
Solving Ordinary Differential Equations

The study of the dynamic behavior of systems is fundamental to 
all areas of science. An equation that involves one or more 
ordinary derivatives of some unknown function is called an 
ordinary differential equation (ODE). The order of the equation 
= order of highest derivative. ODEs are commonly used for 
mathematical modeling in many diverse fields. Often there is no 
known analytic solution to the equation and numerical 
approximations are required. A good way to express the actual 
real world situation with differential equations is 

! "all interesting equations are either trivial, 
!  or impossibly difficult to solve analytically"
 
Traditional analysis solves the trivial cases, and can yield 
invaluable insight into the solution of the difficult ones. But 
the bottom line is that the difficult cases usually must be 
treated numerically.

We will mostly study ODEs in the time domain (the solutions give 
the system behavior in time). These ODEs are initial-value 
problems, where all the specified system conditions are given at 
some initial time, say t = t0 .  

First-Order ODEs

Imagine we have a problem where we seek y(t), where 
y(t)  is described by a first order ODE:

! ! ! ! !

dy
dt

= f (y,t)

You probably know a lot about equations like this already from 
class,  i.e., if they are linear, we know how to arrive at an 
analytical solution.  Even if the equation is nonlinear, if it 
is inspired by a real physical situation, we expect it will have 
a unique solution. 

Since it is first order,  it requires one initial condition in 
order to specify that solution, i.e., y(t0 ) = y0 .

The most basic algorithm for solving these equations is Euler’s 
method.  
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Whenever we approximate a derivative by a difference equation, 
as we did in the laboratory on numerical differentiation, we say 
we are using a finite-difference method. EulerÕs method is of 
this type, and it uses the 2-point approximation for the 
derivative. Let us call our time step h, and let us use the 
notation

! ! ! y(tn) = y(t0 + nh) = yn          ,       h = Δt = time step

We set out to find a set of lattice points (tn , yn ){ }  which are an 

approximate solution for the function y(t). Thus, we have the 
approximation

! ! ! !

dy
dt

≈
yn+1 − yn

h
= f (yn ,tn )

and the Euler method gives us:

! ! ! ! yn+1 = yn + f (yn ,tn )h
For first-order equations thatÕs it!

The method is said to be self-starting, all you need is the 

initial condition y0  in order to start to iterate the equation 
and thus build up your solution at successively later times. 

Let us use EulerÕs method to solve the ODE for the for the 
following example:

A skydiver of mass M kg jumps into the air from an airplane at  
t = 0. We assume the initial vertical velocity of the sky diver 
is zero at t = 0 and that the skydiver falls vertically. We 
assume that the aerodynamic drag is given by

! ! Fair = Cv
2 , C = cons tant , v = vertical velocity(+ downwards)

We can then use Newton's 2nd law to derive the ODE governing 
this physical system:

! ! !
M
dv
dt

= −Fair + Mg⇒
dv
dt

= −
C
M
v2 + g , v(0) = 0

In terms of our earlier notation this is:

! ! ! ! !
f (v,t) = −

C
M
v2 + g

Let us use  M = 70 kg, C = 0.27 kg/m and h = 0.1 second and 
solve the ODE for 0 ≤ t ≤ 20 seconds .

Sample MATLAB script:

                                                                      Page 2



clear;clf;hold off;
t=0;n=0;v=0;
C=0.27; M=70; g=9.8;h=0.1;
t_rec(1)=t;v_rec(1)=v;
while t <= 20
   n=n+1;
   v=v+h*(-C*v*v/M + g);
   t=t+h;
   v_rec(n+1)=v;
   t_rec(n+1)=t;
end
plot(t_rec,v_rec)
xlabel('time (seconds)')
ylabel('velocity  (m/s)')
title('Skydiver Model')

Alternative script:

clear;clf;hold off;
t=0;v=0;tmin=0;tmax=20;
C=0.27; M=70; g=9.8;h=0.1;
V=[];T=[];
V=[V,v];
T=[T,t];
n=(tmax-tmin)/h;
for k=1:n
  t=t+h;
  v=v+h*fnv(g,M,C,v,t);

