Schr odi nger' s Cat

The superposition principle states that if |¢,) and |g,) are two
possi bl e states of a quantum system the quantum superposition

-$§ﬂ¢g4¢¢g) is also an allowed state for this system This principle
/\f/

is essential in explaining quantum i nterference phenonena. However,
when it is applied to "large" or "macroscopic" objects, it leads to
par adoxi cal situations where a system can be in a superposition of
states which is classical self-contradictory.

The nost fanous exanple is Schrodinger's "cat paradox" where the cat
is in a superposition of the "dead" and "alive" states. The purpose
of this discussion is to show that such superposition of macroscopic
states are not detectable in practice. They are extrenely fragile,
and very weak coupling to the environnent suffices to destroy the

quant um super posi tion of the two states |¢,) and |¢,).

1. The Quasi-C assical States of a Harnmonic Gscill ator

We consider the high energy excitations of a one-dinensional harnonic
oscillator or mass m and frequency w. The Ham ltonian is witten

n ~2
R
2m

mw?X?

N

We denote the eigenstates of H by ﬂnﬂ where the energy eigenval ues
are given by

H|n) = E,|n) = Aw(n +1/2)[n)
Prelimnaries

We introduce the operators

X=molax , P=p/Jmio

and the anni hilation and creation operators

a-—(X+if) . & -—(X-if) , N-aa
N
The commutator [X p]=in |eads to the comuators [)2,!5]=| , [é,é+]=1 and

the relations
H=ho(N+1/2) , N|n)=n|n)

We al so have the rel ations
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an=+vnn-1 , & n=Vn+1n+1) (1.1)

We can use these relations to derive the ground state wave function
in the position representation as follows:

1

0= (X|&0) = — (X|[X +iP)j0) - = x<X|o>+%(_ia%)<X|o>

Sis

(x + aix)<X|o> = 0— (X|0) = Ae "2 =y (X)

T,UO(X) _ Ae—mwx2 12h

Simlarly, we can derive its the ground state wave function in the
nmoment um representation as fol |l ows:

0= (P[30) - %<P|(>2+ 1)) - %i%wmp\%mmm

(P+25)(PI0) =0~ (PI0) = Ae™? = (P)
P
Go(P) = AeTP /™!
These two wave functions are related by the Fourier transform that
is,

2 2 ’ .
(po(p) _ e—p | 2mwh o fe—mwx /2he—|px/hdx ocfwo(x)e—lpx/hdx

The Quasi-C assical States

The eigenstates of the operator a are called "quasi-classical"
states, for reasons we will now discuss.

Since we are considering the question: what are the ei genstates of
the | owering operator a?. W can wite

da)=ala) where o=|a|e’

where |a) is the eigenvector of a and o is the eigenvalue, whichis
not necessarily real since a is not Hernmitian.

Since the vectors |n) are eigenvectors of a Hermitian operator, they
forma orthonormal conplete set and can be used as an orthonornma
basis for the vector space. W can then wite

|@=2mw

wher e

(e = 3By (im) = 308 =B
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(n-1aa) = a{n-la)=ab, ,

and usi ng

a'ln-1)=+/n|n) = (n-1/a=+/n\n|
we have

(n-1flar) = Vn(n|a) = Vnb,
or

b, = %bn_l

Thi s says that

or

We thus get the final result

0 m

@)=, > jm)

Let us now normalize this state (choose b, ). W have

_1=|bo|2;);ﬁ\k|m>=lbolzzgj r o
-l 3 - e

whi ch says that

and t hus

(n|a) = probability amplitude that the system in the state
|a) will befound in the state |n)
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We have

1 2 o m 1 2 n

whi ch then says that

el e N

R =[njaf = =—]

= probability amplitude that the system in the state

|y will befound in the state |n)
where we have defined N=|af. W note that

(ala*dla) = |o?(a]a) = |a?| = N = (a|N|a)

A

or N = the average value or expectation value of the N, operator in
the state |a). This type of probability distribution is called a
Poi sson distribution, i.e., the state |a) has the nunber states or

energy eigenstates distributed in a "Poisson" manner.

Since the states |n) are energy eigenstates, we know their tine

dependence, i.e.,
E,

Inty=e " |n)

Therefore, we have for the time dependence of the state |a)

Lo2 &

L. am _g‘a‘z © am B
at)=e? —Imt)=e?2 —e
a=e*’ Fimy=e®" 3T

m=0"V

" lm)

This sinple operation clearly indicates the fundanental inportance of
t he energy eigenstates when used as a basis set.

