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Abstract

An approach to quantum mechanics is developed which makes the Heisenberg
cut between the deterministic microscopic quantum world and the partly de-
terministic, partly stochastic macroscopic world explicit. The microscopic
system evolves according to the Schrödinger equation with stochastic behav-
ior arising when the system is probed by a set of coarse grained macroscopic
observables whose resolution scale defines the Heisenberg cut. The result-
ing stochastic process can account for the different facets of the classical
limit: Newton’s laws (ergodicity broken); statistical mechanics of thermal
ensembles (ergodic); and solve the measurement problem (partial ergodicity
breaking). In particular, the usual rules of the Copenhagen interpretation,
like the Born rule, emerge, along with completely local descriptions of EPR
type experiments. The formalism also re-introduces a dynamical picture of
equilibration and thermalization in quantum statistical mechanics and pro-
vides insight into how classical statistical mechanics can arise in the classical
limit and in a way that alleviates various conceptual problems.

1. Introduction

Quantum mechanics is an amazingly successful and universal framework that
describes physics over a huge range of scales, from the quantum theory of
gravity provided by fundamental strings, through particle physics, nuclear
physics, atomic physics to condensed matter physics. There can be little
doubt that we know how to interpret quantum mechanics from a practical
point of view by employing the rules of the Copenhagen interpretation.1

The Copenhagen interpretation has all the tools that are needed to unlock
the microscopic quantum world in the laboratory. It works by hypothesizing
the existence of the Heisenberg cut, a division between the deterministic
microscopic quantum world governed by the Schrödinger equation and the
classical, partly deterministic, partly stochastic, macroscopic world governed
by classical mechanics and the Born rule. It is worth amplifying this point:
it is not the microscopic world that is probabilistic and the classical world

11It can be argued that there is no single, historically coherent version of the Copen-
hagen interpretation. However, the rules are well known to, and used by, most physicists
and also form the basis of most textbook treatments of quantum mechanics.



deterministic, the reality is the opposite as is apparent when one listens to a
Geiger counter. Moreover, the classical world includes statistical mechanics
and hence is stochastic even if the role of probability is not conceptually well
understood in that context. It is important that the scale of the Heisenberg
cut can be changed somewhat without altering the macroscopic predictions
as long as it is kept below (as a scale in position space) macroscopic scales.

The Copenhagen interpretation posits a kind of stochastic dynamics that
kicks in whenever a measurement is made on a microscopic quantum system.
So during a measurement process where an initial state vector ∣Ψ(0)⟩ evolves
into the linear combination

∣Ψ(T )⟩ =∑
i

ci ∣Ψi⟩ (1.1)

and where the component states ∣Ψi⟩ are macroscopically distinct, the final
state is then interpreted as describing an ensemble with probabilities are
given by the Born rule

probi = ∣ci∣
2 (1.2)

This begs some questions of which two key ones are:

1. When does the underlying pure state become interpreted as an ensem-
ble, i.e., where is the Heisenberg cut to be placed?

2. Why are the macroscopically distinct states ∣Ψi⟩ picked out as special?
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The conventional answer to (1) is that it doesn?t matter where we put the
Heisenberg cut as long as it is somewhere between the microscopic and macro-
scopic while (2) is solved by fiat. The Copenhagen interpretation in its
present form has shown itself sufficient to use quantum mechanics in prac-
tice. Is there, therefore, any merit in trying to go beyond the conventional
rules in order to provide more convincing answers to the questions above?
The danger is that this might add to the feeling that the Copenhagen inter-
pretation is inadequate which is not our intention. On the other hand, as we
will try to argue, there is the potential to unify both the deterministic and
stochastic aspects of the classical world, the latter including both quantum
measurement scenarios as well as statistical mechanics (SM).

The enhanced formalism we are after will determine what are the possible
outcomes of a quantum measurement without having to resort to identifying
them by hand. In addition, it will provide a better understanding of the
Heisenberg cut and therefore how the classical world emerges from quantum
mechanics. In this regard, the existence of a classical world is not guaranteed
by the conventional classical limit and the correspondence principle alone. It
will also yields a formalism where the reduction of the state vector is just a
non-compulsory piece of book keeping.

In addition, an important element of the proposal will be to provide a new
way to understand how classical SM can emerge from an underlying quantum
system. It may come as a surprise to learn that classical SM still has many
unresolved conceptual problems;2 including:

1. The conceptual status of probability in a deterministic theory.

2. Definition of entropy and the second law.

3. Description of non-equilibrium and the approach to equilibrium.

4. The role of ergodicity and the relation between ensembles and long, or
infinite, time averages.

The idea of building SM directly on quantum mechanics has its genesis in
the work of Schrödinger [3] and von Neumann [4, 5] back in the 1920s. This

2Wallace [1] has a nice review of these conceptual difficulties and how they are related
to those of quantum mechanics. Some of the outstanding conceptual issues of classical SM
set in a historical context are discussed in the excellent review of Uffink [2].
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kind of approach, taken up (or re-invented) in the modern era,3 misses out
classical mechanics completely, and thereby avoids its conceptual problems.
But we would surely be missing something by not understanding how classical
SM can arise as a limit of quantum mechanics. In this regard, it would be
wasteful not to put the probabilities of quantum mechanics to good use to
provide ab initio probabilities for SM. Wallace [1] has pointed out that in
this context that there is no need to introduce probabilities twice, firstly for
quantum purposes and then for statistical mechanical purposes. We intend
to elaborate on this point and then suggest that if we can understand the
stochastic element of quantum mechanics more formally then we may at the
same time provide a proper foundation for classical SM as the classical limit
of quantum mechanics. There will be a considerable pay off because, as we
will see, issues to do with probabilities, entropy, ensembles and ergodicity
potentially become simpler in the quantum context.

With this motivation, we will construct a framework for quantum mechanics
for which the following are true:

1. The underlying system is described by a state vector evolving according
to the Schrödinger equation.

2. The role of observers is played by sets of observables that describe the
macroscopic interactions of a macro-system.4

3. A classical regime and the usual Copenhagen rules of measurement
emerge at macroscopic scales: definite macroscopically distinct out-
comes are predicted with probabilities that are captured by the Born
rule if the measuring device is accurate.

4. The classical limit for macroscopic systems displays both determinis-
tic and stochastic features which can explain why macroscopic objects
have definite positions and obey Newton’s laws whilst, at the same
time, their internal degrees of freedom are in thermal equilibrium. In
the classical limit, a dynamical picture of classical SM emerges but
with a stochastic dynamics on a discrete set of states for which issues
concerning ergodicity are conceptually simpler to investigate.

3For a selection of papers see [6-18] and references therein.
4There is no need for Alices, Bobs, agents, brains, minds, consciousness or users —

human, feline or otherwise.
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The present work is a development of earlier work [19-21] which themselves
are built on some aspects of the class of modal interpretations of quantum
mechanics. The key idea is that Heisenberg cut is identified implicitly by
the resolution scale of a set of relevant macroscopic degree of freedom of a
system. In [19-21] this was done by assuming that the Hilbert space has an
explicit factorization

H = HA ⊗HE (1.3)

where HA describes the accessible, or macroscopically relevant, degrees of
freedom and HE, the environment, encompasses all the remaining degrees of
freedom. The tensor product factorization is therefore a manifestation of the
Heisenberg cut. This kind of split is useful in toy models for describing the
way the formalism works but in realistic situations we cannot expect such a
clean split of the Hilbert space and, in addition, it is difficult to see how the
Heisenberg cut could be varied in this context.

The fact that the Heisenberg cut can be varied as long as it is kept at sub-
macroscopic scales is very reminiscent of the Wilsonian cut off in quantum
field theory (QFT) [22]. In the modern era, QFTs are viewed as effective the-
ories that have an explicit finite resolution, or coarse graining, scale known
as the Wilsonian cut off.5 They are only valid for describing phenomena at
larger distances than this scale. The important point is that phenomena on
larger length scales are insensitive to changing the Wilsonian cut off as long
as the latter is kept below the scale of the phenomena. The analogy with
the Heisenberg cut is intriguing. One feature is worth emphasizing: there
is a subjective element in choosing the Wilsonian cut off because it depends
on the distance scale of the phenomena that you want to focus on. But this
kind of subjectivity is completely natural: we are free to choose the length
scale of the phenomena we want to investigate and each scale has its own
effective theory.

The lesson for the Heisenberg cut is that it would be natural to associate
it to the resolution scale of a set of observables that are needed to describe
phenomena on, in this case, macroscopic scales: macroscopic phenomena re-

5Even our most fundamental QFT, the standard model, is only an effective theory
which needs an explicit cut off to be well defined. It is much more stringent requirement
to ask that a QFT has a continuum limit for which the cut off or resolution scale is taken
to zero in position space. This kind of limit can only be taken if there is a UV fixed point
of the renormalization group.
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quire a sub-macroscopic Heisenberg cut. In the present approach, motivated
for the need to describe more realistic systems, and with the notion of an
effective QFT in mind, we propose to change the focus from tensor product
factors and reduced density operators, to the set of relevant — or macro-
scopically accessible, or coarse grained — observables A = {On}. These are a
set of observables that are coarse grained on sub-macroscopic scales that are
needed to faithfully describe the macroscopic interactions of the system with
other macroscopic systems. Implicit in the definition of the set A, there-
fore, is the resolution or coarse graining scale which is nothing other than
the Heisenberg cut. (See Figure 1) We will find the original tensor product
and reduced density operator formalism will emerge as a special case of the
more general formalism that we develop. In this sense, the present approach
subsumes the earlier work [19-21].

Figure 1: A quantum system evolves deterministically according to the Schrödinger
equation. In our proposal, the stochastic element arises when the macroscopic interactions
of the system are described by a set of probes in the form of a set of coarse grained
observables A = {On} whose resolution scale defines the Heisenberg cut.

In our approach to the quantum mechanics, the set of coarse grained ob-
servables A has a perspective on the underlying quantum state with the
Heisenberg cut identified with the resolution scale of the observables. Like
the conventional Copenhagen interpretation, the perspective of A involves a
kind of stochastic dynamics, but unlike the conventional Copenhagen inter-
pretation there is nothing ad hoc about its definition. In particular, the Born
rule will emerge approximately in realistic situations with efficient measur-
ing devices and state vector reduction will be seen to be a pragmatic — but
ultimately unnecessary — piece of book keeping that is performed locally on
the state vector.
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It is a key idea of our approach that although the microscopic state of the
system is the state vector ∣Ψ⟩ the latter is not directly the macrostate of a
system. This is very natural from the perspective of both QFT and quantum
SM:

1. In QFT the macroscopic, or IR, state of a system is effectively deter-
mined by the correlation functions of the low momentum, or coarse
grained, operators

⟨Ψ∣On1⋯Onp ∣Ψ⟩

2. In quantum statistical mechanics, the properties of equilibration and
thermalization are are properties of the expectation values of coarse
grained observables

⟨Ψ∣On ∣Ψ⟩

In particular, they are not properties of the underlying state vector
that does not equilibrate or thermalize itself.6

This paper is organized as follows. In section 2, we set out the main features
of the emergent Copenhagen interpretation along with a limited commentary.
Later sections expand upon this discussion beginning in section 3 which ad-
dresses the definition of the quantum microstates in detail. This is followed
up in section 4 by a discussion of the stochastic pro- cess that controls the
dynamics of the quantum microstates. It is important to show that the
stochastic process is local in order to ensure that the formalism is causal. In
section 5 we show how the formalism applies to a simple quantum system
consisting of a particle moving in one dimension. Simple though it is, this
example draws out some important details. A crude model of measurement
is then described in section 6. This model is not supposed to be realistic
but is simple enough to see how the proposal works in practice. In section
7, we show how the formalism produces a description of the EPR thought
experiment using qubits that involves only local interactions between the
qubits and the measuring devices: there is no quantum non-locality. Section
8 describes how the formalism has implications for the quantum mechanical
underpinning of classical statistic mechanics. Finally, in section 9, we draw
some conclusions.