                                                                      Page 3



  V=[V,v];
  T=[T,t];
end
plot(T,V)
xlabel('time (seconds)')
ylabel('velocity  (m/s)')
title('Skydiver Model')

function z=fnv(g,M,C,v,t)
z=-C*v*v/M + g;

Handle graphics script:

clear;clf;hold off;
t=0;v=0;
C=0.27; M=70; g=9.8;h=0.1;
p=plot(t,v,'EraseMode','none','MarkerSize',2);
axis([0,20,0,60]);
xlabel('time (seconds)')
ylabel('velocity  (m/s)')
title('Skydiver Model')
while t<=20
  t=t+h;
  v=v+h*fnv(g,M,C,v,t);
  set(p,'XData',t,'YData',v)
  drawnow
end
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Warnings : Although the forward Euler method is simple, it has 
to be used carefully because of two kinds of possible errors. 
The first kind of error is a truncation error that arises due to 
the finite size of h  and hence inaccuracy in the approximation 
for the derivative. This error can be dealt with by making  very 
small, but this causes compute time to become longer. The second 
kind of error is due to instability.  The linear approximations 
built into the Euler method lead to erratic large time behavior 
(not representative of the real equation) that is very sensitive 
to parameter values.

Second-Order Euler Methods

We have now learned about EulerÕs method for solving a first-
order ODE. In that method, you began with initial values and 
integrated (iterated) to find an unknown function . 

We now see how EulerÕs method can be generalized to solve 
higher-order ODEÕs. 

In practice, people never use EulerÕs method for actual 
research, because this simplest-of-all-schemes rarely does well 
with complicated equations. In particular, in an effort to 
reduce approximation error, one might reduce h. But this leads 
to roundoff error in the computer, and can produce instabilities 
that grow and ruin your solution. In this lab, we will introduce 
one improved scheme, and use it to follow the motions of some 
oscillators.

We now consider 2 nd order ODEs of the form

! ! ! ! ! !

d 2x
dt 2

= F(x,dx / dt,t)

This equation might result from using Newton's second law (where 
for simplicity we have set m = 1).

This 2 nd-order ODE can be converted into two 1 st -order ODEs and 
then we can use the Euler method we just devised. We define 

! ! ! ! ! !
v =

dx
dt

and then we have

! ! ! ! ! !

dx
dt

= v , dv
dt

= F(x,v,t)
!

In the Euler method we then have the equations
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! ! ! ! xn+1 = xn + vnh , vn+1 = vn + F(xn ,vn ,tn )h
with initial conditions x0 = x(t0 ) , v0 = v(t0 )  given.

Consider the example of a harmonic oscillator where

! ! ! x0 = x(t0 ) = 10.0 , v0 = v(t0 ) = 0 , F(x,v,t) = −kx = −20x
clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([0,10,-15,15]);
xlabel('time (sec)')
ylabel('Position (m)')
title('Oscillator - Euler')
while t<=10
  t=t+h;
  xold=x;
  x=x+v*h;
  v=v+h*fho(k,xold);
  set(p,'XData',t,'YData',x)
  drawnow
end

function z=fho(k,x)
z=-k*x;

Clearly, Euler methods have a problem with oscillatory systems - 
the energy is not conserved (amplitude is increasing).
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We can see this problem in another way by plotting the time 
development of the system in " phase space", which is position 
versus velocity (instead of time).

clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Euler')
while t<=10
  t=t+h;
  xold=x;
  x=x+v*h;
  v=v+h*fho(k,xold);
  set(p,'XData',x,'YData',v)
  drawnow
end

If energy were conserved, then this phase-space curve would be a 
closed curve(circle or ellipse). Clearly, energy is not 
conserved. Phase-space plots will be very useful in later work.

