
Legendre equation

This ODE arises in many physical systems that we shall investigate

 
(1− x2)

d2u
dx2 − 2x

du
dx

+ ! (! +1)u = 0

We choose
u(x) = xs a!

! =0

"

# x!                  a0 $ 0

We then have du
dx

= a!
! =0

"

# (! + s)x ! +s$1

d2u
dx2 = a!

! =0

"

# (! + s)(! + s $1)x ! +s$2

Substitution gives

 

aλ
λ=0

∞

∑ (λ + s)(λ + s−1)xλ+s−2 − aλ
λ=0

∞

∑ (λ + s)(λ + s−1)xλ+s

                                                        − 2 aλ
λ=0

∞

∑ (λ + s)xλ+s + ! (! +1) aλ
λ=0

∞

∑ xλ+s = 0

a0s(s−1)[ ]xs−2 + a1s(s+1)[ ]xs−1 + a2(s+1)(s+ 2) − a0(s(s−1) + 2s− ! (! +1))[ ]xs + .......

     + an+2(s+ n+ 2)(s+ n+1) − an((s+ n)(s+ n−1) + 2(s+ n) − ! (! +1))[ ]xs+n + ....= 0
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or

 

a0s(s! 1) = 0 " s = 0 , 1
a1s(s+1) = 0 " s =1 , a1 = 0 and s = 0 , a1 # 0
an+2 (s+ n + 2)(s+ n +1) ! an((s+ n)(s+ n ! 1)+ 2(s+ n) ! ! (! +1)) = 0
or

an+2 =
(s+ n)(s+ n ! 1)+ 2(s+ n) ! ! (! +1)

(s+ n + 2)(s+ n +1)
an

For s = 0 we have

For s = 1 we have

The even and odd solutions are then

 
an+2 =

n(n +1) − ! (! +1)
(n + 2)(n +1)

an

 
an+2 =

(n + 2)(n +1) ! ! (! +1)
(n + 3)(n + 2)

an

 

u1(x) = 1−
( +1)
2!

x2 +
( − 2)( +1)( + 3)

4!
x4 − .........

u2 (x) = x −
( −1)( + 2)

3!
x3 +

( − 3)( −1)( + 2)( + 4)
5!

x5 − ........
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 As before the other case does not contribute anything new. If       is an integer, then the 
series terminate at a finite number of terms and the solutions are polynomials. We 
have

λ = 0

u1(x) = 1                            ,         u2(x) = infinite series

λ = 1

u1(x) = infinite series        ,         u2(x) = x

λ = 2

u1(x) = 1− 3x2                    ,         u2(x) = infinite series

λ = 3

u1(x) = infinite series        ,         u2(x) = x −
5
3

x3

λ = 4

u1(x) = 1−10x2+
35
3

x4     ,         u2(x) = infinite series

λ = 5

u1(x) = infinite series        ,         u2(x) = x −
14
3

x3 +
21
5

x5

If we multiply a solution by a constant, then it is still a solution.
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 P! (x)
If we multiply each polynomial above by a constant so that they have the value 1 at 
x=1, then they are called the Legendre polynomials               , where

P0(x) = 1

P1(x) = x

P2(x) =
1
2

3x2 ! 1( )

P3(x) =
1
2

5x3 ! 3x( )

P4(x) =
1
8

35x4 ! 30x2 + 3( )

P5(x) =
1
8

63x5 ! 70x3 +15x( )

In general we write

 
P! (x) = (−1)n

n=0

N

∑ (2! − 2n)!
2! n!(! − n)!(! − 2n)!

x! −2n

where

 

N =
 / 2                  even
( ! 1) / 2          odd  

"
#
$

 
Q

(x)

The infinite series and the polynomials generate Legendre's functions of the second 
kind           where

 
Q! (x) =

u1(1)u2(x)       !    even

−u2(1)u1(x)      !    odd   
⎧
⎨
⎩
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and the most general solution of Legendre's equations is

 u(x) = c1P! (x) + c2Q! (x)

x = cosθ

All Legendre's functions of the second kind are singular at x=1; this will be important in 
physical problems.

If we make the substitution                    Legendre's equation becomes

 

1
sin!

d
d!

sin!
du
d!

"
#$

%
&'

+ ! (! +1)u = 0

which is the form that will arise most often when we solve problems in spherical-polar 
coordinates.

