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The Plausibility of Schrodinger’s Equation

Classical Theory

1900 - Planck!

(1)

Light-waves (Young)

Interference (Fresnel) - absolute proof of wave nature of light

#1
I maximum or minimum
I depending on phase differences
due to different paths
source #2 2
slits

screen

At screen: due to slits #1 and #2

A= Age™ 4 A = 27”

Intensity =1 =|A]> = a? + A2 + 24, Ay cos k(11 - )

which - maxima and minima depending on [y — ls. For any number of
slits
A= Z A, e™i  (for x-ray diffraction by a crystal)
J

Maxwell - 1864: Theory of electromagnetic waves! Maxwell’s equations

and wave equation + boundary conditions - complete solution for light-
waves.

Matter
1897 - electrons - J.J. Thompson
Newton’s equations - mi = F

z(t) known — accurate knowledge of path, i.e., cloud chamber tracks.



Hamilton’s formulation: ¢,p
H = total energy = H(q,p) —

. OH . oH
=

"o T
and so much for classical theory.
Quantum Theory of Light

Photoelectric effect: 1888 - Hallwachs — electrons can be emitted from a
surface by light of sufficiently short wavelength!

For any material
v > 1y — photoelectric effect

v < vy — no photoelectric effect

Lenard - v > vy - AT of light has no effect — failure of classical concept of light
energy storage.

Explanation: Einstein - 1905. When light is absorbed by an atom a whole
quantum is absorbed!, i.e., E = hv —w where E = (kinetic energy) of photoelec-
trons and w is the release energy of electrons - binding, work functions, etc.
Richardson and Compton: confirmation of Einstein’s relation.
light quantum energy = E=hv=hw , h=1.0545x1072" erg-sec
Converse appears in emission of x-rays, i.e.,
hy = Einitial - Efinal

Short A limit: hvpmas = Eelectron (Duane-Hunt)

A.H. Compton: scattering of x-rays by electrons

hV1
Vi <V

hv




Using conservation of energy and momentum

dE .
—=g4=c
dp ?
Therefore,
E=pc+A
But A =0 since when p =0 — E =0. Therefore for a light quantum
E h
p=—-= LN explanation of the Compton effect
c ¢

This is particle-like behavior, i.e., light quanta has

But in diffraction - wave-like behavior — duality; the paradox of waves and
particles.

Review
(1) photoelectric effect: hw (quantum)

(2) short wavelength limit of x-rays — no light whose energy is higher than a
quantum is emitted

(3) Compton effect: light interaction with matter - particle-like behavior
(4) Planck distribution

Stationary States in Atoms
(1) nucleus + electrons

(2) revolving electrons radiate - (not true for atoms) — ground state with no
radiation

Franck-Hertz Experiment — energy threshold for radiation.

2eV — emission of line (yellow)
For Na {4eV — another line emitted

6eV — ionization

Niels Bohr - 1913

Atoms exist in stationary states characterized by certain energies F,. hw =
Einitiat — Efinal (of electron) — emission of radiation.

Rydberg- Ritz Combination Principle - the frequency of all spectral lines



emitted by an atom can be obtained as the difference of two term values (energy
levels of the atom).

Quantum Theory of Matter - discrete values of energy.

To get states of Hydrogen atom we postulate electrons in circular orbits with
angular momentum J = nh. Classically we have

electric force — ? = mw?r and J = mriw
Heavier atoms — no success.
Molecules: vibration and rotation spectra — some contradictions.
Aperiodic systems — poor.
Periodic table — good, using electron quantum numbers.
Generalized quantum conditions - Sommerfeld and Wilson - 1916.
Stern-Gerlach - 1922.
Heat waves in solids: (specific heats): Einstein 1907; Debye 1912.
Wave Nature of Matter

1927 - Davisson and Germer

1928 - G.P. Thompson } electron diffraction by crystals

Experimentally — Acjectron = — ; p = momentum of electron

SRR

deBroglie (1924) postulated
h -
A=— by analogy with light
p

ie.,
c_ch_h

Aight = = p=— = momentum

E p c
Surmise that also FE = hv for matter.

deBroglie argument:

E.p 4-vector
Lo both invariant under Lorentz transformation
w,k - 4-vector
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Therefore, — the two quantities should be related by a constant of proportion-
ality — true for light — postulated true for everything!!

p

=5 now m#0orm=0
c  p?>+mic

E = c\/p? + m2c?

v
m=0 —=1->v=c— E=pc (neutrinos, quanta)
c

m #0 no particular values

2nd distinction - particle must either have been created or annihilated in pairs
or singly!!

Critique of the Old Quantum Theory

Most important paradox - particle-wave duality, i.e., a double-slit pattern of the
form(green line is one-slit pattern and red line is multi-slit pattern)

can be done with light, electrons, neutrons, etc. For light, replace screen by a
photoelectric surface — number of photoelectrons emitted corresponds to diffrac-
tion pattern distribution. Therefore light as a wave is diffracted by the slits,
but light as particles eject photoelectrons.

If we use counters (of photoelectrons) and reduce the light intensity (1 quanta
~ 1079 sec) counts registered will not show normal diffraction pattern distribu-
tion of light as a wave!

If we reduce intensity to one photon going through the slits we must still expect
pattern, but 1 photon will go to only one point. Many experiments with a single
photon — approximation to the light diffraction experiment.



Now considering the particle picture: can we tell which slit photon went through?
We cover up one slit: wave theory — completely different intensity distribution.
With one slit open particles can reach points on screen where two-slit pattern
is zero (no particles reach that point). Thus, how can we explain the fact that
opening a slit through which the particle doesn’t go — that the particle cannot
reach a point it has previously reached with one slit open — contradiction of
particle theory.

Uncertainty Principle - we cannot determine the path of particle to complete
accuracy — alleviation of the paradox — this does not tell us what is true.

Quantum mechanics modified particle theory by making less strict the parti-
cle path as a function of time — matrix mechanics (Heisenberg 1925). Quan-
tum mechanics modified wave picture — wave mechanics (Schrodinger 1926).
Schrédinger showed equivalence of the two theories.

Rerstriction on wave theory due to particle theory - “Whenever we see or ob-
serve a particle, we must see at least one particle and no fractions of particles
— we must interpret wave intensity as the probability of finding a particle at a
given point.

prob > 0 — probability ~ |A[?

The Wave Picture

With definite A and w, a wave is

sin (kz — wt), cos (kx — wt), e ko=t milka=wt)
For particles (also for light)
k=2
h
We want to represent a particle by a superposition of these waves — |A[? is large
at one point in space (position of particle) and small everywhere else.

sinkjz + sinkqx —




— particle is most likely to be at places on blue curve where A is large, but not
near zeroes.

Extending this to a continuum of k values - wave packet!
@)= [ di = ho)e™

We want to choose f such that f has a large value (magnitude) only if k » kg

fty)

where o » width of the distribution or f(y = a) < f(y =0). Let y = k — ko.
Therefore,

v(@) = [y fy)er =g@) () real >0
For z =0, g(z) very large, all contributions add!!

For z =7/ ‘
aty=0 yr=0->e"" =1
at y =« yr=m—> ¥ =-1

— destructive contributions - g(x) small, i.e.,

9(x)

(2)[* = probability = |g(z)?



— we have a large probability of finding the particle at x = 0. Such a “wave
packet” — particle is located near xg+ Ax (here zp = 0, Az ~ 1/«) and has wave
number near kg + Ak, Ak = Ay = a.

The best choice of f:

1
f(y) = C\/aeﬁ(l?y2 gaaussian form

Therefore

1
e 247 gaussian

oo 1 o5 o .
Y(x) = C’\/Ef e 2V Ty = C

i.e., the Fourier transform of a gaussian is a gaussian.

2 2

f?(y) = probability of having a given y ~ e ® ¥
z%/a?

g*(x) = probability of having a given z ~ e~

Therefore,
Az ~O(a) from g*(z) , Ak~O (l) from f2(y)
a

Therefore, the wave packet will represent the particle of approximate position
x =0 and k » ko with Az ~ a and Ak ~ 1/a. This fuzziness is inherent in the
properties of superposition.

Uncertainty: We have
AxzAk~1 or AzAp>h

where the greater than sign is necessary since choice of f(y) is arbitrary — worse
spread in y and similarly for spread in z.

Thus we are prevented from measuring position and momentum to any arbi-
trary degree of accuracy at the same time.



If we know x and & at different times classically, we could determine z(t), but
in quantum mechanics - subsequent measurement of either x or & will destroy
the results of our prior measurement of other quantities.

Bohr’s Complementarity Principle: You cannot measure all quantities
which are necessary for a classical description!.

Considering non-relativistic mechanics -

(1)

(2) biological cell - Az ~107*em, m = 1071% gm — still no restrictions.

3)

AxAv = n with A ~107%7
m

grain of sand - m = 1072 gm
AzAv~10"* | Az ~10"%em — Av ~ 1072 cm/sec

— no restriction on our measurements.

electron - m ~ 9 x 10727 gm

Consider an electron gun:
Az ~10"%em , Av ~ 103 em/sec
But v ~ 10° cm/sec — no substantial error.
Consider an electron in an atom:
ro=a=10"%cm > Az - Av > 10® em/sec

But v ~ 108 cm/sec ~ average velocity of electrons in the atom.
Av ~ v and the velocity is completely uncertain.

proton in a hydrogen molecule - M, = 1836me,

Az ~10"%em , Av~ % x 10° em/sec < 107 = v in molecule.

Thus,

— we can describe position with considerably greater accuracy than nec-

essary (less than the size of the molecule).
proton in the nucleus

h

— no classical path of proton in nucleus.

— = % x107% | Az ~10""2cm — Av ~ % x 10% em/sec ~ v in nucleus
m



(6) electron in the nucleus

h _ .
Av<e—Ax > — ~ % x 1071%¢m > size of nucleus
mc

— cannot be in nucleus. [not really correct, i.e., relativistic considerations
necessary in argument, but conclusion is correct].

Time Dependence of the Wave Packet
ei(kz—wt) = 1/)(1,) _ f dk f(k _ ko)ei(km—wt)

Now w = w)k), but since f is only large for k »~ ko, we use a Taylor expansion of
w in terms of (k — ko) or

dw

1 o [ d*w

Let y =k — ko — f(y) large only for y ~ 1/a.

We choose ¢ small enough such that we can neglect 2nd-order and higher order
terms!

1/}(x) = t(koz—w(ko)t) [ dyf(y)eiyz—iw’yt
= ei(kOI*w(k:O)t)g(m _ w,t)

Prob = |¢(z)* = g°(z — w't) — shape of function is the same at time t as at
t = 0; the only change is one of position, i.e., packet moved bodily to new center
at x = w't since wave packet represents a particle

, dw  dw . .
»v=w = oy - i v — good representation of the particle
or
v dw
h o dp

since p = hk is true for all particles even relativistic - and also for light.

Now in Hamilton’s equations, for all cases as before,
dH H FE
— =V >W=—= —
dp h h
— that the relation must hold for both matter and light.

Our only assumption has been that we can represent particles by wave packets
and that the wave packets must move with the classical velocity

w .
o group velocity of wave packet from wave theory
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We have used Bohr’s complementarity principle here!
Quantum mechanics must go into classical mechanics when in the limit quantum
phenomena become unimportant. In classical limit A - 0 - width of wave

packet — 0 — particle is at center and is localized — classical motion.

Spread of Wave Packet in Later Time

d*w B d’E

dk2 " dp?
For non-relativistic case

P2 d’w h

Levr_ L
2m  dk?2 m

— 3rd derivative, et = 0 (only non-relativistically).

h
Ar=a , Av=—
ma

Az?(t) = Az?(t = 0) + APvt?

for a Gaussian — spreading of the wave packet!

“Postulate” - all particles are represented by wave functions — no need for
thought experiments.

Thought Experiments

(1) Position Determination: Microscope

eye

11



A .
Ax = —— — resolving power
sine

Therefore shortest A — smallest Az. In this thought experiment Heisen-

berg used v-rays.

But performing the experiment — interaction between y-rays and the elec-
tron — recoil of the electron.

hv . .
py = — after scattering — recoil momentum of electrons
c

But p, can go in range +e. Therefore

h
Ap, = 2 ine
c

We can assume p,,p~ are known before the interaction. Therefore

AxAp, =h
Momentum Determination: (Doppler effect)

Atom (at rest):
O = fo emitted
Atom (moving):

v—>

O -f=/fo (1 + %) — velocity of the atom

vzc(%—l)

Now if 7 is the time necessary to measure frequency f, then
1
Af ~—
-

Actually a wave train is emitted

e—zwote—t/T

Fourier analysis — wave packet —

1
W=wpx —
T

When the atom emits light it will recoil - change in the velocity of the
atom

hf .
dv=—— exactly known from momentum conservation

12



— no trouble in velocity determination.
But we do not know when the emission too place. Therefore

hf

Az ~dvr = —71

fo T 7f

where Av = uncertainty and we used f » fy. Therefore we get

AxAp, =h

(3) Diffraction Experiment:

recoil due

to photon
A
o H=
/ ' x
a
photon
indicators

Which slit does the elusive photon go through? There is uncertainty due
to indicators! - Ap, in photon (also Ap, in the indicators). We do not
want this to destroy the diffraction pattern, i.e., since

A0:(7”L+1)é—ni:é
a a a

between maxima and Ap, — deflection due to the indicator equal to

Apy
Pz0

where we have assumed that the original p,0 <<< pyo. For no destruction

of the pattern
A A
P20 a

The indicators obey uncertainty relations, such that Ap,Ay > A for the

indicators. Therefore
Ay> h . ha
Apy D0

13



But

h
Pzo =y Ay >>a >> distance between the slits

Thus, the position of the indicator from one slit is so uncertain in position
that it could seem to indicate passage through the wrong slit.

Therefore, preservation of the diffraction pattern — destruction of the
knowledge of though which slit the photon passed.

Wave Equation

A plane wave
ei(kx—wt)

describes particles moving in space with a given momentum; in analogy to
acoustics — a wave equation!

Conditions

(1) linear equation in ¢(7,t) — possible superposition of different solutions
of the wave equation, i.e., wave packet representation of the particle. Su-
perpositions of solutions of a non-linear equation are not all solutions of
original equation.

(2) wave equation should contain only universal constants, i.e., h,m, etc. For
example, consider light. We have wave equation

1 0%f
2 —_———
v c? Ot?
The term
1 2(7
— can be i (27') — function of the medium
c c

We want the wave equation to be the same for all media.
(3) wave equation should conform to deBroglie relation for a free particle
(4) in the limit the wave equation should — classical motion!

From condition (3) we have

) w=

o~
I
>

E
h

Considering ') we get

Py LY B0 _ E %Y
ot2 k2 922 p? 9x2  2m Ox?

14



But this contradicts condition (2) — each solution is good only for a particular
energy — no superposition.

Try
oY 0%
ot | ox?
This implies
—iwtp = K>y
Therefore
_iw thE ih

TTR T T om
which is a universal constant. Therefore, we have a satisfactory wave equation
which is
,haw _ h? 9%

7 =
ot 2m Ox?
and only the exponential solution e*(**=*) is a solution.
In 3 dimensions
v = ei(fc-?—wt)
where

- D
k = wave vector = —

>

These conditions force us to reject all solutions not going in the direction of p.

Now o2
(4 2
— =-k
and similarly for y and z. Therefore, for k? = k2 + kf/ + k2 we have
2y = k%Y
0 ) w
a—if = —iw = +ﬁv2w
Therefore 5 )
L g
Bt =
"ot 2mv v
Now o
Evy = hw = ih—
¥ =hoy =ih—

for any w. For any arbitrary wave packet of different frequencies — analysis of

% by splitting, Fourier analysis and recombination. But we can get this imme-

diately from the original relation, since this relation is true for any component

of w, and the relation is linear — it is true for any superposition of solutions.
oy

pw¢ = hk,v = _Zhaix

15



P = hkip = ~ihvip
Therefore, since these are linear relations, we can consider these relations as
giving meaning to the statement K1 = M1 as K operates on ) and K = M.
Therefore, the operators are

o
E=ih— = —ih
o o P v
2
E = ;;1/,
m
or )
h
ih%—:/j = —%Vzw — wave equation

Particle in External Force Field: ' = -VV (a conservative force)

p?
E=—+V (classical)
2m

The operator equation in quantum mechanics is

2
Eyp=—o+ Vi)
2m
This is an assumption!!

We will prove that in the limit, this equation gives the classical result for the
equation of motions, thus proving the assumptions are correct. We note that V'
is not an operator; only a multiplier. Therefore

oY h? _,

th—=—-——VY+V

ot 2m v v
Interpretation of the wave equaltion gives certain solutions - depending on the
potential V. In interpreting this equation we must take into account the particle
picture. 1 can give only statistical information — probability.

Statistical Interpretation due to Born

He postulated that [)[>d7T gives the probability of finding the particle in dr.
Why shall we take [|> for the probability and not something else?

(1) P (probability) must be positive definite. But we know that ¢ is necessar-
ily complex, so that we could get an equation which was 1st-order in time.
|| is the simplest, smooth, positive definite function derivable from 1.

[Pdrzl

(2) Total probability

must be conserved. Consider



We have

9p_9 ‘lw ”
Sl = Sty =yl O
Using
,81#_ h?
Zha——2 Vv ¢+VI/J
and )
. a¢* __L 2 % *
ih ot 2mv vTEVY

which is a much used procedure in quantum mechanics, we get

L0 Oy B2
M9 ) et st

where S = ¢*V-)Vi* ). Therefore
o ., ih_ .
TwPrLv.8
8t|w| 2mv

This finally gives (using Gauss’ theorem)

O [ .. ih L s
2 d:—f Sd :—[S-dA
5‘tf|w| g 2m v T 2m

We have encountered the following types of 1):
(1) ¢ decreases at large distances
(a) wave packet - ¢ = 0 on surface A if A is sufficiently far away from the
wave packet.

(b) bound electron - the probability of finding the electron far away from
the nucleus is small; when the surface A is far away from the nucleus

b =0.

(2) v remains constant at large distances, i.e., e In this case the
surface A and the conditions on ¢ can be suitably chosen so that [ 4=0.

i(kz-wt) )

The [ Pdr is independent of time. We then choose the constants such that
[ Pdr=1

Normalizing conditions on wave function must be imposed before we can con-
sider the wave function as well-defined. The wave function is always arbitrary
by a phase factor ¢'®. This phase factor makes no difference in [ or in S:

. ., h _ .
9 Mt v.§=0
prilU

—_—— — —
& V-5’

17



or

oP »
—_— -S'=0
5 +V

Thus, we have a continuity equation and S’ is a probability current density.
(compare to electricity where we have % +V-J =0). The continuity equation
represents conservation of probability in a small volume, i.e.,

%/Vpd7+[4§’-dﬁzo

so that if we take a sufficiently large volume and use 1| as the probability
density, Schrédinger’s equation — [ [1[?dr = 1.

Definition of Expectation Value: We can calculate the average value of =

as
(2= [ loPadr
(P = [ WP r)dr

This is the definition of a statistical average called the expectation value; in
general
(2?) # (2)?

The expectation value of x — classical position by the correspondence principle.
How do we get (p,) or (FE) ? Use correspondence principle and require that in

the classical limit the results are valid, i.e., we want to define (p?) — classical
p?. It is reasonable to define the expectation values such that

(E) = —— (%) + (V)

:2m

It is necessary and sufficient to define (A) in such a way that

(A):fi/)*Ad)dT (A = operator)

Once we postulate (A4) = [ ¢* Aypdr, then

LA

(E) = 2m

follows from the Schrodinger equation.
We have
. oY
Ey=ih [v*d
(B)=ih | o dr
w?) = [ v vPudr
(pe) = =i [+ 2 e
Ox

18



Then Schrédinger equation —

[ ( v w+vw) - (E)

Ehrenfest Theorem

d, . [ 9 ., h .
%m_fxam dr = %/xv Sdr

Now from vector analysis
V- (jS)=4v-5+(vj)-S
Therefore
I

%(x): % fv (zS)dr +—f (va) -Sdr

[ S — Sz
=0 since [,=0;4—00n A

__h __h o _op* )
_2imfvSIdT_2ime(w pri ) L

'i _/V (21/’ R g(l/J ¢)) dr (integrating by parts)

:21m Ox
0 0 0
P % (using [ 2 ryir = [ yrpar= 1) =0)
_ {pe)
m

The relation obtained for expectation values is precisely that obtained classi-
cally for the corresponding values. The correspondence principle requires that
classical mechanics holds in the limit, but Ehrenfest’s theorem gives

gm: (pz)

dt m

The center of the wave packet moves with the classical velocity. This is an exact
relation - true for all time. This is true for all wave packets, no matter how the
shape of the wave packet may change.