A slight modification turns the Euler method into the 
Euler-Cromer method. Rather than letting the old values of 
position and velocity determine the new ones, we let the new 
value of position help determine the new value of velocity. 
While this little change makes no difference for some types of 
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problems, it dramatically improves performance on problems 
involving oscillatory motion, because it is much better at 
conserving energy over a cycle of oscillation.  

Further, it is an example of a " leapfrog algorithm"          
(imagine the new velocity leaping over the back of the new 
position). There are several research-quality algorithms of this 
type in use today.

clear;clf;hold off;
t=0;v=0;,x=10;k=20;h=0.001;
p=plot(t,x,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Euler-Cromer')
while t<=10
  t=t+h;
  x=x+v*h;
  v=v+h*fho(k,x);
  set(p,'XData',x,'YData',v)
  drawnow
end

Clearly, the energy conservation problem is gone.

Another method of the "leapfrog" type is the Verlet method. We 
start with
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! ! ! !

dx
dt

= v(t) , d 2x
dt 2

=
dv
dt

= a(x,v,t)

Using the central difference formula for the first and second 
derivatives we have

! ! !

xn+1 − xn−1
2h

= vn , xn+1 + xn−1 − 2xn
h2

= an = a(xn ,vn ,tn )

Rearranging terms we have

! ! !
vn =

xn+1 − xn−1

2h
, xn+1 = 2xn − xn−1 + h2an

These equation may look strange at first, but they are easy to 
use. Suppose that we know x0  and x1 . Then using the above 

equations we get x2 . Knowing x1  and x2  we can then compute x3  and 

v2  and so on.

The Verlet method has the disadvantage that it is not "self-
starting". Usually we have initial conditions 
! !

! ! ! x1 = x(t = 0) and v1 = v(t = 0) but not v0 = v(t = −h)   

This is the price we pay for central difference schemes. To get 
this method started we have a variety of options. The 
Euler-Cromer method takes vaverage(0→ h) = v1  which is simple but not 

very accurate when the velocity is changing rapidly. An 
alternative is to use another scheme to get things started, for 
example, we could use 

! ! ! ! !
r0 = r1 − hv1 +

h2

2
a1

The Verlet method has several advantages. The approximation 
errors are much smaller, energy is conserved in oscillatory 
systems and if the force is only a function of position, and if 
we care only about the trajectory of the particle and not its 
velocity (celestial mechanics), we can completely skip the 
velocity calculation. It is especially popular for many-particle 
systems.

clear;clf;hold off;
t=0;v=0;,x1=10;k=20;h=0.001;
p=plot(t,x1,'EraseMode','none','MarkerSize',2);
axis([-15,15,-50,50]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
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title('Oscillator - Verlet')
x0=x1-h*v+0.5*h*h*fho(k,x1);
xold=x0;
x=x1;
while t<=10
  t=t+h;
  xnew=2*x-xold+h*h*fho(k,x);
  v=(xnew-xold)/(2*h);
  xold=x;
  x=xnew;
  set(p,'XData',x,'YData',v)
  drawnow
end

No calculation of velocity:

clear;clf;hold off;
t=0;v=0;,x1=10;k=20;h=0.001;
p=plot(t,x1,'EraseMode','none','MarkerSize',2);
axis([0,10,-15,15]);
xlabel('Velocity (m/sec)')
ylabel('Position (m)')
title('Oscillator - Verlet')
x0=x1-h*v+0.5*h*h*fho(k,x1);
xold=x0;
x=x1;
while t<=10
  t=t+h;
  xnew=2*x-xold+h*h*fho(k,x);
  xold=x;
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  x=xnew;
  set(p,'XData',t,'YData',x)
  drawnow
end

Runge-Kutta Methods

In these methods, the accuracy and stability of the 
approximations is increased by using higher order numerical 
integration methods instead approximations for the derivatives. 
Consider the ODE

! ! ! ! !

dy
dt

= f (y,t)         ,       y(0) = y0

In order to calculate yn+1  with a known value of yn  we integrate 

in the interval tn ≤ t ≤ tn+1  to get

! ! ! ! !
yn+1 = yn + f (y,t)dt

tn

tn+1

∫
The Runge-Kutta methods are now derived by approximating the RHS 
integral. We will derive the second-, third-, and fourth-order 
Runge-Kutta formulas.

