
EPR/Bell - The Details

Let us first rethink some quantum mechanical ideas in a context
needed for this discussion. This review will hopefully reinforce the
ideas you have learned so far.

Single-Photon Interference

All good discussions on quantum mechanics present a long an
interesting analysis of the double slit experiment. The crux of the
discussion comes when "the light intensity is reduced sufficiently
for photons to be considered as presenting themselves at the entry
slit one by one". For a long time this point was very contentious,
because correlations between two successive photons cannot be ruled
out a priori . Since 1985, however, the situation has changed. An
experiment was performed by Grangier, Roger and Aspect. It was an
interference experiment with only a single photon. They used a light
source devised for an EPR experiment which guarantees that photons
arrive at the entry slit singly. The experiment is difficult to do in
practice, but is very simple in principle and it provides an
excellent experimental introduction to the concepts of quantum
mechanics.

The light source is a beam of calcium atoms, excited by two focused
laser beams having wavelengths l ©= 406nm and l ©©= 581nm respectively.
Two-photon excitation produces a state having the quantum number
J = 0. When it decays, this state emits two monochromatic photons
having the wavelengths l 1 551 3= . nm and l 2 422 7= . nm respectively, in a
cascade of two electronic transitions from the initial J = 0 level to
the final J = 0 state, passing through an intermediate J =1 state, as
shown in the figure below

Excitation and decay of the calcium atom

The mean lifetime of the intermediate state is 4.7 ns. To simplify
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the terminology, we shall call the l 1 551 3= . nm light green, and the



l 2 422 7= . nm light violet.

Next we describe the experiment, exhibiting its three stages which
reveal the complications of the apparatus in progressively greater
detail (next three figures).

1. The first stage is a trivial check that the apparatus is working
properly; nevertheless it is already very instructive (figure below).

Interference with a single photon (first stage). In this
sketch, solid lines are optical paths and dashed lines
are electrical connections

On either side of the source S one positions two photomultiplier
tubes PMO  and PMA. These are very sensitive, and can detect the
arrival of a single photon. Detection proceeds through photoelectric
absorption, followed by amplification which produces an electric
signal proportional to the energy of the incident photon. The
associated electronic logic circuits can identify the photons
absorbed by each detector: the channel PMO  responds only to green
light, and the channel PMA responds only to violet light. The
electronic gate is opened (for 9 ns - this is twice the mean lifetime
and corresponds to an 85% probability that the photon has been
emitted) when green light is detected by PMO . If, while the gate is
open, violet light is emitted by the same atom towards(not all of the
violet photons go towards the source) PMA, then PMA detects this
photon, producing a signal that passes through the gate and is
counted in NA. The counter NO  registers the number of green photons
detected by PMO . It turns out that N NA O<< . As the observation period
becomes very long(approximately 5 hours), the ratio N NA O/  tends to a
limit that is characteristic of the apparatus. It represents the
probability of detecting a violet photon in PMA during the 9 ns
following the detection of a green photon by PMO .

The purpose of this arrangement is to use a green photon in order to
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open a 9 ns time window, in which to detect a violet photon emitted



by the same atom. As we shall see, there is only an extremely small
probability of detecting through the same window another violet
photon emitted by a different atom.

We will assume that a second observer is in the lab. This observer
always feels compelled to present what he thinks are "simple-minded
truths" using ordinary words. We will called this second observer
Albert. Albert, as we shall see, has a tendency to use, one after
another, the three phrases, "I observe", "I conclude", and "I
envisage". Consulted about the above experiment, Albert states, with
much confidence,

I observe that the photomultiplier PMA detects violet light
when the source S is on, and that it ceases to detect anything
when the source is off. I conclude that the violet light is
emitted by S, and that it travelled from S to PMA.

I observe that energy is transferred between the light and the
photomultiplier PMA always in the same amount, which I will
call a quantum.

I envisage the quanta as particles, emitted by the source,
propagating freely from S to PMA, and absorbed by the detector.
I shall call this quanta photons.

Albert stops talking at this point.

2. The second stage of the experiment introduces the concept of
individual photons (see figure below)

 
Interference with a single photon (second stage). In this
sketch, solid lines are optical paths and dashed lines
are electrical connections
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Across the path of the violet light one places a half-silvered mirror



LSa , which splits the primary beam into two secondary beams(equal
intensity), one transmitted and detected by PMA, the other reflected
and detected by PMB. As in the first stage, the gate is opened for
9 ns, by PMO . While it is open, one registers detection by either
PMA (counted as NA); or by PMB (counted as NB); or by both, which we
call a coincidence (counted as NC ). The experiment runs for 5 hours
again and yields the following results:

(a) The counts NA and NB are both of the order of 105. By 
    contrast, NC  is much smaller, being equal to 9.

(b) The sequence of counts from PMA is random in time, as is the
    sequence of counts from PMB.

(c) The very low value of NC  show that counts in PMA and PMB

         are mutually exclusive (do not occur at same time).

The experimenters analyze the value of NC  in depth; their reasoning
can be outlined as follows:

(a) Suppose two different atoms each emit a violet photon, one
    being transmitted to PMA and the other reflected to PMB,
    with both arriving during the 9 ns opening of the gate; then
    the circuitry records a coincidence. In the regime under
    study, and for a run of 5 hours, quantum theory predicts
    that the number of coincidences should be NC = 9. The fact
    that this number is so small means that, in practice, any
    given single photon is either transmitted or reflected.

(b) If light is considered as a wave, split into two by LSa  and
    condensed into quanta on reaching PMA and PMB, then one
    would expect the photon counts to be correlated in time,
    which would entail NC >> 9. Classically speaking this would
    mean that we cannot have a transmitted wave without a 
    reflected wave.

(c) Experiment yields NC = 9; this quantum result differs from
    the classical value by 13 standard deviations; hence the
    discrepancy is very firmly established, and allows us to
    assert that we are indeed dealing with a source of 
    individual photons.

Albert leaves such logical thinking to professionals. Once he notes
that NC  is very small, he is quite prepared to treat it as if it were
zero. He therefore says

I observe that light travels from the source to PMA

or to PMB, because detection ceases when the source
is switched off.

I observe the counts NA and NB correspond to a
game of heads or tails, in that the two possibilities
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are mutually exclusive, and that the counts are random.



I observe that the optical paths 1 and 2 are
distinguishable, because the experiment allows me to
ascertain, for each quantum, whether it has travelled
path 1 (detection by PMA) or path 2 (detection by PMB).

I envisage that, on arrival at the half-silvered
mirror, each photon from the source is directed at
random either along path 1 or along path 2; and I
assert that it is the nature of photons to play heads
or tails.

Digression: The Mach-Zender Interferometer and Quantum Interference

The next experiment uses a Mach-Zender interferometer so let us see
how it operates.

Background information:  Consider a single photon incident on a 50-50
beam splitter (that is, a partially transmitting, partially
reflecting mirror, with equal coefficients). Whereas classical
electromagnetic energy divides equally, the photon is indivisible.
That is, if a photon-counting detector is placed at each of the
output ports (see figure below), only one  of them clicks. Which one
clicks is completely random (that is, we have no better guess for one
over the other).

The input-output transformation of the waves incident on 50-50 beam
splitters and perfectly reflecting mirrors are shown in the figure
below.

     

(a) Show that with these rules, there is a 50-50 chance of either of
    the detectors shown in the first figure above to click.

