Complex Variables
Existence of a Derivative

For a complex function of a complex variable given by f(z) = u(z) + i v(z) where
z=X+1iy and u, v are real functions, the derivative of f(z) is defined by

f'(z):ﬁ: i of(2) — im f(z+02)— (2
dz -0 Oz 52—0 O0Z

provided that the limit is independent of the particular approach to the point z in the
complex plane. This is always true provided the following Cauchy-Riemann(C-R)
conditions are satisfied: | | |
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If these conditions are true at some point z and in the neighborhood of z, then they
are necessary and sufficient conditions for the existence of the derivative of f(z) or we
say the function is differentiable in the complex plane.

Analytic Functions

If f(z) is differentiable at z =2, and in some small region around z, , then we say that
f(z) is analyticat z=2%, .



Example: w(z) = 7> = (X + iy)2 = x° ! y2 + 2y
u(x,y)=x!y* ad v(xy)=2xy

n n

Hu IIV u V
1 — 2X — n ) = ! 2y o n
X y y y
This is true everywhere in the complex plane and thus w(z) is analytic and differentiable
everywhere and dw 'u Iy

— = —+|—=2X+2yi =27
dz Ix Ix
Another example : 1 1z* x!iy
w(z)=—= *_ 2 2
7 2z X"ty
X Ly
; p— and ) —
u(x,y) Z1y v(Xx,y) 2ty

The Cauchy-Riemann conditions are satisfied everywhere but at z = 0. Thus, the
function 1/z is analytic everywhere but z = 0 and its derivative is

d1/z) .
dz z2

in the analytic region.



Define a Contour Integral

The integral of a complex function over a contour(path) in the complex plane is defined
in close analogy with the standard integral of a real function integrated along the real

X-axis.

Divide the contour %! Z, =7, into n intervals by picking n-1 intermediate points
2y Zppeeennns on the contour (see figure)

y

>
X

Now consider the sum o
S, = flg)z;! z,))
=1

j=
where ¢; is a point on the curve between Z andz,, , Now let 7 — ©° with

‘zj! Z, 0

for all j. If the limS, exists and is independent of the details of choosing the points

z, ad g, then



S ()2 #2,.)= 0f(Idz

The RHSt is called the contour integral  of f(z) (along the specified contour C from
z=7, 0o z=27';

Cauchy Integral Theorem

Now let w(z) be a complex function which is analytic in some region of the complex
plane and consider this integral

ddav(z)

C

along a closed contour C which lies entirely within ~ the analytic region as shown below:

imag 4 z-plane

>

real

Since w(z) is analytic and obeys the C-R conditions, we have



dzw(z) = Vd(x +iy)(u(z) + iv(z))

!
C

(udx " vdy) +il (vx + udy)

C
$#  Hu' $,, #u Ll
II@?#)C dedy l”% x zdxdy 0

by Green's theorem(page 390 in text).

O 1=~

So we have the Cauchy Integral Theorem:

If T(2 is an analytic function whose derivative f'(2 exists and is continuous at each
point within and on the closed contour C, then

| f(2)dz=0

C

All integrations traverse the contour counterclockwise unless otherwise stated.

Contour Deformation

An important consequence of the Cauchy integral theorem is that any contour of such corr

We can see this as follows: the integral



| = | daw(z)
C:0
is along the contour C, fromatob

A
imag z-plane

>

real

We now add an integral with the same integrand but a different contour C

| = | dav(z) + | dav(z)

real



The value is still I since w(z) is analytic and thus

| dzw(z) =0

C

Notice, however, that two parts of the paths overlap . The integral is the same over

both of these paths but we are traversing them in opposite directions so they cancel
out. Therefore

I=1dw(z)= | dow(z)
C, c'

where c', is a shown below:
A

imag z-plane
b
Co
a
>
real
This means we can freely deform the contour in analytic regions.

An important example is the contour integral



Jzndz
C

where C is a circle of radius r > 0 around the origin z = 0 in the positive mathematical
sense (counterclockwise).

