
MATLAB Programming

• MATLAB is an interactive system for doing numerical 
computations. MATLAB makes use of highly respected algorithms 
and hence you can be confident about your results.

• Powerful operations can be performed using just one or two 
commands. You can also build your own set of functions. 
Excellent graphics facilities are included.

0. Getting Started

MATLAB is available for student use on all Physics and Astronomy 
department laboratory computers and also on the computers in the 
department common room.

Under Mac OSX we initiate a MATLAB session by clicking on the 
MATLAB icon on the dock. The window shown below appears after a 
short time:
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This window is the default layout of the MATLAB desktop. It is a 
set of tools for managing files, variables, and applications 
associated with MATLAB. 

The Command Window is used to enter MATLAB functions at the 
command line prompt >>.

The Command History Window is used to view or execute previously 
run functions.

The Current Directory/Workspace Window lists the foloders/files 
in the Current Directory (where you are working) or the values 
and attributes of the variables you have defined.

The START button at the lower left gives you quick access to 
tools and more.

The Current Directory line at the top tells you where MATLAB 
thinks your files are located. This should always point to the 
folder that you are working in so that your files are saved in 
your own directory. An examples would be to enter the pathname/
Users/Physics50/MATLAB/yourname or! use the ... button to browse 
for a folder. This should always be done at the start of a new 
session.

When you open a MATLAB document, it opens in the associated 
tool. If the tool is not already open, it opens when you open 
the document and appears in the position it occupied when last 
used. Figures open undocked, regardless of the last position 
occupied. 

How to open a document depends on the document type: 

M-file: Select File -> Open and select the M-file. It opens in 
the Editor/Debugger. 

Workspace variable: In the Workspace browser, double-click the 
variable. It opens in the Array Editor.

At startup, MATLAB automatically executes the master M-file 
MATLABrc.m and, if it exists, startup.m. The file MATLABrc.m, 
which is in the local directory, is reserved for use by The 
MathWorks, and by the system manager on multiuser systems. 

The file startup.m is for you to specify startup options. For 
example, you can modify the default search path, predefine 
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variables in your workspace, or define Handle Graphics¨ 
defaults. Creating a startup.m file with the lines

! addpath /Users/Physics50/MATLAB

! cd /Users/Physics50/MATLAB

adds /Users/Physics50/MATLAB to your default search path and 
makes MATLAB the current directory upon startup. 

Location of startup.m. Place the startup.m file in the 

! ! /Users/Physics50/MATLAB 

directory, which is where MATLAB will look for it.

The departmental computers are already set up with an 
appropriate startup.m file.

Using MATLAB as a calculator

The basic arithmetic operators are + - * / ^ and these are used 
in conjunction with brackets ( ) . The symbol ^ is used to get 
exponents (powers): 2^4 = 16.

Example:

>> 2+3/4*5

ans = 5.7500

Note that in this calculation the result was 2+(3/4)*5 and not  
2+3/(4*5) because MATLAB works according to the priorities

! ! 1. quantities in brackets

! ! 2. powers

! ! 3. * / working left to right

! ! 4. + - working left to right

Numbers and Formats!

MATLAB recognizes several different kinds of numbers
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Type Examples

Integer 1362, -217897

Real 1.234, -10.76

Complex 3,21-4.3i (i = √-1)

Inf Infinity(result of dividing by 0)

NaN Not a number, 0/0

The "e" notation is used for very large or very small numbers:

! -1.3412e+03 = -1.3412x10 3 =-1341.2

! -1.3412e-01 = -1.3412x10 -1  =-0.13412

All computations in MATLAB are done in in double precision, 
which means 15 significant figures. The format - how MATLAB 
prints numbers - is controlled by the "format" command:

>> a=pi! ! ! ! ! (pi is a built-in constant)

a = 3.1416

>> format short e

>> a

a = 3.1416e+00

>> format long e

>> a

a = 3.141592653589793e+00

>> format long

>> a

a = 3.14159265358979

>> format short ! ! ! {this is the default format}

>> a

a = 3.1416
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Variable Names

Legal names consist of any combination of letters and digits, 
starting with a letter.

Allowed: NetCost, Left2Pay, x3, X3, z25c5

Not allowed: Net-Cost, 2pay, %x, @sign

Avoid these names:

eps = 2.2204e-16 = 2 -54 = largest number such that 1 + eps is           
! ! ! ! ! indistinguishable from 1

pi = 3.14159... = "

Suppressing Output

One often does not want to see the result of intermediate 
calculations. This can be accomplished by terminating the MATLAB 
statement with a semi-colon

>> x=-13; y=5+x, z=x^2+y

y = -8

z = 161

Note that several statements can be placed on one line, 
separated by commas or semi-colons.

Built-In Functions

MATLAB has many built-in elementary functions, for example,

! sin, cos, tan, asin, acos, atan, atan2

! sinh, cosh, tanh, asinh, acosh, atanh,

! sqrt, exp, log, log10, abs, sign,

! conj, imag, real, angle

! round, floor, fix, ceil, rem

abs absolute value

sqrt square root
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sign signum

conj complex conjugate

imag imaginary part

real real part

angle phase angle of a complex number

cos cosine

sin sine

tan tangent

exp exponential

log natural logarithm

log10 logarithm base 10

cosh hyperbolic cosine

sinh hyperbolic sine

tanh hyperbolic tangent

acos inverse cosine

acosh inverse hyperbolic cosine

asin inverse sine

asinh inverse hyperbolic sine

atan inverse tangent

atan2 two-argument form of  inverse tangent - atan2(x,y)

atanh inverse hyperbolic tangent

round round to nearest integer

floor round towards minus infinity

fix round towards zero

ceil round towards plus infinity
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rem remainder after division - rem(x,y)

1. Beginning to Use MATLAB

MATLAB works with essentially only one kind of object 

 ! ! a rectangular, numerical array of numbers, ! !         
! ! possibly complex, called a matrix

In some situations, 1-by-1 matrices are interpreted as scalars 
and matrices with only one row or one column are interpreted as 
vectors.

Matrices can be introduced into MATLAB in several different 
ways:
! ¥ Entered by an explicit list of elements. 
! ¥ Generated by built-in statements and functions. 
! ¥ Created in M-files (MATLAB scripts).
! ¥ Loaded from external data files. 

MATLAB contains no size or type declarations for variables. 
MATLAB allocates storage automatically, up to available memory.

Vectors

Vectors come in two flavors - row vectors and column vectors. In 
either case they are lists of numbers separated by either commas 
or spaces. The number of entries is known as the "length" of the 
vector and the entries are called "elements" or "components" of 
the vector. The entries must be enclosed by square brackets.

>> v = [1 3, sqrt(5)]

v = 1.0000    3.0000    2.2361

>> length(v)

ans = 3

>> v2 = [3+ 4 5]

v2 = 7     5

>> v3 = [3 +4 5]! ! ! {spaces can be very important}

v3 = 3     4     5
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>> v+v3! {arithmetic can be done with vectors of the same length}

ans = 4.0000    7.0000    7.2361

>> v4 = 3*v

v4 = 3.0000    9.0000    6.7082

>> v5 = 2*v -3*v3

v5 = 7.0000   -6.0000  -10.5279

>> v+v2
??? Error using ==> plus
Matrix dimensions must agree.

In all vector arithmetic with vectors of equal length, the 
operations are carried out element-wise.

>> w = [1 2 3], z = [8 9] {build vectors from existing vectors}

w = 1     2     3

z = 8     9

>> cd=[2*z,-w], sort(cd) ! ! {sort is a MATLAB command}!

cd = 16    18    -1    -2    -3

ans = -3    -2    -1    16    18! ! {in ascending order}

>> w(2) = -2, w(3)! ! {change or look at particular entries}

w = 1    -2     3

ans = 3

The Colon Operator

This a shortcut for producing row vectors.

>> 1:4

ans = 1     2     3     4
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>> 3:7

ans = 3     4     5     6     7

>> 1:-1

ans = Empty matrix: 1-by-0

More generally a:b:c produces a vector of entries starting with 
value a, incrementing by value b until it gets to c (it will not 
produce a value beyond c). The default increment is 1.

>> 0.32:0.1:0.6

ans = 0.3200    0.4200    0.5200

>> -1.4:-0.3:-2

ans = -1.4000   -1.7000   -2.0000

Extracting Parts of a Vector

>> r5 = [1:2:6,-1:-2:-7]

r5 = 1     3     5    -1    -3    -5    -7

>> r5(3:6)! ! ! {get 3rd to 6th entries}

ans = 5    -1    -3    -5

>> r5(1:2:7)! ! {get alternate entries}

ans = 1     5    -3    -7

>> r5(6:-2:1)

ans = -5    -1     3   {reverse order}

Column Vectors

>> c = [1; 3; sqrt(5)]   
! ! {use semi-colons or returns instead of commas or spaces} 

c = 1.0000
    3.0000
    2.2361
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>> c2 = [3
         4
         5]

c2 = 3
     4
     5

>> c3 = 2*c-3*c2! ! {arithmetic OK if same length}

c3 = -7.0000
     -6.0000
    -10.5279

Transposing

Transposing is the process of converting between row and column 
vectors. It is denoted by '.

