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Partial Differential Equations (PDEs)

In Physics, there are differential equations of motion that describe the response of 
systems to external disturbances. These are called ordinary differential equations 
(ODEs). There are also differential equations of states, or field equations, whose 
solutions give the space-time dependence of physical properties. These are called 
partial differential equations (PDEs) in the 4 variables x,y,z,t.

In general, the PDE's we will discuss describe three-dimensional situations. The 
independent variables are the position vector         and the time t. The actual variables 
used to specify         are dictated by the coordinate system in use, i.e., 
                             , etc.

The most important PDEs are:

(1) The wave equation
! 2u =

1
c2

" 2u
" t 2

 u(
!
r ,t)

This equation describes as a function of position and time the displacement from 
equilibrium,          , of a vibrating string or membrane, or a vibrating solid, gas or liquid. 
The equation also occurs in electromagnetism, where             may be a component of 
the electric or magnetic field in an electromagnetic wave, or the current or voltage along 
a transmission line. The quantity c is the speed of propagation of the waves.

 
u(r ,t)
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u(x,t) ρ
We now derive the wave equation in a special case. We consider the small transverse 
displacements            of a uniform string of mass per unit length        held under uniform 
tension T, assuming that the string is initially located along the x-axis in a Cartesian 
coordinate system.

! sThe figure below shows the forces acting on an elemental length        of the string.

T

T

! s

x x+ ! x

u

x

" 1

2"

If the tension T in the string is uniform along its length, the net upward vertical force on 
the element is ! F = T sin" 2 # T sin" 1

θ1 θ2
sin! " tan!

Assuming that the angles        and       are both small, we may make the approximation 
                  . Since, at any point on the string the slope is

tan! =
" u
" x

the force can be written as
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! F = T
" u(x + ! x,t)

" x
#

" u(x,t)
" x

$
%&

'
()

* T
" 2u(x,t)

" x2 ! x

! " s
! " x

where we have used the standard definition of the partial derivative.

The upward force may be equated, by Newton's second law, to the product of the mass 
of the element and its upward acceleration. The element has mass          , which is 
approximately equal to           if the vibrations of the string are small, and so we have

! " x
#2u(x,t)

#t 2
= T

#2u(x,t)
#x2

" x

$
#2u(x,t)

#x2
=
1
c2

#2u(x,t)
#t 2

, c2 =
T
!

which is the one-dimensional form of the wave equation.

(2) The diffusion equation
! 2u =

1
D

" u
" t

 u(
!
r ,t)This equation describes the temperature                in a region containing no heat sources 

or sinks. It also applies to the diffusion of a chemical that has concentration             . 
The constant D is called the diffusivity.

 
u(r ,t)

 
u(
r ,t)

!

We now derive now derive the diffusion equation satisfied by the temperature              at 
time t for a material of uniform thermal conductivity k, specific heat capacity s, and 
density    .
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Let us consider an arbitrary volume V lying within a solid, and bounded by a surface S. 
At any point in the solid the rate of heat flow per unit area in any given direction  
is proportional to minus the component of the temperature gradient in that direction 
and is given by

 (−k∇u) ⋅ !r
The total flux of heat out of the volume V per unit time is given by

!
dQ
dt

= (! k" u)#öndS= " #(
V
$$$

S
$$ ! k" u)dV

n̂where Q is the total heat energy in V at time t, and        is the outward-pointing unit 
normal to S; note that we have used the divergence theorem to convert the surface 
integral into a volume integral.

We can also express Q as the volume integral over V,

Q = s! udV
V
"""

and so its rate of change is given by

dQ
dt

= sρ ∂u
∂t

dV
V
∫∫∫

Comparing the two expressions for dQ/dt and remembering the volume V is arbitrary, 
we obtain the three-dimensional diffusion equation

! 2u =
1
D

" u
" t

, D =
k
s#
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(3) Laplace's equation
∇2u = 0

This equation is obtained by setting

∂u
∂t

= 0

 u(
!
r ,t)

 
!
v = ∇u

in the diffusion equation and describes (for example) the steady-state temperature of 
a solid in which there are no heat sources - i.e., the temperature after a long time has 
elapsed.

