawnow
end

 Page 4

Warnings : Although the forward Euler method is simple, it has
to be used carefully because of two kinds of possible errors.
The first kind of error is a truncation error that arises due to
the finite size of h and hence inaccuracy in the approximation
for the derivative. This error can be dealt with by making very
small, but this causes compute time to become longer. The second
kind of error is due to instability. The linear approximations
built into the Euler method lead to erratic large time behavior
(not representative of the real equation) that is very sensitive
to parameter values.

Second-Order Euler Methods

We have now learned about EulerÕs method for solving a first-
order ODE. In that method, you began with initial values and
integrated (iterated) to find an unknown function .

We now see how EulerÕs method can be generalized to solve
higher-order ODEÕs.

In practice, people never use EulerÕs method for actual
research, because this simplest-of-all-schemes rarely does well
with complicated equations. In particular, in an effort to
reduce approximation error, one might reduce h. But this leads
to roundoff error in the computer, and can produce instabilities
that grow and ruin your solution. In this lab, we will introduce
one improved scheme, and use it to follow the motions of some
oscillators.

We now consider 2 nd order ODEs of the form

! ! ! ! ! !

d 2x
dt 2

= F(x,dx / dt,t)

This equation might result from using Newton's second law (where
for simplicity we have set m = 1).

This 2 nd-order ODE can be converted into two 1 st -order ODEs and
then we can use the Euler method we just devised. We define

! ! ! ! ! !
v =

dx
dt

and then we have

! ! ! ! ! !

dx
dt

= v , dv
dt

= F(x,v,t)
!

In the Euler method we then have the equations

 Page 5

! ! ! ! xn+1 = xn + vnh , vn+1 = vn + F(xn ,vn ,tn)h
with initial conditions x0 = x(t0) , v0 = v(t0) given.

Consider the example of a harmonic oscillator where

! ! ! x0 = x(t0) = 10.0 , v0 = v(t0) = 0 , F(x,v,t) = −kx = −20x
clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([0,10,-15,15]);
xlabel('time (sec)')
ylabel('Position (m)')
title('Oscillator - Euler')
while t<=10
 t=t+h;
 xold=x;
 x=x+v*h;
 v=v+h*fho(k,xold);
 set(p,'XData',t,'YData',x)
 drawnow
end

function z=fho(k,x)
z=-k*x;

Clearly, Euler methods have a problem with oscillatory systems -
the energy is not conserved (amplitude is increasing).

 Page 6

We can see this problem in another way by plotting the time
development of the system in " phase space", which is position
versus velocity (instead of time).

clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Euler')
while t<=10
 t=t+h;
 xold=x;
 x=x+v*h;
 v=v+h*fho(k,xold);
 set(p,'XData',x,'YData',v)
 drawnow
end

If energy were conserved, then this phase-space curve would be a
closed curve(circle or ellipse). Clearly, energy is not
conserved. Phase-space plots will be very useful in later work.

A slight modification turns the Euler method into the
Euler-Cromer method. Rather than letting the old values of
position and velocity determine the new ones, we let the new
value of position help determine the new value of velocity.
While this little change makes no difference for some types of

 Page 7

problems, it dramatically improves performance on problems
involving oscillatory motion, because it is much better at
conserving energy over a cycle of oscillation.

Further, it is an example of a " leapfrog algorithm"
(imagine the new velocity leaping over the back of the new
position). There are several research-quality algorithms of this
type in use today.

clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Euler-Cromer')
while t<=10
 t=t+h;
 x=x+v*h;
 v=v+h*fho(k,x);
 set(p,'XData',x,'YData',v)
 drawnow
end

Clearly, the energy conservation problem is gone.

Another method of the "leapfrog" type is the Verlet method. We
start with

 Page 8

! ! ! !

dx
dt

= v(t) , d 2x
dt 2

=
dv
dt

= a(x,v,t)

Using the central difference formula for the first and second
derivatives we have

! ! !

xn+1 − xn−1
2h

= vn , xn+1 + xn−1 − 2xn
h2

= an = a(xn ,vn ,tn)

Rearranging terms we have

! ! !
vn =

xn+1 − xn−1

2h
, xn+1 = 2xn − xn−1 + h2an

These equation may look strange at first, but they are easy to
use. Suppose that we know x0 and x1 . Then using the above

equations we get x2 . Knowing x1 and x2 we can then compute x3 and

v2 and so on.

