Ordinary Differential Equations(ODE)

ODEs are equations involving derivatives in various ways. The highest derivative specifies
the order of the equation. Single variable equations are ODEs and multi-variable equations
are Partial Differential Equations(PDE)s.

An ODE L(y(x))=R(x),is linear if the differential operator L is a linear operator
satisfying the linearity property

L(ay1(X) +&,Y,(x)) = g, L(¥1(X)) + a,L(Y,(X))
where &, and a,are constants.

Examples:

The 1st order ODE
L(y(x)) =
but the 1st order ODE

L(y(x)) = dZSC) s noninear since L(ay(x)) = \/d(“y(x)) Ja dilix)! . dzix)

The 2nd order ODE d2/ (t)
dt°

dY(;) islineer since L(ay(x)) =

d(ay(x)) _ _ d(¥(x))
dx dx

+ = sm't 0
1 (t) =



which describes the large amplitude motion of a pendulum is non-linear because
sin(!”, +p",)# ! sn(")+ usin(", )
We note thatif ! is always small, then SN6 =6 and the new ODE
A’ (t) |
dt’

IS a linear ODE.All physical systems not far from EQUILIBRIUM (small
displacements)are linear systems.

’(t) 0

Linear ODEs are simpler to solve thannon-linear ODEs.

This Is a consequence of the following two superposition principles which apply only
to linear ODEs:

(1) If »(x) and y,(x3re any two solutions of a homogeneous linear ODE
L(y(x)) =0
then y, (x) =c¢,y,(x)+c,y,(x) ¢, , c,=constants

IS also a solution, I.e.,
Ly, (x)= L(Cl)ﬁ (x)+c,y, (x)) — CIL(yl('x)) T CzL(yz (x)) =



@) If Ya(X)s a (i.e., any) solution of the homogeneous linear ODE, L(¥(X)) =0 angd
Y,(X) is a solution of the inhomogeneous linear ODE

_ h = homogeneous
L(yp (X)) = R(x) p= partiCSIar

then the linear combination
y(X) =y, (X) + Ay, (X) A =condant

IS a solution of the inhomogeneous linear ODE

L(y(x)) = R(X)

" Ly(x) = L(y, () +ay,(x)) = L(y, () +aL(y,(x)) = R(X)
Solutions of ODEs

l.e.

1st order ODEs can be solved by direct integration  if the equation is SEPARABLE:

d _ px) >Iq(y)dy =JP(X)dx

dx  q(y)
Example:
ﬂ!xl!yZ:O" dy = xdx
dx 11y
# dy :s1n1y:#<dx:lx2+C y = sin lx2+Cz
1!y’ 2



This works for both linear and nonlinear ODEs. It is not always easy to separate the
variables. Sometimes achange of variables helps.

Example: dy f(x)y=g(x)y" n#1— noninear in y(x)

LAty = g
y" dx

V) = Y09 > £ = (1= my (92 - S (- m V) = (1- gl)
X dx dx

which is linear in v(x).

Now consider the following general form for a 1st-order inhomogeneous linear ODE:

e $
#+ POOGY(X) = R(x)
dx
which is homogeneous if R(x) = 0 . We can solve this homogeneous equation formally as
follows:
dy(x) L dy(x)

y(X) = | p(X)dX" #ﬁ _-',a'_-'ﬂ(l ny(x )) = | #D(X') dx’

y(
y(a

X; =1 #o(x')dx' " y(x) =y(a) exp?} ;’:,to(x')dx'l)
a % a (

Iny(x)! 'ny(a) =1!n




The number y(a) = boundary condition atthe pointy =a.

