
Complex Variables

Existence of a Derivative

For a complex function of a complex variable given by  f(z) = u(z) + i v(z) where 
z = x + i y  and u , v are real functions, the derivative of f(z) is defined by

f '(z) =
df
dz

= lim
δz→0

δ f (z)
δz

= lim
δz→0

f (z+ δz) − f (z)
δz

provided that the limit is independent  of the particular approach to the point z in the 
complex plane. This is always true provided the following Cauchy-Riemann(C-R) 
conditions are satisfied:

! u
! x

=
! v
! y

,
! u
! y

= "
! v
! x

If these conditions are true at some point z  and in the neighborhood of z, then they 
are necessary and sufficient conditions for the existence of the derivative of f(z) or we 
say the function is differentiable in the complex plane.

z = z0
z0

Analytic Functions

If f(z) is differentiable at            and in some small region around        , then we say that 
f(z) is analytic at            .

z = z0
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Example: w(z) = z2 = (x + iy)2 = x2 ! y2 + 2xyi

u(x,y) = x2 ! y2    and   v(x,y) = 2xy

" u
" x

= 2x =
" v
" y

   and  
" u
" y

= ! 2y = !
" v
" y

 

This is true everywhere in the complex plane and thus w(z) is analytic and differentiable 
everywhere and dw

dz
=

! u
! x

+ i
! v
! x

= 2x + 2yi = 2z

Another example :
w(z) =

1
z

=
1
z
z *
z *

=
x ! iy
x2 + y2

u(x, y) =
x

x2 + y2    and    v(x, y) =
! y

x2 + y2

The Cauchy-Riemann conditions are satisfied everywhere but at z = 0. Thus, the 
function 1/z is analytic everywhere but z = 0 and its derivative is

d(1/ z)
dz

= !
1
z2

in the analytic region.
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Define a Contour Integral

The integral of a complex function over a contour(path) in the complex plane is defined 
in close analogy with the standard integral of a real function integrated along the real 
x-axis.

z0 ! z'0 = zn

z1,z2,.......
Divide the contour                     into n intervals by picking n-1  intermediate points  
                on the contour (see figure)

q

q
z

z

z

z

z
0

1

2

n

0

y

x

' =

1

2

¥

¥
¥

¥
¥

¥

Now consider the sum
Sn = f (qj )(z j ! z j ! 1)

j=1

n

"

qj zj   and zj ! 1 n→∞where       is a point on the curve between                  . Now let                  with

zj ! zj ! 1   " 0

lim
n! "

Sn

z j    and   qj
for all j. If the           exists and is independent of the details of choosing the points 
                , then
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lim
n! "

f (qj )(zj # zj #1)
j =1

n

$ = f (z)dz
z0

z'0

%

z = z0    to   z = z'0
The RHS is called the contour integral  of f(z) (along the specified contour C from 
                          .

Cauchy Integral Theorem

Now let w(z) be a complex function which is analytic in some region of the complex 
plane and consider this integral

 

dz
C
! w(z)

along a closed contour C which lies entirely within  the analytic region as shown below:

imag

real

C

z-plane

Since  w(z) is analytic and obeys the C-R conditions, we have
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dz
C
!! w(z) = d(x + iy)(

C
!! u(z) + iv(z))

             = (udx " vdy)
C
!! + i (vx + udy)

C
!!

             = "
#v
#x

+
#u
#y

$

%&
'

()R
!! dxdy " i "

#u
#x

+
#v
#y

$

%&
'

()R
!! dxdy = 0

by Green's theorem(page 390 in text). 

So we have the Cauchy Integral Theorem:

f (z) f '(z)If          is an analytic function whose derivative         exists and is continuous at each 
point within and on the closed contour C, then

 
f (z)dz= 0

C
!!

All integrations traverse the contour counterclockwise unless otherwise stated.

Contour Deformation

An important consequence of the Cauchy integral theorem is that any contour of such complex integrals can be arbitrarily deformed within the analytic region without changing the value of the integral.

We can see this as follows: the integral
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I = dzw(z)
C0

!
C0is along the contour         from a to b

imag

real

C

z-plane

a

b

0

We now add an integral with the same integrand but a different contour C

 
I = dzw(z)

C0

! + dzw(z)
C
!!

imag

real

C

z-plane

a

b

0

C

6



The value is still I since w(z) is analytic and thus

 
dzw(z)

C
!! = 0

Notice, however, that two parts of the paths overlap . The integral is the same over 
both of these paths but we are traversing them in opposite directions so they cancel 
out. Therefore

I = dzw(z)
C0
! = dzw(z)

C '0
!

