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Abstract

Quantum mechanics is derived from the principle that the universe contain
as much variety as possible, in the sense of maximizing the distinctiveness of
each subsystem.

The quantum state of a microscopic system is defined to correspond to an en-
semble of subsystems of the universe with identical constituents and similar
preparations and environments. A new kind of interaction is posited amongst
such similar subsystems which acts to increase their distinctiveness, by ex-
tremizing the variety. In the limit of large numbers of similar subsystems this
interaction is shown to give rise to Bohm’s quantum potential. As a result
the probability distribution for the ensemble is governed by the Schrödinger
equation.

The measurement problem is naturally and simply solved. Microscopic sys-
tems appear statistical because they are members of large ensembles of simi-
lar systems which interact non-locally. Macroscopic systems are unique, and
are not members of any ensembles of similar systems. Consequently their
collective coordinates may evolve deterministically.

This proposal could be tested by constructing quantum devices from entan-
gled states of a modest number of quits which, by its combinatorial complex-
ity, can be expected to have no natural copies.

1. Introduction

This paper presents a new completion of quantum mechanics based on three
key ideas. The first is that quantum mechanics is necessarily a description
of subsystems of the uni- verse. It is an approximation to some other, very
different theory, which might be applied to the universe as a whole[1, 2, 3].

The second idea is that the quantum state refers to an ensemble of similar
systems present in the universe at a given time. We call this the real ensem-
ble hypothesis [21]. By similar systems we mean systems with the same con-
stituents, whose dynamics are subject to (within errors that can be ignored)
the same Hamiltonian, and which have very similar histories and hence, in
operational terms, the same preparation. The very peculiar idea underlying



this proposal is that such similar systems have a new kind of interaction with
each other, just by virtue of their similarities. This interaction takes place
amongst similar systems, regardless of how far apart they may be situated in
space, and thus, if these ideas turn out to be right, is how non-locality enters
quantum phenomena.

This hypothesis is motivated by a line of thought involving the application
to quantum gravity and quantum mechanics of some very general principles.
But in the interest of getting quickly to the point, this motivation is post-
poned until section 6. We will only say here that quantum gravity points to
the possibility that space and locality are both emergent and that, if this is
so, we should expect there to be defects in locality, where events are con-
nected which are far separated in the emergent low energy classical metric.

If the reader will take this real ensemble hypothesis as a provisional idea,
he or she will see that, together with the third idea, it leads to quantum
mechanics.

The real ensemble hypothesis was explored earlier in [21], where a new kind
of inter- action amongst the similar systems which make up the ensemble was
posited and shown to yield quantum dynamics. However that work could be
criticized because the particular inter-ensemble interaction was complicated
and motivated only by the fact that it gave the right answer.

A similar proposal was made in [22, 23], where the idea of many interacting
classical worlds (MIW) was introduced to explain quantum mechanics. This
also posits that the quantum state refers to an ensemble of real, existing,
systems which interact with each other, only those were posited to be near
copies of our universe that all simultaneously exist1.

1If the ontology posited by the [22, 23] papers may seem extravagant, their proposal
had the virtue of a simple form for the inter-ensemble interactions. This inspired me to
seek to use such a simple dynamics in the real ensemble idea. In particular, an important
insight contained in [23] is that if there are N particles on a line with positions, xi, with
i = 1, ...,N , the density at the k′th point can be approximated by

ρ(xk) ≈
1

N(xk+1 − xk)
(1)

This motivates the choose of a ultraviolet cutoff, in equation (25) below.
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The third key idea is that the inter-ensemble interaction can be related to the
an observable called the variety of the collection of similar subsystems. This
is also motivated by the general principles, as will be explained in section 6.

The principle of maximal variety, was formulated with Julian Barbour in the
1980’s[10]. The variety of a system of relations, V , is a measure of how easy it
is to distinguish the neighborhood of every element from that of every other.

The basic idea can be applied to every system with elements ei, labeled by
i − 1, ...,N whose dynamics depends on relational observables, Xij. The el-
ements could be particles or events or subsystems and the relations could
be relative position, relative distance, causal relations, etc. We proceed by
defining the view of the i′th element, this summarizes what element i may
“know” about the rest of the system by means of the relational observables.
The view of i is then denoted Vi(Xij).

Different systems will be described by different views. For example, if the
system is N points in a d dimensional Euclidean space, the view of the k′th
point is the list of vectors to the other points, weighed by the distance.

V ka
i =

xai − x
a
k

D(i, k)2
=

xai − x
a
k

∣xai − x
a
k∣

2
(2)

We then define the distinctiveness of two elements, i and j to be a measure
of the differences between the views of i and j. If the views live in a vector
space this can be denoted,

Iij = ∣Vi − Vj ∣
2 (3)

The variety is then defined to measure the distinguishability of all the ele-
ments from each other.

V =
1

N(N − 1)
∑
i≠j
I(i, j) (4)

The distinctiveness provides a metric on the set of subsystems.

hij = Iij = ∣Vi − Vj ∣
2 (5)

This metric tells us that systems are close if they have similar views of their
relations to the rest of the universe. For example, two events that are close
in space will have similar views.
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But this is not the only circumstance in which two events may have similar
views. If the events are each part of the history of a microscopic system, that
can each be considered to be effectively isolated, and if those two isolated
systems have similar constituents, environments and preparations, than their
views may also be similar.