In polar coordinates we can parameterize z by
z=re" " dz=ire"d! (ontecircle wherer = condant)

For n # -1, we get

L "dz= Lr””z'!' e oy = : r™ %i(nﬂ)#gz! =0
201 0T 21 +1) 0
while for n = -1 we have 1 dz 1%
2l .z 2 Od#__

Both results are independent of r. This is an example of the Cauchy integral theorem.
The Cauchy integral theorem is the first of two basic theorems in the study of complex
variables. Let us elaborate on our earlier definition.



Statement of the Theorem

If a function f(z) is analytic (therefore single-valued) and its partial derivatives are
continuous throughout some region R as shown in the figure, then for every closed
path Cin R !

W

R

NV

the contour integral of f(z) around C is zero
! f(z2)dz=0

C

The Cauchy Integral Formula

Consider a function f(z) that is analytic on and within a closed contour C. Let us evaluate



p 1@ g,
2! %

where 4, is some point in the interior region bounded by C. Although f(z) is analytic,
the integrand
f(2)

YARYA

is not analyticat Z, unless f(Z,)=0 . If the contour is deformed as shown in the
figure, then

4

Contour line

Cauchy's integral theorem then applies and we have

10



L CO T GO
czlz, 7! g

where C is the original outer contour and €. s the circle surrounding the point Z,
(traversed in a counterclockwise direction). What happens to the straight paths?

— i/
If we let 7=z, tre
on C, , where eventually r will go to zero, then we have

i%#

| | #
c <+ <o c, < <o c, re

Taking the limit I'! O, we get

! Zf_(zz)o dz=if(z,) Cj do = 27if (z,)

which is the Cauchy integral formula

Here is a remarkable result . The value of an analytic function f(z) is given(by the
formula) at an interior point Z = Z, once the values on the boundary C are specified.
If 4, is a point exterior to the region bounded by C, then the integral equals zero.

11



Summarizing the theorem:

Let f(2) be be an analytic function within a closed contour C and continuous within and
on C.If a isany point within C, then

| f(2)
f(a)= dz
@ 211 !fﬁz" a
If a is any point outside C, then
0 1. !‘ f(2) 47
2m L Z—a

Derivatives of a Complex Function

We can write f(2)= ;i #(: l('qqu
- C

where z is any point interior to C and f(z) is analytic within and on C.

We then have

12



f(q) _( f(@)
fz+h)-1@ 1, !:q—z—hdq !q—qu

f'(z)=Iim -[im
h—0 h 27| h—0 h
1 1 h
] f(q)( —jdq ] f(q)( ]dq
271 h—0 h 271 h—0 h

In a similar manner we have

(M) () = nb f(q)
f (Z) 2, l !C#(q " Z)n+1 dq
Taylor Series
We have f(z) = ! CJD /) dq
2T L. q—2

where C is a circle centered at a and z lies inside C. This means that
z! a<|q! &

for all points g on the contour C and all points z interior to C.



Now let « = z! a
g! a
Then Z
k=222
g—a
1 —a -
=283k K <1
1-K -2 o
This implies that
"zl ao/d 1 z! a (z! a)"
) Frrrrens + s
q'z q! al®q! a& q'a (q! @) (q! a)
Since, on the circle C 71
K== 2| <1
g! a
this series converges uniformly on C. This means that we can multiply by
f(q)
271

and integrate term by term around C. We get



T _ gD Z" a (z" @)’

| dg——=1dg——+1dqgf(q) o, H daf (q) ———=+.......
c a4"z ¢ q"a ¢ (" a) c (9" a)

HC) . 1 " 1
f(z)=1dg——+(z" a)l dqf(q) ————=+......... £z" a)" 1 daf (q) ———=+.......
c 9" a ¢ Q" a) ¢ Q" a)

f(z)=f(a)+f '(a)(z" a)+....... + f(”r;(a) (z" a)" +......

which is the Taylor series .