According to the rules given
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Note: As we see from the experimental discussion below, the photon is
found at one detector or the other, never both. The photon is
indivisible. This contrasts with classical waves where half of the
intensity goes one way and half the other; an antenna would also
receive energy. We interpret this as the mean value of a large number
of photons.

(b) Now we set up a Mach-Zender interferometer(shown below):

    The wave is split at beam-splitter b1, where it travels either
    path b1-m1-b2(call it the green path) or the path b1-m2-b2
    (call it the blue path). Mirrors are then used to recombine the
    beams on a second beam splitter, b2. Detectors D1 and D2 are
    placed at the two output ports of b2.

    Assuming the paths are perfectly balanced (that is equal length),
    show that the probability for detector D1 to click is 100% - no
    randomness!

To find the wavefunctions impinging on detectors D1 and D2 let us
apply the transformation rules sequentially.

(1) Beamsplitter #1
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(2) Propagation a distance L/2 along each path mean that the phase of
the wavefunction changes by eikL / 2  so that the wavefunctions are
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(4) Propagation a distance L/2 along each path mean that the phase of
the wavefunction changes by eikL / 2  so that the wavefunctions are
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Thus, we have a 100% chance of detector D1 firing and a 0% chance of
detector D2 firing. There is no randomness.

(c) Classical logical reasoning would predict a probability for D1 to
    click given by

   P P transmission at b green path P green path P reflection at b blue path P blue pathD1 1 2= +( | ) ( ) ( | ) ( )

    Calculate this and compare to the quantum result. Explain .

Classical reasoning:

P P transmission at b green P green

P reflection at b blue P blue

D
probability of transmission at b given green path probability green path was taken

probability of transmission at b given blue path probability blue path was taken
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Now we know that there is a 50-50 probability for the photon to take
the blue or green path which implies that P green P blue( ) ( ) /= =1 2.

Also with the particle incident at b2 along the green path there is a
50% chance of transmission and similarly for reflection of the blue
path.

Therefore,
P transmission at b green P reflection at b blue( | ) ( | ) /2 2 1 2= =
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so that classical reasoning implies a 5-0-50 chance of D1 firing,
that is, it is completely random !

The quantum case is different because the two paths which lead to
detector D1 interfere. For the two paths leading to D1 we have
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where the last two terms are the so-called interference terms. Thus,
PD1 1= . The paths that lead to detector D2 destructively interfere so
that

PD2 0=

(d) How would you set up the interferometer so that detector D2
    clicked with 100% probability? How about making them click at
    random? Leave the basic geometry the same , that is, do not change
    the direction of the beam splitters or the direction of the
    incident light.

We now want constructive interference for the paths leading to D2 and
destructive interference for D1.

We can achieve this by changing the relative phase of the two paths
by moving the mirror so that the path lengths are not the same.

Suppose we move the mirror on the green path (at an angle of 45
degrees) so that the path length in the green path are both changed
to L L+ D . We then have
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Similarly we have
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Therefore, to achieve PD1 0=  and PD2 1=  we choose
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3. The third stage consists of an interference experiment as shown in
the figure below.

 
Interference with a single photon (third stage). In this
sketch, solid lines are optical paths and dashed lines
are electrical connections.

A so-called Mach-Zehnder interferometer is used, allowing one to
obtain two interference profiles. The beam of violet light from the
source S is split into two by the mirror LSa . After reflection from
two different mirrors, these secondary beams meet on a second
half-silvered mirror LSb . Here, each secondary beam is further split
into two; thus one establishes two interference regions, region
(1',2') where one places PMA, and region (1",2") where one places
PMB.

A very high precision piezoelectric system allows one of the mirrors
to be displaced so as to vary the path difference between the two
arms of the interferometer. In this way one can shift the pattern of
interference fringes by regular steps, without moving the detectors
PMA and PMB; the standard step corresponds to a change of l / 50 in
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the difference between the two optical paths.



A sweep, taking 15 sec for each standard step, yields two
interference plots corresponding, respectively, to the paths (1',2')
and (1",2"); the fringes have good contrast(difference in intensity
between maxima and minima), and their visibility

N N N NA A A A,max ,min ,max ,min/-( ) +( )
was measured as 98% as shown in the figure below:

The two interference plots obtained with the Mach-Zehnder
interferometer. Note that the maximum counting rates in
PMA correspond to minima in PMB, indicating a relative
displacement of l / 2 between the two interference patterns.

If we recall that we are reasoning in terms of photons, and that the
photons are being processed individually, then we must admit that the
interference does not stem from any interaction between successive
photons, but that each photon interferes with itself.
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What would Albert have to say? He seems exasperated but is still



polite. His statements are brief:

I observe that the optical paths differ in length between LSa

and LSb , and are then coincident over (1',2') and over (1",2").

In PMA I observe a process that seems perfectly natural to me,
namely

light light light+ ®

In PMB I observe a process that I find astounding, namely

light light darkness+ ®

Such superposition phenomena with light I shall call 
interference, constructive in PMA and destructive in PMB.

In the situation considered before, I envisaged light as 
consisting of particles called photons, which travelled either
along path 1 or along path 2. In the present situation I want to
know for each individual photon which path it has travelled; to
this end I should like to ask you to close off path 2, since
this will ensure that the photons travel by path 1.

Clearly Albert is perturbed. He awaits the new experimental results
with some anxiety.

On closing either path, whether 1 or 2, one observes that all
interference phenomena disappear. For instance, instead of a very
high count NA and a very low count NB, we now obtain essentially
equal counts from PMA and PMB.

Albert is visibly displeased and now very wary. He then continues
with his analysis of the experiment:

I observe that in order to produce interference phenomena it is
necessary to have two optical paths of different lengths, both
open.

Whenever a photon is detected, I note my inability to ascertain
whether the light has travelled by path 1 or by path 2, because
I have no means for distinguishing between the two cases.

If I were to suppose that photons travel only along 1, then this
would imply that path 2 is irrelevant, which is contrary to what
I have observed. Similarly, if I were to suppose that photons
travel only along 2, then this would imply that path 1 is 
irrelevant, which is also contrary to my observations.

If I envisage the source S as emitting particles, then I am
forced to conclude that each individual photon travels 
simultaneously along both paths 1 and 2; but this result 
contradicts the results of the previous experiment (second 
stage), which compelled me to envisage that every photon 
chooses, at random, either path 1 or path 2.
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I conclude that the notion of particles is unsuited to 



explaining interference phenomena.

I shall suppose instead that the source emits a wave; this wave
splits into two at LSa , and the two secondary waves travel one
along path 1 and the other along path 2. They produce 
interference by mutual superposition on LSb  constructively in
(1',2') and destructively in (1",2"). At the far end of (1',2')
or of (1",2") I envisage each of the waves condensing into 
particles, which are then detected by the photomultipliers 
(essentially by PMA since the contrast is 98% means only very
few photons are detected by PMB).

It seems to me that I am beginning to understand the situation.
I envisage light as having two complementary forms: depending on
the kind of experiment that is being done, it can manifest 
itself either as a wave, or as a particle, but never as both
simultaneously and in the same place. Thus, in the experiment
where the path followed by the light cannot be ascertained 
(third stage), light behaves first like a wave, producing 
interference phenomena; but it behaves like a particle when,
afterwards, it is detected through the photoelectric effect. I
conclude that light behaves rather strangely, but nevertheless I
have the impression that its behavior can be fully described
once one has come to terms with the idea of wave-particle 
duality.

