
Partial Differential Equations (PDEs)

In Physics, there are differential equations of motion that 
describe the response of systems to external disturbances. These 
are called ordinary differential equations (ODEs). There are 
also differential equations of states, or field equations, whose 
solutions give the space-time dependence of physical properties. 
These are called partial differential equations (PDEs) in the 4 
variables x,y,z,t.

In general, the PDE's we will discuss describe three-dimensional 
situations. The independent variables are the position vector  

r  
and the time t. The actual variables used to specify  

r  are 
dictated by the coordinate system in use, i.e., 

(x, y, z) , (ρ,φ, z) , (r,θ,φ), etc.

The most important PDEs are:

(1) The wave equation

	
 	
 	
 	
 	
 	

∇2u =

1
c2

∂ 2u
∂t 2

This equation describes as a function of position and time the 

displacement from equilibrium, 
 
u(r ,t), of a vibrating string or 

membrane, or a vibrating solid, gas or liquid. The equation also 

occurs in electromagnetism, where 
 
u(r ,t) may be a component of the 

electric or magnetic field in an electromagnetic wave, or the 
current or voltage along a transmission line. The quantity c is 
the speed of propagation of the waves.

We now derive the wave equation in a special case. We consider 

the small transverse displacements u(x,t) of a uniform string of 

mass per unit length ρ  held under uniform tension T, assuming 
that the string is initially located along the x-axis in a 
Cartesian coordinate system.

The figure below shows the forces acting on an elemental length 
Δs of the string.
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If the tension T in the string is uniform along its length, the 
net upward vertical force on the element is

	
 	
 	
 	
 	
 ΔF = T sinθ2 − T sinθ1

Assuming that the angles θ1 and θ2 are both small, we may make 

the approximation sinθ ≈ tanθ . Since, at any point on the string 
the slope is

	
 	
 	
 	
 	

tanθ =

∂u
∂x

the force can be written as

	
 	
 	

ΔF = T

∂u(x + Δx,t)
∂x

−
∂u(x,t)
∂x

⎛
⎝⎜

⎞
⎠⎟
≈ T

∂ 2u(x,t)
∂x2

Δx

where we have used the standard definition of the partial 
derivative.

The upward force may be equated, by Newton's second law, to the 
product of the mass of the element and its upward acceleration. 

The element has mass ρΔs , which is approximately equal to ρΔx if 
the vibrations of the string are small, and so we have

	
 	
 	
 	


ρΔx ∂
2u(x,t)
∂t 2

= T
∂ 2u(x,t)
∂x2

Δx

→
∂ 2u(x,t)
∂x2

=
1
c2

∂ 2u(x,t)
∂t 2

, c2 =
T
ρ

which is the one-dimensional form of the wave equation.

(2) The diffusion equation

	
 	
 	
 	
 	

∇2u =

1
D
∂u
∂t

T

T

!s

x x+!x

u

x

"
1

2
"
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This equation describes the temperature 
 
u(r ,t) in a region 

containing no heat sources or sinks. It also applies to the 

diffusion of a chemical that has concentration 
 
u(r ,t). The 

constant D is called the diffusivity.

We now derive now derive the diffusion equation satisfied by the 

temperature 
 
u(r ,t) at time t for a material of uniform thermal 

conductivity k, specific heat capacity s, and density ρ .

Let us consider an arbitrary volume V lying within a solid, and 
bounded by a surface S. At any point in the solid the rate of 
heat flow per unit area in any given direction  

r  is proportional 
to minus the component of the temperature gradient in that 
direction and is given by

	
 	
 	
 	
 	
  
(−k∇u) ⋅ r

The total flux of heat out of the volume V per unit time is 
given by

	
 	
 	
 	

−
dQ
dt

= (−k∇u) ⋅ n̂dS = ∇ ⋅ (
V
∫∫∫

S
∫∫ − k∇u)dV

where Q is the total heat energy in V at time t, and n̂  is the 
outward-pointing unit normal to S; note that we have used the 
divergence theorem to convert the surface integral into a volume 
integral.