C'0where          is a shown below:

imag

real

C

z-plane

a

b

0
'

This means we can freely deform  the contour in analytic regions.

An important example is the contour integral
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zn
C
∫ dz

where  C  is a circle of radius r > 0 around the origin  z = 0 in the positive mathematical 
sense (counterclockwise).

r

z

!

In polar coordinates we can parameterize z by

z = rei! " dz = irei! d!    (on the circle where r = constant)

For n ≠ -1, we get
1
2! i

zn

C
" dz=

1
2!

r n+1 ei (n+1)#

0

2!

" d# =
1

2! i(n +1)
r n+1 ei (n+1)#$% &' 0

2!
= 0

while for n = -1 we have 1
2! i

dz
zC

" =
1

2!
d#

0

2!

" == 1

Both results are independent of r.  This is an example of the Cauchy integral theorem. 
The Cauchy integral theorem is the first of two basic theorems in the study of complex 
variables. Let us elaborate on our earlier definition.
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Statement of the Theorem  

If a function f(z) is analytic (therefore single-valued) and its partial derivatives are 
continuous throughout some region R as shown in the figure, then for every closed 
path C in R

the contour integral of f(z) around C is zero

 
f (z)dz= 0

C
!!

The Cauchy Integral Formula

Consider a function f(z) that is analytic on and within a closed contour C. Let us evaluate
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f (z)
z! z0

dz
C
!"

z0where        is some point in the interior region bounded by C. Although f(z) is analytic, 
the integrand

f (z)
z! z0

z0 f (z0 ) = 0is not analytic at        unless                  . If the contour is deformed as shown in the 
figure, then

Cauchy's integral theorem then applies and we have
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f (z)
z! z0

dz
C
" !

f (z)
z! z0

dz
C2

" = 0

C2 z0where  C  is the original outer contour and          is the circle surrounding the point  
(traversed in a counterclockwise direction). What happens to the straight paths?

If we let z = z0 + rei!

C2on           , where eventually r will go to zero, then we have

 

f (z)
z ! z0

dz
C
" =

f (z)
z ! z0

dz
C2

" =
f (z0 + rei# )

rei#
irei#d#

C2

"
r ! 0Taking the limit              , we get

 

f (z)
z− z0

dz
C
!∫ = if (z0) dθ = 2π

C2

!∫ if (z0)

z = z0z0

which is the Cauchy integral formula .

Here is a remarkable result . The value of an analytic function f(z) is given(by the 
formula) at an interior point            once the values on the boundary  C are specified.
If        is a point exterior to the region bounded by  C , then the integral equals zero.
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f (z)

Summarizing the theorem:

Let         be be an analytic function within a closed contour C  and continuous within and 
on C . If    a    is any point within C, then

 
f (a) =

1
2! i

f (z)
z" a

dz
C
!#

If  a  is any point outside  C, then

 
0 =

1
2π i

f (z)
z− a

dz
C
!∫

Derivatives of a Complex Function

We can write

 
f (z) =

1
2! i

f (q)
q " z

dq
C
!#

where z is any point interior to C  and f(z) is analytic within and on C.

We then have
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f '(z) = lim
h→0

f (z+ h) − f (z)
h

=
1

2π i
lim
h→0

f (q)
q− z− h

dq
C
!∫ − f (q)

q− z
dq

C
!∫

h

       =
1

2π i
lim
h→0

f (q)
1

q− z− h
− 1

q− z
⎛
⎝⎜

⎞
⎠⎟

dq
C
!∫

h
=

1
2π i

lim
h→0

f (q)
h

(q− z− h)(q− z)
⎛
⎝⎜

⎞
⎠⎟

dq
C
!∫

h

       =
1

2π i
lim
h→0

f (q)
1

(q− z− h)(q− z)

⎛
⎝⎜

⎞
⎠⎟

dq
C
!∫ =

1
2π i

f (q)
(q− z)2 dq

C
!∫

In a similar manner we have

 
f (n) (z) =

n!
2! i

f (q)
(q " z)n+1 dq

C
!#

Taylor Series

We have
 

f (z) =
1

2πi
f (q)
q − z

dq
C
∫

where C is a circle centered at   a   and  z  lies inside C. This means that

z! a < q ! a

for all points q on the contour C and all points z interior to C.
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Now let
k =

z! a
q ! a

Then 1− k =
q− z
q− a

1
1− k

=
q− a
q− z

= kn

k=0

∞

∑       k < 1

This implies that
1

q ! z
=

1
q ! a

z! a
q ! a

"

#$
%

&'

n

=
k=0

(

) 1
q ! a

+
z! a

(q ! a)2 +.........+
(z! a)n

(q ! a)n+1 +.......     

