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Abstract

Quantum mechanics is an extremely successful theory that agrees with ev-
ery experimental test. However, the principle of linear superposition, a
central tenet of the theory, apparently contradicts a commonplace obser-
vation: macroscopic objects are never found in a linear superposition of po-
sition states. Moreover, the theory does not explain why during a quantum
measurement, deterministic evolution is replaced by probabilistic evolution,
whose random outcomes obey the Born probability rule. In this article a
review is given of an experimentally falsifiable phenomenological proposal,
known as continuous spontaneous collapse: a stochastic nonlinear modifica-
tion of the Schrödinger equation, which resolves these problems, while giving
the same experimental results as quantum theory in the microscopic regime.
Two underlying theories for this phenomenology are reviewed: trace dynam-
ics and gravity-induced collapse. As the macroscopic scale is approached,
predictions of this proposal begin to differ appreciably from those of quan-
tum theory and are being confronted by ongoing laboratory experiments that
include molecular interferometry and optomechanics. These experiments,
which test the validity of linear superposition for large systems, are reviewed
here, and their technical challenges, current results, and future prospects
summarized. It is likely that over the next two decades or so, these experi-
ments can verify or rule out the proposed stochastic modification of quantum
theory.

1 Introduction

Quantum theory has been extremely successful in explaining results of ex-
periments ranging from the spectrum of blackbody radiation, atomic spec-
tra, molecular chemistry, atomic interferometry, quantum electrodynamics.
and nuclear physics to properties of lasers, superconductivity, semiconductor
physics, Bose-Einstein condensation, Josephson junctions, nanotechnology,
applications in cosmology, and many more. The theory is not contradicted
by any experiment. Yet there is one apparently innocuous observed phe-
nomenon that the theory seems unable to explain, and in fact seems to con-
tradict. This is the observed absence of superposition of different position
states in a macroscopic system. Quantum theory, by virtue of the principle
of linear superposition, predicts that a microscopic object such as the elec-



tron can be in a superposition of different positions at the same time, and
this is of course observed, for example, in the famous double-slit interference
experiment. Moreover, the theory in principle makes no distinction between
microscopic and macroscopic objects and predicts that large objects can also
be in more than one place at the same time. But this is not what we observe.
A table, for example, unlike the electron, is never observed to be “here” and
“there” simultaneously.

Why is this so? This review article is devoted to discussing one possible pro-
posed resolution, known as models of spontaneous wave-function collapse,
which is experimentally falsifiable. It suggests that, although quantum the-
ory is extremely successful in the microscopic domain, it is an approximation
to a more general theory. This general theory is capable of explaining the
absence of macroscopic superpositions. It goes over to quantum mechanics
in the microscopic limit and to classical mechanics in the macroscopic limit,
but differs from both quantum and classical mechanics in the intermediate
(mesoscopic) regime which marks the transition from the microworld to the
macroworld. A large number of experiments worldwide are operating or are
being planned to test the validity of linear superposition in the mesoscopic
domain, and in this article we review the proposed modification to quantum
mechanics and the laboratory experiments which can falsify this proposal.

1.1 The relation between nonrelativistic quantum me-
chanics and classical mechanics

The classical dynamics of a system of particles having a Hamiltonian H is
described in phase space qi, pi) by Hamilton’s equations of motion

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
(1)

or via Poisson brackets

q̇i = {q,,H} , ṗi = {pi,H} (2)

The state of the system at an initial time t0 is a point in the phase space, and
the equations of motion determine the location of the system point at a later
time. An equivalent description of the dynamics is through the Hamilton-
Jacobi equation

−∂S
∂t

=H (qi,
∂S

∂qi
) (3)
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where S is the action of the system (Landau and Lifshitz, 1976).

In contrast, the quantum dynamics of this system is described by first con-
verting the qi and pi to operators qi and pi satisfying the commutation
relations [qi,pi] = ih̵ and then proposing that the operators evolve via the
Heisenberg equations of motion

q̇i = −
i

h̵
[qi,H], ṗi = −

i

h̵
[pi,H] (4)

Quantum dynamics is equivalently described by the time evolution of the
system’s wave function ψ, which is a normalized element of a Hilbert space
and obeys the norm-preserving Schrödinger equation

ih̵
∂ψ

∂t
=Hψ , ∫ dq ψ∗ψ = 1 (5)

In the Heisenberg picture the relation between quantum and classical me-
chanics is expressed by replacing operators by ordinary functions and the
commutators in the equations of motion by Poisson brackets. A more insight-
ful comparison is obtained in the Schrödinger picture, and for the purpose of
illustration it is adequate to consider the case of a single particle of mass m
moving in one dimension, for which the Schrödinger equation can be written
in the position representation, after defining ψ ≡ eiS/h̵, as

−∂S
∂t

= 1

2m
(∂S
∂q

)
2

+ V (q) − ih̵

2m

∂2S

∂q2
(6)

In the approximation in which the last term in Eq. (6) can be neglected, this
equation reduces to the classical Hamilton-Jacobi equation (1)

−∂S
∂t

= 1

2m
(∂S
∂q

)
2

+ V (q) (7)

provided the quantity S is assumed to be real and identified with the action
of the system. This essentially corresponds to the limit S >> h̵. (We will not
consider the more precise treatment where S is separated into its real and
imaginary parts, as it is not crucial to the present discussion).

There is thus a well-defined sense in which the Schrödinger equation goes
over to the Hamilton-Jacobi equation in the limit, and a description of the
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dynamics in Hilbert space is replaced by a description in terms of evolution of
position and momentum coordinates in phase space. Yet there is a profound
aspect which gets lost in the limiting process. The Schrödinger equation is
linear: if ψ1 and ψ2 are two solutions of Eq. (5) then the linear superposition
c1ψ1 + c2ψ2 is also a solution, where c1 and c2 are complex coefficients. On
the other hand, the Hamilton-Jacobi equation (1) is nonlinear: if S1 is a
solution corresponding to one space-time trajectory, and S2 is a solution
corresponding to another space-time trajectory, then clearly a1S1 + a2S2 is
not a solution of this equation.

In particular, if ψ1 is a wave packet which is peaked around one classical
solution and ψ2 is a wave packet peaked around another classical solution,
quantum mechanics predicts that the sum of these two wave packets is also
a solution, and in principle such solutions should be observed in nature.
However, according to classical mechanics, such a superposition is not a
solution of the equations of motion, nor is it observed in the macroscopic
world around us. Naively, we believe that classical mechanics, which applies
to macroscopic systems, is a limiting case of quantum mechanics, and hence
quantum mechanics should apply to large systems as well. Why then do we
not observe macroscopic super- positions (such as a table being “here” and
“there” at the same time)?

One might argue that even though the Hamilton-Jacobi equation is nonlinear,
its nonlinearity cannot be used to deduce the observed absence of macroscopic
superpositions, because the classical theory is after all an approximation. The
last term in Eq. (6), however small, is always nonzero and present and can be
used to transform back to the linear Schrödinger equation. At a fundamental
level, the description of the dynamics, even for a macroscopic classical object,
is in terms of the wave function of the quantum state and not in terms of the
action which appears in the Hamilton-Jacobi equation. Hence superpositions
must be there. Nonetheless, one is left with the discomforting feeling that the
prediction of the Hamilton-Jacobi equation regarding position superpositions
seems to be at variance with quantum theory and in accord with what is
actually observed. Thus one needs to explain the following1: Why is it
that macroscopic objects which obey the rules of classical mechanics are not

1One should keep in mind the difference between the conceptual issue raised here
and the purely technical fact that performing an experiment which tests macroscopic
superpositions (table “here” and table “there”) is practically unfeasible.
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found in superpositions of different position states, in spite of quantum theory
suggesting otherwise? There is no unique universally accepted answer to this
question. In this sense it is an unsolved problem.

The absence of macroscopic superpositions is of course at the heart of the so-
called quantum measurement problem (Bassi and Ghirardi, 2000). Suppose
a quantum system which is in a superposition of two eigenstates ψ1 and ψ2

of a physical observable O interacts with a classical measuring apparatus A.
We say that the state ψ1 of the quantum system corresponds to a pointer
position state A1 of the apparatus (meaning that if the system had been in
the state ψ1 and interacted with the apparatus, the pointer would result in
the position A1 and we would interpret that the observable had the value O1).
Similarly, the pointer position A2 corresponds to the system state ψ2 and a
value O2 for the observable O. Immediately after interaction, the combined
state of the system and apparatus is

ψ = c1ψ1A1 + c2ψ2A2 (8)

where c1 and c2 are complex coefficients proportional to the relative ampli-
tudes for the system to be in the two states ψ1 and ψ2.

According to quantum mechanics, this state ψ of Eq. (8) should evolve lin-
early by way of the Schrödinger evolution, and the linear superposition of
the two parts should be preserved. But that is not what is observed in a
quantum measurement. The outcome of the measurement is either pointer
at position A1 (and hence the system is driven to state ψ1) or pointer at po-
sition A2 (the system is driven to state ψ2). Repeated measurements on the
same initial quantum state yield outcome ψ1 or ψ2 with relative probability
∣c1∣2 ∶ ∣c2∣2. This is the Born probability rule. The process of measurement
destroys linear superposition of the initial states ψ1 and ψ2. This indeed has
to do with the fact that the apparatus (which is a macroscopic object) is
never simultaneously observed in a linear superposition of pointer position
states A1 and A2. To the extent that we do not understand why macroscopic
objects are not found in superposed states, we do not understand why the
measurement process breaks superposition.

Perhaps even more remarkable is the emergence of probabilities. The Schrödinger
evolution is deterministic, and so is the classical evolution according to the
Hamilton-Jacobi equation. In our discussion above on the transition from
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the Schrödinger equation to the Hamilton-Jacobi equation, nowhere did we
encounter probabilities. And for good reason: Because the initial state is
always exactly specified [including at the start of the measurement process,
as in Eq. (8)], unlike in classical probability theory, where probabilities arise
because of uncertainty in our knowledge of the initial state of the system.
Thus the status of probabilities in quantum theory is absolutely unique, and
besides explaining the absence of macroscopic superpositions one must also
explain why during a measurement probabilities arise, in violation of deter-
ministic linear superposition, and the quantum system is driven to one or
the other outcome in accordance with the Born rule.

Another important and related unsolved problem is the following: When do
we call a physical system a quantum system and when do we call it a clas-
sical measuring apparatus? In other words, where is the quantum-classical
divide? How much mass or how many degrees of freedom (say number of nu-
cleons) should an object have, before it qualifies as an apparatus? Of course,
in order for it to be called an apparatus, different pointer positions should
never be simultaneously realized, but one does not know at what mass scale
this transition from the macroscopic to the macroscopic (and the concur-
rent breakdown of superposition) takes place. Interferometry experiments
have shown that quantum theory, and hence linear superposition, holds for
molecules at least as large as those having about a thousand atoms (hence
a molecular mass of 10−21 g). Efforts are afoot to push this test limit up to
objects of about 1×106 atoms (10−18 g). On the other end, classical behavior
(the absence of superpositions of states corresponding to different positions)
is known to hold down to about 1µg (1018 atoms). There is thus an enormous
desert of some 15 orders of magnitude, where linear quantum superposition
yet remains to be tested experimentally. Does quantum mechanics hold at
all scales, including macroscopic scales, and is there a way to understand the
absence of macroscopic superpositions while staying within the framework of
quantum theory? Or is it that somewhere in that grand desert modifications
to quantum theory start be- coming significant, so that linear superposition
becomes more and more of an approximate principle as the size of a system
is increased, until for large objects the superposition of states corresponding
to different positions is no longer a valid principle? What exactly is the na-
ture of the quantum-to-classical transition? A large number of ongoing and
planned experiments worldwide are gearing up to address this question.
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The paradoxical issue of deterministic evolution followed by a peculiar proba-
bilistic evolution during a measurement was of course well appreciated by the
founding fathers of quantum mechanics. Over the last 85 years or so since
the discovery of the Schrödinger equation, extraordinary theoretical effort
has been invested in trying to find an answer to what is generally known as
the measurement problem in quantum mechanics (Wheeler and Zurek, 1983;
Bell, 1987b; Albert, 1992; Leggett, 2002, 2005; Ghirardi, 2005; Maudlin,
2011). In Sec. 1.2 we give a brief overview of a few of the major categories
of the explanations, keeping in mind that the modern outlook is to discuss
this problem not in isolation, but in conjunction with the question of lack of
macroscopic superpositions, and as a part of the much broader investigation
of the exact nature of the quantum-to-classical transition.

Our review of the measurement problem is almost exclusively confined to
the context of nonrelativistic quantum mechanics, as the relativistic version
seems not to be within reach at the moment (although it does not seem
symptomatic of a deep incompatibility of modified quantum mechanics and
relativity). Thus we will not discuss issues raised by the instantaneous na-
ture of wave-function collapse, such as the Einstein-Podolsky-Rosen (EPR)
paradox: whether this “violates the spirit of relativity” or whether there is
a need for a radical change in our ideas about space-time structure.

1.2 Proposed resolutions for the quantum measure-
ment problem and the observed absence of macro-
scopic superpositions

1.2.1 The Copenhagen interpretation

The Copenhagen interpretation (Bohr, 1928) [reprinted in Wheeler and Zurek
(1983)] postulates an artificial divide between the microworld and the macroworld,
without quantitatively specifying at what mass scale the divide should be.
Microscopic objects obey the rules of quantum theory (superposition holds)
and macroscopic objects obey the rules of classical mechanics (superposition
does not hold). During a measurement, when a microsystem interacts with
a macrosystem, the wave function of the microsystem “collapses” from being
in a superposition of the eigenstates of the mea- sured observable to being
in just one of the eigenstates. This collapse is postulated to happen in ac-
cordance with the Born probability rule, and no dynamical mechanism is
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specified to explain how the collapse takes place, in apparent contradiction
with the linearity of the Schrödinger equation.

von Neumann (1955) gave a more precise form to this interpretation by ex-
plicitly stating that evolution in quantum theory takes place in two ways: (i)
deterministic evolution according to the Schrödinger equation before a mea-
surement, as well as after a measurement, and (ii) nondeterministic, proba-
bilistic evolution (the projection postulate) during a measurement.

At a pragmatic level, this can be taken to be a perfectly valid set of rules,
in so far as the goal is to apply quantum theory to subatomic, atomic, and
molecular systems, and to compare with experiments the predictions based
on theoretical calculations. However, the interpretation bypasses the ques-
tions raised in the previous section, by simply raising unresolved issues to
the level of postulates. The interpretation creates an ill-defined micro-macro
separation, which is being challenged by modern experiments which are ver-
ifying superposition for ever larger systems. There is no precise definition
as to which systems qualify to serve as a “classical measuring apparatus”.
Even though there is a sense in which the Hamilton-Jacobi equation is a limit
of the Schrödinger equation, no attempt is made to explain the apparently
different predictions of the two theories with regard to absence of macroscop-
ically different position superpositions. At a fundamental level one should
prescribe a physical mechanism which causes the so-called collapse of the
wave function.

The Copenhagen interpretation does not solve the quantum measurement
problem, nor does it explain the absence of macroscopic superpositions.

The “histories” approach is an observer-independent generalization of the
Copenhagen interpretation wherein the notions of apparatus and measure-
ment are replaced by the more precise concept of histories. In this approach,
the reduction of the state vector appears as a Bayesian statistical rule for
relating the density matrix after measurement to the density matrix before
measurement (Hartle,1992; Omne‘s, 1992, 1994, 1999; Griffiths, 2002).

1.2.2 Decoherence

The phenomenon of decoherence, which is observed in laboratory experi-
ments, highlights the role played by the environment when a quantum system
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interacts with a measuring apparatus, during the process of measurement.
By “environment” is meant the system of particles that surrounds the appa-
ratus. More precisely one could define the environment as the collection of
particles that is present within a radius cT of the apparatus, where T is the
duration of the measurement: these are hence particles which can causally
interact with and influence the apparatus during a measurement.

To illustrate the effect of decoherence, we assume that the system on which
measurement is to be made is a two-state system initially in the state

ψ(t = 0) = c1ψ1 + c2ψ2 (9)

Denoting the initial state of the apparatus by φ0A and the initial state of the
environment by φ0E, we can write the net initial state as the direct product

Φ0 = ψ(t = 0)φ0Aφ0E (10)

Over time, as a result of interaction, this state evolves into the state

Φ(t = 0) = c1ψ1φ(t)EA1 + c2ψ2φ(t)EA2 (11)

Here φ(t)EA1 and φ(t)EA2 denote macroscopically distinguishable entangled
states of the apparatus and the environment.

As demonstrated below, during measurement, the process of decoherence
operates in such a way that, very quickly, the inner product

⟨φ(t)EA1 ∣φ(t)EA2⟩→ 0 (12)

starting from the value unity at t = 0. The final state is reduced to a statis-
tical mixture of states with relative weights ∣c1∣2 ∶ ∣c2∣2.

Decoherence destroys interference among alternatives, which is what Eq. (12)
signifies, but because it operates within the framework of linear quantum me-
chanics, it cannot destroy superposition. Since loss of superposition is what
is seen during a measurement, decoherence does not explain the measure-
ment process. What Eq. (12) implies is that decoherence forces quantum
probability distributions to appear like classical probabilities (weighted sums
of alternatives); however, this is neither necessary nor sufficient to explain
the outcome of an individual measurement. (The issue of nonobservation
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of superposition for macrosystems becomes even more acute in the case of
isolated systems as there are no environment degrees of freedom to be traced
out. Then the theory seems unable to explain the breakdown of superposi-
tion for isolated macroscopic systems, such as the Universe as a whole).

The loss of interference can be understood as a consequence of the inter-
action of the very large number of particles of the environment with the
apparatus. Assuming that the measurement starts at t = 0, the product
⟨φ(t)EA1 ∣φ(t)EA2⟩, which is 1 at t = 0, rapidly goes to zero. To see this, one
notes that in general a particle of the environment, say the ith particle, will
be scattered by the state A1 of the apparatus to a final state different from
the one to which it will be scattered from the apparatus state A2. Thus, the
product

⟨E1 ∣E2⟩ (t) =∏
i

⟨E(t = 0)∣SA1SA2 ∣E(t = 0)⟩i i

is made up of an ever increasing number of quantities, each of which is smaller
than 1, SA1 and SA2 being scattering matrices describing the action of the ap-
paratus on the environment. Hence this product can be written as exp (−Λt)
and goes to zero for large t, with Λ the decoherence rate. Because the envi-
ronment has a very large number of particles, this cross product between the
two environment states is very rapidly suppressed and is responsible for the
emergence of the prop- erty described by Eq. (12). The decoherence time
scale Λ−1 is is much smaller than the duration T of the measurement.

The above discussion is partly based on the article by Adler (2003), where
a more detailed description of decoher- ence in the context of measurement
can be found. There is a vast literature on decoherence, including the ex-
periments and models by Harris and Stodolsky (1981), Brune et al. (1996),
and Gerlich et al. (2007), books by Breuer and Petruccione (2000), Joos
et al. (2003), and Schlosshauer (2007), the seminal papers by Zeh (1970),
Caldeira and Leggett (1981), and Joos and Zeh (1985), and reviews by Zurek
(1991, 2003), Schlosshauer (2005), Bacciagaluppi (2007), and Vacchini and
Hornberger (2009).

1.2.3 Many-worlds interpretation

The many-worlds interpretation was invented by Everett (1957) to counter
the Copenhagen interpretation. According to Everett, evolution during a
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measurement is also Schrödinger evolution, and there is no such thing as a
non- deterministic probabilistic evolution during the measurement. Thus in
this interpretation the state (8) evolves during a measurement according to
the Schrödinger equation. Why then does it appear as if only one of the two
outcomes has been realized? The answer is that the state continues to be of
the form

Ψ = c1ψ1A1O1 + c2ψ2A2O2 (13)

where O1(O2) is the state of the observer when the observer detects the sys-
tem and apparatus in state 1 (2). The two parts of this state exist in two
different branches of the Universe.

Despite appearances, there is no logical inconsistency in the above inter-
pretation, as has been argued by Everett: it is merely the assertion that
Schrödinger evolution is universally valid at all scales, and the breakdown
of superposition during a measurement is only apparent, not real. The hard
part is to explain the origin of probabilities and the Born probability rule.
If the evolution is deterministic through and through, why should there be
a definite probability associated with an outcome? In our opinion, despite
extensive investigation, this problem remains unsolved in the many-worlds
interpretation (DeWitt and Graham, 1973; Kent, 1990; Deutsch, 1998; Vaid-
man, 2002; Wallace, 2003; Putnam, 2005; Tegmark, 2007; Saunders et al.,
2010; Hsu, 2011; Barrett and Byrne, 2012).

1.2.4 Decoherence and many worlds

Decoherence by itself does not solve the measurement problem, because it
does not destroy superposition. However, one could propose that the de-
cohered alternatives both continue to coexist in different branches of the
Universe, in the sense of the many-worlds interpretation, and these branches
do not interfere with each other because decoherence is operating. While
this merger helps both the decoherence and the many-worlds pictures of a
measurement, the origin of the Born probability rule continues to lack an
explanation and as of now is essentially added as a postulate.

This is perhaps today the “establishment view”, wherein one believes that
one does not need to modify quantum theory in order to explain measure-
ment. Its major weakness though is that it is not experimentally falsifiable.
What experiment can one perform in order to find out whether the other
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branches of the many-worlds interpretation exist or not? In the absence of
such an experiment, we have at hand another interpretation of the same
quantum theory, an interpretation which cannot be experimentally distin-
guished from the Copenhagen interpretation.

For discussions on decoherence in the context of many worlds see Baccia-
galuppi (2001).

1.2.5 Bohmian mechanics

Bohmian mechanics is a quantum theory of particles in motion. The positions
of the particles of anN -particle system areQk, k = 1, ...,N , moving in physical
space. The role of the wave function, being governed by the Schrödinger
equation, is to direct the motion of the particles. The theory is deterministic;
randomness enters as in classical mechanics via typicality. It is shown that
the outcomes in measurement experiments are governed by Born’s statistical
rule. The equation of motion for the particles is given by vk = dQk/dt, where

dQk

dt
= h̵

mk

Im∇Qk logψ(Q1,Q2, ....,QN , t)

Bohmian mechanics is a quantum theory in which the col- lapse of the wave
function is effective, in contrast to collapse models, so that macroscopic in-
terference is in principle pos- sible. Predictions of Bohmian mechanics agree
with those of orthodox quantum mechanics, whenever the latter are unam-
biguous. Bohmian mechanics would be falsified if collapse models were ex-
perimentally verified.

For literature on Bohmian mechanics see Bohm (1952a, 1952b), Dürr, Gold-
stein, and Zangh̀ı (1992), Holland (1993), Bohm and Hiley (1995), Bub
(1997), Dürr and Teufel (2009), and Dürr and Goldstein (2012).

1.2.6 Quantum theory is an approximation to a more general the-
ory

It is proposed here that the measurement problem and the apparent inability
of quantum theory to explain the absence of macroscopic superpositions are
consequences of trying to apply the theory in a domain where it is not valid.
It is proposed that there is a universal dynamics, to which quantum theory
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and classical mechanics are both approximations. In the domain of a quan-
tum measurement, the universal dynamics differs from quantum dynamics
and operates in such a way that interaction of the quantum system with
the apparatus causes a collapse of the wave function from a superposition
to one of the eigenstates. The collapse is a physical, dynamical process, and
hence the universal dynamics provides a physical explanation for the ad hoc
collapse postulated by the Copenhagen interpretation. Furthermore, the col-
lapse is shown to obey the Born probability rule. The universal dynamics is
stochastic: the outcome of a measurement is random and unpredictable, but
the mathematical structure of the dynamics is such that repeated measure-
ments on an ensemble of identically prepared quantum systems are shown to
yield different outcomes, in relative frequencies which obey the Born rule.

The universal dynamics must be nonlinear in order to allow for the break-
down of superposition during a measurement. Yet the nonlinearity must
be extremely negligible in the microscopic domain, so that the experimen-
tally observed linear superposition in microscopic quantum systems is re-
produced. The new dynamics must be stochastic; but once again, stochas-
ticity must be negligible for microscopic systems, so that the deterministic
Schrödinger evolution prevails. Third, as one progresses from microscopic to
macroscopic systems, the universal dynamics must allow for nonunitary (but
norm-preserving) evolution: this is essential so that stochastic evolution can
cause all but one outcome to decay exponentially, something which would not
be permitted during unitary evolution. Again, nonunitarity must be utterly
negligible for microscopic systems. Thus, the universal dynamics possesses
a set of parameters whose effective values are determined for the system un-
der study in such a way that for microscopic systems these parameters take
values such that the dynamics is experimentally indistinguishable from quan-
tum dynamics. Similarly, for macroscopic systems, there is an amplification
mechanism built into the equations, such that the dynamics coincides with
classical dynamics. For systems that are mesoscopic (neither microscopic
nor macroscopic) the dynamics is neither classical nor quantum and is hence
experimentally distinguish- able from quantum theory. The properties of
nonlinearity, stochasticity, and nonunitarity also ensure position localization
for macroscopic objects and hence dynamically explain the observed absence
of macroscopic superpositions. It is clear that the universal dynamics is not
tied to or invented for explaining just the measurement process or absence of
mac- roscopic superpositions; these two phenomena just happen to be special
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cases where the new dynamics plays a vital role in understanding the phe-
nomenon. We say that the universal dynamics, which describes the behavior
of micro-objects, meso-objects, and macro-objects, is intrinsically nonlinear,
stochastic, and nonunitary.

Over the last two decades or so there has been significant progress in devel-
oping phenomenological models of such a universal dynamics. At the same
time, one would like to know if there are underlying theoretical reasons (new
symmetry principles, for instance) which compel us to consider a general-
ization of quantum theory of the kind mentioned above, thereby lending
an inevitability to the phenomenological models that have been proposed.
There has been important progress on this front too. Third, there have been
important technological advances which are now permitting a host of exper-
iments to be carried out to test these phenomenological models and verify
their predictions against those of quantum theory. Needless to say, all three
facets are best described as “work currently in progress”. The purpose of
this review is to present a state-of-the-art description of (i) the phenomeno-
logical models for the universal dynamics, (ii) the underlying theories, and
(iii) ongoing experiments which aim to test these models and theories. It is
our hope that a review of this nature will further stimulate the cross talk be-
tween phenomenologists, theorists, and experimentalists in this field, thereby
helping the community to sharply focus on those aspects of phenomenology
and experimentation which might be most directly accessible and feasible in
the near future.

a. Phenomenological models of modified quantum mechanics

From early times, an aspect which has received consider- able attention is
possible nonlinear modifications of quantum theory, and this is not neces-
sarily because of the measurement problem. Most fundamental differential
equations which de- scribe physical phenomena are nonlinear, with linearity
being a convenient approximation in some appropriate limiting cases. Why
then should an equation as fundamental as the Schrödinger equation be a sin-
gular exception to this rule? [It is of course known that there are very strong
bounds on nonlinearity in the atomic domain; see, for instance, the experi-
ment described by Bollinger et al. (1989)]. Nonlinear quantum theories may
be classified as deterministic nonlinear and stochastic nonlinear. For discus-
sions on deterministic nonlinear quantum mechanics see Weinberg (1989a,
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1989b), Goldin (Doebner and Goldin, 1992; Goldin, 2000), and Bialynicki-
Birula and Mycielski (1976). It has often been suggested, and demonstrated,
though per- haps not universally so, that deterministic nonlinear modifi-
cations result in superluminal propagation (Gisin, 1990; Ghirardi and Grassi,
1991; Polchinski, 1991). This, coupled with the fact that stochasticity ap-
pears to be an essential ingredient for explaining the origin of probabilities,
has meant that investigations of a universal dynamics have tended to focus
on stochastic nonlinearities; see, for instance, Gisin (1981, 1984, 1989), Diósi
(1988a, 1988b), Gisin and Rigo (1995), and Weinberg (2011).

With regard to the application of stochastic nonlinearity to explain measure-
ment, the pioneering paper is due to Pearle (1976); the paper is aptly titled
“Reduction of the state vector by a nonlinear Schrödinger equation”. Pearle
proposed to replace the Schrödinger equation by a nonlinear one, during mea-
surement, and that certain variables which take random values just after the
quantum system interacts with the apparatus drive the system to one or the
other outcome, thus breaking superposition. For the choice of these random
variables he suggested the phases of the state vectors immediately after the
measurement. An appropriate assignment of the probability distribution of
these phases over the allowed parameter space leads to the Born rule. It is
noteworthy that this assignment of the probability distribution is something
which has to be put in by hand, keeping in mind what probability rule one
wants to emerge. This is one aspect where phenomenology and underlying
theories need to do better even today: there should be a fundamental reason
for the probability distribution over the stochastic variables, which inevitably
implies the Born rule. Two important miss- ing pieces, in order to consider
the proposed dynamics a universal dynamics for all physical systems, were
the preferred basis on which the wave function should collapse as well as the
trigger mechanism. Both limitations are overcome by the Ghirardi, Rimini,
and Weber (GRW) model. Further investigations were reported and reviewed
by Pearle (1979, 1982, 1984, 1989b)1999a).

The next major advance came from Ghirardi, Rimini, and Weber (1986) in
a seminal paper titled “Unified dynamics for microscopic and macroscopic
systems”, and the model has come to be known as the GRW model. There
were two guiding principles for this dynamical reduction model (also known
as QMSL: quantum mechanics with spontaneous localization):

(1) The preferred basis, the basis on which reductions take place, must be
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chosen in such a way as to guarantee a definite position in space to
macroscopic objects.

(2) The modified dynamics must have little impact on microscopic ob-
jects, but at the same time must reduce the superposition of different
macroscopic states of macrosystems. There must then be an amplifica-
tion mechanism when moving from the microscopic to the macroscopic
level.

The reduction is achieved by making the following set of assumptions:

(1) Each particle of a system of n distinguishable particles experiences,
with a mean rate λiGRW , a sudden spontaneous localization process.

(2) In the time interval between two successive spontaneous processes the
system evolves according to the usual Schrödinger equation.

In their model, GRW introduced two new fundamental constants of na-
ture, assumed to have definite numerical values, so as to reproduce ob-
served features of the microscopic and macroscopic worlds. The first con-
stant λGRW −1 ∼ 1016 s, alluded to above, determines the rate of spontaneous
localization (collapse) for a single particle. For a composite object of n par-
ticles, the collapse rate is (λGRWn)−1 s. The second fundamental constant
is a length scale rC ∼ 10−5 cm which is related to the concept that a widely
spaced wave function collapses to a length scale of about rC during the lo-
calization.

A gravity-based implementation of the GRW model was studied by Diósi
(1989) and generalized by Ghirardi, Grassi, and Rimini (1990).

The GRW model has been upgraded into what is known as the continu-
ous spontaneous localization (CSL) model by Ghirardi, Pearle, and Rimini
(1990). In CSL a randomly fluctuating classical field couples with the parti-
cle number density operator of a quantum system to produce collapse toward
its spatially localized eigenstates. The collapse process is continuous in time,
and this allows one to express the dynamics in terms of a single stochastic
differential equation, containing both the Schrödinger evolution and the col-
lapse of the wave function. The narrowing of the wave function amounts to
an increase in the energy of the particle and actually to a small violation of
energy conservation.
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An outstanding open question with regard to the dynamical reduction mod-
els is the origin of the random noise, or the randomly fluctuating classical
scalar field, which induces collapse.

The current status of the spontaneous collapse models is discussed in detail
in Sec. 2. A modern approach to stochastic reduction is to describe it using
a stochastic nonlinear Schrödinger equation, an elegant simplified example
of which is the following one-particle case [known as QMUPL: quantum me-
chanics with universal position localization (Diósi, 1989); see Sec. 2 for
details:

dψ(t) = [− i
h̵
Hdt +

√
λ(q − ⟨q⟩t)dWt −

λ

2
(q − ⟨q⟩t)2dt]ψ(t) (14)

q is the position operator, ⟨q⟩t is its expectation value, and λ is a constant,
characteristic of the model, which sets the strength of the collapse. Wt is a
Wiener process which describes the impact of stochasticity on the dynamics.
As for the GRW and CSL models, this equation can be used to explain the
collapse of a wave function during a measurement, the emergence of the
Born rule, the absence of macroscopic and the excellent matching of the
linear theory with experiments for microscopic systems.