Now

[

=f( Vi +vw) 9 4r —[i(—;;vzmvw)m
[

19



as expected! We now have

PRGN h?

- 5 V) + V() ) (1)

p(7,t) = [ (7, 1)

Properties of the Solutions of Schrédinger’s Equation (time-independent,
ie., V=V(r))

Is separation of variables possible, i.e.,

general solution — (7, t) = Y ¢ (fn(t)u(r))

For now let ¥(7,t) = f(¢)u(#) which implies that

zhu(f)%{ = _2% FOV2u(F) + V(r)u(®) f(t)

or
1 R 1
ihu(f)faaf = " a() V2u(7) + V(r) = constant = E
g(t) only k(r) only

Therefore of
ih— = F
ihae = E1

and

—:—mv%(f) +V(r)u(7) = Bu(7)

For the t equation

F(t)= A H

Therefore
Et

D(F,t) = u(F)e “n

- |1> = |u(r)|* - stationary or eigenstate solution, i.e., [)|* # m(t) or proba-
bility density is independent of time!

The r equation is a 2nd-order differential equation - need for two boundary
conditions, i.e., (7, V7)¢=,-

We want only physically useful solutions!

Physical requirements on u(7)

(1) wave packet - [¢)|* - 0 as r — oo. For wave packets we can set [ [[>dr =1
by normalization — localization of particle!

20



(2) traveling wave - say a plane wave
(i)("?a t) _ ei(l_c-?fwt)
- [Y|? = 1 at large r — equal distribution of particles everywhere!

Therefore, 1st requirement — bounded everywhere (at large distances).

(3) Continuity requirements, i.e., u(r), % are continuous, — v is uniquely

dr
given by the boundary conditions!

These should also be single valued and finite

(a) single-valued — uniquely defined probability

(b) infinite — a local probability becomes infinite at a point — absolute
localization!

1 for localized particle: there is a discrete spectrum of allowed E values, i.e., F1, Fo, ....

1 for traveling wave: there is a continuous spectrum of all energy eigenvalues!

Schrodinger’s Equation in One Dimension

h? d*u d*u
e = g
5 5 +V (z)u(x) = Bu(z) or 3

2m
+ ﬁ(E -V(z))u(z) =0
For localized particles:
V(x) > constant |z|— oo

V = constant — no forces; this is reasonable for localized particles since if
forces existed at large distances — some particles at oo — no real validity to the
idea of localization!

Since V scale is arbitrary, let V = constant = 0 as |z| — co. Let us put the
further restriction that for |z| > a, V' = 0. Therefore we have

AV

min

21
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Suppose E <0; |z| >a - V = 0. Therefore

d’u  2m

—_— + _
dz?  h?

Fu=0 p*=- 2 >0—>u=e*

Now from physical requirements, £ — +oo - bounded —

u = e Plel |z| > a

This gives

Now for |z| < a, if E < Vipin, then
2m b
ﬁ(E -V(x)) <0 everywhere

2
Now if %‘;73 > (0 — concave upwards function. Since we have

1 d%u

fﬁ>0 for all =
u dx

— wave function is concave away from axis for all z (as shown).

a —
\ X
Note that at « =0, j—; is not continuous — we cannot get meaningful functions.
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A
not necessarily
smooth
| —
Ve
points of
— 7 inflection
-
a X2 X1 a —
E X

Therefore we can now conclude that o > E > V,,,;,,. then two points exist where
E =V (z), say z1 and x2; between these two points (E -V (z)) >0 (as shown)
Note that at x; and x5 we have % = 0. In general, it seems as though we

will obtain a continuous derivative. Let us choose V to be symmetric, i.e.,
V(z) =V (-z). Then

2
% + %(E -V(z))u=0->u(x) =u(-z)
We note that

du

o =0 — solution — continuous derivative
T

=0

Thus, in general, under these conditions we will have:

\"

not necessarily
smooth

| —

Ve

points of

| — )
inflection

- /
a Xo X1 a
E X

For E = V,,in, all curvature is upwards (concave) except at © = 0 - no curvature
— continuous derivative.
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/\\

We note that, in this case, V > E except at =0 where V = E. At point A, we

2
have % = 0 - 9% is continuous (i.e., it exists).
dx dx ’

But as F increases, curvature increases — eventual discontinuous derivative; i.e.,
increasing £ —

This corresponds to no continuous derivatives. Stlll increasing E (choosing
u(z) = —u(-z) until

continuous

Note that it is continuous at z = 0. Continue to increase E until (choosing

u(z) = u(-x)).

24



~<— continuous

All this — only discrete values of E — continuous v and % — only discrete
values of E give meaningful solutions. Thus we have

E2
~
=

Now for E > V4. =0 and |x| > a we have

d?u  2m

@‘FﬁEU:O E>O
For omE

o = Tth T |

or all £ values are allowed since the wave function is bounded at oo for all E.

(see below).
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wave function = traveling wave

\
WATAASAWAWANAWIWATAWAWAWA
VRVAAVAAVA\VARVA VARV, VARVARVAR

Vv

The energy spectrum becomes

traveling waves —»
continuous spectrum

—» localized particles —»
discrete spectrum

V=V min

Removal of Restrictions

(1) V does not — constant at oo, i.e., harmonic oscillator V' = %kxg

/V

Ey
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du

e at r=0—>

E <V - continuous upward curvature — no continuity of
no meaningful functions.

We get an infinite number of E levels, therefore restriction of limit at
infinity is really not a restriction!

(2) Restriction of symmetry potential; consider the asymmetric potential (shown
below)

we have
V = constant =Vi;x<b
d®u  2m
@+§(E—V1)u:0
du 9 2m
@—5’“:0 -8 =§(E—V1)
E<Vi>une P 4ef”
and
V = constant =Vy;2>a
d®u  2m
@+§(E—VO)U:O
d*u 9 2m
@—auzo - ZF(E—‘/O)
E<Vy—>ure * +e”
Start at point b and solve going towards a — when we reach a, Z—Z and u

must be continuous at a — restriction

u(a) = Ae*® + Be ¢

u'(a) = ade*® — aBe

A

e *(au(a) +u'(a))

**(au(a) -v'(a))

— N

B=—e¢
2

But A must be zero or we will have u ~ e — unbounded at oo.

27



This implies there will be some energy value (E; where the solution will
lead to the decreasing exponential and thus lead to a meaningful solution
(dotted solution)!!

Infinite Potential Jump

Consider the two regions I and II:

Region I:
du 9 2mkE
E -k*u=0 , k= 72

u=Asinkx + Bcoskzx

Region II: (for V, large)

d?u

au _ 2m(E—V0)
dxz? -

2 2
—571:0 ) ﬂ h2

u=Ce P

For a match at x = 0 we must have
B=C , kA=-pC

As 8 — oo, we may bet A - oo or an infinite normalization constant,
which is of no value to us. Therefore, we must have

C=0-B=0
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Therefore
Asinkr x<0
u(z) = 0

x>0
/\l__\%

<)
| 1l
/\
\/ \_/ 0\ continuous

u is continuous; v’ is discontinuous (due to oo jump). Also P(y) and S(x)
are continuous. u’ will be continuous for non-infinite jumps!

Example: Consider the infinite square well (shown below)

8
8

We must have u = 0 in regions I and III. In region II:

du 9
E%—,@u:() 5 /B

B 2mE
=3

FE <0 - curvature always upwards — no meaning!
E>0-u(x)=Asin Sz + Bcos Sz
Matching at +a —

0=AsinfBa+BcosBa , 0=-AsinfBa+ Bcosfa

which implies that
Asin fa = Bcos a =0

1st solution: A =B =u =0 — no wave function!
2nd solution: A =0 and cosfBa =0 — u = Bcos Sz and
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Ba=(2n+1)5 n=0,1,2,3..

Therefore,

2
9 0 T 2m

=(2n+1)"— =
3rd solution: B =0 and sinf8a =0 —» u = Asin Sz and 38 =2n7
note that case n =0 is just the 1st solution (trivial case).

Therefore,

we have

T h2m2
uy1 = Bcos —x with F; =
2a 8ma?

etc. The first three wave functions are shown below:

h2 27‘('2
B Boper = (20 +1)2 2
2+l 2m(n )4a2

n=1,23..;

Uy us
L~
~
S vd
\/<u3
We also have
2a
V=0
with corresponding quantities
h h?
Az~a , Ap~—, (p°)> =
a a



which implies that
2

2ma?

Elowest state > this is Only an estimate

2 2
But, solution of problem — F; = n’:az s > Elowest state > O.K. Only a Gaussian

will give minimum uncertainty — zero point energy.

Finite Potential Well

Vo

We have 2
U 2m
where
0
Vo |z| < a
Vo |z|>a
2mFE
|z] <a > u=Asinar + Beosazx azz%
|z| > a — u=CeP" + DeP* | ﬁQ:Mg%E)

z>a—->u=CeP* D=0

o <—a oD =0 } so that u — finite as |z| — oo

For continuity at |z| = a:

Asinaa + Beosaa = CePe

—Asinaa + B cos aa = De™P? } continuity of u

This implies
2Asinaa = (C - D)e P (1)

2Bcosaa = (C + D)e™P® (2)

Continuity of %:
X
A cos aa — Basinaa = —C e P
A« cos aa + Basinaa = DfBe 5

2Aacosaa = —(C - D)Be e (3)

31



2Basinaa = (C + D)Be

From (1) and (3)
either A=C-D=0

or acota = -3

From (2) and (4)
either B=C+D=0

or atanaa = f3

(5) and (7) — trivial solution
(6) and (8) cannot be used simultaneously.

Class I Solutions:
aatanaa = Ba

A=C-D=0
B%0
C+D=+0

- only COS xx occurs.

Class II Solutions:
aacotaa = —fa

A+0
C-D=+0
B=C+D=0

— only sin ax occurs.

Now let aa = € and Sa =17, then we have

2m
&+’ = ﬁVOGQ

Now for Class I

Etané =1
and for Class I1

—§cot=n

Equations (9), (10), and (11) — solutions; £ values — energy eigenvalues!

A graphical solution is shown below:
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3 E

—§cot&="N

Note that curve in 2nd quadrant is inconsistent.

We have

2_2m

=22 Voa?  (dotted circles (radius = r) on diagram)

&+’ =r

— number of intersections — number of solutions.

& = lowest & 0<§13<g
53: 21’ld£ 7T<§1<77T

Class II solutions — similar intersections. Discrete intersections — discrete val-
ues of & — discrete F values (all depending on ). We have the result

n-1 nmw .
TT( <r< 5 exactly n solutions.
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Parity

We make assumption: V(-x) = V(x) - symmetric potential. Then we have

d*u(z) 2m

Tzt ﬁ[E -V(z)]u(z) =0
Cm + zh—n;[E -V(-2)]u(-x) =0
d7u(-z) Zi;x) + Qh—ZL[E -V(2)]u(-2) =0

— same differential equation as for u(zx).
Assume only one solution w for given energy E
- u(-z) = eu(x)

x> -z - u(x) = eu(-z) = 2u(r) » e = +1

Therefore
u(-z) = u(x) I - symmetric function - EVEN function
or u(-z) = —u(x) II > antisymmetric function - ODD function
IT «(0) = . . . ; :
I du| —g solutions for successive values of discrete E’s - EVEN, ODD alternation
dxlo ~

Elimination of Restriction of Unique Solutions

Assume several solutions for a given E! u(z) is a solution...where we can write

u(z) = ue(x) + uo(x)
u(—2) = ue(x) — up(x)

Substituting in Schrodinger’s equation —

dPu, 2m dPu, 2m

de +ﬁ[E_V:|Ue+ de +ﬁ[E_V:|UO =0
Letting x - -z

dPu,  2m dPu, 2m

dpz oz (B Vive = = G (- V]ue =0

Add — wu, satisfies Schrodinger’s equation and subtract — u, satisfies Schrodinger’s
equation. Therefore, u.,u, are also solutions — degenerate eigenvalues.

We can always choose even or odd solutions by suitable linear combinations of
our solutions!
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3 Postulates Concerning Interpretation

I. Any classical dynamic variable is represented by an operator

19)
p=1h E=ih—
p=1nV Z@t

For any operator (2 we can write
Quy, = wuy,
where u,, is an eigenfunction(solution) and w = number = eigenvalue.

IT. Any physical measurement of €2 will give one or another eigenvalue w.

[ ¥ = wave function - may coincide with a single eigenfunction, but, in
general, it will be a combination of eigenfunctions!

How can we decompose 1 into eigenfunctions of certain operators?, i.e.,

)= Z Ayuy,  (proof — orthonormal wu,)

A, = expansion coefficient.
III. Probability of finding result w in measurement of € is |4,|? - due to Born.
Consider
h2

Qp=-—V>+V
2m

Therefore we have )
h
(—v2 + V) up(7) = Bup(¥)
2m

(1) E — discrete values
ug >0 as r— oo

(2) E - continuous values
ug — finite as r - o

Integration by parts - solution finite on surface - [dA # 0 as in (1)
solutions.
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L>>>a

—» periodic boundary
conditions

We have u(x + L) = u(z). This enables us to work out (2) solutions —
extension of domain of discrete eigenvalues into region II but these are
so close together that physically the E spectrum is continuous; but not
mathematically!

Energy Eigenfunctions

2

h
——V2+V UE:EUE (12)
2m

| S —

energy operator

h2
(—MVZ + V) u;;, = I*UTE/ (13)

Multiply (13) by ug and (12) by u}, and subtract — potential term cancels (aim
of this procedure is the elimination of dependence on a particular potential). We

then have. )

h * * * *
—%[uE,V2uE ~upViuly]=(E-E")upug
Now integrate over all space
h2
-— f[uE,V2uE —upV3iuly]dr = /(E - E™)upugdr

2m
Using Gauss’s law or Green’s theorem —

2 *
—h—/(ufg,au—E—uEauE’)da:[(E—E'*)U*E,uEdT
on on

2m

If F and E’ are discrete — up decreases exponentially as r — oo, which gives

. OQup . Oup, Oup
[(uE' on ue on )do 0 (UE’ 671) 0

for a large enough volume!
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Digression: Define (¢*, Ay) = [ ¢ » Adr. Then
(w;;de}m) = Em(w;;ﬂ/)m) = (H¢Z7¢m) = E;(¢;7wm)

m=n- (Y., ,)*0—>E, =E' - E, = real

Nothing surprising here since the eigenvalues of a Hermitian operator are real.
In addition,

m#n— (Ep = En) (W hm) =0 (¥, %m) =0 > orthogonal.
Again not surprising for Hermitian operators. more on these points later.

Box Normalization: F and E’ are in the continuum, i.e., ug, etc do not go
to zero for large r, — periodic boundary conditions, i.e.,

u(z+ L,y,z) = u(x,y, 2)

@ ©)
aUE auE
_ E < | L 5 =
an an
Uug ——> — ug
x=0 x=L

Normal derivatives opposite but equal in magnitude — cancellation of all terms
> [(-+)do =0, ie.,

(up)1 = (up )2
(%), == (%E),

and similarly for ugp and
we have

true for all corresponding points

Bug,
on

terms — exact cancellation! Therefore in general
(E-E"™) / Woupdr =0
which is the orthonormality integrall
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Case 1:

Case 2:

Case 3:

up = up - E™ = E since [ujupdr # 0, ie., ujup = lug|? = positive
definite - E - E™* =0 - E - E™, but £ = E’ in this case and therefore
E=F* - real E.

Thus, same eigenfunctions — same eigenvalues, but same eigenvalues +»
same eigenfunctions!

E' + F then [wujugdr = 0 - orthogonal wave functions - any two
eigenfunctions belonging to different eigenvalues are orthogonal!

E'=E, up # ug (degenerate eigenvalues which are extremely common in
2 and 3 dimensions) — ugs where E gives the energy eigenvalue and S
specifies which eigenfunction.

If E (eigenvalues) are the same for several configurations, then we can form
any linear combination of theses — solution is Y, agUgg! This implies
that we can construct orthogonal eigenfunctions, i.e., construction of an
orthogonal set of degenerate eigenfunctions.

Example: u; and us are orthogonal, then

%(ul + Ug)
are also orthogonal, etc
75 (u1 - uz)

We normalize eigenfunctions by requiring that

[ |uE|2d7' =1

When all eigenfunctions are normalized and orthogonal — orthonormal
set.

Now consider a general operator  (go through same steps as with E) —

f[u:,(Quw) - (|Omega*u},u,]dr = surface integral =0

If this is so —» Q = hermitian operator and as in the energy case, w = real and
u,’s are orthogonal!

On physical grounds, if €2 represents a dynamical variable, i.e., it has meaning in
classical mechanics — operating with €2 should — real measurement value which
will be w. This implies that all dynamical variables must be represented by
Hermitian operators — we will always get real eigenvalues (this is the converse
of the prior argument, i.e., now assume w = real = w* — Hermitian  and from
3rd postulate — orthogonality. Q.E.D).

In problem set:

d 1
—(2%) = —(xp + px) = —( hermitian operator )
dt m m
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Tp * pzx, i.e.,

(px — zp)u = —ihé(xu) + ihx@ =ihu
Ox Ox

or operator pxr — xp = th This implies that all eigenvalues are not real; = —ith —
not hermitian - px — xp # dynamical variable. Note that

I=xp+px
Il =px—xp
I+11=2px

I—-1IT-2zp } not hermitian

Only the symmetric expression zp+px gives a hermitian operator! This imp lies
that order in operators is all important!! (unlike in classical mechanics where
2xp = 2px).

Therefore, when we transfer from C.M. to Q.M. we can pick correct operators
by requiring the hermitian property!

uwiugpdr =0 if '+ E by proof
Jug Y
[ upgupsdr =0 if S"#S by construction

[ upgupsdr =1 (normalization) by construction

FE real — hermitian operator. Every physical operator must be hermitian!
Definition of a Hermitian Operator
[ orwar= [ (@6 )wdr

In general, wave function 1 (7,t) and eigenfunction ug (7). We drop time de-
pendence for now.

Assume,

W(7) = Y Apup(7) (14)
E
if the set of ug is complete! This means that, in general
[ @) - ¥ Apup())?dr =0
E

Now

f W (F)(F)dr = [ dTuE,%:AEuE(?)
:%:AEdeu*E,uE

= Ap (15)

39



This is not true only for energy operators! In general we have
coefficient of eigenfunction = f ( complex conjugate of the eigenfunction)(wave function)dr
Putting (15) into (14)
v(r) = Zus(r) [ up ()i
= [ @) Sup(yun)
E

This equation is true for all ¢ (7) satisfying equation (14) — any function that
can be Fourier analyzed (almost all)! Therefore, assume t(7) is not “too sin-
gular” — 9 (7) can be chosen arbitrarily — ¢ (7) must not be dependent on any
other point —

Y ug(r)up (i) =0 for # 7
B

ie.,

vO=em [ a0

over region with 7#=7/

=1

This implies the closure property - holds for eigenfunctions of any hermitian
operator.

If closure holds — complete set!