Since, on the circle C
k =

z! a
q ! a

<1

this series converges uniformly on C. This means that we can multiply by

f (q)
2π i

and integrate term by term around C. We get
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dq
C
!!

f (q)
q " z

= dq
C
!!

f (q)
q " a

+ dq
C
!! f (q)

z" a
(q " a)2 +.........+ dq

C
!! f (q)

(z" a)n

(q " a)n+1 +.......

f (z) = dq
C
!!

f (q)
q " a

+(z" a) dq
C
!! f (q)

1
(q " a)2 +.........+(z" a)n dq

C
!! f (q)

1
(q " a)n+1 +.......  

f (z) = f (a) + f  '(a)(z" a) + .......+
f (n)(a)

n!
(z" a)n + ...... 

which is the Taylor series .

Laurent Series

f (z)
C1 C2

If           is single-valued and analytic throughout the closed annulus bounded by the 
outer circle          and the inner concentric circle           centered at z = a and of radii 
r1 and r2 < r1 respectively, then, for an point z be a point inside the annulus, there exists 
a unique series expansion in terms of positive and negative powers of (z-a),

f (z) = an
n=0

!

" (z # a)n +
bn

(z # a)nn=1

!

"
where

 

an =
1

2! i
f (q)

(q " a)n+1 dq
C1

# , bn =
1

2! i
dq

C2

# f (q)(q " a)n" 1
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C1

Cc

C2As stated above, we let there be two circular contours       and       with the radius of           
larger than that of          . Let z0 be at the center of         and        and z be any point 
between          and          .  Now create a cut line         between          and           , and 
integrate around the path C = C1+Cc-C2-Cc. Signs come from going in negative direction 
along contour. Clearly the integration along the cut cancel. From the Cauchy integral 
formula we then have

C1

C1 C1

C1 C2C2
C2C2

 

f (z) =
1

2! i
f (q)
q " z

dq
C
!#

       =
1

2! i
f (q)
q " z

dq
C1

!# +
1

2! i
f (q)
q " z

dq
Cc

!# "
1

2! i
f (q)
q " z

dq
C2

!# "
1

2! i
f (q)
q " z

dq
Cc

!#

       =
1

2! i
f (q)
q " z

dq
C1

!# "
1

2! i
f (q)
q " z

dq
C2

!#

(q on contours)
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since contribution from the cut line in opposite directions cancel out. We then have

 

f (z) =
1

2! i
f (q)

(q " z0) " (z" z0)
dq

C1

!# "
1

2! i
f (q)

(q " z0) " (z" z0)
dq

C2

!#

      =
1

2! i
f (q)

(q " z0) 1"
z" z0

q " z0

$

%&
'

()

dq
C1

!# "
1

2! i
f (q)

(z" z0)
q " z0

z" z0

" 1
$

%&
'

()

dq
C2

!#

      =
1

2! i
f (q)

(q " z0) 1"
z" z0

q " z0

$

%&
'

()

dq
C1

!# +
1

2! i
f (q)

(z" z0) 1"
q " z0

z" z0

$

%&
'

()

dq
C2

!#

q ! z0 > z! z0 z − z0 > q − z0

t <1
For the 1st integral,                           . For the 2nd integral                           . We now 
use the Taylor expansion (valid for           ) 1

1! t
= tn

n=0

"

#
to get

 

f (z) =
1

2πi
f (q)

(q − z0)
z − z0

q − z0

⎛
⎝⎜

⎞
⎠⎟

n

n=0

∞

∑ dq +
f (q)

(z − z0)
q − z0

z − z0

⎛
⎝⎜

⎞
⎠⎟n=0

∞

∑
n

dq
C2

∫
C1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      =
1

2πi
z − z0( )n

n=0

∞

∑ f (q)
(q − z0)n+1 dq + z − z0( )−n−1

n=0

∞

∑ q − z0( )n f (q)dq
C2

∫
C1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      =
1

2πi
z − z0( )n

n=0

∞

∑ f (q)
(q − z0)n+1 dq + z − z0( )−n

n=1

∞

∑ q − z0( )n−1 f (q)dq
C2

∫
C1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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where the 2nd term has been re-indexed. Re-indexing again,

 
f (z) =

1
2! i

z" z0( )n

n=0

#

$ f (q)
(q " z0 )

n+1 dq+
1
2! i

z" z0( )n

n=" #

" 1

$ f (q)
q " z0( )n+1 dq

C2

!%
C1

!%

Since the integrands, including the function f(z), are analytic in the annular region 
defined by C1 and C2, the integrals are independent of the path of integration in that 
region. If we replace the paths of integration C1 and C2 by a circle C with radius r 
with r2 ≤ r ≤ r1, then

