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Chapter 1

Functional Analysis, Hilbert Spaces and

Quantum Mechanics

1.1 Historical Notes and Overview

1.1.1 Introduction

The concept of a Hilbert space is seemingly technical and special. For example,
the reader has probably heard of the space `2 (or, more precisely, `2(Z) of square-
summable sequences of real or complex numbers.[In what follows, we mainly
work over the reals in order to serve intuition, but many infinite-dimensional vec-
tor spaces, especially Hilbert spaces, are defined over the complex numbers].We
also use standard math notation with occasionl Dirac examples. Hence we will
write our formulae in a way that is correct also for C instead of R. Of course,
for z ∈ R the expression |z|2 is just z2. We will occasionally use the fancy letter
K, for Korper, which in these notes stands for either K = R or K = C]. That
is, `2 consists of all infinite sequences {..., c−2, c−1, c0, c1, c2, .....}, ck ∈ K, for
which

∞∑
−∞
|ck|2 <∞

Another example of a Hilbert space one might have seen is the space L2(R) of
square-integrable complex-valued functions on R, that is, of all functions[As we
shall see, the elements of L2(R) are, strictly speaking, not simply functions but
equivalence classes[In mathematics, given a set X and an equivalence relation ∼
on X, the equivalence class of an element a in X is the subset of all elements in
X which are equivalent to a: [a] = x ∈ X|x ∼ a] of Borel functions] f : R→ K
for which ∫ ∞

−∞
dx|f(x)|2 <∞

In view of their special nature, it may therefore come as a surprise that Hilbert
spaces play a central role in many areas of mathematics, notably in analysis,
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but also including (differential) geometry, group theory, stochastics, and even
number theory. In addition, the notion of a Hilbert space provides the mathe-
matical foundation of quantum mechanics. Indeed, the definition of a Hilbert
space was first given by von Neumann (rather than Hilbert!) in 1927 precisely
for the latter purpose. However, despite his exceptional brilliance, even von
Neumann would probably not have been able to do so without the preparatory
work in pure mathematics by Hilbert and others, which produced numerous con-
structions (like the ones mentioned above) that are now regarded as examples
of the abstract notion of a Hilbert space. It is quite remarkable how a particu-
lar development within pure mathematics crossed one in theoretical physics in
this way; this crossing is reminiscent to the one leading to the calculus around
1670; see below. Today, the most spectacular new application of Hilbert space
theory is given by Noncommutative Geometry, where the motivation from pure
mathematics is merged with the physical input from quantum mechanics. Con-
sequently, this is an important field of research in pure mathematics as well as
in mathematical physics.

In what follows, we shall separately trace the origins of the concept of a Hilbert
space in mathematics and physics. As we shall see, Hilbert space theory is
part of functional analysis, an area of mathematics that emerged between ap-
proximately 1880-1930. Functional analysis is almost indistinguishable from
what is sometimes called abstract analysis or modern analysis, which marked a
break with classical analysis. The latter involves, roughly speaking, the study
of properties of a single function, whereas the former deals with spaces of func-
tions[The modern concept of a function as a map f : [a, b]toR was only arrived
at by Dirichlet as late as 1837, following earlier work by notably Euler and
Cauchy. But Newton already had an intuitive grasp of this concept, at least
for one variable]. One may argue that classical analysis is tied to classical
physics[Classical analysis grew out of the calculus of Newton, which in turn had
its roots in both geometry and physics. (Some parts of the calculus were later
rediscovered by Leibniz). In the 17th century, geometry was a practical matter
involving the calculation of lengths, areas, and volumes. This was generalized by
Newton into the calculus of integrals. Physics, or more precisely mechanics, on
the other hand, had to do with velocities and accelerations and the like. This
was abstracted by Newton into differential calculus. These two steps formed
one of the most brilliant generalizations in the history of mathematics, crowned
by Newtons insight that the operations of integration and differentiation are
inverse to each other, so that one may speak of a unified differential and inte-
gral calculus, or briefly calculus. Attempts to extend the calculus to more than
one variable and to make the ensuing machinery mathematically rigorous in the
modern sense of the word led to classical analysis as we know it today. (Newton
used theorems and proofs as well, but his arguments would be called heuristic
or intuitive in modern mathematics)], whereas modern analysis is associated
with quantum theory. Of course, both kinds of analysis were largely driven by
intrinsic mathematical arguments as well[The jump from classical to modern
analysis was as discontinuous as the one from classical to quantum mechanics.
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The following anecdote may serve to illustrate this. G.H. Hardy was one of
the masters of classical analysis and one of the most famous mathematicians
altogether at the beginning of the 20th century. John von Neumann, one of
the founders of modern analysis, once gave a talk on this subject at Cambridge
in Hardys presence. Hardys comment was: ”Obviously a very intelligent man.
But was that mathematics?”]. The final establishment of functional analysis and
Hilbert space theory around 1930 was made possible by combining a concern
for rigorous foundations with an interest in physical applications.

1.1.2 Origins in Mathematics

The key idea behind functional analysis is to look at functions as points in
some infinite-dimensional vector space. To appreciate the depth of this idea, it
should be mentioned that the concept of a finite-dimensional vector space, today
routinely taught to first-year students, only emerged in the work of Grassmann
between 1844 and 1862 (to be picked up very slowly by other mathematicians
because of the obscurity of Grassmanns writings), and that even the far less
precise notion of a space (other than a subset of Rn) was not really known
before the work of Riemann around 1850. Indeed, Riemann not only conceived
the idea of a manifold (albeit in embryonic form, to be made rigorous only in
the 20th century), whose points have a status comparable to points in Rn, but
also explicitly talked about spaces of functions (initially analytic ones, later also
more general ones). However, Riemanns spaces of functions were not equipped
with the structure of a vector space. In 1885 Weierstrass considered the distance
between two functions (in the context of the calculus of variations), and in 1897
Hadamard took the crucial step of connecting the set-theoretic ideas of Cantor
with the notion of a space of functions. Finally, in his PhD thesis of 1906,
which is often seen as a turning point in the development of functional analysis,
Hadamards student Fréchet defined what is now called a metric space (i.e., a
possibly infinite-dimensional vector space equipped with a metric, see below),
and gave examples of such spaces whose points are functions. After 1914, the
notion of a topological space due to Hausdorff led to further progress, eventually
leading to the concept of a topological vector space, which contains all spaces
mentioned below as special cases.

To understand the idea of a space of functions, we first reconsider Rn as the space
of all functions f : 1, 2, ....., n→ R, under the identification x1 = f(1), ......, xn =
f(n). Clearly, under this identification the vector space operations in Rn just
correspond to pointwise operations on functions (e.g., f + g is the function
defined by (f + g(k) := f(k) + g(k), etc). Hence Rn is a function space itself,
consisting of functions defined on a finite set.

The given structure of Rn as a vector space may be enriched by defining the
length of a vector f and the associated distance d(f, g) = ‖f − g‖ between two
vectors f and g. In addition, the angle θ between f and g in Rn is defined.
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Lengths and angles can both be expressed through the usual inner product

(f, g) =

n∑
k=1

f(k)g(k) (1.1)

through the relations
‖f‖ =

√
(f, f) (1.2)

and
(f, g) = ‖f‖‖g‖ cos θ (1.3)

In particular, one has a notion of orthogonality of vectors, stating that f and g
are orthogonal whenever (f, g) = 0, and an associated notion of orthogonality of
subspaces[A subspace of a vector space is by definition a linear subspace]: we say
that V ⊂ Rn and W ⊂ Rn are orthogonal if (f, g) = 0 for all f ∈ V and g ∈W .
This, in turn, enables one to define the (orthogonal) projection of a vector on a
subspace of Rn [This is most easily done by picking a basis {ei} of the particular
subspace V . The projection pf of f onto V is then given by pf =

∑
i(ei, f)ei].

Even the dimension n of Rn may be recovered from the inner product as the
cardinality[In mathematics, the cardinality of a set is a measure of the ”number
of elements of the set”. For example, the set A = {2, 4, 6} contains 3 elements,
and therefore A has a cardinality of 3.] of an arbitrary orthogonal basis[This is
the same as the cardinality of an arbitrary basis, as any basis can be replaced by
an orthogonal one by the Gram-Schmidt procedure]. Now replace {1, 2, ......., n}
by an infinite set. In this case the corresponding space of functions will obviously
be infinite-dimensional in a suitable sense[The dimension of a vector space is
defined as the cardinality of some basis. The notion of a basis is complicated
in general, because one has to distinguish between algebraic (or Hamel) and
topological bases. Either way, the dimension of the spaces described below is
infinite, though the cardinality of the infinity in question depends on the type
of basis. The notion of an algebraic basis is very rarely used in the context of
Hilbert spaces (and more generally Banach spaces), since the ensuing dimension
is either finite or uncountable. The dimension of the spaces below with respect
to a topological basis is countably infinite, and for a Hilbert space all possible
cardinalities may occur as a possible dimension. In that case one may restrict
oneself to an orthogonal basis]. The simplest example is N = {1, 2, ......, n},
so that one may define R∞ as the space of all functions f : N → R, with
the associated vector space structure given by pointwise operations. However,
although R∞ is well defined as a vector space, it turns out to be impossible to
define an inner product on it, or even a length or distance. Indeed, defining

(f, g) =

∞∑
k=1

f(k)g(k) (1.4)

it is clear that the associated length ‖f‖ (still given by (4.2)) is infinite for
most f . This is hardly surprising, since there are no growth conditions on f at
infinity. The solution is to simply restrict R∞ to those functions with ‖f‖ <∞.
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These functions by definition form the set `2(N), which is easily seen to be a
vector space. Moreover, it follows from the Cauchy-Schwarz inequality

(f, g) ≤ ‖f‖‖g‖ (1.5)

that the inner product is finite on `2(N). Consequently, the entire geometric
structure of Rn in so far as it relies on the notions of lengths and angles (in-
cluding orthogonality and orthogonal projections) is available on `2(N). Run-
ning ahead of the precise definition, we say that Rn ∼= `2({1, 2, ...., n}) is a
finite-dimensional Hilbert space, whereas `2(N) is an infinite-dimensional one.
Similarly, one may define `2(Z) (or indeed `2(S) for any countable set S) as a
Hilbert space in the obvious way.