Albert leaves the room slowly, hesitantly, even reluctantly. He might
be impressed by all the completeness of all that he has just
described or maybe he is worried that more needs to be said.

In fact, something does remain to be said, since the problem of
causality remains open. Let us look carefully at the experimental
layouts in the second and third stages: we see that they have LSa  in
common, and that they differ only beyond some boundary (indicated by
the dashed circle downstream from LSa ). We have stated that light
behaves like a particle or like a wave depending on whether or not
one can ascertain the path it takes through the apparatus; but in the
two experiments under consideration, the choice between the
alternatives must be decided on LSa , before  the light has crossed the
crucial boundary, that is, at a stage where nothing can as yet
distinguish between the two kinds of apparatus, since they differ
only beyond the point of decision. It is as if the light "chose"
whether to behave like a wave or like a particle before "knowing"
whether the apparatus it will pass through will elicit interference
phenomena or the photoelectric effect. Hence the question of
causality is indeed opened up with vengeance.

Albert comes back abruptly. He is disconcerted and wearily says:

Originally I supposed that light would behave like a wave or
like a particle, depending on the kind of experiment to which it
was being subjected.

I observe that the choice must be made on the half-silvered
mirror LSa , before the light reaches that part of the apparatus
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where the choice is actually implemented; this would imply that



the effect precedes the cause.

I know that both waves and particles obey the principle of 
causality, that is, that cause precedes effect.

I conclude that light is neither wave nor particle; it behaves
neither like waves on the sea, nor like projectiles fired from a
gun, nor like any other kind of object that I am familiar with.

I must ask you to forget everything I have said about this 
experiment, which seems to me to be thoroughly mysterious.

Albert leaves, but quickly returns with a contented smile, and his
final statement is not without a touch of malice.

I observe in all cases that the photomultipliers register quanta
when I switch on the light source.

I conclude that "something" has travelled from the source to the
detector. This "something" is a quantum object, and I shall
continue to call it a photon, even though I know that it is
neither a wave nor a particle.

I observe that the photon gives rise to interference when one
cannot ascertain which path it follows; and that interference
disappears when it is possible to ascertain the path.

For each detector, I observe that the quanta it detects are
randomly distributed in time.

If I repeat the experiment several times under identical 
conditions, then I observe that the photon counts registered by
each photomultiplier are reproducible in a statistical sense.
For example, suppose that in the first and in the second 
experiments PMA registers NA© and NA"  respectively; then one can
predict that NA"  has a probability of 0.68 of being in the 
interval N NA A© ( © )/± 1 2.

Thus, these counts enable me to determine experimentally, for
any kind of apparatus, the probability that a given detector
will detect a quantum, and it is precisely such probabilities
that constitute the results of experiments.

I assert that the function of a physical theory is to predict
the results of experiments.

What I expect from theoretical physicists is a theory that will
enable me to predict, through calculation, the probability that
a given detector will detect a photon. This theory will have to
take into account the random behavior of the photon, and the
absence or presence of interference phenomena depending on 
whether the paths followed by the light can or cannot be 
ascertained.

Albert leaves, wishing the physicists well in their future endeavors.

Physicist have indeed worked hard and the much desired theory has

Page 13

indeed come to light, namely, quantum mechanics, as we have seen in



our discussions. As we have seen, it applies perfectly not only to
photons, but equally well to electrons, protons, neutrons, etc; in
fact, it applies to all the particles of microscopic physics. For the
last 75 years it has worked to the general satisfaction of
physicists.

Meanwhile, it has produced two very interesting problems of a
philosophical nature.

1. Chance as encountered in quantum mechanics lies in the very nature
   of the coupling between the quantum object and the experimental
   apparatus. No longer is it chance as a matter of ignorance or
   incompetence: it is chance quintessential and unavoidable .

2. Quantum objects behave quite differently from the familiar objects
   of our everyday experience: whenever, for pedagogical reasons, one
   allows an analogy with macroscopic models like waves or particles,
   one always fails sooner or later, because the analogy is never
   more than partially valid. Accordingly, the first duty of a
   physicist is to force her grey cells, that is her concepts
   and her language, into unreserved compliance with quantum
   mechanics (as we have been attempting to do); eventually this will
   lead her to view the actual behavior of microsystems as perfectly
   normal. As a teacher of physics, our duties are if anything more
   onerous still, because we must convince the younger generations
   that quantum mechanics is not a branch of mathematics, but an
   expression of our best present understanding of physics on the
   smallest scale; and that, like all physical theories, it is
   predictive.

In this context, let us review the basic formalism of quantum
mechanics.

Basic Formalism

We will introduce the elements of quantum mechanics as axioms.
Physicists have devised a new mathematical tool. The transition
amplitude from initial to final state, and it is this amplitude that
enables one to calculate the needed probabilities.

(1) For the experiment where the photon travels from the source S to
the detector PMA (see figure (a) below), we write the transition
amplitude from S to PMA as

photon arriving at photon leaving SPMA

As we know, this is a complex number and it is read from right to
left. We write it more symbolically as f i  which simply means the
transition amplitude from initial to final state.

The transition probability from the initial state i  to the final
state f  is given by

f i
2

(2) If the photon emitted by the source can take either of two paths,
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and if it is, in principle, possible to ascertain which path it



actually does take (figure (b) below) then there are two transition
amplitudes:

photon arriving at photon leaving S

photon arriving at photon leaving S

PM

PM

A

B

which we symbolize simply as

f i f i1 2,

In this case there are two probabilities:

f i f i1

2

2,

The total probability is their sum:

f i f i1

2

2+

More generally, we would write

f i f ik
k

2 2
= å   where the sum is over all possible paths

Three arrangements sufficient to determine the transition
amplitude: (a) a single optical path; (b) two paths,
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allowing us to ascertain which path has actually been



taken; (c) two paths, not allowing us to ascertain which
path has actually been taken.

(3) If a photon is emitted by the source S can take either of two
    paths, but it is impossible to ascertain which path it does take
    (figure (c) above), then there are again two transition
    amplitudes:

photon arriving at photon leaving S

photon arriving at photon leaving S

along path 1

along path 2

PM

PM

A

B

    which we symbolize simply as

f i f i
1 2

,

    To allow for interference, we assert that in this case it is the
    amplitudes that must be added; the total amplitude reads

f i f i f i= +
1 2

    The total probability is:

f i f i
1 2

2
+

    More generally, we would write

total amplitude: f i f i
k

k

= å

total probability: f i f i
k

k

2
2

= å

    where the sums are over all possible paths.

(4) If one wants to analyze the propagation of the light more
    closely, one can take into account its passage through the
    half-silvered mirror LSa , considering this as an intermediate
    state (figure (b) above). The total amplitude for path 1 is

photon arriving at photon leaving SPMA

    However, it results from two successive intermediate amplitudes:

photon arriving at photon leaving S

photon arriving at photon leaving 

LS

PM LSA

a

a

    Here we consider the total amplitude as the product of the
    successive intermediate amplitudes; symbolically, labelling the
    intermediate state as n , we have

f i f i= n n
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    Finally, consider a system of two mutually independent photons.