Probability Function
Apl? = wg(F)Y (F)dr" | wi(F)Y(F)dr
Shsf =% [ st (i [
:fw*(f')zp(f)chfZEjqu(f’)ug(f)dT’

=1-7r=7r

- [ @@ =1

Similarly,

(f()) =3 f(w)l Al

(Eoperator) = (H> = Z£?|"4E'|2
E

=28 [ us( (ar [ upur
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Now

h2
Euy = Huy = —Z—VZ +V|ug
m

| —
H

Thus, the last integral (using partial integration - surface term — 0) gives
* (= h2 2 =
[ w524V |y
2m

['herefore
H) = A* s H #)dT = *H dr

—_—
¥*(7)

Return now to the Time Dependence: ¢ (7,t)

At given time ¢ we can expand
P(7.t) = 3, Ap(t)up(7)
E
This is true for any arbitrary function. We then have

Ap(t) = [ up@®ee.b)

Now assume o0
ih— =H
thgy =HY

then we have AR ()
. t . .
zhz 5( ug(F) = ZAE(t)HuE(r)
E t E

But we know that

H’U,E(f") = E'I.LE(V) = ZAE(t)EuE(f)

We hoe that the ug form a complete set — coefficients of ug in two }.’s are
equal or
dAE(t)

S = BAp() ~ Ap(t) = Ap(0)e ¥

ih

and therefore

W 1) = 3 Ap(0)e " F up ()
E
This is true only for functions solving Schr odinger’s equation with potential V!
If 4(7,0) is known - Ag(0) - knowledge of ¥ (7,t) for all ¢!
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Summary

Orthonormality Condition

/UE,S,uEsdT:(sEE/(SSSf
Expansion Coefficient
Ap = / upYdr
Closure Property
N

* (ol 7Y = 5(F— ) = 0
%:uE(T )UE(T) - 6(T - { /5(?—77,)61’7” =1

M4 =1

E

Ap(t) = Ap(0)e

V0 =3 [ a0 F us)
- [ dro 0K, 1)

where

K = Kernal =) up(#)up(F)e”
E

Knowledge of the kernel — knowledge of the wave function 1 development for
all time. We note that
K(7,7#,0)=0(F-7")

independent of V.
This representation of (7, t) is for a general 1; (a stationary state is only one

term of the expansion) whereas an arbitrary 1) is an expansion in the stationary

state solutions, i.e.,
IR O 3
ug(r)e " r

These — probability constant in time, i.e.,
P =[yl* = |up(#)®
whereas for a general ¢

2
P= ZAE(O)e’i%uE(f) # independent of time!
B

This is due to the cross-product terms or “interference terms”.
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In classical mechanics for an oscillator
x = Asin (wt +7)
and initial conditions — A,~y. A,v — knowledge about the actual state of the

oscillator!

In quantum mechanics the general form of a solution is similar, i.e.,
. _i Bt "
»(7,t) = 3 Ap(0)e™ ™ up(F)
E
which implies and infinite number of constants of the motion.

The Ag(0) — knowledge of the system — observation of the system must —
Ag(0); but what measurements?
Alternatively, in quantum mechanics

T =20+ Ax
p=po+Ap

— we can represent this knowledge in the form of a wave packet and if dxAp = h
(minimum uncertainty) — Gaussian wave function — exact knowledge of the
form of the wave packet!

Otherwise (i.e., for dzAp > h) — some arbitrariness in Ag(0)!!

Momentum Eigenfunctions

—-ihVuy, = pu,(7)

BT
—)up:CeZ h

We want to make the u, “countable” — use of Box Normalization with periodic
boundary condition u(z + L) = u(x) —

up = Cezk-r

For boundary conditions to be satisfied

_ 2mng _ 21y _ 2mn,
by = 20, = 2 o 2

— u # 0 at boundaries. For a rigid box zsin 7* - 0 at boundaries.

-3/2 .
9

C' = normalization constant = L ie.,

fu;:,ude:L_?’ /deei(k”_k;)xdeyei(ky_k"y)ydezei(kz_k;)Z
0 0 0

oy oilka=k, )L yiCky =KL i(k~k.)L
B [i(km—k‘;)i(ky—k{,)i(kz—ké)]

ke Ok ket

Yy

= O,k Ok
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Closure

> i (7 Yup(7)
k
Consider only the z-coordinate:

Lt Zeikr(m*z’) (an oo sum)
ko

-1 N i2Tne (pog')
= L Z e L “
Ng=—N

= [l i (@2 )N e Tt (@maH@N+) g

27

et (@) _q

As N - oo with 2 - 2’ « L, keeping only 1st and 2nd terms in expansion of
exponentials, we have,

L e2£iN(CE—LE/) —e 22”"N(ac—w')

(e - )

~ lsin%N(x—m')

™ x-x

Now z — 2’ » 0 — the last expression is = 2 and x - 2’ large((z — 2') > 2% —

the expression is
1

N w(x—a')

For closure we wanted
fn=0 xz=za
fnlarge = =2

We have a function which is large % at x —2' ~ 0 and = —— ~ small for
w(z—z")

x — 2’ large. But in the limit N — oo we have

for z = 2’

Z B {0 everywhere except
k

We can get a better function by using a Gaussian:

2 - 7
Z e etk (32 gmall

Mg

‘We then have

— better function and as o — 0

Y =0forz+a
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which is what we want;(uniform convergence here rather than oscillating as
before). But 1st discussion is simplest!

The potential consider here can be infinite at a point and still have a finite wave
function, but if V is infinite in a region — 1 =0 in this region.

The Delta Function

0(x)=0 x+0

Definition =
ernnition {‘/_:212 5(x)dx = ]_

One representation is
sin gz

lim =0 z=%0
g—o  gx

1 [ singx

- f d(gz) =1
T J-oo gx

Another representation is

lim 7'/2ae™ """ =0 (z#0)

a—> 00

Some Theorems

/f(x)a:é’(x)dm:—ff(ai)é(x)dx

1
d(ax) = =6(x) ete, ...
a
From closure discussion

SR us(F) = 8z ~a)aly ~y)3( =) = 8~

1/2 a?x?

ae” we have

J

For the d-function in the form limg oo 7

(o]

9
5
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f 5(x - a)é(z - b)dz = 6(a - b)
[ 8a=b)f@)db= £(a)

Using d-functions:

o g
f ¢ Fa=le)® g0 = 1im el ka=le)e go

oo g—oo J—g
6i(km—lm)g _ e—i(km—lm)z

B (ke — 1)

_ 2sin (k; —l.)g

( limit as g —» o0)
(kx - l:c)
This is all done by considering an infinite space as the limit of a finite space.
The result of the limit is
270 (ky — 1)
1

where NeT is the normalization factor for the wave function, i.e., in infinite
us

space (no box normalization) C = (27)™%/2. Therefore,

[ wiundr = 80k = 1)80ky = 1,)3(k: 1) = 6k = D)
Box normalization in large limit is the same as infinite space or d-function
normalization, i.e., discreteness in continuum is so fine that it physically does

not change the continuum!

Since 1 is symmetrical in k and r, i.e.,

s

W= Ceu%-f - O
— d-function normalization, closure becomes in k-space
(27)73 f dkydkydk, e T = 5(7 — )

— same as before with difference of ks replaced by difference of coordinates.
The result — closure and orthonormality are the same!!

This all - expansion in momentum eigenfunctions
o) = [ 0o -i)dr’
= [ o) Ty
- % A (16)

where

A= [ uiye
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In the energy case “completeness” was assumed. A was determined — if im-
plication true, then . = 4.

But here we do the opposite:
(1) prove closure theorem by explicit evaluation of [ or ¥,
@) -%-
(3) — proof of Ay expression

whereas in the energy treatment it was assumed!

Using this relation for A;, it makes sense to define [A(E)|?.

Ay, (2#)_3/2[6_ik'F1w(F,)dT’

= Fourier transform of ¢ (') into k-space = A(k) (momentum wave function)
(17)

- a particle has a momentum wave function A(k) where

> |A(E)?=1 for box normalization
k

f |A(k)[*dk,dk,dk, =1 for J-function normalization

There can never be a physical difference between either of these two types of
solutions!! Now

() =h AR =ih [ v vydr
Assumption: p is a hermitian operator.

Proof:

ik / WV = f (u*p)dr
integrating by parts —
= +ih / vu*dr (surface integral — 0),ihV =p*

- [ ywr
Any operator is hermitian if this is true!

Momentum Eigenfunctions

up, = Ce'*™ k=

>
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(1) Artificially discrete; box periodic

- C=L""

1
- C? [ dr = ﬁdT =1 over entire box

— normalization. There is one state for each (ny,ny,ns). Therefore,

3
> a(i) [
27

N, My, Nz

- number ~ L3 which exactly balances the 1/L? dependence of the wave
function. Now

volume of box - volume in momentum space
(2mh)3
volume in phase space
3

L3
— | dpdp,dp.
(ZW) P GDyaP

(2) Keep continuous spectrum (limit of infinite box). C = (27)7%/2 - wave
functions independent of size of box with amplitude C' everywhere.

Number of quantum states = [ dk,dk,dk, — infinite [ [)[*d7r. Thus, we
need new conditions:

continuous normalization f ufupdr = 5(k - 1)

closure f Wl (" Yug (F) Bk = 6(F — 7
These are exactly alike since the wave function is symmetric in k& and 7.

Expansion:

from assumption of completeness —
A= [ vy e b
expansion exists - Ay

For free particles (V =0): uy also energy eigenfunctions, but ug not necessarily
a momentum eigenfunction (not true with a potential). Therefore

Bt h2 k2
A= A(0)e | By =

2m

Schiff - Section 12

(Az)? = ((z - (z))?) (=0 only if z = () always)
= (o® - 2a(z) + (2)” = (27) - 2(x)* + (2)?
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Let p
a=xz-(z) |, Bz—ihd——(p)
T

Then we have
(A0)*(Ap.)? = [ vrapar [ o7 5dr
[ (@) @wydr [(576*)(Bv)dr (integration by parts)
[ @) @wyr
(= sign if and only if S = yaw) for all values)
[ v fosar|
v* [5(Ba—aB) + §(Ba +ap)] v
- [ v Ba-apydr| +| [ v (Ba+aB)vdr

2
(by Schwartz’s inequality)

v

v

2 2
+

This — the cross-term =0 —

Re( [ v (e -apyuar) ([ v B+ apyudr) =0

But .
[ v savdr| = [ v pavdr
N—_—— N—_——
A* A
- Re[(A- A*)*(A+ A*)] = Re[A* - A%] =0
Therefore

2
(Az)*(Ap,)* >

[ v i(Ba-apydr

with equality only if 2nd |--|? = 0.

In classical mechanics, a and 8 are numbers —
(Az)*(Ap.)? =0

but in quantum mechanics they are operators and therefore the order of opera-
tion is important! Therefore

d

fa-af = (-1~ () (o~ (a)

Operating on 1 — this expression is = —ih. Therefore

[ v

1 2
(Ax)2(pr)2 > ZhQ
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Therefore

h
AzApy > —
TAps 2 3
For equality or minimum uncertainty we must have a = y8v and we want
/w*(ﬁa+a5wd7:0 (18)
Thus,
hdy

(01 + 2@ - @)

i dx ¥

which implies

1
Y =exp

1 1
Py [—x2 + ((p) - f(x)) .’L‘:| + arbitrary constant

2y gl
Using the results
2
* * «
vrapy =1 71#

Y By = (54w
- (e ay
.
1

*

v a®y - Q.E.D.

equation (18) becomes

(3+55) ) vt ar=o

positive definite

which — =y = pure imaginary! From Schiff:

Y= (27T(AZ‘)2)_1/4 exp (_ (Z(ZA(‘:))z) +i (ple‘)

Why is v so simply given?:

7

LA = Qe M) e

2 2, 1 _ 2
[ P = () ?da = o = (Aa)
1= = (A0



410 = [ wipda > (a,0)

Ept

Ap(t) = Ap(0)e”

It is no restriction if we let (x) = (p) = 0. Now using box normalizetion to find

Ak(O):

L_I/Qfeikmwdx: L7172 f(...)dxe‘ﬁ‘“” — .o K (A2)?

— gaussian in Az and k. Therefore the probability of finding x falls off as ﬁ

and similarly for k.

If (p) 0 —
o~ (h=(k))?(Aa)?

— packet centered about (k). Now

h2

i 24
G, t) = 3 Ap(0)e F 2muy
k
using Zk:—> %fdk

bt \"\/? z2
=(2 174 (A ‘ ) - i
(27) T+ T exp HAn)Y s 217}%

— after time ¢ we still have a gaussian but the packet has spread (also some
oscillations)

2 o[ 2A0) ) a?
v ep( 4<Aa:>4+(ht)2) p( 2By + 1 (2 )2)

m 2 \mAx

At time ¢

(z*(1)) = (Az)* + (&)2 = (Ax)? + (Ampt)2

— spreading packet for + or — time (symmetric in time).

Classical limit of electron in orbit; makes sense only for electron localization in
orbit after several orbits! Compatible with uncertainty principle only if angular
momentum in orbit >>> .

Soluable problems

Harmonic Oscillator:
F=kx—V =1ka?

[k
2 2
w= —»V:%mwx
m
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In one dimension:

h? d?
Loy, %mw2x2u =Fu
2m dz?
Let x = a€ -
- h? o+ tmw?a?¢?u = Fu
2ma? 2
u M- u=0->u"+(A\-E)u=0
where ) )
2 h 2F
A= 7;;: E a*= P > A= o — dimensionless
For £ -

1,2
1 +5 . .
W nu-su~e 28 (we use minus sign for boundedness)

Therefore let us assume a solution of the form
1.2

u=e 2 H(E)

Substitution gives (removes £? term)
H"-2¢H' + (A-1)H =0
Let
H-= Z a,&”
Then
H" =% a,v(v-1)

Let v=v+2
H" =3 (v+2)(v+1)ay28"

20H" =" 2a, 18"

(A-1)H =Y u(A-1)a,&”

n

- > & (ap2(v+2)(v+1) —a2v+ (A -1)a,) =0

> ap2(Vv+2)(v+1)-a,2v+(A-1)a, =0
Ay+2 2v-A+1

a, (v+2)(r+1)

Lowest term s and as_5 = 0 or else series starts with negative power of £ - pole
at 0.

s-2 () _ s(s-1)

_ -1) =
a 2s—-A-3 s(s=1)=0

v+2=5->0=
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—-s=0,1 for Ist term

To make v =n the last term

a
N n+2:0

an
or
W-A+1=2n-A+1=0-A=2n+1

— polynomial of degree n; if not, then for large v we have

au+2~g
a, v
Now assuming
o - C
C(5)
then
- c  C
T (5
C a, 2

= X Ay

NOID NG

which satisfies the recursion relation. Therefore

v 2\p v
H:CZ’E :02(5!) (using 7 = p)

7 (5)! » P
or )
H=Ce* for large &
Therefore ,
u~CetT

which blows up for any arbitrarily large v. Therefore, we must cut off the power
series at n
1

- FE, =hw (n + 5) = eigenvalues

This also implies a “zero-point energy”

hw
Eo=-5
We know that
2
E=—+ %mwQIQ
2m

p? and x? are positive definites related by the uncertainty principle - both p?
and 22 cannot be zero simultaneously — Ey, i.e.,




Therefore F = min; by substituting and making two terms equal or

h2

_ _ 2, 2
e
or n
2y _
() = 2mw
and h h oo
Epin = smw? +O(lmw2—)— 2 2 ¥
2 2mw 2 2mw 2mw 2

The lowest state wave function is
1.2
Uy = 3_2E

which corresponds to a gaussian, i.e., the zero point wave function corresponds
to the minimum packet.

ol = (€)= [ €uofde =

Therefore 5
2\ _ 1.2
9y =3a"= ——
(%) =3 2mw
For the eigenfunctions we have H = Hermite polynomials, which are even or odd
depending on n even or odd!

Generating Functions

_e¢2_ s— 2 —82 s Sn
(&) = e T ST S H T L (€)
n °

a8

S’ﬂ
— =255 = ~—H
o~ 2t

8n+1
=2% p H,

2y (n1>'H (19)

Therefore
HTIL = Qan,l
oS sl s"
— = (-2 S= ——H, =Y —H,
9 = (2905 =2 (n—1)! 2y e

Therefore
Hy = 2£Hn -2nH, 1

' =26H! +2H, -2nH] |

n+l =
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But also
r o =2(n+1)H,

Therefore
2(H,), +2H, - H" =2(n+1)H, - H] -2¢H, +2nH, =0
This is precisely our original equation! From generating function:
dn
(5)

ds™ =0

S=e& f(E-5)
95 __0s
ds  O¢

Hy

Therefore
o"s

asm
Therefore letting s = 0 we get

2 o 2
— e () L (E-s)
‘ ( ) agne s=0

H, - (_1)n6§2d76752
dgn
— highest poet of & - (2£)™ - H,, = (2£)™+ lower powers. Therefore we have
for the harmonic oscillator
En=hw(n+1)

_152
Up = Npe 25 H, ()

H, - (_1)n€£2d7

ae (6_52) =(26)" + lower powers (20)

Now -
2
funumdaz= NnNmaf et H,H,,d¢

Assume n > m, insert (20) for H, and a polynomial for H,,. Therefore we have
o) d'n
f UpUmdx = Ny Ny a f d¢ 6752(—1)n652 —

ac (6752) H,,(as a polynomial)

After n integrations by parts (where all integrated out terms — 0) we get

oo dm
[ UnUmd® = Ny Npa [oo dg e—{“dgin (Hp)

This says that if m < n the result is zero — orthonormality. This implies m =n
and we then have

f Uptndz = N2a f dee € omnl =1 = NZa2"n\\/m
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or
N, = 7 Y42 nla) /2

Now consider

Tom = / Tun,Undr — generalization of expectation value expression

i.e., for
Y= Z Ay,
then [ xzyp*1pdr — need knowledge of products w,ty,.

Typm — matrix element — from prior work

[ d”l
Tnm = NnNma [oo df €_£2d€7n (me)

This expression is # 0 only if £H,, contains £ or higher
-m+1l>norm=n-1,n

If m = n, we have
/ zulds = / (odd function dz =0

Form=n+1
2 n—-1
Trnm = Tnn-1 = NpNp_1a V2" !

gn-1 \/ﬁ
Tpop-1 =0 , =ay\/= (m=n-1)
’ n/29(n-1)/2 n:
gr/22n-bi Vnly/(n-1)! 2

Therefore

Form>n-m=n+1

n+1

Tn,N+1 =0 (m=n+1)

These are the matrix coordinates for the oscillator. Now a = 4/ % — size of
region in x over which the wave extends.

Comparison of CM and QM (considering figure 11 in Schiff).

The wave function (n) has n nodes (zeros). For Schiff (n = 10) and for figure be-
low (n =12). The wave function is compared with the classical density function
x =bsinwt, i.e.,

dx

r+dx

V ~ bwcoswt ~ Vb2 — 2

P~ % — oscillator most likely to be at a + b

P(x+dx) ~ Tpsds ~

Now
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singularities

/ \

no
singularity

classical

/

AL

quantum

We get the highest peak at the classical singularity of the classical density
function. For |z| > b wave function goes to zero slowly (not instantly).

Quantum mechanical zeros — no probability of particle being there, but exact
knowledge of position — oo velocity uncertainty — particle can pass through
these regions!

Choosing b

%mw2b2 =F=hw (n + %) classical turning point
x > b — exponentially decreasing wave function. This follows from the differen-
tial equation

u” + [E - %mexQ] u=0

E - fmw?

3 22 > 0 for |z| < b — oscillations

E - mw?z? <0 for |z > b — exponentials

Further comparisons are:
(V)= %mwz(xz) = %wzaz (n+i)=Lthw(n+3)=31E

Similary,
(KF)- 1F

This result is due to symmetry, i.e., V ~ 22 and Ke ~ p?. It is just the “virial
theorem”.

We note that the result (z) = z; does not — high probability of finding particle
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at x1 — only that there is an equal probability of particle being at > x1 or
r<Iy.

Oscillating Wave Packet

. . 1)
_ i — +5 )t

P = ZAnune nEnt ZAnun e ZOJ(n 2
—_—

no t dependence re h

1. .
_ e 2 iwt Z Anun e—zwnt
——
phase factor only

Thus, we have a periodic function of ¢ with period %’T

— for any arbitrary wave function of an oscillator, a repeating density distribu-
tion with period %’T

— equally spaced energy levels!

— packet moves left or right for T = 27”; it can spread, etc, but at (to +T) it

returns to xg with exactly the same shape.

For a Minimum Packet:
—la2(z—c)2 1 - .
e 2 at t=0 (a = in Schiff

Over the course of time — spreading but after ¢ = T it returns to original shape!
In Schiff - expand A,, —

56‘6‘53 c . ..
= & = — cis initial position

V2nn! a

1 —(Tr—ccosw 2a2
(2, t) = ﬁe ( R

An

— 1 concentrated about ccoswt. This - remains as a minimum packet, but
with center moving as a classical oscillator

n
xnm:a\/g n=m+1

[ (t + 2mnjw)[* = [p(t)?

Maximum A,, for n = classical energy of oscillator with amplitude c.