We can also express Q as the volume integral over V,

	
 	
 	
 	
 	

Q = sρudV

V
∫∫∫

and so its rate of change is given by

	
 	
 	
 	
 	


dQ
dt

= sρ ∂u
∂t
dV

V
∫∫∫

Comparing the two expressions for dQ/dt and remembering the 
volume V is arbitrary, we okbtain the three-dimensional 
diffusion equation

	
 	
 	
 	
 	

∇2u =

1
D
∂u
∂t

, D =
k
sρ

(3) Laplace's equation

	
 	
 	
 	
 	
 ∇2u = 0
This equation is obtained by setting 
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∂u
∂t

= 0

in the diffusion equation and describes (for example) the 
steady-state temperature of a solid in which there are no heat 
sources - i.e., the temperature after a long time has elapsed.

Laplace's equation also describes the gravitational potential in 
a region containing no matter, or the electrostatic potential in 
a charge-free region. It also applies to the flow of an 
incompressible fluid with no sources, sinks or vortices - in 

this case 
 
u(r ,t) is the velocity potential, from which the 

velocity is given by  
v = ∇u .

(4) Poisson's equation

	
 	
 	
 	
 	
  
∇2u = ρ(r )

This equation describes the same physical situations as 
Laplace's equation, but in regions containing matter, charges, 

or sources of heat or fluid. The function  
ρ(r ) is called the 

source density, and in physical applications usually contains 
some multiplicative physical constants. For example, if u is the 

electrostatic potential in some region of space, in which  
ρ(r )  is 

the density of electric charge, then

	
 	
 	
 	
 	
  

∇2u = −
1
ε0

ρ(r )

where ε0  is the permittivity of free space. Alternatively, u 
might represent the gravitational potential in some region where 

the matter density is given by  
ρ(r ); then

	
 	
 	
 	
 	
  
∇2u = 4πGρ(r )

where G is the gravitational constant.

(5) Schrodinger equation

	
 	
 	
 	
 	
  

−

2

2m
∇2u +V (r )u = i ∂u

∂t
This equation describes the quantum mechanical wave function 

 
u(r ,t) of a non-relativistic particle of mass m;    is Planck's 

constant divided by 2π .
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All of these equations are linear, They are all 2nd-order in the 
space variables and of 1st- or 2nd-order in time.

The use of these differential operators guarantees several 
things:

(1) differential operators imply invariance with respect to  
    space and time translations and hence conservation of energy 
    and momentum

(2) the differential operator ∇
2
 is the simplest operator that 

    will be invariant under the parity transformation 
    (inversion)

(3) equations that are 2nd-order in time are invariant under 
    time reversal ( t→ −t ) and hence, a movie of the system in 
    time should represent a real physical system whether it is 
    run forwards or backwards. For example, the wave equation 
    might have a solution representing a wave propagating to the 
    right and if we run the movie backwards, we get a wave 
    propagating to the left, which is also a valid solution.

In the diffusion or heat conduction, the field equation (for the 
density or temperature fields) is only 1st-order in time. The 
equation does not, and should not, satisfy time-reversal 
invariance, since heat is known to flow from high temperature to 
low temperature and NEVER the other way around. A movie of a 
pool of water solidifying into a block of ice on a hot day has 
obviously been run backwards.

The Schrodinger equation is a sort of diffusion equation with an 
imaginary diffusion constant; the wave function is a complex 
function.

The textbook discusses general aspects of PDEs and their 
solutions. We will concentrate in class on one solution method, 
namely, separation of variables.

