
Solving ODEs using Fourier Transforms

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic 
expressions. Consider the following ODE

d 2

dx2 + p
d
dx

+ q
⎛
⎝⎜

⎞
⎠⎟
f (x) = R(x)           − ∞ ≤ x ≤ ∞

where p and q are constants. Transform both sides of the equations

 

FT
d 2 f (x)
dx2

+ p
df (x)
dx

+ qf (x)
⎛
⎝⎜

⎞
⎠⎟
= (ik)2 + p(ik) + q( ) f (k) = FT (R(x)) = R(k)

where ~ denotes the Fourier transform. We then have

 

f (k) =
R(k)

−k2 + ipk + q

so that the solution (particular) is

 

f (x) = 1
2π

eikx
−∞

∞

∫ f (k)dk = 1
2π

eikx
−∞

∞

∫
R(k)

−k2 + ipk + q
dk

This very formal solution to the problem is called the integral representation of the 
solution. In general, we need complex integration techniques to evaluate these integrals. 
We will see how later.

an algebraic equation
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Solving ODEs with the Laplace Transform

We now have all the necessary tools to solve ODEs using the Laplace transform. We 
consider an ODE with constant coefficients

d 2y
dt 2

+ a
dy
dt

+ by = r(t)

Now if
L(y(t)) = Y (s)

we then have

L
d2y
dt2

+ a
dy
dt

+ by
⎛
⎝⎜

⎞
⎠⎟
= L(r(t)) = R(s)

s2Y(s) − sy(0) − y'(0)⎡⎣ ⎤⎦ + a sY(s) − y(0)[ ] + bY(s) = R(s)

which is now an algebraic equation. The solution is

Y(s) =
(s+ a)y(0) + y'(0)

s2 + as+ b
+

R(s)
s2 + as+ b

y(t) = L−1(Y(s))
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Examples:

(1) Consider the homogeneous ODE
d 2y
dt 2

+ 4 dy
dt

+ 8y = 0

with initial conditions . We havey(0) = 2 , y '(0) = 0

Now

or

and

or

Therefore,

Y (s) = 2s + 8
s2 + 4s + 8

=
2(s + 2)

(s + 2)2 + 4
+

4
(s + 2)2 + 4

L(eat f (t)) = F(s ! a)  and  L(cos" t) =
s

s2 +" 2

L(e−2t cos2t) = L(cos2(t + 2)) =
(s + 2)

(s + 2)2 + 4

L(eat f (t)) = F(s− a)  and  L(sinωt) = ω
s2 +ω 2

L(e−2t sin2t) = L(sin2(t + 2)) = 2
(s + 2)2 + 4

Y (s) = 2s + 8
s2 + 4s + 8

=
2(s + 2)

(s + 2)2 + 4
+

4
(s + 2)2 + 4

= 2L(e−2t cos2t) + 2L(e−2t sin2t)

L(y(t)) = L(2e−2t (cos2t + sin2t))→ y(t) = 2e−2t (cos2t + sin2t)
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(2) Consider the nonhomogeneous ODE

2 d
2q
dt 2

+ 50q = 100sinωt

with initial conditions q(0) = i(0) =
dq(0)
dt

= 0 This ODE arises from a series circuit 

with an AC voltage source, a capacitor and an inductance. Taking Laplace transforms 
we have

Q(s) = (s+ a)q(0) + i(0)
s2 + 25

+
L(50sinωt)

s2 + 25
=

L(50sinωt)
s2 + 25

=
50ω

(s2 +ω 2 )(s2 + 25)

2 s2Q(s) − 2q(0) − q '(0)( ) + 50Q(s) = 100ω
s2 +ω 2

and thus

Now for this form

or using the partial fraction rules when a quadratic remains

Q(s) = 50ω
(s2 +ω 2 )(s2 + 25)

=
A1s + A2
s2 +ω 2 +

B1s + B2
s2 + 25

B1(a + ib) + B2 =
P(s)