Now assuming conventional notion of locality, the degrees of freedom at
nearby events can interact. But suppose locality in space is not primary.
Suppose, instead, that the metric on the space of views is actually what de-
termines the relevant notion of locality for interactions. As a consequence,
two systems may interact when they are nearby in space, or when their
views are similar because they have the similar constituents, environments
and preparations. The former give conventional local interactions, while the
latter case gives a new kind of interactions. The aim of this paper is to
show that the latter kinds of interactions may be responsible for quantum
phenomena.

In particular, we will show that when these new interactions amongst mem-
bers of the ensemble of systems with similar views acts to increase the variety
of the beables in that ensemble, they give rise to the quantum potential of
Bohmian quantum mechanics. This can be made plausible if we consider the
fact that the Bohmian potential is repulsive and so acts to smooth out the
wave function, giving rise to a greater variety of beables represented in the
ensemble.

There are then three basic hypotheses in this paper.

1. In the microscopic causal geometry underlying nature, two systems can
interact if they are within a distance R in the metric hij. There are two
ways this can happen. It can happen when they are nearby in the emer-
gent macroscopic notion of spatial geometry. When two people stand
next to each other and scan a landscape they see similar views. But
two microscopic systems can also be very far apart in the macroscopic
geometry and still have a similar view of their surroundings. When this
happens there are a new kind of interactions between them.

2. Similar systems, nearby in hij but distant in space, form ensembles that
mutually interact. It is these ensembles that the quantum state refers
to.
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3. These new interactions are defined in terms of a potential energy which
is proportional to the negative of the variety. Lower energy implies
higher variety.

We will see that these new interactions between members of the ensembles
that define quantum states give rise to quantum phenomena.

The main result of this paper is that when N , the number of subsystems in
the ensemble, is large, the variety can be expressed in terms of a probability
density for the ensemble and that, when so expressed, V is closely related to
the quantum potential of Bohm. Con- sequently the evolution of the ensem-
ble probabilities is given by the Schrödinger equation. A second result is a
prediction of specific corrections that arise and are expressed as non-linear
corrections to the Schrödinger equation.

Another result is that the measurement problem is naturally and simply
solved. Microscopic systems appear statistical, when described as local sys-
tems in isolation, because they are members of large ensembles of similar sys-
tems which with they interact non- locally. Macroscopic systems are unique,
and are not members of any ensembles of similar systems. Not being mem-
bers of large ensembles, their collective coordinates are not disturbed by
non-local interactions with distant subsystems, nor can they be described by
quantum states. Consequently their collective coordinates may evolve deter-
ministically.

The precise proposal for a non-local completion of quantum mechanics is pre-
sented in section 2, while section 3 is devoted to deriving quantum mechanics
as an approximation in the limit that N , the number of subsystems in the
ensemble goes to infinity. In section 4 we discuss several experimental tests
that become possible in cases where N is small, while section 5 considers
several possible objections to these results. Then finally, in section 6, we
discuss in more detail the motivation for this proposal2.

2. The dynamics of extremal variety

We now begin the formal development, by which we derive quantum mechan-
ics from the principles we have described.

2Some possibly related approaches are [32].

5



We consider an ensemble of N identical systems, each of which lives in a
configuration space we will for simplicity take to be Rd, coordinated by xak,
where a = 1, ..., d and k = 1, ...,N .

All the relational information about a subsystem of the universe is contained
in the view that subsystem has of the rest of the universe, through its causal
links or other relations to other subsystems. This is the central element we
will employ in our reconstruction of quantum theory.

Let us then define the view of the i′th system,

V ka
i =

xai − x
a
k

D(i, k)2
=

xai − x
a
k

∣xai − x
a
k∣

2
Θ(R − ∣xai − x

a
k∣) (6)

for k ≠ i, be seen, for each i, as a vector of components labeled by k, each
component of which is a vector, that shows the system i′s relations to its
N −1 neighbors. The vector’s components are weighed by the distance. This
can be called the view of the rest of the system, experienced by the i′th
element. The closer k is to i, the larger is V k

i and the more important k is
to i′th view of the rest of the system.

Note that we insert a cutoff R on the view, by choosing the distance function
to be

D(i, k)2 = ∣xai − x
a
k∣

2 1

Θ(R − ∣xai − x
a
k∣)

(7)

Thus if the k′th system is more than a metric distance R from the i′th system
it “falls outside the horizon” and is an infinite distance away. The cutoff R
will play a role in what follows.

Now let us construct a measure of the differences between two elements i and
j. We can simply take the difference of the two vectors, V k

i and V k
j .

Iij =
1

N
∑
k

(V ka
i − V ka

j )2 (8)

can be called the distinctiveness of i and j. The larger Iij are the more easily
they can be differentiated by their views.

To get the variety we sum this over all the pairs i ≠ j

V =
A

N2∑
i≠j
Iij =

A

N3∑
i≠j
∑
k

(V k
i − V

k
j )2 (9)
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where A is a dimensionless normalization constant.

So we define a new inter-ensemble potential energy as

UV = −
h̵2

8m
V (10)

We choose to posit that the potential energy is the negative of the variety
so that in the ground state the variety will be maximized. Note that V
has dimensions of inverse-length-squared and that this potential is negative
definite. The constant h̵2

m is necessary for dimensional considerations, to
turn an inverse area into an energy. Of course an h̵ is required if we are to
make good on our claim that these new interactions give rise to quantum
phenomena.