If we are able to expand an arbitrary vector
representing sonme physical systemin the energy
basis, then we inmedi ately know the tinme dependence
of that state vector and hence we know the tine
dependence of all the probabilities associated

with the state vector and the system

Now | et us try to understand the physics contained in the |a) state
vector. In a given energy eigenstate the expectation val ue of the
position operator is given by

e — E E

A A L h S PPN b
\nt@+annt = \nle " (a+ae " |n)
0 \ 2maw,

nf(van-1,+vn+1n+1)) =0

- | h
ntixin,t) = |
(ntiAny = 5

| — | —

o n
na+a )n =
a@a = o

_/VZHKUO 0
i.e., it is equal to zero and is a constant.
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On the other hand, in the state |a) we find

i Em-Ed)

(e Rl t) = s‘ Zmbke " (ml(a+ &)k

mli(a+ a’)k) ={(m k-1 +Vk+1k+1 —\ké +Vk+15
(mi(a-+a")|k) = (m(vklk -1, ++ e+

Using this result we have

(o, t|X|o,t) =

(Zhubpke IO RS

(Eya- Ek) % i(Ek+1_Ek)t
\ 2maw, )

il \/?wo (Z bl biVke™ " + 2b;+1ameiwot)
- | St ; b

BT B A AN P TN S U e P
\2mw, P\ & J(k+ DIk 2¢(k+1)'k|

" o 3 el (e s ae)
2mw, P 2K

Now using a=|ale’ we get

| |2k

(o, tRat) = bo 2o Qj

Real (€7e'")

| |2k

= 2X,|a|cos(w,t - @) (b Z X =

— 2xJalcos(wgt - ¢)

The expectation value in the state |a) behaves |ike that of a
classical oscillator.

Bef ore proceeding with the discussion, we will repeat the derivation
using an alternate but very powerful technique.

Usi ng the Transl ation QOperator

In general, a displaced state |A) is given in terns of the
di spl acenent operator (in one dinension) by

L

[4)=e""0)

For the harnonic oscillator system
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SULLIERES

pl\“‘

| f we choose |0) to be the ground state of the oscillator,

have for the correspondi ng di spl aced ground-state

O (4 -y
IR
~ AB
By @ auber’s theorem e*® - eeez[ ], we have
[me Mg, (Mo Imor., o0 Mg, Mo 1me o,
gl 2n (& -2)a EPNETY Ae V2n eETh[a g _e'2n g V2 a}‘e_ZT;‘
and t hus
_[meg, _lmo .
|A> glan "glan " gan |0)
Now

using d0)=0.

Simlarly, using (&7)70)=+n|n) we have

N B e e

0
o U5
M
0)+ AL+ A2 +..... =
|>\2h|/ (\2 )|/ EO Jnt
or
mo .\
,A)
1 mew o ( |
dmoze = A\ 2m
PITTS ME)
n=0 \“‘Jn'
Thus,
%)= S
n=0
wher e
N n
e 2N? N mw
b, = B L
" Jn 2 4h
or
P, = probability of find the system in the state |n)
_| |2_e_NNn
L
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which is a Poisson distribution. Thus, we obtain the coherent states
once agai n.

Let us now return to the original discussion. In the state |a) we have
da) = ala) = (afd” =a (o

so t hat
(E) = (a|Ala) = nar{er|N +1/2) ) = heofjaf +1/2))

e .
|

\‘“ h A A+ ! h *
<@=V2 wvﬂw+a)w>=vz;%a+a)
. Mhw ‘Mo
P =i Sal@- A =i, e - a)
(AX) f a|(é+é+)2|a>—<x>2=i[(a+a +1]——(oz+oc)2
@ 2mw 2mw
2mw 2mw
miw A Ay miw ©\2 Miw [ - 2
(4p)* = -2 (@~ @Yl - (p) = =2 (o= o ~1]+ o2 (e -
2 2 2
miw 'Mhw
=— " SAD= |——
P72
Therefore, the Heisenberg inequality becones in this case an equality
h
AXAp = =
P 2

i ndependent of the value of «a.

