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Abstract

We consider a two-level quantum system (qubit) which is continuously mea-
sured by a detector. The information provided by the detector is taken into
account to describe the evolution during a particular realization of the mea-
surement process. We discuss the Bayesian formalism for such “selective”
evolution of an individual qubit and apply it to several solid-state setups.
In particular, we show how to suppress qubit decoherence using continuous
measurement and a feed- back loop.

1. Introduction

Studies of two-level quantum systems have acquired recently a new mean-
ing related to the use of this simple quantum object as an elementary cell
(qubit) of a quantum computer. [1] This paper addresses the measurement of
a qubit state, so it necessarily touches the long-standing and still somewhat
controversial problem of quantum measurement, [2-4] which is known under
the name of quantum state “collapse”.

Having in mind a solid-state realization of qubit (for different proposals see,
e.g., Refs.[5-9]) let us emphasize that a realistic detector has a noisy output
signal, so the measurement of a qubit state should necessarily have finite
duration in order to provide an acceptable signal- to-noise ratio. In this sit-
uation the “orthodox” collapse postulate [10-12] cannot be applied directly,
since the measurement is not instantaneous. The necessity of a more general
formalism is obvious, for example, in the case when the qubit “self-evolution”
changes the quantum state considerably during a measurement process. Even
if there is no self-evolution, one can wonder what happens with the qubit
state after a partially completed measurement (when the signal-to-noise ra-
tio is still on the order of unity). So, we need a formalism to describe the
gradual qubit evolution, caused by the measurement process. As will be dis-
cussed later, the Schrödinger equation alone is not sufficient for the complete
description of this evolution, and should be complemented by a slightly gen-
eralized collapse principle.

Continuous quantum measurement was a subject of ex- tensive theoretical
analysis during last two decades, and there are two main approaches to this



problem. One approach is based on the theory of interaction with a dissi-
pative environment. [13,14] Taking the trace over the numerous degrees of
freedom of the detector, it is possible to obtain a gradual evolution of the
measured system density matrix from the pure initial state to the incoherent
statistical mixture, thus describing the measurement process. [15,16] Since
the procedure implies an averaging over the ensemble, the final equations of
this formalism are deterministic and can be derived from the Schrödinger
equation alone, without any notion of state collapse. The success of the
theory in describing many solid-state experiments has supported an opinion
common nowadays that the collapse principle is a needless part of quantum
mechanics. Because of the dominance of this approach (at least in the solid-
state community) we will call it “conventional”.

The other general approach to continuous quantum measurement (see, e.g.,
Refs.[17-36]) explicitly or implicitly uses the idea of the state collapse. Since
quantum measurement is a fundamentally indeterministic process so that the
exact measurement result is typically unpredictable, the approach describes
the random evolution of the quantum state of the measured system. The
important advantage in comparison with the conventional approach is the
absence of averaging over the total ensemble; hence, it is possible to describe
the evolution of an individual quantum system during a particular realiza-
tion of the measurement process. The evolution of the measured system
obviously depends on a particular measurement outcome; in other words, it
is selected by (conditioned on) the measurement result. So, this approach
is usually called the approach of selective or conditional quantum evolution.
There is a rather broad variety of formalisms and their interpretations within
the approach. [17-36] Depending on the details of the studied measurement
setup and applied formalism, different authors discuss quantum trajectories,
quantum state diffusion, stochastic evolution of the wavefunction, quantum
jumps, stochastic Schrödinger equation, complex Hamiltonian, method of
restricted path integral, Bayesian formalism, etc. (for comparison between
several different ideas see, e.g., Ref. [19]). The approach of selective quantum
evolution is relatively well developed in quantum optics; in contrast, it was
introduced into the context of solid-state mesoscopics only recently. [33]

In the present paper we continue the development of the Bayesian formalism
[33,35-38] for selective quantum evolution of a qubit due to continuous mea-
surement. Several issues of the formalism derivation and interpretation are
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explained in more detail than in previous papers. A new way of derivation
is presented for a special case of low- transparency quantum point contact
(tunnel junction) as a detector. We also discuss equations (briefly mentioned
in Ref. [35]) for the evolution of a qubit measured by single-electron tran-
sistor, which go beyond the approximation used for a nonideal detector in
Ref.33. Special attention is paid to a regime outside the “weakly responding”
limit. Finally, we discuss the operation of a quantum feedback loop which can
suppress the qubit decoherence caused by interaction with the environment.

2. Examples of Measurement Setup

The total Hamiltonian H of a qubit continuously measured by a detector,

H = HQB +HDET +HINT (1)

consists of terms describing the qubit, the detector, and their interaction.
The qubit hamiltonian,

HQB =
ε

2
(c†1c1 − c

†
2c2) +H(c†1c1 − c

†
2c2) (2)

is characterized by the energy asymmetry ε between two levels and the mixing
(tunneling) strength H (we assume real H without loss of generality). The
Hamiltonian (2) is written in the basis defined by the coupling with the
detector. We will refer to mutually orthogonal states ∣1⟩ and ∣2⟩ as “localized”
states in order to distinguish them from the “diagonal” basis consisting of the
ground and excited states, which differ in energy by h̵Ω = (4H2 + ε2)1/2.

2.1. Double-dot measured by tunnel junction

Our study will be applicable to several different types of qubits and detectors.
As the main example we con- sider a double quantum dot occupied by a single
electron, the position of which is measured by a low-transparency tunnel
junction nearby (see Fig. 1).
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Figure 1: Tunnel junction as a detector of the electron position in the double-dot which
affects the barrier height. The current I(t) (detector output) reflects the evolution of the
density matrix ρij(t) of the measured two-level system (qubit).

Basically following the model of Ref. [39] let us assume that the tunnel
barrier height depends on the location of the electron in either dot 1 or 2;
then the current through the tunnel junction (which is the detector output)
is sensitive to the electron location. In this case the detector and interaction
Hamiltonians can be written as

HDET =∑
l

Ela
†
lal +∑

r

Era
†
rar +∑

l,r

T (a†
ral + a

†
lar)

HINT =∑
l,r

∆t

2
∑
l

Ela
†
lal(a

†
ral + a

†
lar) (3)

where both T and ∆T are real and their dependence on the states in elec-
trodes (l, r) is neglected. If the electron occupies dot 1, then the average
current through the detector is I1 = 2π(T +∆T /2)2ρlρre2V /h̵ (V is the volt-
age across the tunnel junction and ρl,r are the densities of states in the
electrodes) while if the measured electron is in the dot 2, the average current
is I2 = 2π(T −∆T /2)2ρlρre2V /h̵.

The difference between the currents,

∆I ≡ I1 − I2 (4)

determines the detector response to the electron position (notice the different
sign in the definition of ∆I used in Ref. [33]). Because of the finite noise of the
detector current I(t), the two states of the system cannot be distinguished
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instantaneously and the signal-to-noise ratio gradually improves with the
increase of the measurement duration. Let us define the typical measurement
time τm necessary to distinguish between two states as the time for which
the signal-to-noise ratio is close to unity: [40]

τm =
(
√
S1 +

√
S2)

2

2(∆I)2
(5)

where S1 and S2 are the low-frequency spectral densities of the detector noise
for states ∣1⟩ and ∣2⟩. (As will be seen later, τm also determines the timescale
for selective evolution of the qubit state due to measurement.) For a low-
transparency tunnel junction S1,2 = 2eI1,2 coth (βeV /2), where β is the inverse
temperature. At sufficiently small temperatures β−1 ≪ eV (we assume zero
temperature unless specially mentioned) the detector shot noise is given by
the Schottky formula,

S1,2 = 2eI1,2 (6)

To avoid an explicit account of the detector quantum noise we will consider
only processes at frequencies ω ≪ eV /h̵ (in particular, we assume τ−1

m ≪

eV /h̵).