6It is worth pointing out, and discussed at further length in section 8, that the idea of
defining the effective state of a system through the expectation values of a set of coarse
grained observables plays an important role in quantum approaches to SM going back to
von Neumann [4].
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2. The Emergent Copenhagen Interpretation

In this section, we summarize the three key elements of the emergent Copen-
hagen interpretation previously introduced in [19-21] but here generalized.
More detail in given in the following sections, particularly 3 and 4.

1. The underlying laws of quantum mechanics hold unchanged:
in other words, the underlying state ∣Ψ⟩ evolves according to the
Schrödinger equation

H ∣Ψ⟩ = ih̵
∂

∂t
∣Ψ⟩ (2.1)

It is possible to relax the condition of the system having a pure state with
the generalization to mixed states described in appendix A.

2. The stochastic element that we observe of quantum system
arises from the way the underlying quantum system interacts with
other systems. This involves defining a set of probes in the form
of coarse grained observables A = {On} that describe the potential
macroscopic interactions of the system with other systems. At
time t, the state that is actually realized, from the point of view
of the set A, i.e., the macrostate, is encoded in the expectation
values

⟨Ψi(t)∣On ∣Ψi(t)⟩ , n = 1,2, ...., dimA

where ∣Ψi(t)⟩ is one of the set of quantum microstatesM = {∣Ψj⟩}

that is realized at time t. These are a discrete set of orthonor-
mal states (defined fully in section 3) that depend implicitly on
both ∣Ψ⟩ and A with the property that the expectation values of
operators in the set A are effectively captured by an ensemble:

⟨Ψ∣ON ∣Ψ⟩ =
dimM

∑
i=1

∣ci∣
2 ⟨Ψi∣ON ∣Ψi⟩ , ∀On ∈ A (2.2)

that has maximal entropy and whose probabilities satisfy the “mi-
croscopic Born rule”

∣ci∣
2 = ∣ ⟨Ψi ∣Ψ⟩ ∣2 (2.3)
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Defining the set of observables A and the set of quantum microstatesM will
form the subject of section 3. In the simplest case, A contains a single ob-
servable O and then the setM consists of the eigenstates of O that appear
in the expansion of ∣Ψ⟩. However, in general realistic sets A will consist of
coarse grained observables in some local region of space that describe the
possible macroscopic interactions of the system with other macroscopic sys-
tems.

Our approach incorporates the notion of observer complementarity implicit
in the choice of the set of observables A: different sets define different per-
spectives.7 The question that naturally arises is whether this introduces a
kind of subjectivity into the approach: in other words, is the choice of the set
A determined or is it arbitrary? To add to the discussion in section 1, clearly
there is some freedom to choose A, however, this kind of non-uniqueness is
familiar in physics. If we want to investigate phenomena of a system at a
certain length scale the theory should be couched in terms of a set of rele-
vant observables that are determined by the possible probes, or interactions
with external systems, at that scale. The choice of scale is subjective but
the details of the effective theory relevant at that scale is not. Since we
want to investigate how a classical world can emerge from quantum mechan-
ics the relevant scale is macroscopic and A are a set of sub-macroscopically
coarse grained observables that are relevant for describing macroscopic in-
teractions. There will be some some residual freedom in the choice of A
and the coarse graining scale—the Heisenberg cut—but we expect that the
macroscopic predictions will be insensitive to changing this scale, in direct
analogy to the insensitivity of the IR limit of effective QFT to changing the
Wilsonian cut off or the way the observables are actually coarse grained.

The expression (2.2) for the expectation values of operators in the set A in
the state ∣Ψ⟩ imply that they can be interpreted as a statistical ensemble of
the quantum microstates with probabilities ∣ci∣2. The fact that the probabili-
ties equal ∣ ⟨Ψi ∣Ψ⟩ ∣2 is a statement of what we call the microscopic Born rule.

7The fact that perspective plays an important role in quantum mechanics is implicit
in the Copenhagen interpretation: local observers reduce the state vector according to the
results of local measurements. It is also important for quantum approaches to statistical
mechanics, where phenomena like equilibration and thermalization happen relative to a
choice of macroscopic coarse grained observables.
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It will be seen to be crucial to derive the Born rule itself in a measurement
scenario.

3. The actual evolution of the system from the perspective of the
set of observables A is encoded in the expectation values

⟨Ψi(t)∣On ∣Ψi(t)⟩ , ∀On ∈ A

for a sequence of quantum microstates ∣Ψi(t)⟩ related by discon-
tinuous transitions; e.g.,

i(t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i2 t < t1

i4 t1 < t < t2

i1 t2 < t < t3

⋯

as shown in the figure below:

described by a continuous time Markov chain with transition rates
for ∣Ψj⟩→ ∣Ψi⟩ , i ≠ j

Tij =max(−
2

h̵
Im [

ci
cj

⟨ψj ∣H ∣Ψi⟩] ,0) (2.4)

The macrostate of the system is associated to the macroscopic
time averages of ⟨Ψi(t)∣On ∣Ψi(t)⟩.

The stochastic process defined by the transition rates (2.4) allows only one
way transitions between each pair of states, i.e., if ∣Ψi⟩ → ∣Ψj⟩ has a non-
vanishing rate then the reverse ∣Ψj⟩ → ∣Ψi⟩ has a vanishing rate, and vice-
versa.
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The transition rates (2.4) ensure that the stochastic process is compatible
with the Schrödinger equation and microscopic Born rule in the sense that
if pi∣j(t, t′) is the integrated transition probability that state ∣Ψj(t′)⟩ evolves
via the process ∣Ψi(t)⟩:

(2.5)

where the time dependence of ci(t) follows implicitly from underlying Schrödinger
equation (2.1). It is interesting that, in our context, it is the distribution
∣ci(t)∣2 that is fundamental while the stochastic process is slave to it, rather
than the more conventional situation where the transition rates would given
and one would have to solve (2.5) for the ∣ci(t)∣2. The result (2.5) means
that, if the quantum microstates were distributed with probabilities ∣ci(t′)∣2

at time t′, then they will distributed with probabilities ∣ci(t)∣2 at all later
times t > t′. It might seem artificial to take this as an initial condition, after
all the system really, from the perspective of A, has expectation values

⟨Ψi(t′)∣On ∣Ψi(t′)⟩

associated to a particular microstate at time t′. However, if the system is in
equilibrium and the process is ergodic, then the ∣ci∣2 are approximately time
independent and after a suitable time, pi∣j(t, t′) becomes effectively indepen-
dent of j, i.e. the process forgets its starting state. In this situation, ∣ci(t)∣2
does become interpreted as the probability that the quantum microstate is
∣Ψi(t)⟩ at time t and the expectation values calculated from long time aver-
ages of the stochastic process are equal the underlying expectation value.

On the other hand, it is important also that in other situations ergodicity of
the process can be broken, or partially broken, in order that Newton’s laws
can emerge and the measurement problem can be solved. There are three
kinds of behavior that are needed to successfully account for the classical
limit of macro-systems:
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1. Deterministic: this occurs when the matrix elements ⟨Ψi∣H ∣Ψj⟩

are vanishingly small which can be expected when the quantum mi-
crostates are macroscopically distinct. In this case, over realistic
macroscopic time scales the ergodicity of the stochastic process is
broken. The possible stochastic trajectories then localize around
the deterministic trajectories of classical mechanics.

2. Stochastic: this occurs when the matrix elements ⟨Ψi∣H ∣Ψj⟩

are generic and the stochastic process is ergodic. This is exactly
the situation needed to describe the thermal properties of macro-
scopic systems.

3. Quantum measurement: (a mixture of 1 and 2) during a
measurement on a microscopic quantum system, the final state of
the macroscopic measuring device splits up into subsets of quan-
tum microstates Ea ⊂M for which the matrix elements ⟨Ψi∣H ∣Ψj⟩

with ∣Ψi⟩ ∈ Ea and ∣Ψj⟩ ∈ Eb, for a ≠ b, are vanishingly small be-
cause the quantum microstates in different subsets are macro-
scopically distinct. The subsets Ea become ergodically disjoint
and therefore a definite measurement outcome occurs depending
on which of the ergodic subsets the system lies in. In this context,
the reduction of the state vector to the ergodic component corre-
sponding to the measurement outcome that is actually realized,

∑
∣Ψi⟩∈M

ci ∣Ψi⟩→ ∑
∣Ψj⟩∈Eb

cj ∣Ψj⟩ (2.6)

is just an efficient piece of book keeping to reflect the fact that
over macroscopic time scales T the integrated probabilities pi∣j(t+
T, t), for ∣Ψj⟩ ∈ Eb, a ≠ b, are vanishingly small.

3. Quantum Microstates

In this section, we define the set of quantum microstates M = {∣Ψi⟩} that
are key for our approach. It is important to recognize that these states
depend implicitly on both the underlying quantum state ∣Ψ⟩ and the set of
observables A.
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Following the classic work of Jaynes [23], if we have incomplete knowledge of
an underlying quantum state ∣Ψ⟩ in the form of the expectation values of a
set of observables

⟨Ψ∣On ∣Ψ⟩ , On ∈ A

then the most unbiased description of the state is the density operator ρ with

⟨Ψ∣On = Tr(ρOn) , ∀On ∈ A (3.1)

which maximizes the von Neumann entropy

S = −Tr(ρ log ρ) (3.2)

subject to the constraints (3.1). In a sense, we can view ρ as describing an
ensemble of its eigenstates

ρ =∑
i

∣ci∣
2 ∣Ψi⟩ ⟨Ψi∣ (3.3)

with the eigenvalues ∣ci∣2 interpreted as probabilities. In the following, we
will make this ensemble interpretation precise and will find that it emerges
as the macrostate of a system in thermal equilibrium.