Various studies and arguments suggest that the structure of this equation is
very rigid and tightly controlled, once one assumes (as is true here) that the
evolution is norm preserving, and, second, that superluminal propagation
is not possible (Gisin, 1989; Adler, 2004). There is then a unique relation
between the coefficient

√
λ f the diffusion (stochastic) term and the coefficient

−λ/2 of the drift term: drift coefficient = −2× (diffusion coefficient)2. This is
the well-known martingale structure for a stochastic differential equation.

In QMUPL, stochastic fluctuations take place only in the time direction and
hence there is only one free parameter, i.e., λ. In contrast, in the CSL
model the stochastic fluctuations exist over space too, and hence, as in the
GRW model, there is a second free parameter rC which defines the scale of
spatial localization. Of course, in the QMUPL and CSL models the stochastic
process acts continuously, unlike in the GRW model, wherein the stochastic
jumps are discontinuous and discrete. In fact, the QMUPL model can be
understood as a scaling limit of the GRW process (Dürr, Hinrichs, and Kolb,
2011) (the collapse frequency goes to infinity and the spread rC goes to zero
in such a way that their product remains a constant).
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Part of the experimental effort on testing quantum mechanics, discussed in
detail in Sec. 4, is devoted to testing the validity of equations such as Eq.
(14), and measuring and setting bounds on the rate constant λ and the length
scale rC .

b. Underlying theories

Phenomenological models of dynamical wave-function collapse propose an
ad hoc modification of quantum mechanics, albeit retaining certain features
such as norm preservation and no superluminal propagation. In principle,
there should be strong underlying theoretical reasons which make a com-
pelling case for a modified quantum theory, rendering the phenomenological
models inevitable. Here we mention three different theoretical developments
in this connection, two of which arise from attempts to remove one or the
other fundamental incompleteness in the formulation of quantum theory, and
the third investigates how gravity might play an effective role in wave-vector
reduction.

i. Trace dynamics.

Classical mechanics is supposed to be a limiting case of quantum theory. And
yet, in its canonical formulation, quantum theory assumes a prior knowledge
of classical dynamics. In order to “quantize” a system, one should know the
classical configuration variables and their conjugate momenta, and one should
first know the Hamiltonian or the action (for a path-integral formulation) of
the classical system. This is unsatisfactory. In the canonical formulation,
one then proposes canonical commutation relations such as ]q,p] = ih̵ in an
ad hoc manner. Why should these be the relations, unless one already knows
that they lead to results which match with experiments? It would be desir-
able to derive quantum theory from a starting point which is not classical
mechanics and then obtain classical mechanics as an approximation (and ex-
plain quantum measurement in the process). The theory of trace dynamics
(TD) developed by Adler and collaborators does well in progressing toward
this goal (Adler, 1994, 2004, 2006; Adler and Millard, 1996).

TD assumes that the underlying theory is a classical dynamics of Grassman-
nian matrices, existing on a given space- time. However, this classicality
does not mean that TD is a “hidden variables” theory - for the eventual de-
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scription is at an averaged level, where no reference is made to the matrices
which have been coarse grained over. The matrices satisfy the standard La-
grangian and Hamiltonian dynamics, but as a consequence of global unitary
invariance, the theory possesses a remarkable additional conserved charge,
not present in point-particle mechanics. This is the Adler-Millard charge
(Adler and Millard, 1996).

C̃ =∑
i

[qi, pi] −∑
j

{qj, pj} (15)

where the first sum is over commutators of bosonic matrices, and the second
is over anticommutators of fermionic matrices; see Sec. 3 for details. This
conserved charge, which has the dimensions of action, plays a central role in
the emergence of quantum theory at a coarse-grained level.

Assuming that these matrix degrees of freedom are at a level sufficiently
“microscopic” (e.g., at the Planck scale) that we do not observe them in our
routine laboratory experiments, a statistical thermodynamics of this matrix
dynamics is constructed. An equipartition theorem for the thermodynami-
cally averaged quantities is derived, which results in the Adler-Millard charge
being uniformly distributed across the averaged commutators, each of which
is assumed to equal Planck’s constant. This is the origin of the quantum
commutation relations. As a consequence of the assumed invariance of ther-
modynamic averages under constant shifts in phase space, a Ward identity is
derived, which under suitable assumptions shows that the thermally averaged
q’s and p’s satisfy Heisenberg equations of motion. A relativistic quantum
field theory is arrived at, and a nonrelativistic Schrödinger equation holds
in the finite-particle limit. Thus quantum theory is shown to emerge as the
thermodynamic approximation to an underlying classical dynamics of Grass-
mann matrices possessing a global unitary invariance.

Perhaps the greatest asset of TD is to be able to go beyond this stage and
address the quantum measurement problem in a natural manner. Quantum
theory emerges in the thermodynamic approximation of the statistical me-
chanics of the underlying matrix mechanics. Next it is pertinent to consider
the impact of Brownian motion fluctuations; remarkably these modify the
Schrödinger equation and provide the necessary stochastic element for the
collapse process to operate, and for the origin of probabilities. Subject to
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certain crucial assumptions for which one would eventually like to find a theo-
retical basis, the modified Schrödinger equation is a nonlinear and nonunitary
(but norm-preserving) stochastic equation of the type used in the CSL model.
In this way, trace dynamics, through its thermodynamic limit and the as-
sociated statistical fluctuations, provides a theoretical underpinning for the
phenomenological collapse models.

TD is perhaps the most well-developed underlying theory one has at present
for collapse phenomenology. Hence in Sec. 3 we give a detailed presentation
of the physics and mathematics of TD, leading to wave-vector reduction, and
also point out the open problems of TD which remain to be addressed.

ii. Quantum theory without classical space- time.

Quantum theory requires an external classical time for describing evolution.
This is of course so obvious and essential that it is almost never stated ex-
plicitly. However this dependence on an external classical time is perhaps the
greatest incompleteness of quantum theory. Such a time is part of a classical
space-time geometry which is produced by classical matter fields according
to the laws of general relativity. But classical matter fields are a limiting
case of quantum fields. If there were no classical fields in the Universe, but
only fields subject to quantum fluctuations, there would be no definite metric
available to describe the space-time geometry. An argument due to Einstein,
known as the Einstein hole argument (Christian, 1998), then implies that if
the metric is subject to quantum fluctuations, there is no longer available an
underlying classical space-time manifold. It is not possible then to describe
quantum evolution.

We see once again that via its dependence on external time, quantum theory
depends on its classical limit (the required presence of a Universe dominated
by classical matter). This is unsatisfactory from a fundamental point of view,
and hence there must exist an equivalent reformulation of quantum theory
which does not refer to classical time. Such a reformulation can be shown
to be the limiting case of a nonlinear theory, with the nonlinearity becoming
important at the Planck mass scale. The nonlinearity is possibly stochas-
tic and could have implications for resolution of the quantum measurement
problem. Tentative heuristic discussions toward this investigation have been
given by Singh (2006, 2009).
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A detailed systematic program to develop a formulation of quantum theory
without classical time and to study its impact on quantum measurement
has recently begun and is qualitatively described by Singh (2011). The key
symmetry principle here is that basic laws should be invariant under coordi-
nate transformations of noncommuting coordinates. The motivation is that
if quantum fluctuations destroy a classical space-time manifold, a possible
replacement for ordinary space-time could be a noncommutative space-time.
This approach proposes to generalize trace dynamics by raising time, and
space, to the level of matrices (operators). This was done by Lochan and
Singh (2011) and it has been shown that by defining a noncommutative space-
time metric as a trace over the space-time operators, a Poincare?-invariant
dynamics can be constructed. We call this a generalized trace dynamics.
Evolution is described with respect to the scalar constructed by taking the
trace over the noncommutative metric; this is the analog of the ordinary
proper time.

The next step is to construct, in analogy with TD, a statistical mechanics
for this generalized matrix dynamics and obtain the equilibrium thermody-
namic approximation; this yields a generalized quantum theory which has
an energy-time commutation relation and a generalized Schrödinger equa-
tion with an operator time as one of the configuration variables. This is
the sought-for reformulation of quantum theory that does not refer to an
external classical time (Lochan, Satin, and Singh, 2012). If the Universe is
dominated by macroscopic objects, the consideration of Brownian motion
fluctuations should yield position localization and the concurrent emergence
of a classical space-time. This is the classical Universe, dominated by clas-
sical macroscopic objects and in possession of a classical space-time. This
Universe has a “sprinkling” of quantum fields and nonrelativistic quantum
systems. On the backdrop of this classical Universe one can postulate stan-
dard quantum theory (now that an external time is given) and then proceed
to implement the program of trace dynamics to derive quantum dynamics
from matrix mechanics, for this sprinkling of quantum matter fields on the
classical space-time background, and to resolve the attendant measurement
problem.

The program described here aims to address a limitation of trace dynamics
- a matrix treatment for matter fields while leaving the point structure of
space-time, thus leaving space- time untouched. We regard such a limita-
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tion as one that should be addressed; in the process we see that removing
time from quantum theory drives us to a starting point (generalized trace
dynamics) whose eventual outcome is a possible resolution for the measure-
ment problem. We thus stress that there is a deep connection between the
problem of time in quantum theory and the measurement problem in quan-
tum theory (Singh, 2012). Addressing the former will possibly compel us to
consider a modification of quantum theory and that modification will have a
bearing on the measurement problem.

Since this work is at present in an early stage of development, we will not
discuss it any further in the remainder of this review.

iii. Gravity-induced wave-function collapse.

The fact that the fundamental mass scale, Planck mass MPl = (h̵c/G)1/2 ∼
10−5 g is not far from the scale where the micro-to-macro transition takes
place has often intrigued some physicists. Mass seems to have something to
do with deciding which objects are quantum and which are classical, and
mass also produces gravity. Could gravity thus play some role in causing
wave-function collapse and in localization of macro-objects? The idea that
gravity might somehow be responsible for wave-function collapse has been
seriously pursued by Karolyhazy (1966), Karolyhazy, Frenkel, and Lukács
(1986), Diósi (1987), and Penrose (1996). Penroses proposal is also the sub-
ject of an important ongoing experiment aimed at testing it (Marshall et al.,
2003). These issues are discussed in Sec. 3.

c. Experimental tests

The Copenhagen interpretation was a need of the times when it was pro-
posed: pioneering experiments were being carried out for atomic systems.
The measuring apparatus was a classical object, and the Born probability
rule had to be invoked to explain the random outcomes of measurements.
For some, this dual aspect of quantum theory, unitary evolution followed by
wave-packet reduction, was the “truth” in quantum theory; this is how nature
is. For others, this was completely unacceptable, and reinterpretations and
new mathematical formulations such as many worlds, Bohmian mechanics,
and decoherent histories were developed. However, the idea that quantum
theory may be an approximation to a holistic theory which better explains
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both the unitary and reductionist aspects as limits of a unified mathematical
description has taken shape only over the last three decades or so. And yet,
none other than Einstein himself (Schilpp, 1949) saw it this way early on and
had this to say about quantum theory:“it would, within the framework of fu-
ture physics, take an approximately analogous position to that of statistical
mechanics within the framework of classical mechanics”.

In light of the theory of trace dynamics and models of spontaneous wave-
function collapse, these words are prophetic. These modern ideas suggest
the emergence of probabilities as a consequence of thermodynamic averaging
in a deterministic theory and the related significance of stochastic fluctua-
tions. Above all, their predictions for results of experiments differ from the
predictions of quantum theory. The difference will be far too small to be
detectable for an atomic system, but starts becoming significant as the size
of the system is increased. The best example of an experiment which could
detect such a difference is double-slit interference. If an object of mass m is
directed at a suitably prepared double slit, with appropriate slit width and
separation between the slits, quantum theory predicts that an interference
pattern will be seen on the screen no matter what the value of m. Not so, say
collapse models. According to these models, the superposition state created
after the object has passed the slits lasts only for a finite time τ , where τ
decreases with increasing m, and its value can be calculated precisely from a
given theoretical model. Thus, according to these models, if the time of travel
from the slits to the screen is greater than τ , superposition will break down
before the screen is reached, and no interference pattern will be seen. This
is perhaps the cleanest confrontation that spontaneous-collapse and gravity-
collapse models make with experiment. A successful diffraction experiment
in the right mass domain will irrefutably confirm or rule out these models.

One should of course stay cautioned against assuming that quantum theory
will be successful through and through, and that interference will be seen for
all values of m. The fact that a theory is extremely successful in one part of
the parameter space should not be taken as a guarantee that it will continue
to be successful in a different part of the parameter space; in the present in-
stance the absence of macroscopic superpositions already provides reason for
caution. And there are historical examples of long-standing successful the-
ories eventually turning into approximations to more general theories when
their extrapolation into a new part of the parameter space failed to be con-
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firmed by experiment: (i) classical mechanics became an approximation to
special relativity at speeds close to the speed of light, (ii) quantum dynamics
took over from classical dynamics in the atomic domain, and (iii) Newtons
inverse square law of gravitation was replaced by the laws of general relativ-
ity for strong gravitational fields.

Interference experiments with matter have a fascinating history, with a quest
developing over decades to test super- position using larger and larger ob-
jects. Over 80 years have passed since the classic experiment by Davisson and
Germer in 1927 where interference was demonstrated with electrons. Land-
marks on the way included confirmation of interference for helium (1930) and
neutrons (1988). A great modern breakthrough came in 1999 when interfer-
ence was demonstrated for C60 in the famous fullerene experiment (Arndt et
al., 1999). (A popular belief seems to be prevalent in some quarters in which
the discovery of quantum superposition in a molecule as “large” as a fullerene
means the end of all theories which predict breakdown of superposition for
large systems. This of course is not true; breakdown of superposition and the
quantum-to-classical transition are expected around 106 to 109 amu). This
opened the door for larger molecules, and today, a decade later, interfer-
ence has been demonstrated for molecules with 7000 nucleons (Gerlich et al.,
2011). Proposed future interferometry experiments plan to push the limit to
macromolecules with 106 nucleons and beyond, going up to molecules with a
1006 nucleons. Doing so involves overcoming great technological challenges
(Hornberger et al., 2012), and there are many orders of magnitude in the
mass scale yet to be covered. But we certainly live in exciting times where
predictions of collapse models and gravity-based models are being tested by
these experiments, and constraints are being put on model parameters; see
Sec. 4 for details.

Also, this is perhaps a good place to clear another misconception regard-
ing the domain over which quantum mechanics has been tested. Various
macroscopic internal states have been achieved experimentally in which an
enormous collection of internal degrees of freedom behave as a collective
one-particle coherent state. We have in mind of course systems such as su-
perconductors, superfluids, and Bose- Einstein condensates. The existence
of such states, however, does not explain why macroscopic objects are not
found in the superposition of position states. Quantum mechanics may yet
have to be modified so that the modified theory can explain the absence of
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position superpositions, but the modified theory will certainly continue to
successfully explain a collective phenomenon such as superconductivity. In
other words, the discovery of superconductivity does not solve or trivialize
the Schrödinger cat paradox.

Apart from direct laboratory experiments, collapse model parameters are
also constrained by their effect on known measurements. Section 4 discusses
the various experimental tests of the phenomenological models.

1.2.7 Plan and outline

Sections 2, 3, and 4 are the main parts of this review. Section 2 reviews
phenomenological models of spontaneous wave-function collapse, which ex-
plain the absence of macroscopic superpositions, via a stochastic nonlinear
modification of the Schrödinger equation. Section 3 gives a review of trace
dynamics and gravity-induced collapse as possible underlying theories for the
phenomenology discussed in Sec. 2. Section 4 reviews the techniques and
results of ongoing and planned experiments which are testing the pro- posed
phenomenological models. Section 5 provides a critique of the current under-
standing on the theoretical and experimental fronts and lists open problems.

Section 2 begins by introducing spontaneous collapse and recalls the various
collapse models that have been proposed. The original GRW model is then
introduced. This is followed by a detailed review of the QMUPL model,
which is applied to show how stochasticity induces collapse, and how the
Born probability rule is derived. The possible origin of the noise field is dis-
cussed. Section 2.6 discusses the most widely used (but physically equivalent
to the GRW model) collapse model, i.e., the CSL model, and its generaliza-
tions. Last, the current understanding of the numerical values of the two
parameters of the collapse model is reviewed.

Section 3 reviews Adler’s trace dynamics as a candidate fundamental theory
for spontaneous localization. The fundamental matrix degrees of freedom
of the theory are introduced, and their dynamics described. The conserved
charges of the theory, including the Adler-Millard charge, are derived. This
is followed by the construction of the statistical mechanics and the canonical
ensemble for thermodynamic equilibrium for the theory. Following this, an
important Ward identity, which is an analog of the equipartition theorem,
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is proved. It is shown how the commutation relations for quantum theory,
and the Schrödinger equation, emerge at this coarse-grained level from the
microscopic theory. Finally, consideration of fluctuations described by Brow-
nian motion leads to generalization from the Schrödinger equation to the
stochastic nonlinear Schrödinger equation, which makes con- tact with the
CSL model. Subsequent sections describe the gravity-based models for col-
lapse, based on the work of Karolyhazy et al., Diósi, and Penrose.

Section 4 on experimental tests starts by discussing the basics of the col-
lapse theory necessary for performing and interpreting the diffraction experi-
ments with macromolecules. Matter-wave interferometry and optomechanics
experiments with mechanical cantilevers are reviewed in detail. Cavity op-
tomechanics with microspheres and nanoparticles is discussed, followed by
a review of new developments which combine optical tweezing techniques
with near-field matter-wave interferometry. The challenges proposed to these
experiments by various kinds of decoherence are considered. The current
bounds on collapse model parameters coming from the diffraction experi-
ments and from other measurement processes are summarized.

2 Spontaneous Collapse Models

2.1 Introducing spontaneous collapses

Quantum mechanics, in its standard textbook formulation, refers only to the
outcomes of measurements, but it has nothing to say about the world as it is,
independently of any measurement or act of observation. This is a source of
serious difficulties, which have been clearly elucidated, e.g., by Bell (1990):
“It would seem that the theory is exclusively concerned about ’results of
measurements’, and has nothing to say about anything else. What exactly
qualifies some physical systems to play the role of ’measurer’ ? Was the wave
function of the world waiting to jump for thousands of millions of years until
a single-celled living creature appeared? Or did it have to wait a little bit
longer, for some better qualified system . . . with a Ph.D.?”

Measuring devices, such as photographic plates and bubble chambers, are
very sophisticated and highly structured physical systems, which anyhow are
made of atoms; we thus expect them to be ultimately described in quantum-
mechanical terms by means of the Schrödinger equation. What else should
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we expect, taking into account that physicists are trying to describe the en-
tire Universe quantum mechanically? But if we describe measurements in
this way, then the theory does not predict any definite outcome at the end
of the process. The Schrödinger equation is linear, the superposition princi-
ple holds, and it does so in such a way that all possible outcomes are there
simultaneously in the wave function, but none of them is selected as the one
that actually occurs. Yet, if we perform a measurement, we always get a
definite outcome. So we have a problem with quantum mechanics.

Continuing quoting Bell: “If the theory is to apply to anything but highly
idealized laboratory operations, are we not obliged to admit that more or
less ’measurement like’ processes are going on more or less all the time, more
or less everywhere? Do we not have jumping then all the time?”

The basic idea behind the dynamical reduction program is precisely this:
spontaneous and random collapses of the wave function occur all the time,
for all particles, whether isolated or interacting, whether they form just an
atom or a complex measuring device. Of course, such collapses must be rare
and mild for microscopic systems in order not to alter their quantum behav-
ior as predicted by the Schrödinger equation. At the same time, their effect
must add up in such a way that, when thousands of millions of particles are
glued together to form a macroscopic system, a single collapse occurring to
one of the particles affects the global system. We then have thousands of
millions of such collapses acting frequently on the macrosystem, which to-
gether force its wave function to be rapidly well localized in space.

On the mathematical level, the program is accomplished by modifying the
Schrödinger evolution, introducing new terms having the following proper-
ties.

● They must be nonlinear : The new dynamics must break the superpo-
sition principle at the macroscopic level and guarantee the localization
of the wave function of macro-objects.

● They must be stochastic: When describing measurementlike situations,
the dynamics must explain why the outcomes occur randomly; more
than this, it must explain why they are distributed according to the
Born probability rule. On top of this, stochasticity is necessary be-
cause otherwise the nonlinear terms would allow for faster-than-light
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communication.

● There must be an amplification mechanism according to which the new
terms have negligible effects on the dynamics of microscopic systems
but, at the same time, their effect becomes very strong for large many-
particle systems such as macroscopic objects, in order to recover their
classical-like behavior.

● They must not allow for superluminal signaling, as one wants to pre-
serve the causal structure of space-time.

Looking carefully at these requirements, one soon realizes that they are very
demanding: there seems to be no reason beforehand that they can be con-
sistently fulfilled. One of the greatest merits of collapse models is to have
shown that this program can be implemented in a consistent and satisfactory
way.

2.2 The plethora of collapse models

In the literature, different collapse models have been pro- posed. A first char-
acterization depends on the choice of the collapse operators, i.e., on the basis
on which the wave function is localized. Some models induce the collapse in
the energy basis (Milburn, 1991; Hughston, 1996; Adler and Horwitz, 2000;
Adler et al., 2001; Adler and Brun, 2001; Adler, 2002, 2004; Brody and
Hughston, 2002), others in the momentum basis (Benatti et al., 1988) or
the spin basis (Bassi and Ippoliti, 2004; Pearle, 2012). However, only mod-
els which collapse in the position basis make sure that different macroscopic
superpositions rapidly collapse toward localized states. To understand this,
one can think of a superposition of two spatially separated states of a macro-
scopic object, which have the same (or very similar) energy. In this case, an
energy-based collapse model would not be able to collapse the superposition
fast enough, because the superposition in energy is null or negligible. Such
a model would not be able to guarantee that macro-objects always occupy a
definite position in space. Only space-collapse models make sure that macro-
scopic objects always behave classically, and therefore we will consider only
them in the following.

Space-collapse models can be conveniently grouped de- pending on the prop-
erties of the noise, which is responsible for the collapse. A first distinction
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is between white and nonwhite models. In white-noise models, the collapse
noise is assumed to be a Wiener process in time, and the resulting evolution
is Markovian. All frequencies of the noise contribute to the collapse with the
same weight. Examples of collapse models of this type are the GRW model
(Ghirardi, Rimini, and Weber, 1986), the CSL model (Pearle, 1989; Ghi-
rardi, Pearle, and Rimini, 1990), and the QMUPL model (Diósi, 1989; Bassi,
2005). In nonwhite-noise models, the collapse noise is taken to be a generic
Gaussian noise, with mean equal to zero, and a generic correlation function.
The corresponding dynamics turns out to be non-Markovian, and these mod-
els are more difficult to analyze. A model of this kind is the non-Markovian
QMUPL model (Bassi and Ferialdi, 2009a, 2009b), while the non-Markovian
CSL model is still under development (Adler and Bassi, 2007, 2008). General
non-Markovian collapse models have been discussed by Pearle (1993, 1996),
Diósi, Gisin, and Strunz (1998), and Bassi and Ghirardi (2002).

A second distinction is between infinite- and finite-temperature models. In
the first type of model, the collapse noise acts like a reservoir at infinite tem-
perature. The wave function collapses, but at the same time the energy of
the quantum system increases steadily; no dissipative effects are taken into
account. This is a well-known feature of collapse models. Mathematically,
these models are characterized by the fact that the wave function and the
collapse noise are coupled through the position operator only. The GRW
model, the (Markovian and non-Markovian) CSL model, and the (Marko-
vian and non-Markovian) QMUPL model all belong to this group. In finite-
temperature models instead, the collapse noise behaves like a reservoir at
finite temperature. The wave function still collapses, but now dissipative
terms are included (through a position and momentum coupling be- tween
the wave function and the noise), which thermalize any quantum systems
to the temperature of the noise. The only such model so far available is
the nondissipative QMUPL model (Bassi, Ippoliti, and Vacchini, 2005), al-
though the other models can be generalized in this sense also. Recently, the
QMUPL model has been generalized in order to include both non-Markovian
and dissipative effects (Ferialdi and Bassi, 2011).

A final distinction is between first quantized models and second quantized
models. Models of the first type consider a system of distinguishable particles
only; the GRW model, the QMUPL model, and its non-Markovian and/or
dissipative generalization belong to this group. Models of the second type
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are formulated in the language of quantum field theory and include systems
of identical particles. The Tumulka-GRW model (Tumulka, 2006a) and the
CSL model belong to this group.

We also mention the earlier contributions of Diosi (Diósi, 1988b, 1988c),
Gisin (Gisin, 1984, 1989), and Percival (Schack, Brun, and Percival, 1995;
Percival, 1999) to development of stochastically modified Schrödinger equa-
tions for describing the process of wave-function collapse.

Some comments are in order. The first comment is that all space-collapse
models are qualitatively equivalent: they all induce the collapse of the wave
function in space, and the collapse is faster, the larger the system. Of course,
they can also differ in a significant way in the technical details, as we will
see. The second comment refers to the nature of the stochastic character of
the collapse process. One way to look at it, which corresponds to the orig-
inal attitude toward these models, is that nature is intrinsically stochastic;
therefore stochastic differential equations are the natural type of equations
for describing the dynamics of physical systems. A new way to look at it is to
assume that there is a random field, filling space, which couples to quantum
matter in a nonstandard way and is responsible for the collapse of the wave
function. The new terms in the modified Schrödinger equation are meant to
describe such a coupling. Since this noise fills the whole space, most likely
it has a cosmological origin. According to this scenario, the physically most
reasonable collapse model is a model where the collapsing field is “cosmolog-
ically reasonable”, e.g., it has a typical cosmological correlation function and
a typical cosmological temperature. This could be the case for the colored-
noise and dissipative CSL model, which, however, has not been formulated
yet. What one can do is to extrapolate predictions from the other models
already available. Therefore, in the following we focus our attention on two
of the above-mentioned models: the CSL model, the one that more closely
resembles the physically most reasonable model, and the QMUPL model,
which is less physical, but has already been generalized in order to include
dissipation, as well as colored noises, and is relatively easy to analyze math-
ematically.

A third comment is about the origin of the noise field. The important thing
to bear in mind is that this field cannot be a standard quantum field, other-
wise we would fall back into the realm of standard quantum mechanics, with
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the superposition principle and the measurement problem. This field couples
to quantum matter through an anti-Hermitian and nonlinear coupling. The
most intriguing guess is that this noise has a gravitational origin. In fact, a
gravitational background is part of the standard cosmological scenario: grav-
ity is nonlinear, gravity has not been successfully quantized yet, and we do
not know today what shape a quantum theory of gravity will eventually take.
Gravity-induced collapse models have been formulated in the literature, and
we discuss them in Sec. 3.2.

A fourth comment is about the relativistic extension of collapse models. All
models previously listed are nonrelativistic. Their generalization to rela-
tivistic quantum field theories has not been successful. The reason is very
simple to understand: the collapse of the wave function is an instantaneous
process or at least faster than light (Maudlin, 2011). This is a necessary
requirement in order to reproduce nonlocal quantum correlations encoded
in Bell inequalities (Bell, 1987b), which have been verified experimentally.
An instantaneous collapse process is not welcome in a relativistic framework,
hence the difficulty in formulating relativistic collapse models. We discuss
this issue in Sec. II.6.

2.3 The GRW model

In order to appreciate how collapse models work, and what they are able
to achieve, we briefly review the GRW model, the first consistent model
proposed. Although it is not ex- pressed in terms of a compact stochastic
differential equation, it has the advantage of being physically intuitive. In
presenting the model, we follow the exposition of Bell (1987a) [reprinted in
Bell (1987b)] in terms of discrete jumps of the wave function.

Consider a system of N particles which, only for simplicity, we take to be
scalar and spinless; the GRW model is defined by the following postulates:

States - The state of the system is represented by a wave function
ψ(x1,x2, ....,xN) belonging to the Hilbert space L2(R3N). Spin and
other internal degrees of freedom are ignored for simplicity.

Dynamics - At random times, the wave function experiences a sudden
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jump of the form

ψt(x1,x2, ....,xN)→ Ln(x)ψt(x1,x2, ....,xN)
∥Ln(x)ψt(x1,x2, ....,xN)∥

(16)

where ψt(x1,x2, ....,xN) is the state vector of the whole system at time
t, immediately prior to the jump process. Ln(x) is a linear operator
which is conventionally given by

Ln(x) =
1

(πr2
C)3/4 e

−(qn−x)2/2r2
C (17)

where rC is a new parameter of the model which sets the width of the
localization process, and qn is the position operator associated with
the nth particle of the system; the random variable x corresponds to
the place where the jump occurs. Between two consecutive jumps, the
state vector evolves according to the standard Schrödinger equation.

The probability density for a jump taking place at position x for the
nth particle is given by

pn(x) ≡ ∥Ln(x)ψt(x1,x2, ....,xN)∥2 (18)

and the probability densities for the different particles are independent.

Finally, it is assumed that the jumps are distributed in time similarly
to a Poissonian process with frequency λGRW ; this is the second new
parameter of the model.

The standard numerical values for rC and λGRW are

λGRW ≃ 10−16 s−1 , rC ≃ 10−7m (19)

We return to the issue of numerical value of these parameters in Sec.
2.7.

Ontology - In order to connect the mathematical formalism with
the physical world, one needs to provide an ontology, which is rather
straightforward for collapse models. Let mn be the mass associated
with the nth “particle” of the system (one should say with what is called
a particle, according to the standard terminology), then the function

ρ
(n)
t (xn) ≡mn∫ d3x1⋯d3xn−1d

3xn+1⋯d3xN ∣ψt(x1,x2, ....,xN)∣2 (20)
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represents the density of mass (Ghirardi, Grassi, and Benatti, 1995) of
that particle in space at time t.

These are the axioms of the GRW model: as we see, words such as “mea-
surement”, “observation”, “macroscopic”, and “environment” do not appear.
There is only a universal dynamics governing all physical processes, and an
ontology which describes how the physical world is, according to the model,
independently of any act of observation.

The GRW model, as well as the other dynamical reduction models which have
appeared in the literature, has been extensively studied [see Pearle (1999a)
and Bassi and Ghirardi (2003) for a review on this topic]; in particular, with
the numerical choices for λGRW and rC given in Eq. (19), the following three
important properties have been proved, which we state in more quantitative
terms in Sec. 2.4:

● At the microscopic level, quantum systems behave al- most exactly as
predicted by standard quantum mechanics, the differences being so tiny
that they can hardly be detected with present-day technology.

● At the macroscopic level, wave functions of macro-objects are almost
always well localized in space, so well localized that their centers of mass
behave, for all practical purposes, like point particles moving according
to Newtons laws.

● In a measurementlike situation, e.g., of the von Neumann type, the
GRW model reproduces, as a consequence of the modified dynamics,
both the Born probability rule and the standard postulate of wave-
packet reduction.

In this way, models of spontaneous wave-function collapse provide a unified
description of all physical phenomena, at least at the nonrelativistic level,
and a consistent solution to the measurement problem of quantum mechan-
ics.

It may be helpful to stress some points about the world view provided by
the GRW model and collapse models in general. According to the ontology
given by the third axiom, there are no particles at all in the theory. There are
only distributions of masses which, at the microscopic level, are in general
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quite spread out in space. An electron, for example, is not a point follow-
ing a trajectory, as it would be in Bohmian mechanics, but a wavy object
diffusing in space. When, in a double-slit experiment, it is sent through the
two apertures, it literally goes through both of them, as would a classical
wave would. The peculiarity of the electron, which qualifies it as a quantum
system, is that when we try to locate it in space, by making it interact with
a measuring device, e.g., a photographic film, then, according to the collapse
dynamics, its wave function rapidly shrinks in space until it is localized to a
spot, the spot where the film is exposed and which represents the outcome
of the position measurement. Such behavior, which is added ad hoc in the
standard formulation of quantum mechanics, is a direct consequence of the
universal dynamics of the GRW model.