>> w = [1 -2 3]

w = 1    -2     3

>> w'

ans = 1
     -2
      3

>> c=[1; 2; 3]

c = 1
    2
    3

>> c'

ans =1     2     3

>> x=[1+3i,2-2i]

x = 1.0000 + 3.0000i   2.0000 - 2.0000i

>> x'! ! ! ! {give complex conjugate}
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ans = 1.0000 - 3.0000i
      2.0000 + 2.0000i

>> x.'! ! ! ! {give transpose for complex vector}

ans = 1.0000 + 3.0000i
      2.0000 - 2.0000i

Plotting Elementary Functions

Suppose that we want to plot a graph of y = sin3"x for 0#x#1. We 
do this by sampling the function at a sufficiently large number 
of points and joining up the points (x,y) by straight lines. 
Suppose that we take N+1 points equally space a distance h 
apart:

>> N=10; h=1/N; x=0:h:1;

defines the set of points x=0,h,2h,....,1-h,1. The corresponding 
y-values are computed by

>> y=sin(3*pi*x);

and finally, we plot the points with

>> plot(x,y)

The result is shown in the figure below where it is clear that 
the value of N chosen above is too small.
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!
On changing the value of N to 100:

>> N=100; h=1/N; x=0:h:1;
>> y=sin(3*pi*x);
>> plot(x,y)

we get the picture shown below:

To put a title and label the axes, we use

>> title('Graph of y = sin(3*pi*x)')
>> xlabel('x-axis')
>> ylabel('y-axis')

The strings enclosed in single quotes can be anything of our 
choosing.

A dotted grid may be added by 

>> grid

The default is to plot solid lines. A solid black line is 
produced by

>> plot(x,y,'k-')

The third argument is a string whose first character specifies 
the color (optional) and the second character is the line style. 
The options for colors and styles are:
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Colors Line Styles

y   yellow  .       point

m  magenta  o      circle

c   cyan  x      x-mark

r    red  +      plus

g   green  -      solid

b   blue  *      star

w  white  :      dotted

k   black  -.     dashdot

 --     dashed

There are more plot symbols available. Use help plot or help 
shapes

Multi-plots or several graphs on the same figure can be drawn 
using

>> plot(x,y,'r-',x,cos(3*pi*x),'g--')

A descriptive legend may be included with

>> legend('Sin curve','Cos curve')

which will give a list of line-styles, as they appeared in the 
plot command followed by a brief description. MATLAB places the 
legend on the graph. If the position is not convenient it can be 
moved around with the mouse.

If we add

>> title('Multi-plot')
>> xlabel('x-axis')
>> ylabel('y-axis')
>> grid

the final plot looks like
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A call to plot clears the graphics window before plotting the 
current graph. This is not convenient if we want to add further 
graphics to the figure at some later stage. To stop the window 
being cleared:

>> plot(x,y,'r-'), hold
Current plot held
>> plot(x,0.5*y,'gx'), hold off

" hold on" holds the current picture; " hold off" releases it (but 
does not clear the window, which can be done with the command 
clf). " hold" on its own toggles the hold state.

To obtain a printed copy of the figure use the command:

>> print -f1! ! ! ! ! ! {f1 = figure 1}

Alternatively, you can save the figure to a file for later 
printing (using another application) or editing. For example the 
following commands save the window as TIFF files with 
resolutions 300 DPI and 600 DPI respectively.

>> print -dtiff -r300 test300.tiff
>> print -dtiff -r600 test600.tiff
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Other output file-type options are:

    -dps       % PostScript for black and white printers
    -dpsc      % PostScript for color printers
    -dps2      % Level 2 PostScript for black and white printers
    -dpsc2     % Level 2 PostScript for color printers
 
    -deps      % Encapsulated PostScript
    -depsc     % Encapsulated Color PostScript
    -deps2     % Encapsulated Level 2 PostScript
    -depsc2    % Encapsulated Level 2 Color PostScript
 
   !-djpeg<nn> % JPEG image, quality level of nn (figures only)
                 E.g., -djpeg90 gives a quality level of 90.
                 Quality level defaults to 75 if nn is omitted.
    -dtiff     % TIFF with lossless run-length compression 
    -dtiffnocompression % TIFF without compression   
    -dpng      % Portable Network Graphic 24-bit truecolor image

The graphics window may be split into an m x n array of smaller 
window into which we may plot one or more graphs. The windows 
are counted 1 to mn row-wise, starting from the top left. Both 
hold and grid work on the current subplot.  

>> subplot(221), plot(x,y)
>> xlabel('x'),ylabel('sin(3*pi*x)')
>> subplot(222), plot(x,cos(3*pi*x))
>> xlabel('x'),ylabel('cos(3*pi*x)')
>> subplot(223), plot(x,sin(6*pi*x))
>> xlabel('x'),ylabel('sin(6*pi*x)')
>> subplot(224), plot(x,cos(6*pi*x))
>> xlabel('x'),ylabel('cos(6*pi*x)')

subplot(221)(or subplot(2,2,1)) specifies that the window should 
be split into a 2 x 2 array and we select the first subwindow.

The final plot looks like:
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We often need to "zoom in" on some portion of a plot in order to 
see more detail. This is easily achieved using the command

>> zoom

Pointing the mouse to the relevant position on the plot and 
clicking the mouse will zoom in by a factor of two. Clicking on 
the mouse while holding the command key down give a menu of 
options allowing restoration of the original figure or zooming 
out. zoom off turns off the zoom capability.

The command clf clears the current figure window. The command 
close 1 closes the window labeled "Figure 1". To open a new 
figure window type figure or to get a window labeled "Figure 9", 
for example, type figure (9). If "Figure 9" already exists then 
this command will bring the window to the foreground and all 
subsequent plotting commands will be drawn in it.

Once a plot has been created in the graphics window you might 
want to change the range of x and y values shown on the picture.

>> clf, N = 100; h = 1/N; x = 0:h:1;
>> y = sin(3*pi*x); plot(x,y)
>> axis([-0.5 1.5 -1.2 1.2]), grid

The axis command has four parameters, the first two are the 
minimum and maximum values of x to use on the axis and the last 
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two are the minimum and maximum values of y to use on the axis. 
Note the square brackets.

Script Files 

Script files are normal ASCII (text) files that contain MATLAB 
commands. It is essential that such files have names having an 
extension .m (e.g., scriptname.m) and, for this reason, they are 
commonly known as m-files.

The commands in this file may then be executed using

>> scriptname

Note: the command does not include the file name extension .m.

It is only the output from the commands (and not the commands 
themselves) that are displayed on the screen.

Script files are created with your favorite text editor such as 
BBEdit or TextWrangler. Type in your commands and then save (to 
a file with a .m extension.

To see the commands in the command window prior to
their execution:

>> echo on

and echo off will turn echoing off.

Any text that follows % on a line is ignored. The main purpose 
of  this facility is to enable comments to be included in the 
file to describe its purpose.

In MATLAB, there are two types of script files, namely, programs 
and functions. We will discussion both of these types later.

Products, Division and Powers of Vectors

Scalar Product (*)

We shall describe two ways in which a meaning may be attributed 
to the product of two vectors. In both cases the vectors 
concerned must have the same length. The first product is the 
standard scalar product. Suppose that u and v are two vectors of 
length n, u being a row vector and v a column vector:
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! !

u = [u1,u2,.......,un] , v =

v1

v2

.

.

.

vn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
!

The scalar product is defined by multiplying the corresponding
elements together and adding the results to give a single number 
(scalar).

! !
u ⋅ v = uivi

i=1

n

∑
We can perform this product in MATLAB by

>> u=[10, -11, 12], v=[20; -21; -22]

u = 10   -11    12

v = 20
   -21
   -22

>> prod=u*v    % row times column vector

prod = 167

Suppose we also define a row vector w and a column vector z by

>> w=[2,1,3], z=[7;6;5]

w = 2     1     3

z = 7
    6
    5

and we wish to form the scalar products of u with w and v with 
z.

>> u*w
??? Error using ==> mtimes
Inner matrix dimensions must agree.
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An error results because w is not a column vector. Recall
from earlier that transposing (with ') turns column vectors into 
row vectors and vice versa.

So, to form the scalar product of two row vectors or two column 
vectors,

>> u*w'     % u and w are row vectors

ans = 45

>> u*u'     % u is a row vector

ans = 365

>> v'*z     % v and z are column vectors

ans = -96

We shall refer to the Euclidean length of a vector as the
norm of a vector; it is denoted by the symbol u  and

defined by

! ! !
u = ui

2

i =1

n

!

where n is its dimension. This can be computed in MATLAB in one 
of two ways:

>> [sqrt(u*u'),norm(u)]

ans = 19.1050   19.1050

where norm is a built{in MATLAB function that accepts a
vector as input and delivers a scalar as output. 

Dot Product (.*)

The second way of forming the product of two vectors of the same 
length is known as the Hadamard product. It is not often used in 
Mathematics but is an invaluable MATLAB feature. It involves 
vectors of the same type. If u and v are two vectors of the same 
type (both row vectors or both column vectors), the mathematical
definition of this product, which we shall call the dot product, 
is the vector having the components
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! ! ! uv = u1v1,u2v2,..........,unvn[ ]
The result is a vector of the same length and type as
u and v. Thus, we simply multiply the corresponding
elements of two vectors.

In MATLAB, the product is computed with the operator
.* and, using the vectors w, z defined earlier

>> w.*w

ans = 4     1     9

>> w.*z'

ans = 14     6    15

Dot Division of Arrays (./)

There is no mathematical definition for the division of one 
vector by another. However, in MATLAB, the operator ./ is 
defined to give element by element division|it is therefore only 
defined for vectors of the same size and type.

>> a = 1:5, b=6:10, a./b

a = 1     2     3     4     5

b = 6     7     8     9    10

ans = 0.1667    0.2857    0.3750    0.4444    0.5000

>> a./a

ans = 1     1     1     1     1

>> c = -2:2, a./c

c = -2    -1     0     1     2

Warning: Divide by zero.

ans = -0.5000   -2.0000       Inf    4.0000    2.5000

The previous calculation required division by 0 - notice the 
Inf, denoting infinity, in the answer.
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>> a.*b - 24, ans./c

ans = -18   -10     0    12    26

Warning: Divide by zero.

ans = 9    10   NaN    12    13

Here we are warned about 0/0 - giving a NaN (Not a Number).