The major part of the paper will be devoted to the detector in the “weakly
responding” regime when two states of the detector differ only a little (one
can also call this regime “linear”, while the term “weak coupling” is reserved
for a different meaning), in particular,

∣∆I ∣ ≪ I0 , I0 ≡
I1 + I2

2
(7)

∣S1 − S2∣ ≪ S0 , S0 ≡
S1 + S2

2
(8)

so the typical measurement time is

τm =
2S0

(∆I)2
(9)

For a weakly responding detector the timescale e/I0 of individual electron
passages through the detector is much shorter than τm, so the current can
be considered continuous on the measurement timescale.
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2.2. Double-dot and quantum point contact

Besides the low-transparency tunnel junction as a de- tector, we can also
consider a quantum point contact with arbitrary transparency T which de-
pends on the electron position in the double dot. This setup in the context of
continuous quantum measurement has been extensively studied both exper-
imentally [41,42] and theoretically. [43-48] In spite of a somewhat different
mathematical description (we will not write the Hamiltonian explicitly) this
case is very close to the case above, which we prefer because of its simplicity.
The obvious new feature is the different formula for the shot noise, [49]

S1,2 = 2eI1,2(1 − T1,2) (10)

where I1,2 = −T1,2e3V /πh̵. Notice that for the quantum point contact as
a detector we make the condition (7) for weakly responding regime a little
stronger, ∣∆I ∣ ≪ (1−T1,2)I1,2, so that both transmitted and reflected currents
can be considered continuous on the measurement timescale.

2.3. Cooper-pair box and single-electron transistor

Another interesting measurement setup (Fig. 2) introduced in Ref. [50] in
the context of a solid-state quantum computer, is a single-Cooper-pair box
measured by a single-electron transistor (a somewhat similar setup has been
recently used for the experimental demonstration [51] of quantum oscillations
in the time domain).

Figure 2: Single-electron transistor (detector) measuring the charge state of the single-
Cooper-pair box (qubit).

The qubit in this case is represented by two charge states of a small- ca-
pacitance Josephson junction. The Josephson coupling provides the matrix
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element H in Eq. (2) which is assumed to be much smaller than the single-
electron charging energy, so that only two charge states (adjusted by the
gate voltage to be close in energy) are important. The capacitively coupled
single-electron transistor is sensitive to the charge state of the Cooper-pair
box and serves as the detector; the current I(t) through the transistor is the
measurement output.

One can find the detailed discussion of the Hamiltonian for this measurement
setup in Ref. [50]. The qubit state affects the energy of the middle island
of the single-electron transistor (Fig. 2), so the interaction is of “density-
density” type:

HINT =
∆E

2
(c†2c2 − c

†
1c1)(∑

m

a†
mam − constant) (11)

where the factor in large brackets is the number of extra electrons on the
transistor island. In the “orthodox” regime of sequential single-electron tun-
neling [52,53] in the transistor, the energy change ∆E affects the rates of
tunneling through the two tunnel junctions and thus affects the average cur-
rent I. In the simplest case when the electrons can tunnel only in a strict
alternating sequence with rates ΓL and ΓR, the average currents I1 and I2

can be calculated as [52]

Ii =
eΓL,iΓR,i
ΓL,i + ΓR,i

(12)

where i = 1,2 corresponds to the charge state of the qubit. Well outside
the Coulomb blockade range the difference between the rates is ΓR,2 −ΓR,1 =
∆E/e2RR, where RL(R) ≫ h̵/e2 are the resistances of tunnel junctions.

The measurement time to distinguish between states ∣1⟩ and ∣2⟩ for this
setup is given by Eq. (5), in which the spectral density of the single-electron
transistor cur- rent can be calculated using equations of Refs. [54,55] (the
Schottky formula used for this purpose in Ref. [50] is valid only in a limiting
case). In the special case corresponding to Eq. (12) the shot noise is given
by the formula [55]

Si =
2eIi(Γ2

L,i + Γ2
R,i)

(ΓL,i + ΓR,i)2
(13)
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2.4. Two SQUIDS

One more solid-state realization of continuous quantum measurement of a
qubit can be done using two flux states of a SQUID as a qubit and another
inductively coupled SQUID as a detector. [56] The corresponding Hamilto-
nian and calculations of the SQUID noise can be found, e.g., in Ref. [57].
A minor difference in the formalism is related to the fact that the typical
output signal from a SQUID is voltage instead of current in the examples
above.

3. Results of the Conventional Approach

The goal of the present paper is the analysis of a selective evolution of the
qubit state due to continuous measurement, taking into account the detector
output I(t). However, before that let us review the results of the conventional
approach [39,43-48,50] to this problem which does not take into account the
detector output.

We describe the quantum state of a qubit by the density matrix ρij in the
basis of localized states ∣1⟩ and ∣2⟩, so that ρii (ρ11+ρ22 = 1) is the probability
to find the system in the state “i” if an instantaneous measurement in this
basis is performed, while ρ12 (ρ21 = ρ∗12) characterizes the coherence; in partic-
ular, ∣ρ12∣

2 = ρ11ρ22 corresponds to a pure state. In the conventional approach
[13] the evolution of ρij is calculated using the Schrödinger equation for the
combined system including the detector and then tracing out the detector
degrees of freedom that leads to the following equations:[39,43-48,50]

ρ̇11 = −ρ̇22 = −2
H

h̵
Imρ12 (14)

ρ̇12 = i
ε

h̵
ρ12 + i

H

h̵
(ρ11 − ρ22) − Γdρ12 (15)

where the effect of continuous measurement is described by the ensemble de-
coherence rate Γd. (Such equations in similar problems when the environment
causes dephasing are known for many years — see, e.g., Refs. [13,58,59]).

For a double-dot measured by a tunnel junction (Fig. 1) the decoherence
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rate has been obtained in Ref. [39]:

Γd =
(
√
I1 −

√
I2)

2

2e
(16)

Comparing this equation with Eqs. (5) and (6) one can easily notice that Γd
has a direct relation to the typical measurement time τm:

Γd = (2τm)−1 (17)

This relation obviously remains valid in the weakly re- sponding regime when
the decoherence rate can be expressed as

Γd =
(∆I)2

4S0

(18)

In the case of a finite-transparency quantum point contact as a detector [41-
48] the ensemble decoherence rate has been mainly studied in the weakly
responding regime. The most important for us result [41-43,46-48] is that for
symmetric coupling Eq. (18) is still valid, just the shot noise is now given by
Eq. (10) instead of Eq. (6) (as mentioned, the temperature is zero). In the
asymmetric case, if the phase of transmitted and reflected electrons in the
detector is sensitive to states ∣1⟩ and ∣2⟩, then there is an extra term in the
equation for the decoherence rate, so the decoherence is faster [42,45,47,48]
than given by Eq. (18).

The inequality Γd > (2τm)−1 has been also obtained in Ref.50 for a single-
electron transistor measuring a single-Cooper-pair box. The interaction Hamil-
tonian (11) allows us to relate the dephasing rate, Γd = (∆E)2Sm/4h̵2, to
the low-frequency spectral density Sm of the fluctuating number m of extra
electrons on the transistor central island. These fluctuations have been cal-
culated in Refs. [54,55] within the framework of the orthodox theory. [52] In
particular, assuming the weakly responding regime and the two-charge-state
dynamics corresponding to Eqs. (12)-(13) we obtain [37,60]

Γd =
(∆E)2ΓLΓR
h̵2(ΓL + ΓR)3

(19)

(notice a different expression in Ref. [50]). In this case

2Γdτm =
8Γ2

LΓ2
R(Γ

2
L + Γ2

R)

(ΓL + ΓR)2(Γ2
Lh̵/eRR − Γ2

Rh̵/eRL)
(20)
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so for

2Γdτm = 8(
ΓL
ΓR

)

2

(
RLe2

h̵
)

2

(21)

Formally this expression becomes less than one if e2ΓLRL < h̵ΓR/
√

8; how-
ever, in this case the significant cotunneling makes the orthodox approach
invalid and the quantum noise contribution becomes important. [54] In the
cotunneling regime (well below the Coulomb blockade threshold) Γd should
be obviously comparable to (2τm)−1 because in this case essentially the bar-
rier height (the energy of the virtual state) is sensitive to a measured state, so
the detecting principle becomes similar to the case of Fig. 1. The inequality
Γd ≥ (2τm)−1 should remain valid in the cotunneling regime as well; this fact
will be obvious from the Bayesian formalism.