    If photon 1 undergoes a transition from a state i1 to a state f1,
    and photon 2 from a state i2 to a state f2 , then

f f i i f i f i1 2 1 2 1 1 2 2=

The four rules just given suffice to calculate the detection
probability in any possible experimental situation. They assume their
present form as a result of a long theoretical evolution; but they
are best justified a posteriori , because in 75 years they have never
been found to be wrong. Accordingly, we may consider them as the
basic principles governing the observable behavior of all microscopic
objects, that is, objects whose action on each other are of order   h
(Planck's constant). From these principles (they are equivalent to
our earlier postulates - just look different because we are using the
amplitude instead of the state vector as the fundamental mathematical
object in the theory) one can derive all the requisite formalism,
that is, all of quantum mechanics.

Quantum mechanics as we have described it earlier and also above,
works splendidly, like a well-oiled machine. It, and its basic
principles, might therefore be expected to command the assent of
every physicist; yet it has evoked, and on occasion continues to
evoke, reservations both explicit and implicit. For this there are
two reasons:

(1) Quantum mechanics introduces unavoidable chance, meaning that
    its characteristic randomness is inherent in the microscopic
    phenomena themselves.

(2) It attributes to microscopic objects properties so unprecedented
    that we cannot represent them through any macroscopic analogs or
    models.

Both features are revolutionary, and it is natural that they should
have provoked debate. On the opposite sides of this debate we find
two great physicists, Neils Bohr and Albert Einstein, and we will now
discuss how the debate evolved from its beginnings in 1927 to its
conclusion in 1983 (that is 56 years!).

Inseparable Photons (the EPR Paradox)

Though ornithologists have known about inseparable parrots for a long
time, to physicists the existence of inseparable photons has been
brought home only during the last two decades, through a beautiful
series of experiments by Alain Aspect and his research group at Orsay
Laboratory in Paris. The experiments are exemplary, in virtue both of
the difficulties they had to overcome and the results achieved, which
are exceptionally clear-cut. In fact, the significance of the
experiments extends  beyond the strict confines of physics, because
they provide the touchstone for settling a philosophical debate that
has divided physicist for 75 years. The division dates back to the
appearance of two mutually contradictory interpretations of quantum
mechanics at the Como conference in 1927. To sketch the debate, we
start with a brief summary of the philosophy of physics.

The Philosophical Stakes in the Debate
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Our summary is best presented diagrammatically as shown in the figure
below:

The philosophical elements in a debate between physicists.

(1) For the physicist who is a realist , a physical theory reflects
    the behavior of real objects, whose existence is not brought into
    question.

(2) For the physicist who is a positivist , the purpose of a physical
    theory is to describe the relations between measurable
    quantities. The theory does not tell one whether anything
    characterized by these quantities really exists, nor even whether
    the question makes sense.

(3) For the physicist who is a determinist , exact knowledge of the
    initial conditions and of the interactions allows the future to
    be predicted exactly. Determinism is held to be a universal
    characteristic of natural phenomena, even about those which we
    know, as yet, little or nothing. In this framework, any recourse
    to chance merely reflects our own ignorance.

(4) For the physicist who is a probabilist, chance is inherent in the
    very nature of microscopic phenomena. To her, determinism is a
    consequence, on the macroscopic level, if the laws of chance
    operating on the microscopic level; it is appropriate to
    measurements of mean values of quantities whose relative
    fluctuations are very weak.

From these four poles, realism, positivism, determinism, and chance,
the physicist chooses two, one on each axis. Though sometimes the
choice is made in full awareness of what it entails, most often it is
made subconsciously. In our description of quantum mechanics, we
might adopt without reservations, the point of view of the elementary
particle physicist. For a start, she believes firmly in the existence
of particles, since she spends her time in accelerating, deflecting,
focusing, and detecting them. Even though she has never seen or
touched them, to her their objective existence is not in any doubt.
Next she observes that they impinge on the detectors quite
erratically, whence she has no doubts, either, that their behavior is
random. Accordingly, the elementary particle experimentalist has
chosen realism and chance, most often without realizing that she has
made choices at all.
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fully open: realism and determinism are the choices of Albert
Einstein; positivism and chance are those of Neils Bohr. They are
well acquainted and each thinks very highly of the other: which is no
bar to their views being incompatible, nor to the two men
representing opposite poles of the debate.

From Como to Brussels (1927-30)

On September 26,1927, in Como, Niels Bohr delivered a memorable
lecture. His stance is that of an enthusiastic champion of the new
quantum mechanics. He puts special weight on the inequalities proved
by Heisenberg the year before:
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They imply that it is impossible to define exact initial conditions
for a microscopic object, which automatically makes it impossible to
construct, on the microscopic scale, a deterministic theory patterned
on classical mechanics. Only a probabilistic theory is possible, and
that theory is quantum mechanics.

Einstein disagrees with this point of view, and his opposition to
Bohr's theses becomes public at the Brussels conference in 1930: he
adopts the role of a dissenter who knows precisely how to press home
the most difficult questions. Deeply shocked by the retreat from
determinism, he tries to show via his thought (gedanken) experiments
he can contravene the Heisenberg inequalities.

At the cost of several sleepless nights devoted to analyzing the
objections of his adversary, Bohr refutes all of Einstein's
criticisms, and emerges from the conference as the undoubted winner.

From Brussels to the EPR Paradox (1930-35)

Having lost the argument at Brussels, Einstein tries to define his
objections with ever greater precision. Believing as he does that
position and momentum exist objectively and simultaneously , he
considers quantum mechanics to be incomplete and merely provisional.
The points of view of the two antagonists at this stage of the debate
can be spelled out as follows.

For Einstein, a physical theory must be a deterministic and a
complete representation of the objective reality underlying the
phenomena. It features known variables that are observable, and
others, unknown as yet, called hidden variables . Because of our
provisional ignorance of the hidden variables, matter at the
microscopic level appears to us to behave arbitrarily, and we
describe it by means of a theory that is incomplete and
probabilistic, namely by quantum mechanics.

For Bohr, a physical theory makes sense only as a set of relations
between observable quantities. Quantum mechanics supplies a correct
and complete description of the behavior of objects at the
microscopic level, which means that the theory itself is likewise
complete. The observed behavior is probabilistic, implying that
chance is inherent in the nature of the phenomena.
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Between chance as a matter of ignorance, as advocated by Einstein,
and chance unavoidable, as advocated by Bohr, the debate does not
remain merely philosophical. Quite naturally it returns to the plane
of physics with the thought experiment proposed by Einstein, Podolsky
and Rosen in 1935, which in their view proves that quantum mechanics
is indeed incomplete. Their thought experiment is published as a
paper in the Physical Review, but it is so important that it
reverberates as far as the New York Times. Physicists call the
proposal the EPR paradox, after its proponents. It will take fifty
years to untangle the question, first in theory and then by
experiment. We will not, of course, follow these fifty years blow by
blow; instead, we confine attention to three decisive stages reached
respectively in 1952, 1964, and 1983. But we start with an
illustration that helps one see what the EPR paradox actually is.

Elementary Introduction to the EPR Paradox (cards instead of gloves)

Consider two playing cards, one red(diamond) and one black(spade) as
shown below:

Two playing cards help us understand
the stakes in the EPR paradox.

An experimenter in Lyons puts them into separate envelopes which she
then seals. She is thus provided with two envelopes looking exactly
alike, and she puts both into a container. She shakes the container
so as the "shuffle the pack", and the system is ready for the
experiment.