 

f (z) =
1

2! i
z" z0( )n

n=0

#

$ f (q)
(q " z0)n+1 dq+

1
2! i

z" z0( )n

n=" #

" 1

$ f (q)

q " z0( )n+1 dq
C2

!%
C1

!%

      = cn z" z0( )n

n=0

#

$ + bn z" z0( )n

n=" #

" 1

$ =
1

2! i
z" z0( )n

n=0

#

$ f (q)

q " z0( )n+1 dq
&
!%

      = an z" z0( )n

n=0

#

$

!

Generally, the path of integration can be any path  that lies in the annular region and 
encircles z0 once in the positive (counterclockwise) direction.

The coefficients are are therefore defined by

 

an =
1
2π i

f (q)
q− z0( )n+1 dq

γ
∫
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Note that the annular region itself can be expanded by increasing r1 and decreasing r2 
until singularities of f(z) that lie just outside C1 or just inside C2 are reached. If f(z) has 
no singularities inside C2, then all the terms bk above equal zero and the Laurent series 
reduces to a Taylor series with coefficients ak.

Example:  Let
f (q) =

1
q(q ! 1)

z0 = 0Choose             . We then have r = 0 and R = 1 as the radii of the two concentric 
circles defining the region of analyticity of f(q). We then obtain

 

an =
1

2! i
f (q)

(q " z0 )n+1 dq
C
!# =

1
2! i

dq
(q)n+2 (q " 1)C

!# = "
1

2! i
qm

m=0

$

% dq
(q)n+2

C
!#

   = "
1

2! i
dq

(q)n+2" m
C
!#

m=0

$

%

Now we use the polar form of  q  to integrate around the circle

 
an = !

1
2" i

dq
(q)n+2! m

C
!#

m=0

$

% = !
1

2" i
irei&d&

(r )n+2! mei (n+2! m)&
C
!#

m=0

$

% = !
1

2" i
' n! m+2,1

m=0

$

%

This gives
an =

! 1          n" ! 1 

0         n< ! 1
#
$
%
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The Laurent expansion then becomes

1
z(z! 1)

= !
1
z

! 1 ! z ! z2 ! z3 ! ......= ! zn

n=! 1

"

#

We have smashed a peanut with a sledgehammer, but the method is clear and works very 
well when a real sledgehammer is necessary.

Let us look at all this another way.

C1 C2
z0 f (z)

f (z)

Laurent's Theorem

Let          and             be two concentric circles with centers at         . Let             be 
analytic in the region R between  the circles. Then           can be expanded in a series of 
the form

f (z) = a0 + a1(z! z0) + a2(z! z0)2 + ......+
b1

z! z0

+
b2

(z! z0)2 + .....

z0 bi = 0A Taylor series has only one circle about       (the outer one), which implies that        
so that

f (z) = a0 + a1(z! z0) + a2(z! z0)2 + ......
where

 

an =
1

2! i
f (z)

(z" z0)n+1
C
# dz , bn =

1
2! i

f (z)
(z" z0)" n+1

C
# dz

z0and C = any closed curve surrounding        in R.
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Example : We consider

W(z) =
1

1+ z2 =
1

(z+ i )(z! i )
=

i
2

1
(z+ i )

!
1

(z! i )
"

#
$

%

&
'

For a Taylor series about z = 0:

We have 1
z! a

= !
1

(a ! z0)n+1
n=0

"

# (z! z0)n , z0 = expansion point

Therefore,
1

z+ i
= !

(! 1)n+1

(i + z0)n+1
n=0

"

# (z! z0)n

1
z! i

= !
1

(i ! z0)n+1
n=0

"

# (z! z0)n

so that

W (z) = −
i
2

(−1)n+1

(i + z0 )
n+1 −

1
(i − z0 )

n+1

⎡

⎣
⎢

⎤

⎦
⎥

n=0

∞

∑ (z − z0 )
n

z <1

z0 = 0

inside the circle          .

For           we have
W(z) =

1
2

1
i n (−1)n +1⎡⎣ ⎤⎦

n=0

∞

∑ zn

Now
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1
2

(! 1)n +1"# $%=
1       n = even

0      n = odd  
&
'
(

so that W (z) = 1! z2 + z4 ! z6 + ......
as expected.