We can find the wave functions corresponding to |a) using the earlier
met hod. W have in the position representation:

(Xct) = (X} = 5 (XK B)) = 5 X(Kht) + i (-1 (e

1

a 2
(X )Xl = alXle) = (X|e) = A2 = ()

and in the nmonmentum representation:

(Plact) = a(Pla) = = (P(%+ P = i (Pla) + < P(pla)

JP

=[P+ 5 (Pl = alPla) = (Pla) = A& 2712 g, (P)

Suppose that at time t=0, the oscillator is in a quasi-classica
state |y(0)=|a,) With a,=pe’ where p is a real positive nunber. Then

Page 7



at a later tine t
ol & e ol & @y A
[ (®) =|aot)=e ;\ﬂ|n,t>=e Eﬁe L

n=0

‘2‘ 0‘ ot/ 2 - 053 —inawt —iwt/2
—e? e 2 e |n) = e""?|a(t))
n=0

N
wher e (x(t) = aoe—iwt — pe-i(wt_¢).

Finally, we have

(a,t|%a,t) = |a|2k ae”" + o'

\“ 2m

|a| T
_ 2\/7|a|cos(wot @) (b Z , \ 2maw,

- X, Co80t-9) . X=p,

\rnah

and
<O£,t|[5|0!,t> = _pOSin(wot —(P) v Po =P 2mhw

In addition, we have (for p>>1)

Ax 1 Ap 1

—=—=<<l , —=—<<1

X 2p P 2p
This says that the relative uncertainties in the position and
nmomentum of the oscillator are quite accurately defined at any tine.
Hence the nane "quasi-classical state".

Let us | ook at some nunbers. We consider a pendulumof length 1 neter
and of mass 1 gram and assune that the state of this pendul umcan be
descri bed by a quasi-classical state. At tine t=0 we assune that the
pendulumis at (x(0))=1 micronmeter fromits classical equilibrium
position, with zero nean velocity.

An appropriate choice is (x(0))=x,,(p(0)=0—-¢=0. W al so have

W =27V = \/% = 3.13s" — (0) = 3.9x 10°

The relative uncertainty in the position is

Ax_i_ 1 _13x107%°

X, 20 2a(0)

We note that after 1/4 period of oscillation,

T = period = 2, a(T/4) = a(0)e”"* = a(0)e"'? = ia(0) = -3.9i x10°
w
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2. Construction of a Schrodinger-Cat State

Suppose that during the interval [0,T] we add to the harnonic
potential, the coupling (interaction)

A=hq&éf=hm@

W will assume that g>>w,wl <<1l. Under these conditions, we can nake
the approxi mation that, during the interval [0,T], the Haniltonian of

the systemis sinply W. Assume that at time t=0, the systemis in a
quasi - cl assical state [y(0))=|a).

The eigenvectors of W are ﬂn» with Wn)=nagnn). This inplies that for
[v(0)) =e),

[ (T)) = “2 -&"|n)

Sonme special cases will be of interest l|ater.

1 2 o n 1 2 = n
|| o i2m2 -l o
T=27/q)) = ——e'"™n)=e 2 n) =|o
p(T=20/g)=e=" 3 el = et 3 i) <o)
1 2 o n
|or] a
S?e
n=0\““"n!

W(T=n/g))=

Lap &

=22y = |-a)

St @ A b & o Af, AN
|lp(T=ﬂ/29)>=e2 E\O,lﬁe ’2|n>=e2 E%E[l_l+(l+l)(_l) ]|n>
n=0"VIk n=0 :

= e_E‘a‘ r\;"ﬁ %[e_in/‘l * ein/A(_l)n:" n/ ( 2. 1)
n=o VIE

\E[e—in/4|a>+ |n/4| OC>]

Now, suppose that « is pure imaginary, that is, a=ip. In this case,
in the state |a), the oscillator has a zero nean position and a
positive velocity.

m}-w%(a —a) =\ 2mhwp

Simlarly, in the state |-a), the oscillator also has a zero nean
position, but a negative velocity.

I f |la|>>1, the states |a) and |-a) are nacroscopically different. The
state (2.1) is a quantum superposition of such states. It therefore
constitutes a (harm ess) version of Schrodinger's cat, where we
represent "dead" and "alive" cats by sinple vectors in Hilbert space.
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3. Quantum Superposition Versus Statistical Mxture

We now consi der the properties of the state (2.1) in a "macroscopic”
situation |a/>>1. W will choose a=ip pure inmaginary and we set

P, = V2Mhwp.