Macroscopic objects are also waves; their centers of mass are not mathemat-
ical points, rather they are represented by some function defined throughout
space. But macro-objects have a nice property: according to the GRW dy-
namics, each of them is always almost perfectly located in space, which means
that the wave functions associated with their centers of mass are appreciably
different from zero only within a small region of space (whose linear exten-
sion is of the order of 10−14m or smaller, as we shall see), so small that they
can be considered pointlike for all practical purposes. This is the reason
that Newton’s mechanics of point particles is such a satisfactory theory for
macroscopic classical systems.

Even though the GRW model contains no particles at all, we still refer to
microsystems as particles, just as a matter of convenience.

Although the collapse dynamics is expressed entirely in terms of the wave
function, not of the density matrix, in order to eliminate any possible ambi-
guity about the nature of the collapse, it is nevertheless convenient to look
at the collapse dynamics for the density matrix, to analyze specific features
of the model. The one-particle master equation of the GRW model takes the
form (Ghirardi, Rimini, and Weber, 1986)

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] − T [ρ(t)] (21)

where H s the standard quantum Hamiltonian of the particle, and T [⋅] repre-
sents the effect of the spontaneous collapses on the particle’s wave function.
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In the position representation, this operator becomes

⟨x∣T [ρ(t)] ∣y⟩ = λGRW [1 − e−(x−y)2/4r2
C] ⟨x∣ρ(t) ∣y⟩ (22)

As expected, the effect of the spontaneous collapse is to suppress the off-
diagonal elements of the density matrix, with a rate proportional to λGRW ,
depending also on the distance between the off-diagonal elements: distant
super- positions are suppressed faster than closer ones.

The many-particle master equation is the generalization of Eq. (21), where an
operator Ti[⋅], i = 1,2, ...,N , appears for each particle. For ordinary matter,
and with good approximation, one can separate the center-of-mass motion
from the internal motion (Ghirardi, Rimini, and Weber, 1986). The reduced
density matrix for the internal motion obeys the standard Schrödinger equa-
tion, while that for the center of mass is equivalent to Eq. (21), where now
the collapse rate entering the definition of the operator T [⋅] is NλGRW , with
N the total number of particles making up the object. This is a manifesta-
tion of the amplification mechanics, perhaps the most important feature of
collapse models: the wave function of an object collapses with a rate which
is proportional to the size of the system. This is the mathematical rea-
son that collapse models can accommodate both the quantum dynamics of
microscopic systems (negligible collapse rate) and the classical dynamics of
macroscopic systems (fast collapse) within one unified dynamical principle.

2.4 The QMUPL Model

We now focus our attention on the QMUPL model. As previously antici-
pated, the reason is that this model has the virtue of being both physically
realistic, although very simplified compared to the more realistic GRW and
CSL models, and mathematically simple enough to be analyzed in great de-
tail. The axioms defining this model are the same as those of the GRW model,
with the only difference that the dynamics is described by a stochastic dif-
ferential equation. The one- particle equation takes the form (for simplicity,
we work only in one dimension in space)

dψt = [− i
h̵
Hdt +

√
λ(q − ⟨q⟩t)dWt −

λ

2
(q − ⟨q⟩t)2dt]ψt (23)

where q is the position operator of the particle, ⟨q⟩t ≡ ⟨ψt∣ q ∣ψt⟩ is the quantum
expectation, and Wt is a standard Wiener process. For simplicity, we work
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in only one spatial dimension, the generalization to three dimensions being
straightforward. The collapse constant λ sets the strength of the collapse
mechanics, and it is chosen to be proportional to the mass m of the particle
according to2

λ = m

m0

λ0 (24)

where m0 is the nucleon’s mass and λ0 measures the collapse strength (Bassi,
2005). If we set λ0 ≃ 10−2m−2s−1, then the strength of the collapse mechanism
according to the QMUPL model corresponds to that of the GRW and CSL
models in the appropriate limit (Bassi and Dürr, 2009). Note also that the
QMUPL model is defined in terms of only one parameter (λ), while the GRW
model (and similarly the CSL model) is defined in terms of two parameters
(λGRW and rC).

We will return to the numerical values of the collapse parameter in Sec.
2.7. The generalization for a many-particle system can be easily obtained
by considering the position operator qi of every particle, each coupled to a
different Wiener process W

(i)
t . The structure remains the same with a t sum

to include the contribution to the collapse coming from each particle.

As expected, Eq. (23) contains both nonlinear and stochastic terms, which
are necessary to induce the collapse of the wave function. In order to see
this, consider a free particle (H = p2/2m), and a gaussian state

ψt(x) = exp [−at(x − x̄t)2 + ik̄tx + γt] (25)

It is not too difficult to show that ψt(x) is a solution of Eq. (23), pro-
vided that the time-dependent functions in the exponent solve appropriate
stochastic differential equations (Bassi, 2005). In particular, the equations
for at which control the spread in both position and momentum for the mean
position x̄t and the mean momentum k̄t are3

dat = [λ − 2ih̵

m
(at)2]dt (26)

2One should keep in mind that the collapse strength depends on the type of model.
For the GRW model, λGRW is a rate. For the QMUPL model, λ has the dimensions of an
inverse time, times an inverse square length. The two constants are related by requiring
that the collapse strengths according to different models coincide in the appropriate limit
(Bassi and Dürr, 2009).

3The superscripts “R” and “I” denote, respectively, the real and imaginary parts of the
corresponding quantities.
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dx̄t =
h̵

m
k̄tdt +

√
λ

2aRt
dWt (27)

dk̄t = −
√
λ
aIt
aRt
dWt (28)

Equation (26) is deterministic and easy to solve. The spreads in position and
momentum,

σq(t) =
1

2

√
1

aRt
, σp(t) = h̵

¿
ÁÁÀ(aRt )2 + (aIt )2

aRt
(29)

are given by the following analytical expressions:

σq =

¿
ÁÁÀ h̵

mω

cosh (ωt + ϕ1) + cos (ωt + ϕ2)
sinh (ωt + ϕ1) + sin (ωt + ϕ2)

(30)

σp =

¿
ÁÁÀ h̵mω

2

cosh (ωt + ϕ1) − cos (ωt + ϕ2)
sinh (ωt + ϕ1) + sin (ωt + ϕ2)

(31)

with

ω = 2

√
h̵λ0

m0

≃ 10−5 s−1 (32)

The two parameters ϕ1 and ϕ2 are functions of the initial condition. Also
note that setting λ0 = 0 will give the same results as those obtained by using
the Schrödinger equation instead of Eq. (23).

Equations (30) and (31) show that the spreads in position and momentum
do not increase in time, but reach an asymptotic final value given by

σq(∞) =
√

h̵

mω
≃
⎛
⎝

10−15

√
kg

m

⎞
⎠
m (33)

and

σp(∞) =
√

h̵mω

2
≃ (10−19

√
m

kg
) kgm

s
(34)

such that

σq(∞)σp(∞) = h̵√
2

(35)
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which corresponds to almost the minimum allowed by Heisenberg’s uncer-
tainty relations. As we see, the spread in position does not increase in-
definitely, but stabilizes to a finite value, which is a compromise between
Schrödinger’s dynamics, which spreads the wave function out in space, and
the collapse dynamics, which shrinks it in space. For microscopic systems,
this value is still relatively large [σq(∞) ∼ 1m for an electron, and ∼ 1mm
for a buckyball containing some 1000 nucleons], such as to guarantee that in
all standard experiments, in particular, diffraction experiments, one observes
interference effects. For macroscopic objects instead, the spread is very small
[σq(∞) ∼ 3×10−14m for a 1 g object], so small that for all practical purposes
the wave function behaves like a pointlike system. Once again, this is how
collapse models are able to accommodate both the wavy nature of quantum
systems and the particle nature of classical objects, within one single dynam-
ical framework. One should also note that, as a by-product of the collapse in
position, one has an almost perfect collapse in momentum, compatible with
Heisenberg’s uncertainty relations.

Equation (28) says that the mean momentum undergoes a diffusion process.
For microscopic systems, such a diffusion is appreciably large: the wave func-
tion is kicked back and forth by the collapse noise. For larger objects instead,
the diffusion becomes weaker and weaker to the point that at the macroscopic
level it is almost entirely negligible. The same is true for the mean in posi-
tion, according to Eq. (27). In this way, collapse models can explain both the
stochastic nature of quantum phenomena and the (apparently) deterministic
nature of classical ones. Moreover, the average momentum E[⟨p⟩t] is con-
stant (⟨p⟩t = h̵kt), while the average position is given by E[⟨q⟩t] = E[⟨p⟩t]/m:
the particle, on average, moves along a straight line, depending on its initial
momentum.

Two comments are in order. The first comment is that the above results refer
only to the special case of Gaussian wave functions, like that of Eq. (25).
However, Bassi and Duerr (2008) and Bassi, Dürr, and Kolb (2010) prove a
remarkable result: with probability 1, any initial state converges asymptot-
ically to a Gaussian wave function, having a fixed spread in both position
and momentum, given by Eqs. (33) and (34), respectively. The collapse pro-
cess not only localizes wave functions, but also smooths all their bumps and
eventually shapes them as Gaussian functions. The second comment is that
the above results refer only to a free particle. Also, the harmonic oscillator
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can be treated in a fully analytical way, but more general potentials require
perturbative approaches, which have not been explored so far.

To conclude this section, consider the many-particle equation

dψt = [− i
h̵
Hdt +

N

∑
i=1

√
λi(qi − ⟨qi⟩t)dW (i)

t − 1

2

N

∑
i=1

λi(qi − ⟨qi⟩t)2dt]ψt (36)

where H s the quantum Hamiltonian of the composite system, the operators
qi (i = 1, ...,N) are the position operators of the particles of the system, and

W
(i)
t (i = 1, ...,N) are N independent standard Wiener processes.

As often in these cases, it is convenient to switch from the particles’ coordi-
nates (x1, x2, ....., , xN) to the center-of-mass (R) and relative (x̄1, x̄2, ...., x̄N)
coordinates:

R = 1

M

N

∑
i=1

mixi
′ M =

N

∑
i=1

mi
′ xi = R + x̄i (37)

Let Q be the position operator for the center of mass and q̃i (i = 1, ...,N)
the position operators associated with the relative coordinates. It is not
difficult to show that, under the assumption H = Hc.m. +Hrel, the dynamics
for the center of mass and that for the relative motion decouple; in other
words, ψt({x}) = ψc.m.t (R) ⊗ ψrelt ({x̃}) solves Eq. (36) whenever ψc.m.t (R)
and ψrelt ({x̃}) satisfy the following equations:

dψrelt = [− i
h̵
Hreldt +

N

∑
i=1

√
λi(q̃i − ⟨q̃i⟩t)dW (i)

t

−1

2

N

∑
i=1

λi(q̃i − ⟨q̃i⟩t)2dt]ψrelt (38)

and

dψc.m.t = [− i
h̵
Hc.m.dt +

√
λc.m.(Q − ⟨Q⟩t)dWt

−λc.m.
2

(Q − ⟨Q⟩t)2dt]ψc.m.t (39)

with

λc.m. =
N

∑
i=1

λn =
M

M0

λ0 (40)
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The first of the above equations describes the internal motion of the compos-
ite system: it basically says that the internal structure of the system behaves
quantum mechanically, modulo small modifications given by the collapse pro-
cess. The second equation describes the center-of-mass evolution, and here we
can see once again the most important feature of collapse models: the amplifi-
cation mechanism. The collapse strength of the center of mass is proportional
to the size (i.e., the number of constituents) of the system. For microscopic
systems, λc.m. is similar to λ0, i.e., very weak; in these cases, the collapse is
almost negligible. For macroscopic objects, λc.m. (∼ Nλ0, with N ∼ 1024) can
be very strong, implying a rapid and efficient collapse of the wave function.
It is precisely because of the amplification mechanism that, with a single
choice of λ0, one can describe both quantum and classical phenomena at the
same time.

The quantum formalism derived : Collapse models contain a unique and uni-
versal dynamics, which applies to all physical situations. Measurements play
no special role in collapse models. It then becomes interesting and important
to show how the entire phenomenology of quantum measurements emerges
from the universal dynamics of collapse models. To do this, we use the
QMUPL model, because of its relatively simple mathematical structure. We
show that measurements always have a definite outcome, are randomly dis-
tributed according to the Born rule, and that at the end of the measurement
process the wave function of the micro- system collapses according to the von
Neumann projection postulate. All these features are included in Eq. (23),
without any need for extra axioms. The measurement setup we consider
consists of a microscopic system S interacting with a macroscopic system
A, which acts like a measuring apparatus; both systems are described in
quantum-mechanical terms. We assume that the measurement includes a
finite set of outcomes. Accordingly, we assume that the microscopic system
S can be described by a finite-dimensional complex Hilbert space. For sim-
plicity, and without loss of generality, we consider the simplest case HS = C2,
because the generalization of what follows to Cn is quite straightforward.
Since the most general self-adjoint operator O acting on C2 can be written
as

O = o+ ∣+⟩ ⟨+∣ + o− ∣−⟩ ⟨−∣ (41)

where ∣+⟩ and ∣−⟩ are the eigenstates of O, while o+ and o− are its two real
eigenvalues, for definiteness and with no loss of generality, in what follows
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we take o± = ±h̵/2 and O to be the z component of the spin Sz of a spin-1
2

particle.

We take the following model for the measuring apparatus A, which is gen-
eral enough to describe all interesting physical situations: we assume that the
apparatus consists of a fixed part plus a pointer moving along a graduated
scale, in such a way that different positions of the pointer along the scale
correspond to different possible outcomes of the measurement. To simplify
the analysis, we study the evolution of the center of mass of the pointer only,
and disregard all other macroscopic and microscopic degrees of freedom; ac-
cordingly, the pointer will be treated like a macroscopic quantum particle of
mass m moving in one dimension only, whose state space is described by the
Hilbert space HA = L2(R).

We assume that the wave function of the pointer of A is subject to a spon-
taneous collapse process according to Eq. (23), while the wave function
of the microscopic system S evolves according to the standard Schrödinger
equation, since, as is typical of dynamical reduction models, the stochastic
collapse terms have negligible effects on microscopic quantum systems. For
definiteness, consider a pointer of mass m = 1 g (i.e., a pointer made of an
Avogadro number of nucleons).

We take the total Hamiltonian H to be of the form H = HS +HA +HINT .
The first term is the quantum Hamiltonian for the microscopic system: we
assume that the time scale of the free evolution of the microscopic system is
much larger than the characteristic time scale of the experiment (the “instan-
taneous measurement” assumption); accordingly we take HS to be the null
operator. The second term is the quantum Hamiltonian of the pointer, which
we take equal to that of a nonrelativistic free quantum particle of mass m:
HA = p2/(2m), where p is the momentum operator. Finally we assume the
interaction term HINT between the two systems to be of the von Neumann
type, devised in such a way as to measure the spin Sz:

HINT (t) = κ∆T
t Sz ⊗ p (42)
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where κ is a coupling constant and ∆T ∶ t ↦ ∆T
t is a T -normalized,4 non-

negative, real-valued, function of time, identically equal to zero outside a
given interval of the form (t0, t0 +T ), i.e., outside the time interval of length
T , say T = 1 s, during which the experiment takes place; we choose the
time origin in such a way that the experiment begins at t0 = 0. As is well
known in standard quantum mechanics, HINT generates the following type
of evolution, depending on the initial state of the microsystem S:

[c+ ∣+⟩ + c− ∣−⟩]⊗ φ0 ↦ c+ ∣+⟩ ⊗ phi+ + c− ∣−⟩⊗ φ− (43)

where φ± are final pointer states spatially translated with respect to the
initial state φ0 by the quantity ±(h̵/2)κT . We will see how collapse models
modify this linear evolution.

The strength of the coupling constant κ has to be chosen in such a way that
the distance h̵κT between the initial state φ0 of the pointer and any of the
two final states φ± is macroscopic; for definiteness, we choose h̵κ = 1 cmsec−1

so that h̵κT = 1 cm.

We take the initial states of the microscopic system S and of the macroscopic
apparatus A to be completely uncorrelated, as is customary and appropriate
for the description of a measurement process. Accordingly, we assume the
initial state of the total system S +A to be

[c+ ∣+⟩ + c− ∣−⟩]⊗ φ0 (44)

where φ0 describes the “ready” state of the macroscopic apparatus A.

Some considerations are in order, regarding the initial state φ0 of the pointer.
According to Eq. (23), the wave function for the center of mass of an iso-
lated quantum system reaches asymptotically (and very rapidly, for a macro-
object) a Gaussian state of the form

ΦG
t (x) = 4

¿
ÁÁÀ 1

2πσ2
q

exp [−1 − i
4σ2

q

(x − x̄t)2 + ik̄tx] (45)

4By a T -normalized function, we simply mean

∫

+∞

−∞

∆T
t dt = ∫

t0+T

t0
∆T

t dt = T

Note that ∆T
t depends also on the initial time t0; we omit indicating this explicitly, when

no confusion arises.
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(modulo a time-dependent global phase factor) with σq defined as in Eq.
(33), taking the value σq ≃ 4.6 × 10−14m for m = 1 g. The dispersion of the
Gaussian function of Eq. (45) in momentum space is σp ≃ 1.6×10−21 kgms−1

as described in Eq. (34).

In our measurement model, we assume that the pointer is isolated for the
time prior to the experiment; during this time its wave function converges
rapidly toward a state close to Eq. (45), which we therefore assume to be
the initial state of the pointer. To summarize, we take as the initial state of
the composite system S +A the vector

Ψ0 = [c+ ∣+⟩ + c− ∣−⟩]⊗ φG (46)

We choose the natural reference frame where the pointer is initially at rest,
so that k̄0 = 0m−1, with the origin set up in such away that x̄0 = 0m.

We are now ready to solve the collapse equation. It is not difficult to show
that, for the given initial condition, the solution takes the form

ψt = ∣+⟩⊗ φ+t + ∣−⟩⊗ φ−t (47)

where φ±t have the form

φ±t (x) = exp [−αt(x − x̄±t )2 + ik̄±t x + γ±y + iθ±t ] (48)

whose parameters αt ∈ C, and x̄±t , k̄
±
t , γ

±
t , and θ±t ∈ R satisfy a complicated set

of nonlinear stochastic differential equations (Bassi and Salvetti, 2007), with
given initial conditions. In particular,

γ±0 = ln ∣c±∣ (49)

(of course we now assume that c± ≠ 0).

In order to extract the relevant physical information, consider the differences
Xt ∶ x̄+t − x̄−t and Kt ∶ k̄+t − k̄−t , which represent the distance in position and
(modulo h̵) momentum space between the centers of the two Gaussian func-
tions φ+t and φ−t . One can easily prove that Xt and Kt satisfy a set of linear
and deterministic equations (Bassi and Salvetti, 2007):

d

dt
[Xt

Kt
] = [ −ω h̵/m

−2λ 0
] [Xt

Kt
] + [h̵κ∆T

t

0
] (50)
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where both the nonlinear and the stochastic terms cancel out. The solution
of the above system depends of course on the specific choice for the function
∆T
t , a simple reasonable choice is the following:

∆T
t =

⎧⎪⎪⎨⎪⎪⎩

1 t ∈ [0, T ]
0 else

(51)

which, in a standard quantum scenario, means that during the measurement
each term of the superposition moves with a constant speed toward the left
and toward the right, respectively. According to this choice Xt, given the
initial condition X0 = 0m, evolves in time as follows:

Xt =
⎧⎪⎪⎨⎪⎪⎩

2h̵κ
ω e−ωt/2 sin ω

2 t for 0 ≤ t ≤ T
2h̵κ
ω e−ωt/2[sin ω

2 t − eωT /2 sin ω
2 (t − T )] for t ≥ T

(52)

Since ω−1 ≃ 2.0×104 s is a very long time compared to the measurement time,
we can meaningfully expand Eq. (52) to first order in ωt:

Xt =
⎧⎪⎪⎨⎪⎪⎩

h̵κt for 0 ≤ t ≤ T = (h̵κ)−1 = 1 s

1 cm for T ≤ t << ω−1 ≃ 2.0 × 104 s
(53)

As we see, the distance between the two peaks increases almost linearly in
time, reaching its maximum (1 cm) at the end of the measurement process,
as predicted by the standard Schrödinger equation. After this time, their
separation re- mains practically unaltered for extremely long times, and only
for t ≃ 2.0×104 s does it start slowly to decrease, eventually going to 0. Note
that such behavior, being determined by ω, does not depend on the mass of
the pointer; thus a larger pointer will not change the situation. The moral is
that Xt behaves as if the reduction mechanism were not present (as if λ0 = 0)
so we have to look for the collapse somewhere else.

As we see now, the collapse occurs because, in a very short time, the measure
of one of the two Gaussian wave functions (φ+t or φ−t ) becomes much smaller
than the measure of the other component. This implies that one of the two
components practically disappears, and only the other one survives, the one
which determines the outcome of the experiment. Of course, this process is
random and, as we prove, it occurs with a probability almost equivalent to
the Born probability rule.
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The relative damping between the two Gaussian components of Eq. (47) is
measured by the stochastic process

Γt = γ+t − γ−t (54)

Note that, according to Eq. (49), eΓ0 = ∣c+∣/∣c−∣, If, at the end of the mea-
surement process, Γt >> 1, it means that φ−t is suppressed with respect to
φ+t , so that the initial state (46) in practice evolves to ∣+⟩⊗ φ+t ; the opposite
happens if Γt << −1.

Bassi and Salvetti (2007) showed that Γt satisfies the nonlinear stochastic
differential equation

dΓt = λX2
t tanh Γtdt +

√
λXtdWt (55)

to be solved with initial condition Γ0 = ln ∣c+∣/∣c−∣.To proceed further with the
analysis, it is convenient to perform the following time change:

t→ st ∶= λ∫
t

0
X2
t dt

′ (56)

which allows us to describe the collapse process in terms of the dimensionless
quantity s that measures its effectiveness. Using Eq. (52), one can solve the
above integral exactly and compute s as a function of t. Such a function,
however, cannot be inverted analytically in order to get t from s. Therefore,
we use the simplified expression (53) in place of the exact formula (52) to
compute the integral, an expression which, as we have seen, represents a
good approximation to the time evolution of Xt throughout the whole time
during which the experiment takes place. Accordingly, we have

s ≡ st ≃
λh̵2κ2

3
t3 ≃ 2.0 × 1017 (t/s)3 (57)

for 0 ≤ t ≤ T = 1 s

t ≡ ts ≃
3

√
3

λh̵2κ2
s ≃ (1.7 × 10−6 3

√
s) s (58)

for 0 ≤ s ≤ λh̵2κ2/3 = 2.0 × 1017

Note that, according to the above equations, the physical time t depends on
s through the inverse cubic root of λ, i.e., on the inverse cubic root of the
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mass of the pointer. This time dependence of t on λ is important since, as
we shall see, it affects the collapse time. We do not study the functional
dependence between s and t for t ≥ T since, as we shall soon see and as we
expect, the collapse occurs at times much smaller than T .

Written in terms of the new variable s, Eq. (55) reduces to

dΓs = tanh Γsds + dWs (59)

This equation belongs to a general class of stochastic differential equations
whose properties are known in detail (Gikhman and Skorokhod, 1972). Here
we report the main results.

Collapse time: The collapse time is the time when ∣Γs∣ ≥ b ( where b is some
fixed number much larger than 1), i.e., the time when one of the two terms
of the superposition becomes dominant with respect to the other:

SCOL ≡ inf {s ∶ ∣Γs∣ ≥ b} (60)

This is a random variable (for each run of the experiment, the collapse
time slightly changes), whose mean and variance can be exactly computed
(Gikhman and Skorokhod, 1972). In particular, if we start with an equal-
weight superposition (Γ0 = 0), then EP[SCOL] ≃ b and VP[SCOL] ≃ b, where
EP[⋅] and VP[⋅] denote the mean and variance, respectively. If we transform
back from s to the physical time t, we have the following estimate for the
collapse time for the 1-g pointer (Bassi and Salvetti, 2007):

TCOL ≃ 1.5 × 10−4 s (61)

(This value refers to b = 35.) The collapse occurs within a time interval
smaller than the perception time of a human observer. Moreover, as proven
by Bassi and Salvetti (2007), TCOL is proportional to the inverse cubic root
of the mass of the pointer: therefore, the bigger the pointer, the shorter the
collapse time. With our choice for λ0, even for a 1-g pointer the reduction
occurs practically instantaneously.

It is important to note that, at time TCOL ≃ 1.5×10−4 s, the distance between
the two Gaussian components, according to Eq. (53), isXTCOL ≃ 1.5×10−4 cm:
this means that, with high probability, the collapse occurs before the two
components have enough time to spread out in space to form a macroscopic
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superposition. Thus, from the physical point of view, there is no collapse of
the wave function at all, since it always remains perfectly localized in space
at any stage of the experiment.

Collapse probability : We call P+ the probability Γs hits the point +b before the
point −b, i.e., the probability that φ+s survives during the collapse process so
that the outcome of the measurement is “+h̵/2”. Such a probability is given
by (Bassi and Salvetti, 2007)

P+ =
1

2

tanh b + tanh Γ0

tanh b
(62)

while the probability P− that Γs hits the point −b before the point +b, i.e.,
that the outcome of the experiment is “−h̵/2”, is

P− =
1

2

tanh b − tanh Γ0

tanh b
(63)

By taking into account that tanh b ≃ 1, since we have assumed that b >> 1,
and resorting to Eqs. (49) and (54), we can write, with good approximation
(Bassi and Salvetti, 2007),

P+ ≃
1

2
[1 + tanh Γ0] =

eΓ0

eΓ0 + e−Γ0

= e2γ+0

e2γ+0 + e2γ−0
= ∣c+∣2 (64)

P− ≃
1

2
[1 − tanh Γ0] =

e−Γ0

eΓ0 + e−Γ0

= e2γ−0

e2γ+0 + e2γ−0
= ∣c−∣2 (65)

We see that the probability of getting one of the two possible outcomes
is practically equivalent to the Born probability rule. On the one hand,
this is an entirely expected result, since collapse models have been designed
precisely in order to solve the measurement problem and, in particular, to
reproduce quantum probabilities. On the other hand, it is striking that a
general equation such as Eq. (23), which is meant to describe both quan-
tum systems and macroscopic classical objects (i.e., all physical situations,
at the nonrelativistic level), when applied to a measurement situation, not
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only provides a consistent description of the measurement process, but also
reproduces quantum probabilities with such a good precision.

State vector after the collapse: At time t ≥ TCOL the state of the composite
system is

Ψt =
∣+⟩⊗ φ̃+t + εt ∣−⟩⊗ φ̃−t√

1 + ε2t
(66)

where εt ≡ e−(γ
+

t −γ−t ) and the normalized Gaussian states φ̃±t are defined as
follows:

φ̃±t = 4

¿
ÁÁÀ 1

2πσ2
q

exp [−1 − i
4σ2

q

(x − x̄±t )2 + ik̄±t x + iθ±t ] (67)

We assume that the collapse occurred in favor of the positive eigenvalue, i.e.,
in such a way that Γt ≥ b for t ≥ TCOL; it follows that

εt ≤ e−b ≃ 0 if b >> 1 (68)

and we can write, with excellent accuracy,

Ψt ≃ ∣+⟩⊗ φ̃+t (69)

We recover in this way the postulate of wave-packet reduction of standard
quantum mechanics: at the end of the measurement process, the state of the
microsystem reduces to the eigenstate corresponding to the eigenvalue which
has been obtained as the outcome of the measurement, the outcome being
defined by the surviving Gaussian component (φ̃+t in this case). Note the im-
portant fact that, according to our model, the collapse acts directly only on
the pointer of the measuring apparatus, not on the microsystem. However,
the combined effect of the collapse plus the von Neumann type of interaction
is that the microscopic superposition of the spin states of the microsystem is
rapidly reduced right after the measurement.

Note finally that, after the collapse, the states of the microsystem and of the
pointer are de facto factorized: as such, after the measurement process one
can, for all practical purposes, disregard the pointer and focus only on the
micro- system for future experiments or interactions with other systems, as
is custom in laboratory experiments.

To conclude, we have seen how collapse models can describe quantum mea-
surements in a precise way, without ambiguities and paradoxes. We have seen
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that the standard recipe for quantum measurements (definite outcomes, the
Born rule, the postulate of wave-function collapse) derives from the dynam-
ical equation (23) and need not be postulated in an ad hoc way. But there
is something more: it can be shown (Bassi, Ghirardi, and Salvetti, 2007)
that the Hilbert space operator formalism, according to which observable
quantities are represented by self-adjoint operators, whose eigenstates and
eigenvalues have the role ascribed to them by standard quantum mechanics,
can also be derived from Eq. (23). In other words, in collapse models there is
only the wave function and a collapse equation such as Eq. (23): everything
else can be derived from it.

2.5 The origin of the noise field

As mentioned, the QMUPL model can be generalized in order to include
dissipative effects (Bassi, Ippoliti, and Vacchini, 2005) and nonwhite noises
(Bassi and Ferialdi, 2009a, 2009b; Ferialdi and Bassi, 2011). According to
these models, the noise field acquires a more physical character: it can be
assigned a finite temperature, and its spectrum is arbitrary; moreover, this
noise is assumed to fill space. It then becomes natural to consider whether
it can have a cosmological origin. At present it is too early to answer such a
question, although some work has already been done (Adler and Bassi, 2008)
and some already suggested that it could have a gravitational (Karolyhazy,
Frenkel, and Lukács, 1986; Diósi, 1989; Feynman et al., 1995; Penrose, 1996)
or pre- quantum (Adler, 2004) nature. Moreover, it is still not clear why it
has an anti-Hermitian coupling to matter, which is necessary to ensure the
collapse.5 However, one can meaningfully ask whether a noise with “typical”
cosmological properties (in terms of temperature and correlation function)
can induce an efficient collapse of the wave function, where by “efficient” we
mean that the collapse is fast enough to avoid the occurrence of macroscopic
superpositions.

We consider a Gaussian state as in Eq. (25), whose time evolution can be
analytically unfolded in all models so far described. The quantity we are
interested in is its spread in space, σt = (2

√
αRt )−1/2. This is plotted in Fig.

1.

5With a Hermitian coupling, one would have a standard quantum Hamiltonian with a
random potential; the equation would be linear and no suppression of quantum superpo-
sitions would occur.
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Figure 1: Difference between the spread σ predicted by the QMUPL model
from that given by the dissipative QMUPL (D-QMUPL) model, for T =
2.73K (top row left) and T = 2.73 × 10−3K(top row right), and by the
colored-noise (CN-QMUPL) model, with cutoff at 1010Hz(bottom row left)
and 102Hz(bottom row right). As the grayscale bars on the right show, the
whiter the region, the greater the difference in the spreads. The initial value
σ0 = 5 × 10−7m and the elapsed time t = 10−2 s eproduce the typical geome-
try of the macromolecule diffraction experiments. At lower temperatures or
lower cutoffs the wave function tends to collapse more slowly, which results
in a bigger difference with respect to the QMUPL model. Regarding the
plots in the top row, the discrepancy manifests in the lower left corner of the
plot for T = 2.73×10−3K and disappears for T = 2.73K. Regarding the plots
in the bottom row, it is manifest in the diagonal strip for γ = 102Hz and
decreases for γ = 1010Hz. This diagonal feature lies exactly on the ridge be-
tween the quantum and the classical regimes. The large discrepancy there is
due to the missing high frequencies in the noise spectrum of the colored-noise
model. Without these high frequencies the colored-noise model is not able
to reproduce the sharpness of the ridge predicted by the QMUPL model.
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The top row shows the difference in the evolution of the spread as given
by the dissipative QMUPL model and by the original QMUPL model. Two
temperatures have been considered: T = 2.73K (top row left), as for the
cosmic microwave background radiation (CMBR) and T = 2.73×10−3K (top
row right). In both cases the difference is negligible. This means that even
a rather cold thermal field, according to cosmological standards, can induce
an efficient collapse of the wave function, as efficient as with the standard
QMUPL model. The bottom row shows the difference in the evolution of the
spread as given by the QMUPL model and by the colored-noise model, with a
noise having a frequency cutoff. Neither high-frequency cutoff affects the col-
lapsing proper- ties of the model in an appreciable way. These results can be
compared with the behavior of typical cosmological fields such as the CMBR,
the relic neutrino background, and the relic gravitational background. The
spectra of the first two have a cutoff (measured or expected) at ∼ 1011Hz,
while the spectrum of the third one probably lies at ∼ 1010Hz (Grishchuk,
2010). All these cutoffs as well as that of ∼ 1015Hz proposed by Bassi and
Ghirardi (2003) for the collapse noise ensure a rapid collapse of the wave
function. While the collapse is robust over a large range of cutoffs, other ef-
fects, such as the emission of radiation from charged particles, greatly depend
on the spectrum of the noise correlator (Adler and Ramazanoğlu, 2007).