The quantum backaction of a SQUID in the linear-response approximation
was calculated in Ref. [61]. It was shown that the total energy sensitiv-
ity of a SQUID (εIεV − ε2IV )

1/2 (which takes the backaction into account)
is limited by h̵/2. Here εV is the “output” energy sensitivity [the output
signal of a SQUID is V (t)], εI describes the intensity of backaction noise,
and εIV characterizes their correlation. From the inequality εIεV ≥ h̵2/4 we
easily get an inequality for spectral densities: sIsV ≥ h̵2(dV /dΦ)2, where
dV /dΦ describes the SQUID response to the flux Φ. For the two-SQUID
measurement setup considered in the present paper the qubit dephasing due
to backaction noise is Γd = (∆Φ)2sI/4h̵2 where ∆Φ is the measured flux
difference between two qubit states. Using the inequality above for the prod-
uct sIsV we obtain a lower bound for the ensemble decoherence rate: [48]
Γd ≥ (∆V )2/4sV = (2τm)−1 similar to all other setups discussed above. This
lower bound can be achieved only when the SQUID sensitivity is quantum-
limited.

Notice that the main equations (14)?(15) of the conventional formalism do
not depend on the detector output I(t), and so they cannot be used for the
prediction of the detector current behavior [for generality we again choose
the current as a detector output signal even though for a SQUID it should
be changed to V (t)]. An important step towards this goal has been made
in Ref. [39] for a tunnel junction as a detector (a similar analysis for the
single-electron transistor has been performed in Refs. [50,62]). Let us divide
the density matrix ρij into terms corresponding to different numbers n of
electrons passed through the measuring tunnel junction, ρij = ∑n ρnij (only
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diagonal terms in n are considered). Then the evolution of these terms is
given by the equations [39]

ρ̇n11 = −
I1

e
ρn11 +

I1

e
ρn−1

11 − 2
H

h̵
Imρn12 (22)

ρ̇n22 = −
I2

e
ρn22 +

I2

e
ρn−1

22 + 2
H

h̵
Imρn12 (23)

ρ̇n12 = i
ε

h̵
ρn12 + i

H

h̵
(ρn11 − ρ

2
22) −

I1 + I2

2e
ρm12 (24)

while Eqs. (14)-(15) can be derived from Eqs. (22)-(24) after summation
over n.

Even though these equations couple the evolution of the system density ma-
trix with the number of electrons passed through the detector, they cannot
predict the behavior of the current I(t) and do not allow the calculation of
ρij for a given realization of I(t). Actually, this is quite expected since the
conventional formalism describes the ensemble averaged evolution while the
analysis of a particular measurement realization requires a formalism suitable
for an individual quantum system. (The use of the conventional formalism
was the reason why several recent attempts [45,62,63] to analyze the detec-
tor current were not very successful.) The analysis of a particular realization
of the measurement process can be performed using the Bayesian formalism
discussed in the next section.

4. Bayesian Formalism

In the Bayesian formalism (the name originates from the Bayes formula
[64,65] for probabilities) which was derived only for the weakly responding
(linear) regime, the evolution of the qubit density matrix during a particular
measurement process is described by the equations [33]

ρ̇11 = −ρ̇22 = −2
H

h̵
Imρ12 + ρ11ρ22

2∆I

S0

[I(t) − I0] (25)

ρ̇22 = i
ε

h̵
ρ12 + i

H

h̵
(ρ11 − ρ22) − (ρ11 − ρ22)

2∆I

S0

[I(t) − I0]ρ12 − γdρ12 (26)
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place Eqs. (14)-(15) of the conventional formalism. Here

γd = Γd −
(∆I)2

4S0

≥ 0 (27)

is the decoherence rate due to the “pure environment” only (ideal continuous
measurement does not lead to this decoherence). One can see that γd = 0 in
the example of a tunnel junction as a detector, which thus can be called an
ideal detector, η = 1, where

η ≡ 1 −
γd
Γd

=
1

2Γdτm
(28)

A similar ideal situation occurs for a quantum point contact when Γd =

(∆I)2/4S0, and also for the two- SQUID setup when the sensitivity of the
measuring SQUID is quantum-limited and the output and backaction noises
are uncorrelated. The important prediction of the Bayesian formalism is
that in such an ideal situation (which is experimentally accessible), an ini-
tially pure state of the qubit remains pure during the evolution; moreover,
an initially mixed state can be gradually purified in the course of continuous
measurement. [33]

Eqs. (25)-(26) allow us to calculate the evolution of ρij for a given measure-
ment output I(t). In order to analyze the behavior of I(t), these equations
should be complemented by the formula

I(t) − I0 =
∆I

2
)ρ11 − ρ22) + ξ(t) (29)

where ξ(t) is a zero-correlated (“white”) random process with the same spec-
tral density as the detector noise, [66] Sξ = S0. The stochasticity of the
detector current does not allow us to predict exactly the evolution of ρij in
each particular realization of the measurement process; however, the formal-
ism describes the mutual dependence of the stochastic evolutions of ρij(t)
and I(t) and thus allows us to make experimental predictions not accessible
by the conventional approach.

When Eq. (29) is substituted into Eqs. (25)?(26), we get a system of
nonlinear stochastic differential equations. The analysis of such equations
requires special care, since their solution depends on the accepted defini-
tion of the derivative [67] (this happens because the noise increases with
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the decrease of the timescale, and so ξ2dt = constant = Sξ/2 does not de-
crease with dt). In Eqs. (25)-(26) we have used the symmetric definition,
ρ̇(t) = limτ→0[ρ(t + τ/2) − ρ(t − τ/2)]/τ . This is the so-called Stratonovich
interpretation of the nonlinear stochastic equations. The main advantage
of this interpretation is that all standard calculus formulas [for example,
(fg)′ = f ′g + fg′] remain valid, [67] so the intuition based on usual (non-
stochastic) differential equations typically works well (this is the reason why
we prefer the Stratonovich interpretation). Its other advantage is the correct
limit in the case when the white noise term is approximated by a properly
converging sequence of smooth functions. [67]

However, for some purposes (e.g., for averaging over stochastic variables and
for numerical simulations) it is more convenient to use another definition
of the derivative: ρ̇(t) = limτ→0[ρ(t + τ) − ρ(t)]/τ . This is called the Itô
interpretation and it is the most commonly used interpretation in mathe-
matical literature on stochastic differential equations. There is a simple rule
of translation between the two interpretations: [67] for an arbitrary system
of equations

ẋi(t) = Gi(x, t) + Fi(x, t)ξ(t) (30)

in Stratonovich interpretation, the corresponding It0̂ equation which has the
same solution is

ẋi(t) = Gi(x, t) +
Sξ
2
∑
k

∂Fi(x, t)

∂xk
Fk(x, t) + Fi(x, t)ξ(t) (31)

where xi(t) are the components of the vector x(t), Gi and Fi are arbitrary
functions, and the constant Sξ is the spectral density of the white noise
process ξ(t). Applying this transformation to Eqs. (25), (26), and (29) we
get the following equations in Itô interpretation:

ρ̇11 = −ρ̇22 = −2
H

h̵
Imρ12 + ρ11ρ22

2∆I

S0

ξ(t) (32)

ρ̇22 = i
ε

h̵
ρ12 + i

H

h̵
(ρ11 − ρ22) − (ρ11 − ρ22)

2∆I

S0

ρ12ξ(t) − [γd +
(∆I)2

4S0

]ρ12 (33)

while the current I(t) is still given by Eq. (29). Similar equations (in a
different notation) have been obtained in Ref. [27] for a symmetric two-level
system measured by an ideal detector (ε = 0, γd = 0). Notice that the Itô
interpretation has been used in the majority of theories describing selective
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evolution due to quantum measurement (see [17-19] and references therein).