Example: L d 5 x )
#—+x§by(X) 0" y(x)=y(0)exp, ()x'dx
T+ 0 :

y(x) = y(0)e* 2

Now, given a solution Y, (X)of the homogeneous equation, a particular solution of the
Inhomogeneous equation can always be obtained as follows. Let

Y, (X) = C(X)Y;, (X) multiply by a function c¢(x)

Substituting we get
_ _td 03 rd 3
L(y, (X)) = R(x) = # et XgY,(X) = # ot X&L(X)Y,(X)

do(x) dc(X)
dx

R(X) =V, (X) dx +c(x)#—+x%yh(x) Yn(X)

since the last term

ld $ _
#d_X t X%yh (x)=0

This Implles that dC(X) _ R(X) I X R(X')

c(xX)y=c(a)+"

| dx'
dx  y,(X) 2 Yn(X)




This means that (X')

Y, (X) = $c(a) + I dx" yh(x)
a h( ) &
and " R( ,
y(x) = Ay, (x) + Yy (x) =ay,(x) + $C(a) + | dx )’h (x)
4 Yh (x') &
= A )’h(x)'l'glc Rlx )dx 'y, (x)
Ha Vi (x7) &
where
A'=A+c(a)

This method is called variation of constants  since Y,(X)is proportional to Y. (X),
but the proportionality constant is itself a function of x.

Example: Consider the 1st-order linear ODE

! d $ — '
#E + S%y(x) =e t( s
(1) get a homogeneous solution
|
b sy 00=0" = (aix

Yh
Y, (X) = €'



(2) get the proportional function c(x)
de(x) _ R(x) _e",
de  y,(x) e

c(x) = ¢(0) + :jl_-'é! (1! $)x" g

C(X) — C(O) | %( (¢! s)x | 1)

(3) get final answer

Yp(X) = C(X)Y,(X) = [C(O) -

(e oo

= —t%e + (c(0)+ t%)yh(x)

(4) check answer

1 1
Y(X) = Ay, (X) ! —e X+ %C(O) t— &yh(x)

—A'yh(x)lLe
tl s
d _$ . 1d_$ 1
#ahv%y(x)—a #dx+s§6yh(x) #74.5% e’
1 ' x



Unigueness of Solutions

The solution of an n*" order linear ODE is uniquely determined by n boundary conditions
that can be taken to be

y(b),y'(b),y"(b),........ y" P (b)

at any point x = b. In the example above, the 1st-order linear ODE required only the value
of y(b) for a complete solution, I.e.,

1 FtX n ! 1 !
y(X):A'yh(X)! —e't y(b):Ayh(b)! —etb
t!'s t!'s

which determines the unknown constant AQ.

You are also familiar with the physical fact that a 2 Nd-order linear ODE like those that
come from Newton's laws, requires 2 boundary conditions y(b) and y'(b) or that we
specify both the position and the velocity at some instant of time.

1st order Equations - Integrating factors

Now suppose we have the differential equation

p(X, y)dx+q(x,y)dy=0

It Is called exact If
Jap _dq

dy  ox




This implies that there exists a function f(x,y) such that

I f U 1°f ! 1°f
p(x)— ! q(x)— Ip:I / ! /_q:/ /
I'X ly Iy Tylx I'x Ixly
and in physics Er i 12
I'vlx - I'xl'y
always !
Therefore we get I f I'f
P(X, y)dx+ q(X, y)dy = —dx+ —dy df
'y

We then have the solution
df =0! f(xYy)=condant

An equation that is not exact may often be made exact by multiplying it by an appropriate

factor called an integrating factor . For example:
xdy! ydx=0
IS not exact. But the equation q 9
xay! yax 1
Y 2y dyI ldx 0
X X°

IS exact, and Its solution is
f y which is the solution of
(X,Y)

= ; = constant the original equation



Integrating factors can sometimes be used to solve linear, inhomogeneous first-order
ODEs of the form

dﬁz(xx) + P(x)y(x) = G(x)
We seek an ! (x) such that
"d 0 d
10022 4 p(xyy07& 211 (y9] =1 ()
2 dx 8 dx
’ I (0P(x) = LX)

We then have

P(x)dx = ai!(i);) "l (x)= exp%:p’xP(x)&
Finally, d B
o ! (x)y(x)] =! (x)G(x)
X
or

I'(X)y(x) =" (X)G(x)dx+ C,
"I (X)G(x)dx+ C,
! (x)

y(X) =

10



Example: dy , y=¢e , y0)=1 ! P(x)=1

dx
I "(X)= exp(;’:,ﬂx) =¢e
X dx+ C
! y(X) — # eX 0 — %ex + Coe$x

1 1
Y(O):1:§+C0%Co:$§

I y(X) = con(x)