From a modern perspective, `2(N) or `2(Z) are the simplest examples of infinite-
dimensional Hilbert spaces, but historically these were not the first to be found.
The initial motivation for the concept of a Hilbert space came from the analysis
of integral equations[Integral equations were initially seen as reformulations of
differential equations. For example, the differential equation Df = g or f ′ =

g(x) for unknown f is solved by f =
∫
g or f(x) =

∫ x
0
dyg(y) =

∫ 1

0
dyK(x, y)g(y)

for K(x, y) = θ(x− y) (where x ≤ 1), which is an integral equation for g] of the
type

f(x) +

∫ b

a

dyK(x, y)f(y) = g(x) (1.6)

where f , g, and K are continuous functions and f is unknown. Such equa-
tions were first studied from a somewhat modern perspective by Volterra and
Fredholm around 1900, but the main breakthrough came from the work of
Hilbert between 1904-1910. In particular, Hilbert succeeded in relating in-
tegral equations to an infinite-dimensional generalization of linear algebra by
choosing an orthonormal basis {ek} of continuous functions on [a, b] (such as
ek(x) := exp (2πkix) on the interval [0, 1]), and defining the (generalized)
Fourier coefficients of f by fk := (ek, f) with respect to the inner product

(f, g) :=

∫ b

a

dxf(x)g(x) (1.7)

The integral equation (4.6) is then transformed into an equation of the type

f̂k =
∑
l

K̂klf̂l = ĝl (1.8)

Hilbert then noted from the Parseval relation (already well known at the time
from Fourier analysis and more general expansions in eigenfunctions)∑

k∈Z
|f̂k|2 =

∫ b

a

dx|f(x)|2 (1.9)

that the left-hand side is finite, so that f̂ ∈ `2(Z). This, then, led him and
his students to study `2 also abstractly. E. Schmidt should be mentioned here
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in particular. Unlike Hilbert, already in 1908 he looked at `2 as a space in the
modern sense, thinking of sequences (ck) as point in this space. Schmidt studied
the geometry of `2 as a Hilbert space in the modern sense, that is, emphasizing
the inner product, orthogonality, and projections, and decisively contributed to
Hilberts work on spectral theory.

The space L2(a, b) appeared in 1907 in the work of F. Riesz and Fischer as the
space of (Lebesgue) integrable functions14 on (u, b) for which∫ b

a

dx|f(x)|2 <∞

of course, this condition holds if f is continuous on [a, b]. Equipped with the
inner product (4.7), this was another early example of what is now called a
Hilbert space. The context of its appearance was what is now called the Riesz-
Fischer theorem: Given any sequence (ck) of real (or complex) numbers and
any orthonormal system (ek) in L2(a, b), there exists a function f ∈ L2(a, b) for
which (ek, f) = ck if and only c ∈ `2, i.e., if

∑
k |ck|2 <∞.

At the time, the Riesz-Fischer theorem was completely unexpected, as it proved
that two seemingly totally different spaces were the same from the right point
of view. In modern terminology, the theorem establishes an isomorphism of `2

and  L2 as Hilbert spaces, but this point of view was only established twenty
years later, i.e., in 1927, by von Neumann. Inspired by quantum mechanics (see
below), in that year von Neumann gave the definition of a Hilbert space as an
abstract mathematical structure, as follows. First, an inner product on a vector
space V over a field K (where K = R or K = C), is a map V × V → K, written
as (f, g) 7→ (f, g), satisfying, for all f, g ∈ V and t ∈ K,

1. (f, f) ≥ 0;

2. (g, f) = (f, g);

3. (f, tg)− t(f, g);

4. (f, g + h) = (f, g) + (f, h);

5. (f, f) = 0⇒ f = 0

Given an inner product on V , one defines an associated length function or norm
(see below) ‖ · ‖ : V → R+ by (4.2). A Hilbert space (over K) is a vector space
(over K) with inner product, with the property that Cauchy sequences with
respect to the given norm are convergent (in other words, V is complete in the
given norm)[A sequence (fn) is a Cauchy sequence in V when ‖fn − fm‖ → 0
when n,m → ∞; more precisely, for any ε > 0 there is N ∈ N such that
‖fn − fm‖ < ε for all n,m > N . A sequence (fn) converges if there is f ∈ V
such that limn→∞ ‖fn − fm‖ = 0]. Hilbert spaces are denoted by the letter H
rather than V . Thus Hilbert spaces preserve as much as possible of the geometry
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of Rn.

It can be shown that the spaces mentioned above are Hilbert spaces. Defining
an isomorphism of Hilbert spaces U : H1 → H2 as an invertible linear map
preserving the inner product (i.e., (Uf,Ug)2 = (f, g)1 for all f, g ∈ H1), the
Riesz-Fischer theorem shows that `2(Z) and L2(a, b) are indeed isomorphic.

In a Hilbert space the inner product is fundamental, the norm being derived
from it. However, one may instead take the norm as a starting point (or,
even more generally, the metric, as done by Fréchet in 1906). The abstract
properties of a norm were first identified by Riesz in 1918 as being satisfied by
the supremum[In mathematics, given a subset S of a partially ordered set T , the
supremum (sup) of S, if it exists, is the least element of T that is greater than
or equal to each element of S. Consequently, the supremum is also referred to as
the least upper bound (lub or LUB). If the supremum exists, it may or may not
belong to S. If the supremum exists, it is unique] norm, and were axiomatized
by Banach in his thesis in 1922. A norm on a vector space V over a field K as
above is a function ‖ · ‖ : V → R+ with the properties:

1. ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ V ;

2. ‖tf‖ = |t|‖f‖; for all f ∈ V and t ∈ K;

3. ‖f‖ = 0⇒ f = 0

The usual norm on Rn satisfies these axioms, but there are many other possi-
bilities, such as

‖f‖p :=

(
n∑
k=1

|f(k)|p
)1/p

(1.10)

for any p ∈ R with 1 ≤ p <∞, or

‖f‖∞ := sup{|f(k)|, k = 1, ....., n}

In the finite-dimensional case, these norms (and indeed all other norms) are
all equivalent in the sense that they lead to the same criterion of convergence
(technically, they generate the same topology): if we say that fn → f when
‖fn − f‖ → 0 for some norm on Rn, then this implies convergence with respect
to any other norm. This is no longer the case in infinite dimension. For example,
one may define `p(N) as the subspace of R∞ that consists of all vectors f ∈ R∞
for which

‖f‖p :=

(
n∑
k=1

|f(k)|p
)1/p

(1.11)

is finite. It can be shown that ‖ · ‖p, is indeed a norm on `p(N), and that
this space is complete in this norm. As with Hilbert spaces, the examples that
originally motivated Riesz to give his definition were not `p spaces but the far
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more general Lp spaces, which he began to study in 1910. For example, LP (a, b)
consists of all (equivalence classes of Lebesgue) integrable functions f on (a, b)
for which

‖f‖p :=

(
n∑
k=1

|f(k)|p
)1/p

(1.12)

is finite, still for 1 ≤ p < ∞, and also ‖f‖∞ := sup{|f(x)|, x ∈ (a, b). Eventu-
ally, in 1922 Banach defined what is now called a Banach space as a vector
space (over K as before) that is complete in some given norm.

Long before the abstract definitions of a Hilbert space and a Banach space were
given, people began to study the infinite-dimensional generalization of functions
on Rn. In the hands of Volterra, the calculus of variations originally inspired
the study of functions ϕ : V → K, later called functionals, and led to early ideas
about possible continuity of such functions. However, although the calculus of
variations involved nonlinear functionals as well, only linear functionals turned
out to be tractable at the time (until the emergence of nonlinear functional
analysis much later). Indeed, even today (continuous) linear functionals still
form the main scalar-valued functions that are studied on infinite-dimensional
(topological) vector spaces. For this reason, throughout this text a functional
will denote a continuous linear functional. For H = L2(a, b), it was inde-
pendently proved by Riesz and Fréchet in 1907 that any functional on H is of
the form g 7→ (f, g) for some f ∈ H. The same result for arbitrary Hilbert
spaces H was written down only in 1934-35, again by Riesz, although it is not
very difficult.

The second class of functions on Hilbert spaces and Banach spaces that could
be analyzed in detail were the generalizations of matrices on Rn, that is, lin-
ear maps from the given space to itself. Such functions are now called oper-
ators[Or linear operators, but for us linearity is part of the definition of an
operator]. For example, the integral equation (4.6) is then simply of the form
(1 +K)f = g, where 1 : L2(a, b)→ L2(a, b) is the identity operator 1f = f , and

K : L2(a, b)→ L2(a, b) is the operator given by (Kf)(x) =
∫ b
a
dyK(x, y)f(y).

This is easy for us to write down, but in fact it took some time before integral of
differential equations were interpreted in terms of operators acting on functions.
They managed to generalize practically all results of linear algebra to operators,
notably the existence of a complete set of eigenvectors for operators of the stated
type with symmetric kernel, that is, K(x, y) = K(y, x). The abstract concept
of a (bounded) operator (between what we now call Banach spaces) is due to
Riesz in 1913. It turned out that Hilbert and Schmidt had studied a special
class of operators we now call compact, whereas an even more famous student
of Hilberts, Weyl, had investigated a singular class of operators now called un-
bounded in the context of ordinary differential equations. Spectral theory and
eigenfunctions expansions were studied by Riesz himself for general bounded
operators on Hilbert spaces (seen by him as a special case of general normed
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spaces), and later, more specifically in the Hilbert space case, by Hellinger and
Toeplitz (culminating in their pre-von Neumann review article of 1927).

In the Hilbert space case, the results of all these authors were generalized almost
beyond recognition by von Neumann in his book from 1932, to whose origins
we now turn.

1.1.3 Origins in Physics

From 1900 onwards, physicists had begun to recognize that the classical physics
of Newton, Maxwell and Lorentz (i.e., classical mechanics, Newtonian gravity,
and electrodynamics) could not describe all of Nature. The fascinating era that
was thus initiated by Planck, to be continued mainly by Einstein, Bohr, and
De Broglie, ended in 1925-1927 with the discovery of quantum mechanics. This
theory replaced classical mechanics, and was initially discovered in two guises.