Laurent Series

If f(z) is single-valued and analytic throughout the closed annulus bounded by the
outer circle C, and the inner concentric circle C, centered at z = a and of radii

ri and r2 < ri1 respectively, then, for an point z be a point inside the annulus, there exists
a unigue series expansion in terms of positive and negative powers of (z-a),

n |: bn
/@) _n-oa (Z#Cl) +n 1 (z#a)
where
1 f(C]) 1 n n"1
= —— (P d , b - — f
T Famay g YT ?iﬁdq ()@" a)

15



As stated above, we let there be two circular contours C, and C1 with the radius of C1
larger than that of C, . Let zo be at the center of Cl and C, and z be any point
between C, and C, - Now create a cut line C_ between C, and C ,and
integrate around the path C = C;+Cc-Cz-Cc. Sighs come from going in negative (]iirection

along contour. Clearly the integration along the cut cancel. From the Cauchy integral
formula we then have

f(z):;i #f(CI)d

2a" 2

:;i#f(Q)quri#f(Q)dq.. CEPTLLC IR #f(OI)dq

C1(:1"2 2!iCCq"z Eczq"z 2!iCCq"z

_ 1 f@, .. 1 . f@)
=i Hye 9

e ZHQq"z

(g on contours)

g

dq

16



since contribution from the cut line in opposite directions cancel out. We then have

_ f(q) . 1 f(q)
T R e Iy
1 f() . 1 f(q)
=— —dq - I —dq
2! | N A A 2 e L 99" 7,
= (0 %) gl 0" 7] (z Zo)%..zo 12
1 f(q) 1 f(q)
= — —dgq+— I —dg
2! I Cl 11 $ 11 Z" ZO 2! I C2 11 $ 11 q ! ZO
@ 2)gl" v ) @ 2" o)

For the 1st integral, |q! z|>|z! z| . For the 2nd mtegral 2—z|>|g—2| . We now

use the Taylor expansion (valid for [t] < 1)y 4

= "
1!t ﬁ:o
toget 1 [, fg) ofz-z @) S(a-%),
f(z)_Zm qs(q Z) e (q Zoj CJ}(Z Z0) n (Z Zo) |
_ i <J‘> /) _ dq+i(z—zo)_"_1<ﬁ(q—zo)n f(q)dq

(g-2)" 1=0 ,

5 i<Z‘Zo)n<f>(q f(zq; g+ X (2= 20) "la—z)" Flag
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where the 2nd term has been re-indexed. Re- indexing again,

B f(q) 1 f(Q)
f(Z)—2 |,j$0(z ZO) 5 " ZO)n+1 q $ (Z ZO D/P n+1 dq

Since the integrands, including the function f(z), are analytic in the annular region
defined by Ci and C;, the integrals are independent of the path of integration in that
region. If we replace the paths of integration Ci: and C; by a circle C with radius r
with r £ r < ry, then

1 i n f 1 f
f(Z) = Enzo(zu ZO) C-El)//\ 11 (Z(:;rHl dq+ 2, | o ( D/() (q)n+1 dq
# ! # f
=$a(2 )"+ $ b(2" ) =58 (" 2) s “”mdq

Generally, the path of integration can be any path that lies in the annular region and
encircles zo once in the positive (counterclockwise) direction.

The coefficients are are therefore defined by

_ 14) f(q) do
27l . (q— zo)'nJr1

18



Note that the annular region itself can be expanded by increasing r1 and decreasing r»
until singularities of f(z) that lie just outside C; or just inside C; are reached. If f(z) has
no singularities inside C;, then all the terms bk above equal zero and the Laurent series
reduces to a Taylor series with coefficients ax.