Therefore, the message that can be drawn is that a cosmological field with
typical properties can induce an efficient collapse. A great challenge is to
test the existence of such a field.

2.6 The CSL model

The QMUPL model has the advantage of allowing for quite a rigorous math-
ematical analysis of the main features of collapse models, as shown in the
previous sections. However it does not seem physically realistic, for two main
reasons. The first reason is that it is built for systems of distinguishable
particles, and its generalization to identical particles does not seem straight-
forward. The second reason is that the noise field depends only on time, not
on space; thus it cannot be immediately identified with a random field of
nature. The CSL model (Pearle, 1989; Ghirardi, Pearle, and Rimini, 1990)
overcomes the above difficulties and so far remains the most advanced col-
lapse model. In its mass-proportional version (Pearle and Squires, 1994), it
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is defined by the following stochastic differential equation in the Fock space:

dψt = [− i
h̵
Hdt +

√
γ

m0
∫ dx [M(x) − ⟨M(x)⟩t]dWt(x)

− γ

2m2
0
∫ dx [M(x) − ⟨M(x)⟩t]2dt]ψt (70)

As usual H is the standard quantum Hamiltonian of the system and the
other two terms induce the collapse of the wave function in space. The mass
m0 is a reference mass, which as usual is taken equal to that of a nucleon.
The parameter γ s a positive coupling constant which sets the strength of
the collapse process, while M(x) is a smeared mass density operator:

M(x) =∑
j

mjNj(x) (71)

Nj(x) = ∫ dy g(y − x)ψ†
j(y)ψj(y) (72)

ψ†
j(y) and ψj(y) being, espectively, the creation and annihilation operators

of a particle of type j in the space point y. The smearing function g(x) is
given by

g(x) = 1

(
√

2πrC)3
e−x2/2r2

C (73)

where rC is the second new phenomenological constant of the model. Wt(x)
is an ensemble of independent Wiener processes, one for each point in space.
(In the original, i.e., “not mass proportional”, CSL model, the integrals are
proportional to the number density operator, instead of the mass density
operator).

As one can see from Eq. (70), in the CSL model the collapse operators are
the density number operators ψ†

j ∗yψj(y), which means that superpositions
containing different numbers of particles in different points of space are sup-
pressed. This is equivalent to collapsing the wave function in space, in a
second-quantized language.

The collapse occurs more or less as in the QUMPL model, although it is more
difficult to unfold: an easier and more handy way to look at the collapse is
through the density matrix, in particular, how its off-diagonal elements decay
in time. Since ordinary matter is made just of electrons and nucleons and,
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according to Eqs. (70) and (71), the collapse effect on electrons is negligible
in comparison to the effect on nucleons, we focus our attention only on nu-
cleons.

According to Eq. (70), the decay of the off-diagonal elements of the density
matrix ρt ≡ E[∣Ketψt ⟨ψt∣] (where E[⋅] denotes the stochastic average) of a
many-nucleon system, in the position basis, is (Ghirardi, Pearle, and Rimini,
1990)

∂

∂t
⟨x̄′∣ρt ∣x̄′′⟩ = −Γ(x̄′, x̄′′) ⟨x̄′∣ρt ∣x̄′′⟩ (74)

where x̄′ ≡ x′1,x
′
2, .....,x

′
N (and similarly for x̄′′). In Eq. (74), we have ne-

glected the standard quantum evolution. The decay function Γ is

Γ = γ
2
∑
i,j

[G(x′ji − x′j) +G(x′ji − x′′j ) − 2G(x′i − x′′j )] (75)

where the indices i and j run over the N nucleons of the system, and

G(x) = 1

(4πr2
C)3/2 e

−x2/4r2
C (76)

For the first observation, in the case of a single nucleon Γ reduces to

Γ(x′,x′′) = γ

(4πr2
C)3/2 [1 − e−∣x′−x′′∣2/4r2

C] (77)

which is precisely the GRW one-particle collapse term [see Eq. (22)]. Accord-
ingly, the two models give similar predictions regarding the collapse effects
on systems containing just a few particles, while for many-particle systems
important differences emerge, as we soon see. The collapse rate is defined in
terms of γ as follows:

λCSL =
γ

(4πr2
C)3/2 (78)

Ghirardi, Pearle, and Rimini (1990) made the following choice for γ: γ ∼
10−30 cm3 s−1, corresponding to

λCSL ∼ 2.2−17 s−1 (79)

Note the difference of about 1 order of magnitude between λGRW and λCSL.

Several useful approximate formulas can be obtained from Eq. (75). The
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first one is for large distances. When the particles in a superposition are
displaced by a distance ` = ∣x′ − x′′∣ << rC , then according to Eq. (76) their
contribution to Γ is negligibly small. Thus, only superpositions with ` ≥ rC
contribute to Γ and trigger the collapse of the wave function. In such a case,
the formula shows that for groups of particles separated (in each term of the
superposition) by less than rC , the rate Γ increases quadratically with the
number of particles while for groups of particles separated by more than rC
it increases linearly. Thus we have the following simplified formula for the
collapse rate (Adler, 2007):

Γ = λCSLn2N (80)

where n is the number of particles within a distance rC , and N is the number
of such clusters. We note that the quadratic dependence of Γ on the number
of particles, which is absent in the original GRW model, is a direct effect of
the identity of particles. This means that the identity of particles works in
favor of the collapse.

An estimate for small distances can be obtained by Taylor expanding G(x)
as follows:

G(x) ≃ γ

(4πr2
C)3/2 [1 − x2

4r2
C

] (81)

which leads to

Γ(x′,x′′) ≃ λ

4r2
C

(∑
i

(x′i − x′′i ))
2

(82)

As we can see, and as expected, the collapse strength grows quadratically
with the superposition distance for small distances, as in the GRW and
QMUPL models, the important difference here being that there is a quadratic
dependence also on the number of particles. In both cases (large- and small-
distance approximations), we see the amplification mechanism: the collapse
rate increases with the size of the system.

Another useful formula can be obtained for macroscopic rigid systems, for
which the mass distribution can be expressed by a density function D(x),
averaging the contributions of the single nucleons. In such a case the decay
function Γ takes the simpler expression (Ghirardi, Pearle, and Rimini, 1990)

Γ(X′,X′′) = γ ∫ dx [D2(x) −D(x)D(x +X′ −X′′) (83)
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where X′ and X′′ are the positions of the center of mass of the object, in
the two terms of the superposition. The physical meaning of Eq. (83) can
be understood by making reference to a homogeneous macroscopic body of
constant density D. Then the decay rate becomes

Γ = γDnOUT (84)

where nOUT is the number of particles of the body when the center-of-mass
position is X′ which do not lie in the volume occupied by the body when the
center-of-mass position is X′′.

Further properties of the CSL model have been discussed by Ghirardi, Pearle,
and Rimini (1990) and Bassi and Ghirardi (2003).

2.6.1 The nature of the noise field of the CSL model

As anticipated, in contrast to the QMUPL model, in the CSL model the
noise field can be given a straightforward physical interpretation. In order
to see this, it is convenient to rewrite the CSL dynamical equation (70) in
the following equivalent form:

dψt = [− i
h̵
Hdt +

√
γ

m0
∫ dx [M(x) − ⟨M(x)⟩t]dW̄t(x)

− γ

2m2
0
∫ dxdy [M(x) − ⟨M(x)⟩t] ⋅G(x − y)

×[M(y) − ⟨M(y)⟩t]dt]ψt (85)

where M(x) is still the mass density operator defined in Eq. (71), while
Nj(x) now is the standard number density operator Nj(x) = ψ†

j(x)ψj(x),
and G(x) is the same Gaussian function defined in Eq. (76). The Wiener
processes W̄t(x) are not independent anymore; instead they are Gaussian
correlated in space, the correlator being G(x). The white-noise field w(t,x) ≡
dW̄t(x)/dt corresponds to a Gaussian field with zero mean and correlation
function

E[w(t,x)w(s,y) = δ(t − s)δ(x − y) (86)

As seen, the noise field of the CSL model can be interpreted as a (classical)
random field filling space. It is white in time for the simple reason that
white noises are easier to analyze mathematically. It is Gaussian correlated
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in space with correlation length equal to rC . As discussed in connection
with the QMUPL model, it is tempting to suggest that such a field has a
cosmological nature, and preliminary calculations show that a noise with
typical cosmological features yields a satisfactory collapse of the wave func-
tion (Bassi, Deckert, and Ferialdi, 2010). However, at this stage this is only a
speculation. Moreover, one has to justify the non-Hermitian coupling and the
nonlinear character of the collapse equations, which are necessary in order
to obtain the effective collapse dynamics.

2.6.2 Generalizations of the CSL model and relativistic models

Similar to the QMUPL model, the CSL model can also be generalized in
several directions. The first generalization one would make is to include dis-
sipative terms in order to solve the problem of energy nonconservation. In
fact, in the CSL model the energy also increases at a steady rate, although
such an increase is negligible for all practical purposes. This can be eas-
ily seen by noting that the one-particle master equation of the CSL model
coincides with the one-particle equation of the GRW model. This type of
generalization should not present particular problems; however, it has not
yet been worked out.

The second generalization consists of replacing the white-noise field with a
more general Gaussian noise. As for the QMUPL model, the equations be-
come non-Markovian and therefore difficult to analyze mathematically. The
analysis has been carried out to the leading perturbative order, with respect
to the collapse parameters γ, by Adler and Bassi (2007, 2008). The result of
the analysis is the expected one: the collapse qualitatively occurs with the
same modalities as in the white-noise case, the rate depending on the corre-
lation function of the noise. In particular, the rate is robust against changes
of the correlation functions, while other predictions are very sensitive to the
form of the time correlator (Adler and Ramazanoğlu, 2007). Much more
work is needed in order to understand the properties of the non-Markovian
CSL model.

The great challenge of the dynamical reduction program is to formulate a
consistent model of spontaneous wave-function collapse for relativistic quan-
tum field theories; many attempts have been proposed so far, none of which
is as satisfactory as the nonrelativistic GRW and CSL models.
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The first attempt (Ghirardi, Grassi, and Pearle, 1990; Pearle, 1990) aimed at
making the CSL model relativistically invariant by replacing Eq. (70) with
a Tomonaga-Schwinger equation of the type

δψ(σ)
δσ(x)

= [− i
h̵
H(x) −√

γ[L(x) − ⟨L(x)⟩]w(x)

−γ
2
[L(x) − ⟨L(x)⟩]2]ψ(σ) (87)

where now the wave function is defined on an arbitrary spacelike hypersurface
σ of space-time. The operator H(x) is the Hamiltonian density of the system
(x now denotes a point in space-time), and L(x) is a local density of the fields,
on whose eigenmanifolds one decides to localize the wave function. The c-
number function w(x) is a random field on space-time with mean equal to
zero, while the correlation function, in order for the theory to be Lorentz
invariant in the appropriate stochastic sense (Ghirardi, Grassi, and Pearle,
1990), must be a Lorentz scalar. And here the problems arise.

The simplest Lorentz-invariant choice for the correlation function is

E[w(x)w(y)] = δ(4)(x − y) (88)

which, however, is not physically acceptable as it causes an infinite produc-
tion of energy per unit time and unit volume. The reason is that in Eq. (87)
the fields are locally coupled to the noise which, when it is assumed to be
white, is too violent, so to speak, and causes too many particles to come out
of the vacuum. To better understand the situation, we return to the non-
relativistic equation (70): there also we basically have a white-noise process,
which, however, is not coupled locally to the quantum field a†(s,y)a(s,y),
the coupling being mediated by the smearing Gaussian function appearing
in the definition of N(x). One can compute the energy increase due to the
collapse mechanism, which turns out to be proportional to rC . Now, if we
want to have a local coupling between the quantum field and the noise, we
must set rC → +0 in which case the energy automatically diverges also for
finite times.

The simplest way out one would think of, in order to cure this problem of
Eq. (87), is to replace the local coupling between the noise and the quantum
field by a nonlocal one, as in the CSL equation (70); this procedure would
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essentially amount to replacing the white-noise field with a nonwhite one. In
both cases we need to find a Lorentz-invariant function which either smears
out the coupling or replaces the Dirac-δ function in the definition of the cor-
relation function (88). This, however, is not a straightforward task for the
following reason.

One of the reasons why the third term

γ

2
[L(x) − ⟨L(x)⟩]2

appears in Eq. (87) is to guarantee that the collapse mechanism occurs with
the correct quantum probabilities (for those who are experts in stochastic
processes, the third term is such that the equation embodies an appropriate
martingale structure); if we change the noise, we then have to also change
the third term, and it turns out that we have to replace it with a nonlocal
function of the fields (Nicrosini and Rimini, 2003; Myrvold, Christian, and
Pearle, 2009). But having a nonlocal function of the fields jeopardizes the
entire (somehow formal) construction of the theory based on the Tomanaga-
Schwinger formalism, as the integrability conditions are not automatically
satisfied. More analysis is required, but it is very likely that the model will
turn out to be inconsistent.

What we have briefly described is the major obstacle to finding a relativis-
tic dynamical reduction model. We briefly mention three research programs
which try to overcome such an impasse.

Pearle (1999b) spent many years in trying to avoid the infinite energy increase
of relativistic spontaneous-collapse models, e.g., by considering a tachyonic
noise in place of a white noise as the agent of the collapse process, obtaining
suggestive results. Unfortunately, as he recently admitted (Myrvold, Chris-
tian, and Pearle, 2009), this program was not successful. A promising new
way to tackle this problem was recently proposed by Bedingham (2011a,
2011b).

Dowker and Henson proposed a spontaneous-collapse model for a quantum
field theory defined on a 1 ) 1 null lattice (Dowker and Henson, 2004; Dowker
and Herbauts, 2004), studying issues such as the nonlocality of the model and
the no-faster-than-light constraint. More work needs to be done in trying to
apply it to more realistic field theories; in particular, it would be important
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to understand if, in the continuum limit, one can remove the divergences
which plague the relativistic CSL model.

Recently Tumulka (2006b), generalizing a previous idea of Bell (1987b), pro-
posed a discrete, GRW-like, relativistic model, for a system of N noninter-
acting particles, based on the multitime formalism with N Dirac equations,
one per particle; the model fulfills all the necessary requirements, and thus
it represents a promising step forward in the search for a relativistic theory
of dynamical reduction. Now it is important to understand whether it can
be generalized in order to also include interactions.

Recently a completely different perspective toward relativistic collapse mod-
els emerged (Adler, 2004). If one assumes that the random field causing
the collapse of the wave function is a physical field-filling space and possibly
having a cosmological origin, then there is no need to make the equations rel-
ativistically invariant. The noise would select a privileged reference frame in
pretty much the same way in which the CMBR identifies a preferred frame.
Then the collapse equation, since it is a phenomenological equation, need
not be relativistically invariant, being dependent on the noise. The under-
lying theory, out of which these equations would emerge at an appropriate
coarse-grained level, should respect the appropriate symmetries (Lorentz in-
variance or a possible generalization of it). The theory would explain the
origin of the noise field which, because of initial conditions, would break the
relevant symmetry. This is only speculation at the moment. However it is a
reasonable program, although difficult to carry out.

2.7 Choice of the parameters

The choice (19) for λGRW [or Eq. (79) for λCSL] and rC makes sure that
collapse models agree with all observational evidence about the quantum
nature of microscopic systems, while macro-objects are always localized in
space and behave according to Newton’s laws (within experimentally testable
limits). It sets a quantum-classical threshold at ∼ 1013 nucleons (Ghirardi,
Pearle, and Rimini, 1990; Bassi and Ghirardi, 2003).

Recently, a much stronger bound on the collapse rate was proposed (Adler,
2007), namely,

λAdler ≃ 2.2 × 10−8±2 s−1 (89)
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corresponding to a threshold of ∼ 105 nucleons. The underlying motivation is
that the collapse should be effective in all measurement processes, including
those involving only a small number of particles as happens in the process
of latent image formation in photography, where only ∼ 105 particles are
displaced by more than rC . In order for the collapse to be already effective
at this scale, one has to increase the conventional CSL value λCSL by 109±2

orders of magnitude. Equation (89) is also the value one has to take in order
to make sure that a superposition of six photons6 reaching the human eye
collapses within the eye itself (Bassi, Deckert, and Ferialdi, 2010). However,
the value λGRW makes sure that the collapse occurs before the signal reaches
the brain and turns into a perception (Aicardi et al., 1991).

Both values λCSL ≃ 2.2× 10−17 s−1 and λAdler ≃ 2.2× 10−8±2 s−1 are compatible
with known experimental data (Adler and Bassi, 2009). However, such a large
discrepancy of approximately 9 orders of magnitude shows that there is no
general consensus on the strength of the collapse process and consequently on
the scale at which violations of quantum linearity can be expected to manifest
themselves. Experiments will decide which value, if any, is the correct one.

3 Underlying Theories

It is beyond a doubt that if continuous spontaneous collapse models are the
right way to resolve the problems of quantum theory, these models must de-
rive from an under- lying physical theory based on new symmetry principles.
Here we review two such possibilities. Trace dynamics is such a theory, due
to Adler and collaborators, which bears the same relation to quantum theory
that thermodynamics bears to statistical mechanics and the kinetic theory
of gases. The other, which is not quite a theory yet, is the idea that gravity
has a role to play in bringing about collapse of the wave function.

3.1 Trace dynamics, quantum theory, and spontaneous
collapse

The commutation rules in canonical quantization are obtained starting from
the Poisson brackets in the classical theory. This may be somewhat unsat-
isfactory, since the classical theory itself is supposed to be a limiting case of

6Six photons correspond to the threshold of vision.
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the fundamental quantum theory. In order to know the fundamental theory
we should not have to know its limit. The quantum commutations should be
achieved in a more fundamental manner and this is what Adler’s scheme of
trace dynamics sets out to do. However, eventually the theory goes beyond
deriving quantum theory from a more fundamental framework and provides
a plausible resolution of the quantum measurement problem which is exper-
imentally testable.

The physics of trace dynamics can be described in the following three well-
laid out steps:

(i) The classical theory, which is the Newtonian dynamics of Grassmann-
valued noncommuting matrices, and which as a consequence of global
unitary invariance possesses a unique nontrivial conserved charge of
great significance (see Secs. 3.1.1, 3.1.2, 3.1.3, and III.A.4).

(ii) The statistical thermodynamics of this theory, the construction of the
canonical ensemble, and the derivation of equilibrium. The derivation
of an all- important Ward identity, as a consequence of assumed invari-
ance under constant shifts in phase space, from which there emerge,
as thermodynamic averages, the canonical commutation relations of
quantum theory, the Heisenberg equations of motion, and the equiv-
alent Schrödinger equation of quantum theory (see Secs. 3.1.5 and
3.1.6).

(iii) The consideration of Brownian motion fluctuations around the above
thermodynamic approximation, the consequent nonlinear stochastic
modification of the Schrödinger equation, the resolution of the quantum
measurement problem, and derivation of the Born probability rule (see
Sec. 3.1.7). The review below is based on the book by Adler (2004).
The interested reader should consult Adler’s book and the references
therein for further details.

3.1.1 The fundamental degrees of freedom

In this scheme the fundamental degrees of freedom are matrices existing
on a background space-time with complex Grassmann numbers (or, more
precisely, elements of a graded algebra GC of complex Grassmann numbers)
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as elements. Grassmann numbers have the following properties:

θiθj + θjθi = 0 , θ2
i = 0

χ = θR + iθI , {χr, χs} = 0

Thus we have a matrix field with the help of which to each space-time point
we can associate a matrix

M(x) =
⎛
⎜⎜⎜
⎝

χ11(x) χ12(x) ⋯ ⋯
χ21(x) χ22(x) ⋯ ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯

⎞
⎟⎟⎟
⎠

Some further important properties of these Grassmann (matrix) elements are
the following:

(i) A product of an even number of Grassmann elements commutes with
all the elements of Grassmann algebra.

(ii) A product of an odd number of Grassmann elements anticommutes
with any other odd-number product. Therefore we have two disjoint
sectors

The emphbosonic sector B consists of the identity and the even-grade ele-
ments of the algebra B ≡ {I, χaχb, χaχbχcχd, ....}.

The fermionic sector F consists of the odd-grade elements of the algebra
F ≡ {I, χa, χaχbχc, ....}. Therefore, the funda- mental degrees of freedom of
the trace dynamics theory are the matrices made out of elements from these
sectors:

BI ∈ {M ;Mij ∈ B} , χI ∈ {M ;Mij ∈ F} , BI , χI ∈ GM

where GM is the graded algebra of complex Grassmann matrices.

A general matrix can be decomposed as M = A1(∈ BI)+A2(∈ χI) into bosonic
and fermionic sectors. We note that, being matrices, the degrees of freedom
of this scheme are noncommutative in nature. The dimensionality of the
matrices can be arbitrary; however, we work with finite- dimensional matrices
with the assumption that everything done subsequently can be extended to
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infinite-dimensional matrices as well. Next, we define an operation trace on
this matrix field as follows: Tr ∶ GM → GC , which is a map from the space of
matrices (GM) to the field of complex Grassmann numbers (GC) and is given
by the sum of the diagonal elements of a given matrix. There are some nice
trace properties satisfied by the degrees of freedom of the theory:

TrB1B2 = TrB2B1 (90)

Trχ1χ2 = −Trχ2χ1 (91)

TrBχ = TrχB (92)

One also has some interesting trace trilinear cyclic identities:

TrB1⟪B2,B3⟫ = TrB2⟪B3,B1⟫ = TrB3⟪B1,B2⟫ (93)

TrB[χ1, χ2] = Trχ1[χ2,B] = Trχ2[χ1,B] (94)

Trχ1{B,χ2} = Tr{χ1,B}χ2 = Tr[χ1, chi2]B (95)

Trχ⟪B1,B2⟫ = TrB2⟪χ,B21⟫ = TrB1⟪B2, χ⟫ (96)

Trχ1⟪χ2, χ3⟫ = Trχ2⟪χ3, χ1⟫ = Trχ3⟪χ1, χ2⟫ (97)

where ⟪ ⟫ can be a commutator or an anticommutator. Next we verify that
the matrices have the following adjoint rule:

(Og1

1 ⋯Ogn
n )† = (−1)

∑
i<j
gigj

Ogn†
n ⋯Og1†

1

where gi is the grade (odd or even) of the matrix O. The anticommutative
feature of matrix elements induces nontriviality in the adjointness properties
as seen above.

We now examine the dynamics of these degrees of freedom and later construct
the statistical mechanics of a gas of such particles to find that the equations
of quantum theory are identities, valid in the thermodynamic limit of this
underlying theory.
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3.1.2 Classical dynamics

We can construct a polynomial P from these noncommuting matrices (say
O) and obtain the trace (indicated in bold) of the polynomial, P = TrP .
The trace derivative of P with respect to the variable O is defined as δP =
Tr(δP/δO)δO, i.e., the δ variation in P should be written so that the result-
ing δ variation of O in each monomial is on the right. Then terms coming
on the left of δO are defined as the trace derivative. It should be mentioned
that one always constructs P to be an even-graded element of Grassmann
algebra. Moreover, δO and δP are also taken to be of same type (bosonic
and/or fermionic) as O and P, respectively. Thus δP/δO will be of the same
type as O. For example, let P = AOBOC be a polynomial, where A, B, and
C are operators which in general do not commute with each other or with
the variable O. Then

δTrP = δP = Tr[εAOBOCA(δO) + εOCCAOB(δO)]

using trace properties (90)(92) and (97). Hence, the trace derivative will be
δP/δO = εAOBOCA+ εOCCAOB. Here εXY = +1 if either X or Y is bosonic,
and is equal to −1 if both X and Y are fermonic.

3.1.3 Lagrangian and Hamiltonian dynamics

Armed with these tools we write the Lagrangian of a theory as a Grassmann
even polynomial function of bosonic and/or fermionic operators {qr} and
their time derivatives {q̇r} with {qr, q̇r ∈ GM}. We define the trace Lagrangian

L[{qr},{q̇r}] = TrL[{qr},{q̇r}]

and subsequently the trace action

S = ∫ dtL

Using the trace derivative we obtain the equation of motion by extremizing
the action with respect to variation in qr using the differentiation technique
described above,

δL

δqr
= d

dt

δL

δq̇r
(98)
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This is a matrix equation; in component form we can write down N2 Euler-
Lagrange equations of motion using

( δL
δqr

)
ij

= ∂L

∂(qr)ij
Further we define the conjugate momenta as

pr ≡
δL

δq̇r

Since the Lagrangian is Grassmann even, the momentum will be of the same
type (bosonic and/or fermionic) as qr. In general the coordinates or the mo-
menta do not commute among each other, for these are all arbitrary matrices.
The trace Hamiltonian is obtained as

H =∑
r

prq̇r −L

Therefore, the Hamiltonian equations of motion are

δH

δqr
= −ṗr ,

δH

δpr
= εrq̇r (99)

where εr = ±1, depending upon whether r is a bosonic or fermionic degrees
of freedom.

We define a generalized Poisson bracket over the phase space {qr, pr},

{A,B} = Tr∑
r

εr (
δA

δqr

δB

δpr
− δB
δqr

δA

δpr
) (100)

which satisfies the Jacobi identity

{A,{B,C}} + {C,{A,B}} + {B,{C,A}} = 0

For A[{qr},{pr}, t] one can easily verify that

Ȧ = ∂A

∂t
+ {A,H} (101)

We observe that the matrix dynamics obtained above is nonunitary in gen-
eral. For operators that do not have explicit time dependence, Eq. (101)
does not show a unitary evolution of the type

ẋr(t) = i[G,x(t)]
However, for Weyl-ordered Hamiltonians, the trace dynamics evolution and
the Heisenberg unitary time evolution can be shown to be equivalent on an
initial time slice on which the phase-space variables are canonical.
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3.1.4 Conserved parameters

As an obvious result of Eq. (101), the trace Hamiltonian itself is conserved,

Ḣ = {H,H} = 0 (102)

Moreover, for a trace Hamiltonian restricted to a bilinear form in the fermionic
sector with a self-adjoint kinetic part

H = Tr ∑
r,s∈F

(prqsB1rs + prB2rsqs) + bosonic (103)

the quantity trace fermion number

N = 1

2
iT r∑

r∈F
[qr, pr]

is conserved, i.e., Ṅ = 0. This conserved charge corresponds to U(1) gauge
transformations of fermionic degrees of freedom:

qr → exp{iα}qr , pr → exp{iα}pr

for real and constant α and r ∈ F . The requirement of the bilinear fermionic
sector of H and the self-adjoint kinetic part forces

B1rs = −B†
1rs , B2rs = −B†

2rs

and pr = q†
r, resulting in

N = −iT r∑
r∈F

q†
rqr

which resembles the number operator for fermionic degrees of freedom.

Consider the restriction to matrix models in which the only noncommuting
matrix quantities are the dynamical variables. Thus the trace Lagrangian
and Hamiltonian are constructed from the dynamical variables using only c-
number complex coefficients, excluding the more general case in which fixed
matrix coefficients are used. Then there is a Nöether charge corresponding to
a global unitary invariance possessed by the trace Hamiltonian (or equivalent
Lagrangian) i.e.,

H[{U †qr, U},{U †q̇rU}] = H[qr, q̇r] (104)
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for some constant unitary matrix U . From Eqs. (99) and (104) , it can be
shown that this Nöether is

C̃ = ∑
r∈B

[qr, pr] −∑
r∈F

{qr, pr} (105)

which we call the Adler-Millard charge. This charge, having the dimensions
of action and being trivially zero in point-particle mechanics, makes all the
difference between trace dynamics and ordinary classical mechanics of point
particles where all position and momenta commute with each other. Note
that in Eq. (105) the individual (anti)commutators take arbitrary values in
time, yet the particular combination shown in this equation remains con-
served.

Now if the fermionic degrees of freedom have the adjoint- ness property of
pr = q†

r and the bosonic degrees of freedom are self-adjoint (or anti-self-
adjoint) then the conserved charge is anti-self-adjoint and traceless,

C̃ = −C̃† , T rC̃ = 0 (106)

Since C̃ is the Nöether charge corresponding to global unitary invariance of
the matrix model, it can be used to construct the generator of the global
unitary transformation

GΛ = TrΛC̃ with {GΛ,GΣ} = G[Λ,Σ] (107)

as the algebra of the generators. Now we consider those canonical transfor-
mations which have global unitary invariant generator G. For those canonical
transformations, clearly

{G,GΛ} = 0 (108)

Alternatively we can interpret Eq. (108) by saying that GΛ is invariant
under the action of G. Then along these lines it can be shown that C̃ is
Poincaré invariant when the trace Lagrangian is Poincaré invariant, where
Poincaré transformations are generated by trace functional Poincaré gen-
erators. These generators are globally unitarily invariant when the trace
Lagrangian is Poincaré invariant. Hence, we can make use of this charge
C̃ in Poincaré-invariant theories. If we consider a Lagrangian which has a
fermionic kinetic part given by

Lkin = Tr ∑
r,s∈F

q†
rArsq̇s (109)
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where Ars is a constant matrix having the property (for a real-trace La-
grangian) Ars = A†

sr, the C̃ is still conserved but now it can have a self-adjoint
part as well,

C̃ + C̃† = − ∑
r,s∈F

[qsq†
r,Ars] (110)

Generically, for a continuous space-time-based trace Lagrangian written in
terms of the trace Lagrangian density L[{ql(x)},{∂µql(x)}] which is invariant
under the following symmetry transformations:

ql(x)→ ql(x) + α(x)∆l(x)∂µql(x)
→ ∂µql(x) + α(x)∂µ∆l(x) + ∂µα(x)∆l(x) (111)

here is a local trace current

Jµ = Tr∑
l

δL
δ∂µql(x)

∆l(x)

for which
∂µJ

µ = 0

suggesting that there is a conserved charge

Q = ∫ d3xJ0(x)

For a globally unitary and Poincaré-invariant theory the conserved charges
are the following:

C̃ = ∫ d3x∑
l

(εlqlpl − plql) (112)

Pµ = ∫ d3xT 0µ (113)

Mµν = ∫ d3xM0µν (114)

where the momentum conjugate to ql(x) is

pl(x) =
δL

δ∂0ql(x)
(115)

the trace energy momentum density is

T µν = ηµνL − Tr∑
l

δL
δ∂µql

∂νql (116)
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ηµν = diag(−1,1,1,1) is the Minkowski metric, and

Mλµν = xµT λν − xνT λµ + Tr∑
lm

δL
δ∂λql

χνµlmqm (117)

is the trace angular momentum density, with χlm the matrix characterizing
the intrinsic spin structure of the field ql such that under four-space rotation

xµ → x′µ = xµ + θµνxνql(x′)
= ql(x) + 1

2θµν∑
m

χνµlmqm(x)

for the antisymmetric infinitesimal rotation parameter θµν . P0 is the con-
served trace Hamiltonian. P and Mµν together form a complete set of
Poincaré generators.

The matrix operator phase space is well behaved. We can define on this
phase space a measure

dµ = ∏
r,m,n

d(xr)Am,n (118)

where A = 0,1 for
(xr)mn = (xr)0

mn + i(xr)1
mn

This measure is invariant under canonical transformations (Louiville’s theo-
rem); hence under a dynamic evolution of the system as a time evolution it
is a canonical transformation generated by dtH,

dµ[{xr + dxr}] = dµ[{xr}]

Further, the bosonic and fermionic measures can be separated

dµ = dµBdµF

which are separately invariant under the adjointness properties assumed
above.