Laplace's equation also describes the gravitational potential in a region containing no 
matter, or the electrostatic potential in a charge-free region. It also applies to the flow 
of an incompressible fluid with no sources, sinks or vortices - in this case            is the 
velocity potential, from which the velocity is given by             .

(4) Poisson's equation
 !

2u = " (!r )

 ρ(
!r )

This equation describes the same physical situations as Laplace's equation, but in regions 
containing matter, charges, or sources of heat or fluid. The function           is called the 
source density, and in physical applications usually contains some multiplicative physical 
constants. For example, if u is the electrostatic potential in some region of space, in 
which           is the density of electric charge, then

 ρ(
!r )

 
! 2u = "

1
#0

$(
!
r )
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! 0

 ! (
!
r )

where          is the permittivity of free space. Alternatively, u might represent the 
gravitational potential in some region where the matter density is given by          ; then

 
! 2u = 4" G#(r )

where G is the gravitational constant.

(5) Schrodinger equation

 
−

! 2

2m
∇2u +V(

"
r )u = i!

∂u
∂t

 u(
!
r ,t)

 ! 2!
This equation describes the quantum mechanical wave function           of a non-relativistic 
particle of mass m;        is Planck's constant divided by      .

All of these equations are linear, They are all 2nd-order in the space variables and of 
1st- or 2nd-order in time.

The use of these differential operators guarantees several things:

(1) differential operators imply invariance with respect to space and time translations and 
     hence conservation of energy and momentum

! 2(2) the differential operator          is the simplest operator that will be invariant under the 
     parity transformation (inversion)
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t → −t(3) equations that are 2nd-order in time are invariant under time reversal (              ) and 
     hence, a movie of the system in time should represent a real physical system whether 
     it is run forwards or backwards. For example, the wave equation might have a solution 
     representing a wave propagating to the right and if we run the movie backwards, we 
     get a wave propagating to the left, which is also a valid solution.

In the diffusion or heat conduction, the field equation (for the density or temperature 
fields) is only 1st-order in time. The equation does not, and should not, satisfy 
time-reversal invariance, since heat is known to flow from high temperature to low 
temperature and NEVER the other way around. A movie of a pool of water solidifying 
into a block of ice on a hot day has obviously been run backwards.

The Schrodinger equation is a sort of diffusion equation with an imaginary diffusion 
constant; the wave function is a complex function.

The textbook discusses general aspects of PDEs and their solutions. We will concentrate 
in class on one solution method, namely, separation of variables.

Separation of Variables and Eigenfunction Expansions

Under certain circumstances the solution of a PDE may be written as a sum of terms, 
each of which is the product of functions of only one of the variable. This is called 
solution by separation of variables (SOV). Let us illustrate the procedure by an 
example.

7



Consider a 1-dimensional wave equation describing the transverse vibrations of a 
string ∂ 2u

∂x2 =
1
c2

∂ 2u
∂t 2

In the SOV method we simply look for a solution of the form

u(x,t) = X(x)T(t)

Direct substitution then gives

! 2

! x2 u(x,t) = T(t)
d2X(x)

dx2 =
1
c2 X(x)

d2T(t)
dt2

1
X(x)

d2X(x)
dx2 =

1
c2

1
T(t)

d2T(t)
dt2

λ

It is clear that we have separated the variables. Since the LHS is a function of x only 
and the RHS is a function of t only, both sides of this equation must be equal for all x 
and t. The only way this is possible is for both of them to be equal to the same constant, 
say        . 1

X(x)
d2X(x)
dx2 = ! =

1
c2

1
T (t)

d2T (t)
dt 2

which gives d 2X(x)
dx2 − λX(x) = 0   and   d

2T (t)
dt 2 − λc2T (t) = 0

x => vertical motion
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!
These are two separated ODEs (single variable). They are not completely 
independent of each other since the same separation constant         must appear in 
both. They are both eigenvalue/eigenfunction equations.