Hermite Equation

Now we turn our attention to Hermite' equation
d2u
dx2 − 2x

du
dx

+ 2αu = 0 , α = nonnegative integer

As we shall see, the solutions are polynomials called Hermite polynomials. Legendre 
and Hermite polynomials are the first two examples of a large class of special 
functions that play a major role in the solutions of partial differential equations 
representing physical systems.

We choose
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u(x) = xs a!
! =0

"

# x !                  a0 $ 0

We then have
du
dx

= a!
! =0

"

# (! + s)x! +s$1

d2u
dx2

= a!
! =0

"

# (! + s)(! + s$1)x! +s$2

Substitution gives

a!
! =0

"

# (! + s)(! + s $1)x ! +s$2 $ 2 a!
! =0

"

# (! + s)x ! +s + 2% a!
! =0

"

# x ! +s = 0

a0s(s! 1)[ ] xs! 2 + a1s(s+1)[ ] xs! 1 + a2 (s+1)(s+ 2) ! a0 (s! 2" )[ ] xs + .......

                     + an+2 (s+ n + 2)(s+ n +1) ! an((s+ n) ! 2" )[ ] xs+n + .... = 0
or
a0s(s −1) = 0→ s = 0 ,1 a1s(s+1) = 0 ! s = 1, a1 = 0 and s = 0 , a1 " 0

an+2(s+ n + 2)(s+ n +1) ! an((s+ n) ! 2" ) = 0

or

an+2 =
(s+ n) ! 2"

(s+ n + 2)(s+ n +1)
an
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For s = 0 we have an+2 =
n ! 2"

(n + 2)(n +1)
an

For s = 1 we have
an+2 =

(1+ n) ! 2"
(n + 3)(n + 2)

an

The even and odd solutions are then

u1(x) =1 !
2"
2!
x2 + !

22" (2 ! " )
4!

x4 ! .........

u2 (x) = x +
2(1 ! " )
3!

x3 +
22(1 ! " )(3 ! " )

5!
x5 ! .........

!

As before the other case does not contribute anything new.

Clearly the infinite series terminate if         is an integer.

The Hermite polynomials are H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 ! 2

H3(x) = 8x3 ! 12x

or in general
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Hn(x) = n!
(! 1)k(2x)n! 2k

k!(n ! 2k)!k=0

N

"
where

N =
n / 2             n     even
(n ! 1) / 2     n     odd  

"
#
$

The Hermite polynomials appear in the harmonic oscillator solution of the Schrodinger 
equation as shown below.

The Schrodinger equation for the 1-dimensional harmonic oscillator with a potential 
function

V(x) =
1
2

kx2

is given by

 

!

2

2m
d 2" (x)
dx2

+
1
2
kx2" (x) = E" (x)

The standard ODE solution of this equations goes as follows. Let

 

! = " x                " 4 =
mk
! 2

# =
2E
! $ 0

           $ 0 =
k
m

%
&'

(
)*

1/2

This gives the new equation d2!
d" 2

+ # $ " 2( )! = 0
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! " ±# !If we consider the behavior of the equation as                  we can neglect        and the 
equation becomes d2ψ

dξ2
− ξ2ψ = 0

!which says that the large         behavior of the solution is

! = e" #2 /2

This suggests that we try a solution of the form

! = H(" )e#" 2 /2

ξwhich should remove the large         behavior from the equation. We get the equation

H ''! 2"H '+ (# ! 1)H = 0

! = 2n +1This is Hermite's equation and provided we choose                  .

If we do not terminate the series the solutions are not square integrable and cannot 
represent wave functions. 

The series solutions we found earlier have the recursion relation

ak+2 =
(2k +1! " )

(k + 2)(k +1)
ak

If the series does not terminate, then its dominant asymptotic behavior can be inferred 
from the coefficients of its high terms
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lim
k! "

ak+2

ak

!
2
k

! ne! 2This ratio is the same as that of the series for             with any finite value of n.

! = H(" )e#" 2 /2

Hn

This means that the solution                      will not be square-integrable unless the series 
is terminated.

So we terminate the series and the solutions are the Hermite polynomials         .