The Verlet method has the disadvantage that it is not "self-
starting". Usually we have initial conditions
! !

! ! ! x1 = x(t = 0) and v1 = v(t = 0) but not v0 = v(t = −h)

This is the price we pay for central difference schemes. To get
this method started we have a variety of options. The
Euler-Cromer method takes vaverage(0→ h) = v1 which is simple but not

very accurate when the velocity is changing rapidly. An
alternative is to use another scheme to get things started, for
example, we could use

! ! ! ! !
r0 = r1 − hv1 +

h2

2
a1

The Verlet method has several advantages. The approximation
errors are much smaller, energy is conserved in oscillatory
systems and if the force is only a function of position, and if
we care only about the trajectory of the particle and not its
velocity (celestial mechanics), we can completely skip the
velocity calculation. It is especially popular for many-particle
systems.

clear;clf;hold off;
t=0;v=0;,x1=10;k=20;h=0.001;
p=plot(t,x1,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')

 Page 9

title('Oscillator - Verlet')
x0=x1-h*v+0.5*h*h*fho(k,x1);
xold=x0;
x=x1;
while t<=10
 t=t+h;
 xnew=2*x-xold+h*h*fho(k,x);
 v=(xnew-xold)/(2*h);
 xold=x;
 x=xnew;
 set(p,'XData',x,'YData',v)
 drawnow
end

No calculation of velocity:

clear;clf;hold off;
t=0;v=0;,x1=10;k=20;h=0.001;
p=plot(t,x1,'EraseMode','none','MarkerSize',2);
axis([0,10,-15,15]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Verlet')
x0=x1-h*v+0.5*h*h*fho(k,x1);
xold=x0;
x=x1;
while t<=10
 t=t+h;
 xnew=2*x-xold+h*h*fho(k,x);
 xold=x;

 Page 10

 x=xnew;
 set(p,'XData',t,'YData',x)
 drawnow
end

Runge-Kutta Methods

In these methods, the accuracy and stability of the
approximations is increased by using higher order numerical
integration methods instead approximations for the derivatives.
Consider the ODE

! ! ! ! !

dy
dt

= f (y,t) , y(0) = y0

In order to calculate yn+1 with a known value of yn we integrate

in the interval tn ≤ t ≤ tn+1 to get

! ! ! ! !
yn+1 = yn + f (y,t)dt

tn

tn+1

∫
The Runge-Kutta methods are now derived by approximating the RHS
integral. We will derive the second-, third-, and fourth-order
Runge-Kutta formulas.

Second Order

In this case, we use the trapezoidal rule to evaluate the
integral.

! ! !
f (y,t)dt

tn

tn+1

∫ =
h
2
f (yn ,tn) + f (yn+1,tn+1)() , h = tn+1 − tn

 Page 11

In this equation, yn+1 is not known, so that the 2 nd term is

further approximated by f (yn+1,tn+1) where

! ! ! yn+1 = estimate calculated by the forward Euler method

! ! ! yn+1 = yn + hf (yn ,tn)

! ! !
yn+1 = yn +

h
2

f (yn,tn) + f (yn+1,tn+1)()
or in more standard form the second-order Runge-Kutta equations
are:

! ! ! !

k1 = hf (yn,tn)

k2 = hf (yn + k1,tn+1)

yn+1 = yn +
1
2

k1 + k2()
Third Order

The third-order Runge Kutta method is derived using a higher
order numerical integration scheme to evaluate the integral.
Using the Simpson 1/3 rule we get (as before):

! !
yn+1 = yn +

h
6
f (yn ,tn) + 4 f (yn+1/2,tn+1/2) + f (yn+1,tn+1)()

where yn+1/2 and yn+1 are estimates because yn+1/2 and yn+1 are unknown.

The estimate yn+1/2 is obtained by the forward Euler method as

! ! ! !
yn+1/2 = yn +

h
2
f (yn ,tn)

The estimate yn+1 may be obtained by

! ! ! ! yn+1 = yn + hf (yn ,tn)
or

! ! ! !
yn+1 = yn +

h
2
f (yn+1/2 ,tn+1/2)

or a linear combination of both

! ! ! ! yn+1 = yn + h ! f (yn ,tn)+ (1 " !) f (yn+1/2 ,tn+1/2)()
Here θ is an undetermined parameter, which is determined to

maximize the accuracy of this numerical method. If we apply the
method to a problem with a known solution, then it is determined
that the optimum value is ! = " 1 .