Another example: What is the Laurent series expansion of

f (z) =
1

z2 ! 3z+ 2
=

1
(z! 2)(z! 1)

=
1

(z! 2)
!

1
(z! 1)

valid in each of the regions

(1) 1< z < 2 (2) 2 < z (3) z < 2

(1) To obtain a Laurent series expansion in this region, we expand about the origin. 
We write

f (z) = !
1
2

1
1! z / 2

"
#$

%
&'

!
1
z

1
1! 1/ z

"
#$

%
&'

z < 2
1< z

The first fraction has a singularity at z/2 = 1 and can be expanded in a Taylor series that 
converges if             . The second fraction has a singularity at 1/z = 1 and can be 
expanded in a Laurent series that converges if          . The two fractions are expressed in 
the appropriate series are
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−
1
2

1
1− z / 2

⎛
⎝⎜

⎞
⎠⎟
= −

1
2

1+
z
2
+

z
2

⎛
⎝⎜

⎞
⎠⎟

2

+
z
2

⎛
⎝⎜

⎞
⎠⎟

3

+ ....
⎛

⎝⎜
⎞

⎠⎟
= −

1
2
−
z
4
−
z2

8
−
z3

16
− ...

!
1
z

1
1 ! 1 / z

"
#$

%
&'

= !
1
z
1+
1
z

+
1
z

"
#$

%
&'

2

+
1
z

"
#$

%
&'

3

+ ....
"

#
$

%

&
' = !

1
z

!
1
z2

!
1
z3

!
1
z4

! ....

z < 2 1< zwhere the first series is valid for              and the second series is valid for         . Adding 
the two series we get the Laurent series as

f (z) =
1

z2 ! 3z+ 2
= ....!

1
z3 !

1
z2 !

1
z

!
1
2

!
z
4

!
z2

8
!

z3

16
! ...

1< z < 2valid for          .

(2) In this region we expand
1
z ! 1

=
1
z

1
1 ! 1 / z

"
#$

%
&'

as above
1
z

1
1−1/ z

⎛
⎝⎜

⎞
⎠⎟
= +

1
z
+

1
z2 +

1
z3 +

1
z4 + ....

1 < zwhich is valid for          . However, we now write

1
z! 2

=
1
z

1
1! 2 / z

"
#$

%
&'

=
1
z

+
2
z2 +

4
z3 +

8
z4 + ....
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2 < zwhich is valid for               . Thus we have the Laurent series

f (z) =
1

z2 ! 3z + 2
=

1
z2 +

3
z3 +

7
z4 +

15
z5 + ....

2 < zvalid for          .

(3) In this region, we expand about the point z = 1 to get

f (z) =
1

z2 ! 3z+ 2
=

1
z! 1

!
1

2 ! z
"
#$

%
&'

=
1

z! 1
! 1

1! (z! 1)
"
#$

%
&'

       =
! 1

z! 1
1+ (z! 1) + (z! 1)2 + (z! 1)3 + (z! 1)4 + ........( )

       = !
1

z! 1
! 1+ (z! 1) + (z! 1)2 + (z! 1)3 + .........

0 < z ! 1 <1valid for                    .

Another example: f (z) =
1

z(z! 1)
  expanded about  a = 0

1
z(z! 1)

=
1
z

1
1! 1/ z

=
1
z2 +

1
z3 +

1
z4 + ........... z >1
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Another example: f (z) =
z

1 ! z2   expanded about  a = 1

z
1! z2 =

z
(1! z)(1+ z)

= !
(z ! 1) +1

(z ! 1)(2 + (z ! 1))

        = !
(z ! 1) +1

(z ! 1)
1/ 2

1+ (z ! 1) / 2

        = ! 1!
1
z ! 1

"
#$

%
&'

1
2

1!
z ! 1

2
+

(z ! 1)2

4
! ....

"

#$
%

&'

        = !
1

2(z ! 1)
!

1
4

+
z ! 1

8
!

(z ! 1)2

16
+ ....

"

#$
%

&'
0 < z ! 1 < 2

z
1! z2 = ! 1!

