
TEN THEOREMS ABOUT QUANTUM MECHANICAL MEASUREMENTS 

+ some opinions at the endÉ.
1. Formulation of the problem 
Many a theory in physics makes use of mathematical entities that do not correspond to an intuitively 
understandable physical object. 

Of course intuition can be educated; 

         as a consequence some of these entities, for instance energy, 

         became so familiar as to be regarded as concrete objects. 

Others, such as the coordinates x!  in general relativity, remain abstract 

        without anybody worrying about it. 

A third class, however, of which entropy is an example, 

        remains a source of bewilderment and controversy. 

The most notorious member of this class is the wave function ". 

It is an indispensable tool for quantum mechanical calculations, 

        but its connection with actually observed phenomena is remote. 

This connection is the subject of the continuing debate about the foundations of quantum mechanics 

       and the theory of measurement. 

A huge literature has been provoked by the question: 

       How exactly does the wave function " relate to the phenomena that I can observe and measure? 



Meanwhile quantum mechanics is in daily use and is extremely successful 

         in understanding, predicting, and computing these same phenomena. 

One knows how to handle " so as to get concrete, observable conclusions about the physical world. 

Apparently the problem is solved in practice; the difÞculties enter only when one starts philosophizing. 

This philosophizing has given rise to a number of ÒinterpretationsÓ, 

        in which " is endowed with more physical signiÞcance 

        than is needed for the actual calculation of the phenomena. 

There are a number of schools with different views, 

        including such mind- boggling fantasies as the many-world interpretation, 

        which go far beyond the world of physical phenomena.
My question is: 

        How is it possible that, in spite of these differences of opinion, 

        quantum mechanics is used in practice to obtain uncontroversial results? 

The purpose of these notes is not to defend some interpretation, 

        but to analyze what happens when quantum mechanics is used 

        to obtain results that can be compared with experiments. 

This is a matter of physics; 

        what I say is true or false 

        - not the expression of a philosophical view about the deeper meanings of reality. 



It is not surprising that some of my conclusions are the same as those of Bohr 

        inasmuch as his aim too was to understand how the quantum mechanical formalism works. 

Yet in some crucial points this description of the theory of measurement 

       differs from what is usually regarded as the Copenhagen interpretation. 

A great help in elucidating the measuring process is the explicit model constructed later. 

I repeat that I shall avoid all philosophical extrapolations of the physical facts. 

Interpretationes non Þngo - I frame no interpretations.

2. Preliminary remarks about quantum mechanics 

Theorem I: Quantum mechanics works. 

It describes and computes those phenomena for which it was invented, 

      such as black body radiation and spectra; and numerous others, 

      such as speciÞc heat and superconductivity. 

All these phenomena are macroscopic, objective, and permanently recorded, 

     for instance on a photographic plate or as a table in the Physical Review. 

Hence 

Theorem II: Quantum mechanics is concerned with macroscopic phenomena, which are not 
perturbed by observation. 



The familiar stories about the inßuence of the observer on the system 

         do not apply to real observations in a laboratory. 

They apply to a world of lilliputians, where an observer, 

        for example, is able to aim at a single photon at a preassigned electron. 

Such stories may be helpful in exposing the difference with the classical picture of particles and waves, 

        but they are irrelevant for the observations as done in practice. 

Our purpose is merely to know how to deal with actually observed phenomena. 

One example of such phenomena is the diffraction of a beam of electrons passing through a crystal. 

In order to compute the observed diffraction pattern one makes use of a quantity ", 

       called the Òwave function of a single electronÓ. 

The value of !" !2, multiplied by the number N of electrons in the beam, 

       is the observed blackening of the photographic plate. 

The value of !" !2 for a single electron does occur in the calculation, 

       but is not observed itself. 

One may call it the probability density of the electron, 

       but that is merely a name for the observed blackening divided by N. 



Theorem III: The quantum mechanical probability is not observed but merely serves as an 
intermediate stage in the computation of an observable phenomenon

The old question: Does " refer to a single system or to an ensemble? 

         - must therefore be answered as follows. 

" is a mathematical object pertaining to a single system; 

         its square !" !2 may be called a single system probability. 

However, in order to confront this quantity with reality 

         one must do observations on a large number of similar systems, 

         in such a way that the probability density materializes as an actual density. 

Not only the probability !" !2, but also the wave function " itself 

           occurs merely as a mathematical tool in the calculation of spectra, collision cross-sections, etc. 

It does not occur in the result that can be handed to the experimenter for comparison with the real world. 

This situation is similar with the way in which the relativistic coordinates x!  are used, 

           and also the vector potential in Maxwell theory. 