The 3rd order Runge Kutta formulas then become in standard form:

Fourth Order

 Page 12

Derivation of the 4th -order Runge Kutta method is similar to that

of the 3rd order formulas. The first version is based on the
Simpson 1/3 rule and gives:

! ! ! !

k1 = hf (yn ,tn)

k2 = hf (yn +
1
2
k1,tn+1/2)

k3 = hf (yn +
1
2
k2 ,tn+1/2)

k4 = hf (yn + k3,tn+1)

yn+1 = yn +
1
6
k1 + 2k2 + 2k3 + k4()

The second version is based on the Simpson 3/8 rule and gives:

! ! ! !

k1 = hf (yn ,tn)

k2 = hf (yn +
1
3
k1,tn+1/3)

k3 = hf (yn +
1
3
k2 +

1
3
k3,tn+2 /3)

k4 = hf (yn + k1 − k2 + k3,tn+1)

yn+1 = yn +
1
8
k1 + 3k2 + 3k3 + k4()

Runge-Kutta Codes in 1-, 2- and 3-Dimensions

1-Dimensional Motion - Damped Driven Oscillator

function a=accel1x(x,vx,t)
a=-x - .2*vx +10*sin(t);

clear
% set initial conditions
x=10;
vx=0;
% set time step
h=.01;
% open window
figure('Position',[50 50 500 500]);
% set plot handle and parameters
p=plot(0,x,'.g','EraseMode','none','MarkerSize',2)
axis(100*[0 1 -1 1]);
count=-1;
% Runka-Kutta solution of DEQ
while (count < 1000)
 count=count+1;

 Page 13

 fx1=vx;
 gx1=accel1x(x,vx,count*h);
 fx2=vx+h*gx1/2;
 gx2=accel1x(x+h*fx1/2,vx+h*gx1/2,(count+0.5)*h);
 fx3=vx+h*gx2/2;
 gx3=accel1x(x+h*fx2/2,vx+h*gx2/2,(count+0.5)*h);
 fx4=vx+h*gx3;
 gx4=accel1x(x+h*fx3,vx+h*gx3,(count+1)*h);
 x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
 vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
 set(p,'XData',count*h,'YData',x)
 drawnow
end

2-Dimensional Motion - Projectile with Air Resistance

function a=accel2x(x,y,vx,vy,t)
a=-0.2*vx;

function a=accel2y(x,y,vx,vy,t)
a=-10-0.2*vy;

clear
x=0;
vx=20;
y=0;
vy=40;

 Page 14

h=.01;
figure('Position',[50 50 500 500]);
p=plot(x,y,'.g','EraseMode','none','MarkerSize',2)
axis(100*[0 1 -1 1]);
r=sqrt(x*x+y*y);
count=-1;
while (count < 1000)
 count=count+1;
 fx1=vx;
 gx1=accel2x(x,y,vx,vy,count*h);
 fy1=vy;
 gy1=accel2y(x,y,vx,vy,count*h);
 fx2=vx+h*gx1/2;
 gx2=accel2x(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
 (count+0.5)*h);
 fy2=vy+h*gy1/2;
 gy2=accel2y(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
 (count+0.5)*h);
 fx3=vx+h*gx2/2;
 gx3=accel2x(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
 (count+0.5)*h);
 fy3=vy+h*gy2/2;
 gy3=accel2y(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
 (count+0.5)*h);
 fx4=vx+h*gx3;
 gx4=accel2x(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
 fy4=vy+h*gy3;
 gy4=accel2y(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
 x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
 vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
 y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
 vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
 r=sqrt(x*x+y*y);
 set(p,'XData',x,'YData',y)
 drawnow
end

