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From about the beginning of the twentieth century experimental physics
amassed an impressive array of strange phenomena which demonstrated the
inadequacy of classical physics. The attempts to discover a theoretical struc-
ture for the new phenomena led at first to a confusion in which it appeared
that light,and electrons, sometimes behaved like waves and sometimes like
particles. This apparent inconsistency was completely resolved in 1926 and
1927 in the theory called quantum mechanics. The new theory asserts that
there are experiments for which the exact outcome is fundamentally unpre-
dictable, and that in these cases one has to be satisfied with computing
probabilities of various outcomes. But far more fundamental was the discov-
ery that in nature the laws of combining probabilities were not those of the
classical probability theory of Laplace.

I want to discuss here the laws of probability of quantum mechanics. The
subject is over twenty years old and has been expertly discussed in many
places. My only excuse for speaking about it again is the hope that, being
mathematicians, all of you may not have heard of it in detail. And you may
be delighted to learn that Nature with her infinite imagination has found
another set of principles for determining probabilities; a set other than that
of Laplace, which nevertheless does not lead to logical inconsistencies. We
shall see that the quantum mechanical laws of the physical world approach
very closely the laws of Laplace as the size of the objects involved in the
experiments increases. Therefore, the laws of probabilities which are con-
ventionally applied are quite satisfactory in analyzing the behavior of the
roulette wheel but not the behavior of a single electron or a photon of light.

I should say, that in spite of the implication of the title of this talk the concept
of probability is not altered in quantum mechanics. When I say the prob-
ability of a certain outcome of an experiment is p, I mean the conventional
thing, that is, if the experiment is repeated many times one expects that the
fraction of those which give the outcome in question is roughly p. I will not
be at all concerned with analyzing or defining this concept in more detail,
for no departure from the concept used in classical statistics is required.

What is changed, and changed radically, is the method of calculating prob-
abilities. The effect of this change is greatest when dealing with objects of
atomic dimensions. For this reason we shall illustrate the laws of quantum
mechanics by describing the results to be expected in some experiments deal-



ing with a single electron. The experiment is illustrated in figure 1.
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Figure 1: An experiment to determine the probability that electrons arrive at a detector
at X

At A we have a source of electrons S. The electrons at S all have the same
energy but come out in all directions to impinge on a screen B. The screen B
has two slits, 1 and 2 through which the electrons may pass. Finally behind
the screen B at a plane C, we have a detector of electrons which may be
placed at various distances X from the center of the screen.

If the detector is extremely sensitive (such as a Geiger counter) it will be
discovered that the current arriving at X is not continuous, but corresponds
to a rain of particles. If the intensity of the source .S is very low the detector
will record pulses representing the arrival of a particle, separated by gaps in
time during which nothing arrives. This is the reason we say electrons are
particles. If we had detectors simultaneously all over the screen C, with a
very weak source S, only one detector would respond, then after a little time,
another would record the arrival of an electron, etc. There would never be
a half response of the detector, either an entire electron arrives or nothing
happens. And two detectors would never respond simultaneously (except
for the coincidence that the source emits two electrons within the resolving
time of the detectors - a coincidence whose probability can be decreased by
further decrease of the source intensity). In other words the detector records
the passage of a single corpuscular entity traveling from .S through the holes
in screen B to the point X.



(Incidentally, if one prefers one can just as well use light instead of electrons
in this experiment. The same points would be illustrated. The source S
could be a source of monochromatic light and the sensitive detector a pho-
toelectric cell or better a photomultiplier which would record pulses, each
being the arrival of a single photon.)

What we shall measure for various positions X of the detector is the mean
number of pulses per second. In other words we shall determine experimen-
tally the (relative) probability P that the electron passes from S to X, as a
function of X.

The graph of this probability as a function X is the complicated curve illus-
trated qualitatively in ?gure 2(a). It has several maxima and minima, and
there are locations near the center of the screen at which electrons hardly
ever arrive. It is the problem of physics to discover the laws governing the
structure of this curve.

We might at first suppose (since the electrons behave as particles) that

[. Each electron which passes from S to X must go either through hole 1
or hole 2. As a consequence of I we expect that:

II. The chance of arrival at X should be the sum of two parts, P;, the
chance of arrival coming through hole 1, plus P, the chance of arrival
coming through hole 2.

