
Schrodinger's Cat

The superposition principle states that if φa  and φb  are two
possible states of a quantum system, the quantum superposition

1
2

φ φa b+( ) is also an allowed state for this system. This principle
is essential in explaining quantum interference phenomena. However,
when it is applied to "large" or "macroscopic" objects, it leads to
paradoxical situations where a system can be in a superposition of
states which is classical self-contradictory.

The most famous example is Schrodinger's "cat paradox" where the cat
is in a superposition of the "dead" and "alive" states. The purpose
of this discussion is to show that such superposition of macroscopic
states are not detectable in practice. They are extremely fragile,
and very weak coupling to the environment suffices to destroy the
quantum superposition of the two states φa  and φb .

1. The Quasi-Classical States of a Harmonic Oscillator

We consider the high energy excitations of a one-dimensional harmonic
oscillator or mass m and frequency ω. The Hamiltonian is written

ˆ ˆ
ˆH

p

m
m x= +

2
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We denote the eigenstates of Ĥ by n{ } where the energy eigenvalues
are given by

  
ˆ ( / )H n E n n nn= = +hω 1 2

Preliminaries

We introduce the operators

  
ˆ / ˆ , ˆ ˆ /X m x P p m= =ω ωh h

and the annihilation and creation operators

ˆ ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆa X iP a X iP N a a= +( ) = −( ) =+ +1
2

1
2

The commutator   ˆ, ˆx p i[ ] = h leads to the commuators ˆ , ˆX P i[ ] =  , ˆ, ˆa a+[ ] = 1 and

the relations

  
ˆ ( ˆ / ) , ˆH N N n n n= + =hω 1 2

We also have the relations

ˆ , ˆP i
X

X i
P

= − =
∂
∂

∂
∂
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ˆ , ˆa n n n a n n n= − = + ++1 1 1     (1.1)

We can use these relations to derive the ground state wave function
in the position representation as follows:
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Similarly, we can derive its the ground state wave function in the
momentum representation as follows:
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These two wave functions are related by the Fourier transform, that
is,

ϕ ψω ω
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The Quasi-Classical States

The eigenstates of the operator â are called "quasi-classical"
states, for reasons we will now discuss.

Since we are considering the question: what are the eigenstates of
the lowering operator â?. We can write

â eiα α α α α ϕ=      where     =

where α  is the eigenvector of â and α  is the eigenvalue, which is
not necessarily real since â is not Hermitian.

Since the vectors n  are eigenvectors of a Hermitian operator, they
form a orthonormal complete set and can be used as an orthonormal
basis for the vector space. We can then write

α =
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∑b mm
m 0

where
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Now

n a n bn− = − = −1 1 1ˆ α α α α

and using

ˆ ˆa n n n n a n n+ − = → − =1 1

we have
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We thus get the final result

α
α

=
=

∞

∑b
m

m
m

m
0

0 !

Let us now normalize this state (choose b0 ). We have
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Now
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= probability amplitude that the system in the state
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We have
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where we have defined N = α 2. We note that

α α α α α α α αˆ ˆ ˆa a N Nop
+ = = = =2 2

or N = the average value or expectation value of the N̂op operator in

the state α . This type of probability distribution is called a
Poisson distribution, i.e., the state α  has the number states or
energy eigenstates distributed in a "Poisson" manner.

Since the states n  are energy eigenstates, we know their time
dependence, i.e.,

n t e n
i
E

tn

, =
−

h

Therefore, we have for the time dependence of the state α

  
α

α αα α
,

!
,

!
t e

m
m t e

m
e m

m

m

m i
E

t

m

m

= =
−

=

∞ − −

=

∞

∑ ∑
1

2

0

1

2

0

2 2

h

This simple operation clearly indicates the fundamental importance of
the energy eigenstates when used as a basis set.

If we are able to expand an arbitrary vector
representing some physical system in the energy
basis, then we immediately know the time dependence
of that state vector and hence we know the time
dependence of all the probabilities associated
with the state vector and the system.