For some reason, however, it is the wave function 

           that has been the object of numerous speculations concerning its Òtrue natureÓ. 

Everybody is free to speculate, but



Theorem IV: Whoever endows ! with more meaning than is needed for computing observable 
phenomena is responsible for the consequences. 

He has the duty to show that his speculations do not lead to contradictions, 

        and preferably that they are of some use 

        (other than agreement with pre-conceived philosophical views). 

If he does not succeed he should not blame quantum mechanics. 

Such theories are usually carefully constructed 

        so as to reproduce the known results of quantum mechanics; 

         they can therefore neither be veriÞed nor falsiÞed by experiments. 

One might hope that they are simpler or easier to handle 

        but actually they are usually complicated and contrived. 

This is particularly so when they fail to respect the superposition principle 

        and as a result lose the tool of transforming in Hilbert space. 

But I digress: our purpose is merely to see how quantum mechanics works in practice. 

3. The measuring process according to von Neumann
Any measuring arrangement corresponds with the measurement 

     of an observable quantity represented by a Hermitian operator A. 

Such an operator has a complete set of eigenfunctions #n, with eigenvalues $n, 

A#n = $n#n 



For convenience we suppose that the eigenvalues are discrete and nondegenerate 

        and that the #n are normalized. 

Von Neumann gives the following abstract description of the measuring process. 

(i) As long as no measurement occurs the system is described by a wave function "(t), which evolves 
according to the Schrodinger equation for the system.

(ii) Suppose at t1 the system is brought into contact with an apparatus for measuring A. Then the possible 
outcomes are the values $n. The probability for Þnding $m, is

(iii) If the value $m has been found by the measurement the wave function changes abruptly from "(t1) 
into #m. This sudden reduction or collapse of the wave function is to be added as a new postulate to the 
Schrodinger quantum mechanics. (Incidentally, this collapse can be used to prepare a system in a certain 
state #m.)
(iv) It is necessary that the measuring apparatus is left in a state from which the observer can see that the 
result was $m: a pointer on a dial must point at m. However, to read this result I need another apparatus, 
which by a second measuring process determines the position of the pointer. And this process is repeated 
and gives rise to a chain of measurements, which can end only in the brain of the observer, where in 
some mysterious way it becomes a part of the

``gedankliche Innerleben des Individuums'' = ``mental inner life of the individual''.

This is actually the conclusion of von Neumann and others. I Þnd it  hard to understand that someone 
who arrives at such a conclusion does not seek the error in his argument.

Quantum mechanics is not a theory of the mind of an observer, but of physical, objectively recorded 
phenomena, see theorem II.

Pm = |! ! m | " (t1)"|2
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The question is how " relates to spectra or speciÞc heats; the mind of the observer is irrelevant. 
Moreover the answer was already known to Bohr: 

the quantum mechanical measurement is terminated when the 
outcome has been macroscopically recorded

4. Macroscopic systems 

A macroscopic system, such as a certain amount of a gas, a crystal, or a pointer on a volt meter, 

      is composed of a huge number of particles. 

As a consequence its energy levels lie inordinately dense on any energy scale used in the laboratory. 

The typical distance %E between two successive levels is much smaller 

      than the inaccuracy &E of the best energy measurement by the best experimenter. 

Hence such a system can never be prepared in a single eigenstate of the energy operator. 

      (In fact, if it were in a single eigenstate it would behave as one big molecule in a stationary state; 

             no particle could be seen to move!) 

Rather, the wave function " of a macroscopic system 

       is always a superposition of an enormous number (namely &E/%E) of eigenstates. 

A macroscopic system does obey the laws of quantum mechanics, 

       but the familiar picture of individual eigenvalues and eigenstates is no longer adequate. 



Other features become prominent; they constitute the subject matter of macroscopic physics. 

(A loose analogy within the realm of classical theory is formed by statistical mechanics:

        A many-body system has features, such as pressure and temperature, 

        which do not exist for a few particles; 

        they are the subject matter of thermodynamics.) 

The wave function " of a macroscopic system describes all its individual particles and their movements. 

It obeys a gigantic Schršdinger equation as long as the system is not perturbed, 

       not even by a measuring apparatus. 

This ", however, is the ÒmicrostateÓ of the system. 

When an experimenter prides himself that he has prepared the system in a well-deÞned state, 

      he refers to the macrostate. 

He does not pretend to know its Hilbert vector ", 

      he only knows that it lies in a certain subspace of Hilbert space with &E/%E dimensions. 

When a macroscopic pointer indicates a macroscopic point on a dial 

     the number of microscopic eigenstates involved has been estimated by Bohm to be 1050. 