Dot Power of Arrays (.^)

To square each of the elements of a vector we could, for
example, do u.*u. However, a neater way is to use the
.^ operator:

>> u

u = 10   -11    12

>> u.^2

ans = 100   121   144

>> u.*u

ans = 100   121   144

>> u.^4

ans = 10000       14641       20736

>> v

v = 20
   -21
   -22

>> w

w = 2     1     3

>> v.^2

                                                                      Page 21



ans = 400
      441
      484

>> u.*w.^(-2)

ans = 2.5000  -11.0000    1.3333

Recall that powers (.^ in this case) are done first, before
any other arithmetic operation.

Creating Matrices

For example, either of the statements

>> A = [1 2 3; 4 5 6; 7 8 9]
 
and

>> A = [1  2  3
        4  5  6
        7  8  9]

creates a 3-by-3 matrix and assigns it to a variable A. 

In these cases the shape of the matrix is defined either by the 
semicolons (;) or the RETURN statements. 

MATLAB responds to your command by printing:

A =  1     2     3
     4     5     6
     7     8    10

MATLAB always prints out the variable in the executed line 
(which can be very awkward and time consuming for large arrays) 
unless you end the line with a semicolan (;). It is good 
practice to use the semicolan at the end of the line. You can 
always ask MATLAB to print the variable later by entering a 
command consisting of the variable name.

>> A

A =  1     2     3
     4     5     6
     7     8     9
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The elements within a row of a matrix may be separated by commas 
as well as a blank(as above).

When listing a number in exponential (powers of 10) form (e.g. 
2.34e-9), blank spaces must be avoided. 

Alternatively, one can create a file containing the array, name 
it with a suffix ending with a   .m  .

On MacOSX you would use BBEdit or TextWrangler to create a text 
file as above.

Suppose we created a text file named  gena.m  and it looks like

A=[1 2 3
   4 5 6
   7 8 10]

It looks the same as the command that we typed before!

We generate the array A(within your MATLAB workspace) by 
entering the command

>> gena       (the filename without the  .m  suffix). 

MATLAB searches your current working directory for the file 
gena.m and, then reads the file and generates the array A. This 
is especially useful for very large files, so that errors can 
easily be corrected.

In either case, MATLAB responds

>> gena

A =  1     2     3
     4     5     6
     7     8    10

The built-in functions  rand,  magic, and  hilb, for example, 
provide an easy way to create matrices with which to experiment.  
The command rand(n) will create an n x n matrix with randomly 
generated entries distributed uniformly between 0 and 1

>> rand(5)
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ans = 0.2190    0.3835    0.5297    0.4175    0.5269
      0.0470    0.5194    0.6711    0.6868    0.0920
      0.6789    0.8310    0.0077    0.5890    0.6539
      0.6793    0.0346    0.3834    0.9304    0.4160
      0.9347    0.0535    0.0668    0.8462    0.7012

while rand(m,n) will create an m x n array. 

>> rand(3,4)

ans = 0.9103    0.0475    0.6326    0.3653
      0.7622    0.7361    0.7564    0.2470
      0.2625    0.3282    0.9910    0.9826

magic(n) will create an integral n x n matrix which is a magic 
square (rows and columns have common sum)

>> magic(4)

ans = 16     2     3    13
       5    11    10     8
       9     7     6    12
       4    14    15     1

hilb(n)  will create the n x n Hilbert matrix (m and n denote, 
of course, positive integers).  

>> hilb(4)

ans = 1.0000    0.5000    0.3333    0.2500
      0.5000    0.3333    0.2500    0.2000
      0.3333    0.2500    0.2000    0.1667
      0.2500    0.2000    0.1667    0.1429

We note that if no variable is assigned(as above), MATLAB 
automatically assigns the result to the variable named ans.

If we use, instead, the command(remember the semicolon 
suppresses screen printouts)

>> zz = hilb(4);

then entering the variable name causes a printout.
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>> zz = 1.0000    0.5000    0.3333    0.2500
        0.5000    0.3333    0.2500    0.2000
        0.3333    0.2500    0.2000    0.1667
        0.2500    0.2000    0.1667    0.1429

We can get the size (dimensions) of a matrix with the command 
size

zz = 0.9218    0.4057    0.4103    0.3529
     0.7382    0.9355    0.8936    0.8132
     0.1763    0.9169    0.0579    0.0099

>> size(zz)

ans = 3     4

>> size(ans)

ans = 1     2

So zz is a 3 x 4 matrix and ans is 1 x 2 matrix (actually a row 
vector).

Transposing a vector changes it from a row to a column and vice 
versa. The extension of this idea to matrices is that 
transposing interchanges rows with the corresponding columns

>> zz

zz = 0.9218    0.4057    0.4103    0.3529
     0.7382    0.9355    0.8936    0.8132
     0.1763    0.9169    0.0579    0.0099

>> zz'

ans = 0.9218    0.7382    0.1763
      0.4057    0.9355    0.9169
      0.4103    0.8936    0.0579
      0.3529    0.8132    0.0099

>> size(zz),size(zz')

ans = 3     4

ans = 4     3
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Very useful matrix-generating commands are:

>> ones(2,3)

ans = 1     1     1
      1     1     1

>> zeros(2,3)

ans = 0     0     0
      0     0     0

>> ones(size(zz))

ans = 1     1     1     1
      1     1     1     1
      1     1     1     1

>> eye(3)         % identity matrix

ans = 1     0     0
      0     1     0
      0     0     1

>> d=[-3 4 2], D=diag(d)

d = -3     4     2

D = -3     0     0
     0     4     0
     0     0     2

>> aa = rand(3,3), diag(aa)

aa = 0.1389    0.6038    0.0153
     0.2028    0.2722    0.7468
     0.1987    0.1988    0.4451

ans = 0.1389
      0.2722
      0.4451

We can build larger matrices from smaller ones:
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>> c=[0 1;3 -2;4 2], x=[8;-4;1]

c =  0     1
     3    -2
     4     2

x =  8
    -4
     1

>> g=[c,x]

g =  0     1     8
     3    -2    -4
     4     2     1

>> a=[5 7 9;1 -3 -7]

a =  5     7     9
     1    -3    -7

>> b=[-1 2 5;9 0 5]

b = -1     2     5
     9     0     5

>> h = [a;b]

h = 5     7     9
    1    -3    -7
   -1     2     5
    9     0     5

so we have added an extra column (x) to c in order to form g and 
have stacked a and b  on top of each other to form h.

>> j=[1:4;5:8;20 0 5 4]

j =

     1     2     3     4
     5     6     7     8
    20     0     5     4

Now for a real tour de force.....
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>> j=[1:4;5:8;9:12;20 0 5 4]

j =  1     2     3     4
     5     6     7     8
     9    10    11    12
    20     0     5     4

>> k=[diag(1:4) j;j' zeros(4,4)]

k =  1     0     0     0     1     2     3     4
     0     2     0     0     5     6     7     8
     0     0     3     0     9    10    11    12
     0     0     0     4    20     0     5     4
     1     5     9    20     0     0     0     0
     2     6    10     0     0     0     0     0
     3     7    11     5     0     0     0     0
     4     8    12     4     0     0     0     0

We note that the command spy(k) will produce a graphical display 
of the location of the nonzero entries in k (nz = number of 
nonzero entries is also generated).

We can tabulate functions (produce table formats) as follows:

>> x=0:0.1:0.5;y=4*sin(3*x); u=3*sin(4*x);
>> [x' y' u']

ans =    0         0         0
    0.1000    1.1821    1.1683
    0.2000    2.2586    2.1521
    0.3000    3.1333    2.7961
    0.4000    3.7282    2.9987
    0.5000    3.9900    2.7279

Note the use of the transpose to get column vectors. Even more 
directly we have

>> x=(0:0.1:0.5)'; [x 4*sin(3*x) 3*sin(4*x)]

ans =    0         0         0
    0.1000    1.1821    1.1683
    0.2000    2.2586    2.1521
    0.3000    3.1333    2.7961
    0.4000    3.7282    2.9987
    0.5000    3.9900    2.7279
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Individual matrix and vector entries can be referenced or 
extracted with indices inside parentheses. The notation is
 
! ! arrayname(row-number,column-number)

For example, A(2,3) denotes the entry in the second row, third 
column of matrix A and x(3) denotes the third coordinate of 
vector x.  A matrix or a vector will only accept positive 
integers as indices.

>> A

A =  1     2     3
    4     5     6
    7     8    10

>> A(2,3)

ans = 6

>> x=[-1.3 sqrt(3) (1+2+3)*4/5]       

(note here how MATLAB does not care how you construct the 
elements)

x = -1.3000    1.7321    4.8000

>> x(2)

ans = 1.7321

The colon operator introduced earlier is very powerful in 
MATLAB. (Always remember powerful = dangerous)

>> 1:6

ans = 1   2    3    4    5    6   !!

  (generates a vector of regularly spaced (default=1) elements)

>> 1:.1:2

ans = 1.0  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2.0
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 (generates a vector of regularly spaced (spacing=0.1) elements)

>> A(1,1:2)

ans = 1     2

or row 1 and columns 1 & 2

>> A(1:2,2)

ans = 2
      5

or rows 1 & 2 and column 2.

>> j=[1:4;5:8;9:12;20 0 5 4]

j =  1     2     3     4
     5     6     7     8
     9    10    11    12
    20     0     5     4

>> j(4,1)=j(1,1)+6

j =  1     2     3     4
     5     6     7     8
     9    10    11    12
     7     0     5     4

>> j(1,1)=j(1,1)-3*j(1,2)

j = -5     2     3     4
     5     6     7     8
     9    10    11    12
     7     0     5     4

In the following examples we extract (1) the 3rd column, (2) the 
2nd and 3rd columns, (3) the 4th row, and (4) the "central" 2x2 
matrix.