Example: Let 1
f(a)=
a(q! 1)

Choose Z,=0 . We then have r = 0 and R = 1 as the radii of the two concentric
circles defining the region of analyticity of f(q). We then obtain

1 f(q) 1 dg
- i d — [
- 211 (g" z)™ : 2!i!§(q)”*2(q" I 2’!?%)(1 ()”*2

I a/u. 99
2 ImOc(Q)m—z"m

Now we use the polar form of g to integrate around the circle

1 3 dg ire“d& 1 5
a'n:! n'% - n+|m: n'% n+|m|n+'m _! ,,-%'n!m+
2 | m=0 !f't(Q) 8 I m= O!C#(r) ’ (nr2ime 2 | m=0 e
This gives # 1 n' 11
a,=$

04 0 n<!1
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The Laurent expansion then becomes

: :!1!1!2!22!23! ...... =l H# 7
z2(z!'1) z n=11

We have smashed a peanut with a sledgehammer, but the method is clear and works very
well when a real sledgehammer is necessary.

Let us look at all this another way.

Laurent's Theorem

Let C, and C, be two concentric circles with centersat % .Let f(z) be
analytic in the region R between the circles. Then f(z) can be expanded in a series of

the form N
+ 0, + 2+

f(z2)=a,+a,(z! z)+a,(z! )" +......
(2) =8, +a(z! z)+a,(z! z) RIS
A Taylor series has only one circle about Z, (the outer one), which implies that b =0

so that 5
f(z)=a,+a,(z! z)+a,(z! z) +......

_ 1, f(2 _ 1 f(2)
Syt o

. (le ZO)'
and C = any closed curve surrounding 4, in R.

where
dz

a

"'n+1
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Example : We consider
1 0/

WO L = e 2% @ s

For a Taylor series about z = 0:

We h
= have = | # —(z! z,)" , z,=expangon pont
Z- a n= O(al Zo)n
Therefore .
/ (| 1)n+l )
= = |
Z+] ﬁ (i + 4)“*1(2' %)
= = | n
21| i#o(' )”*1(2' %)
so that 1y |
(Z)___%|:(l+zo)n+l _(i_ZO)n+1 :|(Z_ZO)

inside the circle |7 <1 .

For z,=0 we have

W(2) = %g%[(—n” 17

Now



1 &1 n = even
~H1 )" +18=
2 0 (O n = odd

so that
as expected.

Another example: What is the Laurent series expansion of

f(2) = 1 1 1 1

213242 (1 1) (2! 2) (2! 1)

valid in each of the regions
O 1<|4<2 (2 2<|Z (3 |4<2

(1) To obtain a Laurent series expansion in this region, we expand about the origin.

We write 1 1 O/q 1" 1 o

f(z)="! —= l — '
(2) 2;&1! 7/ 2& zﬁl! 1/ z&

The first fraction has a singularity at z/2 = 1 and can be expanded in a Taylor series that
converges if |z| <?2 . The second fraction has a singularity at 1/z = 1 and can be
expanded in a Laurent series that converges if 1< \Z\ The two fractions are expressed in
the appropriate series are

22



1( 1 ) 1 z (zjz (ZT 1 z 2 7°
—— =——\14+—+|=| +|=| +....|=————— ———...
2\1-7/2 2 2 2 2 2 4 8 16

n " " " 0

=
ﬁl'l/z& Z z 22 70 7

where the first series is valid for |2 <2 and the second series is valid for 1<|2. Adding
the two series we get the Laurent series as

2 3
f)z—er = 4yl zz, 2,
‘1 3z+2 2 77 z 2 4 8 16

valid for 1<|Z|<2

2) In this region we expand
(2) J PN 1 1 g

U1 2R 1/2&

1 1 1 1 1 1
=+t S+ S+t

z\1-1/z Z Tz

which is valid for 1<|z . However, we now write
1 1t 1 Yo_ 1 2 4 38
202 2%12/2& 2 2 7 2

as above




which is valid for 2<|z| . Thus we have the Laurent series

1 1 3 7 15

f(Z): :—+—3+—4+—5+....

2 2
77V 3z+2 77 77 7 Z

valid for 2<|Z.

