
Fermat’s Principle of Least Time

Many problems in Newtonian mechanics are more easily analyzed by means of alternative 
statements of the laws, including LagrangeÕs equation and HamiltonÕs prinicple. In order to 
derive these new techniques, we must consider some general principles of the techniques of 
the calculus of variations.

Our primary interest at this point is in determining the path that gives extremum solutions, for 
example, the shortest distance or time between two points. A well-known example of the use 
of the theory of variations is Fermat’s principle that light travels on the path that takes the 
least amount of time.

Statement of the Problem

The basic problem of the calculus of variations is to determine the function y(x) such that the 
integral

J = f { y(x),y'(x); x}
x1

x2

! dx (01)

is an extremum (i.e., either a maximum or a minimum). In equation (01), yÕ(x) = dy/dx, and 
the semicolon in f separates the independent variable x from the dependent variable y(x) and 
its derivative yÕ(x). The functional f (f depends on the functional form of the dependent 
variable y(x)) is considered as given, and the limits of integration are fixed. The function

y(x) is then to be varied until an extreme value of J is found. By this we mean that if a 
function y = y(x) gives the integral J a minimum value, then any neighboring function, 
no matter how close to y(x), must make J increase.

1



The definition of a neighboring function may be made as follows. We give all possible 
functions y a parametric representation y = y( ! ,x) such that, for !  = 0, y = y(0,x) = y(x) is 
the function that yields an extremum for J. We can then write

y(! ,x) = y(0,x)+! " (x) (02)

where η(x)                    is some function of x that has a continuous first derivative and that vanishes 
at x1 and x2, because the varied function y( ! ,x) must be identical with y(x) at the endpoints 
of the path: η(x1) = η(x2) = 0 . The situation is depicted schematically in Figure 01.

Figure 01

If functions of the type given by equation 02 are considered, the integral J becomes a 
function of the parameter ! :

J(! ) = f { y(! ,x),y'(! ,x); x}
x1

x2

" dx (03)
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The condition that the integral have a stationary value (i.e., that an extremum results) 
is that J be independent of ! in first order along the path giving the extremum ( ! =0), or, 
equivalently, that

∂J
∂α α =0

= 0 (04)

for all functions        . This is only a necessary condition; it is not sufficient.η(x)

Example: Consider the function f=(dy/dx) 2, where y(x)=x. Add to y(x) the function 
"(x)=sin(x), and find J( ! ) between the limits of x=0 and x=2 " . Show that the stationary 
value of J(! ) occurs for ! =0.

Solution: We can construct the neighboring varied paths by adding to y(x)=x the 
sinusoidal variation function ! sin(x) so that y(! ,x) = x + ! sinx

These paths are illustrated in Figure 02 below for ! =0 and for two different non-vanishing 
values of !. Clearly, the function "(x)=sin(x) obeys the endpoint conditions, that is, 
"(0)=0="(2 " ).

.

Figure 02
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To determine f(y,yÕ;x), we first determine
dy(α, x)

dx
= 1+α cosx

then
f =

dy(α,x)
dx

⎛
⎝⎜

⎞
⎠⎟
2

= 1+ 2α cos x +α 2 cos2 x

Equation 03 now becomes

J(! ) = 1+ 2! cosx + ! 2 cos2 x( )
0

2"

# dx = 2" + ! 2"

Thus, we see the value of J(! ) is always greater than J(0), no matter what value (positive 
or negative) we choose for ! . The condition of equation 04 is also satisfied.

Euler’s Equation

To determine the result of the condition expressed by equation 04, we perform the 
indicated differentiation in equation 03:

! J
! "

=
!

! "
f y,y';x{ }

x1

x2

# dx (05)

Because the limits of integration are fixed, the differential operation affects only the 
integrand. Hence,

∂J
∂α

=
∂f
∂y

∂y
∂α

+
∂f
∂y'

∂y'
∂α

⎛
⎝⎜

⎞
⎠⎟x1

x2

∫ dx (06)

From equation 02, we have
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! y
! "

= #(x) , ! y '
! "

=
d#(x)
dx

(07)

Equation 06 becomes

! J
! "

=
! f
! y

#(x) +
! f
! y'

d#(x)
dx

$

%&
'

()x1

x2

* dx (08)

The second term in the integrand can be integrated by parts:

udv= uv! vdu""
! f
! y'

d" (x)
dxx1

x2

# dx =
! f
! y'

" (x)
x1

x2

$
d
dx

! f
! y'

%

&'
(

)*
" (x)

x1

x2

# dx (10)

(09)

