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Abstract

Predecoherence, as its name indicates, is the same physical effect as deco-
herence, originating in the same interactions with an environment, injecting
also incoherence and breaking unitarity. But whereas decoherence acts im-
mediately after a measurement, predecoherence is acting long before. It is
also a very strong effect and its main properties are established in this paper,
including generation, transport, damping, and stationary level.

A mechanism for objectification, or wave function collapse, is also proposed
as consisting in a perturbation by predecoherence of the intricacy between
a measuring system and a measured one. The theory is made explicit on a
special example and the quantitative results are found sensible.

1 Introduction

In the early nineteen thirties, a famous problem was pointed out in the
foundations of quantum mechanics, particularly by Von Neumann, Bohr and
Schrdinger. Two distinct laws of dynamics seemed required for wave func-
tions, one of them being Schrodingers unitary evolution and the other one a
random objectification, or wave function collapse, which generated a unique
macroscopic datum in a measurement. When summing up this situation in
a later paper, Wigner wrote in the introduction: The simplest way that one
may try to reduce the two kinds of changes of the state vector to a single kind
is to describe the whole process of measurement as an event in time, governed
by the quantum-mechanical equations of motion.

This sentence would express perfectly the aim of the present discussion but,
after writing it, Wigner proceeded to show that the consistency between col-
lapse and quantum dynamics was impossible and thus confirmed earlier views
by Von Neumann and Schrdinger.

Wigner’s proof supposedly however an isolated measuring system, although
one already knew for a long time that strict isolation is impossible for a
macroscopic system. This question became important after the topic of de-
coherence theory was introduced, which led to remarkable results: Far from
being negligible, the interaction of a measuring apparatus with the environ-
ment has drastic consequences, particularly an extremely rapid damping of



macroscopic interferences. The existence of decoherence has now been ex-
perimentally confirmed.

The collapse problem took then a new turn: One knew then that no real-
istic measuring device can be isolated and keep an inner unitary dynamics.
Interactions with the environment are never negligible. The only exceptions
occur in experimental models of measurement, for instance in quantum op-
tics, where the measured system and the measuring one are both in a pure
state and measurement amounts to a quantum jump. But decoherence did
not solve the problem of collapse since the quantum probabilities (or squared
amplitudes) of different measurement channels are conserved under decoher-
ence.

Strangely enough, not much work has been devoted to a rather obvious ques-
tion, which is concerned with the action of interactions with the environment
before a measurement and the action of decoherence. One may call this ef-
fect predecoherence. The interaction with the environment is permanent and
exists already long before a measurement. As a matter of fact, it exists
not only in a measuring device but in any macroscopic object such as a
clock for instance. One may ask therefore what are the consequences of
such a permanent action on the dynamics of a measuring apparatus, which
is strong enough to destroy a unitary Schrdinger evolution in a very short
time, through the disappearance of non-diagonal elements in a density ma-
trix. One can also go much farther along this direction and ask a still more
significant question: Could it be that predecoherence has something to do
with collapse?

In this respect, one must mention as a precedent the work of Philip Pearle.
He considered for instance a measurement in which the measured state is a
superposition |s〉 =

∑
j cj |j〉 of measurable states j with squared amplitudes

pj = |cj|2. He assumed that some process (which he attributed to hidden
non-linearity) could produce Brownian fluctuations in the quantities pj. The
Brownian character of the process is characterized through the random fluc-
tuations δpj of the squared amplitudes pj during a short time interval δt,
such that

〈δpj〉 = 0 and 〈δpjδpk〉 = Ajk
δt

τc
(1)
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The correlations Ajk are constrained by simple conditions resulting from the
conservation law

∑
j δpj = 0. Pearle supposed that these coefficients depend

only upon time and upon the instantaneous values of the p′js. The factor
τc in (1) is meant only as a time scale, which could also be considered as a
time scale of collapse, because of the following considerations and theorem:
A Brownian motion must always cause some squared amplitude pk to vanish
first, at one time or another. If the corresponding state of the apparatus
cannot be regenerated, a second amplitude, and then a third one and so on
will vanish, until a unique one, say pf survives. During the random process
pf fluctuated, but it has become finally equal to 1, which means certainty in
probability calculus. This final outcome can be therefore considered as an
objectification, or collapse on Channel j of the apparatus state.

The depth of this idea is shown by the value of the Brownian probability Pf
for getting the final result pf = 1, which is

Pf = pj(t = 0) or Pf = |cf |2 (2)

This means that, if the assumptions of Pearles version of the gamblers ruin
theorem came to be justified, they would not only imply collapse, but also
the validity of Borns probability rule linking the probability for getting a fi-
nal datum to the square of the corresponding s amplitude in the initial state.
This rule would become a consequence of the other quantum principles.

This discussion rests on these earlier advances, through an extension of the
decoherence conceptions to predecoherence and, as a consequence, a deriva-
tion from quantum mechanics of the assumptions underlying Pearle’s theorem
(with no appeal to nonlinear corrections to the Schrodinger dynamics).

Predecoherence will then be discussed. We will find that its main effect is an
injection of incoherence into the quantum evolution of the apparatus, long
before any measurement. Although much of the problem is new, one finds it
manageable and obtains an explicit and coherent description for its continu-
ous generation, its transport, damping, and the stationary level of perpetual
incoherence resulting from it.

The relation of predecoherence with collapse, or rather with fluctuations in
the channel probabilities, will then be considered. The origin of fluctuations
is attributed to a random continuous action of predecoherent disorder on the
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intricacy between the measured system and the measuring one. The undis-
tinguishable character of atoms and the non-separable character of quantum
mechanics enter in the existence of collapse. It turns out that, whereas deco-
herence is due to interactions with the environment occurring after the be-
ginning of a measurement, collapse results from previous interactions, which
occurred mostly long before measurement and were responsible for predeco-
herence. This difference between the actions of two effects, amounting to the
same phenomenon, could explain why the program of decoherence stumbled
on collapse: because one did not look at the meaningful order of events.
Quantitative estimates for the rate of collapse are also made and yield sen-
sible results.

We then deal with some examples. In the case of the Schrodinger experiment,
a problem is that there are different linear tracks and they can compete. The
problem is to understand how a unique track can come out from the compe-
tition. The Stern-Gerlach experiment and the measurement of two photons
in an EPR pair, by space-like separated detectors, are also considered and
shown closely linked with the role of non- separability in the present theory.

Finally we will discuss briefly the meaning of incoherence at larger scale in
the universe and state some tentative conclusions.

2 Predecoherence

We will consider mainly in this discussion a Geiger counter, denoted by A,
which can detect charged particles. At this point, there is no charged particle
to be measured. The apparatus A stands alone, though not perfectly isolated.
It consists mainly of a solid box containing a gas of argon at atmospheric
pressure. The nearby environment, denoted by e, is ordinary atmosphere.

The atmospheric molecules collide incessantly with the apparatus at a rate
per unit time

τ−1p = nMvMS (3)

where nM and vM denote the space density and the average velocity of
molecules and S is the box area. This rate is extremely large and the colli-
sions have therefore necessarily a strong influence on the quantum state of
the apparatus. They produce particularly a high level of incoherence in the
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density matrix ρA, which will be called predecoherence in view of its common
origin with decoherence and to mark on the contrary its durability.