2nd-Order Homogeneous ODEs with Constant Coefficients

i d’ d
Consider the ODE _Z +549 4 4y =0
dx dx
If we let p=2
dx

then we have the equation
(D2+5D+4)y: 0

These equations can be solved bysubstitution(guessing) and converting the ODE
Into an algebraic (quadratic)  equation(Physics 8). We choose(guess) the solution
aX

y=¢¢€

11



Substitution gives the allowed values of a (possible solutions)

2 ax — 2 —
(a + 5a‘ + 4) Cle _ O I a + 5a‘ + 4 — O conversion of ODE to
an algebraic equation

a="1 and a="4

The most general solution  is a superposition of all possible solutions with
arbitrary multiplicative constants (number of possible solutions = order of ODE) so

— I X I 4x
y=Cce’ +c.e

The arbitrary constants C, and C, are determined by boundary conditions where

we specify

y(x,) and ay(%,) , X, = arbitrary point
For example suppose,

y(0)=2 and dt;(f):—s %, =0
then we have y(0)=2= c,+¢,

dy(0) _,
=13=1c! 4
ax G 4G

c,=5/3 and c,=1/3

and the general solution with these boundary conditions is

12



5 — X 1 —4 X
X)=—€ +—¢€
y(¥)=3 2

The solutions for a can be imaginary numbers (trigonometric solutions) or complex
numbers (mixed trigonometric and exponential solutions).

Example:Simple Harmonic Oscillator In this case:
dy d 2
—+wy=0 , D=——>|D"+w")y(t)=0
2 Ty el Jy(®)
Choosing y=ce"!l a’+"?=0! a=4i"

which gives the general solution

y(£) = ce

With Boundary conditions

il t ilt

T c,e

dy(0
y(0)=0 and Zl—(t) = 4@ (what 1s the oscillator doing?)

we get C,+C, =0
1l (c"c)=4! # c " c,="4l
c, ="2I and c, =2

S0 that 7t L™t : "
yt)="12i(e "' e ")=4s9n("t) as expected

13



Example:Equal Roots Suppose we have
(D*+5D+4)y=0! a=3,3

These solutions are linearly dependent. The rule is then to choose a solution of the form

y(x) = (Ax + B)e™
since we must have 2 constants because it is a 2"%-order ODE.

Clifford-Euler Equation

We have a homogeneous equation of the form

d*u du
x*—+ax— +bu=0
dx dx
The solutions take the form u=x"

Substitution gives
[m(m! 1)+am+b]xm =0" m(m! 1)+am+b=0

2roots m, and m,

and the solution is
u(x) = Ax™ + Bx™
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Second-Order Homogeneous ODEs in General

Suppose Y;(X) and Y,(X)are two solutions of the homogeneous equation with
boundary conditions

n(a@)=1,y"(a)=0,y,(a) =0, y'(a) =1

Itis clearthat Yy,(X) axd Yy,(X)  can never be proportional to each other, since

they already differ at the boundary x = a. This means that they are linearly
Independent . They are also the only linearly independent solutions because

2"9_order ODEs have only two independent boundary conditions y(a) and y'(a).

A general solution satisfying the boundary conditions
y@=¢ ,y(@=c

IS given by

Y(X) = Y, (X) + C,Y,(X)
Test of Linear Independence of Solutions: The Wronskian

How do we determine the linear independence of 2 given homogeneous solutions? In the
simple case, it is easy, just look ... if they are not proportional, then they are linearly
Independent. This simple procedure cannot be used for n given homogeneous solutions

of the n"-order linear ODE when n > 2 . We need a more general procedure, applicable
to an ODE of any order. | will illustrate the method in the 2 "*-order case for simplicity.