We may find out if this is true by direct experiment. Each of the com-
ponent probabilities is easy to determine. We simply close hole 2 and
measure the chance at arrival at X with only hole 1 open. This gives
the chance P, of arrival at X for those coming through 1. The result
given in figure 2(b). Similarly, by closing 1 we find the chance P, of
arrival through hole 2, [figure 2(c)].

The sum of these [figure 2(d)] clearly does not agree with the curve (a).
Hence experiment tells us definitely that, P # P, + P, or that II is false.

The chance of arrival at X with both holes open is not the sum of the
chance with just hole 1 open plus that with just hole 2 open.
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Figure 2: Results of the experiment. Probability of arrival of electrons at X plotted
against the position X of the detector.

Actually, the complicated curve P(X), is familiar inasmuch as it is
exactly the intensity of distribution in the interference pattern to be
expected if waves starting from S pass through the two holes and im-
pinge on the screen C. We can state the correct law mathematically by
saying that P(X) is the absolute square of a certain complex quantity
(if electron spin is taken into account it is a hypercomplex quantity)
(X)) which we call the probability amplitude of arrival at X and fur-
thermore ¢(X) is the sum of two contributions ¢;, the amplitude of
arrival through hole 1 plus ¢, the amplitude of arrival through hole 2.
In other words,

ITI. There are complex numbers in, and 4:2 such that

P:|¢|2 ) ¢:¢1+¢2

and

Pi=|gi|* , Py=|¢pof

We discuss in a little more detail later the actual calculation of ¢; and ¢,.
Here we say only that ¢, for example, may be calculated as a solution of a
wave equation representing waves spreading from the source to 1 and from 1
to X. This reflects the wave properties of electrons (or in the case of light,



photons).

To summarize: we compute the intensity (that is, the absolute square of the
amplitude) of waves which would arrive in the apparatus at X, and then
interpret this intensity as the probability that a particle will arrive at X.

What is remarkable, is that this dual use of wave and particle ideas does not
lead to contradictions. This is only so if great care is taken as to what kind
of statements one is permitted to make about the experimental situation.

To discuss this point in more detail we first consider the situation which
arises from the observation that our new law III of composition of probabili-
ties implies in general, that it is not true that P = P, + P,. We must conclude
that when both holes are open it is not true that the particle goes through
one hole or the other. For if it had to go through one or the other we could
classify all the arrivals at X into two disjoint classes, namely, those arriving
via hole 1 and those arriving through hole 2, and the frequency P of arrival
at X would be surely the sum of the frequency P, of those coming through
1 and of those coming through hole 2, P,.

To extricate oneself from the logical difficulties introduced by this startling
conclusion one might try various artifices.

We might say perhaps, for example, that the electron travels in a complex
trajectory going through hole 1, then back through hole 2 and finally out
through 1 in some complicated manner. Or perhaps, the electron spreads
out somehow and passes partly through both holes so as to eventually pro-
duce the interference result III. Or perhaps the chance P; that the electron
passes through hole 1 has not been determined correctly inasmuch as closing
hole 2 might have influenced the motion near hole 1. Many such classical
mechanisms have been tried to explain the result III, but none of them has
in the end proved successful. In particular, in the case when light photons
are used, (in which case the same law III applies) the two interfering paths
1 and 2 can be made to be many centimeters apart (in space) so that the
two alternative trajectories must almost certainly be independent. That the
actual situation is more profound than might at first be supposed is shown
by the following experiment.

We have concluded on logical grounds that since P # P, + P, it is not true



that the electron passes through hole 1 or hole 2. But it is easy to design an
experiment to test our conclusion directly. One has merely to have a source
of light behind the holes and watch to see through which hole the electron
passes. For electrons scatter light, so that if light is scattered behind hole 1
we may conclude that an electron passed through hole 1 and if it is scattered
in the neighborhood of hole 2 the electron has passed through hole 2.

The result of this experiment is to show unequivocally that the electron does
pass through either hole 1 or hole 2! That is, for every electron which arrives
at the screen C' (assuming the light was strong enough that we do not miss
seeing it) light is scattered either behind hole 1 or behind hole 2, and never (if
the source S is very weak) at both places. (A more delicate experiment could
even show that the charge passing through the holes passes either through
one or the other, and is in all cases the complete charge of one electron and
not a fraction of it.)

