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Abstract

It is shown that, in the context of an idealized “macroscopic quantum co-
herence” experiment, the predictions of quantum mechanics are incompat-
ible with the conjunction of two general assumptions which are designated
“macroscopic realism” and “noninvasive measurability at the macroscopic
level”. The conditions under which quantum mechanics can be tested against
these assumptions in a realistic experiment are discussed.

Despite sixty years of schooling in quantum mechanics, most[1] physicists
have a very non-quantum-mechanical notion of reality at the macroscopic
level, which implicitly makes two assumptions. (A1)Macroscopic realism:
A macroscopic system with two or more macroscopically distinct[2,3] states
available to it will at all times be in one or the other of these states. (A2)
Noninvasive measurability at the macroscopic level: It is possible, in princi-
ple, to determine the state of the system with arbitrarily small perturbation
on its subsequent dynamics. A direct extrapolation of quantum mechanics to
the macroscopic level denies this. The aim of this Letter is (1) to point out
that under certain conditions the experimental predictions of the conjunc-
tion of (A1) and (A2) are incompatible with those of quantum mechanics
extrapolated to the macroscopic level, and (2) to investigate how far these
conditions may be met in a realistic experiment.

To this end, let us consider the (as yet unobserved) phenomenon of “macro-
scopic quantum coherence” (MQC) in an rf SQUID.[4] We take the potential
V (q) for the trapped magnetic flux q to be reflection symmetric (see Fig. 1)
with minima at ±q0 far enough apart that states in which q is close to +q0
and −q0 can be regarded as macroscopically distinct. For an isolated SQUID,
quantum mechanics predicts that if the flux is initially in one well, it will
oscillate back and forth with some frequency ∆0. A more realistic quantum
mechanical calculation[5] which includes the irremovable environmental ef-
fects shows that for low enough temperature and weak enough coupling to
the environment, the oscillations are not entirely destroyed, but merely un-
derdamped. Since it is under these conditions that our argument is most
pertinent, we shall assume that the experimental constraints on achieving
them, while stringent[6], can, in fact, be met.



Figure 1: The potential V (q) for the trapped flux q. The various notations are explained
in the text.

Let us divide the possible values of q into four regions L, C−, C+, and R as
shown in Fig. 1, where x0 << a << q0, x0 being the zero-point width that a
wave packet would have in either well if the other were absent. We define
a quantity Q, which equals +1(−1) if the system is observed to be in region
R(L). If we temporarily ignore the minuscule probability of finding the
system in C±, quantum mechanics predicts (and we assume that experiment
will find) that any observation of Q will find only the values ±1.

It immediately follows from (A1) that for an ensemble of systems prepared in
some way at time t0,[7] we can define (i) joint probability densities ρ(Q1,Q2),
ρ(Q1,Q2,Q3), etc. for Q to have the values Ql at times ti (we take t0 < t1 <
t2....), (ii) correlation functions Kij ≡ ⟨QiQj⟩. The probability densities must
be consistent with one another, which implies, e.g.,

∑
Q2=±1

ρ(Q1,Q2,Q3) = ρ(Q1,Q3) (1)

From this, we can derive inequalities similar to those of Bell[8] or of Clauser et
al.[9] for the Einstein-Podolsky-Rosen (EPR) experiment[10] with the times
ti playing the role of the polarizer settings. For example, we have

1 +K12 +K23 +K13 ≥ 0 (2a)
∣K12 +K23 +K14 −K24∣ ≤ 2 (2b)
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If we assume that (A2) can be realized in an actual experiment (we shall dis-
cuss this below), then these correlations and probabilities can be measured,
and we can test whether (1) and (2) hold.