15



If y,(x) and y,(x)are linearly independent, then it turns out that any solution y(x)
of a 2"%-order linear ODE

(j L p(x)— + q(x>] (x) = R(x)

(where we assume R(x) = 0 for now) and its slope y'(x) can be written as
¢,y (xX) ¢, y,(x) = y(x)
cy (X)) +c,y,(x)=y'(x)
with unique linear coefficients ¢, ad c,. Let us write these equations in matrix form

V(X)) Y.(X)$!Ic$ |y(><)$
= MC =Y
0 v,008e & Hrook,

A solution of these equations is given by C = M 'Y A unique solution  requires that

the determinant
YVi(X) Y, (X)

W(X) =
O R

does not vanish, where W(x) = Wronskian . This requirement corresponds to the
existence of the inverse Mt

16



Now suppose W(x=a)! O . Then we can determine the coefficients ¢ ad c,
at x = a, which, in turn, implies that W(x) ! O at all other x. We show this as follows:

dW(x)
dx  dx
=1y, (POOY',+ A0y, ) + ¥, (POOY', + A0y, ) = ! POOW (%)

Therefore, # X &
W(X) = W(a)expg0 " p(x')dx'(

(ylyz VY ) =YL YLEYY L VLY Y =YL Y

This implies that

(1) ifwW(a) !0, then W(x) ! O everywhere
(2) iIf W(a) =0, then W(x) = 0 everywhere

For higher order linear ODEs

N Yo Y3 Y,
Yi  Ys Vi o Y,
W)=y y"% y'5 .y,
DA S GV e NSO A

17



An Example: Consider the equation

Idz kz%y(x) 0

This has two linearly independent solutions given by

y,(X) = coskx yz(X)=isinkx

The 1/k factor in the second solution is necessary for these solutions to agree with the
solutions when k =0, I.e,,
B

| d2
which has the two linearly independent solutions

(x)=1 , Y¥,(X)=X

which are the limits of the first solutions as K! OThe Wronskian, in this case, is

1
W) = cos kx Esinkx .
—ksinkx coskx

The 2nd Homogeneous Solution

Now, if one solution Y:(X) of a 2nd order homogeneous linear ODE is known, a second
solution y,(x), linearly independent of the first, can be constructed with the help of the
Wronskian:

18



d!'y,S_ vy, Yoy - WI(X)
H & 2 2
dx™y, o4 Yi ¥z (X)
A simple integration then gives
y,(x)  3,(b) qu')
() y®d) )
¥, (D)
(D)

Now we can drop the last term since it is proportional to Y,(X) and we already have a
term proportional to  Y;(X) in the general solution

y(x) = ay,(x)+by, (x)
Y,(X) = g(X)y,(X)

#7 X &
W (X) =W (b) expggc') ' p(x')dx'(

= g(x)

y,(x) = g(x)y,

Therefore, we have

Since

we get

t# &
_ €Xp f’ ! p(x”)dx"(

_ W) '
a(x) = I! e )dX W(b)! V2 (X') dX" boes this procedure work?

19



A Simple E le: d*
Imple Example F-’ (X)=0
X

If one solutionis ! ;(x) =1then we can find a second linearly independent solution by
Fo(x)=g(x)! 1(x) = g(x)

We choose b = 0 and get (since p(x) = 0 in this case), W(x) = W(0) and

1 W(0)

o I

which is the correct second linearly independent homogeneous solution.

g(x) = dx'=W(0)x" #,(X) =X

Inhomogeneous Solutions

The solution of the inhomogeneous 2nd order linear ODE

Ly(x) = R(x)
has the general form y(x) = v, (x) + [Clyl(x) +¢,Y, (x)]
where y,(X)=any paticular solution

[ cy1(X) + Y, (X)] = complementary solution
sombinaion of 2 linearly indgoendent
okitionsof the honogeneousequaion

20



Why do we bother with y(x) if we already know Y, (XP The reason is that Y, (X)
satisfies the boundary conditions Yp(8):Y () at x = a.

Suppose instead that we want a solution satisfying the boundary conditions
y,(@=!,y (a)=" .We do notwant to spend time looking for a particular
solution with JUST the right boundary conditions because they are very hard to obtain
In general. Anyway we are unlikely to find one with exactly the correct boundary
conditions.

