Self-Organized Criticality (SOC)

Tino Duong Biological Computation

Agenda

- Introduction
- Background material
- Self-Organized Criticality Defined
- Examples in Nature
- Experiments
- Conclusion

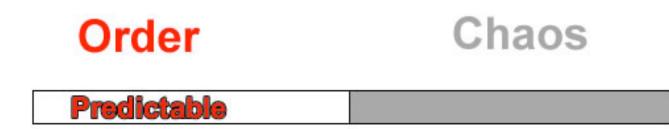
SOC in a Nutshell

• Is the attempt to explain the occurrence of complex phenomena

Background Material

What is a System?

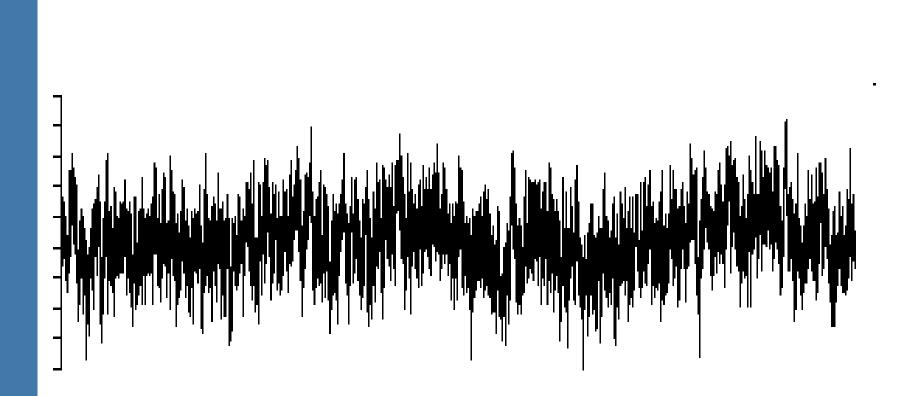
• A group of components functioning as a whole

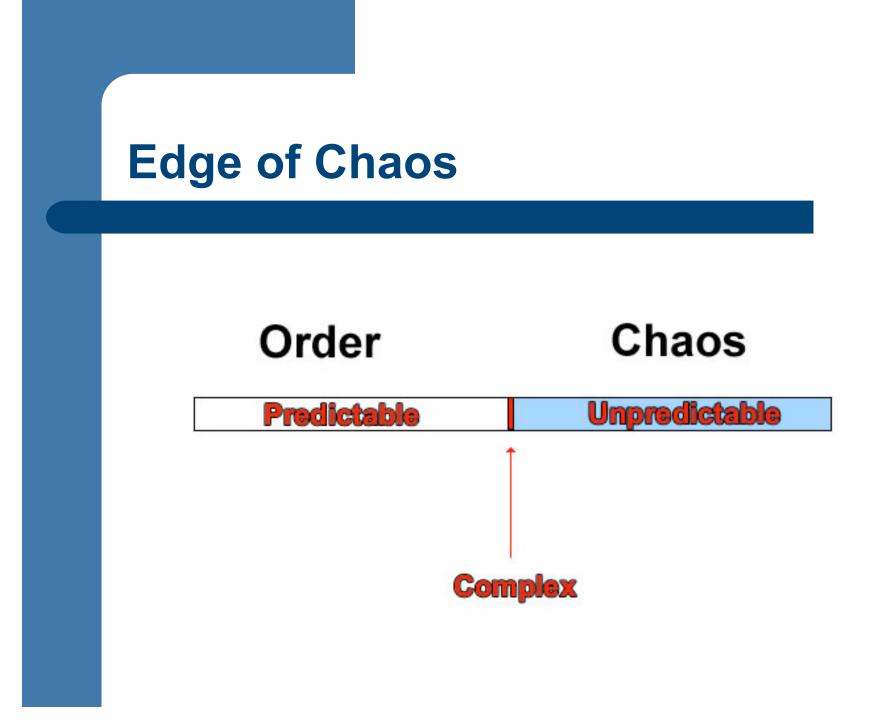

Obey the Law!