First, Heisenberg discovered a form of quantum mechanics that at the time
was called matrix mechanics. Heisenbergs basic idea was that in atomic physics
physical observables (that is, measurable quantities) should not depend on con-
tinuous variables like position and momentum (as he did not believe the concept
of an electronic orbit in an atom made sense), but on discrete quantities, like the
natural numbers n = 1, 2, 3, .... labeling the orbits in Bohrs model of the atom.
Specifically, Heisenberg thought that in analogy to a quantum jump from one
orbit to the other, everything should be expressed in terms of two such numbers.
Thus he replaced the functions f(x, p) of position and momentum in terms of
which classical physics is formulated by quantities f(m,n). In order to secure
the law of conservation of energy in his new mechanics, he was forced to pos-
tulate the multiplication rule f ∗ g(m,n) =

∑
l f(m, l)g(l, n), replacing the rule

fg(x, p) = f(x, p)g(x, p) of classical mechanics. He noted that f ∗ g 6= g ∗ f ,
unlike in classical mechanics, and saw in this non-commutativity of physical
observables the key revolutionary character of quantum mechanics. When he
showed his work to his boss Born, a physicist who as a former assistant to
Hilbert was well versed in mathematics, Born saw, after a sleepless night, that
Heisenbergs multiplication rule was the same as the one known for matrices, but
now of infinite size[At the time, matrices and linear algebra were unknown to
practically all physicists]. Thus Heisenbergs embryonic formulation of quantum
theory, written down in 1925 in a paper generally seen as the birth of quantum
mechanics, came to be known as matrix mechanics.

Second, Schrodinger was led to a formulation of quantum theory called wave
mechanics, in which the famous symbol Ψ, denoting a wave function, played an
important role. To summarize a long story, Schrodinger based his work on de
Broglies idea that in quantum theory a wave should be associated to each parti-
cle; this turned Einsteinss concept of a photon from 1905 on its head[Einsteins
revolutionary proposal, which marked the true conceptual beginning of quan-
tum theory, had been that light, universally seen as a wave phenomenon at the
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time, had a particle nature as well. The idea that light consists of particles
had earlier been proposed by none other than Newton, but had been discred-
ited after the discovery of Young around 1800 (and its further elaboration by
Fresnel) that light displays interference phenomena and therefore should have
a wave nature. This was subsequently confirmed by Maxwells theory, in which
light is an oscillation of the electromagnetic field. In his PhD thesis from 1924,
de Broglie generalized and inverted Einsteins reasoning: where the latter had
proposed that light waves are particles, the former postulated that particles are
waves]. De Broglies waves should, of course, satisfy some equation, similar to
the fundamental wave equation or Maxwells equations. It is this equation that
Schrodinger proposed in 1926 and which is now named after him. Schrodinger
found his equation by studying the transition from wave optics to geometric op-
tics, and by (wrongly) believing that there should be a similar transition from
wave mechanics to classical mechanics.

Thus in 1926 one had two alternative formulations of quantum mechanics, which
looked completely different, but each of which could explain certain atomic phe-
nomena. The relationship and possible equivalence between these formulations
was, of course, much discussed at the time. The most obvious difficulty in re-
lating Heisenbergs work to Schrodingers was that the former was a theory of
observables lacking the concept of a state, whereas the latter had precisely the
opposite feature: Schrodingers wave functions were states, but where were the
observables? To answer this question, Schrodinger introduced his famous ex-
pressions Q = x (more precisely, QΨ(x) = xΨ(x) and P = −i~∂/∂x, defining
what we now call unbounded operators on the Hilbert space L2(R3). Subse-
quently, Dirac, Pauli, and Schrodinger himself recognized that wave mechan-
ics was related to matrix mechanics in the following way: Heisenbergs matrix
x(m,n) was nothing but the matrix element (en, Qem) of the position operator
Q with respect to the orthonormal basis of L2(R3) given by the eigenfunctions
of the Hamiltonian H = P 2/2m+V (Q). Conversely, the vectors in `2 on which
Heisenbergs matrices acted could be interpreted as states. However, these ob-
servations fell far short of an equivalence proof of wave mechanics and matrix
mechanics (as is sometimes claimed), let alone of a mathematical understanding
of quantum mechanics.

Heisenbergs paper was followed by the Dreimännerarbeit of Born, Heisenberg,
and Jordan (1926); all three were in Gottingen at the time. Born turned to his
former teacher Hilbert for mathematical advice. Hilbert had been interested in
the mathematical structure of physical theories for a long time; his Sixth Prob-
lem (1900) called for the mathematical axiomatization of physics. Aided by his
assistants Nordheim and von Neumann, Hilbert ran a seminar on the mathe-
matical structure of quantum mechanics, and the three wrote a joint paper on
the subject (now obsolete).

It was von Neumann alone who, at the age of 23, recognized the mathemati-
cal structure of quantum mechanics. In this process, he defined the abstract
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concept of a Hilbert space discussed above; as we have said, previously only
some examples of Hilbert spaces had been known. Von Neumann saw that
Schrodingers wave functions were unit vectors in the Hilbert space L2(R3), and
that Heisenbergs observables were linear operators on the Hilbert space `2. The
Riesz-Fischer theorem then implied the mathematical equivalence between wave
mechanics and matrix mechanics. In a series of papers that appeared between
1927-1929, von Neumann defined Hilbert space, formulated quantum mechan-
ics in this language, and developed the spectral theory of bounded as well as
unbounded normal operators on a Hilbert space. This work culminated in his
book, which to this day remains the definitive account of the mathematical
structure of elementary quantum mechanics[Von Neumanns book was preceded
by Diracs The Principles of Quantum Mechanics (1930), which contains an-
other brilliant, but this time mathematically questionable account of quantum
mechanics in terms of linear spaces and operators].

Von Neumann proposed the following mathematical formulation of quantum
mechanics. The observables of a given physical system are the self-adjoint (pos-
sibly unbounded) linear operators a on a Hilbert space H. The pure states of
the system are the unit vectors in H. The expectation value of an observable a
in a state ψ is given by (ψ, aψ). The transition probability between two states
ψ and ϕ is |(ψ,ϕ)|2. As we see from (4.3), this number is just (cos θ)2, where
θ is the angle between the unit vectors ψ and ϕ. Thus the geometry of Hilbert
space has a direct physical interpretation in quantum mechanics, surely one of
von Neumanns most brilliant insights. Later on, he would go beyond his Hilbert
space approach to quantum theory by developing such topics and quantum logic
and operator algebras.

See end of this chapter for a discussion of Lebesgue integration and associated
concepts.

1.2 Metric Spaces, Normed Spaces, and Hilbert
Spaces

1.2.1 Basic Definitions

We repeat two basic definitions from the Introduction, and add a third:

Definition 4.2.1 Let V be a vector space over a field K (where K = R or K = C).

An inner product on V is a map V × V → K, written as 〈f, g〉 7→ (f, g),
satisfying, for all f, g, h ∈ V and t ∈ K:

1. (f, f) ∈ R+ := [0,∞) (positivity);

2. (g, f) = (f, g) (symmetry);

11



3. (f, tg) = t(f, g) (linearity 1);

4. (f, g + h) = (f, g) + (f, h) (linearity 2);

5. (f, f) = 0⇒ f = 0 (positive definiteness)

A norm on V is a function ‖ · ‖ : V → R+ satisfying, for all f, g, h ∈ V and
t ∈ K:

1. ‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality);

2. ‖tf‖ = |t|‖f‖ (homogeneity);

3. ‖f‖ = 0⇒ f = 0 (positive definiteness)

A metric on V is a function d : V × V → R+ satisfying, for all f, g, h ∈ V :

1. d(f, g) ≤ d(f, h) + d(h, g) (triangle inequality);

2. d(f, g) = d(g, f) for all f, g ∈ V (symmetry);

3. d(f, g) = 0⇔ f = g (definiteness)

The notion of a metric applies to any set, not necessarily to a vector space,
like an inner product and a norm. These structures are related in the following
way[Apart from a norm, an inner product defines another structure called a
transition probability, which is of great importance to quantum mechanics; (see
the Introduction). Abstractly, a transition probability on a set S is a function
p : S × S → [0, 1] satisfying p(x, y) = 1 ⇔ x = y (see Property 3 of a metric)
and p(x, y) = p(y, x). Now take the set S of all vectors in a complex inner
product space that have norm 1, and define an equivalence relation on S by
f ∼ g iff f = zg for some z ∈ C with |z| = 1. (Without taking equivalence
classes the first axiom would not be satisfied). The set S = S/ ∼ is then
equipped with a transition probability defined by p([f ], [g]) := |(f, g)|2. Here
[f ] is the equivalence class of f with ‖f‖ = 1, etc. In quantum mechanics
vectors of norm 1 are (pure) states, so that the transition probability between
two states is determined by their angle θ. (Recall the elementary formula from
Euclidean geometry (x, y) = ‖x‖‖y‖ cos θ, where θ is the angle between x and
y in Rn)]:

Proposition 4.2.2

1. An inner product on V defines a norm on V by means of ‖f‖ =
√

(f, f).

2. A norm on V defines a metric on V through d(f, g) := ‖f − g‖.

The proof is based on the Cauchy-Schwarz inequality

|(f, g)| ≤ ‖f‖‖g‖ (1.13)

The three axioms on a norm immediately imply the corresponding properties
of the metric. The question arises when a norm comes from an inner product

12



in the stated way: this question is answered by the Jordan - von Neumann
theorem:

Theorem 4.2.3 A norm ‖ · ‖ on a vector space comes from an inner product
through ‖f‖ =

√
(f, f) if and only if

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2) (1.14)

In that case, one has

4(f, g) = ‖f + g‖2 + ‖f − g‖2 for K = R

and

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2 for K = C

Applied to the `p and Lp spaces mentioned in the introduction, this yields the
result that the norm in these spaces comes from an inner product if and only
if p = 2; see below for a precise definition of Lp(Ω) for Ω ⊆ Rn. There is no
(known) counterpart of this result for the transition from a norm to a metric. It
is very easy to find examples of metrics that do not come from a norm: on any
vector space (or indeed any set) V the formula d(f, g) = δfg defines a metric
not derived from a norm. Also, if d is any metric on V , then d′ = d/(1 + d) is
a metric, too: since clearly d′(f, g) ≤ 1 for all f, g, this metric can never come
from a norm.

1.2.2 Convergence and completeness

The reason we look at metrics in a Hilbert space course is, apart from general
education, that many concepts of importance for Hilbert spaces are associated
with the metric rather than with the underlying inner product or norm. The
main such concept is convergence:

Definition 4.2.4 Let (xn) := {xn},n∈N be a sequence in a metric space (V, d).
We say that xn → x (i.e., (xn) converges to x ∈ V ) when limn→∞ d(xn, x) = 0,
or, more precisely: for any ε > 0 there is N ∈ N such that d(xn, x) < ε for all
n > N

In a normed space, hence in particular in a space with inner product, this
therefore means that limn→∞ ‖xn−x‖ = 0[Such convergence is sometimes called
strong convergence, in contrast to weak convergence, which for an inner
product space means that limn |(y, xn − x)| = 0 for each y ∈ V ].

