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Abstract

Quantum statistics originate from the physics of state preparation. It is
therefore wrong to think of quantum states as fundamental. In fact, quan-
tum states are merely summaries of dynamical processes that randomize the
properties of the system by drawing on the inexhaustible reservoir of quan-
tum fluctuations provided by the physical tools used to control the quantum
system. The mathematical form of the “state vector” is actually an expres-
sion of the laws of causality which describe the relations between physical
properties in terms of the action of transformations. These laws of causality
directly associate the macroscopic effects of a physical property in an inter-
action with the environment with dynamical changes to the system caused
by the microscopic properties of that environment.

1. Introduction

For all practical purposes, quantum mechanics is a theory of probabilities.
This may appear to be unproblematic since probabilities and statistics can
be studied in the context of familiar random processes such as Brownian
motion or dice games. However, quantum mechanics should include classical
physics as an approximation. It is therefore necessary to explain the origin of
quantum fluctuations in a way that is consistent with classical determinism.

The recent discussion of quantum information has resulted in a renewed in-
terest in “classical” models of statistics, e.g. Bohmian trajectories [1, 2] and
positive Wigner functions [3]. While these models highlight the similarities
between quantum statistics and classical statistics, they fail to explain where
the initial probability distributions come from. Since quantum dynamics are
fully deterministic, providing a reversible map between initial properties and
final properties for all possible scenarios, it should be possible to identify the
origin of randomness in the physical processes associated with quantum state
preparation.

Unfortunately, textbook quantum mechanics tends to gloss over the state
preparation process, usually expecting the reader to accept mathematical
symbols of unexplained meaning as descriptions of physical situations. It
might be time to wake up to the fact that this is bad science: a physical
situation is known from experience, and a proper description of a physical



situation must relate to that experience. To understand physics in the real
world, we need to remember that the Hilbert space vector has no physi-
cal meaning in its own right. The physics described by Hilbert space vectors
should be explained as an effect of the actual physical processes that resulted
in the situation they describe. In the following, I will show that quantum
mechanics provides us with well-defined laws of causality that can be used
to trace the origin of measurement results back to the process by which the
quantum state was prepared. When expressed in terms of observable physical
proper- ties, these laws of causality appear in the form of complex conditional
probabilities, where the complex phases are expressions of the action of trans-
formations between the physical properties [4-6]. It can be shown that any
inter- action that selects a physical property a from an initial situation with
a well-defined value of b dynamically randomizes b according to the deter-
ministic laws of motion described by the complex conditional probabilities.
Ultimately, the randomness of this dynamical process can be traced back to
microscopic properties of the environment that are beyond our control.

In many discussions of quantum mechanics, it is assumed that the world of
our experience is “classical”. However, this is only as valid as the claim that
the world of our experience is non-relativistic. The truth is that we are not
aware of the huge amount of quantum fluctuations in the world around us
because we are not sufficiently sensitive to them. Quantum physics is fully
deterministic, but the laws of causality limit our ability to control the world
around us. Whenever we control a pro- cess in the real world, we only control
a small part of the physical systems involved. Quantum physics, which gov-
erns the relations between all physical properties, ex- plains that for every
macroscopic property we control, there must be a microscopic property that
has no observable effects and left no trace of itself in the environment. When-
ever we use a macroscopic device to impose control on the quantum world,
these microscopic properties will randomize the dynamics of the quantum
system along a trajectory defined by the physical property we have brought
under control, resulting in the familiar predictions of randomness associated
with quantum statistics.
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2. State Preparation as a Process

Quantum state preparation takes many forms and depends strongly on the
technological possibilities in a given field of research. That is precisely why it
has received so little attention from theorists: it seems to be a very technical
problem, with unclear general implications. However, there is one procedure
of quantum state preparation that is comparatively well studied, and that
is the preparation of a quantum state by a projective measurement. In this
process, the measurement determines a property a of the system, thereby
ensuring that future measurements of the property a′ result in a′ = a with
close to 100% certainty. At the same time, quantum theory demands that
the probabilities of a different property b will be given by P (b∣a) = ∣ ⟨b ∣a⟩ ∣2,
no matter what the details of the measurement process were.

In the preparation by measurement, the randomness of the property b′ is a
result of the disturbance of b in the measurement of a. This randomness can
be traced back to the measurement system using the standard model of a
bilinear interaction. If Â s the operator associated with the property a, the
measurement interaction can be modeled by the Hamiltonian

Ĥ = gÂp̂ (1)

where p̂ is the physical property of the meter system that generates the
observable shift in the meter observable. Since p̂ generates the dynamics of
the meter observable x̂, the two do not commute. Moreover, a successful
readout of the measurement result is only possible if the initial uncertainty
of x̂ is much smaller than the differences between the meter shifts induced
by different eigenvalues of Â. The result is that a measurement of specific
outcomes a requires a minimal uncertainty of p̂, so that the dynamics of the
system in the measurement interaction occurs at a random rate.