The general solutions of these equations are:

X(x) = Acos( ! " x) + Bsin( ! " x)

T(t) = Dcos( ! " ct) + Esin( ! " ct)

!X(x)

As a rule, all possible values of the separation constant         are allowed unless 
explicitly forbidden by the physics of the system. i.e., certain values of          can be 
forbidden when the corresponding solution              , which depends on          , does not 
have the correct properties. The properties in question, are the boundary conditions 
imposed by the physics of the system.

It may happen that one or more of these boundary conditions can be satisfied only when 
the separation constant takes on a set of special values. This set then contains the only 
permissible values, or eigenvalues , for the problem. The corresponding solutions are 
called eigenfunctions. Let us illustrate this with a particular example.

λ
λ

2!
Suppose, as in the case of the Fourier series, we are interested in solutions with a period 
of          i.e.,

1 , cos(nx) , sin(nx) , n > 0 , integer

This implies that the only permissible separation constants are

λn
2 = −n2       ,    n=1,2,3,4,.....
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! = ! nFor each                we then get a wave solution of the form

Xn(x)Tn(t) = An cos(nx) + Bn sin(nx)( ) Dn cos(nct) + En sin(nct)( )
                 = an cos(nx)cos(nct) + bn sin(nx)cos(nct) + dn cos(nx)sin(nct) + en sin(nx)sin(nct)

2!
Since the 1-dimensional wave equation is linear, the general solution periodic in x with 
period         is then the linear superposition

u(x,t) =
1
2

a0 + Xn(t)Tn(t)
n=1

!

"
of all possible solutions. Note that this is a double Fourier series. 
That is the general idea.

Boundary and Initial Conditions

The complete determination of a solution of the PDE requires the specification of a 
suitable set of boundary and initial conditions. The boundaries may not be just points, 
but, depending on the dimension of the system they can be lines or surfaces.

Let us return to the wave equation. We now specialize the problem and consider the 
1-dimensional vibrations of a string rigidly attached to a support at the points  
x = 0  and x = L (boundary conditions). We write the spatial part of the solution as
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Xn(x) = An cos( −λn x) + Bn sin( −λn x)

         = An cos(knx) + Bn sin(knx)     where     kn = −λn

These boundary conditions mean that

Xn(0) = 0 = An cos(0) + Bn sin(0) = An ! An = 0      for all  n

Xn(L) = 0 = Bn sin(knL) ! sin(knL) = 0 ! kn =
n"
L

       for all  n

since   Bn # 0 ! no solution!

This gives as a solution fitting the boundary conditions

Xn(x) = Bn sin
n! x
L

"
#$

%
&'

where

! n = "
n#
L

$
%&

'
()

2

= allowed separation constants

Xn (x) ! nThe eigenfunction             belongs to the eigenvalue           and describes the nth 
eigenmode (or normal mode) of the vibration of the string (fixed at both ends)
(see figures below)
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n=3

n=2

n=1

These represent the fundamental vibration along with the first and second 
harmonics.

Note that there are points given by

xm =
mL
n

    m=1,2,3,4,.......,n-1
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where the vertical displacement u = 0 or

Xn(x) = Bn sin
n! x
L

"
#$

%
&'

= Bn sin m!( ) = 0

which are called nodal points of the wave.

Tn (t) Xn(t)The time factor           associated with             is given by

Tn(t) = Dn cos(! nt)+ En sin(! nt)
where

! n =
nc"
L

is the frequency of vibration of the nth normal mode of the string (fixed at both ends)
i.e., .

Tn (t) = Dn cos( ! " n ct) + En sin( ! " n ct)

       = Dn cos n#c
L

t$
%&

'
()

+ En sin n#c
L

t$
%&

'
()

Hence, the general wave amplitude function (shape) of the vibrating string fixed at 
x = 0 and  x = L  is the general eigenfunction expansion (superposition of all solutions)

u(x,t) =
1
2

a0 + Xn(t)Tn(t) =
1
2

a0 + sin
n! x
L

"
#$

%
&'

(Dn cos(( nt) + En sin(( nt)
n=1

)

*
n=1

)

* )

where the constants D and E have been redefined (AD -> D and AE - >E) for convenience
13



If we pluck the string at time t = 0, which mode(s) will be excited? or which coefficients
will be nonzero?