• Single components in a system are governed by rules that dictate how the component interacts with others

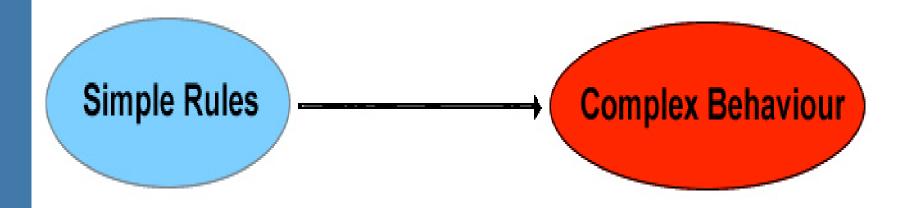
System in Balance

- Predictable
- States of equilibrium
 - Stable, small disturbances in system have only local impact




Systems in Chaos

- Unpredictable
- Boring



Example Chaos: White Noise

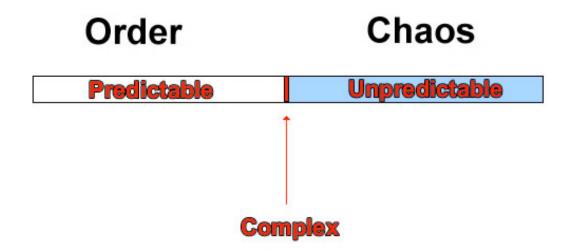
Self-Organized Criticality

Self-Organized Criticality: Defined

 Self-Organized Criticality can be considered as a characteristic state of criticality which is formed by self-organization in a long transient period at the border of stability and chaos

Characteristics

- Open dissipative systems
- The components in the system are governed by simple rules


Characteristics (continued)

- Thresholds exists within the system
- Pressure builds in the system until it exceeds threshold

Characteristics (Continued)

• Naturally Progresses towards critical state

- Small agitations in system can lead to system effects called avalanches
- This happens regardless of the initial state of the system

Domino Effect: System wide events

• The same perturbation may lead to small avalanches up to system wide avalanches

Example: Domino Effect

1	2	0	2	3
2	3	2	3	0
1	2	3	3	2
3	1	3	2	1
0	2	2	1	2

1	2	0	2	3
2	3	2	3	0
1	2	4.	3	2
3	1	3	2	1
0	2	2	1	2

1	2	0	2	3
2	3	3	3	0
1	3	0	4	2
3	1.	4	2	1
0	2	2	1	2

3

3 0

1	1	2	0	2	3
1	2	3	3	4	0
	1	3	2	0	3
	3	2	0	4	1
	0	2	3	1	2

1	2	0	3	1
2	3	4	0	ŀ
1	3	2	2	1
3	2	1	0	:
0	2	3	2	

3	1	2	1	3	3
1	2	4	0	1	1
3	1	3	3	2	3
2	3	2	1	0	2
2	0	2	3	2	2

1.1.22			2	-		
1	3	3		1	3	1
1	1	1		3	1	1
3	2	3		2	0	4
1	0	2		3	3	1
3	2	2		0	2	

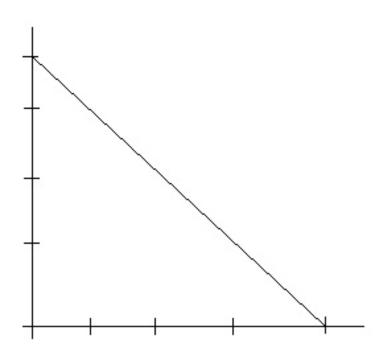
	1	3	1	3	3
1	3	1	1	1	1
	2	0	4	2	3
	3	3	1	0	2
-	0	2	3	2	2