Using the Itô interpretation it is easier to see that averaging of the evolu-
tion equations over the random process ξ(t) (i.e., averaging over different
detector outputs) leads to the conventional equations (14)-(15). However,
for the analysis of an individual realization of the evolution, Itô equations
are typically less transparent for physical interpretation. For example, the
term −ρ12(∆I)2/4S0 in Eq. (33) does not actually cause decoherence in an
individual realization but just compensates the noise term proportional to
ξ2dt due to the Itô definition of the derivative, and so ρ12(t) does not decrease
exponentially in time if H ≠ 0. Similarly, the fact that the measurement tries
to localize the density matrix in one of two states is not clear from Eqs.
(32)-(33) while it is obvious from Eqs. (25)-(29).

To avoid confusion due to the difference between Stratonovich and Itô inter-
pretations, it is helpful to write the exact solution of Eqs. (25)-(26) [which
is also the solution of Eqs. (32)-(33)] in the special case H = 0:

ρ11(t + τ)

ρ22(t + τ)
=
ρ11(t)

ρ22(t)

exp [−(Ī(τ) − I1)
2τ/S0]

exp [−(Ī(τ) − I2)
2τ/S0]

(34)

ρ12(t + τ)

[ρ11(t + τ)ρ22(t + τ)]1/2 =
ρ12(t)eiετ/h̵

[ρ11(t)ρ22(t)]1/2 e
−γdτ (35)

where
Ī(τ) ≡

1

τ ∫
t+τ

t
I(t′)dt′ (36)

is the detector current averaged over the time interval (t, t+ τ). These equa-
tions have clear physical meaning: Eq. (34) is just the Bayes formula (see
next section) while Eq. (35) describes gradual decoherence due to the “pure
environment” characterized by γd.

A useful tool for analysis of the measurement process is Monte-Carlo simu-
lation of an individual process realization. For this purpose we can use Eqs.
(34)-(35) complemented by the simulation of evolution due to finite H. Let
us choose a sufficiently small timestep ∆t (much smaller than h̵/H) and ap-
ply the following algorithm. First, for each timestep (t, t + ∆t) we pick the
averaged current

Ī ≡
1

∆t ∫
t+∆t

t
I(t′)dt′
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as a random number using the probability distribution

P (Ī) =
ρ11(t)

2πD)1/2 exp [−
(Ī − I1)

2

2D
] +

ρ22(t)

2πD)1/2 exp [−
(Ī − I2)

2

2D
] (37)

where D = S0/2∆t. Then Ī is substituted into Eqs. (34)-(35) to calculate
ρij(t + ∆t) from ρij(t). The last step of the procedure is the additional
evolution during ∆t due to finite H (rotation in the ρ11 − ρ22 plane). Then
the whole procedure is repeated for the next timestep ∆t and so on.

An alternative algorithm can be based directly on the Itô equations (32)-
(33) which are more natural for numerical simulations than the Stratonovich
equations because of the “forward-looking” definition of the derivative. For
sufficiently small ∆t (now much smaller than all timescales S0/(∆I)2,h̵/H,
h̵/ε, and γ−1

d ) we first calculate the averaged pure noise,

ξ̄ ≡
1

∆t ∫
t+∆t

t
ξ(t′)dt′

as a random number using the Gaussian distribution

P (ξ̄) =
1

(2πD)1/2 exp [−(ξ̄)2/2D] (38)

where again D = S0/2∆t. Then this number is substituted into Eq. (32):

ρ11(t +∆t) = ρ11(t) − 2∆t
H

h̵
Imρ12(t) + ρ11(t)ρ22(t)

2∆I

S0

ξ̄∆t (39)

and similarly into Eq. (33). Then the updating procedure is repeated for the
next step ∆t and so on. The detector current can be calculated using Eq.
(29).

Both Monte-Carlo algorithms are equivalent; however, the first algorithm
is better because it allows longer timesteps. The equivalence for small ∆t
can be proven analytically using a second-order series expansion of Eqs.
(34)-(35) and has also been checked numerically. Notice that for ∆t ≪

S0/(∆I)2, the current distribution (37) is indistinguishable from the dis-
tribution P (ξ̄ +∆I(ρ11 − ρ22)/2) given by Eq. (38).

A typical result of the Monte-Carlo simulation is shown in Fig. 3.
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Figure 3: Solid lines: gradual purification of the qubit density matrix ρ(t) in the course
of continuous measurement, starting from the completely incoherent state. Dashed lines
show the evolution starting from localized states, assuming the same detector current.

The solid lines show a particular realization of the evolution of ρ(t) (diago-
nal and nondiagonal elements of the density matrix) for a symmetric qubit,
ε = 0, measured by a detector with coupling C ≡ h̵(∆I)2/S0H = 0.1 and ide-
ality factor η = 0.7. The real part of ρ12(t) is not shown since its evolution is
decoupled from ρ11(t) and Imρ12(t). The completely incoherent initial state
is chosen, ρ11(0) = 0.5, ρ12(0) = 0. Nevertheless, the measurement leads to
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the gradual onset of quantum coherent oscillations. This happens because
the measurement randomly tries to localize the qubit, while the finite H pro-
vides oscillations when the state becomes at least partially localized. The
qubit state is gradually purified, eventually reaching a pure state if the de-
tector is ideal. For a nonideal detector (Fig. 3) the state remains partially
incoherent, which decreases the amplitude of the oscillations.

The qubit gradually “forgets” its initial state during the evolution and the
density matrix ρ(t) becomes determined mostly by the detector record. To
illustrate this fact, the dashed lines in Fig. 3 show the qubit evolution calcu-
lated by Eqs. (25)-(26) starting from two localized states and assuming that
the detector current (not shown) is exactly the same as in the measurement
realization corresponding to the solid lines. As expected, after the time com-
parable to τm the dashed lines become close to the solid lines.

The tendency to qubit state localization due to measurement can be de-
scribed quantitatively using the deterministic part of Eqs. (25) and (29).
However, because of the equation nonlinearity the typical localization timeτl
cannot have a unique definition. If we define it via an exponential-growth
factor exp (t/τl) for ρ11(t)-evolution when ρ11 is close to 1/2, then

τl = 2
S0

(∆I)2
(40)

which exactly coincides with the definition of the typical measurement time
τm. [If for the definition we choose the exponential-decrease factor exp (t/τl)
when the state is almost localized, then τl would be twice smaller.]

5. Derivation Based on Bayes Formula

In this section we briefly review the derivation of the Bayesian formalism
presented in Ref. [33], which was based on the correspondence between clas-
sical and quantum measurements.

In the classical case (H = 0, ρ12 = 0) the measurement process can be de-
scribed as an evolution of probabilities ρ11 and ρ22 which reflect our knowl-
edge about the system state. Then for arbitrary ∆t (which can be comparable
to τm) the average current Ī obviously has the probability distribution given
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by Eq. (37). After the measurement during ∆t the information about the
system state has increased and the probabilities ρ11 and ρ22 should be up-
dated using the measurement result Ī and the Bayes formula (34), which
completely describes the classical measurement. [The Bayes formula [64,65]
says that the updated probability P ∗(A) of a hypothesis A given that event
F has ??happened in an experiment, is equal to

P ∗(A) =
P (A)P (F ∣A)

∑B[P (B)P (F ∣B)]

where P (A) is the probability before the experiment, P (F ∣A) is the con-
ditional probability of event F for hypothesis A, and the sum is over the
complete set of mutually exclusive hypotheses.]

The next step is an important assumption: in the quantum case with H = 0
the evolution of ρ11 and ρ22 is still given by Eq. (34) because there is no
principal possibility to distinguish between classical and quantum cases, per-
forming only this kind of measurement. Even though this assumption is quite
obvious, it is not derived formally but should rather be regarded as a conse-
quence of the correspondence principle. In other words, this is the natural
generalization of the collapse postulate to the case of incomplete measure-
ment.