>> j(:,3)

ans = 3
      7
     11
      5
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>> j(:,2:3)

ans = 2     3
      6     7
     10    11
      0     5

>> j(4,:)

ans = 7     0     5     4

>> j(2:3,2:3)

ans = 6     7
     10    11

Thus, : on its own refers to the entire column or row depending 
on whether it is the first or last index.

Dot product of matrices (.*)

The dot product works as for vectors: corresponding elements are 
multiplied together - so the matrices involved must have the 
same size.

>> a=[5 7 9;1 -3 -7],b=[-1 2 5;9 0 5]

a =  5     7     9
     1    -3    -7

b = -1     2     5
     9     0     5

>> a.*b

ans = -5    14    45
       9     0   -35

>> c=[0 1;3 -2;4 2]

c =  0     1
     3    -2
     4     2
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>> a.*c
??? Error using ==> times
Matrix dimensions must agree.

>> a.*c'

ans = 0    21    36
      1     6   -14

Matrix - vector products

We turn next to the definition of the product of a matrix with a 
vector. This product is only defined for column vectors that 
have the same number of entries as the matrix has columns. So, 
if A is an m x n matrix and x is a column vector of length n, 
then the matrix-vector product Ax is legal.

An m x n matrix times an n x 1 matrix ⇒ a m x 1 matrix.

We visualize A as being made up of m row vectors stacked on top 
of each other, then the product corresponds to taking the scalar 
product of each row of A with the vector x: The result is a 
column vector with m entries.

! !

Ax =
A11 A12 A13

A21 A22 A23

⎛
⎝⎜

⎞
⎠⎟

x1

x2

x3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

A11x1 + A12x2 + A13x3

A21x1 + A22x2 + A23x3

⎛
⎝⎜

⎞
⎠⎟

or (Ax)i = Aikxk
k=1

3

∑
or for

>> x=[8;-4;1]

x =  8
    -4
     1

! !

5 7 9

1 ! 3 ! 7
"

#$
%

&'

8

! 4

1

"

#

$
$

%

&

'
'

=
40! 28+ 9

8 +12! 7
"

#$
%

&'
=

21

13
"

#$
%

&'

It is somewhat easier in MATLAB:

>> a*x

ans = 21
      13
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Unlike multiplication in arithmetic, A*x is not the same as x*A.

Matrix-Matrix Products

To form the product of an m x n matrix A and a n x p matrix B, 
written as AB, we visualize the first matrix (A) as being 
composed of m row vectors of length n stacked on top of each 
other while the second (B) is visualized as being made up of p 
column vectors of length n.

The entry in the i th  row and j th  column of the product is then 
the scalar-product of the i th  row of A with the j th  column of B. 
The product is an m x p matrix:

Check that you understand what is meant by this definition by 
thinking about the following examples.

>> a=[5 7 9;1 -3 -7],b=[0 1;3 -2;4 2]

a =  5     7     9
     1    -3    -7

b =  0     1
     3    -2
     4     2

>> c=a*b

c = 57     9
   -37    -7

>> d=b*a

d =  1    -3    -7
    13    27    41
    22    22    22

>> e=b'*a'

e = 57   -37
     9    -7

We see that e = c' suggesting that (a*b)' = b'*a' Why is b*a a 3 
x 3 matrix while a*b is 2 x 2?
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Systems of Linear Equations

Mathematical formulations of engineering problems often lead to 
sets of simultaneous linear equations. A general system of 
linear equations can be expressed in terms of a coefficient 
matrix A, a right-hand-side (column) vector b and an unknown 
(column) vector x as

! ! ! ! ! Ax = b

or component-wise, as

! ! !

A11x1 + A12x2 + .......+ A1nxn = b1
A21x1 + A22x2 + .......+ A2nxn = b2
...........
...........
An1x1 + An2x2 + .......+ Annxn = bn

When A is non-singular(has an inverse) and square (n x n), 
meaning that the number of independent equations is equal to
the number of unknowns, the system has a unique solution
given by

! ! ! x = A! 1b

where A! 1  is the inverse of A. Thus, the solution vector x can, 
in principle, be calculated by taking the inverse of the 
coefficient matrix A and multiplying it on the right with the 
right-hand-side vector b.

This approach based on the matrix inverse, though formally
correct, is at best inefficient for practical applications 
(where the number of equations may be extremely large) but may 
also give rise to large numerical errors unless appropriate 
techniques are used. 

Various stable and efficient solution techniques have been 
developed for solving linear equations and the most appropriate 
in any situation will depend on the properties of the 
coefficient matrix A. For instance, on whether or not it is 
symmetric, or positive definite or if it has a particular 
structure. MATLAB is equipped with many of these special 
techniques in its routine library and they are invoked 
automatically.

The standard MATLAB routine for solving systems of linear 
equations is invoked by calling the matrix left-division
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routine,

>> x = A\b

where "\" is the matrix left-division operator known as 
"backslash".

Example: Given

>> a = [2 -1 0;1 -2 1;0 -1 2],b=[1;0;1]

a =  2    -1     0
     1    -2     1
     0    -1     2

b =  1
     0
     1

we solve the corresponding equations using two methods (1) 
x = A−1b  and (2) x = A\b.

>> x = inv(a)*b

x = 1.0000
    1.0000
    1.0000

>> x = a\b

x = 1.0000
    1.0000
    1.0000

Example: Given

>> a = [2+2i -1 0;-1 2-2i -1;0 -1 2],b=[1+i;0;1-i]

a = 2.0000 + 2.0000i  -1.0000                  0          
   -1.0000             2.0000 - 2.0000i  -1.0000          
         0            -1.0000             2.0000          

b = 1.0000 + 1.0000i
         0          
    1.0000 - 1.0000i

                                                                      Page 35



>> x = a\b

x = 0.6757 - 0.0541i
    0.4595 + 0.2432i
    0.7297 - 0.3784i

Characters, Strings and Text

The ability to process text in numerical processing is useful 
for the input and output of data to the screen or to disk-files. 
In order to manage text, a new datatype of "character" is 
introduced. A piece of text is then simply a string (vector) or 
array of characters.

The assignment,

>> t1='A'

t1 = A

assigns the value A to the 1 x 1 character array t1.

The assignment,

>> t2='BCDE'

t2 = BCDE

assigns the value BCDE to the 1 x 4 character array t2.

Strings can be combined by using the operations for array 
manipulations.

The assignment,

>> t3=[t1,t2]

t3 = ABCDE

assigns a value ABCDE to the 1 x 5 character array t3.

The assignment,

>> t4=[t3,' are the first 5      ';...
'characters in the alphabet.']
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t4 = ABCDE are the first 5      
     characters in the alphabet.

assigns the value
 
'ABCDE are the first 5      '
'characters in the alphabet.'

to the 2 x 27 character array t4. It is essential that the 
number of characters in both rows of the array t4 is the same, 
otherwise an error will result. 

The three dots ... signify that the command is continued on the 
following line.

Sometimes it is necessary to convert a character to the 
corresponding number, or vice versa. These conversions are 
accomplished by the commands ' str2num' - which converts a string 
to the corresponding number, and two functions, ' int2str' and 
' num2str', which convert, respectively, an integer and a real 
number to the corresponding character string. These commands are 
useful for producing titles and strings, such as 'The value of
pi is 3.1416'. This can be generated by the command


 
 ['The value of pi is ',num2str(pi)]

>> N=5;h=1/N;
>> ['The value of N is ',num2str(N),...
', h = ',num2str(h)]

ans = The value of N is 5, h = 0.2

Loops

There are occasions that we want to repeat a segment of code a 
number of different times (such occasions are less frequent than 
other programming languages because of the : notation).

Example: Draw graphs of sin(nπ x)  on the interval  −1 ≤ x ≤ 1 for 

n = 1,2,....,8.

We could do this by giving 8 separate plot commands but it is 
much easier to use a loop. The simplest form would be

>> x=-1:0.05:1;
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>> for n=1:8
      subplot(4,2,n),plot(x,sin(n*pi*x))
   end

The result looks like:

All the commands between the lines starting " for" and " end" are 
repeated with n being given the value 1 the first time through, 
2 the second time, and so forth, until n = 8. The subplot 
constructs a 4 x 2 array of subwindows and, on the n th  time 
through the loop, a picture is drawn in the n th  subwindow.

We may use any legal variable name as the "loop counter" (n in 
the above examples) and it can be made to run through all of the 
values in a given vector (1:8 in the above example).

We may also use for loops of the type

>> for counter = [23 11 19 5.4 6]
! .......
   end

which repeats the code as far as the end with counter=23 the  
first time, counter=11 the second time, and so forth.
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Example: The Fibonnaci sequence starts off  with the numbers 0 
and 1, then succeeding terms are the sum of its two immediate 
predecessors. Mathematically, f1 = 0, f2 = 1 and

! ! fn = fn ! 1 + fn ! 2 , n = 3,4,5,......!

Test the assertion that the ratio fn! 1 / fn  of two successive

values approaches the golden ratio 5 −1( ) / 2 = 0.6180.....

>> hold off
>> F(1) = 0; F(2) = 1;
>> for i = 3:20
     F(i) = F(i-1) + F(i-2);
   end
>> plot(1:19, F(1:19)./F(2:20),'o' )
>> hold on, xlabel('n')
>> plot(1:19, F(1:19)./F(2:20),'-' )
>> legend('Ratio of terms f_{n-1}/f_n')
>> plot([0 20], (sqrt(5)-1)/2*[1,1],'--')
>> hold off

The last of these commands produces the dashed horizontal line.

Example: Produce a list of the values of the sums
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! !

S20 = 1+ 1
22 + 1

32 + ..........+ 1
202

S21 = 1+ 1
22 + 1

32 + ..........+ 1
212

.......

