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Abstract

In the Quantum-Bayesian interpretation of quantum theory (or QBism), the
Born Rule cannot be interpreted as a rule for setting measurement-outcome
probabilities from an objective quantum state. But if not, what is the role
of the rule? In this paper, we argue that it should be seen as an empirical
addition to Bayesian reasoning itself. Particularly, we show how to view the
Born Rule as a normative rule in addition to usual Dutch-book coherence.
It is a rule that takes into account how one should assign probabilities to
the consequences of various intended measurements on a physical system,
but explicitly in terms of prior probabilities for and conditional probabilities
consequent upon the imagined outcomes of a special counterfactual reference
measurement. This interpretation is seen particularly clearly by representing
quantum states in terms of probabilities for the outcomes of a fixed, fiducial
symmetric informationally complete (SIC) measurement. We further explore
the extent to which the general form of state-space structure of quantum
mechanics.

1 Introduction: Unperformed Measurements

Have No Outcomes

We choose to examine a phenomenon which is impossible, abso-
lutely impossible, to explain in any classical way, and which has in
it the heart of quantum mechanics. In reality, it contains the only
mystery. We cannot make the mystery go away by “explaining”
how it works. We will just tell you how it works. In telling you
how it works we will have told you about the basic peculiarities
of all quantum mechanics.

- R.P Feynman, 1964

These words come from the opening chapter on quantum mechanics in Richard
Feynman’s famous Feynman Lectures on Physics (Feynman, 1964). With
them he plunged into a discussion of the double-slit experiment using indi-
vidual electrons. Imagine if you will, however, someone well-versed in the
quantum foundations debates of the last 30 years - since the Aspect experi-
ment say (Aspect, 1982) - yet naively unaware of when Feynman wrote this.



What might he conclude that Feynman was talking about? Would it be the
double-slit experiment? Probably not. To the modern mindset, a good guess
would be that Feynman was talking about something to do with quantum
entanglement or Bell-inequality violations. In the history of foundational
thinking, the double-slit experiment has fallen by the wayside.

So, what is it that quantum entanglement teaches us - via EPR-type consid-
erations and Bell-inequality violations - that the double-slit experiment does
not? A common answer is that quantum mechanics does not admit a “local
hidden variable” formulation. Too quick and dirty, some would say (Norsen,
2006). However, the conclusion drawn there - that a Bell inequality violation
implies the failure of locality, full stop - is based (in part) on taking the EPR
criterion of reality or variants of it as sacrosanct. As will become clear in this
discussion, we do not take it so. By this one usually means the conjunction
of two statements (Bell, 1964, 1981):

(1) that experiments in one region of spacetime cannot instantaneously
affect matters of fact at far away regions of spacetime, and

(2) that there exist “hidden variables” that in some way “explain” mea-
sured values or their probabilities.

Bell-inequality violations imply that one or the other or some combination of
both these statements fails. This, many would say, is the deepest “mystery”
of quantum mechanics.

This mystery has two sides. It seems the majority of physicists who care
about these things think it is locality (condition 1 above) that has to be
abandoned through the force of the experimentally observed Bell-inequality
violations - i.e., they think there really are “spooky actions at a distance”.

Indeed, it flavors almost everything they think of quantum mechanics, includ-
ing the interpretation of the toy models they use to better understand the
theory. Take the recent flurry of work on Popescu-Rohrlich boxes (Popescu,
1994). These are imaginary devices that give rise to greater-than-quantum
violations of various Bell inequalities. Importantly, another common name
for these devices is the term “nonlocal boxes” (Barrett, 2005). Their exact
definition comes via the magnitude of a Bell-inequality violation - which en-
tails the non-pre-existence of values or a violation of locality or both - but the
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commonly used name opts only to recognize nonlocality. They’re not called
no-hidden-variable boxes, for instance. The nomenclature is psychologically
telling.

Yet, there is a minority that thinks the abandonment of condition 2 is
the more warranted conclusion (D’Ariano, 2009; Demopoulos, 2008; Mer-
min, 1999; Peres, 1978; Plotnitsky, 2006; Wheeler, 1982; Zeilinger, 1996;
Zukowski, 2005). Among these are the Quantum Bayesians (Appleby, 2005a,b;
Caves, 2002, 2007; Fuchs, 2002, 2003, 2004, 2010,b, 2012; Mermin, 2012;
Schack,2001,2003; Timpson,2008).

For alternative developments of several Bayesian-inspired ideas in quantum
mechanics, see (Baez, 2003; Bub, 2011; Caticha, 2006; Goyal, 2008; Leifer,
2006, 2007, 2012; Mana, 2007; Pitowsky, 2003, 2005; Rau, 2007; Srednicki,
2005; Warmuth, 2009; Youssef, 2001). We keep these citations separate from
the remark above because of various distinctions within each from what we
are calling Quantum Bayesianism - these distinctions range from

(1) the particular strains of Bayesianism each adopts, to

(2) whether quantum mechanics is a generalized probability theory or rather
simply an application within Bayesian probability per se, to

(3) the level of the agent’s involvement in bringing about the outcomes of
quantum measurements.

There are nonetheless sometimes striking kinships between the ideas of these
papers and the effort here, and the papers are well worth studying.

Giving up on hidden variables implies in particular that measured values do
not pre-exist the act of measurement. A measurement does not merely “read
off” the values, but enacts or creates them by the process itself. In a slogan
inspired by Asher Peres (Peres, 1978), “unperformed measurements have no
outcomes”.

Among the various arguments the Quantum Bayesians use to come to this
conclusion, not least in importance is a thoroughgoing personalist account
of all probabilities (Bernardo, 1994; de Finetti, 1931, 1990; Jeffrey, 2004;
Ramsey, 1931; Savage, 1954) - where the “all” in this sentence includes prob-
abilities for quantum measurement outcomes and even the probability-1 as-
signments among these (Caves, 2007). From the Quantum-Bayesian point of
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view, this is the only sound interpretation of probability. Moreover, this move
for quantum probabilities frees up the quantum state from any objectivist
obligations. In so doing it wipes out the mystery of quantum-state-change
at a distance (Einstein, 1951; Fuchs, 2000; Timpson, 2008) and much of the
mystery of wave function collapse as well (Fuchs, 2002, 2010b, 2013).

But what does all this have to do with Feynman? Apparently Feynman
too saw something of a truth in the idea that “unperformed measurements
have no out-comes”. Yet, he did so because of considerations to do with the
double-slit experiment. Later in the lecture he wrote,

Is it true, or is it not true that the electron either goes through
hole 1 or it goes through hole 2? The only answer that can
be given is that we have found from experiment that there is a
certain special way that we have to think in order that we do
not get into inconsistencies. What we must say (to avoid making
wrong predictions) is the following. If one looks at the holes or,
more accurately, if one has a piece of apparatus which is capable
of determining whether the electrons go through hole 1 or hole 2,
then one can say that it goes either through hole 1 or hole 2. But,
when one does not try to tell which way the electron goes, when
there is nothing in the experiment to disturb the electrons, then
one may not say that an electron goes either through hole 1 or
hole 2. If one does say that, and starts to make any deductions
from the statement, he will make errors in the analysis. This is
the logical tightrope on which we must walk if we wish to describe
nature successfully.

Returning to the original quote, we are left with the feeling that this is the
very thing Feynman saw to be the “basic peculiarity of all quantum mechan-
ics”.

One should ask though, is his conclusion really compelled by so simple a
phenomenon as the double slit? How could simple “interference” be so far-
reaching in its metaphysical implications? Water waves interfere and there
is no great mystery there. Most importantly, the double-slit experiment is a
story of measurement on a single quantum system, whereas the story of EPR
and Bell is that of measurement on two seemingly disconnected systems.
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Two systems are introduced for a good reason. Without the guarantee of
arbitrarily distant parts within the experiment - so that one can conceive of
measurements on one, and draw inferences about the other - what justifica-
tion would one have to think that changing the conditions of the experiment
(from one slit closed to both slits open) should not make a deep concep-
tual difference to its analysis? Without such a guarantee for underwriting
a belief that some matter of fact stays constant in the consideration of two
experiments, one - it might seem - would be quite justified in responding,
“Of course, you change an experiment, and you get a different probabil- ity
distribution arising from it. So what?”.

This is a point Koopman (Koopman, 1957) and Ballentine (Ballentine, 1986)
seem happy to stop the discussion with. For instance, Ballentine writes, “One
is well advised to beware of probability statements of the form, P (X), instead
of P (X ∣C). The second argument may be safely omitted only if the condi-
tional event or information is clear from the context, and only if it is constant
throughout the problem. This is not the case in the double slit experiment.
. . . We observe from experiment that P (X ∣C3) ≠ P (X ∣C1)+P (X ∣C2). This
fact, however, has no bearing on the validity of . . . probability theory”.

For quite a long time, the authors thought that Feynman’s logical path from
example to conclusion - a conclusion that we indeed agree with - was simply
unwarranted. The argument just does not seem to hold to the same stringent
standards as Bell-inequality analyses.

However, we have recently started to appreciate that there may be something
of substance in Feynman’s argument nonetheless. It is just not so easily seen
without the proper mindset. The key point is that the so-called “interference”
in the example is not in a material field - of course it was never purported
to be - but in something so ethereal as probability itself (a logical, not a
physical, construct). Most particularly, Feynman makes use of a beautiful
and novel move: He analyzes the probabilities in an experiment that will be
done in terms of the probabilities from experiments that won’t be done. He
does not simply conditionalize the probabilities to the two situations and let
it go at that. Rather he tries to see the probabilities in the two situations
as functions of each other. Not functions of a condition, but functions (or at
least relations) of each other. This is an important point. There is no neces-
sity that the world give a relation between these probabilities, yet it does:
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Quantum mechanics is what makes the link precise. Feynman seems to have
a grasp on the idea that the essence of the quantum mechanical formalism is
to provide a tool for analyzing the factual in terms of a counterfactual. In his
own case, he then develops the formalism of amplitudes to mediate between
the various probabilities, whereas in this discussion we will doggedly stick to
probabilities, and only probabilities. It is only his conceptual point that we
want to develop, not his technical apparatus.

Here is the way Feynman put it in a paper titled, “The Concept of Probability
in Quantum Mechanics”, (Feynman, 1951):

I should say, that in spite of the implication of the title of this talk
the concept of probability is not altered in quantum mechanics.
When I say the probability of a certain outcome of an experiment
is p, I mean the conventional thing, that is, if the experiment is
repeated many times one expects that the fraction of those which
give the outcome in question is roughly p. I will not be at all
concerned with analyzing or defining this concept in more detail,
for no departure from the concept used in classical statistics is
required.

What is changed, and changed radically, is the method of calcu-
lating probabilities.

Far be it from us to completely agree with everything in this quote. For
instance, the concept of “probability as long-run frequency” is anathema to
a Bayesian of any variety (Good, 1983). It is worth pointing out, however,
that Feynman was not always consistently a frequentist in his thinking about
probability. For instance, in the Lectures on Physics, chapter I-6, it says
(Feynman, 1964)

An experimental physicist usually says that an “experimentally
determined” probability has an “error”, and writes

P (H) =
NH

N
±

1

2
√
N

There is an implication in such an expression that there is a
“true” or “correct” probability which could be computed if we
knew enough, and that the observation may be in “error” due
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to a fluctuation. There is, however, no way to make such think-
ing logically consistent. It is probably better to realize that the
probability concept is in a sense subjective, that it is always based
on uncertain knowledge, and that its quantitative evaluation is
subject to change as we obtain more information.

And B. O. Koopman (Koopman, 1957) is surely right when he says,

Ever since the advent of modern quantum mechanics in the late
1920’s, the idea has been prevalent that the classical laws of prob-
ability cease, in some sense, to be valid in the new theory. More
or less explicit statements to this effect have been made in large
number and by many of the most eminent workers in the new
physics. ....

In fact, Koopman is speaking directly of Feynman here. Moreover, both
he and Ballentine (Ballentine, 1986) have criticized Feynman on the same
point: That with his choice of the word “changed” in the last quote, Feyn-
man implicates himself in not recognizing that the conditions of the three
contemplated experiments are distinct and, hence, in not conditionalizing
his probabilities appropriately. Thus - Koopman and Ballentine say - it is
no wonder Feynman thinks he sees a violation of the laws of probability. In
my opinion however, Koopman and Ballentine are hanging too much on the
word “changed” - we rather see it as an unfortunate choice of wording on
Feynman’s part. That he understood that the conditions are different in a
deep and inescapable way in the three contemplated experiments, we feel, is
documented well enough in the quote above from his 1964 lecture.

Such a thesis is surprising, to say the least, to anyone holding
more or less conventional views regarding the positions of logic,
probability, and experimental science: many of us have been apt
- perhaps too naively - to assume that experiments can lead to
conclusions only when worked up by means of logic and proba-
bility, whose laws seem to be on a different level from those of
physical science.

But there is a kernel of truth here that should not be dismissed in spite of
Feynman’s diversion to frequentism and his in-the-end undefensible choice of
the word “changed”. Paraphrasing Feynman,
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The concept of probability is not altered in quantum mechanics
(it is personalistic Bayesian probability). What is radical is the
recipe it gives for calculating new probabilities from old.

For, quantum mechanics - we plan to show in this discussion - gives a re-
source that raw Bayesian probability theory does not: It gives a rule for
forming probabilities for the outcomes of factualizable experiments (exper-
iments that may actually be performed) from the probabilities one assigns
for the outcomes of a designated counterfactual experiment (an experiment
only imagined, and though possible to do, never actually performed).

We coin this new term because it stands as a better counterpoint to the term
“counterfactual” than the term “actualizable” seems to. We also want to cap-
ture the following idea a little more plainly: Both measurements being spoken
of here are only potential measurements - it is just that one will always be
considered in the imaginary realm, whereas the other may one day become a
fact of the matter if it is actually performed. So, yes, unperformed measure-
ments have no outcomes as Peres expressed nicely; nonetheless, imagining
their performance can aid in analyzing the probabilities one ought to assign
for an experiment that may factually be per- formed. Putting it more care-
fully than Feynman: Quantum mechanics does not provide a radical change
to the method of calculating probabilities; it provides rather an empirical
addition to the laws of Bayesian probability.

In this discussion, we offer a modernization and Bayesianification of Feyn-
man’s consideration by making intimate use of a potential (we say “potential”
because so far the representation has been seen to exist only for finite dimen-
sional quantum systems with dimension ≤ 100. More will be said on this in
Section 3) representation of quantum states unknown in his time: It is one
based on SICs or symmetric informationally complete observables (Appleby,
2005, 2007; Caves, 1999; Fuchs, 2004b; Renes, 2004; Zauner, 1999). The goal
is to make it more transparent than ever that the content of the Born Rule
is not that it gives a procedure for setting probabilities (from some indepen-
dent entity called “the quantum state”), but that it represents a “method of
calculating probabilities”, new ones from old.