(3) In this region, we expand about the point z = 1 to get
1 1 " 1 %_ 1 " 11 %
@)= p :
rall 32+2 21 1% 21 2& 71 1911 (z! 1)&
11

=——(1+ (2! D+ (2! 12+ (2! 1P +(2! D* +.......

z!' 1
=1 Iill 1+(z! D+ (2! D+ (2! D°+.........

valid for 0<|z! 1 <1

Another example: f(2)=

Z(z!' 1)
1 1 1 1 1 1
2(z'1) z1'1/z 7 Z72 7

expanded about a=0

24



Another example: f(2)= expanded about a=1

| 7
c o, Gyw
11 22 (1! 2)A+2) (2! D2+(z! D)
_ @ Dn+1 12
(211 1+(z!' D/2
oL”,  z!1 (z' 1) %
ﬁ'l' zl—l&ﬁl' )

| | 1)2 0
SV S VAT TR A DI Py
®20:11) 4 8 16 &
11 %
£ :"|1| 1 %1 $ 1 :
112 B 18118 . 2
1 -
7! 1&
1 1 0 2 4 %
=l —— | 1 —— + I
§z11(z|1)&§ 1 (11?2 TR
= | L | 2 2<|z! 1

z!'1 (z!' 1) (2! 17°
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Calculus Of Residues
Singularities: Poles

In the Laurent expansion of f(z) about Z,

f@=H# a,z! z,)

n=1"

If a =0 forn<-m<O0and a,#0, we say that is a pole of order m. For instance,
if m =1, that is, if

a,
£~ 4

is the first non-vanishing term in the Laurent series, then we have a pole of order
one, which is called a simple pole

Residue Theorem

If the Laurent expansion of a function

26



(2= # a(z! z)

n=!"

IS integrated term by term by using a closed contour that encircles one isolated singular
point Z;, once in a counterclockwise sense, we obtain

)n+1 4

1

!f(z)dzzidn!(z—zo)"dz=ian(z_i° =0 fordln= -1
C e —oo n

However, for n = -1,

ire” .
- d# = 2%ia, ,

a,I'(2! ) 'dz=a,

C C

The constant @, , which is the coefficient of (z! z,)'' in the Laurent expansion , is
called the residue of f(z) at 7= Z,.

If we have a set of isolated singularities  , then we can handle them by deforming the
our contour as shown in the figure

27



Cauchy's integral theorem then gives
| 1(2)dz+ 1 f(2)dz+ 1 f(z2)dz+ 1 f(Z2)dz+...=0
C Co C, C,
The circular integral around any singular point is given by
| f(2)dz=-2mia_,.
C;

(negative sign from clockwise integration as shown). Putting this all together we get,

1 T, +...)= 2l 1(sumof endosed resdues)

¢ (2)dz=2!i(a,, +a
C

28



This is the residue theorem . The problem of evaluating one or more contour integrals

IS replaced by the algebraic problem of computing residues at the enclosed singular
points.

The residues are obviously very important.

We need a general way to calculate them. If we know the Laurent series for a function,
then the residue is simply the coefficient of the (z! z,)'* term. But, often, we do not
know the Laurent series.

We can always, however, assume that a Laurent series exists and then write

f(@D=# a,(z! )

n Ill

f(z) .
= @ d
aﬂ 2$| C/‘\ |! Z)n+l Z

The coefficient a_, or the residue for a pole of order n is then given by

dq =

29



Examples:

First-order pole: f(z)= +a,+a(z—2,)+a,(2—20)° +.......

Z_ZO

lim[f(2)(z" 2)] = a,

We have

Second-order pole:
f(Z) — a" 2 + a' 1

(z! 20)2 1 Zo+ao+al(2! Z)ta(z! 7))+ ...