There are, of course, many density operators that can reproduce the expec-
tation values of a set of observables A, but the maximal entropy requirement
picks out a unique one. We will make a refinement of this notion, by adding
an additional constraint that we call the microscopic Born rule. This leads
us to propose the definition of the set of quantum microstatesM = {∣Ψi⟩}:

1. Microscopic Born rule: for each observable On ∈ A

⟨Ψ∣On ∣Ψ⟩ =∑
i

∣ci∣
2 ⟨Ψi∣On ∣Ψi⟩

′ ci = ⟨Ψi ∣Ψ⟩ (3.4)

2. Non-degeneracy: for every pair of states ∣Ψk⟩ and ∣Ψl⟩,
there exists at least one On ∈ A for which

⟨Ψi∣On ∣Ψj⟩ ≠ µnδij , i, j ∈ {k, l} (3.5)

If the contrary were true then we simply reduce the dimension of
M by replacing the pair ∣Ψk⟩ and ∣Ψl⟩ with the, suitably normal-
ized, linear combination

ck ∣Ψk⟩ + cl ∣Ψl⟩ (3.6)
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This condition, ensures that the quantum microstates are distin-
guishable with respect to the set of observables A and it acts to
limit the size of M.

3. Maximal entropy: subject to the conditions above, the
coarse grained density operator has maximal entropy

S = −Tr(∗ρ log ρ) = −∑
i

∣ci∣
2 log ∣ci∣

2 (3.7)

This condition, roughly speaking, acts to make the set M as big
as possible subject to the other constraints.

As an example, suppose that A consists of a complete set of observables act-
ing on a tensor product factor HA of a Hilbert space H = HA ⊗HE. In this
case, discussed fully as Example 2 in appendix B, the quantum microstates
∣Ψi⟩ are the states appearing in the Schmidt decomposition

∣Ψ⟩ =∑
i

ci ∣Ψi⟩ , ∣Ψi⟩ = ∣ψi⟩⊗ ∣ψ̃i⟩ (3.8)

These states form the basis for the reduced density operator formalism de-
veloped in [19-21].8

3.1. Realistic sets of observables

To start with, let us suppose that A to consists of a set of commuting opera-
tors. In this case, the quantum microstates are simply the mutual eigenstates
that appear in the decomposition of ∣Ψ⟩. It is clear that the microscopic
Born rule (3.4) is satisfied. More precisely, the non-degeneracy condition
(3.5), ensures that there is only one quantum microstate for each degenerate
eigenspace Hi ⊂ H. The maximal entropy condition requires that each each
degenerate eigenspace contributes separately.

In order to describe a macro-system, one expects that the set of observables
A contains coarse grained versions of the microscopic observables. Each such

8In those works, the states ∣ψi⟩ of HA were called ontic states and ∣ψ̃i⟩ their mirrors.
Here, given the more general context and the relation to statistical mechanics, we prefer
the more general term quantum microstate for ∣Ψi⟩ the states of HA ⊗HE .
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observable O has a finite working range ∆(O) and a finite resolution δO.
We can define a set projection operators associated to the intervals [λi−1, λi]
which cover the working range of O. with λi = λ0 + iδO, i = 1,2, ...,N , where
NδO = ∆(O), defined as

Π
(O)

i = ∑
λa∈[λi−1,λi]

∣ψa⟩ ⟨ψa∣ , Π
(O)

i Π
(O)

j = δijΠ
(O)

i (3.9)

where ∣ψa⟩ and λa are the eigenstates and eigenvalues of O. For operators
with continuous spectra, the sum is replaced by an integral. One can then
define a class of coarse grained observables by taking linear combinations of
these projection operators ∑iαiΠ

(O)

i , for example a coarse grained version of
O can be written

Oc.g =
N

∑
i=1

(λ0 + (i − 1
2
) δO)Π

(O)

i (3.10)

These operators have a discrete spectrum and are generally highly degener-
ate. A quantum microstate is associated to each degenerate subspace Hi of
the form

∣Ψi⟩ = ∑
λa∈[λi−1,λi]

fia ∣ψa⟩ (3.11)

for coefficients fia determined by the state ∣Ψi⟩.

Of course, we expect that the set A will contain many observables On and
then the issue becomes how to treat the situation where the microscopic
observables do not commute. If one builds the coarse grained observables
out of the projection operators defined above then these projection operators
will not commute. As an example, consider the position and momentum of
a particle with associated projection operators

Π
(x)
i = ∫

xi

xi−1
dx ∣x⟩ ⟨x∣ , Π

(x)
i Π

(x)
j = δijΠ

(x)
i (3.12)

for xi = x0 + iδx, and

Π
(p)
i = ∫

pi

pi−1
dp ∣p⟩ ⟨p∣ , Π

(p)
i Π

(p)
j = δijΠ

(p)
i (3.13)

with pi = p0 + iδp. These projection operators do not commute even though
in the realistic limit δxδp ≫ h̵, the lack of commutation is small.
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In our approach there is nothing to prevent us building coarse grained ob-
servables on these projection operators leading to a non-abelian set A, as we
describe in appendix B. Although this creates no conceptual difficulties, it
does create technical difficulties in finding explicit expression for the quan-
tum microstates. However, we can use the freedom that we have in defining
the observables to slightly deform the operators Π

(x)
i and Π

(p)
j to get new

coarse grained projection operators which do commute. Intuitively one ex-
pects that this should be possible when the volume of the cell in phase space
δxδp ≫ h̵. The idea of deforming the position and momentum operators so
that they commute, but which are suitably close to the original operators,
goes back to von Neumann [4, 5]. For example, Halliwell [26] has made
an explicit construction of operators which are effectively deformations of
our phase space projectors which do commute and are still projectors and
so would be suitable for our purposes.9 If we now take A to consist of the
deformed operators the quantum microstates are just the simultaneous eigen-
states. These eigenstates are very accurately—but not exactly—localized in
the cell

[xi−1, xi] ∩ [pj−1, pj]

in phase space when δxδp ≫ h̵. It is reasonable to expect that working
with a slightly different set of observables A will not lead to any significant
differences in the resulting analysis.10

The same kind of deformation can be generalized to any non-abelian set A
where the non-commutativity is small and so it is sufficient to assume that
the set of observables A needed to describe the classical limit of a quantum
system are abelian.

9It is important that the projectors of Halliwell are not exhaustive on phase space to
avoid the consequences of the Balian-Low theorem. However, this is not a restriction for
us because there is no requirement that A is generated by an exhaustive set of projection
operators. It is more natural for us that A consists of operators that only cover a local
region of phase space.

10This kind of freedom is familiar in effective QFT. For example, one can define coarse
grained observables by defining the theory on a lattice or one can work in the continuum
and cut off Fourier modes at high frequency. The IR behavior of the QFT is insensitive
to these differences in regularization.
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3.2. Local observables

In general, we expect that A contains coarse-grained observables that are lo-
calized in some compact region of space A. To reflect this, the Hilbert space
has a tensor product decomposition H = HA ⊗HE. The set of accessible op-
erators A act locally on the HA factor, i.e., are of the form On ⊗ 1E. If there
were no coarse graining, so that A were a complete set of observables on HA,
then this would correspond to Example 2 in appendix B. More realistically
we expect some amount of coarse graining so that the set A is not complete.
In this more realistic situation, therefore, the set of observables A has both
a ultra-violet cut off, the scale of the coarse graining, and an infra red cut
off, the scale of the compact region in space.

Taking A to consist of a set of commuting observables, the quantum mi-
crostates will generally be entangled with states of the environment, i.e., of
the form

∣Ψ⟩ =
N

∑
i=1

ci ∣Ψi⟩ , ∣Ψi⟩ =∑
a

∣ψia⟩⊗ ∣ψ̃ia⟩ (3.14)

where ∣ψia⟩ are the orthonormal eigenstates of the abelian set A with a =

1,2, ....,dimHi.11 These states look superficially like the Schmidt states (3.8),
however, there is no requirement here that the states ∣ψ̃ia⟩ are orthogonal.
The only constraint on them is the normalization condition

∑
a

⟨ψ̃ia ∣ ψ̃ia⟩ = 1 (3.15)

4. The Stochastic Process and Ergodicity

In this section we discuss in more detail the stochastic process defined by
the transition rates (2.4). The first point, amplifying what we said earlier
in section 2, the process is consistent with the Schrödinger equation in the
sense that if we temporarily were to interpret ∣ci∣2 as the probability that
the system from the point of view of A is in the quantum microstate ∣Ψi⟩

at time t, then the stochastic process preserves this interpretation at later
time, as in (2.5). So viewing the quantum microstates as an ensemble with
probabilities ∣ci∣2 then the ensemble average over the quantum microstates
evolving according to the stochastic process equals the ordinary expectation

11For the continuous spectrum case the sum is replaced by an integral.
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value for any observable in A.

From the Schrödinger equation, we find

d∣ci∣2

dt
= −

2

h̵
∑
j≠i

Im [cic
∗
j ⟨Ψj ∣ (H − ih̵

∂

∂t
) ∣Ψi⟩] (4.1)

In realistic cases, the observables A are time independent and it follows that

⟨Ψj ∣
∂

∂t
∣Ψi⟩ = 0 , i ≠ j (4.2)

The generalization to the time dependent case is described in appendix C.
Equation (4.1) can be written in the form of a master equation of a stochastic
process

d∣ci∣2

dt
=∑
j≠i

[Tij ∣cj ∣
2 − Tji∣ci∣

2] (4.3)

where Tij is the transition rate for ∣Ψi⟩→ ∣Ψj⟩.

Our task is to solve (4.3) given the known time dependence of ci(t) that
follow from the Schrödinger equation in (4.1). Note that in the theory of
stochastic processes, one would usually be presented with the problem the
other way around, i.e. given the transition rates Tij one would have to solve
for the instantaneous probabilities ∣ci∣2. There is a very natural solution for
the transition rates of the form12

Tij =max(−
2

h̵
Im [

ci
cj

⟨Ψj ∣H ∣Ψi⟩] ,0) (4.4)

which is the expression quoted in (2.4). Note that if Tij is non-vanishing,
then Tji = 0 and vice-versa. The form makes clear that it is the mis-alignment
between the energy eigenstate basis and the quantum microstate basis that

12It might be thought unnecessary to define the stochastic process as a continuous
process in time and indeed in earlier work [19, 20] we defined the process with some
temporal cut off chosen to be much smaller than any characteristic time scales in the
problem. This was done to avoid a problem with “crossovers” discussed in detail in [19,
20]. But the problem with crossovers only arises from taking an unrealistic choice for the
observables as in Example 2 in appendix B. Realistic choices as described in section 3.1
do not suffer from this problem. So in the end whether to take a continuous or discrete
version of the stochastic process is simply a matter of computational expedience.
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drives the transitions.

The transition probabilities (4.4) are actually not the most general set of
probabilities that are consistent with (4.1). The freedom involves

Tij → Tij +
Ωij

∣cj ∣2

for any symmetric Ωij > 0. However, it is our hypothesis that Ωij = 0 because
Tij is then not only the simplest and most natural choice depending as it
does on just the matrix elements between the initial and final quantum mi-
crostates ⟨Ψj ∣H ∣Ψi⟩ but also the choice has some important implications for
the ergodicity of the stochastic process that will be important for obtaining
a sensible classical limit.13

4.1. Ergodicity and the classical limit

The key feature of the stochastic process is that it preserves the equality of
the ensemble average with respect to the coarse grained density operator ρ
with the expectation value (2.2). The question is how is the quantum ex-
pectation value ⟨Ψ∣O ∣Ψ⟩, related to the time sequence of expectation values
⟨Ψi(t)∣On ∣Ψi(t)⟩ of the stochastic process? The situation here is very similar
to the relation between ensemble averages and long time averages in classi-
cal SM. The issue rests on the ergodicity of the stochastic process. In the
ergodic situation ensemble averages capture long time averages. In classi-
cal SM, it is generally very difficult to establish ergodicity because classical
mechanics is deterministic and classical motion corresponds to a trajectory
in phase phase. It is then a delicate matter to argue that the trajectory
samples phase space in an ergodic way. The present quantum situation is
much simpler, partly because the quantum microstates are discrete, and,
partly because they follow stochastic dynamics. Moreover, the dynamics is a
conceptually simple continuous time Markov chain for which ergodicity is—
conceptually at least—straightforward to establish.