3.1.5 Canonical ensemble

With the matrix equation of motion (99) for time evolution in trace dynamics
we study the evolution of the phase-space distribution. We assume that
a large enough system rapidly forgets its initial distribution and the time
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averages of physical quantities are equal to the statistical averages over an
equilibrium ensemble which is determined by maximizing the combinatoric
probability subject to conservation laws. If

dP = dµ[{xr}]ρ[{xr}]

is the probability of finding the system in an operator phase- space volume
element dµ[{xr}], then

∫ dP = 1

For a system in statistical equilibrium, the phase-space density distribution
is constant,

ρ̇[{xr}] = 0

Hence ρ depends only upon conserved operators, conserved trace function-
als, and constant parameters. By going to a frame where the system is
not translating, accelerating, or rotating, the charges associated with the
Poincaré symmetry can be set to zero. In that case

ρ = ρ(C̃,H,N)

In addition, the distribution function of dynamical variables can depend on
the constant parameters

ρ = ρ(Trλ̃C̃;H, τ ;N, η)

where λ̃, τ , and η are the Lagrange multipliers conjugate to C̃, H, and N,
respectively. One important aspect to note is that while H and N belong to
GC , C̃ ∈ GM . Hence τ, η ∈ GC while λ̃ ∈ GM . The dependence of ρ on Trλ̃C̃ is
motivated from global unitary invariance. If C̃ has a self-adjoint part as well,
one can break it into its self-adjoint (sa) and anti-self- adjoint (asa) parts,

ρ = ρ(Trλ̃saC̃sa, T rλ̃asaC̃asa;H, τ ;N, η)

Next we define the ensemble average of an operator O as

⟨O⟩ = ∫ dµρO

which is a map from GM to GC . This ensemble average has the following
properties:
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(i) When O is constructed only from phase-space variables {xr} then this
ensemble average depends only on the constant parameters λ̃ = {λ̃, τ, η},

⟨O⟩ = FO(λ̃)

(ii) Since the integration measure is unitarily invariant and O is made up
of only {xr} using c-number coefficients, under a global unitary trans-
formation

FO(λ̃) = UFO(U−1λ̃U)U−1

(iii) As a consequence FO(λ̃) depends explicitly on λ̃ only and hence com-
mutes with λ̃.

[λ̃, ⟨O⟩] = 0

Taking a specific case when O = C̃

[λ̃, ⟨C̃⟩] = 0

Being (anti-)self-adjoint λ̃ can be diagonalized by a unitary transfor-
mation, and hence so can ⟨C̃⟩. Again specializing to anti-self-adjoint λ̃
and ⟨C̃⟩ we get that

(a) For a real, non-negative, diagonal magnitude operator Deff and
unitary diagonal phase operator ieff, ⟨C̃⟩ = ieffDeff.

(b) Since C̃ is traceless,
Tr(ieffDeff) = 0

(c) The anti-self-adjointness of C̃ is ensured with

ieff = −i†eff and [ieff,Deff] = 0

(d) As a consequence of this decomposition

i2eff = −I

For an ensemble symmetric in Hilbert space basis, i.e., the ensem-
ble does not prefer any state, the averaged operator should have
identical en- tries as eigenvalues. Therefore,

Deff = kI
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Clearly Deff is determined by a single real number with dimension
of action,

⟨C̃⟩ = ieffh̵ (119)

The constant h̵ will eventually be identified with Planck’s con-
stant.

The traceless ⟨C̃⟩ implies
Tr ieff = 0

The above-mentioned properties of ieff along with property (d) force the
dimension of Hilbert space to be even and uniquely fix ieff to

ieff = i[diag(1,−1,1 − 1, ....,1,−1)]

Next we obtain the functional form of ρ through maximizing the entropy
defined as

S = ∫ dµρ log ρ (120)

subject to the constraints

∫ dµρ = 1 , ∫ dµρC̃ = ⟨C̃⟩

∫ dµρH = ⟨H⟩ , ∫ dµρN = ⟨N⟩

which gives

ρj = Z−1
j exp(−Trλ̃C̃ − τH − ηN −∑

r

Tr jrxr)Zj

= ∫ dµ exp(−Trλ̃C̃ − τH − ηN −∑
r

Tr jrxr) (121)

where we introduced a bookkeeping matrix source term jr for each matrix
variable xr, of the same type(B/F ) and adjointness that can be varied and
set to zero. This helps us in obtaining the ensemble properties of functions
made explicitly of the dynamic variables {xr}. In that case

⟨O⟩j = ∫ dµρjO (122)

with
⟨O⟩AV,j = ∫ dµρjO
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Using this distribution and partition function we can evaluate the ensemble
averages

⟨λ̃⟩ = −
δ logZj

δλ̃
(123)

⟨H⟩ = −
∂ logZj
∂τ

(124)

⟨N⟩ = −
∂ logZj
∂η

(125)

and the mean square fluctuations

∆2
P̃ ,C̃

≡ (trP̃ δ

δλ̃
) logZj (126)

∆2
H ≡

∂2 logZj
∂τ 2

(127)

∆2
N ≡

∂2 logZj
∂η2

(128)

with P̃ any arbitrary fixed anti-self-adjoint operator.

We further study the structure of averages of dynamical variables in the
canonical ensemble. This study is essential for subsequent connection with
the emergent quantum theory. According to the previous discussion,

⟨C̃⟩ = ieffDeff

and λ̃ is related to ⟨C̃⟩ using only c-number coefficients. Since Deff is a
constant times identity,

λ̃ = λieff (129)

for a real c number λ. Now for a unitary matrix Ueff that commutes with ieff

[Ueff, λ̃] = 0⇒ Ueffλ̃U
†
eff = λ̃ (130)

Clearly, the presence of the Trλ̃C̃ term in the partition function breaks the
global unitary invariance since under

qr → U †qrU , pr → U †prU , C̃ → U †C̃U

Trλ̃C̃ = λTr ieffC̃ → λTrUieffU
†C̃ (131)
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Thus, the presence of this term breaks the global unitary invariance to {Ueff}.
With this residual invariance in the canonical ensemble we define an integra-
tion measure as

dµ = d[Ueff]dµ̂

with d[Ueff] the Haar measure on the residual symmetry group and dµ̂ the
measure over operator phase space when the overall global unitary transfor-
mation Ueff is kept fixed.

In this case, for a polynomial Reff which is a function of ieff and the dynamical
variables {xr},

ReffAV ≡ ∫
d[Ueff]dµ̂ρReff

∫ d[Ueff]dµ̂ρ
(132)

Now we fix the Ueff rotation

qr = U †
effq̂rUeff , pr = U †

effp̂rUeff

it results in
Reff = U †

effR̂effUeff

and hence

ReffAV ≡ ∫
d[Ueff]U †

effReffÂVUeff

∫ d[Ueff]
In the above equation,

ReffÂV ≡ ∫
dµ̂ρ̂R̂eff

∫ dµ̂ρ̂

where R̂eff and ρ̂ are obtained from Reff and ρ by replacing q, p therein with
q̂, p̂ as defined above.

Writing ieft = iσ3IK , where IK is a unit K×K matrix, a general N×N matrix
M can be decomposed into the form (with N = 2K)

M =Meff +M12 (133)

with
Meff = 1

2(σ0 + σ3)M+ + 1
2(σ0 − σ3)M−

and
M12 = σ1M1 + σ2M2
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Here σi, i = 1,2,3 are 2 × 2 Pauli matrices and σ0 = I2. The M+,−,1,2 are four
K ×K matrices. These new matrices satisfy

[ieff,Meff] = 0 , {ieff,M12} = 0 (134)

2ieffMeff = {ieff,Meff} (135)

In irreducible systems unitary fixing can be done by fixing the global unitary
rotation of one canonical pair of dynamical variables. With the restricted
measure we need to know the restricted canonical average C̃ÂV . Since unitary
fixing does not disturb ieff, for any operator O made up of {xr} using c-
number coefficients,

[λ̃,OÂV ] = 0

When O = C̃,
[λ̃, C̃ÂV ] = 0

Using properties (135), the most general C̃ÂV commuting with λ̃ is

C̃ÂV = ieffh̵ + 1
2(σ0 + σ3)∆+ + 1

2(σ0 − σ3)∆− (136)

Thus, the ensemble average in the unitary fixed system is different from
the canonical ensemble average (119). However, since the unitary fixing
has been done by restricting only one canonical pair, in systems involving a
large number of canonical pairs, the restricted average should be close to the
unrestricted average. Therefore, ∆± should be small.

3.1.6 General Ward identity and emergence of quantum theory

Thus far we have progressed from the classical theory of trace dynamics
to developing a statistical thermodynamics of this theory. We now have in
hand the tools necessary to describe the emergence of quantum theory in this
thermodynamic approximation. The first step is the derivation of a crucial
general Ward identity. This identity should be thought of as an analog of
the equipartition theorem in statistical mechanics, and its implications in
the present context are deeply connected with the existence of the Adler-
Millard charge and its canonical average (119). Averages now are defined
with respect to the restricted measure. Under a constant shift of any matrix
variable apart from the restricted pair

xr → xr + δxr , r ≠ R,R + 1

∫ dµ̂δxr(ρj)) = 0 (137)
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Using this and the definition of average given above for an O = {C̃, ieff}W ,
we get

∫ dµ̂δxs [exp(−Trλ̃C̃ − τH − ηN −∑
r

Tr jrxr)

×Tr{C̃, ieff}W ] = 0 (138)

Using the chain rule we have

∫ dµ̂ exp(−Trλ̃C̃ − τH − ηN −∑
r

Tr jrxr)

× [(−Trλ̃δxsC̃ − τδxsH − ηδxsN −∑
r

Tr jsδxs)

× {C̃, ieff}W + δxs{C̃, ieff}W ] = 0 (139)

Evaluating term by term in Eq. (139) we have7

Trλ̃δxsC̃ = Tr [λ̃,∑
r

ωrsxr] δxs

δxsH =∑
r

ωrsTr ẋrδxs , δxsN = i∑
r

ω̃rsTr xrδxs

δxsTr{C̃, ieff}W = Tr({ieff,W}δxsC̃ + {C̃, ieff}δxsW )

with, further, for a polynomial W

δxsW =∑
l

WLl
s δxsW

Rl
s

where l labels each monomial in the polynomial. W
Ll/Rl
s is the left (right)

fraction of a monomial. Collecting the above terms and plugging back into

7ω = diag(ΩB , ...,ΩB ,ΩF , .....,ΩF ) with

ΩB = (
0 1
−1 0

) , ΩF = −(
0 1
1 0

)

for bosonic and fermionic degrees of freedom.
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Eq. (139) with some manipulations leads to the generalized Ward identity

⟨Λµeff
⟩j = ⟨(−τ ẋeff + iηξuxueff −∑

s

ωusjseff)

× TrC̃ieffWeff + [ieffWeff, xueff]

+∑
s,l

ωusεl (WRl
s

1
2{C̃ieff}WLl

s )
eff
⟩
j

= 0

with ξu = 1(−1) for sermonic q (p), zero for bosonic xu, and

∑
s

ωusωrs = δur (140)

The Ward identity can be written more compactly as

⟨Dxueff⟩j −∑
s

ωusjseff⟨TrC̃ieffWeff⟩j = 0 (141)

where

Dxueff =(−τ ẋeff + iηξuxueff)TrC̃ieffWeff

+ [ieffWeff, xueff]
+∑

s,l

ωusεl (WRl
s

1
2{C̃ieff}WLl

s )
eff

(142)

From Eq. (141) we see that for a polynomial S made up of xreff and c-number
coefficients,

⟨SL(xreff)[DS(xreff)]SR(xreff)⟩0 = 0

for left and right decompositions of the polynomial S.

We now make the following realistic assumptions:

(i) The support properties of ẋueff and C̃eff are such that −τ ẋeffTrC̃ieffWeff

in Eq. (142) can be neglected.

(ii) The chemical potential η is very small, such that the term iηξuxueffTrC̃ieffWeff

in Eq. (142) can be neglected. In fact, for bosonic degrees of freedom
this term vanishes and it is taken to be small for fermionic degrees of
freedom.
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(iii) When the number of degrees of freedom is large, C̃ can be replaced by
its zero-source ensemble average ⟨C̃eff⟩ÂV = ieffh̵.

With these assumptions the right-hand side of the identity (142) simplifies
to

ieff[Weff, xueff] − h̵∑
s

ωus (
δW

δxs
)

eff

and Eq. (141) implies ⟨Dxueff⟩0 = 0. If we consider W = H in the Ward
identity, we obtain

Dxueff = ieff[Heff, xueff] − h̵ẋeff

which gives the effective Heisenberg equations of motion for the dynamics
when sandwiched between SL(xteff) and SR(xteff) and averaged over the zero-
source ensemble. For an arbitrary polynomial function Peff made up of xreff

⟨SL(xteff)ṖeffSR(xteff)⟩0 = ⟨SL(xteff)ieffh̵
−1[Heff, Peff]SR(xteff)⟩0

suggesting that within our assumptions Heff is a constant of motion. Next
for W = σ̃vxv for some c-number parameter σ̃v we get

ieffDxueff = [xueff, σ̃vxveff] − ieffh̵ωuvσ̃v (143)

Thus, when multiplied with SL(xteff) and SR(xteff) and aver- aged over the
zero-source ensemble effective canonical commutators emerge:

⟪queff, qveff⟫ = ⟪pueff, pveff⟫ = 0 ′ ⟪queff, pveff⟫ = ieffh̵δuv (144)

with ⟪ ⟫ the anticommutator (commutator) for u, v fermionic (bosonic). It is
important to emphasize that these commutation relations emerge only upon
statistical averaging, as a consequence of the presence of the conserved Adler-
Millard charge. At the level of the underlying theory of trace dynamics, the
commutators and anticommutators among the above operators are arbitrary.

Next let W = G be a self-adjoint operator such that G generates canonical
transformation

h̵−1Dxueff = ieffh̵
−1[Geff, xueff] − δxeff (145)

Thus, spanning between SL(xteff) and SR(xteff) that do not contain xµ, and
averaging, we see that infinitesimal canonical transformations at the ensemble
level and within the above-mentioned assumptions are generated by unitary
transformations

Ucan eff = exp (ieffh̵
−1Geff)
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Therefore, we have at hand the essential features of quantum field theory.
The (anti)commutator structure, the time evolution in the Heisenberg pic-
ture, and the unitary generation of canonical transformations emerge when
we carry out the statistical thermodynamics of the matrix variables.

Now we make the following correspondences between operator polynomials
in trace dynamics and operator polynomials in quantum field theory:

ψ†
0⟨S({xreff})⟩ÂV ψ0 = ⟨vac∣S({Xreff}) ∣vac⟩

Using Eqs. (143) and (144), and the proposed correspondence we have at
the quantum level

[Xueff, σ̃vXveff = ieffh̵σ̃vωuv (146)

which gives the appropriate commutators at the quantum level, for both
bosonic and fermionic degrees.

The time evolution is given by

Ẋueff = ieffh̵
−1[Heff,Xueff] (147)

or equivalently for a polynomial Seff of {Xeff}

Ṡueff = ieffh̵
−1[Heff, Sueff] (148)

For the fermionic anticommutator to be an operator equation, the following
adjointness assignment is required:

ψreff = qreff ↔ Qreff = Ψreff , ψ†
reff = preff ↔ Preff = ieffΨ†

reff (149)

such that
{Ψueff,Ψ

†
veff} = h̵δuv (150)

For the bosonic sector we obtain creation and annihilation operators Areff

and A†
reff such that

Queff = 1√
2
(Areff +A†

reff) , Pueff = 1√
2ieff

(Areff −A†
reff) (151)

and
[Aueff,Aveff] = [A†

ueff,A
†
veff] = 0 , [Aueff,A

†
veff] = h̵δuv (152)

Thus, we have the correct commutation and anticommutation rules for bosonic
and fermionic degrees of freedom in both the ieff = ±i sectors.
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Once we have the Heisenberg equations of motion (147) and (148), we can
make the transition to the Schrödinger picture as usual, without making
any reference to the background trace dynamics theory. When the effective
Hamiltonian has no time dependence, we define

Ueff(t) = exp (−ieffh̵
−1tHeff) (153)

so that

d

dt
Ueff(t) = −ieffh̵

−1HeffUeff(t) ,
d

dt
U †

eff(t) = ieffh̵
−1U †

eff(t)Heff (154)

From the Heisenberg picture time-independent state vector ψ and time-
dependent operator Seff(t), in the Schrödinger picture we perform the con-
struction

ψSchr(t) = Ueff(t)ψ , Seff Schr = Ueff(t)SeffU
†
eff(t) (155)

which gives

ieffh̵
d

dt
ψSchr(t) =HeffψSchr(t)

d

dt
ψeff Schr(t) = 0 (156)

To obtain the Schrödinger equation, we make contact with space-time by
taking the label r as x⃗. In that case, the fermionic anticommutator becomes

{Ψeff(x⃗),Ψ†
eff(y⃗)} = h̵δ

3(x⃗ − y⃗) (157)

We assumed that Heff is bounded from below, having the vacuum state ∣V⟩
as the lowest eigenvalue state, and that Ψeff should annihilate it,

Ψeff ∣V⟩ = 0

Therefore,
⟨V ∣Ψeff(x⃗)Ψ†

eff(y⃗) ∣V⟩ = h̵δ
3(x⃗ − y⃗) (158)

Similarly for the bosonic operator Aeff

⟨V ∣Aeff(x⃗)A†
eff(y⃗) ∣V⟩ = h̵δ

3(x⃗ − y⃗) (159)

Thus, an analysis of Eq. (158) will analogously apply for Eq. (159) as well.
Defining

h̵1/2Ψn(x⃗) = ⟨V ∣Ψeff(x⃗) ∣⟩
we obtain

∑
n

Ψn(x⃗)Ψ∗
n(y⃗) = δ3(x⃗ − y⃗) and ∫ d3yΨ∗

n(y⃗)Ψm(y⃗) = δnm (160)
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from Eq. (158). Then, using the Heisenberg equation of motion,

h̵1/2 d

dt
Ψn(x⃗) = ⟨V ∣ ieffh̵

−1[Heff,Ψeff(x⃗)] ∣n⟩ (161)

Again, defining

Heff = ∫ d3yΨ†
eff(y⃗)HeffΨeff(y⃗)

we get
[Heff,Ψeff(x⃗)] = −Heff(x⃗)Ψeff(x⃗)

thus modifying Eq. (161) into a Schrödinger equation,

ieffh̵
d

dt
Ψn(x⃗) = Heff(x⃗)Ψn(x⃗) (162)

However, in deriving Eq. (162) we have made certain approximations valid
at equilibrium. More explicitly, we replaced C̃ by its canonical average. If
we also consider the fluctuations about the average quantities, we have pos-
sibilities of obtaining a stochastic equation of evolution by adding stochastic
nonlinear terms to the Schrödinger equation. Herein perhaps lies the greatest
virtue of trace dynamics. By treating quantum theory as a thermodynamic
approximation to a statistical mechanics, the theory opens the door for the
ever-present statistical fluctuations to play the desired role of the nonlinear
stochasticity which impacts on the measurement problem.

If we consider fluctuations in C̃ to be described by

∆C̃ ≃ C̃ − ieffh̵
1
2{C̃, ieff} = −h̵ + 1

2{∆C̃, ieff}1
2{∆C̃, ieff}

= −h̵(K +N ) (163)

with fluctuating c number K and fluctuating matrix N , we obtain the mod-
ified linear Schrödinger equation (restricting to the ieff = i sector)

∣Φ̇⟩ =(ih̵−1{−1 + [K0(t) + iK1(t)]}Heff

+ 1
2i[M0(t) + iM1(t)]) ∣Φ⟩ (164)

where 0 and 1 label the real and imaginary parts of K and

M(t) =∑
r,l

mrN (t)r,l
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In the above equations mr is the rest mass of the rth species such that the
Hamiltonian is

H =∑
r
∑
l

1

2
imr[ψ†

rl, ψrl] + constant (165)

with l labeling a general complete basis set and we have used the correspon-
dence proposed between trace dynamics and quantum mechanics,

∣Φ⟩ =∏
r,l

Ψ†
rleff ∣V⟩

As we see next, with the added assumption of norm conservation through
Eq. (164) trace dynamics connects with a CSL-type nonlinear stochastic
equation. However, the weak link, in the chain, at the present stage of our
understanding, is the assumption that norm is conserved. Rather than being
an assumption, this should follow from the underlying theory, and hopefully
with improved understanding this will become possible in the future. On the
other hand, the presence of anti- Hermitian modifications in the Schrödinger
equation is inevitable from the trace dynamics viewpoint, since it is possible
for C̃ to have a self-adjoint part as well.

3.1.7 Stochastic modification of the Schrödinger equation

A further indication that the fluctuations can be described by linear su-
perposition of white-noise terms is the hierarchy between the length scale
associated with the C̃ fluctuation and the length scale characterizing the
emergent quantum degrees of freedom, much as in the case of Brownian mo-
tion [287] fluctuations. Brownian motion is described by a stochastic process
dW n

t satisfying the following Itô table:

(dW n
t )2 = γndt (166)

dW n
t dW

m
t = 0m m ≠ n (167)

dW n
t dt = dt2 = 0 (168)

For our case we make the following identifications:

(i) For c-number fluctuations K0,1,

ih̵−1K0dt = iβldW I
t (169)

−h̵−1K1 = βRdWR
t (170)
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with the Itô table

(dWR
t )2 = (dW I

t )2 = dt , dWR
t dW

I
t = 0

(ii) For the fluctuating matrixM0,1, having spatially correlated noise struc-
ture

1

2
iM0dt = i∫ d3xdW I

t (x⃗)MI
t (x⃗) (171)

−1

2
M1 = ∫ d3xdWR

t (x⃗)MR
t (x⃗) (172)

with
dW I

t (x⃗)dW I
t (y⃗) = γdtδ3(x⃗ − y⃗) (173)

dWR
t (x⃗)dWR

t (y⃗) = γdtδ3(x⃗ − y⃗) (174)

dW I
t (x⃗)dWR

t (y⃗) = 0 (175)

dW I
t dW

I
t (y⃗) = dW I

t dW
R
t (y⃗) = 0 (176)

dWR
t (x⃗)dW I

t (y⃗) = dWR
t (x⃗)dWR

t (y⃗) = 0 (177)

These identifications turn Eq. (164) into a stochastic differential equation,

∣dΦ⟩ = [−ih̵−1Heffdt + iβIdW I
t Heff + βRdWR

t Heff

+ i∫ d3xdW I
t (x⃗)MI

t (x⃗)

+∫ d3xdWR
t (x⃗)MR

t (x⃗)] ∣φ⟩

The above evolution is not norm preserving. The idea is to define a physical
state ∣Ψ⟩ (= ∣Φ⟩ / ⟨Φ ∣Φ⟩) with a conserved norm (as assumption) which, along
with the criterion of the absence of superluminal signaling, after a lengthy
calculation, gives

d ∣Ψ⟩ = [−ih̵−1Heffdt + iβIHeffdW
I
t −

1

2
[β2

IH
2
eff

+ β2
R(Heff − ⟨Heff⟩)2]dt + βR(Heff − ⟨Heff⟩)2dWR

t

+ i∫ d3xMI(x⃗)dW I
t (x⃗) −

γ

2
dt∫ d3x{MI(x⃗)2

+ [MR(x⃗) − ⟨MR(x⃗)⟩]2 + ∫ d3x [MR(x⃗)

−⟨MR(x⃗)⟩]2dWR
t (x⃗)] ∣Ψ⟩
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This equation is a stochastic nonlinear Schrödinger equation which has the
martingale structure8 of spontaneous-collapse models and is capable of ex-
plaining state vector reduction. In this sense, trace dynamics is an underlying
theory for spontaneous-collapse models. Of course, at the present stage of
understanding, it cannot pick one collapse model out of the many discussed,
nor provide a theoretical origin for the values of the CSL parameters λ and
rC . Nonetheless, one cannot escape the profound and natural hypothesis
that, on the one hand, thermodynamic equilibrium corresponds to quantum
theory and, on the other hand, fluctuations around equilibrium correspond
to stochastic modifications of quantum theory. Why the effect of stochas-
ticity must be larger for larger systems remains to be understood. Nor is it
understood why norm should be preserved during evolution in trace dynam-
ics: one should not have to put this in as an assumption into the theory, but
rather have it come out of the underlying theory as a consequence.

For explicit demonstration of the collapse of the wave function induced by
stochasticity, we study a simplified version,

d ∣Ψ⟩ ={−ih̵−1Heff − 1
2[β

2
R(A − ⟨A⟩)2 + β2

IA
2]} ∣Ψ⟩dt

+ βR(A − ⟨A⟩) ∣Ψ⟩dWR
t + iβIA ∣Ψ⟩dW I

t (178)

with

dρ̂ =ih̵−1[ρ̂,Heff]dt − 1
2 ∣β∣

2[A, [A, ρ̂]]dt
+ βR[ρ̂, [ρ̂,A]]dWR

t + iβI[A, ρ̂]dW I
t (179)

Defining E[ ] as the expectation with respect to the stochastic process
(E[dWR

t ] = 0 = E[dW I
t ]) and variance of A,

V = ⟨(A − ⟨A⟩)2⟩ = Tr ρ̂A2 − (Tr ρ̂A)2

and using the Itô product rules gives

dE[V ] = E[dV ] = −4β2
RE[V 2]dt (180)

8For stochastic ∣Ψ⟩

dρ̂ = (d ∣Ψ⟩) ⟨Ψ∣ + ∣Ψ⟩ (d ⟨Ψ∣) + (d ∣Ψ⟩)(d ⟨Ψ∣)
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Therefore,

E[V (t)] = E[V (0)] − 4β2
R∫

t

0
dsE[V (s)2] (181)

Using the inequality

0 ≤ E[(V −E[V ])2] = E[V 2] −E[V ]2

this becomes

E[V (t)] ≤ E[V (0)] − 4β2
R∫

t

0
dsE[V (s)2]

Non-negativity of the variance suggests that E[V (∞)] = 0 and again as V (t)
is not supposed to be negative anywhere this will enforce

V [∞]→ 0

As the variance in expectation of A goes to zero asymptotically, the system
in this way results in one of the eigenstates9 of A. The demonstration of
collapse using a system-apparatus interaction in the QMUPL model in Sec.
2 is a specific explicit application of this general analysis.

Also, we obtain from Eq. (181)

E[V (t)] ≤ V [0]
1 + 4β2

RV [0]t

and hence a time scale of reduction as Γ = 4β2
RV [0].

We can also see that in such a reduction scheme the Born probability rule
follows for the outcomes. To see that, we take Πa as the projector into the
ath eigenstate of operator A,

Πa = ∣a⟩ ⟨a∣

Now for any operator G commuting with Heff and A,

E[d⟨G⟩] =Tr(−h̵−1[G,Heff]E[ρ̂]
− 1

2 ∣β∣
2[G,A][A,E[ρ̂]])dt = 0 (182)

9An open question is how to make sure that the preferred basis for the collapse, as
chosen by trace dynamics, corresponds to some sort of position basis in order to guarantee
that macroscopic objects are always localized in space.
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If the initial state of the system is

∣Ψi⟩ =∑
a

pia ∣a⟩

at t = 0 when the stochastic evolution has not started,

E[⟨Πa⟩]t=0 = ⟨Πa⟩t=0 = ∣pia∣2 (183)

As we have argued, when the evolution is driven by A, the system results
in a particular eigenstate ∣f⟩ with some probability Pf . Then for the ath
eigenstate,

E[⟨Πa⟩]t=∞ =∑
f

⟨f ∣Πa ∣f⟩Pf = Pa (184)

Now, since A was taken to be commuting with Heff, we can choose their
simultaneous eigenstates, which we call ∣a⟩. Therefore, the operators Pia
constructed from these eigenstates will commute with Heff and A, resulting
in the time independence of E[⟨Πa⟩] as is evident from Eq. (182). Therefore,

E[⟨Πa⟩]t=0 = ⟨Πa⟩t=0 = E[⟨Πa⟩]t=∞ (185)

giving Pa = ∣pia∣2. Thus, we have obtained the Born probability rule.

We have seen that when treated as a fluctuation around the thermodynamic
limit of trace dynamics theory, the emergent nonlinear equation captures
the essential features of CSL, and, in a sense, can possibly be a theoretical
motivation for the phenomenological CSL equation of evolution. Of course
at the present stage of understanding, trace dynamics makes no definite
prediction for the actual numerical values of the CSL parameters, and this
remains a challenge for the theory.

3.2 Gravity-induced collapse

The general theory of relativity dictates that gravity is the curvature of space-
time. This curvature is produced by classical material bodies. However, even
the motion of classical bodies possesses intrinsic quantum fluctuations, and
these fluctuations imprint a small uncertainty on space-time structure. When
one considers the motion of quantum-mechanical objects on such a fluctu-
ating space-time, the coherence of the quantum state can be lost, providing
a possible mechanism for wave-function collapse in the macroscopic domain,
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while leaving microphysics untouched by gravity. Counterintuitive though
it may seem, gravity possibly plays a profound role in bringing about wave-
vector reduction, as the studies de- scribed below indicate.

3.2.1 The model of Karolyhazy (K model)

The proposal of Karolyhazy (Karolyhazy, 1966; Karolyhazy, Frenkel, and
Lukács, 1986) deals with a smearing of space-time which results from the
fundamental uncertainty in quantum theory being forced upon space-time
structure. It starts with the viewpoint that nature somehow tries to recon-
cile classical general relativity with quantum mechanics as much as possible.
Space-time has in general a fairly definite metric structure mainly determined
by classical massive objects with fairly definite positions. However, the met-
ric should not be completely sharp and must have an inbuilt haziness to avoid
contradiction with the fundamental quantum aspect of massive objects (the
spread in positions and momenta). Even a macroscopic massive body will
have to satisfy δxδv ≥ h̵/2m where m is the mass of the body. The resulting
haziness in the metric produced by the body leads to a stochastic correction
in the evolution of state vectors in quantum theory.

The basic idea of the approach is that when a wave packet of the center
of mass of a body, sufficiently narrow in the beginning, spreads out in the
Schrödinger evolution, into a space domain larger than a critical value (char-
acteristic to the system), the coherence between distinct parts of the wave
function gets destroyed, owing to space-time haziness. This is interpreted as
a signal for stochastic reduction of the extended wave function to one of its
smaller, coherent parts.

a. Quantum imprecision of space-time

Consider a world-line segment s = cT , in a flat space-time. We estimate the
precision with which we can realize this segment. Thus, the segment of the
t axis is to be realized by the narrowest possible tube formed by a standing-
wave packet. At the start (i.e., at the bottom of the world-line segment) let
the width of the wave packet be ∆x0. For mass M of the wave packet the
velocity spread is

∆V = h̵

2M∆x0
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The corresponding spread at the end (i.e., at the top of the line segment)
will be

∆x = ∆V T = h̵

2M∆x0c
cT (186)

The uncertainties ∆x and ∆x0 are the uncertainties in the top and bottom of
the segments as well as in the lengths of the segments. A minimum amount
of uncertainty in the lengths of the segment will be introduced if we choose

∆x = ∆x0 (187)

Clearly the uncertainty in the lengths of the segments de-reases with increas-
ing M and a pointlike description becomes progressively more valid. Now
the gravitational radius of the mass M is bounded by the fact that it should
not be greater than the spread ∆x,

∆x ≈ GM
c2

(188)

From Eqs. (186)-(188), the uncertainty in the length of the segment is given
by

(∆s)2 = (∆x)2 = h̵

2Mc
cT = h̵

2Mc
s = Gh̵

2∆sc3
s = (Gh̵

2c3
)

2/3
s2/3 (189)

This relation giving the minimum amount of uncertainty in space-time struc-
ture is often known as the Karolyhazy uncertainty relation. Therefore, we
should be careful in using classical space-time considerations once the length
of the segment starts approaching its uncertainty value, thus providing a
critical length scale for the system.