We have

lim — gf(z)(z" Z,)° ¥ a.,

z'zoz

Evaluation of Definite Integrals

Integrals of the form | = #f (sin!,cos! )d!

where f is a finite and single-valued function for all values of ! . Let

| dz
z=re" " dz=ire"dl " dl =#i—=
<

z # Z#l + #1

an! = : , cos! =
2i 2




. -1 -1 d
The integral becomes 7 — —i!. 7 Z—2 I+Z Z
2i 2 )z

with the new path of integration the unit circle . By the residue theorem we get

[ =(! )2"itt (residues within the unit circle)

where we must find the residues of f(z)/z.

2# d’
Example: J = $ ; | <1
o 1+ "cod!
This becomes dZ 2 dz
| =1 : | —
D 1 g D 27
unit %+ (Z+ 7’ )( unit 7% + +1
circle circle "
The denominator has roots
— | - + /1| n2

Now Z, is within the unit circleand Z is outside. The integrand looks like
1

(z! 2, )(z! 7))

and thus the residue at 2= Z s, a = 1 —
1
(z.1'z) 2411 ™

1}
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The integral then becomes

2 .
| = —1—2ml

£ 27T
e 21— J1-¢
| = Hf(x)dx

. lel <1

Integrals of the form

where

(a) f(z) is analytic in the upper half plane except for a finite humber of poles(no poles on
the real axis)
(b) f(z) vanishes as strongly as

1 for |z|! " , O#targ(x)#$

2
<

With these conditions, we can take the contour of integration as the real axis [-R,R] +
a semi-circle in the upper half-plane as shown in the figure:

Y

7 \
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where we eventually let the radius R of the semicircle become infinitely large. Then we

have R & | |
m | f(x)dx+lim | f (Re”)d(Re™

$R 0

=2& ' (resduesin theuppe hdf-plane)

| f(z)dz= i

RII

the integral over the semicircle generally vanishes(see example below ) and we get

| = Hf(X)dx =23 O/residuesin the uppe hdf-plane)

Example:

= 2%$i0/residues in the uppe hdf-plane)

Cdx
/= !#1+ x°

The first question is always...where are the poles?
N P
1+z7 z+1 z! |
with 1
Q= iE
We then get(since only the pole at z = i lies within the contour)

> 2 simple poles at +1

dx 1
I = =2%—=%
!#1+x2 lZi
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Vanishing of integral on upper semi-circle in limit R! °

On the upper semi-circle, z = Re” , so that
. dz . | RE R
lim ~=lim ———dd=ilim=|e’dy=0
Roed 142°  Ro-? 14+ R°€ Roe R

Integrals of the form

oo

| = j f(x)€*dx , a rea and postive

—00

This is just the Fourier transform we defined earlier. We assume two conditions:

(a) f(z) is analytic in the upper-half plane except for a finite number of poles

(b) |I|i|n"1 f(z2=0 , O#ag@#$

We use the same contour as in the previous example(the real axis plus a large
semicircle). The application of the residue theorem is the same as before, except that
it is more difficult to show that the integral goes to zero over the large semicircle.

On the semicircle the integral becomes

I - — #f (Ré’ )eiaRCOS.’ $aRsin!i Rél d,
0
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We let R be so large that £(2)| = ‘f(Rée)‘ <e

Then we get % | 2 .
‘ | R‘ | " R&#aRsn$d$ — 2nR 8@#aRsn$d$
0 0

Now in the range [O,! /2] , 21 " #9n! . Thus, we have

%
" 9 "
]! "R d$=2"R

0

1# e#aR
2aR/ %

Finally,
Lim\IR\#—$% 0 as 94 OR! ")
- a

Using the contour, we then have

H (x)e™ dx + L|$m 1| =2%& (resduesin the uppe hdf-plane)

$ Hf(x)e“dx =2%& (residuesin theuppe hdf-plane) , a>0

This allows us to evaluate many Fourier transform integrals.