Predecoherence is a very strong effect, which consists in an accumulation of
many tiny effects over long periods. It is also a random effect and one will
consider formally the series of collisions as a random process in which an
event consists of a succession of collisions occurring at various places and at
various times on the box.

2.1 A formulation and a conjecture

A random process implies in principle the notions of averages and fluctua-
tions, which one considers now. One assumes for simplicity that the system
A and the surrounding atmosphere are at thermal equilibrium with the same
temperature T . There is no measurement, or one considers the measuring
device before measurement. One will show that the average quantum effects
of predecoherence and the corresponding fluctuations can be expressed by a
random density matrix ρA(t), which consists of two parts:

ρA(t) = 〈ρA〉+ Ω(t) (4)

〈ρA〉 describes the quantum properties of the system remaining insensitive to
predecoherence, or averages over a sufficiently long time (which will be made
precise). This average matrix is simply a thermal distribution

〈ρA〉 =
1

Z
e−HA/T (5)

where Z is the partition function insuring the value 1 for the trace of 〈ρA〉.
Ω(t) is a random self-adjoint matrix with zero trace, describing the fluc-
tuations. Disregarding the possibility of zero eigenvalues, it can be split
into two parts with respectively positive and negative eigenvalues so that
Ω(t) = Ω+(t) + Ω−(t).

The relation (4) is somewhat obvious and will be justified, but real problems
consist in finding explicit properties of Ω±(t). This will be also made, but
remains somewhat conjectural, particularly concerning the traces of these
matrices for which one will assume

Tr(Ω+) = Tr(Ω−) ≈ 1 (6)
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The next four subsections will be devoted to the arguments leading to these
conjectures, except for the last conjecture (6), which will be treated after a
justification of ((4) and (5).

2.1.1 Inadequacy of global wave functions

A first argument is essential and goes against a tendency in measurement
theory to attribute a central role to the wave functions of the apparatus and
their unitary evolution. This is correct when the apparatus is isolated, but
certainly not when interactions with the environment are taken into account.

To begin with, one will dispose of a few unessential features of the problem.
An external collision affects initially some phonons in the box, which transmit
the change of their state to the gas. There is no difficulty of principle in
devising a theory of this transmission but one will avoid technicalities and
consider that the gas directly feels the effect. The role of the box is then
only to ascertain a definite atomic content of A and thus allows describing A
as a well-defined though not isolated quantum system. For the same reason
of simplicity, one will disregard the electronic and electric components of the
detector, which can keep records when there is a measurement.

One considers then the academic case of an isolated detector in vacuum,
undergoing a collision with a unique molecule M . The state of M is taken
as a wave packet |G〉, of which the location and average momentum insure
that M hits A with certainty. The quantum probability 〈G |G〉 of the packet
is denoted by ε (0 < ε ≤ 1). Let |k〉 denote the normalized eigenvectors
(or wave functions) of the density matrix ρA of A and pk the corresponding
eigenvalues. One also introduces an orthonormal basis of vectors |u〉 in the
Hilbert space of A, including the eigenvectors |k〉 and possibly new states of
A arising the collision. The initial density matrix ρA =

∑
k pk |k〉 〈k| becomes

a matrix ρ′A after taking the trace over the outgoing states of M , and one
has

ρ′A = ρA − δρ− + δρ+ (7)

with

δρ− =
∑
k

pk |k〉 〈k|

{∑
uq′

|TkG→uq′|2
}

(8)

6



and
δρ+ =

∑
k,u′,u′′,q′

pkTkG→u′q′T
∗
kG→u′′q′ |u′〉 〈u′′| (9)

T denotes the collision matrix, related to the S-matrix by S = I − iT . If
G̃(q) denotes the wave packet in momentum space, the T -matrix elements in
these equations are given by

TkG→uq′ =
∑
u′

G̃(q) 〈uq′|T |kq〉 δ(Ek + Eq − Eu − Eq′).. (10)

Strictly speaking, the delta function in energy is only manageable when the
eigenstates |k〉 are also eigenvectors of the Hamiltonian HA, which is the case
when ρA is in thermal equilibrium. The properties of δρ+ and δρ− however,
as they will be used, are valid more generally.

The densities δρ+ and δρ− in (8,9) are examples of contributions to Ω+ and
Ω− in (6). They are positive matrices (an obvious property for δρ−, which
can be checked easily for δρ+). They have exactly equal traces:

Tr(δρ−) = Tr(δρ+) = ε (11)

δρ− has the same eigenvectors as ρA and represents a decrement of the initial
state, up to complete suppression when ε = 1, since the certainty of a collision
implies ∑

uq′

|TkG→uq′|2 = ε (12)

δρ+ represents similarly an increment in ρA (or a reconstruction when ε = 1),
through which ρA is modified in a more or less drastic way.

When these equations are applied to the average matrix 〈ρA〉 in (4), every
final state |u〉 in (8-10) is already occupied (i.e., is a state |k′〉). For elastic
or quasi-elastic collisions, one finds then that the diagonal parts of δρ+ and
δρ− are practically equal so that their addition to Ω is essentially the non-
diagonal part of δρ+. Such a compensation does not hold however for the
action of M on an already present Ω in (4).

The contribution of 〈ρA〉 when ε is small is also instructive. If one applied
??perturbation theory to evaluate the eigenvectors of the perturbed density
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matrix ρ′A, one would get in first order

δ |k〉 =
∑
k′

|k′〉 〈k′| (δρ+ − δρ−)/(pk − pk′) (13)

But the eigenvalues pk are so close that in spite of the smallness of ε, this
series cannot make sense. This means essentially that, because of the extreme
proximity of eigenvalues in the spectrum of 〈ρA〉 and degeneracy, the wave
functions are extremely sensitive to external collisions.

To appreciate this point better, one may think of the high complexity (in
an algorithmic sense) of the wave functions for the macroscopic system A.
The effect of an external collision is tiny, in so far that the set of wave
functions looks essentially the same after a collision as it looked before. The
change has therefore no consequence on the average of a realistic physical
quantity (although is could be significant for a mathematical observable).
The individual wave functions in the set are on the contrary strongly modified
and their unitary evolution is broken. This vulnerability will be considered
as a warning concerning the relevance of global wave functions.

2.1.2 Transport of predecoherence

A collision of an external molecule occurs at some time and in some region
on the solid envelope of the apparatus A. Its effect on the state of A is
initially located near that region and expands from there to the bulk of A
through atomic collisions. Such a behavior can be at least expected in a
phenomenological approach, and one will now look at it.

In statistical physics, locality is usually described in terms of a coverage of A
by a set of small though macroscopic Gibbs cells β. The density matrix ρβ
of a cell is defined as a partial trace of ρA over the values of quantum fields
outside β. An approximate factorization of ρA,

ρ̄A ≈
⊗∏
β

ρ̄β (14)

can then express locality after an average over a convenient short time, de-
noted by an upper bar. Although the exact meaning of the approximation in
(14) and its limitations are not obviously clear, this expression is very useful
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in practice and particularly significant for an introduction of entropy.