When the observer shines in light in order to read the position of the pointer, 

     the photons do perturb the " of the pointer, but the perturbation does not affect the macrostate. 



The vector " is moved around a bit in these 1050 dimensions 

         but its components outside the subspace remain negligible. 

That is the reason why macroscopic observations can be recorded objectively, 

         independently of the observations and the observer, 

         and may therefore be the object of scientiÞc study. 

The lilliputian measurements of Heisenberg and von Neumann 

         do not apply to experiments with macroscopic systems. 

A typically macroscopic feature is the existence of thermodynamic equilibrium states. 

Those are macrostates which the system, when left alone, will reach sooner or later. 

Certain systems possess metastable states as well, for example supersaturated vapor. 

A metastable state is a macrostate in which the system can reside for a long time 

       before its ultimate transition into the stable equilibrium state. 

In many cases, however, this transition can be triggered by a minute perturbation, 

        even a single microscopic particle. 

That is the way in which microscopic particles can be recorded macroscopically, 

       as in the Wilson chamber, the Geiger counter and the AgBr crystals of the photographic plate. 



Theorem V: A quantum mechanical measuring apparatus consists of a macroscopic system 
prepared in a metastable state. 

The transition from the metastable into the stable macrostate provides the free energy 

         needed to make the microscopic phenomena macroscopically visible. 

It is also the reason why the measuring process is irreversible and therefore permanently recorded. 

5. SchrodingerÕs cat 

This much discussed ÒparadoxÓ consists of a cat 

         locked in a black box together with a radioactive sample. 

Moreover there is a Geiger counter, which on being triggered by an emitted alpha particle 

         activates a device that kills the cat. 

The argument runs as follows. 

         After some time the whole system is in a superposition of two states: 

               one in which no decay has occurred that triggered the mechanism 

               and one in which it has occurred. 

         Hence the state of the cat also consists of a superposition of two states. 

!cat" = a !alive" + b !dead"                                                                             (2) 

There are two coefÞcients a, b (in general complex), which depend on the time elapsed. 



The state remains a superposition until an observer looks at the cat. 

Then, according to section 3, the wave function (2) collapses 

       into either (life) or (death) 

       with respective probabilities !a!2 and !b!2. 

If this is not sufÞciently paradoxical one may consider an observer 

       who has a friend who does the experiment for him. 

At which moment does the wave function collapse, 

       when the friend looks at the cat 

       or when he communicates his Þnding to the observer? 

This quandary must be resolved 

       by anybody who regards " as a physical object 

       rather than a tool for computing macroscopic phenomena. 

To make the paradoxical nature of (2) more explicit 

        suppose that the observer decides to observe another quantity 

        than the question of life and death, 

        for instance the temperature of the cat (i.e., the total kinetic energy of its molecules). 

The expectation value of such a quantity G is 



!G" = !cat| G |cat" = ( a! !alive| + b! !dead|)G(a |alive" + b|dead")
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where Gll = #alive!G!alive" etc. are the matrix elements of G. 

This expectation value is not a statistical average of the value Gll and Gdd 

         with probabilities !a!2 and !b!2, but contains cross terms between life and death. 

The answer to this paradox is again that the cat is macroscopic. 

Life and death are macrostates comprising an enormous number of eigenstates !l" and !d" respectively. 

Any wave function of the cat has the form 

The cross terms in the expression for #G" are

As there is such a wealth of terms, all with different phases and magnitudes, 

         they mutually cancel and (3) practically vanishes. 

This is the way in which the typical quantum mechanical interference 

        become inoperative between macrostates.

(3) 



As a result #G" now does appear as a statistical average of the form. 

!G" = |a|2G!! + |b|2Gdd
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so that we have 

Theorem VI: The wave function of a system of a macroscopic number of particles gives, on 
measuring macroscopic quantities, results that can be described in terms of classical probabilities. 

One remark concerning microscopic systems, 

      such as a single elementary particle, must be added. 

In the region of high quantum numbers such a system behaves 

     with respect to measurements as a macroscopic system. 

The reason is again that there are many eigenstates within the margin &E of macroscopic accuracy. 

Some think that they have found a counterexample to theorem V, 

     for instance the Cerenkov counter, have made use of this fact. 

A particle that betrays its position through Cerenkov radiation 

     thereby changes its microscopic " but not its macrostate. 

     Its energy changes by an amount %E but not &E. 



6. A model for a measuring apparatus 

We shall now construct a model for a measuring apparatus for observing the position of an electron. 

More precisely, our apparatus will be able to tell whether the electron 

        has passed through some preassigned region U in space. 