We can think of V in a different way, as a local function in xk, by reversing
the order ?of the summations.

V =∑
z

Vz =
A

N3∑
k

∑
i≠j

(V ka
i − V ka

j )2 (11)

where
Vk =

1

N2 ∑
i≠j≠k

(V ka
i − V ka

j )2 (12)

2.1. The fundamental dynamics

To write a dynamical theory we need to introduce momenta beables pia, in
addition to the position beables xai .

However the correspondence with quantum mechanics requires that in the
large N , continuum limit, the momenta of the particles, pia, merge into a
momentum density pa(x). This, moreover, must be a gradient of a phase
S(z), which comes from the decomposition of the wave function.

pa(x) = ∂aS(x
a) (13)

where S is related to a complex phase, w(xa) = e
i
h̵ S subject to

w∗(xa)w(xa) = 1 (14)
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Consequently, Takabayashi and Wallstrom[27, 26] noted that further condi-

tions are needed to guarantee that e
i
h̵ S is single valued. We can address this

by replacing the momenta beables, pia with a complex phase factor beable
(one for earh subsystem), associated,

wi , w
∗
i wi = 1 (15)

We can write
wk = e

i
h̵ Sk (16)

but remember that Sk is only defined modulo 2πh̵.

Mindful that we want to express the theory symmetrically in all pairwise
relationships, we will posit that the momenta pka re composite variables which
code a subsystem’s view of the ratios of the phase factor beables.

pka = −i
1

N
∑
j≠k
V aj
k ln(

wj
wk

) (17)

So we write the kinetic energy as

K.E. =Re
Zh̵2

2mN2 ∑
k≠j

1

(xk − xj)2
[ln(

wj
wk

)]
2

(18)

where Z is a normalization constant to be determined.

Putting this together with the inter-ensemble potential energy we have the
fundamental action,

S(w,x) = ∫ dt∑
k

⎧⎪⎪
⎨
⎪⎪⎩

−Z0∑
j≠k
xakiV

ja
k

d

dt
[ln(

wj
wk

)] −H[x,w]

⎫⎪⎪
⎬
⎪⎪⎭

(19)

where

H[x,w] =
h̵2

2m

⎛

⎝
Z∑
k≠j

(V ja
k )2 [Re ln(

wj
wk

)]
2

−
A

4N
∑
k

∑
i≠j

(V ka
i − V ka

j )2
⎞

⎠
+∑
k

U(xk)

(20)
Here Z,Z0, and A are normalization constants and U(x) is an ordinary po-
tential energy.
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Note that we have used the relative locality form for the symplectic poten-
tial[17].

S0 = −Z0∫ dt∑
k

∑
j≠k
xakṗ

k
a = −Z0∫ dt∑

k

∑
j≠k
xakiV

ja
k

d

dt
[ln(

wj
wk

)] (21)

Our task is now to show that when N is large this is equivalent to ordinary
quantum mechanics.

3. Derivation of quantum mechanics

We first evaluate the inter-ensemble potential energy, then we do the same
for the average of the kinetic energy and the symplectic potential.

3.1. The origin of the quantum potential

To express ⟨V⟩ as an integral over local functions we write, for a function
φ(x),

⟨φ⟩ =
1

N
∑
k

φ(xk)→ ∫ ddz ρ(z)φ(z) (22)

In the limit N → ∞ this defines the probability density for configurations,
ρ(z).

Similarly we turn the sums on i to an integral,
1

N
∑
k

φ(xk+1, xk)→ Z ∫
R

a
ddxρ(z + x)φ(z + x, z) (23)

and similarly for j. The possibility that the integral only approximates the
sum for finite N , because of the roughness of the estimate for the limits on
the integral, is accounted for by an adjustable normalization factor Z.

Note that we have to be careful to impose limits on the integral to avoid
unphysical divergences in 1

x . These divergences are unphysical because for
finite N two configuration variables, xak and xaj , cannot come closer than a
limit which varies inversely with the density at xak and N . This is because
if xak and xaj are nearest neighbors in the distribution, the density at one of
their locations is related to their separation.

ρ(xak) ≈
1

N ∣xk − xj ∣d
(24)
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Hence, for finite N they are very unlikely to coincide. When we approximate
the sums by integrals, the integrals representing intervals between configura-
tions must then be cut off by a short distance cutoff a that scales inversely
like a power of Nρ(z). The short distance cutoff a(z) on the integral above
in ddx then expresses this fact that there is a limit to 1

x related to the density.
Hence the short distance cutoff is at

a(z) =
1

(Nρ(z))1/d (25)

There is also an infrared cutoff, R coming from (7). This tells us that two
systems further than R in configuration space do not figure in each other’s
views. A key question turns out to be how the physical cutoff scales with N .
We will define

r′ = N1/dR (26)

to represent a fixed physical lengths scale which is held fixed when we take
the limit of large N at the end of the calculation. That way, the physical
ultraviolet and infrared cutoffs scale the same way with N . But the large
scale, infrared cutoff, r′ can’t know about the value of the probability distri-
bution at some far off point z, so while a scales with ρ, r′ doesn’t.