When this approach is adapted to the present problem, it goes as follows:
One introduces a Gibbs cell β containing the atoms (or phonons), initially
affected by the collision. One also introduces the complement Cβ of β in A,
which is a large region involving most of A. The essential point in locality,
at least in the initial stage, is that the state of Cβ receives no influence from
the collision, suggesting a factorization

ρA ≈ ρCβ ⊗ ρβ (15)

Like (14), this factorization is tricky from a fundamental standpoint, mainly
because it does not use a time average. One will assume however that (15)
is significant for an account of a predecoherent perturbation. To obtain this
account, one introduces the perturbations δρβ+ and δρβ− as they become in
ρβ, and writes down

δρA ≈ ρCβ ⊗ (δρβ+ − δρβ−) (16)

This equation does not assume the validity of (14) (with its absence of an
average on time). It relies only on a supposed lack of effect of the microscopic
perturbation outside of the macroscopic region β.

Since the motion of atoms and atomic collisions control the internal dynamics
of the gas, an initial local perturbation is transported into the bulk of A. If
there is no strong damping, the cell β containing the fluctuation grows, its
boundary inflates, while the outside region C
beta shrinks eventually until β fills up the whole of A. One will try now to
get something more about this transport process.

2.1.3 Predecoherence waves

To investigate the transport of predecoherence, it will be convenient to con-
sider a case in which the environment involves also electromagnetic radiation:
The box enclosing A does not only interact with the atmosphere, but also
with a flash of light illuminating A on one of its faces, denoted by F , during
a short time. The matter in F reflects the light or diffuses it and one will not
enter into a discussion of the corresponding physical mechanism. The light
beam is much wider than F and its photon states are plane waves parallel
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to F . There is then diffraction in addition to reflection.

One disregards the intensity of the effect (i.e., the value of ε). There are
again two perturbations δρ+ and δρ−, initially located along F . A new fea-
ture is that they are not only distinguished by their sign and their origin, but
also by intricacy: The eigenvectors of δρ+ are intricate with reflected photon
states and δρ− with diffracted ones. This is obvious for δρ+ but less trivial
for δρ− and one must go back to scattering theory to prove it.

When two atoms a and a′ collide and the state of a belongs to δρ+ (so that
it is intricate with reflected light) while a′ is not intricate with light, the two
atoms in the pair aa′ become intricate with reflected light after the collision.
The same is true when the state of a belongs to δρ− and is intricate with
diffracted light. There is therefore a transport of the predecoherent pertur-
bations, due to atomic collisions, which can expand a priori with a velocity
of the order of the thermal velocity of atoms.

To show that this is the case, one must consider the populations of intricate
and non-intricate atoms. Let f(x, t)dV denote the average number of atoms
having intricacy with reflected light in a small volume dV , and f0dV the
average total number of atoms in this volume, either intricate with reflected
light or not. If the motion of atoms is considered as Brownian through their
mutual collisions and if the mean free path λ and mean free time τ of an
atom are taken as units of length and time, the evolution of f(x, t) is given
by

∂f

∂t
=

1

2
∇2f + f(f0 − f) (17)

The first term in the right-hand side represents the Brownian motion of
intricate atoms colliding together, which is dominant in a region where most
atoms have already become intricate (one took the random walk value 1/2
for the diffusion coefficient). The second term represents the local increase
in the population of intricate atoms because of their collisions with non-
intricate ones. The factor 1 − f/f0 represents the fraction of non-intricate
atoms, which have a space density f0 − f .

The nonlinearity of (17) suggests the possibility of a wave motion with a
moving front, which would separate a region, bounded by F and the front
and containing intricate atoms, from a region not yet reached by the wave,

10



where no atom is intricate and f(x, t) = 0. When looking at this possibility,
one notices first that the relative number of intricate atoms f/f0 must tend
to zero near the front. The equation (9) is not valid however near the front
where f(x, t) is small. There are only few intricate atoms and their collisions
and motion are governed by discrete random walk rather than by the first
diffusive term in the right-hand side of (8).

One considers therefore a one-dimensional discrete random walk model where
representative intricate atoms are located on planes, parallel to the front and
separated by a distance λ/

√
3 in the direction x, normal to the front (the√

3 takes into account that the collisions are three-dimensional). A collision
of an intricate atom occurs in practice only with non-intricate ones in the
front region. Moreover, after a collision, the two atoms are intricate and not
distinguishable (because of Bose-Einstein or Fermi-Dirac symmetry). Except
for some cases where the two atoms move in the same directions and one of
them catches the other one. One atom moves on average with velocity

√
3v

in the x-direction and the other atom in the opposite direction with an equal
average velocity.

In the discrete random walk model, one may consider that every intricate
atom is duplicated after a time τ , one copy making one step in the x-direction
and the other copy in the opposite direction. Assuming a stationary shape
of the front, this means that it moves with velocity v, i.e., 1 in the present
units.

Equation (17) becomes then

∂g

∂t
=

1

2

∂2g

∂x2
+ g(1− g) (18)

for the function g = f/f0. The boundary conditions are g = 0 on the moving
boundary x = t and g = 1 at the position x = 0 of F .

The same results are valid for δρ− because of its intricacy with refracted pho-
ton states. The argument of intricacy is not valid apparently in the case of
collisions by external molecules and one is left to suppose that predecoherent
waves, if they exist, result from a combination of the evolution equation for
local perturbations of the Wigner function of ρA with account of its symme-
tries. This is a long shot and, with due caution, one will only conclude that
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predecoherence moves (rather than diffusing), which is enough to understand
something of it.

2.1.4 The question of perturbations damping

The question of possible cancellations between positive and negative pertur-
bations is of obvious importance. Analogous examples exist in Boltzmann
kinetics and one of them is especially significant: It deals with an experi-
ment in which a powerful laser flash is focalized on a gas. Energetic particles
are produced at the focus and they collide with gas molecules, producing a
first generation of perturbations with increased velocities. These more rapid
molecules collide then with slower ones, with which they share some of the
excessive velocity, producing thus a second generation, and so on. In the
standard Boltzmann distribution, two terms appear then. One of them is
positive and corresponds to the arrival of molecules in a previously empty
region of phase space. The other one is negative and describes the corre-
sponding loss in the occupied region. It has been shown that, after some
time, the loss in excess of velocities brings back the Boltzmann distribution
to thermal equilibrium and perturbations vanish.

This example is difficult to transpose however because it deals with the Boltz-
mann reduction to one particle of a classical distribution of many particles,
whereas one is interested presently in the whole quantum state of a very large
number of particles. The underlying concepts need an elucidation, which can
be attempted as follows.

One will say that two density matrices ρ and ρ′ are equivalent in a phe-
nomenological sense - or more simply that they look alike - when they yield
approximately the same local values for few-particle states, by which one
means the same few-particles density matrices (few meaning for instance 1
to 3 if three-atoms scattering were taken into account). In that sense, it is
reasonable to assume that ρA(t) in (4) looks the same as 〈ρA〉.

These two matrices are very different however and one needs an expression
of this difference. A well-known one is the matrix distance, namely: One can
define a real scalar product between these self-adjoint matrices as

{ρ, ρ′} = Tr(ρρ′) (19)
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A distance between ρ and ρ′ is associated with this scalar product and is
given by

d(ρ, ρ′) =
(
Tr[(ρ− ρ′)2]

)1/2
(20)

A convenient measure for the similarity of measure of their similarity of ρ
and ρ′ is then given by the number

K =
Tr(ρρ′)

[Tr(ρ2)Tr(ρ′2)]
(21)

It is clear that K = 1 is a necessary and sufficient condition for equality of
ρ and ρ′ which look alike, are foreign to each other when K vanishes. This
notion is convenient for distinguishing two density matrices yielding the same
macroscopic and microscopic statistics, and however very different in their
eigenfunctions, i.e., at a mathematical or fundamental level. A drawback is
of course the recourse to the traces squares and products of density matrices,
which are not much manageable. One can make often however educated
guesses about the extreme cases when K = 0 or 1, which can help much in
making sensible conjectures.