1
z ! 1

"
#$

%
&'

1
z ! 1

1

1+
2
z ! 1

"

#

$
$
$

%

&

'
'
'

        = !
1
z ! 1

!
1

(z ! 1)2

"
#$

%
&'

1!
2
z ! 1

+
4

(z ! 1)2 ! ....
"
#$

%
&'

        = !
1
z ! 1

+
1

(z ! 1)2 !
2

(z ! 1)3 + ....... 2 < z ! 1
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z0

Calculus Of Residues

Singularities: Poles

In the Laurent expansion of f(z) about 

f (z) = an (z ! z0 )
n

n=! "

"

#

an = 0 am ≠ 0If               for n < -m < 0 and            , we say that is a pole of order m. For instance, 
if m = 1, that is, if

a−1

z− z0

is the first non-vanishing term in the Laurent series, then we have a pole of order 
one, which is called a simple pole .

Residue Theorem

If the Laurent expansion of a function
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f (z) = an(z! z0)n

n=! "

"

#

z0
is integrated term by term by using a closed contour that encircles one isolated singular 
point          once in a counterclockwise sense, we obtain

 

f (z)dz
C
!∫ = an (z − z0)n dz

C
!∫

n=−∞

∞

∑ = an
(z − z0)n+1

n +1n=−∞

∞

∑
z1

z1

= 0    for all n ≠  −1

However, for n = -1,

 
an (z! z0)! 1dz

C
!" = a! 1

irei#

rei# d# = 2$i
C
!" a! 1

a−1 (z ! z0)! 1

z = z0

The constant           , which is the coefficient of                 in the Laurent expansion , is 
called the residue  of f(z) at           .

If we have a set of isolated singularities , then we can handle them by deforming the 
our contour as shown in the figure
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Cauchy's integral theorem then gives

 
f (z)dz+ f (z)dz+ f (z)dz+ f (z)dz+ ....= 0

C2

!!
C1

!!
C0

!!
C
!!

The circular integral around any singular point is given by

 
f (z)dz = −2πia−1zi

Ci
!∫

(negative sign from clockwise integration as shown). Putting this all together we get,

 

f (z)dz= 2! i(a" 1z0

C
# + a" 1z1

+ a" 1z2
+ ...)= 2! i(sum of enclosed residues)
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(z ! z0)! 1

This is the residue theorem . The problem of evaluating one or more contour integrals 
is replaced  by the algebraic problem of computing residues at the enclosed singular 
points.

The residues are obviously very important. 

We need a general way to calculate them. If we know the Laurent series for a function, 
then the residue is simply the coefficient of the               term. But, often, we do not 
know the Laurent series.

We can always, however, assume that a Laurent series exists and then write

 

f (z) = an(z! z0)n

n=! "

"

#

an =
1

2$i
f (z')

(z'! z)n+1 dz'
C
%

a−1The coefficient            or the residue for a pole of order n is then given by

a! 1 =
1

(n ! 1)!
lim
z" z0

dn! 1

dzn! 1 ( f (z)(z! z0)n)
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Examples:

First-order pole: f (z) =
a−1

z − z0

+ a0 + a1(z − z0) + a2(z − z0)2 + .......

We have
lim
z! z0

f (z)(z " z0)[ ] = a" 1

Second-order pole:

f (z) =
a! 2

(z! z0 )
2 +

a! 1

z! z0
+ a0 + a1(z! z0 )+ a2 (z! z0 )

2 + .......

We have
lim
z! z0

d
dz

f (z)(z" z0)2#$ %&= a" 1

Evaluation of Definite Integrals

Integrals of the form I = f (sin! ,cos! )d!
0

2"

#

!where f is a finite and single-valued function for all values of       . Let

z = rei! " dz = irei! d! " d! = #i
dz
z

sin! =
z # z#1

2i
, cos! =

z + z#1

2
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The integral becomes

 
I = −i f

z − z−1

2i
,
z + z−1

2

⎛
⎝⎜

⎞
⎠⎟
dz
z!∫

with the new path of integration the unit circle . By the residue theorem we get

I = (! i)2" i (residues within the unit circle)#
where we must find the residues of f(z)/z.

Example: I =
d!

1+ " cos!
, "

0

2#

$ <1

This becomes

 

I = ! i
dz

z 1+
"
2

(z+ z! 1)#
$%

&
'(

unit
circle

!) = i
2
"

dz

z2 +
2z
"

+1unit
circle

!)

The denominator has roots
z± = !