We can also test (1) and (2) against the predictions of quantum mechanics.
For definiteness, we consider the case of “Ohmic” dissipation, which has been
studied in detail by Chakravarty and Leggett.[5] The behavior of the system
can be parametrized by ∆r, a renormalized tunneling frequency, by ωc the
highest frequency scale at which the environment can respond, and by α,
a dimensionless dissipation coefficient. Typically ∆r << ∆0 << ωc. If, as in
Chakravarty and Leggett, we ignore the so-called “interblip effects” (which
is a good approximation both for very low T and α, when the flux executes
underdamped oscillations, and for high values of T and α, when we have
overdamped relaxation), then although we cannot rigorously prove, we can
very plausibly argue that for ti, ∣tj − ti∣ >> ω−1c , Kij is essentially independent
of the choice of the initial ensemble and equals P (tj − ti) as defined there.[5]
One can further argue that

ρ(Q1,Q2,Q3) ≃ ρ(Q1,Q2)ρ(Q2,Q3) (3)

It is now clear from experience with Bell-type inequalities that if P (t) is not
too heavily damped, then quantum mechanics will violate conditions (1) and
(2). Consider, for example, the expression (24) of Chakravarty and Leggett
for P (t) at T = 0, and set ∆P (t) = 0.[5] Since the “incoherent” part, Pinc(t), is
always negative, we will overestimate the left-hand side of (2a) if we neglect
this altogether. Any value of α for which a violation of (2a) is thus obtained
will be less than the critical value of α beyond which (2a) is always satisfied.
The reader can verify that for

t2 − t1 = t3 − t2 = 2.3∆−1
eff(≈ 2

3π∆−1
eff)

and α ≤ 0.11, Eq. (2a) is indeed violated. A similar underestimate of the
critical α value can be obtained from (2b) but with Pinc(t) replaced with its
asymptotic long-time form (which overestimates its magnitude).[11] Doing
this we find that Eq. (2b) is violated for

t2 − t1 = t3 − t2 = t4 − t3 = 0.84∆−1
eff(≈ 1

4π∆−1
eff)

and α ≤ 0.08.[12] Note, however, that quantum mechanics and rnacroscopic
realism continue to differ even in the over- damped regime. Using the meth-
ods of Ref. 5, we can show that for Q1 = Q3 = 1, quantum mechanics would
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have the left-hand side of Eq. (1) exceed the right-hand side by

[h̵cot (πα)
4τkBT

e[−(t3−t2)/τ]]

a quantity that can assume negative values.[13]

There is a slight difficulty in this argument arising from the nonzero (but
exponentially small) probability of finding the system in regions C± (see Fig.
1), which is that once the system can have nearby q values, the concept of
“macroscopically distinct states” becomes somewhat blurred. The easiest so-
lution to this problem is to modify the macroscopic realism postulate (A1)
to allow the system to be in a superposition of only two neighboring states
(R and C+, C+ and C−, etc.). We now assign to Q the value +1(−1) if the
system is in R(L) alone, in C+(C−) alone, or in a superposition of R and
C+ (L and C−). The only combination which can affect Eqs. (1) and (2) is
C+ and C−. Its contribution, however, cannot be more than a few times the
total probability for find- ing the system in either C+ or C−, which is vanish-
ingly small, and the incompatibility of quantum mechanics and macroscopic
realism is not affected.