A sequence (xn) in (V, d) is called a Cauchy sequence when d(xn, xm)→ 0 when
n,m→∞; more precisely: for any ε > 0 there is N ∈ N such that d(xn, xm) < ε
for all n, m ¿ N. Clearly, a convergent sequence is Cauchy: from the triangle
inequality and symmetry one has

d(xn, xm) ≤ d(xn, x) + d(xn, x)
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So for given ε > 0 there is N ∈ N such that d(xn, x) < ε/2, etcetera. However,
the converse statement does not hold in general, as is clear from the example
of the metric space (0, 1) with metric d(x, y) = |x− y|: the sequence xn = 1/n
does not converge in (0, 1) (for an example involving a vector space see the
exercises). In this case one can simply extend the given space to [0, 1], in which
every Cauchy sequence does converge.

Definition 4.2.5

A metric space (V, d) is called complete when every Cauchy sequence converges.

• A vector space with norm that is complete in the associated metric is called
a Banach space.

• A vector space with inner product that is complete in the associated metric
is called a Hilbert space.

The last part may be summarized as follows: a vector space H with inner product
( , ) is a Hilbert space when every sequence (xn) such that limn,m→∞ ‖xn −
xm‖ = 0 has a limit x ∈ H in the sense that limn→∞ ‖xn − x‖ = 0 (where
‖x‖ =

√
(x, x)). It is easy to see that such a limit is unique.

Like any good definition, this one too comes with a theorem:

Theorem 4.2.6 For any metric space (V, d) there is a complete metric space
(Ṽ , d̃), (unique up to isomorphism) containing (V, d) as a dense subspace[This
means that any point in Ṽ is the limit of some convergent sequence in V with
respect to the metric d̃] on which d̃ = d. If V is a vector space, then so is
Ṽ . If the metric d comes from a norm, then Ṽ carries a norm inducing d̃ (so
that Ṽ , being complete, is a Banach space). If the norm on V comes from an
inner product, then Ṽ carries an inner product, which induces the norm just
mentioned (so that Ṽ is a Hilbert space ), and whose restriction to V is the
given inner product.

This theorem is well known and basic in analysis so we will not give a complete
proof, but will just sketch the main idea. In these notes one only needs the case
where the metric comes from a norm, so that d(xn, yn) = ‖xn − yn‖ etc. in
what follows.

One defines the completion Ṽ as the set of all Cauchy sequences (xn) in V ,
modulo the equivalence relation (xn) ∼ (yn) when limn d(xn, yn) = 0. (When
xn and yn converge in V , this means that they are equivalent when they have the
same limit). The metric d̃ on the set of such equivalence classes [xn] := [(xn)] is
defined by d̃([xn], [yn]) := limn d(xn, yn). The embedding ι : V ↪→ Ṽ is given by
identifying x ∈ V with the Cauchy sequence (xn = x∀n), i.e., ι(x) = [xn = x].
It follows that a Cauchy sequence (xn) in V ⊆ Ṽ converges to[xn], for

lim
m
d̃(ι(xm), [xn]) = lim

m
d̃([xn = xm], [xn]) = lim

m
lim
n
d(xm, xn) = 0

14



by definition of a Cauchy sequence. Furthermore, one can show that any Cauchy
sequence in Ṽ converges by approximating its elements by elements of V .

If V is a vector space, the corresponding linear structure on Ṽ is given by
[xn] + [yn] := [xn + yn] and t[xn] := [txn]. If V has a norm, the corresponding
norm on Ṽ is given by ‖[xn]‖ := limn ‖xn‖.

If V has an inner product, the corresponding inner product on Ṽ is given by
([xn], [yn]) := limn(xn, yn).

A finite-dimensional vector space is complete in any possible norm. In infinite
dimension, completeness generally depends on the norm (which often can be
chosen in many different ways, even apart from trivial operations like rescaling
by a positive constant). For example, take V = `c, the space of functions f :
N− → (C) (or, equivalently, of infinite sequence (f(1), f(2), .........., f(k), ....))
with only finitely many f(k) 6= 0. Two interesting norms on this space are:

‖f‖∞ := supk{|f(k)|} (1.15)

‖f‖2 :=

( ∞∑
k=1

|f(k)|2
)1/2

(1.16)

`c is not complete in either norm. However, the space

`∞ := {f : N→ C|‖f‖∞ <∞ (1.17)

is complete in the norm ‖ · ‖∞, and the space

`2 := {f : N→ C|‖f‖2 <∞ (1.18)

is complete in the norm ‖ · ‖2. In fact, `2 is a Hilbert space in the inner product

(f, g) :=

∞∑
k=1

f(k)g(k) (1.19)

Now we seem to face a dilemma. On the one hand, there is the rather abstract
completion procedure for metric spaces just sketched: it looks terrible to use in
practice. On the other hand, we would like to regard `∞ as the completion of
`c in the norm ‖f‖∞ and similarly we would like to see `2 as the completion of
`c in the norm ‖f‖2.

This can indeed be done through the following steps, which we just outline for
the Hilbert space case `2 (similar comments hold for `∞):

1. Embed V = `c is some larger space W : in this case, W is the space of all
sequences (or of all functions f : N→ C).

2. Guess a maximal subspace H of W in which the given norm ‖ · ‖2 is finite:
in this case this is H = `2.
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3. Prove that H is complete.

4. Prove that V is dense in H, in the sense that each element f ∈ H is the
limit of a Cauchy sequence in V .

The last step is usually quite easy. For example, any element f ∈ `2 is the
limit (with respect to the norm ‖ · ‖2, of course), of the sequence (fn) where
fn(k) = f(k) if k ≤ n and fn(k) = 0 if k > n. Clearly, fn ∈ `c for all n.

The third step may in itself be split up in the following way:

• Take a generic Cauchy sequence (fn) in H and guess its limit f in W .

• Prove that f ∈ H.

• Prove that limn ‖fn − f‖ = 0

Here also the last step is often easy, given the previous ones.

In our example this procedure is implemented as follows.

• If (fn) is any sequence in `2, the the definition of the norm implies that
for each k one has

|fn(k)− fm(k)| ≤ ‖fn − fm‖2

So if (fn) is a Cauchy sequence in `2, then for each k, (fn(k) is a Cauchy
sequence in C. Since C is complete, the latter has a limit called f(k). This
defines f ∈ W as the candidate limit of (fn), simply by f : k 7→ f(k) :=
limn fn(k).

• For each n one has:

‖fn− f‖22 =

∞∑
k=1

|fn(k)− f |2 = lim
N→∞

lim
m→∞

N∑
k=1

|fN (k)− fm(k)|2

By the definition of lim sup and using the positivity of all terms one has

lim
m→∞

N∑
k=1

|fN (k)−fm(k)|2 ≤ lim sup
m→∞

∞∑
k=1

|fN (k)−fm(k)|2 = lim sup
m→∞

‖fn−fm‖22

Hence
‖fn − f‖22 = lim

∑
m→∞

‖fn − fm‖22

Since (fn) is Cauchy, this can be made < ε2 for n > N . Hence ‖fn−f‖2 ≤
ε, so fn− f ∈ `2 and since fn ∈ `2 and `2 is a vector space, it follows that
f ∈ `2 = H, as desired.

• The claim limn ‖fn − f‖ = 0 follows from the same argument.
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Returning to our dilemma, we wish to establish a link between the practical
completion `2 of `c and the formal completion ˜̀

c. Such a link is given by
the concept of isomorphism of two Hilbert spaces H1 and H2. As in the
Introduction, we define an isomorphism of Hilbert spaces U : H1 → H2 as
an invertible linear map preserving the inner product (i.e., (Uf,Ug)2 = (f, g)1

for all f, g ∈ H1). Such a map U is called a unitary transformation and we
write H1

∼= H2.

So, in order to identify `2 with ˜̀
c we have to find such a U : ˜̀

c → `2. This is
easy: if (fn) is Cauchy in `c we put

U(|fn|) := f = lim
n
fn (1.20)

where f is the limit as defined above. It is easy to check that:

1. This map is well-defined, in the sense that if fn ∼ gn then limn fn =
limn gn

2. This map is indeed invertible and preserves the inner product

We now apply the same strategy to a more complicated situation. Let Ω ⊆ Rn
be an open or closed subset of Rn, just think of Rn itself for the quantum theory
of a particle, of [−π, π] ⊂ R for Fourier analysis. The role of `c in the previous
analysis is now played by Cc(Ω), the vector space of complex-valued continuous
functions on Ω with compact support[The support of a function is defined as
the smallest closed set outside which it vanishes]. Again, one has two natural
norms on Cc(Ω):

‖f‖∞ := sup
x∈Ω
{|f(x)|} (1.21)

‖f‖2 :=

(∫
Ω

dnx|f(x)|2
)1/2

(1.22)

The first norm is called the supremum-norm or sup-norm. The second
norm is called the L2−norm (see below). It is, of course, derived from the
inner product

(f, g) :=

(∫
Ω

dnxf(x)g(x)

)1/2

(1.23)

But even the first norm will turn out to play an important role in Hilbert space
theory.

Interestingly, if Ω is compact, then Cc(Ω) = C(Ω) is complete in the norm ‖·‖∞.
This claim follows from the theory of uniform convergence.

However, Cc(Ω) fails to be complete in the norm ‖ ·‖2. Consider Ω = [0, 1]. The
sequence of functions

fn(x) =


0 (x ≤ 1/2)

n(x− 1/2) (1/2 ≤ x ≤ 1/2 + 1/n)

1 (x ≥ 1/2 + 1/n)
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is a Cauchy sequence with respect to ‖ · ‖2 that converges to a discontinuous
function f(x) = 0 for x ∈ [0, 1/2) and f(x) = 1 for x ∈ (1/2, 1] (the value at
x = 1/2 is not settled; see below, but in any case it cannot be chosen in such a
way that f is continuous).

Clearly, Cc(Ω) lies in the space W of all functions f : Ω→ C, and according to
the above scenario our task is to find a subspace H ⊆ W that plays the role of
the completion of Cc(Ω) in the norm ‖ · ‖2. There is a complication, however,
which does not occur in the case of `2. Let us ignore this complication first. A
detailed study shows that the analogue of `2 is now given by the space L2(Ω),
defined as follows.