Separation of Variables and Eigenfunction Expansions

Under certain circumstances the solution of a PDE may be written 
as a sum of terms, each of which is the product of functions of 
only one of the variable. This is called solution by separation 
of variables (SOV). Let us illustrate the procedure by an 
example:
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Consider a 1-dimensional wave equation describing the transverse 
vibrations of a string

	
 	
 	
 	


∂ 2u
∂x2

=
1
c2

∂ 2u
∂t 2

In the SOV method we simply look for a solution of the form

	
 	
 	
 	
 u(x,t) = X(x)T (t)
Direct substitution then gives

	
 	
 	
 	


∂ 2

∂x2
u(x,t) = T (t) d

2X(x)
dx2

=
1
c2
X(x) d

2T (t)
dt 2

1
X(x)

d 2X(x)
dx2

=
1
c2

1
T (t)

d 2T (t)
dt 2

It is clear that we have separated the variables. Since the LHS 
is a function of x only and the RHS is a function of t only, 
both sides of this equation must be equal for all x and t. The 
only way this is possible is for both of them to be equal to the 
same constant, say λ .

	
 	
 	
 	


1
X(x)

d 2X(x)
dx2

= λ =
1
c2

1
T (t)

d 2T (t)
dt 2

which gives

	
 	
 	
 	


d 2X(x)
dx2 − λX(x) = 0   and   d

2T (t)
dt 2 − λc2T (t) = 0

These are two separated ODEs (single variable). They are not 
completely independent of each other since the same separation 
constant λ  must appear in both. They are both eigenvalue/
eigenfunction equations.

The general solutions of these equations are:

	
 	
 	
 	


X(x) = Acos( −λx) + Bsin( −λx)

T (t) = Dcos( −λct) + E sin( −λct)

As a rule, all possible values of the separation constant λ  are 
allowed unless explicitly forbidden by the physics of the 
system. i.e., certain values of λ  can be forbidden when the 

corresponding solution X(x) , which depends on λ , does not have 
the correct properties. The properties in question, are the 
boundary conditions imposed by the physics of the system.
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It may happen that one or more of these boundary conditions can 
be satisfied only when the separation constant takes on a set of 
special values. This set then contains the only permissible 
values, or eigenvalues , for the problem. The corresponding 
solutions are called eigenfunctions. Let us illustrate this with 
a particular example:

Suppose, as in the case of the Fourier series, we are interested 
in solutions with a period of 2π  i.e.,

	
 	
 	
 1 , cos(nx) , sin(nx) , n > 0 , int eger
This implies that the only permissible constants are

	
 	
 	
 	
 λn
2 = −n2       ,    n=1,2,3,4,.....

For each λ = λn we then get a wave solution of the form

 

Xn (x)Tn (t) = An cos(nx) + Bn sin(nx)( ) Dn cos(nct) + En sin(nct)( )
                 = an cos(nx)cos(nct) + bn sin(nx)cos(nct) + dn cos(nx)sin(nct) + en sin(nx)sin(nct)

Since the 1-dimensional wave equation is linear, the general 
solution periodic in x with period 2π  is then the linear 
superposition

	
 	
 	
 	
 	

u(x,t) = 1

2
a0 + Xn (t)Tn (t)

n=1

∞

∑
of all possible solutions. Note that this is a double Fourier 
series.

Boundary and Initial Conditions

The complete determination of a solution of the PDE requires the 
specification of a suitable set of boundary and initial 
conditions. The boundaries may not be just points, but, 
depending on the dimension of the system they can be lines or 
surfaces.

Let us return to the wave equation. We now specialize the 
problem and consider the 1-dimensional vibrations of a string 
rigidly attached to a support at the points  x = 0  and x = L.

	
 	
 	


Xn (x) = An cos( −λn x) + Bn sin( −λn x)

         = An cos(knx) + Bn sin(knx)     where     kn = −λn
These boundary conditions mean that
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X(0) = 0 → An = 0      for all  n

X(L) = 0 → Bn ≠ 0 → sin(knL) = 0 → kn =
nπ
L

       for all  n

This gives as a solution

	
 	
 	
 	

Xn (x) = Bn sin

nπ x
L

⎛
⎝⎜

⎞
⎠⎟

where

	
 	
 	
 	

λn = −

nπ
L

⎛
⎝⎜

⎞
⎠⎟

2

= allowed separation constants

The eigenfunction Xn (x) belongs to the eigenvalue λn and 
describes the nth eigenmode (or normal mode) of the vibration of 
the string (fixed at both ends)(see figure below)
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These represent the fundamental vibration along with the first 
and second harmonics.