2.1.5 Return to the conjecture (4)

The previous subsections reviewed the main remarks leading to the conjecture
(4), which one will now formulate more properly. One recalls that the average
defining 〈ρA〉 is meant in the framework of a random process, in which each
individual event consists in a series of external collisions at different locations
on the box and at different times. Two distinct events differ by the number,
the locations and times of their respective series of collisions. This random
process is essential in the present approach, particularly for the existence and
randomness of fluctuations in the channel probabilities when a measurement
occurs, as in section 3 later. Deep questions concerning the interpretation of
quantum mechanics stand obviously behind this, particularly the quantum
behavior of the environment, but they will be delayed until their examination
in a wider framework in section 5 later.

The average 〈ρA〉 accounts then for the properties of ρA(t), common to all
the random events. Since the random process of external collisions acts
permanently and is invariant under a time translation, the average 〈ρA〉 must
be stationary and can involve only the average value of the total energy,

13



which is the only observable remaining insensitive to external collisions in
the present case. The expression (5) is then obviously the only possible one
for it.

The matrix Ω(t) represents the deviation from 〈ρA〉 of the density matrix
ρA(t) of A at some time t when A underwent a specific series of external
collisions, the matrices Ω±(t) being then well defined as well as its two parts
with respective positive and negative eigenvalues.

The time evolution of the density matrix ρA(t) results from internal and
external dynamical effects. The internal ones, including the transport of
predecoherence in A, are governed by the Hamiltonian HA of A. The external
effects consist of the arrival of external molecules on the box and one can
thus write

∂ρA
∂t

= [HA, ρA] + S(t) (22)

where S is a random source of predecoherence, directly due to the external
collisions, and is located on the box. As a matter of fact, S(t) depends on
ρA(t) as shown in (8,9), so that (20) is nonlinear, but one does not need an
explicit account of this property.

Integrating this equation from a previous time t′ to time t, one gets

ρA(t) = U(t− t′)ρA(t′)U †(t− t′) +

∫ t

t′
dt′′ U(t− t′′)S(t′′)U †(t− t′′) (23)

with U(t) = exp(−iHAt).

One can use this equation to get a better understanding of the matrices Ω±
and explain the conjecture (6). This is the trickiest part of the discussion,
because it relies on the notion of similar though foreign matrices, introduced
in Subsection 2.1.4, which sounds obvious but is however unproved.

One begins by introducing an ideal case where the system A is subjected to
predecoherence until a time t′ after which A is isolated from the environment.
One has then S(t) = 0 for t > t′ and the density matrix becomes

ρA,iso(t) = U(t− t′)ρA(t′)U †(t− t′) (24)

If t− t′ is somewhat larger than the time during which a predecoherent wave
crosses A, one can expect that thermal equilibrium has occurred at time t.
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This does not mean however that ρA,iso(t) is exactly equal to the equilib-
rium matrix 〈ρA〉, but only that they are similar in the previous sense: they
yield only the same practical predictions. On the other hand, there exist cer-
tainly some mathematical observables (conveniently constructed operators)
for which they yield very different average values. Said otherwise, their sets of
eigenfunctions look similar but the eigenfunctions themselves are very differ-
ent in detail, mainly because of the algorithmic complexity of the Schrdinger
equation for macroscopic systems. One will consider therefore that ρA,iso(t)
and 〈ρA〉 are foreign to each other. One ??thus gets immediately a formal
expression for Ω(t), which is

Ω(t) = ρA(t)− ρA,iso(t) (25)

But ρA(t) and ρA,iso(t) are again similar and foreign to each other (their sets
of wave functions look the same but are very different in detail). One can
then assimilate the positive and negative parts of Ω(t) to

Ω+(t) ∼= ρA(t) , Ω−(t) ∼= ρA,iso(t) (26)

where the sign ∼= (congruent to) between two matrices means similarity in
their sets of eigenfunctions with a small value of the correlation K in (21). An
approximation in this congruence is due partly to arbitrariness in the choice
of the time t′, but also and jointly to our ignorance concerning the dynamics
of predecoherence damping, which is necessary to reach the following limit,
resulting from (26):

Tr[Ω+(t)] = Tr[Ω−(t)] = 1 (27)

The existence of damping is necessary for the validity of these relations. If
there were predecoherent waves as in Subsection 2.1.3, and if they did not
cancel partly by mutual deflation and reconstruction, their number would be
very large, of order N = L/vτp, if L denotes a typical size of the apparatus.
In view of (11), with ε = 1 for the sum of collisions occurring during a time
τp, one would get the absurdly large value N for the trace of Ω±. On the
other hand the congruence (26), although relying on the unsure notion of
similar and ! foreign matrices, is more credible and will be used in the next
section.

Perhaps the best argument for formulas such as (26) and for their simplicity is
intuitive: One knows the great intensity of decoherence, since it can destroy
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the quantum correlations in non-diagonal matrices showing macroscopic in-
terferences in an extremely short time. On the other hand, predecoherence
acts not as a flash like decoherence, but always with the same great strength.
Because of its destructive and creative characters, it must bring itself its own
limitation, in a permanent way. This argument does not yield trivially the
result (26), but only that some actual limit of that sort should exist. It would
be nice to find a more cogent and elegant proof for it than the present one.

Finally, one should stress that these results rely heavily on the very large
value of the predecoherence rate (3). This rate is practically zero for a mi-
croscopic system and certainly negligible for a mesoscopic system, since it
requires a sufficient size. In the mesoscopic case, predecoherence can exist
but remains a perturbation.

2.1.6 Addendum

One adds here a comment on the generalization of (4), because a special case
will be need in the next section. The present approach holds for many other
macroscopic systems. They can be also systems with organization, such as
for instance a mechanical watch: There are also external collisions on the
watch and one might be interested eventually in its quantum state. The
main properties having no influence from predecoherence - or rather from
external injection of incoherence - would be then the positions and velocities
of the wheelworks. They depend on time and obey classical dynamics, but
this classical motion results fundamentally from quantum dynamics and the
corresponding properties can be expressed by microlocal projection opera-
tors, accounting simultaneously for positions and momenta.

A general expression of 〈ρA〉 can be obtained in these cases: One denotes by
An the observables with average value insensitive to the environment (this
was the case for the total energy in 〈ρA〉. One denotes also by P (t) the prod-
uct of all the projection operators ????expressing the macroscopic properties
of the system at time t. The general form of (4) is then:

ρ(t) = P (t)exp

(
−
∑
n

λnAn

)
P (t) + Ω(t) (28)

The quantities λn are Lagrange parameters, which insure correct average
values for the observables An. This expression insures also the condition
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Tr(〈ρ〉) = 1 when one includes the identity operator among the operators An.
Generally, the average values, the Lagrange parameters and the classically
meaningful projections depend on time. Slow effects, such as for instance a
difference in temperatures between A and e, could be described in principle
by (28).