S100 = 1+ 1
22 + 1

32 + ......+ 1
202 + 1

212 + ....+ 1
1002

There are a total of 81 sums. The first can be computed using 
sum(1./(1:20).^2) (The function sum with a vector argument sums 
its components). A suitable piece of MATLAB code might be

>> S=zeros(100,1);
>> S(20)=sum(1./(1:20).^2);
>> for n=21:100
     S(n)=S(n-1)+1/n^2;
   end
>> clf; plot(20:100,S(20:100),'.',[20 100],[1 1]*pi^2/6,'-')
>> axis([20 100 1.5 1.7])
>> [(98:100)' S(98:100)]

ans = 98.0000    1.6348
      99.0000    1.6349
     100.0000    1.6350

where a column vector S was created to hold the answers. The 
first sum was computed directly using the sum command then each 
succeeding sum was found by adding 1/ n2  to its predecessor. The 
little table at the end shows the values of the last three sums
- it appears that they are approaching a limit (the value of the 
limit is π 2 / 6 = 1.64493........). Plot is shown below:

! ! !
Logicals
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MATLAB represents true and false by means of the integers 0 and 
1.
! ! ! true = 1, false = 0

If at some point in a calculation a scalar x, say, has been
assigned a value, we may make certain logical tests on
it:
! x == 2 is x equal to 2?
! x ~= 2 is x not equal to 2?
! x > 2 is x greater than 2?
! x < 2 is x less than 2?
! x >= 2 is x greater than or equal to 2?
! x <= 2 is x less than or equal to 2?

Pay particular attention to the fact that the test for
equality involves two equal signs ==.

>> x=pi

x = 3.1416

>> x ~= 3, x ~= pi

ans = 1

ans = 0

When x is a vector or a matrix, these tests are performed
element-wise:

>> x=[-2 pi 5;-1 0 1]

x = -2.0000    3.1416    5.0000
    -1.0000         0    1.0000

>> x == 0

ans = 0     0     0
      0     1     0

>> x > 1, x >= (-1)

ans = 0     1     1
      0     0     0

ans = 0     1     1
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      1     1     1

>> y = x >= (-1), x > y

y = 0     1     1
    1     1     1

ans = 0     1     1
      0     0     0

We may combine logical tests, as in

>> x

x = -2.0000    3.1416    5.0000
    -1.0000         0    1.0000

>>  x > 3 & x < 4

ans = 0     1     0
      0     0     0

>> x > 3 | x == 0

ans = 0     1     1
      0     1     0

As one might expect, & represents and and (not so clearly) the 
vertical bar | means or; also ~ means not
as in ~= (not equal), ~(x>0), etc.

One of the uses of logical tests is to "mask out" certain
elements of a matrix.

>> x, L = x >= 0

x = -2.0000    3.1416    5.0000
    -1.0000         0    1.0000

L =  0     1     1
     0     1     1

>> pos = x.*L

pos =  0    3.1416    5.0000
       0         0    1.0000
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so the matrix pos contains just those elements of x that
are non-negative.

Now consider

>> x = 0:0.05:6; y = sin(pi*x); Y = (y >= 0).*y;
>> plot(x,y,':',x,Y,'-')

which results in

! !

While Loops

There are some occasions when we want to repeat a section of 
MATLAB code until some logical condition is satisfied, but we 
cannot tell in advance how many times we have to go around the 
loop. This we can do with a while...end construct.

>> S = 1; n = 1;
>> while S+(n+1)^2 < 100
    n = n+1; S = S + n^2;
   end
>> [n,S]

ans = 6    91
The lines of code between while and end will only be executed if 
the condition S+ (n+1) ^ 2 < 100  is true.
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Example: Find the approximate root of the equation x = cosx .

We can do this by making a guess x1 = π / 4 ,say, then computing the 

sequence of values

! ! ! !  xn = cos xn ! 1 , n = 2,3,4,.......
and continuing until the difference between two successive 
values xn ! xn ! 1  is small enough.  

Method 1:
>> x = zeros(1,20); x(1) = pi/4;
>> n = 1; d = 1;
>> while d > 0.001
     n = n+1; x(n) = cos(x(n-1));
     d = abs(x(n)-x(n-1));
   end
>> n,x

n = 14

x = Columns 1 through 6 
    0.7854    0.7071    0.7602    0.7247    0.7487   0.7326 
    Columns 7 through 12
    0.7435    0.7361   0.7411    0.7377    0.7400    0.7385
    Columns 13 through 18 
    0.7395    0.7388        0         0         0         0
    Columns 19 through 20 
         0         0
There are a number of deficiencies with this program. The vector 
x stores the results of each iteration but we don't know in 
advance how many there may be. In any event, we are rarely 
interested in the intermediate values of x, only the last one. 
Another problem is that we may never satisfy the condition 
d ! 0.001, in which case the program will run forever - we should 
place a limit on the maximum number of iterations.

Incorporating these improvements leads to

Method 2:

>> xold = pi/4; n = 1; d = 1;
>> while d > 0.001 & n < 20
     n = n+1; xnew =cos(xold);
     d = abs(xnew - xold);
     xold = xnew;
   end
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>> [n,xnew,d]

ans = 14.0000    0.7388    0.0007

We continue around the loop so long as d > 0.001 and n < 20. For 
greater precision we could use the condition d > 0.0001, and 
this gives

>> [n,xnew,d]

ans = 19.0000    0.7391    0.0001

from which we may judge that the root required is x = 0.739 to 3 
decimal places.

The general form of while statement is

! ! while a logical test
! ! ! commands to be executed
! ! ! when the condition is true
          end

if...then...else...end

This allows us to execute different commands depending on the 
truth or falsity of some logical tests. To test whether or not 
π e  is greater than, or equal to, eπ :

>> a = pi^exp(1); c = exp(pi);
>> if a >= c
     b = sqrt(a^2-c^2)
   end

so that b is assigned a value only if a $ c. There is no output 
so we deduce that a = ! e  < c = e! . A more common situation is

>> if a >= c
     b = sqrt(a^2-c^2)
   else
     b = 0
   end

b = 0

which ensures that b is always assigned a value and confirming 
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a < c in this case.

A more extended form is

>> if a >= c
     b = sqrt(a^2 - c^2)
   elseif a^c > c^a
     b = c^a/a^c
   else
     b = a^c/c^a
   end

b = 0.2347

The general form of the if statement is

! ! if logical test 1
  ! ! ! commands to be ececuted
! ! ! if test 1 is true
! ! elseif logical test 2
! ! ! commands to be executed if test 2
! ! ! is true but test 1 is false
! ! .........
! ! .........
! ! end

Function m-files

These are a combination of the ideas of script m-files
discussed earlier and mathematical functions.

Example: The area, A, of a triangle with sides of length a, b 
and c is given by

! ! ! A = s(s! a)(s! b)(s! c)
where s = (a + b + c) / 2 . Write a MATLAB function that will accept the 

values a, b and c as inputs and return the value of A as output.

The main steps to follow when defining a MATLAB function
are:

1. Decide on a name for the function, making sure that it does             
   not conflict with a name that is already used by MATLAB. In    
   this example the name of the function is to be area, so its 
   definition will be saved in a file called area.m
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2. The first line of the file must have the format:

   function [ list of outputs] = function name( list of inputs)

   For our example, the output (A) is a function of the three 
   variables (inputs) a, b and c so the first line should read

! ! ! function [A] = area(a,b,c)

3. Document the function. That is, describe briefly the purpose 
   of the function and how it can be used. These lines should be 
   preceded by % which signify that they are comment lines that 
   will be ignored when the function is evaluated.

4. Finally include the code that defines the function. This 
   should be interspersed with sufficient comments to enable 
   another user to understand the processes involved.

The complete file might look like:

function [A] = area(a,b,c)
% Compute the area of a triangle whose
% sides have length a, b and c.
% Inputs:
% a,b,c: Lengths of sides
% Output:
% A: area of triangle
% Usage:
% Area = area(2,3,4);
% Written by jrb, June 29, 2005.
s = (a+b+c)/2;
A = sqrt(s*(s-a)*(s-b)*(s-c));
%%%%%%%%% end of area %%%%%%%%%%%

The command

>> help area

will produce the leading comments from the file:

  Compute the area of a triangle whose
  sides have length a, b and c.
  Inputs:
  a,b,c: Lengths of sides
  Output:
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  A: area of triangle
  Usage:
  Area = area(2,3,4);
  Written by jrb, June 29, 2005.

    Reference page in Help browser
       doc area

To evaluate the area of a triangle with sides of length 10, 15, 
20:

>> Area = area(10,15,20)

Area = 72.6184

where the result of the computation is assigned to the
variable Area. Functions must assign values to a variable. The 
variable s used in the definition of the function above is a 
"local variable": its value is local to the function and cannot 
be used outside:

>> s
??? Undefined function or variable 's'.

If we were to be interested in the value of s as well as
A, then the first line of the file should be changed to

! ! function [A,s] = area(a,b,c)

where there are two output variables.

This function can be called in several different ways:

1. No outputs assigned

>> area(10,15,20)

ans = 72.6184

gives only the area (first of the output variables
from the file) assigned to ans; the second output
is ignored.
2. One output assigned

>> Area = area(10,15,20)
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Area = 72.6184

again the second output is ignored.

3. Two outputs assigned
>> [Area, hlen] = area(10,15,20)

Area = 72.6184

hlen = 22.5000

Examples of functions

We revisit the problem of computing the Fibonnaci sequence
defined by f1 = 0, f2 = 1 and

! ! fn = fn! 1 + fn! 2 , n = 3,4,5,......

We want to construct a function that will return the n th  number 
in the Fibonnaci sequence fn .

  Input: Integer n
  Output: fn

We shall describe four possible functions and try to assess
which provides the best solution.

Method 1:

function f = Fib1(n)
% Returns the nth number in the
% Fibonacci sequence.
F=zeros(1,n+1);
F(2) = 1;
for i = 3:n+1 
   F(i) = F(i-1) + F(i-2);
end
f = F(n);

This code resembles that given in an earlier example. We have 
simply enclosed it in a function m-file and given it the 
appropriate header.