 Page 15

Orbits Around a Planet in 2-Dimensions

function a=accele2dx(x,y,vx,vy,t)
alpha=4*10^14;
r=sqrt(x^2+y^2);
a=-alpha*x./(r^3);

function a=accele2dy(x,y,vx,vy,t)
alpha=4*10^14;
r=sqrt(x^2+y^2);
a=-alpha*y./(r^3);

clear
re=6.4*(10^6);
gm=4*10^14;
x=3*re;
vx=0;
y=0;
vy=0.7*sqrt(gm/x);
h=60;
xs=[];
ys=[];
for th=0:.01*pi:2*pi;
 xs=[xs,re*cos(th)];
 ys=[ys,re*sin(th)];

 Page 16

end
figure('Position',[50 50 500 500]);
plot(xs,ys,'r');
hold on
fill(xs,ys,'r')
p=plot(x,y,'.g','EraseMode','none','MarkerSize',2)
axis(5*re*[-1 1 -1 1]);
r=sqrt(x*x+y*y);
count=-1;
while (count < 1000)
 count=count+1;
 fx1=vx;
 gx1=accele2dx(x,y,vx,vy,count*h);
 fy1=vy;
 gy1=accele2dy(x,y,vx,vy,count*h);
 fx2=vx+h*gx1/2;
 gx2=accele2dx(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
 (count+0.5)*h);
 fy2=vy+h*gy1/2;
 gy2=accele2dy(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
 (count+0.5)*h);
 fx3=vx+h*gx2/2;
 gx3=accele2dx(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
 (count+0.5)*h);
 fy3=vy+h*gy2/2;
 gy3=accele2dy(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
 (count+0.5)*h);
 fx4=vx+h*gx3;
 gx4=accele2dx(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
 fy4=vy+h*gy3;
 gy4=accele2dy(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
 x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
 vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
 y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
 vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
 r=sqrt(x*x+y*y);
 if (r <= re)
 break
 end
 set(p,'XData',x,'YData',y)
 drawnow
end
hold off

 Page 17

3-Dimensional Motion
Charged Particle in Earth Magnetic Dipole Field - Orbits

function a=accelx(alpha,r,x,y,z,vx,vy,vz)
a=alpha*((2*z*z-x*x-y*y)*vy-3*y*z*vz)/r^5;

function a=accely(alpha,r,x,y,z,vx,vy,vz)
a=alpha*(3*x*z*vz-(2*z*z-x*x-y*y)*vx)/r^5;

function a=accelz(alpha,r,x,y,z,vx,vy,vz)
a=3*alpha*z*(y*vx-x*vy)/r^5;

clear
rearth=6.4*10^6;
x=3*rearth;
vx=-0.9*10^4;
y=3*rearth;
vy=-0.9*10^4;
z=0;
vz=-2.9*10^4;
h=5;
load topo
[X,Y,Z]=sphere(24);
X=rearth*X;
Y=rearth*Y;
Z=rearth*Z;

 Page 18

figure('Position',[50 50 600 600]);
axis(3*rearth*[-1 1 -1 1 -1 1]);
box
view(-135,25);
colormap(topomap1);
surface(X,Y,Z,'FaceColor','texture','CData',topo);
hold on
alpha=10^20;
r=sqrt(x*x+y*y+z*z);
count=0;
while ((r > rearth) & (count < 5000) & (r < 6*rearth))
 count=count+1;
 if (rem(count,100) == 0)
 count
 end
 fx1=vx;
 gx1=accelx(alpha,r,x,y,z,vx,vy,vz);
 fy1=vy;
 gy1=accely(alpha,r,x,y,z,vx,vy,vz);
 fz1=vz;
 gz1=accelz(alpha,r,x,y,z,vx,vy,vz);
 fx2=vx+h*gx1/2;
 gx2=accelx(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ...
 vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
 fy2=vy+h*gy1/2;
 gy2=accely(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ...
 vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
 fz2=vz+h*gz1/2;
 gz2=accelz(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ...
 vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
 fx3=vx+h*gx2/2;
 gx3=accelx(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ...
 vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
 fy3=vy+h*gy2/2;
 gy3=accely(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ...
 vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
 fz3=vz+h*gz2/2;
 gz3=accelz(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ...
 vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
 fx4=vx+h*gx3;
 gx4=accelx(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ...
 vx+h*gx3,vy+h*gy3,vz+h*gz3);
 fy4=vy+h*gy3;
 gy4=accely(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ...
 vx+h*gx3,vy+h*gy3,vz+h*gz3);
 fz4=vz+h*gz3;

 Page 19

 gz4=accelz(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ...
 vx+h*gx3,vy+h*gy3,vz+h*gz3);
 x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
 vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
 y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
 vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
 z=z+h*(fz1+2*fz2+2*fz3+fz4)/6;
 vz=vz+h*(gz1+2*gz2+2*gz3+gz4)/6;
 r=sqrt(x*x+y*y+z*z);
 plot3(x,y,z,'.k','MarkerSize',2)
 drawnow
end
hold off

Notice how " hidden lines" are automatically enabled so that
trajectory that passes behind the earth is hidden from view.