λFor this choice of        we get energy eigenvalues

 
En = ! ! 0 n +

1
2

"
#$

%
&'

with associated wave functions

! n (x) = Hn (" x)e
#" 2x2 /2

That is why we are studying all these special equations - we will then recognize them 
when we solve the equations for real physical systems and can just quote our earlier 
results.
Gamma or Factorial Function

Consider the integrals below:

e! " xdx
0

#

$ =
1
"

, xe! " xdx
0

#

$ =
1

" 2 , x2e! " xdx
0

#

$ =
2!
" 3 , x3e! " xdx

0

#

$ =
3!
" 4
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or xne! " xdx
0

#

$ =
n!

" n+1

α = 1If we let             , then

n!= xne! xdx
0

"

#
where we have defined

n! ! n(n " 1)(n " 2).......(2)(1)   and   0! ! 1

Generalizing this result we have the Gamma Function

! (p) = xp" 1e" xdx
0

#

$     for   p > 0

and for  n = integer

! (n) = xn" 1e" xdx
0

#

$ = (n " 1)! % ! (n +1) = n!

Now
! (p +1) = x pe" xdx

0

#

$     for   p >" 1

            = " x pe" x
0

#
+ p x p" 1e" xdx

0

#

$ = p x p" 1e" xdx
0

#

$ = p! (p)

!This is a recursion relation for the         function.
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What about negative numbers? We can use the recursion relation:

! (p) =
1
p

! (p +1)

which gives
! (" 0.5) =

1
" 0.5

! (" 0.5 +1) = " 2! (0.5)

! (" 1.5) =
1

" 1.5
! (" 1.5 +1) = "

2
3

! (" 0.5) =
4
3

! (0.5)

Now
Γ(0.5) = t −1/2

0

∞

∫ e− tdt

t = y2 ! dt = 2ydy! " (0.5) = y#1

0

$

% e#y2

2ydy= 2 e#y2

dy
0

$

%

" (0.5)[ ]2 = 4 e#x2

dx
0

$

% e#y2

dy
0

$

% = 4 e#(x2 +y2 )dxdy
0

$

%
0

$

% = 4 e#r 2

rdrd&
0

' /2

%
0

$

%

              = 2' e#r 2

rdr
0

$

% = 2' d #
1
2

e#r 2(
)*

+
,-

0

$

% = ' ! " (0.5) = '

! (1) =1In addition, since              we have

12



lim
p! 0

" (p +1)
p

= # ! " (p) = #    for all negative integers

Laguerre Equation - The Laguerre equation takes the form

x
d2u
dx2

+ (1− x)du
dx

+ Nu= 0

We choose
u(x) = xs aλ

λ=0

∞

∑ xλ                  a0 ≠ 0

We then have du
dx

= a!
! =0

"

# (! + s)x! +s$1

d2u
dx2 = a!

! =0

"

# (! + s)(! + s$1)x! +s$2

Substitution gives

a!
! =0

"

# (! + s)(! + s$1)x! +s$1 $ a!
! =0

"

# (! + s)x! +s

                                                        +a!
! =0

"

# (! + s)x! +s$1 + N a!
! =0

"

# x! +s = 0

a0s(s$1) + a0s[ ] xs$1 + a1s(s+1) $ a0s+ a1(s+1) + Na0[ ] xs + .......

     + an+1(s+ n +1)(s+ n) $ an(s+ n) + an+1(s+ n +1) + Nan[ ] xs+n + ....= 0
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or a0s(s−1) + a0s= 0→ s2 = 0→ s= 0
an+1(s+ n +1)(s+ n) ! an(s+ n)+ an+1(s+ n +1)+ Nan = 0
or

an+1 =
(s+ n) ! N

(s+ n +1)(s+ n)+ (s+ n +1)
an =

(s+ n) ! N
(s+ n +1)2

an

For s = 0 we have
an+1 =

n− N
(n+1)2 an

or
a1 = (! 1)1 N

(1!)2 , a2 =
1! N

22 a1 = (! 1)2 N(N ! 1)
(2!)2        ,       a0 = 1

" ak = (! 1)k
N(N ! 1)......(N ! k +1)

(k!)2 = (! 1)k
1
k!

N !
k!(N ! k)!

= (! 1)k

N
k

#

$%
&

'(

k!

ak = 0It is clear that if k > N, then               . Thus we get

u(x) = LN (x) =1+ (! 1)k

N
k

"

#$
%

&'

k!
xk

k=1

N

( = (! 1)k

N
k

"

#$
%

&'

k!
xk

k=0

N

( ) polynomial
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These are the Laguerre polynomials: L0(x) = 1

L1(x) = 1! x

L2(x) = 1! 2x +
x2

2!