The comparison with classical measurement cannot de- scribe the evolution
of ρ12; however, there is an upper limit: ∣ρ12∣ ≤ [ρ11ρ22]

1/2. Surprisingly, this
inequality is sufficient for the exact calculation of ρ12(t) in the important
special case of an ideal detector and H = 0. Averaging this inequality over
all possible detector outputs Ī using distribution (37) we get the inequality

∣ρ12(t + τ)∣ ≤ [ρ11ρ22]
1/2 exp [−

(∆I)2

4S0

τ] (41)

On the other hand, for such averaged dynamics Eq. (41) actually reaches the
upper bound [see Eqs. (14)-(15) and (18)] in the cases discussed in Section
3 (tunnel junction, symmetric quantum point contact, or quantum-limited
SQUID as a detector). This is possible only if in each realization of the
measurement process the initially pure density matrix ρij(t) stays pure all
the time, ∣∣ρ12(t)∣2 = ρ11(t)ρ22(t). This fact has been the main point in the
Bayesian formalism derivation in Ref.[33].
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As the next step of the derivation, a mixed initial state has been taken into
account (for H = 0 and an ideal detector) using conservation of the “degree
of purity” [Eq. (35) with γd = 0] which directly follows from a statistical
consideration. The qubit state evolution due to finite H has been simply
added to the evolution due to measurement. Finally, the interaction with
the extra environment (which does not provide any measurement result) has
been taken into account by introducing the decoherence rate γd.

First-order series expansion of the corresponding equations for ρij(t + ∆t)
leads to differential equations (25)? (26). The reason why we get equations
in Stratonovich interpretation is that the first-order expansion is necessarily
based on the standard calculus rules which are valid only in this interpre-
tation. Using a second-order expansion we can obtain differential equations
both in Stratonovich and Itô interpretations, depending on the definition of
the derivative.

6. Alternative Derivation of the Formalism

Let us discuss now an alternative way of deriving the Bayesian formalism,
which is based on Eqs. (22)-(24) of the conventional approach (a somewhat
similar derivation of the Bayesian formalism has been recently presented in
Ref. [36]). Since these equations have been derived [39] only for the tunnel
junction as a detector, we limit ourselves to this case.

Eqs. (22)-(24) describe the coupled evolution of the qubit density matrix ρij
and the number n of electrons passed through the detector, considering the
“qubit plus detector” as a closed system. We need to make a small but very
important step in order to describe an individ- ual measurement process: we
need to construct an open system which outputs classical information to the
out- side. For this purpose let us introduce the next stage of the measurement
setup which will be called “pointer” (see Fig. 4). By definition, the pointer
deals only with classical signals while quantum description is allowed for the
detector.
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Figure 4: The pointer is introduced into the model to ex- tract the classical signal from
the detector.

Let us consider the following model. The pointer does not interact with the
detector most of the time, however, at time moments t = tk (k = 1,2, ....) the
pointer measures (in simple orthodox way) the total number n of electrons
passed through the detector. By our assumption the measured n should be
a classical number, so after each measurement by the pointer the number
nk = n(tk) is well defined. However, during the “free” evolution of the “qubit
plus detector” between the measurements by pointer the number n(t) gets
smeared according to Schrödinger equation, i.e., satisfy Eqs. (22)-(24). By
introducing sufficiently frequent readout (collapse) into the model we get the
ability to describe the time dependence of the detector current. Of course,
many other collapse scenarios are possible, however, if we show that within
some limits the measurement process does not depend on the choice of times
tk, this is a good argument justifying the generality of the model.

The collapse at t = tk can be described in the orthodox way. [10-12] The
probability P (n) to measure n electrons passed through a detector is

P (n) = ρn11(tk) + ρ
n
22(tk) (42)

The measurement by pointer picks some random number nk according to
distribution (42), however, after the measurement this number is already well
defined and the density matrix should be immediately updated (collapsed):
[10?12]

ρnij(tk + 0) = δn,nk
ρij(tk + 0) (43)

ρij(tk + 0) =
ρnk
ij (tk − 0)

ρnk
11 (tk − 0) + ρnk

22 (tk − 0)
(44)
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where δn,nk
is the Kronecker symbol. After that the evolution is described

by Eqs. (22)-(24) until the next collapse occurs at t = tk+1.

The detector current in our model has a natural averaging during time period
between tk−1 and tk and can be calculated as

Īk =
e∆nk
∆tk

where ∆nk ≡ n(tk) − n(tk−1) and ∆tk ≡ tk − tk−1. Since the detector output
is intended to reflect the evolution of the measured system, tk should be
sufficiently frequent, in particular ∆tkh̵/H. For a while let us completely
neglect the terms proportional to H in Eqs. (22)-(24) and discuss their effect
later. Then these equations can be solved exactly. For the initial condition
ρnij(0) = δn,0ρij(0) the solution is

ρn11(t) =
(I1r/e)n

n!
exp (−I1t/e)ρ11(0) (45)

ρn22(t) =
(I2r/e)n

n!
exp (−I2t/e)ρ22(0) (46)

ρn12(t) =
(
√
I1I2/e)n

n!
exp(−

I1 + I2

2e
t +

iεt

h̵
)ρ12(0) (47)

Similar equations describe the evolution after kth measurement by the pointer,
just t is shifted by tk and n is shifted by nk. Using Eqs. (43)-(44) we derive
the iterative equations for the qubit density matrix:

ρ11(tk) =ρ11(tk−1)I
∆nk
1 exp (−I1∆tk/e)

× [ρ11(tk−1)I
∆nk
1 exp (−I1∆tk/e)

+ ρ22(tk−1)I
∆nk
2 exp (−I2∆tk/e)]

−1 (48)

ρ22(tk) = 1 − ρ11(tk) (49)

ρ12(tk) = ρ12(tk−1) [
ρ11(tk)ρ22(tk)

ρ11(tk−1)ρ22(tk−1)
]

1/2

exp (iε∆tk/h̵) (50)

while the probability P (nk) to get n = nk at t = tk is

P (nk) =
(∆tk/e)∆nk

(∆nk)!
[I∆nk

1 exp (−I1∆tk/e)ρ11(tk−1)

+ I21∆nk exp (−I2∆tk/e)ρ22(tk−1)] (51)
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It is instructive to check that the averaging of ρij(tk) over the result of
measurement at t = tk gives simple equations

ρ11(tk) = ρ11(tk−1) , ρ22(tk) = ρ22(tk−1) (52)

ρ12(tk) = ρ12(tk−1) exp (iε∆tk/h̵) exp [−(
√
I1 −

√
I2)

2∆tk/2e] (53)

which are consistent with the conventional equations (14)-(16). [68]

One can easily see that Eq. (48) can be interpreted as the Bayes formula,
while Eq. (50) is the conservation of the “degree of purity”, similar to the
approach reviewed above. The complete equivalence between Eqs. (48)-(51)
and Eqs. (34)-(37) is achieved if ∣∆I ∣ ≪ I0 and also the probing time ∆tk
is much longer than the typical time I0/e between individual electron pas-
sages in the detector (so that the current is essentially continuous). In this
case the Poissonian distributions (45)-(46) obviously become Gaussian, and
so the probability distributions for the current Ī = e∆nk/∆tk given by Eq.
(37) and Eq. (51) coincide. Similarly, Eqs. (48)-(50) for ρij coincide with
Eqs. (34)-(35) applied to an ideal detector,γd = 0. [69]

If the probing period is within the range e/I0 ≪ ∆tk ≪ eI0/(∆I)2, the evo-
lution of ρij is smooth and so Eqs. (48)-(49) can be written in a differential
form which coincides with Eqs. (25)-(26) of the Bayesian formalism with
H = 0 and γd = 0. The effect of finite H can be now taken into account by
the addition of obvious terms into Eqs. (25)-(26). However, this can be done
only if ∆tk ≪ H/h̵ because in the opposite case the terms of more than the
first power in H should be added into Eqs. (48)-(50) indicating a nontrivial
interplay between two effects.