The answer depends on how we pluck the string or on the initial conditions at t = 0.

Since PDE is 2nd order in time, we need 2 initial conditions to completely specify the 
solution(think Newton’s law problems). We usually choose them to be

u(x,0) = u0 (x) = initial displacement of the string at   t = 0
! u(x,t)

! t t =0

= v0 (x) = initial velocity profile of the string at   t = 0

or we have u(x,0) = u0 (x) = Dn sin
nπ x
L

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑
∂u(x,t)

∂t t=0

= v0 (x) = Enωn sin
nπ x
L

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑

which implies that

Dm =
2
L

sin
mπx

L
⎛
⎝⎜

⎞
⎠⎟

0

L

∫ u0(x)dx

Em =
2

ωmL
sin

mπx
L

⎛
⎝⎜

⎞
⎠⎟

0

L

∫ v0(x)dx
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These relations follow from the basis functions orthogonality conditions in the same way 
as we found in our development of Fourier series; in fact, these equations are just 
Fourier sine series, i.e.,

u0(x) = Dn sin
n! x
L

"
#$

%
&'n=1

(

)

Dn

2
L

sin
m! x

L
"
#$

%
&'

0

L

* sin
n! x
L

"
#$

%
&'n=1

(

) dx =
2
L

sin
m! x

L
"
#$

%
&'

0

L

* u0(x)dx

Dm = Dn+mn
n=1

(

) =
2
L

sin
m! x

L
"
#$

%
&'

0

L

* u0(x)dx

These coefficients determine which normal modes are excited and with what strength.

Real example of a vibrating string(back through everything again):

! 2y
! x2

=
1
c2

! 2y
! t 2

gives

 

y(x,t) = X(x)T(t)
X ''
X

= ! " 2 =
1
c2

!!T
T

X ''+" 2X = 0 , !!T +" 2c2T = 0
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Define
! c = " = 2#$ =

2#c
%

& ! =
2#
%

= k = wave number

The solution is (as before)

y = asin(kx) + bcos(kx)( ) d sin(ωt) + ecos(ωt)( )
The string is fastened at x = 0 and x = L , so that y(0) = y(L) = 0, which gives

y(0) = b dsin(! t) + ecos(! t)( ) = 0 " b = 0

y(L) = asin(kL) dsin(! t) + ecos(! t)( ) = 0 " sin(kL) = 0 " kL = n#

and
yn = an sin

n! x
L

"
#$

%
&'
dsin

n! vt
L

"
#$

%
&'

+ ecos
n! vt
L

"
#$

%
&'

"
#$

%
&'

Now choose initial conditions at  t = 0

y(x,0) = f (x) =
x / 2              0! x ! L/2

L / 2 " x / 2     L/2 ! x ! L
#
$
%

and ∂y(x,t)
∂t t=0

= 0

This means we physically pull the string into a triangular shape and let is go from rest.
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The condition

∂y(x,t)
∂t t=0

= 0→ an sin
nπx
L

⎛
⎝⎜

⎞
⎠⎟

nπv
L

dn cos
nπvt

L
⎛
⎝⎜

⎞
⎠⎟
− en sin

nπvt
L

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

t=0

                   0= an sin
nπx
L

⎛
⎝⎜

⎞
⎠⎟

nπv
L

dn( ) → dn = 0

The most general solution is then is

y(x,t) = An
n=1

∞

∑ sin
nπ x
L

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

cos
nπv
L

t⎛
⎝⎜

⎞
⎠⎟

Now using the other initial condition, we have

y(x,0) = f (x) = An
n=1

!

" sin
n#x
L

$
%&

'
()

Anor the       are the Fourier coefficients of the sine series for the triangular pulse. We have
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Am =
2
L

sin
m! x

L
"
#$

%
&'

0

L

( f (x)dx =
1
L

sin
m! x

L
"
#$

%
&'

0

L /2

( xdx+
1
L

sin
m! x

L
"
#$

%
&'

L /2

L

( (L ) x)dx

    =
1
L

L2

m2! 2 ysiny
0

m! /2

( dy)
1
L

L2

m2! 2 ysiny
m! /2

m!