They will appear in the hydrogen atom solution of the Schrodinger equation.

Before proceeding to the final example, namely, Bessel’s equation, let us digress to 
study generating functions.

Generating Functions

Legendre Polynomials Redux - Let us consider the function

 

! (x,h) =
1

(1" 2xh + h2)1/2        ,     h <1

          = h!

! =0

#

$ f! (x)                 (power series)

Differentiation gives
(1− x2 ) ∂

2φ
∂x2

− 2x
∂φ
∂x

+ h
∂ 2 (hφ)
∂h2

= 0

If we substitute a power series we get
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(1 ! x2 ) h!

! =0

"

# f! ''(x) ! 2x h!

! =0

"

# f! '(x)+ ! (! +1)h!

! =0

"

# f! (x) = 0

h!

! =0

"

# (1 ! x2 ) f! ''(x) ! 2xf! '(x)+ ! (! +1) f! (x)$% &' = 0

This says that the coefficient of each power of  h  must separately equal zero. We get

 (1 ! x2 ) f! ''(x) ! 2xf! '(x)+ ! (! +1) f! (x) = 0
This is Legendre’s equation. So the solutions are

 f! (x) = P! (x) = Legendre polynomials

and

 

! (x,h) =
1

(1" 2xh + h2)1/2 = h
=0

#

$ P

(x)

          = Generating function for the Legendre polynomials            

y = 2xh ! h2Let us generate the first couple of polynomials. Let                      . Then

! (x,h) =
1

(1 " y)1/2 = 1+
1
2

y +
3
8

y2 + ......

          = 1+ xh +
3
2

x2 "
1
2

#
$%

&
'(

h2 + .....

          = P0 (x) + hP1(x) + h2P2 (x) + .....     
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or P0(x) = 1 , P1(x) = x , P2(x) =
3
2
x2 !

1
2

 

We can also write

 

P

(x) =

1
!

∂ 

∂x
φ(x,h)

⎛
⎝⎜

⎞
⎠⎟

h=0

 !

Recursion Relations

Legendre polynomials of different       (degree) are related to each other, i.e.

P1(x) = xP0 (x)
via recursion or recurrence relations. Now consider

! (x,t) =
1

(1 " 2xt + t 2 )1/2 = tn

n=0

#

$ Pn(x)          

We have ! " (x,t)
! t

=
x # t

(1# 2xt + t 2 )3/2 = ntn#1Pn(x)
n=0

$

%  

x # t( )" (x,t) = (1# 2xt + t 2 ) ntn#1Pn(x)
n=0

$

% = x # t( ) t nPn(x)
n=0

$

%      

Rearranging we get

(2n+1)tt nPn(x)
n=0

∞

∑ = P1(x) + t n(nPn−1(x) + (n+1)Pn+1(x))
n=1

∞

∑  

t n
Equating coefficients of         we have the recursion relation
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(2n+1)xPn(x) = nPn−1(x) + (n+1)Pn+1(x)

P0 (x) = 1    and    P1(x) = xTherefore, given that                                                we get

3P1(x) = P0 (x)+ 2P2 (x) ! P2 (x) = 3x2 " 1

In a similar manner we can find

nPn(x) = xP'n(x) ! P'n! 1(x)

Orthogonality Relations

We have

 

! 2

" 1

1

# (x,t)dx = (1+ t 2 " 2tx)" 1dx
" 1

1

# =
1
t

!n(1+ t) " !n(1" t)( )$% &' =
2

2k +1
t 2k

k=0

(

)

                 = t n+m

m=0

(

)
n=0

(

) Pn (x)Pm (x)dx
" 1

1

#

where we have used

 
! n(1+ h) = (! 1)n+1

n=1

"

# hn

n
Equating coefficients we get

Pn(x)Pm(x)dx
−1

1

∫ =
2

2n+1
δnm
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Thus, it is clear that generating functions are very powerful tools.

Hermite Polynomials

As we have seen, families of functions can be defined by ODEs. We have also seen that 
they can be defined by means of a generating function. Finally, they can be defined by a 
differential formula of the form such as the Rodriguez formula for Hermite polynomials.  We have

Hn (x) = (! 1)n ex
2 dn

dxn
e! x2

    ,    n=0,1,2,3,........

which gives H0(x) = 1

H1(x) = 2x
H2(x) = 4x2 ! 2 

We can get the generating function from this formula by introducing a dummy 
variable t as follows.