Method 2:
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The first version was rather wasteful of memory - it saved all 
the entries in the sequence even though we only required the 
last one for output. The second version removes the need to use 
a vector.

function f = Fib2(n)
% Returns the nth number in the
% Fibonacci sequence.
if n==1
  f = 0;
elseif n==2
  f = 1;
else
  f1 = 0; f2 = 1;
  for i = 2:n-1
    f = f1 + f2;
    f1=f2; f2 = f;
  end
end

Method 3: 

This version makes use of an idea called "recursive programming" 
- the function makes calls to itself.

function f = Fib3(n)
% Returns the nth number in the
% Fibonacci sequence.
if n==1
f = 0;
elseif n==2
f = 1;
else
f = Fib3(n-1) + Fib3(n-2);
end

Method 4: 

The final version uses matrix powers. The vector y has
two components,

! ! !
y =

fn

fn+1

⎡

⎣
⎢

⎤

⎦
⎥

function f = Fib4(n)
% Returns the nth number in the
% Fibonacci sequence.
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A = [0 1;1 1];
y = A^n*[1;0];
f=y(1);

Assessment: 

One may think that, on grounds of style, the 3rd is best (it 
avoids the use of loops) followed by the second (it avoids the 
use of a vector). The situation is much different when it cames 
to speed of execution. When n = 20 the time taken by each of the
methods is (in seconds)

Method Time

1 0.000246

2 0.000205

3 0.531082

4 0.000298
!
It is impractical to use Method 3 for any value of n much larger 
than 10 since the time taken by method 3 almost doubles whenever 
n is increased by just 1. When n = 150

Method Time

1 0.000316

2 0.000245

3 4.176754 (n=24)

4 0.000313

Clearly the 2nd method is much the fastest.

We will see how to time such operations shortly.

Further Built-in Functions

Rounding Numbers
There are a variety of ways of rounding and chopping real 
numbers to give integers. Use the definitions given
earlier in order to understand the output given below:
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>> x = pi*(-1:3), round(x)

x = -3.1416         0    3.1416    6.2832    9.4248

ans = -3     0     3     6     9

>> fix(x)

ans = -3     0     3     6     9

>> floor(x)

ans = -4     0     3     6     9

>> ceil(x)

ans = -3     0     4     7    10

>> sign(x), rem(x,3)

ans = -1     0     1     1     1

ans = -0.1416         0    0.1416    0.2832    0.4248

The sum Function

The " sum" applied to a vector adds up its components (as in 
sum(1:10)) while, for a matrix, it adds up the components in 
each column and returns a row vector.

sum(sum(A)) then sums all the entries of A.

>> A = [1:3;4:6;7:9]

A =  1     2     3
     4     5     6
     7     8     9

>> s = sum(A), ss = sum(sum(A))
s = 12    15    18

ss = 45

>> x = pi/4*(1:3)'
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x = 0.7854
    1.5708
    2.3562

>> A = [sin(x), sin(2*x), sin(3*x)]/sqrt(2)

A = 0.5000    0.7071    0.5000
    0.7071    0.0000   -0.7071
    0.5000   -0.7071    0.5000

>> s1 = sum(A.^2), s2 = sum(sum(A.^2))

s1 = 1.0000    1.0000    1.0000

s2 = 3.0000

The sums of squares of the entries in each column of A are equal 
to 1 and the sum of squares of all the entries is equal to 3.

>> A*A'

ans = 1.0000         0   -0.0000
           0    1.0000    0.0000
     -0.0000    0.0000    1.0000

>> A'*A

ans = 1.0000         0   -0.0000
           0    1.0000    0.0000
     -0.0000    0.0000    1.0000

It appears that the products AA' and A'A are both equal to the 
identity:

>> A*A'- eye(3)

ans = 1.0e-15 *
   -0.1110         0   -0.0278
         0   -0.2220    0.0622
   -0.0278    0.0622   -0.2220

>> A'*A - eye(3)

ans = 1.0e-15 *
   -0.1110         0   -0.0278
         0   -0.2220    0.0622
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   -0.0278    0.0622   -0.2220

This is confirmed since the differences are at round-off error 
levels (less than 10! 15 ). A matrix with this property is called an 
orthogonal matrix.

max & min

These functions act in a similar way to sum. If x is a vector, 
then max(x) returns the largest element in x

>> x = [1.3 -2.4 0 2.3], max(x), max(abs(x))

x = 1.3000   -2.4000         0    2.3000

ans = 2.3000

ans = 2.4000

When we ask for two outputs, the first gives us the maximum
entry and the second the index of the maximum element.

>> [m, j] =max(x)

m = 2.3000

j = 4

For a matrix, A, max(A) returns a row vector containing the 
maximum element from each column. Thus to find the largest 
element in A we have to use max(max(A)).

Random Numbers

The function rand(m,n) produces an m x n matrix of random 
numbers, each of which is in the range 0 to 1. rand on its own 
produces a single random number.

>> y = rand, Y = rand(2,3)

y = 0.9501

Y = 0.2311    0.4860    0.7621
    0.6068    0.8913    0.4565

Repeating these commands will lead to different answers.
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Example: Write a function-file that will simulate n
throws of a pair of dice.

This requires random numbers that are integers in the
range 1 to 6. Multiplying each random number by 6
will give a real number in the range 0 to 6; rounding
these to whole numbers will not be correct since it will
then be possible to get 0 as an answer. We need to use

! ! floor(1 + 6*rand)

Recall that floor takes the largest integer that is smaller
than a given real number.

function [d] = dice(n)
% simulates "n" throws of a pair of dice
% Input: n, the number of throws
% Output: an n times 2 matrix, each row
% referring to one throw.
%
% Usage: T = dice(3)
d = floor(1 + 6*rand(n,2));
%% end of dice

>> dice(3)

ans = 1     4
      5     5
      3     6

>> sum(dice(100))/100

ans = 3.6400    3.2500

The last command gives the average value over 100
throws (it should have the value 3.5).

find for vectors

The function " find" returns a list of the positions (indices)
of the elements of a vector satisfying a given condition.
For example,

>> x = -1:.05:1;
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>> y =sin(3*pi*x).*exp(-x.^2); plot(x,y,':')
>> k = find(y > 0.2)

k = Columns 1 through 8 
     9    10    11    12    13    22    23    24    
    Columns 9 through 15 
    25    26    27    36    37    38    39

>> plot(x,y,':')
>> hold on, plot(x(k),y(k),'o')
>> km = find(x > 0.5 & y < 0)

km = 32    33    34

>> plot(x(km),y(km),'-')

find for matrices

The find-function operates in much the same way for matrices:

>> A =[-2 3 4 5; 0 5 -1 6; 6 8 0 1]

A = -2     3     4     5
     0     5    -1     6
     6     8     0     1

>> k = find(A == 0)

k = 2
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    9

Thus, we find that A has elements equal to 0 in positions 2 and 
9. To interpret this result we have to recognize that " find" 
first reshapes A into a column vector - this is equivalent to 
numbering the elements of A by columns as in

    !! !  1     4     7    10
    !! !  2     5     8    11
    !! !  3     6     9    12

>> n = find(A <= 0)

n =  1
     2
     8
     9

>> A(n)

ans = -2
       0
      -1
       0

Thus, n gives a list of the locations of the entries in A
that are # 0 and then A(n) gives us the values of the
elements selected.

>> m = find(A' == 0)

m =  5
    11

Since we are dealing with A', the entries are numbered
by rows.

Plotting Surfaces

A surface is defined mathematically by a function f(x,y) -
corresponding to each value of (x,y) we compute the
height of the function by

! ! ! ! z = f(x,y)

                                                                      Page 57



In order to plot this we have to decide on the ranges of x and y 
- suppose 2 # x # 4 and 1 # y # 3. This gives us a square in the 
(x,y)-plane. Next, we need to choose a grid on this domain, that 
is, number of points or interval between points in each 
coordinate interval. For example, suppose we choose a grid with 
intervals 0.5 in each direction. The x- and y-coordinates of
the grid lines are

>> x = 2:0.5:4; y = 1:0.5:3;

Finally, we have to evaluate the function at each point of the 
grid and " plot" it.

We construct the grid with the meshgrid command:

>> [X,Y] = meshgrid(x,y)

X = 2.0000    2.5000    3.0000    3.5000    4.0000
    2.0000    2.5000    3.0000    3.5000    4.0000
    2.0000    2.5000    3.0000    3.5000    4.0000
    2.0000    2.5000    3.0000    3.5000    4.0000
    2.0000    2.5000    3.0000    3.5000    4.0000

Y = 1.0000    1.0000    1.0000    1.0000    1.0000
    1.5000    1.5000    1.5000    1.5000    1.5000
    2.0000    2.0000    2.0000    2.0000    2.0000
    2.5000    2.5000    2.5000    2.5000    2.5000
    3.0000    3.0000    3.0000    3.0000    3.0000

If we think of the i th  point along from the left and the j th  
point up from the bottom of the grid) as corresponding to the 
(i,j) th  entry in a matrix, then (X(i,j),Y(i,j)) are the 
coordinates of the point. 

We then need to evaluate the function f using X and Y in place 
of x and y, respectively.

Example: Plot the surface defined by the function

! ! ! f (x,y) = (x − 3)2 − (y − 2)2

on the domain -2 # x # 4 and 1 # y # 3. 
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>> [X,Y] = meshgrid(2:0.2:4,1:0.2:3);
>> Z = (X-3).^2 - (Y-2).^2;
>> mesh(X,Y,Z)
>> title('Saddle'),xlabel('x'),ylabel('y')

We now repeat the previous example replacing mesh by surf.