Finally, one may notice that (28) coincides in practice with the density matrix
resulting from information theory, although there is much difference in the
underlying concepts.

2.1.7 A final overview

One will use the results of the present section in the next one to examine the
problem of objectification. This is a deep problem, which requires a clear
statement of what is held for sure (or explicitly assumed) in its formulation.
Since the present results will be used, it seems appropriate to look back now
at the foundations of the whole approach.

First of all, the principles of quantum mechanics are taken as granted and
used as absolute. Secondly, since one must use the notion of environment and
there is no way to define it exactly, every physical system must be envisioned
as a part belonging to a whole, which is the universe. This is not explicitly
stated usually among the principles of quantum mechanics, but one will as-
sume as a principle that the universe is a quantum system with a sufficient
approximation and, moreover, any local quantum system is a subsystem of
this largest one.

This statement has consequences, for instance in the definition of the state
of a local system S by a density matrix. There is no obvious and general way
to substantiate this definition, if not through a trace over the values of quan-
tum fields outside S. It requires however that the state of the largest system
exists, at least formally, so that one can normalize it and, from there, deduce
that the density matrix of S is also normalized (with trace 1). This approach
to normalization might look unnecessary, but it has a central consequence:
namely that, whatever approximations one can be led to, the agreement with
normalization must be absolute.

When the existence of an environment (i.e., of the universe) cannot be le-
gitimately neglected, the density matrix ρS of a system S can be supposed
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defined at a sufficiently sharp time. One does not know it however and dif-
ferent theoretical constructions can lead to different representations for ρS
with equivalent empirical consequences. Nonetheless, the absolute character
of the quantum principles requires that the difference between the explicit
mathematical expressions of these representations should be acknowledged.
This requirement was used here as the basis for distinguishing between con-
gruent representations .

Since one can assume in the present case the empirical representation ρA =
〈ρ〉±Ω±, and since the exact ρA is only defined at a sufficiently sharp time, the
predecoherent matrices Ω± re also defined within this bound on time. When
time evolves, Ω± are nourished by the environment, but they act also on 〈ρ〉
as well as they act on each other in view of their damping. This interaction
between different formal components of the predecoherent representation of
ρA will become central in the next section.

3 A model of collapse

3.1 A model of measurement

One considers a measurement in which an external source emits an alpha
particle (denoted simply by α) in a pure superposed state |s〉 〈s| where

|s〉 = c1 |1〉+ c2 |2〉 (29)

The two states |1〉 and |2〉 of the particle α travel along different straight
lines. One will distinguish two cases: In Case I, α crosses the previous
Geiger counter A in state |1〉, but does not cross it in state |2〉. One will
then say then that Channel 2 is mute. In Case II, α crosses A in both states
|1〉 and |2〉, but the two trajectories are sufficiently distant to yield clearly
distinct tracks.

The particle slows down in the detector and generates a track consisting
mostly of excited atoms an also a smaller number of ions and free electrons.
An electric field slightly modifies the trajectories, but its main effect consists
in generating a cascade of secondary excitations and ionizations, which pro-
duce a record after reaching a macroscopic level.

When α and A interact, their states become entangled and the density matrix
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of the system A+ α becomes

ρA+α =
∑
j,j′

(|j〉 〈j′|)⊗ ρAjj′ (30)

where j and j′ are equal to 1 or 2. One has then

Tr(ρAjj = pj ≡ |cj|2 (31)

One is interested in eventual fluctuations in the traces (p1, p2) of the two
diagonal matrices ρA11 and ρA22, which would occur after track formation.
The non-diagonal matrices ρA12 and ρA21 are rapidly damped by decoherence,
but this point is unessential (if there is collapse, macroscopic interferences
disappear anyway).

Fluctuations in (p1, p2) will be shown a consequence of predecoherence and,
more precisely, of predecoherence already present before the measurement.
Using the expressions (4-6), one introduces therefore predecoherent average
density matrices 〈ρA11〉 and 〈ρA22〉, and also the random matrices Ω+ and Ω−.
The average non-diagonal matrices 〈ρA12〉 and 〈ρA21〉 vanish, contrary to their
actual realizations ρA12 and ρA21 whose traces only vanish under decoherence.
(This is because the matrix elements of ρA12 and ρA21 are scalar products of
eigenvectors of ρA11 and ρA22, which are extremely sensitive, so that their
products vanish on average). In any case, one will not have to deal with
them.

3.2 Slowing-down and intricacy

The slowing down process obeys Schrodingers dynamics, which predicts that
α follows a definite trajectory, which one assimilates to a straight line, and one
introduces a distance x along this line. The Bethe-Bloch equation describing
the slowing down process predicts the average number density n(x) of excited
and ionized atoms along the track, while atomic physics predicts the quantum
average of excitation energy. One will denote by N(x) the observable with
quantum average n(x), which can be identified with an operator a†(x)a(x)
in terms of quantum fields a(x) describing excited atoms. The density effect
correction in the Bethe-Bloch equation is negligible in the present case and
the atoms can be considered as independent in the slowing-down process. As
a consequence, the predictions are identical for the average density matrix

19



〈ρA11〉 and for the predecoherent one ρA11.

One will consider for simplicity that the process is quick enough to make the
α − A interaction almost instantaneous and occurring at some time 0. One
will also neglect the difference between excitation and ionization and consider
all the interacting atoms as excited with the same energy. Moreover, one will
concentrate attention on the effects occurring soon after time 0 and pay no
special attention to free electrons and the production of cascades.

Because predecoherence breaks down global wave functions and the unitary
evolution they would have in ideally isolated systems, it brings emphasis on
locality and transport. One therefore introduces a macroscopic region R in
which the track is contained (the reactive region), and also a region B (the
background), which is the complement of R in A. This is enough in Case
I where Channel 2 is mute, but there are two distinct reactive regions in
Case II and B is the complement of their union. For simplicity, most of the
following discussion will be made for Case I.

The initial detection effects take place in R whereas B is insensitive to them,
so that one can use an approximate factorization just after time zero, in
which

〈ρA+α〉 ≈

{∑
j

(|j〉 〈j|)⊗ ρRjj

}
⊗ ρB (32)

Eq.(5) yields in Channel 1:

〈ρR11〉 = exp (−λ1I −HR/T − µ1N) (33)

with an abbreviated notation where

µ1N =

∫
µ1(x)N(x)dx (34)

These equations rely again on the fact that an average matrix can express
only properties that are insensitive to predecoherence. The Lagrange param-
eters insure respectively a trace of 〈ρA11〉 equal to p1 (for λ1), the thermal
average energy in the medium (for T ) and the average values n(x) of the
numbers N(x) (for µ1(x)). One did not write explicitly the contribution of
excitation to the Hamiltonian, because it derives from n(x) when average
excitation energy is used.
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One can also use (32) and (33) to write down

(|1〉 〈1|)⊗〈ρR11〉 =

(
|1〉 〈1|)exp(− |1〉 〈1| ⊗ (λ1I + µ1N)− 1

T
Iα ⊗HR

)
(35)

where Iα = |1〉 〈1|+ |2〉 〈2| is the identity operator in the Hilbert space of α.
This equation shows clearly the locality of excitation and, moreover, the sum
in the exponent is analogous to a factorization and shows something more:
The quantum state of the whole region R is not only factorized out from
〈ρA〉 as it was in (32), but there is a much finer separation between essential
effects and inert ones, since the excited atoms in R are singled out and the
crowd of other atoms is left out, including those in R that did not become
intricate with |1〉.