Much confusion is caused by the fact that the standard quantum model of
the measurement interaction results in an entangled state. However, it is
possible to first focus on the causality relation that links the randomness of
the system dynamics to the initial property p̂ of the meter system. If we treat
p̂ as a classical random parameter, then the unitary acting on the system can
be written as

Û = exp (−iφÂ) (2)
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where φ = gpt/h̵ is a phase parameter that re-scales the interaction time
based on the random value of p. In other words, the randomness of p̂ in the
environment gives rise to a randomness in the dynamics of the system.

In principle, the randomization of the dynamics generated by Â is well known
from measurement theory. However, it is usually described as “dephasing” or
as “decoherence”, which hides the actual physics of the randomized unitary
dynamics. Specifically, the dephasing process in a projective measurement
should be understood as a randomization of the transformation parameter
φ. This is important because we can in principle trace back any final result
of b obtained after the measurement interaction to a specific combination
of the meter observable p with physical properties of the system before the
measurement interaction.

3. Quantum Ergodicity

The description of causality by unitary operators is not satisfactory, since
these transformations do not describe the evolution of physical properties.
A proper description of causality should express the relations between phys-
ical properties, not just the changes to their statistics. As I showed recently
[5], such a description of causality is given by the complex probability rep-
resentation of quantum states defined by the expectation values of projector
products,

ρ(a, b) = ⟨b ∣a⟩ ⟨a∣ ρ̂ ∣b⟩ (3)

The advantage of this representation is that it is rather flexible with regard
to the choice of basis states. It is therefore possible to interpret unitary
transformations as a simple change of representation. Using the notation
Û † ∣b⟩ = ∣U(b)⟩,

ρ(a,U(b)) =∑
b′
P (U(b)∣a, b′)ρ(a, b′) (4)

where

P (U(b)∣a, b′) = ⟨b
′∣ Û † ∣b⟩ ⟨b∣ Û ∣a⟩
⟨b′ ∣a⟩

= ⟨b ∣a⟩⟨b′ ∣a⟩∑a′
⟨b′ ∣a′⟩ ⟨a′ ∣ b⟩ e(−iφ(Aa−Aa′)) (5)
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Here, the eigenvalues of Â for an outcome a are represented by Aa, since it
is often useful to distinguish between qualitative results a and the physical
quantities represented by the eigenvalues of the operator.

We can now introduce a quantum mechanical definition of ergodic random-
ization. As discussed above, the dynamics induced by a precise measurement
of Â corresponds to a randomization of the phase φ in the time evolution of
the system. Since Eq.(7) is linear in P (U(b)∣a, b′), we can apply this average
directly to the conditional probabilities, resulting in a simple description of
ergodic randomization for complex joint probabilities,

Pergodic(U(b)∣a, b′) = ∣ ⟨b ∣a⟩ ∣2 (6)

Specifically, ergodic averaging eliminates all contributions with a ≠ a′, which
is mathematically equivalent to the elimination of off-diagonal elements in
the density matrix.

Eq.(6) shows that the probability distribution P (b∣a) = ∣ ⟨b ∣a⟩ ∣2 is indeed
the result of an ergodic randomization of the dynamics generated by Â [6].
Specifically, the application to any initial state ρ(a, b) results in

ρ(a,U(b)) = P (b∣a)∑
b′
ρ(a, b′)

= P (b∣a) ⟨a∣ ρ̂ ∣a⟩ (7)

State preparation can be explained as a sequence of ergodic randomization
followed by a “classical” selection of the result a. Importantly, the physics of
quantum states is the physics of ergodic ensembles. It is therefore possible
to explain the origin of randomness in quantum states in terms of actual
physics, without any reference to hypothetical realities within the system.