Q(s) / (s − a)2 + b2⎡⎣ ⎤⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥s=a+ ib

or
A1(iω ) + A2 =

50ω
s2 + 25

⎡
⎣⎢

⎤
⎦⎥s= iω

=
50ω

−ω 2 + 25
→ A1 = 0 , A2 =

50ω
25 −ω 2

B1(5i) + B2 =
50ω
s2 +ω 2

⎡
⎣⎢

⎤
⎦⎥s=5i

=
50ω

ω 2 − 25
→ B1 = 0 , B2 =

50ω
ω 2 − 25
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Therefore,

or

Q(s) = 50
25 −ω 2

ω
s2 +ω 2 −

ω
s2 + 25

⎡
⎣⎢

⎤
⎦⎥

q(t) = 50
25 −ω 2 sinωt − sin5t[ ]

ω ≠ 5Clearly, this form of the solution is valid only if                since the amplitude becomes 
unbounded. This corresponds to resonance in the circuit and we have an unbounded 
amplitude because there is no damping in this circuit (no resistors).

ω = 5If           , we go back to Q(s)

Q(s) =
50ω

(s2 + 25)2 =
A1s + A2

(s2 + 25)2 +
B1s + B2

s2 + 25
→

250
(s2 + 25)2

which using the same procedure then gives

q(t) = 250 sin5t − 5t cos5t[ ]→ unbounded as t gets large

Green Function and Convolution

Consider the special equation shown below:

d2

dx2 + p
d
dx

+ q
⎛
⎝⎜

⎞
⎠⎟

G(x − x ') = δ (x − x ')           − ∞ ≤ x ≤ ∞
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In this equation the inhomogeneous function is a delta-function, x' is an arbitrary point, 
and we denote this special solution as G(x). It is called the Green function.

We now show that the solution of the inhomogeneous equation

d2

dx2 + p
d
dx

+ q
⎛
⎝⎜

⎞
⎠⎟

f (x) = R(x)           − ∞ ≤ x ≤ ∞

is easily expressed in terms of the Green function. 

We now show that the solution of the inhomogeneous ODE can be written as 
the expression

f (x) = G(x ! x ')R(x ')dx'
! "

"

#
Substituting into the ODE we get

d 2

dx2
+ p

d
dx

+ q
⎛
⎝⎜

⎞
⎠⎟

G(x − x ')R(x ')dx '
−∞

∞

∫

=
d 2

dx2
+ p

d
dx

+ q
⎛
⎝⎜

⎞
⎠⎟
G(x − x ')R(x ')dx '

−∞

∞

∫

= δ (x − x ')R(x ')dx '
−∞

∞

∫ = R(x)

as it should!
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So the Green function representation of the solution is valid. 

This means if we solve for G(x-x') for a particular differential operator, then we have 
solved for all inhomogeneous solutions of the ODE given by that particular differential 
operator.

As we saw earlier, an integral of the form above involving G(x-x') is called a convolution, 
and is denoted by the symbol (*).

f (x) = G(x − x ')R(x ')dx '
−∞

∞

∫ = (G * R)x

The Fourier transform of a convolution is always the product of the transforms(same as 
for Laplace transforms)

FT ((G * R)x ) =
1
2π

dxe− ikx
1
2π

G(x − x ')R(x ')dx '∫⎡
⎣⎢

⎤
⎦⎥∫

                  = 1
2π

dxe− ik (x− x ') 1
2π

G(x − x ')e− ikx 'R(x ')dx '∫⎡
⎣⎢

⎤
⎦⎥∫

                  = 1
2π

e− ikx 'R(x ')dx '∫
1
2π

dxe− ik (x− x ')∫ G(x − x ') = FT (G)F(R)

In Linear Response Theory, the inhomogeneity function R(x) is called the input to, the 
solution f(x) is called the output from, the system, while the Green function is called the 
response function, since it describes how the system responds to the input.
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Examples:

Consider Newton's 2nd law,

m
d2x(t)

dt2 = F(t) = force function

This is a 2nd-order inhomogeneous ODE with p = q = 0 and R = F. The Green function 
satisfies this equation with the force function replaced by a delta-function. A delta-function 
force is called an impulsive force. 