For harmonic oscillator

(1) we construct a wave packet at ¢ = 0; localized at ¢ +a = z(0)
(2) momentum at t=0, (p) =0 p(0) = +h/a
(3) energy is Smw?c® + hwy/n

— classical due to spread of  and p
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n

Spherically Symmetric - V()

Separation of the wave equation

2
viu + h—gn(E—V(r))u:O (r,0,¢)

Now V2u —

ig(rz@)+ L g(sinﬁ@)+71 az—u
r2 Or or/) r2sinf 00 90)  r2sin? 0 02

u=R(r)Y(0,¢)

Substitution implies that

1 1 8(_98Y)+1 1 9%V
R PR DL
Ysin096 \"" 90 ) T Y sin2 992
£(8.¢) only
10 (,0R\ 2m 2
= — — —_— s E_
R Or (T 8r)+ h2( V)

f(r) only

= )\ = constant

The 6, ¢ equation is independent of V| i.e, Y (6, ) is independent of V, E. Tt
depends only on the separation parameter A — spherical harmonics which are
applicable to any spherically symmetric potential!

Y = ez’mapf(e) — P/\m(w)eimap
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where w = cosf and 2n + 1 = A. This implies that

d N m?
1-w) )+ (A= pP-=
dw(( w)dw)+( 1—w2) 0

This is symmetric in w — P solutions are either even or odd in w. There are
two singular points, namely, w = +1.

Near w = +1
P=(1-w)*(1+a1(l-w)+-)

« coms from substitution
sa=so (no minus — singularities)

The power series must terminate
solution —» A=/4(£+1)

£is an integer , £ >|m| or no solution exists
m =0 — Legendre polynomials
m #+ 0 - Associated Legendre polynomials

Another way: consider V2u = 0 when E -V = 0. Solutions z, 22 - 2, etc —

possible solutions are polynomials in z,y, z, i.e., u =7" f(0,¢). The r-equation
N

10 ( ,0R
——\|r"—])=Mn+1n=X\
RoOr (r or ) (n+Dn

— a simple solution = é where d as shown below
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thus the simple solution is

1 1
d /1-2rcosf+r2

— by expansion — expansion coefficients are solutions! This implies that the
function % is the generating function.

=> ¢ Py(cos6)

In general,
dm
P™ = (1-w? m/2 P
7= (1-w?) dom
|
Pr= @ = 5
Parity: P, highest power is given by
dé
W(w%'") _ wl

— even or odd as ¢ even or odd.
Yo functions: Using parity - let # — -7, then

r| = |r]
0->m-0 w->-w

Qo> THQ eimLp N (_1)mezmga

The above properties are just geometry!. We then have

dm
PP () (1=t

dw™

and therefore
}/Zm('F - _F) = (_1)@}/&”(7::)

Thus,
dm
pm ~ (1= 2\m/2 PO
(@) = (1= 2?2 P ()
with = cosf and - <m < ¢ and £ >m. We then get
P"=1 , P?=x=cosf
Pl =V1-22=sinf , PJ=231(3cos’0-1)
Py =3cosfsind , Pj=3sin’0
Normalization: -1 <x <1

Py(); Y["(0,) = P{"(x)e"™¢
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1
f Py(z)Pp(x)dz=0 £+m
-1

Substitute
Py(x) = idfe(gj? _ 1)f
O 7 o001 dat
and integrate by parts (¢ times) —
(0 @) PO d
- 2001 J1 " m \E) o

~——
(zm)©®

{>m - 0. If £ < m relabel at beginning m — £ and { - m - m < £ -= 0.

Therefore ¢ = m. (20)
(0) _ :
PZ ((E) - 2€£|

Lo (=)o !
[1 B : (2)56(!)2) [1 (a ~1)'da

20)! 1 9
:2(;%!))2 A (1-22)'dx

—_—
Beta function (1/2,4+1)

CT(2T(L+1) (20! 2
O T(e+3/2) (242 2+1
Therefore ) )
® (N2 7
/_1(P‘* (@) de =5
and

1 , 2 (L+m)!
PPyt dx = —————=000 O/
[1 e i o 20+1 (£-m)! “

For normalizing of the Y’s:

2 1 ,
[ [ Y'Y, d(cosO)de
o Ja
_dm (L+m)!
S 2+1(L-m)!

548’5mm’

Therefore,
20+1(£-m)! ;
Yy o= Prmetmey
¢ Ar (L+m) "

Other alternatives exist also. Thus,

(Bethe)

u=R(r)Y(0,¢)

K:R—)
r
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L(0+1)
T2

d’x  2m
dr?  h2

Now consider orbital motion:

E-V(r)-

x=0

L = angular momentum = muvr = mwr?

Force = mw?r = mL—; — comes from fictitious potential V = —%. In our case
we have
(0 +1)h?
2mr?
L=Fxp—1L m( 0 )
= g = — —_— —_
P La Yo, “oy

Now

9 9p 0 990

92 02090 0200

and similarly for a% -

L ({ Dy &p)a (aa aa)a)
Ly =—ih((y22 - 222) L (2 _,2%) 2
! ((yaz “ay)op "\Va: " *ay) oo

or
L, =1ih (sin gaa% + cot 0 cos go%
Ly =1ih (—cosgo% + cot@singp%)
L. =-ihZ
©
1 9 0 1 92
A 1 A R
[sine 20 \*"790) " sinZ0 052
el 0(a0), 2
r29r\ dr) r2h?
This gives Schrédinger’s equation(separated) if V =V (r)
% (1 0 ( ,0R (0 +1)h>
(2 Z () )+ V() R+ -——2R=ER
2m (r2 or (T or )) +V(R+ 2mr?

LY (0, ) = £(£ + 1) h* Y (6, @)
LYo (0,) = mhY¥e, (0, )

— Y, are eigenfunctions of L2 and L.. Therefore ¢ = “orbital angular momen-
tum quantum number (actual magnitude is h\/¢(£+1) and m = “magnetic”
quantum number with —¢ < |L,| < £. Two pictures illustrate a way of visualizing
this situation:
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m A ne g+

h ne %)

AL,dp > h( conjugate variables )

Some Systems: Remember the relations

X _p
;

d>x  2m L(L+1)

o el i B
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Consider a square well, radius a, depth —V{ as shown

-a 0 a
=-|El Il
_Vo
In region I:
d? 2m £(4+1
);z 5 V0—|E|—( 2 ) xe=0
dr h? [ r
constant
In region II:
d? 2 0(0+1
dr?2  h? | _ r2
constant

In region I:

r2 r2

om d? 0(0+1
QQZ(VO—|E|)—’(d+042—( ))Xe:o

In region II:

ﬂ2:2mE|—>(d2—ﬁ2—£(€+l))X o

0=
r2

Let p = ar to get

d? 0(0+1)
R K

Now the cylindrical Bessel equation is
1 2
J,;'+J,;+(1-”2)Jk:o
x x

which implies that
Zy(p) = Vg1 2(x)

and
Ri(p) =4/ 21Jg+1/2 (x) = je(x) - spherical Bessel functions
x

ne(z) = (1)1 /%J_g_l/z (z) » spherical Neumann functions
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Solutions are given by combinations of
xje(x) and xne(x)

Properties

Near origin:

. :L.E
je(x) - @+

ne(z) —» CE!
As 2 — oo: ,
3 _ ki
jele) 22 )
ne(z) - -2 =)
. sinx Ccos T
Jjo(z) = , no(x)=-
T
. sinx cosx cosx sinx
Ji(x) = —5 - »omne(x)=—5 -
T T T T

Going back to the bound state problem

Zy ~ xje()
Asymptotically
je(x) - sine
ng(z) — cosine
Hence,

z(jo +ne) ~ e

Hydrogen Atom
We neglect the motion of the proton — pirequced = Me. For a two-particle system

V =V(x1,22,y1,Y2,21,22) and ¥ =(w1,22,y1,Y2,21, 22)

[WPdridrs = (21,22, 91,2, 21, 22)dridTs
= probability of finding particle 1 at 7, and particle 2 at 75

f dro|1h(71,72)|* = probability density of particular 1 being near 7

and similarly for particle 2.

n? (0> 0> 0 h? [ 0?
—_— —_— + R + — —_—— — + e
2m (8m% dy?  0x? ) 2m (83:% )
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This follows from

2 2
Y41 P3 - 0
— ==+ V =ih—
r 2m1 2m2 (7’1,7"2) ’ ot
all operating on ¥(x1, ....., 22).
Now introduce
r=x1-T2 , MX=mix;i+moxy X = CM coordinate
We get
n2 [ 02 n? [ 02 o
_ | — ... - — + ... +V""’ =th——
2m; (8.%‘% )1/) 2mo \ Ox2 Y V(R T = ot
9 _0 _m 0
dr, Or M O0X
Therefore

1o _1(& 2m & +(ml)2 0
0x?2 M 0x0X M) 0X?

and similarly for x5. Addition — mixed terms cancel. Therefore continuing for
all and substituting we get the coefficient of

my 0z my

82 mi +mso 1
- —=
0X? M? M
o 1 11
I

@ mq meo
Thus, ‘
V¥ =e My(,y, 2)U(X,Y, Z)
where £ = total energy.
h2

2 4
-—VU=EU
2Mv

which is a free particle equation — plane wave solution.

-—Vu+Vu=FEu
2p

this is precisely the equation we would get if we considered the proton fixed at
the origin and we replaced m, by u. We also have

E=E+F
Now the nucleus has charge Ze so that

_ze

r

V:
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where r is now a relative coordinate; proton at the origin. Thus we consider
the situation where the proton and the electron are point charges which can be
well-localized and their interaction is given by the classical law of force.

Relative Motion

u=R(r)Yem(0,¢)
We get the radial equation

h2 (1 d ( 5dR\ £L(£+1) Ze?
2“(’[“2d'r(r %)—TR +{E+—|R=0

Now let p = ar. We get

1 d dR £(€+1 2 2u Ze?
77( 2—)— D) gy 20 pyre 220
p%dp dp P> h2a? h2a p
Now let 5 5
20 1 h a
1Bl =5 181 T
a It

We consider only negative E for these — bound states (discrete spectrum).
There is a continuous spectrum for positive E. If we choose

217>

=\
h2a

we have the equation

ii( 2d7R)_€(£+1)R_1R+iR:0
2dp r

P dp p? 4
Large p - :
d’R
—--R=0
dp?
1
- R=¢"2" asymptotically
We assume )
R=e2°F(p)

where F(p) — 0 for large p. Substitution gives

F"+(2—1)F’+(H—Wzl))on
p p p

Let
F = Zayps+l/
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S+v+2

Substituting and considering the term p we get

a,[(s+v)(s+v-1+2)-L({+1)]+a,1[A-1-(s+v-1)]=0
v=0- 1st term; a_; =0
> s(s+1)-4(L+1)=0
s={—- OK
s ={ -1 — discontinuity at origin — reject

Rewriting we get

a[0(l+1)+v(20+1) + 12 L+ D] —ay(L+v-X) =0

v(20+1+v)

or
a, l+v—A\

ay_1 - nu(20+1+v)

ag =1 — all others known.

Two choices:
I series terminates at v =n - A={+n’+1 = integer =n
or

IT series does not terminate — A # integer. Therefore for large v

~

a, 1
v

Qy-1

This says that
¢
ay, ~ —
v!

— for large p Y. a,p” — ce” - no good !! This means that termination is neces-
sary.

In general we do not obtain eigenfunctions by forcing the power series to termi-
nate; this is only true when one has a 2-term recursion formula, i.e., for a 3-term
recursion relation a wave function can be well-defined at co without termination
of the power series.

Forn>/+1

2uZe? .
a=—0 n = principal quantum number
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h2
— =ap= 1st Bohr radius ~ 0.529 x 108 em
ue

= atomic unit of length (Hartree)

Therefore,
2z

nag

1
« (— = length scale)
o

B h2a2_ Z2%e? 1

S 8 - 2ag n2

e . .
— = atomic unit of energy
()

1 2

“C s Ry = Rydberg

2 ag

Therefore
E = —ﬁ Ry

mee
2h2

Ry =109,737.31 £0.15cm ™

4
Ry = 5 Ry, -

y = T (o0 nuclear mass — p — m,

E,, does not depend on £ and m — degeneracy whenever we have V (r) (symmet-
ric) — there is always degeneracy in m — 2¢+1 (possible values of m) degenerate
eigenfunctions.

Only for V' = constant/r - additional degeneracy in ¢!

Another example: 3-Dimensional Oscillator - V' = %mw2r2 — spherically sym-

metric.

Separation is possible in other coordinates, i.e.,
A) 3-dim oscillator
1) cartesian
B) Parabolic separation of Coulomb potential

1) scattering of a particle by Coulomb field (E > 0)
2) Stark effect - H atom with superimposed field —

2

e
V=eFz-—
r
£

Not separable in spherical coordinates!
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Now consider the eigenfunctions R, ¢; there is a different Schrédinger’s equa-
tion for each ¢! The R, ¢ are orthogonal (since R, , and R, » satisfy different
Schrédinger’s equations). Remember

x=TR

d*>x  2m

L(L+1)
2

x=0

For given /¢
f XnZXn’EdT = 6nn’

The radial quantum number: n, =n - £ -1 > 0 = number of radial nodes of the
eigenfucntion!

Unit of length = <
Ryg=2e"
= G5 ¥ (1)
Ry = 2\1/66*%%
Rso = %e‘%’“ (1-2r+ 242
Ry3 = ﬁe_i%ﬁ

R2 r%dr = probability of finding electron between r and r +dr!
P;" cosm¢ — £ nodes

We have m planes ¢ = constant and ¢ — m cones 6 = constant. n, =n—-£-1
spheres r = constant. The wave function vanishes on all these surfaces. Total
number of surfaces =n — 1 nodal surfaces (neglecting point r = 0 and line 6 = 0,
i.e., we consider only surfaces). These facts of nodal surfaces wrt n are true for
any differential equation (general concept) whereas E wrt n is only true for the
Coulomb potential.

Radial Wave Functions wrt Laguerre Polynomials

We have the generating function

e 1-s
1-s
L+1-n (l+1-n)(l+2-n) , nef—1

F=p1 s
S R TTO L T CYNE Y OYs S

- p'F(-n,,20+2,p) = confluent hypergeometric function
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e ala+1)
s’ a2’ "

This works for n,. # integer - n imaginary. i.e.,

n= @QE:—@ forn=ki (E,k>0)
V _E n2
ikr

Imaginary n — same hypergeometric function. For E > 0, ¢ and e " are
good — no termination of series.

F(a,B,p) =1+

—(n+0)!

L2Z+1
20+ D)l(n-0-1)!

n+¢ =L = Laguerre polynomial =

F(_nr72€+ 17p)

" V(n+0)! 1 (22)3/2 L, F(o.B.p)
nt = — € a, D,

CT @ DN - 1)1 v/2n \nag P P
For small p:

R~ pf (¢ - orbital angular momentum)
— low ¢ - close to nucleus
— high £ — far from nucleus

This implies that nuclear effects occur mainly in states of low ¢; these are effects
having to do with the structure of the nucleus, i.e., size - shift in energy levels
and isotope effect; hyperfine structure due to magnetic moment of the nucleus.

For large p, the behavior is determined by n or the energy — motion at large
distances is governed by the energy of the state.

Let us calculate (r”) in units of 2.

(r) = %(3712 -0(l+1))
(r?) = 2 (5n® + 1-30(L + 1))
((r=(r))?) = {r*) = (r)?
= %(n4 —2(0+1)? +2n?)
¢ small ~ n* > large possible r deviations — very eccentric orbit

¢ large ~n® — small possible r deviations — circular orbit

(-
- 1
(%) = n2(0+1/2)
) =
w300+ 1/2)(1)
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We then have

2
1
(V)= (-2 = -2
ag n
But we also have
e ze? i
© 2a9 n?

Thus,
(V) =2F — virial theorem » Ej, = -E >0

(=0 (r3)=o0— fomr’Sszﬂdr — 00
£ =0 — s-states; small 7 or p —>
R~n"%?(1+0(p)) » R*(0) ~n™® - nuclear effects ~n~>.
Collision Theory

Continuous energy spectrum F > 0. Consider 1-dimensional motion (shown
below):

particles
transmitted particles
_— >

_reflected particles

V=0 = _ L _
a b
barrier

4

Outside the barrier the solutions are linear combinations of e**** depending on
experimental conditions, i.e., if particle incident only from the left we have

r<a Ae™® + Be
r>b Ce*®

From conservation law

N ap
S+—=0
VT e
Consider this as a stationary problem independent of time! Then
4 ap ds
S=-L o052 -0
v ot dx

This says that the net current of particles is constant. Now

LI Rt

" %im dx dx
= (AP~ |B]") r<a
[ —
net incident current
= v|C? x>b

transmitted current

73



Therefore

CP?
[4]2
|BJ?
4]

transmission coefficient =T =

reflection coefficient = R =
with R+T =1.

In 3 dimensions, the asymptotic form of the wave function for a scattering region

\?///
N
S

u=e* 1+ S 1(0,0)
r

where the first term represents the incident particles in the z-direction(plane
wave) and the second term represents a spherical wave going in all spherically
symmetric direction radially outward from the scatterer.

Why % ? Consider large 7:

Viu+ku=0
1 92
;w(ru)‘f‘ T72 g,Lp ’I,L+k2U:O
——

O( k217\2 ) wrt last term

Therefore we get

" eiikr
ru=e*"" >y =

T
A 2nd justification: the out going current

2 2
f AL = f r?dw # g(r) - OK
Back to 1-dimensional problem. Consider
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Be ikx . >
¢ c elkX
I Il I
- .
Ae ikx
______ V=0
0 a
d2
d—Z+k2u:o in T and III
T
This implies
. 2mE
u = e:tlk:w k2 — ZL/LQ
In region II:
d’u

2m

—————
Oé2

dz?

Let E >V, then
u=Fe™ + Ge "

Matching Conditions

At 2 =0:
A+B=F+G

E(A-B)=a(F-G)

Atz =a: _ . )

Cezka = Feiaa L Fe-iaa

kceika — a(Feiaa _ Ge—iaa)
These imply that
~ 4aket(@—k)a
(a+k)? - (a-k)2e2ika

(k‘2 _ a2)(1 _ ezika)

“(a+k)? - (a-k)2elika

‘02_ 1+ Vi sin? aa -
Al T 4E(E - V)
‘B 2 { 4E(E—VO)}1
—_ 1+ —-7

A

_ -
Vi sin® aa

RN e

Probabilities

We have

2

B |C
‘Z + ‘Z =1 — conservation of probability, as expected

(0]



As E - Vy, a - 0 we have

2
sin? aa ~ (aa)? ~ a?a® = h—T(E - Vo)a®

‘02* 1+mVoa2 B
A 2h2

For E > Vj we have sin® aa ~ 1 and therfore

CQ ‘/‘02 -1
‘Z m(1+E2 -1

But sinaa = 0 for aa = nm — for certain energies

‘ ¢
A

which is the wave property of barrier transmission.

This implies that

2
=1

Now consider E < Vp: let o - —32 - substitution « = i3. We have
sinikx = ¢sinh kx

which gives
2 { ., Vésinh® ga }1

-
A AE(Vo-E)

For E - 0, assuming that

2mVya?
>

Ba ~ e

we have sinh? Ba > 1 and therefore

’ ¢
A

which goes linearly to zero. A picture of what happens is shown below.

2
1 -0 =
LBV -0-E) s,
VO2
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{
\

0.2

Vo

Now back to 3 dimensions. We have

ezkr

u(r,0,¢) = A {eikz + 1o, @)}

r

Substitution for probability flux at large distance

2
’U|A|2 + ’U|A‘2 |f(97 (,D)|
r2

Why no cross term? In practical experiments we have configuration below:

_ O

where a = Az = Ay = beam width. This implies that
1
Aky = Aky ~ —
a

Theoretically we have infinite plane waves

eikz—(22+y2 )/2a*

Uncertainties — beam diverges as shown

7



such that f(6,p) for divergent beam ~ f(6,¢) for z beam which — scattered

wave )
ezkr

f(0,0)

If x and y > a, then we have the situation shown below

~_ /l

a
/ \T
where there are no counters in the beam region. This — cross term of negligible
magnitude due to gaussian!

r

3-Dimensional Scattering

We have wave function

ezkr

r

u(r,0,¢) = A{eikz + f(@,(p)}

with arrangement as shown:

V()
’ S

The incoming flux is given by

. . # particles
incoming flux = —/——
unit area - sec

We count . ) )
# particles scattered in a solid angle Awyg

sec

. # particles scattered in a solid angle Awg/sec
cross section =

=09(bg, in lab
incoming flux - number of scattering centers (6o, o)
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In CM with 0, ¢
a(0,0) =1£(0, )

In lab we have the picture

m1 CM mo 90,¢'0

V— vi— \

where
mq 14

mi1 +mo

V'=Veou =

and in the CM we have the picture

GM (fixed)

where
View=—2Y_ oy eV
my + Mo my +ma
We have . . B
VparticlaCM + V, = V}Jarticle,lab

which gives the two relations

V" cos0+ V' =V cosb
V" sin@ = V sin 6,
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We define ¢ = ¢y and then have

sin 6 Vi o om
tanfy = ———— Y= —=—
v+ cos @ V" me
In lab
E() = %leQ
In CM, add
V, _ m1V
mi +Mmeo

to CM system — lab system. This gives as we saw above

sin 6
tanfy = ——
v+ cosf

Now
0(00, po)dwo = o (8, p)dw
where dw = sin 8dfdy. Then

dcosf
dcos by

a0(bo, po)dwo = (0, )

or
(1+~2+2ycos)3/?
og =

|1+~ cosd)
total cross section =or = f (6, p)dw
4m
which is independent of the system. Now if my > mg — 7> 1, then

mq V’
= miz = W > 1 - H(QO)maw

1
sin (00)max = % =—
1

\
constant length
for a given
enerly
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— cone of %—angle 0o in lane system. For a given 6y there are two V's.