The complementary function now comes to our rescue. Using it we can change the
boundary conditions without contributing anything to the inhomogeneity of the ODE
(.e., without changing the fact that we have a solution of the inhomogeneous ODE).

So we choose cy(@+ey,(@=!"y (a)
cy'i(@)tcy,(@=#"y' (a)

The existence of the coefficients €, and C, is guaranteed by the linear independence
of the homogeneous solutions Yy, and Y, , since then the Wronskian W(a) ! 0 and
the inverse matrix needed to solve

63 1y(@) @38 1(" Y, (@3
.8 ty.@ y,@8% " v,@8

exists.

21



A Particular Solution: Method of Variation of Constants

We still need one (any one) particular solution yp(x) of the inhomogeneous ODE. To

obtain this, we first observe that the function yp(X)contains 2 degrees of freedom in
the sense that at a point X=X, itsvalue Y,(x)and its slope  Y',(X¢an be
chosen arbitrarily.

These two arbitrary numbers may be expressed in terms of the values and slopes of the
two linearly independent homogeneous solutions y.(X),1 =12

yp(x) =V, Y, (X) +V,Y,(X)
Yo (X) = vy’ (X) + VY5 (X)

because the RHSs also describe a system with 2 degrees of freedom, as represented by
the 2 linear coefficients Vv, and V,. However, these linear coefficients v, and V,
cannot be constants independent of x, for then Y,(X) solves the homogeneous linear
ODE, not the inhomogeneous equation. We therefore must have (need)

v, =v.(x) , 1=1,2

This method is called variation of constants . However, by direct differentiation we
have

dyp(X) . : _ d _ I I ! !
dx Y'p(X) = &[Vlyl(x) T VLYo (X)] = VY + VLY o+ [V Y+ VL Y]

22



which is not correct unless [............. ] = 0. It turns out that this single requirement is
insufficient to determine the 2 unknowns V', . We need another relation, which we can

obtain from the original ODE:

;LjT+p<x>i q(x@g(x) R(x)

As before, using

Yo (X) = VyYi (X) + V, Y, (X)
y'o(X) = vly'l(x) +V,y",(X)

we get
y'5(X) = ( ViY; (X) + V,, (X))
— 1y1+V1y1+V2y2 +V2yI2
dzy d d ' ' ' '
dXZp - dX(y (X)) dX(Vly TVLY VLY, T VY 2)
=V Y 2V Y VYV Y, 2V Y LYY
or I d? d $
HaZ | p(X)d—X + q(X)&g/(X)

= V”1 Yyt 2V'1 y'1 t V1y”1+ Vnz Y, + 2V'2 y'z T szuz T p(vly'l T V'1 Y, t+ V'z Y, T sz'z)

+q(vy, +v,Y,) = R(x)
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[viy" + puy' s+ gy | +[ vy + pwyL+ avy, ] +[ pviy, + pv, v,
TV Y H2VIY VLY, 2V, Y, =R

vi[y"t pytav |+ v, [yt pyLay] + p[viy v,y
TV Y T2V Y VR Y, 2V, Y, =R

V1[O] TV, [O] T p[O] T V"1 Yy t 2V'1 y'1+ V"2 Y, t 2V'2 ylz =R

[Vlll yl + Vll yll+ VII2 y2 + VI2 yI2] + Vll yI1+ VI2 yI2 — R

1 d RN
#(TX(V1Y1+V2y2) :V1y1+V2YZ:R

[0]+V, Y, *+ VY, =R

and we thus get a second relation. These two relations
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V5 (X)¥1(X) + V', (X)y,(X) = 0
V1(X)Y'1(X) + V5 (X)y2(X) = R(X)
along with W (x) = v, (x)y',(x) ! y,(x)y"(x)" @ive the results

V (X) — | |X| yZ(X') R(Xl)dxu
S W)

V (X) — |X| yl(xl) R(Xl)dxl
T W)

where integration constants have been chosen arbitrarily to give V(&) =V,(a)=0 .
With this choice, the particular solution satisfies the boundary conditions Y,(&) =Y',(a) =0