Note that there are points given by

	
 	
 	
 	

xm =

mL
n

    m=1,2,3,4,.......,n-1

where the displacement u = 0 or

	
 	
 	
 	

Xn (x) = Bn sin

nπ x
L

⎛
⎝⎜

⎞
⎠⎟
= Bn sin mπ( ) = 0

which are called nodal points of the wave.

The time factor Tn (t)  associated with Xn (t)  is given by

	
 	
 	
 Tn (t) = Dn cos(ωnt) + En sin(ωnt)
where

	
 	
 	
 	
 	

ωn =

ncπ
L

is the frequency of vibration of the nth normal mode of the 
string (fixed at both ends).

Hence, the general wave amplitude function (shape) of the 
vibrating string fixed at x = 0 and  x = L  is the general 
eigenfunction expansion (superposition of all solutions)

	
 	

u(x,t) = 1

2
a0 + Xn (t)Tn (tt) =

1
2
a0 + sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟
(Dn cos(ωnt) + En sin(ωnt)

n=1

∞

∑
n=1

∞

∑ )

If we pluck the string at time t = 0, which mode(s) will be 
excited?

The answer depends on how we pluck the string or on the initial 
conditions at t = 0.

Since PDE is 2nd order in time, we need 2 initial conditions to 
completely specify the solution. We usually choose them to be

	
 	
 	


u(x,0) = u0 (x) = initial displacement of the string at   t = 0
∂u(x,t)

∂t t=0

= v0 (x) = initial velocity profile of the string at   t = 0

or we have
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u(x,0) = u0 (x) = Dn sin
nπ x
L

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑
∂u(x,t)

∂t t=0

= v0 (x) = Enωn sin
nπ x
L

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑
which implies that

	
 	
 	


Dm =
2
L
sin mπ x

L
⎛
⎝⎜

⎞
⎠⎟

0

L

∫ u0 (x)dx

Em =
2

ωmL
sin mπ x

L
⎛
⎝⎜

⎞
⎠⎟

0

L

∫ v0 (x)dx

These coefficients determine which normal modes are excited and 
with what strength.

Real example of a vibrating string(back through everything 
again):

	
 	
 	
 	


∂ 2y
∂x2

=
1
c2

∂ 2y
∂t 2

gives

	
 	
 	
 	
  

y(x,t) = X(x)T (t)
X ''
X

= −α 2 =
1
c2
T
T

X ''+α 2X = 0 , T +α 2c2T = 0
Define

	
 	
 	

αc =ω = 2πν =

2πc
λ

→α =
2π
λ

= k = wave number

The solution is (as before)

	
 	
 	
 	
 y = asin(kx) + bcos(kx)( ) d sin(ωt) + ecos(ωt)( )
The string is fastened at x = 0 and x = L , so that y(0) = y(L) 
= 0, which gives

	
 	
 	


y(0) = b d sin(ωt) + ecos(ωt)( ) = 0→ b = 0
y(L) = asin(kL) d sin(ωt) + ecos(ωt)( ) = 0→ sin(kL) = 0→ kL = nπ

and

	
 	
 	

yn = an sin

nπ x
L

⎛
⎝⎜

⎞
⎠⎟
d sin nπvt

L
⎛
⎝⎜

⎞
⎠⎟
+ ecos nπvt

L
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Now choose initial conditions at  t = 0

	
 	
 	

y(x,0) = f (x) =

x / 2              0 ≤ x ≤ L/2
L / 2 − x / 2     L/2 ≤ x ≤ L

⎧
⎨
⎩
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and

	
 	
 	
 	
 	


∂y(x,t)
∂t t=0

= 0

The condition

	
 	


∂y(x,t)
∂t t=0

= 0 → an sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟
nπv
L

dn cos nπvt
L

⎛
⎝⎜

⎞
⎠⎟
− en sin nπvt

L
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
t=0

                   0 = an sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟
nπv
L

dn( ) → dn = 0

This means we physically pull the string into a triangular shape 
and let is go from rest. The most general solution is then is