1	3	1	3	3
3	1	2	1	1
2	1	0	3	3
3	3	2	0	2
0	2	3	2	2

	1	3	1	3	3
	3				1
	2				3
	3	3			2
1	0	2	3	2	2

By: Bak [1]

Characteristics (continued)


• Power Law

• Events in the system follow a simple power law

Power Law: graphed

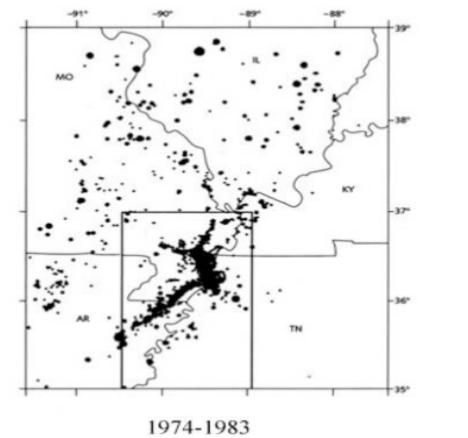
i)

 $\log N(s) = -t \log s$ ii)

Characteristics (continued)

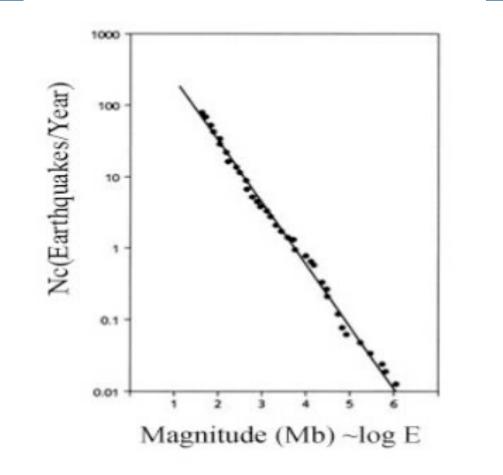
- Most changes occurs through catastrophic event rather than a gradual change
 - Punctuations, large catastrophic events that effect the entire system

How did they come up with this?


Nature can be viewed as a system

- It has many individual components working together
- Each component is governed by laws
 - e.g, basic laws of physics

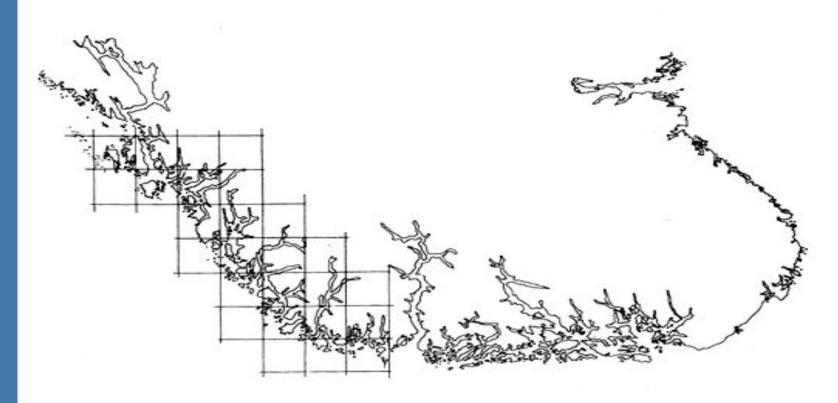
Nature is full of complexity


- Gutenberg-Richter Law
- Fractals
- 1-over-f noise

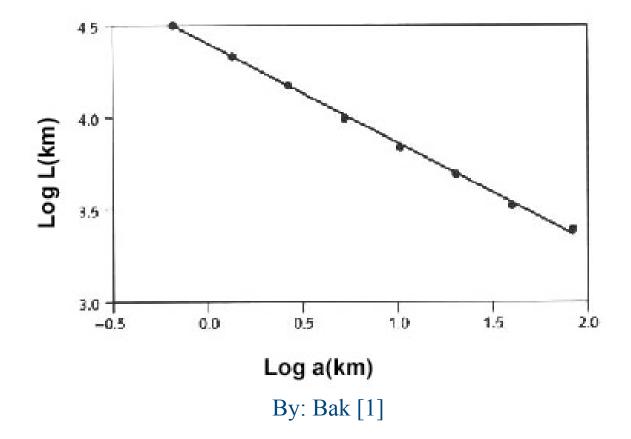
Earthquake distribution

By: Bak [1]