Second Order

In this case, we use the trapezoidal rule to evaluate the 
integral.

! ! !
f (y,t)dt

tn

tn+1

∫ =
h
2
f (yn ,tn ) + f (yn+1,tn+1)( )    ,   h = tn+1 − tn
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In this equation, yn+1  is not known, so that the 2 nd term is 

further approximated by f (yn+1,tn+1)  where

! ! ! yn+1 = estimate calculated by the forward Euler method

! ! ! yn+1 = yn + hf (yn ,tn )

! ! !
yn+1 = yn +

h
2

f (yn,tn) + f (yn+1,tn+1)( )
or in more standard form the second-order Runge-Kutta equations 
are:

! ! ! !

k1 = hf (yn,tn)

k2 = hf (yn + k1,tn+1)

yn+1 = yn +
1
2

k1 + k2( )
Third Order

The third-order Runge Kutta method is derived using a higher 
order numerical integration scheme to evaluate the integral. 
Using the Simpson 1/3 rule we get (as before):

! !
yn+1 = yn +

h
6
f (yn ,tn ) + 4 f (yn+1/2,tn+1/2 ) + f (yn+1,tn+1)( )

where yn+1/2   and  yn+1  are estimates because yn+1/2   and  yn+1  are unknown.

The estimate yn+1/2  is obtained by the forward Euler method as

! ! ! !
yn+1/2 = yn +

h
2
f (yn ,tn )

The estimate  yn+1  may be obtained by

! ! ! ! yn+1 = yn + hf (yn ,tn )
or

! ! ! !
yn+1 = yn +

h
2
f (yn+1/2 ,tn+1/2 )

or a linear combination of both

! ! ! ! yn+1 = yn + h ! f (yn ,tn )+ (1 " ! ) f (yn+1/2 ,tn+1/2 )( )
Here θ  is an undetermined parameter, which is determined to 

maximize the accuracy of this numerical method. If we apply the 
method to a problem with a known solution, then it is determined 
that the optimum value is ! = " 1 .

The 3rd  order Runge Kutta formulas then become in standard form:

Fourth Order
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Derivation of the 4th -order Runge Kutta method is similar to that 

of the 3rd  order formulas. The first version is based on the 
Simpson 1/3 rule and gives:

! ! ! !

k1 = hf (yn ,tn )

k2 = hf (yn +
1
2
k1,tn+1/2 )

k3 = hf (yn +
1
2
k2 ,tn+1/2 )

k4 = hf (yn + k3,tn+1)

yn+1 = yn +
1
6
k1 + 2k2 + 2k3 + k4( )

The second version is based on the Simpson 3/8 rule and gives:

! ! ! !

k1 = hf (yn ,tn )

k2 = hf (yn +
1
3
k1,tn+1/3 )

k3 = hf (yn +
1
3
k2 +

1
3
k3,tn+2 /3 )

k4 = hf (yn + k1 − k2 + k3,tn+1)

yn+1 = yn +
1
8
k1 + 3k2 + 3k3 + k4( )

Runge-Kutta Codes in 1-, 2- and 3-Dimensions

1-Dimensional Motion - Damped Driven Oscillator

function a=accel1x(x,vx,t)
a=-x - .2*vx +10*sin(t);

clear
% set initial conditions
x=10;
vx=0;
% set time step
h=.01;
% open window
figure('Position',[50 50 500 500]);
% set plot handle and parameters
p=plot(0,x,'.g','EraseMode','none','MarkerSize',2)
axis(100*[0 1 -1 1]);
count=-1;
% Runka-Kutta solution of DEQ
while (count < 1000)
  count=count+1;
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  fx1=vx;
  gx1=accel1x(x,vx,count*h);
  fx2=vx+h*gx1/2;
  gx2=accel1x(x+h*fx1/2,vx+h*gx1/2,(count+0.5)*h);
  fx3=vx+h*gx2/2;
  gx3=accel1x(x+h*fx2/2,vx+h*gx2/2,(count+0.5)*h);
  fx4=vx+h*gx3;
  gx4=accel1x(x+h*fx3,vx+h*gx3,(count+1)*h);
  x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
  set(p,'XData',count*h,'YData',x)
  drawnow
end