Thus, the Green function also describes the response of a mechanical system to 
an impulsive driving force.

Now let us consider a damped, driven oscillator

 !!x(t)+ 2! !x(t)+" 0
2x(t) = R(t)

The solution will be of the form

x(t) = G(t − t ')R(t ')dt '
−∞

∞

∫
where

d2G(t ! t ')
dt2 + 2"

dG(t ! t ')
dt

+# 0
2G(t ! t ') = $(t ! t ')
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Let the Fourier transform of G(t-t') be given by

 
FT (G(t − t ')) = !G(ω ) = 1

2π
e− iω (t− t ')G(t − t ')∫ d(t − t ')

Now take the Fourier transform of the Green function ODE

 

FT
d2G(t − t ')

dt 2 + 2β dG(t − t ')
dt

+ω0
2G(t − t ')

⎛
⎝⎜

⎞
⎠⎟
= FT (δ (t − t '))

−ω 2 + 2iβω +ω0
2⎡⎣ ⎤⎦ G(ω ) =

1

2π
or

 

G(! ) =
1
2"

1
(! 0

2 # ! 2 )+ 2i$!

Finally we compute the Green function itself by taking the inverse Fourier transform

 

G(t) = 1
2π

eiω t
−∞

∞

∫ G(ω )dω =
1
2π

eiω t
−∞

∞

∫
1

(ω0
2 −ω 2 ) + 2iβω

dω

Complex integration(will learn how later) gives the result

G(t) = 1
ω1

e−βt sin(ω1t)H (t)

where
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! 1 = ! 0
2 " # 2    and   H (t) =

1      t>0
0      t<0

$
%
&

= step function

Finally, the solution of the original equation is

x(t) = 1
ω1

e−β (t− t ') sin(ω1
−∞

∞

∫ (t − t '))H (t − t ')R(t ')dt '

      = 1
ω1

e−β (t− t ') sin(ω1
−∞

t

∫ (t − t '))R(t ')dt '

Note the interesting feature that the integral over t' takes into account the effects of all 
driving forces occurring in the past (t' < t) due to the presence of the step function. 

It contains no effect due to the driving force in the future (t' > t), because these forces 
have not yet occurred. 

Hence, the result is explicitly consistent with the physical requirement of causality.

Is the answer correct? 

Let us choose a driving force where we know the answer. In Physics 7 you discussed 
sinusoidal driving forces; so we choose

R(t) = ei! t
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Direct integration of the x(t) equation then gives the result

x(t) = e− iΩt

(ω0
2 − Ω2 ) + 2iβΩ

which corresponds to the resonance amplitude formula of the damped, driven oscillator 
and agrees with the result from Kleppner.

More details of these integration techniques later.

Examples:

Consider M
d2x
dt 2 +α dx

dt
+ Kx = d(t)

D(ω )Assume the Fourier transform of d(t) is             and that

X(ω ) = 1
2π

dte− iω t
−∞

∞

∫ x(t)→ x(t) = 1
2π

dωeiω t
−∞

∞

∫ X(ω )

Substituting we get

(! M" 2 + i#" + K )X(" ) = D(" )

X(" ) =
! D(" ) /M

" 2 ! i#" /M ! K /M
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Now defining ω ± =
iα
2M

±
K
M

−
α 2

4M 2

we have

x(t) = 1
2π

dωeiω t
−∞

∞

∫
−D(ω ) /M

ω 2 − iαω /M − K /M
=

1
2π

dω −D(ω ) /M
(ω −ω+ )(ω −ω− )

eiω t
−∞

∞

∫

where x(t) is the response of the oscillator to the forcing function  d(t).