It now appears that we have come to a paradox. For suppose that we com-
bine both experiments. We watch to see through which hole the electron
passes and at the same time measure the chance that the electron arrives
at X. Then for each electron which arrives at X we can say experimentally
whether it came through hole 1 or hole 2. First we may verify that P; is given
by curve (b). Because if we select of the electrons which arrive at X only
those which appear to come through hole 1 (by scattering light there) we find
they are indeed distributed as in curve (b). (This result is obtained whether
hole 2 is open or closed, so we have verified that there is no subtle influence
of closing 2 on the motion near hole 1.) If we select the ones scattering light
at 2 we get P, of figure (c). But now each electron appears at either 1 or 2 so
if we take both together we must get the distribution P = P + P, illustrated
in figure (d). And experimentally we do! Somehow now the distribution does
not show the interference effects I1I of curve (a)!

What has been changed? When we watch the electrons to see through which
hole they pass we obtain the result P = P, + P, When we do not watch we
get a different result P = |¢1 + ¢o|> + P1 + Ps.

Just by watching the electrons we have changed the chance that they arrive
at X. How is this possible? The answer is that to watch them we used
light and the light in collision with the electron may be expected to alter its



motion or more exactly to alter its chance of arrival at X.

On the other hand, can we not use weaker light and thus expect a weaker
effect? A negligible disturbance certainly cannot be presumed to produce the
finite change in distribution from (a) to (d). But weak light does not mean
a weaker disturbance. Light comes in photons of energy hr where v is the
frequency, or of momentum h/\ where A is the wave length. Weakening the
light just means using fewer photons so that we may miss seeing an electron.
But when we do see one it means a complete photon was scattered and a
finite momentum of order h/\ is given to the electron. [Those that we miss
seeing are distributed according to the interference law (a), while those we
do see and which therefore have scattered a photon arrive at X with the
probability P = P, + P, in (d). The net distribution in this case is therefore
the weighted mean of (a) and (d). In strong light when nearly all electrons
scatter light it is nearly (d), and in very weak light, when very few scatter it
becomes more like (a)].

It might still be suggested that since the momentum carried by the light is
h/\, weaker effects could be produced by using light of longer wave length
A. But there is a limit to this. If light of too long a wave length is used, we
will not be able to tell whether it was scattered from behind hole 1 or hole
2. For the source of light of wave length A cannot be located in space with
precision greater than that of order .

We thus see that any physical agency designed to determine through which
hole the electron passes, must produce, lest we have a paradox, enough dis-
turbance to alter the distribution from (a) to (d).

It was first noticed by Heisenberg, and stated in his uncertainty principle,
that the consistency of the then new mechanics required a limitation to the
subtlety to which experiments could be performed. 'In our case it says that

!The uncertainty principle was first stated for the special case of position and mo-
mentum measurements. It said that measurement of a momentum to accuracy Ap implies
disturbances sufficient to create an uncertainty in position Agq at least of the order of h/Ap.
That we would be led to a paradox if this were not true can be seen from our experiment
in the following way. Instead of determining through which hole the electron passes by
using light we may notice that the deflection suffered by the electron in passing from the
source to X through hole 1 differs from that suffered in passing through hole 2. Hence
the momentum (in the vertical direction in figure 1) given to the electron by the screen



an attempt to design apparatus to determine through what hole the electron
passed and delicate enough so as not to deflect the electron sufficiently to
destroy the interference pattern, must fail. It is clear that the consistency
of quantum mechanics requires that it must be a general statement involv-
ing all the agencies of the physical world which might be used to determine
through which hole an electron passes. The world cannot be half quantum
mechanical half classical. No exception to the uncertainty principle has been
discovered.

We are still left with the question, “Do the electrons have to go through hole
1 or hole 2 or don’t they?” To avoid the logical inconsistencies into which
it is so easy to stumble, the physicist takes the following view. When no
attempt is made to determine through which hole the electron passes one
cannot say it must pass through one hole or the other. Only in a situation
where an apparatus is operating to determine which hole the electron goes
through is it permissible to say that it passes through one or the other. When
you watch you find that it goes either through one or the other hole, but if
you are not looking you cannot say that it either goes one way or the other!
Such is the logical tightrope on which Nature demands that we walk if we
wish to describe her.