Intricacy and entanglement become much thus more elaborate in a prede-
coherent system than they are in an ideally isolated one where the state is
rigidly frozen into global wave functions. There is now an individuation of
intricacy, which is initially restricted to the excited states, similar to excitons
in solid-state physics. This implies a departure from the usual interpretation
of entanglement in measurement theory: The state |1〉 of the particle α is
not directly intricate with all the atoms in the average matrix 〈ρR11〉, but
only with excitons. Moreover, although this restriction to excitons is initially
valid, there is soon after a growth and transport of intricacy, which selects
new non-excited atoms for intricacy out of a crowd of spectators.

One encountered already this kind of effect in Section 2 with the growth and
transport of intricacy in a predecoherent wave resulting from illumination.
When an atom a, intricate with |1〉, collides with a non-intricate atom a′,
both atoms are intricate with |1〉 in the final state. The number of intricate
atomic states grows therefore. There is however no change in the channel
probabilities (p1, p2), as long as everything occurs in 〈ρA+m〉, because the
Hamiltonian HA governs the process unitarily. As shown in the previous sec-
tion, there is a local growth in intricacy and also an expansion of the regions
of intricacy, both of which start from the track. The boundary of the intri-
cate region moves at the thermal velocity of atoms, while the local increase
in the number density of intricate atoms is governed by Eq. (17). The local
number of intricate atoms increases therefore initially like exp(t/τ), where τ
is the mean free time of atoms, and this increase saturates finally when all
the local atoms have become intricate. It will be convenient from there on
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to coin a name for atoms intricate with |1〉, either excited or not, and one
will call them intricons, on the model of excitons.

Nothing of that kind occurs on the other hand in the mute channel 2 and
〈ρA22〉 remains given by the simple form (5), except for its probability p2.
The necessary extension to two channels in Case II will be considered as
trivial.

3.3 Histories of collapse

One will now anticipate on the existence of fluctuations in p1 and p2, which
would result from the predecoherent matrices Ω±. The purpose is to identify
the relevant theoretical concepts. One will mainly concentrate on Case I
where there is a mute channel, because it is especially delicate and will be
shown in Section 4 to play central part in some paradigms of measurement.

One builds up a history of collapse, starting at time 0−, just before the α−A
interaction. The average matrix 〈ρA〉 is still given at that time by (5). One
also assumes that, because of their saturation resulting from anterior mutual
interactions and expressed by the equations (6), the two matrices Ω+ and Ω−
are independent.

The α − A interaction occurs at time 0. It would be easy to account for
the duration of this interaction and its development in space, but this is
unessential and one will not enter in these aspects. A new average matrix
〈ρA+α〉 occurs at time 0+, immediately after the α − A interaction, and is
written as

〈ρA+α〉 =
∑
j

(|j〉 〈j|)⊗ 〈ρAjj〉 (36)

This is not an abstract quantity but the exact outcome of the interaction
between 〈ρA〉 and |s〉 〈s|, deprived of its non-diagonal terms. Actually, it
depends much on preparation, through the exact wave functions of the in-
coming states |j〉.

After a short time δt, the states Ω± have begun to act and to produce fluc-
tuations in p1 and p2. There have been many interactions of Ω+ and Ω−
with individual intricons and the resulting effects on the channel probabili-
ties mostly cancelled, but fluctuations remain because of the independence of
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Ω+ , Ω−, and their independence from the states of intricons. The outcome
is a random change δp1 in p1 and δp2 = −δp1 in p2, positive or negative.

To follow the development of the process, one represents these fluctuating
effects by the introduction of two average density matrices in place of the
unique one 〈ρA+α〉 at time 0+. One might denote them with indices and

a time reference, for instance 〈ρ(+)
A+α(δt)〉 and 〈ρ(−)A+α(δt)〉, but the notation

would become rapidly heavy and one will just say that two copies of 〈ρA+α〉
have been generated at time δt. In the first one, p1 changed by a positive
quantity ∆p1, defined by

(∆p1)
2 = 〈(δp1)2〉 (37)

where the average in the right-hand side results from the many δp1 from
interactions of intricons with Ω±. The change in the value p2 for the trace of
this matrix is negative and equal to −∆p1. In the second matrix, p1 changed
by −∆p1 and p2 by +∆p1.

More fluctuations occur during the time interval [δt, 2δt]. Each matrix at
time δt gives rise to two copies with respectively positive an negative ∆p1,
generally different from the previous ∆p1, so that one gets four copies ac-
cording to the signs of fluctuations during each time interval δt. Clearly,
at time nδt, 2n different copies have been generated and each one of them
is associated with a definite random walk in a two-dimensional space with
coordinates p1, p2 (actually a one-dimensional space since p1 + p2 remains
equal to 1). This is practically identical with Pearle’s model and should im-
ply therefore collapse with final probabilities for the outcome agreeing with
Born’s rule.

The external collisions occurring after time 0 do not contribute to this out-
come, whereas they are responsible for decoherence in the non-diagonal ele-
ments of the matrix ρA+α resulting from interaction of α in the state |s〉 〈s|
with the actual state ρA, given by (4). This lack of influence of decohering
collisions is due to the slow transport of their effects, which only affect a
margin of the A-boundary with width vτc if τc is the (very short) time of
collapse. The intricons in region R are generally far from this boundary and
their interactions with atomic states in Ω± are local. Fluctuations in proba-
bilities are therefore unaffected by later effects from external molecules.
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One should stress that this conceptual framework of collapse histories relies
explicitly and necessarily on a real randomness of predecoherence, or of the
matrices Ω±. This point could have far-fetched consequences: If there ex-
ists for instance a wave function (or a quantum state) of the universe, ρA is
perfectly well-defined at time 0 as a partial trace of this state and involves
apparently no internal randomness. One will come back to this question in
Section 6 and leave it aside presently.

3.4 Fluctuations in probabilities

The random predecoherent matrices Ω± interfere with the growth of intricacy.
Restricting the discussion to Case I with a mute channel, let one consider an
intricon a whose wave function ϕa belongs to 〈ρA11〉. When it collides with a
non-intricate atom a′, the density matrix ρ′ of a′ consists of three mutually
incoherent parts, which are respectively partial traces on 〈ρA+α〉, Ω+ and Ω−.
When a state a′ belongs to 〈ρA+α〉, it interacts only with a through its part
belonging to 〈ρA11〉. The two-particle scattering matrix for the pair aa′ is
governed by HA and unitary, so that a′ becomes intricate with |1〉 after the
collision, increasing the number of intricons but conserving p1.