Now let us try to understand the physics contained in the α  state
vector. In a given energy eigenstate the expectation value of the
position operator is given by
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i.e., it is equal to zero and is a constant.



On the other hand, in the state α  we find
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Using this result we have
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Now using α α ϕ= ei  we get
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The expectation value in the state α  behaves like that of a
classical oscillator.

Before proceeding with the discussion, we will repeat the derivation
using an alternate but very powerful technique.

Using the Translation Operator

In general, a displaced state λ  is given in terms of the
displacement operator (in one dimension) by

  λ
λ

=
−

e
i

p
h

ˆ

0

For the harmonic oscillator system
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If we choose 0  to be the ground state of the oscillator, then we
have for the corresponding displaced ground-state
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using   â 0 0= .

Similarly, using ˆ !a n n
n+( ) =0  we have

  

e I
m

a
m

a

m m

m

n
n

m
a

n

n

ω
λ ω

λ
ω
λ

ω
λ

ω
λ

ω
λ

2

2

2

0

0
2

1
2 2

0

0
2

1
1
2 2

2
2

h

h h

h h

h

ˆ
ˆ ˆ ˆ .....

.....
!

+

= +








 +









 +











= + +








 + =











+ +

=

∞

∑               

or

  
λ

ω
λω

λ
=











−

=

∞

∑e

m

n
n

m

n

n

1

4

0

2 2
h

h

!
Thus,

    λ =
=

∞

∑b nn
n 0

    

where           

  
b

e N

n

N m
n

N n

= =
−

2 2
2

2 4!
    ,        

ω
λ

h
or

Page 6

P n

b
e N

n

n

n

N n

=

= =
−

probability of find the system in the state 

   
2

!



which is a Poisson distribution. Thus, we obtain the coherent states
once again.

Let us now return to the original discussion. In the state α  we have
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Therefore, the Heisenberg inequality becomes in this case an equality

∆ ∆x p =
h

2

independent of the value of α .

We can find the wave functions corresponding to α  using the earlier
method. We have in the position representation:
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Suppose that at time t = 0, the oscillator is in a quasi-classical
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state ψ α( )0 0=  with α ρ φ
0 = ei  where ρ is a real positive number. Then



at a later time t
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In addition, we have (for ρ >> 1)
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This says that the relative uncertainties in the position and
momentum of the oscillator are quite accurately defined at any time.
Hence the name "quasi-classical state".

Let us look at some numbers. We consider a pendulum of length 1 meter
and of mass 1 gram and assume that the state of this pendulum can be
described by a quasi-classical state. At time t = 0 we assume that the
pendulum is at x( )0 1=  micrometer from its classical equilibrium
position, with zero mean velocity.

An appropriate choice is x x p( ) , ( )0 0 0 00= = → =ϕ . We also have

ω πν α= = = → = ×−2 3 13 0 3 9 101 9g
s

l
. ( ) .

The relative uncertainty in the position is
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.

We note that after 1 4/  period of oscillation,
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2. Construction of a Schrodinger-Cat State

Suppose that during the interval 0,T[ ] we add to the harmonic
potential, the coupling (interaction)
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    (2.1)

Now, suppose that α  is pure imaginary, that is, α ρ= i . In this case,
in the state α , the oscillator has a zero mean position and a
positive velocity.
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α α ωρ
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Similarly, in the state −α , the oscillator also has a zero mean
position, but a negative velocity.

If α >> 1, the states α  and −α  are macroscopically different. The
state (2.1) is a quantum superposition of such states. It therefore
constitutes a (harmless) version of Schrodinger's cat, where we
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represent "dead" and "alive" cats by simple vectors in Hilbert space.



3. Quantum Superposition Versus Statistical Mixture

We now consider the properties of the state (2.1) in a "macroscopic"
situation α >> 1. We will choose α ρ= i  pure imaginary and we set

  p m0 2= hωρ.

The probability distributions for position and momentum are given by
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where in the last expression we have used the fact that, for ρ >> 1,
the two Gaussians centered at ρ 2  and −ρ 2  have a negligible
overlap.