At 8:00 two travellers, one from Paris and one from Nice, come to the
container (in Lyons), take one envelope each, and then return to
Paris and Nice, respectively. At 14:00 they are back at their
starting points; each opens her envelope, looks at the card, and
telephones to Lyons reporting the color. The experiment is repeated
every day for a year, and the observer in Lyons keeps a careful
record of the results. At the end of the year the record stands as
follows:
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1. The reports from Paris are "red" or "black", and the sequence of
   these reports is random. The situation is exactly the same as in a
   game of heads or tails, and probability of each outcome is 1/2.

2. The reports from Nice are "red" or "black", and the sequence of
   these reports is random. Here too probability of each outcome is
   1/2.

3. When Paris reports "red", Nice reports "black"; when Paris reports
   "black", Nice reports "red". One sees that there is perfect(anti)
   correlation between the report from Paris and the report from
   Nice.

Accordingly, the experiment we have described displays two features:

(1) It is unpredictable  and thereby random at the level of individual
    observations in Paris and Nice.

(2) It is predictable , by virtue of the correlation, at the level
    where one observes the Paris and the Nice results simultaneously.

Einstein and Bohr might have interpreted the correlation as follows.

According to Einstein , the future of the system is decided at 8:00
when the envelopes are chosen, because he believes that the contents
of the two envelopes differ. Suppose, for instance, that Paris has
(without knowing it) drawn a red card, and Nice the black. The colors
so chosen exist in reality, even though we do not know them. The two
cards are moved, separately, by the travellers between 8:00 and
14:00, during which time they do not influence each other in any way.
The results on opening the envelopes read "red" in Paris and "black"
in Nice. Since the choice at 8:00 was made blind, the opposite
outcome is equally possible, but the results at 14:00 are always
correlated (either red/black or black/red). This correlation at 14:00
is determined by the separation of the colors at 8:00, and we say the
theory proposed by Einstein is realist, deterministic, and
separable(or local) , by virtue of a hidden variable, namely, the
color.

According to Bohr , there is a crucial preliminary factor, inherent in
the preparation of the system. On shaking the container with the two
envelopes, one loses information regarding the colors. Afterwards,
one only knows that each envelope contains either a red card
(probability 1/2) or a black card (probability 1/2). We will
therefore say that a given envelope is in a "brown state", which is a
superposition of a red state and of a black state having equal
probabilities. At 8:00 the two envelopes are identical: both are in a
"brown state", and the future of the system is still undecided. There
is no solution until the envelopes are opened at 14:00, since it is
only the action of opening them that makes the colors observable. The
result is probabilistic. There is a probability 1/2 that in Paris the
envelope will be observed to go from the "brown state" to the red,
while the envelope in Nice is observed to go from the "brown state"
to the black; there is the same probability 1/2 of observing the
opposite. But the results of the observations on the two envelopes
are always correlated, which means that there is a mutual influence
between them, in particular at 14:00; in fact it is better to say
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even though one is in Paris and the other is in Nice. Accordingly,
the theory proposed by Bohr is positivist, probabilistic
(non-deterministic) and non-separable(non-local) , interrelating as it
does the colors that are actually observed.

Einstein's view appears to be common sense, while it must be admitted
that Bohr's is very startling; however, the point of this macroscopic
example is, precisely, to stress how different the quantum view is
from the classical.

Proceeding with impeccable logic but from different premises, both
theories predict the same experimental results. Can we decide between
them? At the level considered here it seems we cannot: for even if
the envelopes were opened prematurely while still in Lyons, one would
merely obtain the same results at a different time, and without
affecting the validity of either interpretation. The solution to the
problem must be looked for at the atomic level, by studying the true
EPR set-up itself.

The EPR Paradox (1935-52)

Albert Einstein, Boris Podolsky, and Nathan Rosen meant to look for
an experiment that could measure, indirectly but simultaneously, two
mutually exclusive quantities like position and momentum. Such
results would contravene the predictions of quantum mechanics, which
allows the measurement of only one such quantity at any one time;
that is why the thought experiment is called the EPR paradox.

In 1952, David Bohm showed that the paradox could be set up not only
with continuously varying quantities like position and momentum, but
also with discrete quantities like spin. This was the first step
towards any realistically conceivable experiment. Meanwhile,
objectives have evolved, and nowadays it is more usual to talk of the
EPR scenario, meaning some sensible experiment capable of
discriminating between quantum theory and hidden-variable theories.
Such a set-up is sketched in the figure below.

The simplest EPR scenario

A particle with spin 0 decays, at S, into two particles of spin 1/2,
which diverge from S in opposite directions. Two Stern-Gerlach type
detectors A and B measure the x-components of the spins. Two types of
response are possible:

(1) "spin up" at A, "spin down" at B, a result denoted by (+1,-1)

(2) "spin down" at A, "spin up" at B, a result denoted by (-1,+1)
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Einstein reasons that if pairs of particles produced at S elicit
different responses (+1,-1) and (-1,+1) from the detector system A,B,
then the pairs must have differed already at S, immediately after the
decay. It must be possible to represent this difference by a hidden
variable l , which has an objective meaning, and which governs the
future of the system . After the decay the two particles separate
without influencing each other any further, and eventually they
trigger the detectors A and B.

Bohr reasons that all the pairs produced at S are identical. Each
pair constitutes a non-separable system right up to the time when the
photons reach the detectors A and B. At that time we observe the
response of the detectors, which is probabilistic, admitting two
outcomes (+1,-1) and (-1,+1).

To sum up, Einstein restricts the operation of chance to the instant
of decay (at S), whose details we ignore, but which we believe
creates pairs whose hidden variables l  are different. By contrast,
Bohr believes that chance operates at the instant of detection, and
that it is inherent in the very nature of the detection process: this
chance is unavoidable. We are still in the realms of thought, and
stay there up to 1964.

In 1964, the landscape changes: John Bell, a theorist at CERN, shows
that it is possible to distinguish between the two interpretations
experimentally. The test applies to the EPR scenario; it is refined
by Clauser, Horne, Shimony, and Holt, whence it is called the BCHSH
inequality after its five originators.

The BCHSH Inequality (1964)

To set up an EPR scenario, one first needs a source that emits
particle pairs. Various experimental possibilities have been
explored:

(1) atoms emitting two photons in cascade

(2) electron-positron annihilation emitting two high-energy photons

(3) elastic proton-proton scattering

It is solution (1) that has eventually proved the most convenient; it
has been exploited by Alain Aspect at the Institute for Optics in
Paris, in particular.

Next one needs detectors whose response can assume one of two values,
represented conventionally by +1 and -1. Such a detector might be

(1) for spin 1/2 particles, a Stern-Gerlach apparatus responding to
    "spin up" or "spin down"

(2) for photons, a polarizer responding to "parallel polarization" or
    "perpendicular polarization"

Our sketch of the EPR scenario can now be completed as in the figure
below.
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    The most general EPR scenario

(a) views the apparatus perpendicularly to axis, 
    showing the two detectors A and B, with their
    polarizing directions denoted as   

r
A and   

r
B

(b) views the apparatus along its axis, and shows
    that the analyzing directions of the two
    detectors are not parallel, but inclined to
    each other at an angle q

(c) also a view along the axis of the apparatus,
    and shows the actual settings chosen by Aspect:
    two orientations are allowed for each detector,
      

r
A1 or   

r
A2  for one, and   

r
B1 or   

r
B2  for the other.