0 1
=1-(0 mawzfﬁezfe
Y (o) 9 0=75

If v <1 — all 6y are possible.

Eigenvalue equation:
Hi = Eogtp
Ey=E+FE

where

2
E'= %(m1 +1my) (va) = "™ __Ey~ CM motion

mi+mso mi+mso
ma . .
E=—=—F, — relative motion
mq + Mmoo

and for relative motion
h? 5 N .
—Q—V u(7) + V(#)u(7) = Eu(r)
14

For V (7) spherically symmetric, the asymptotic wave function is

e’L

kr
f(9)

u(r) - et 4
r

The independence of ¢ — no preference.

u(r) = ZRK(T)PZ(COS9) = Z L(T)Pg(cos@
l ¢ r

where y, satisfies

xe 21 L0+1)

er + E[E - V(T)] - 2 Xell =0
where we define oL 5
p 0
kQ:? ) U(T)ZE[E_V(T)]

Suppose that U(r) — 0 faster than %2 as r - oo. Then, large r — Bessel’s

equation.
Re(r) = Beje(kr) = Ceng(kr)
= Ay(cosdpje(kr) —sindene(kr))
sin (kr —€m/2) sin s, cos (kr —4r[2) }

- Ay {cos Oy o .

_ e sin (kr — €w/2 + &¢)
kr
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where & = phase shift. If U =0 — §; = 0 or solution = jy(r). But U — dy.

Now ,
e** =" a,Py(cos)
]

or

eikrcos@ _ Zcéjz(kr)Pe(COSQ)
14

ie., €% solves (V2 +k2)¢ = 0 This - cgje(kr)Py(cosf) is also a solution. From
the orthogonality properties of the P, we have

ethreost - SN0 4 1)i (ki) Py(cos §)
4

ie.,
1 1
f e“medw:f Zngg(k:r)Pg(cose)Pmdw
-1 1%
>¥f{=m
1, Lo o1
:,—elmpm] —ff e P dw
i 1 dr J-a1
— ¢y eventually
Therefore

A
u(r,0) =y, k—é sin (kr — 4w /2 + 0¢) Py(cos )
=0 kT

ikr
= 320+ 1)i o (kr) Py(cos ) + £(6) =
1 T
i.e., we replace jy by W for large r. Therefore
AZ ei(kr+~~) _ e—i(kr+~~)
—P, 0
Ze: o Le(cos8) 2i
241 0 i(kr+) _ —i(kree) ikr
:Z( r1)i e ‘ Py(cost) + f(6)<
7 kr 2 r

This implies that
eikr Zé Aee—iETr/2+i5£ P,

=Y ,(20+1)ite 2 Py + 2ik f(6)
equating coeflicients
e—ikr Zé Aze—iffr/2—i5g P,

=Y ,(20+ 1) 2P,
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Therefore ‘
Ay = (20+1)ite™

This gives
S (20 +1)ite i e P,
¢
=Y (20+ 1) P, + 2ik f(0)
¢

- f(0) = ﬁ %(Qm 1)(e%¢ - 1) Py(cos 0)

Then we have

2

a(0) =|f]* = % §(2e +1)(e" sin 6;) Py (cos )

or =2 [ 0(8)d(cos 0) . 5
f PPy dw = Som
-1 20+ 1

=3 sin6,)(20 + 1)

This gives
f(0) = L > (20 +1)[(cos 20, — 1) +isin 26,]
2ik 1 ———
—2sin? 6,
1
Im f(0) = z >(20+1) sin? &
¢

so that

or =4m Im f(0)
Thus, summarizing we have
ikr

; e
u = ezkz +

£(9)

r
f6) =5 S0+ (5 - 1)Pi(cosd)
a(0) =1f ()P
o = % >7(2¢ + 1) sin® ;) = 47 I £(0)
¢
General Optical Theorem

The wave function must include scattered waves from unchanged scatterers and
changed scatterers. We have

Radial outward current = Re ((i) (7,/1*

or or

2im

2-%)
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Y =11+
(only v, terms) 1, = e'**
— as much incoming current as outgoing current (no net current).

ikr

1)

(only 1o terms) g =
where the % factor is due to radial outward current = vor.

For total radial outward current through large sphere = 0, we need to calculate
the interference terms! Consider

f(gfm)( G
Pl Kl Gt o B il K (s
—Re—r fd (¢18¢2 8¢1)

K
r—"%

—Re—r fdw k2 f(9)+0( ) (=ik cos )e ik f(9)

dz/dr

= Re _i’l"Q / dw (%f(G)e“"(l_Cose)(l + cos 9))
im r

hk ™ ;

=Re — r27r/ sin0d6 f(0)e* (1759 (1 1 cos 6)

m 0
v

integrate by parts —

1 .
= 97rvRe [%ezkr(l—cosﬁ)‘f(
ikr

1

- ikr(1-cos @) 1 ]
ikr./e dcosO[f(e)( +cosf)]dcost

1
now — — small for large kr > 1 - neglect
ir

_4mv (0) 4o
e (L) - o)

now total outward current =0 —

=vor — 47rTUImf(O)

aw:%mww
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Phase shift - §,
M
—_——

{0+1
X + kQ—%—U xe=0

For free particle:

. ~n 0(0+1) |-
Jo(p) = pie(p) = ji' + kz—% je=0

| ——
N

For U <0, M > N — curvature is always less positive for x, as shown

— x¢ crosses axis before j,. Therefore

¢ >0if U <0 — attractive potential
d¢ <0 if U >0 - repulsive potential

In f(6) formulas, we can replace §; by dy + nm without changing f(6).

If §, = nm —» €2 —1 = 0, or the potential wave ¢ does not contribute to the

scattering!

Experiment tells us d, only to an excess over a multiple of 7 —

5£,m,eas =pm p< 1

— 0g, theory = P +nm - all are possible. Now at high energy d, — 0 ,i.e.,
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8¢

Calculation of d,

U is appreciable only for r < a. Outside we have

Jecosdy — Mg sin 0y

while inside we know that

!
&(a) =7; (not the same as in Schiff)
¢

X

It is obtained by integration of the differential equation up to r = 1. This implies

that L _
tan = 19400t
kny — yemig
For an atom (nf) with n, =n-/¢-1
0¢(k =0) >n,m n, =number of nodes of wave function in atom (E < 0)
E >0 — nodes >n,
— for Ra,n=7,¢=0 - §; > 6m; actually ~ 9.

For small ka (ka <« 1) we have

- ot _ (2¢+ 1)
]Z N ) L~ _T
(2¢+ 1) pt+
g, l+1 n, 4
Je p Ty p
so that
Z - —
tandy = (k=) de :(€+1_Wa)]i
(kiak-i-’yg) (—'ﬁ,e) {+yea —Ny

_(f+1—wa)( (ka)?+2 )
 (L+ya) \(20-D)N(20+ 1)
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—tand, - 0 as ka - 0. Now consider
0210

2

= e sin

= sin &y cos dy + i sin® &y
tan dy

= m(l +itan5g)

1
cot by —1

For tand, small (ka < 1) we have

Im part < Re part

622'55 -1

- ~tand, — “f” is real
21
Ay = scattered amplitude of £th partial wave

20 +1
2 tan dy

U+ 1- ’ygaa (k:a)QZJr1
Ly (20-1)N

For £ =0, Ay ~ a (size of scatterer). Thus ag # 0 as ka - 0. All other A, (¢ #0) —
as ka - 0.

For very small ka this implies that
f(8) = Ay — independentof6

Example: slow neutron scattering by nuclei (ka <« 1) is isotropic! or slow
neutron scattering is all s-wave. This is valid up to Z = 10; after this resonances
change the picture!!

Page 114 Schiff: Angular distribution when ¢ =0 and ¢ =1 contribute.

va v

o = 4w A? = dma?®

- L0+1))-

P2

1- 1
A0=ﬂa

For larger ka:

We have
1 (l+1) J0< plarge
p? o> p small
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turning
point

J/ =0 — turning point - p~ £ +1/2

Je(kr) small if kr < £+1/2

=
LIt 0tk <041)2
p e

g large for kr < £+1/2
ny .
T is reasonable for kr < £ +1/2
— tandy ~ j/ii << 1 (ka < £+ 1/2) unless denominator or numerator vanish.
Therefore Ay is small for £+1/2 > ka — ¥ for f(6) converges. This implies that
for £ large enough Y will always converge — A, small to for angular momentum
¢ — very little contribution to the scattering.

Now, angular momentum = pb = h(¢ + 1/2), where b = impact parameter as
shown.

For a scatterer of size a — no scattering for b > a which implies

L+ 1)2

b
k
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If b > a there is no scattering classically. For b % a no scattering in QM. This is
due to fact that one cannot define orbit of particle exactly — uncertainty of a
few units in £! The actual condition is £+ 1/2 > ka + ¢(ka)*/? - that QM — CM
in the limn it of high quantum numbers (i.e., high /).

Low energy limit of scattering formula - mostly s-wave (¢ = 0) — isotropic
scattering in C.M. system or

1
o(0,p) = e sin? d,

It is possible that % is small for small k.

L
i N

no effect
after here

— 0g =T — no s-scattering also (or dp = nm) and since there is no £ > 0 scattering
— icd this happens o at low k is very small - Ramsauer Townsend effect!

Scattering of Hg:

no scattering due to
effect now described!

100 eV

inert gas
Faxen and Holtsmark developed the theory!
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Why?
For noble gases:

Small size - (£ > 0) .1l stays small

tan dp
k

~ (ka)* - small — 6,1l small

But why is g a multiple of 7?7

Consider the alkali atoms:

Binding energy = F ~ —% — behavior as a H-atom of quantum number 2 (but

for cesium n =6). For cesium

Xe
|
I
- =
- -
- ~
P P \
s / e2
/ / .
7/
1
//‘\~—n>>1
r

we get a Copulomb potential outside Xe structure, but since n = 2 whereas it
should be = 6 — 4 more oscillations in wave function — different potential of
cesium wrt Xe in radius of structure.

Scattering outside Xe structure = 0., but inner potential - 4 more oscillations

of wave function — dg » 47 for Xe at low energy; it is ~» 37 for Kr; ~ 27 for A;
~ 7 for N; and no effect for Helium.

limit of Xe potential

potential
distribution due to
added electron

———— hardly any effect due to Xe potential
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But above is Cs structure with potential now extending to b — large effect to
the Cs potential — large scattering for £ > 0 for small k!

Scattering from a Rigid Sphere

Her we have U =0 at r = a, which implies that

tandy = zl
e
For £=0 -
tan dg = smia —tanka
—coska
- g = —ka no added )
Therefore

Xo = sink(r —a)

This — rigid sphere merely shifts wave function by a to the right — a negative
phase shift!

ANVA
7 \J

For ka << 1
(ka)2€+1

(20— D)0+ 1)

tand, = —

The ¢ = 0 shift is the largest —

sin (50
k

=-a=f(0) ka<<1

Therefore

o = 4ma® - scattering cross section of sphere =4 x target area (ma?)

High Energy Behavior:

ka large

=2
SiIl2 5g = Je 3

72 -
ny +J;
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On the average j; ~ng - ~1/2 (only if £ < ka i.e., jo << ng if £> ka).
4 2
or = k—z Ze:(%Jr 1) sin?, = k—g(ka)2 = 2ma®

— all partial waves hitting the sphere give a contribution of 1/2 but those having
parameter > a - no contribution. But this result is different from the classical
result (7a?).

Why Difference?

Diffraction scattering:

classical region
> *—— of no particles

scattered amplitude:

£(0) = ﬁ ;(23 +1) (e*" 1) Py(cosf)

If we sum only the terms corresponding to the (-1) term we get the correct result
(— shadow); we also get a shadow if we use the exact forms of j,(kr), i.e.,

2912 = 1|2 > cancellation — shadow

The mixed terms — 0.

The shadow is made up of partial waves; at large distance there is no longer a
shadow, but we get diffraction

diffraction
regions

this is due to the uncertainty principle, i.e., we can not describe anything which
is geometrically precise!
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no
< shadow
4>

r

where a
r=—~ka?
0
Up to this distance we get a shadow but now beyond — additional scattering all

in angle of order 1/ka — correspondence to cross-section ~ ma? — op = ma®+7a?,

where first part is direct normal scattering (as classically) and second part id
diffraction scattering.

Scattering by a Square Well

For ka << 1 _
1 _ +
tan s, = L+1-ya (ka)
C+ya [(20-1)1]2(20+1)
with -,
-
Je
How?

~v¢ = value of logarithmic derivative inside at a
_ 1 ( ng )
xe(a) \ dr /,

For square well on the inside we have

; 2
xe = je(ar) a? = h—g(E+VO)
where we have assumed that V = -V for r < a.
For ka small, all phase shifts are small except if the denominator is near zero.

Assume that k£ =0. Then
C+~0a=Cp<<1
vea ~ f(aa)
o?=af +k?

{+ Yea = CZ — b4k2a2
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=
\

~

@_’—P

1

where curve A is given by

ydje v
=——=—aa="ya
Je dy

Therefore for certain values of aa, yya = —¢, which implies a zero denominator.
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Given a V{ consider point @. Therefore
’y?a +4>0->(
> (+7pa = (g - bek*a®
For a square well b= 1/2. At some k = k1, the denominator = 0
—tandy > o0 > dp = (n+1/2)7
This is a resonance.
sin? &,
L2
In the neighborhood of the resonance
sin? &, B i tan? §;
k2 k21 +tan?é,

4
o¢ = 4w (20+1) » max for a given £ = %(264- 1)

Letting x = ka

tandy = 20+ 1 p2eHt
Co—bex? [(20-1)N]2(20+1)
Therefore
sin? &, B aztt
k2 a2 o [(20 - 1)N]A(C - bea2)?
For /=0

sin? &, B a?
k2 a2+ (Go — box?)?
Now (p is small, b = 1/2 which gives

(Co = bow?)? = ¢& - 2boCox? + bRt ~ (2

where we have neglected small terms, i.e., for x,(y small - resonance — can
neglect! Therefore

47a?

a2+ (2

E=0 0
Co =Yoo @ ="YpQ

g0

Therefore
47

0= ———7=
EEeHE

This implies that « either + or — before 1/4-wave — V strong enough to give 1
bound state; after 1/4-wave not strong enough!

N-P Scattering at Low Energy

Jjo acosaa
Y= =—"—=«acotaa
Jjo  sinaa
The o formula is value for small 7§ or aa ~ (n + 1/2)7 — high resonance for
potential in which we can put n(1/4)-wave cycles of wave function as opposed
to the Ramsauer effect which requires 1/2 wave length — a pronounced non-
resonance.
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resonance

/ fits to cos kr

fits to sin kr
— Ramsauer
- 5 =12

For the neutron-proton system:

1S state o> 0

3 state 7o < 0 } bound states

A
0= """
FE + constant
Resonances -
f+1- k +
tan o, = + Yea@ (ka)
C+ya [(20-1)N]2(2¢0+1)
va =L+ - be(ka)?
For x = ka
1,2[+1 1
tandy =
MO TR - DI ¢ - bea?
For /=0 _
Wb
o= ——— 0= =
k2 + 43 Jo
Small o at small k — large o.
2mVj
Yo ~ & cot apa ag ~ 52

Resonance — bound state for £~ 0. For £ 0 x = ka

G o2
be ¥

cot oy =
Ve
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where
$2€+1

T (20 )12,

Therefore 5 o
cot oy = To~%
e
1
.2
sin“d0p = ———
T v cot? d¢
Therefore
sin? Oy B i ’Yg
k2 k2 (23 - 22) + 2
sin? 6,
4m(20+1) 2 S oes scattering cross section for the ¢th partial wave
4m(20+1
(Uf)maz = % 1‘2 = JI(Q)
For amplitude Ay
1 Ve
kA, = =
£ ot —i 22 -z —ive
For 22 = (ka)? ~ E
—%Fe
kA = :
E-Es+ 3Ty
1 ir?
gy ~ |Ag|2 N 4

k2 (E - Eg)? + 112

1 .
o, — behavior

resonance

where we have for the resonance

r
|E - Ey| g EZ — measure of width T, = 1 width
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Re Ay

At resonance Re Ay changes sign. At resonance Im Ay =1

increasing exponential dominant

L)

barrier

o

7\ effective potential

For some a's or E's we get
decreasing exponential dominant

Inside barrier — solution
je(ka) — tan dpne(ka)

For small ka

98



At special energies — tie onto ny — decreasing exponential coefficient n, >>
coefficient j, or tand, ~ co. For this case particle comes into the well and at
these particular energies we have the situation similar to ¢ = 0 behavior, i.e.,

turned down before barrier which
implies a virtual bound state is formed

S-wave scattering always exists! If resonance for some ¢ we should expect to see
resonance superimposed on the general s-wave cross-section.

At low energy E < for no p-wave contributions

kf(0) = e sindy + (20 +1)e™ sin 6, Py (cos 0)

() = % (sin2 8o + 2(2¢ + 1) sin dg sin 0y cos (8, — 8o) Py + (2 + 1)? sin? 6EP42)

For just s-wave
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only sin23,

\ 9
LS n
0 2

resonance in even ¢ -wave

o - £ odd or even — form of P;s.

1st term — sin? §y; we can determine the sign of §, by considering behavior on
both side of the resonance!

Scattering in a Coulomb Field

A measure of the Coulomb force is given by

~

~ uZ7'e? ~ Z7Z'¢*  Coulomb force
COR2k?2 T E

large n - large F'

small n - small F } given £

It turns out that

3 -nl
u eiz(kr nlogr)

at large r due to the fact that the force is a long range force — phase changes
(small) even at large r!

Parabolic Coordinates We choose parabolic coordinates
E=r—-z , m=r+z , @=wvarphi
— Coulomb problem is separable, i.e.,

Y= f(§)g(n)®(p)
z=3(n-¢)
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ikr

ue = e f - at large ~ ¢
to get this
p= D o g g
Substituting and separating gives
d2f

d§2 +(1- kf)——nk:f 0

Assuming f = power series —

f=CF(-in,1,ikf) » hypergeometric function

We want to write down two solutions which are given as series in (%)

F = W1 + W2
1 )
W (€) = m(—ik&)mg(—in, —in, —ik§)
Wa(€) = r( € g (1w in, 1k i k)
g(a,b,z) =1+~ abl q(q+1)-b(b+1)i+
1! 2! x?
(_i)zn _ en7r/2
1 ; .
W -~ nm/2inlog(KE) (4 ...
1(6) (1+m)e e (1+-)
1
W nw/2 —znlog(k&) 1
2(8) = ING m) zkfe (1+)
u= ezsz — ezszF _ CeikZ(Wl + WQ)
E=r-=z
logk(r_z) :10g k(T_Z) +10g2kr
2kr
N—— —
sin2g
nm/2
_ g [ei(kz+n10gk(r—z)) (1 +0 (1))
I'(1+in) r

fe(0)

F(l +Zn) : 17 6—1nlogsm 1(k7" nlog2kr) (1 +0 (}))
[(=in) ik == r
——
1-cos @
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At large r incoming plane wave is distorted to

ei(kz+n log k(r-z)

and scattered wave is distorted to
ei(krfn log 2kr
r

where A = f.(6) > Coulomb scattering amplitude.

o.(0) = |f(0)?

where
—in T'(1+in) ginlogsin® §
fe== T(1-in) 2ksin®g

and we have used

D(x+1)=2al(z) > T(1-1in) = —inl(-in)

Now )
Pvin) _ ) _ WG o,
D(I=in)  f(z)  1f(z)|eimo
Therefore
0 e~in log sin® %+i7r
0 — 1no
Jel0) = e
n? Z7'e?
9 = =
a(0) 412 sin® th;ta n kv
Therefore )
Z7'e?
c(@)=| ————~
©) (Qhkvsian)

If p and v are calculated relativistically — ¢ holds.