That this must be the meaning of the Born Rule more generally for Quan-
tum Bayesianism has been argued from several angles by the authors before
(Caves, 2007; Fuchs, 2013). For instance, in (Caves, 2007), we put it this
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way:

We have emphasized that one of the arguments often repeated
to justify that quantum-mechanical probabilities are objective,
rather than subjective, is that they are “determined by physi-
cal law”. But, what can this mean? Inevitably, what is being
invoked is an idea that quantum states ∣ψ⟩ have an existence in-
dependent of the probabilities they give rise to through the Born
Rule, p(i) = ⟨ψ∣Ei ∣ψ⟩. From the Bayesian perspective, however,
these expressions are not independent at all, and what we have
argued... is that quantum states are every bit as subjective as any
Bayesian probability. What then is the role of the Born Rule?
Can it be dispensed with completely?

It seems no, it cannot be dispensed with, even from the Bayesian
perspective. But its significance is different than in other devel-
opments of quantum foundations: The Born Rule is not a rule
for setting probabilities, but rather a rule for transforming or re-
lating them.

For instance, take a complete set of d + 1 observables Ok, k =

1, ...., d + 1, for a Hilbert space of dimension d. Subjectively set-
ting probabilities for the d outcomes of each such measurement
uniquely determines a quantum state ∣ψ⟩ (via inverting the Born
Rule). Thus, as concerns probabilities for the outcomes of any
other quantum measurements, there can be no more freedom. All
further probabilities are obtained through linear transformations
of the originals. In this way, the role of the Born Rule can be seen
as having something of the flavor of Dutch-book coherence, but
with an empirical content added on top of bare, law-of-thought
probability theory: An agent interacting with the quantum world
would be wise to adjust his probabilities for the out- comes of var-
ious measurements to those of quantum form if he wants to avoid
devastating consequences. The role of physical law - i.e., the as-
sumption that the world is made of quantum mechanical stuff -
is codified in how measurement probabilities are related, not how
they are set.

What is new in the present discussion is the emphasis on a single designated
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observable for the counterfactual thinking, as well as a detailed exploration
of the rule for combining probabilities in this picture. Particularly, we will
see that a significant part of the structure of quantum-state space arises from
the consistency of that rule - a single formula we designate the urgleichung
(German for “primal equation”). The urgleichung is the stand-in and correc-
tion in our context for Feynman’s not-quite-right but nonetheless suggestive
sentence, “What is changed, and changed radically, is the method of calcu-
lating probabilities”.

Returning to the point we started our discussion with, the one about in-
terference going by the wayside in quantum foundations, we should say the
following. To the ex- tent that the full formalism of quantum mechanics
can be re-derived from a simple Feynman-style scenario - even if not the
double-slit experiment per se, but nonetheless one wherein probabilities for
the outcomes of factualizable experiments are obtained from probabilities
in a family of designated counterfactual ones - that scenario must indeed
express the essence of quantum mechanics. For if these considerations give
rise to the full formalism of the theory (Hilbert spaces, positive operators,
the possibility of tensor-product decompositions, etc.), they must give rise
to entanglement, Bell-inequality violations, and Kochen-Specker ’paradoxes’
as well: These will be established as corollaries to the formalism. Hidden in
these ostensibly different considerations would be every mystery and every
paradox’ of quantum mechanics. And if this is truly the case, who could
say that the simple scenario does not carry in it the essence of quantum
mechanics? From our point of view, it goes without saying that the explo-
ration of quantum mechanics’ ability to engender Bell-inequality violations
and Kochen-Specker theorems is an immensely instructive activity for sort-
ing out the implications of the theory. Nonetheless, one should not lose sight
of the potential loss of understanding that can be incurred by confusing a
corollary with a postulate. In this sense, Feynman may well have had the
right intuition.

1.1 Outline of the Discussion

The plan of the discussion is as follows. In Section II, we review the personal-
ist Bayesian account of probability, showing how some Dutch-book arguments
work, and emphasizing a point we have not seen emphasized before: Bayes’
rule and the Law of Total Probability, Eqs. (1) and (3) below, are not neces-
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sities in a Bayesian account of probability. These rules are enforceable when
there is a conditional lottery in the picture that can be gambled upon. But
when there is no such lottery, the rules hold no force - without a conditional
lottery there is nothing in Dutch-book coherence itself that can be used to
compel the rules.

In Section III, we review the notion of a SIC (symmetric informationally com-
plete observable), and show a sense in which it is a very special measurement.
Most importantly we delineate the full structure of quantum- state space in
SIC terms. It turns out that, by making use of a SIC instead of any other
informationally complete measurement, the formalism becomes uniquely sim-
ple and compact. We also show that unitary time evolution, when written
in SIC terms, looks (formally at least) almost identical to classical stochastic
evolution.

Section IV contains the heart of the discussion. In it, we introduce the idea of
thinking of an imaginary (counterfactual) SIC behind all quantum measure-
ments, so as to give an imaginary conditional lottery with which to define
conditional probabilities. We then show how to write the Born Rule in these
terms, and find it to appear strikingly similar to the Law of Total Probability,
Eq. (3). We then note how this move in interpretation is radically different
from the one offered by the followers of “objective chance” in the Lewisian
sense (Lewis, 1986a,b).

In Section V, we show that one can derive some of the features of quantum-
state space by taking this modified or Quantum Law of Total Probability
as a postulate. Particularly, we show that with a small number of further
assumptions, it gives rise to a generalized Bloch sphere and seems to define
an underlying “dimensionality” for a system that matches the one given by
its quantum mechanical state space. We also demonstrate other features of
the geometry these considerations give rise to.

In Section VI, we step back further in our considerations and explore the
extent to which the particular constants d2, d + 1, and 1/d in our Quantum
Law of Total Probability, Eq. (64), can arise from more elementary consid-
erations. This section is a preliminary attempt to understand the origin of
the equation treated simply as a postulate in Section V.
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In Section VII we give a brief discussion of where we stand at this stage
of research. Finally in Section VIII, we close the paper by discussing how
our work is still far from done: Hilbert space, from a Quantum-Bayesian
view, has not yet been derived, only indicated. Nonetheless the progress
made here gives us hope that we are inching our way toward a formal ex-
pression of the ontology underlying a Quantum-Bayesian vision of quantum
mechanics: It has to do with the Peres slogan “unperformed measurements
have no outcomes”, but tempered with a kind of ’realism’ that he probably
would not have accepted forthrightly. We say this because of Peres’s openly
acknowledged positivist tendencies. Peres would sometimes call himself a
“recalcitrant positivist”. Also see the opening remarks of (Peres, 2005) for
a good laugh. On the other hand, it is not a ’realism’ that we expect to
be immediately accepted by most modern philosophers of science either. See
(Dennett, 2004; Nagel, 1989; Price, 1997) for introductions to the “view from
nowhere” and “view from nowhen” weltanschaungen. This is because it is
already clear that whatever it will ultimately turn out to be, it is based on

(a) a rejection of the ontology of the block universe (James, 1882, 1884,
1910), and

(b) a rejection of the ontology of the detached observer (Gieser, 2005; Lau-
rikainen, 1988; Pauli, 1994).

The ’realism’ in vogue in philosophy-of-science circles, which makes heavy
use of both these elements, is, as Wolfgang Pauli once said, “too narrow
a concept” for our purposes (Pauli, 1994). Reality, the stuff of which the
world is made, the stuff that was here before agents and observers, is more
interesting than that.

2 Personalist Bayesian Probability

From the Bayesian point of view, probability is degree of belief as measured
by action. More precisely, we say one has (explicitly or implicitly) assigned
a probability p(A) to an event A if, before knowing the value of A, one is
willing to either buy or sell a lottery ticket of the form

Worth $1 if A
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for an amount $p(A). In other words, the personalist Bayesian agent regards
$p(A) as the fair price of the lottery ticket. He would regard it as advan-
tageous to buy it for any price less than $p(A), or to sell it for any price
greater than $p(A). The personalist Bayesian position adds only that this is
the full meaning of probability; it is nothing more and nothing less than this
definition. Particularly, nothing intrinsic to the event or proposition A can
help declare p(A) right or wrong, or more or less rational. The value p(A)

is solely a statement about the agent who assigns it.

Nonetheless, even for a personalist Bayesian, probabilities do not wave in
the wind. Probabilities are held together by a normative principle: That
whenever an agent declares probabilities for various events - say A¬B (“ not
B”), A ∨B (“A or B”), A ∧C (“A and C”), etc. - he should strive to never
gamble (i.e., buy and sell lottery tickets) so as to incur what he believes will
be a sure loss. This normative principle is known as Dutch- book coherence.
And from it, one can derive the usual calculus of probability theory.

This package of views about probability (that in value it is personal, but that
in function it is akin to the laws of logic) had its origin in the mid-1920s and
early 1930s with the work of F. P. Ramsey (Ramsey, 1931) and B. de Finetti
(de Finetti, 1931). J. M. Keynes characterizes Ramsey’s position succinctly
(Keynes, 1951):

[Ramsey] succeeds in showing that the calculus of probabilities
simply amounts to a set of rules for ensuring that the system of
degrees of belief which we hold shall be a consistent system. Thus
the calculus of probabilities belongs to formal logic. But the basis
of our degrees of belief - or the a priori, as they used to be called
- is part of our human outfit, perhaps given us merely by natural
selection, analogous to our perceptions and our memories rather
than to formal logic.

And B. O. Koopman writes (Koopman, 1940):

The intuitive thesis in probability holds that both in its meanings
and in the laws which it obeys, probability derives directly from
the intuition, and is prior to objective experience; it holds that
it is for experience to be interpreted in terms of probability and
not for probability to be interpreted in terms of experience . . .
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Let us go through some of the derivation of the probability calculus from
Dutch-book coherence so that we may better make a point concerning quan-
tum mechanics afterward. Here we basically follow the development in
Richard Jeffrey’s posthumously published book Subjective Probability, The
Real Thing (Jeffrey, 2004; Skyrms, 1987), but with our own emphasis.

First we establish that our normative principle requires 0 ≤ P (A) ≤ 1. For
supposes P (A) < 0. This means an agent will sell a ticket for negative money
- i.e., he will pay someone $p(A) to take the ticket off his hands. Regardless
of whether A occurs or not, the agent will then be sure he will lose money.
This violates the normative principle. Now, take the case P (A) > 1. This
means the agent will buy a ticket for more than it is worth even in the best
case - again a sure loss for him and a violation of the normative principle.
So, probability in the sense of ticket pricing should obey the usual range of
values.

Now let us establish the probability sum rule. Suppose our agent believes
two events A and B to be mutually exclusive - i.e., he is sure that if A occurs,
B will not, or if B occurs, A will not. We can contemplate three distinct
lottery tickets:

Worth $1 if A ∨B

and
Worth $1 if A Worth $1 if B

Clearly the value of the first ticket should be the same as the total value
of the other two. For instance, suppose an agent had set P (A ∨ B), P (A)

and P (B) such that P (A ∨B) > P (A) + P (B). Then -by definition - when
confronted with a seller of the first ticket, he must be willing to buy it, and
when confronted with a buyer of the other two tickets, he must be willing
to sell them. But then the agent’s initial balance sheet would be negative:
−$P (A ∨B) + $P (A) + $P (B) < $0. And whether A or B or neither event
occurs, it would not improve his finances: If a dollar flows in (because of the
bought ticket), it will also flow out (because of the agent’s responsibilities
for the sold tickets), and still the balance sheet is negative. The agent is
sure of a loss. A similar argument goes through if the agent had set his
ticket prices so that P (A ∨ B) < P (A) + P (B). Thus whatever values are
set, the normative principle prescribes that it had better be the case that
P (A ∨B) = P (A) + P (B).
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Consider now the following lottery ticket of a slightly different structure:

Worth $
m

n
if A

where m ≤ n are integers. Does Dutch-book coherence say anything about
the value of this ticket in comparison to the value of the standard ticket - i.e.,
one worth $1 if A? It does. An argument quite like the one above dictates
that it should be valued $tmn if A. If a real number α were in place of m

n a
similar result follows from a limiting argument.

Now we come to the most interesting and important case. Bayesian prob-
ability is not called by its name for lack of a good reason. A key rule in
probability theory is Bayes’ rule relating joint to conditional probabilities:

p(A ∧B) = p(A)p(B∣A) (1)

Like the rest of the structure of probability theory within the Bayesian con-
ception, this rule must arise from an application of Dutch-book coherence.
What is that application?

The only way anyone has seen how to do it is to introduce the idea of a
conditional lottery (Kyburg, 1980). In such a lottery, the value of the event
A is revealed to the agent first. If A obtains, the lottery proceeds to the rev-
elation of event B, and finally all monies are settled up. If on the other hand
¬A obtains, the remainder of the lottery is called off, and the monies put
down for any “conditional tickets” are returned. That is to say, the meaning
of p(B∣A) is taken to be the price $p(B∣A) at which one is willing to buy or
sell a lottery ticket of the following form:

Worth if A ∧B. But return price if ¬A

for price $p(B∣A). Explicitly inserting the definition of p(B∣A), this becomes:

Worth if A ∧B. But return $p(B∣A) if ¬A

Now comes the coherence argument. For, if you think about it, the price for
this ticket had better be the same as the total price for these two tickets:

Worth $1 if A ∧B
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Worth $p(B∣A) if ¬A

That is to say, to guard against a sure loss, we must have

p(B∣A) = p(A ∧B) + p(B∣A)p(¬A)

= p(A ∧B) + p(B∣A) − p(B∣A)p(A) (2)

Consequently, Eq. (1) should hold whenever there is a conditional lottery
under consideration.

2.1 When a Conditional Lottery is Not Without Con-
sequence

But what if the conditional lottery is called off because the draw that was
to give rise to the event A does not take place? In this case the probabilities
p(A) and p(B∣A) refer to a counterfactual, and there is no reason to assume
the validity of Eq. (1).