An Example: | d2
s+ k2 ég/(x) Asin X

We know the 2 homogeneous solutions from our earlier discussions

1 .
n(x) = coskr ,y,(x)=-snke . W(x)=1

This gives

25



X |
Vy(X) = "ésinkxsinqxdx:' A#sm(k q)x Sln(k+q)xc(&ﬂzonstant

K (P2l q)  2(k+a)

* A # k | k + &
;:OS( q)x | cos(k + g)x (+constant  for k) g
kL 2kl g 2k+q)

X

v,(x)= " Acoskxsingxdx = +

i ’ Asinzkx+constant for k=q
2k
Thus, a particular solution is, for k! q
A
X) = sn(k — q)xcoskx — cogdk — s nkx
Yo (X) 2k(k_q)[ (k—a) (k- a)xsinkx]
A
+ san(k + coskx — coqdk + snkx
(K +q)[ (k+ a)x gk + g)xsinkx]
= — A Sngx+ A sngx= A sIngx
~ 2k(k-q) 1 2k(k + q) 1 K= 1
For k=g , Al X 9n2kx A .
: YA )_——[—— }coskx+—zsm3kx
k| 2 4Kk 2k

= —Axcoskx+ iz[(:os2 kx + Sin? kx]sinkx
2k 2Kk

= —Axcoskx+ izsinkx
2K 2K
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where we can drop the last term because it is proportional to Y2(Xwhich is already
Included in the solution. Similarly for the extra integration constants.

The general solution is then

y(x) = Z—Al‘(xcoskx+ C, COSkx + C, Snkx

and any boundary conditions can be met by adjusting the two arbitrary constants.

For later use. Now consider again the Heaviside step function  defined by

H(x! a) "QO pbr x<a
X | =
gl pbr x>ca

Now since dH(x )

#

f()dx=H(x! a)f(x)|,. ! #H(x! a)f(x)
=fC)DQT SETNO) #df(x) = f) (7 )+ fla) = f(a)

= ;J:'b$(x! a)f(x)dx

we have dH(x! a)
dx

“(x1 a)
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Therefore, when we have an inhomogeneous equation with

R(X) = 0(x— X"
we have X' X'
V,(X) = Yo )H(x! X) , V(X)= A )H(x! X")
W(X’) W(X’)
This solution of an inhomogeneous ODE with a delta-function inhomogeneity IS

called a Green Function . We have
G(x,x") =G, (X, X) + .y, (X) + C,Y, (X)

_ =00y, () + 3, (0)y, ()
W(x")

where

G,(x,x") H(x—x")

More about Green functions later.

Series Solution of Homogeneous 2nd Order Linear ODEs: Method of Frobenius

We have seen

(1) given one solution of a homogeneous 2nd order ODE we can generate a second
linearly independent solution by integration

(2) If we are given both solutions, then a particular solution of the inhomogeneous
ODE also can be calculated by integration

Thus, it remains for us to obtain at least 1 solution for the homogeneous equation.
A method, with which it is usually possible to do so, is to obtain the solution y(x) of the
homogeneous ODE
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Ly(x) =0

using a power series Iin Xx. We choose

y(x) = xsz:az,tx)L a, #0
2=0
We then have d i ,
Y- Hoa, (! +s)x
dx -
d’y

—=Ha (! +s5)(! +s$Dx *?

2
dx =0

Substitution back into the homogeneous ODE produces a powers series which sums to
zero. In this case, because each term in the series is linearly independent, each coefficient
must separately = 0. This allows us to determine the values of s and the a-coefficients
and hence the solution to the problem.

Let us illustrate the method with some examples. First we follow the book and consider
the equation 5
d°u

F‘FXZU:O
X

Let us first use the simpler method which is valid for certain equations where s = integer.