Definition 4.2.7 The space L2(Ω) consists of all functions f : Ω→ C for which
there exists a Cauchy sequence (fn) in Cc(Ω) with respect to ‖ · ‖2 such that
fn(x) → f(x) for all x ∈ Ω\N , where N ⊂ Ω is a set of (Lebesgue) measure
zero.

Now a subset N ⊂ Rn has measure zero if for any ε > 0 there exists a covering
of N by an at most countable set (In) of intervals for which

∑
n |In| < ε, where∑

n |In| is the sum of the volumes of the In. (Here an interval in Rn is a set of
the form Πn

k=1[ak, bk]). For example, any countable subset of Rn has measure
zero, but there are others.

The space L2(Ω) contains all functions f for which |f |2 is Riemann-integrable
over Ω (so in particular all ofCc(Ω), as was already clear from the definition),
but many other, much wilder functions. We can extend the inner product on
Cc(Ω) to L2(Ω) by means of

(f, g) = lim
n→∞

(fn, gn) (1.24)

where (fn) and (gn) are Cauchy sequences as specified in the definition of L2(Ω).

Consequently, taking gn = fn, the following limit exists:

‖f‖2 := lim
n→∞

‖fn‖2 (1.25)

The problem is that (4.24) does not define an inner product on L2(Ω) and that
(4.25) does not define a norm on it because these expressions fail to be positive
definite. For example, take a function f on Ω = [0, 1] that is nonzero in finitely
(or even countably) many points. The Cauchy sequence with only zeros defines
f as an element of L2(Ω), so ‖f‖2 = 0 by (4.25), yet f 6= 0 as a function. This
is related to the following point: the sequence (fn) does not define f except
outside a set of measure zero.

Everything is solved by introducing the space

L2(Ω) := L2(Ω)/N (1.26)
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where
N := {f ∈ L2(Ω)|‖f‖2 = 0} (1.27)

Using measure theory, it can be shown that f ∈ N ifff(x) = 0 for all x ∈ Ω\N ,
where N ⊂ Ω is some set of measure zero. If f is continuous, this implies that
f(x) = 0 for all x ∈ Ω.

It is clear that ‖ · ‖2 descends to a norm on L2(Ω) by

‖[f ]‖2 := ‖f‖2 (1.28)

where [f ] is the equivalence class of f ∈ L2(Ω) in the quotient space. However,
we normally work with L2(Ω) and regard elements of L2(Ω) as functions instead
of equivalence classes thereof. So in what follows we should often write [f ] ∈
L2(Ω)instead of f ∈ L2(Ω), but who cares.

We would now like to show that L2(Ω) is the completion of Cc(Ω). The details
of the proof require the theory of Lebesgue integration (see section 4.8), but the
idea is similar to the case of `2.

Let (fn) be Cauchy in L2(Ω). By definition of the norm in L2(Ω), there is a
sequence (hn) in Cc(Ω) such that:

1. ‖fn − hn‖2 ≤ 2n for all n;

2. |fn(x)− hn(x)| ≤ 2−n for all x ∈ Ω\An, where |An| ≤ 2−n

By the first property one can prove that (hn) is Cauchy, and by the second that
limn hn(x) exists for almost all x ∈ Ω (i.e. except perhaps at a set N of measure
zero). This limit defines a function f : Ω\N → C for which hn(x) → f(x)
Outside N , f can be defined in any way one likes. Hence f ∈ L2(Ω), and its
equivalence class [f ] ∈ L2(Ω) is independent of the value of f on the null set
N . It easily follows that limn fn = f in ‖ · ‖2, so that Cauchy sequence (fn)
converges to an element of L2(Ω). Hence L2(Ω) is complete.

The identification of L2(Ω) with the formal completion of Cc(Ω) is done in the
same way as before: we repeat (4.20), where this time the function f ∈ CL2(Ω)
is the one associated to the Cauchy sequence (fn) in Cc(Ω) through Definition
4.2.7. As stated before, it would be really correct to write (4.20) as follows:

U([fn]) := [f ] = [lim
n
fn] (1.29)

where the square brackets on the left-hand side denote equivalence classes with
respect to the equivalence relation (fn) ∼ (gn) when limn ‖fn−gn‖2 = 0 between
Cauchy sequences in Cc(Ω), whereas the square brackets on the right-hand side
denote equivalence classes with respect to the equivalence relation f ∼ g when
limn ‖f − g‖2 = 0 between elements of L2(Ω).

We finally note a interesting result about L2(Ω) without proof:
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Theorem 4.2.8 Every Cauchy sequence (fn) in L2(Ω) has a subsequence that
converges pointwise almost everywhere to somef ∈ L2(Ω)

The proof of this theorem yields an alternative approach to the completeness of
L2(Ω).

In many cases, all you need to know is the following fact about L2 or L2, which
follows from the fact that L2(Ω) is indeed the completion of Cc(Ω) (and is a
consequence of Definition 4.2.7) if enough measure theory is used):

Proposition 4.2.9 For any f ∈ L2(Ω) there is a Cauchy sequence (fk) in Cc(Ω)
such that fk → f in norm (ie., limk→∞ ‖f − fk‖2 = 0).

Without creating confusion, one can replace f ∈ L2(Ω) byf ∈ L2(Ω) in this
statement, as long as one keeps the formal difference between L2 and L2 in the
back of ones mind.

1.2.3 Orthogonality and orthonormal bases

As stressed in the Introduction, Hilbert spaces are the vector spaces whose
geometry is closest to that of R3. In particular, the inner product yields a
notion of orthogonality. We say that two vectors f, g ∈ H are orthogonal,
written f ⊥ g, when (f, g) = 0[By definition of the norm, if f ⊥ g one has
Pythagoras theorem ‖f + g‖2 = ‖f‖2 + ‖g‖2]. Similarly, two subspaces K ⊂ H
and L ⊂ H are said to be orthogonal (K ⊥ L) when (f, g) = 0 for all f ∈ K
and all g ∈ L. A vector f is called orthogonal to a subspace K, written f ⊥ K,
when (f, g) = 0 for all g ∈ K, etc.

For example, if H = L2(Ω) and Ω = Ω1∪Ω2, elementary (Riemann) integration
theory shows that the following subspaces are orthogonal:

K = {f ∈ Cc(Ω)|f(x) = 0 ∀x ∈ Ω1} (1.30)

L = {f ∈ Cc(Ω)|f(x) = 0 ∀x ∈ Ω2} (1.31)

We define the orthogonal complement K⊥ of a subspace K ⊂ H as

K⊥ := {f ∈ H|f ⊥ K} (1.32)

This set is automatically linear, so that the map K 7→ K⊥ , called orthocom-
plementation, is an operation from subspaces of H to subspaces of H. Clearly,
H⊥ = 0 and 0⊥ = H.

Now, a subspace of a Hilbert space may or may not be closed. A closed sub-
space K ⊂ H of a Hilbert space H is by definition complete in the given norm
on H(i.e. any Cauchy-sequence in K converges to an element of K [Since H is
a Hilbert space we know that the sequence has a limit in H, but this limit may
not lie in K even when all elements of the sequence lie in K. This possibility
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arises precisely when K fails to be closed]). This implies that a closed subspace
K of a Hilbert space H is itself a Hilbert space if one restricts the inner product
from H to K. If K is not closed already, we define its closure K̄ as the smallest
closed subspace of H containing K.

For example, if Ω ⊂ Rn then Cc(Ω) is a subspace of L2(Ω) which is not closed;
its closure is L2(Ω).

Closure is an analytic concept, related to convergence of sequences. Orthogonal-
ity is a geometric concept. However, both are derived from the inner product.
Hence one may expect certain connections relating analysis and geometry on
Hilbert space.

Proposition 4.210 Let K ⊂ H be a subspace of a Hilbert space.

1. The subspace K⊥ is closed, with

K⊥ = K̄⊥ = K̄⊥ (1.33)

2. One has
K⊥⊥ := (K⊥)⊥ = K̄ (1.34)

3. Hence for closed subspaces K one has K⊥⊥ = K.

We now turn to the concept of an orthonormal basis (o.n.b.) in a Hilbert
space. First, one can:

1. Define a Hilbert space H to be finite-dimensional if has a finite o.n.b.
(ek) in the sense that (ek, el) = δkl and any v ∈ H can be written as
v =

∑
k vkek for some vk ∈

2. Prove (by elementary linear algebra) that any o.n.b. in a finite-dimensional
Hilbert space H has the same cardinality;

3. Define the dimension of H as the cardinality of an arbitrary o.n.b. of H.

It is trivial to show that if v =
∑
k vkek, then

vk = (ek, v) (1.35)

and ∑
k

|(ek, v)|2 = ‖v‖2 (1.36)

This is called Parsevals equality; it is a generalization of Pythagorass Theo-
rem. Note that if H is finite-dimensional, then any subspace is (automatically)
closed.

Now what happens when H is not finite-dimensional? In that case, it is called
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infinite-dimensional. The spaces `2 and L2(Ω) are examples of infinite-dimensional
Hilbert spaces. We call an infinite-dimensional Hilbert space separable when it
contains a countable orthonormal set (ek)k∈N such that any v ∈ H can be writ-
ten as

v =

∞∑
k=1

vkek (1.37)

for some vk ∈ C. By definition, this means that

v = lim
N→∞

N∑
k=1

vkek (1.38)

where the limit means that

lim
N→∞

‖v −
N∑
k=1

vkek‖ = 0 (1.39)

Here the norm is derived from the inner product in the usual way. Such a set
is again called an orthonormal basis. It is often convenient to take Z instead of
N as the index set of the basis, so that one has (ek)k∈Z and

v = lim
N→∞

N∑
k=−N

vkek (1.40)

Also, the following lemma will often be used:

Lemma 4.2.11 Let (ek) be an o.n.b. in an infinite-dimensional separable
Hilbert space H and let f, g ∈ H. Then∑

k

(f, ek)(ek, g) = (f, g) (1.41)

This follows if one expands f and g on the right-hand side according to (4.37)
and uses (4.35); one has to be a little bit careful with the infinite sums but these
complications are handled in the same way as in the proof of (4.35) and (4.34).