It is worth investigating the idea of counterfactuals in some more detail. Sup-
pose an agent makes a measurement of a variable X that takes on values x,
followed by a measurement of a variable Y with mutually exclusive values y.
A Dutch bookie asks him to commit on various unconditional and conditional
lottery tickets. What can we say of the probabilities he ought to ascribe? A
minor variation of the Dutch-book arguments above tells us that whatever
values of p(x), p(y), and p(y∣x) he commits to, they ought - if he is coherent
- satisfy the Law of Total Probability:

p(y) =∑
x

p(x)p(y∣x) (3)

Imagine now that the X measurement is called off, so there will only be the Y
measurement. Is the agent still normatively committed to buying and selling
Y -lottery tickets for the price $p(y) in Eq. (3) that he originally expressed?
Not at all! That would clearly be silly in some situations, and no clear-
headed Bayesian would ever imagine otherwise. The action bringing about
the result of the X measurement might so change the situation for bringing
about Y that he simply would not gamble on it in the same way. To hold fast
to the $p(y) valuation of a Y -lottery ticket, then, is not a necessity enforced
by coherence, but a judgment that might or might not be the right thing to
do.
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In fact, one might regard holding fast to the initial value $p(y) in spite of
the nullification of the conditional lottery as the formal definition of precisely
what it means to judge an unperformed measurement to have an outcome.
It means one judges that looking at the value of X is incidental to the whole
affair, and this is reflected in the way one gambles on Y (Fuchs, 2012). So, if
q(y) represents the probabilities with which the agent gambles supposing the
X-lottery nullified, then a formal statement of the Peresian slogan that the
unperformed X measurement had no outcome (i.e., measuring X matters,
and it matters even if one makes no note of the outcome) is that

q(y) ≠ p(y) (4)

Still, one might imagine situations in which even if an agent judges that
equality does not hold for them, he nonetheless judges that q(y) and p(y)
should bear a precise relation to each other. In Section 4, we will show that,
in fact, the positive content of the Born Rule as an addition to Bayesianism
is to connect the probabilities for two measurements, one factual and one
counterfactual, for which Dutch-book coherence alone does not provide a
precise relationship.

3 Expressing Quantum-State Space in Terms

of SICs

Let Hd be a finite d-dimensional Hilbert space associated with some physical
system. A quantum state for the system is usually expressed as a unit-trace
positive semi-definite linear operator ρ ∈ L(Hd). However, through the use
of a symmetric informationally complete observable (or SIC) as a reference
observable, we can find a rather elegant representation of quantum states
directly in terms of an associated set of probability distributions.

A SIC is an example of a generalized measurement or positive operator-valued
measure (POVM) (Peres, 1993). A POVM is a collection {Ei}, i = 1, ..., n, of
positive semi-definite operators Ei on Hd such that

∑
i

Ei = I (5)

where n is in general unrelated to d and may be larger or smaller than d.
Supposing a quantum state ρ, the probability of the measurement outcome
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labeled i is then given by
p(i) = tr ρEi (6)

The POVMs represent the most general kinds of quantum measurement that
can be made on a system. A von Neumann measurement is a special POVM
where the Ei are mutually orthogonal projection operators. Mathematically,
any POVM can be written as a unitary interaction with an ancillary quantum
system, followed by a von Neumann measurement on the ancillary system
(Nielsen, 2000).

We will use a pseudo-Dirac notation ∣∣ v⟫ for vectors in a real vector space
of d2 dimensions. The relevant probability simplex for us - the one we are
mapping quantum states ρ to, denoted ∆d2 - is a convex body within this
linear vector space. Thus, its points may be expressed with the notation ∣∣p⟫
as well. The choice of a pseudo-Dirac notation for probability distributions
also emphasizes that one should think of the valid ∣∣p⟫ as a direct expression
of the set of quantum states.

We can provide an injective mapping between the convex set of density op-
erators and the set of probability distributions

∣∣p⟫ = (p(1), p(2), ....., p(d2))
T

(7)

over d2 outcomes - the probability simplex ∆d2 - by first fixing any so-called
minimal informationally complete fiducial measurement {Ei}, i = 1, ..., d2.
This is a POVM with all the Ei linearly independent. With respect to such
a measurement, the probabilities p(i) for its outcomes completely specify
ρ. This follows because the Ei form a basis for L(Hd), and the probabilities
p(i) = tr ρEi can be viewed as instances of the Hilbert-Schmidt inner product

(A,B) = tr A†B (8)

The quantities p(i) thus merely express the projections of the vector ρ onto
the basis vectors Ei. These projections completely fix the vector ρ.

One can see how to calculate ρ in terms of the vector ∣∣p⟫ in the following
way. Since the Ei form a basis, there must be some expansion

ρ =∑
j

αjEj (9)
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Figure 1: The planar surface represents the convex set of all probability
distributions over d2 outcomes - the probability simplex ∆d2 . The probability
distributions valid for representing the set of quantum states, however, is a
smaller convex set within the simplex - here depicted as an ellipsoid. In
actual fact, however, the convex shape is quite complex. The choice of a SIC
for defining the mapping makes the shape as simple as it can be with respect
to the natural geometry of the simplex.

where the αj are real numbers making up a vector ∣∣α⟫. Thus,

p(i) =∑
j

αjtr EiEJ (10)

If we let a matrix M be defined by entries

Mij = tr EiEj (11)

this just becomes
∣∣p⟫ =M ∣∣α⟫ (12)

Using the fact that M is invertible because the Ei are linearly independent,
we have finally

∣∣α⟫ =M−1∣∣p⟫ (13)

The most important point of this exercise is that with such a mapping es-
tablished, one has every right to think of a quantum state as a probability
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distribution full stop. In (Fuchs, 2002) it is argued that, conceptually, it is
in- deed nothing more. However, it is important to note that the mapping
ρ ↦ ∣∣p⟫, though injective, cannot be surjective. In other words, only some
probability distributions in the simplex are valid for representing quantum
states. A significant part of understanding quantum mechanics is under-
standing the range of shapes available under these mappings (Bengtsson,
2006).

Particularly, it is important to recognize that informationally complete mea-
surements aboundthey come in all forms and sizes. Hence there is no unique
representation of this variety for quantum states. A reasonable question thus
follows: What is the best measurement one can use for a mapping ρ↦ ∣∣p⟫?
One would not want to unduly burden the representation with extra terms
and calculations if one does not have to. For instance, it would be beautiful if
one could take the informationally complete measurement {Ei} so that M is
simply a diagonal matrix or even the identity matrix itself. Such an extreme
simplification, however, is not in the cards - it cannot be done.

Its failure does, however, point to an interesting direction worthy of devel-
opment: If one cannot make M diagonal, one might still want to make M
as close to the identity as possible. A convenient measure for how far M is
from the identity is the squared Frobenius distance:

F =∑
ij

(δij −Mij)
2

=∑
i

(1 − tr E2
i )

2
+∑
i≠j

(tr EiEj)
2

(14)

We can place a lower bound on this quantity with the help of a special
instance of the Schwarz inequality: If λr is any set of n nonnegative numbers,
then

∑
r

λ2r ≥
1

n
(∑
r

λr)

2

(15)

with equality if and only if λ1 = ..... = λn. Thus,

F ≥
1

d2
(∑

i

(1 − tr E2
i ))

2

+
1

d4 − d2
(∑
i≠j
tr EiEj)

2

(16)
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Equality holds in this if and only if there are constants m and n such that
tr E2

i =m for all i and EiEj = n for all i ≠ j. Since

d = tr I2 =∑
ij

tr EiEj =∑
i

tr E2
i +∑

i≠j
tr EiEj (17)

m and n must be related by

m + (d2 − 1)n =
1

d
(18)

On the other hand, with these conditions fulfilled the Ei must all have the
same trace. For,

tr Ek =∑
i

tr EkEi =m + (d2 − 1)n (19)

Consequently

tr Ek =
1

d
(20)

Now, how large can m be? Take a positive semi-definite matrix A with
tr A = 1 and eigenvalues λi. The λi ≤ 1, and clearly tr A2 ≤ tr A with equality
if and only if the largest λi is equal to 1. Hence, dEk will give the largest
allowed value m if

Ei =
1

d
Π1 where Πi = ∣ψi⟩ ⟨ψi∣ (21)

for some rank-1 projection operator Πi. If this obtains, n takes the form

n =
1

d2(d + 1)
(22)

In total we have shown that a measurement {Ei}, i = 1, ..., d2, 1ill achieve the
best lower bound for F if and only if

Ei =
1

d
Π1 (23)

with

trΠiΠj =
dδij + 1

d + 1
(24)

Significantly, it turns out that measurements of this variety also have the
property of being necessarily informationally complete (Caves, 1999). Let us
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show this for completeness: It is just a matter of proving that the Ei are
linearly independent. Suppose there are some numbers αi such that

∑
i

αiEi = 0 (25)

Taking the trace of this equation, we infer that ∑iαi = 0. Now multiply Eq.
(25) by an arbitrary Ek and take thew trace of the result. We get

1

d2
∑
i

αi
dδij + 1

d + 1
= 0 (26)

In other words

∑
i

αiδik = 0 (27)

which of course implies αk = 0. So the Ei are linearly independent.

These kinds of measurements are presently a hot topic of study in quantum
information theory, and have come to be known as “symmetric information-
ally complete” quantum measurements (Caves, 1999). As such, the measure-
ment {Ei}, the associated set of projection operators {Πi}, and even the set
{∣ψi⟩} are often called SIC (pronounced “seek”). This choice of pronuncia-
tion is meant to be in accord with the “pedant’s pronunciation” of the Latin
adverb sic (Bennett, 2008). Moreover, it alleviates any potential confusion
between the pluralized form SICs and the number six in conversation. We
will adopt that terminology here.

Here is an example of a SIC in dimension-2, expressed in terms of the Pauli
operators:

Π1 =
1

2
(I +

1
√

3
(σx + σy + σz))

Π2 =
1

2
(I +

1
√

3
(σx − σy − σz))

Π3 =
1

2
(I +

1
√

3
(−σx − σy + σz))

Π4 =
1

2
(I +

1
√

3
(−σx + σy − σz)) (28)
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And here is an example of a SIC in dimension-3 (Tabia, 2012). Taking
ω = e2πi/3 to be a third-root of unity and ω̄ to be its complex conjugate, let

∣ψ1⟩ =
⎛
⎜
⎝

0
1
−1

⎞
⎟
⎠
, ∣ψ2⟩ =

⎛
⎜
⎝

−1
0
1

⎞
⎟
⎠
, ∣ψ3⟩ =

⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣ψ4⟩ =
⎛
⎜
⎝

0
ω
−ω̄

⎞
⎟
⎠
, ∣ψ5⟩ =

⎛
⎜
⎝

−1
0
ω̄

⎞
⎟
⎠
, ∣ψ6⟩ =

⎛
⎜
⎝

1
−ω
0

⎞
⎟
⎠

∣ψ7⟩ =
⎛
⎜
⎝

0
ω̄
−ω

⎞
⎟
⎠
, ∣ψ8⟩ =

⎛
⎜
⎝

−1
0
ω

⎞
⎟
⎠
, ∣ψ9⟩ =

⎛
⎜
⎝

1
−ω̄
0

⎞
⎟
⎠

(29)

be defined up to normalization. One can check by quick inspection that (af-
ter normalization) these vectors do indeed satisfy Eq. (24).

Do SICs exist for every finite dimension d? Despite many efforts in the last 14
years - see (Appleby, 2005, 2007; Caves, 1999; Fuchs, 2004b; Renes, 2004; Za-
uner, 1999) and particularly the extensive reference lists in (Scott, 2010) and
(Appleby, 2012) - no one presently knows. However, there is a strong feeling
in the community that they do, as analytical proofs have been obtained for
all dimensions d = 2−16,19,24,28,31,35,37,43, and 48[Dimensions 2-5 were
published in (Zauner, 1999). Dimensions 6-16, 24, 28, 35, and 48 are due
to M. Grassl in various publications; see (Scott, 2010). Dimensions 7, 19,
31, 37, and 43 are due to D. M. Appleby, with the latter three as yet un-
published (Appleby, 2012)], and within a numerical precision of 10−38, they
have been observed by computational means (Scott, 2010) in all dimensions
d = 2 − 67. To lesser numerical precision E. Schnetter has also found SICs in
d = 68 − 73,75 − 81,83,84,89,93,100 (Schnetter, 2012).

The SIC structure is ideal for revealing the essence of the Born Rule as an
addition to Dutch-book coherence. From here out, we will proceed as if SICs
do indeed always exist. The foundational significance of the following tech-
nical development rests on this mathematical conjecture.

Let us spell out in some detail what the set of quantum states written as SIC
probability vectors ∣∣p⟫ looks like. Perhaps the most remarkable thing about
a SIC is the level of simplicity it lends to Eq. (13). On top of the theoretical
justification that SICs are as near as possible to an orthonormal basis, from
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Eqs. (6), (23) and (24) one gets the simple expression (Caves, 2002b; Fuchs,
2004b)

ρ =∑
i

((d + 1)p(i) −
1

d
)Πi (30)

In other words, effectively all explicit reference to the matrix M−1 disappears
from the expression. The components (d + 1)p(i) − 1

d are obtained by a
universal scalar readjustment from the probabilities p(i). This will have
important implications.

Still, one cannot place just any probability distribution p(i) into Eq. (30) and
expect to obtain a positive semi-definite ρ. Only some probability vectors
∣∣p⟫ are valid ones. Which ones are they? For instance, p(i) ≤ 1

d must be the
case, as dictated by Eqs. (6) and (20), and this already restricts the class of
valid probability assignments. But there are more requirements than that.

In preparation for characterizing the set of valid probability vectors ∣∣p⟫, let
us note that since the Πk form a basis on the space of operators, we can
define operator multiplication in terms of them. This is done by introducing
the so-called structure coefficients αijk for the algebra

ΠiΠj =∑
k

αijkΠk (31)

A couple of properties follow immediately. Taking the trace of both sides of
Eq. (31), one has

∑
k

αijk =
dδij + 1

d + 1
(32)

Using this, one gets straightforwardly that

tr(ΠiΠjΠk) =
1

d + 1
(dαijk +

dδij + 1

d + 1
) (33)

In other words,

αijk =
1

d
((d + 1)tr(ΠiΠjΠk) −

dδij + 1

d + 1
) (34)

For the analogue of Eq. (32) but with summation over the first or second
index, one gets,

∑
i

αijk = dδjk and ∑
j

αijk = dδik (35)
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With these expressions in hand, one sees a very direct connection between
the structure of the algebra of quantum states when written in operator
language and the structure of quantum states when written in probability-
vector language. For, the complete convex set of quantum states is fixed by
the set of its extreme points, i.e., the pure quantum states - rank-1 projection
operators. To characterize this set algebraically, one method is to note that
these are the only hermitian operators satisfying ρ2 = ρ. Using Eq. (30), we
find that a quantum state ∣∣p⟫ is pure if and only if its components satisfy
these d2 simultaneous quadratic equations:

p(k) =
1

3
(d + 1)∑

ij

αijkp(i)p(j) +
2

3d(d + 1)
(36)

Another way to characterize this algebraic variety - an algebraic variety is
defined as the set of solutions of a system of polynomial equations - is to
make use of a theorem of Flammia, Jones, and Linden (Flammia, 2004;
Jones, 2005): A hermitian operator A is a rank-one projection operator if
and only if tr A2 = tr A3 = 1. The theorem is nearly trivial to prove once
one’s attention is drawn to it: Since A it has a real eigenvalue spectrum λi.
From the first condition, one has that ∑i λ

2
i = 1; from the second, ∑i λ

3
i = 1.