We choose U(X) = # a, X! a, $0
I =0
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l.e., we use the simpler series with s = integer. We then have

du_ Ha () $Hx'*

dX2 1=0
Y a,(AA-Dx' 2+ ax*?=0
1=0 A=0

T @)% +2,((3)x +[a,(3(4) + 8 | X + ...
&, + 8y, (k+2)(k+1)]X"

a,

Substitution gives

We then have

#0 a,,, =
2107:0 T (k+3)(k+4)
a2:O aQZOI a6:a10:a14: .....
8, =0 a,=0! a =a,=a;=..
&+, ,(k+3)(k+4)=0
Starting with @, we get a, :—(36)124)

___ Y% _ o

TN A)T)@E)
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Starting with a; we get a =| Ay
(4)(5)
A A

| =
- (8)(9)  (4)(5)(8)(9)

a9:

and the general solution is

1 1
u(x) = cl(l—ix4 B ....)+cz(x——x5 +——X - )
12 672 20 1440

Let us now do this same equation with s left in (more general). We choose

u(x) = Zalxms a, #0
A=0

We then have d2
&
— =) a,(s+A)(s+A-1x***
2=0

> =

Substitution gives :
Ha (st!)s+! $HX ¥ +H ax =0

1=0 1=0

O aus(s! Dx" % +as(s +Dx" +a,(s +1)(s + 2)x° +ay(s +2)(s + x™

+ :a4(s + 3)(s + 4) +ao]xs+2 +....

+ :ak! ,ta,  (s+k+2)s +k+1)]xs+k + =0
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We then have a,

a,s(s—1)=0->a,#0,5=0,1 Gt = ka3 k4 4)
as(s+1)=0—-4a #0,5=0 and a =0,5=1

a,(s+1)(s+2)=0—>a, =0 a,=0! a,=a,=a,=..... =0
a,(s+2)(s+3)=0—>a,=0 a,=0! a,=a,=a,=....=0

a_,+a.,(s+k+2)(s+k+1)=0

Starting with s=0 and choosing @, = &, = lwe get

a =l—20  a=1-% - % R
(3)(4) (7)) (3)4)(7)(8)

a = | & , Qy = | % 4 s eeeeeees
(4)(5) (8)(9) (4)(5)(8)(9)

The case s = 1 does not generate any new series (always happens if s = integer).

The general solution is the same as earlier

1 1 " 1 0
1| — X+ —Xx1 + | —x° + o
Hx) = qﬁ X 672X A X 1440 &
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We now consider the equation

2
8X2d_‘;+6x@+(x! Du=0
dx dx
Substitution gives u(x) = st a, x* a, =0
A=0

8t a, (! +s)(! +s$DXx +6H a, (! +s)X C+H ax TS H ax =0

I'=0 ' =0 I'=0 I'=0
[8a,5(s$1) +68,5% 3, | x* +[8as(s+1) +6a,(s+ D) $ a +a,| x>
+[8a,(s+1)(s+2) +6a,(s+2)$a, +a,| X +.......

+[8a,(s+N$1)(s+N)+6a,(S+N)$ @, +a,|x""+...=0

The coefficient of X is called the indicial equation . It determines the allowed values
of s. We choose @, = lfor simplicity. We get
C2+44+32 1 1

8s(s! )+6s! 1=0=8s°! 25! 1" §= —, ! —
16 2 4

These two allowed s values will generate the two linearly independent homogeneous
solutions. We have from the other coefficients

8a,(s+n! 1)(s+n)+6a,(s+n)! a +a,, =0

an:! an!l
8(s+n! 1) (s+n)+6(s+n)! 1
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This last relation is a recursion relation and determines all higher order coefficients
(for each allowed s value) in terms of 4, . We get

1
S=—
2
U (X) = X112 _ 1 %3/
1 8(1/2)(3/2)+6(3/2)—1
+ 1 X5/2 .
B(3/2)5/2)+6(5/2)=1)8(1/2)3/2)+6(3/2)-1)
— x!2 _ LX3/2 n LXSQ .
14 616
s=1 1
4
u,(X) = X 1/4 1X3/4 +LX7/4 |
L= XL 3 T L

and the most general solution is
u(x) = au,(x) + bu,(x)

A second example is slightly trickier(even though equation 1is
simpler). Consider the equation | g2 g

— +k?oy(x) =0
e @‘c}/()
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Remember we already know the solutions to this equation and that will help us to figure
out what is going on with the method.