4. The Physics of Control

It may be useful to illustrate the implications of the analysis of quantum
ergodic averaging by applying it to a selection of particularly familiar exam-
ples. Perhaps the most simple example is that of a single slit. Specifically,
it is possible to prepare an eigenstate of position ∣xq⟩ by passing a quantum
particle through a slit at that position. As a result, the transverse momen-
tum p̂q will be randomized. Importantly, this randomization is not the result
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of some mysterious “collapse” of the wavefunction. Instead, a particle passing
through the slit experiences the effects of a potential in space, resulting in a
transfer of momentum from the slit to the particle. The Hamiltonian of the
interaction depends on the difference between the position of the particle and
the position of the slit, xq −xs. Therefore the interaction conserves the total
momentum, and the momentum transfer could be monitored by measuring
the momentum of the slit before and after the interaction. However, the slit
is a macroscopic object of considerable mass, and the slit position can only
be controlled with sufficient precision because this solid object can be fixed
in place by mechanical means. Importantly, this does not mean that the
slit is a “classical” object. The interaction with the particle is fully quantum
mechanical and the source of the momentum uncertainty of the particle are
the quantum fluctuations of the momentum of the screen. It is therefore
essential that the measurement apparatus is not “classical” either. Indeed,
there is no such thing as a “classical” object, and the more macroscopic an
object gets, the more microscopic quantum fluctuations it will contribute to
its interactions.

A similar situation exists in the preparation of the polarization state of a
single photon using a polarization beam splitter. In that case, the interac-
tion with the beam splitter is conditioned by the polarization, resulting in
the transfer of angular momentum from the beam splitter to the photon.
The precise linear polarization selected by the beam splitter depends on the
angular orientation of the beam splitter, which means that there must be
a corresponding amount of uncertainty in its angular momentum, and the
need to fix the axes of the beam splitter in place makes it impossible to suffi-
ciently control the angular momentum of the beam splitter before and after
the photon passes it.

Slits and beam splitters are macroscopic devices, and a detailed quantum
mechanical description of all the vibrational and rotational degrees of free-
dom would be difficult to formulate. However, the universality of quantum
mechanics requires that all interaction processes follow the same principles.
It is therefore possible to gain fundamental insights into the interaction be-
tween macroscopic and microscopic objects in the limit where the macro-
scopic meter system is still small enough to be represented by a single degree
of freedom. This is the case in the Stern-Gerlach experiment, where the mo-
tion of an atom in an inhomogeneous magnetic field serves as the meter for

6



a measurement of a spin component. Since this is a well-studied scenario,
I will not go into detail here [7]. Importantly, the discussion above applies
here as well: the quantum fluctuations of the meter result in a random angle
of the spin precession caused by the in- homogeneous magnetic field. It is
therefore possible to identify the physical origin of the randomness of subse-
quent spin measurements for components orthogonal to the one selected in
the preparation. As in all other cases, the randomness of the quantum state
is a dynamical average along a trajectory - a quantum ergodic average, and
not a “distribution of realities”.

Finally, it may be good to recall that a number of state preparation methods
are actually based on cooling. It is here that the historical relation between
the quantum ergodicity of state preparation and Boltzmann’s original use of
the concept in thermodynamics [8]. As pointed out by Boltzmann, thermal-
ization results in ensemble aver- ages that correspond to the time-averaged
motion of the system. Interestingly, it is not entirely clear what conditions
are sufficient to ensure that an interaction between two systems results in a
thermalization. It may there- fore be worthwhile to study the cooling pro-
cesses used in quantum mechanics in more detail. In all cases, one should
expect that the eventual quantum fluctuations of a thermal ground state are
the result of well-defined interactions with corresponding quantum fluctua-
tions in the environment.

5. Time-Symmetry and Laws of Causality

Events in the past determine the physical properties of a system in the fu-
ture, and events in the future determine the physical properties of a system
in the past. Physics provides the universal set of rules by which the physical
properties are related to each other in the course of time, and these universal
laws of physics allow us to make sense of the observable sequence of events.
The “state” of a system is merely a specific situation among many and needs
to be understood as a representation of the more general laws that are nec-
essarily “state-independent”.

In quantum mechanics, the difficulty of identifying the universal laws of
physics arises because state preparation and measurement are always incom-
plete, since it is impossible to isolate the causality of the system from the
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effects of the environment. However, there is a way out: weak measurements
are sensitive to the physical properties of a system during its free evolution
between the observable effects associated with preparation and measurement
[9]. This is why weak measurements can be used as an empirical founda-
tion for a time-symmetric formulation of causality. As pointed out in [5, 6],
the complex-valued conditional probabilities P (m∣a, b) that are defined by
the weak values of the projector ∣m⟩ ⟨m∣ for an initial state ∣a⟩ and a final
state ∣b⟩ express the deterministic law of causality that relates the physical
property m to the set of properties (a, b). As explained in [5], this relation
replaces the classical relations m = fm(a, b), where the value of m is a func-
tion of the values of a and b. These classical relations are never fundamental:
they emerge only as an approximation obtained by coarse graining over in-
tervals corresponding to actions greater than h̵.