Example: Plot the surface defined by the function

! ! ! f (x, y) = −xye−2(x
2 + y2 )

on the domain -2 # x # 2 and -2 # y # 2. Find the values and 
locations of the maxima and minima of the function.
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>> [X,Y] = meshgrid(-2:0.1:2,-2:0.1:2);
>> f = -X.*Y.*exp(-2*(X.^2+Y.^2));
>> figure(1)
>> mesh(X,Y,f),xlabel('x'),ylabel('y'),grid

>> figure(2)
>> contour(X,Y,f)
>> xlabel('x'),ylabel('y'), grid, hold on

To locate the maxima of the " f" values on the grid:

>> fmax = max(max(f))
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fmax = 0.0920

>> kmax = find(f == fmax)

kmax =   641
        1041

>> Pos = [X(kmax), Y(kmax)]

Pos = -0.5000    0.5000
       0.5000   -0.5000

>> plot(X(kmax), Y(kmax),'*')
>> text(X(kmax), Y(kmax), ' Maximum')
>> hold off

Additional Graphics Commands

Line Plots

The 3-dimensional analog of the plot command is the plot3 
command. If x, y, and z are three vectors of the same length, 
then the command plot3(x,y,z) generates a line in 3-space 
through the points whose coordinates are the elements of x, y, 
and z. For example,

>> t=0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t)
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produces the helix shown below.

Another example that we will get to run much faster later on is

>> a = [-8/3 0 0; 0 -10 10; 0 28 -1];
>> y = [35 -10 -7]';
>> h = 0.01;
>> plot3(y(1),y(2),y(3),'.')
>> axis([0 50 -25 25 -25 25])
>> hold on
>> n = 0;
>> while n < 1000
     n = n+1;
     a(1,3) = y(2);
     a(3,1) = -y(2);
     ydot = a*y;
     y = y + h*ydot;
     plot3(y(1),y(2),y(3),'.')
     drawnow
   end

which produces the chaotic Lorentz strange attractor 
plot(butterfly effect) shown below.
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The peaks command generates an array of z-values from a function 
f(x,y) that has three local maxima and three local minima. The 
general form of the peaks command is peaks(n) which produces an 
n x n array. If no argument is used, then it defaults to n = 49. 
It is a useful test data set.

>> mesh(peaks)

>> contour(peaks,20) % 2nd argument specifies number of contours

!
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>> contour(peaks,40)

Images

MATLAB displays an image by mapping each element in a matrix to 
an entry in the current color map, which is not necessarily 
related to the image in any way.

Normally images have their own colormap, which only includes the 
actual colors in the image. This is referred to as its color 
palette.
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There are two distinct functions for displaying images, namely 
pcolor and image. They are similar in their operations. Both 
produce 2-D pictures with brightness or color values 
proportional to the elements of a given matrix.  The most 
important differences are:

If A is an m x n array, then 

[1] image(A) produces an m x n array of cells while pcolor(A)      
    produces and m x n grid of lines and hence only an 
    (m-1_x(n-1) array of cells.

[2] image(A) always uses flat shading(each cell has constant 
    color) while pcolor(A) has several shading modes(faceted, 
    flat, interp).

[3] image uses the elements in A to lookup color values directly  
    in the colormap (the colormap has values only for integers   
    in the range 0 to length_of_ colormap(default=64; max=256)). 
    pcolor's input matrix(A) is scaled by the color axis limits 
    (set by caxis command).

For example, consider the array 30*peaks(20) as shown by both 
image and pcolor

>> image(30*peaks(20))
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>> pcolor(30*peaks(20))

Some further examples are:

>> pcolor(peaks)
>> colormap(hot)
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>> pcolor(peaks)
>> colormap(hot)
>> shading flat
>> shading interp
>> hold on
>> contour(peaks,20,'b')
>> hold off

Timing

MATLAB allows the timing of sections of code by providing
the functions tic and toc. tic switches on a stopwatch while toc 
stops it and returns the CPU time (Central Processor Unit) in 
seconds. The timings will vary depending on the model of 
computer being used and its current load.

>> tic,for j=1:1000,x=pi^3;end,toc
Elapsed time is 0.004118 seconds.
>> tic,for j=1:1000,x=pi^3+sin(cos(pi/4));end,toc
Elapsed time is 0.008207 seconds.
>> tic,for j=1:10000,x=pi^3+sin(cos(pi/4));end,toc
Elapsed time is 0.155270 seconds.

Reading and Writing Data Files

Direct input of data from keyboard becomes impractical
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when
  ! ! ¥ the amount of data is large and
  ! ! ¥ the same data is analyzed repeatedly

In these situations input and output is preferably accomplished
via data files. 

The simplest way to accomplish this task is to use the commands 
save and load that, respectively, write and read the values of 
variables to disk files.

a = 0.9501    0.8913    0.8214    0.9218    0.9355
    0.2311    0.7621    0.4447    0.7382    0.9169
    0.6068    0.4565    0.6154    0.1763    0.4103
    0.4860    0.0185    0.7919    0.4057    0.8936

>> save a

Look in your current directory and you will now find a file 
named a.mat. It contains the variable a. We now change a in the 
workspace.

>> a = 789

a = 789

We can recover the old value of a by using the load command.

>> load a
>> a

a = 0.9501    0.8913    0.8214    0.9218    0.9355
    0.2311    0.7621    0.4447    0.7382    0.9169
    0.6068    0.4565    0.6154    0.1763    0.4103
    0.4860    0.0185    0.7919    0.4057    0.8936

Suppose that we have a data file containing ascii text and it is 
named weather.dat and it looks like:

30 4.0
31 3.7
38 4.1
49 3.7
59 3.5
68 2.9
74 2.7

                                                                      Page 68



72 3.7
65 3.4
55 3.4
45 4.2
34 4.9

The command

>> load weather.dat

produces a new variable named weather which contains a 12 x 2 
matrix.

>> weather

weather = 30.0000    4.0000
          31.0000    3.7000
          38.0000    4.1000
          49.0000    3.7000
          59.0000    3.5000
          68.0000    2.9000
          74.0000    2.7000
          72.0000    3.7000
          65.0000    3.4000
          55.0000    3.4000
          45.0000    4.2000
          34.0000    4.9000

We can then use this data as follows:

>> temp = weather(:,1);
>> precip = weather(:,2);
>> subplot(2,2,1)
>> subplot(2,1,1)
>> plot(temp)
>> title('Weather Data')
>> xlabel('Month Number')
>> ylabel('Temperature')
>> subplot(2,1,2)
>> plot(precip)
>> xlabel('Month Number')
>> ylabel('Precipitation')

to obtain the plot
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In most cases of scientific work, however, when data are written 
to or read from a file it is crucially important that a correct 
data format is used. The data format is the key to interpreting 
the contents of a file and must be known in order to correctly 
interpret the data in an input file. There a two types of data
files: formatted and unformatted. Formatted data files use 
format strings to define exactly how and in what positions of a 
data-record the data is stored. Unformatted storage, on the 
other hand, only specifies the number format.

Example: Suppose the numeric data is stored in a file 
'table.dat' in the form of a table, as shown below.

100 2256
200 4564
300 3653
400 6798
500 6432

The three commands,

>> fid = fopen('table.dat','r');
>> a = fscanf(fid,'%3d%4d');
>> fclose(fid)

respectively

1. open a file for reading (this is designated by the string   
   'r'). The variable fid is assigned a unique integer which 
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   identifies the file used (a file identifier). We use this 
   number in all subsequent references to the file.

2. read pairs of numbers from the file with file identifier fid, 
   one with 3 digits and one with 4 digits, and

3. close the file with file identifier fid.

This produces a column vector a with elements, 100 2256 200 
4564 ...500 6432. This vector can be converted to a 5 x 2 matrix 
by the command

>> A = reshape(a,2,5)'

A =      100        2256
         200        4564
         300        3653
         400        6798
         500        6432

Formatted Files

Some computer codes and measurement instruments produce results 
in formatted data files. In order to read these results into 
MATLAB for further analysis the data format of the files must be 
known. Formatted files in ASCII format are written to and read 
from with the commands fprintf and fscanf.

! fprintf(fid, 'format', variables) writes variables in a 
! format specified in string 'format' to the file with 
     identifier  fid

! a = fscanf(fid, 'format',size) assigns to variable a data 
! read from  file with identifier fid under format 'format'.

Some sample formats:

%6.2f  %12.8f

This format control string specifies the format for each line of 
data - a fixed-point value of six characters with two decimal 
places + two spaces + a fixed-point value of twelve characters 
with eight decimal places, for example,

1234.12  1234.12345678

                                                                      Page 71



Valid conversion specifications are:

%s - Sequence of characters
%d - Base 10 integers
%e, %f - Floating-point numbers

Some examples illustrate formats

>> fprintf('pi^3 is %12.8f\n',pi^3)
pi^3 is  31.00627668

The example prints pi^3 with 8 digits past the decimal point in 
a space of 12 characters. Note that the last character is '\n', 
which is newline. If this were excluded, the next line of output 
would start at the end of this line (sometimes you want that!).

>> fprintf('pi^3 is %12.8e\n',pi^3)
pi^3 is 3.10062767e+01

The example prints pi^3 with 8 digits past the decimal point in 
a space of 12 characters using exponential (powers of ten) 
notation.

>> fprintf('%5d %5d %5d %5d\n',round(100*rand(1,4)))
   84     2    68    38 

This example prints the output as integers each allotted 5 
spaces.

Example: Suppose a sound pressure measurement system produces a 
record with 512 time - pressure readings stored in a file 
'sound.dat'. Each reading is listed on a separate line according 
to a data format specified by the string, '%8.6f %8.6f'.

A set of commands reading time - sound pressure data from 
'sound.dat' is,

Step 1: Assign a namestring to a file identifier.

        >> fid1 = fopen('sound.dat','r');

        The string 'r' indicates that data is to be read (not    
        written) from the file.