The following result is spectacular:

Theorem 4.2.12

1. Two finite-dimensional Hilbert spaces are isomorphic iff they have the
same dimension.

2. Any two separable infinite-dimensional Hilbert spaces are isomorphic.

The general statement is as follows. One can introduce the notion of an or-
thonormal basis for an arbitrary Hilbert space as a maximal orthonormal set
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(i.e., a set of orthonormal vectors that is not properly contained in any other
orthonormal set). It can then be shown that in the separable case, this notion of
a basis is equivalent to the one introduced above. One then proves that any two
orthonormal bases of a given Hilbert space have the same cardinality. Hence one
may define the dimension of a Hilbert space as the cardinality of an arbitrary
orthonormal basis. Theorem 4.2.12 then reads in full glory: Two Hilbert spaces
are isomorphic iff they have the same dimension.

To illustrate the theorem, we show that `2(Z) and L2([−π, π]) are isomorphic
through the Fourier transform. Namely, using Fourier theory one can show that
the functions (ek)k∈Z defined by

ek(x) :=
1√
2π
eikx (1.42)

from an o.n.b. of L2([−π, π]). Trivially, the functions (ϕk)k∈Z defined by

ϕk(l) = δkl (1.43)

form an o.n.b of `2(Z). (If one regards an element of `2(Z) as a sequence instead
of a function, fk is the sequence with a 1 at position k and zeros everywhere else.)
This shows that `2(Z)and L2([−π, π]) are both separable infinite-dimensional,
and hence isomorphic by Theorem 4.2.12. Indeed, it is trivial to write down
the unitary map U : L2([−π, π]) → `2(Z) that makes `2(Z) and L2([−π, π])
isomorphic according to the definition of isomorphism: one simply puts

Uf(k) := (ek, f)L2 =
1√
2π

∫ π

−π
dx e−ikxf(x) (1.44)

Here f ∈ L([−π, π]). The second equality comes from the definition of the inner
product in L2([−π, π]). The inverse of U is V : `2(Z)→ L2([−π, π]), given by

V ϕ :=
∑
k∈Z

ϕ(k)ek (1.45)

where ϕ ∈ `2(Z). It is instructive to verify that V = U−1:

(UV ϕ)(k) = (ek, V ϕ)L2 = (ek,
∑
l

ϕ(l)el)L2

=
∑
l

ϕ(l)(ek, el)L2 =
∑
l

ϕ(l)δkl = ϕ(k) (1.46)

where one justifies taking the infinite sum over l out of the inner product by
the Cauchy-Schwarz inequality (using the fact that

∑
l ‖ϕ(l)‖2 < ∞, since by

assumption ϕ ∈ `2(Z). Similarly, for f ∈ L2([−π, π]) one computes

V Uf =
∑
k

(Uf)(k)ek =
∑
k

(ek, f)L2ek = f (1.47)
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by (4.37) and (4.35). Of course, all the work is in showing that the functions ek
form an o.n.b. of L2([−π, π]), which we have not done here!

Hence V = U−1, so that (4.45) reads

U−1ϕ(x) =
∑
k∈Z

ϕ(k)ek(x) =
1√
2π

∑
k∈Z

ϕ(k)eikx (1.48)

Finally, the unitarity of U follows from the computation (where f, g ∈ L2)

(Uf,Ug)`
2

=
∑
k

(f, ek)L2(ek, g)L2 = (f, g)L2 (1.49)

where we have used (4.41).

The choice of a basis in the argument that `2(Z) ' L2([−π, π]) was clearly
essential. There are pairs of concrete Hilbert spaces, however, which one can
show to be isomorphic without choosing bases. A good example is provided
by (4.20) and surrounding text, which proves the practical completion `2 of
`c and the formal completion ˜̀

c to be isomorphic. If one can find a unitary
map U : H1 → H2 without choosing bases, the two Hilbert spaces in question
are called naturally isomorphic. As another example, the formal completion

C̃c(Ω) of Cc(Ω) is naturally isomorphic to L2(Ω).

1.3 Operators and Functionals

1.3.1 Bounded Operators

For the moment, we are finished with the description of Hilbert spaces on their
own. Indeed, Theorem 4.2.12 shows that, taken by themselves, Hilbert spaces
are quite boring. The subject comes alive when one studies operators on Hilbert
spaces. Here an operator a : H1 → H2 between two Hilbert spaces is nothing
but a linear map (i.e., a(λv+µw) = λa(v)+µa(w) for all λ, µ ∈ C and v, w ∈ H1.
We usually write av for a(v).

The following two special cases will occur time and again:

1. Let H1 = H and H2 = C: a linear map ϕ : H → C is called a functional
on H.

2. Let H1 = H2 = H: a linear map a : H → H is just called an operator
on H.

To construct an example of a functional on H, take f ∈ H and define ϕf : H →
C by

ϕf (g) := (f, g) (1.50)
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When H is finite-dimensional, any operator on H can be represented by a matrix
and the theory reduces to linear algebra. For an infinite-dimensional example,
take H = `2 and â ∈ `∞. It is easy to show that if f ∈ `2, then âf ∈ `2. Hence
we may define an operator a : `2 → `2 by

âf := af (1.51)

We will often write a for this operator instead of â. Similarly, take H = L2(Ω)
and â ∈ Cb(Ω) (where Cb(Ω) is the space of bounded continuous functions on
Ω ⊂ Rn, i.e., â : Ω→ C is continuous and ‖â‖∞ <∞. It is can then be shown
that if f ∈ L2(Ω) and â ∈ Cb(Ω), thenâf ∈ L2(Ω). Thus also in this case (4.51)
defines an operator a : L2(Ω)→ L2(Ω), called a multiplication operator.

Finally, the operators U and V constructed at the end of the previous section in
the context of the Fourier transform give examples of operators between different
Hilbert spaces.

As in elementary analysis, where one deals with functions f : R → R, it turns
out to be useful to single out functions with good properties, notably continuity.
So what does one mean by a continuous operator a : H1 → H2? One answer
come from topology: the inner product on a Hilbert space defines a norm, the
norm defines a metric, and finally the metric defines a topology, so one may use
the usual definition of a continuous function f : X → Y between two topological
spaces. Since not everyone is familiar with abstract topology, we use another
definition, which turns out to be equivalent to the topological one. (In fact, the
definition below is much more useful than the topological definition).

Definition 4.3.1 Let a : H1 → H2 be an operator. Define a positive number
‖a‖ by

‖a‖ := sup{‖av‖H2
, v ∈ H1, ‖v‖H1

= 1} (1.52)

where ‖v‖H1
=
√

(v, v)H1 , etc. We say that a is continuous or bounded when
‖a‖ <∞.

For the benefit of those familiar with topology, we mention without proof that
a is continuous according to this definition iff it is continuous in the topological
sense, as explained above. This may be restated as follows: an operator a :
H1 → H2 is continuous (in the topological sense) iff it is bounded (in the sense
of Definition 4.3.1).

Geometrically, the set {v ∈ H1, ‖v‖H1
= 1} is the unit ball in H1, i.e. the

set of vectors of length 1 in H1. Hence ‖a‖ is the supremum of the function
v 7→ ‖av‖H2 from the unit ball in H1 to R+. If H1 is finite-dimensional the
unit ball in H1 is compact. Since the function just mentioned is continuous,
it follows that any operator a on a finite-dimensional Hilbert space is bounded
(as a continuous function from a compact set in Rn to R assumes a maximum
somewhere).
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If a is bounded, the number ‖a‖ is called the norm of a. This terminology
remains to be justified; for the moment it is just a name. It is easy to see that
if ‖a‖ <∞, the norm of a coincided with the constant

‖a‖ = inf{C ≥ 0|‖av‖H2
≤ C‖v‖H1

∀v ∈ H1} (1.53)

Moreover, if a is bounded, then it is immediate that

‖av‖H2
≤ ‖a‖‖v‖H1

(1.54)

for all v ∈ H1. This inequality is very important. For example, it trivially
implies that

‖ab‖ ≤ ‖a‖‖b‖ (1.55)

where a : H → H and b : H → H are any two bounded operators, and ab := a◦b,
so that (ab)(v) := a(bv).

In the examples just considered, all operators turn out to be bounded. First
take a functional ϕ : H → C; since ‖ · ‖C = | · |, one has

‖ϕ‖ := sup{|ϕ(v)|, v ∈ H, ‖v‖H = 1} (1.56)

If one uses Cauchy-Schwarz, it is clear from (4.50) that ‖ϕf‖ ≤ ‖f‖H . In fact,
an important result in Hilbert space theory says:

Theorem 4.3.2 Let H be a Hilbert space. Any functional of the form ϕf for
some f ∈ H (see (4.50)) is continuous. Conversely, any continuous functional
ϕ : H → C is of the form ϕf : g 7→ (f, g) for some unique f ∈ H, and one has

‖ϕf‖ = ‖f‖H (1.57)

The proof is as follows. First, given f ∈ H , as already mentioned, ϕf is bounded
by Cauchy-Schwarz. Conversely, take a continuous functional ϕ : H → C, and
let N be the kernel of ϕ. This is a closed subspace of H by the boundedness
of ϕ. If N = H then ϕ = 0 so we are ready, since ϕ = ϕf=0. Assume N 6= H.
Since N is closed, N⊥ is not empty, and contains a vector h with ‖h‖ = 1[To
see this, pick an orthonormal basis (en) of N . Since N is closed, any f of the
form f =

∑
n cnen , cn ∈ C, that lies in H (which is the case iff

∑
n |cn|2 < ∞

actually lies in N . Since N 6= H, there exists g /∈ N , which implies that
g 6=

∑
n(en, g)en, or h := g−

∑
n(en, g)en 6= 0. Clearly, h ∈ N⊥, and since h 6= 0

the vector has norm 1. This argument will become clearer after the introduction
of projections later in this section]. For any g ∈ H, one has ϕ(g)h−ϕ(h)g ∈ N ,
so (h, ϕ(g)h−ϕ(h)g = 0, which means ϕ(g)(h, h) = ϕ(h)(h, g), or ϕ(g) = (f, g)
with f = ϕ(h)h.

To prove uniqueness of f , suppose there is h with h′ ∈ ker(ϕ)⊥ and ‖h′‖ = 1,
and consequently also ϕ(g) = (f ′, g) with f ′ = ϕ(h)h′. Then ϕ(h) = ϕ(h)(h′, h),
so that h− (h′, h)h′ ∈ ker(ϕ). But ker(ϕ)⊥ is a linear subspace of H, so it must
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be that h − (h′, h)h′ ∈ ker(ϕ)⊥ as well. Since ker(ϕ)⊥ ∩ ker(ϕ) = 0, it follows
that h − (h′, h)h′ = 0. Hence h = (h′, h)h′ and therefore ‖h‖ = 1 and ‖h‖ = 1
yield |(h, h′)| = 1, or (h, h)(h′, h) = 1. It follows that

f = ϕ(h)h = (h′, h)ϕ(h′)(h′, h)h′ = ϕ(h′)h′ = f ′

To compute‖ϕf‖, first use Cauchy-Schwarz to prove ‖ϕf‖ ≤ ‖f‖ and then apply
ϕf to f to prove equality.