Response to a Delta-Function Impulse

Consider d(t) = I0! (t) " D(# ) = I0

1

2$

This gives
x(t) = 1

2π
dω −I0 /M
(ω −ω+ )(ω −ω− )

eiω t
−∞

∞

∫
Using complex integration techniques which we learn later we get

t < 0    x(t) = 0

t >0
x(t) = I0

KM − α 2

4

e
−
α t
2M sin K

M
−

α 2

4M 2 t
⎛

⎝
⎜

⎞

⎠
⎟
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The solution looks like

We note that the solution obeys causality, i.e., there is no motion until after the impulse 
is applied. A delta-function impulse implies that

x(0) = 0  and  vx(0) ≠ 0
Notice, however, that we have a solution with no unknown constants. We started with a 
second-order equation. Normally, that means we need to use  2 boundary conditions to 
completely define the solution. Somehow we have already imposed them. Where? It turns 
out that the choice of integration path in the complex integration was the place! More
later!
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Effectively, we have done the following:
causality ! x(0) = 0
" # function impulse ! vx (0) = I0 /M

Fourier methods fail where the response diverges(unstable systems).

In this case we must use the Laplace transform.

Example - Unstable Electric Circuit

L

V -R

C

V

V

V

c

r

l

o

o

o

o

+
+

+

+

_

_

_

-

i(t)

This circuit has a negative resistance (a theorist’s circuit - is it possible?) and is therefore 
unstable. We let

Vs (t) =
0                      t < 0
V0 sinω0t           t > 0
⎧
⎨
⎩
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For  t < 0 , all voltages and i(t) = 0. We have for t > 0 the integral-ODE

Vs(t) = Vc(t)+Vr (t)+Vl (t) =
1

C0

dti(t) ! R0" i(t)+ L0
di
dt

Taking the derivative wrt t we have

L0
d 2i
dt 2

− R0
di
dt

+
1
C0

i(t) = dVs
dt

dVs / dtVsdVs / dt
which is a second-order non-homogeneous ODE where i(t) = dependent variable 
and                  is the driving term.  Neither              nor                 have a valid 
Fourier transform. Thus, we use Laplace transforms. We get

s2L0 I (s) − sR0 I (s) +
1

C0

I (s) = sVs(s)
where

I(s) = L(i(t))     and     Vs (s) = L(Vs (t))

The initial conditions (due to causality) are

i(0) = 0   and     di
dt t=0

= 0

Now

Vs(s) =
V0ω0

(s+ iω0 )(s− iω0 )
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which gives
I(s) = V0ω0s

(s + iω0 )(s − iω0 )(L0s
2 − R0s +

1
C0

)
=

V0ω0s
(s + iω0 )(s − iω0 )L0 (s − s+ )(s − s− )

where
s± =

R0
2L0

± i
1

L0C0

−
R0
2

4L0
2

R = −R0 → negative resistance → Real(s± ) > 0Note that                                                                           . Inverting(using complex 
integration methods) we have

i(t) =
1
2! i

ds
L
"

V0# 0se
st

(s + i# 0 )(s $ i# 0 )L0 (s $ s+ )(s $ s$ )

ω0 = 1 , L0 = 1For simplicity we choose                          so that

i(t) = 1
2πi

ds
L
∫

V0se
st

(s + i)(s − i)(s −1+ 2i)(s −1− 2i)

For  t < 0 we get i(t) = 0.  For t > 0 we get

i(t) = V0
2 5

cos t + 0.15π( ) − V0
4

et cos 2t + 0.2π( )
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ω0 = 1

R0 ,L0 ,C0

et e0.1t

The first term is a result of the driving voltage at                . It persists at a constant 
amplitude for all t > 0.  The second term is the characteristic response of the circuit 
(determined solely by                    ). It grows exponentially in time because of  R < 0 
(an unstable circuit). It looks like(where we have enhanced the initial interference terms
 by replacing            with            .
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