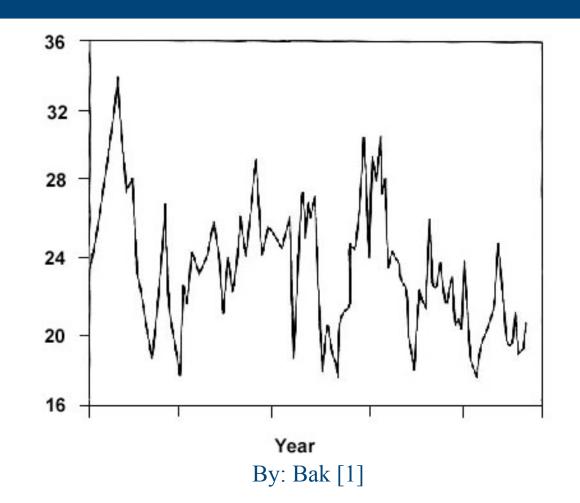
Gutenberg-Richter Law



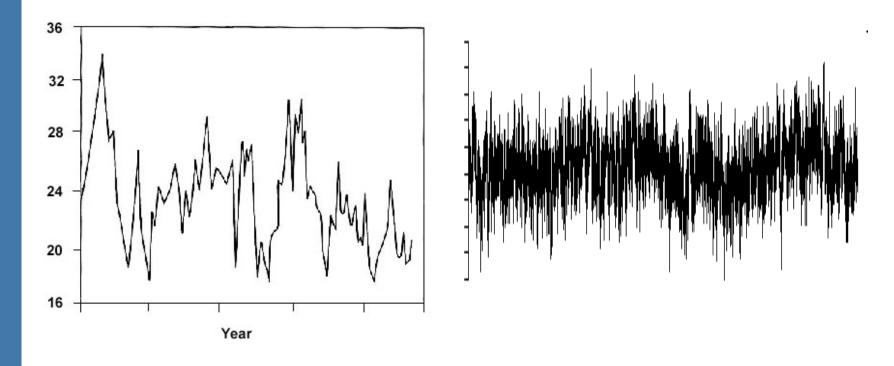
Fractals:


- Geometric structures with features of all length scales (e.g. scale free)
 - Ubiquitous in nature
 - Snowflakes
 - Coast lines

Fractal: Coast of Norway



By: Bak [1]


Log (Length) Vs. Log (box size)

1/F Noise

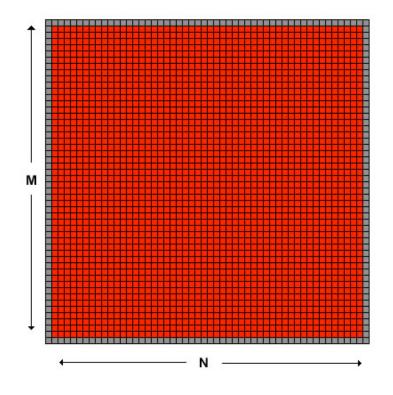
1/f noise has interesting patterns

1/f Noise

White Noise

Can SOC be the common link?