The first condition, however, implies that ∣λi∣ ≤ 1 for all i. Consequently
1 − λi ≥ 0 for all i. Now taking the difference of the two conditions, one sees
that ∑i λ

2
i (1−λi) = 0. In order for this to obtain, it must be the case that λi

is always 0 or 1 exclusively. That there is only one nonzero eigenvalue then
follows from using the first condition again. Thus the theorem is proved.
However, it seems not to have been widely recognized previous to 2004-
2005. So in fact our d2 simultaneous quadratic equations reduce to just two
equations instead, one a quadratic and one a cubic:

∑
i

p(i)2 =
2

d(d + 1)
(37)

and

∑
i

αijkp(i)p(j)p(k) =
4

d(d + 1)2
(38)

Note that Eqs. (36) and (38) are complex equations, but one could sym-
metrize them and make them purely real if one wanted to.

There are also some advantages to working out these equations more explic-
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itly in terms of the completely symmetric 3-index tensor

cijk = Re tr(ΠiΠjΠk) (39)

In terms of these quantities, the analogues of Eqs. (36) and (38) become

p(k) =
(d + 1)2

3d
∑
ij

cijkp(i)p(j) −
1

3d
(40)

and

∑
i

cijkp(i)p(j)p(k) =
d + 7

(d + 1)3
(41)

respectively. The reason for noting this comes from the simplicity of the d2

matrices Ck with matrix entries (Ck)ij = cijk from Eq. (39), which is explored
in great detail in (Appleby, 2011). To give a flavor of the results, we note for
instance that, for each value of k, Ck turns out to have the form (Appleby,
2011)

Ck = ∣∣mk⟫⟪mk∣∣ +
d

2(d + 1)
Qk (42)

where the k-th vector ∣∣mk⟫ is defined by

∣∣mk⟫ = (
1

d + 1
, ....,1, .....,

1

d + 1
)
T

(43)

and Qk is a (2d−2)-dimensional projection operator on the real vector space
embedding the probability simplex ∆d2 . Furthermore, using this, one obtains
a useful expression for the pure states; they are probabilities satisfying a
simple class of quadratic equations

p(k) = dp(k)2 +
1

2
(d + 1)⟪p∣∣Qk∣∣p⟫ (44)

With Eqs. (37), (40), and (41) we have now discussed the extreme points of
the convex set of quantum states - the pure states. The remainder of the set
of quantum states is then constructed by taking convex combinations of the
pure states. This is an implicit expression of quantum-state space. But SICs
can also help give an explicit parameterization of the convex set.

We can see this by starting not with density operators, but with “square
roots” of density operators. This is useful because a matrix ρ is positive
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semi-definite if and only if it can be written as ρ = B2 for some hermitian B.
Thus, let

B =∑
i

biΠi (45)

with bi a set of real numbers. Then,

ρ =∑
k

(∑
ij

bibjαijk)Πk (46)

will represent a density operator so long as tr ρ = 1. This condition requires
simply that

(∑
i

bi)

2

+ d∑
i

b2i = d + 1 (47)

so that the vectors (b1, ......, bd2) lie on the surface of an ellipsoid.

Putting these ingredients together with Eq. (6), we have the following pa-
rameterization of valid probability vectors ∣∣p⟫:

p(k) =
1

d
∑
ij

cijkbibj (48)

Here the cink are the triple-product constants defined in Eq. (39) and the bi
satisfy the constraint (47).

Finally, let us note what the Hilbert-Schmidt inner product of two quantum
states looks like in SIC terms. If a quantum state ρ is mapped to ∣∣p⟫ via a
SIC, and a quantum state σ is mapped to ∣∣q⟫, then

tr ρσ = d(d + 1)∑
i

p(i)q(i) − 1

= d(d + 1)⟪p∣∣q⟫ − 1 (49)

Notice a particular consequence of this: Since tr ρσ ≥ 0, the distributions
associated with distinct quantum states can never be too nonoverlapping:

⟪p∣∣q⟫ ≥
1

d(d + 1)
(50)

With this development we have given a broad outline of the shape of quantum-
state space in SIC terms. We do this because that shape is our target. Par-
ticularly, we are obliged to answer the following question: If one takes the
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view that quantum states are nothing more than probability distributions
with the restrictions (48) and (47), what could motivate that restriction?
That is, what could motivate it other than knowing the usual for- malism for
quantum mechanics? The answer has to do with rewriting the Born Rule in
terms of SICs, which we will do in Section 4.

3.1 Aside on Unitarity

Let us take a moment to move beyond statics and rewrite quantum dynamics
in SIC terms: We do this be- cause the result will have a striking resemblance
to the Born Rule itself, once developed in the next section.

Suppose we start with a density operator ρ and let it evolve under unitary
time evolution to a new density operator σ = UρU †. If ρ has a representation
p(i) with respect to a certain given SIC, σ will have a SIC representation as
well - ket us call it q(j). We use the different index j (contrasting with i) to
help indicate that we are talking about the quantum system at a later time
than the original.

What is the form of the mapping that takes ∣∣p⟫ to ∣∣q⟫? It is simple enough
to find with the help of Eqs. (23) and (30):

q(j) =
1

d
tr σΠj

=
1

d
∑
i

((d + 1)p(i) −
1

d
) tr(UΠiU

†Πj) (51)

If we now define

rU(j∣i) =
1

d
tr(UΠiU

†Πj) (52)

and remember, e.g., Eq. (21), we have that

0 ≤ rU(j∣i) ≤ 1 (53)

and

∑
j

rU(j∣i) = 1 ∀i and ∑
i

rU(j∣i) = 1 ∀j (54)

In other words, the d2 × d2 matrix [rU(j∣i)] is a doubly stochastic matrix
(Horn, 1985).
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Most importantly, one has

q(j) = (d + 1)
d2

∑
i=1
p(i)rU(j∣i) −

1

d
(55)

Without the (d + 1) factor and the 1
d term, this equation would represent

classical stochastic evolution. Unitary time evolution in a SIC representation
is thus formally close to classical stochastic evolution. As we shall shortly
see, this teaches us something about unitarity and its connection to the Born
Rule itself.

4 Expressing the Born Rule in Terms of SICs

In this section we come to the heart of the paper: We rewrite the Born
Rule in terms of SICs. It is easy enough; we just use the expansion in
Eq. (30). Let us first do it for an arbitrary von Neumann measurement -
that is, any measurement specified by a set of rank-1 projection operators
Pj = ∣j⟩ ⟨j∣ , j = 1, ...., d. Expressing the Born Rule the usual way, we obtain
these probabilities for the measurement outcomes:

q(j) = tr ρPj (56)

Then, by defining
r(j∣i) = trΠiPj (57)

one sees that the Born Rule becomes

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) − 1 (58)

Let us take a moment to seek out a good interpretation of this equation.
It should be viewed as a direct expression of the considerations laid out in
Section 2. For imagine that before performing the Pj measurement - we
will call it the “measurement on the ground” - we were to perform a SIC
measurement Πi. We will call the latter the “measurement in the sky”.
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Figure 2: The diagram above expresses the basic conceptual apparatus of
this paper. The measurement on the ground, with outcomes j = 1, ...,m, is
some potential measurement that could be performed in the laboratory - i.e.,
one that could be factualized. The measurement in the sky, on the other
hand, with outcomes i = 1, ..., n, is a fixed measurement one can contemplate
independently. The probability distributions p(i) and r(j∣i) represent how
an agent would gamble if a conditional lottery based on the measurement in
the sky were operative. The probability distribution q(j) represents instead
how the agent would gamble on outcomes of the ground measurement if the
measurement in the sky and the associated conditional lottery were nullified
- i.e., they were to never take place at all. In the quantum case, the mea-
surement in the sky is a SIC with n = d2 outcomes; the measurement on the
ground is any POVM. In pure Bayesian reasoning, there is no necessity that
q(j) be related to p(i) and r(j∣i) at all. In quantum mechanics, however,
there is a very specific relation, as we will see later, which contains the sum
content of the Born Rule.

Starting with an initial quantum state ρ, we would assign a probability dis-
tribution p(i) to the outcomes of the SIC measurement. In order to be able
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to say something about probabilities conditional on a particular outcome
of the SIC measurement, we need to specify the post-measurement quantum
state for that outcome. Here we will adopt the standard Lüders Rule (Busch,
1995, 2009), that ρ transforms to Πi when outcome i occurs. The conditional
probability for getting j in the subsequent von Neumann measurement on
the ground, consequent upon i, is then precisely r(j∣i) defined in Eq. (57).
With these assignments, Dutch-book coherence demands an assignment s(j)
for the outcomes on the ground that satisfies

s(j) =
d2

∑
i=1
p(i)r(j∣i) (59)

i.e., a probability that comes about via the Law of Total Probability, Eq.
(3).

But now imagine the measurement in the sky nullifiedi.e., imagine it does
not occur after all - and that the quantum system goes directly to the mea-
surement device on the ground. Quantum mechanics tells us to make the
probability assignment q(j) given in Eq. (58) instead. So,

q(j) = (d + 1)s(j) − 1 (60)

That q(j) ≠ s(j) holds, regardless of the assignment of s(j), is a formal
expression of the idea that the “unperformed SIC had no outcomes”, as
explained in Sec. 2.1. But Eq. (60) tells us still more detailed information
than this. It expresses a kind of “empirically extended coherence” - not
implied by Dutch-book coherence alone, but formally similar to the kind of
relation one gets from Dutch-book coherence. It contains a surprising amount
of information about the structure of quantum mechanics.

To support this, let us try to glean some insight from Eq. (60). The most
obvious thing one can note is that ∣∣s⟫ cannot be too sharp a probability
distribution. For otherwise q(j) will violate the bounds 0 ≤ q(j) ≤ 1 set by
Dutch-book coherence. Particularly,

1

d + 1
≤ s(j) ≤

2

d + 1
(61)

This in turn will have implications for the range of values possible for p(i)
and r(j∣i). Indeed if either of these distributions become too sharp (in the
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latter case, for too many values of i), again the bounds will be violated.
This suggests that an essential part of quantum-state space structure, as
expressed by its extreme points satisfying Eqs. (37) and (38), arises from the
very requirement that q(j) be a proper probability distribution. In the next
Section, we will explore this question in greater depth.

First though, we must note the most general form of the Born Rule, when
the measurement on the ground is not restricted to being of the simple von
Neumann variety. So, let

q(j) = tr ρFj (62)

and
r(j∣i) = trΠiFj (63)

for some general POVM {Fj} on the ground, with any number of outcomes,
j = 1, ....,m. Then the Born Rule becomes

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) (64)

As stated, this is the most general form of the Quantum Law of Total Prob-
ability. It has two terms, a term comprising the classical Law of Total Prob-
ability, and a term dependent only upon the sum of the conditional proba-
bilities.

When the measurement on the ground is itself another SIC (any SIC) it
reduces to

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d
(65)

Notice the formal resemblance between this and Eq. (55) expressing unitary
time evolution.

4.1 Why “Empirically Extended Coherence” Instead
of Objective Quantum States?

What we are suggesting is that perhaps Eq. (64) should be taken as one
of the basic axioms of quantum theory, since it provides a particularly clear
way of thinking of the Born Rule as an addition to Dutch-book coherence.
This addition is empirically based and gives extra normative rules, beyond
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the standard rules of probability theory, to guide the agent’s behavior when
he interacts with the physical world.

But, one may well ask, what is our problem with the standard way of ex-
pressing the Born Rule in the first place? How is introducing an addition
to Dutch-book coherence conceptually any more palatable than introducing
objective quantum states or objective probability distributions? For, if the
program is successful, then the demand that q(j) be a proper probability
distribution will place necessary restrictions on p(i) and r(j∣i). This - a
skeptic would say - is the very sign that one is dealing with objective (or
agent-independent) probabilities in the first place. Why would a personal-
ist Bayesian accept any a priori restrictions on his probability assignments?
And particularly, restrictions supposedly of empirical origin?

The reply is this. It is true that through an axiom like Eq. (64) one gets
a restriction on the ranges of the various probabilities one can contemplate
holding. But that restriction in no way diminishes the functional role of
prior beliefs in the makings of an agent’s particular assignments p(i) and
r(j∣i). That is, this addition to Dutch-book coherence preserves the points
expressed in the quote by Keynes in Section 2 in a way that objective chance
cannot.

Take the usual notion of objective chance, as given operational meaning
through David Lewis’ “Principal Principle” (Lewis, 1986a,b). If an event A
has objective chance ch(A) = x, then the subjective, personalist probability
an agent (any agent) should ascribe to A on the condition of knowing the
chance proposition is

Prob (A∣“ch(A) = x” ∧E) = x (66)

where E is any “admissible” proposition. There is some debate about what
precisely constitutes an admissible proposition, but an example of a propo-
sition universally accepted to be compatible in spite of these interpretive
details is this:

E = “All my experience causes me to believe A with probability
75%”.

That is, upon knowing an objective chance, all prior beliefs should be overrid-
den. Regardless of the agent’s firmly held belief about A, that belief becomes
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irrelevant once he is apprised of the objective chance.

When it comes to quantum mechanics, philosophers of science who find some-
thing digestible in Lewis’ idea, often view the Born Rule itself as a healthy
serving of Principal Principle. Only, it has the quantum state ρ filling the
role of chance. That is, for any agent contemplating performing a measure-
ment {Pj}, his subjective, personal probabilities for the outcomes j should
condition on knowledge of the quantum state just as one conditions with the
Principal Principle:

Prob(j∣ρ ∧E) = tr ρPj (67)

where E is any “admissible” proposition. Beliefs are beliefs, but quantum
states are something else: They are the facts of nature that power a quantum
version of the Principal Principle. In other words, in this context one has
conceptually

ρ→ “ch(j) = tr ρPj” (68)

But the Quantum-Bayesian view cannot sanction this. For, the essential
point for a Quantum Bayesian is that there is no such thing as the quantum
state. There are potentially as many states for a given quantum system as
there are agents. And that point is not diminished by accepting the addi-
tion to Dutch-book coherence described in this paper. Indeed, it is just as
with standard (non- quantum) probabilities, where their subjectivity is not
diminished by normatively satisfying standard Dutch-book coherence.