We adopt the following conventions:

(1) a = ±1 is the response of detector A when oriented along   
r
A

(2) b = ±1 is the response of detector B when oriented along   
r
B

Since each detector has two possible orientations, called 1 and 2, we
shall denote their responses as a 1, a 2 and b1, b2  respectively.

Now consider the quantity g  defined by

g a b a b a b a b= + + -1 1 1 2 2 1 2 2

where the symbol ...  denotes the mean value over very many measured
events. We call g  the correlation function  of the system.
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Its authors have proved that it must be satisfied if mechanics at the
microscopic level constitutes a theory that is realist,
deterministic, and separable: or in other words if the theory
contains a hidden variable. A sketch of the a proof is shown below.

A Proof of Bell's Inequality

A theory that is deterministic and separable:

Suppose that the pair a, b emerging from S can be characterized by a
hidden variable l . The responses of the detectors A, B are   a l( , )

r
A  and

  b l( , )
r
B  respectively as shown in the figure below.

The theory is deterministic and separable:

(1) deterministic , because the results are determined by the
         hidden variables plus the settings   

r
A and   

r
B;

(2) separable , because the response of A is independent of the
         response of B, and vice versa

Since the value of l  is unknown and different for each pair, the
responses of A and B seem random. Lacking information about l , we
characterize it by choosing a statistical distribution r l( ) , which
then allows us to derive the distribution of the responses   a l( , )

r
A  and

  b l( , )
r
B , which can be compared with experiment.

Bell's inequalities have the great virtue that they apply to any
hidden variable theory, irrespective of the choice of r l( ) .

Theorem 1.  Consider the four numbers a 1, a 2, b1, and b2 , each of which
can assume only the values 1 or -1. Then the combination

g a b a b a b a b= + + -1 1 1 2 2 1 2 2

can assume only the values 2 and -2.

To prove the theorem, one constructs a truth table for all 16
possibilities, which shows that 2 and -2 are indeed the only possible
values of g .
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a a b b g1 2 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

1 1

-

- -

- - -

-

- -

- - -

- - - -

- -

- -

- - -

- - -

- - -

- - - -

- - - 11 1 2

1 1 1 1 2- - - -

Theorem 2.  Consider very many sets of four numbers ( a 1, a 2, b1, b2 ). The
mean value of g  lies in the range [-2,2]. In other words,

- £ £2 2g

This is obvious, because every value of g  lies in this range, and so
therefore must the mean. The endpoints are included in order to allow
for limiting cases.

Note that both theorems are purely mathematical, neither involves any
assumptions about physics.

The BCHSH Inequality(or Bell's inequality in the real world)

Within the framework of a theory that is realist, deterministic, and
separable, we can describe the photon pair in detail. Realism leads
us to believe that polarization is an objective property of each
member of the pair, independent of any measurements that may be made
later. Determinism leads us to believe that the polarizations are
uniquely determined by the decay cascade, and that they are fully
specified by the hidden variable l , which governs the correlation of
the polarizations in A and B. Finally, separability leads us to
believe that the measurements in A and B do not influence each other,
which means in particular that the response of detector a is
independent of the orientation of detector B.

Now consider a pair of photons a, b, characterized by a hidden
variable l . The response of the apparatus in its four settings would
be as follows:

Page 26



a 1 and b1 in the orientation (   
r
A1,   

r
B1)

a 2 and b2  in the orientation (   
r
A2 ,   

r
B2 )

a 1© and b2© in the orientation (   
r
A1,   

r
B2 )

a 2© and b1© in the orientation (   
r
A2 ,   

r
B1)

Recall that the variables a  and b  can only take on the values 1 and
-1.

It is impossible in practice to make four measurements on one and the
same pair of photons, because each photon is absorbed in the first
measurement made on it; that is why we have spoken conditionally,
that is, of what results would be(a COUNTERFACTUAL statement) . But if
we believe that the photon correlations are governed by a theory that
is realist, deterministic, and separable, then we are entitled to
assume that the responses, of type a  or type b , depend on properties
that the photons possess before the measurement, so that the
responses correspond to some objective reality. In such a framework
we can appeal to the principle of separability, which implies, for
instance, that detector A would give the same response to the
orientations (   

r
A1,   

r
B1) and (   

r
A1,   

r
B2 ), because the response of A is

independent of the orientation of B. Mathematically, this is
expressed by the relation

a a1 1= ©

Similarly one finds
a a2 2= ©  ,  b b1 1= ©  ,  b b2 2= ©

Thus, we have shown that, for a given pair of photons, all possible
responses of the apparatus in its four chosen settings can be
specified by means of only four two-valued variables a 1, a 2, b1, and b2 .
This reduction from eight to four variables depends on the principle
of separability. In this way, we are led to a situation covered by
Theorem 2, and therefore - £ £2 2g .

By making many measurements for each of the four settings we can
determine the four mean values a b a b a b a b1 1 1 2 2 1 2 2, , , ,and thus the mean
value of the correlation

g a b a b a b a b= + + -1 1 1 2 2 1 2 2

Otherwise, that is according to quantum mechanics (which is
positivist, probabilistic, and non-separable), there are cases where
the BCHSH inequality is violated. In particular, one can show that
for photons in the configuration chosen by Aspect quantum mechanics
yields

g q q= -3 2 6cos cos

This leads to values well outside the interval [-2,2], for example to
g = 2 2 when q = °22 5.  and to g = - 2 2 when q = °67 5. .

Proof:  The laboratory reference frame Oxyz serves to specify the
orientations of detectors and polarizers as shown in the figure
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Before any measurements have been made, the photon pair a, b forms a
non-separable entity, represented by the vector

F = +( )1
2

x x y yA B A B, ,

The act of measurement corresponds to passage to the f -basis. Hence,
we require the transition amplitudes from the two states x xA B, , y yA B,
to the four states f fA B, , f f pA B, /+ 2 , f p fA B+ / ,2 , f p f pA B+ +/ , /2 2 .

In the f -basis we have

F =
- - - +

+ - + + - + +

æ

è
ç

ö

ø
÷

1
2

2

2 2 2

cos( ) , sin( ) , /

sin( ) / , cos( ) / , /

f f f f f f f f p

f f f p f f f f p f p

B A A B B A A B

B A A B B A A B               

The square of each amplitude featured here represents the detection
probability. For example, the probability if simultaneously detecting
photon a polarized at the angle f A  and the photon b polarized at the
angle f B is

1
2

1
2

2
2cos( ) cos ( )f f f fB A B A-æ

è
ö
ø

= -

By convention, we write the responses of detector A to a photon in
state f A  (respectively f pA + / 2  as a =1; similarly with b  for
detector B.