	
 	
 	
 	

y(x,t) = An

n=1

∞

∑ sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos nπv

L
t⎛

⎝⎜
⎞
⎠⎟

Now using the other initial conditon, we have

	
 	
 	
 	

y(x,0) = f (x) = An

n=1

∞

∑ sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟

or the An  are the Fourier coefficients of the sine series for 
the triangular pulse. We have  

	
 	


Am =
2
L

sin mπ x
L

⎛
⎝⎜

⎞
⎠⎟

0

L

∫ f (x)dx = 1
L

sin mπ x
L

⎛
⎝⎜

⎞
⎠⎟

0

L /2

∫ xdx +
1
L

sin mπ x
L

⎛
⎝⎜

⎞
⎠⎟

L /2

L

∫ (L − x)dx

    = 1
L

L2

m2π 2 ysin y
0

mπ /2

∫ dy −
1
L

L2

m2π 2 ysin y
mπ /2

mπ

∫ dy +
L
mπ

sin y
mπ /2

mπ

∫ dy

    = L
m2π 2 (sin y − ycos y) 0

mπ /2 −
L

m2π 2 (sin y − ycos y) mπ /2
mπ −

L
mπ

(cos y) mπ /2
mπ

    = L
m2π 2 sin mπ

2
⎛
⎝⎜

⎞
⎠⎟
−
mπ
2

cos mπ
2

⎛
⎝⎜

⎞
⎠⎟
− sin(0) + (0)cos(0)⎛

⎝⎜
⎞
⎠⎟

             − L
m2π 2 sin mπ( ) − mπ cos mπ( ) − sin mπ

2
⎛
⎝⎜

⎞
⎠⎟
+
mπ
2

cos mπ
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

             − L
mπ

cos mπ( ) − cos mπ
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

or

	
 	
 	
 	


Am =
2L
m2π 2

⎛
⎝⎜

⎞
⎠⎟

sin mπ
2

⎛
⎝⎜

⎞
⎠⎟

     m  odd

         0                        m  even

⎧
⎨
⎪

⎩⎪

and so on.
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The other possible initial condition is

	
 	
 	
 	
 	
 y(x,0) = 0
and

	
 	
 	
 	


∂y(x,t)
∂t t=0

= f (x) =
x / 2              0 ≤ x ≤ L/2
L / 2 − x / 2     L/2 ≤ x ≤ L

⎧
⎨
⎩

which corresponds to hitting the string when it is flat. This 
gives

	
 	
 	


y(x,t) = Bn
n=1

∞

∑ sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

sin nπv
L

t⎛
⎝⎜

⎞
⎠⎟

∂y(x,t)
∂t t=0

= f (x) = Bn
n=1

∞

∑ sin nπ x
L

⎛
⎝⎜

⎞
⎠⎟
= initial velocity profile

For each n (in either case) there is a different frequency

	
 	
 	
 	
 	

fn =

ωn

2π
=
nπv
2πL

=
nv
2L

which are the normal mode frequencies. These frequencies can be 
excited separately and would be stable. The string would vibrate 
in a single mode or one term of the general sum

	
 	
 	
 	
 	

sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟
sin nπv

L
t⎛

⎝⎜
⎞
⎠⎟

If we took a photograph at any given value of t, we get a 
picture of the string

	
 	
 	
 	
 	
 	

y = sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟

which are the shapes shown earlier.

At a fixed point x,

	
 	
 	
 	
 	
 	

y = sin nπv

L
t⎛

⎝⎜
⎞
⎠⎟

or a particular x point oscillates up and down with the normal 
mode frequency.