2-Dimensional Motion - Projectile with Air Resistance

function a=accel2x(x,y,vx,vy,t)
a=-0.2*vx;

function a=accel2y(x,y,vx,vy,t)
a=-10-0.2*vy;

clear
x=0;
vx=20;
y=0;
vy=40;
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h=.01;
figure('Position',[50 50 500 500]);
p=plot(x,y,'.g','EraseMode','none','MarkerSize',2)
axis(100*[0 1 -1 1]);
r=sqrt(x*x+y*y);
count=-1;
while (count < 1000)
  count=count+1;
  fx1=vx;
  gx1=accel2x(x,y,vx,vy,count*h);
  fy1=vy;
  gy1=accel2y(x,y,vx,vy,count*h);
  fx2=vx+h*gx1/2;
  gx2=accel2x(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
      (count+0.5)*h);
  fy2=vy+h*gy1/2;
  gy2=accel2y(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
      (count+0.5)*h);
  fx3=vx+h*gx2/2;
  gx3=accel2x(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
     (count+0.5)*h);
  fy3=vy+h*gy2/2;
  gy3=accel2y(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
     (count+0.5)*h);
  fx4=vx+h*gx3;
  gx4=accel2x(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
  fy4=vy+h*gy3;
  gy4=accel2y(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
  x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
  y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
  vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
  r=sqrt(x*x+y*y);
  set(p,'XData',x,'YData',y)
  drawnow
end
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Orbits Around a Planet in 2-Dimensions

function a=accele2dx(x,y,vx,vy,t)
alpha=4*10^14;
r=sqrt(x^2+y^2);
a=-alpha*x./(r^3);

function a=accele2dy(x,y,vx,vy,t)
alpha=4*10^14;
r=sqrt(x^2+y^2);
a=-alpha*y./(r^3);

clear
re=6.4*(10^6);
gm=4*10^14;
x=3*re;
vx=0;
y=0;
vy=0.7*sqrt(gm/x);
h=60;
xs=[];
ys=[];
for th=0:.01*pi:2*pi;
  xs=[xs,re*cos(th)];
  ys=[ys,re*sin(th)];
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end
figure('Position',[50 50 500 500]);
plot(xs,ys,'r');
hold on
fill(xs,ys,'r')
p=plot(x,y,'.g','EraseMode','none','MarkerSize',2)
axis(5*re*[-1 1 -1 1]);
r=sqrt(x*x+y*y);
count=-1;
while (count < 1000)
  count=count+1;
  fx1=vx;
  gx1=accele2dx(x,y,vx,vy,count*h);
  fy1=vy;
  gy1=accele2dy(x,y,vx,vy,count*h);
  fx2=vx+h*gx1/2;
  gx2=accele2dx(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...   
       (count+0.5)*h);
  fy2=vy+h*gy1/2;
  gy2=accele2dy(x+h*fx1/2,y+h*fy1/2,vx+h*gx1/2,vy+h*gy1/2, ...
       (count+0.5)*h);
  fx3=vx+h*gx2/2;
  gx3=accele2dx(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
       (count+0.5)*h);
  fy3=vy+h*gy2/2;
  gy3=accele2dy(x+h*fx2/2,y+h*fy2/2,vx+h*gx2/2,vy+h*gy2/2, ...
       (count+0.5)*h);
  fx4=vx+h*gx3;
  gx4=accele2dx(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
  fy4=vy+h*gy3;
  gy4=accele2dy(x+h*fx3,y+h*fy3,vx+h*gx3,vy+h*gy3,(count+1)*h);
  x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
  y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
  vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
  r=sqrt(x*x+y*y);
  if (r <= re)
       break
  end
  set(p,'XData',x,'YData',y)
  drawnow
end
hold off
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3-Dimensional Motion
Charged Particle in Earth Magnetic Dipole Field - Orbits