The probability distributions for position and nonentum are given by
Pr(X) o« |e‘i”’4(X|a> +e"7*{X|-a)

|2

_im /4, ~(X=-ip\2)2/2 il 4 —(X+ip\2)% 12

2
oc|e e + e |
x e co( V2Xp - T

M)

Pr(P) o« |e‘i”’4\P|oc> +e""*(P|-a)

|2

i |4 —~(P-p~2)2 12 i77/4 —(P+p~2)212

2
0C|e e +€ € |

- e—(P—p\Z)z + e—(P+pv2)2

where in the | ast expression we have used the fact that, for p>>1,

the two Gaussians centered at pv2 and -p+v2 have a negligible
over |l ap.

These probability distributions are plotted in the figure bel ow for
a="5.
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Figure 2

Suppose that a physicist (Alice) prepares N independent systens al
in the state (2.1) and neasures the nonentum of each of these
systens. Suppose the neasuring apparatus has a resolution Jdp such
t hat :

NMhw << dp << P,

For N>>1, the results of these neasurenents is that Alice (plotting a
hi stogram) will find two peaks, each of which contains roughly half
of the events, centered respectively at p, and -p,(resenbling figure

2)

The state (2.1) represents the quantum superposition of two states
whi ch are macroscopically different, and therefore |eads to the
par adoxi cal situations nentioned earlier.

Anot her physicist (Bob) clains that the neasurenents done by Alice
have not been perfornmed on N quantum systens in the state (2.1), but
that Alice is actually dealing with a nonparadoxical "statistical

m xture", that is, half of the N systenms are in the state |a) and the
other half in the state |-a).

Assum ng the this is true, the statistical m xture of Bob | eads
(after N nonmentum neasurenents) to the same nonmentum di stribution as

t hat neasured by Alice: the N/2 oscillators in the state |a) all |ead
to a nmean nonentum +p, and the N/2 oscillators in the state |-a) all
lead to a nmean nonmentum -p,. Up to this point, there is therefore no
di fference and no paradoxi cal behavior related to the quantum
superposition (2.1).
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In order to settle the matter, Alice now neasures the position of
each of the N independent systens, all prepared in the state (2.1).
Assuming that the resolution o6x of the neasuring apparatus is such
t hat

h 1 1

X<<— |[— > << —=—
] Ve " p

Alice has sufficient resolution to observe the oscillations of the

function co§(¢§xp-r%) in the distribution Pr(X). The shape of the

distribution for x will therefore reproduce the probability law for X
as drawn in figure 1 above, that is a nodul ati on of period

[hnZKanﬂaoym, with a Gaussian envel ope.

We continue with the assunption that Bob is dealing with a
statistical mxture. If Bob perforns a position nmeasurement on the
N/2 systens in the state |a), he will find a Gaussian distribution
corresponding to the probability |aw

Pr(X) «|(X|a)| = &

He will find the same distribution for N/2 systens in the state |-a).
The sum of his results will be a Gaussian distribution, which is
quite different fromthe result expected by Alice.

The position neasurenent should, in principle, allow one to
di scrim nate between the quantum superposition and the statistica
m xture.

In our earlier discussion of nunbers for a pendul umwe found that
a=39x10°. Therefore, the resolution dx which is necessary in order to
tell the difference between a set of N systens in a quantum
superposition (2.1), and a statistical mxture consisting of N/2
systens in the state |a) and N/2 systens in the state |-a) is given by

R

<5X<<i iz5><10’26m
lot| \ ma

Clearly, it is inpossible to attain such a resolution in practice!
4. The Fragility of a Quantum Superposition

In a realistic physical situation, one nust take into account the
coupling of the oscillator with its environnent, in order to estinmate
how | ong one can discrim nate between the quantum superposition
(2.1), that is, the "Schrodinger cat” which is "alive and dead", and
a sinple statistical mxture, that is, a set of cats (systens), half
of which are alive, the other half beginning dead; each cat being
either alive or dead.

If the oscillator is initially in the quasi-classical state |a,) and
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if the environnent is in a state |x(0)), the wave function of the

total systemis the product of the individual wave functions, and the
state vector of the total systemcan be witten as the (tensor)
product of the state vectors of the two subsystens:

|2(0)) =|t)| x.(0))

The coupling is responsible for the danping of the oscillator's
anpl it ude.