                                                                      Page 12



Fast Image Sequence (like a movie)

function z=acoeff(m,L)
if (2*floor(m/2) == m) 
  z=0;
 else
  z=(2*L/(m^2*pi^2))*sin(m*pi/2);
 end

function z=aterm(m,L,v,x,t)
z=acoeff(m,L)*sin(m*pi*x/L).*cos(m*pi*v*t/L);

% m-file waveqxt.m
L=1;
v=1;
x=0:0.01:1;
for j = 1:201
  t=(j-1)*0.01;
  sum=0;
  for k=1:100
    sum=sum+aterm(k,L,v,x,t);
  end
  plot(x,sum,'-k');
  axis([-1 2 -.5 .5]);
  pause(0.01)
end
   
Vibrations of a Rectangular Drum

We now choose to look at a rectangular drum because we can 
handle this boundary easily with a simple extension of our 1-
dimensional solutions in cartesian coordinates. We will look at 
a circular drum later.

The vibration of a 2-dimensional membrane fixed at the 
boundaries  x = 0 ,  x = a ,  y = 0  ,  y = b  can be described 
as follows:

	
 	
 	
 	


∂ 2u
∂x2

+
∂ 2u
∂y2

=
1
c2

∂ 2u
∂t 2

We choose

	
 	
 	
 	
 u(x, y,t) = X(x)Y (y)T (t)
SOV substitution gives

	
 	
 	
 	


1
X
∂ 2X
∂x2

+
1
Y
∂ 2Y
∂y2

=
1
c2
1
T
∂ 2T
∂t 2
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The separation constant assignment goes like

	
 	
 	


1
X
∂ 2X
∂x2

= λx , 1
Y
∂ 2Y
∂y2

= λy , 1
c2
1
T
∂ 2T
∂t 2

= λ

with

	
 	
 	
 	
 	
 λx + λy = λ , all constants

The solutions are

	
 	
 	
 	
 	


X(x) = Acoskxx + Bsin kxx , kx
2 = −λx

Y (y) = C coskyy + Dsin kyy , ky
2 = −λy

T (t) = E cosαt + F sinαt , α 2 = −λ
with

	
 	
 	
 	
 	

kx
2 + ky

2 =
α 2

c2

The boundary conditions give

	
 	
 	


X(0) = 0→ A = 0 , Y (0) = 0→ C = 0

X(a) = 0→ kx =
mπ
a

= km , Y (b) = 0→ ky =
nπ
b

= kn

or

	
 	
 	


m2π 2

a2
+
n2π 2

b2
=
α 2

c2
=
ωmn
2

c2
→ωmn = cπ

m2

a2
+
n2

b2

The general solution is then a sum of all possible solutions 
(all m,n)

	
 	
 	

u(x, y,t) = sin mπ x

am,n=1

∞

∑ sin nπ y
b

cmn cosωmnt + dmn sinωmnt( )

where ωmn  = frequency of the (m,n) normal mode. Some examples of 

modes are shown below:
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As always, the strength with which various normal modes are 
excited depends on the exact initial conditions.

The MATLAB program below shows the (n,m) modes of the 
rectangular membrane (image sequence type movie).

x=-1:0.05:1;y=-1:0.05:1;
[X,Y]=meshgrid(x,y);
c=1;a=2;b=2;
% (1,2) mode
;m=1;n=1;
% (1,1) mode
;m=2;n=3;
% (2,3) mode
m=2;n=3;
w=c*pi*sqrt(m^2/a^2+n^2/b^2);
Z=sin(m*pi*X/a).*sin(n*pi*Y/b);
lim=[-1 1 -1 1 -1 1];
figure('Position', [200 200 400 400])
for j=1:500
      t=(j-1)*.01;
      mesh(X,Y,Z*cos(w*t))
      axis(lim);
      colormap(waves);
      pause(0.01);
end

An image from the sequence for the (2,3) mode looks like
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Diffusion Equation

The 1-dimensional diffusion equation is

	
 	
 	
 	
 	


∂ 2u(x,t)
∂x2

=
1
D
∂u(x,t)

∂t
Using SOV we have

	
 	
 	
 	


u(x,t) = X(x)T (t)
1
X
∂ 2X
∂x2 =

1
D

1
T
∂T
∂t

= λ = separation constant

We get equations and solutions

	
 	
 	


d 2X
dx2

− λX = 0→ X(x) = Acoskx + Bsin kx

dT
dt

− λDT = 0→ T (t) = Qe−k
2Dt + Rek

2Dt

with 

	
 	
 	
 	
 	
 k2 = −λ
The positive exponential solution is not allowed physically 
since it would imply that, as

	
 	
 	
 	
 	
 t→∞⇒ T →∞
which makes no sense in a heat diffusion problem. On the other 
hand for the negative exponential solution

	
 	
 	
 	
 	
 t→∞⇒ T → 0
which does make physical sense.