! (x1) = ! (x2 ) = 0The integrated term vanishes because                          . Therefore, equation 06 becomes

! J
! "

=
! f
! y

#(x) $ d
dx

! f
! y'

%

&'
(

)*
#(x)

%

&'
(

)*x1

x2

+ dx =
! f
! y

$
d
dx

! f
! y'

%

&'
(

)*x1

x2

+ #(x)dx (11)

(! J / ! " )
" =0

The integral in equation 11 now appears to be independent of !. But the functions y and yÕ 
with respect to which the derivatives of f are taken are still functions of ! . Because  
                  must vanish for the extremum value and because         is an arbitrary function 
(subject to the conditions already stated), the integrand of equation 11 must itself vanish 
for !  =0:

! (x)

! f
! y

"
d
dx

! f
! y'

= 0 (12)
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where now y and yÕ are the original functions, independent of !. This result is know as 
Euler’s equation, which is a necessary condition for J to have an extremum value. 
When applied to mechanical systems, this is known as the Euler-Lagrange equation.

Example: We can use the calculus of variations to solve a classic problem in the history 
of physics: the brachistochrone. Consider a particle moving in a constant force field 
starting at rest from some point (x 1,y1) to some lower point (x 2,y2). Find the path that 
allows the particle to accomplish the transit in the least possible time.

Solution: The coordinate system may be chosen so that the point (x 1,y1) is at the origin. 
Further, let the force field be directed along the positive x-axis as in Figure 03.

Figure 03

Because the force on the particle is constant - and if we ignore the possibility of friction - 
the field is conservative, and the total energy of the particle is T+U=constant. If we 
measure the potential from the point x=0 (i.e., U(x=0)=0), then, because the particle 
starts from rest T+U=0. The kinetic energy is T=mv 2/2 and the potential energy is 
U=-Fx=-mgx, where g is the acceleration imparted by the force. Thus,
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v = 2gx (13)

The time required for the particle to make the transit from the origin to (x 2,y2) is

t =
ds
v(x1,y1 )

(x2 ,y2 )

! =
dx2 + dy2( )1/2

2gx( )1/2
(x1,y1 )

(x2 ,y2 )

! =
1+ y'2

2gx

"

#$
%

&'

1/2

dx
x1 =0

x2

! (14)

2g( )! 1/2
The time of transit is the quantity for which a minimum is desired. Because the constant  
           does not affect the final equation, the functional f may be identified as

f =
1+ y'2

x

⎛
⎝⎜

⎞
⎠⎟

1/2
(15)

! f / ! y = 0and because                  , the Euler equation (equation 12) becomes

d
dx

∂f
∂y '

= 0

or
! f
! y '

= constant = 2a( )" 1/2 (17)

(16)

∂f / ∂y'

where a is a new constant.

Performing the differentiation                on equation 15 and squaring the result, we 
have y '2

x 1+ y '2( ) =
1
2a (18)
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This may be put in the form

We now make the following change of variable:

The integral in equation 19 then becomes

and

The parametric equations for a cycloid passing through the origin are

which is just the solution found, with the constant of integration set equal to zero to 
conform with the requirement that (0,0) is the starting point of the motion. The path is 

y =
xdx

(2ax! x2 )1/2"

x = a(1 ! cos" ) , dx = asin" d"

y = a(1− cosθ)∫ dθ

y = a(! " sin! ) + constant

x = a(1 ! cos" ) , y = a(" ! sin" )

(19)

(20)

(21)

(22)

(23)

then as shown in Figure 04, and the constant a must be adjusted to allow the cycloid 
to pass through the specified point (x 2,y2). Solving the problem of the brachistochrone 
does indeed yield a path the particle traverses in minimum time. The procedures of 
variational calculus are designed only to produced an extremum - either a minimum or a 
maximum. It is almost always the case in dynamics that we desire(and find) a minimum 
for the problem.
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Figure 04

! f / ! x = 0
A second equation may be derived from EulerÕs equation that is convenient for functions 
that do not explicitly depend on x, i.e.,                . We first note that for any function 
f(y,yÕ;x) the derivative is a sum of terms

df
dx

=
d
dx

f (y,y'; x) =
! f
! y

dy
dx

+
! f
! y'

dy'
dx

+
! f
! x

    = y'
! f
! y

+ y"
! f
! y'

+
! f
! x

(24)

Also d
dx

y '
! f
! y '

"

#$
%

&'
= y"

! f
! y '

+ y '
d
dx

! f
! y '