For a measurement of the physical property m, the outcome is fully deter-
mined by (a, b) according to

Pexp.(m) =∑
a,b

P (m∣a, b)ρ(a, b) (8)

Here, the initial state is expressed by the complex-valued joined probability
ρ(a, b) given in Eq.(3). Importantly, quantum ergodicity states that (a, b)
does not represent an elementary reality. Instead, a and b are related to each
other by quantum ergodic dynamics, as expressed in the complex phases of
the deterministic probability relation P (m∣a, b), which represent actions of
transformation [4].

Time-reversibility can now be illustrated by expressing ρ(a, b) as an ergodic
average of m′. The joint probability can be written in the (m,b) representa-
tion as

ρ(m,b∣m′) = P (b∣m)δm,m′ (9)

The (a, b) representation can then be obtained by using the deterministic
relation between a and the pairs (m,b) to replace m with a [5],

ρ(a, b∣m′) =∑
m

P (a∣m,b)ρ(m,b∣m′)

= P (a∣m′, b)P (b∣m′) (10)
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We therefore find that the causality relation that connects a preparation of
m to a measurement of m is given by

Pexp.(m∣m′) =∑
a,b

P (m∣a, b)P (a∣m′, b)P (b∣m) (11)

This relation is actually independent of the choice of b and expresses the
time reversal symmetry of state preparation and measurement. Specifically,
the relation between m′ and a under the condition b is deterministic and
therefore reversible if (and only if) [5]

∑
a

P (m∣a, b)P (a∣m′, b) = δm,m′ (12)

This relation explains why the complex conditional probabilities (or action
phase probabilities) obtained from weak measurements are universal expres-
sions of determinism. They are in fact universal representations of the fun-
damental relations between physical properties that applies to all states and
measurements.

6. What “Superposition” Really Means

Much confusion has been caused by the description of quantum states as
“superpositions” of other states. It is therefore important to understand the
physics that is actually expressed by Hilbert state vectors and their compo-
nents. In fact, the components of Hilbert space vectors should be understood
as expressions of unitary transformations generated by the basis {∣m⟩} used
to expand the initial state ∣a⟩. Specifically, the dynamics of trans- formations
is expressed by changes in the complex phases of the components, so that
the change in the probability of b is given by

P (U(b)∣a) = ∣ ⟨b∣ Û ∣a⟩ ∣2

= ∣∑
m

⟨b ∣m⟩ ⟨m ∣a⟩ e−iS(m)/h̵∣
2

(13)

where S(m) is the action of the transformation generated by m. If a and b
overlap, it is possible to replace the Hilbert space vectors with action phase
probabilities [4],

P (U(b)∣a) = P (b∣a) ∣∑
m

P (m∣a, b)e−iS(m)/h̵∣
2

(14)
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Primarily, the components of state vectors therefore express the action of
transformations, and not the probabilities of measurement outcomes. This is
actually part of the definition of the phases in Hilbert space, since the seem-
ingly arbitrary choice of phase zero for each component in a d-dimensional
Hilbert space is actually defined by the physics of the reference state

∣r⟩ = 1√
d
∑
m

∣m⟩ (15)

With respect to this reference state, any physical property a can be described
by its action phase probabilities P (m∣a, r), where

P (m∣a, r) = ⟨m ∣a⟩
∑m′ ⟨m′ ∣a⟩ (16)

As shown in [6], it is possible to derive the complete Hilbert space formalism
from the action phase probabilities that describe the deterministic relations
between any three physical properties. In particular, the relation (16) above
shows that the Hilbert space vector of a state is really an expression of the
transformations between the respective state and a reference state r gener-
ated by the basis property m. Thus the components of the vector represent
the dynamics of the state, and not its “realities”.

Quantum ergodicity is the insight that randomness in quantum mechanics
has a dynamical origin. The uncertainty principle of quantum state prepa-
ration is actually a consequence of the specific form of causality observed in
the limit of precisely defined actions, and the state vector is a representation
of these causality relations with respect to an implicit reference state r.

7. Quantum Environments and Cosmological Con-
cerns

The essential insight of quantum ergodicity is that quantum mechanics ap-
plies equally to all objects, whether they are microscopic or macroscopic. It is
a mistake to think that the description of an environment or a measurement
apparatus can be “classical”. Therefore, the laws of physics that determine
state preparation must be the same as the laws of physics that determine
the unitary evolution between preparation and measurement. The approach
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succeeds because the closed system formalism of quantum mechanics can
be formulated in terms of universal relations between physical properties.
When applied to state preparation, these relations identify the microscopic
quantum fluctuations in the environment as the origin of randomness in the
quantum state.