As a result when we scale x and ddx with a to make the integrals dimension-
less, we define r, such that, R = ar. But we then hold fixed r′ = 1

ρ1/d r = N
1/dR

as we take N large. r′, unlike r, is a length. We shall see that r′ defines a
new physical length scale at which the linearity of quantum mechanics gives
way to a non-linear theory.

Thus, the continuum approximation to the variety is,

V = ∫ ddz ρ(z)ZV ∫
R

a
ddx∫

r

a
ddy (

xa

x2
−
ya

y2
)

2

ρ(z + x)ρ(z + y) (27)

We do a scale transformation by writing xa = aαa and ya = aβa. To get a
single integral over a local function we can expand

ρ(z + aα) = ρ(z) + aαa∂zρ(z) +
1

2
a2αaαb∂2

abρ(z) +⋯ (28)

and similarly for ρ(z + aβ) and perform the integrations, holding the upper
limit r′ fixed.
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The normalization factor is

ZV =
1

N3

d2N2

Ω2(rd − 1)2
≈

d2

2NΩ2r2d
(29)

The result is

V = ∫ ddz ρ(
1

R2
− (

1

ρ
∂ρ)

2

+
1

N2/d
d

d + 2
r′2

(∇2ρ)2

ρ2
+⋯) (30)

Here we ignore total derivatives, which don’t contribute to the potential
energy. The first term is an ignorable constant. The second term is what we
want; its variation gives the Bohmian quantum potential.

The higher order terms are suppressed by powers of 1
N2/d . The result is

UV = −
h̵2

8m
V =

h̵2

8m ∫
ddz ρ(

1

ρ
∂aρ)

2

+O (
1

N2/d) (31)

which we recognize as the term whose variation gives the Bohmian quantum
potential.

The leading correction is

U∇V = −
h̵2

8m
∇V = −

1

N2/d
h̵2r′2

8m ∫ ddz ρ(
1

ρ
∇2ρ)

2

(32)

which contributes non-linear corrections to the Schrödinger equation.

3.2. The kinetic energy

We can similarly evaluate the kinetic energy. We write the continuum ap-
proximation, using a function w(x) defined so that

w(xk) = wk (33)

This is possible because the inter-ensemble interaction is repulsive so it would
require infinite potential energy for two configurations to sit on top of each
other. So there are never two members of the ensemble k and j such that
xak = x

a
j . Thus, if there is a member of the ensemble sitting at a point xa then

it is unique and we can assign a definite w(xk) = wk to it.
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We find using (18,22)

K.E. =Re
h̵2

2m ∫
ddz ρ(z)ZKE ∫

R

a
ddxρ(x)

1

(z − x)2
[ln

w(x)

w(z)
]

2

(34)

=
1

2m ∫
ddz ρ(z)∫

R

a
ddxρ(x)ZKE

1

(z − x)2
[S(x) − S(z)]2 (35)

where we recall that, w(x) = e
i
h̵ S(x).

We rewrite in terms of aα = x − z and expand in powers of a = 1
(Nρ)1/d . We

find

K.E. =
h̵2

2m ∫
ddz

ρ

N
ZKE ∫

r

1
ddαad−2(ρ(z) + aαa∂aρ +⋯) (

a

h̵
αa∂aS +⋯)

2

(36)

=
Z

2m ∫
ddz [ρ(∂aS)

2 (r
d − 1)ΩZKE

N
+O (

1

N2/d)] (37)

We now set the normalization constant to extract the kinetic energy

ZKE =
N

(rd − 1)Ω
(38)

After which we take the limit r′ large, followed by N → ∞. We find the
renormalized kinetic energy is

K.E. = ∫ dz ρ(z) [
(∂aS)2

2m
+O (

1

r′
) +O (

1

N
)] (39)

Putting this together with the above results we find

H = ∫ ddz ρ(z) [
(∂aS)2

2m
+
h̵2

8m
(

1

ρ
∂aρ)

2

+ V +O (
1

r
) +O (

1

N
)] (40)

3.3. The symplectic measure

The last step is to derive the continuum approximation to

S0(w,x) = Z0∫ dt∑
k

pkaẋ
a
k = −Z0∫ dt∑

k

ṗkax
a
k (41)
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where, inspired by relative locality[17], we integrate by parts in dt. The
velocity of the momenta pka are expressed in terms of the beables as

ṗka =
1

h̵
∑
j≠k

[−iV ja
k (Ṡj − Ṡk)] (42)

The continuum approximation to this is

S0 → −N ∫ dt∫ ddz Z0ρ(z)z
aṗa(z) (43)

where

ṗa(z) = ∫
r

a
ddx

xa
x2

(ρ(z + x)Ṡ(z + x) − ρ(z)Ṡ(z)) (44)

= ∫

r

a
ddx

xa
x2
xc∂c (ρ(z)Ṡ(z) +⋯) (45)

=
Ω(rd − 1)

dNρ(z)
∂x (ρ(z)Ṡ(z)) (46)

Consequently, with

Z0 =
dN

Ω(rd − 1)
(47)

we find
S0 = ∫ dt∫ ddz ρ(z)Ṡ(z) (48)

Putting the three pieces together we have

S = ∫ dt∫ ddz ρ(z) [Ṡ +
(∂aS)2

2m
+
h̵2

8m
(

1

ρ
∂aρ)

2

+U +O (
1

r
) +O (

1

N
)]

(49)

3.4. Recovery of quantum mechanics

The action (49) has two equations of motion which arise from varying with
ρ and S.