Let us analyze the four possible responses:

(1) f fA B,  gives a =1, b =1 so that ab =1; the probability is
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P B A++ = -
1
2

2cos ( )f f

(2) f f pA B, /+ 2  gives a =1, b = - 1 so that ab = - 1; the probability is

P B A+- = -
1
2

2sin ( )f f

(3) f p fA B+ / ,2  gives a = - 1, b =1 so that ab = - 1; the probability is

P B A-+ = -
1
2

2sin ( )f f

(4) f p f pA B+ +/ , /2 2  gives a = - 1, b = - 1 so that ab =1; the probability
    is

P B A-- = -
1
2

2cos ( )f f

The mean value of ab
AB

 follows immediately as

ab f f
AB B AP P P P= - - + = -++ +- -+ - - cos ( )2

The settings chosen by Aspect are as shown in the above figure.
Corresponding to it we have the four terms

a b ab f f q

a b ab f f q

a b ab f f q

a b ab f f q

1 1

1 2

2 1

2 2

1 1 1 1

1 2 1 2

2 1 2 1

2 2 2 2

2 2

2 2

2 2

2 6

= = - =

= = - =

= = - =

= = - =

A B B A

A B B A

A B B A

A B B A

cos ( ) cos

cos ( ) cos

cos ( ) cos

cos ( ) cos

For comparison with Bell's inequality, we introduce the correlation
function g :

g a b a b a b a b q q= + + - = -1 1 1 2 2 1 2 2 3 2 6cos cos

Thus, the BCHSH test turns the EPR scenario into an arena for
rational confrontation between the two interpretations; it remains
only to progress from thought experiments to experiments conducted in
the laboratory.

The Beginnings of the Experiment at Orsay (1976)

Alain Aspect's experiment studies the correlation between the
polarizations of the members of photon pairs emitted by calcium.
The light source is a beam of calcium atoms, excited by two focused
laser beams having wavelengths l ©= 406nm and l ©©= 581nm respectively.
Two-photon excitation produces a state having the quantum number
J = 0. When it decays, this state emits two monochromatic photons
having the wavelengths l 1 551 3= . nm and l 2 422 7= . nm respectively, in a
cascade of two electronic transitions from the initial J = 0 level to
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shown in the figure below

Excitation and decay of the calcium atom

The mean lifetime of the intermediate state is 4.7 ns. To simplify
the terminology, we shall call the l 1 551 3= . nm light green, and the
l 2 422 7= . nm light violet.

The polarizer, which works like a Wollaston prism shown below

The two-valued response of a Wollaston prism

is made of quartz or of calcite. It splits an incident beam of
natural (unpolarized) light into two beams of equal intensity,
polarized at 90° to each other. If only a single unpolarized photon is
incident, it emerges either in the state x , with probability 1/2, or
in the state y , with probability 1/2. Thus, the response of the
system is two-valued.
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The photon is detected by the photomultiplier tubes (PM) downstream



from the prism. Every electric pulse from these detectors corresponds
to the passage of a photon, allowing the photons to be counted. The
experimental layout is sketched in the figure below.

  
Sketch of the first Orsay experiment

It uses a coincidence circuit which registers an event whenever two
photons are detected in cascade. In this way four separate counts are
recorded simultaneously, over some given period of time. In the EPR
scenario envisaged by Bohm, where q = 0, the only possible responses
are (+1,-1) or (-1,+1) (in the situation realized by Aspect, the
angle q  is non-zero, and four different responses are possible).

(1) N++ , the number of coincidences corresponding to a =1 and b =1,
         that is, to ab =1
(2) N+- , the number of coincidences corresponding to a =1 and b = - 1,
         that is, to ab = - 1
(3) N-+ , the number of coincidences corresponding to a = - 1 and b =1,
         that is, to ab = - 1
(4) N- - , the number of coincidences corresponding to a = - 1 and b = - 1,
         that is, to ab =1

The resolving time of the coincidence circuit is 10 ns, meaning that
it reckons two photons as coincident if the they are separated in
time by no more than 10 ns. The mean life of the intermediate state
of the calcium atom is 4.7 ns. Therefore, after a lapse of 10 ns,
that is more than twice the mean lifetime, almost all the atoms have
decayed (actually 88%). In other words, the efficiency of the
coincidence counter is very high.

The experiment consists in counting, over some given time interval,
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of events is N N N N N= + + +++ +- -+ - - .

Accordingly, the different kinds of coincidence have probabilities

P N N++ ++= /   corresponding to ab =1
P N N+- +-= /   corresponding to ab = - 1
P N N-+ -+= /   corresponding to ab = - 1
P N N- - - -= /   corresponding to ab =1

and the measured average of ab  is

ab =
- - +++ +- -+ - -N N N N

N

Each set of four coincidence counts corresponds to one particular
setting of   

r r
A B, , and yields a mean value ab . But in order to

determine the correlation function g  used in the BCHSH inequality,
we need four mean values ab . Therefore, we choose, in succession
four different settings as shown in figure(c) on page 20; four
counting runs then yield the four mean values a b a b a b a b1 1 1 2 2 1 2 2, , , ,
which then determine the value of g  via g a b a b a b a b= + + -1 1 1 2 2 1 2 2 .

The Results of the First Experiment at Orsay

These results are shown in the figure below. The angle q  which
specifies the setting of the polarizers is plotted horizontally, and
the mean value g  vertically.

The results of the first Orsay experiment

The correlation function predicted by quantum mechanics reads

g q q= -3 2 6cos cos

Page 32



It is drawn as the solid curve on the graph(the curve has been
corrected for instrumental effects, which explains why its ends are
not precisely at 2 and -2). According to the BCHSH inequality

- £ £2 2g

so that hidden-variable theories exclude the cross-hatched regions of
the plane, which correspond to g > 2 or g < - 2.

The experimental results from 17 different values of q  are indicated
on the figure by squares, where the vertical size of the square gives
plus or minus one standard deviation (a measure of the experimental
error).

Clearly, there can be no doubt that the BCHSH inequality is violated;
many of the experimental points fall outside the interval [-2,2]. At
the point where the violation is maximal ( . )q = °22 5 , one finds

g = ±2 70 0 015. .

which represents a departure of over 40 standard deviations from the
extreme value of 2. What is even more convincing is the precision
with which the experimental points lie on the curve predicted by
quantum mechanics.

Quite evidently, for the EPR scenario one must conclude not only that
hidden-variable theories fail, but also that quantum mechanics is
positively the right theory for describing the observations.

The Relativistic Test

The EPR experiment just described shows that the measurements in A
and B are correlated. What is the origin of the correlations?

According to quantum theory , before the measurement each particle
pair constitutes a single system extending from A to B, whose two
parts are non-separable and correlated. This interpretation
corresponds to a violation of Bell's inequality and agreement with
experiment.

According to hidden-variables theories, the particle pair is
characterized, at the instant of decay, by its hidden variable l ,
which determines the correlation between the polarizations measured
in A and B. This interpretation satisfies Bell's inequality but
disagrees with experiment.

Accordingly, the Orsay experiment supports the quantum interpretation
(in terms of the correlation between two parts A and B of a single
system).

However, to clinch this conclusion, one must ensure that no influence
is exerted  in the ordinary classical sense through some interaction
propagated between the two detectors A and B, that is, no influence
which might take effect after the decay at S, and which might be
responsible for the correlation actually observed.
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Let us therefore examine the Orsay apparatus in more detail as in the



figure below.

   
     Einsteinian non-separability

When the detectors at A and B record a coincidence, this means that
both have been triggered within a time interval of at most 10 ns, the
resolving time of the circuit. Could it happen that, within this
interval, A sends to B a signal capable of influencing the response
of B? In the most favorable case, such a signal would travel with the
speed of light in vacuum, which according to relativity theory is the
upper limit on the propagation speed of information, and thereby of
energy. To cover the distance AB, which is 12 m in the figure, such a
signal would need 40 ns. This is too long by at least 30 ns, and
rules out any causal links between A and B in the sense of classical
physics. One says that the interval between A and B is space-like .