Next we consider a physical space-time domain of nearly Minkowski metrics
with a corresponding smear structure as argued by Karolyhazy (1966) and
Karolyhazy, Frenkel, and Lukács (1986). We introduce a family {gβµν} of
matter-free metrics very close to the Minkowski metric, where different β
mark different members (hence different metrics) of the family. The proper
length s = cT between two world points x1 and x2 will be defined as the mean
value of the lengths sβ corresponding to different gβµν ,

s = s̄β (190)
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with the bar describing the average over β. The uncertainty in the line
segment is defined as

∆s = [(s − sβ)2]1/2 (191)

In the family of metrics β = 0 gives the Minkowski metric. In the present
analysis attention will be confined to the case in which we do not have macro-
scopic bodies moving relatively to each other with a velocity near that of
light. The coordinate system will therefore be assumed to be one relative to
which all macroscopic bodies move slowly. This will enable us to confine our
use of the set {sβ} to nonrelativistic many-particle wave equations in spite
of the fact that by invoking curved manifolds we are employing the language
of general relativity.

Since we are considering only slowly moving particles v << c, only the (g00)β
part of the metric will be required for the analysis. The general form of the
metric in the family is of the form

(g00)β(x) = −1 + γβ(x) (β ≠ 0)

Since the space-time is matter free apart from the test particle, we have

◻γβ = 0

Now the idea is to fix the set γ−β in such a way that the length of the world
line

sβ = ∫ dt [gβµν
dxµ

dt

dxν

dt
]

1/2
(192)

is averaged to Eq. (190), and the uncertainty obtained from Eq. (191) is the
same as obtained in Eq. (189). We thus do not regard the functions γbeta
as dynamical variables; rather we represent physical space-time by the whole
set {gβµν} at once. In this spirit we construct γ’s through their Fourier series,

γβ(x) =
1

L3/2∑
k⃗

{cβ(k⃗) exp i(k⃗ ⋅ x⃗ − ωt + c.c} (193)

where L is the length of an arbitrarily chosen large box (for normalization),

k⃗ = 2π

L
n⃗ and ω = c∣k⃗∣
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We now choose an integer Nk⃗ > 2 for each k⃗ and introduce a To see the

qualitative effect of such a smearing we start with random variable α(k⃗)
such that

α(k⃗) ∈ 2ı

Nk⃗

[0,1,2, .....,Nk⃗ − 1]

For a particular α(k⃗) a particular Fourier coefficient cβ(k⃗) is given by

cβ(k⃗) = f(k) exp [iα(k⃗)] (194)

The unknown function f(k) is obtained from the scheme proposed above and
is found to be

f(k) = (Gh̵
2c3

)
1/3
k−5/6 (195)

using Eq. (189). The contribution to fk for large values of k comes from the
requirement that Eq. (189) should be valid even if s is very small. Clearly, Eq.
(189) is not meaningful in the limit s → 0 and a cutoff is assumed: f(k) = 0
for k > 1013 cm−1, s < 10−13 cm. It is asserted that details of the cutoff are
not important, and only long-wave components are relevant. This has been
contested by Diósi and Lukács (1993) who claimed that this cutoff is at a very
high, physically unacceptable, value of k and leads to absurd situations such
as neutron-star-scale densities all over space. However, it seems that this
objection can possibly be avoided by working entirely in real space, without
going to Fourier space (Frenkel, 2002). The analysis of Karolyhazy has been
repeated by Frenkel, according to whom some of the Fourier sums diverge in
some intermediate expressions, but “in the formulas for physical quantities
these sums are convergent”. In this work, the impact of the Karolyhazy
uncertainty relation is realized, not by introducing a family of metrics, but
by introducing a local time operator, and a corresponding phase operator in
the wave function describing the quantum state. The final results on wave-
vector reduction are the same as those described below.

To consider wave propagation (Schrödinger-type evolution) in this “hazy”
space-time, we introduce a family {ψβ} of wave functions corresponding to

the metric family {gβµν}. For a single scalar elementary particle, via the
relativistic Klein-Gordon equation

1
√−gβ

∂

∂xµ
(√−gβgµνβ

∂φ

∂xν
) − (mc

h̵
)

2

φ = 0
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we obtain the nonrelativistic generalization

ih̵
∂

∂t
ψβ = (− h̵

2

2m
∇2 + Vβ)ψβ (196)

The small perturbation Vβ is given by

Vβ(x⃗, t) =
mc2γβ(x⃗, t)

2

More interesting is the case for many particles: the multi- particle equation,
where Vβ is replaced by

Uβ({X⃗}, t) =∑
i

mic2γβ(x⃗i, t)
2

, {X⃗} = {x⃗} (197)

To see the qualitative effect of such a smearing we start with an initial “com-
posite wave function” Ψ0({X⃗},0) for all the metrics {gβµν}. After the evolu-
tion the Ψβ({X⃗}, t) will become different. We can write, to a good approxi-
mation,

Ψβ({X⃗}, t) = Ψ0({X⃗}, t)eiφβ({X⃗},t) (198)

with

φβ({X⃗}, t) = −1

h̵ ∫
t

0
dt′Uβ({X⃗}, t) (199)

We choose and fix an X⃗1 and an X⃗2 and calculate the difference in phase
between these two points in configuration space for different β. The answer
will depend on β and on time. The root-mean-square spread in the phase
(the average is over β) can be estimated as a function of {X⃗1, X⃗2} and time t.
The uncertainty in the relative phase depends only on the separation between
the two points in configuration space and for a sufficiently large separation
can reach the value π.

b. Microscopic and macroscopic behavior

For a single quantum particle of mass M for small values of a ≡ ∣x⃗1 − x⃗2∣ the
spread in the phase ∆(a) << π, and only for a large critical value ac ∆(ac) ≈ π
will be achieved. The spread in the phase and the separation for which the
critical value is reached can be calculated as described above. We next dis-
cretize the space in terms of coherence cells of dimension ac. If initially the
particle is confined to a single cell, then Schrödinger evolution will try to
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spread the wave packet, resulting in the wave function extending over to dif-
ferent cells, and the set {ψβ} will no longer behave as a single coherent wave
function. When the original coherent set develops incoherent parts of compa-
rable weights, it is taken as a signal for stochastic reduction of {ψβ} to a single
cell. Therefore, this stochastic reduction scheme is governed by Schrödinger
evolution and the stochastic part comes through smearing of the space-time
metric. This process provides us with a description of a physical phenomenon
taking place regardless of the presence of any observer. Still this formal- ism
indicates steps toward but does not provide any formal embedding of the idea
of stochastic jumps into evolution in a consistent mathematical framework.
It can be heuristically argued that microscopic quantum particles will take
an astronomically large time before their wave functions “spill over” a single
coherence shell, making the possibility of stochastic reduction very remote.

For an elementary particle of mass m, it can be shown that (Frenkel, 2002)

ac ≈
h̵2

G

1

m3
≈ ( L

Lp
)

2

L , L ≈ h̵

mc
(200)

and the critical time of reduction can be shown to be

τc ≈
ma2

c

h̵
(201)

For a proton one finds

ac ≈ 1025 cm , quadτc ≈ 1053 s

thus showing that one can never observe wave-packet reduction for a pro-
ton. The origin of the expression for the reduction time lies in the fact that
according to the Schrödinger equation, a wave packet initially spread over
ac will spread to a size 2ac over time τc. When this happens, we could take
that as an indicator of loss of coherence and hence stochastic reduction. The
dynamics thus consists of cycles of deterministic Schrödinger evolution fol-
lowed by stochastic jumps - something fully reminiscent of the GRW model,
a comparison to which we return shortly. In fact, τc is analogous to λ−1 in
GRW, and ac is analogous to rc.

For more complex systems, such as a macroscopic body, one works with the
center-of-mass coordinate. However, care is needed because the gravitational
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perturbation described by the multiparticle potential (197) depends on an
extended region of space. Still it can be shown that only the phase of the
wave function of the center of mass is affected, and the already introduced
concepts of coherence cells and coherence length ac can be applied to the
center-of-mass coordinate. In such cases not only the mass M of the system
but the size R also enters into the expression for ac (as arbitrariness in the
metric will be experienced throughout the size). It can be shown that

ac ≈ ( h̵
2

G
)

1/3 R2/3

M
= ( R

Lp
)

2/3

L , L = h̵

mc

The reduction time is again given by Eq. (201). For a ball of R = 1 cm
and for terrestrial densities this gives ac ≈ 10−16 cm and τc ≈ 10−4 s. The
wave function undergoes 104 expansion-reduction cycles per second, and at
the end of each cycle the momentum performs a jump ∆pc of the order h̵/ac
which corresponds to a velocity shift of the order of ac/τc ∼ 10−12 cm/s. These
repeated kicks amount to an anomalous Brownian motion and a small as-
sociated energy nonconservation of the order of h̵2/Ma2

c , another feature in
common with spontaneous-collapse models.

One can try to understand the transition region from microbehavior to mac-
robehavior. We have seen that for R ≈ 1 cm we have ac << R. Furthermore,
Eqs. (200) and (202) become the same when ac = R. So one can now classify

(i) ac >> R (i.e., h̵2/G >>M3R), the microbehavior regime

(ii) ac ≈ R (i.e., h̵2/G ≈M3R), the transition region

(iii) ac << R (i.e., h̵2/G <<M3R), the macrobehavior regime

If ac >> R it can be shown (Frenkel, 2002) that Eq. (200) continues to hold,
for a micro-object having an extended linear size R.

Setting ac = R in Eq. (202) and assuming the density to be about 1 g/cm3

for terrestrial bodies gives for the transition region

atr ≈ 10−5 cm , τ tr ≈ 103 s , M tr ≈ 10−14 g (202)

It is significant that atr coincides with the favored value for rC in the GRW
and CSL models. The transition mass corresponds to about 1010 amu. Note
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that because the Planck length and the size of the body also enter the picture,
the transition occurs at a mass much lower than the simplistic but much
higher Planck mass (10−5 g).

Interestingly, the jump velocity ∆vc = ac/τc in a reduction cycle takes its
maximal value in the transition region ac ≈ R and decreases on either side
away from this transition region (Karolyhazy, Frenkel, and Lukács, 1986).

Thus we obtain a transition point which, in principle, can be used as a
test. The measurement process can be argued as interactions resulting in
significant change in the mass distribution of the whole setup (system and
surroundings) making the definite and different outcome states incoherent
and thereby reducing the state of the setup to a particular outcome. Still the
formal mathematical framework of this idea is missing, making it a challenge
to precisely calculate the characteristics of quantum state reduction.

The K model was also discussed by Karolyhazy (1974, 1990, 1995), Frenkel
(1977, 1990, 1995, 1997, 2002), and Karolyhazy, Frenkel, and Lukacs (1982).

c. Comparison with GRW model

There is a fascinating similarity between the K model and the GRW model,
despite significant differences in detail. The overall picture of Schrödinger
evolution interrupted by stochastic reduction is the same. In the K model,
the origin of the stochasticity lies in the intrinsic uncertainty of space-time
structure, whereas in the GRW model the origin is left unspecified. However,
both models have length and time scales (ac and τc in the K models and rC
and λ−1 in the GRW model). There are no free parameters in the K model,
whereas the GRW model introduces new parameters λ and rC . Thus it is
entirely possible that gravity might provide the fundamental underpinning
for models of spontaneous collapse. Of course a mathematically rigorous
treatment of gravity in theK model remains to be developed, but the physical
principles and semirigorous results already obtained are highly suggestive by
themselves.

An important early study comparing the K and the GRW models was made
by Frenkel (1990). It should be noted that, while in both cases the reduction
time decreases with increasing mass, the quantitative dependence is different.
In the K model, for ac ≥ R the reduction time falls as 1/m5, and if ac << R it

94



falls as 1/m5/9, assuming a fixed density. In the GRW model, the reduction
time simply falls as 1/m, whereas we have seen that in the CSL model the
dependence is more complex. Similarly, ac falls with increasing mass. While
rC in the GRW model does not depend on mass, the linear size to which the
stochastic reduction confines an expanding wave packet does depend on mass
- this linear size is the analog of the coherence cell ac (Frenkel, 1990). In light
of modern experiments there is perhaps a need for a more careful comparison
between the quantitative predictions of the K model and the GRW and CSL
models. Also, a careful quantitative description of the quantum measurement
process, showing the emergence of the Born rule, seems to not yet have been
developed in theK model. A time-evolution equation for the density operator
in the K model, analogous to the corresponding equation in the GRW model,
was discussed by Frenkel (1990); see also related discussions by Unturbe and
Sanchez-Gomez (1992).

3.2.2 The Diósi model

Diósi’s approach (Diósi, 1987), while similar to Karolyhazy’s, is inspired by
the famous work of Bohr and Rosenfeld (Wheeler and Zurek, 1983) which
investigated the principles of measuring the electromagnetic field by appara-
tuses obeying quantum mechanics. It was argued by Diósi and Lukacs (1987)
that if a Newtonian gravitational field g = −∇φ is measured by a quantum
probe over a time T , then its average g̃(r, t) over a volume V exhibits an
uncertainty which is universally bounded by

(δg̃)2 ≥ h̵G

V T
(203)

This is Diósi’s analog of the Karolyhazy uncertainty relation, and the idea
now is to see how this intrinsic quantum imprecision in the space-time metric
affects the Schrödinger evolution of a quantum state in quantum mechanics.

To this effect, Diósi introduces the concept of a universal gravitational white
noise, by proposing that the gravitational field possesses universal fluctu-
ations [in other words the potential φ(r, t) is a stochastic variable] whose
stochastic average equals, up to numerical factors of order unity, the intrin-
sic uncertainty given by Eq. (203),

⟨[∇φ̃(r, t)]2⟩ − [⟨∇φ̃(r, t)⟩]2 = constant × h̵G

V T
(204)
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From here it can be shown that, assuming ⟨φ(r, t)⟩ ≡ 0, the correlation func-
tion of φ(r, t) is given by

⟨φ(r, t)φ(r′, t′)⟩ − h̵G∣r − r′∣−1δ(t − t′) (205)

The probability distribution of the stochastic variable φ(r, t) is completely
specified by this correlation function if the distribution is assumed to be
Gaussian (Gaussian white noise).

Next one seeks the effect of the stochastic fluctuations in φ on the propaga-
tion of the quantum state ψ of a system whose evolution is assumed to be
described by the Schrödinger equation

ih̵ψ̇ = (Ĥ0 + ∫ φf̂(r)d3r)ψ(t) (206)

where f̂(r) stands for the operator of the local mass density of the system.

ψ is now a stochastic variable, and the corresponding density operator ρ̂ =
⟨ψ(t)ψ†(t)⟩ obeys the following deterministic master equation for the as-
sumed Gaussian white noise:

˙̂ρ = − i
h̵
[Ĥ0, ρ(t)] −

G

2h̵∬
d3rd3r′

∣r − r′∣
[f̂(r), [f̂(r), ρ̂(t)]] (207)

The second term on the right-hand side is the damping term which represents
the universal violation of quantum mechanics.

To compute the nature of the violation, denote the configuration coordinates
of a dynamical system by X, and denote the corresponding mass density at a
point r by f(r∣X). Given a pair of configurations, a characteristic damping
time τd(X,X ′) is defined by

[τd(X,X ′)]−1 = G

2h̵∬
d3rd3r′

[f(r∣X) − f(r∣X ′)][f(r′∣X) − f(r′∣X ′)]
∣r − r′∣

(208)
Introducing the coordinate eigenstates ∣X⟩ the master equation can be writ-
ten as

⟨X ∣ ˙̂ρ ∣X ′⟩ = − i
h̵
⟨X ∣ [Ĥ0, ρ(t)] ∣X ′⟩ − [τd(X,X ′)]−1 ⟨X ∣ ρ̂ ∣X ′⟩ (209)
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Just as in decoherence and in models of spontaneous collapse, the second term
on the right-hand side destroys interference between the states ∣X⟩ and ∣X ′⟩
over the characteristic time τd, and this effect can become significant if the
difference between the mass distributions f(r∣X) and f(r∣X ′) is significant.

To estimate the scale of the gravitationally induced violation Diósi considered
a dynamical system consisting of a rigid spherical ball of homogeneously
distributed mass m and radius R, so that the configuration X is represented
by the center-of-mass coordinate x. The characteristic damping time τd is
given by

τd(x,x′) = h̵[U(∣x − x′∣) −U(0)]−1 (210)

where U is the gravitational potential between two spheres, each of mass m
and radius R. The master equation can now be written as

d

dt
⟨x∣ρ ∣x′⟩ = ih̵

2m
(∇2∇′2) ⟨x∣ρ ∣x′⟩

− 1

h̵
[U(∣x − x′∣) −U(0)] ⟨x∣ρ ∣x′⟩ (211)

We define the coherent width l of a given state as the characteristic distance
l = ∣x − x′∣ above which the off- diagonal terms ⟨x∣ρ ∣x′⟩ become negligibly
small. The time scale tkin over which kinetic changes are introduced due to
ordinary quantum evolution given by the first term on the right-hand side is
of the order ml2/h̵. A critical length lcrit is defined by equating tkin(lcrit) and
the damping time τd(lcrit),

ml2crit)
h̵

= h̵[U(lcrit) −U(0)]−1 (212)

If the coherent width l of the quantum state is much smaller than the critical
value lcrit, then the standard quantum kinetics dominates and damping is
not effective. On the other hand, if l >> lcrit then the coherence of the state
will be destroyed by the gravitational damping term in the master equation.
lcrit is the analog of the phase coherence length ac of the K model, and the
length parameter rC of the GRW model. Also there clearly are analogs of
τd(lcrit) in the other two models.

One can now show that in two limiting cases lcrit takes the following forms:

lcrit =
⎧⎪⎪⎨⎪⎪⎩

(h̵2/Gm3)1/4R3/4 if Rm3 >> h̵2/G
(h̵2/Gm3)1/2R1/2 if Rm3 << h̵2/G

(213)
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These expressions are similar to, although not identical with, those in the
K model. The fact that they are similar but not identical suggests that the
involvement of gravity in wave-vector reduction is strongly indicated, but
the exact mathematical treatment remains to be found. Importantly, the
transition lcrit = R happens at the same value lcrit = h̵2/Gm3 in both models.
Notice though that for small masses lcrit is not independent of R, unlike in
the K model. For a proton, taking R to be the classical radius 10−13 cm,
Diósi estimates lcrit to be 106 cm, which is curiously much smaller than the
prediction 1025 cm for the K model. Also the reduction time is 1015 s much
smaller than in the K model. However, the models are in better agreement
in the macroregion, and in Diósi’s model too, the transition parameters are
the same as that given by Eq. (202).

Subsequently, Diósi took the inevitable step of casting the master equation in
the equivalent language of a stochastic Schrödinger equation (Diósi, 1989).
He called this model QMUDL (quantum mechanics with universal density
localization). It is similar to his QMUPL model, which we reviewed earlier,
except that the localization is not in the position operator q, but in the mass
density operator f̂(r) introduced above. The universal free parameter λ of
QMUPL is now replaced by the gravitational constant, so that the theory
becomes parameter free.

As discussed by Ghirardi, Grassi, and Rimini (1990) the QMUDL model
has certain limitations; it cannot deal with point particles (for which case
it leads to divergent densities) and is restricted to extended objects. The
model parameters are such that it leads to an unacceptably high rate of
energy increase during reduction. Furthermore, for microscopic dynamics
the reduction and localization processes can lead to unacceptable processes
such as excitation or dissociation of nuclei. To avoid these problems, Ghirardi
et al. proposed a CSL-type modification of QMUDL and the introduction
of a new universal length parameter. It was suggested that it does not
seem possible to have a parameter-free theory for reduction, such as gravity-
induced collapse. An alternate way out of the difficulties of the otherwise very
attractive model of Diósi was suggested by Penrose - we recall this proposal
next, but find that here one is faced with a possibly new set of difficulties.
Thus it would seem that at present CSL might be the best model at hand,
even though its fundamental origin remains to be understood, and it yet may
have a strong connection with gravity whose proper implementation remains
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to be achieved.

3.2.3 The Penrose model

Penrose (1996, 1998) addressed the question of the stationarity of a quantum
system which consists of a linear superposition ∣ψ⟩ = a ∣α⟩ + b ∣β⟩ of two well-
defined stationary states ∣α⟩ and ∣β⟩, having the same energy E. If gravitation
is ignored, as is done in standard quantum theory, the superposition ∣ψ⟩ =
a ∣α⟩ + b ∣β⟩ is also stationary, with the same energy E,

ih̵
∂ ∣ψ⟩
∂t

= E ∣ψ⟩ (214)

However, the inclusion of gravitation raises a new question: What is the
meaning of the Schrödinger time-evolution operator ∂/∂t? There will be a
nearly classical space-time associated with the state ∣α⟩, and a Killing vec-
tor associated with it which represents the time displacement of stationarity.
And there will be a different nearly classical space-time associated with the
state ∣β⟩, and a different Killing vector associated with it which represents
the associated time displacement of stationarity. The two Killing vectors can
be identified with each other only if the two space-times can be identified
with each other point by point. However, the principle of general covariance
in general relativity forbids that, since the matter distributions associated
with the two states are different, in the presence of a background gravita-
tional field. On the other hand, unitary evolution in quantum theory requires
and assumes the existence of a Schrödinger operator which applies to the su-
perposition in the same way that it applies to the individual states, and its
action on the superposition is the superposition of its action on individual
states. There is thus a conflict between the demands of quantum theory and
the demands of general relativity.

A tentative resolution is to make an approximate pointwise identification be-
tween the two space-times, which in turn corresponds to a slight error in the
identification of the Schrödinger operator for one space-time with that for
the other. This corresponds to a slight uncertainty in the energy of the su-
perposition, for which it is possible to make an estimate in the case when the
superposition amplitudes are nearly equal in magnitude. In the Newtonian
approximation, this energy uncertainty EG is of the order of the gravitational
self- energy of the mass distribution in the two superposed states. In accor-
dance with the Heisenberg uncertainty principle, the superposition lifetime
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can be taken to be h̵/EG, beyond which time the superposition will decay.
In concept and in detail, this is quite like the damping time τd in Diósi’s
model. It is not clear here though as to how the Born rule will be recovered
dynamically.

Penrose notes the commonality with Diósi’s ideas, the difficulties encoun-
tered by Diósi, and the resolution proposed by Ghirardi et al. by way of
introducing a fundamental length scale. Penrose observes that essentially
the same difficulty arises in his own approach too, because if one were deal-
ing with point particles, the gravitational self-energy difference would become
infinitely high, implying instantaneous reduction, which is clearly unreason-
able. While Ghirardi et al. avoid this problem by introducing a new length
scale, Penrose proposes a different way out, based in particular, on the need
to specify which states are the basic (stable) states, to which superpositions
of basic states decay.

It is proposed that the basic stationary states to which a general superpo-
sition will decay by state reduction are stationary solutions of the so-called
Schrödinger-Newton (SN) equation. This equation is actually a pair of cou-
pled differential equations which are set up as follows, for a quantum- me-
chanical particle of mass m moving in its own gravitational field (Diósi, 1984):

ih̵
∂ψ

∂t
= − h̵

2

2m
∇2Ψ +mΦΨ , ∇2Φ = 4πGm∣Ψ∣2 (215)

This system of equations has been analyzed by Ruffini and Bonazzola (1969),
Bernstein, Giladi, and Jones (1998), Harrison, Moroz, and Tod (1998, 2003),
Moroz and Tod (1999), and Giulini and Grobardt (2011). These equations
are closely related to the Schrödinger-Poisson equations which have been
studied for much longer (Lange, Toomire, and Zweifel, 1995).

At this stage an important difference with the models of Karolyhazy and
Diósi seems to be that, unlike in the latter two models, where an intrinsic
uncertainty in space-time structure is assumed, here the impact on the evo-
lution of the quantum state is due to the particle’s own gravitational field.
Also the system seems to be set up deterministically and the presence of a
stochastic element is not evident, at least a priori. Thus one could question
the origin of the stochastic feature which actually drives the system to one of
the stationary states and the accompanying Born rule. Also, if the evolution
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is deterministic and nonlinear, the possibility of superluminal propagation
appears to be present.

These issues aside, the SN system of equations yields some interesting re-
sults. Spherically symmetric stationary solutions have been found and their
stability has been investigated. A comprehensive recent analysis was given
by Giulini and Grobardt (2011). Their study was motivated in response to
the results of Salzman and Carlip (2006) and Carlip (2008); the SN equa-
tion induces a gravitational suppression of expanding Gaussian wave packets,
and it was suggested by Carlip and Salzman that the suppression (and hence
wave-vector reduction) becomes significant already at m ∼ 1600amu. This
surprisingly low value is at variance with the much higher estimates coming
from simple analytical estimates (and also from the work of Karolyhazy and
Diósi) and prompted Giulini and Grobardt (2011) to look at the problem
closely.

Various numerical studies, as well as heuristic estimates, show that the
ground-state energy is of the order

E ∼ −1

8

G2m5

h̵2
(216)

The width a of the mass distribution in the ground state is

a0 ≈
2h̵2

Gm3
(217)

which we immediately notice coincides with the phase coherence cell length
in the microscopic limit of the K model.

By introducing a length scale l the SN equation can be written in terms of a
dimensionless coupling constant,

K = 2
Gm3l

h̵2
= 2( l

Lp
)( m

mP

)
3

(218)

One considers the time-dependent SN equation for initial values given by a
spherically symmetric Gaussian wave packet of width a,

ψ(r, t = 0) = (πa2)−3/4 exp(− r2

2a2
) (219)
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There are thus two free parameters a and m, and one seeks the regions in
this parameter space where significant inhibitions of the usual free quantum
dispersion occur. In an important analysis, Giulini and Grobardt (2011) give
four different analytical arguments to show that inhibition of the dispersion
becomes significant when the dimensionless coupling constant K of Eq. (218)
becomes of order unity. This conclusion coincides with that of Karolyhazy
and Diósi, and we believe it leads us to an important inference: The models
of Karolyhazy, Diósi, and Penrose all agree that if the width of the quantum
state associated with an object of mass m becomes greater than of the order
h̵2/Gm3, the quantum-to-classical transition sets in. For the experimentally
interesting a = 0.5µm this gives m of about 109 amu.

These results are further supported by numerical investigations of the SN
equation by Giulini and Grobardt (2011). They also note that the coherence
time, the time beyond which collapse takes place, can be brought down by
reducing the grating period in a molecule interferometry experiment. For
instance, for a mass of 1011 amu and grating period of 0.5µm they report a
coherence loss time of 300ms.

It is significant that while the Penrose approach does not directly address
the emergence of the Born rule, it correctly predicts the regime where the
quantum-to-classical transition takes place, in agreement with the other grav-
ity models.

This essentially completes our review of the three well- known models of
gravity-induced collapse. Other considerations of gravity-induced collapse
have been made by Ellis, Nanopoulos, and Mohanty (1984) and Percival
(1995). A brief but elegant summary of gravity models and trace dynamics
is given by Diósi (2005).

In our view, gravity-induced collapse is a promising physical mechanism for
realization of spontaneous collapse. Furthermore, trace dynamics and its ex-
tension to space- time structure (treating space and time as operators) pro-
vide a plausible mathematical avenue for rigorously developing the stochastic
theory of gravity-induced spontaneous collapse.
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4 Experimental Tests of the Theoretical Pre-

dictions

4.1 Introduction

We considered two classes of underlying theories for dynamical collapse: trace
dynamics and gravity-induced col- lapse. The phenomenology of trace dy-
namics manifests itself through models of spontaneous collapse. If sponta-
neous or gravity-induced collapse is a possible explanation for the measure-
ment problem, then the experimental predictions of these models differ from
those of standard quantum theory. Bounds can be set on the parameters
of these models by requiring that their predictions should not disagree with
those observations which are well explained by the standard quantum the-
ory. On the other hand, one can perform new experiments, such as diffraction
experiments with large molecules, for which the predictions of these experi-
ments differ appreciably from those of quantum theory. The results of such
experiments could vindicate the modified quantum dynamics (and specific
values of the associated parameters) or rule it out. This section reviews the
bounds on model parameters which come from known physical and astro-
physical processes, and from diffraction experiments that have been carried
out in the laboratory or are planned for the near future. Experiments are
discussed through Secs. 4.2-4.7. Bounds on spontaneous-collapse models are
discussed in Secs. 4.8 and 4.9 and those on gravity-based models in Sec.
4.10.

As seen in Sec. 2, a large variety of collapse models has been proposed:
QMUPL, GRW, CSL, dissipative and non-dissipative, white, colored, Marko-
vian, and non-Markovian. The overall task of constraining these models is
very exten- sive, given their variety, and considering that a large variety
of observations (laboratory and astrophysical), as well as tab- letop experi-
ments, has to be considered. The subject is in a state of rapid flux and still
in a developmental stage. Here we try to do as complete a job as possible,
relying on the analysis in a host of important papers that have appeared in
the last few years (Adler, 2007; Adler and Ramazanoğlu, 2007; Adler and
Bassi, 2009; Nimmrichter, Hornberger et al., 2011; Romero-Isart, 2011; Feld-
mann and Tumulka, 2012). It should be noted though that the CSL model
has received the maxi- mum amount of attention, and we focus mainly on
that.
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The CSL model introduces two new parameters, the rate constant λ and the
correlation length rC . If spontaneous collapse is a correct theory of nature,
the values of these parameters must follow from some underlying fundamen-
tal principles and/or be determined by experiments. As mentioned, GRW
chose λ ≃ 10−16 s−1 and rC ≃ 10−5 cm, in order to be consistent with observa-
tions, while Adler chose λ ≃ 10−8±2 s−1 and rC ≃ 10−5 cm. However, there is
room for more general considerations and for establishing the allowed part
of the parameter space in the λ − rC plane. In Sec. 4.7 we consider bounds
coming from cosmology and in Sec. 4.8 we summarize other physical pro-
cesses which constrain rC and λ.

In Sec. 4.3 we summarize experiments which directly test quantum superpo-
sition by interferometers. These experiments also test collapse models and
gravity models. The rationale is that if we can observe superposition at the
mesoscopic and possibly even the macroscopic scale, the quantum dynam-
ics does not need alteration. If instead we were to experimentally observe
a quantum-to-classical transition such as the collapse of the wave function
while convincingly reducing all potential sources of noise, this would strongly
hint that an alteration of the fundamental equations of quantum mechanics
is needed. The CSL model with Adler’s value for λ predicts a quantum-to-
classical transition at only 2 or 3 orders of magnitude away from present
molecule matter- wave experiments. This and new proposals for optome-
chanics experiments with trapped bead particles (see Secs. 4.4 and 4.5)
bring experimental tests of CSL (among other proposals) within reach. The
main focus of the following sections will be on those tabletop matter-wave
and optomechanics experiments.

While we do not aim to give a complete review of all possible experimental
tests of collapse models, we present the strongest current bounds in Figure
2 below.
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Figure 2: Upper bounds on λ from laboratory experiments and cosmologi-
cal data, compared with both the CSL value λCSL ∼ 10−17 s−1 and Adler’s
value λAdler ∼ 10−9 s−1 (see Sec. 2.7). The x-ray emission bound excludes
the value λAdler for white noise, but this constraint is relaxed if the noise
spectrum is cut off below 1018 s−1. Therefore, the bound coming from x-ray
emission is very sensitive to the type of noise, i.e., to the type of collapse
model. Large-molecule diffraction confronts λCSL for molecules heavier than
∼ 109 daltons(DA) and confronts λAdler or molecular weights greater than
∼ 105DA. (The molecular diffraction bound on λ decreases as the inverse
square of the molecular weight, provided the molecular radius is less than
rC ; see Sec. 2.6).

4.2 Possible experimental tests of CSL based on quan-
tum superposition

Matter-wave interference experiments such as molecule interference are ap-
proaching the mass limit for the quantum-to-classical transition in a “bottom-
up” fashion, starting with particles, where quantum superposition exists and
pushing the limit upward step by step. Nanomechanical and micromechanical
devices cooled to the quantum- mechanical ground state within the optome-
chanics approach the problem from the top, starting at very massive objects,
namely, mechanical cantilevers of hundreds of nanometer and even some mi-
crometer size, which are sometimes even visible with the naked eye. The
range in which both types of experiments will probably meet (to combine
techniques, know-how, and ideas to overcome experimental hurdles and to
switch off known decoherence mechanisms) is from 10 to 100 nm in size (mass
106 − 109 amu). The experimental aim is to show quantum superposition by
negativity in the Wigner function of the motional states or by proving the
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wave nature of such particles by single-particle interference. Interestingly,
this size range is vital to test nonstandard quantum theories such as CSL
and gravity-induced collapse.