The most telling reason for this arises directly from quantum statistical prac-
tice. The way one comes to a quantum-state assignment is ineliminably de-
pendent on one’s priors (Caves, 2007; Fuchs, 2002, 2009). Quantum states
are not god-given, but have to be fought for via measurement, updating, cal-
ibration, computation, and any number of related activities. The only place
quantum states are “given” outright - that is to say, the model on which much
of the notion of an objective quantum state arises from in the first place - is
in a textbook homework problem. For instance, a textbook exercise might
read, “Assume a hydrogen atom in its ground state. Calculate ......”. But
outside the textbook it is not difficult to come up with examples where two
agents looking at the same data, differing only in their prior beliefs, will
asymptotically update to distinct (even orthogonal) pure quantum-state as-
signments for the same system (Fuchs, 2009). Here is a simple if contrived
example. Consider a two-qubit system for which two agents have distinct
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quantum-state assignments ρ+ and ρ−, defined by ρ± = 1
2(∣0⟩ ⟨0∣

⊗2
+ ∣±⟩ ⟨±∣

⊗2
)

where ∣±⟩ = 2−1/2(∣0⟩± ∣1⟩). These state assignments are “compatible” in sev-
eral of the senses of (Brun, 2002; Caves, 2002d), yet suppose the first qubit
is measured in the basis {∣0⟩ , ∣1⟩} and outcome 1 is found. The two agents’
post-measurement states for the second qubit are ∣+⟩ and ∣−⟩, respectively.
See (Fuchs, 2009) for a more thorough discussion. Thus the basis for one’s
particular quantum-state assignment is always outside the formal apparatus
of quantum mechanics. Nor, does it help to repeat over and over, as one
commonly hears coming from the philosophy-of-physics community, “quan-
tum probabilities are specified by physical law”. The simple reply is, “No,
they are not”. The phrase has no meaning once one has taken on board that
quantum states are born in probabilistic considerations, rather than being
the parents of them, as laboratory practice clearly shows (Kaznady, 2009;
Paris, 2004).

This is the key difference between the set of ideas be- ing developed here and
the position of the objectivists: added relations for probabilities, yes, but no
one of those probabilities can be objective in the sense of being any less a
pure function of the agent. A way to put it more prosaically is that these
normative considerations may narrow the agent from the full probability sim-
plex to the set of quantum states, but beyond that, the formal apparatus of
quantum theory gives him no guidance on which quantum state he should
choose. Instead, the role of a normative reading of the Born Rule is as it is
with usual Dutch book. Here is the way L. J. Savage put it rather eloquently
(Savage, 1954, p. 57).

According to the personalistic view, the role of the mathemati-
cal theory of probability is to enable the person using it to detect
inconsistencies in his own real or envisaged behavior. It is also un-
derstood that, having detected an inconsistency, he will remove it.
An inconsistency is typically removable in many different ways,
among which the theory gives no guidance for choosing.

If an agent does not satisfy Eq. (64) with his personal probability assign-
ments, then he is not recognizing properly the change of conditions (or per-
haps we could say ‘context’ (we add this alternative formulation so as to
place the discussion within the context of various other analyses of the idea
of ‘contextuality’ (Appleby, 2005c; Ferrie, 2008, 2009; Grangier, 2002, 2005;
Mermin, 1993; Spekkens, 2005, 2008). that a potential SIC measurement
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would bring about. The theory gives no guidance for which of his probabil-
ities should be adjusted or how, but it does say that they must be adjusted
or “undesirable consequences” will become unavoidable.

Expanding on this point, Bernardo and Smith put it this way in (Bernardo,
1994, p. 4):

Bayesian Statistics offers a rationalist theory of personalistic be-
liefs in contexts of uncertainty, with the central aim of charac-
terizing how an individual should act in order to avoid certain
kinds of undesirable behavioral in- consistencies. . . . The
goal, in effect, is to establish rules and procedures for individuals
concerned with disciplined uncertainty accounting. The theory is
not descriptive, in the sense of claiming to model actual behavior.
Rather, it is prescriptive, in the sense of saying ‘if you wish to
avoid the possibility of these undesirable consequences you must
act in the following way’.

So much, indeed, we imagine for the full formal structure of quantum me-
chanics (including dynamics, tensor- product structure, etc.) - that it is all
or nearly all an addition to Dutch-book coherence. And specifying those
“undesirable consequences” in terms independent of the present considera-
tions is a significant part of the project of specifying the ontology underlying
the Quantum- Bayesian position. But that is a goal we have to leave for
future work. Let us now explore the consequences of adopting Eq. (64) as a
basic statement, acting as if we do not yet know the underlying Hilbert-space
structure that gave rise to it.

5 Deriving Quantum-State Space from “Em-

pirically Extended Coherence”

Let us see how far we can go toward deriving various general features of
quantum-state space from the conceptual apparatus portrayed in Figure 2.
Remember that we are representing quantum states by probability vectors
∣∣p⟫ lying in the probability simplex ∆d2 . The set of pure states is given
by the solutions of either Eq. (40) or Eqs. (37) and (38), and can thus be
thought of as an algebraic variety within ∆d2 (Sullivant, 2006). The set of all
quantum states, pure or mixed, is the convex hull of the set of pure states,
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i.e., the set of all convex combinations of vectors ∣∣p⟫ representing pure states.
We want to explore how much of this structure can be recovered from the
considerations summarized in Figure 2. We will have to add at least three
other assumptions on the nature of quantum measurement, but at first, let
us try to forget as much about quantum mechanics as we can.

Namely, start with Figure 2 but forget about quantum mechanics and forget
about SICs. Simply visualize an imaginary experiment in the sky S, sup-
plemented with various real experiments we might perform on the ground
G. We postulate that the probabilities we should ascribe for the outcomes
of G, are determined by the probabilities we would ascribe to the imagi-
nary outcomes in the sky and the conditional probabilities for the outcomes
of G consequent upon them, were the measurement in the sky factualized.
Particularly we take Eq. (64) as a postulate:

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d
(69)

We call this postulate the urgleichung (German for “primal equation”)
to emphasize its primary status to all our thinking. As before, p(i) repre-
sents the probabilities in the sky and q(j) represents the probabilities on the
ground. The index i is assumed to range from 1 to d2, for some fixed number
d. The range of j will not be fixed, but in any case considered will be de-
noted as running from 1 to m. (For example, for some cases m might be d2,
for some cases it might be d, but it need be neither and may be something
else entirely - it will depend upon which experiment we are talking about for
G). We write r(j∣i) to represent the conditional probability for obtaining j
on the ground, given that the experiment in the sky was actually performed
and resulted in outcome i. When we want to suppress components, we will
write vectors ∣∣p⟫ and ∣∣q⟫, and write R for the matrix with entries r(j∣i). By
definition, R is a stochastic matrix, i.e., ∑j r(j∣i) = 1, but not necessarily a
doubly stochastic matrix, i.e., ∑i r(j∣i) = 1 does not necessarily hold (Horn,
1985, pp. 526-528).

One of the main features we will require, of course, is that calculated by Eq.
(69), ∣∣q⟫ must satisfy 0 ≤ q(j) ≤ 1 for all j. Thus, let us also honor the
special inequality

0 ≤ (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) ≤ 1 (70)
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with a name: the fundamental inequality.

To proceed, let us define two sets P and R, the first consisting of priors
for the sky ∣∣p⟫, and the second consisting of stochastic matrices R. The
matrices R could also be regarded as part of the agent’s prior, but since in
this discussion we keep R fixed once the measurement on the ground is fixed,
we reserve the term “prior” for members of the set P. We shall sometimes
call P our state space. and its elements states. We will say that P and R are
consistent (with respect to the fundamental inequality) if

(1) for any fixed R ∈ R, there is no ∣∣p⟫ ∈ P that does not satisfy the
fundamental inequality, and

(2) for any fixed ∣∣p⟫ ∈ P, there is no R ∈ R that does not satisfy the
fundamental inequality.

With respect to consistent sets P and R, for convenient terminology, we call
a general ∣∣p⟩ ∈ ∆d2 valid if it is within the state space P; if it is not within
P, we call it invalid.

What we want to pin down are the properties of P and R under the assump-
tion that they are maximal. By this we mean that for any ∣∣p′⟫ ∉ P, if we
were to attempt to create a new state space P ′ by adding ∣∣p′⟫ to the original
P, P ′ and R would not be consistent. Similarly, if we were to attempt to
add a new point R′ to R. In other words, when P and R are maximal, they
are full up with respect to any further additions. In summary,

1. P and R are said to be consistent if all pairs (∣∣p⟫,R) ∈ P ×R obey the
fundamental inequality.

2. P and R are said to be maximal whenever P ′ ⊆ P and R′ ⊆ R imply
P ′ = P and R′ =R for any consistent P ′ and R′.

The key idea behind the demand for maximality is that we want the urgle-
ichung to be as least exclusionary as possible in limiting an agent’s probability
assignments. There is, of course, no guarantee without further assumptions
there will be a unique maximal P and R consistent with the fundamental
inequality, or even whether there will be a unique set of them up to rotations
or other kinds of transformations, but we can certainly say some things.

One important result follows immediately: If P and R are consistent and
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maximal, both sets must be convex. For instance, if ∣∣p⟫ and ∣∣p′⟫ satisfy (70)
for all R ∈ R it is clear that, for any x ∈ [0,1], ∣∣p′′⟫ = x∣∣p⟫ + (1 − x)∣∣p′⟫ will
as well. Thus, if ∣∣p′′⟫ were not in P, the set would not have been maximal
to begin with. It is important to recognize that the considerations leading
to the convexity of the state space here are distinct from the arguments one
finds in the “convex sets” and “operational” approaches to quantum theory.
See for instance (Busch, 1995; Holevo, 1982) and more recently the BBLW
school starting in (Barnum, 2006) (and several publications thereafter), as
well as the work of Hardy (Hardy, 2001). There the emphasis is on the idea
that a state of ignorance about a finer preparation is a preparation itself.
The present argument even differs from some of our own earlier Bayesian
considerations (where care was taken not to view preparation’ as an objec-
tive matter of fact, independent of prior beliefs, as talk of preparation would
seem to imply) (Fuchs, 2002; Schack, 2003). Here instead, the emphasis is
on the closure of the fundamental inequality, i.e., maximal P and R. Fur-
thermore, maximality and the boundedness of Eq. (70) ensures that P and
R are closed sets, thus convex sets with extreme points (Appleby, 2011).

Now, is there any obvious connection between P and R? Let us make the
innocuous assumption that one can be completely ignorant of the outcomes
in the sky:

Assumption 1:

∣∣p⟫ = (
1

d2
,

1

d2
,⋯,

1

d2
)
T

∈ P (71)

Certainly for any real-world experiment, one can always be maximally igno-
rant of which of its outcomes will occur! Suppose now that the experiment in
the sky really is performed as well as the experiment on the ground. Before
either experiment, the agent is ignorant of both the outcome i in the sky and
the outcome j on the ground. Using Bayes’ rule, he can find the conditional
probability for i given j, which has the form of a posterior probability,

Prob(i∣j) =
r(j∣i)

∑k r(j∣k)
(72)

Let us now make a less innocuous assumption.

Assumption 2: Principle of Reciprocity: Posteriors from Maximal Igno-
rance Are Priors. For any R ∈ R, a posterior probability Prob(i∣j) as in Eq.
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(72) is a valid prior p(i) for the outcomes of the measurement in the sky.
Moreover, for each valid p(i), there exists some R ∈R and some j such that
p(i) = Prob(i∣j) as in Eq. (72).

Quantum mechanics certainly has this property. For, suppose a completely
mixed state for our quantum system and a POVM G = {Gj} measured on the
ground. Upon noting an outcome j on the ground, the agent will use Eqs.
(63) and (72) to infer

Prob(i∣j) =
trΠiGj

dtrGj

(73)

Defining

ρj =
Gj

trGj

(74)

this says that

Prob(i∣j) =
1

d
tr ρjΠi (75)

In other words, Prob(i∣j) is itself a SIC-representation of a quantum state.
Moreover, ρj can be any quantum state whatsoever, simply by adjusting
which POVM G is under consideration.

5.1 Basis Distributions

Since we are free to contemplate any measurement on the ground, let us
consider the case where the ground measurement is set to be the same as
that of the sky. We will denote r(j∣i) by rS(j∣i) in this special case. Re-
membering that the probabilities on the ground, q(j), refer to the case that
the measurement in the sky remains counterfactual, we must then have that
p(j) = q(j) for any valid ∣∣p⟫, or, using the urgleichung,

p(j) = (d + 1)∑
i

p(i)rS(j∣i) −
1

d
∑
i

rS(j∣i) (76)

Take the case where p(i) = 1
d2 specifically. Substituting for p(i) in Eq. (76),

we find that the rS(j∣i) must satisfy

∑
i

rS(j∣i) = 1 (77)
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Therefore, when going back to more general priors ∣∣p⟫, one has in fact the
simpler relation

p(j) = (d + 1)∑
i

p(i)rS(j∣i) −
1

d
(78)

Introducing an appropriately sized matrix M of the form

M =

⎛
⎜
⎜
⎜
⎝

(d + 1) − 1
d −1

d ⋯ −1
d

−1
d (d + 1) − 1

d ⋯ −1
d

⋮ ⋮ ⋱ ⋮

−1
d −1

d ⋯ (d + 1) − 1
d

⎞
⎟
⎟
⎟
⎠

(79)

we can rewrite Eq. (78) in vector form,

MRS ∣∣p⟫ = ∣∣p⟫ (80)

At this point, we pause for a minor assumption on our state space:

Assumption 3: The elements ∣∣p⟫ ∈ P span the full simplex ∆d2.

This is a very natural assumption: For if P did not span the simplex, one
would be justified in simply using a smaller simplex for all considerations.

With Assumption 3, the only way Eq. (80) can be satisfied is if

MRS = I (81)

Since M is a circulant matrix, its inverse is a circulant matrix(where each
row vector is rotated one element to the right relative to the preceding row
vector) as well, and one can easily work out that,

rS(j∣i) =
1

d + 1
(δij +

1

d
) (82)

It follows by the Principle of Reciprocity (our Assumption 2) then that among
the distributions in P, along with the uniform distribution, there are at least
d2 other ones, namely:

∣∣ek⟫ = (
1

d(d + 1)
, . . . ,

1

d
,⋯,

1

d(d + 1)
)

T

(83)

with a 1
d in the kth slots and 1

d(d+1) in all other slots. We shall call these d2

special distributions, appropriately enough, the basis distributions.
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Notice that, in the special case of quantum mechanics, the basis distributions
are just the SIC states themselves, now justified in a more general setting.
Also, like the SIC states, we will have

∑
i

ek(i)
2 =

2

d(d + 1)
∀k (84)

in accordance with Eq. (37).

5.2 A Bloch Sphere

Consider a class of measurements for the ground that have a property we shall
call in-step unpredictability, ISU. The property is this: Whenever one assigns
a uniform distribution for the measurement in the sky, one also as- signs a
uniform distribution for the measurement on the ground. This is meant to
express the idea that the measurement on the ground has no in-built bias with
respect to one’s expectations of the sky: Complete ignorance of the outcomes
of one translates into complete ignorance of the outcomes of the other. (In
the full-blown quantum mechanical setting, this corresponds to a POVM
{Gj} such that trGj is a constant value - von Neumann measurements with
d outcomes being one special case of this.)