function a=accelx(alpha,r,x,y,z,vx,vy,vz)
a=alpha*((2*z*z-x*x-y*y)*vy-3*y*z*vz)/r^5;

function a=accely(alpha,r,x,y,z,vx,vy,vz)
a=alpha*(3*x*z*vz-(2*z*z-x*x-y*y)*vx)/r^5;

function a=accelz(alpha,r,x,y,z,vx,vy,vz)
a=3*alpha*z*(y*vx-x*vy)/r^5;

clear
rearth=6.4*10^6;
x=3*rearth;
vx=-0.9*10^4;
y=3*rearth;
vy=-0.9*10^4;
z=0;
vz=-2.9*10^4;
h=5;
load topo
[X,Y,Z]=sphere(24);
X=rearth*X;
Y=rearth*Y;
Z=rearth*Z;
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figure('Position',[50 50 600 600]);
axis(3*rearth*[-1 1 -1 1 -1 1]);
box
view(-135,25);
colormap(topomap1);
surface(X,Y,Z,'FaceColor','texture','CData',topo);
hold on
alpha=10^20;
r=sqrt(x*x+y*y+z*z);
count=0;
while ((r > rearth) & (count < 5000) & (r < 6*rearth))
  count=count+1;
  if (rem(count,100) == 0)
    count
  end
  fx1=vx;
  gx1=accelx(alpha,r,x,y,z,vx,vy,vz);
  fy1=vy;
  gy1=accely(alpha,r,x,y,z,vx,vy,vz);
  fz1=vz;
  gz1=accelz(alpha,r,x,y,z,vx,vy,vz);
  fx2=vx+h*gx1/2;
  gx2=accelx(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ... 
      vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
  fy2=vy+h*gy1/2;
  gy2=accely(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ... 
      vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
  fz2=vz+h*gz1/2;
  gz2=accelz(alpha,r,x+h*fx1/2,y+h*fy1/2,z+h*fz1/2, ... 
      vx+h*gx1/2,vy+h*gy1/2,vz+h*gz1/2);
  fx3=vx+h*gx2/2;
  gx3=accelx(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ... 
      vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
  fy3=vy+h*gy2/2;
  gy3=accely(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ... 
      vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
  fz3=vz+h*gz2/2;
  gz3=accelz(alpha,r,x+h*fx2/2,y+h*fy2/2,z+h*fz2/2, ... 
      vx+h*gx2/2,vy+h*gy2/2,vz+h*gz2/2);
  fx4=vx+h*gx3;
  gx4=accelx(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ... 
      vx+h*gx3,vy+h*gy3,vz+h*gz3);
  fy4=vy+h*gy3;
  gy4=accely(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ... 
      vx+h*gx3,vy+h*gy3,vz+h*gz3);
  fz4=vz+h*gz3;
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  gz4=accelz(alpha,r,x+h*fx3,y+h*fy3,z+h*fz3, ... 
      vx+h*gx3,vy+h*gy3,vz+h*gz3);
  x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
  y=y+h*(fy1+2*fy2+2*fy3+fy4)/6;
  vy=vy+h*(gy1+2*gy2+2*gy3+gy4)/6;
  z=z+h*(fz1+2*fz2+2*fz3+fz4)/6;
  vz=vz+h*(gz1+2*gz2+2*gz3+gz4)/6;
  r=sqrt(x*x+y*y+z*z);
  plot3(x,y,z,'.k','MarkerSize',2)
  drawnow
end
hold off

Notice how " hidden lines" are automatically enabled so that 
trajectory that passes behind the earth is hidden from view.
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Using Rotate3D from the figure Tools menu we can rotate the 
entire 3D plot and look at the data from different viewpoints 
(without recalculation).