Collapse theory for diffraction experiments: In order to understand how col-
lapse models differ from standard quantum mechanics, when applied to in-
terferometric experiments, consider once again the QMUPL model of Sec.
2.5, due to its simplicity. The multiparticle dynamics is given by Eq. (36).
By using Itô calculus, it is easy to show that the master equation for the
statistical operator ρt = E[∣ψt⟩ ⟨ψt∣] is

d

dt
ρt = −

i

h̵
[H,ρt] −

1

2

n

∑
i=1

λi[qi, [qi, ρt]]

Suppose, for simplicity’s sake, that all particles are identical, and that during
the time of measurement the free evolution (given by H) can be neglected.
Then, according to the above equation, the density matrix in the position
representation evolves as follows:

ρt(x, y) = ρ0(x, y)e−λN(x−y)2t/2 (220)

This equation contains everything there is to know about the effect of collapse
models on interferometric experiments, at least from the conceptual point
of view. Different models differ only in the technical details. The above
equation shows that, in order to measure a collapse effect, corresponding to
a significant damping factor, the following criteria must be met: the system
should be as large as possible (large N), and it should be created in a large
superposition (large ∣x − y∣), which is monitored after a time as large as
possible (large t). This is the goal that all interferometric experiments aim
to reach, in order to test the validity of the superposition principle and thus
also of collapse models.

We now come back to the CSL model, which we are primarily interested in.
In this case, the damping behavior is less trivial than that of the QMUPL
model. As we have seen in Sec. 2.6, for small distances there is a quadratic
dependence of the decay function on the superposition distance ∣x− y∣, while
for large distances such a dependence disappears. The intermediate behavior
is not easy to unfold, but it can be conveniently modeled by the following
ansatz. Recall first that for a single constituent the master equation

d

dt
ρt(x, y) = −

i

h̵
[H,ρt(x, y)] − ΓCSL(x, y)ρt(x, y)
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implies that the decay function is

ΓCSL(x) = λ[1 − e−x
2/4r2

C ] (221)

for one single constituent; see Fig. 3 for a plot of ΓCSL vs x.

Figure 3: A comparison of experiments with models to map the significance
of different experiments to test collapse models. The CSL decay function Γ is
shown against spatial dimension and separation in the case of four different
mass systems (represented here as four different y axes), using λ = λAdler. The
x axis is not continuous, so as to permit a combination of all experiments
of very different mass and size scales in one plot. We aim for experimental
parameters to fit to the part of the Γ curve where we observe a signifi-
cant chance to test collapse models. Essentially we need a good mixture of
mass, spatial separation, and duration of superposition. For example, for
molecule (104 amu, experiment done) and optical time-delay ionizing matter
(OTIMA) metal cluster (106 amu, experiment proposed; bead experiments
such as MERID are at the same range in the plot) interferometers, which
both give spatial separation on the same scale as x = rC , decay rates are
2.2×10−2 and 2.2×102 s−1, respectively. In the case of the cantilever (experi-
ment proposed) the experimental bound to Γ would be quite strong, but the
spatial separation is small and quite far away from x = rC . Atom interferom-
eters (experiment done) have an exceptionally large spatial separation, but
the mass is small and therefore the bound to Γ is very weak.
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Here we see how the two fundamental parameters of the CSL model enter
into play. For a many-particle system, one makes an ansatz and assumes
that the above expression for the decay function holds, except that one has
to multiply λ by the appropriate numeric factorial, as described in Sec. 2.6.
The numerical factor is n2N where n is the number of nuclei (called a cluster)
within a volume of linear size rC , and N is the number of clusters in the many-
particle system.

In all interferometric experiments so far realized, the period of the grating
is comparable to rC ∼ 100nm. Therefore, to extract the significant order of
magnitude, it is sufficient to work in the regime x >> rC . Taking into account
Eq. (80) (Adler, 2007) and that in the case of macromolecules N = 1 (the
typical molecule size being about 1 nm), we have

ΓCSL ≃ λn2 (222)

Since no interferometry-based experiments have so far detected any sponta-
neous collapse effect, this implies that the damping factor exp (−ΓCSLt) must
be insignificant. We then have

λ ≤ 1

n2t
(223)

where n measures the number of nucleons in the system, and t the duration of
the experiment. This is the type of bound that interferometric experiments
place on the collapse rate λ. The experiments do not provide a bound on
the second parameter of the CSL model rC for the reasons explained above.
More general situations could be considered, but they have not yet been
analyzed. It is desirable to carry out a careful analysis of the allowed part
of the λ − rC plane, based on the data available from experiments, and to
understand what role the grating period and the size of the macromolecule
will eventually play in bringing experiment and theory closer.

The latest situation on the results from diffraction experiments was discussed
by Nimmrichter, Hornberger et al. (2011), Romero-Isart (2011), and Feld-
mann and Tumulka (2012). The strongest current bound on λ seems to be
from the experiment of Gerlich et al. (2011) which sets λ < 10−5 s−1 for
n = 7000. Adler estimates that an experiment with n = 500000 will confront
the enhanced CSL value proposed by him, based on reduction in latent image
formation (Adler, 2007). Interestingly, in the same paper he also proposes to
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test whether “latent image formation” constitutes a measurement, by using
a photographic emulsion as a “which path” detector in one arm of a quantum
interferometer.

Spatial or center-of-mass motion superposition is needed to be demonstrated
in experiments to test the quantum-to-classical transition. As described pre-
viously atoms are so light that even the very large areas in todays atom
interferometers do not increase the chance to test CSL (see Fig. 3). On the
other hand, the very massive cantilevers do not possess a large enough spatial
separation (spatial size of superposition) to become good test embodiments
for the quantum-to- classical transition. It seems that the size range of par-
ticles of 10 to 100 nm, which corresponds to a mass range of 106 to 109 amu
are ideal for such tests in matter-wave interference experiments.

In this section we focus on possible experimental tests of the CSL model,
while similar or quite different experiments are possible to test different col-
lapse models.

4.3 Matter-wave interferometry: Molecule interferom-
etry

Experiments with matter waves have existed since 1927 when Davisson and
Germer diffracted a beam of electrons. It was the first proof of de Broglie’s
hypothesis on particle-wave duality. Since then matter-wave interferometry
of electrons (Hasselbach, 2010), neutrons (Rauch and Werner, 2000), atoms
(Cronin, Schmiedmayer, and Pritchard, 2009), and molecules (Hornberger
et al., 2012) has a long and successful history in investigating fundamental
physics and has been applied for metrology and sensing (Arndt et al., 2011).
Interestingly, a recent interpretation of atom interferometry experiments re-
sulted in a debate on the possible detection of gravitational redshift by such
tabletop experiments (Müller, Peters, and Chu, 2010).

Here we are interested in center-of-mass-motion interferometry (or de Broglie
interference) of very massive particles, as these experiments are promising
for testing modifications of Schrödinger dynamics such as collapse models
that predict a quantum-to-classical transition at mesoscopic length and mass
scales. The appearance of a single-particle interference pattern demonstrates
wavelike behavior of the particles and can be seen as an indication for super-
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position. The full beauty of this particle position superposition can be seen
from reconstruction of the Wigner function of the motional quantum state
by tomography (Kurtsiefer, Pfau, and Mlynek, 1997).

echnically, to perform de Broglie interference experiments, one has to over-
come challenges of preparation of intense gas-phase beams, of preparation
of spatial and temporal coherence of the matter wave, and of the efficient
detection of the particles. Central to all experimental demonstrations of
matter-wave interference are optical elements which serve to coherently ma-
nipulate wave phases, and, in particular, to divide the wave fronts, thus cre-
ating different possible interference paths. While bulk and surface crystals
are well adapted to diffract electrons and neutrons with de Broglie wave-
lengths in the range of 1 to 10 pm, it is impossible to use the same structures
for atoms or molecules as those would stick to the surfaces. Typically beam
splitters for molecules are realized by gratings. Gratings are nano- fabri-
cated highly ordered periodic structures of freestanding nanowires made from
metal or semiconductor materials or realized by standing light fields using the
Kapitza-Dirac effect (Kapitza and Dirac, 1933). Today the tightest bound
for the quantum-to-classical transition comes from molecule interferometry.
We give a brief history of molecule interferometry before we describe more
details of the workhorse of molecule interferometry: the Talbot-Lau interfer-
ometer (TLI).

Beams of small molecules were first scattered at surfaces in the experiments
by Estermann and Stern (1930), followed by interferometry experiments with
diatomic molecules in the 1990s. In 1999, matter-wave interferometry with
large neutral molecules was first demonstrated with the C60 fullerene in Vi-
enna (Arndt et al., 1999). Fraunhofer far-field interference was shown by
using molecular diffraction at a single nano- fabricated silicon nitride grating
with a grating constant of 100 nm. The beam was collimated by a series
of 5µm slits to a beam divergence smaller than the expected beam diffrac-
tion angle of about 10µrad. Only very few molecules originally in the beam
reached the diffraction grating and the detector and typical count rates were
of only very few molecules per second with a detection efficiency of around
10%. The resulting long integration time needed to resolve the interference
pattern makes such experiments susceptible to noise. Prospects for large-
particle far-field interferometry and the related Poisson spot experiments
can be found elsewhere (Juffmann, Nimmrichter et al., 2012) as well as new
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developments of promising techniques for far-field experiments (Juffmann,
Milic et al., 2012).

Talbot-Lau interferometer: Later molecule interferometry experiments were
done with a so-called TLI to increase the beam intensity of the diffracted
beam. A TLI is operating in the near-field diffraction regime described by
Fresnel inte- grals, where the spatial period of the diffraction grating and
the interference pattern are on the same size scale. The scheme was intro-
duced by Clauser to cope with beams of low intensity and low collimation in
interferometry experiments (Clauser and Reinsch, 1992). An advantage of
a TLI with respect to a Fraunhofer single-grating far-field interferometer is
that the scaling of the distance between the gratings (Talbot length LT ) is
inversely proportional to the de Broglie wavelength λdB but quadratic with
the grating period d, LT = d2/λdB. This helps to compensate for a small de
Broglie wavelength by increasing the distance between the gratings.

In more detail, the three-grating TLI operates with weakly collimated molec-
ular beams with divergence of about 1 mrad and accepts a large number of
molecules in the initial beam contributing to the final interference pattern.
The first grating prepares the beam coherence, while imprinting a spatial
structure on the molecular beam (see Figure 4 below) acting as an absorp-
tive mask. The second grating (the diffraction grating) is then simultane-
ously illuminated by 104 individual coherent molecular beams. The second
grating generates a self-image at the Talbot distance LT . Therefore each
of the 104 initial sources will be coherently mapped to the Talbot distance
after the second grating. This Talbot effect results in a self-image of the
second grating at half-integer multiples of LT . The Lau effect makes an in-
coherent summation of the individual coherent beam sources located at the
first grating to an integrated signal. Basically, the number of molecules con-
tributing to the final interference pattern is multiplied by the number of il-
luminated slits of the first grating. The third grating is then placed close
to this Talbot position after grating 2 and scans over the diffraction pattern
perpendicular to the molecular beam to allow integrated signal detection.
This is enabled as the period of the scan grating exactly matches the pe-
riod of the Talbot self-images of the diffraction grating. Talbot, Lau, and
Talbot-Lau effects have been nicely illustrated by recent optical experiments
(Case et al., 2009). The successful implementation of different Talbot-Lau
interferometers for molecules has been summarized in a recent review article
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(Hornberger et al., 2012), where more and detailed information about tech-
niques and requirements can be found.

A recent version of the TLI is the so-called Kapitza-Dirac- Talbot-Lau inter-
ferometer, which has been used to demon- strate interference of a 3-nm-long
diazobenzene molecule (Gerlich et al., 2007). Here the second grating was
realized by an optical phase grating, where molecules are diffracted at peri-
odic optical potentials due to the Kapitza-Dirac effect (Kapitza and Dirac,
1933). The use of light gratings avoids the dispersive van der Waals (vdW) or
Casimir-Polder (CP) attraction between molecules and gratings (Hornberger
et al., 2009), which is known to phase shift the interference pattern but also
to reduce the visibility (Hackermüller et al., 2003) due to dispersive effects
for molecular beams with finite velocity spread. The interaction effect scales
with the particle velocity and particle polarizability as well as the dielectric
properties of the grating material. The details of the interac- tion potentials
and related vdW-CP effects and how those can be investigated by molecule
interferometry experiments are still under intense investigation (Buhmann et
al., 2012; Canaguier-Durand, Gue?rout et al., 2012; Canaguier-Durand, In-
gold et al., 2012). Estimates show that even with improved velocity selection
schemes, where the width of the selected velocity is below 1% of the mean
velocity at full width at half maximum, it is expected to disable interference
with particles with masses beyond 105 amu. Presently, the largest de Broglie
interfered particle is an about 7000 amu massive perfluoro-alkylated C60
molecule (Gerlich et al., 2011), which currently gives the strongest bound on
collapse models. For comparison all present experimental bounds are listed
in Figure 2.
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(a) Three-material grating as experimen-
tally realized by Brezger et al. (2002).

(b) Kapitza-Dirac-Talbot-Lau interferom-
eter realized by Gerlich et al. (2007).

(c) Optical time-domain ionizing matter
interferometer (OTIMA) as proposed by
Nimmrichter, Haslinger et al. (2011).

Figure 4: Different configurations of the Talbot-Lau interferometer

The specifications of a TLI can be easily estimated. For instance, the specifi-
cations for the interference of a 106 amu massive particle in a Talbot-Lautype
interference with gratings of period d = 100 nm: at a Talbot distance of
LT = 2.5 cm a particle velocity of v = 1 m/s would be needed to be constant
over this distance LT . (The size of the grating opening is limited to about
50 nm by the size of the nano- particles which have to transmit as well as
by available technologies for grating realization by light and from material
nanostructures.) For a higher mass the particle would need to be slower at
the same Talbot distance, or alternatively the Talbot distance would need to
be extended for the same particle speed. Simple estimates show that for a
particle of 108 amu we find LT = 2.5m already at the same speed and grating
constant. However, any particle traveling over that distance, even if it starts
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at zero velocity, will be accelerated to higher speed than 1 m=s (namely,
7 m=s over 2:5 m) by Earth’s gravity g acting over that distance on the
particle. Slowing or compensation of acceleration by additional carrier fields
or in space experiments would be needed to overcome this limitation while
presenting a significant experimental challenge. Therefore, TLI experiments
(where the speed of the particle or equivalently its wavelength has to have a
certain value between the gratings) without compensation of Earths gravity
are limited to a particle mass of around 107 amu. That limit exists for all
possible orientations of the interferometer to g. While that is true the alter-
native single- grating far-field interferometry is not limited by g. Diffraction
of the matter wave at the location of the grating, the separation of maxima
and minima of the interference pattern, does not depend on the speed of
the particles, but only on the distance between the grating and the particle
detector.

Technical challenges for mass scaling: The quest is for new technologies
which can efficiently control and manipulate the center-of-mass motion of
heavy particles. The mature techniques of ion manipulation and optical
tweezing are of particular interest to scale the mass up to particles of 10
nm to 1µm (mass of 106 to 1010 amu) in diameter. All experiments have
to be performed under ultrahigh-vacuum conditions to avoid decoherence by
collision. We return to this in Sec. 4.6. In particular, the challenges are as
follows:

(1) Generation of intense particle beams: Particles need to be slow if mas-
sive to keep the de Broglie wavelength within the range for experimen-
tal possibilities (not much smaller than picometers). The ideal particle
beam has a high phase-space density, which means that many (ideally
all) particles propagate at the same speed. The beam needs to be highly
collimated, which means that the transverse velocity needs to be as
small as possible, ideally zero. [Very high beam collimation (< 10µrad)
would enable the conceptually simpler far-field single-grating interfer-
ometry.] In the wave picture this means that the transverse or spatial
coherence needs to be high. All this could be achieved by cooling tech-
niques that affect the center-of-mass motion of particles, which have
yet to be developed for complex particles. Interesting and promising
approaches have been followed in the last few years. This especially
includes collisional buffer gas cooling (Maxwell et al., 2005) as well as
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optical cooling techniques (Shuman, Barry, and DeMille, 2010). Both
techniques have so far been demonstrated for diatomic molecules. In-
terestingly, a feedback cooling technique has been realized for optically
trapped beads of 1µm in diameter in the field of optomechanics (Li,
Kheifets, and Raizen, 2011). We return to this in Sec. 4.4. Further-
more, particles need to be structurally stable to survive launch and
detection procedures. This includes techniques to generate gas-phase
particles such as by thermal or laser induced sublimation, laser des-
orption or ablation, but also sprays of particles from solutions, and
the subsequent manipulation of such particles to meet the coherence
requirements of matter-wave experiments.

(2) Beam path separation: This is the need for coherent beam splitters
and other matter-wave optical elements. While different realizations
of beam splitters are known for cold atoms (Cronin, Schmiedmayer,
and Pritchard, 2009), material and optical gratings are the only exist-
ing options for large particles. The challenging part is the realization
of gratings with a high enough precision in periodicity. The demand
on the periodicity is very high for the TLI scheme, where the average
grating pitch has to be accurate within subnanometer scales between
all gratings. This can be realized so far only by sophisticated optical
interference lithography techniques. For far-field gratings the demand
is lower and electron-beam lithography with alignment pattern to avoid
stitching errors is possible for fabrication. The ability to form laser light
gratings from retroreflection or other superposition of laser beams de-
pends on the intensity and frequency stability of the laser. The power
of the laser needs to be sufficient to form an optical potential strong
enough to act as a phase grating. This is on the order of some 1 W
continuous power for fullerenes. The limited availability of stable and
medium power UV and XUV (wavelength < 200nm) lasers limits the
fabrication of grating periods by optical lithography as well as the op-
tical grating periodicity to about 100 nm (opening of about 50 nm).
About an order of magnitude smaller grating periods can possibly be
fabricated by electron-beam lithography or direct-focus ion beam (in-
cluding the novel He-ion direct write) milling. Another limitation is
that the grating area has to fit the size of the particle beam diameter
which is on the order of 1 mm. Not many fabrication techniques are ca-
pable of manufacturing precise gratings on that size scale. However, in
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combination with an efficient detector this dimension can be decreased.

(3) Efficient detection of large particles: Ideally, we want single-particle
detection resolution. For example, in most recent molecule interfer-
ometry experiments detection is realized by ion counting after electron
impact ionization, which is known to have a very low ionization effi-
ciency (10−4). This has to be at least kept at the same level for particles
of increased size and mass. To resolve the interference pattern a spatial
resolution on the order of the grating period is needed for near-field in-
terferometry experiments, which is elegantly real- ized in the case of the
TLI by the third grating. Also a high spatial resolution of the detection
is needed if the particle beam is not velocity selected before entering
the interferometer gratings. This is important to select the temporal
coherence which is given by the distribu- tion of de Broglie wavelengths
of matter waves emitted by the source. Fluorescent molecules can be
detected with single-particle resolution and sufficient spatial resolution
(Juffmann, Milic et al., 2012).

In the following, we discuss different alternative approaches to the possi-
ble implementation of experiments to probe the quantum superposition of
particles. We summarize different proposals for such experiments.

4.3.1 Neutral particles versus charged particles

Quantum superposition experiments per se need to avoid any decoherence
effect which is able to read out which-way information and to localize the par-
ticle. A neutral particle is a natural choice for superposition experiments as
the number of possible interactions, which would enable a readout of which-
way information, is reduced in comparison to charged particles. That is es-
pecially true for superposition of slow particles. Therefore all interference
experiments with molecules have been performed with neutral particles. On
the other hand, the center-of-mass motion of charged particles can be ma-
nipulated and controlled to a higher degree by external electric and magnetic
fields. This would be handy for preparation of coherent particle beams. Here
we discuss the benefits and possibilities for charged particle interferometry
as neutral particles have been covered in the previous section. From the
matter-wave point of view we have to achieve the same parameter values: de
Broglie wavelength, periodicity of the diffractive element, etc., to observe an
interference pat- tern. This especially means that for a given (high) mass
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the speed needs to be rather low: m = 106 amu requires around v = 1 m/s.

Trapping charged particles such as electrons or ions in Paul and Penning traps
has a long and successful history (Paul, 1990). It has been used for studies
of fundamental physics such as the precise evaluation of physical constants
(Brown and Gabrielse, 1986), for quantum information processing with one
or many ions (Leibfried et al., 2003; Duan and Monroe, 2010; Singer et al.,
2010), in chemical physics to investigate the kinetics and dynamics of chem-
ical reactions on the few-molecule level under controlled conditions (Kreckel
et al., 2005; Willitsch et al., 2008; Mikosch, Weidemller, and Wester, 2010),
such as with buffer-gas- cooled polyatomic ions in multipole traps (Gerlich,
1995; Gerlich and Borodi, 2009). The benefit of using charged particles for
matter-wave experiments is the higher control over the motion of the parti-
cles. Guiding, trapping, and cooling are possible even for massive ions. For
instance, 200 biomolecules of 410 amu have been cotrapped with laser-cooled
atomic ions (Ba+ and cooled to 150 mK (Ostendorf et al., 2006). This sym-
pathetic cooling via Coulomb interaction of laser-cooled atomic ions with
molecular ions has been demonstrated to be efficient; however, a difficulty
which remains is to realize an ion trap that is stable for both species. The
mass-to-charge ratio m/q must not be too different for the two particles,
which demands also a high control on the ionization technique for atom and
molecule.

Most of these techniques aim to spatially fix the ion in the trap to increase
interaction times for spectroscopic and collision studies or to cool the ions,
while we are interested in well-controlled center-of-mass motion for inter-
ference. It might be difficult to achieve a coherent center-of-mass motion
manipulation, but it seems not impossible also with respect to new guiding
techniques such as the recently demonstrated microwave manipulation (Hof-
frogge et al., 2011), the manipulation of ions by light (Schneider et al., 2010),
or multipole trap techniques (Gerlich, 1995).

To scale up the mass of ions for experiments in order to test collapse models
the very mature techniques of gas-phase cluster sources are available, such as
sputter magnetron sources (Haberland, 1994) or other noble-gas aggregation
sources with pickup for large molecules (Goyal, Schutt, and Scoles, 1992;
Toennies and Vilesov, 1998). Beams of such sources are intense since they
are cooled by the supersonic expansion, and the mass of a single cluster can
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be 109 amu and beyond (von Issendorff and Palmer, 1999). In combination
with quadrupole mass filters, which work similarly to ion Paul traps, metal
clusters of very narrow mass distributions can be realized with m/∆m = 25
(Pratontep et al., 2005). Additional techniques will need to be realized for
deceleration of such large clusters, but as long as the particle is charged a
high degree of control is guaranteed.

While this is true massive ion interference has yet to be shown to work. A
recent review article on ion interferometry indicates that so far only electrons
and the He+ ion have shown quantum interference (Hasselbach, 2010). Typ-
ically electrons are diffracted at biprisms or solid surfaces as ap- plied for
holography (Tonomura, 1987), but light gratings are also possible utilizing
the Kapitza-Dirac effect (Batelaan, 2007). Electron interferometry has been
used, for instance, to investigate the Aharonov-Bohm effect (Tonomura and
Batelaan, 2009). The general understanding, which is supported by experi-
ments on, for instance, image charge decoherence effects, is that ions have to
be very fast to prevent decoherence via one of the multiple interaction chan-
nels with the environment (Sonnentag and Hasselbach, 2007). The challenge
will be to avoid and shield all possible interactions of ions with surrounding
matter and fields, such as the coupling of the ion to its own image charge in
a metal surface.

As for the neutral particles in the case of a TLI the acceleration by the Earths
gravitational field has to be compensated. Guiding potentials have to be ex-
tremely flat to avoid influencing the superposition state and localizing the
particle. External electromagnetic fields have to be shielded by a Faraday
cage of the right dimensions and materials; here recent technological progress
was made for the stabilization of magnetic fields in atom experiments (Gross
et al., 2010). Very stable electrical power supplies will be needed for the cold
Paul trap for ion-beam generation and an ion guide field. Electric stray fields
from patch effects of adsorbed atoms and molecules at the shielding and else-
where may be avoided as well as time-varying electronic inhomogeneities in
the shield- ing material. Edge fields of the guiding electrodes and other parts
inside the shielding have to be carefully considered.

However, a simple estimate shows that all applied voltages would have to be
stabilized to the level of below 10−10 V for the time of interference, which
seems to be impossible to achieve at the moment. At present only the neutral
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particles show success for large-particle center-of-mass motion interference.
On the other hand, interference attempts with larger particles suffer from
the nonexistence of guiding, slowing, and cooling techniques for neutrals.
Therefore a clever solution for now is to try to take the best of both worlds:
manipulation of charged particles and interference after neutralization, which
we describe in the following section.

4.3.2 The compromise - a combination of techniques for charged
and neutral particles: OTIMA

A novel three-light-grating Talbot-Lau scheme in the time domain aims to-
ward the interference of particles of up to 109 amu as proposed by the Vienna
molecule interferometry group and described by Nimmrichter, Haslinger et
al. (2011). This interferometer is called the optical time-domain matter-
wave (OTIMA) interferometer. The charged particles will be provided by
a mass-filtered metal cluster aggregation source as mentioned. A further
cooling and deceleration device will reduce the velocity of the large clusters
which is an existing technology for charged particles. A chopper-modulated
particle beam can be used for mass as well as velocity selection of the clusters
in combination with a time-of-flight mass spectrometer detector.

The main invention is a neutralization and ionization scheme implemented
as the interferometer. The neutralization of the clusters to enable a coherent
propagation of the superposition state is planned to be achieved by light-
matter effects directly at the light gratings. The scheme makes use of a
sequence of three vacuum ultraviolet (VUV, λ = 157 nm) nanosecond-long
light pulses to realize the interferometer gratings. The energy of a single
photon of about 8 eV is sufficient to ionize or neutralize metal clusters by
photo- detachment (Haberland, 1994). These processes are also applicable to
large biomolecular complexes (Marksteiner et al., 2009). The light intensity
pattern realized by three retroreflected laser pulses hitting the propagating
particles transversely at precisely timed locations with respect to each other
realizes the TLI gratings with grating period of d = λ/2. The standing-wave
normal-mode pattern forms, on the one hand, the gratings but is also a
spatially resolved ionization and neutralization device: the intensity in the
antinodes is sufficient to ionize or neutralize the particles while it is not in the
nodes. Therefore clusters which pass through the antinode will be ionized
while others in nodes will not. This in combination with electrodes to divide
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the beams of neutral particles and ions is the realization of an absorptive
grating. The first and third gratings need to be absorptive gratings, which
means they need to spatially mask out parts of the cluster beam and are real-
ized by intensity-dependent ionization of the molecules. The second grating
needs to be a phase grating and will be realized by the optical dipole force
acting on the particle by making use of the Kapitza-Dirac effect (Batelaan,
2007).

Charged clusters will be neutralized by the first grating, diffracted at the sec-
ond phase grating, and ionized again for detection at the third grating. This
is a promising attempt to realize matter-wave experiments with very massive
particles to test collapse models. More details about the OTIMA approach
to test CSL can be found in Nimmrichter, Hornberger et al. (2011). The
spatial size of the superposition is estimated by the grating constant and is
on the order of the CSL parameter, namely, rC = 100 nm. Figure 3 illustrates
the bound on ΓCSL while choosing Adler’s value for λ and a cluster mass of
106 amu.

4.4 Optomechanics: Cantilever

Here we describe an experimental approach which is alternative to matter-
wave interferometry. While the aim of understanding the limitations of quan-
tum mechanics is as old as quantum mechanics itself, the first proposals for
a tabletop experimental test by using the superposition or other nonclassical
states of massive mesoscopic or even macroscopic mirrors were published in
the late 1990s (Bose, Jacobs, and Knight, 1997, 1999; Marshall et al., 2003).

The mechanical motion (the vibration) of the mirror, which was later realized
by a nanomechanical or micromechanical cantilever, has to be prepared in the
quantum-mechanical ground state, which is modeled by a simple harmonic
oscillator (kBT < h̵ω). The vibrating mirror is read out by coupling it to a
sensitive optical interferometer to compare the light phase with a stabilized
cavity. The conceptual idea is to first prepare the mechanical oscillator in
the vibrational or phononic ground state ∣0⟩ by cooling and then generate
a coherent superposition of or with the first excited vibrational state ∣1⟩ by
single-photon excitations.

A high mechanical as well as a high optical quality (Q) factor is needed to
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reach the regime of low dissipation to strongly couple optics to mechanics
and to cool the device ultimately to the ground state. While optical control
of cantilevers has been under investigation for quite some time it was only
in 2006 that two groups reported the successful optical cooling of mechani-
cal cantilevers (see Figure 5(a) below) (Gigan et al., 2006; Schliesser et al.,
2006).

Figure 5: Optomechanics. (a) Prototype of optomechanically cooled can-
tilever as realized by Gigan et al. (2006). Quantum optical detection tech-
niques enable the sensitive readout of vibrations as they couple to light fields.
(b) Mechanical resonator interference in a double slit (MERID) as proposed
by Romero-Isart (2011). The center-of-mass motion of a single optically
trapped nanoparticle is first cooled and then superimposed by an optical
double potential. The interference pattern evolves in free fall after switching
off the trapping field.
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Interestingly, the cooling mechanism is very similar to the optical cooling of
atoms: The optical resonance (in most cases an optical cavity resonance) is
slightly detuned to the cooling sideband of the mechanical resonance, which
can be in the range of 1 MHz to 10 GHz. This opens a cooling channel for the
mechanics of the cantilever through the optical leakage of the cavity. The
achieved temperatures corresponded still to a high phononic occupation -
too many vibrational states occupied, but the experiment boosted the rapid
development of an exciting new field of research, namely, optomechanics.
This is summarized elsewhere (Kippenberg and Vahala, 2008; Marquardt and
Girvin, 2009; Aspelmeyer et al., 2010). The first schemes on how to generate
and probe the superposition state of a cantilever also appeared (Kleckner et
al., 2008).

Only a few years later was ground-state cooling of micrometer-sized struc-
tures achieved by Cleland’s group (O’Connell et al., 2010) and by the groups
of Aspelmeyer and Painter (Chan et al., 2011). Advanced nanofabrication
technology enabled realization of structures with both high mechanical and
high optical Q factors (105) in addition to clever optical or electronic read-
out techniques. This opens the door to many exciting quantum information
processing and sensing experiments in the near future, but we return to our
initial question of whether or not those structures can test the collapse mod-
els.

These structures are very massive, 106 to 1015 amu, depending on their size,
but the vibration amplitudes when compared to the parameter rC of the CSL
model are very small. This limits their ability to test collapse models and
the parameter range to test CSL by such systems is shown in Fig. 3. To
investigate this further we estimate the spatial size x0 of this position super-
position state by using the size of the zero-point motion of a simple harmonic
oscillator x + 0 =

√
h̵/2mω, where m is the mass of the cantilever and ω its

frequency in a harmonic potential. This spatial size of the ground state at
25µK is 1 × 10−15m for a typical micromechanical oscillator of a mass of 50
ng resonating at about 1 MHz (Gigan et al., 2006).

However, spatial superpositions to test CSL have to be on the order of 10
nm or larger (rC = 100nm), which is roughly 7 orders of magnitude away
from what micromechanical oscillators can achieve at the moment. Mass
or frequency or combinations of both have to be improved by that amount,
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which is very difficult as for most materials mass and resonance frequency
are coupled and depend on the spatial dimensions of the cantilever. To see a
vibrational-state superposition larger than the quantum-mechanical ground
state, the optomechanical device has to be driven in an extreme regime: 8 or-
ders of magnitude in mass or frequency at an optical finesse of 106. But there
are interesting systems providing a larger zero-point motion such as carbon
materials with exceptional mechanical properties (Iijima, 1991; Novoselov et
al., 2004): e.g., individual single-wall carbon nanotube oscillators generate
x+0 = 1 pm, with m = 8×10−18 g and ω = 100 MHz at a ground-state temper-
ature of T = 2.5 mK (Sazonova et al., 2004). Such systems have been used
for mass sensing with hydrogen mass resolution (Chaste et al., 2012). One
big challenge remains for such carbon materials, which is their very small
absorption and reflection cross sections. This means it is not clear how to re-
alize the needed high optical quality factor for optomechanics. But the hope
is to cool via other interaction channels, possibly in the electronic regime
(Brown et al., 2007; Chen et al., 2009; Eichler et al., 2011).