Step 2: Read the data to a vector named 'data' and close the  
        file,
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        >> data = fscanf(fid1, '%f %f');
        >> fclose(fid1);

Step 3: Partition the data in separate time and sound pressure 
        vectors,

        >> t = data(1:2:length(data));
        >> press = data(2:2:length(data));

The pressure signal can be plotted in a diagram,

        >> plot(t, press);

The result is shown below.

In this laboratory we will be able to do all file read/writes 
using load/save and ascii files

If we want to write an ascii file with a specific format(say for 
use by someone using a different programming language), then we 
cannot use the save command.

Example: Create a ascii file called gxp.dat containing a short 
table of the exponential function. 
 
>> x = 0:.1:1;
>> y = [x; exp(x)];
>> fid = fopen('gxp.txt', 'wt');  
>> fprintf(fid, '%6.2f %12.8f\n', y);
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>> fclose(fid)
Now examine the contents of gxp.dat: 

>> type gxp.dat

  0.00   1.00000000
  0.10   1.10517092
  0.20   1.22140276
  0.30   1.34985881
  0.40   1.49182470
  0.50   1.64872127
  0.60   1.82211880
  0.70   2.01375271
  0.80   2.22554093
  0.90   2.45960311
  1.00   2.71828183

This file can be read back using

>> load gxp.dat

exp =      0    1.0000
      0.1000    1.1052
      0.2000    1.2214
      0.3000    1.3499
      0.4000    1.4918
      0.5000    1.6487
      0.6000    1.8221
      0.7000    2.0138
      0.8000    2.2255
      0.9000    2.4596
      1.0000    2.7183

Programming in MATLAB

M-files 

MATLAB can execute a sequence of statements stored in files.  
Such files are called  M-files because they must have the file 
type suffix of  .m  as the last part of their filename.  Much of 
your work with MATLAB will be in creating and refining M-files. 
There are two types of M-files:  script files  and  function 
files .
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Script or Program files  

A script file consists of a sequence of normal MATLAB 
statements.  If the file has the filename, say,  rotate.m , then 
the MATLAB command  rotate  will cause the statements in the 
file to be executed.  Variables in a script file are global and 
will change the value of variables of the same name in the 
environment(workspace) of the current MATLAB session. 

An M-file can reference other M-files, including referencing 
itself recursively. We will see m-file examples later in these 
notes and you will write many m-files. 

Function files (discussed earlier)

Function files provide extensibility to MATLAB. You can create 
new functions specific to your problem which will then have the 
same status as other MATLAB functions.  Variables in a function 
file are by default local. 

A script file can call function files. 

We first illustrate with a simple example of a function file.

function y = fofx(x)
% function to calculate y given x
y=cos(tan(pi*x));

This should be placed in a diskfile with filename fofx.m 
(corresponding to the function name).  The first line declares 
the function name, input arguments, and output arguments; 
without this line the file would be a script file.  Then a 
MATLAB statement z = fofx(4), for example, will cause the 
variable z to be assigned the value cos(tan(4*pi)).  Since 
variables in a function file are local their names are 
independent of those in the current MATLAB environment. The %  
symbol indicates that the rest of the line is a comment; MATLAB 
will ignore the rest of the line.  However, the first few 
comment lines, which document the M-file, are available to the 
on-line help facility. Such documentation should  always  be 
included in a function file. Some of MATLAB's functions are 
built-in while others are distributed as M-files. 

>> zz=fofx(5)

zz = 1
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Examples of Script or Program m-files

% trapazoid rule for integral of x^2 between 0 and 1
% exact answer is 1/3
h = input('mesh size h = ');
x = (0:h:1);
lenx = length(x);
y = x.^2;
int = (h/2)*(y(1)+2*sum(y(2:(lenx-1)))+y(lenx))

Save it as trapint.m .

Now enter the command

>> trapint

You will be prompted for a mesh size h. Enter a value.
The printed result is the value of the integral.

>> trapint
mesh size h = 0.1

int = 0.3350

>> trapint
mesh size h = 0.01

int = 0.3333

% generating noisy data
x = 0:0.025:2;
y = sin(pi*x);
yn = y + 0.25*(rand(size(x)) - 0.5);
plot(x,y,'--',x,yn,'-')
title(['dashed line: sin(pi*x)', ...
 '  solid line: noisy data'])
xlabel('noise is random from [-1/8,1/8]')

Save it as noisedat.m .

Now enter the command

>> noisedat

The result will be a plot of the noisy data.
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>> noisedat

The next task is to plot sin(j*pi*t) for j = 1 ... 5. Use 
t = 0:0.025:1 . We will illustrate three approach with three 
m-files.

Approach #1 uses a single plot command listing each graph.

t = 0:0.025:1;
plot(t,sin(pi*t),  t,sin(2*pi*t), t,sin(3*pi*t), ...
t,sin(4*pi*t),  t,sin(5*pi*t))

Approach #2 uses a loop and the command hold on.

t = 0:0.025:1;
plot(t,sin(pi*t))
hold on
for j = 2:5
  plot(t,sin(j*pi*t))
end
hold off

Approach #3 builds a matrix.

t = 0:0.025:1;
lt = length(t);
A = (1:5)'*pi*t;
plot(t,sin(A))
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>> approach3

% quiverex.m
% potential = x*exp(-x^2-y^2)
% field components using gradient function
% plot of potential contours and field vectors
xord = -2:.2:2;
yord = -2:.2:2;
[x,y] = meshgrid(xord,yord);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);
contour(x,y,z)
hold on
quiver(x,y,px,py)
hold off
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% elec3.m
% vector field plot for 2 charges
x=0:.5:10;
y=0:.5:10;
[X,Y]=meshgrid(x,y);
Z=0.1./sqrt((X-5.75).^2+(Y-5.75).^2);
Z=Z-0.1./sqrt((X-4.25).^2+(Y-4.25).^2);
[px,py]=gradient(Z,.1,.1);
norm=sqrt(px.^2 + py.^2);
px=-px./norm;
py=-py./norm;
quiver(X,Y,px,py,'k');

% lorenz1.m
% Plot of Lorentz attractor done earlier
% now using Handle Graphics commands (much faster)
y=input('Enter starting point - (0<x<50, -25<y<25, -25<z<25) in [] : ' );
y=y';
a=[-8/3 0 0; 0 -10 10; 0 28 -1];
%y=[35 -10 -7]';
h=.01;
p=plot3(y(1),y(2),y(3),'.', ...
        'EraseMode','none','MarkerSize',2)
axis([0 50 -25 25 -25 25])
hold on
n=0;
while (n < 1000)
   n=n+1;

                                                                      Page 79



   a(1,3)=y(2);
   a(3,1)=-y(2);
   ydot=a*y;
   y=y+h*ydot;
   set(p,'XData',y(1),'YData',y(2),'ZData',y(3))
   drawnow
end

% MATLAB code for simple relaxation method
% initial potential values
% or boundary values
p=zeros(20,20);
% set boundary values
p(1,1:20)=zeros(1,20);
p(20,1:20)=100*ones(1,20);
p(1:20,1)=zeros(20,1);
p(1:20,20)=100*ones(20,1);
% iteration
for i=1:100
  i 
  p=0.25*(p(:,[20,[1:19]])+p(:,[[2:20],1])+ ....      
                               p([20,[1:19]],:)+p([[2:20],
1],:));
% reset changed boundaries
% set boundary values
p(1,1:20)=zeros(1,20);
p(20,1:20)=100*ones(1,20);
p(1:20,1)=zeros(20,1);
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p(1:20,20)=100*ones(20,1);
end
x=[1:20];
y=[1:20];
% interpolate 20x20 --> 200x200
tx=1:.1:20;
ty=1:.1:20;
[X,Y] = meshgrid(tx,ty);
pot=interp2(x,y,p,X,Y);
figure('Position',[200 100 300 300])
pcolor(tx,ty,pot)
hold on
colormap(waves)
shading flat
axis('square')
colorbar
hold off
figure('Position',[100 10 300 300])
pcolor(x,y,p)
hold on
colormap(waves)
shading flat
axis('square')
contour(x,y,p,20,'k')
colorbar
hold off

% function waves.m
function map = waves(m)
m=128;
R = zeros(m,3);
j=1:128;
r=0.5*(1-sin(2*pi*j/128));
b=0.5*(1+sin(2*pi*j/128));
g=0.2*(2+sin(2*pi*j/8));
R(:,1)=r';
R(:,2)=g';
R(:,3)=b';
map=R;
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% motion1d.m
% one-dimensional motion of a damped-driven oscillator
% Solves ODE using Runge-Kutta method (will learn later)
% uses acceleration function acellx.m
clear
% set initial conditions
x=10;
vx=0;
% set time step
h=.01;
% open window
figure('Position',[50 50 500 500]);
% set plot handle and parameters
p=plot(0,x,'.g','EraseMode','none','MarkerSize',2)
axis(100*[0 1 -1 1]);
count=-1;
% Runka-Kutta solution of DEQ
while (count < 10000)
  count=count+1;
  fx1=vx;
  gx1=accel1x(x,vx,count*h);
  fx2=vx+h*gx1/2;
  gx2=accel1x(x+h*fx1/2,vx+h*gx1/2,(count+0.5)*h);
  fx3=vx+h*gx2/2;
  gx3=accel1x(x+h*fx2/2,vx+h*gx2/2,(count+0.5)*h);
  fx4=vx+h*gx3;
  gx4=accel1x(x+h*fx3,vx+h*gx3,(count+1)*h);
  x=x+h*(fx1+2*fx2+2*fx3+fx4)/6;
  vx=vx+h*(gx1+2*gx2+2*gx3+gx4)/6;
  set(p,'XData',count*h,'YData',x)
  drawnow
end

% function accellx.m
function a=accel1x(x,vx,t)
a=-x - .2*vx +10*sin(t);
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