Denote the r(j∣i) and corresponding matrix R in this special case by rISU(j∣i)
and RISU , respectively, and suppose the measurement being spoken of has
m outcomes. Our demand is that

1

m
=

(d + 1)

d2
∑
i

rISU(j∣i) −
1

d
∑
i

rISU(j∣i) (85)

To meet this, we must have

∑
i

rISU(j∣i) =
d2

m
(86)

and the urgleichung becomes

q(j) = (d + 1)∑
i

p(i)rISU(j∣i) −
d

m
(87)

Suppose now that a prior ∣∣s⟫ for the sky happens to arise in accordance with
Eq. (72) for one of these ISU measurements. That is,

s(i) =
rISU(j∣i)

∑k rISU(j∣k)
(88)
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for some RISU and some j. The Eq. (87) tells us that for any ∣∣p⟫ ∈ P, we
must have

0 ≤
d2

m
(d + 1)∑

i

p(i)s(i) −
d

m
≤ 1 (89)

In other words, for any ∣∣s⟫ of our specified variety and any ∣∣p⟫ ∈ P, we must
have

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
d +m

d2(d + 1)
(90)

Think particularly on the case where ∣∣s⟫ = ∣∣p⟫. Then we must have

∑
i

p(i)2 ≤
d +m

d2(d + 1)
(91)

Note how this compares to Eq. (84).

Now, suppose there are ISU measurements (distinct from simply bringing the
sky measurement down to the ground) that have the basis distributions ∣∣ek⟫
as their posteriors in the way of Assumption 2, the Principle of Reciprocity.
If this is so, then note that according to Eq. (84) the bound in Eq. (91) will
be violated unless m ≥ d. Moreover, it will not be tight for the basis states
unless m = d precisely.

Thinking of a basis distribution as the prototype of an extreme-point state
(for after all, they give the most predictability possible for the measurement
in the sky), this motivates the next assumption - this one being significantly
stronger than the previous two:

Assumption 4: Every extreme point ∣∣p⟫ ∈ P arises in the manner of Eq.
(88) as the posterior of an ISU measurement with m = d and achieves equality
in Eq. (91).

Thus, for any two extreme points ∣∣p⟫ and ∣∣s⟫, we are assuming

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
2

d(d + 1)
(92)

with equality in the right-hand side when ∣∣p⟫ = ∣∣s⟫. By the way, it should
be noted that this inequality establishes that if P at least contains the actual
quantum-state space, it can contain no more than that. That is, the full set
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of quantum states is, in fact, a maximal set. For suppose a SIC exists, yet
∣∣s⟫ corresponds to some non-positive-semidefinite operator via the mapping
in Eq. (30). Then there will be some ∣∣s⟫ ∈ P corresponding to a pure
quantum state such that the left-hand side of Eq. (92) is violated. This
follows immediately from the definition of positive semi-definiteness and the
expression for Hilbert-Schmidt inner products in Eq. (49).

Thus, the extreme points of P live on a sphere

∑
i

p(i)2 =
2

d(d + 1)
(93)

Further trivial aspects of quantum-state space follow immediately from the
requirement of Eq. (92) for any two extreme points. For instance, since the
basis distributions are among the set of valid states, for any other valid state
∣∣p⟫ no component in it can be too large. This follows because

⟪p∣∣ek⟫ =
1

d(d + 1)
+

1

d + 1
p(k) (94)

The right-hand side of Eq. (92) then requires

p(k) ≤
1

d
(95)

But, do we have enough to get to us all the way to Eq. (41) in addition
to Eq. (37)? We will analyze aspects of this in the next subsection. First
however, let us linger a bit over the significance of the sphere.

What we have postulated in a natural way is that the extreme points of
P must live on a (d2 − 1)-sphere centered at the zero vector. But then it
comes for free that these extreme points must also live on a smaller-radius
(d2 − 2)-sphere centered at

∣∣c⟫ = (
1

d2
,

1

d2
,⋯,

1

d2
)
T

(96)

This is because the ∣∣p⟫ live on the probability simplex ∆d2 . For, let ∣∣w⟫ =

∣∣p⟫ − ∣∣c⟫, where ∣∣p⟫ is any point satisfying Eq. (93). Then

r2 = ⟪w∣∣w⟫ =
d − 1

d2(d + 1)
(97)
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gives the radius of the lower-dimensional sphere.

The sphere in Eq. (97) is actually the more natural sphere for us to think
about, as most of the sphere in Eq. (93) - all but a set of measure zero - is
thrown away anyway. In fact, it may legitimately be considered the higher-
dimensional analog of the Bloch sphere from the Quantum-Bayesian point
of view. Indeed, when d = 2, we have a 2-sphere, and it is isomorphic to the
usual Bloch sphere.

It is natural to think of the statement

∑
i

p(i)2 ≤
2

d(d + 1)
for all ∣∣p⟫ ∈ P (98)

in information theoretic terms. This is because two well-known measures
of the uncertainty associated with a probability assignment - the Renyi and
Darćozy entropies (Acźel, 1975) of order 2 - are simple functions of the left-
hand side of it. Recall the Renyi entropies most generally (defined for all
α ≥ 1)

Rα(∣∣p⟫) =
1

1 − α
ln(∑

i

p(i)α) (99)

as well as the Darćozy entropies

Dα(∣∣p⟫) =
1

21−α − 1
(∑

i

p(i)α − 1) (100)

In the limit α → 1, these both converge to the Shannon entropy. The charac-
terization of quantum-state space appears to provide an application of these
entropies for the value α = 2.

To put it in a slogan (Caves, 1996; Fuchs, 2010), “In quantum mechan-
ics, maximal information is not complete and cannot be completed”. The
sharpest pre- dictability one can have for the outcomes of a SIC measurement
is specified by Eq. (37). This is an old idea, of course, but quantified here
in yet another way. It is related to the basic idea underlying the toy model
of R. W. Spekkens (Spekkens, 2007), with its “knowledge balance princi-
ple”. In that model, which combines local hidden variables with an “epis-
temic constraint” on the agent’s knowledge of the variables’ values, more
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than twenty well-known quantum information theoretic phenomena (like no-
cloning (Dieks, 1982; Wootters, 1982), no-broadcasting (Barnum, 1996), tele-
portation (Bennett, 1993), correlation monogamy (Coffman, 2000), “nonlo-
cality without entanglement” (Bennett, 1999), etc.) are readily reproduced,
at least in a qualitative way.

Despite the toy model’s impressive successes, however, we suspect that an
information constraint alone cannot support the more sweeping part of the
Quantum Bayesian program, that “the possible outcomes cannot correspond
to actualities, existing objectively prior to asking the question”, i.e., that
unperformed measurements have no outcomes. In ways, there is a world of
difference be- tween the present considerations to do with an addition to
Dutch-book coherence and “epistemic restriction” approaches. First, it is
hard to see how that line of thought can get beyond the possibility of an un-
derlying hidden-variable model (as the toy model illustrates). Second, and
more importantly, in the present approach the Bloch sphere may well express
an epistemic constraint - a constraint on an agent’s advised certainty. But
the epistemic constraint is itself a result of a deeper consideration to do with
the coherence between factual and counterfactual gambles, not a starting
point. Furthermore, the constraint is not expressible in terms of a single
information function anyway; instead it involves pairs of distributions. We
go on to explain this point.

5.3 But Only Part of It

The state-space implied by Eq. (92) does not lead to the full sphere in Eq.
(97). According to the left-hand side of Eq. (92), when two points are too far
away from each other, at least one of them cannot be in P. We will show this
more carefully in the next section: that the extreme ∣∣p⟫ ∈ P comprise only
part of a sphere. Of some interest, however, is that Eq. (97) already tells us
that we cannot have the full sphere as well. For, the radius of the sphere is
such that the sphere extends beyond the boundary of the probability simplex
∆d2 . Hence. P is contained within a nontrivial intersection of sphere and
simplex.

This is established by a nice argument due to Gabriel Plunk (Plunk, 2002).
Let us calculate the shortest distance between ∣∣c⟫ and an n-flat of the simplex
- an n-flat is defined so that it contains only probability vectors with n
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vanishing components. For instance, all ∣∣p⟫ of the form

∣∣p⟫ = (p(1), p(2), ......, p(d2 − n),0,0, ....,0)
T

(101)

with d2−n initial nonvanishing components and n final vanishing components,
form an n-flat. A more general n-flat would have all the vanishing and
nonvanishing components interspersed.

What is the minimal distance Dmin (∣∣c⟫, ∣∣p⟫) between the center point and
an n-flat? Taking

D2 (∣∣c⟫, ∣∣p⟫) =
d2−n
∑
i=1

(pn(i) −
1

d2
)
2

+
d2

∑
i=d2−n+1

(0 −
1

d2
)
2

(102)

generally, and recognizing the constraint

d2−n
∑
i=1

pn(i) = 1 (103)

we can use the calculus of variations to find

D2
min (∣∣c⟫, ∣∣p⟫) =

n

d2(d2 − n)
(104)

Can there be an n for which

D2
min (∣∣c⟫, ∣∣p⟫) < r

2 ? (105)

where r is defined by Eq. (97)? In other words, can the sphere ever poke
outside of the probability simplex? Just solving the inequality for n gives
n < 1

2d(d − 1).

Thus, when n < 1
2d(d − 1), the point

∣∣ps(n)⟫ = (
1

d2 − n
,

1

d2 − n
, ......,

1

d2 − n
,0,0, ....,0)

T

(106)

on an n-flat surface of the simplex lies within the sphere the extreme points
of P inhabit. Only in the case of the qubit, d = 2, does the sphere reside
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completely within the simplex - the set is equivalent to the well-known Bloch
sphere.

A corollary to Plunk’s derivation is that we can put a (weak) bound on the
maximum number of zero components a valid ∣∣p⟫ can contain. To have n
zero components, ∣∣p⟫ must live on an n-flat. But extreme ∣∣p⟫ are always a
distance D2

extreme =
d−1

d2(d+1) from ∣∣c⟫. So, if n is such that

D2
min (∣∣c⟫, ∣∣p⟫) >D

2
extreme (107)

then ∣∣p⟫ cannot live on an n-flat. This limits n: if n > 1
2d(d−1), then a state

cannot live on that n-flat. Thus, for a valid ∣∣p⟫, there is an upper bound to
how many zero components it can have

nzeros ≤
1

2
d(d − 1) (108)

Our first inclination was that this is surely a weak bound. But even in
quantum mechanics, we know of no better bound than this. This follows
from the best bound we are aware of in that context, a Hilbert-space bound
of Delsarte, Goethels, and Seidel (Delsarte, 1975) (which we note can also be
proven by elementary Gram matrix methods in Hilbert-Schmidt space). Let
Pi, i = 1, ..., v, be a set of rank-1 projection operators on an f -dimensional
Hilbert space Hf such that tr PiPj = c, for all i ≠ j. then

v ≤
f(1 − c)

1 − fc

To find the maximum number of zero components ∣∣p⟫ can contain, we just
need to ask the question of how many SIC vectors can possibly fit in a (d−1)-
dimensional subspace. Inserting the parameters f = d−1 and c = 1/(d+1) into
this bound, we find nzeros ≤

1
2d(d − 1). Interestingly, this bound is saturated

when d = 2 and d = 3. On the other hand, in dimensions d = 4 and d = 5, D.
M. Appleby has checked exhaustively for the known SICs that never more
than d− 1 of the vectors fit within a (d− 1)−dimensional subspace (Appleby,
2012, private communication).

However, an alternative and more direct argument for Eq. (108) is this - it
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is a straightforward application of the Schwarz inequality:

1 = ( ∑
nonzero terms

p(i))

2

≤ (d2 − nzeros)( ∑
nonzero terms

p(i)2)

= (d2 − nzeros)
2

d(d + 1)
(109)

Eq. (108) follows immediately.

But this is only the beginning of the trimming of the Bloch sphere: More
drastic restrictions come from the left-hand of the fundamental inequality.

5.4 An Underlying ’Dimensionality’?

What else does the inequality in Eq. (92) imply? Here is at least one more low
hanging fruit. The left side of Eq. (92) signifies that the “most orthogonal”
two valid distributions ∣∣p⟫ and ∣∣q⟫ can ever be is

⟪p∣∣q⟫ =∑
i

p(i)q(i) =
1

d(d + 1)
(110)

Their overlap can never approach zero; they can never be truly orthogonal.
Now, suppose we have a collection of distributions ∣∣pk⟫, k = 1, ..., n, all of
which live on the sphere - that is, they individually saturate the right-hand
side of Eq. (92). We can ask, how large can the number n can be while
maintaining that each of the ∣∣pk⟫ be maximally orthogonal to each other.
Another way to put it is, what is the maximum number of “mutually maxi-
mally distant” states?

In other words, we would like to satisfy

⟪pk∣∣pl⟫ =
δkl + 1

d(d + 1)
(111)

for as many values as possible. It turns out that there is a nontrivial con-
straint on how large n can be, and it is nothing other than n = d - the same
thing one sees in quantum mechanics.
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To see this, let us again reference the center of the probability simplex with
all our vectors. Define

∣∣wk⟫ = ∣∣pk⟫ − ∣∣c⟫ (112)

In these terms, our constraint becomes

⟪wk∣∣wl⟫ =
dδkl − 1

d2(d + 1)
(113)

However, notice what this means: We are asking for a ?set of vectors whose
Gram matrix G = [⟪wk∣∣wl⟫] is an n × n matrix of the form

G =

⎛
⎜
⎜
⎜
⎝

a b b ⋯ b
b a b ⋯ b
⋮ ⋮ ⋮ ⋱ ⋮

b b b ⋯ a

⎞
⎟
⎟
⎟
⎠

(114)

with

a =
d − 1

d2(d + 1)
and b =

−1

d2(d + 1)
(115)

By an elementary theorem in linear algebra, a proposed set of vectors with a
proposed Gram matrix G can exist if and only if G is positive semi-definite
(Horn, 1985, pp. 407-408). Moreover, the rank of G represents the number
of linearly independent such vectors. (We write “proposed” because if G is
not positive semi-definite, then of course there are no such vectors).

Since G in Eq. (114) is a circulant matrix, its eigenvalues can be readily
calculated: one takes the value

λ0 = a + (n − 1)b =
d − n

d2(d + 1)
(116)

while all the n − 1 others are

λk = a − b =
1

d(d + 1)
(117)

To make G positive semi-definite, then, we must have n ≤ d, with n = d being
the maximal value. At that point G is a rank-(d − 1) matrix, so that only
d − 1 of the ∣∣wl⟫ are linearly independent.