( dy+
L

m!
siny

m! /2

m!

( dy

    =
L

m2! 2 (siny ) ycosy)
0

m! /2 )
L

m2! 2 (siny ) ycosy)
m! /2

m! )
L

m!
(cosy)

m! /2

m!

    =
L

m2! 2 sin
m!
2

"
#$

%
&'

)
m!
2

cos
m!
2

"
#$

%
&'

) sin(0) + (0)cos(0)
"
#$

%
&'

             )
L

m2! 2 sin m!( ) ) m! cos m!( ) ) sin
m!
2

"
#$

%
&'

+
m!
2

cos
m!
2

"
#$

%
&'

"
#$

%
&'

             )
L

m!
cos m!( ) ) cos

m!
2

"
#$

%
&'

"
#$

%
&'

or

Am =
2L

m2! 2

"
#$

%
&'

sin
m!
2

"
#$

%
&'

     m  odd

         0                        m  even

(

)
*

+
*

and so on.
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The other standard initial condition is
y(x,0) = 0

and ∂y(x,t)
∂t t=0

= f (x) =
x / 2              0 ≤ x ≤ L/2

L / 2 − x / 2     L/2 ≤ x ≤ L
⎧
⎨
⎩

which corresponds to hitting the string(giving it a velocity profile) when it is flat. 
This gives

y(x,t) = Bn
n=1

!

" sin
n#x
L

$
%&

'
()

$
%&

'
()

sin
n#v
L

t$
%&

'
()

* y(x,t)
* t t =0

= f (x) = Bn
n=1

!

" sin
n#x
L

$
%&

'
()

= initial velocity profile

For each n (in either initial conditions case) there is a different frequency

fn =
! n

2"
=
n" v
2" L

=
nv
2L

which are the normal mode frequencies. These frequencies can be excited 
separately and would be stable. The string would vibrate in a single mode or one 
term of the general sum

sin nπx
L

⎛
⎝⎜

⎞
⎠⎟
sin nπv

L
t⎛

⎝⎜
⎞
⎠⎟
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If we took a photograph at any given value of t, we get a picture of the string

y = sin
n! x
L

"
#$

%
&'

which are the shapes shown earlier.

At any fixed point x,
y = sin

nπv
L

t⎛
⎝⎜

⎞
⎠⎟

or any particular x point oscillates up and down with the normal mode frequency.
Fast Image Sequence (like a movie)

function z=acoeff(m,L)
if (2*floor(m/2) == m) 
  z=0;
 else
  z=(2*L/(m^2*pi^2))*sin(m*pi/2);
 end

function z=aterm(m,L,v,x,t)
z=acoeff(m,L)*sin(m*pi*x/L).*cos(m*pi*v*t/
L);

% m-file waveqxt.m
L=1;
v=1;
x=0:0.01:1;
for j = 1:201
  t=(j-1)*0.01;
  sum=0;
  for k=1:100
    sum=sum+aterm(k,L,v,x,t);
  end
  plot(x,sum,'-k');
  axis([-1 2 -.5 .5]);
  pause(0.01)
end
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Vibrations of a Rectangular Drum

We now choose to look at a rectangular drum because we can handle this boundary 
easily with a simple extension of our 1-dimensional solutions in cartesian coordinates. 
We will look at a circular drum later.

The vibration of a 2-dimensional membrane fixed at the boundaries  x=0, x=a, y=0, y=b  
can be described using a 2-dimensional wave equation as follows:

∂ 2u
∂x2 +

∂ 2u
∂y2 =

1
c2

∂ 2u
∂t 2

We now choose u(x,y,t) = X(x)Y (y)T (t)

SOV substitution gives

1
X
∂ 2X
∂x2 +

1
Y
∂ 2Y
∂y2 =

1
c2

1
T
∂ 2T
∂t 2

In this case, the separation constant assignment goes like
1
X

! 2X
! x2 = " x ,

1
Y

! 2Y
! y2 = " y ,

1
c2

1
T

! 2T
! t 2 = "

with ! x + ! y = ! , all constants

The solutions are
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X(x) = Acoskxx + Bsin kxx , kx
2 = ! " x