• Ubiquitous phenomena

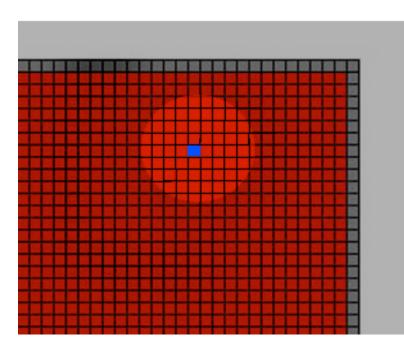

- No self-tuning
- Must be self-organized
- Is there some underlying link

Experimental Models

Sand Pile Model

- An MxN grid Z
- Energy enters the model by randomly adding sand to the model
- We want to measure the avalanches caused by adding sand to the model

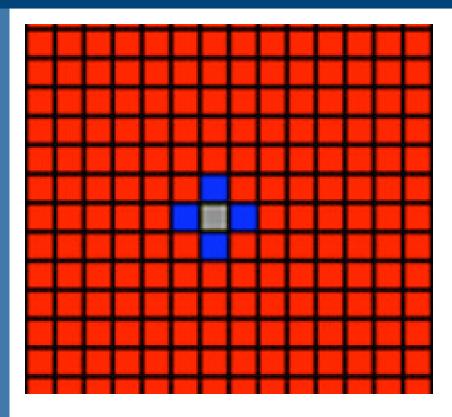
Example Sand pile grid


- Grey border represents the edge of the pile
- Each cell, represents a column of sand

Model Rules

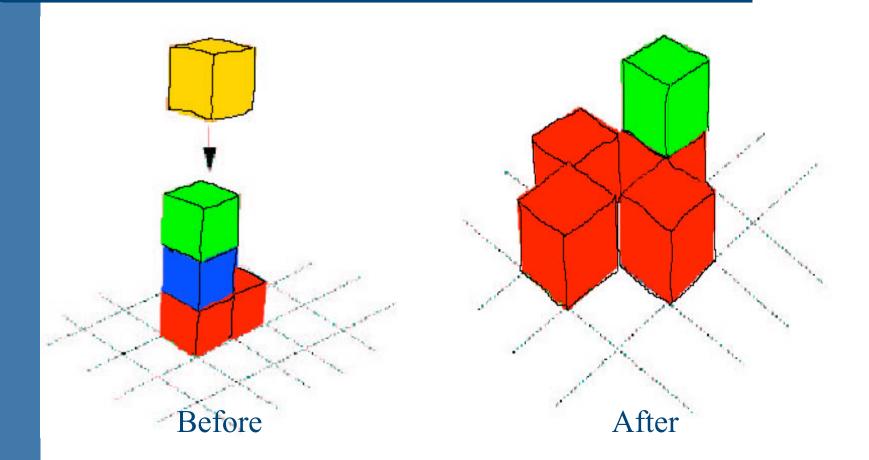
- Drop a single grain of sand at a random location on the grid
 - Random (x,y)
 - Update model at that point: $Z(x,y) \rightarrow Z(x,y)+1$
- If Z(x,y) > Threshold, spark an avalanche
 - Threshold = 3

Adding Sand to pile



- Chose Random (x,y) position on grid
- Increment that cell
 Z(x,y) → Z(x,y)+1
- Number of sand grains indicated by colour code

By: Maslov [6]


Avalanches

- When threshold has been exceeded, an avalanche occurs
- If Z(x,y) > 3
 - $Z(x,y) \rightarrow Z(x,y) 4$
 - $Z(x+-1,y) \rightarrow Z(x+-1,y) + 1$
 - $Z(x,y) \rightarrow Z(x,y+-1) + 1$

By: Maslov [6]