To summarize then: The probability of an event (in an ideal experiment
where there are no uncertain external disturbances) is the absolute square

is different in the two cases. Call the difference dp. Hence the hole through which the
electron passes can be determined by measuring in each case the recoil momentum given
to the screen. This can be done by setting screen B free of its supports and measuring
its vertical velocity before and after the passage of each electron to determine the change
in momentum. The probability distribution must now be (d) instead of the interference
pattern(a).This comes about because by freeing the screen from its supports we can no
longer be sure of its exact vertical location. In fact, for the passage of each electron the
vertical position may differ, by amounts we shall call Aq. Hence the distribution of elec-
trons is that of (a), but smeared out in X by an amount Ag. A simple calculation shows
that the separation between maxima and minima in the pattern (a) is just h/2dp. We
must measure the screen momentum with an error Ap which is less than the difference
op if we are to determine the hole through which the electron passes. The uncertainty
principle assures us that the vertical uncertainty Aq in the screen position must exceed
h/Ap and hence exceed h/20p so that the maxima and minima of the diffraction pattern
(a) are completely smeared out and the resulting distribution is that of (d).

Many interesting examples of this kind have been analyzed, particularly by N. Bohr.



of a complex quantity called the probability amplitude. When the event can
occur in several alternative ways the probability amplitude is the sum of the
probability amplitude for each alternative considered separately.

If an experiment capable of determining which alternative is actually taken
is performed the interference is lost and the probability becomes the sum of
the probability for each alternative.

The main point of this paper has been to discuss this relation of probabil-
ity amplitude to the calculation of probabilities. Of course, the complete
physical theory must also supply the exact formulae for calculating the prob-
ability amplitudes for a given situation. The amplitude is usually calculated
by solving a kind of wave equation. For particles of low velocity it is called
the Schrodinger equation.

A more accurate equation valid for electrons of velocity arbitrarily close to
the velocity of light is the Dirac Equation. In this case the probability am-
plitude is a kind of hypercomplex number. It is a problem of the future to
discover the exact manner of computing the amplitudes for processes involv-
ing the apparently more complicated particles, namely, neutrons, protons,
mesons, etc.

The situation for slowly moving particles, which are usually handled by solv-
ing the Schrodinger equation, may also be stated in another way. If a particle
is released at a certain point X; at a time t; we may wish to calculate its
amplitude of arrival at some other point X5 at a later time ¢t5. We can con-
sider that the particle can take any path X (¢) going between the given end
points [X (1) = X1, X (t2) = X3]. Then, the total amplitude for arrival can
be considered as the sum over all the possible trajectories of an amplitude
® for each trajectory. It only remains to give the probability amplitude for
a given trajectory to state completely the laws of quantum mechanics in the
nonrelativistic (low velocity) limit. The amplitudes for the trajectories are
complex numbers (all of the same absolute square magnitude) which simply
differ from one another in phase. The phase for a given trajectory X (t) is
simply the action S = [ Ldt (the time integral of the Lagrangian) calculated
classically for this trajectory and measured in units of Planck’s constant of
action h [that is, ® = constant exp (27iS/h)]. It can be demonstrated? that

2The formulation is discussed in detail in R. P. FEYNMAN “Spacetime approach to



this formulation leads to the Schrodinger equation. Its relation to classical
mechanics is interesting. Quantum mechanically we say all trajectories con-
tribute to an effect, each with amplitude exp (27iS/h); while classically we
say only one trajectory is important, namely that which makes the quantity
S an extremum. The classical theory arises from the quantum theory in the
limit that the action S is large compared to Planck’s constant h. For (by
the method of stationary phase) the contributions of most trajectories will
cancel out by interference because a neighboring trajectory may contribute
with a very different phase. Only those trajectories near the one that makes
S a maximum or minimum will be important for they all contribute with
nearly the same phase.

When the energy is definite and the particles travel in empty space, as in our
experiment, the result can be stated in a still simpler manner. For example
¢1 is (except for slowly varying factors involving the width of the slits and
cosines of the angles of deflection) proportional to expi(d;/\) where d; is the
total distance from S to hole 1 plus that from hole 1 to X. The quantity A,
the wave length of the waves, is related to the momentum p of the electron
by deBroglie’s formula p = h/\. Likewise ¢y has the phase dy/\. Tt is for
those points X for which d; and dy differ by an odd number of half-wave
lengths that we have destructive interference and a minimum in the proba-
bility distribution.

For objects of ordinary size the momentum p is so large that the wave length
A is so short that the maxima and minima of the interference pattern occur
so close together as to escape ordinary observation. The relative phases are
so large and uncertain that the interference terms are not noticed and ordi-
nary probability laws such as P = P, + P, apply with sufficient accuracy.