This is just an example of the "physics of the problem" 
restricting or modifying the strictly mathematical solution.

Therefore, we have

	
 	
 	
 	
 	
 T (t) = e−k
2Dt

Special case:

Consider a 1-dimensional rod of length a, at temperature T0 , 
which has both of its ends placed in contact with a heat 
reservoir at T = 0 .

We have the possible solutions

	
 	
 	
 	
 	
 u(x,t) = (Acoskx + Bsin kx)e−k
2Dt
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Boundary Conditions

	
 	


x = 0→ u(0,t) = 0→ (A)e−k
2Dt = 0→ A = 0

x = a→ u(a,t) = 0→ (Bsin ka)e−k
2Dt = 0→ sin ka = 0→ k = kn =

nπ
a

Therefore, a solution is given by

	
 	
 	
 	
 un (x,t) = Bn sin knx e
−kn

2Dt

so that the most general solution is

	
 	
 	
 	

u(x,t) = Bn sin knx e

−kn
2Dt

n
∑

Initial Conditions

At t = 0, we were in equilibrium such that T = T0  everywhere. This 
means that

	
 	
 	
 	
 	
 	


∂u
∂t

= 0

so that

	
 	


∂ 2u(x,0)
∂x2 =

1
D
∂u(x,0)

∂t
= 0 → meaning of equilibrium or steady-state

d 2u(x,0)
dx2 = 0 → u(x,0) = F +Gx = T0 for all  x→ G = 0 , F = T0

This gives

	
 	
 	


u(x,0) = T0 = Bn sin knx
n
∑

Bn =
2
a

T0
0

a

∫ sin nπ x
a

dx =
2T0

nπ
(1− cosnπ ) =

4T0 / nπ     n odd
       0        n even

⎧
⎨
⎩

The final solution is then

	
 	
 	

u(x,t) = T0

4
nπ
sin nπ x

a
e
−
n2π 2

a2
Dt

n odd
∑

The MATLAB program tempdiff.pro, which generates a sequence of 
temperature profiles (in time), is given by

% m-file diff1.m
D=1.0;
a=1.0;
T0=100.0;
kk=100;
tdel=0.005;
x=(a/kk)*(1:kk);
numterms=500;
for i=1:201 
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 t=tdel*(i-1);
 z=0.0;
 for j=1:numterms
  jj=2*j-1;
  z=z+T0*(4.0/(jj*pi))*sin(jj*pi*x/a).*exp(-(jj*jj*pi*pi/a^2)
*D*t);
 end
 plot(x,z,'-k');
 axis([-0.1 1.1*a -10.0 1.1*T0]);
 pause(0.05);
end

Another example:

We consider a slab, as shown below, which is infinite in the 
y-direction. This means we only need to worry about the x and t 
variables.

	
 	

We assume that initially (t = 0)

	
 	
 	
 	
 	


T = 0 at x = 0
T = 100 at x = L

and for t > 0 we assume

	
 	
 	
 	
 	


T = 0 at x = 0
T = 0 at x = L

and ask what happens in time?
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The T (t) solution is the same as before, namely, T (t) = e−k
2α 2 t  where 

D = α 2 .