These are the probability conservation law

ρ̇(xa) = ∂a (ρ
1

m
gab∂bS(x

a)) (50)
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and the Hamilton Jacobi equation, with the addition of the quantum poten-
tial term

−Ṡ =
1

2m
gab (

∂S

∂xa
)(

∂S

∂xb
) +U +UQ (51)

where the quantum potential UQis given by

UQ = −
h̵2

2m

∇2√ρ
√
ρ

(52)

These are nothing but the real and imaginary parts of the Schrödinger equa-
tion, for

Ψ(x, t) =
√
ρw =

√
ρe

i
h̵ S (53)

which we have thus shown satisfies

ih̵
dΨ

dt
= (−

h̵2

2m
∇2 +U)Ψ (54)

To complete the derivation of quantum mechanics, let us draw an impor-
tant distinction between ρ(z), the probability distribution for the ensemble
of N systems and ρk(xk), which is the probability distribution for a sin-
gle subsystem in the ensemble. We conjecture that over time the non-local
inter-ensemble interactions (10) randomize the trajectories of the individual
elements so that over some convergence time, τ , for each k,

ρk(xk)→ ρ(x) (55)

Standard arguments would suggest that this is true, but it has not been
shown.

4. Experimental tests

The framework proposed here is highly vulnerable to experimental test.
There are several kinds of tests possible in which departures from predic-
tions of conventional quantum mechanics may be searched for.

● N = 1. Systems which have no causally indistinguishable copies in the
universe are expected to behave classically, because for such systems
there is no confusion possible and no quantum potential. Macroscopic
systems with many incoherent degrees of freedom will be of this kind

14



and, as already remarked on, this solves the measurement problem.
But it should be possible to use current quantum technology to engineer
microscopic systems made of a modest number, m of quits or electrons,
which by their combinatorial complexity cannot be expected to have
any natural copies. These would be microscopic classical systems. It
should be possible to recognize them by their spectra.

● N = 2. If we can engineer a single such microscopic classical systems,
we can make two or several of them. A single pair would have no
quantum potential, as that is a three body interaction.

● N = 3. At this point the quantum potential enters. This should have
consequences which are easily testable.

With i = 1,2,3 we have, in one spatial dimension.

U i(xai ) =
h̵2

8m

⎧⎪⎪
⎨
⎪⎪⎩

(
1

D(3,2)
−

1

D(2,1)
)

2

+ (
1

D(1,3)
−

1

D(3,2)
)

2

+ (
1

D(2,1)
−

1

D(1,3)
)

2⎫⎪⎪
⎬
⎪⎪⎭

(56)

● Modest N . If we could study a sequence of experiments from N = 1 to
relatively large N we could see the transition between classical behavior
for N = 1 and quantum dynamics for large N .

● Non-linear corrections to the Schrödinger equation. We see that the
Schrödinger equation receives corrections from terms such as I∆V in ().

This leads to a modified Hamilton-Jacobi equation

−Ṡ =
1

2m
gab (

∂S

∂xa
)(

∂S

∂xb
) +U −

h̵2

2m

∇2√ρ
√
ρ

+∆UQ (57)

where

∆UQ =
r′2

N2/d
d

d + 2

h̵2

2m
[
∇4ρ

ρ
− 2

(∇2ρ)2

ρ
− 2

(∇aρ)(∇a∇
2ρ)

ρ2
] (58)

for some length scale r′. This implies non-linear modifications of the
Schrödinger equation

ih̵
dΨ

dt
= (−

h̵2

2m
∇2 +U +∆UQ(Ψ̄Ψ))Ψ (59)
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Notice that probability conservation is unaffected.

To first order this perturbs energy eigenvalues

∆E = ∫ ddz Ψ̄∆UQ(Ψ̄Ψ)Ψ (60)

Such terms are very well bounded by experiment[31].

??It is easy to estimate that

∆E ≈
1

N2/d
r′2

a2
0

h̵2

2ma2
0

=
R

a2
0

h̵2

2ma2
0

(61)

so
∆E

E
≈

1

N2/d
r′2

a2
0

(62)

We learn an important lesson from this, which is that the infrared cutoff
scale R sets the size of the expected departures from linear quantum
dynamics. In our present treatment this is a free parameter, thus we
can look for possibilities to bound it by experiment.

5. Comments and objections

5.1. Quantum statistics

It is straightforward to derive the statistics of bosons and fermions from the
assumptions enunciated above. We require only a translation into the present
notation of the standard derivations.

Suppose the configuration space refers to M identical particles in d dimen-
sions, whose positions are given by xaIk and which have phase variables wk
(one phase for each configuration of the M particles.). Here I = 1, ...M refers
to the positions of the identical particles, where as k = 1, ...N refers to the
members of any additional ensemble these are members of.