At a later tine t, the state vector of the total system becones
@) = | )| (D)

where «, =a(t)e™. The nunber «(t) corresponds to the quasi-classica
state one would find in the absence of danping (evaluated earlier as

at)=a,e™) and y is a real positive nunber.

Fromearlier
E(t) = ho(ja(®)f +1/2)) = ha)(|a0|2e'2” +1/ 2))

The energy decreases with time. After a tine much longer than y™, the
oscillator is inits ground state. This dissipation nodel corresponds
to a zero tenperature environnent. The nean energy acquired by the
environment is

E(0) - E(t) = hwlay| (1- €%") = 2nolag't , 21t <<1

For initial states of the "Schrodinger cat" type for the oscillator,
the state vector of the total system at t=0,

_ L
2

and, at a later tine ft,

[(0)) = (7 et ) + €| ~a5) ) 2 (0))

() = 5 (€l 1 0) + €71 1. 0)

still with o, =a(t)e”. W assune that t is chosen such that «, is pure
i mginary, |o|>>1, and |x7(t)) and |xO(t)) are two normalized states of
the environment that are a priori different (but not orthogonal).

The probability distribution of the oscillator's position, neasured
i ndependently of the state of the environnent, is then

Pr(x) = 3 (e + (|- + 2Real((x]at ) (x]-) . 0 . )|
Let n={(x1)|x. (). W then have 0=ns<1,n real
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This says that the probability distribution of the position keeps its
Gaussi an envel ope, but the contrast of the oscillations (cross term
is reduced by a factor n.

The probability distribution for the nonentumis given by
1 _ .
Pr(p) = 5| ples)” +[(pl-cuf + 2nReal((pl-ct,) (ples)

Since the overlap of the two Gaussians (p|a,) and (p|-a,) i s negligible
for|aJ>>1, the crossed term which is proportional to n does not

contribute significantly. W recover two peaks centered at ﬂadenﬁw.

The distinction between a quantum superposition and a statistical
m xture can be nmade by position neasurenents. The quant um

superposition | eads to a nodul ati on of spatial period [hnZKZmaﬁuﬂuz

wi th a Gaussi an envel ope, whereas only the Gaussian is observed for a
statistical mxture.

In order to see this nodul ation, the paranmeter n nust not be too
smal |, say n=1/10.

In a very sinple nodel, the environnent is represented by a second
oscillator, of the sane mass and frequency as the first one. W w |
assume that this second oscillator is initially inits ground state

|%.(0))=|0). If the coupling between the two oscillators is quadratic,
we can take for granted that

- the states [x”(t)) are quasi-classical: [x'(t)=|8)
« and that, for short times (y<<1): Uﬂ2=2ﬂk%f

A sinple cal culation then gives

CEUELED) BB gt e’
From earlier considerations we nust have n=(8|-g)=e?/ =1/10—>|p|<1
For tinmes shorter than y™, the energy of the first oscillator is
E(t) = E(0) - 2ptlot,| 7w
The energy of the second oscillator is
E'(t) = ho|(BQ) +1/2) = hw 12 + 2fa,| ho

The total energy is conserved: the energy transferred during the tine
tis

AE(t) = 2Aatg[ heo = ho|(B(O)
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In order to distinguish between a gquantum superposition and a
statistical m xture, we nust have AE<hw. In other words, if a single
energy quantum 7%w is transferred, it becones problematic to tell the
di fference.

If we return to the nunerical exanple of the pendul umwe have the
following results: with 1/2y =1year =3x10’s, the tine it takes to reach

Bl=1is (2yla,)™~2x10"s!
Concl usi on

Even for a systemas well protected fromthe environnent as we have
assuned for the pendulum the quantum superpositions of nacroscopic
states are unobservable. After a very short tinme, all neasurenents
one can nake on a systeminitially prepared in such a state coincide
with those nade on a statistical mxture. It is therefore not
possi bl e, at present, to observe the effects related to the

par adoxi cal character of a macroscopi ¢ gquantum super position
However, it is quite possible to observe "nesoscopic" kittens, for
systens which have a limted nunber of degrees of freedom and are
wel | isol at ed.
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