13The transition rates (4.4) are identical to written down by Bell in his theory of
beables [24] while the generalization with time dependent ∣Ψi⟩ described in appendix C
was considered by Bacciagaluppi and Dickson [25]. In Bell’s case, the ∣Ψi⟩ were taken to
be eigenstates of some set of preferred observables, the beables. In our approach, the set
of observables is not fixed once and for all in some global way, rather it is dictated locally
by the way the quantum system interacts macroscopically with it surroundings.
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The issue of ergodicity, when it holds and when it is broken, is the key to
understanding how a classical world can emerge from quantum mechanics in
our proposal. When the system is in thermal equilibrium, the expectation
values ⟨Ψ∣On ∣Ψ⟩ are approximately constant. We then argue in section 8 that
the probabilities ∣ci(t)∣2 are also approximately constant, a fact that actually
follows from von Neumann’s quantum ergodic theorem [4]. The stochastic
process will effectively be ergodic over a long time T if the integrated transi-
tion probabilities pi∣j(t+T, t) become independent of j so that memory of the
initial state is lost. It follows from (2.5) that ∣ci∣2 is precisely the probability
that the system has expectation values ⟨Ψi∣On ∣Ψi⟩. In particular, from a
macroscopic point of view which involves a long time average compared with
microscopic time scales, the long time average is captured by the ensemble
average over the quantum microstatesM with probabilities ∣ci∣2:

Equilibrium:
1

T ∫
T

0
dt ⟨Ψi(t)∣On ∣Ψi(t)⟩ ≈∑

i

∣ci∣
2 ⟨Ψi∣On ∣Ψi⟩ = ⟨Ψ∣On ∣Ψ⟩

(4.5)
for large enough T . In the above, the last equality is the microscopic Born
rule (3.4). We will investigate ergodicity in the context of SM more fully in
section 8.

However, we do not expect that the stochastic process of a system will always
be ergodic; indeed if it were so then the classical limit would not involve any
deterministic dynamics. So the issue of ergodicity breaking is key to un-
derstanding how macroscopic systems can obey Newton’s laws. Ergodicity
breaking occurs when pairs of quantum microstates ∣Ψi⟩ and ∣Ψj⟩ are macro-
scopically distinct because it would then follow that the matrix elements
⟨Ψj ∣H ∣Ψi⟩ are vanishingly small and so the transition rate (2.4) between the
two states and the integrated probability pi∣j(t, t′) would be hugely suppressed
and ergodicity over macroscopic time scales would inevitably be broken. For
any given initial quantum microstate ∣Ψi⟩, the stochastic process would then
effectively only explore a more limited ergodic subspace ofM. This subspace
consists of quantum microstates that are tightly clustered around a classical
trajectory, as we illustrate in section 5.

A macroscopic object will typically have elements of ergodic and non-ergodic
behavior: the position of its moving parts in space will involve a breaking
of ergodicity whereas, at the same time, it will typically be in thermal equi-
librium, behavior that involves an ergodic component corresponding to the
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appropriate thermal ensemble.

4.2. Locality

The issue of locality in quantum mechanics is full of misunderstandings.14

It cannot be over emphasized that quantum mechanics is a perfectly local
theory. This is particular clear in QFT where locality and causality are
built into the fabric of the formalism: interaction terms in the Hamiltonian
are spatially local; and causality is manifested in the fact that space-like
separated operators commute.

The worry might be that with the stochastic process we have introduced some
non-locality. We need to show that the stochastic dynamics associated to a
set of observables A = {On} that act on spatially localized degrees of freedom
is only driven by interactions that are local to these degrees of freedom. In
the case of a spatially localized subsystem A, we can expect the Hilbert
space to factorize H = HA ⊗HE with the observables acting as On ⊗ 1E and
a Hamiltonian with the form

H =HA ⊗ 1E + 1A ⊗HE +Hint (4.6)

We will consider the physically realistic situation where A consists of a set
of commuting operators acting on HA factor as described in section 3.2. In
this case, the quantum microstates on the total system take the form (3.14),
where the states ∣ψia⟩ are the simultaneous eigenstates of the commuting set
A. The key point is that the set of states {∣ψia⟩} are orthogonal while the
set {∣ψ̃ia⟩} are not. Therefore,

⟨Ψi∣1A ⊗HE ∣Ψj⟩ = 0 , i ≠ j (4.7)
14We refer to [27] for an insightful discussion of these kinds of misunderstandings. In

particular, quantum mechanics famously violates Bell’s theorem but is completely consis-
tent with experiments. So the theorem holds for theories that are not realized in nature.
It is hard to see that it has any implications for quantum mechanics itself and, in partic-
ular, it most certainly does not imply that quantum mechanics is non-local. All “delayed
choice” type experiments designed, apparently, to highlight the spooky, non-local nature
of quantum mechanics simply reveal the correlations between entangled states: there is
no non-locality.
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on account of the fact that ⟨ψia ∣ψjb⟩ = δijδab; hence, the transition rates take
the form

Tij =max(−
2

h̵
Im [

ci
cj

⟨Ψj ∣ {HA ⊗ 1E +Hint} ∣Ψi⟩] ,0) (4.8)

It follows that the stochastic process depends on the internal dynamics of
the subspace A, via HA, as well as the local interactions of A with the envi-
ronment E, via Hint. Importantly, though, the dynamics of the environment
involving HE are irrelevant. This proves that the stochastic dynamics is local
to the degrees of freedom on which the observables A act.

4.3. Patching together a classical world

The discussion above has implications for the case when the set of operators
A ∪ B where the subsets consists of local observables acting on spatially
separated degrees of freedom. The question is how the perspectives of the
system provided individually by A and B are related to the global perspective
provided by A ∪ B. If the macroscopic world is to be classical then it must
be the different views can be integrated together, at least to high precision:
a classical world is, after all, an approximation.

The first point is that the quantum microstates of A ∪ B can naturally be
given a pair of labels ∣Ψi1i2⟩ to reflect the decomposition of A ∪ B. So the
label i is split into the pair i1, i2 which labels the eigenstates of the sets A
and B, respectively. The quantum microstates of the individual localized sets
A or B are given by the partial sums

ci1 ∣Ψi1⟩ =∑
i2

ci1i2 ∣Ψi1i2⟩ , ci2 ∣Ψi2⟩ =∑
i1

ci1i2 ∣Ψi1i2⟩ (4.9)

and
∣ci1 ∣

2 =∑
i2

∣ci1i2 ∣
2 , ∣ci2 ∣

2 =∑
i1

∣ci1i2 ∣
2 (4.10)

Notice that the partial sums in (4.9) are forced by the non-degeneracy con-
dition (3.5) because

⟨Ψi1i2 ∣On ⊗ 1B ∣Ψi1j2⟩ = µnδi1j2 , ∀On ∈ A (4.11)

When ci1i2 ≠ ci1ci2 the state has entanglement between the two spatially
separated regions. Entanglement could occur if the two subsystems were the
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two measuring devices in an EPR type experiment as we describe in section
7.

The stochastic process of the total set A ∪ B is just a refinement of the
individual stochastic processes of the two subsets with

T
(A)

i1j1
= ∑
i2,j2

T
(A∪B)

i1i2,j1j2
∣
cj1j2
cj1

∣

2

, T
(B)

i2j2
= ∑
i1,j1

T
(A∪B)

i1i2,j1j2
∣
cj1j2
cj2

∣

2

(4.12)

In order that the two stochastic processes associated to A and B are genuinely
independent requires that:

1. The only non-vanishing transitions of the global system are ∣Ψj1i2⟩ →

∣Ψi1i2⟩ and ∣Ψi1j2⟩→ ∣Ψi1i2⟩.

2. The rate ∣Ψj1i2⟩ → ∣Ψi1i2⟩ is independent of i2 and that for ∣Ψi1j2⟩ →

∣Ψi1i2⟩ is independent of i1.

These conditions together imply that the only non-vanishing transition rates
of the total system are

T
(A∪B)

i1i2,j1i2
= T

(A)

i1j1
, T

(A∪B)

i1i2,i1j2
= T

(B)

i2j2
(4.13)

Recalling the formula for the transition rates (4.4), the first condition above
follows from the fact that realistic Hamiltonians only couple spatially local
degrees of freedom and so cannot drive transitions at two spatially separated
regions simultaneously; hence

⟨Ψi1i2 ∣H ∣Ψj1j2⟩ = 0 or ii ≠ j1 and i2 ≠ j2 (4.14)

The second condition above is more exacting. To investigate the issues, we
need to consider the more detailed form of the quantum microstates. Let
us take the Hilbert space to have the factorized form H = H1 ⊗HE ⊗H2 to
reflect the spatial locality of the observables with elements of A acting as
O ⊗ 1E ⊗ 12 and elements of B as 11 ⊗ 1E ⊗ O. The subsystem HE is the
environment. We can write the quantum microstates of A ∪ B, generalizing
(3.14), more concretely as

∣Ψi1i2⟩ = ∑
a1a2

∣ψi1a1⟩⊗ ∣ψ̃i1a1,i2a2⟩⊗ ∣φi2a2⟩ (4.15)
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which shows that the subsystems are generally entangled with the environ-
ment. Note that the sets {∣ψi1a1⟩} and {∣φi2a2⟩} are orthonormal but the set
{∣ψ̃i1a1,i2a2⟩} is not. So even though H cannot couple degrees of freedom in
H1 and H2 directly, the question is whether it can couple degrees of freedom
in H1 and those in the environment that are entangled with those in H2, or
vice versa?

Any such coupling must be very small because, by locality, degrees of free-
dom in H1 can only couple locally with the environment and the latter is a
much bigger system than the subsystems H1 and H2 and it is unlikely the
degrees of freedom of the environment that are entangled with H2 are also
spatially local to H1. So, for realistic systems, to a high degree of accuracy,
the second condition above is likely fulfilled and the stochastic process as-
sociated to A ∪ B consists of two independent processes A and B and the
perspectives of A and B can be integrated into the global view A ∪ B.

We will discuss more aspects of situation with two sets of spatially separated
observables in section 7.

5. A Particle

In this section, we develop our formalism for the case of a particle moving
in one dimension, although the generalization to more dimensions is then
obvious. In this crude model, we will simply ignore the internal structure
of the particle and take it to be a quantum particle with a wave function
Ψ(x). We will also simplify the situation even further by taking A to consist
of a suitably coarse grained definition of the position operator only. The
momentum will be added in later.