Y (y) = C coskyy + Dsin kyy , ky
2 = ! " y

T (t) = E cos# t + F sin# t , # 2 = ! "
with

kx
2 + ky

2 =
! 2

c2

The boundary conditions give

X(0) = 0 ! A = 0 , Y (0) = 0 ! C = 0

X(a) = 0 ! kx =
m"
a

= km , Y (b) = 0 ! ky =
n"
b

= kn

or
m2π 2

a2
+

n2π 2

b2
=
α 2

c2
=
ωmn
2

c2
→ωmn = cπ m2

a2
+

n2

b2

The general solution is then a sum of all possible solutions (all m,n)

u(x,y,t) = sin
m! x

am,n=1

"

# sin
n! y
b

cmn cos$ mnt + dmn sin$ mnt( )

ωmnwhere        = frequency of the (m,n) normal mode. Some examples of modes are 
shown below:

As always, the strength with which various normal modes are excited depends on the 
exact initial conditions.
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The MATLAB program below shows the (n,m) modes of the rectangular membrane (image 
sequence type movie).

c=1;a=1;b=1;
x=-0:0.05:a;y=0:0.05:b;
[X,Y]=meshgrid(x,y);
% (2,1) mode
%m=2;n=1;
% (1,1) mode
m=1;n=1;
% (2,3) mode
%m=2;n=3;
w=c*pi*sqrt(m^2/a^2+n^2/b^2);
Z=sin(m*pi*X/a).*sin(n*pi*Y/b);
lim=[0 a 0 b -1 1];
figure('Position', [200 200 400 400])
for j=1:500
      t=(j-1)*.01;
      mesh(X,Y,Z*cos(w*t))
      axis(lim);
      colormap(waves);
      pause(0.01);
end

corresponding
program
images
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Diffusion Equation

The 1-dimensional diffusion equation is
∂ 2u(x,t)
∂x2 =

1
D
∂u(x,t)

∂t
Using SOV we have u(x,t) = X(x)T (t)

1
X

! 2X
! x2 =

1
D

1
T

! T
! t

= " = separation constant

We get equations and solutions
d2X
dx2 ! " X = 0 # X(x) = Acoskx + Bsinkx

dT
dt

! " DT = 0 # T(t) = Qe! k2Dt + Rek2Dt

with k2 = −λ

The positive exponential solution is not allowed physically since it would imply that, as
t ! " # T ! "

which makes no sense in a heat diffusion problem. On the other hand for the negative 
exponential solution t →∞⇒T → 0

which does make physical sense. This is just an example of the "physics of the problem" 
restricting or modifying the strictly mathematical solution.

24



Therefore, we have T (t) = e−k
2Dt

T0

T = 0

Special case:

Consider a 1-dimensional rod of length  a, at temperature      , which has both of its ends 
placed in contact with a heat reservoir at              .

We have the possible solutions
u(x,t) = (Acoskx + Bsinkx)e! k2Dt

Boundary Conditions (both ends held at T=0)
x = 0 ! u(0,t) = 0 ! (A)e" k2Dt = 0 ! A = 0

x = a ! u(a,t) = 0 ! (Bsinka)e" k2Dt = 0 ! sinka = 0 ! k = kn =
n#
a

Therefore, a solution is given by
un(x,t) = Bn sinknxe−kn

2Dt

so that the most general solution is
u(x,t) = Bn sinknxe−kn

2Dt

n
∑

T = T0

Initial Conditions

At t = 0, we were in equilibrium such that               everywhere. This means that at t=0
! u
! t

= 0
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so that

! 2u(x,0)
! x2 =

1
D

! u(x,0)
! t

= 0 " meaning of equilibrium or steady-state

d2u(x,0)
dx2 = 0 " u(x,0) = F + Gx = T0 for all  x " G = 0 , F = T0

That was cracking a peanut with a sledgehammer, i.e., we could have guessed this result.
But it was important to illustrate the process so that we know what to do in a more 
complicated equilibrium situation.