Hn(x) = ex2 ! n

! t n e" (x" t )2#

$%
&

'(
t =0

=
! n

! t n e2x" t2#

$%
&

'(
t =0

Earlier we saw that

 
P! (x) =

1
! !

! !

! x! " (x,h)
#

$%
&

'(
h=0

Therefore, we have
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e2x! t2

= Hn(x)
n=0

"

# tn

n!
= $(x,t) = generating function

In the same way as before we can derive recursion and orthogonality relations.

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

H 'n(x) = 2nHn−1(x)

Hn+1(x) − 2xHn(x) + H 'n(x) = 0

Differentiating this last relation we get

H 'n+1(x) ! 2Hn(x) ! 2xH 'n(x)+ H ''n(x) = 0
H ''n(x) ! 2xH 'n(x) ! 2nHn(x) = 0

which is the Hermite ODE. The solutions are the Hermite polynomials.

We also have the orthogonality relations

e! x2Hn (x)Hm (x)dx
! 1

1

" = 2n n! #$nm

Laguerre Polynomials

A similar procedure gives
Ln(x) =

1
n!

ex dn

dxn e! xxn( )

" (x,t) =
1

1! t
e

xt
t ! 1 = Ln(x)t n

n=0

#

$
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(n +1)Ln+1(x) = (2n +1)Ln(x) ! xLn(x) ! nLn! 1(x)

xL 'n(x) = nLn(x) ! nLn! 1(x)

Differentiation then gives the Laguerre ODE

xL ''n (x) + (1! x)L 'n (x) + nLn (x)

and finally, we have the orthogonality relation

e! xLn(x)Lm(x)dx
0

"

# = $nm

Bessel's Equation

We now consider the one of the most important equation in physics.

x2 d2

dx2 + x
d
dx

+ x2 ! µ2( )"

#$
%

&'
u(x) = 0 ( L(x) = L(! x) ( exists even and odd solutions

We choose u(x) = xs a!
! =0

"

# x!                  a0 $ 0

We then have du
dx

= a!
! =0

"

# (! + s)x ! +s$1

d 2u
dx2

= a!
! =0

"

# (! + s)(! + s $1)x ! +s$2
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Substitution gives

aλ
λ=0

∞

∑ (λ + s)(λ + s−1)xλ+s + aλ
λ=0

∞

∑ (λ + s)xλ+s

                                                        +aλ
λ=0

∞

∑ xλ+s+2 − µ2 aλ
λ=0

∞

∑ xλ+s = 0

or

or
a0s(s! 1) + a0s! µ2a0"# $%xs +

a1s(s+1) + a1(s+1) ! µ2a1"# $%xs+1 + .......

     + an(s+ n)(s+ n ! 1) + an(s+ n) + an! 2 ! µ2an"# $%xs+n + ....= 0

a0s(s! 1) + a0s! µ2a0 = 0 " s2 ! µ2 = 0 " s = ±µ

a1s(s+1) + a1(s+1) ! µ2a1 = 0 " (s2 + 2s+1! µ2)a1 = 0 " a1 = 0

an (s + n)(s + n ! 1) + an (s + n) + an ! 2 ! µ2ann = 0

or

an = !
1

(s + n ! 1)(s + n) + (s + n) ! µ2 an ! 2 = !
1

(s + n)2 ! µ2 an ! 2

a1 = 0Since                 this last relation implies that all odd coefficients = 0.
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µFor s =       ,  we have
an = !

1
(n + µ)2 ! µ2 an! 2

or after some algebra

a2n =
(−1)n

(2)2n+µ n!Γ(µ + n+1)
          ,           a0 =

1
2µΓ(µ +1)

and the solution is

Jµ (x) =
(! 1)n

(2)2n+µ n!" (n + µ +1)n=0

#

$ x2n+µ

µwhich is the Bessel function of the first kind of order      .

-µFor s =      ,  we have an = !
1

(n ! µ)2 ! µ 2 an! 2

or after some algebra
a2n =

(! 1)n

(2)2n! µ n!" (n ! µ +1)
and the solution is

J−µ (x) =
(−1)n

(2)2n−µ n!Γ(n− µ +1)n=0

∞

∑ x2n−µ
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µwhich is the Bessel function of the second kind of order         . It is singular at x=0, 
which will be important in many physical problems.