1

94
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Returning to the phase factor.

The classical limit:

A==
k

is the length associated with incoming particle - it is a measure of the wave
nature of the particle.

77'e?
1

d = measure of the range of the force =
Fhv?

— wave properties are important when d < A and we use classical treatment
when d > A or
Z7'e?
hv

The shift (Ad)'/? = spread of wave packet « d — same result.

>lorn>1

For unit incident flux L
= —T(1+in)e " /?
v

“=7

For small distances
U, ~CF ~C

Therefore
1
[uc(0)* = |C* = ~|L(1 +in)e™""
v
= probability of finding particle at the origin when we originally sent them in at unit flux

Now

I(2)[(1-2) =

sinx
1
lue(0)|? = =inl(in)T(1 - in)e "™
v
_linme™™ 1 2nm

- L s Lo 1

The probability of finding particle at the origin — probability of particles inter-
acting. For n <0, large

2
|t (0)? ~ 2nim attractive
v
For n > 0, large
2
|ue(0)[ ~ I =2mm repulsive

v

| —
small!
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Matrix Mechanics

Spur A=Trace A=Tr A=Tr(A) = ZAkk
k

determinant A = det A = det(A) = |4]
For a non-zero determinant

ATA=T

AA_l -7 }d@t(A) 0

We also have (AB)™' = B1A™L.

The Hermitian adjoint is equivalent to:
Al = A% = AT
(AB)* =B*A”

A* = A — A is hermitian
A* = A-1 - A is unitary

Transformation of matrices:
A'=S5AS! (S is non-singular)

Thus, for an equation of the form AB + CDE = F the form of the equation is
not changed under a transformation of this kind!

Diagonals; eigenvalues:

We want A’ = diagonal matrix. Rearrange the equation SA = A’S and look at
the (k,1) element

Zskm Aml = A;cmSml = ;ckskl
m — m

given

where we have used the fact that A’ is diagonal. Given k, we have N equations
forl=1,...,N. > N linear equations, N unknowns S; (they are homogeneous
equation).

These are soluble only if
| At = 01 AL =0

— nth order algebraic equation for Aj
— n roots - n possible values of A}, — eigenvalues and S, — eigenvectors.

Infinite rank (in Schiff)

p2
H=—+V Huszkuk

" om
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>, = summation over discrete states + integration over continuous states

v, = a set of orthonormal functions (not necessarily eigenfunctions)

vp(r) = Zk:S;muk(r) (22)

Skn:fu};vndr

Skn = unitary matrix

Consider harmonic oscillator - energy levels are discrete - k discrete — discrete
labeling of rows!

p continuous — v, = p eigenfunction - n continuous!
*
Up =Y. Sppvn
n

Ak = Si, = expansion coefficient from (22)

ie.,
Apg = f vpugdr = Si,, from definition of Sy, !

(SS Yk =D Skn Iy,
n —
Sni

9 RHOTAOTY RIEOTICoT
= [ w8 -y ydrdr’

f upug(r)dr
6}9[ or 5(k—l)

— S———
discrete) (continuous)

Also (5%S5)mn = Omn.
Dirac Notation

Skn:<k|n>:[u,:vnd7

n) =vn (k[ (bra) = uy

—— —

(ket)
Equation (22) becomes

n) =32 (kIn) k)
k

Note that Sy, = transformation matrix.
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Representation: k — energy representation or n representation!
Hamiltonian Matrix

Hy,p = f vy Hopdr = (n| H |m)
Connection with expectation values:

)= Z CnUn
[ ot Hwdr = (1)

(4)= [ v A
:ZZcfncnfv:nAvndT
=222 Cncn (m] Aln)

m n

Therefore, Dirac’s system — (A) from arbitrary v over arbitrary v,, (have to be
orthonormal), i.e.,

f ul Avpdr = (K| Aln)
(k| SHS™ |1)
> - (K| Sn) (n| H|m) (m|S* |1)
Y. SknHnmSiy = . (k|n) (n| H|m)(m|l)

m,n

= 3 [y [ (s [, i

where H' operates only on r’. Closure for the sum over m — 6(r’'—r""). Carrying
out the integral over ' — w;(r') etc, i.e.,

nsum Y v, (r)vs(r') =d0(r—7r") and f = up(r')

m sum Y vy, (r'og, (r'") = 6(+" - ") and f -y (r')
Thus we end up with
(KISHS" 1) = [ wpr ) H (' = [ ui () Ba()dr' = B

(for continuous case the last term would have §(k —1) instead. Thus we get the
diagonal elements.
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H,,,, = matrix of Hamiltonian in n representation (not diagonal). SHS* = diag-
onal matrix — Ej = eigenvalues. Unitary transformation S transforms H,,, into
a diagonal matrix; diagonal elements are the eigenvalues of the Hamiltonian.
Diagonalization — find Ej, and eigenvectors — transformation matrix — eigen-
functions. Thew Fys are real; H,,, is hermitian — energy always represented
by a hermitian matrix; this is true for any dynamical variable A.

Unitary Transformation

Sin = [ wivadr = (k|n)
transforms from n representation to the energy representation.

Hermitian Matrices

Hpn = f vy Hupdr = (m| H |n)

> (k[n) (nl H|m) (m|l) = (k| H |I) = Exp

m,n

or = E6(k —1) if the E} are continuous.
[ o yon(r)dr = 3
Y oop (o (') =6(r —1")
v (7) = (F|n) - matrix which transforms from n — r representation
v*(7) = (n|7)
Hpp — Ho(r —1")

ie.,

f Vi (r) Hoo ()dr' = 3 (r [ n) H (n 1)

n
=(r|H|r'Y = Hpr = H6(r —1")
The expressions above contain terms like

82
@5(% - LU’)

Consider a delta-function as the limit of a gaussian. Then the 2nd derivative —
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which — a non-diagonal matrix, i.e.,

The momentum operator in the r-representation

pé(x-2') = —ih%é(m -z') >
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which — the matrix

|
o+

|
SO+
+

Definition: Qf(7) = [ Q(#,7) f(7)dr’

Theorem:

[ s@®@r@yar= [ (@ 9@ rdr
If Q is hermitian, then Q* = Q. An example is
Q=V(F)o(rF-7")
Typical matrix element:
/ o* Fapdr ¢, any functions
222

This does not — they are eigenfunctions of E operator! Limits on ¢, are that
they are linear combinations of the energy eigenfunctions

Z ckuke—lEkt/h
k

= H1 is solved by both ¢ and ¢

d r . [ LOF
i R K
{ 8
+%f¢ FHipdr
Z‘ * %
- [ e Fodr

i [ g*HFydr
oF i

- / o [E + - (FH - HF)]z/JdT

Therefore IF OF i
oY R H]
dt ot ih ___

commutator

This is a matrix element equation. These equations plus commutator rules —

all of Q.M. !!
[,pa]f =2 (—lh(,%) f- (—zh%) xf =ihf
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for any f. This implies the commutator equations

[Qj,px]:ih ) [z,y]:xy—yx:() ) [px’py]zo

[xZapm] = 172]?1 _meQ
= J)(l‘px - sz) + (xpw - wa)
= 2ihx

- [2",ps] = ihnz™ !

- [z,p"] = ihnp ™
If f(x) is expandable in a power series, then

af

= [f(2),p:] =th—

What about functions (non-power series)?

RS () v ih S (f) = in Ly
for any f.
2
H=L"1v()

2m
S lwH] L (5V]=0

1 1

= gl = go—lepz] o [2.py] = [2,p:]=0
ih Dz

T 2hmPt T m

(%)= "
dt Jon  dt

dm) dTomn
=m

In matrix notation

matrix element (p)mn = m( Ehrenfest I

dt ) on dt
dp:r: 1 2
= 7| Px H ) x5 = O
o e H] [Pz, 7]
—-ih OV ov
= ——=———Ehrenfest II
ih o oz oo
Y= Z CnUn vy, = eigenfunction of the operator A

¢ = anvn
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*
<A> = Z bnA’rLCn
n ——
unitary transformation

where the A,, are the eigenvalues.
Consider the energy representation - H is diagonal!
~iEnt/h

eigenfunctions of energy =uye

The matrix element of the operator F:

From = f Uy Fpdr F + F(t) explicitly

= (f u;Fude) e U Em=En)t/h

_ 0 —iwmnt
=F, e

Therefore

(p:b)nm _ (d(E) _ Em_En

3. . Tnm
m ih

dt

Therefore knowledge of x matrix in E representation — p matrix.

The matrix of z is calculated by zp,, = [ u)zum,dr
Both — the same result, but one easier to calculate!
The matrix of p is calculated by pp, = —ih [ u;‘Lag—;"dT

((2) - EnEy,) __(EWL—En)Zx
ax nm_ Zh pd? nm — h nm

Thus, (pz)nm — the force matrix, i.e.,

= “MWmnTnm

(G )= ()= i (), = e
oz Jom \dt)pm dt\dt),, T

so that

Sum Rules

Z |Znm|? = menajnm = (2*)mn = a matrix element
n n
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—ih

ih
= Z(px)mnznm also
m g

a matrix element

ih ih h?
= L(pzﬂf — TPz )mn = b= (oscillator sum rule)

2m 2m 2m

- average energy due to the optical transition where |z,,,,|> = weighting factor!

m

h2
= E(pw)g,m = average (E, — Em)2

h ov h2( v
N Ezn:xm/n(aix) N ( )’nLTL

Ll PV
nm m ox

This holds for any diagonal element — for any V' — virial theorem. Considering

y and z also we have

— time averages in C.M. < diagonal elements in energy representation.

V~7“n—>’F-VV=’nV—>2(EK)mn:anm

dFF OF 1
—=—+—|FH
FTETI ih[ H]
dF'r’l'n/ 8Fm'n,
dt 7 ot
m
(px)mn = _W(En - Em)xmn

where (E, — E,;,) gives time dependence of the matrix elements.

ov m 5
(%)mn = E(En - Em) Lmn
— quantum equivalent of Newton’s 2nd law!

Harmonic Oscillator
2 2
V= %mw T

— =Mnw T

ox



m
= MWz, = ?(En - Em)men
— either x,,, =0 or £, — E,, = thw

Thus, the matrix («,,,) has non-vanishing elements only for those elements
having E,, - F,, = +hw

n —

0 = O
m:cOxO
T = 0O 0 = O

! 0 =z 0 =z

i.e., diagonal elements - m =n - E, — E,, =0 # £hw. These equations — there
must be a set of E,, such that successive energy levels differ by +hAw

- E, =hw(n+a) «a= constant

The matrix - n=m—1,m+ 1 (not the only form possible). We do not, as yet,
know « or whether there is only one !

»?
E=—+ %mw23:2
2m

— n + a cannot be negative; call the lowest energy level n = 0 — defines a!
Assuming E,,.1 — FE,, = hw. The £ matrix has only elements when E,, - E,, +
hw — only xy, n-1 and z, n41. Set (using fact that x is hermitian)

Tnn-1= Af(n)
Tn-1,n = A*f*('n’)
Tons1 = A (n+1)
These are general assumptions!. Now assume that A and f are real so that

(xQ)nn = anmxmn = Z |xnm|2
m m

= |xn,n—1|2 + |'Tn,n+1|2

= [AP[F () +|APIf (n+ 1)

— calculation of p, matrix — virial theorem.

2
— diagonal elements of 5—;‘1 matrix = diagonal elements of the potential energy
matrix.

Virial Theorem

E, =mw?*(#*)pn — diagonal elements of z*

E, = mw?A? (fQ(n) +f2(n+ 1)) =hw(n+ )
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where A =/ %. Therefore we have
yn)+y(n+1l)=n+a
This implies that

y(n) = % (n +a- %) — only solution

We want xg,1 = 0 for termination of the matrix. This implies o = % (only one
solution) so that we get

En=hw(n+1)
The x-matrix is given by
h
LTnn-1= o
’ 2mw

with possible phase factor due to relative phase of successive wave functions.

Classical Equations of Motion

oL
Lagrange: p; = %

0H . 0H

Hamilton: ¢; = , Pi=-—
di opi pi 24,

where H = H(p;,q;) = energy.

F=F(q,p,t)

dF OF Z(@F@ adei)

—_— =4 +
oF
=—+{FH
ot +{FH}
where DAOB OB 9A
A, B} = ( - ): Poisson Bracket
{ } 21: 0q; p; 0q; Op;
In Q.M.
dFF  0F 1
= -y [FH
dt ot +ih[ H]
~ {F,H} = —[F.H]
ih

This is proved in Dirac.

Canonical Transformations:

Q;, P; - classical functions of p;, g;
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Find set such that the following are satisfied
{Qj, Pe} =6 {Qj,Qu}=0={P;, P}
n coordinates g; — n functions @;.

aQ; (an OH aHan)
dt 5\ 0q; 9p; 9q; Op;

H'(P;,Q;) —» old H with p= f1(Q, P) and ¢q = f2(Q, P) substituted. Then

OH (8H’ 0Q, OH' apk)

= +
Op; F\0Qr Op; 0P Op;

This implies that

4Q; _ 5 O Z(E)Qj 0Qr  9Qu an)

dt 7 0Qr 7T\ 0q¢; Op;i  Oq; Op;
{Q;,Qr}
OH'
9710, P
+ zk;: aPk {Q]a k}
oH
- 0P

— analogous equations in new coordinates.

Poisson relation — in Q.M.
1
{va} = 7[Q7P]
ih

_)[Q,apk]:ih5jk ) [Q_MQ/C]:O:[PJaPk]

Idea of derivation:
[A,B] , A=A(q),B=DB(p)

[A,B] = ihaazl
[A.p*] = [A,plp +p[A,p] = Qihaazlp
in the limit as h — 0, neglecting order of factors. In the same limit
(4. B)] = ih G 5
A=A(g:p)

[A(g,p), B(p)] = [A(p),q] = —ih
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Consider (23), actually this

m(aA %)
g TPy

Symmetric order (always possible for A and B = power series in ¢ and p). and
result is good to 1st powers in A — limit as A — 0 for reduction to 1st powers in
h result.

any two canonically conjugate variables have [--+] = ih

any two non-canonically conjugate variables have [---] =0 - they commute.

Hamiltonian in the Electromagnetic Field

Using Gaussian units

Classical Proof:

de O0H 1 ( e )
V-7 = —\Pz— 7AI
dt  Opy m c
dp. _OH _edA . 09
dt 0z ¢ Ox Or
Therefore )
md—x = dps - (fan +7- VAm) = Lorentz force
dt? dt c Ot
or in general
mit=e[B+2oxB] QED
c
Schrodinger’s equation:
1 (-mv - fA) b+ et = m%
2m c
h? ih 0
5V ¢+—mA i+ A2¢ ;—ev A+ et = ih aif
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We can assume V-A=0- V- A term = 0. Now consider B = Bk = a constant.

This implies that
1

VXZI:Bk—whi/LWb:m—e ﬁ_yﬂ 0
me 2me dy Ox
| S —
el
£

A= B ey
2mc? "~ 8mc2 Y

For B small we neglect the B? terms. Now if

weﬂ‘Et/hu

we get the time-independent equation

where V = ¢. We assume that V is spherically symmetric and separate in
spherical-polar coordinates
u = R(r)P™ (8)e™¥
Ju

—Ku K = constant

dp
— RHS changes by the addition of a constant —

h
E=FE)- <~ Bm’ Ey = energy with B=0
2me

u is unchanged. Thus, in a small magnetic field
1. wave functions remain unchanged
2. energy is changed

Magnetic Moment in a Field
Enm = _B/'[/Z

Therefore electron behaves as if it had a magnetic moment pgm’ where pg =
¢h_ _ Bohr magneton and m’ = magnetic quantum number.

2mc
0 0
-2y 2)
[7 > 7] T
> B.M,=——"B-N (generalized to an arbitrary direction)
2mc m
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Therefore
e

e . .
w=—mM —— = gyromagnetic ratio
2me 2me
Consider now the A% term; B?(x? +y?) — constant change in energy (increase)
and negligible change in wave function — diamagnetic properties. A% term is
also related to scattering of light!

Constants of the Motion
o OF
"ot

dF
Fr 0 if and only if [F, H] =0 i.e., F' commutes with H

In general the matrix element of an operator is

0 —i(Em—-E,)t/h
an:ane ¢ e
——

#f(t)

If [F,H]=0-> E,, = E, or F,,, =0 unless F,, = E,,. H is diagonal in the E
representation —
[F,H] ~ Foym[Em-En] =0
—
— F observable which commutes with H, has states only between the same
energies.

S —>
n 1 [z
| a T r T T
P - 9 b r r x T
c r r T T
d r r T T

etc

n=1—1 state
n =2 — 4 states same F
n =3 — 9 states

Any F of this type is a constant of the motion!
Parity Operator
PH(71,79,.....) = H(-T1, -T2, .....) = H(F1, 72, .....)
PH+vy = HPvy

— P = constant of there motion if H is invariant under P.
Plf=f->P*=]

When F and H commute — we can still simultaneously diagonalize F' and
H, and P can be made simultaneously diagonal with H and since P? = I —
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elements of P are (+1 for even) and (-1 for odd). It is also called the inversion
operator. Schiff — all Hs are invariant under P, but in 1957 weak interaction
due to S-decay — all Hs not invariant (almost as non-invariant as possible in
the B-decay case). Parity invariance holds for E.M. interaction, i.e., Coulomb
~ % — reversal of signs — no chance; nuclear and atomic stateside conserve
parity — aid in description of the systems!

Angular Momentum - M
In C.M. R
M=7xp
Therefore we have
(Mo, 2] = [(yp- - 2py), ] =0
[Ma,y] = [(yp: = zpy),y] =ihz , [Ma,z]=-ihy
[Mzpe]=0  [Mg,py]=ihp.
(M, My] = [My, (2ps = xp>)] = ih(yps — xpy) = ih M,
[My, M,] =—-ihM,
- [M;, A;] =ihAyg A=q,p,M
[M;,A;]=0 1,5,k > x,y,2
R = rotation operator; If H is invariant under rotation —

RHf = HRf

— R commutes with H. Consider an infinitesimal rotation around the z-axis;
¢ = infinitesimal. Then

y—oy-o¢r , T>T+PY

Therefore

of of ¢
f(CU,y,Z) - f(x+¢y,y—¢x,z) = f(x,y,z) +¢y7 —QZS‘T* = (1 + 7Mz)f
or dy ih
Superposition of these infinitesimal rotations — any finite rotation.

When R commutes with H — M, M,, M, commute with H.

For an atom with many electrons

H=$T+5)

Ze? e2
Sl

T i<y T

— invariant under rotations!

[My, M?] = [My, M2+M_+MZ?] = 0+ih(M. M,+M, M. )+(=ih) (M, M. +M.M,) = 0
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Choose a representation in which M? and M, are diagonal - M, and M, are
not diagonal (i.e., they do not commute with M,), but the do commute with
M?2.

This implies that elements between states of same M?2, i.e., if M, is a non-
diagonal matrix which commutes with M? then

{al [M, M?]|b) = (a| M, [b) M?(b) ~ M?(a) {a] M, b) = 0
This implies that
(a| M, |b) = 0 unless M?(a) = M?(b)

or M, has elements only between states of the same M?!
Consider a sub matrix for which M? has a definite eigenvalue, determined by j

Rows and columns of the sub-matrix are labeled by the eigenvalues of M, which
we call Am

L=M,+iM, M., M, hermitian

The hermitian conjugate = L* = M, —iM,. Then

Lyyn = (Mz)mn + Z(My)mn

L;m = (My)mn - Z(My)mn = L:nn
[M,,L] =ih(M, —iM,) =hL
[L,L*]) = [M, +iM,, M, —iM,] = 2h M.,

M?=MZ2+3(LL" +L*L)
Notice that since L, L do not commute they must always appear in a symmetric
fashion!! Now since M, and hence L only has elements between states of the

[Pl

same M? or “j7, we get
(gml|[M., L]|j'm') = (jm|[M., L]|jm’)
= ({(§m| M.) L |jm') = (jm| L(M. |jm") = h(m - m') (m| L |m)
(24)
=h{m|L|m’) ( from matrices ) (25)
- {(m|L|m') =0 unless m=m'+1. (m=m'+1 - (25) > (24)) — elements only
on one side of the diagonal.