This gives u(x,0) = T0 = Bn sin knx
n
!

Bn =
2
a

T0
0

a

" sin n#x
a

dx =
2T0

n#
(1$ cosn# ) =

4T0 / n#     n odd
       0        n even

%
&
'

The final solution is then

what does it look like?u(x,t) = T0

4
n!

sin
n! x
a

e
"

n2! 2

a2
Dt

n odd
#
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Another example:

We consider a slab, as shown below, which is infinite in the y-direction. This means we 
only need to worry about the x and t variables

We assume that initially (t = 0) T = 0 at x = 0
T =100 at x = L

and for t > 0 we assume T = 0 at x = 0

T = 0 at x = L
and ask what happens in time?
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T(t) T(t) = e−k2α2t D = ! 2
The         solution is the same as before, namely,                       where               .

For the x solution, first we find the initial(t=0) steady-state(equilibrium) T distribution. We 
have only x to worry about (everything must be uniform in y). Now, steady-state means

! u
! t

= 0

or d2u(x,0)
dx2 = 0 ! u(x,0) = ax+ b

u(0,0) = 0 ! b = 0

u(L,0) = 100! a =
100
L

so that
u(x,0) =

100x
L

For t > 0 we use the diffusion equation which gives

u(x,t) = (acoskx + bsinkx)e−k
2Dt

u(0,t) = 0→ b = 0

u(L,t) = 0→ sinkL = 0→ k = kn =
nπ
L
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Therefore the most general solution is

u(x,t) = an
n=1

!

" e
#

n$%
L

&
'(

)
*+

2

t
sin

n$x
L

Now
u(x,0) = 100x

L
= an

n=1

∞

∑ sin nπ x
L

which gives
an =

200
!
(" 1)n" 1

n
and the solution

u(x,t) =
200
π

(−1)n−1

nn=1

∞

∑ e
−

nπα
L

⎛
⎝⎜

⎞
⎠⎟

2

t
sin

nπ x
L

Heat conduction example:

We now consider a long rectangular metal plate which has the steady-state configuration 
as shown in the figure below:
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We are looking for a solution of the 2-dimensional steady-state diffusion equation

∇2T (x,y) =
∂ 2T
∂x2 +

∂ 2T
∂y2 =

1
D
∂T
∂t

= 0 Why is this the steady-state
diffusion equation?

We assume
T(x,y) = X(x)Y(y) ! d2X

dx2
= "

d2Y
dy2

= " k2 , k # 0

The solutions are
X(x) = asinkx + bcoskx

Y(y) = ceky + de! ky
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We made this particular choice of signs for the separation constant because we need 
X to be trigonometric functions and Y to be exponential functions for physical reasons, 
i.e., X being trigonometric is the only way for us to be able to have X = 0 at both 
x = 0 and x = 10.

Therefore, the solution is

T (x,y) = (asinkx + bcosk)(ceky + de! ky )
The boundary conditions give

T(0,y) = 0 ! b = 0

T(10,y) = 0 ! sin10k = 0 ! k = kn =
n"
10

, n = 1,2,3,.....

which gives the most general solution (sum of all possible solutions) as

T(x,y) = sinkn
n
! x(cne

kny + dne
" kny)

Now, if we let the far end be at y = 30, then we have

T (x, 30) = 0 = sin kn
n
! x(cne

30kn + dne
" 30kn ) # cn

dn
= e" 60kn

Therefore
T(x, y) = dn sin kn

n
! x(e" 60kn ekny + e" kny) = dn sin n#x

10n
! e" 3n# (e

n#
10

(y" 30)
+ e

"
n#
10

(y" 30)
)

           = Dn sin n#x
10n

! sinh n#
10

(y " 30)
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Finally, we have
T(x,0) =100 = ! Dn sin

n" x
10n

# sinh 3n"

DnSolving for         we finally get

T(x,y) = !
400

n" sinh3n"
sin

n" x
10oddn

# sinh
n"
10

(y ! 30)

Some MATLAB images of this result:
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