Systems of ODEs

Consider the system of coupled first-order ODEs:

! ! !

dx
dt

= f (t, x(t), y(t))

dy
dt

= g(t, x(t), y(t))

x(0) , y(0) known
The Runge-Kutta Method is easily applied to these coupled 
equations(same system as we worked with earlier for Newton's 
second law):
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! ! !

tn+1 = tn + h

xn+1 = xn +
1
6

( f1 + 2 f2 + 2 f3 + f4 )

yn+1 = yn +
1
6

(g1 + 2g2 + 2g3 + g4 )

where

!

f1 = hf (tn ,xn ,yn ) g1 = hg(tn ,xn ,yn )
f2 = hf (tn + h / 2,xn + f1 / 2,yn + g1 / 2) g2 = hg(tn + h / 2,xn + f1 / 2,yn + g1 / 2)

f3 = hf (tn + h / 2,xn + f2 / 2,yn + g2 / 2) g3 = hg(tn + h / 2,xn + f2 / 2,yn + g2 / 2)

f4 = hf (tn + h,xn + f3,yn + g3) g4 = hg(tn + h,xn + f3,yn + g3)

Predator-Prey Models

An example problem of a system of coupled nonlinear differential 
equations is the famous predator-prey problem. Let x(t) and y(t) 
denote the population of rabbits and foxes, respectively, at 
time t. 

The predator-prey model asserts that x(t) and y(t) satisfy

! ! !

dx
dt

= Ax(t) − Bx(t)y(t) , dy
dt

= Cx(t)y(t) − Dy(t)

Higher-Order ODEs

As we saw in our earlier discussion of Newton's second law type  
second-order ODEs, we have equations of the form

! ! !  

d2x
dt2

= f (t,x(t), !x(t)) , x(t0 ) = x0 , !x(t0 ) = !x0

As we saw earlier the second-order differential equation can be 
reformulated as a system of two 
first-order equations if we use the substitution

! ! !

dx
dt

= y(t)

then

! ! !

d 2x
dt 2

=
dy
dt

and we get the pair of equations

! ! !

dx
dt

= y     ,     dy
dt

= f (t, x, y)           x(t0 ) = x0     ,       y(t0 ) = y0

and then we use Runge-Kutta to solve this pair as described 
earlier for predator-prey problems.
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Boundary-Value Problems

Another type of ODE has the form

! ! !

d2x
dt2 = f (t, x,dx / dt)     ,     a ≤ t ≤ b

with boundary conditions

! ! ! x(a) = α     ,       x(b) = β
This is called a boundary-value problem. The most important 
thing to check for this type of equation is whether a unique 
solution even exists. The conditions that must be satisfied are:

! ! !

∂f
∂x

= fx (t, x, y = dx / dt) > 0 and ∂f
∂y

= fy (t, x, y) ≤ M

for some constant M > 0 in the entire region of physical 
interest.

An important special (most of the physical cases fall into this 
category) is the linear boundary-value problem. In this case the 
function f(t,x,y) takes the form

! ! ! f (t,x,y) = p(t)y + q(t)x + r(t)
and

! ! !

∂f
∂x

= q(t) and 
∂f
∂y

= p(t)

are continuous. If there exists a constant M > 0 for which 
q(t) > 0 and p(t) " M, then a unique solution exists. Finding a 
solution to the linear boundary value problem is assisted by the 
linear structure of the equation and the use of two special 
initial-value problems(IVPs). Suppose that u is the unique 
solution to the IVP

! ! !  u '' = p(t)u '(t) + q(t)u(t) + r(t)
with

! ! !  u(a) = α     ,       u '(a) = 0

Furthermore, suppose that v is the unique solution of the IVP

! ! ! v '' = p(t)v '(t) + q(t)v(t)
with

! ! ! v(a) = 0    ,       v '(a) = 1!
Then, if v(b) # 0, the unique solution to 
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! ! ! x '' = f (t,x,x ') = p(t)x '(t) + q(t)x(t) + r(t)
with

! ! ! ! x(a) = α     ,       x(b) = β
is given by

! ! ! !
x(t) = u(t) + β − u(b)

v(b)
v(t)

which clearly has the correct boundary values.