So, we have shown that in the weakly responding case, ∆I ≪ I0, Eqs. (22)-
(24) of the conventional approach complemented by a sufficiently frequent
readout (collapse), e/I0 ≪ ∆tk ≪ min[eI0/(∆I)2, h̵/H] lead to the equa-
tions of the Bayesian approach. The decoherence rate γd is zero because the
model39 describes a tunnel junction which is an ideal detector.

7. Effect of Collapse Due to Pointer

The simple model considered in the previous section allows us to analyze
the effect of the repeated measurements by pointer on the qubit dynamics in
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more detail and beyond the approximations of the Bayesian approach. First,
it is important to notice that in this model the event of collapse at t = tk does
not disturb the qubit measurement by the detector. More specifically, the
collapse with unknown result nk is equivalent to the absence of the collapse.
To prove this fact, Eqs. (43)-(44) can be averaged with the distribution (42)
that results in unity operator.

The absence of disturbance by pointer is because in the model there are no
density matrix elements which couple detector states with different number
of passed electrons. Physically, this is a consequence of the assumption of
low detector barrier transparency and infinite number of electrons in the
detector electrodes, so that the “attempt frequency” is much larger than any
collapse frequency (for a quantum point contact the necessary condition for
this assumption is the large resistance, R ≫ h̵/e2). In other words, this
model is intrinsically Markovian and the detector is classical in a sense that
the passage of individual electrons through detector is essentially classical
(not quantum) random process. [70]

The absence of the disturbance by collapse with un- known result does not
mean, however, that we can forget about the collapse and make it only “at
the end of the day”. Any readout from the detector necessarily changes
the qubit state (or in other words, informs us about the change) and thus
affects the qubit evolution. In the limit of sufficiently often readout, ∆tk ≪
min(e/I1, e/I23, h̵/H, h̵/ε), the evolution equations (22)-(24) and (42)-(44)
simplify because at most one electron can pass through the detector between
readouts. During the periods of time when no electrons are passed through
the detector, the evolution is essentially described by Eqs. (22)-(24) with n =
0, while the frequent collapses just restore the density matrix normalization,
leading to the continuous qubit evolution:

ρ̇11 = −ρ̇22 = −1
H

h̵
Imρ12 −

∆I

e
ρ11ρ22 (54)

ρ̇12 =
iε

h̵
ρ12 +

iH

h̵
(ρ11 − ρ22) +

∆I

2e
(ρ11 − ρ22)ρ12 (55)

However, at moments when one electron passes through the detector, the
qubit state changes abruptly; this change is given by Eqs. (48)-(50) with
∆nk = 1 and ∆tk → 0:

ρ11(t + 0) =
I1ρ11(t − 0)

I1ρ11(t − 0) + I2ρ22(t − 0)
(56)
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ρ22(t + 0) = 1 − ρ11(t + 0) (57)

ρ12(t + 0) = ρ12(t − 0) [
ρ11(t + 0)ρ22(t + 0)

ρ11(t − 0)ρ22(t − 0)
]

1/2

(58)

and can be obviously interpreted as the Bayesian update. Equations (54)-
(58) correspond to the framework of “quantum jump” model. [18,36]

It is easy to see that initially pure qubit state remains pure under quan-
tum jump evolution (54)-(58) and the density matrix is gradually purified if
started from a mixed state. The lines in Fig. 5 show a particular realization
of such evolution for I1/e = H/h̵, I1/I2 = 3, and completely incoherent initial
state, ρ11(0) = 0.5, ρ112(0) = 0.

Figure 5: The lines show a gradual purification of the qubit density matrix ρ(t) in the
regime of quantum jumps (frequent detector readout with one-electron accuracy). The
dots, triangles, squares, and crosses correspond to finite readout periods ∆tk/(h̵/H) =
0.5,1,2 and 3 respectively.
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Each discontinuity of curves corresponds to the passage of an electron through
the detector (the jumps of ρ12 are typically smaller than the jumps of ρ11).
The matrix element ρ11 always jumps up because I1 > I2 and so the elec-
tron passage indicates that the state ∣1⟩ is somewhat more likely than state
∣2⟩. The jumps are more pronounced when ρ11 is closer to 0.5 because the
jump amplitude is ∆ρ11 = ∆Iρ11ρ22/(I1ρ11+ I2ρ22) [see Eq. (56)]. The model
allows us to consider finite ratio I1/I2 in contrast to Eqs. (25)-(26) of the
Bayesian approach. In the limit of weakly responding detector, ∣∆I ∣ ≪ I0,
the amplitude of quantum jumps (54)-(56) is negligible and Eqs. (25)-(26)
are restored (in this sense they describe a “quantum diffusion” model [36]).
Notice, however, that equations of the Bayesian approach are applicable to
a broader class of detectors.

Since the model (22)-(24) describes the ideal detector, the qubit state in
Fig. 5 eventually becomes completely pure. However, if the readout period
∆tk is not sufficiently small, the information about the moments of electron
passage through the detector is partially lost that decreases our knowledge
about the qubit state. In the formalism this leads to a partial decoherence
of the qubit density matrix. The symbols in Fig. 5 (dots, triangles, squares,
and crosses) represent the readout with several different periods for exactly
the same realization of a measurement process as for the lines which repre-
sent very frequent readout. When the readout is still sufficiently frequent
(dots), we can monitor the qubit evolution with a good accuracy (dots al-
most coincide with the lines). However, with the increase of the readout
period, ρ11 becomes close to 0.5 and ρ12 becomes close to zero, indicating
a strongly mixed state. Figure 6 shows the corresponding decrease of the
average coherence factor θ ≡ 1 = 4⟨ρ11ρ22− ∣ρ12∣

2⟩ with increase of the readout
period ∆tk (equal time between readouts is assumed). The averaging is done
over the readout moments for sufficiently long realization of the measure-
ment process. We also tried few other expressions which describe the density
matrix coherence, all of them show a similar dependence on ∆tk. Notice the
vanishing coherence in Fig. 6 when the ratio between ∆tk and the quantum
oscillation period πh̵/H is close to an integer number (the regime of quantum
nondemolition measurements [3,31]).
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Figure 6: The average qubit coherence factor θ as a function of the readout period ∆tk
for the measurement process shown in Fig. 5.

In the special caseH = 0 all the information about the qubit state is contained
in the result of the last measurement by pointer. This fact can be easily
proven by applying Eqs. (48)-(50) twice and checking that resulting qubit
density matrix does not depend on the result n1 of the first measurement
while the dependence on the second result n2 is the same as in the case
of only one last measurement. Similarly, the probability distribution P (n2)

[see Eq. (51)] averaged over the result n1 of the first measurement exactly
coincides with P (n2) in absence of the first measurement.

It is interesting to discuss the generalization of the model to the case of a
low-transparency tunnel junction with finite temperature of electrodes. Then
each of the currents I1 and I2 can be decomposed into two currents flowing
in opposite directions,

I + i = I+i − I
−
i ,

I+i
I−i

= βeV (59)

where i = 1,2,3, beta is the inverse temperature, and V is the voltage across
junction. In this case Eqs. (22)-(24) are replaced by the following equations:

ρ̇n11 = −
I+1 + I

−
1

e
ρn11 +

I+1
e
ρn−1

11 +
I−1
e
ρn+1

11 − 2
H

h̵
Imρn12 (60)
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ρ̇n22 = −
I+2 + I

−
2

e
ρn22 +

I+2
e
ρn−1

22 +
I−2
e
ρn+1

22 + 2
H

h̵
Imρn12 (61)

ρ̇n12 =i
ε

h̵
ρn12 + i

H

h̵
(ρn11 − ρ

n
22) −

I+1 + I
−
1 + I

+
2 + I

−
2

2e
ρn12

+

√
I+1 I

+
2

e
ρn−1

12 +

√
I−1 I

−
2

e
ρn+1

12 (62)

If the readout period ∆tk is much shorter than min(e/I±i , h̵/H), the detector
still does not decrease the qubit coherence in spite of the finite temperature.
However, if individual electron passages are not resolved, the information
about the number of electrons passed in each direction is lost that leads to
the qubit decoherence. In the framework of Bayesian formalism in the case of
quasi-continuous current, e/I±i ≪ ∆tk ≪min[eIi/(∆I)2, h̵/H)], we can easily
calculate the output current noise Γd = coth (βeV /2)(∆I)2/8eI0 (see also the
derivation in Ref. [36]). Thus calculated detector ideality factor,

η = [tanh (βeV /2)]2 (63)

becomes significantly less than unity at temperatures β−1 ≳ eV .