When the state of a belongs to Ω+, there can be again a collision with a,
but the two states of a and a′ cannot be given definite phases and, although
there is a scattering cross-section, there is no scattering amplitude (or rather
its average on arbitrary phases is zero). There is then no constraint from
unitarity and, when a′ becomes another intricon, it can bring also to 〈ρA11〉
an addition to its trace p1. In the case of a state of a′ belonging to Ω−, it
brings a negative probability to 〈ρA11〉. One saw, in the initial discussion
of predecoherence in Section 2, that these two effects appear respectively as
addition and subtraction to 〈ρA11〉, but the difference is now that they are
no more simultaneous losses and reconstructions, because of saturation, In
other words, Ω+ and Ω− are independent whereas δρ+ and δρ− were closely
linked together and acted simultaneously. This simultaneity being damped
by transport and mutual interactions, a collision of a with a state of a′ in
Ω occurs either with a state belonging to Ω+ or a state belonging to Ω−,
with no precedence of Ω− over Ω+. This property is obviously essential for
a link of collapse with predecoherence, and it stands as a guess whose proof
seems far from reach. Nevertheless, one will take it as an assumption and
see whether it could have significant consequences.
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A new question is then to decide whether fluctuations in (p1, p2) arise actually
from incoherent fluctuations in the number of intricons. What is the relation
between these quantities? This question appears nontrivial since, in the case
when p1 = 1, there would be fluctuations in the number of intricons, but
there should be none in p1. The same is true when p1 = 0 and it suggests
that 〈δp21〉 is probably proportional to the product p1p2.

One can guess the desired relation between fluctuations in probabilities and
in the number of intricons through a comparison between generic values of
p1 and the case p1 = 1. Denoting by n1(x) the space density of intricons
in the generic case and n(x) when p1 = 1, the Bethe-Bloch equation yields
immediately the relation n1(x) = p1n(x), when there are only excitons and no
secondary intricons. This proportionality implies also n1 = p1n for the total
average number of excitons and n1β = p1nβ in a macroscopic cell β inside the
reactive region, because the history of intricacy in the two cases (averages
being meant here as quantum averages and not predecoherent ones). But
the eigenvalues of the number operator N−β of excitons, with average value
nβ, are integers and one can therefore consider that the excitons behave like
particles, their space repartition being carried by their wave functions.

If one could apply the same considerations to intricons, one could label the
intricons by a set S of n indices ν in the case p1 = 1 and a set S ′ of n1 indices
in the generic case. The set S ′ can be chosen as a subset of S respecting
approximately the space distribution. Let one consider then a collision of
an arbitrary generic intricon with an atom in a state belonging to Ω+. The
collision produces an increase δn1. Because this intricon, whose label belongs
to S ′ corresponds also to an intricon with the same label in S, n also increases
by δn1 from the same collision. The ratio p1 = n1/n becomes then p1 + δp1
with

δp1 =
(n1 + δn1)

(n+ δn1)
− n1

n
or finally δp1 ≈ p2

δn1

n
(38)

A remarkable property of this expression is to satisfy immediately the con-
dition δP1 = 0 when p1 = 1.

When one considers the mute channel 2 in Case I, a change δp2 = −δp1 re-
sults necessarily from the fundamental property p1 + p2 = 1. One would like
however to understand the mechanism producing this change, since Channel
2 is mute and ignores Channel 1 in principle. A consideration of the two pre-
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vious sets S and S ′ of labels in Channel 1 provides the necessary explanation
as follows: The collisions of intricons with non-intricate atoms, labeled in the
set SS ′, would have occurred for p1 = 1 and they did not for a generic value
of p1. But the predecoherent matrices Ω± ignore intricacy and their actions
compensate each other on average on 〈ρA+α〉, but there is no reason why this
compensation should hold separately for 〈ρA11〉 and 〈ρA22〉. The fluctuations
arising from intricons with label in S−S ′ are not compensated in the generic
case, and they appear as uncompensated transitions in Channel 2. Hence
one can understand why δp2 occurs, the reason of its sign and its explicit
value.

One thus arrives at a rather clear overall pattern: There are collisions of
atoms in the two channels, with or without secondary cascades bringing out
records at a later stage. These events are independent and the respective de-
velopments in the two channels ignore each other. In other words, in Channel
1, the generation of excitons, development of intricacy, secondary cascades
and so on will be identical whether p1 = 1 (in which case the final outcome is
certain) or when p1 has another value. But whereas the events inside the two
channels are independent, this is not so for their respective squared quantum
amplitudes p1 and p2. The two channels share the predecoherent waves Ω±.
There are interactions between copies of the channels and atomic states in
these waves, which give rise to fluctuations in probabilities and a doubling
of copies after a time δt. This is equivalent to a Pearle Brownian motion
in probability space of two channels continuing to ignore each other in their
inner dynamics.

3.5 Quantitative estimates

To make an explicit calculation as short as possible, one considers Case II
involving two tracks (generalization being straightforward). The two beams
are identical with the same energy and differ only by the distant positions
of the two tracks and their probabilities at time 0+. One considers only the
initial stage of reduction when cascades have not yet developed. Attention
is concentrated on excitons and on intricons resulting from them. Ions and
electrons, which are in much smaller number, are also neglected. Previous
notations are used, except for distinguishing the channels by an index 1 or
2. One has then n = n1 + n2 , n1 = p1n , n2 = p2n at time t.
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The locality of intricon-atom collisions is essential and, to take it into account,
one covers each reactive region by a set of narrow cells with a width Λ, which
are denoted by β and transverse to the track. In the expression (32), one
introduces approximate factorizations so that

〈ρRij〉 ≈ pj
∏
β

ρβj (39)

in which the density matrices of cells have trace 1.

Let the index β now refer to a cell in Channel 1, nβ1 being the average
number of intricons in it and nβ the corresponding reference number of intri-
cons (which would occur in β at time t if p1 were equal to 1. One then has
nβ1 = p1nβ. Since the density matrices ρβ1 have trace 1, the relation (38) be-
tween fluctuations in the number of intricons and fluctuations in probabilities
during a time δt becomes

δTr(ρβ1) = p2
δnβ1
nβ

(40)

Fluctuations in nβ1 result from collisions of various intricons in β with atoms
whose state belongs either to Ω+ or Ω−. The corresponding changes in nβ1
are respectively positive or negative and they cancel on average since Ω+ and
Ω− are closely similar locally. Letting then δ denote the probability for an
individual intricon to collide with an atom with state in Ω+ during the time
δt, the number of collisions arising from Ω+ or Ω− is nβ1δ and the squared
standard deviation resulting from increase and decrease of nβ1 by Ω+ and Ω−
is ∆2 = nβ1δ. Using (38), one gets then for the squared standard deviation
arising from collisions in Channel 1

〈(δTrρβ1)2〉 =
(p1p

2
2δ)

nβ
(41)

Bringing this into (39), one gets

〈(δp1)2〉 = (p1p
2
2δ)
∑
β

n−1β ≈ (p1p
2
2δ)

N(β)

nβ
(42)

In the last expression, one did not try account for the evolution of slowing
down along the track and introduced simply the number N(β) of cells along
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the track.

But every fluctuation δp1 implies a fluctuation δp2 = −δp1 and the relations

A ≡ 〈(δp1)2〉 = 〈(δp2)2〉 (43)

are quite general. There is therefore a fluctuation of p2 in Channel 2 rising
from collisions in Channel 1, still given by (42). The fluctuations resulting
from collisions in both channels are therefore expressed with the notation in
(42) by

A ≈ (p1P − 2(p1 + p2)δ)
N(β)

nβ
= (p1p2δ)

N(β)

nβ
(44)

Let one then make rough numerical estimates. Denoting again by τ the
mean free time of collision for atoms, one has δ = δt/τ . If L is the length
of the track, one has N(β) ≈ L/|Lambda. Considering the total number of
intricons, soon after time 0+, as of the same order as the number of excitons,
this is of order E/e, where E is the energy of the α particle and e the average
energy of excitation of an exciton. The most poorly defined quantity is the
minimal width Λ of a cell, which will be taken as a few times the mean free
path λ. Taking λ = O(105 cm), τ = O(10−10 s), E = 10MeV , e = 10 eV ,
L = 10 cm, one gets

〈(δp1)2〉 = 〈(δp2)2 = −〈δp1δp2〉 =
p1p2δt

τc
(45)

where the time scale of collapse τc is of order 10−11 s.