We now turn to the vexing question of whether the assumption (A2) of
noninvasive measurability is likely to hold in practice. Indeed, ever since
Heisenberg’s “invention” of the “γ-ray microscope”, we have all learned not
to make such assumptions when dealing with microsystems, and at first sight
there is no reason to treat macrosysterns differently. We can, nevertheless,
make (A2) seem extremely natural and plausible by introducing the idea of
an ideal negative result experiment. This is defined to be an experiment in
which the measuring apparatus interacts with the system (and then very
strongly) only if the latter has one value of Q(t) (say +1), and does not
interact at all otherwise. We can then confidently infer that Q(t) has the
value −1, if at time t the system does not elicit a response from the appara-
tus. Conjoined with the assumption of (A1) and (A2), this would, of course,
not be formally macroscopic reality, this strongly suggests that the system
also had Q(t′) = −1 for t′ immediately prior to the measurement at time t,
and therefore that (at least in the limit of an arbitrarily short measurement)
the apparatus could not have affected the dynamics of the system, i.e., that
(A2) holds. Unlike the two-slit experiment where such a measurement can
be made by shining light on one slit only, it is highly doubtful whether the
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analogous measurement could be made for an rf SQUID, but the difficulty
seems to be technical and not conceptual. Under the assumption that an
ideal negative-result experiment can be conducted, it is plain that all the
quantities in Eqs. (1) and (2) can be measured. Suppose, for example, we
wish to measure ρ(Q1 = 1,Q3 = 1). Since the dynamics after t3 are not of
interest, we can use an ordinary measurement at t3, and an ideal negative-
result setup at t1, which responds only if Q(t1) = −1. We then simply discard
those members of our ensemble which produce a response at t1. Of the re-
mainder, we count the number which have Q(t3) = 1 and divide by the total
number of members of the ensemble to obtain ρ(Q1 = 1,Q3 = 1). By using a
different ideal negative-result setup on another large and identical ensemble,
we can obtain ρ(Q1 = −1,Q3 = 1). We can thus calculate a value of K13, and
assumption (A2) al- lows us to assert that this is the K13 characteristic of
the original ensemble.

An alternative to making ideal negative-result measurements is to couple the
system to a microscopic probe. For example, in principle one could fire a
neutron through the SQUID ring with its spin transverse to the magnetic
field with a velocity such that it would precess precisely through an angle
±π/2 if q−±q0, and with a Larmor frequency much larger than ∆eff but much
less than the small oscillation frequency in either well. Let us consider how
this method could be used to measure ρ(Q1,Q2,Q3), for example. For sim-
plicity, let us prepare the system in a definite state (say Q1 = +1( at time t1
itself. We then fire our neutron to pass through the ring at t2, and measure
the flux at t3 directly. Since the SQUID-neutron interaction is effectively
instantaneous on the scale of ∆−1

eff , we can infer the value of Q at time t2
by measuring the neutron spin at any time after t2, or even t3!’ A little
thought shows that the quantum mechanical prediction (3) still holds with
extra (small) corrections due to the finite duration of the measurement at
t2. Similar small corrections enter into the macroscopic-realisitic predictions
(1) and (2), so that once again, the conflict between quantum mechanics and
assumptions (A1) and A(2) is not affected.

In conclusion it should be emphasized that, should the quantum mechani-
cally predicted results be obtained in a situation where they conflict with
postulates (A1) and (A2), this would, of course, not be formally in conflict
with the arguments so often given in discussions of the quantum theory of
measurement to the effect that once a microsystem has interacted with a
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realistic measuring device, the device (and, if necessary, the microsystem)
behave as if it were in a definite (and noninvasively measurable) macro-
scopic state: The macroscopic systems suitable for a macroscopic quantum
coherence experiment are certainly not suitable to be measuring devices, at
least under the conditions specified. But such a result might cause us to
think a great deal harder about the significance of the “as if”!
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[1 ] One must, of course, exclude here the genuine adherents of the relative-
state (“many worlds”) and mentalistic (“reduction-by-consciousness”)
interpretations of quantum mechanics. We strongly suspect that the
number of physicists who in fact genuinely adhere to either of these
interpretations (in the sense that it really makes a difference to the
way they think about the macroscopic world) is considerably less than
the number who claim to!