These probability distributions are plotted in the figure below for
α = 5i.
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Figure 1



      
Figure 2

Suppose that a physicist (Alice) prepares N independent systems all
in the state (2.1) and measures the momentum of each of these
systems. Suppose the measuring apparatus has a resolution δp such
that:

m p phω δ<< << 0

For N >> 1, the results of these measurements is that Alice (plotting a
histogram) will find two peaks, each of which contains roughly half
of the events, centered respectively at p0 and −p0(resembling figure
2)

The state (2.1) represents the quantum superposition of two states
which are macroscopically different, and therefore leads to the
paradoxical situations mentioned earlier.

Another physicist (Bob) claims that the measurements done by Alice
have not been performed on N quantum systems in the state (2.1), but
that Alice is actually dealing with a nonparadoxical "statistical
mixture", that is, half of the N systems are in the state α  and the
other half in the state −α .

Assuming the this is true, the statistical mixture of Bob leads
(after N momentum measurements) to the same momentum distribution as
that measured by Alice: the N / 2 oscillators in the state α  all lead
to a mean momentum +p0 and the N / 2 oscillators in the state −α  all
lead to a mean momentum −p0. Up to this point, there is therefore no
difference and no paradoxical behavior related to the quantum
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superposition (2.1).



In order to settle the matter, Alice now measures the position of
each of the N independent systems, all prepared in the state (2.1).
Assuming that the resolution δx of the measuring apparatus is such
that

  
δ

α ω
δ

α ρ
x

m
X<< → << =

1 1 1h

Alice has sufficient resolution to observe the oscillations of the

function cos2 2
4

Xρ
π

−




 in the distribution Pr( )X . The shape of the

distribution for x will therefore reproduce the probability law for X
as drawn in figure 1 above, that is a modulation of period

  hπ α ω2 2 1 2
2/( )

/
m[ ] , with a Gaussian envelope.

We continue with the assumption that Bob is dealing with a
statistical mixture. If Bob performs a position measurement on the
N / 2 systems in the state α , he will find a Gaussian distribution
corresponding to the probability law

Pr( )X X e X∝ ∝ −α
2 2

He will find the same distribution for N / 2 systems in the state −α .
The sum of his results will be a Gaussian distribution, which is
quite different from the result expected by Alice.

The position measurement should, in principle, allow one to
discriminate between the quantum superposition and the statistical
mixture.

In our earlier discussion of numbers for a pendulum we found that
α = ×3 9 109. . Therefore, the resolution δx which is necessary in order to
tell the difference between a set of N systems in a quantum
superposition (2.1), and a statistical mixture consisting of N / 2
systems in the state α  and N / 2 systems in the state −α  is given by

  
δ

α ω
x

m
m<< ≈ × −1

5 10 26h

Clearly, it is impossible to attain such a resolution in practice!

4. The Fragility of a Quantum Superposition

In a realistic physical situation, one must take into account the
coupling of the oscillator with its environment, in order to estimate
how long one can discriminate between the quantum superposition
(2.1), that is, the "Schrodinger cat" which is "alive and dead", and
a simple statistical mixture, that is, a set of cats (systems), half
of which are alive, the other half beginning dead; each cat being
either alive or dead.
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If the oscillator is initially in the quasi-classical state α0  and



if the environment is in a state χe( )0 , the wave function of the
total system is the product of the individual wave functions, and the
state vector of the total system can be written as the (tensor)
product of the state vectors of the two subsystems:

Φ( ) ( )0 00= α χe

The coupling is responsible for the damping of the oscillator's
amplitude.

At a later time t, the state vector of the total system becomes

Φ( ) ( )t te= α χ1

where α α γ
1 =

−( )t e t. The number α( )t  corresponds to the quasi-classical
state one would find in the absence of damping (evaluated earlier as
α α ω( )t e i t= −

0 ) and γ  is a real positive number.