Note that if a < 0, then we just close contour in lower half-plane
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Example:

We use the contour shown in the figure below:

L2
MR
4 ’
-F -r I =
and evaluate Q'
| = j—dz
Z

The original integral I is the imaginary part of |, . The only pole is a simple pole at
Zz = 0 which is outside the chosen contour. We therefore have

eiz " eix eiz R eix eiz
®—dz=0= | —dx+ | —dz+ | —dx+ | —dz

" Z R X Lz X (2
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As before, inthe limit R! " a7
J—dz= 0
C2

Z

Then, in the limit r' 0, we have

0= #—dx+ Ilm# dz+ #—dx+0

r$0

@ . d?
S — |
# dx .r|$|5n #?dz

X

" C,
1 % & ( 1 % g2 |
| = —Im —dxx =! —Im llm H—dz*
2 “, # ) 2 ag&f“fz )

There are two ways to do the integral around the small semicircle. First, it is

I n .

| (residue at z=0) (1/2 of full circle in wrong direction)

_l Ill(l)_l I"
.- . i O _ir cos#$ran# 0
or by explicit integration .. g“ . e -
Yy exp J im"—dz=lim" ———jre”d# =ilim"e" ey

| | |

r! 0Cl 7 r! O% re r! O%
0 0
= i"ime" eIty = ind# = $9%

rt 0O
% %
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Thus, 1 #
| = ﬁdx_—mag(u#)_—
X 2 2

0

If we have real exponentials in the integrand, then we must choose a contour

specifically for each separate problem. We illustrate this with an example.
oo ax

I:J © -dx , O<ax<l
*l1+e

The limitson a are necessary to avoid a divergent integral. We choose the
contour

-F + 21 F+ 2 mni

and evaluate

D e 4 I &S e” —d 0 & _dx+ 0 0/
Z= |m X# 0O X+ +
+ € (. /9+e q/() Cl/OI
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The integrals on the two vertical contours C, and C, vanish exponentially

as RI " .Wethen have

az &R

e eax eax )
D dz=1lim, O dx# g?®a o d
<) e

+ e’
= lim &L o 0@—eax .
R! ( i +e¢ *

=29 . (residues inside the contour)
Where are the poles? We have a pole when
=I'1" poleat z=i#
A Laurent expansion in powers of (Z' i") is

I °II
1+ =11 &7 =(z! l")% (Z : )

3

and thus it has a simple pole with residue ! e’ . We thus get

e” .
1111"1 ( (1 # &%) %Tex dxil_ =2%i  (residues inside the contour)

— 2$| (# |$a)

and ! eax 2$|(| |$a) - 2$|(| |$a) - $
!"#1_'_ eX dX (1| 2$Ia) - eIfBa(e! 1$a ! |$a) Sin$a
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In our earlier discussion of ODEs we solved an ODE using Fourier Transforms. We ended
up with an integral

$ € g 1 RER
i e T T )
AR

We then said, using comPIex mtegratlon techm%% . \/—2 3

K
t<0 x(t)=02—#

M 4M°
t> /IK 42 &
k) \/ * o e ﬂf%{/ﬂm i 44|W|22Lt)<(
4M il
Let us now prove this result We are interested in evaluating the integral
d'"
| = /
;$d (! "I )(/ I.)
*
where "= |
)= 2M + Jﬁ aM?
) M 4M?

We note that both values are in the upper 1/2-plane, so if choose a contour consisting of
the real axis and a large semicircle and close the semicircle in the lower 1/2-plane, then
the integral = 0.
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If t <0, then we must close the contour in the lower 1/2 plane in order to get the
semicircle part of the integral to go to zero as the radius gets very large, i.e.,

Z=X+1y
e? =g " t<0 requires y<0 for convagence
That gives us the first part of the result: t<0 x(t)=0

Thus, causality follows from the convergence properties of the integration!
Now for t > 0 we must close the contour in the upper 1/2 plane. We get

| =2!'i#f resdues(uppe 1/2" plang

There are two simple poles and the residues are:

ei! K ei! .1
and

(¢, 1) (1)

Thus we obtain

27 ot K o
== e gn - t as expected!!!
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