It could be used for instance in the double slit experiment 

        to decide through which slit the electron has passed. 

We shall Þnd that such an observation does indeed destroy the interference pattern. 

All this is a consequence of the Schrodinger equation for the total system, 

       which consists of the object system, in this case the electron, together with the apparatus. 

There is no need to supplement the Schrodinger evolution with an additional postulate, 

       as in the theory of von Neumann. 

Our apparatus consists of an atom together with the electromagnetic Þeld. 

The apparatus is macroscopic because of the many degrees of freedom 

      embodied in the normal modes(fundamental frequencies) of the Þeld. 

We label the modes by their wave vector k and for simplicity ignore polarization. 

The Hilbert space of the apparatus is the direct product 

     of the Hilbert space of the atom and the space of all possible excitations of the Þeld modes. 

The stable equilibrium is the state with the atom and all modes in their ground states. 



A metastable state can be made by putting the atom in an excited state, for instance 2S, 

        from which no transition to the ground state through emission of a photon is allowed. 

When, however, an electron appears in the neighborhood of the atom 

       its Coulomb interaction distorts the 2S state so as to create a dipole moment, 

       which makes the transition possible. 

Such a transition is irreversible and leaves a permanent record of the passage of the electron. 

For instance the emitted photon can be caught on a photographic plate or in a counter. 

One may regard the plate or the counter as part of the measuring apparatus if one wishes, 

      but the crucial point is that, once the photon has been emitted, 

      the presence of the electron has been permanently recorded. 

The only states of the apparatus that we need for our purpose are !+;0" (atom excited, no photons) 

        and !';k " (atom in ground state, one photon k). 

The wave function ( of the total system (electron + apparatus) is a linear superposition, 

       whose coefÞcients are elements of the Hilbert space of the electron: 

! (t) = ! (r , t) |+; 0 ! +
!

k

" k (r , t) |" ; k !
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The photon states are orthogonal to each other and normalized. 

Hence the normalization of ( takes the form 

(4)



! ! | ! " =
!

|! (r , t)|2dr +
"

k

|" k (r , t)|2dr = P0 +
"

k

Pk = 1
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P0 is the probability that the atom is excited and no photon present; 

        Pk is the probability that the atom has emitted the photon k; 

        and ) k Pk = 1' P0 is the probability that the atom 

                 is deexcited by emission of an unspeciÞed photon. 

The functions * and "k do not have unit norm, nor are they orthogonal. 

The absence of cross terms in (5) is due to orthogonality of the eigenfunctions of the apparatus. 

(5)

7. The collapse of the wave function 

The Schrodinger equation for the total system is

i ú! (r , t) =
!
! ! 1

2 " 2"
! (r , t) ! iu (r )

#

k

vk " k (r , t)
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i ú! k (r , t) =
!
k ! 1

2 " 2"
! k (r , t) ! iu (r )vk " (r , t)
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(6)

(7)

Here h! = 1, + is the energy of the excited level of the atom, k = !k! is the energy of the Þeld modes, 

       and   -! 2/2  represents the kinetic energy of the electron, its mass being set equal to unity. 

Furthermore vk is the product of a coupling constant, a normalization factor of the Þeld mode k, 

      and a damping factor that prevents interaction with modes 

      whose wavelength is shorter than the diameter of the atom. 



Finally, u(r) is the dipole matrix element created by an electron at distance r, 

        the atom being located at r = 0. 

The function u(r) is appreciable only in some neighborhood U of the atom, 

        and practically zero outside.

The coupled equations (6), (7) have to be solved with the initial condition for t "  !" : 

        Þrst # k(t) = 0 for all k; and secondly $( r, t) is in this limit a given incident wave packet, 

! (r , t) =
!

c(p)ei pár ! iEt dp , E = 1
2 p2 + !
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We want to know the functions $ and # k after the passage of the electronã i.e., for t "  +" . 

We shall then know 

!$( r,t)!2 =probability for Þnding the electron at r without having triggered the measuring apparatus; 

!# k(r,t)!
2 =probability for Þnding the electron at r having triggered the atom into emitting a photon k. 

The collapse of the wave function can be deduced without actually solving eqs. (6), (7). 

For that purpose write (7) in the form 

!
!
! t

!
i
2

" 2
"

eikt " k (r , t) = u(r )vk eikt #(r , t)
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(8)

(9)



It appears that the function eikt# k(r,t) obeys a Schršdinger equation with a source term. 

Since # k vanishes for t "  !"  it follows that the solution of (9) 

         consists of a wave emanating from the source. 

This source is conÞned to the neighborhood U. 