The observables consist of the set A = {Π
(x)
i } defined in (3.12). In this case,

the observables are mutually commuting and so the quantum microstates are
simultaneous eigenstates. More precisely, the eigenstates have the degenerate
eigenspaces that are are spanned by the eigenstates ∣x⟩ in each interval x ∈

[xi−1, xi], with

Π
(x)
i =

⎧⎪⎪
⎨
⎪⎪⎩

∣x⟩ x ∈ [xi−1, xi]

0 otherwise
(5.1)
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The quantum microstates follow from the decomposition of ∣Ψ⟩:

∣Ψ⟩ =∑
i

ci ∣Ψi⟩ , ∣Ψi⟩ =
1

ci
∫

xi

xi−1
dxΨ(x) ∣x⟩ (5.2)

with
∣ci∣

2 = ∫

xi

xi−1
dx ∣Ψ(x)∣2 (5.3)

The quantum micro states in this case, are spatially localized in the interval
[xi−1, xi] and represent states that have a good classical interpretation on
scales ≫ δx.

5.1. The stochastic process

The transition rates are given in (4.4). In order to calculate them, we note
that

cjΨj(x) = (θ(x − xj−1) − θ(x − xj))Ψ(x) (5.4)

and therefore the matrix elements ⟨Ψj ∣H ∣Ψi⟩ are only non-vanishing if i =
j ± 1. Taking i = j + 1, we have

Im [
cj+1

cj
⟨Ψj ∣H ∣Ψj+1⟩] = −

h̵2

M ∣cj ∣2
∫ dxθ(x − xj)δ(x − xj)Im [Ψ∗∂Ψ

∂x
] (5.5)

with a similar expression for i = j − 1. Evaluating the integral15 gives

Im [
ci
cj

⟨Ψj ∣H ∣Ψi⟩] =
h̵2

2M ∣cj ∣2
Im(Ψ∗∂Ψ

∂x
∣
x=xj−1

δi,j−1 − Ψ∗∂Ψ

∂x
∣
x=xj

δi,j+1)

(5.6)
So the non-vanishing transitions rates involve ∣Ψj⟩→ ∣Ψj±1⟩ with

Tj±1,j =max(±
h̵2

M ∣cj ∣2
Im [Ψ∗∂Ψ

∂x
∣
x=xj ,xj−1

] ,0) (5.7)

The expression in the brackets here is, of course, just the Schrödinger prob-
ability current evaluated at the interface between the jth cell and one of
adjacent cells divided by the probability to be in the jth cell. The transitions
only go in the direction of the current.

15Using ∫ dxθ(x − xj)δ(x − xj)f(x) = 1
2
f(xj).
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We can now investigate this process in certain interesting limits. An im-
portant issue to consider is the relative magnitude of the width of the wave
function of the particle ∆ and the resolution scale δx. For a macroscopic
object, we expect that the wave function will be very narrow compared with
the coarse graining scale δx ≫ ∆. We will consider this case first. However,
it is also interesting to consider situations where the wave function is smooth
on the resolution scale δx ≪ ∆.

5.2. Narrow wave function δx ≫ ∆

This limit, which is relevant to a macroscopic particle, is very simple because
if at some time t1 the center of the wave packet lies within a region [xi−1, xi],
the quantum microstate ∣Ψi⟩ has a probability that is ∣ci(t1)∣2 ≈ 1. Essentially
in this case, the underlying state ∣Ψ⟩ ≈ ∣Ψi⟩ is the only quantum microstate
that has any appreciable probability. The center of wave packet will, on
account of Ehrenfest?s theorem, follow a classical trajectory x(t) and so as
the wave packet moves across into a neighboring region [x + i, xi+1], at, say
time t2, the quantum microstate changes to ∣Ψi+1⟩ with a probability close
to unity. It is clear, therefore, that with a probability close to unity, the
resulting sequence of quantum microstates just describes a coarse graining
of the classical trajectory; that is, at time t the micro state is ∣Ψi(t)⟩ where
i(t) is determined by the condition x(t) ∈ [xi(t)−1, xi(t)]. This is illustrated in
figure 2.

Figure 2: When the wave function is narrow compared with the resolution scale, the
quantum microstate just follows the peak of ∣Ψ(x)∣2 and the stochastic process effectively
leads to deterministic dynamics.
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5.3. Smooth wave function δx ≪ ∆

The other limit, occurs when the width of the wave function is much greater
than the resolution scale δx ≪ ∆. In this case, the resulting dynamics is
fundamentally stochastic. However, even in this case, if the wave function
has the typical WKB form

Ψ(x) = R(x)eiS(x)/h̵ (5.8)

then a classical trajectory emerges. In the semi-classical limit S(x), which
is a smooth function on macroscopic scales, is identified with the classical
action of the particle and the velocity of a classical trajectory is simply

v =
1

M

∂S

∂x
(5.9)

We are assuming that the amplitude R(x) is a smooth function on the scale
δx. In this case, the probabilities associated to the quantum microstates ∣Ψi⟩

are ∣cj ∣2 ≈ R(xj)2δx.

The transition rates (5.7) are exact but now we can use the form (5.8) for
the wave function and the approximation ∣cj ∣2 ≈ R(xj)2δx. This yields the
transition probabilities

Tj−1,j ≈
1

Mδx
∣S′(xj)∣ , Tj+1,j = 0 if S′(xj) < 0

Tj−1,j = 0 , Tj+1,j ≈
1

Mδx
S′(xj) if S′(xj) > 0 (5.10)

Given these transitions rates, it is clear that the stochastic process is quite
simple: the particle can hop from the interval [xj−1, xj] to a neighboring one,
depending on the sign of S′(xj). Notice that h̵ has completely dropped out
of the expression for Tij. In fact this stochastic process of the type we have
derived is identical to the one considered by Vink [28] whose starting point
and general approach is rather different,16 but whose analysis we can still
borrow.

The question is whether the resulting stochastic process gives a behavior for
16In Vink’s approach, the set up is rather different with the wave function being coarse

grained on a spatial lattice whose spacing is taken to zero at the end. In our approach,
our coarse graining scale is the spatial resolution scale which is kept finite.
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the position that is recognizably classical. This does not seem at all obvious
because classically there should just be a single trajectory. What we will
argue is that the stochastic trajectories are clustered around the classical
trajectory.

In order to investigate the process we introduce a small temporal cut off δt
and then investigate the process starting at, say x = xi over a time interval T
which involves a large number N = T /δt of time steps, but is not too large,
so that S′(xj) = vM, ∣i− j∣ < N , is approximately constant and let us suppose
v > 0. For each time step, we have must have

p ≡ pi+1,i =
v

δx
δt≪ 1 (5.11)

which can be achieved by having a small enough δt. After the N steps, the
position xj with j = k + i has a binomial probability distribution

(
N

k
)pk(1 − p)N−k (5.12)

whose average position is
⟨x⟩ = xi + vT (5.13)

which shows that v is, indeed, interpreted as the velocity of the average of
the distribution. The variance of the distribution is

⟨x2⟩ − ⟨x⟩2 = vTδx (1 −
v

δx
δt) ≈Xδx (5.14)

where X = vT is the distance moved in our small interval of time and we
have used (5.11). So for sub-macroscopic resolution δx the variance is small.

What we have shown here is that even when the wave function is wide com-
pared with the resolution a classical trajectory can emerge. This suggests
that there should be a way to relate the situation with a fixed wave function
with different resolutions scales by changing the Heisenberg cut.

5.4. Changing the Heisenberg cut

One could view the results of sections 5.2 and 5.3 as pertaining to a given
wave packet with fixed width but with a coarse and finer resolution scale
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δx, respectively. A coarser view of the dynamics appears more deterministic
than the finer view. The question then is, more generally, how does the
stochastic dynamics behave as one varies the Heisenberg cut. In the present
example, there is a simple way to do this which involves a kind of blocking
trans- formation that doubles the Heisenberg cut δ′x = 2δx. The new coarser
description involves projection operators

Π
(x)′

i = Π
(x)
2i−1 +Π

(x)
2i (5.15)

It follows that the new quantum microstates are simply

c′i ∣Ψ
′
i⟩ = c2i−1 ∣Ψ2i−1⟩ + c2i ∣Ψ2i⟩ (5.16)

where ∣c′i∣
2 = ∣c2i−1∣

2+∣c2i∣
2. The blocking transformation has a simple effect on

the stochastic dynamics; the transition rates of the new process are related
to the old one via

T ′
ij =

1

∣c′j ∣
2
(T2i−1,2j−1∣c2j−1∣

2 + T2i−1,2j ∣c2j ∣
2 + T2i,2j−1∣c2j−1∣

2 + T2i,2j ∣c2j ∣
2) (5.17)

Performing this kind of blocking transformation allows us to the relate the
two distinct regimes in sections 5.2 and 5.3.

5.5. Including the momentum

The simple model that we have described can only be partly correct because
we have avoided any mention of the particle’s momentum. Classically the
particles state is specified by both a position and momentum and so we need
to consider enlarging A to include coarse grained momentum operators.17

The wave function of a macroscopic object is expected to be narrow in both
position and momentum space compared with the resolution scales δx and
δp and so there is only one quantum microstate, the original state itself ∣Ψ⟩,
with a probability close to one. In this classical limit, the stochastic pro-
cess becomes essentially deterministic and the stochastic trajectory localizes
around a classical trajectory in phase space as illustrated in figure 3.

17In fact, without the momentum it would be possible for two apparently decoherent
wave packets that cross in space to interfere. This is because classical trajectories in
configuration space can intersect. But once momentum is includes the trajectories in
phase space cannot intersect and these kind of interferences are excluded.
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Figure 3: The classical limit where the wave packet is much narrower than the size of the
cells the sequence of quantum microstates associated to cells in phase space just follows the
expectation values of x and p which Ehrenfest’s theorem implies is the classical trajectory.

6. Quantum Measurement

In this section, we consider a very simple measuring scenario to see how
the formalism can lead to definite macroscopically distinct outcomes with
probabilities that are given by Born’s rule (at least in the case of an efficient
measuring device).

In the model, the total system includes a microscopic system that has an
observable A that we want to measure. Let ∣ψa⟩ be the eigenstates of A
and the initial state of the microscopic system is ∑a λa ∣ζ̃a⟩. The system is
coupled to a measuring device with a Hamiltonian that ensures an evolution
of the combined system of the form18

[∑
a

λa ∣ζ̃a⟩]⊗ ∣ψ0⟩ to∑
a

λa ∣ζ̃a(t)⟩⊗ ∣ψa(t)⟩ (6.1)

Note that in general the states of the microscopic system will be changed
as a result of the interaction with the measuring device. The states ∣ζ̃a(t)⟩
remain normalized but are not necessarily orthogonal.

18In the following, we have assumed that the measuring device is 100% efficient. Mak-
ing the generalization to a more realistic measuring device does not change the central
conclusion that we come to below that definite outcomes are obtained. However, the re-
sulting probabilities will no longer be equal to ∣λa∣2. So the derivation of the usual Born
rule relies on the fact that the measuring device is 100% efficient.
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The idea is that the states of the measuring device ∣ψa(t)⟩ become macroscop-
ically distinct for t ≥ T . After this time a measurement could be said to have
occurred. In our simple model, we will suppose that the measuring device
consists of a pointer with a position. So the states of the measuring device
that are entangled with microscopic system are wave functions ψa(x, t). The
idea is that the measuring device is designed in such a way that for t > T ,
each component ψa(x, t) is a narrow wave packet peaked around a distinct
position x(a). Note that each component ψa(x, t) is separately normalized.