The procedure is to use the fourth-order Runge-Kutta method to 
construct numerical solutions for u(t) and v(t) and then 
construct the solution for x(t) from these two solutions. This 
method is called the linear shooting method.

Example: Consider the equation

! ! ! !
x '' = −

2
t

x '(t) + 2
t 2

x(t) +10 cos(ln(t))
t 2

over the t-interval [1,3] with x(1) = 1 and x(3) = -1.

We need to solve the two equations:

! ! ! !

u '' = −
2
t
u '(t) + 2

t 2 u(t) +10 cos(ln(t))
t 2

u(1) = 1    ,       u '(1) = 0
and

! ! ! !

v'' = −
2
t

v'(t) + 2
t 2 v(t)

v(1) = 0    ,       v'(1) = 1

and the solution to the original equation is

! ! ! !
x(t) = u(t) −

1+ u(b)
v(b)

v(t)
!

A sample code is:

function z=ufunct(u,uv,t)
z=-(2/t)*uv+(2/(t^2))*u+10*cos(log(t))/(t^2);

function z=vfunct(v,vv,t)
z=-(2/t)*vv+(2/(t^2))*v;

clear
% set initial conditions
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du=zeros(1,1000);
dv=zeros(1,1000);
% set time step
h=.002;
% Runka-Kutta solution for u
u=1;
uv=0;
t=1;
count = 0;
while (count < 1000)
  count=count+1;
  t=t+h;
  fx1=uv;
  gx1=ufunct(u,uv,t);
  fx2=uv+h*gx1/2;
  gx2=ufunct(u+h*fx1/2,uv+h*gx1/2,t+0.5*h);
  fx3=uv+h*gx2/2;
  gx3=ufunct(u+h*fx2/2,uv+h*gx2/2,t+0.5*h);
  fx4=uv+h*gx3;
  gx4=ufunct(u+h*fx3,uv+h*gx3,t+h);
  u=u+h*(fx1+2*fx2+2*fx3+fx4)/6;
  uv=uv+h*(gx1+2*gx2+2*gx3+gx4)/6;
  du(1,count)=u;
end
% Runka-Kutta solution for v
v=0;
vv=1;
t=1;
count = 0;
while (count < 1000)
  count=count+1;
  t=t+h;
  fx1=vv;
  gx1=vfunct(v,vv,t);
  fx2=vv+h*gx1/2;
  gx2=vfunct(v+h*fx1/2,vv+h*gx1/2,t+0.5*h);
  fx3=vv+h*gx2/2;
  gx3=vfunct(v+h*fx2/2,vv+h*gx2/2,t+0.5*h);
  fx4=vv+h*gx3;
  gx4=vfunct(v+h*fx3,vv+h*gx3,t+h);
  v=v+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vv=vv+h*(gx1+2*gx2+2*gx3+gx4)/6;
  dv(1,count)=v;
end
x=du-(1+du(1000))*dv/dv(1000);
t=1:h:3;
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xth=(4.336-0.336*t.^3-3*(t.^2).*cos(log(t))+ ...
       (t.^2).*sin(log(t)))./(t.^2);
xmax=max(x);
xmin=min(x);
xthmax=max(xth);
xthmin=min(xth);
max=max([xmax,xthmax]);
min=min([xmin,xthmin]);
% open window
figure('Position',[50 50 500 500]);
axis([1,3,min,max]);
plot(t,xth,'-r');
hold on;
tt=t(1:20:1000);
x1=[1,x];
xx=x1(1:20:1000);
plot(tt,xx,'ob');
hold off

! ! ! !
The red line is the theoretical curve and the blue circles 
represent the numerical method. Clearly it works.
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