From earlier

  
E t t e t( ) ( ) / ) / )= +( ) = +( )−h hω α ω α γ2

0

2 21 2 1 2

The energy decreases with time. After a time much longer than γ −1, the
oscillator is in its ground state. This dissipation model corresponds
to a zero temperature environment. The mean energy acquired by the
environment is

E E t e t tt( ) ( ) ( ) ,0 1 2 2 10

2 2
0

2
− = − ≈ <<−h hωα ωα γ γγ

For initial states of the "Schrodinger cat" type for the oscillator,
the state vector of the total system, at t = 0,

Φ( ) ( )/ /0
1
2

04
0

4
0= + −( )−e ei i

e
π πα α χ

and, at a later time t,

Φ( ) ( ) ( )/ ( ) / ( )t e t e ti
e

i
e= + −( )− + −1

2
4

1
4

1
π πα χ α χ

still with α α γ
1 =

−( )t e t. We assume that t is chosen such that α1 is pure

imaginary, α1 1>> , and χe t( ) ( )+  and χe t( ) ( )−  are two normalized states of
the environment that are a priori different (but not orthogonal).

The probability distribution of the oscillator's position, measured
independently of the state of the environment, is then

Pr( ) ( ) ( )
* ( ) ( )x x x i x x t te e= + − + −( )[ ]+ −1

2
21

2

1

2

1 1α α α α χ χReal
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Let η χ χ= + −
e et t( ) ( )( ) ( ) . We then have 0 1≤ ≤η η,  real.



This says that the probability distribution of the position keeps its
Gaussian envelope, but the contrast of the oscillations (cross term)
is reduced by a factor η.

The probability distribution for the momentum is given by

Pr( )
*

p p p i p p= + − + −( )[ ]1
2

21

2

1

2

1 1α α η α αReal

Since the overlap of the two Gaussians p α1  and p −α1  is negligible

for α1 1>> , the crossed term, which is proportional to η does not
contribute significantly. We recover two peaks centered at   ±α ω1 2mh .
The distinction between a quantum superposition and a statistical
mixture can be made by position measurements. The quantum

superposition leads to a modulation of spatial period   hπ α ω2 2 1 2
2/( )

/
m[ ]

with a Gaussian envelope, whereas only the Gaussian is observed for a
statistical mixture.

In order to see this modulation, the parameter η must not be too
small, say η ≥ 1 10/ .

In a very simple model, the environment is represented by a second
oscillator, of the same mass and frequency as the first one. We will
assume that this second oscillator is initially in its ground state
χe( )0 0= . If the coupling between the two oscillators is quadratic,
we can take for granted that

• the states χe t( ) ( )±  are quasi-classical: χ βe t( ) ( )± = ±

• and that, for short times (γt << 1): β γ α2

0

2
2= t

A simple calculation then gives

β β
β ββ β β β− =

−
= =− − − −∑e

n
e e e

n n

n

2 2 2 22
* ( )

!

From earlier considerations we must have η β β ββ= − = ≥ → ≤−e 2 2

1 10 1/ .

For times shorter than γ −1, the energy of the first oscillator is

E t E t( ) ( )= −0 2 0

2
γ α ωh

The energy of the second oscillator is

  E t t t' ( ) ( ( ) / ) /= + = +h h hω β ω γ α ω2

0

2
1 2 2 2

The total energy is conserved: the energy transferred during the time
t is
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  ∆E t t t( ) ( ( )= =2 0

2 2γ α ω ω βh h



In order to distinguish between a quantum superposition and a
statistical mixture, we must have   ∆E ≤ hω . In other words, if a single
energy quantum   hω is transferred, it becomes problematic to tell the
difference.

If we return to the numerical example of the pendulum we have the
following results: with 1 2 1 3 107/ γ = = ×year s, the time it takes to reach

β = 1 is ( )2 2 100

2 1 12γ α − −≈ × s!

Conclusion

Even for a system as well protected from the environment as we have
assumed for the pendulum, the quantum superpositions of macroscopic
states are unobservable. After a very short time, all measurements
one can make on a system initially prepared in such a state coincide
with those made on a statistical mixture. It is therefore not
possible, at present, to observe the effects related to the
paradoxical character of a macroscopic quantum superposition.
However, it is quite possible to observe "mesoscopic" kittens, for
systems which have a limited number of degrees of freedom and are
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well isolated.