If we now apply our interpretation by using the coarse-grained position opera-
tors A = {Π

(x)
i } as in section 5. At some time t > T , the quantum microstates

are
∣Ψi⟩ =

1

ci
∫

xi

xi−1
dx∑

a

λa ∣ζ̃a(t)⟩⊗ ψa(x, t) ∣x⟩ (6.2)

with
∣ci∣

2 = ∫

xi

xi−1
dx∑

ab

λ∗aλb ⟨ζ̃a(t) ∣ ζ̃b(t)⟩ψa(x, t)
∗ψb(x, t) (6.3)

For the measuring device to be accurate, we need its spatial resolution scale
δx to be much smaller than the separation of x(a). It is also realistic to
assume that the spatial resolution scale δx is much larger than the width
of the individual wave packets ψa(x, t). Given these assumptions, it follows
that ∣ci∣2 is only appreciable if some x(a) ∈ [xi−1, xi], for some particular i
which we can call ia. So only the diagonal term a = b contributes in (6.3).
Note that only one x(a) can lie in any interval in which case, it follows for
this interval that

∣cia ∣
2 ≈ ∣λa∣

2 (6.4)

Since the initial quantummicrostate is unique, ∣λa∣2 represents the probability
that the quantum microstate is ∣Ψia⟩ at time t > T . This amounts to a
derivation of the usual Born rule. The matching of the components of the
underlying state to the quantum microstates is illustrated in figure 4.
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Figure 4: The measurement scenario. In the final state, each measurement outcome
corresponds to a distinct quantum microstate which are ergodically disjoint.

The last important point is that once the system is in the quantum microstate
∣Ψi⟩ there is only a minute probability for making a transition to a macro-
scopically distinct state ∣Ψj⟩. So it is the breaking of ergodicity that leads to
distinct classical outcomes and hence solves the measurement problem. The
situation is illustrated in figure 5.

Figure 5: A picture of a quantum measurement in the phase space of a very simple
measuring device with one degree of freedom. The system follows a coarse graining of
the classical trajectory. At the moment of interaction with the microscopic system, the
trajectory splits into several distinct trajectories that soon become ergodically disjoint.
The measurement outcome is determined by which of the disjoint trajectories the system
ends up in.

At the end of the measurement, from the point of view of A it is prudent to
reduce the underlying state vector to the component ∣ζ̃a(t)⟩ ⊗ ψa(x, t) that
is actually realized as a quantum microstate.

32



7. EPR

In this section, we give an account of Bohm’s version [29, 30] of the classic
thought experiment of Einstein, Podolsky, and Rosen (EPR) [31]. Anticipat-
ing the result, we find that is no non-locality or breakdown of causality, the
experiment simply reveals the correlation of an entangled state of two qubits.

In order to describe spin measurements on the qubits, we introduce a very
simple measuring device with three quantum microstates ∣A0⟩ and ∣A±⟩.
In this simple model the quantum microstates are actually the possible
macrostates of the measuring device; in other words, in order to focus on
the essential details, we avoid the fact that, in reality, the measuring device
is a complicated thermodynamic object with many degrees of freedom. The
measuring device is designed so that the solution of the Schrödinger equation
for its interaction with a qubit from an initial time t = 0 to a final time T is
of the form

∣A0⟩⊗ (c+ ∣z
+⟩ + c− ∣z

−⟩)→ c+ ∣A+⟩⊗ ∣z+⟩ + c− ∣A−⟩⊗ ∣z−⟩ (7.1)

The stochastic process associated to the observables of the measuring device
yield integrated probabilities

p+∣0(T,0) = ∣c+∣
2 , p−∣0(T,0) = ∣c−∣

2 (7.2)

In this simple model, we can identify the quantum microstates in the final
state with the reduced state vectors of the Copenhagen interpretation. In
a realistic measuring device, the reduced state vector only emerges when
the ergodic components in (2.6) become identifiable. This happens in a
macroscopically short time but is ultimately a dynamical question.

The experiment is described in figure 6
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Figure 6: The EPR-Bohm thought experiment. Two qubits in the entangled state ∣Φ⟩
are produced at the source and then recoil back-to-back towards 2 qubit detectors A and
B designed to measure the component of the spin along directions z and n, respectively. In
our set up, we choose an inertial frame for which the interaction between A and 1 happens
before B and 2.

with the qubits being produced in the singlet state

∣Φ⟩ =
1

√
2
(∣z+z−⟩ − ∣z−z+⟩) (7.3)

and so the initial state of the overall system is

∣Ψ(t1)⟩ = ∣A0B0⟩⊗ ∣Φ⟩ (7.4)

In a certain inertial frame, at time tA > t1, the measuring device A, set to
measure the z component of the spin, interacts with quit 1. After a short
time, the state of qubit 1 becomes entangled with A and the state of the
total system becomes, for t2 > tA,

∣Ψ(t2)⟩ =
1

√
2
(∣A+B0z

+z−⟩ − ∣A−B0z
−z+⟩) (7.5)

Then at a time tB the measuring device B, set to measure the component of
the spin along a vector n at an angle 2θ to the z axis, interacts with qubit 2
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producing, for t3 > tB, a state19

∣Ψ(t3)⟩ =
1

√
2
(sin θ ∣A+B+z

+n+⟩ + cos θ ∣A−B−z
+n−⟩

− cos θ ∣A−B+z
−n+⟩ + sin θ ∣A+B−z

−n−⟩) (7.6)

Just to emphasize, the states ∣Ψ(ti)⟩ , i = 1,2,3 follow from solving the Schrödinger
equation of the system with a Hamiltonian that only has local interaction
terms between the measuring devices and their associated qubit, A with 1
and B with 2.

In this system, there are three different perspectives associated to the ob-
servables of the two measuring devices A and B as well as the global view
associated to A ∪ B. It is important to appreciate that the descriptions A
and B cannot answer questions about correlations be- tween the measuring
devices, it is only the more refined global view A∪B that can do that. Figure
7 shows the three Markov processes.

The quantum microstates of A and B are related to those of A ∪B precisely
as in (4.9). It is important that the changes in the quantum microstates are
driven by local interactions: A with quit 1 at tA and B with quit 2 at tB. It
is worth remarking on the fact that the quantum microstates associated to A
and B by focussing on, say, A, we forego any knowledge of B, and vice-versa.
The only way to ask about joint properties of the two measuring devices is
via the quantum microstates associated to A ∪B. The quantum microstates
of the latter are always refinements of those of A and B as is clear from the
last column in figure 7.

19The relation between the basis of qubit states along the z and n axes is

∣z+⟩ = cos θ ∣n+⟩ − sin θ ∣n−⟩

and
∣z−⟩ = sin θ ∣n+⟩ + cos θ ∣n−⟩
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Figure 7: The Markov chains of the quantum microstates (the macrostates or reduced
state vectors in this simple model) of the sets of observables A and B associated to the
two measuring devices and the global view A + B at times t1, t2 and t3 between the
measurements at tA and tB . Note that the quantum microstates of A and B always have
the factored form ∣Ai⟩⊗ ∣ψ⟩ and ∣Bi⟩⊗ ∣ψ⟩ respectively, for i = 0,± and for some ∣ψ⟩ in the
appropriate complementary subsystem. Also shown are the probabilities of the Markov
chains.

,

With our simple description of the measuring devices, we can identify the
quantum microstates of A and B with the reduced state vectors of the Copen-
hagen interpretation. It then becomes apparent that different local observers,
in this case A and B, perform their own reduction of the state vector to take
account the results of their local measurements.20

20The fact that each local observer has their own reduced state vector after making
local measurements has been emphasized in [27].
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One way to think of the relation between the refined view A ∪ B and, say
A is the following. When the measurement is made at B, the quantum mi-
crostates of A ∪ B, for example ∣A+B0z+z−⟩ splits into the pair ∣A+B±z+n±⟩.
But the set of observables A cannot distinguish this pair of states:

⟨A+Biz
+ni∣On ⊗ 1B ⊗ 11 ⊗ 12 ∣A+Bjz

+nj⟩ = µnδij , ∀∣mathcalOn ∈ A (7.7)

it is only observables in B that can. Hence, the pair of states do not satisfy
the non-degeneracy condition (3.5) and that is why the quantum microstate
with respect to A is the linear combination

cos θ ∣A+B−z
+n−⟩ + sin θ ∣A+B+z

+n+⟩ (7.8)

The stochastic process associated to the set of observables A for measuring
device A gives the non-vanishing integrated probabilities

pA
+∣0(t2, t1) = p

A
−∣0(t2, t1) =

1

2
, pA

+∣+
(t3, t2) = p

A
−∣−

(t3, t2) = 1 (7.9)

In particular nothing happens when the measurement is made at B. While
that associated to B gives

pB0∣0(t2, t1) = 1 , pB
+∣0(t3, t2) = p

B
−∣0(t3, t2) =

1

2
(7.10)

In this case, nothing happens when the measurement is made at A. Just to
be completely clear, in figure 7, the change in the quantum microstate of B
from t1 to t2, whilst the measurement is being made at A, is just evolution
by the Schrödinger equation. Likewise is the change in either of the quantum
microstates of A from t2 to t3.

The global view A∪B provides a more refined description of the system that
yields the correlations between measurements at A and B:

pA∪B
+0∣00(t2, t1) = p

A∪B
−0∣00(t2, t1) =

1

2
pA∪B
++∣+0(t3, t2) = p

A∪B
−−∣−0(t3, t2) = sin2 θ (7.11)

pA∪B
+−∣+0(t3, t2) = p

A∪B
−+∣−0(t3, t2) = cos2 θ

giving the overall probabilities

pA∪B
++∣00(t3, t1) = p

A∪B
−−00(t3, t1) =

1

2
sin2 θ

pA∪B
−+∣00(t3, t1) = p

A∪B
+−∣00(t3, t1) =

1

2
cos2 θ (7.12)
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which agree with the probabilities calculated in the Copenhagen interpreta-
tion using the Born rule.

So in this account of the EPR-Bohm thought experiment, the stochastic pro-
cess yields the conventional quantum mechanical predictions in a way that
involves only local interactions between measuring devices and qubits. There
is no mystery or spooky action-at-a-distance, on the contrary there is simply
the unveiling of an underlying correlation carried by the qubits—albeit of a
kind that cannot be mimicked by a classical system.

8. The Emergence of Classical Statistical Me-
chanics

It should be apparent that our interpretation has some important implica-
tions for the way that classical SM arises from quantum mechanics. The first
point, as we discussed in the introduction, is that there are many issues in
the theory of classical SM that are not completely settled. Take the issue of
probability. Essentially, as reviewed, for example, by Wallace [1], there are
two distinct points of view called the inferential and dynamical, sometimes
portrayed as the Gibbs view versus the Boltzmann. The former views proba-
bilities as arising from our incomplete knowledge of the microstate given the
macroscopic information that we have about a system. On the other hand, in
the dynamical point of view, there is no fundamental need for probabilities
because classical mechanics is deterministic. However, one can talk about
the relative number of particles moving with such and such velocity and the
dynamics is complicated and it is not possible to follow individual trajecto-
ries of microstates and so one has to talk about averages over suitably long
times. In ergodic systems it is possible to link these points of view directly,
but ergodicity is problematic to formulate and difficult to prove in general.