(25)

y"∂f / ∂y'or, substituting from equation 24 for                ,
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d
dx

y'
! f
! y'

"

#$
%

&'
=

df
dx

(
! f
! x

( y'
! f
! y

+ y'
d
dx

! f
! y'

The last two terms in equation 26 may be written as

y ' d
dx

! f
! y '

"
! f
! y

#

$%
&

'(

(26)

which vanishes in view of the Euler equation (equation 12). Therefore,

! f
! x

"
d
dx

f " y'
! f
! y'

#

$%
&

'(
= 0

We can use this so-called Òsecond formÓ of the Euler equation in cases in which f does not 
depend explicitly on x, and                 . Then! f / ! x = 0

(27)

f ! y'
" f
"y'

= constant  for  
" f
"x

= 0#
$%

&
'(

(28)

Example: A geodesic is a line that represents the shortest path between two points 
when the path is restricted to a particular surface. Find the geodesic on a sphere.

Solution: The element of length on the surface of a sphere of radius R is given by

ds= R d! 2 + sin2 ! d" 2( ) (29)

The distance between points 1 and 2 is therefore
s = R

d!
d"

#

$%
&

'(

2

+ sin2 !
)

*
+
+

,

-
.
.1

2

/
1/2

d" (30)
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(31)

and, if s is to be a minimum, f is identified as

f = ! '2+ sin2 !"# $%
1/2

! ' = d! / d" ∂f / ∂φ = 0where                . Because                  , we may use the second form of the Euler 
equation (equation 28), which yields

! '2+ sin2 !"# $%
1/2

&! ' '
' ! '

! '2+ sin2 !"# $%
1/2

= constant = a

Differentiating and multiplying through by f, we have

sin2θ = a θ '2+ sin2θ⎡⎣ ⎤⎦
1/2

d! / d" = " '#1This may be solved for                 , with the result

d!
d"

=
acsc2"

1# a2 csc2"( )1/2

!Solving for   , we obtain

(32)

(33)

(34)

! = sin" 1 cot#
$

%

&'
(

)*
++ (35)

! β 2 = (1− a2) / a2where     is the constant of integration and                     .

Rewriting equation 35 produces

cotθ = β sin(φ −α ) (36)

Rsinθ
To interpret this result, we convert the equation to rectangular coordinates by multiplying 
through by            to obtain, on expanding                 ,sin(φ −α )
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(37)! cos"( )Rsin#sin$ % ! sin"( )Rsin# cos$ = Rcos#
α βBecause      and      are constants, we may write them as

β cosα = A , β sinα = B (38)

Then equation 37 becomes

A Rsin! sin"( ) # B Rsin! cos"( ) = Rcos!( ) (39)

The quantities in the parentheses are just the expressions for y, x, and z, respectively, in 
spherical coordinates, therefore equation 39 may be written as

Ay ! Bx = z (40)

which is the equation of a plane passing through the center of the sphere. Hence the 
geodesic on a sphere is the path that the plane forms at the intersection with the surface 
of the sphere = a great circle. Note that the great circle is the maximum as well as the 
minimum Òstraight lineÓ distance between two points on the surface of a sphere.

Snell’s Law

Finally, we consider light passing from one medium 
with index of refract n 1 into another medium with 
index of refraction n 2 (see figure).
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We now use FermatÕs principle to minimize time and derive the law of refraction. 
Consider the expanded diagram

The time to travel the path shown is

t =
ds
v∫ =

1+ y'2

v∫ dx

Although we have v=v(y), we only have dv/dy#0 when y=0. The Euler equation tells us

! f
! y

"
d
dx

! f
! y '

= 0
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or d
dx

! f
! y'

= 0 =
d
dx

y'

v 1+ y'2
"

#
$
$

%

&
'
'

Now we use v=c/n and yÕ=-tan($) so that we have

y '

v 1+ y '2
=

! n tan"

c 1+ tan2"
= constant

! n tan" cos"
c

= constant # nsin" = constant

which is SnellÕs law of refraction.

Alternatively, we can write

 
t = tupper + tlower =

! upper

vupper

+
! lower

vlower

=
a2 + x2

c / n1

+
b2 + (d ! x)2

c / n2

We now minimize this time as function of x to determine the point on the boundary 
between the media which minimizes the travel time.

dt
dx

= 0 =
n1x

c a2 + x2
!

n2 (d ! x)
c b2 + (d ! x)2

n1x
a2 + x2

=
n2 (d ! x)
b2 + (d ! x)2

" n1 sin#1 = n2 sin#2
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