 Page 20

Using Rotate3D from the figure Tools menu we can rotate the
entire 3D plot and look at the data from different viewpoints
(without recalculation).

Systems of ODEs

Consider the system of coupled first-order ODEs:

! ! !

dx
dt

= f (t, x(t), y(t))

dy
dt

= g(t, x(t), y(t))

x(0) , y(0) known
The Runge-Kutta Method is easily applied to these coupled
equations(same system as we worked with earlier for Newton's
second law):

 Page 21

! ! !

tn+1 = tn + h

xn+1 = xn +
1
6

(f1 + 2 f2 + 2 f3 + f4)

yn+1 = yn +
1
6

(g1 + 2g2 + 2g3 + g4)

where

!

f1 = hf (tn ,xn ,yn) g1 = hg(tn ,xn ,yn)
f2 = hf (tn + h / 2,xn + f1 / 2,yn + g1 / 2) g2 = hg(tn + h / 2,xn + f1 / 2,yn + g1 / 2)

f3 = hf (tn + h / 2,xn + f2 / 2,yn + g2 / 2) g3 = hg(tn + h / 2,xn + f2 / 2,yn + g2 / 2)

f4 = hf (tn + h,xn + f3,yn + g3) g4 = hg(tn + h,xn + f3,yn + g3)

Predator-Prey Models

An example problem of a system of coupled nonlinear differential
equations is the famous predator-prey problem. Let x(t) and y(t)
denote the population of rabbits and foxes, respectively, at
time t.

The predator-prey model asserts that x(t) and y(t) satisfy

! ! !

dx
dt

= Ax(t) − Bx(t)y(t) , dy
dt

= Cx(t)y(t) − Dy(t)

Higher-Order ODEs

As we saw in our earlier discussion of Newton's second law type
second-order ODEs, we have equations of the form

! ! !

d2x
dt2

= f (t,x(t), !x(t)) , x(t0) = x0 , !x(t0) = !x0

As we saw earlier the second-order differential equation can be
reformulated as a system of two
first-order equations if we use the substitution

! ! !

dx
dt

= y(t)

then

! ! !

d 2x
dt 2

=
dy
dt

and we get the pair of equations

! ! !

dx
dt

= y , dy
dt

= f (t, x, y) x(t0) = x0 , y(t0) = y0

and then we use Runge-Kutta to solve this pair as described
earlier for predator-prey problems.

 Page 22

Boundary-Value Problems

Another type of ODE has the form

! ! !

d2x
dt2 = f (t, x,dx / dt) , a ≤ t ≤ b

with boundary conditions

! ! ! x(a) = α , x(b) = β
This is called a boundary-value problem. The most important
thing to check for this type of equation is whether a unique
solution even exists. The conditions that must be satisfied are:

! ! !

∂f
∂x

= fx (t, x, y = dx / dt) > 0 and ∂f
∂y

= fy (t, x, y) ≤ M

for some constant M > 0 in the entire region of physical
interest.

An important special (most of the physical cases fall into this
category) is the linear boundary-value problem. In this case the
function f(t,x,y) takes the form

! ! ! f (t,x,y) = p(t)y + q(t)x + r(t)
and

! ! !