Hence # k(r,t) is a Schrodinger wave that fans out from the neighborhood 

       where the electron has betrayed its presence by triggering the measuring apparatus. 

This is the collapse of the wave function: 

        when the apparatus has observed the electron to be in U 

       the electron wave function is no longer the initial $  but is replaced by # k. 

Thus the collapse is not an additional postulate 

      and has nothing to do with a change of my knowledge 

       or some such anthropomorphic consideration. 

Theorem VII: The collapse of the wave function of the object system is a consequence of the 
Schrodinger equation for the total system (i.e., object system and measuring apparatus together). 

When a measurement has occurred the total wave function % has obtained components 

         outside the original subspace of the apparatus (which consisted of the single vector !+; 0"). 

The coefÞcients of these new components are functions of the electron variables 

         and constitute the new electron wave function. 



If one looks at the electron by itself rather than as a part of the total system 

          one gets the impression that its wave function $ has miraculously collapsed into # k. 

Consider the two-slit experiment and put the observing atom in the upper slit. 

If it is not triggered into emitting a photon, 

      the electron is still described by the function $, which goes through both slits. 

The electron is not observed and the interference pattern is undisturbed. 

If, however, a photon k is emitted by the atom, 

      the electron is described by the wave function # k, 

      which fans out from the upper slit and therefore produces no interference pattern. 

In this case the electron has betrayed its passage through the upper slit 

      and the interference is destroyed - in agreement with the famous discussion by Bohr. 

In discussing this example I have used the traditional language 

      of a single electron and its probability distribution. 

The same result can be formulated operationally in agreement with Theorem III. 

The actual experiment consists in shooting a succession of electrons at the two slits. 

For each single electron I write down its position on the receiving screen 

      and record whether or not a photon has been emitted. 



After Þnishing the experiment I sit down at my desk with my notes, 

     collect the events without photon and mark their positions on a piece of paper. 

The marks will produce an interference pattern. 

When I do the same for the events that were accompanied by a photon 

     no interference appears on the paper. 

If the atom were absent the wave function of the electron would be the $ given by (8), 

      modiÞed by the boundary conditions on the two-slit screen. 

In the presence of the atom $ is the solution of the coupled equations (6), (7) 

      with the same boundary conditions and with (8) as initial condition. 

These two functions are not quite the same; 

     the apparatus inßuences the electron even without detecting it. 

The interference pattern we obtained by selecting the undetected electrons 

      is not quite the same as the one obtained when no attempt is made to detect them. 

The physicist says that the atom is polarizable, 

      or that it makes a virtual transition to the ground state. 

If one wants the electron to be able to act on the measuring apparatus one cannot avoid a reaction. 

Yet the fact that an apparatus affects the wave function of the object system 

     even when the measurement is not successful has caused some debate. 



8. Probability and density matrix 

The classical probability of some feature of a system is deÞned 

         as the number of elementary states that have that feature, 

         divided by the total number of possible elementary states. 

The elementary states are supposed to have equal probabilities, 

         or else to have given a priori probabilities. 

Probability calculus is merely the technique of transforming one probability distribution into another. 

The physical input is the speciÞcation of the elementary states and their a priori probabilities. 

This input depends on my knowledge - or rather lack of knowledge 

        - because actually the system can be in no more than one state. 

If I have cast two dice without looking, 

        the probability that the total number of points equals 10 is 1/12, 

       the moment I look at one die the probability jumps to either 0 or 1/6, 

       depending on what I see; 

       and once I have 6 looked at both the probability is 0 or 1. 

Quantum mechanical probabilities, however, are equal to !# !2 by deÞnition, see section 2. 

They are not deÞned by means of an underlying set of possible states 

        (which, by the way, would also require a postulate about a priori probabilities). 



There is no cogent reason to insist that it should be possible to interpret them in this classical way. 

Obstinate attempts to construct such a Òstochastic interpretationÓ have not met with success. 

At any rate they are irrelevant for our purpose of understanding 

         how quantum mechanics works in practice. 

Both kinds of probability distributions are needed to describe an ensemble of quantum systems. 

For convenience take an ensemble of particles. 

Each particle is supposed to be in a state described 

       by one of the wave functions of a set &n(r) (normalized but not necessarily orthogonal). 

Let the fraction of all particles in each &n be Pn. 

Then if I pick at random one of the particles the probability to Þnd it at r is 
!

n

Pn |! n (r )|2
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More generally, if A(r, rÕ) represents a one-particle operator 

      the ensemble average of its quantum expectation value is 

!A" =
!

n

Pn ! !
n (r )A(r , r ")! n (r ")dr dr "

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

To write this in a more convenient way one deÞnes the density matrix

! (r , r !) =
!

n

Pn " n (r )" "
n (r !)
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(10)

(11)



Then (10) can be written as an operator equation 

!A" = Tr ! A
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The density matrix is a convenient way to express the properties of a quantum ensemble, 

         but it conceals the separate roles of the classical and quantum mechanical probabilities. 