For an example of a bounded operator a : H → H, note that on `2 as well as
on L2(Ω) the operator a defined by (4.51) is bounded, with

‖a‖ = ‖â‖∞ (1.58)

A useful estimate
‖af‖2 ≤ ‖â‖∞‖f‖2 (1.59)

arises in the proof.

Finally, the operators U and V at the end of the previous section are unitary;
it easily follows from the definition of unitarity that

‖U‖ = 1 (1.60)

for any unitary operator U .

What about discontinuous or unbounded operators? In view of (4.58), let us
take an unbounded function â : Z → C and attempt to define an operator
a : `2 → `2 by means of (4.51), hoping that ‖a‖ = ∞. The problem with
this attempt is that in fact an unbounded function does not define a map from
`2 → `2 at all, since âf will not be in `2 for many choices of f ∈ `2. (For
example, consider â(k) = k and find such an f for which âf /∈ `2 yourself).
This problem is generic: as soon as one has a candidate for an unbounded
operator a : H1 → H2, one discovers that in fact a does not map H1 into H2.

Nonetheless, unbounded operators occur naturally in many examples and hence
are extremely important in practice, especially in quantum mechanics and the
theory of (partial) differential equations. But they are not constructed in the
above manner as maps from H1 to H2. To prepare for the right concept of an
unbounded operator, let us look at the bounded case once more. We restrict
ourselves to the case H1 = H2 = H, as this is the relevant case for quantum
mechanics.

As before, we denote the completion or closure of a subspace D of a Hilbert
space H by D̄ ⊂ V .

Proposition 4.3.3 Let D ⊂ H be a subspace of a Hilbert space, and let a :
D → H be a linear map. Define the positive number

‖a‖D := sup{‖av‖H , v ∈ D, ‖v‖H = 1} (1.61)
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If ‖a‖D < ∞, there exists a unique bounded extension of a to an operator
a− : D̄ → H with

‖a−‖ = ‖a‖D (1.62)

In particular, when D is dense in H ( in the sense that D̄ = H), the extension
a− is a bounded operator from H to H.

Conversely, a bounded operator a : H → H is determined by its restriction to a
dense subspace D ⊂ H.

Hence in the above examples it suffices to compute the norm of a in order to
find the norm of a−. The point is now that unbounded operators are defined
as linear maps a : D → H for which ‖a‖D = ∞. For example, take â /∈ `∞

and f ∈ D = `c. Then âf ∈ `c, so that a : `c → `2 is defined. One can
also show that ‖a‖`c = ∞iffâ /∈ `∞ (i.e. â is unbounded). Another example
is af := df/dx, defined on f ∈ C(1)([0, 1]) ⊂ L2([0, 1]). It can be shown
that ‖df/dx‖C(1)([0,1]) = ∞. In quantum mechanics, operators like position,
momentum and the Hamiltonian of a particle in a potential are unbounded, as
we will see.

1.3.2 The Adjoint

Now let H be a Hilbert space, and let a : H → H be a bounded operator. The
inner product on H gives rise to a map a 7→ a∗, which is familiar from linear
algebra: if H = Cn, so that, upon choosing the standard basis (ei), a is a matrix
a = (aij) with aij = (ei, aej), then the adjoint is given by a∗ = (āji). In other
words, one has

(a∗f, g) = (f, ag) (1.63)

for all f, g ∈ Cn. This equation defines the adjoint also in the general case.
Note that the map a 7→ a∗ is anti-linear: one has (λa)∗ = λ̄a for λ ∈ C. One
can also show that

‖a∗‖ = ‖a‖ (1.64)

‖a∗a‖ = ‖a‖2 (1.65)

A bounded operator a : H → H is called self-adjoint or Hermitian when
a∗ = a. It immediately follows form (4.63) that for self-adjoint a one has
(f, af) ∈ R.

One may also define self-adjointness in the unbounded case, in a way very similar
to the story above. Namely, let D ⊂ H be dense and let a : D → H be a
possibly unbounded operator. We write D(a) for D and define an operator
a∗ : D(a∗)→ H as follows.

Definition 4.3.4
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1. The adjoint a∗ of an unbounded operator a : D(a)→ H has domain D(a∗)
consisting of all f ∈ H for which the functional g 7→ ϕaf (g) := (f, ag) is
bounded. On this domain, a∗ is defined by requiring (a∗f, g) = (f, ag) for
all g ∈ D(a).

2. The operator a is called self-adjoint when D(a∗) = D(a) and a∗ = a.

For example, a multiplication operator â ∈ C(Ω) on H = L2(Ω), defined on
the domain D(a) = Cc(Ω) by af = âf as usual, has a∗ = ā (i.e., the complex
conjugate of a seen as a multiplication operator) defined on the domain D(a∗)
given by

D(a∗) = {f ∈ L2(Ω)|af ∈ L2(Ω)} (1.66)

Since D(a) ⊂ D(a∗), the operator a cannot be self-adjoint. However, if we start
again and define a on the domain specified by the right-hand side of (4.66), it
turns out that this time one does have a∗ = a. We will study such questions in
detail later on, as they are very important for quantum mechanics. We return
to the bounded case.

1.3.3 Projections

The most important examples of self-adjoint operators are projections.

Definition 4.3.5 A projection on a Hilbert space H is a bounded operator
p ∈ H satisfying p2 = p∗ = p.

To understand the significance of projections, one should first recall the discus-
sion about orthogonality and bases in Hilbert spaces in section 4.2.3. Now let
K ⊂ H be a closed subspace of H ; such a subspace is a Hilbert space by itself,
and therefore has an orthonormal basis (ei). Applying (4.37) with (4.35) to K,
it is easy to verify that

p : f 7→
∑
i

(ei, f)ei (1.67)

for each f ∈ H, where the sum converges in H, defines a projection. Clearly,

pf =

{
f for f ∈ K
0 for f ∈ K⊥

(1.68)

Proposition 4.3.6 For each closed subspace K ⊂ H one has H = K ⊕ K⊥.
In other words, given any closed subspace K ⊂ H each f ∈ H has a unique
decomposition f = f‖ + f⊥, where f‖ ∈ K and f⊥ ∈ K⊥

Theorem 4.3.7 There is a bijective correspondence p↔ K between projections
p on H and closed subspaces K of H: given a projection p one puts K := pH,
and given a closed subspace K ⊂ H one defines p by (4.67), where (ei) is an
arbitrary orthonormal basis of K
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An important special case of a projection is the unit operator p = 1, associated
with K = H.

Projections are important in many ways. One is their occurrence in the spec-
tral theorem, which will occupy us for the remainder of these notes. For the
moment, let us mention that the spectral theorem of linear algebra has an ele-
gant reformulation in terms of projections. In the usual formulation, a matrix
a : Cn → Cn satisfying a∗a = aa∗ has an o.n.b. of eigenvectors {ei}i=1,.....,n,
i.e., one has aei = λiei for some λi ∈ C. In the list of eigenvalues {λi}ii=1,.....,n,
some may coincide. Now make a list {λα}iα=1,.....,m≤n where all the λα’s are dif-
ferent. Let pα be the projection onto the subspace Hα = pαCn of all f ∈ Cn for
which af = λαf ; of course, Hα is the linear span of those ei for which λα = λi.
The spectral theorem now states that a =

∑
α λαp|alpha. In other words, each

normal matrix is a linear combination of mutually orthogonal projections. We
will see in due course what remains of this theorem if one passes from Cn to an
arbitrary (separable) Hilbert space.

Furthermore, it follows from Proposition 4.3.6 that f ∈ H is an eigenvector of
p ifff ∈ pH or f ∈ (pH)⊥; in the first case the eigenvector is 1, and in the second
case it is 0. Apart from projections, another important class of operators on a
Hilbert space consists of the unitaries. An operator u : H → H is called unitary
when uu∗ = u∗u = 1. Equivalently, u is isometric, in that (uf, uf) = (f, f)
for all f ∈ H, and invertible (with inverse u−1 = u∗). For example, if (ei) and
(ui) are two orthonormal bases of H, then the operator u(

∑
i ciei) :=

∑
i ciui

is unitary. In quantum mechanics, one usually encounters unitary operators of
the form u = exp (ia), where a is self-adjoint and (for bounded a) the exponen-
tial is defined by its usual power series expansion, which converges in operator
norm. Clearly, one has u∗ = exp (−ia) and since for commuting a and b (that
is, ab = ba) one has exp (a+ b) = exp (a) exp (b), one sees immediately that u
is indeed unitary.

A partial isometry is an operator v for which v∗v = p is a projection. A
special case is an isometry, characterized by p = 1, i.e., v∗v = 1. An invertible
isometry is clearly unitary. The structure of partial isometries is as follows.

Proposition4.3.8 If v is a partial isometry, then v∗ is a partial isometry as
well. Let the associated projection be q := vv∗. The kernel of v is (pH)⊥, and
its range is qH. The operator v is unitary from pH to its range qH and zero on
(pH)⊥. Conversely, any partial isometry has this form for projections p and q.

30



1.4 Compact Operators

1.4.1 Linear algebra revisited

Compact operators on a Hilbert space (or, more generally, on a Banach space)
are special bounded operators that behave like matrices on Cn in many ways.
To make this point, we first recall the proof that any hermitian matrix (aij)
(i.e., satisfying āji = aij) can be diagonalized. In linear algebra this theorem is
usually stated in a basis-dependent form. From our more abstract perspective
of operators, the matrix (aij) arises from the operator a : Cn → Cn through
the choice of an arbitrary orthonormal basis (ei), in terms of which one has
aij = (ei, aej). The spectral theorem then states that Cn has a (possibly) new
basis of eigenvectors (ui), in which a is diagonal: with respect to this basis
one has aij = (ui, auj) = (ui, λjuj) = λiδij , where λi are the eigenvalues of a
(possibly degenerate). Now, this result can be restated without any reference
to the notion of a basis, as follows.