[2 ] 0ne can, of course, argue ad nauseam about the precise meaning of the
phrase “macroscopically distinct”. One specific objection which is some-
times raised with respect to a hypothetical experiment on a SQUID ring
is that the difference in flux values between the two potential minima
can be at most a fraction of the flux quantum φ+0 ≡ πh̵/e [A. J. Leggett,
in Proceedings ofÃA TO Advanced Study Institute on Percolation, Lo-
calization, and Superconductivity, edited by A. Goldman and S. Wolf
(Plenum, New York, 1984)]; it is therefore (it is argued) “only of order
h” and therefore still in the quantum domain. We would regard this
particular objection as merely verbal, since it is a historical accident
that we treat the constants e and h̵ as independent “fundamental con-
stants” rather than say h̵ and φ0. A more sweeping objection is that any
phenomenon which involves quantum interference effects can by defini-
tion not occur “at the macroscopic level”. One can no more argue with
this view than with the claim that the mere fact that a certain kind
of behavior can be programmed into a computer ipso facto disqualifies
it from being “intelligent”. For our present purpose it is adequate that
the “disconnectivity” (as defined as Ref. 3) of the superposition of “left”
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and “right” states is of the order of the total number of electrons in the
device (∼ 1015 − 1023).
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[5 ] S. Chakravarty and A. J. Leggett, Phys. Rev. Lett. 52, 5 (1984). A
much more detailed treatment of the argument leading to the results
quoted in this reference, and of the corrections ∆P (t) in Eq. (24)
due to“interblip” effects, is contained in A. J. Leggett et al. , to be
published. In particular, it is shown that for any finite t a rigorous
upper bound, which tends to zero as α2 for small α, can be placed on
the magnitude of the deviation of P (t) from the expression given by
the first two terms of (24) with A(α) = 1, q(α) = 0. Further, inspection
of the formalism used by Chakravarty and Leggett makes it extremely
plausible (though we have not yet succeeded in giving a rigorous proof)
that the difference between the Kij defined below and P (tj −ti) is itself
at most of the order of this deviation. If this is so, the effect of all these
corrections would be at most a (probably very small) correction to the
“critical” values of α, estimated in the text.

The work of Chakravarty and Leggett applies to the case of “Ohmic”
dissipation (the case almost certainly realized in a SQUID), for which
the spectral function J(ω) defined there is proportional to ω for small
ω. One can show (see Leggett et al. ) that for environments with
J(ω) ∼ ωp, p > 1, quantum effects are less severely suppressed than in
the Ohmic case. While environments with spectra corresponding to
0 < p < 1 do not appear to be excluded by any a priori consideration,
no mechanism which would produce such a state of affairs is known for
SQUIDS, and it would presumably have dramatic (and, so far at least,
unobserved) effects on the dynamics in the classically accessible regime.
However, it is not known at present whether “1/f noise” can be treated
within the general framework of these references, and so our results
may not be applicable to systems where such noise is appreciable.

[6 ] See, e.g. , R. de Bruyn Ouboter, in Proceedings of the Inter national
Symposium on the Foundation of Quantum Mechanics in the Light of
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New Technology, edited by S. Kamefuchi (Physical Society of Japan,
Tokyo, 1984).

[7 ] In practice this is more likely to be a time ensemble.

[8 ] J.S. Bell, Physics (N,Y.) 1, 195 (1964). The inequality (15) of this
paper is essentially the same as (2a) of our text.

[9 ] J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, Phys. Rev.
Lett. 23, 880 (1969) The inequality (1a) of this papaser is (2b) of
our text. See J.F. Clauser and A. Shimony, Rep. Prog. Phys. 41,
1881 (1978), for the various interpretations of this inequality, and also
for discussions pertaining to imperfect/ inefficient detectors, many of
which are applicable to the problem at hand.

[10 ] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)

[11 ] This argument exploits the additional fact that the error made in
replacing Pinc(t) by its asymptotic form decreases with increasing t.
The replacement, therefore, adds three negative quantities and one
positive quantity (whose magnitude is less than that of any of the
negative quantities) to the left-hand side of (2a). The net effect is to
underestimate the left-hand side.

[12 ] It is easy to show that irrespective of the form of P (t), (2a) and (2b)
are maximally violated (if at all) for a given value of α for equally
spaced times ti.

[13 ] If α is too close to an integer or half-integer, the discrepancy is not
accurately given by the expression in the text.

[14 ] We note in passing that since the neutron can be quite far from
the SQUID at t3, the situation has many of the seemingly paradoxical
aspects of the EPR experiment. For example, suppose that the neutron
spin was measured before the flux was measured at t3, and that the two
measurements were separated by a timelike interval. A local realist
could argue that a measurement on the microsystem (neutron) was
affecting the macrosystem (SQUID)!
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