Theorem VIII: Density matrices are classical probability distributions over quantum mechanical 
states; they therefore depend on the available knowledge. 

Incidentally, some authors regard '  as the true quantum mechanical state. 

The special density matrices that can be written as a product 

! (r , r !) = " " (r )" (r !)
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are then called pure states. 

They correspond to our states # . 

All other '  are mixed states, that is what we would call the states of an ensemble. 

These authors should not be surprised that their quantum systems 

          have states that depend on the authorÕs knowledge. 

9. Application to the measurement process 

Suppose the measurement process of section 3 is applied to a particle in a state #( r). 

Before measurement the density matrix has the form (12). 

After the measurement is performed, but before I look at the result, the density matrix is 

(12)



! 1(r , r !) =
!

n

Pn " n (r )" "
n (r !)
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Pn being given by (1). 

After I have looked and found a certain result ( m, the density matrix is reduced to 

! 2(r , r !) = " m (r )" "
m (r !)
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This reduction of ' 1 to ' 2 is classical and not more mysterious 

        than the reduction of the probability distribution of the dice 

        upon looking at them as I discussed earlier in the class. 

The reduction of '  into ' 1, however, 

       is due to the collapse of the wave function caused by 

       the interaction with the measuring apparatus. 

This can be shown explicitly for the model in section 6. 

Let A be an operator acting on the electron alone. 

Its expectation value in the state (4) is 

! ! | A |! " = ! ! | A |! " +
!

k

! ! k | A |! k "
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This cannot be written as the expectation value of A in an electron wave function, 

         but only by means of a density matrix in the electron space: 

! ! | A |! " = Tr ! 1A
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(13)



! 1(r , r !) = " (r )" " (r !) +
!

k

#k (r )# "
k (r !)
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where 
(14)

This shows that after a measurement the object system 

       cannot be described by a #  but only by a ' , as if it were an ensemble. 

The reason is that it is still part of the total system, 

       which includes the apparatus whose state is here left unspeciÞed. 

If one does look at the apparatus and Þnds that no photon has been emitted, 

      the electron does have a wave function, namely *(r); 

      or properly normalized, compare (5), 

P ! 1/2
0 '(r) , ⇢0(r, r") = P ! 1

0 '(r)'#(r")
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P�1/2
k  k(r) , ⇢k(r, r

0) = P�1
k  k(r) 

⇤
k(r

0)
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⇢2(r, r
0) = (1� P0)

�1
!

k

 k(r) 
⇤
k(r

0)
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If one looks and Þnds a photon k the wave function and density matrix of the electron are 

(17)

(16)

(15)

However, our measurement consisted in determining the position of the electron. 

This is done by determining whether or not a photon is produced, regardless of the k of the photon. 

If one sees no photon the electron is described by (15), as before. 

But if one sees an unspeciÞed photon the electron density matrix is



In our model the large number of photon states k 

              served to simulate the macroscopic nature of the measuring apparatus. 

It is therefore an essential feature that one cannot distinguish between different photons k. 

              (Even if one can experimentally determine their directions within a certain margin 

                there is still a practically inÞnite number of them.) 

Hence (17) is the proper description of the electron after it has been observed to pass through U. 

10. Entropy 

Classical probability theory associates with a distribution {Pn} a number

S = �
X

n

Pn logPn
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(18)
called the entropy of the distribution. 

Similarly quantum mechanics associates with every density matrix an entropy 

S = ! Tr ! log !
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This expression is the same as (18) in the case that '  has the form (11) with orthonormal &n. 

By construction S is nonnegative and zero only if '  is a pure state as in (12). 

We emphasize that entropy is deÞned as a property of probability distributions 

          and therefore depends on our knowledge. 

Only in statistical mechanics is the entropy a state function, 

          because every macroscopic equilibrium state is identiÞed with a prescribed distribution. 



We apply the entropy concept to our model for the measuring process. 

First of all one sees immediately: 

Theorem IX: The total system is described throughout by the wave vector ! and has therefore zero 
entropy at all times. 

This ought to put an end to speculations about measurements 

        being responsible for increasing the entropy of the universe. (It wonÕt, of course.) 

Secondly, before the measuring operation the electron itself is described 

         by a vector in its own Hilbert space, viz. (8), and has therefore also zero entropy. 