For the x solution, first we find the initial steady-state T 
distribution. We have only x to worry about (everything must be 
uniform in y). Now, steady-state means

	
 	
 	
 	
 	


∂u
∂t

= 0

or

	
 	
 	
 	


d 2u(x,0)
dx2

= 0→ u(x,0) = ax + b

u(0,0) = 0→ b = 0

u(L,0) = 100→ a =
100
L

so that

	
 	
 	
 	

u(x,0) = 100x

L
For t > 0 we use the diffusion equation which gives

	
 	
 	
 	


u(x,t) = (acoskx + bsin kx)e−k
2Dt

u(0,t) = 0→ b = 0

u(L,t) = 0→ sin kL = 0→ k = kn =
nπ
L

Therefore the most general solution is

	
 	
 	
 	

u(x,t) = an

n=1

∞

∑ e
−

nπα
L

⎛
⎝⎜

⎞
⎠⎟
2
t
sin nπ x

L
Now

	
 	
 	
 	

u(x,0) = 100x

L
= an

n=1

∞

∑ sin nπ x
L

which gives

	
 	
 	
 	

an =

200
π
(−1)n−1

n
and the solution

	
 	
 	
 	

u(x,t) = 200

π
(−1)n−1

nn=1

∞

∑ e
−

nπα
L

⎛
⎝⎜

⎞
⎠⎟
2
t
sin nπ x

L
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Heat conduction example:

We consider a long rectangular metal plate which has the steady-
state configuration as shown in the figure below:

	
 	
 	

We are looking for a solution of the 2-dimensional steady-state 
diffusion equation

	
 	
 	
 	
 	

∇2T (x, y) = ∂ 2T

∂x2
+
∂ 2T
∂y2

=
1
D
∂T
∂t

= 0

We assume

	
 	
 	
 	

T (x, y) = X(x)Y (y)→ d 2X

dx2
= −

d 2Y
dy2

= −k2 , k ≥ 0

The solutions are

	
 	
 	
 	
 	


X(x) = asin kx + bcoskx
Y (y) = ceky + de−ky

We made this particular choice of signs for the separation 
constant because we need X to be trigonometric functions and Y 
to be exponential functions for physical reasons, i.e., X being 
trigonometric is the only way for us to be able to have X = 0 at 
both x = 0 and x = 10. 

Therefore, the solution is

	
 	
 	
 	
 	
 T (x, y) = (asin kx + bcosk)(ceky + de−ky )
The boundary conditions give

                                                                      Page 20



	
 	
 	
 	


T (0, y) = 0→ b = 0

T (10, y) = 0→ sin10k = 0→ k = kn =
nπ
10

, n = 1,2,3,.....

which gives the most general solution (sum of all possible 
solutions) as

	
 	
 	
 	

T (x, y) = sin kn

n
∑ x(cne

kn y + dne
−kn y )

Now, if we let the far end be at y = 30, then we have

	
 	
 	

T (x, 30) = 0 = sin kn

n
∑ x(cne

30kn + dne
−30kn )→ cn

dn
= e−60kn

Therefore

	
 	


T (x, y) = dn sin kn
n
∑ x(e−60kn ekn y + e−kn y ) = dn sin nπ x

10n
∑ e−3nπ (e

nπ
10

(y−30)
+ e

−
nπ
10

(y−30)
)

           = Dn sin nπ x
10n

∑ sinh nπ
10

(y − 30)

Finally, we have

	
 	
 	

T (x,0) = 100 = − Dn sin

nπ x
10n

∑ sinh 3nπ

Solving for Dn  we finally get

	
 	
 	

T (x, y) = −

400
nπ sinh 3nπ

sin nπ x
10odd n

∑ sinh nπ
10
(y − 30)

A MATLAB program that plots the steady-state solution as a 
surface and an image is given by

function z=ssfunc1(x,y,n)
z=(400.0/(n*pi*sinh(3.0*n*pi)))*sin(n*pi*x/10.0).* ...
           sinh(n*pi*(30.0-y)/10.0);

% m-file diff2.m
x=0.0:0.2:10.0;
y=0.0:0.5:30.0;
[X,Y]=meshgrid(x,y);
sum=zeros(length(y),length(x));
for ii=1:30
  jj=2*ii-1;
  sum=sum+ssfunc1(X,Y,jj);
end
figure
mesh(X,Y,sum);
colormap(waves);
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% use Tools > Rotate3d to orient for viewing
figure
pcolor(X,Y,sum);
colormap(hot);
shading interp
figure
contour(X,Y,sum,40,'-k');

The results are
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