1
"

± 1! " 2

z+ z!Now        is within the unit circle and          is outside. The integrand looks like

1
(z! z+ )(z! z! )

z = z+and thus the residue at             is, a! 1 =
1

(z+ ! z! )
=

"

2 1 ! " 2
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The integral then becomes

I = −i
2
ε

2π i
ε

2 1− ε 2
=

2π
1− ε 2

, ε <1

Integrals of the form

I = f (x)dx
! "

"

#
where

(a) f(z) is analytic in the upper half plane except for a finite number of poles(no poles on 
     the real axis)
(b) f(z) vanishes as strongly as

1
z2    for   z ! " , 0 # arg(z) # $

With these conditions, we can take the contour of integration as the real axis [-R,R] + 
a semi-circle in the upper half-plane as shown in the figure:
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where we eventually let the radius R of the semicircle become infinitely large. Then we 
have

 

f (z)dz!! = lim
R" #

f (x)dx+
$R

R

! lim
R" #

f (Rei%)d(Rei%)
0

&

!
             = 2&i (residues in the upper half-plane)'

the integral over the semicircle generally vanishes(see example below ) and we get

I = f (x)dx
! "

"

# = 2$i (residues in the upper half-plane)%
Example:

I =
dx

1+ x2
! "

"

# = 2$i (residues in the upper half-plane)%

The first question is always...where are the poles?

1
1+ z2 =

1
z+ i

!
1

z! i
"  2 simple poles at ± i

with
a! 1 = ±

1
2i

We then get(since only the pole at z = i lies within the contour)

I =
dx

1+ x2
! "

"

# = 2$i
1
2i

= $
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R! "Vanishing of integral on upper semi-circle in limit                .

z = Rei!On the upper semi-circle,              , so that

lim
R→∞

dz
1+ z2

0

π

∫ = lim
R→∞

i Reiθ

1+ R2e2iθ dϑ
0

π

∫ = i lim
R→∞

1
R

e− iθdϑ
0

π

∫ = 0

Integrals of the form

I = f (x)eiaxdx
−∞

∞

∫ , a    real and positive

This is just the Fourier transform we defined earlier. We assume two conditions:

 (a) f(z) is analytic in the upper-half plane except for a finite number of poles

 (b) lim
z! "

f (z) = 0 , 0 # arg(z) # $

We use the same contour as in the previous example(the real axis plus a large 
semicircle). The application of the residue theorem is the same as before, except that 
it is more difficult to show that the integral goes to zero over the large semicircle.

On the semicircle the integral becomes

I R = f (Rei! )
0

"

# eiaRcos! $aRsin! i Rei! d!
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We let R be so large that f (z) = f (Reiθ ) < ε
Then we get

I R ! " R e#aRsin$

0

%

& d$ = 2" R e#aRsin$

0

%/2

& d$

0, ! / 2[ ] 2! / " # sin!Now in the range                ,                               . Thus, we have

I R ! " R e#2aR$ /%

0

%

& d$ = 2" R
1# e#aR

2aR/ %
Finally,

lim
R! "

IR #
$
a

%! 0 as %! 0(R ! " )

Using the contour, we then have

f (x)eiaxdx
! "

"

# + lim
R$ "

IR = 2%i (residues in the upper half-plane)&

$ f (x)eiaxdx
! "

"

# = 2%i (residues in the upper half-plane) , a>0&
This allows us to evaluate many Fourier transform integrals.

Note that if a < 0, then we just close contour in lower half-plane .
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Example:
I =

sinx
x0

!

" dx

We use the contour shown in the figure below:

and evaluate

 
I z =

eiz

z!∫ dz

I zThe original integral I is the imaginary part  of        . The only pole is a simple pole at 
z = 0 which is outside the chosen contour. We therefore have

 

eiz

z! dz= 0 =
eix

x" R

" r

! dx+
eiz

z
dz

C1

! +
eix

xr

R

! dx+
eiz

z
dz

C2

!

36



r ! 0Then, in the limit              , we have

As before, R ! "in the limit eiz

z
dz

C2

∫ = 0

0 =
eix

x! "

0

# dx+ lim
r $ 0

eiz

z
dz

C1

# +
eix

x0

"

# dx+ 0

eix

x! "

"

# dx = ! lim
r $ 0

eiz

z
dz

C1

#

I =
1
2

Imag
eix

x! "

"

# dx
%

&'
(

)*
= !

1
2

Imag lim
r $ 0

eiz

z
dz

C1

#
%

&
'

(

)
*

There are two ways to do the integral around the small semicircle. First, it is

! " i(residue at z=0)  (1/2 of full circle in wrong direction)
      = ! " i(1) = ! " i

or by explicit integration
lim
r ! 0

eiz

z
dz=

C1

" lim
r ! 0

eir cos#$r sin#

rei# irei#

%

0

" d# = i lim
r ! 0

eir cos#$r sin#

%

0

" d#

                   = i lim
r ! 0

eir cos#$r sin#

%

0

" d# = i d#
%

0

" = $%i

37



Thus,
I =

sinx
x0

!