The apparatus has zero entropy as well since it is in the pure state !+;0". 

        (This is a special feature of our simple example; 

          usually one does not have complete knowledge of the prepared state of the apparatus.) 

After the measurements, if I do not look at the outcome, 

        the entropy is the one associated with the density matrix (14). 

If I do look and Þnd no photon the electron is in the pure state $ with zero entropy. 

If I look and Þnd an unspeciÞed photon the entropy is the one associated with (17). 

To compute this entropy we note that it can be expressed in the eigenvalues ) *, of the matrix (17) by 

S = �
X

⌫

µ⌫ logµ⌫
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(19)



The equation for the eigenvalues )  and corresponding eigenfunctions +(r) is 

µ⇠(r) =
Z
⇢2(r, r0)⇠(r0)dr0 = (1 ! P0)

�1
X

k

 k (r)

Z
 ⇤

k (r
0)⇠(r0)dr0
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Multiply this equation with # k
*(r) and integrate 

µ! k! = (1 � P0)�1
X

k

Z
" ⇤
k! (r)" k(r)dr! k
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Here 

and 

↵k =

Z
 ⇤
k(r)⇠(r)dr
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Mk0k = (1� P0)
�1

!
! ⇤
k0(r)! k(r)dr
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(21)

(20)

Thus the eigenvalues of (20) are also eigenvalues of MkÕk. 

         (This is not true for those +(r) for which all , k vanish, but in that case 

           the eigenvalue )  of (20) is also zero and does not contribute to the entropy (10) anyway.) 

Hence the ) * in (19) may be taken to be the eigenvalues of M. 

Incidentally, it follows that one might write S = 'Tr MlogM. 

We shall now prove that this is equal to the increase of the entropy of the measuring apparatus. 

We start from the density matrix of the total system 

        after the emission of an unspeciÞed photon has been observed: 



(1� P0)
�1

(
X

k

|�;ki k(r)

)(
X

k0

 ⇤
k0(r0)

⌦
�;k0��

)
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The density matrix of the apparatus is obtained by taking the trace over the electron states, 

(1� P0)
�1

(
X

kk0

|�;ki
⌦
�;k0��

)Z
 k(r) 

⇤
k0(r)dr =

X

kk0

Mk0k |�;ki
⌦
�;k0��
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This is an operator in the space of one-photon states. 

Its eigenvalues are easily obtained with the aid of the orthonormality of the photon states !'; k ". 

They turn out to be identical with the eigenvalues ) * of the matrix M found in (21). 

Theorem X: The measurement operation increases the entropies of the object system and of the 
apparatus by equal amounts. 

This increase is due to the incomplete speciÞcation of their Þnal states. 

It is equal to the thermodynamic entropy difference 

        between the stable and metastable macrostates of the apparatus. 

11. Final Thoughts 

I would like to remind everyone of the scandalous fact that 

       ninety years after the development of quantum mechanics, 

       the literature is still swamped by voluminous discussions about what is called its ÒinterpretationÓ. 



Actually, quantum mechanics 

          provides a complete and adequate description of the observed phenomena on the atomic scale. 

What else can one wish for? 

The difÞculty is that the authors are unable to adjust their way of thinking - and speaking 

        - to the fact that the phenomena on the microscopic scale 

          look different from what we are accustomed to in ordinary life. 

That two electrons far apart may be entangled seems strange to someone 

         who still thinks of electrons as individual particles rather than manifestations of a wave function. 

The inability to adjust oneÕs thinking to the new phenomena 

        gave rise to the idea of hidden variables, made popular by David Bohm. 

He(and many others) wrote the Schrodinger equation in a form 

        resembling the classical Hamilton-Jacobi equation, 

        concealing the counter-intuitive features of quantum mechanics in a Òquantum potential". 

That deBroglie initially regarded the wave function as such a pilot wave is understandable, 

          but the fact that he revived it in 1957 only means that he refused 

          to accept the quantum mechanical picture. 

Even a non-linear interaction with our consciousness has been suggested. 



Ghirardi-Rimini-Weber proposed to modify the Schršdinger equation 

          so as to make it agree with their ideas about how reality ought to look. 

Take the much-discussed case of a beam of electrons passing through two slits in an opaque screen 

        and producing interference stripes on a receiving screen. 

There is no way to explain this if one thinks of electrons as classical particles 

        even if dressed up with some quantum features 

        (except perhaps a Bohm potential of a very weird kind). 

Bohr solved the problem by emphasizing that the question, 

       through which slit a particle had passed, 

       is illegitimate as long as one has no way of observing that passage, 

       and any set-up that makes this observation possible destroys the interference. 