One of the advantages of the Orsay experiment is that it uses a very
strong light-source, allowing sufficient distance between the
detectors A and B while still preserving reasonable counting rates.
By increasing the distance AB step by step, Aspect could check that
the correlation persists, even when the interval between A and B
becomes space-like. This is the check that guarantees that the
two-photon system is non-separable irrespective of the distance AB.

It has become the custom to speak of the principle of Einsteinian
separability  in order to denote the absence of correlations between
two events separated by a space-like interval. This is the principle
that the Orsay experiment invites us to reconsider, even though our
minds, used to the world at the macroscopic level, find it difficult
to conceive of two "microscopic" photons 12 m apart as a single
indivisible object.

The Final Stage of the Experiment at Orsay (1983)

Though the results of the first Orsay experiment are unarguable and
clear-cut, the conclusion they invite is so startling that one should
not be surprised at the appearance of a last-ditch objection, which
as it happens gave the experimenters a great deal of trouble. In the
preceding section we discussed the possible role of interactions
between A and B operating after the decay at S, and duly eliminated
the objection. But one can also ask whether correlations might be
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introduced through an interaction operating before  the decay. We



could imagine that the decay itself is preconditioned by the setting
of detectors A and B, such influences taking effect through the
exchange of signals between the detectors and the source. No such
mechanism is known a priori , but we do know that, if there is one,
then Einsteinian non-separability would cease to be a problem,
because the mechanism could come into action long before the decay,
removing any reason for expecting a minimum 30 ns delay. Though such
a scenario is very unlikely, the objection is a serious one and must
be taken into account; to get around it, the experimenter must be
able to choose the orientation of the detectors A and B at random
after the decay has happened at S. In more picturesque language, we
would say that the two photons must leave the source without knowing
the orientations of the polarizers A and B. Briefly put, this means
that it must be possible to change the detector orientations during
the 20 ns transits over SA and SB.

The solution adopted at Orsay employs periodic switching every 10 ns.
These changes are governed by two independent oscillators, one for
channel A and one for channel B. The oscillators are stabilized, but
however good the stabilization it cannot eliminate small random
drifts that are different in the two channels, seeing that the
oscillators are independent. This ensures that the changes of
orientation are random even though the oscillations are periodic,
provided the experiment lasts long enough (1 to 3 hours).

The key element of the second Orsay experiment is the optical switch
shown in the figure below.

In a water tank, a system of standing waves is produced by electro-
acoustic excitation at a frequency of 25 MHz(corresponds to 10 ns
between switchings).

The fluid keeps changing from a state of perfect rest to one of
maximum agitation and back again. In the state of rest, the light
beam is simply transmitted, In the state of maximum agitation, the
fluid arranges itself into a structure of parallel and equidistant
plane layers, alternately stationary (nodal planes) or agitated
(antinodal planes). Thus, one sets up a lattice of net-like
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diffracting planes; the diffracted intensity is maximum at the



so-called Bragg angles, just as in scattering from a crystal lattice.
Here the light beam is deviated through 10 2-  radians (the angles in
the figure are exaggerated for effect). The two numerical values,
25 MHz and 10 2-  radians, suffice to show the magnitude of the
technical achievement. With the acoustic power of 1 watt, the system
functions as an ideally efficient switch.

The second Orsay experiment (using optical switches) is sketched in
the figure below.

   
In this set-up, the photons a and b leave S without "knowing" whether
they will go, the first to A1 or A2 , and the second to B1 or B2 .

The second experiment is less precise than the first, because the
light beams must be very highly collimated in order to ensure
efficient switching. Nevertheless, its results exhibit an unambiguous
violation of Bell's inequality, reaching 5 standard deviations at the
peak; moreover the results are entirely compatible with the
predictions of quantum mechanics.

The Principle of Non-Separability

Experiment has spoken. Half a century after the Como conference,
Bohr's interpretation once again beats Einstein's, in a debate more
subtle and also more searching. There were two conflicting theories:

Einstein Bohr
----------------------------------
hidden variables quantum mechanics
realist positivist
deterministic probabilistic
separable non-separable

The violation of the BCHSH inequality argues for Bohr's
interpretation, all the more so as the measured values of g  are in
close agreement with the predictions of quantum mechanics.

It remains to ask oneself just why hidden-variable theories do fail.
Of the three basic assumptions adopted by such theories, namely
realism, determinism, and separability, at least one must be
abandoned. In the last resort, it is separability that seems to be
the most vulnerable assumption. Indeed, one observes experimentally
that the violation of the BCHSH inequality is independent of the
distance between the two detectors A and B, even when this distance
is 12 m or more. There are still die-hard advocates of determinism,
who try to explain non-separability through non-local hidden
variables. Such theories, awkward and barely predictive, are
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typically ad hoc, and fit only a limited number of phenomena. They



are weakly placed to defend themselves against interpretations
furnished by quantum mechanics, which have the virtues of simplicity,
elegance, efficiency, and generality, and which are invariably
confirmed by experiment.

The principle of Einsteinian separability asserts that "there are no
correlations between two phenomena separated by a space-like
interval". In other words, no interaction can propagate faster than
light in vacuum. In an EPR scenario this principle must be abandoned,
and replaced by a principle asserting non-separability:

"in a quantum system evolving free of external perturbations,
 and from well-defined initial conditions, all parts of the
 system remain correlated, even when the interval between
 them is space-like"

This assertion reflects the properties of the state vector of a
quantum system. For an EPR system, the state vector after the decay
of the source reads

F = +( )1
2

x x y yA B A B, ,

This expression combines the elements A and B in a non-separable
manner, which is what explains the observed correlations. The truth
is that all this has been well known ever since the beginnings of
quantum mechanics, with the concept of the electron cloud as the most
telling illustration. It is for instance hard to imagine separability
between the 92 electrons of a uranium atom. What is new is that
quantum mechanics, considered hitherto as a microscopic theory
applicable on the atomic scale, is now seen to apply to a
two-particle system macroscopically, on the scale of meters. The
truly original achievement of Aspect's experiment is the
demonstration of this fact.

Quantum objects have by no means exhausted their capacity to astonish
us by their difference from the properties of the macroscopic objects
in our everyday surroundings. In the preceding sections we saw that a
photon can interfere with itself and we have shown that two photons
12 m apart constitute but a single object. Thus, it becomes ever more
difficult to picture a photon through analogies with rifle bullets,
surface waves in water, clouds in the sky, or with any other object
of our familiar universe. Such partial analogies fail under attempts
to make them more complete, and through their failure we discover new
properties pertaining to quantum objects. The only fruitful procedure
is to follow the advice of Niels Bohr, namely, to bend one's mind to
the new quantum concepts until they become habitual and thereby
intuitive. Earlier generations of physicists have had to face similar
problems. They had to progress from Aristotle's mechanics to
Newton's, and then from Newton's to Einstein's. The same effort is
now required of us, at a time favorable in that, by mastering the EPR
paradox, quantum mechanics has passed a particularly severe test with
flying colors.

From this point of view, the principle of non-separability seems as
important as the principle of special relativity , and Aspect's
experiment plays the same role now that the Michelson-Morley
experiment played then.
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