As application of the PSR we can ask why the world is as it is rather than
with the positions of the first and second particles switched.

xak1↔ xak2 (63)
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By saying that the particles are identical we mean that there are no differ-
ences, i.e., the system is defined for each member of the ensemble by the
unordered set of positions

{xak1, x
a
k2, ....} = {xak2, x

a
k1, ....} (64)

It follows that the probability densities satisfy

ρ(xak1, x
a
k2, ...., t) = ρ(x

a
k2, x

a
k1, ...., t) (65)

for all time, which implies also

ρ̇(xak1, x
a
k2, ...., t) = ρ̇(x

a
k2, x

a
k1, ...., t) (66)

It follows directly from (50) and (51) that the phases satisfy

S(xak1, x
a
k2, ...., t) = S(x

a
k2, x

a
k1, ...., t) + φ (67)

where φ is a constant phase. But recalling (16) we see by doing the switch
twice that 2φ must be zero or a multiple of 2π. Hence we have under the
switch of two particles

wk → ±wk (68)

which gives us bosonic and fermionic statistics.

It is important to make an additional point. Consider a single system with a
large number,M , of identical particles moving in the same external potential.
These might be helium atoms in a beaker of superfluid helium or electrons in
a doped semiconductor. These constitute an ensemble of identical particles in
isomorphic potentials, which hap- pens, in this case, to be the same potential.
Hence the inter-ensemble interactions may be expected to be active here as
well. Hence, even if there are no copies of that beaker or that precise doped
semiconductor in the universe, we already are dealing with large M ’s greater
than 1020. Hence quantum mechanics may be expected to hold well in these
cases. Indeed, nothing in the derivation of quantum statistics we have just
given precludes the imposition of the inter-ensemble interaction between the
identical particles.

Hence, the theory we have described here will agree with quantum mechanics
for cases like these of so-called “macroscopic” quantum systems, because they
constitute an ensemble of microscopic systems all by themselves.
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5.2. Preferred simultaneities

It may be objected that the present formulation, by virtue of its invoking
interactions between distant subsystems, requires a preferred simultaneity.
Does this inhibit its application to relativistic systems?

One may note that the same criticism may be made to any completion of
quantum mechanics which gives a more completed description of the trajec-
tories of individual systems. We know this because of a theorem of Valen-
tini[29].

One answer is that general relativity has recently been reformulated as a
theory with preferred foliations. Called shape dynamics[30], this formulation
trades many fingered time, or refoliation invariance, for local scale invari-
ance. Shape dynamics reproduces all the predictions of general relativity
which have been confirmed, hence our knowledge of space-time physics is
consistent with the existence of a preferred foliation.

5.3. Defining degrees of relational similarity

We use informally two notions, similarity of causal pasts of events and sim-
ilarity of recent pasts, or preparations, of isolated subsystems and implied
they are related to each other. The first was defined in a causal set ontology,
the second within an operational framework describing subsystems. More
work needs to be done defining each of these notions and their relationship
to each other.

In this further work, the absolute notions of similar or not can be replaced
by degrees of similarity. This would be incoherent in a fundamental theory,
but it is important to emphasize that the task we are engaged with is the
construction of a theory of subsystems, which is necessarily approximate.
(This is related to the cosmological dilemma discussed in [1, 2, 3].)

6. Motivations

The hypothesis behind this completion of quantum theory are inspired by
a broad principle, which has already had enormous influence on our under-
standing of space and time. This is Leibniz’s Principle of sufficient reason
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(PSR)[4], which can be stated as

● Every question of the form of why is the universe like X rather than Y
has a reason sufficient to explain why.

Big philosophical principles function in science as guides; in this spirit we
may take the PSR as the aspiration to eliminate arbitrary choices from the
statements of the laws and initial conditions of physics. This aspirational ver-
sion of the PSR[3, 1] has been very influential in the search for fundamental
laws. Some of the ideas it has inspired are:

● Space and time are relational. Space and time represent relational
and dynamic properties that allow each subsystem of the universe to
be uniquely distinguished in term of their relations to the rest of the
universe[5]. This was the basis for the critique, made by Leibniz[4],
Mach[6] and others, of Newton’s conception of absolute space, which
inspired Einstein in the construction of its first full realization in his
general relativity theory[7].

● This has further consequences which we exploited in this paper. Local-
ization in space is a consequence of having unique relational properties,
i.e., a unique causal neighborhood. Objects or subsystems that are hard
to distinguish from similar systems should be hard to localize unambigu-
ously, and thus may be in causal contact.

● The laws of physics have no ideal elements and depend on no fixed,
non-dynamical structures[8]. This is the basis of the requirement that
fundamental theories be background independent, which is satisfied
by general relativity in the cosmological case in which space-time is
spatially compact.

● Einstein’s principles of causal closure and reciprocity. Everything that
influences the evolution of a subsystem of the universe is itself a part of
the universe. There are no entities which effect the evolution of degrees
of freedom, which do not themselves evolve in response to influences.
If an ensemble of systems influences a system then every last mem-
ber of that ensemble must exist as a physical system somewhere in the
universe.

● One of the most important implications of the PSR is another princi-
ple, known as the principle of the identity of the indiscernible. (PII)
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This states that any two events or subsystems of the universe which
are distinct have distinct properties derived from their relations with
the rest of the universe[4].

The PII implies that fundamental, cosmological theories have no global
symmetries, because a global symmetry of a cosmological theory would
be a transformation between distinct states of the universe, each of
which has exactly the same relational properties. Indeed, general rela-
tivity in the cosmological case has no global symmetries or non-vanishing
conservation laws[9].