∂f
∂x

= q(t) and
∂f
∂y

= p(t)

are continuous. If there exists a constant M > 0 for which
q(t) > 0 and p(t) " M, then a unique solution exists. Finding a
solution to the linear boundary value problem is assisted by the
linear structure of the equation and the use of two special
initial-value problems(IVPs). Suppose that u is the unique
solution to the IVP

! ! ! u '' = p(t)u '(t) + q(t)u(t) + r(t)
with

! ! ! u(a) = α , u '(a) = 0

Furthermore, suppose that v is the unique solution of the IVP

! ! ! v '' = p(t)v '(t) + q(t)v(t)
with

! ! ! v(a) = 0 , v '(a) = 1!
Then, if v(b) # 0, the unique solution to

 Page 23

! ! ! x '' = f (t,x,x ') = p(t)x '(t) + q(t)x(t) + r(t)
with

! ! ! ! x(a) = α , x(b) = β
is given by

! ! ! !
x(t) = u(t) + β − u(b)

v(b)
v(t)

which clearly has the correct boundary values.

The procedure is to use the fourth-order Runge-Kutta method to
construct numerical solutions for u(t) and v(t) and then
construct the solution for x(t) from these two solutions. This
method is called the linear shooting method.

Example: Consider the equation

! ! ! !
x '' = −

2
t

x '(t) + 2
t 2

x(t) +10 cos(ln(t))
t 2

over the t-interval [1,3] with x(1) = 1 and x(3) = -1.

We need to solve the two equations:

! ! ! !

u '' = −
2
t
u '(t) + 2

t 2 u(t) +10 cos(ln(t))
t 2

u(1) = 1 , u '(1) = 0
and

! ! ! !

v'' = −
2
t

v'(t) + 2
t 2 v(t)

v(1) = 0 , v'(1) = 1

and the solution to the original equation is

! ! ! !
x(t) = u(t) −

1+ u(b)
v(b)

v(t)
!

A sample code is:

function z=ufunct(u,uv,t)
z=-(2/t)*uv+(2/(t^2))*u+10*cos(log(t))/(t^2);

function z=vfunct(v,vv,t)
z=-(2/t)*vv+(2/(t^2))*v;

clear
% set initial conditions

 Page 24

du=zeros(1,1000);
dv=zeros(1,1000);
% set time step
h=.002;
% Runka-Kutta solution for u
u=1;
uv=0;
t=1;
count = 0;
while (count < 1000)
 count=count+1;
 t=t+h;
 fx1=uv;
 gx1=ufunct(u,uv,t);
 fx2=uv+h*gx1/2;
 gx2=ufunct(u+h*fx1/2,uv+h*gx1/2,t+0.5*h);
 fx3=uv+h*gx2/2;
 gx3=ufunct(u+h*fx2/2,uv+h*gx2/2,t+0.5*h);
 fx4=uv+h*gx3;
 gx4=ufunct(u+h*fx3,uv+h*gx3,t+h);
 u=u+h*(fx1+2*fx2+2*fx3+fx4)/6;
 uv=uv+h*(gx1+2*gx2+2*gx3+gx4)/6;
 du(1,count)=u;
end
% Runka-Kutta solution for v
v=0;
vv=1;
t=1;
count = 0;
while (count < 1000)
 count=count+1;
 t=t+h;
 fx1=vv;
 gx1=vfunct(v,vv,t);
 fx2=vv+h*gx1/2;
 gx2=vfunct(v+h*fx1/2,vv+h*gx1/2,t+0.5*h);
 fx3=vv+h*gx2/2;
 gx3=vfunct(v+h*fx2/2,vv+h*gx2/2,t+0.5*h);
 fx4=vv+h*gx3;
 gx4=vfunct(v+h*fx3,vv+h*gx3,t+h);
 v=v+h*(fx1+2*fx2+2*fx3+fx4)/6;
 vv=vv+h*(gx1+2*gx2+2*gx3+gx4)/6;
 dv(1,count)=v;
end
x=du-(1+du(1000))*dv/dv(1000);
t=1:h:3;

 Page 25

xth=(4.336-0.336*t.^3-3*(t.^2).*cos(log(t))+ ...
 (t.^2).*sin(log(t)))./(t.^2);
xmax=max(x);
xmin=min(x);
xthmax=max(xth);
xthmin=min(xth);
max=max([xmax,xthmax]);
min=min([xmin,xthmin]);
% open window
figure('Position',[50 50 500 500]);
axis([1,3,min,max]);
plot(t,xth,'-r');
hold on;
tt=t(1:20:1000);
x1=[1,x];
xx=x1(1:20:1000);
plot(tt,xx,'ob');
hold off

! ! ! !
The red line is the theoretical curve and the blue circles
represent the numerical method. Clearly it works.

 Page 26