(Gml [L, L*]|jm') = 3 (gm| L|jm") (gm"| L. |jm")

m/

= 2 (gm| LY |[jm") (gm"| L |jm’)

=Y (im| L|jm") (jm/| L|jm")"
= > {im"| L]jm)" (jm"| L|jm’)

= 2h (jm| M., |jm’) = 2h*m8 s ( from matrices)
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Let m' =m and
Ay fm' =m+1

0 otherwise

(gm/| L |jm) = {

Iz

l: _1
st > above :Z,,_:Z,_l }—>m':m

" — 1
2nd Z above Z,, _ nm1’++ 1 }—> m =m

Therefore
(iml [L, L*][jm") = b2 A1 = B2 A = 20%m

= Am-1]? = Aml* = 2m
> Am)? =c-m(m+1)
Aml> >0 = m(m+1)<c ( for finite ¢)

— finite max. and min. ms — finite matrix!
Am = 0 for m; and mq —
(my +1|L|my) =0=(ma+1|L|my)
where my is the highest m and ms + 1 is the lowest m. This implies that

mlygz—lﬂ: c+

1
2 4

m2+1:—m1 :j
1 RN .
C+Z=(j+§) —c=j(j+1)
Therefore
Aml>=(Gi-m)(j+m+1)=0 when m=7j,m=-j-1
M?=MZ+3(LL" + L*L) = B*m® + 18> (Aot P + M) = 8% = 1)

where —j < m < j <> m changes in integer steps — 2j = integer. Thus, neglecting
h factors —

j(G+1) 0 0
, 0 jGG+1) 0
M= =
JG+1)
7 0 0
0 7-1 0
M, =
-J
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m=jm=75-1
m=j 0 T 0
m=5-1 10 0 z 0
L= 0 0 0 = O
0 0 0 0 =z
where we have used
<m+1L m >=h)\m
—— ——
row column

and number of rows = number of columns +1 (labeling is arbitrary.

Examples:
j=0->m=0-M,=(0) .L=(0) . M?*=(0) (alllx1 matrices )

For any j — (25 + 1) x (2j + 1) matrix.

.1 1,1 0) « m=3
]‘Z’MZ‘JL(O “1) « m==

{01 . (0 0
sl ) o=(100)

0 1 L+L* 0 -1 L-L*
széh(l 0):2 ,Myzéh(. ):

. (01 (0 - (1 0
M; = 3ho; ’”z‘(1 o) % \i o) %7 o -1

Thus the commutation relations become:

[0i,0;] = 2ioy

0i0; +0;0; = 25@‘]
Z:j—)o’?:(é ?):I

0i0j = —0;0; 7,#:]

Anti-commutation:

These are the Pauli spin matrices. We then have
M= h? () (3) = 2

2 _ 2 _ 2 _ 132
M2 =M)=M.=1h

1 0 0
j=1,M,=hR|0 0 O] ,6 M, ="
0 0 -1 vz

O = O
—_ O =

o = O
SN—

122



M?=2h% and so on

Eigenfunctions for 1 Particle in Spherically Symmetric Potential

— Yy, such that

M,u = hmu
only for m, ¢ = integers
M?u=h%0(0 +1)u

— diagonal matrices.

But from matrix mechanics we get same formulae but m and j = % integers also

— twice as many solutions and if m and j are integers — m = m and j = £ of old
system.

-~ L =he' [% +icot068¢]
Llem = i)\mn,m+1

If 4
Vi = Flleims

then factor - -\, if m >0 and +\,,, if m <0.

Yo = (-1)"P{"ei™? > 0
notation
Yim = (-1)"F"letmé - m <0

- +\,, always - thanks to Bethe! So
LYlm = +)\mY—£,m+1

% integer values (M =7 x p doe not imply % integer values), i.e., these are not
connect with angular motion — spin.

- [Mspin»r] = [Mspinvp] =0

since it is not connected with either. If this is so it will commute with everything
— M? = absolute constant of the motion — intrinsic j = s.

s = % for electron, proton, neutron, [lambda, ¥, Z particles, mu-meson and the
neutrino.

s = 0 for pi-meson, K-meson.

No s> % for particles with mass (rest), but photon has spin = 1; bit it also has
mo = 0.
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Perturbation Theory
Hy =Wy

H=Hy+)\H'
where Hy represents some solvable problem

Hyu, = E,u,,  ( can be solved)

and AH' is small. The power of A\ — order of perturbation terms (at the end we
set A — 1).

Assume
P =1pg + Ay + Nty + -
W =W + AW; + A2 Wy + -

Substituting gives
(Ho+MH") (b + Ath1 + XN2ahg + ) = (Wo + AW + A2 Wa + ) (Yo + Mby + A24hg +---)

A0 Hovo = Wotbo @
At Hoy + H'hg = Worps + Witho ©)

A Hoy + H'Ypmy = Wothy + Withoy + -+ Wihy ®

For total equation to be true all the above equations must be true (for arbitrary
A).

(0) equation : 1)y = eigenfunction of original Hamiltonian
Yo = Uy, (any state - unperturbed) , Wy=E,,
(D equation : Write
¢1 = Z Cl?(zl)un
n
Substituting gives

Z aﬁj) Houy, +H'up, = B, Zafll)un + Wium,
n — n
Epun

or
H,Um = Z agl)(Em - En)un + Wium,

Multiply by 7 and integrate using fact that the u, are an orthonormal set.

[ U H Uy, dr = a,(cl)(Em - Ei) + Widkm
———
H/

km
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For case k£ = m we have
_ !
Wi=H,,.,

which implies that
WQ+W1 :Em+H7lnm

so that
H! = 1st order perturbation on the energy

For case k + m we have ,
a _ Hy,
a,’ = ——"—
Em _Ek

In 2nd order we have
Hoy + H'py = Woth? + Withy + Wk
Write
o = Z aglg)un
Substituting gives
> P E,u, + Zaﬁl)H'ur =E, Zag)un +H o > a WM, + Wau,
Multiply by 4y and integrate using fact that the w,, are an orthonormal set. We

get
Za%(“l)Hllcr = a’,l(f)(Em - Ek) + Hr,nma‘](g‘l) + WQ(Skm

For case k£ = m we have

Wy = Zagl)H:nr - Hvlnma’%) = Z a’gl)Hrlnr

TEM
Therefore we finally get
H' H' |HI |2
W - mnr Tm — Tm
2 7’;71 Em - Er Z Em - Er

r¥Fm

Suppose that m = lowest state, then E, > F,, - W5 < 0 for the ground state —
2nd oder correction is always negative.

Normalization

¥ =ty + M

[ @0 X1y (o + depn )
= [ Woldr+x [ wio +v5un)dr + 00

| S —
=1

=1
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This implies that

f(%*?/)o +’l/)51/11)d7' =0—- aﬁ) +ag) =0

This implies that
RealV =0 , ImalD =7

We set Im a,(ﬁ) =0 for simplicity so that we get a,(ﬁ) =0.
For 2nd Order Normalization
N [ (W30 + Vi + vivn)dr =0

which implies that
a® +a@ + 3P =0
k

If aﬁ,%) is real, this implies that

1 n _
. W3 t=n-1
" i %’1 l=n+1
vVn+2)(n+1) m-
(x2)nmzxné$em:ﬁ 2n+1 m =
¢ \/n(n+1) m =
where
N
= w7
k
Em:(m+%)h v
I
1 k(b
1 1
H&mZQbM(2m+1):(m+2)h\/;(2k
Therefore

’ k b
Em+Hmm:(m+§)h\/;(1+2k)

126



Now
I—ITIVL+2,WL|2 " |H;n—2,m|2
—Qh\/% +2h\/§

p [(m+2)(m+1)-m(m-1)]

-1
2h\/§4a
2

v o[k b
= —— — 1 .
8k2 h\/; "ok

W2=|

b2
4

Thus,
2
En+H, +W, :(m+;)h\/i(1+2l;€—822)
and
[pperturbed _ (m+§)h\/z /1+£
I 2k
Degeneracies

Suppose that Ey = E,, > W5 = co. For two degenerate statee

Hkm Hkk

If diagonal; Hy,, =0 and Hy, # H],,, then we have
E, +H,  and Ey+Hj,

This implies that we want to diagonalize the perturbation (sub)matrix, i.e.,

_,(anm 0)
0 H,

where H;, and H), . are the eigenvalues. This implies that

4

Uy, = aug + Bup,
!

Uy, = YUE + OUp,

The correct u’ are the eigenvectors of the unitary transformation matrix!

If H, =H),,., Hi.,, =0 k+m — k,m e degenerate subspace.
No degeneracy
H' H'
E + H/ + mnr Tm
m mm T;n Em _ Er
Degeneracy removable
E,+H, .

127



where H/, . is an eigenvalue of H' sub matrix in the degenerate subspace.
Non-removable — construct the matrix

HO - % Hy, H,p,
km Em _ Er

r+k,m

Then

— the As are just the correct second order energies!

Scattering Problem - Born Approximation

2
(—hv2 " V(r))u(r) - Bu(r)

2p
Asymptotically
) ikr
u(r) > e+ £(0,0)"
r
We write ,
u(r) - e 4 v(r)
——
weak
where - )
h°k h
i P V() = -U(r)
my + Mo 2p 2u

This implies
(V2 + k) u(r) = U(r)u(r)

(V2 (™ +0(r)) = U () + o(0) )
neglect
(V2 +E)(r) =™ U(r) = f(r)
Define
(V2 +EDG(r,r") =6(r—1")
Then

v(r):fG(r,r')f(r')dr'
(V2 +E*)G(F) =6(F) G(F) =G(r)

2 _1d
rdr?
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so that
2

%(T‘G) +E*(rG) =ré(r) =0

This implies that
rG =e*™*  we choose +

Thus,
eikr
G=C outgoing waves
r
Now e
f VG -dS =4dnr— =1
sphere-radius r dr
b d C = —i
47
Thus
1 eik|F—F'\
Gr-7)=————
( ) 4 |7 - 7|
which implies that
1 ik|F—7 )
v(r)=-— eﬁ — U (r")e*=dr’
4 |7 — 7]
|7 =7 |r —r'w+ =7
eik|?—?'| ~ eik(r—r'w)
Hence
PR
1 eikr ’_',“ )
'U('f’) - f et kr erzksz/
4T r
where
k=k?y , wecrg= unit vector in r direction
l%o =kZy , weczg= unit vector in z direction
1 eikr o oL
o) =-— [ U dr . G=F-F
4 r
and
eikr
v(r) = —f(6)
r
Therefore

el

f6)=- : [ vt ar

If we choose ¢ along the polar axis, then G-7 = gr’ costheta. Also note that the
© integral — 2.
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This result implies that each volume element contributes
U(#) T
—_—— N——
weighting factor phase factor

to the scattering amplitude.

Example: Scattering from a system of similar atoms. We can thus calculate
U(r") for one atom — same for all - sum. We thus have

el used for x-rays
n

f(0) is the Fourier transform of U.

a(0) = |f(0)1

f(0) is real if U(-7") = U(#") which implies that U(#") cos qr’ = real. Therefore
f(8) = f(q) - see figure

where

0
= 2ksin —
q sin

and hg = momentum change of scattered particle (momentum transfer)!
For an isotropic scatterer V = V(r) and we have
1 ! . I_! !
f()=-- f U(r")singr'r'dr
q

For small 6 we have 9
q = 2ksin 3 ~ ko

If U(r) is small for k > a, then f(6) is small for ¢ > X or ga > 1 as shown below
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k small

k large

Spherical Symmetry
or =2m [ o(6)sinfdb
0

¢ = 2k*(1 - cosh)

%q:smede
0=0—->q=0 , O=mm->q=2k
27T 2 2
~or =3 [T M) adg

for large k — f
0

2T tant 1
or ~ — constant ~ —
T 2 E

Example - Square Well

r>a

V(T):{(;VO r<a

2 a singr
f(G):—h/; g g
0 q
21 3 (% singrqr
- Py f d
32 (e 0 (qa)? (qr)

2[1, 3 1 qa .
:ﬁVga (qa)3f0 u sin udu

Va(qa)
a(0) = f ()] - Voa®---
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2 2
#Voa =Sw~ T for the 1st bound state.
h? 8
For large k
au(Voa?)?  wh2S? 1
= ~2m—S
T poes hE uE TRz
where )
— =
k
Screened Coulomb Potential
Ze?

V(r)=-=—e"l"
r
Thomas-Fermi theory implies

h2 1 ap

an ———= =
me2\/7 7

2m Ze* [e°
- ¥ -r/a
f(0) = hoar? g fo singre”"*dr

_2m Ze?
hbar? ¢% + %

a — oo — no screening factor. This implies that

2mZe>

HOE heg — f(Ruther ford)

For a given a if ¢ >> 1/a, the scattering looks like Rutherford. But for ¢ — 0
o(0) = finite.

2
167 (22 )
T T k2a 41

For large a, op ~ a2.

If p(r) = electron density around nucleus as shown below
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0]
o

then

2m Z r"
U(T) 2 _Z . p( ) d37"”
|r ="
S —
effect on r due to all other charges

™4[ 25(r) - p(r)]

2
U(r)=-
V() hbar?

f(9):$fU(r)qi2[Vzeiq"] dr

= 473(]2 /(V2U(r))ei‘ﬁd3r
- = [ 1Z50) -l

2
- 0)
aoq
where F(q) = form factor.

Born Approximation for Partial Waves

u2'+[k2—€(£r;1)—U(r)]uz:0 )

i 0+1)1 .
Ji +[k2— (rg )]JZZO ®)

where jo(z) = zJy(x). Now multiply (D) by j, and (2) by ue and add to get

(Gewy —wejy') = je(r)U (r)ue(r)

fOR( Ydr —
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R

R
Jety = ey = f Je(MU(r)ug(r)dr ( this is exact)
N— 0
Je(r=0)=ue(r=0)=01,
Let R — 00 —
Je = sin (kr — ¢ /2)
up = sin (kr — €w[2 + &y)
— ksin (=dy) = /
0

R—o00

—sindy = —% f Je(r)U (r)ue(r)dr ( this is exact)
0

The integral is the matrix element of the potential between perturbed and un-
perturbed states. Now replace uy by the unperturbed wave j, which implies the
1st approximation

up = Jp —tandpny

1 re .
>0 | U (r)dr

~ -k foo U(r)jz(r)yrdr
0

leading term!

For 7 >> 7/ )
f=-— / U(r)e'd™dr
47
which is not always sufficiently accurate.
f ~ 62i6 -1
Born approximation — 2id, (for large d, this is not accurate).

Idea is to use Born approximation for ¢, for large ¢ and calculate §, for small ¢
by solution of Schrodinger’s equation. Since

(5@ ~ k/jguZUdT

small §; - uy = jg, which implies that

HORYCARIE

Now

67, "I":

El i

S (20 +1)i G (kr) Po(e)
L

134



where o = angle between k and 7. Then

eiEO-F _ 0 2(26/ + ]_)'L jg/(k()'f')PE’(B)
el

where 8 = angle between ko and 7. Now take complex conjugate of ik T

multiply which implies that
iG-7

contains terms like i jjor Py(a) P (B)

Using the addition theorem for spherical harmonics
f PPpdS = Pi(0)50e
where 6 = angle between k and ky. These results - f — 4.

Validity of the Born Approximation

= ol

zk\r 7] ,
’U(’l’) - f (a/) zkz dr'

and

We assume that perturbation is largest at center of the scatterer. Calculate

v(0).

If v(0) << €00 = 1, then we can be satisfied with the Born approximation which

neglects v(r).

7‘2219*2
l zk r'w’
(0) = f U e T e
Integrate over dw’
ikr’ /
w(0) =~ 25 [ 2y e - 1ar
Thus,
R 1 T
0(0)| = #[V(r’)(emr “1)dr = %fV(r')(elkr N
Case I:

. I’
ka <<1— expand e2**"

|v(0)|:$2ikfv(r’)dr’

Consider a square well

Ly o2 = uVoa?
5 a - h2

[0(0)] =

same as bound state expression
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Therefore

Voa?
v(0) << 1 or Mhoz <<1
But 1st bound state where
uVoa? 7? . S
B2 ~ r} — good scattering approximation

- fV(?"')r'dr’ for small ka

———
always true

Born approximation is valid if the potential is much weaker than required for a
bound states!

Case II: large ka

e+’ is wildly oscillating function and V() is slowly varying

[ (slowly varying)(oscillating) — small contribution

But V(') may have a singularity at r’ = 0 (which is cancelled by the factor
e _1) - we must keep it or

L V(r)dr << hv

r=1

where we assume cancellation below the limit kr = 1 for good approximation
Only useful for V's - convergence, i.e., not Coulomb potential.

In non-relativistic theory, large enough v can always be found to satisfy condi-
tion.

For relativistic theory v,,q, = ¢. Therefore for arbitrary V'
f Vdr << he

must hold if Born approximation is to hold at some point. Consider the screened
Coulomb potential

Therefore, he >> Ze?Inka or

2
¢ ka<<lo 2 lnka<<1
he 137
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— 7 << 137 (dropping In ka which often causes trouble).
— good Born approximation
or hv/Ze? >> 1 (never works for heavy atoms).
Born approximation is velocity dependent but not momentum dependent. Pro-
ton scattering versus electron scattering requires higher Es for good Born ap-
proximation.
Variational Method
Arbitrary ¢ = ¥ p Apup (energy eigenfunctions). Calculate

f W Hdr = 3 |AplE > By Y| Apl?

E E

For normalized 1, we have

ApP=1= | ¢*yd
Slasf =1= [ wtpar

Therefore

*Hqpd
W > FEy for any arbitrary v
-

Guess approximate wave function — upper limit. (Rayleigh-Ritz method).

Example: He-Atom

h? 1 1 e?
H=- (v24+v2)- 262(f+f) . <
2m 1 T2 12
— [ — ——
electron KE electron-nucleus interaction electron-electron interaction
Assume

,(/} o e—Zrl/ae—Zrz/a

but we should take Z = 2 - § due to repulsive(screening) effects. Therefore
assume the trial function

Z3
“- () e~Z2(ri+rala (normalized)

ma3

2
KE ~ 7%~ ;—ZZ -2 (2= number of electrons)
a

2¢?
PE(nucleus + electron) - —2Z7
a

Effect of Z — shrinking of wave function, i.e.,

()
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1.1y (7”2) P, (cos)

T12 7“1 n

where 0 = angle between 71 and 3. Then if ro < r; we have

n
€2<T12> deldee 22 (ritra)/a Z(T—Q) P,(cos®)

™M 5\
[v[?

Keep 7 fixed, |rq], |r2| fixed and integrate over all directions of ro — polar axis
in r9- space direction of r; - no contribution unless n =0 — 4r.

This implies 1/r; or 1/ry, whichever is larger. Integrate over 7; —

1
62< ) 47r) /rldrlrzdrge 2Z(ri+ra)fa__—

T12 Tlarger
Finally we get
9 ( 1 ) 5e*Z
el—)=-—
T12 8 a
Therefore )
2
(H) = 6—[Z2—4Z+§Z] [22 72]
a 8 8

Best Ey is the minimum of (H) - Z,,;n, = 27/16 = 1.69 — best value for this

trial function. Then ) )
es (27
Hy=——|—=) >E
m=-=(35) > Bo

This implies that
2

2855 > B,
a
Actually
2
Eo=-2.9025
a
2 2

He* =-4Ry =25 - Euipy = 0.90 = 1.804 Ry
a a

Using perturbation theory: Z =2 (ignoring electron interactions)

2
~ (H)=-2.75%
a

Hylleraas used 6 parameter trial function — accuracy of 1 part in 10000.

Kinoshita used 38 parameter trial function - theory = 198310.41c¢m™! and ex-
periment gives 198310.5 + 1. What about higher energy levels?

[H,M] =0 — eigenfunction of H is an eigenfunction of M and vice versa. Trial
function corresponding to eigenvalue of M? = L(L +1) L =1 — p-state.
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H is invariant under interchange of r; and ro; some eigenfunctions change under
this transformation — antisymmetric; others do not under this transformation
— symmetric. Antisymmetric trial function - orthogonal to the ground state
eigenfunction — lowest antisymmetric state(y, does not contain Fy).