8. Detector with Correlated Output and Back-
action Noises

Let us assume again a weakly responding (linear) detector and consider the
case when the output detector noise is correlated with the “backaction” noise
which provides the fluctuations ε(t) of the qubit energy level difference and
thus leads to the qubit dephasing. For example, this is the typical situa-
tion for a single-electron transistor as a detector. [54,55] In this case the
knowledge of the noisy detector output I(t) gives some information about
the probable backaction noise “trajectory” ε(t) which can be used to improve
our knowledge of the qubit state. The compensation for the most probable
trajectory ε(t) leads to improved Bayesian evolution equations: [35]

ρ̇11 = −ρ̇22 = −2
H

h̵
Imρ12 + ρ11ρ22

2∆I

S0

[I(t) − I0] (64)
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ρ̇12 =i
ε

h̵
ρ12 + i

H

h̵
(ρ11 − ρ22)

− (ρ11 − ρ22)
2∆I

S0

[I(t) − I0]ρ12

+ iK[I(t) − (ρ11I1 + ρ22I2)]ρ12 − γ̃dρ12 (65)

where K = (dε/dϕ)SIϕ/S0h̵ characterizes the correlation between the noise
of current I through the single-electron transistor and the noise of its central
electrode potential ϕ (SIϕ is the mutual low-frequency spectral density). [71]
The term in square brackets after K in Eq. (65) is just the “pure output
noise” from Eq. (29). The decoherence rate −γ̃d in Eq. (65) is now decreased
because of partial recovery of the dephasing:

γ̃d = Γd −
(∆I)2

4S0

−
K2S0

4
(66)

The term containing K in Eq. (65) is proportional to the average ϕ(t) for
given I(t). Performing ensemble averaging of this term [essentially, consid-
ering noise ϕ(t) as uncorrelated with I(t)], we can reduce Eqs. (64)-(65) to
Eqs. (25)-(26), while additional ensemble averaging over I(t) leads to the
conventional equations (14)-(15).

The obvious inequality γ̃d ≥ 0 (in the opposite case the condition ∣ρ12∣
2 ≤

ρ11ρ22 would be violated) imposes a lower bound for the ensemble decoher-
ence rate Γd:

Γd ≥
(∆I)2

4S0

+
K2S0

4
(67)

which is stronger than the inequality 2Γdτm ≥ 1 (see Section 3).

Inequality (67) can be also interpreted in terms of the energy sensitivity of
a single-electron transistor. Let us define the output energy sensitivity as
εI ≡ (dI/dq)−2S0/2C where C is the total island capacitance and dI/dq is the
response to the externally induced charge q. Similarly, let us characterize the
backaction noise intensity by εϕ ≡ CS− ∣varphi/2 and the correlation between
two noises by the magnitude εIϕ ≡ (dI/dq)−2SIϕ/2C. Since in absence of other
decoherence sources Γd = Sϕ(C∆E/2eh̵)2, where ∆E is the energy coupling
between qubit and single-electron transistor (see Section 3), and using also
the reciprocity property ∆q = C∆E/e = dε/dϕ, we can rewrite Eq. (67) as

(εIεϕ − ε
2
Iϕ)

1/2 ≥
h̵

2
(68)
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similar to the result of Ref. [61] (see also Refs. [48,72-74]). When the limit
h̵/2 is achieved, the decoherence rate

γ̃d =
(∆I)2

4S0

[
εIεϕ − ε2Iϕ
(h̵/2)2

− 1] (69)

in equations (64)-(65) for the selective evolution of an individual qubit van-
ishes, γ̃d = 0. In this sense the detector is ideal, η̃ = 1, where

η̃ ≡ 1 −
γ̃d
Γd

=
h̵2(dI/dq)2

S0Sϕ
+

(SIϕ)
2

S0Sϕ
(70)

even though it can be a nonideal detector (η < 1) by the previous definition,
η = h̵2(dI/dq)2/S0Sϕ. [Notice a simple relation,

η = η̃ =
(h̵/2)2

εIεϕ
=

1

2Γdτm
(71)

in absence of correlation between noises of ϕ(t) and I(t), (SIϕ)2 ≪ S0Sϕ].

A similar conclusion is also valid for other kinds of detectors: a quantum-
limited total energy sensitivity h̵/2 is equivalent to detector ideality, η̃ = 1.
Besides the tunnel junction, [39] quantum point contact, [43,47] and SQUID,
[61] the regime of ideal quantum detection is also achievable by supercon-
ducting single-electron transisitor [72] and normal single-electron transistor
in cotunneling mode. [74] (The resonant-tunneling single-electron transistor
[73] has ideality factor comparable, but not equal to unity.)

9. Quantum Feedback Loop

The Bayesian formalism allows us to monitor the evolution of an individual
qubit using weak continuous measurement, thus avoiding strong instanta-
neous perturbations. This information can be used to control the qubit
parameters ε and H in order to tune continuously the qubit state in such a
way that the evolution follows the desired trajectory (a similar idea has been
discussed in Refs. [30,34]). This is possible even in the presence of decoher-
ence due to the environment and so presents an opportunity to suppress such
decoherence.
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Continuous qubit purification using a quantum feedback loop [38] can be
useful for a quantum computer. All quantum algorithms require the supply
of “fresh” qubits with well-defined initial states. This supply is not a trivial
problem since a qubit left alone for some time deteriorates due to interac-
tion with the environment. The usual idea is to use the ground state which
should be eventually reached and does not deteriorate. However, to speed up
the qubit initialization we need to increase the coupling with environment,
which should be avoided. Another possible idea is to perform a projective
measurement, after which the state becomes well-defined. However, in the
realistic case the coupling with the detector is finite, which makes projective
measurement impossible. So, a different idea is helpful: to tune the qubit
continuously in order to overcome the dephasing due to the environment and
so keep the qubit “fresh”.

The schematic of such state purification is shown in Fig. 7.

Figure 7: Schematic of continuous qubit purification using quantum feedback loop.

The qubit is continuously measured by a weakly coupled detector, and the
detector signal is plugged into Eqs. (64)-(65) [or into Eqs. (25)-(26) in a
simpler case] to monitor the evolution of the qubit density matrix ρij(t).
This evolution is compared with the desired evolution, and the difference is
used to generate the feedback signal which controls the qubit parameters H
and ε in order to reduce the difference with the desired qubit state.

We have simulated a feedback loop designed to maintain the perfect quantum
oscillations of a symmetric qubit (ε = 0), so that the desired evolution is

ρ11 =
1 + cos (Ωt)

2
, ρ12 =

i sin (Ωt)

2
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where Ω = 2H/h̵. Let us assume an ideal detector, η = 1, so that the qubit
decoherence rate γd in Eqs. (25)-(26) is due to the extra environment. The
ratio between the decoherence rate and the “measurement rate” (∆I)2/4S0

is described by the factor d ≡ 4S0γd/(∆I)2.