The most general solution is then

u(x) = aJµ (x) + bJ ! µ (x)
Bessel functions appear as solutions in an amazing number of physical systems.

Jn (x)

Bessel Function Properties

Orthogonal polynomials such as Legendre, Hermite and Laguerre polynomials are 
well-suited(can be used as basis functions) for expansions of functions or the description 
of physical system that are localized near the origin of coordinates.

Like Taylor expansions, the further we go away from the origin, the more terms we need. 
Bessel functions help us get around this difficulty.

The Bessel function               of  integral order n satisfies the ODE

x2J ''n(x) + xJ 'n+ (x2 ! n2)Jn = 0

The generating function for Bessel functions is

G(x,t) = exp
1
2

x t −
1
t

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= t nJn(x)

n=−∞

∞

∑
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Jn(x)To explicitly obtain the              we expand G(x,t) in powers of t.

exp
1
2

x t !
1
t

"
#$

%
&'

(

)
*

+

,
- = exp

1
2

xt(
)*

+
,-
exp !

x
2

1
t

(
)*

+
,-

=
x
2

"
#$

%
&'

r t r

r !r =0

.

/
"

#
$

%

&
' !

x
2

"
#$

%
&'

r t ! s

r !s=0

.

/
"

#
$

%

&
'

                        = (! 1)s

r ,s
/ x

2
"
#$

%
&'

r +s t r ! s

r !s!

We change the summation indices to n = r-s or r = n+s and r+s = n+2s which gives

G(x,t) = (! 1)s
x
2

"
#$

%
&'

n+2s

s=0

(

)
n=! (

(

) t n

(n + s)!s!
= t nJn (x)

n=! (

(

)

Jn (x) =
(! 1)s

(n + s)!s!
x
2

"
#$

%
&'

n+2s

s=0

(

)     for   n* 0

or

Jn(x) =
x
2

⎛
⎝⎜

⎞
⎠⎟

n 1
n!

−
x2

4
1
1!

1
(n+1)!

+
x2

4

⎛
⎝⎜

⎞
⎠⎟

2
1
2!

1
(n+ 2)!

− .....
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

For n < 0 a similar analysis gives

J! n (x) =
(! 1)s

(s! n )!s!
x
2

"
#$

%
&'

2s! n

s= n

(

)     for   n< 0

1
! (n)

= 0since                for the negative integers.
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We also have J− n (x) = (−1)n J n (x)

for integer n.

The generating function gives the recursion relation
1
2
Jn ! 1 + Jn+1( ) =

n
x
Jn

1
2
Jn ! 1 ! Jn+1( ) = J 'n

Adding and subtracting we get the ladder operators

RnJn =
n
x

!
d
dx

"
#$

%
&'
Jn = Jn+1

LnJn =
n
x

+
d
dx

"
#$

%
&'
Jn = Jn ! 1

Since
Ln+1RnJn = Ln+1Jn+1 = Jn

we get (Ln+1Rn ! 1)Jn = 0

which is Bessel’s equation.
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Jn (x) v
J! (x)

One can easily verify that the expansion for          can have       substituted for n 
where       is any real number and then direct differentiation shows that           satisfies
Bessel’s equation with       in place of  n.  The factorials in the expansion do not present 
a problem since they are defined for non-integer values by

v
v

z! = Γ(z+1) = e− tt z

0

∞

∫ dt

J ! " (x)In many cases, instead of the            functions, one uses the Neuman functions 
defined by

Nν (x) =
cosνπJν (x) − J−ν (x)

sinνπ
N! (x) J! (x)            is linearly independent of              . This means it is also a solution of 

Bessel’s equation. It is the second linearly independent solution, i.e.,

W =Wronskian = JνN 'v− J 'ν Nν = (−JνJ '−ν+ J 'ν J−ν ) / sinνπ

                        =
2
π x

     independent of  ν

! = nThis also holds for            which says the two solutions are linearly independent.