For 2nd state, ¢ = 0, symmetric — trial function must be orthogonal to the
ground state wave function, then Ay = 0 and then

Z|AE|2E > E1 Z|AE‘2

E E

Hylleraas: any trial function - F - H = H(ayq,.....). Variational principle —
multi-variable minimization process — n parameters gives n linear equations —
n solutions. The lowest solution corresponds to the answer!

Interaction between Two Hydrogen Atoms

A R B
» Z
a a
1 2
We have
H=Hy+H'
h2 e? e?
Hy=-— (V2+V3)- — - —
0 Qm(vl V) TA1 TB2
Hf_ez(l_i_i+i)
R rqo rp1 ri2
For R>>a
1 1 1 Z? 1
— = :(1++O(2)+--~)
ra2  \/R2-2Rz+1? R R R
Therefore
, €2 1
H :ﬁ(x1x2+y1y2—221z2+0(ﬁ))

where x1 = x 41, etc. This has the form of the interaction of two dipoles at A
and B.

H{, = perturbation in ground state energy (1st order)
(z1) =0~ Hgo=0
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2nd-order perturbation:
[ Honl?
n+0 EO - En

Find minimum of Ey-F,, and replace denominator by minimum — overestimate.

H(,Jn = (z1)on (T2)on + -
—
#=0 only forn>1

Therefore

2 2 2
e“ 1 e 3e
E.-Ey>2| -—> + = 2
2a 4 2a 4 a
——— ——
1st excited level ground state

ey HHiuP Sl HLF

_ 3e?
n#0 Ey-E, 1%
/ / 2
< Zn HOn n0 _ (H )00
3e? 3e?
4 a 4 a

We can calculate (H'?) easily.

4
e
(H?) = ﬁ(ﬁﬁg +92y2 + 42222 + mixed terms )

Now mixed terms imply
f xyug(r)dm =0
and quadratic terms imply
2 2 1 2 2 2. . .
f xiugdr = 3 f riugdm  (because ug is spherically symmetric)
24 4l

1 1 or/a
=3 fr%w—a%e 2/ ”4777‘%037‘1 :aogﬁ :ag
Therefore
(z?)= a3 for ground state of Hy
Therefore .
6e*a,
(HIQ)OO _ RG 0
o 8etay
RS

This is not a perturbation calculation. Doing this explicitly would be a tough
job; in this particler case we get a good result, but usually not . Result depends
on H, decreasing with increasing E,,.
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Another way of looking at it:

h2
S |mn | B — En| = o (deals with 1 atom)
n m

Z(xmn)2 = (xQ)mm

This gives average for
2

(Em — Ey) - £ (for 1 atom)
ao

For two atom - average excitation energy = e2/ag, but we do not want arithmetic

average - want harmonic mean. Arithmetic mean gives a poor estimate.

Overestimate if we put in e? Jag =
2.5

6e“ag
RS

(this is precisely the same result as in Schiff - different method). Often a related
average will help in a problem where we cannot calculate the average. Actually

-W >

(previously underestimated)

2.5
€ ag

RG

The upper and lower bounds are so close together here because Ey >> E;

-W=6.5

Now use trial function
up(r1)uo(r2)(1+ AH')  (not normalized)

This is generally applicable — unperturbed wave function gets a correction ~ H'.

Insert this into the variation expression:

[ uo(1+ AH')(Ho + H )uo(1+ AH")dr
[ud(1+AH")2dr

E0+W§

Fortunately H' contains no differential operators. The
(H')oo=0=(H") (for any odd powers of H’
f ugH'HyH'ugdr =0 (accidental simplification)
- W = (H"?)00(24 - EgA?)

— perturbation energy is a quadratic function of A (a parameter), Minimum —

1
A:E—O Ey<0—>A<0 etc..

Various perturbation methods treated in this section have precise applications:
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(1) Stationary state : emphasis on perturbed energy levels (all)
(2) Born approximation: scattered amplitude for arbitrary potential
(3) Variation principle: extremely accurate for low levels

The final approximation scheme is The WKB method (Wentzel-Kramers-Brillouin).
Here the emphasis is on obtaining the wave function under general conditions
(approximation is only moderate). (Bethe does not like approximation as A — 0
that Schiff uses!).

Solving
u” +k*(x)u>0 k*>0 for the moment k real

We have k=f(x).

If k2 did not depend on z — €**

x

If k2 changes slowly: e*® is still pretty good.

Assume that k2 is a slowly varying function of . Assume that u can be written
as e, Thus, ‘ ‘
u/ :,L-S/ezS , ulI: ezS(_Sl2 +iS”)

Reduces differential equation to the form
-8 +iS" +k*=0 (no approximations so far)
— 2nd-order linear in wu, i.e.,
S'=y—> - +iy +k2=0

Now assume that k? is slowly varying — 3’ << y2, thus, in 1st approximation
y = xk, i.e., we write gy; = +k. The second approximation is written y = y1 + y2
which implies
_ iy

Y1

y% = k2 ’ Y2

To investigate accuracy we have to evaluate y3 + yj:

=8 =+k+—
Y 2%

S=ifk:dx+%logk+ constant
u:eiS:Aexp[ii[kdm—%logk]
w = AR exp[ii[kdx]
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This is the WKB approximation to the original equation.

Slowly varying condition: For a good approximation

2%k 2k 2k 4\ k 2k
!

%«k

1 dlogk A dlogk <
2k dr  Ar dx
or the log k must change only slightly over a distance A/4rw.

or

<1

Consider
_Voe—w/ a

For ka >> 1, WKB is OK.
logk ~ log k' = log (E + Voe )

If £ >>Vy —» always OK, or

d ~zfa q 2
g2 o Y0 L 2m e e eaTa

Z<
dx E +Vyetlag h2

In Born approximation valid for

1
%/Vdr«l

WKB - no rapidly changing potential; always valid at high energies.

Both can be applied to the same problem. WKB good for heavy particle —

large k

k= % small A - WKB better for same p

In the classical limit (A — 0) it is very good!

Consider E -V plot below:
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E -V =0 - classical turning point; we must join WKB solution at this point!

\LEd

E -V >0 - WKB solution valid - oscillatory )this corresponds to the region
of classical motion).

E -V <0 — classically forbidden — exponential
xT
w=kY?expx [ k(z")dz'

at the turning point k% = 0 - conditions are not valid!
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k%(x) = Cx at the turning point only. Let

fzfozkda:

If k* ~ z — solution J;/5(&) — solution for all z.

u= A\/Ejﬂ/s(f)

Asymptotic behavior is the same as previous solutions! This function solves the
equation

Exactly: — trial solution

u + (k* = 0)u=0
g=2>__-F _r
4k2 2k 36¢2
for large x - OK.

But for small  —» use k% = Cz(1 + az + bx?)

approximate

AN

actual

deviation
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where

For small z,

1
0 =0.26a> - 0.43b ~ —
L2

Theory is good at a point if k2L? >> 1 !! On the right side of the turning point

>0 U:A\/%Jim(ﬁl)
k<0 U:A\/%Iﬂ/s(&)

650 | gngokdm

We want to join the solutions. Therefore we need behavior for small arguments.

On the left side

where

In(x) ~ ™
Jil/s(f) ~ fﬂ/g o
~T

uy ~ constant
u? ~ || = -
ul and w2 must join smoothly. Therefore

171/3 - J71/3

Loz = =Jiys

RO
Tol@) == or = G i

Let z =42’. Then first two terms look like

Bessel Functions

iPx'P + iPaP?

S I (x) = i, (ix)
Continuity requires that
I—1/3 - J—1/3 ) Il/3 - —J1/3

Asymptotically

2 1
I_1/3—11/3—> sinﬂ &2

— e
\/E 3\/5
2 2
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J_1/3 + J1/3 —

2 T (5 7T)
S1n — COS - —
[=&, 3 17y
2
L
/7"52
2

COS

1
1/3 J1/3—’\/— (

In (&) — cos (fl +

I3+ 13—

&1+ — )

=

e~

These imply that

1I<:_1/26_£2 - k=2 cos (51 - E)
2 — 4

join smoothly

join smoothly

P (51 + %)

e 52

cos(E“r%)
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—-7m/4 - phase for a function which naturally joins an exponentially decaying
function!

Energy Levels

classical region

In classical region — wave function oscillatory. In outside region — wave function
is exponentially decaying.

cos (/ ’ k(z")dz' - Z) possible wave function

1

:icos(f‘Qk(x')dac'—%)
::I:COS(f 2k(a:')dm'+%)

T 2 1o
—-—— 4+ = / +—+nm
4 z1 z2 4

or
To 1
f = (n + E) 7 — existence of bound state
xT

1

i.e., find 1, x9, calculate / — must = (n +1/2)7 for a bound state to exist.
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4>|:|

NAAN

-z:-l:l

(n + 1/2) (1/2 waves)

Oscillator — works exactly.

H-atom:

5 L(L+1) 2me* 2m|E|
= - + —_
r2 h2r h?

k

Kk =E-V

Free Particle
u = je(kor)
L(L+1)

2 2
E>0 5 k(r):ko_ T2
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k2 =E-V

so that

cos([ kdr'—ﬁ) -
z1 4

phase of wave function for all » - asymptotic form of Bessel function

cos (kor -+ 1)%)

but we get
cos (kor -(Ve(l+1)+ 1/2)%)

We can make this correct by replacing (¢ + 1) — (£ +1/2)?; this gives exact
results here. — suggest that we replace same quantities in H-atom problem —
exactly correct energy levels!

Phase Shifts

21
U-35V

WKB wave function for large r

cos([ \/k2 7(€+1/2) dr’ —Z)

(free particle - no U term) Then compare phases of cosines — phase shift (as
we have defined it)

R S

i.e., the two terms have different turning points with and without U.
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For large 0, — always good or ka >> 1 (i.e., when Rayleigh series cannot be
summed). Not good for small phase shifts, i.e., £ > kqa.

Potential Barrier

E-

\

X4 X5 / \
classical
region

oscillatory

We have for the barrier

_ Amplitude(x > x2) 1 [’” k(a') dz'
Z1

- Amplitude(z < 1) g P

and transmission coefficient of the barrier is given by T = |A|*.
Connection with Classical Theory

Consider the stationary state conditions with k = p/h.

Classical motion is oscillator between x; and x5. The full period is

2

1
2 pdx = (n + 5) h = Bohr-Sommerfeld quantum condition

1

except for the factor of 1/2!

3-Dimensions:
1/} _ efiEt/thiS/hbar

%(VS)Q ~(E-V(r)) - %VQS =0

Limit A — 0 neglecting last term — classical Hamilton-Jacobi equation where
VS =p.
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ol

scatterer

/

O

_x

We can calculate S by integrating aloneg trajectories — phases everywhere (good
for high energies, slight deflections and non-crossing trajectories). We know
phases as particles pass nucleus — construction of a new wave front, not of
constant phase — use of Kirchoff’s theorem!

Time-Dependent Perturbations
H=Hy+H'(t)
Y= Z an(t)une’iE"t/h
n
Insert in Schrodinger’s equation —

ihap = (Ho + H' )

ih Z(an + Enan)une’iE"t/h

= Z(an Hou, +anH’un)e_iE”t/h
n ——

Enun

Using orthogonality
ihag = Y. anHy,e
n

_Ek:_En

Wkn 'y

H,'m:fu,:H'undT
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This implies a set of linear differential equations. They are completely equivalent
to the original Schrodinger equation (exactly), i.e., if solved exactly!

Usual approximation: a,, is expanded in a power series in H'.

ag” =0 , al(co) = constant

dﬁ,?) =1 all others =0
1 A
if") = - Hip et iy % (1)

-1 ,
N a’il)(t) _ hiHl/cm (elwkmt _ 1)
w

km

The last factor insures that a,(cl)(O) =0.
WP 1 2 2l
|ak (t)‘ = W|H;€m| (4 S1n 5(.(}]€mt
|a® (t)lz

- t

—~ =

Therefore, after long times we get aj substantially different from 0 only when
wim ~ 0 or By ~ E,. For when wg, not near 0 - rapid decay of the state. All
this - that good results come from work in the continuous spectrum.

p(k) = density of states o Ei(— energy interval)

o - 1 Em+e 2 2]. 1
w = transition probability = i fE | A (t)|*p(k)dE (~ (t E) n

€

21
= T\, Po(B)
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This is Fermi’s “Golden Rule”.
Application:

Scattering in a box of side L —

2
k:n = Inm
L

— essentially a continuum of states for a very large L! The number of state is
given by
s

3
(3) dhydkydk.
2

where
dk,dkydk, = k2dkdQ - volume element in k-space

The number of states per unit energy = p(E}y) and is given by

L\? k2dk
E)=— dQ)
P(Ew) (%) 4By
In classical mechanics
dFE
— =0
dp
Then 5 )
L 1k
Pt p(E) = () 5 5-do
2w) hw

Here k and v refer to the final state of the system, i.e., after the perturbation
has been applied.

Incident flux:

wincident = L_3/2€ik.F
incident flux = L™, vg = velocity of incident particle
w 2 1 k2
=~ Tl 29

7" L-3vy A2 (2m)3 vy
Hj,, < with L™/ factors
Therefore put L? term with H e tETI
k o\ dQ
0':(7) 7|L3H],€m|2
2wh ) vy

Since

[ v hpdr =17

— cancellation of L - no L dependence as indeed should happen!
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o is symmetric in v, vo and Hj,,, but is not symmetric in k2. Therefore

2 2 2
O forward _ Om—k _ kk _ kk _ pfk

Oreverse Ok—m k12n k(Q) p(2)

The principle of detailed balancing

2
—= )\—g
Ak
Example:
hv+DP+ N

is easily observable and reversible. This implies if we know cross-sections one
way, then can predict for other way. Now

kE_m
v h

Thus, in Born approximation

2
m v 2
= —dQ|L3H]
g (2’/Th2 ) 0 | k7rL|

Perturbation by a Time-dependent Potential - Asinwt
Hy,, = H,’C(ng) sin wt
This implies that
ei(wkmﬂu)t -1 ei(wkm—w)t -1

ar(t) = o HO [ -

2R~ km Wem + W Whm — W

Thus, there are two kinds of transitions. Therefore, for large ¢, wgy, = +w or
Ey - B, = thw.

Atom interacting with a light wave

eFzsinwt ( polarized in the z-direction)

— induced transitions +iw — Bohr frequency condition

We started by assuming deBroglie wavelength. We assumed particle could be
represented by wave function — can construct wave packet!

These alone enabled us to determine the time dependence of the wave function,
i.e., that under perturbation as given we must get Bohr relation (not exact,
since high probability of existence for small spread in w). Therefore, we never
assume it! Now

SO o B2z 2
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— optical transitions (caused by light) ~ in intensity to the square of the matrix
element between the initial and final states (sum rules) — stimulated emission
- i.e., due to presence of light waves.

2nd-order perturbation: (as in Schiff) - time independent perturbation

NON! 5 H; H},, | <t =1 et -1
P —
h2 n Wnm Wkm Wkn
~—
term (A)

Term (A) does not satisfy conservation of energy due to the fact that we have
turned on the perturbation sharply at ¢t = 0 and since it is well-defined in time
— breakdown in energy relations (Heisenberg principle) (this is purely mathe-
maticalll).

In an experiment perturbation is applied gradually, i.e., over many periods of
natural motion of the atom.

Case I: H' - no energy conserving transitions — wy,, is never small — forget
second term. We thus get old formula

H, H!
H/,fm - Z —kn_nm

an

It is possible that H' causes an energy conserving transition in 2nd order (no
need to worry about degeneracy); n = is an intermediate state; m is the initial
state; k is the final state.

Case II: energy conserving transitions exist
/ Hannm ( )dE
Whm — 1€

where b £ stat
number of states
p(n) = : , €>0, small, real
unit energy

(2) Hkn eiw;ﬂnt -1 eiwknt -1
k hQ Z m

p(n) = number of states per unit energy.

anafp(n)dwnmh

Wn Wkm Wkn

Make assumption



Then
Ek - Em

h

1
Wkm = ~ n — condition for factor to be large

—>Ek—Em<<Em

c/t —c/ft oo
f dwpm + (f + f )
—cft —oo c/t

———
/‘/
/ " - contains all but infinitesimal amount of energy spectrum = principal value
(¢>>1). Thus,

c E,,
th
Therefore
l1<<e< @
h

Wkn term % 1st term — neglect in f’
c/t
f ; dwnm has no singularity at wy, =0
—c/t

E,, p(n) change very little in this interval from condition

and same for the matrix elements. Therefore all factors not containing w,,,, can
be considered constant wrt terms with w,,,, !! Therefore

fc/t J ~ p(n) , , cft dwnm eWwrmt _ 1 eWknt _ 1
nm — k -
—c/t h2 T et Wom Wem Win
——— N——
constant wrt wpm neglect

We replace the integral with an integral around contour - on semicircle as shown

-c/t +Cc/t
.

Figure 1: A

dwpm )
— =T
semi Wpm,
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Therefore H},,, = principal value + i (integrand for wy,, = 0). This is the same
result as if we integrated entire integrand on contour below.

A

C

Therefore
/ d
mD = [y, iy,

wnm

which is the same as ordinary 2nd order perturbation theory!

dE, dE,
E.-E, E,-E,-ie

since we want the denominator to be negative imaginary where usual denomi-
nator vanishes; we get same result in ordinary perturbation theory if we replace
E,, by E,, +ie.

The principal value expression

Pfo(z)%+i7rf(0):fcf(z)% , z=2—ie 2 real

can always be shifted
up or down

\
NN

C

m state in the past — k state in the future. Mathematical theory for any
perturbation if we replace E,, by E,, + ic!

Inelastic Scattering - Electron scattered by electron in H-atom.



where r; — incident electron; ro — electron in H-atom.

H' = i _ i

T2 T1

L—3/26il§0<?1 %100 (Fg)

L—3/2€“€~f1 U7L(F2)
Energy conservation —

2m

2 2

k? = k2 =3 (B, - Ei1]
2

mmﬂﬁfﬁ%ym%e—

2

(& ibqo-7 ~

— elkorlul('f‘g)dTldTg
T2 T

The exponential terms combine into

ei‘ﬁl C_j = k(] - k

and the e?/r; term gives no contribution due to the orthonormal us. Then

k m \?

0) = —|L*H] 2( )

U( ) k0| k:m| 2 h2
LgH}’gm:[u;(?Q)Ul('FQ)eiq.’FlV(T‘lQ)dTldTQ

i (71 7 iGTa, * =
:f ela(m 2)V(rlg) dr12€" 2w (T2)up (72)drs
—_—
Fourier transformation

V(g) = f V(r)e'?"dr = Fourier transformation

LSH];m = f/'(q)fei‘j'%u;(@)ul(fg)dm

Fy.,,(q)=form factor

If

e2 -~ 4re?
V()= V)=
r q
k m 4re? 2 4k
0) = — — | 1Fin(@ = ——  |Fi.(q))
o(0) %(%ﬁ ¥)|1<@| g @

———
Rutherford factor
¢ = k2 — k* = 2kok cos 0
qmin:ko_k ’ Qmaz:k0+k

2m
kO >> ﬁ(En - El) > Qmaz ¥ 2kO
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k2-k* 2RAE  AE
Amin = N =T
ko +k 2k hug
qdq = kok sin 6d6
8mkqdq
k2kq*ad

270(6) sin 06 = |Fin(q)

F;,: For small ¢
1+igzs - O(¢°) = Fin(q) = ig(z)n1 + O(¢*)

For large ¢q: Fi, small wrt 1 when qa > 1. Thus,

8T l/a gd
UT:fa(G)dQ:—f quq(q2|a:n1|2)

2 2
kgag

dmin
8w 1
= W|xnl|2 ln
0% aqmin
87 | |21 hwg
= ——|%, n
kZa? !t apAFE
where
2
AE=—
2&0
Thus,
8w 2 2h’U0 8w 2
or = Tp1l”1n = Tn1|" 10274
T e il T = gl 2B
with
e [? 2 1
a2 3122

H'(t) is slowly varying;
Ba(t);et ] Bt

) Ny ou
ag = — Zane’f“”“"(t )t f u, —at" dr
n
—_——

e (5 in

Transition probability

OH

1 (W),m N change of H during 1 period

2
= a/k? ~ .
w -F ener 1ilerence
| | kn Ek n gy d

Instantaneous Changes
H1 - H2

EWul) = b, 0@t Bt

bn:fu(Q)u(l)dT

n m

example: H> - He® + 3
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