This can be checked by an explicit quantum mechanical treatment 

      of both the observed system and the apparatus. 

A perennial bone of contention is the following Òmeasurement problemÓ. 

The evolution of a system is given in terms of a complex wave function 

      but one only observed probabilities given by its absolute square. 



Von Neumann, being a mathematician, introduced an axiom that observation

        reduces the wave function (or Òprobability amplitudeÓ) to a probability distribution. 

Others concluded that an observation splits the entire universe into many worlds, 

        but this picture is not open to veriÞcation, nor does it solve the question. 

The fact that the observed state of a system is not sufÞcient to compute the future, 

         not even its probable future, was regarded as unacceptable by Einstein. 

The solution of the measurement problem is twofold. 

First, any observation or measurement requires a macroscopic measuring apparatus. 

A macroscopic object is also governed by quantum mechanics, 

        but has a large number of constituents, 

        so that each macroscopic state is a combination 

        of an enormous number of quantum mechanical eigenstates. 

As a consequence, the quantum mechanical interference terms between two macroscopic states 

       virtually cancel and only probabilities survive. 

That is the explanation why our familiar macroscopic physics, concerned with billiard balls, 

        deals with probabilities rather than probability amplitudes. 

Incidentally, this is also the answer to the Schršdinger cat paradox. 



The Hilbert space of the cat does not consist of two eigenstates for life and death, 

         but of two macroscopic subspaces corresponding to life and death 

         and the interference terms between them cancel. 

Such a situation is not unusual. 

We know that air and water consist of molecules, but in everyday life 

        we are dealing with their macroscopic averages: wind and currents. 

Second, in order that a macroscopic apparatus can be inßuenced 

        by the presence of a microscopic event it has to be prepared in a metastable initial state 

       - think of a Wilson cloud chamber and a geiger counter. 

The microscopic event triggers a macroscopically visible transition into the stable state. 

Of course, this is irreversible and is accompanied by a thermodynamic in- crease of entropy. 

This is the physics as determined by quantum mechanics. 

The scandal is that there are still many articles, discussions, and textbooks, 

        which advertise various interpretations and philosophical profundities. 

In the seventeenth century, Cartesians refused to accept NewtonÕs attraction 

        because they could not accept a force that was not transmitted by a medium. 



Even now many physicists have not yet learned that they should adjust their ideas 

          to the observed reality rather than the other way around. 

As I said, it is indeed a scandal that there are still so many ÒinterpretationsÓ of quantum physics 

          when the theory actually provides a complete and adequate description of phenomena. 

It is correct to attribute these unnecessary interpretations to the difÞculties 

          experienced by Òsomeone who still thinks of electrons as individual particles 

          rather than as manifestations of a wave functionÓ. 

Indeed, electrons are not individual particles.

I would only add one further point to my remarks. 

ItÕs a point about most physicists choice of words, 

          but I think it can make a big difference in the pedagogy of this difÞcult, nonintuitive subject. 

ÒManifestations of a wave functionÓ leaves the reader to question what is meant by the Òwave functionÓ. 

It would be clearer, and more consistent with quantum Þeld theory 

          which is our most accurate form of quantum physics, 

          to speak instead of Òmanifestations of the matter ÞeldÓ. 

More precisely, electrons (and quarks, protons, atoms, etc) are Þeld quanta 

           - irreducible bundles of quantized matter Þeld 

           - just as photons are irreducible bundles of a quantized radiation Þeld. 



When referring to electrons, Þeld theorists call this Þeld the Òelectron-positron ÞeldÓ. 

The relativistic Þeld equations such as the Dirac equation for this Þeld 

         and for other matter Þelds reduce, in the non-relativistic limit to the Schrodinger equation. 

That is, the % of the Schrodinger equation is the nonrelativistic approximation 

          to the quantized matter Þelds of relativistic quantum Þeld theory. 

The universe if made of quantized Þelds. 

As Steven Weinberg puts it, 

ÒIn its mature form, the idea of quantum Þeld theory is that quantum 
Þelds are the basic ingredients of the universe, and the particles are 
just bundles of energy and momentum of the Þelds. 

Thus, the nonintuitive aspects of quantum physics, 

         in particular quantum uncertainty and quantum entanglement, 

         result from the circumstance that the fundamental constituents are Þelds, not particles. 

These Þelds, however, are quantized, which implies that they exhibit many particle-like aspects. 

THERE IS NO PROBLEM WITH QUANTUM MECHANICS - IT WORKS. 
THERE IS ONLY A PROBLEM WITH PEOPLE WHO DO NOT 
UNDERSTAND IT. 