Before and After

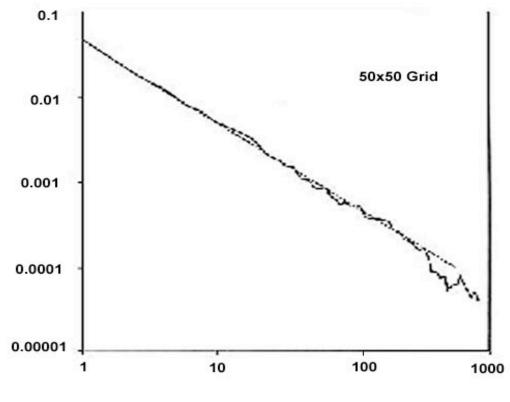
Domino Effect

1	2	0	2	3	1	2	0	2	3	2.1	1	2	0	2	3	1	2	0	2	3
2	3	2	3	0	2	3	2	3	0	1.1	2	3	3	3	0	2	3	3	4	0
1	2	3	3	2	1	2	4.	3	2		1	3	0	4	2	1	3	2	0	3
3	1	3	2	1	3	1	3	2	1		3	1.	4	2	1	3	2	0	4	1
0	2	2	1	2	0	2	2	1	2		0	2	2	1	2	0	2	3	1	2
1	2	0	3	3	1	2	1	3	3	Π.	1	3	1	3	3	1	3	1	3	3
2	3	4	0	1	2	4	0	1	1		3	0	1	1	1	3	1	1	1	1
1	3	2	2	3	1	3	3	2	3		1	4	3	2	3	2	0	4	2	3
3	2	1	0	2	3	2	1	0	2		3	2	1	0	2	3	3	1	0	2
0	2	3	2	2	0	2	3	2	2		0	2	3	2	2	0	2	3	2	2
1	3	1	3	3				1	3	1	3	3								
3	1	2	1	1				3				1								
2	1	0	3	3				2				3								
3	3	2	0	2				3	3			2								
0	2	3	2	2				0	2	3	2	2								

• Avalanches may propagate

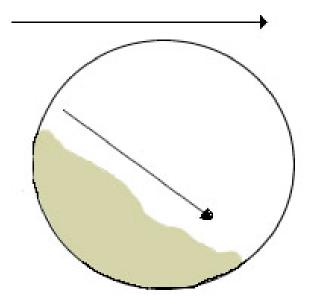
By: Bak [1]

DEMO: By Sergei Maslov


Sandpile Applet

http://cmth.phy.bnl.gov/~maslov/Sandpile.htm

Observances


- Transient/stable phase
- Progresses towards Critical phase
 - At which avalanches of all sizes and durations
- Critical state was robust
 - Various initial states. Random, not random
- Measured events follow the desired Power Law

Size Distribution of Avalanches

By: Bak [1]

Sandpile: Model Variations

- Rotating Drum
- Done by Heinrich Jaeger
- Sand pile forms along the outside of the drum

Rotating Drum

Other applications

- Evolution
- Mass Extinction
- Stock Market Prices
- The Brain

Conclusion

• Shortfalls

- Does not explain why or how things self-organize into the critical state
- Cannot mathematically prove that systems follow the power law

• Benefits

• Gives us a new way of looking at old problems

References:

- [1] P. Bak, How Nature Works. Springer -Verlag, NY, 1986.
- [2] H.J.Jensen. Self-Organized Criticality Emergent Complex Behavior in Physical and Biological Systems. Cambridge University Press, NY, 1998.
- [3] T. Krink, R. Tomsen. Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms. Proc. IEEE int. Conf, on Evolutionary Computing 2001: 1155-1161.
- [4] P.Bak, C. Tang, K. WiesenFeld. Self-Organized Criticality: An Explanation of 1/f Noise. Physical Review Letters. Volume 59, Number 4, July 1987.

References Continued

- [5] P.Bak. C. Tang. Kurt Wiesenfeld. Self-Organized Criticality. A Physical Review. Volume 38, Number 1. July 1988.
- [6]S. Maslov. Simple Model of a limit order-driven market. Physica A. Volume 278, pg 571-578. 2000.
- [7] P.Bak. Website: <u>http://cmth.phy.bnl.gov/~maslov/Sandpile.htm</u>. Downloaded on March 15th 2003.
- [8] Website:

http://platon.ee.duth.gr/~soeist7t/Lessons/lessons4.htm. Downloaded March 3rd 2003.

Questions ?