Global symmetries arise within effective theories of subsystems of the
universe, and they describe transformations of a subsystem with re-
spect to the rest of the universe which is, for purposes of the effective
description, regarded as a fixed, non- dynamical, frame of reference[3,
1].

● We have seen how the principle of maximal variety is realized dynami-
cally by incorporating the negative of the variety as a potential energy.
This realizes the PII dynamically, by acting to make systems which are
similar distinct.

To illuminate the idea of variety we can describe it in the context of a
causal set[11]. We start by defining the n’th neighborhood of an event,
I, called Nn(I), it consists of the subsystem consisting of all events
n causal links into the future or past from I. Then we can call the
distinguishability of two events, I and J , D(I, J) = 1

nIJ
, where nIJ is

the smallest n such that Nn(I) is not isomorphic to Nn(J). The higher
V is, the less effort it is to distinguish every event from every other by
describing their causal neighbors.

In [10], Julian Barbour and I proposed two uses of the concept of the
variety of a system. First, variety measures the complexity or the orga-
nization of a system. We showed several examples in which V provides
an interesting measure of complexity. For example, the variety of a
city is a measure of how easy it is to know where you are by looking
around. A modern suburban development has lower variety than an
old city because it has more corners from which the view is similar.
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But we also proposed a dynamical principle that the universe evolve
so as to extremize its variety. We speculated that this highly non-local
dynamical principle might underlie quantum theory. In this paper we
develop this idea by showing that the quantum potential of Bohm can
be understood to be a measure of the variety of a system of similar
subsystems of the universe.

● The PSR also demands that we can explain how and why the particular
laws which describe local physics in our universe were selected from
a large set of equally consistent laws[12, 1, 2, 3]. As the American
philosopher Charles Sanders Peirce enunciated in the 1890’s this can
only be done in a way that yields falsifiable predictions if the laws are
not absolute but are the result of a dynamical process of evolution[13].

● We also argue in [1, 2, 3] that neither quantum nor classical mechanics
mechanics can be usefully extended to a theory of the whole universe.
One of several reasons is that any such extension leaves unanswered
the questions of why the laws of nature and the cosmological initial
conditions were chosen, thus the PSR is unfulfilled. This means that
quantum mechanics is restricted to a theory of subsystems of the uni-
verse, and it must therefore be an approximation to a cosmological
theory which does not allow a free specification of laws and initial con-
ditions. In this paper we seek to build on this insight by constructing
quantum mechanics explicitly as a theory of subsystems.

6.1. Taking the principle of the identity of the indiscernible
seriously

Aa we seek to apply these ideas to quantum physics we should be mindful
that all serious approaches to quantum gravity agree that space is emergent.
The emergence of space is a contingent property of a phase that the universe
may be in. But if space is emergent, then locality is emergent too. This
implies that how physics sorts itself out into a mix of local and non-local, in
which strictly local propagation of information and energy takes place in a
sea of non-local quantum correlations, must be a result of a dynamical equi-
librium characterizing the low level excitations of the phase of the universe
in which space emerges.
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But if locality is emergent we expect defects or dis-orderings of locality[15].
These would be represented by pairs or sets of particles which are far from
each other in the classical emergent metric geometry, but which are actually
nearby or adjacent in the real, fundamental causal structure. It has been
suggested before that this kind of disordered locality could be connected to
quantum non-locality [16], here we propose a novel expression of this idea
that connects it with the previous idea, which suggests that defects in local-
ization should be consequence of failures to uniquely distinguish subsystems
or events, in terms of their role in the dynamical network of relational prop-
erties.

Furthermore, recent work suggests that the emergent locality is relative[17].
In past work we understood this to mean that different observers, at different
places and in different states of motion ascribe different notions of locality to
distant events. Here we further relativize and radicalize the notion of local-
ity by understanding that locality is a consequence of identity, so that only
subsystems which may be uniquely identified by the network of interactions
and relationships they participate in get localized uniquely in a conventional
way.

Thus, if locality is a consequence of distinctiveness, as measured by the rela-
tions of an event or subsystem with the rest of the universe, we expect two
subsystems which are very similar to each other to be near to each other, in
the true microscopic causal structure. Subsystems which are similar to each
other in the sense of having nearly isomorphic relations to neighboring events,
may then be able to interact with each other, in spite of being far away from
each other in the emergent spatial geometry. In this paper we propose a form
for such non-local interactions, which acts to increase the distinctiveness of
pairs of subsystems. This is necessary to prevent violations of the PII. We
have show in this paper that this gives rise exactly to Bohm’s quantum po-
tential, and hence to quantum mechanics. The Schrödinger equation then
emerges as a consequence of a dynamical implementation of the PII. That
principle is then re-interpreted, not as an epistemological truism, but as a
dynamical principle that underlies and explains “why the quantum”.

We then saw that the further application of the PII to a system of identical
particles then gives rise to either fermionic or bossing statistics.
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It then appears that the main features of quantum physics, the statistical,
indeterminate character of local laws, and their interruption by non-local cor-
relations, are consequences of the principle of the identity of the indiscernible.
We give further arguments which support this conclusion.

6.2. The statistical character of local physics is a conse-
quence of the PII

We may apply the principle of the identity of the indiscernible to show that
local physics must be indeterminate on the level of fundamental systems and
events. This is an argument which appeared first in [18].