" dx =
1
2

Imag(i# ) =
#
2

If we have real exponentials in the integrand, then we must choose a contour 
specifically for each separate problem. We illustrate this with an example.

I =
eax

1+ ex dx , 0 < a <1
−∞

∞

∫
The limits on    a     are necessary to avoid a divergent integral. We choose the 
contour

and evaluate

 

eaz

1+ ez dz= lim
R! "

eax

1+ ex dx#
eax+2$ia

1+ ex+2$i dx+
C1

%+
C1

%
#R

R

%
#R

R

%
&

'
(

)

*
+!%
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C1   and    C2

R! "
The integrals on the two vertical contours                                  vanish exponentially 
as                . We then have

 

eaz

1+ ez dz= lim
R! "

eax

1+ ex dx# e2$ia eax

1+ ex dx
#R

R

%
#R

R

%
&

'(
)

*+!%

               = lim
R! "

(1# e2$ia) eax

1+ ex dx
#R

R

%
&

'(
)

*+

               = 2$i (residues inside the contour),
Where are the poles?  We have a pole when

ez = ! 1 " pole at  z = i#
(z! i" )A Laurent expansion in powers of                   is

1+ ez =1 ! ez ! i" = (z ! i" ) 1+
z ! i"
2!

+
(z ! i" )2

3!
+ ...

#

$%
&

'(

! ei" aand thus it has a simple pole with residue           . We thus get

lim
R! "

(1# e2$ia) eax

1+ ex dx
#R

R

%
&

'(
)

*+
= 2$i (residues inside the contour),

                                         = 2$i(#ei$a)
and eax

1+ ex dx
! "

"

# =
2$i(! ei$a)
(1! e2$ia )

=
2$i(! ei$a)

ei$a(e! i$a ! ei$a)
=

$
sin$a
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I = 2! i
ei" +t

(" + # " # )
+

ei" #t

(" # # " + )
$

%&
'

()
= 2! i

1
" + # " #

ei" +t # ei" #t( )

  = 2! i
1

2 K
M

#
* 2

4M 2

e
#

*
2M

t
e

i
K
M

#
* 2

4 M 2 t

# e
#i

K
M

#
* 2

4 M 2 t$

%
&
&

'

(
)
)

 = #
2!

K
M

#
* 2

4M 2

e
#

*
2M

t
sin K

M
#

* 2

4M 2 t
$

%
&

'

(
)

" ± =
i*

2M
±

K
M

#
* 2

4M 2

We then said, using complex integration techniques we get

t < 0    x(t) = 0

t >0
x(t) =

I 0

KM !
" 2

4

e
!

" t
2M sin

K
M

!
" 2

4M 2 t
#

$
%

&

'
(

In our earlier discussion of ODEs we solved an ODE using Fourier Transforms. We ended
up with an integral

Let us now prove this result. We are interested in evaluating the integral

I = d!
ei! t

(! " ! + )(! " ! " )" #

#

$

! ± =
i"

2M
±

K
M

#
" 2

4M 2

where

We note that both values are in the upper 1/2-plane, so if choose a contour consisting of 
the real axis and a large semicircle and close the semicircle in the lower 1/2-plane, then
the integral = 0.

40



If  t < 0, then we must close the contour in the lower 1/2 plane in order to get the 
semicircle part of the integral to go to zero as the radius gets very large, i.e., 

z = x + iy

eizt = eixte! yt " t < 0  requires   y < 0  for convergence

That gives us the first part of the result:      t < 0    x(t) = 0.
 
Thus, causality  follows from the convergence properties of the integration!
Now for t > 0 we must close the contour in the upper 1/2 plane. We get

I = 2! i residues(upper 1/ 2 " plane)#
There are two simple poles and the residues are:

ei! +t

(! + " ! " )
and

ei! " t

(! " " ! + )
Thus we obtain

I = 2π i
eiω+ t

(ω+ −ω− )
+

eiω− t

(ω− −ω+ )

⎛
⎝⎜

⎞
⎠⎟
= 2π i

1
ω+ −ω−

eiω+ t − eiω− t( )

  = 2π i
1

2
K
M

− α 2

4M 2

e
−

α
2M

t
e

i
K
M

−
α2

4M 2
t

− e
− i

K
M

−
α2

4M 2
t⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 = −
2π

K
M

− α 2

4M 2

e
−

α
2M

t
sin

K
M

−
α 2

4M 2 t
⎛

⎝
⎜

⎞

⎠
⎟ as expected!!!
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