On the other hand, all d vectors ∣∣wk⟫ = ∣∣pk⟫ − ∣∣c⟫ actually are linearly
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independent. To see this, suppose there are numbers αi such that ∑iαi∣∣pi⟫ =

0. Acting from the left on this equation with ⟪c∣∣, one obtains

∑
i

αi = 0 (118)

On the other hand, acting on it with ⟪pk∣∣, we obtain

0 =
2

d(d + 1)
αk +

1

d(d + 1)
∑
i≠k
αi

=
1

d(d + 1)
αk +

1

d(d + 1)
∑
i

αi

=
1

d(d + 1)
αk (119)

So, indeed,

∑
i

αi∣∣pi⟫ = 0 ⇒ αk = 0 ∀k (120)

What this reveals is a significantly smaller “dimension” for the valid states on
the surface of the sphere than one might have thought. A priori, one might
have thought that one could get nearly d2 maximally equidistant points on
the sphere, but it is not so - only d instead. This is certainly a suggestive
result, but “dimension” at this stage must remain in quotes. Ultimately one
must see that the Hausdorff dimension of the manifold of valid extreme states
is 2d− 2 (i.e., what it is in quantum theory), and the present result does not
get that far.

5.5 Summary of the Argument So Far

Let us summarize the assumptions made to this point and summarize their
consequences as well.

Assumption 0: The Urgleichung. See Figure 2. De- grees of belief for
outcomes in the sky and degrees of belief for outcomes on the ground ought
to be related by this fundamental equation:

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) (121)

From the urgleichung, the fundamental inequality arises by the requirement
that 0 ≤ q(j) ≤ 1 always. The sets P and R are defined to be sets of priors
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∣∣p⟫ and stochastic matrices R, that are consistent and maximal.

Assumption 1: The state of maximal ignorance ∣∣c⟫ in Eq. (96) is included
in P.

Assumption 2: Principle of Reciprocity: Posteriors from Maximal Igno-
rance Are Priors. For any R ∈ R, a posterior probability consequent upon
outcome j of a ground measurement,

Prob(i∣j) =
r(j∣i)

∑k r(j∣k)
(122)

may be taken as a valid prior p(i) for the outcomes of the measurement in
the sky. Moreover, all valid priors p(i) may arise in this way.

Assumption 3: P spans the probability simplex ∆d2 .

Assumption 4: Extreme-Point Preparations. The extreme points of the
convex set P may all be generated as the posteriors of a suitably chosen
ground measurement for which maximal ignorance of sky outcomes implies
maximal ignorance of ground outcomes. Moreover, these measurements all
have the minimum number of outcomes consistent with generating the basis
distributions ∣∣ek⟫ in this way.

With these four assumptions, we derived that the basis distributions ∣∣ek⟫
should be among the valid states P. We derived that for any ∣∣p⟫ ∈ P, the
probabilities are bounded above by p(k) < 1

d . We derived that the extreme
points of the valid ∣∣p⟫ should live on the surface of a sphere that at times
pokes outside the probability simplex. We found a bound, given in Eq. (108),
on the number of zero components of ∣∣p⟫ that is as good as the best known
bound that has been derived using the conventional quantum formalism.
Most particularly we derived that for any two valid distributions ∣∣p⟫ and
∣∣s⟫ (including the case where ∣∣p⟫ = ∣∣s⟫), it must hold that

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
2

d(d + 1)
(123)

From the latter, it follows that no more than d extreme points ∣∣p⟫ can ever
be mutually maximally distant from each other. Furthermore we showed
that not every flat zeros-bound vector can be a valid ∣∣p⟫.
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These are all hints that our structure might just be isomorphic to quantum-
state space under the assumption that SICs exist. What really needs to be
derived is that the extreme points of such a convex set correspond to an
algebraic variety of the form

p(k) = α
n

∑
i=1
p(i)r(j∣i) − β

n

∑
i=1
r(j∣i) (124)

as given in Eq. (40), with a set of cink that can be writ- ten in the form
of Eq. (39). Whether this step can be made without making any further
assumptions, we do not know. Nor do we have a strong feeling presently of
whether the auxiliary Assumptions 1-4 are the ones best posited for achieving
our goal. The key idea is to supplement Assumption 0 with as little extra
structure as possible for getting all the way to full-blown quantum mechanics.
Much work remains, both at the technical and conceptual level.

6 Relaxing the Constants and Regaining Them

But what is the origin of the urgleichung in the first place? In this Section,
which in part follows closely (Fuchs, 2011), we take a small step toward a
deeper understanding of the particular form our relation takes in Eq. (121).
We do this by initially generalizing away from Eq. (121) and then testing
what it takes to get back to it. What we mean by this is that we should
imagine the more general set-up in Figure 2, where the number of outcomes
for the measurement in the sky is potentially some more general number n
(not initially assumed to be a perfect square d2). Furthermore we drop away
all traces of the parameter d, by considering a generalized urgleichung with
two initially arbitrary parameters α and β. That is to say, for this Section,
our fundamental postulate will be:

Resorption 0: Generalized Urgleichung. For whichever experiment we are
talking about for the ground, q(j) should be calculated according to

q(j) = α
n

∑
i=1
p(i)r(j∣i) − β

n

∑
i=1
r(j∣i) (125)

where α and β re fixed nonnegative real numbers.

Otherwise, all considerations will be the same as they were in the beginning
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of Section 5. Particularly, the measurements on the ground can have any
number m of outcomes, where the value m in any individual case will be set
by the details of the measurement under consideration at that time. Our
goal will be to see what assumptions can be added to this basic scenario so
that the urgleichung in Eq. (121) re-arises in a natural manner. That is to
say, we would like to see what assumptions can be added to this recipe so
that α = d + 1, β = 1

d , and n = d2 (for some d) are the end result.

Immediately, one can see that n,α, and β cannot be independent. This just
follows from the requirements that

m

∑
j=1
q(j) = 1 ,

m

∑
m=1

r(j∣i) = 1 ∀i and
n

∑
i=1
p(i) = 1 (126)

Summing both left and right sides of Eq. (125) over j, one obtains,

nβ = α − 1 (127)

Furthermore, since β ≠ 0 is assumed, requiring q(j) ≥ 0 necessitates

α

β
≥
∑i r(j∣i)

∑i p(i)r(j∣i)
≥ 1 (128)

As before, we now start studying the consequences of the full requirement
that 0 ≤ q(j) ≤ 1, in the form of a generalized fundamental inequality:

0 ≤ α
n

∑
i=1
p(i)r(j∣i) − β

n

∑
i=1
r(j∣i) ≤ 1 (129)

The two sets P and R are defined analogously to the discussion just after Eq.
(70), the first a set of priors for the sky and the second a set of conditionals
for the ground (given the outcomes i in the sky). P and R are taken to be
consistent and maximal.

Two assumptions, we shall borrow straight away from our previous develop-
ment in Section 5.

Resumption 1: Principle of Reciprocity: Posteriors from Maximal Igno-
rance Are Priors. For any R ∈ R, a posterior probability, consequent upon
outcome j of a ground measurement,

Prob(i∣j) =
r(j∣i)

∑k r(j∣k)
(130)
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may be taken as a valid prior p(i) for the outcomes of the measurement in
the sky. Moreover, all valid priors p(i) may arise in this way.

Resumption 2: Basis states span the simplex ∆d2 . The conditional proba-
bilities r(j∣i) derived from setting the ground measurement equal to the sky
measurement give rise to posterior distributions ∣∣ek⟫, via Eq. (130), that
span the whole probability simplex.

At this stage, the argument goes just as it did in Section 5.1. In terms of
the constants α and β, the components ek(i) of the basis states satisfy the
equations

ek(i) =
1

α
(δki + β) (131)

and

∑
i

ek(i)
2 =

1

α2
(1 + 2β + nβ2) (132)

Let us now consider a measurement with in-step unpredictability for a mea-
surement on the ground with m outcomes (m ≠ n) - that is, a measurement
on the ground such that if one has a flat distribution for the outcomes in the
sky, one will also have a flat distribution for the outcomes on the ground.
Let us again denote r(j∣i) by rISU(j∣i) in this special case. Following the
manipulations we did before, we must have

∑
i

rISU(j∣i) =
n

m
(133)

By the Principle of Reciprocity, this ISU measurement gives rise to a class of
priors which we denote by ∣∣pk⟫, k = 1, ....,m. Their components are given by

pk(i) =
m

n
rISU(k∣i) (134)

each vector ∣∣pk⟫ represents a valid prior in the sky.

Let us now introduce a new notion that we did not make use of in the previous
development: We shall say that a measurement with in-step unpredictability
achieves the ideal of certainty if ∣∣p⟫ = ∥∣pk⟫ implies that q(j) = δjk, i.e., for
such a measurement and a prior in the sky given by ∥∣pk⟫, the agent is certain
that the outcome on the ground will be k.

This leads to the following assumption:
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Resumption 3: Availability of Certainty. or any system, there is a mea-
surement with in-step unpredictability of some number m0 ≥ 2 of outcomes
that (i) achieves the ideal of certainty and (ii) for which one of the priors
∣∣pk⟫ defined in Eq. (134) has the form of a basis distribution (131).

In several axiomatic developments of quantum theory - see for instance
(Goyal, 2008) and (Hardy, 2001) - the idea of repeated measurements giv-
ing rise to certainty (and the associated idea of “distinguishable states”) is
viewed as fundamental. However, from the Quantum-Bayesian view where
all measurements are generative of their outcomes - i.e., outcomes never pre-
exist the act of measurement - and certainty is always subjective certainty
(Caves, 2007), the consistency of adopting a state of certainty as one’s state
of belief, even in what is judged to be a repeated experiment, is not self-
evident at all. In fact, from this point of view, why one ever has certainty is
the greater of the mysteries.

For a measurement of this type, we have

⟪pj ∣∣pk⟫ =
1

alpha
(
m0

n
δjk + β) j, k = 1, ....,m0 (135)

where ⟪⋅∣∣⋅⟫ denotes the inner product. Using condition (ii) of the above
resumption, it follows that the squared norm ⟪pk∣∣pk⟫ of any of the vectors
∣∣pk⟫ is equal to the squared norm of the basis vectors given by Eq. (132).
This, together with Eq. (127) now implies that

m0

n
α − β = 1 (136)

for any measurement satisfying Resumption 3.

Equation (135) expresses that any two of the vectors ∣∣pk⟫ differ by the same
angle, θ, defined by

cos θ =
⟪p1∣∣p2⟫

⟪p1∣∣p1⟫
(137)

Using the relations (127) and (136) between our four variables, α, β, n and
m0 established above, this angle can be seen to equal

cos θ =
n −m0

(m0 − 1)2 + n − 1
(138)
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We are now ready to state our last resumption.

Resumption 4: Many Systems, Universal Angle. The identity of a system
is parameterized by its pair (n,m0). Nonetheless for all systems, the angle θ
between pairs of priors ∣∣p + k⟫ for any measurement satisfying Resumption
3 is a universal constant given by cos θ = 1/2.

The value cos θ = 1/2 is less arbitrary than it may appear at first sight. Taken
by itself, the assumption that θ is universal implies that, for any m0 ≥ 2, there
is an integer n such that the right-hand side of Eq. (138) evaluates to the
constant cos θ. It is not hard to show that this is possible only if this constant
is of the form

cos θ =
q

q + 2
(139)

where q is a non-negative integer. The universal angle postulated above
corresponds to the choice q = 2.

Every choice for q leads to a different relation between n and m0. For q = 0,
we find n = m0, in which case the urgleichung turns out to be identical
to the classical law of total probability. For q = 1, we get the relationship
n = 1

2m0(m0 + 1) which, although this fact plays no role in our argument, is
characteristic of theories defined in real Hilbert space (Wootters, 1986). And
for q = 2, we obtain

n =m2
0 (140)

Equations (136) and (140) hold for the special mea- surement postulated in
Resumption 3. If we eliminate m0 from these equations we find, with the
help of Eq. (127), the relationships

n = (α − 1)2 , β =
1

√
n

(141)

These equalities must hold for any measurement on the ground. If we de-
note the integer α−1 by the letter d, we recover the constants of the original
urgleichung of Eq. (121).

Let us reiterate slightly the philosophy here. The numerical relations be-
tween the constants α, β, and n, and in particular the fact that n is a perfect
square, follow from the existence of a single special measurement de- fined in
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Resumption 3, together with the postulate of a universal angle in Resump-
tion 4. These last two resumptions, as well as the first three, are given purely
in terms of the personalist probabilities a Bayesian agent may as- sign to the
outcomes of certain experiments. Nowhere in all this do we mention ampli-
tudes, Hilbert space, or any other part of the usual apparatus of quantum
mechanics.

7 Summary: From Quantum Interference to

Quantum Bayesian Coherence

In this discussion, we hope to have given a new and useful way to think
of quantum interference: Particularly, we have shown how to view it as an
empirical addition to Dutch-book coherence, operative when one calculates
probabilities for the outcomes of a factualizable quantum experiment in terms
of one explicitly assumed counterfactual. We did this and not once did we
use the idea of a probability amplitude. Thus we believe we have brought the
idea of quantum interference formally much closer to its root in probabilistic
considerations. For this, we were aided by the mathematical machinery of
SIC measurements.

In so doing we showed that the Born Rule can be viewed as a relation between
probabilities, rather than a setter of probabilities from something more firm
or secure than probability itself, i.e., rather than facilitating a probability
assignment from the quantum state. From the Quantum-Bayesian point
of view there is no such thing as the quantum state, there being as many
quantum states for a system as there are agents interested in considering it.
This last point makes it particularly clear why we needed a way of viewing the
Born Rule as an extension of Dutch-book coherence: One can easily in- vent
situations where two agents will update to divergent quantum states (even
pure states, and even orthogonal pure states, see Footnote 19) by looking at
the same empirical data (Fuchs, 2002, 2004, 2009) - a quantum state is always
ultimately dependent on the agent’s priors. But there is much more to do.
We gave an indication that the urgleichung and considerations to do with
it already specifies a significant fraction of the structure of quantum states
- and for that reason one might want to take it as one of the fundamental
axioms of quantum mechanics. We did not, however, get all the way back to
a set based on the manifold of pure quantum states, Eq. (40). A further open
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question concerns the origin of the urgleichung. An intriguing idea would be
to justify it Dutch-book style in terms of bought and returned lottery tickets
consequent upon the nullification step in our standard scenario. Then the
positive content of the Born Rule might be viewed as a kind of cost excised
whenever one factualizes a SIC. But this is just speculation.

What is firm is that we have a new setting for quantifying the old idea that,
in quantum mechanics, unperformed measurements have no outcomes.

8 Outlook

Of every would be describer of the universe one has a right to
ask immediately two general questions. The first is: “What are
the materials of your universe’s composition?” And the second:
“In what manner or manners do you represent them to be con-
nected?”