Probabilities, of course, naturally arise in quantum mechanics in the con-
ventional Copenhagen interpretation and Wallace [1] makes the point that
there is then no need to introduce probabilities in quantum SM twice. It
would be much more natural if the probabilities in SM and the Copenhagen
interpretation were essentially one and the same. This is what our formalism
achieves with the potential to illuminate and solve the conceptual problems
of classical SM.
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In fact, a completely quantum approach to SM has its roots in the work of
Schrödinger [3] and von Neumann [4] in the 1920s.21 We will be particularly
interested in the approach of von Neumann leading to his quantum ergodic
theorem. The idea is to focus on expectation values of suitable coarse grained
observables with the aim of showing that the resulting values behave in the
way expected in SM. One can either consider a system in isolation or one
can focus on a small subsystem of a much larger system, corresponding to
the microcanonical and canonical situations, respectively.

There are two important issues: does a system equilibrate and then if so does
it thermalize? The issue of equilibration, concerns whether the expectation
values of various coarse grained observables become constant, or at least con-
stant for the vast majority of time after some initial transient regime. Note
that this is a non-trivial question because the underlying quantum state of
the system certainly does not approach a constant. The issue of thermaliza-
tion is whether the equilibrium state gives expectation values that one would
expect of the microcanonical or canonical ensembles. So the properties of
equilibration and thermalization are properties of the state of the system
with respect to a set of coarse grained observables A = {On} rather than the
underlying quantum state itself.

Let us consider an isolated system and suppose that it is described by a
density operator ρ(t), which includes the possibility of a pure state, and
consider an observable O ∈ A. The idea is that it is not the state ρ(t) but
the expectation value Tr[Oρ(t)] that equilibrates in the sense that the long
time average of it is very close to Tr[Oρ0] where ρ0 is the time independent
component of ρ(t). The latter is just the diagonal component of ρ(t) in the
energy eigenstate basis:22

ρ0 =∑
n

pn ∣n⟩ ⟨n∣ , pn = ⟨n∣ρ(t) ∣n⟩ (8.1)

where ∣n⟩ are the energy eigenstates and the pn are time independent proba-
bilities ∑n pn = 1. Since many energy eigenstates are expected to be occupied
each with a small probability, roughly pn ≲ 10−N , where N is the number of
degrees of freedom of the system, e.g., N = O(1023).

21There is now a large literature but a limited set of references are [6-18].
22For simplicity, we assume that there are no degeneracies in the En and also in the

gaps En−Em which is reasonable in a realistic interacting non-integrable quantum system.
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There are various bounds that can be established. For example, one can prove
[10, 12] that the long time average of the variance of the expectation value
Tr[Oρ(t)] about the equilibrium Tr[Oρ0] is bounded above by a quantity of
order23

∆(O)2
∑
n

p2
n (8.2)

where ∆(O) is the range of eigenvalues of O. Since the probabilities pn are
very small, (8.2) is certainly much smaller than the square of the resolution
scale δ2

O
. Hence the time average of the expectation value of O is captured

to high degree of the accuracy by the equilibrium state ρ0.

Another interesting quantity is the fraction of time that the system spends
away from the equilibrium state as measured by the inequality [13]

∣Tr[Oρ(t)] −Tr[Oρ0]∣ > δO (8.3)

where δO is the resolution scale defined in section 3.1. It can be shown that
this fraction of time is bounded above by a quantity of order

(
∆(O)

δO
)

2

max
n
pn (8.4)

Although the ratio ∆(O)/δO can be large, it is expected to be dominated by
the smallness of the eigenvalues pn and so the implication is that the system
spends the vast majority of time close to the equilibrium state with only
occasional excursions away. It is important to emphasize, though, that the
equilibrium state is not strictly time independent due to these fluctuations.

The issue of thermalization rests on the extent to what expectation values
calculated from the equilibrium state ρ0 are close to the microcanonical en-
semble

ρmc =
1

N
∑

En∈[E,E+∆E]

∣n⟩ ⟨n∣ (8.5)

This is a more refined question that requires additional hypotheses. For in-
stance, it follows if the initial state is pure and has a sharply defined energy
in the band [E,E + ∆E] from von Neumann’s quantum ergodic therorem
[4]. More generally, it follows from the eigenstate thermalization hypothesis

23We refer to the original work for the precise statements.
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discussed, for example, in [12-16]. There are similar statements that can be
made for a sub-system A interacting with a larger system E. In this case, it
is the expectation values of operators on the subsystem that equilibrate and
can give values that are close to the canonical ensemble [6-11].

What is striking about this quantum approach to SM is that it completely
cuts classical SM and any mention of microstates or probability out of the
picture. So whilst the approach is very successful, there does not seem to be
a way to see how classical SM can arise in the classical limit.

However, there are some parallels between our approach to the Copenhagen
interpretation and the quantum approach to SM. Both place the expecta-
tion values of a set of realistic coarse grained observables A center stage in
the sense that the macroscopic state of the system is determined by both
the underlying quantum state and the observables. In particular, in the SM
context the underlying quantum state by itself is not the relevant object to
measure equilibration and thermalization—it certainly does not have these
properties—rather it is the expectation values of the observables Tr[Onρ(t)],
On ∈ A.

In our proposal, the expectation values of the observables Tr[Onρ(t)] as a
function of time should be replaced by the expectation values in the sequence
of quantummicrostates determined by the stochastic process ⟨Ψi(t)∣On ∣Ψi(t)⟩.
The key question for us is:

To what extent is the long time average of ⟨Ψi(t)∣On ∣Ψi(t)⟩ cap-
tured by the microcanonical equilibrium expectation value Tr[Onρmc]?

In order to answer this, let us make us some assumptions:

1. We will take the overall state to be the pure state ρ = ∣Ψ⟩ ⟨Ψ∣ with
sharply defined energy in a microcanonical shell [E,E + dE] defined
by a subspace of the Hilbert space Hmc ⊂ H with a large dimension N
with ∆E macroscopically small but microscopically large so that N is
large.

2. We will assume that the observables On are explicitly time independent
and commuting, so that the quantum microstates are the simultaneous
eigenstates. In addition, none of the On commutes with the Hamilto-
nian (except the coarse grained energy: see below) . If the contrary
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were true, there would be super-selection sectors which would break
ergodicity and in that case one would have to restrict to a particular
eigenspace.

3. Finally we assume that the microcanonical energy shell defining a sub-
space of the Hilbert space Hmc has a decomposition in terms of the
eigenspaces of the observables

Hmc =⊕
i

Hi , di = dimHi , ∑
i

di = N (8.6)

This seems reasonable because it is natural that A contains a coarse
grained version of the energy consisting of the projector onto Hmc.24

When the system, with respect to the set A, equilibrates in the sense de-
scribed above, the occupation probabilities of the quantummicrostates ∣ci(t)∣2
also equilibrate. In fact, von Neumann’s quantum ergodic theorem [4] (see
also [17]) states that, for any ∣Ψ(t)⟩ ∈ Hmc and most times in the long run,

∣ci(t)∣
2 = ∣ ⟨Ψi ∣Ψ(t)⟩ ∣2 = ⟨Ψ(t)∣Πi ∣Ψ(t)⟩ ≈

di
N

(8.7)

where Πi is the projector onto Hi. The exact conditions for the equality are
to be found in ?[4, 17] but they include the requirement that the dimensions
di are suitabley large. Note that (8.7) implies that the expectation values
take their microcanonical form:

⟨Ψ∣On ∣Ψ⟩ =∑
i

∣ci∣
2 ⟨Ψi∣On ∣Ψi⟩ ≈ Tr[Onρmc] (8.8)

where the first equality is the microscopic Born rule (3.4). The result also
follows from the eigenstate thermalization hypothesis [16]. To emphasize,
being in equilibrium does not mean that the ∣ci(t)∣2 are strictly constant: the
equilibrium state allows for fluctuations and very occasional larger excursions
away from the average.

So in order to answer the question posed above, we need to establish that
the stochastic process in equilibrium is also ergodic so that the long time

24Von Neumann [4] calls the family of spaces {Hi} the “macro-observer”. In our ap-
proach we associate the “macro-observer” with the macroscopic time average of the expec-
tation values ⟨Ψi(t)∣On ∣Ψi(t)⟩
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average of ⟨Ψi(t)∣On ∣Ψi(t)⟩, as in (4.5), is equal to the equilibrium values
Tr[Onρmc]. We discussed the issue of ergodicity in section 4.1. In equilib-
rium, the stochastic process is effectively a homogeneous Markov chain for
which ergodicity requires that over a long enough time the integrated tran-
sition probabilities pi∣j(t + T, t) becomes independent of j.

The transition rates of the stochastic system are given in (4.4). In order
to address the question of ergodicity, we need to investigate the matrix el-
ements ⟨Ψj ∣H ∣Ψi⟩, with i ≠ j. In an interacting and non-integrable, i.e.
chaotic, quantum system, it is reasonable to expect that the energy basis
and the basis of quantum microstates are related by a random unitary ma-
trix. With this hypothesis, one finds approximately that for each pair i, j, the
non-vanishing transition rate Tij, say, is randomly distributed over a range
[0, di∆E/(h̵

√
2N)] while Tji = 0.

A homogeneous Markov chain with these random transition rates is demon-
strably ergodic in numerical simulations. A suitable measure for the time
scale for the system to be ergodic is how quickly the system becomes inde-
pendent its initial state; one finds for large T

∣pi∣j(t + T, t) − pi∣k(t + T, t)∣ ∼ exp [−µT ] (8.9)

where µ is of order
√
N∆E/h̵. Thgis shows that the process is ergodic

over very short time scales of order h̵/(
√
N∆E). The implication is that

the long time average as in (4.5) over macroscopic time scales T , of the
expectation values that follow from the stochastic process reproduce those of
the microcanonical ensemble:

(8.10)
The stochastic dynamics of the expectation values ⟨Ψi(t)∣On ∣Ψi(t)⟩ re-instates
a dynamical, i.e., Boltzmann, picture of a thermal ensemble but now in the
context of quantum SM. Now we can interpret the density operator as being
an ensemble of quantum microstates as in (3.4) with a clear understanding of
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the role of probability as a fundamental property of the Markov process. So
the conceptual picture is clear and the quantum microstates provide a quan-
tum precursor of the microstates of classical SM. There remains the program
of investigating the stochastic dynamics in detail for particular examples, like
a gas of microscopic particles, to find to what extent the stochastic dynam-
ical picture is related to the classical mechanical picture. We have already
shown how the latter can arise from the former for a macroscopic particle in
section 5 but one would need to apply the same ideas to the whole gas.