The ratio L/Λ was probably overestimated and these numbers should not
bring overconfidence in the results. One will add no further comments
presently concerning possible generalizations,, what could happen later in
cascades, possible fluctuations outside the reactive regions by photons aris-
ing from the decay of excitons, other events in an outside electric circuit
where the mean free time of electrons is significantly shorter , and so on.
The main point is that, even if some guesswork was made, no basic ob-
structions was encountered against the idea that collapse could be due to a
quantum mechanism. Nothing more will be claimed.
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4 Other examples

The example of measurement in the previous sections was rather special
and many extensions or discussions could be added. One will however avoid
comments and mention only briefly two questions regarding many channels
and the significance of mute channels.

In the case of Schrodingers cat experiment, a radioactive source is part of the
detector and can even stand inside it. Many possible different tracks behave
then like so many measurement channels j and carry some probabilities pj.
One can put nevertheless all of them together when discussing whether the
radioactive source decayed or not. It is enough to proceed as in the previous
section, except for using spherical cells β, centered on the source.

The question of many channels remains however and is tricky. The only
simple property regarding them is a generalization of the formulas about
correlations, which can be shown to become

〈δpjδpj′〉 = −pjpj′
δt

τc
for j 6= j′ (46)

〈(δpj)2〉 = pj(1− pj)
δt

τc
(47)

The question asking how the different channels compete and how one of them
wins finally the game remains anyway problematic.

Another question is again concerned with a paradigm of measurement, namely
the Stern-Gerlach experiment: Two spin states of a spin-1/2 atom follow dif-
ferent trajectories along which two detectors are located. Why is it however
that the two detectors are not independent and why, when there is a click in
one detector, there is no simultaneous click in the other one?

The adaptation of the previous approach consists then in the necessary in-
troduction of mute channels, implying to deal with four channels, namely:
(1) The detector D1 clicks and the other one D2 does not. (2) D2 clicks and
D1 does not. (3) Both detectors click. (4) Both detectors do not click. One
finds then that mute channels, which had initially zero probability, are never
created from predecoherence and never occur at the end. The connection
of the two detectors, on the other hand, appears only through the property
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p1 + p2 = 1. This is clearly a manifestation of non-separability in quantum
mechanics.

5 Assessments and perspectives

Some returns to principles are advisable before making conclusions, even in a
sketchy way. Advisable also will be a use of the word incoherence here rather
than predecoherence. To begin with, one may point out that incoherence is
not a one-way process going only from the environment to the apparatus.
There is also an injection of incoherence from the apparatus towards the en-
vironment, as especially clear in high-energy physics where the environment
of a detector is often made of other detectors. Incoherence is therefore a uni-
versal feature of physics, at least where macroscopic objects are present and
have a classical behavior or a classical location. In that sense, the stochastic
character of collisions from outside on a Geiger counter can be considered as
a manifestation of external incoherence.

This standpoint does not contradict in principle the power and the value of
idealization when, for instance, an atom is considered as an isolated system
and studied for itself. The compatibility with a universe where incoherence
dominates reality remains, because one can easily estimate in such a case the
perturbations arising from the environment of the atom and check that they
are negligible.

The difficulty - if there is one - is to rid ones mind of a tradition where one
thinks primarily of quantum mechanics in terms of wave functions evolving
unitarily, and takes this standpoint as so universal that, always, one could
think that a non-isolated system belongs to a larger one that is isolated or
behaves as if it were so. This kind of argument relies usually on the idea
that a far-away part of the environment has no influence on a local system,
because of the time necessary for its influence to be felt. But one saw here
that an essential property of incoherence is its permanence, and the local in-
coherence acting at some time locally is always part of a permanent process
forbidding a mental use of global unitary evolution. In that sense, one can
never put a spatial limit to the environment. Some physicists, well aware of
this difficulty, tried to overcome it through recourse to a wave function Ψ of
the universe]. But the concept of Ψ is rather vague and can receive many
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meanings. It has sometimes, in some papers not much more content than a
Greek letter. Even if this Ψ exists, it makes little sense from a mathematical
standpoint. When one conceives a very wide Hilbert space and a version of
quantum physics embedding space-time, it is obvious that Ψ is extremely
thorny. What are its properties of continuity? To which level in precision
does one need to go down to make sure that it does not behave incoherently
at some distance?

Although one may assume to have some grasp on it, for instance in string
theory, Ψ has certainly a high algorithmic complexity, or rather a high al-
gorithmic depth (if one means by this depth that a computation of Ψ on a
Turing machine would become exponentially longer when a larger part of the
universe is covered). Reversing the argument, one can then just as well con-
ceive that Ψ should be algorithmically random in the Kolmogorov-Chaitin
sense. This would be nice and the consistency of physics would become
clearer: Algorithmic randomness would be responsible for the randomness
of incoherence (predecoherence). Through Pearle’s derivation of Borns rule
or something like the present approach, one would understand why some
squares of quantum amplitudes can become identical to the frequencies in a
long series of measurements. One would be then allowed to call them proba-
bilities without implying by this word that quantum mechanics is intrinsically
probabilistic. Quantum mechanics would be only considered as so complex
at a non-microscopic scale that unpredictability would be the essence of this
probabilism, not because of ignorance as Laplace thought, but because of
intrinsic inaccessibility.

There could also be still wider perspectives: The present work started rather
long ago from an impression that the quantum principles are so deep that
they could contain in germ every concept entering in their interpretation.
This idea came out from some advances in interpretation, such as the re-
moval of many paradoxes by the logic of consistent histories, the agreement
of classical determinism with quantum dynamics, and last but no least, the
concept and observation of decoherence. All these results came directly from
the quantum principles without any change in these principles. If the unique-
ness of macroscopic reality could become also a consequence of the quantum
principles, one would be not far from a deductive interpretation of quantum
mechanics. One could also propose a new answer to the metaphysical prob-
lem of Reality, in which an absolute reality Ψ (or a fine-grained history of the
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universe) implies dynamically, through its own complexity, the uniqueness of
empirical reality at a macroscopic scale.

This is of course extremely speculative however and one acknowledged on
the other hand that the present work contains more guess than proof. Many
errors occurred during quite a few years when this research was made; but
may be worth mentioning that, after the main lineaments had been found,
the theory took shape by itself and led with no great difficulty to suggestive
answers for the questions it raised.

As a conclusion, one must recognize again that guesswork has been exer-
cised at some key point concerning the relation between predecoherence and
collapse, where a thorough analysis and rigorous proofs would be needed.
Nevertheless, I dare say that a fundamental consistency within quantum me-
chanics, encompassing measurement, appears more attractive than most pro-
posals for the deep problem of objectification. Further investigations would
be worth more thorough attempts.
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