We also have the relations d
dx

x pJ p (x)( ) = x pJ p ! 1(x)

x
0

1

" Jp (ax)Jp (bx)dx =
0                                                         a # b
1
2
Jp+1

2 (a) =
1
2
Jp ! 1

2 (a) =
1
2
J 'p

2 (a)          a = b

$
%
&

'&
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Relationship of the Cylindrical and Spherical Bessel Functions

The spherical Bessel functions are defined by:

 

j

(z) =

π
2z

⎛
⎝⎜

⎞
⎠⎟

1/2

J
+1/2(z)

η

(z) =

π
2z

⎛
⎝⎜

⎞
⎠⎟

1/2

N
+1/2(z)

Some simple ones are: j0 (z) =
sinz

z
! 0 (z) = " cosz

j1(z) = " j '0 (z) =
sinz
z2

"
cosz

z

j2 (z) =
j1
z

" j '1(z) =
3
z3

"
1
z

#
$%

&
'(
sinz"

3
z2
cosz

In general:

 

j
−1 + j

+1 =
2 +1

z
j


j
−1 − ( +1) j

+1 = (2 +1) j '


Very important in quantum mechanics.
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Some Odd Topics 

Beta Function [1] B(p,q) = B(q, p)

[2] x = y / a ! B(p,q) = yp" 1

0

a

# (a " y)q" 1dy 

[3] x = sin2$ ! B(p,q) = 2 (sin$)p" 1

0

%/2

# (cos$)q" 1d$

[4] x =
y

1+ y
! B(p,q) =

yp" 1

(1+ y)q" 1 dy
0

" 1

#

[5] B(p,q) =
&(p)&(q)
&(p + q)

 Error Function
erf (x) =

2

!
e" t2

dt
0

x

#

Stirling's Formula (Factorial function for large arguments)

From the definition

 

! (p +1) = p! = xpe" x

0

#

$ dx = epnx" x

0

#

$ dx

Now let
x = p + y p : x = 0 ! y = " p , dx = pdy

29



We then have

Now

For p very large

so that

or more exactly

 

p! = ep!n( p+y p)! p! y p

! p

"

# pdy

 
! n(p + y p) = !np 1+

y

p

!

"
#

$

%
&= !np+ !n 1+

y

p

!

"
#

$

%
&

 

n(p+ y p) = np+ n 1+
y

p

⎛

⎝⎜
⎞

⎠⎟
≈ np+

y

p
−

y2

2p
+ .......

 

p! = ep!np− p p e−y2 /2

− p

∞

∫ dy= ppe− p p e−y2 /2

−∞

∞

∫ dy− e−y2 /2

−∞

− p

∫ dy
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = ppe− p p e−y2 /2

−∞

∞

∫ dy= ppe− p 2π p    for large p

! (p +1) = p! = ppe" p 2# p 1+
1

12p
+

1
288p2 + .....

$

%&
'

()

And now for something completely different....

Expansions in Orthonormal Functions = Gram-Schmidt in place of ODEs 
(partial repeat of earlier material from week 1)
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Definitions:

1. Expansion interval [a,b] : the variable x is confined to the interval a ≤ x ≤ 
2. Given two functions f(x) and g(x) defined on the interval [a,b], the inner product of 
    f and g is denoted by (f,g) and is given by

f ,g( ) = f *

a

b

! (x)g(x)dx

f ,g( ) = g, f( )*   Over the space of complex functions. Note that order is important since                     .
3. If (f,g) = 0 the functions f and g are orthogonal.
4. The norm of a function is (f,f). If the norm is finite, the function is square-integrable. 
    If the function has norm = 1 , then it is normalized. Any square-integrable function 
    can be normalized by multiplication by a constant.

! 1(x),! 2(x),........5. A set of functions                               defined on the interval [a,b] is said to be 
    orthonormal if ! i ,! j( ) = " ij

If we have an orthonormal set of functions on the interval [a,b] then we can write any 
other square-integrable function f(x) in terms of that set by

f (x) = ajϕ j (x)
j
∑      where    ϕk, f( )= aj (ϕk,ϕ j ) =

j
∑  ajδ jk =

j
∑ ak

! 1(x),! 2(x),........If this is true for any function f(x), then set of functions                              is complete 
and is called a basis set.
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Gram-Schmidt Orthogonalization Method.

It turns out that to be a basis set, a set of functions only has to be linearly independent. 
Linear independence implies that there exists no relation

c!
! =1

n

" f! (x) = 0

c! = 0valid for all x , except the trivial one of all             . They do not have to be 
orthonormal...that is only a convenience. Suppose we have a set of  n  linearly 
independent, square integrable functions

fλ (x)         λ = 1,2,3,4,.......,n

ϕ1(x),ϕ2(x),........,ϕn(x)on the interval [a,b]. How do we construct an orthonormal set                                      ?