To imitate a realistic situation the current I(t) is averaged with a rectangular
window of duration τa running in time, before it is plugged into Eqs. (25)-
(26). So, thus calculated density matrix ρa(t) differs (a little) from the “true”
density matrix ρ(t) which is simultaneously simulated by the Monte-Carlo
method described in Section 4. The feedback signal is proportional to the
difference ∆φ between the desired oscillation phase Ω(t−τa/2) and the phase
calculated as

φ(t) ≡ tan−1 [
2Imρ1

12(t)

ρa11(t) − ρ
a
22(t)

]

Here the time shift τa/2 partially compensates the detector signal delay due
to averaging. The feedback signal is used to control the qubit tunnel barrier:
Hfb(t) = H[1 − F × ∆φ(t − τd)] where F is the dimensionless strength of
the feedback and τd is an additional time delay (τd = 0 is preferable but not
achievable in a realistic situation).

Figure 8 shows typical realizations of the qubit’s ρ11 evolution for

C = h̵(∆I)2/S0H = 1, ε = 0, τa = 0.1h̵/H,τd = 0.05h̵/H

and several values of the feedback factor F = 0,0.3 and 3. No extra environ-
ment is assumed, d = 0. The qubit evolution starts from a localized state:
ρ11(0) = 1, ρ12(0) = 0, and the desired evolution is shown by the thick solid
line. Without a feedback (F = 0) the phase of quantum oscillations randomly
fluctuates (diffuses) in time. However, for sufficiently large F the feedback
“locks” the qubit evolution and makes it close to the desired one. Further
increase of F decreases the difference between the actual and desired evolu-
tion. When F is too strong, the feedback loop becomes unstable. Overall,
the behavior of this quantum feedback loop is similar to the behavior of a
traditional classical feedback loop. In particular, we have checked that the
increase of the averaging time τa and/or delay time τd eventually leads to syn-
chronization breakdown. A decrease of the detector coupling C decreases the
evolution disturbance due to measurement and allows more accurate tuning
of quantum oscillations; on the other hand, in this case the feedback control
becomes weaker and slower.
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Figure 8: Particular realizations of the qubit evolution for a quantum feedback loop with
strength F = 3,0.3, and 0 (thin solid, dashed, and dotted lines, respectively). Thick line
shows the desired evolution. No extra environment is present, d = 0.

Figure 9: Operation of the quantum feedback loop (partic- ular realization) for several
decoherence rates due to extra environment, d = γd × 4S0/(∆I)

2
= 0.3,1 and 3 (thin solid,

dashed, and dotted lines, respectively). Thick solid line is the desired evolution. F = 3,
h̵(∆I)2/S0H = 1, ε = 0, τa = 0.1h̵/H, τd = 0.05h̵/H.

Qubit decoherence due to the presence of an extra environment prevents
complete purification of the quantum oscillations so that the average qubit
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coherence factor θ becomes less than 100%. However, if the qubit coupling
with the detector is stronger than the coupling with its environment, d ≲ 1,
the feedback loop still provides qubit evolution quite close to the desired
one (see Fig. 9). Most noticeably, the phase of quantum oscillations does
not diffuse far from the desired value Ωt. So, for example, the spectral
density of these oscillations has a delta-function shape at frequency Ω (with
exponentially small width) in contrast to the maximum value of 4 for the
peak-to-pedestal ratio in the case of quantum oscillations without feedback.
[37,47]

10. Discussion

The Bayesian formalism discussed in this paper presents (as any formalism
of selective quantum evolution [17-36]) a controversy in interpretation. First
of all, a natural question is how it is possible that the qubit density ma-
trix evolution can be described simultaneously by the conventional equations
(14)-(15) and the Bayesian equations (25)-(26) [and even also by the im-
proved Bayesian equations (64)-(65)]. Which equations are correct? The
answer is: all are correct depending on the problem considered.

If only the ensemble evolution is studied (for example, the ensemble of parti-
cles is measured, as in typical nuclear magnetic resonance experiments) then
the conventional approach is completely sufficient. It is also possible to use
the Bayesian equations; however, they should be averaged over all possible
measurement results, after which they coincide with the conventional equa-
tions. So, the selective approach does not have real advantages for the study
of the averaged evolution (besides a significant computational gain in some
cases [17-19]). There is still no advantage even for the majority of experi-
ments with individual quantum systems (see examples in Section 2) if the
averaging is done over a number of repeated experiments, disregarding the
results of individual measurements (more exactly, when not more than one
number is recorded as a result of each run).

The principal advantage of the selective evolution approach arises for con-
tinuous measurement of an individual quantum system when the continuous
detector output I(t) is recorded (or at least two numbers are recorded in
each run). In this case the selective approach gives the possibility to make
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experimental predictions, unaccessible for the conventional approach. The
proposals of such experiments with solid-state qubits have been dis- cussed,
for example, in Ref. [33] for a one-detector setup and in Ref. [38] for a two-
detector setup (the latter experiment seems to be realizable at the present-
day level of solid-state technology).

In this case the density matrices calculated by the conventional and Bayesian
equations are significantly different. However, they do not contradict each
other but rather the Bayesian-calculated density matrix is more accurate than
the conventional counterpart. For example, there are no situations when two
approaches predict different pure states of the qubit — then it would be
possible to prove experimentally than one of the approaches is wrong. In-
stead, in a typical situation the conventional equations give a significantly
mixed state (so, essentially no predictions are possible) while the Bayesian
equations give a pure state (and so some predictions with 100% certainty are
possible). A similar relation holds between Bayesian equations (25)?(26) and
the improved Bayesian equations (64)-(65): the latter give a more accurate
description of qubit evolution and allow us to make more accurate predic-
tions.

The difference between density matrices calculated in different approaches
can be easily understood if we treat density matrix not as a kind of “objec-
tive reality” but rather as our knowledge about the qubit state (in accordance
with orthodox interpretation of quantum mechanics). Then it is obvious that
since Bayesian equations take into account additional information [detector
output I(t)], they provide us with a more accurate description of the qubit
state than the conventional equations.

Another controversial issue is the state collapse due to measurement (here
it is more appropriate to mention the mathematical formulation by Lüders
[11,20] rather than by von Neumann [10]). The conventional equations are
derived without any notion of collapse while the derivation of Bayesian equa-
tions requires either implicit or explicit (as in the model of Section 6) use
of the collapse postulate. Philosophically, the collapse postulate is almost
trivial: when the result of the measurement becomes available, we know for
sure that the state of the measured system has changed consistently with
the measurement result (even though it is generally impossible to predict the
result with certainty). In spite of being trivial, this postulate in the author?s
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opinion cannot even in principle be derived dynamically by the deterministic
Schrödinger equation because of the intrinsic randomness of the measurement
result. In other words, the measurement process cannot be described by the
Schrödinger equation alone because this equation is designed for closed sys-
tems while a quantum object under measurement is always an open system
(even including the detector), since the measurement information is output
to the outside world. (The incompatibility between quantum mechanics and
“macrorealism” has been discussed, e.g., in Ref. [75].)

Following the orthodox (Copenhagen) interpretation, we can regard collapse
not as a real physical process but rather as a convenient formal tool to get
correct experimental predictions. In the author’s opinion this tool is still
irreplaceable (if we leave aside the many-worlds interpretations [76,77]) for
the complete description of the quantum realm. (Of course, in many cases
the collapse postulate is not necessary as, for example, for the description
of decoherence due to interaction with the environment — this problem has
been solved with great success by the conventional approach.)

Bayesian equations predict several quite counterintuitive results. For exam-
ple, even for a qubit with an infinite barrier between localized states, H = 0,
the continuous measurement by an ideal detector leads to a gradual “flow”
of the wavefunction between the states (for an initially coherent qubit). The
interpretation of this effect is rather difficult if we treat the wavefunction
as objective reality; in contrast, there is no problem with the orthodox in-
terpretation. Most importantly, experimental observation of such effects in
solid-state qubits is coming into the reach of present-day technology. These
experiments would be extremely important not only for better under- stand-
ing of the foundations of quantum theory, but could be also useful in the
context of quantum computing.

The author thanks S. A. Gurvitz, D. V. Averin, H.- S. Goan, M. H. De-
voret, A. Maassen van den Brink, G. Scho?n, and Y. Nakamura for useful
discussions.
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