9. Discussion

We have described an approach to quantum mechanics which offers the possi-
bility to understand the different deterministic and stochastic elements of the
classical limit of quantum mechanics in a more unified way. The key idea is
that the underlying quantum system evolves according to the standard rules
of quantum mechanics, i.e. the Schrödinger equation, while the stochastic
behavior enters at the level of the set of coarse grained observables that are
needed to construct an effective theory that describes the interactions of the
system with other macroscopic systems. The central element of this effective
theory is a stochastic pro- cess that preserves the microscopic Born rule. All
the different facets of the classical limit follow from properties of the stochas-
tic process and in particular to what extent the process is ergodic. When
ergodicity is broken, the behavior can be effectively deterministic and the
classical limit gives rise to classical mechanics. When the process is ergodic,
the behavior is characteristic of statistical mechanics and we have shown that
the quantum system gives a dynamical picture of a thermal ensemble. Fi-
nally, when ergodicity is partly broken with large ergodic subsets of states,
the formalism provides a natural solution to the measurement problem.

To finish, we can give an account of the fate of Schrödinger’s famous cat.
The evolution of the quantum state leads to a final state vector that involves
a linear combination of an alive and a dead cat:

∣Ψ(0)⟩ = ∣cat alive⟩→ ∣Ψ(T )⟩ = c+ ∣cat alive⟩ + c− ∣cat dead⟩ (9.1)

In this simple analysis, we need not explicitly describe the other parts of
the system, the measuring device, microscopic quantum system and environ-
ment: they are assumed to be included in the states ∣cat alive⟩ and ∣cat dead⟩.
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The effective macroscopic description of the cat involves a set of sub-macroscopically
coarse grained observables A. The set of quantum microstates {∣Ψi⟩} asso-
ciated with A splits into two subsets {∣Ψi+⟩} and {∣Ψi−⟩},

∣cat alive⟩ =∑
i+

ci+ ∣Ψi+⟩ , ∣cat dead⟩ =∑
i−

ci− ∣Ψi−⟩ (9.2)

corresponding to an alive and a dead cat, respectively. The macroscopic
state of the system is then described as the macroscopic time average of the
expectation values ⟨Ψi(t)∣On ∣Ψi(t)⟩. The important point is that for realistic
Hamiltonians, the integrated probability over a macroscopic time scale for
making a transition for a dead to alive, or vice versa, over a macroscopic
time scale t2 − t1

pi±∣j∓(t2, t1) ≪ 1 (9.3)

So there is no practical prospect of an alive state ∣Ψj+⟩ making a transition
to dead state ∣Ψi−⟩, and vice versa. So the states of an alive cat and dead
cat are ergodically disjoint. Once the quantum microstate of the cat lies
in a given ergodic component, which is does with probability ∣c+∣2 or ∣c−∣2,
it remains there, either dead or alive, with definite positions for its moving
part but also with its more microscopic degrees of freedom in approximate
thermal equilibrium. It makes sense to then remove the ergodically disjoint
parts of the state vector that can never be realized, a harmless procedure
that is nothing other than the reduction of state vector:

∣Ψ(T )⟩→ ∣cat alive⟩ or ∣cat dead⟩ (9.4)

Appendices

A. Mixed State Generalization

In this appendix, we show how to generalize the formalism to the case when
the state is mixed described by a density matrix ρ. We will also focus on the
realistic case with a commuting set of observables A.

As in the case of a pure underlying state, the quantum microstates are just
the simultaneous eigenstates of the set A. The underlying mixed quantum
state can always be expressed as

ρ =∑
ij

Aijρij , ∑
i

Aii = 1 (A.1)
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where ρij is an operator which maps Hj → Hi with Trρij = δij. The micro-
scopic Born rule in this case is expressed as

Tr(Onρ) =∑
i

AiiTr(ρiiOn) ′ ∀On ∈ A (A.2)

The role of the quantum microstate is now played by the diagonal elements
ρii and Aii is the generalization of the probability ∣ci∣2.

We now define the stochastic process by the same logic as in (2.5). Using
von Neumann’s equation of motion for the density operator, one finds

dAii
dt

=
2

h̵
∑
j≠i

Im [AijTri ([H,ρij] − ih̵
∂ρij
∂t

)] (A.3)

where the trace is over Hi. This yields the transition rates

Tij =max(
2

h̵
Im [

Aij
Ajj

Tri {[H,ρij] − ih̵
∂ρij
∂t

}] ,0) (A.4)

In the case of a pure state Aij = cic∗j and ρij = ∣Ψi⟩ ⟨Ψj ∣ we recover the
expression (4.1) using, for i ≠ j,

Tri {[H,ρij] − ih̵
∂ρij
∂t

} = − ⟨Ψj ∣ (H − ih̵
∂

∂t
) ∣Ψi⟩ (A.5)

If our quantum system is in a mixed state rho and is interacting with a larger
quantum system then the time evolution of ρ will be non-trivial. It would
be interesting to generalize our formalism to this case, but we will leave such
an endeavor to future work.

B. Non-Abelian Sets of Observables

In this appendix, we consider several examples where the set A contains op-
erators that do not commute.

Example 1: Suppose that A consists of the complete set of observables on
the finite dimensional Hilbert space H. If the dimension of H is n then the
complete set of observables has dimension n2. It quickly becomes apparent
in this case that the set of quantum microstates states M consists of just
∣Ψ⟩ itself. In an intuitive sense, if we know the expectation values of all the
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observables on H then we have complete knowledge of the quantum state
and so the coarse grained density operator must be equal to ρ = ∣Ψ⟩ ⟨Ψ∣. The
stochastic process will be trivial and the evolution of the system with respect
to A is just the same as the deterministic microscopic dynamics encoded in
the Schrödinger equation.

So an omnipotent observerA sees the system evolve according to the Schrödinger
equation.

Example 2: Suppose that A consists of the complete set of observables
which as operators act on a factor HA of a tensor product of finite dimen-
sional Hilbert spaces H = HA ⊗HE. These operators act as On ⊗ 1E. The
dimension of A is equal to (dimHA)2.

In this example, the quantum microstates are just the conventional Schmidt
states

∣Ψ⟩ =
N

∑
i=1

ci ∣Ψi⟩ , ∣Ψi⟩ = ∣ψi⟩⊗ ∣ψ̃i⟩ (B.1)

where ⟨ψi ∣ψj⟩ = ⟨ψ̃i ∣ ψ̃j⟩ = δij. The states ∣Ψi⟩ and ∣Ψ̃i⟩ are eigenstates
of the reduced density matrices ρ(A) = TrE ∣Ψ⟩ ⟨Ψ∣ and ρ(E) = TrA ∣Ψ⟩ ⟨Ψ∣,
respectively. Their number equals N =min(dimHA,dimHE).

The microscopic Born rule (3.4) follows from the orthogonality of ∣Ψ̃i⟩:

⟨ψi∣⊗ ⟨ψ̃i∣ (On ⊗ 1E) ∣ψj⟩⊗ ∣ψ̃j⟩ = ⟨ψi∣On ∣ψj⟩ ⟨ψ̃i ∣ ψ̃j⟩ = δij ⟨ψi∣On ∣ψi⟩ (B.2)

which implies (3.4). The non-degeneracy condition rules out having more
than one quantum microstate associated to each ∣ψ̃i⟩ since having two po-
tential microstates ∣ψ̃i⟩ ⊗ ∣ψ̃′i⟩ and ∣ψ̃i⟩ ⊗ ∣ψ̃′′i ⟩ violates the non-degeneracy
condition (3.5).

This example forms the basis of the reduced density operator formalism de-
veloped in [19-21].

Example 3: Consider the case of a small finite dimensional set of non-
commuting observables A in a large Hilbert space in a generic state ∣Ψ⟩. We
will assume that A forms a Lie algebra, or can be completed into such an
algebra. To be more precise, we will consider the case that the observables
generate a U(N) algebra. This example is not supposed to be realistic but
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it just illustrates how the formalism can cope with a non-abelian set of op-
erators.

The complexified generators can be labelled by a pair i, j ∈ {1,2, ...,N} with25

[Oij,Okl] = δjkOil − δilOjk (B.3)

We are assuming that the dimension of the algebra N2 is much smaller than
the dimension of the Hilbert space H. This means that a typical state ∣Ψ⟩ is
not annihilated by any element of A:

O ∣Ψ⟩ ≠ 0 , ∀O ∈ A (B.4)

In such a situation, the N2 dimensional space HA,Ψ ⊂ H spanned by the
independent states

Oij ∣Ψ⟩ , ∀ i, j (B.5)

carry an adjoint representation of the Lie algebra. A basis for this space
consists of the orthonormal states ∣ij⟩ labelled by a pair i, j with

Oij ∣kl⟩ = δjk ∣il⟩ (B.6)

The generators and states can always redefined by a unitary U(N) transfor-
mation:

Oij → UOijU
−1 , ∣ij⟩→ U ∣ij⟩ (B.7)

Given the typical state ∣Ψ⟩, we can always use this freedom to perform a
U(N) transformation to align the algebra with the state ∣Ψ⟩ in the sense
that

∣Ψ⟩ =
N

∑
i=1

ci ∣ii⟩ + cN+1 ∣Ψ
⊥⟩ (B.8)

In this expression, ∣Ψ⊥⟩ is the component of ∣Ψ⟩ lying orthogonal to HA,Ψ.

The expression above identifies the N + 1 quantum microstates as

∣Ψi⟩ = ∣ii⟩ , i = 1,2, ...,N , ∣ΨN+1⟩ = ∣Ψ⊥⟩ (B.9)
25The Hermitian combinations are Oii,Oij + Oji and i(Oij − Oji). The complexified

operators satisfy an algebra under multiplication as well as commutation.
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The quantum microstates are precisely the eigenstates of the Cartan subal-
gebra generated by the mutually-commuting operators Oii, i = 1,2, ...,N and,
in particular, ∣ΨN+1⟩ has zero eigenvalues for all the Cartan generators:

Oii ∣Ψj⟩ = δij ∣Ψj⟩ , j = 1,2, ...,N , Oii ∣ΨN+1⟩ = 0 (B.10)

Note that the Cartan generators are the only operators with non-vanishing
expectation values

⟨Ψ∣Oij ∣Ψ⟩ = ∣ci∣
2δij (B.11)

C. Time Dependent Observables

In this appendix, we discuss how to general the formalism to the case of
explicitly time dependent observables. The transition rates in (4.4) as gen-
eralized to

Tij =max(−
2

h̵
Im [

ci
cj

⟨Ψj ∣ (H − ih̵
∂

∂t
) ∣Ψi⟩] ,0) (C.1)

The discussion of locality in section 4.2 is modified in the following way,
without any of the conclusions being changed. First of all, (4.7) generalizes
to

⟨Ψi∣1A ⊗ (HE − ih̵
∂

∂t
) ∣Ψj⟩ = 0 , i ≠ j (C.2)

where the derivative term here acts only on ∣ψja⟩. The final local expression
for the transition rates is

Tij =max(−
2

h̵
Im [

ci
cj

⟨Ψj ∣ {HA − ih̵
∂

∂t
) ∣Ψi⟩⊗ 1E +Hint] ,0} (C.3)

which generalizes (4.8).
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