Substitution gives  H g (/ +s)(! +s$x' "** +kK*H a,x' "* =0
I'=0 I'=0

of a,s(s —Dx* % +as(s +1)x"" + [axok2 +a,(s+2)(s+ 1)]xs + ...

+lak’ +a,,,(s+A+2)(s+A+D [x+...=0

Since the coefficient of each power must separately be = 0, we have
a,5(s! )=0" s=0 or 1 since a,#0

This Is always STEP #1 : determine the possible values of s. It is at this point that we use
the assumption a, ! O

If s=0, then q, can benonzro

If s=1, then a,=0

Then look at next coefficient
a,s(s+1) = O%{

In general, the coefficient of the other higher powers vanishes if
k2
., =— a
M2 (s+ A+ 2)(s+A+1)

This is a recursion relation , which allows an ordered step-by-step determination of all
coefficients in terms of a, ad a,,i.e,
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k2
(s+2)s+1)

k2
a, = a,
(s +3)(s+2)

and so on.

The particular recurrence relation for this equation contains the special feature that it
steps ! by 2. As a result, the coefficients @, are separated into two disjoint groups,
one with even /| and another withodd | .

For the even chain we find

(a) for s=0 k> k2 k#
=] — o, =l —a, =— ) ararsssasaas
TR TR TR
(b) for s=1 % 12 I
=1 — =l —a, =— ) eeeerareaens
2Ty BT 5%
or we get solutions x: 4
@ y,(x)= yeven(x)zl—ax2 +Zx4 —.....= COSkx
T k2 k4. % 1" k3 k5 % 1 .
(b) yz(x):yodd(x):)(ﬁll §X2+ax4! .!8L: Eﬁxl EXS‘FEXS! . = —9NkX

where we have used a, =1.
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What about the odd chain of coefficients?

There is no solution in that case for s = 1, since & = Oand therefore all higher order odd
coefficients vanish.

For s =0 however, a, # Oand this gives
k* k* k*

a, =1 —a a. =! —a,=—a
3 3 5| 1

3 20
which is the same solution as y,,(x)from before, so we get nothing new.

In fact, we should not have expected anything new since we already have found the 2
allowed linearly independent solutions.

The solution are, of course, the same as we found earlier.
Parity Property

It can easily be seen that
Vaern (—X) = Voo (X) = even fundion — even parity

Y.qq(—X) = =Y, 44(X) = 0dd undion— odd parity

For a solution of a linear ODE to have a definite parity, the linear operator L must be
even (or invariant under inversion or parity operation X! " Xor
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L(! X) = L(X)
An example is a classical oscillator with damping

d
Lty(t) = ¥T+2'_+ o(y<t>=0) L(t)* L(+t)

which means that solutions do not have definite parity.

Let us do another example where s ! Integer. Consider the equation

16x° E +3(1+x)u=0
dx®

Substitution gives

u(x) = xs# a, X’ a,$0

16# a, (! +s)(! +s$1)x’ +S+3;1':/f a, x’+s+1+3# a X"
[16aos(s$ 1) + 33, | x* + [16als(s+ 1)+ 3a, + 3a1] xS+1
+[16a,(s+1)(s+2) +3a, + 33, | X +.......

+[16a,(s+n$1(s+n)+3a,, +3a,| X" +....= 0
We choose @, =1 for simplicity. We get
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+ _
16s(s—1)+3=0=16s°—165+3— s = 16_\/23526 192=+§,+%

These two allowed s values will generate the two linearly independent homogeneous
solutions we need.

We have from the other coefficients

16a,(s+n! 1)(s+n)+3a,, +3a,=0
3

= |
i 16(s+n! 1)(s+ n)++3a’“1

The recursion relation determines all higher order coefficients(for each allowed s value) in
terms of a,=1 .

We get
s:l! ul(x)=x”4#"ix+ix2+ ...... ‘(g‘
4 20 160
3 1 3
s==1 uz(X)=x3/4#"—x+—x2+ ...... f‘
4 3 640

and the most general solution is

u(x) = au,(x) + bu, (x)
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