To make this argument, we work with a causal set ontology according to
which what is real is a thick present of events and processes, which create
novel events from present events. This is discussed3 in more detail in [18,
19]. For the construction of non-relativistic quantum mechanic below, we
will work, in the next sections, in a more operational framework.

By the PII, two distinct events e and f must have different (that is non-
isomorphic) causal neighborhoods. The causal neighborhood of an event, e,
labeled N(e), is the subset of the causal set of events making up the history
of the universe which involve e. N(e) is the disjoint union of a past set P (e)
and a future set F (e). Now it follows from the PII that if there are two
distinct events e and f such that their past sets are isomorphic then their
future sets cannot be isomorphic.

P (e) = P (f)→ F (e) ≠ F (f) (69)

The same holds true for e and f any subsets of a causal set, such as a subset
of an anti chain (i.e., a space like region.)

To give this force in a large universe we can add a bit more structure. Let
P (e)n and F (e)n be the causal past and future n steps into the past or future.
Then we an replace () by the requirement that there exists an n much less
than NU , the number of past events in the universe, such that

P (e)n = P (f)n → F (e)n ≠ F (f)n (70)
3For a different approach to causal sets, see [20].
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In a vast universe, for fixed n < NU there are bound to be instances of
P (e)n = P (f)n holding sufficiently far into their pasts, because if interac-
tions are simple, there will not be that many possibilities for the recent past
of an elementary event.

But, normally F (e) ≠ F (f) will be enforced because the causal past of F (e),
denoted P [F (e)], is distinct from P [F (f)] because if one goes far enough
in the future the pasts of the futures of the two events become distinct. This
is because, for most events, the sizes of the sets P (e)n and F (e)n grow like
nd, where d is the spatial dimension.

However there are systems that this doesn’t apply to, which are isolated sys-
tems. These are systems that have a restricted causal future that does not
grow faster than linearly with n, as the system evolves to the future (or,
similarly, into the past.). Systems may be isolated naturally, by being suf-
ficiently separated or shielded from their environments. We also construct
isolated systems in order to focus experiments on fundamental interactions;
to isolate a system is the basic method of laboratory science.

It follows that two isolated systems e and f with similar environments and
similar causal pasts, P (e) ≈ P (f) are in danger of violating the PII. Indeed
if the laws of physics are deterministic, it is exactly those isolated systems
which have P (e) = P (f) which we would expect, by determinism to evolve
identically such that F (e) = F (f).

So exactly how can two isolated systems avoid violating the PII? First, if the
laws of nature are statistical and indeterminate, so P (e) = P (f) need not
imply F (e) = F (f), even if the systems are truly isolated. This argument
was developed in []. This, I would propose is the origin of quantum statistics.

But this turns out to be not sufficient, because even if the laws are statis-
tical, so that e with past P (e) can have several possible futures, F (e)I , in
a big universe with a vast number of events there still will arise by chance
two distinct events e and f with identical causal pasts and identical causal
futures.

Thus, to ensure the PII something more is needed. This is an interaction
between two isolated systems, with identical pasts that will prevent their hav-
ing identical futures. This interaction has to be repulsive (when expressed
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in terms of relational observables), to ensure that distinct microscopic sub-
systems have distinct values of their beables, in order to prevent violations
of the PII. Here we have proposed that the variety of the ensemble be used
to generate this inter-ensemble interaction. We saw that this is the origin of
the quantum potential, of deBroglie-Bohm theory.

Thus, we arrive at an ensemble interpretation of the quantum state, but the
ensemble is real and not imagined; it is a real physical ensemble consisting
of a finite set of similar systems which exist throughout the universe. The
ensemble does, as in dBB and Nelson, influence the individual member, but
that is in accord with the principle of causal closure because that influence is
just a summary of a great many multi body interactions amongst members
of an isolated subsystem?s ensemble.

This scheme is non-local, as we know any realist completion of quantum me-
chanics must be. It is indeed wildly non-local, in order to enforce the PII in
a huge universe with vast numbers of nearly identical elementary systems.
But we should not be surprised because we know from diverse studies of and
approaches to quantum gravity that space and locality are expected to be
emergent from a more fundamental level of description in which they play
no role.

6.3. How the measurement problem is solved

We see that, in a world governed by the PII, locality is a consequence of
having a unique identity, and that is a property enjoyed only by systems
large and complex enough that they have neither copies in the universe nor
near copies. There is in this scheme a natural definition of macroscopic: if
a system is large and complex enough to have no copies (in a precise sense
defined below), it is not part of any ensemble of subsystems. It is unique
on its own and hence it neither interacts with, nor an it be confused with,
distant similar subsystems. Consequently it can be stably localized.

Such a macroscopic subsystem does not, by its uniqueness, suffer any quan-
tum effects. It’s motion is subject only to local forces, it does not answer to
any inter-ensemble interactions, hence its center of mass coordinates evolve
according to the laws of classical mechanics, without a quantum potential.
That is to say, cats do not have ensembles of similar systems, and they are
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either dead or alive. This is then the answer to the measurement problem[21].

7. Conclusions

The real ensemble hypothesis[21] has been strengthened by the use of a
greatly simplified interaction between members of the ensemble of similar
systems, based on the principle of extremal variety[10].
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