Another difficulty for the test of collapse models by cool- ing mechanical
cantilevers to the ground state ∣0⟩ is that the light field has to be switched on
all the time. Otherwise the substrate to which the cantilever is coupled will
rapidly heat back in a time probably much smaller than the collapse time.
There is not much time for “free propagation” of the superposition. New
ideas on pulsed optomechanics may help to prepare and reconstruct quan-
tum states of the mechanical motion (Vanner et al., 2011) faster. So ideally
we would prefer to use a massive harmonic oscillator that is realized without
a link to any substrate. This is what we discuss in the next section.

Optomechanical superposition using single-photon postselection and their
detection with nested interferometers was discussed by Pepper et al. (2011,
2012).

Interestingly, mirror stabilization ideas are linked to the much larger inter-
ferometers for the detection of gravitational waves (Braginsky, Strigin, and
Vyatchanin, 2002), while in a different parameter range due to the much
higher mass of the mirrors in use.
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4.5 Microspheres and nanoparticles in optical poten-
tials

Here we describe a new and promising route to test col- lapse models by gen-
erating spatial superposition states of the center-of-mass motion of very mas-
sive nanoparticles and possibly even microspheres. This is a combination of
optomechanics with center-of-mass motion superposition states as in matter-
wave interferometry. Optically trapped particles represent an almost ideal
realization of a harmonic oscillator as mentioned by Ashkin (1970) and more
recently rediscovered for cavity optomechanics (Chang et al., 2010; Romero-
Isart et al., 2010). In comparison to mechanical cantilevers as discussed in
the previous section there is no mechanical link acting as a dissipation chan-
nel for the mechanical oscillation in such systems if implemented in a vacuum
chamber to avoid collisions with background gas particles. Therefore the me-
chanical quality factor is very large. Such trapped particles can be seen as
an optomechanical system and techniques such as for cooling the oscillation,
which is now the center-of-mass motion of the particle in the optical trap,
need to be impl mented. Two criteria to test CSL and other collapse models
are fulfilled: a high mass of the particle and a large size of the superposition,
which can be comparable to rC . This makes such experiments strong com-
petitors to the OTIMA cluster interferometer; see Figure 3.

In addition these systems enable free center-of-mass mo- tion of the initially
trapped particles after switching off the trapping field and after generation
of the spatial superposition. This allows for a combination with matter-wave
interferometric techniques and schemes. Recently, some ideas have been put
forth on how to perform tests of quantum superposition with so-called beads
(balls of diameter 10 nm to 10nµm made of glass or polystyrene) (Romero-
Isart, Pflanzer, Blaser et al., 2011; Romero-Isart, Pflanzer, Juan et al., 2011).
The basic sequence for such experiments is to first optically dipole trap a sin-
gle particle, using optical techniques to cool the center-of-mass motion of the
bead in the optical trapping potential. The next step is to generate a su-
perposition state of the particle position by a double-well optical potential
by single-photon addressing of the first excited vibrational state, as theoreti-
cally described within cavity quantum electrodynamics (QED). Cooling must
be sufficient to increase the size of the particle wave packet to overlap with
both wells, so that there is an equal probability of finding the particle left or
right - the coherent superposition by a measurement of a squared position
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observable. After switching off the trapping potential in free fall the spatial
density distribution of the particle in multiple subsequent experiments can
be mapped and evaluated for a quantum signature by, for instance, state to-
mography through Wigner function reconstruction (Romero-Isart, Pflanzer,
Juan et al., 2011) or much more simply by interference pattern detection at
a fixed detector position. This is basically a double-slit experiment applied
to very massive objects (a polystyrene bead of about 30 nm diameter has a
mass of 106 amu). To get significant detection statistics the single-particle
experiment has to be repeated many times. The connection to test col- lapse
models was worked out in detail by Romero-Isart (2011) and the experiment
is called MERID (mechanical resonator interference in a double slit) (see Fig.
5(b)).

The manipulation of microscopic particles like silica and polystyrene spheres
but also biological cells and even living organisms such as viruses by optical
fields was pioneered by Ashkin and others since the 1970s and is now broadly
applied in many fields of science (Ashkin, 1970; Ashkin and Dziedzic, 1987).
Techniques which are typically summarized by the term optical tweezing
include the broad fields inves- tigating optical angular momentum (Allen,
Barnett, and Padgett, 2003) optimizing the trapping, levitating, and guid-
ing of single dielectric particles by optical gradient and scattering forces in
various geometries (Chu, 1998; Ashkin, 2006) including the guiding through
hollow-core photonic crystal fibers (Benabid, Knight, and Russell, 2002) and
optical binding (Dholakia and Zema?nek, 2010). Ashkin and co-workers al-
ready demonstrated the trapping of poly- styrene and glass microspheres,
of viruses and bacteria, and even of complete cells in solutions and high
vacuum. They developed a vacuum loading system and demonstrated the
stable levitation of particles at a vacuum of 10−6 mbar for half an hour by
a feedback stabilization technique. A detailed summary of this field can be
found in Ashkin’s (Ashkin, 2006). The particle size is typically limited to
not be smaller than 1µm to form a stable trap, while optical near-field tech-
niques have been recently used to trap single nanopar- ticles with the help of
plasmonic (Juan et al., 2009) or photonic crystal structures (Rahmani and
Chaumet, 2006) in solution. Application of such advanced trapping tech-
niques in vacuum has to engineer the challenge of particle-surface vdW and
CP interactions or in turn could be used to investigate those interactions.
However, it was demonstrated recently that even 30 nm particles can be op-
tically trapped in tightly focused free beams under vacuum conditions when
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gradient forces dominate scattering forces and with parametric stabilization
(Gieseler et al., 2012).

Experimental challenges: Cooling is again the key for this experiment. Here
one needs to cool the center-of-mass motion of a bead in an optical field ide-
ally to the ground state: Ashkin (2006) pioneered the feedback stabilization.
The Doppler cooling using whispering gallery modes of the particle was pro-
posed by Barker (2010). Recently, the cooling of the center-of-mass motion of
a single 1µm glass bead to 1 mK was achieved by a fast feedback stabilization
technique (Li, Kheifets, and Raizen, 2011) as well as the optical para- metric
stabilization of a single silica nanoparticle (30 nm) under vacuum conditions
(10−4 mbar) at 400 mK (Gieseler et al., 2012). These are the first promis-
ing steps to realize the proposed experiments to test superposition of such
large and heavy particles. Importantly, feedback stabilization techniques will
enable one to trap beads under vacuum conditions to dissipate the kinetic en-
ergy of the trapped particle. All experiments, such as the competing cluster
and molecule interferometry experiments, have to be performed at ultrahigh-
vacuum (UHV) conditions (p < 10−10 mbar) to avoid collisional decoherence
of the superposition state (Hornberger et al., 2003). A further challenge is
that the interferometer has to be stable over the duration of many single-
particle experiments. One idea is for experiments in space (Kaltenbaek et
al., 2012). Center-of-mass motion trapping would also be possible with ions
(Leibfried et al., 2003). The electric trapping fields would replace the optical
trap, but optical fields would still be needed for the cooling. While this is
true, free propagation of the charged particles, such as after switching off the
trap in the protocols for bead superposition experiments as explained above,
would not be possible. The Coulomb interaction will certainly dominate the
motion of the particle - it will not be a free motion. On the other hand,
a recent proposal with magnetic levitated superconducting particles claims
feasibility for large superpositions (Romero-Isart, Clemente et al., 2011).

To avoid the difficulty of ground-state cooling, one possibility is to use the
Talbot-Lau interferometer scheme. Here, as we know from molecule interfer-
ometry, the requirements on cooling are lowered as a quantum interference
effect can be observed at low spatial coherence of the matter wave. Center-
of-mass motion temperatures of 1 mK (for a given TLI geometry) would be
sufficient to observe interference. This will work with a single-particle source,
but also many particles in parallel traps would be possible which could sig-
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nificantly reduce the operation time of the interferometer and therefore lower
the stabilization criteria on the interferometer. We are looking forward to
seeing more developments in this rapidly progressing field of research.

One significant advantage of cavity optomechanics with trapped particles is
the in-principle very large separation of left and right for the superposition
state which can be tuned by the optical field. Furthermore, the optical field
can be switched off and the particle can propagate in free space, showing the
signature of superposition: an interference pat- tern in the spatial distribu-
tion. The size of the beads in the proposed experiments is on the order of 10
to 100 nm, exactly the same size and mass range where cluster matter-wave
experiments such as OTIMA are heading.

4.6 Environmental decoherence

While the aforementioned and discussed collapse models can be seen as an
exotic decoherence mechanism, here we discuss decoherence effects of the
environment interacting with the particle in superposition. Collisions with
background particles and thermal radiation of the superimposed particle it-
self are counted as the major processes to localize the superimposed particle.
Both decohering effects affect all the different experimental schemes to per-
form mesoscopic quantum superposition experiments and set limits on par-
ticle (and experimental setup) temperature as well as background pressure
inside the vacuum chamber depending on the size of the particle. According
to decoherence theory the superposition state is destroyed and the particle
is entangled with the environment whenever any interaction of the superim-
posed particle with the environment has the sufficient resolution to localize
(to measure the position of) the particle, and which- way information is read
out.

We note that an intrinsic difficulty with the test of collapse models is that it
is clear how to falsify a proposed model with respect to predicted parameters.
If, on the other hand, no interference pattern is shown by the experiments,
all systematic effects related to environmental decoherence have to be ex-
cluded as a reason for the quantum-to-classical transition. Here tuning of
one of the test parameters such as mass of the particle or size of the spatial
superposition will help to study the environmental decoherence effects.
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Mathematically, decoherence is described (as for the case of collapse models)
by the effect on the off-diagonal elements of the density matrix of the system
including the particle and the environment which are reduced by the deco-
herence effect as given by a master equation similar to Eq. (221). The effect
is evaluated by the decoherence rate function Γ as given in Eq. (221). More
details on the concept and formalism of standard decoherence theory can be
found in the references given in Sec. 1. More details on estimations of deco-
herence effects and associated decay rates for superposition experiments can
be found in Nimmrichter, Hornberger et al. (2011) and Romero-Isart (2011).
Both processes, collision and black body photon decoherence, have been ex-
perimentally investigated and compared to theory with fullerene interference
(Hornberger et al., 2003; Hackermüller et al., 2004). We summarize here the
most recent estimate from this literature to give boundaries to the experi-
ments.

4.6.1 Thermal decoherence

The emission, absorption, and scattering of thermal (black- body) radiation
by the particle in superposition can localize the particle if the wavelength of
that light is comparable or smaller than the size of the superposition. The
emission of thermal photons is seen as the most important effect as the in-
ternal temperature of the particle is typically higher than the temperature of
the environment. As an example for C70 fullerenes there is still full quantum
contrast for emission of thermal photons by the fullerene at about 1500 K,
as experimentally observed (Hackermüller et al., 2004; Hornberger, Hack-
ermüller, and Arndt, 2005). The interference visibility is rapidly reduced for
temperatures at above 2000 K where the wavelength of the emitted photons
is comparable to the size of the superposition which was about 1µm in this
experiment. For a more detailed discussion of these long- and short- wave-
length regimes see Chang et al. (2010) and Romero-Isart (2011).

Romero-Isart (2011) estimated an emission localization time which is inverse
to the superposition decay rate of 100 ms at a temperature of 100 K for a 50
nm particle, but claims that this time is independent of the particle size. If
this claim is correct, it contradicts the observation of fullerene interferometry
at 1500 K. An extrapolation of this relation to mesoscopic particles (106−108

amu) gives temperatures be- tween 800 and 200 K (Nimmrichter, Hornberger
et al., 2011). In any case the predicted temperatures will have to be reached
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for the particle and the environment. This may require the cooling of the in-
ternal degrees of freedom of the particle which is an experimental challenge,
but buffer gas techniques are in principle applicable to any particle and cool
all degrees of freedom (Maxwell et al., 2005; Gerlich and Borodi, 2009).

4.6.2 Collision decoherence

Here the collision of the superimposed particle with any other particle present
will read out which-way information. Such collision decoherence processes
have been studied in depth for fullerene experiments and an elaborate theory
was developed (Hornberger et al., 2003; Hornberger, Sipe, and Arndt, 2004;
Hornberger, 2006). Applied to the mesoscopic range of 106 − 108 amu par-
ticles in OTIMA this gives mini- mum required pressures between 10−8 and
10−11 mbar (Nimmrichter, Hornberger et al., 2011).

Romero-Isart estimated for a 100-nm-sized particle and collisions with (N2)
molecules at 10−11 mbar a decoherence time of about 100 ms in MERID. A
more detailed parameter set is given by Romero-Isart (2011) and is in agree-
ment with the above values for OTIMA. This pressure is possible to achieve
in ultrahigh-vacuum experiments. The parameter set also means that a single
experimental sequence from preparation of the coherence through superposi-
tion and detection has to be done in 100 ms, which seems feasible in OTIMA
as well as MERID. This estimate strongly depends on the mean free path of
the particle under the given vacuum conditions and therefore the size of the
particle.

Certainly more work on the theoretical side is needed to investigate those
decoherence effects further. This will be an important guidance for exper-
iments. For now it seems that collision decoherence can be controlled for
mesoscopic particles while maintaining extreme UHV conditions in the ex-
periments. On the other hand, thermal radiation can be- come a more serious
issue for larger particles of 108 amu.

4.7 Concluding remarks on laboratory experiments

Interference of beads levitated in optical fields and interference of large
metal clusters are both promising experimental routes to test collapse mod-
els. Clearly there is the certain possibility that other experimental routes or
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variations and combinations of the two main proposals of OTIMA (Nimm-
richter, Haslinger et al., 2011) and MERID (Romero-Isart, 2011) are success-
ful in observing a mesoscopic single-particle superposition state. OTIMA and
MERID are the most advanced experimental attempts reported in the liter-
ature at this time.

In our opinion an experimental test of collapse models such as CSL with the
Adler value for λ and a mass bound of 106 amu is within reach in the next
5 to 10 years. This will be possible only with intense research and devel-
opment of new technologies for the handling of mesoscopic (10 to 100-nm
sized) neutral and charged particles. Conditions to control environmental
decoherence seem feasible to be reached in the experiments. We hope to
see a scientific competition to probe this quantum-to-classical transition in
the coming years. It will be interesting to see if quantum mechanics again
survives.

4.8 Cosmological bounds

As seen in Sec. 2.6, stochastic collapse leads to a secular increase in the
energy of a system. For a group of particles of mass M the rate of energy
increase is given by (Adler, 2007)

dE

dt
= 3λ

4

h̵2

r2
C

M

m2
N

(224)

see also Pearle and Squires (1994) and Bassi and Ghirardi (2003). If there is
no dissipation in the stochastic collapse model, such an energy deposit will
heat the system and the absence of the observed heating can be used to put
upper bounds on λ.

An important case is the ionized intergalactic medium (IGM), which has a
temperature of about 2 × 104 between the redshifts of z = 2 and 4. The
IGM is kept in thermal equilibrium because the cooling due to the adiabatic
expansion of the Universe and the recombination of the plasma is balanced
by the energy input into the IGM that comes from astrophysical processes
such as supernova explosions and quasars. An upper bound on the stochastic
parameter λ can be obtained by assuming that all the heating of the IGM is
from the stochastic heating of protons and this gives that λ should be smaller
than about 10−8. More detailed discussions of cosmological and astrophysical
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bounds can be found in Adler (2007) and Feldmann and Tumulka (2012).

A subject that is recently beginning to draw attention (Perez, Sahlmann, and
Sudarsky, 2006; Sudarsky, 2007, 2011; De Unanue and Sudarsky, 2008; Lan-
dau, Soccola, and Sudarsky, 2011; Leon and Sudarsky, 2011) is the possible
role of wave-function collapse in the very early Universe. A possible mecha-
nism for the generation of primordial density fluctuations which eventually
grow to form large scale structures is provided by the hypothesized inflation-
ary epoch in the very early history of the Universe, just after the big bang.
Inflation may have been driven by a scalar field and the zero point fluctu-
ations of the quantized scalar field serve as a possible source for generating
the requisite density inhomeogeneities (Lyth and Liddle, 2009). But how do
these quantum fluctuations become classical, as the Universe evolves? Deco-
herence accompanied by the many-worlds interpretation has been proposed
as one possible solution (Kiefer and Polarski, 2009). Another possibility is
that classicality is introduced by the models of stochastic collapse reviewed
here, and it will be important and interesting to understand what sort of
bounds are placed on the CSL parameters by the quantum-to-classical tran-
sition of density fluctuations in the very early Universe.

4.9 Bounds from other physical processes

The standard GRW and CSL values for the model parameters were reviewed
in Sec. 2.7 [including the enhanced value for λ proposed by Adler (2007)
based on latent image formation in a photograph, and Bassi, Deckert, and
Ferialdi (2010) based on image formation in the eye]. Earlier we discussed
bounds coming from diffraction experiments and from cosmology. A few
other upper bounds have been placed too, taking into account how some
other processes would be affected (Adler, 2007). In so far as rC is concerned,
tentative but plausible arguments have been given that it should be in the
range 10−5 − 10−4 cm.

Among the processes studied thus far are (i) the decay of supercurrents in-
duced by stochastic collapse, giving λ < 10−3 s−1; (ii) excitation of bound
atomic and nuclear systems (cosmic hydrogen should not decay during the
lifetime of the Universe) λ < 1 s−1; (iii) proton does not decay λ < 10; (iv)
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rate of spontaneous 11 keV photon emission from germanium λ < 10−11 s−1;
and (v) the effect on the rate of radiation from free electrons λ < 10−5 s−1.

Another interesting result is that of Jones, Pearle, and Ring (2004), which
uses the Sudbury Neutrino Observatory data to place a limit on the ratio of
collapse rates of the neutron and proton. The result of this analysis is that the
ratio of neutron to proton collapse rates is equal to (neutron mass/proton mass)±
0.008, that is, mass propor- tionality to 1% accuracy. We also mention a pro-
posal of an experiment to test the anomalous random walk due to collapse
(Collett and Pearle, 2003), which, however, has not been performed so far.

Spontaneous photon emission: According to standard quantum mechanics,
a free charged particle travels along a straight line and does not emit radia-
tion. According to collapse models, the same particle, although being “free”,
always interacts with the noise field. It undergoes a random motion and,
being charged, it emits radiation. In a similar way, a stable atom also emits
radiation. Not only because it undergoes a Brownian motion in space, but
also because its electrons have a non-negligible probability of being excited
and subsequently deexcited with the emission of photons. Therefore, collapse
models predict the spontaneous emission of radiation from matter.

The emission rate has been computed to first order perturbation theory us-
ing the mass-proportional CSL model, both for a free particle (Fu, 1997) [see
Collett et al. (1995) and Pearle et al. (1999) for a previous analysis] and
for a hydrogen atom (Adler and Ramazanoğlu, 2007). In the first case, the
photon emission rate per unit photons momentum is

dΓk
dk

∣
free

= e2λh̵

2π2ε0m2
0c

3k
(225)

where e is the electric charge ε0 is the vacuum permittivity, m0 s the nucleon’s
mass, and k is the emitted photon’s momentum. In the second case, the
formula changes as follows:

dΓk
dk

∣
H

= 2

⎧⎪⎪⎨⎪⎪⎩
1 − [1 + (ka0

2
)

2

]
−2⎫⎪⎪⎬⎪⎪⎭

dΓk
dk

∣
free

(226)

where a0 is Bohr’s radius. For small k this expression is suppressed with
respect to the rate of a free particle (the electron and proton radiation rates

132



add incoherently), while for large k it approaches at twice the free particle’s
rate.

Comparison with experimental data (Fu, 1997) [see Collett et al. (1995) and
Pearle et al. (1999)] places a strong upper bound on the collapse parameter
λ of the CSL model, only 6 orders of magnitude away from the GRW value.
Therefore, it excludes an enhancement of this value of 8 orders of magnitude
proposed by Adler. However, as proven by Adler and Ramazanoğlu (2007)
the emission rate strongly depends on the type of noise. In particular, for a
colored noise the emission rate is equal to that of the white noise, times the
Fourier transform γ(ωk) of the correlation function of the noise

dΓk
dk

∣
colored noise

= γ(ωk)
dΓk
dk

∣
white noise

(227)

where ωk is the frequency of the emitted photon. For example, a cutoff in the
frequency spectrum of the noise field at 1018 Hz highly suppresses the emis-
sion rate and restores compatibility between Adler’s value. This is a rather
high cutoff, much higher than typical cosmological ones (∼ 1011Hz). There-
fore, it is reasonable to assume that the “physical” emission rate, assuming
that collapse models provide a correct description of physical phenomena, is
lower than predicted by the standard mass-proportional CSL model. Figure
2 summarizes the bounds on the CSL parameter λ coming from various lab-
oratory experiments and cosmological data.

As a final note, although spontaneous photon emission currently provides the
strongest upper bound on the collapse parameter λ, macromolecule diffrac-
tion experiments seem to represent the most significant type of tests of col-
lapse models, not only because they directly test the superposition principle
of quantum mechanics, but also because they are less sensitive to the type of
collapse model (dissipative or nondissipative, with a white or colored noise
field).

4.10 Tests of gravity-induced collapse

Experiments on molecule interferometry and optomechanics are per se also a
test of gravity-based collapse models: if a violation of quantum superposition
were to be observed, the next task would of course be to analyze which
of the collapse models is indicated - CSL, gravity, or perhaps something
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entirely different. Another test, which has received considerable attention in
the literature on the K model cited previously, is to look for the anomalous
Brownian motion induced by the stochastic reductions. Such motion, which
of course could also be induced by spontaneous collapse, seems too small to
be detectable by present technology, but further careful investigation into
current technological limitations is perhaps called for (Collett and Pearle,
2003).[12pt] The optomechanical cantilever experiment proposed by Marshall
et al. (2003) and discussed in Sec. 4.4 has received particular attention with
regard to gravity-induced collapse. Related discussions on this experiment
can be found in Adler, Bassi, and Ippoliti (2005), Bassi, Ippoliti, and Adler
(2005), and Bernad, Diosi, and Geszti (2006).

An experiment to establish violation of Bell inequalities has been carried out
(Salart et al., 2008), assuming that the time of collapse is as determined by
gravity-induced collapse (Diósi, 1987).

It is not clear at this stage whether or not there is a unique experimental
signature of gravity models which will distinguish it from gravity-independent
models of spontaneous collapse.

5 Summary and Outlook

In the early years following the development of quantum theory in the 1920s
the Copenhagen interpretation took shape. The dynamics is described by
a deterministic Schrödinger evolution, followed by a probabilistic evolution
when the quantum system interacts with a classical measuring apparatus
and quantum superposition is broken. An artificial divide was introduced
between a quantum system and a classical measuring apparatus, for the
interpretation of results of experiments on atomic systems. While widely
accepted, even in its early years the Copenhagen interpretation had worthy
detractors including Einstein and Schrödinger, to whom it was immediately
apparent that quantum theory by itself never says that it does not apply
to large macroscopic objects, and a direct consequence is paradoxes such as
Schrödingers cat.

Two broad classes of attitudes developed toward the theory. One, given the
extraordinary success of the theory, was to not question it at all: since no ex-
periment to date contradicts the theory, one should accept the Copenhagen
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interpretation and the associated probability interpretation as a recipe for
making predictions from theory and comparing them with experiment.

The other was to take serious note of the following difficulties: (i) classical
macroscopic systems are also quantum systems, and the quantum-classical
divide introduced by the Copenhagen interpretation is vague; (ii) the ob-
served absence of macroscopic position superpositions is in conflict with a
straightforward interpretation of the quantum superposition principle; and
(iii) Schrödinger evolution being deterministic, it is “paradoxical” that prob-
abilities should show up when one tries to describe the outcome of a mea-
surement.

As appreciation of these difficulties grew, the Copenhagen interpretation took
a back seat, and today it is perhaps fair to say that the interpretation is no
longer considered viable, and should be permanently put to rest, having well
served its purpose in the early phase of quantum theory.

What has emerged on the scene instead is three classes of following explana-
tions which address the difficulties mentioned:

(i) Do not modify quantum theory, but change its interpretation: This is
the many-worlds interpretation. Quantum linear superposition is never
broken, despite appearances. The different outcomes of a measurement
are realized in “different” universes, which do not interfere with each
other because of decoherence. It seems to us that in this interpretation
it is not easy to understand the origin of probabilities and the Born
probability rule. Moreover, it is not clear when the multifurcation
occurs.

(ii) Do not modify quantum theory, but change its mathematical formu-
lation: This is Bohmian mechanics. There are additional degrees of
freedom, the particles positions in space, whose introduction implies
that outcomes of measurements can in principle be predicted before-
hand, and probabilities can be avoided.

(iii) Modify quantum theory: Replace quantum theory by a different theory,
which agrees with quantum theory in the microscopic limit, agrees with
classical me- chanics in the macroscopic limit, quantitatively and dy-
namically explains the absence of macroscopic superpositions and the
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emergence of probabilities, and whose experimental predictions differ
from those of quantum theory as one approaches the mesoscopic and
macroscopic regimes.

In so far as the empirical situation is concerned, all three explanations are ac-
ceptable today. The many-worlds interpretation is in fact perhaps the favored
establishment view- point, because it involves minimal change in standard
quantum theory: everything can continue to be as such, and that which is
not observed is attributed to parallel branches of the Universe which cannot
be observed.

Here we proposed that the third avenue mentioned above be pursued: mod-
ify quantum theory. What happens during a quantum measurement is a
stochastic process. Even though the initial conditions and evolution for
a microscopic system, successfully described by Schrödinger evolution, are
completely deterministic, the outcome of a measurement is completely ran-
dom. A straightforward resolution would be to face the evidence head on
and declare that in the dynamics, deterministic Schrödinger evolution com-
petes with stochastic evolution and reduction. For microsystems Schrödinger
evolution completely dominates over stochastic reduction. For macrosystems
stochastic reduction dominates Schrödinger evolution, giving evolution the
effective appearance of Newtonian mechanics. Somewhere between the mi-
crosystem and the macrosystem Schrödinger evolution becomes com- parable
in strength to stochastic reduction. In this regime, which experiments are
now beginning to probe, new physical phenomena are predicted, which can-
not be explained by quantum theory, nor by classical mechanics. These
predictions, which are vulnerable to falsification, are also the strengths of a
modified quantum theory. They are benchmarks against which the domain
of validity and accuracy of the standard theory can be verified in the labo-
ratory.

To this effect, the quantitative phenomenological models of spontaneous col-
lapse, such as GRW, CSL, QMUPL, and others, have been rigorously defined
within the well-defined mathematical framework of stochastic dynamics. The
models successfully incorporate a Schrödinger-type evolution and a stochastic
evolution - the demanding requirements of non- linearity, causality, nonuni-
tarity, and norm preservation are successfully fulfilled. Two new universal
parameters are in- troduced. One is a strength parameter which scales with
mass and ensures that stochastic reduction is negligible for microsystems,
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but significant for macrosystems. The other is a localization length scale
which defines the linear extent of the region to which stochastic reduction
localizes an expanding wave function. While known physical and astrophys-
ical processes put upper and lower bounds on these parameters, there is still
a large permitted part of the parameter space and it will now be up to future
laboratory experiments to confirm or rule out these parameter values.

Keeping in mind the phenomenological nature of these models, which have
been devised especially to resolve the quantum measurement problem, it is
highly desirable to search for underlying physical principles and theories for
these models, theories which emerge for reasons of their own, and which are
not designed for the explicit purpose of explaining measurement. Trace dy-
namics does well in this regard: its goal is to derive quantum theory from a
deeper level, instead of arriving at quantum theory by quantizing its own lim-
iting case (classical dynamics). It is an elegant structure in which Schrödinger
evolution is the equilibrium thermodynamics of a “gas” of classical matrices,
and the ever-present Brownian motion fluctuations of the gas provide the
stochastic process which competes with the equilibrium Schrödinger evolu-
tion. Under appropriate circumstances, the Brownian motion becomes im-
portant enough to be noticeable and is responsible for the breakdown of
quantum superposition. There perhaps could not be a more compelling rep-
resentation of determinism and randomness than statistical equilibrium and
statistical fluctuations. What is still missing are two important pieces of the
puzzle: Why do the Brownian motion fluctuations become more important
for larger systems, and what is the origin of norm preservation?

Putting trace dynamics aside for a moment, one turns to investigate if grav-
ity could couple with quantum effects and lead to an intrinsic uncertainty
in space-time structure in such a way as to enable stochastic reduction in
macrosystems. At first glance, this seems not possible at all: quantum grav-
itational effects can be important only at the Planck scale, and the Planck
length is too small to be of interest in laboratory physics, whereas the Planck
mass is too large to play a role in the quantum-classical transition. However,
as more than one analysis shows, a subtle combination of linear extent of the
object (measured in Planck units) and its mass (again mea- sured in Planck
units) allows gravity to bring about stochastic reduction. Gravity predicts
the quantum-classical transition very much in the domain in which it is ex-
pected on other grounds.
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Gravity provides a much needed physical mechanism which could underlie
spontaneous collapse models. However, a proper mathematical treatment for
building a gravity-based theory of reduction is not yet available. It is quite
possible that a generalization of trace dynamics that includes gravity could
unify spontaneous collapse and gravity models. Doing so could also explain
why the Brownian fluctuations in trace dynamics and spontaneous collapse
be- come larger for larger systems. For we have indeed explicitly seen in
gravity models that the stochastic effect increases with mass.

The need for inclusion of gravity in trace dynamics also stems from reasons
having to do with space-time structure. From hindsight, it is apparent that
only when position localization is complete for nearly all objects in the Uni-
verse, it becomes meaningful to talk of a background classical space- time
geometry. If position localization is not achieved, and quantum coherence
is significant, indeed that would prevent a meaningful definition of classical
space-time. Under such circumstances, and if one does not want to use clas-
sical physics as a starting point for quantization, one will have to include in
trace dynamics a matrix structure not only for the matter degrees of freedom,
but also for space-time and gravity. Doing so holds the promise that one will
be naturally led to a concrete mathematical formalism for describing gravity-
induced collapse. Investigation and development of these ideas is currently
in progress.

A big stumbling block is the construction of relativistic models of sponta-
neous collapse. It is difficult to say at this stage whether this block will
eventually be overcome or if it is an indicator of some incompatibility be-
tween dynamical models of wave-function collapse and special relativity. The
collapse of the wave function is an instantaneous process and is said to violate
the “spirit” of relativity (as in an EPR experiment). Radical though it may
seem, we should eventually not be averse to a possible modification of special
relativity to make it consistent with spontaneous collapse theories. Never-
theless, at the moment there is no matter-of- principle reason why collapse
models should be incompatible with a fully relativistic scenario. Perhaps a
generalized trace dynamics in which space and time are nonclassical might
have something useful to contribute here.

The development of modified quantum theory has received great impetus
from the arrival of pioneering experiments on molecule interferometry and
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optomechanics which can test these modifications. Prime among these is
perhaps the 1999 discovery of interference and the verification of superpo-
sition in the fullerene diffraction experiment. This paved the way for the
developments that took place in the next two decades. Interference has now
been observed in molecules with 7000 amu and tremendous effort is afoot
to push this frontier to 106 amu and beyond. Great ingenuity is being in-
vested in devising new experimental techniques and technology which help
advance this frontier. These experiments undoubtedly hold a place beside ex-
periments which ushered in quantum theory a century ago: the spectrum of
blackbody radiation, atomic spectra, photoelectric effect, and matter inter-
ferometry with electrons. A broad class of theories predict that new physics
will be seen in the range 106−109 amu. Perhaps in two decades from now, this
range will have been tested. If quantum theory is found to hold good through
this regime, then chances are good that linear quantum theory is universally
valid on all mass scales: we must then be content with many-worlds and
Bohmian mechanics, lest a more convincing interpretation of the standard
theory should emerge by then. If confirmation of the predicted modifications
is found, this will be nothing short of a revolution; a new theory of dynamics
will have been born, to which quantum theory and classical mechanics will
be approximations.
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Diósi, L., 1988c, J. Phys. A 21, 2885.
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