In the conventional formalism, it is suggested that interactions entangle the
microscopic properties of the environment with the properties of the quantum
system. State preparation then requires an additional “measurement” of the
environment. What I am arguing here is that this conventional viewpoint is
mistaken, because our actual relation with the physical environment does not
work in this way. Empirical reality is controllable only at the most macro-
scopic level, and we need to accept that this lack of control is a fundamental
part of the world we live in. We should realize that simple everyday manip-
ulations already involve the relations of quantum physics. For example, the
precise alignment of a beam splitter corresponds to a well-defined quantum
coherence of its angular momentum, and the associated fluctuations supply
the angular momentum that depolarizes the circular polarization that passes
through the beam splitter.

This principle of ergodic randomness is even more valid in large systems
than it is in small ones. Most large systems interact with their environment
through a specific selection of properties that are particularly easy to observe
and thus qualify as “macroscopic” properties. However, the laws of physics
require that all properties are dynamically connected with conjugated prop-
erties. Therefore, the macroscopic properties of large objects are dynamically
connected to microscopic properties that are extremely difficult to observe
because they interact only very weakly and are rapidly randomized by the
interactions that make the macroscopic properties so easy to see. What ap-
pears as a “classical” reality is therefore always connected to a reservoir of
quantum fluctuations that will be relevant in any interactions between the
large system and a microscopic system.

Microscopic properties only obtain reality through macroscopic effects. In the
conventional formalism, both state preparation and measurement are repre-
sented by summaries of the ergodic averaging that occurs in the interactions
between the quantum system and the macroscopic devices that enable us to
control the system. The limits that quantum theory imposes on this control
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are actual limits of physical reality, as described by the deterministic rela-
tions between physical properties.

It may be important to emphasize that the principle of quantum ergodicity
is not just a pragmatic form of instrumentalism, where the output of the
device is real while the original object is not. The formulation of quantum
physics in terms of action phase probabilities removes boundary between the
system and its environment completely, so there is no division into “object”
and “device”. It is possible to apply this approach directly to quantum cos-
mology. When investigating the universe, the objective properties we observe
are quite macroscopic. We can take any property of interest and construct
a dynamically connected generator of transformations. It should be easy to
confirm that this property has no observable effects at cosmological scales.
In principle, these cosmological quantum fluctuations can be traced back all
the way to the big bang, where they were already included as a specific cor-
relation between the physical properties at the beginning of the universe.

The point is that most of the microscopic degrees of freedom present at the
big bang never had any macroscopic consequences that would be visible in the
universe as it appears to us today. At the quantum scale of h̵, the universe is
a poorly controlled system indeed, with much more randomness attributed
to thermal fluctuations than to quantum fluctuations - both of which are of
course equally ergodic.

8. Conclusions

The randomness of quantum systems has its identifiable origin in the dy-
namics of quantum state preparation. The reason why quantum mechanical
randomness appears to be so different from classical randomness is that it is
conditioned by the dynamics of quantum systems. In the preparation of a
pure state, the necessary interaction randomizes the dynamics of transforma-
tions that keep the intended property constant. The probability distributions
P (b∣a) given by the squared inner product ∣ ⟨b ∣a⟩ ∣2 can all be explained as a
result of the ergodic randomization of b along a trajectory of a.

The difference between quantum ergodic dynamics and classical dynamics is
described by complex probabilities that replace the classical deterministic re-
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lations be- tween physical properties with conditional probabilities P (m∣a, b),
where the complex phases of the probabilities represent the action of an op-
timized transformation from a to b along m [4]. The appearance of quantum
coherence in the Hilbert space formalism can thus be explained in terms of
universal laws of causality that describe the response of quantum systems to
external forces.

“Classical” reality emerges by approximation, when the relations between
physical properties are only determined with a precision that is much lower
than h̵. This approximation applies to most of our experience, since large
objects are characterized by only a few macroscopic properties and a much
larger number of microscopic properties that provide an inexhaustible supply
quantum ergodic fluctuations.

Statistical models of quantum mechanics result in paradoxes because the fun-
damental relations between physical properties are described by action phase
probabilities. These complex-valued probabilities describe statistical corre-
lations that cannot be explained by assigning positive probabilities to joint
realities of the physical properties involved. Instead, the dynamical relation
between the physical properties explains why it is not possible to control all
physical properties of a system at the same time: control is fundamentally
limited by the laws of causality that govern all interactions of the system
with its macroscopic environment.

Ultimately, a proper formulation of quantum physics should address these
issues by explaining the laws of causality first. The statistics of states can
then be de- rived from an analysis of the process by which states are pre-
pared.
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