There is a systematic process for doing this. It goes as follows:

1. Choose ! 1 =
1

N1

f1      where    N1 = ( f1, f1)

ϕ2 f1   and    f2 ϕ12. Choose         as a linear combination of                     that is orthogonal to         and 
    normalized to 1.

ϕ2 =
1

N2

[ f2 − (ϕ1, f2)ϕ1]          where    N2 = ( f2, f2) − (ϕ1, f2)
2

   We have just subtracted off the non-orthogonal part!
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3. This generalizes as

! k =
1

Nk

[ fk " (! j , fk )! j
j=1

k " 1

# ]          where    Nk = ( fk , fk ) " (! j , fk )
2

j=1

k " 1

#

Legendre Polynomials Redux Redux

Consider the set of linearly independent functions which are the non-negative integral 
powers of x on the interval [-1,1]

f! (x) = x!          ! = 0,1,2,3,4,.......,n

Using the orthogonalization procedure above we get the new set of functions

! 0 =
1

N0

f0 =
1

N0

    where    N0 = ( f0, f0) = dx
" 1

1

# = 2 $ ! 0 =
1

2

! 1 =
1

N1

[ f1 " (! 0, f1)! 0 ] =
1

N1

x "
1

2
xdx

" 1

1

#
$

%&
'

()
1

2

*

+
,
,

-

.
/
/
= 

x

N1

         

where    N1 = ( f1, f1) " (! 0, f1)
2

= x2dx
" 1

1

# " (0)2 = 2 / 30 ! 1= 
3
2

x

and in the same manner
! 2 =

5
2

3
2

x2 "
1
2

#
$%

&
'(

! 3 =
7
2

5
2

x3 "
3
2

x#
$%

&
'(

! 4 =
9
2

35
8

x4 "
15
4

x2 +
3
8

#
$%

&
'(
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Apart from normalization these are the Legendre polynomials, i.e.,

ϕ j (x) =
2 j +1

2
Pj (x)

Thus, we can construct the orthogonal polynomials using linear algebra instead of ODEs.

Finally, let us look at some weird numbers that have a habit of popping up in real world 
systems.

Bernoulli Numbers    Consider the series
x

ex ! 1
=

Bn
n!
xn

n=0

"

#

We can use the relation

Bn =
dn

dxn

x
ex −1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

x=0

Bnto determine the Bernoulli numbers         . This is a difficult direct process, however. 
An easier method is to use the uniqueness property of the power series expansions.

We can write

ex −1
x

=
x + 1

2!
x2 + 1

3!
x3 + ....

x
= 1+

1
2!

x +
1
3!

x2 +
1
4!

x3 + ....
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We then get

1+
1
2!

x +
1
3!

x2 +
1
4!

x3 + ....!
"#

$
%&

B0 + B1x +
1
2!

B2x
2 + ....!

"#
$
%&

=1

which gives(by uniqueness or equating coefficients of like powers of x)

B0 = 1

1
2!

B0 + B1 = 0→ B1 = −
1
2

1
3!

B0 +
1
2!

B1 +
1
2!

B2 = 0→ B2 =
1
6

and so on....

In general we have,
n

k
!

"#
$

%&k=0

n' 1

( B2k = 0

We obtain B2n+1 = 0     ,   n=1,2,3,......

B2n =
(! 1)n! 12(2n)!

(2" )2n p! 2n

p=1

#

$      ,   n=1,2,3,......

These numbers are very divergent, i.e.,

B20 = −5.291×102 , B200 = −3.647×10215

The Bernoulli numbers appear all over the place, i.e.,

tanx = x +
1
6

x3 +
2

15
x3 + .....+

(! 1)n! 122n(22n ! 1)
(2n)!

B2nx
2n! 1 + ....
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Bernoulli Functions

The functions are defined by
xexs

ex −1
= Bn(s)

xn

n!n=0

∞

∑
It is clear that Bn = Bernoulli number = Bn (0)

Other useful properties are:
B'n(s) = nBn! 1(s)        ,      n=1,2,3,......

Bn(1) = (! 1)n Bn(0)     ,       n=0,1,2,3,.....
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