- William James, notebook entry, 1903 or 1904

This paper has focussed on adding a new girder to the developing struc-
ture of Quantum Bayesianism (’QBism’ hereafter). As such, we have taken
much of the previ-ously developed program as a background for the present
efforts. The core arguments for why we choose a more ’personalist Bayesian-
ism’ rather than a so-called ’objective Bayesianism’ can be found in (Fuchs,
2002, 2004, 2013). The argument for why a subjective, personalist account
of certainty is crucial for breaking the impasse set by the EPR criterion of
reality are explained in (Caves, 2007; Fuchs, 2013). Similarly for other ques-
tions on the program.

Still, fearing James’ injunction, in this Section we want to discuss anew the
term ’measurement’, which we have been using uncritically in the present
discussion. Providing a deeper understanding of the proclamation ’Unper-
formed measurements have no outcomes!’ is, we feel, the first step toward
characterizing “the materials of our universe’s composition”.

We take our cue from John Bell. Despite our liberal use of the term so far, we
think the word ’measurement’ should indeed be banished from fundamental
discussions of quantum theory (Bell, 1990). For an argument in some sympa-
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thy with our own, see N. D. Mermin’s “In Praise of Measurement” (Mermin,
2006). However, it is not because the word is “unprofessionally vague and
ambiguous”, as Bell said of it (Bell, 1987). To be sure, the are plenty of
things vague and inconsistent in the writings of Bohr, Pauli, Heisenberg, von
Weizsäcker, Peierls, and Peres (representatives of the so-called ’orthodoxy’),
but this word we believe is not one of them. Rather, it is because, from the
QBist perspective, the word suggests a misleading notion of the very subject
matter of quantum mechanics.

To make the point dramatic, let us put quantum theory to the side for a mo-
ment, and consider instead basic Bayesian probability theory. There the sub-
ject matter is an agent’s expectations for various outcomes. For instance, an
agent might write down a joint probability distribution P (hi, dj) for various
mutually exclusive hypotheses hi, i = 1, ..., n and data values dj, j = 1, ...,m,
appropriate to some phenomenon. As discussed above, a major role of the
theory is that it provides a scheme (Dutch-book coherence) for how these
probabilities should be related to other probabilities, P (hi) and P (dj) say,
as well as to any other degrees of belief the agent has for other phenomena.
The theory also prescribes that if the agent is given a specific data value dj,
he should update his expectations for everything else within his interest. For
instance, under the right conditions (Diaconis, 1982; Fuchs, 2012; Skyrms,
1987b), he should reassess his probabilities for the hi by conditionalizing:

PNEW (hi) =
P (hi, dj)

P (dj)
(142)

But what is this phrase “given a specific data value”? What does it re-
ally mean in detail? Shouldn’t one specify a mechanism or at least a chain
of logical and/or physical connectives for how the raw fact signified by dj
comes into the field of the agent’s consciousness? And who is this “agent”
reassessing his probabilities anyway? Indeed, what is the precise definition
of an agent? How would one know one when one sees one? Can a dog be an
agent? Or must it be a person? Maybe it should be a person with a PhD?
(Tongue-in-cheek reference to Bell again (Bell, 1990)).

Probability theory has no chance of answering these questions because they
are not questions within the subject matter of the theory. Within proba-
bility theory, the notions of “agent” and “given a data value” are primitive
and irreducible. Guiding agents’ decisions based on data is what the whole
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theory is constructed for. As such, agents and data are the highest elements
within the structure of probability theory - they are not to be constructed
from it, but rather the former are there to receive the theory’s guidance, and
the latter are there to designate the world external to the agent.

QBism says that, if all of this is true of Bayesian probability theory in gen-
eral, it is true of quantum theory as well. As the foundations of probability
theory dismisses the questions of where data comes from and what consti-
tutes an agent - these questions never even come to its attention - so can the
foundations of quantum theory dismiss them too. This point is one of the
strongest reasons for making the QBist move in the first place.

A likely reaction at this point will be along these lines: “It is one thing to say
all this of probability theory, but quantum theory is a wholly different story.
Quantum mechanics is no simple branch of mathematics, be it probability or
statistics. Nor can it plausibly be a theory about the insignificant specks of
life in our vast universe making gambles and decisions. Quantum mechanics
is one of our best theories of the world! It is one of the best maps we have
drawn yet of what is actually out there.” But this is where QBism begs to
differ. Quantum theory is not a ’theory of the world’. Just like probability
theory is not a theory of the world, quantum theory is not as well: It is a
theory for the use of agents immersed in and interacting with a world of a
particular character, “the quantum world”.

This last statement is crucial for understanding what we are trying to say.
Regarding the idea of a world external to the agent, it must be as Martin
Gardner says (Gardner, 1983),

The hypothesis that there is an external world, not dependent
on human minds, made of something, is so obviously useful and
so strongly confirmed by experience down through the ages that
we can say without exaggerating that it is better confirmed than
any other empirical hypothesis. So useful is the posit that it is
almost impossible for anyone except a madman or a professional
metaphysician to comprehend a reason for doubting it.

Yet there is no implication in these words that quantum theory, for all its
success in chemistry, physical astronomy, laser making, and so much else,
must be read as a theory of the world. There is room for a significantly
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more interesting form of dependence: Quantum theory is conditioned by the
character of the world, but yet is not a theory directly of it. Confusion on this
very point, we believe, is what has caused most of the discomfort in quantum
foundations in the 85 years since the theory’s coming to a relatively stable
form in 1927.

Returning to our discussion of Bell and the word “measurement”, we wish
the word banished because it subliminally whispers the philosophy of its
birth: That quantum mechanics should be conceived in a way that makes
no ultimate reference to agency, and that agents are constructed out of the
theory, rather than taken as the primitive entities the theory is meant to
aid. In a nutshell, the word deviously carries forward the impression that
quantum mechanics should be viewed as a theory directly of the world.

Fixing the word “measurement” is the prerequisite to a new ontology - in
other words, prerequisite to a statement about the (hypothesized) character
of the world that does not make direct reference to our actions and gambles
within it. Therefore, as a start, let us rebuild quantum mechanics in terms
more conducive to the Quantum Bayesian program.

8.1 The Paulian Idea and the Jamesian Pluriverse

The best way to begin a more thoroughly QBist delineation of quantum
mechanics is to start with two quotes on personalist Bayesianism itself. The
first is from Hampton, Moore, and Thomas (Hampton, 1973),

Bruno de Finetti believes there is no need to assume that the
probability of some event has a uniquely determinable value. His
philosophical view of probability is that it ex- presses the feeling
of an individual and cannot have meaning except in relation to
him.

and the second from D. V. Lindley (Lindley, 1982),

The Bayesian, subjectivist, or coherent, paradigm is egocentric.
It is a tale of one person contemplating the world and not wishing
to be stupid (technically, incoherent). He realizes that to do this
his statements of uncertainty must be probabilistic.
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Figure 3: The Paulian Idea - in the form of a figure inspired by John
Archibald Wheeler. In contemplating a quantum measurement, one makes a
conceptual split in the world: one part is treated as an agent, and the other
as a kind of reagent or catalyst (one that brings about change in the agent).
In older terms, the former is an observer and the latter a quantum system of
some finite dimension d. A quantum measurement consists first in the agent
taking an action on the quantum system. The action is formally captured
by some POVM {Ei}. The action leads generally to an incompletely pre-
dictable consequence, a particular personal experience Ei or the agent. The
quantum state ∣ψ⟩ makes no appearance but in the agent’s head; for it only
captures his degrees of belief concerning the consequences of his actions, and
- in contrast to the quantum system itself - has no existence in the external
world. Measurement devices are depicted as prosthetic hands to make it clear
that they should be considered an integral part of the agent. (This contrasts
with Bohr’s view where the measurement device is always treated as a clas-
sically describable system external to the observer.) The sparks between the
measurement-device hand and the quantum system represent the idea that
the consequence of each quantum measurement is a unique creation within
the previously existing universe. Wolfgang Pauli characterized this picture
as a “wider form of the reality concept” than that of Einstein’s, which he
labeled “the ideal of the detached observer”. What is important for modern
developments is that the particular character of the catalysts - i.e., James’
“materials of your universe’s composition” - must leave its trace in the formal
rules that allow us to conceptualize factualizable measurements in terms of
a standard counterfactual one.
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These two quotes make it clear that personalist Bayesianism is a “single-user
theory”. Thus, QBism must inherit at least this much egocentrism in its
view of quantum states ρ. The “Paulian Idea” (Fuchs, 2010) - which is also
essential to the QBist view - goes further still. It says that the outcomes
to quantum measurements are single-user as well. That is to say, when
an agent writes down her degrees of belief for the outcomes of a quantum
measurement, what she is writing down are her degrees of belief about her
potential personal experiences arising in consequence of her actions upon the
external world (Fuchs, 2009, 2010b, 2012; Mermin, 2012).

Before exploring this further, let us partially formalize in a quick outline
the structure of quantum mechanics from this point of view, at the moment
retaining the usual mathematical formulation of the theory, but starting the
process of changing the English descriptions of what the term “quantum
measurement” means.

1. Primitive notions: a) the agent, b) things external to the agent, or,
more commonly, “systems”, c) the agent’s actions on the systems, and
d) the consequences of those actions for her experience.

2. The formal structure of quantum mechanics is a theory of how the agent
ought to organize her Bayesian probabilities for the consequences of all
her potential actions on the things around her. Implicit in this is a
theory of the structure of actions. The theory works as follows:

3. When the agent posits a system, she posits a Hilbert space Hd as the
arena for all her considerations.

4. Actions upon the system are captured by positive-operator valued mea-
sures {Ei} on Hd. Potential consequences of the action are labeled by
the individual elements Ei within the set(there is a formal similarity
between this and the development in Cox (Cox, 1961), where “ques-
tions” are treated as sets, and “answers” are treated as elements within
the sets), i.e.,

action = {Ei} and consequence = Ek

5. Quantum mechanics organizes the agent’s beliefs by saying that she
should strive to find a single density operator ρ such that her degrees
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of belief will always satisfy

Prob(consequence∣action) = Prob(Ek∣{Ei}) = tr ρEk

no matter what action {Ei}is under consideration.

6. Unitary time evolution and more general quantum operations (com-
pletely positive maps) do not represent objective underlying dynamics,
but rather address the agent’s belief changes accompanying the flow of
time, as well as belief changes consequent upon any actions taken.

7. When the agent posits two things external to herself, the arena for all
her considerations becomes Hd1 ⊗Hd2 . Actions and consequences now
become POVMs on Hd1 ⊗Hd2 .

8. The agent can nonetheless isolate the notion of an action on a single
one of the things alone: These are POVMs of the from {Ei ⊗ I}, and
similarly with systems reversed {I ⊗Ei}.

9. Resolving the consequence of an action on one of the things may cause
the agent to update her expectations for the consequences of any fur-
ther actions she might take on the other thing. But for those latter
consequences to come about, she must elicit them through an actual
action on the second system.

The present discussion, of course, has predominantly focussed on Item 5 in
this list, rewriting the point in purely probabilistic terms. With regard to the
discussion in the present Section, however, the main points to note are Items
4, 7, 8, and 9. Regarding our usage of the word “measurement”, they say
that one should think of it simply as an action upon the system of interest.
Actions lead to consequences within the experience of the agent, and that is
what a quantum measurement is. A quantum measurement finds nothing,
but very much makes something.

Thus, in a QBist painting of quantum mechanics, quantum measurements are
“generative” in a very real sense. But by that turn, the consequences of our
actions on physical systems must be egocentric as well. Measurement out-
comes come about for the agent himself. Quantum mechanics is a single-user
theory through and through - first in the usual Bayesian sense with regard
to personal beliefs, and second in that quantum measurement outcomes are
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wholly personal experiences.

Of course, as a single-user theory, quantum mechanics is available to any
agent to guide and better prepare him for his own encounters with the
world. And although quantum mechanics has nothing to say about another
agent’s personal experiences, agents can communicate and use the informa-
tion gained from each other to update their probability assignments. In the
spirit of the Paulian Idea, however, querying another agent means taking
an action on him. Whenever “I” encounter a quantum system, and take an
action upon it, it catalyzes a con- sequence in my experience that my ex-
perience could not have foreseen. Similarly, by a Copernican-style principle,
I should assume the same for “you”: Whenever you encounter a quantum
system, taking an action upon it, it catalyzes a consequence in your experi-
ence. By one category of thought, we are agents, but by another category
of thought we are physical systems. And when we take actions upon each
other, the category distinctions are symmetrical. Like with the Rubin vase,
the best the eye can do is flit back and forth between the two formulations.

The previous paragraph should have made clear that viewing quantum me-
chanics as a single user theory does not mean there is only one user. QBism
does not lead to solipsism. Any charge of solipsism is further refuted by two
points central to the Paulian Idea. (Fuchs, 2002b). One is the conceptual
split of the world into two parts - one an agent and the other an external
quantum system - that gets the discussion of quantum measurement off the
ground in the first place. If such a split were not needed for making sense
of the question of actions (actions upon what? in what? with respect to
what?), it would not have been made. Imagining a quantum measurement
without an autonomous quantum system participating in the process would
be as paradoxical as the Zen koan of the sound of a single hand clapping.
The second point is that once the agent chooses an action {Ei}, the particu-
lar consequence Ek of it is beyond his control. That is to say, the particular
outcome of a quantum measurement is not a product of his desires, whims,
or fancies - this is the very reason he uses the calculus of probabilities in
the first place: they quantify his uncertainty (Lindley, 2006), an uncertainty
that, try as he might, he cannot get around. So, implicit in this whole picture
- this whole Paulian Idea - is an “external world ... made of something”, just
as Martin Gardner calls for. It is only that quantum theory is a rather small
theory: Its boundaries are set by being a handbook for agents immersed
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within that “world made of something”.

But a small theory can still have grand import, and quantum mechanics most
certainly does. This is because it tells us how a user of the theory sees his
role in the world. Even if quantum mechanics - viewed as an addition to
probability theory - is not a theory of the world itself, it is certainly con-
ditioned by the particular character of this world. Its empirical content is
exemplified by the simplest case of the urgleichung,

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) − 1

which takes this specific form rather than an infinity of other possibilities.
Even though quantum theory is now understood as a theory of acts, decisions,
and consequences (Savage, 1954), it tells us, in code, about the character of
our particular world. Apparently, the world is made of a stuff that does not
have “consequences” waiting around to fulfill our “actions” - it is a world in
which the consequences are generated on the fly. One starts to get a sense
of a world picture that is part personal - truly personal - and part the joint
product of all that interacts. This is a world of indeterminism, but one with
no place for “objective chance” in the sense of Lewis’ Principal Principle
(Harper, 2012; Lewis, 1986a). From within any part, the future is undeter-
mined. If one of those parts is an agent, then it is an agent in a situation of
uncertainty. And where there is uncertainty, agents should use the calculus
of Bayesian probability in order to make the best go at things.
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