The amplitude ¢; can be worked out as the product of two factors ¢, =
¢s1 - 91x where ¢g; is the amplitude to go from S to the hole at 1 and ¢ x
is the amplitude to go from the hole at 1 to X. (If the hole is not small
we shall have to consider each differential of area of the hole, calculate the
amplitude of going from S to this area times the amplitude of going from this
area to X and sum these amplitudes over the total area of the hole. Each
differential area constitutes an alternative.) The composition of probability

nonrelativistic quantum mechanics,” Review: of Modern Physics, Vol. 20 (1948), pp.
367-387.
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amplitudes bears some formal analogy to Laplace’s rules for probability. For
events occurring in succession we multiply amplitudes, while when various
alternatives are available the amplitude is the sum of those corresponding to
each alternative.

Finally, it is interesting to see how formula P = |¢; + ¢»|? becomes altered un-
der the influence of light shining on the holes, so that it assumes the classical
form P = P, + P,. The light by interacting with the electron going through
hole 1 alters the phase with which the electron arrives at X by an amount say
01, so that the probability amplitude of arrival through hole 1 is now ¢;e®1.
The value of 01, cannot be exactly determined in a given scattering since
the precise phase of the light is lost when the scattered light is absorbed in
whatever instrument (eye, photocell, etc.) is used to determine whether the
light comes from 1 or 2. Exactly how this comes about has been analyzed in
many precise situations by von Neumann. Thus the probability of a particu-
lar electron arriving at X is |¢e%1 + ¢oe?2|2. But each scattering corresponds
to a different, unknown and random value of the phase shifts ; and 6. We
must then average |11 + ¢oe'%2|? over all phases 61,6, obtaining, as is well
known,|é1 | + |¢2|?> which is just P, + P, in agreement with the experiment.

It is very interesting that in the quantum mechanics the amplitudes ¢ are
solutions of a completely deterministic equation. Knowledge of ¢ at t = 0 im-
plies its knowledge at all subsequent times. The interpretation of |¢|? as the
probability of an event is an indeterministic interpretation. It implies that
the result of an experiment is not exactly predictable. It is very remarkable
that this interpretation does not lead to any inconsistencies. That it is true
has been amply demonstrated by analyses of many particular situations by
Heisenberg, Bohr, Born, von Neumann and many other physicists. In spite
of all these analyses the fact that no inconsistency can arise is not thoroughly
obvious. For this reason quantum mechanics appears as a difficult and some-
what mysterious subject to a beginner. The mystery gradually decreases as
more examples are tried out, but one never quite loses the feeling that there
is something peculiar about the subject.

I believe there are a few interpretational problems on which work may still
be done. They are very difficult to state until they are completely worked
out. One is to show that the probability interpretation of ¢ is the only con-
sistent interpretation of this quantity. We and our measuring instruments
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are part of Nature and so are in principle described by an amplitude function
satisfying a deterministic equation. Why can we only predict the probability
that a given experiment will lead to a definite result? From whence does the
uncertainty arise? Almost certainly it arises from the need to amplify the
effects of single atomic events to such a level that they may be readily ob-
served by large systems. The details of this have only been analyzed on the
assumption that |¢|? is a probability and the consistency of this assumption
has been shown. It would be an interesting problem to show that no other
consistent interpretation can be made.

Other problems which may be further analyzed are those dealing with the
theory of knowledge. For example, there seems to be a lack of symmetry in
time in our knowledge. Our knowledge of the past is qualitatively different
than that of the future. In what way is only the probability of a future event
accessible to us while the certainty of a past event can often apparently be as-
serted? These matters again have been analyzed to a great extent. I believe
however a little more can be said to clarify the situation. Obviously we are
again involved in the consequences of the large size of ourselves and of our
measuring equipment. The usual separation of observer and observed which
is now needed in analyzing measurements in quantum mechanics should not
really be necessary, or at least should be even more thoroughly analyzed.
What seems to be needed is the statistical mechanics of amplifying appara-
tus.

The analyses of such problems are of course in the nature of philosophical
questions. They are not necessary for the further development of physics.
We know we have a consistent interpretation of ¢ and almost without doubt,
the only consistent one. The problem of today seems to be the discovery
of the laws governing the behavior of ¢ for phenomena involving nuclei and
mesons. The interpretation of ¢ is interesting. But the much more intrigu-
ing question is: What new modifications of our thinking will be required to
permit us to analyze phenomena occurring within nuclear dimensions?
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