Proposition 4.4.1 Let H = Cn be a finite-dimensional Hilbert space, and let
a : H → H be a self-adjoint operator on H. There exists a family of mutually
orthogonal projections (pa) (i.e., pαH ⊥ pβH for α 6= β or pαpβ = δαβ) with∑
α pα = 1 and a =

∑
α λαpα, where λα are the eigenvalues of a. In other

words, α is the projection onto the eigenspace in H with eigenvalue λα; the
dimension of pαH is equal to the multiplicity of the eigenvalue λα.

We also have the following lemmas.

Lemma 4.4.2 Every self-adjoint operator a on H = Cn has an eigenvector with
associated eigenvalue λ satisfying |λ| = ‖a‖.

Note that by definition of the operator norm an eigenvalue cannot possibly be
any bigger!

Lemma4.4.3

1. The image of a compact set in H under a continuous map into H or C is
compact.

2. A continuous function f : K → R on a compact set K attains a maximum
and a minimum.

1.4.2 The spectral theorem for self-adjoint compact oper-
ators

Let H be infinite-dimensional (and separable). Eigenvectors and eigenvalues of
operators a on a Hilbert space H are defined in the same way as for H = Cn:
if af = λf for some λ ∈ C thenf ∈ H is called an eigenvector of a with
eigenvalue λ. A crucial difference with the finite-dimensional situation is that
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even a bounded self-adjoint operator on an infinite-dimensional Hilbert space
may not have any eigenvectors (let alone a basis of them!). For example, on
H = L2(Ω) a multiplication operator defined by a nonzero continuous function
has no eigenfunctions at all. The idea is now to define a class of operators on
H for which the proof of Proposition 4.4.1 can be copied, so that the existence
of a complete set of eigenvectors is guaranteed.

We will need some topology, but in our setting of separable Hilbert spaces we
may keeps things simple: a setK in a separable Hilbert spaceH is compact when
every sequence in K has a convergent subsequence, and a map α : H → T , where
T = C or T = H, is continuous if it preserves limits, i.e., if fn → f in H then
α(fn)→ α(f) in T . For H = Cn, this notion of compactness is equivalent to the
Heine-Borel property; for separable infinite-dimensional H this equivalence no
longer holds. Our notion of continuity is equivalent to the usual one in topology.
The norm f 7→ ‖f‖ is continuous on H, which is tautological given our definition
of continuity, because convergence in H has been defined in terms of the norm,
i.e., fn → f in H means ‖fn − f‖ → 0, which precisely expresses continuity of
the norm. Similarly, according to our definition a bounded operator a : H → H
is clearly continuous, too, for ‖afn−af‖ → 0 because ‖afn−af‖ ≤ ‖a‖‖fn−f‖
by (4.54). The main point is that Lemma 4.4.3 still applies.

Definition 4.4.4 A compact operator on a Hilbert space H is a bounded operator
that maps the unit ball B1 ⊂ H into a compact set.

This is not the case for any bounded operator, for although such operators are
continuous, the unit ball in H is not compact. If H is finite-dimensional, so
that B1 is compact, then any operator is compact. More generally, a finite-rank
operator on an infinite-dimensional Hilbert space (i.e., an operator whose image
is finite-dimensional) is compact.

Proposition 4.4.5 A bounded operator on a separable Hilbert space is compact
iff if is the norm-limit of a sequence of finite-rank operators.

A consequence of the proposition is:

Corollary 4.4.6

1. If a is compact then so is its adjoint a∗

2. If a is compact and b is bounded then ab and ba are compact

3. A projection p is compact iff it is finite-dimensional.

Using this corollary, it is easy to show that the set of all compact operators in
B(H) is a Banach space called B0(H) in the operator norm. Moreover, B0(H)
is even an algebra under operator multiplication, closed under involution.

Integral operators form an important class of compact operators. We note that
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if Ω ⊂ Rn is compact, any operator of the form af(x) =
∫

Ω
dnxa(x, y)f(y) is

compact when the kernel a(−,−) is continuous on Ω × Ω. More generally, for
any Ω ⊂ Rn such an operator is compact when a(−,−) ∈ L2(Ω×Ω), i.e., when∫
dnxdny|a(x, y)|2 < ∞. The following theorem completely characterizes self-

adjoint compact operators.

Theorem 4.4.7 Let a be a self-adjoint compact operator on a Hilbert space H.
Then H has an orthonormal basis (ei) of eigenvectors of a, in terms of which

a =
∑
i

λipi (1.69)

where pi projects onto the span of ei, and the sum converges in the sense that
af =

∑
i λipif for each fixed f ∈ H. Moreover, the set (λi) of eigenvalues of a

has the property that
lim
i→∞

|λi| = 0 (1.70)

Conversely, a bounded self-adjoint operator on H of the form (4.69) where the
eigenvalues satisfy (4.70) is compact. Corollary 4.4.8 Each eigenvalue of a
self-adjoint compact operator except possibly 0 has finite multiplicity, and 0 is
the only possible accumulation point of the set of eigenvalues. Hence we may
rewrite (4.69) as

a =
∑
α

λαpα (1.71)

where all eigenvalues λα, are different and pα is the finite-dimensional projection
pα :=

∑
i|λi=λα ei.

This expansion has the advantage over (4.69) that it is unique; in (4.69) there is
an arbitrariness in the choice of basis within the eigenspace of each eigenvalue
with multiplicity greater than one.

In particular, the eigenvalues (λi) are uniquely determined by a.

Corollary 4.4.9 An arbitrary compact operator a on a Hilbert space H has an
expansion

af =
∑
i

µi(ei, f)ui (1.72)

where (ei) and (ui) are orthonormal bases of H, µi > 0, and (µ2
i ) are the

eigenvalues of a∗a. The µi are sometimes called the singular values of a.

1.5 Quantum Mechanics and Hilbert Space: States
and Observables

We are now going to apply the previous machinery to quantum mechanics,
referring to the Intro- duction for history and motivation. The mathematical

33



formalism of quantum mechanics is easier to understand if it is compared with
classical mechanics, of which it is a modification. We therefore start with a
rapid overview of the latter, emphasizing its mathematical structure.

1.5.1 Classical mechanics

The formalism of classical mechanics is based on the notion of a phase space
M and time-evolution, going back to Descartes and Newton, and brought into
its modern form by Hamilton. The phase space of a given physical system is a
collection of points, each of which is interpreted as a possible state of the system.
At each instance of time, a given state is supposed to completely characterize
the state of affairs of the system, in that:

1. The value of any observable (i.e., any question that may possibly be asked
about the system, such as the value of its energy, or angular momen-
tum,......) is determined by it[Philosophers would say that any quantity
pertaining to the system supervenes on its states; this means that no
change in a given quantity is possibly without a change in the state. For
example, most scientists would agree that the mind supervenes on the
brain (seen as a physical system)].

2. Together with the equations of motion, the state at t = 0 is the only
required ingredient for the prediction of the future of the system[We do
not say that such a prediction is always possible in practice. But if it is
possible at all, it merely requires the state and the equations of motion].

Observables are given by functions f on M . The relationship between states
(i.e., points of M ) and observables is at follows:

The value of the observable f in the state x is f(x)

This may be reformulated in terms of questions and answers. Here an observ-
able f is identified with the question: what is the valve of f? A state is then a
list of answers to all such questions.

A very basic type of observable is defined by a subset S ⊂M . This observable
is the characteristic function χS of S, given by χS(x) = 1 when x ∈ S and
χS(x) = 0 when x /∈ S. The corresponding question is: is the system in some
state lying in S ⊂M? The answer yes is identified with the value χS(x) = 1 and
the answer no corresponds to χS(x) = 0. Such a question with only two possible
answers is called a yes-no question. In these notes we only look at the special
case M = R2n, which describes a physical system consisting of a point particles
moving in Rn. We use coordinates (q, p) := (qi, pi), where i = 1, ....., n. The q
variable (position) denotes the position of the particle, whereas the meaning of
the p variable (momentum) depends on the time-evolution of the system. For
example, for a free particle of mass m one has the relation ~p = m~v, where v is
the velocity of the particle (see below). Let us note that one may look at, say,
qi also as an observable: seen as a function on M , one simply has qi(q, p) = qi,
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etc.

Given the phase space M , the specification of the system is completed by speci-
fying a function h on M , called the Hamiltonian of the system. For M = R2n

we therefore have h as a function of (q, p), informally written as h = h(q, p).
The Hamiltonian plays a dual role:

• Regarded as an observable it gives the value of the energy;

• it determines the time-evolution of the system.

Indeed, given h the time-evolution is determined by Hamiltons equations

q̇i :=
dqi

dt
=

∂h

∂pi

ṗi :=
dpi
dt

= − ∂h
∂qi

(1.73)

For example, a particle with mass m moving in a potential V has Hamiltonian

h(q, p) =
p2

2m
+ V (q) (1.74)

where p2 :=
∑n
i=1(pi)

2. The equations (4.73) then read q̇i = pi/m and ṗi =
−∂V/∂q1. With the force defined by F i := −∂V/∂q1, these are precisely New-

tons equations d2q1/dt2 = F i/m, or ~F = m~a. In principle, h may explicitly
depend on time as well.

1.5.2 Quantum Mechanics

Quantum mechanics is based on the postulate that the phase space is a Hilbert
space H, with the additional stipulations that:

1. Only vectors of norm 1 correspond to physical states;

2. Vectors differing by a phase, i.e., by a complex number of modulus 1,
correspond to the same physical state.

In other words, ψ ∈ H and zψ with z ∈ C and |z| = 1 give the same state[lt
follows that the true state space of a quantum-mechanical system is the pro-
jective Hilbert space PH, which may be defined as the quotient SH/ ∼, where
SH := {f ∈ H|‖f‖ = 1} and f ∼ gifff = zgfor some x ∈ C with |z| = 1]. We
here stick to the physicists convention of denoting elements of Hilbert spaces by
Greek letters[This notation was initially used by Schrodinger in order to make
his wave mechanics, a precursor of quantum mechanics, look even more myste-
rious than it already was].

The reason for the first point lies in the probability interpretation of quantum
mechanics. The simplest example of this interpretation is given by the quantum
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mechanics of a particle moving in R3. In that case the Hilbert space may be
taken to be H = L2(R3), and Born and Pauli claimed in 1926 that the meaning
of the wavefunction ψ ∈ L2(R3) was as follows: the probability P (ψ, x ∈ ∆) that
the particle in state ψ is found to be in a region ∆ ⊆ R3 is

P (x ∈ ∆|ψ) = (ψχ∆ψ) =

∫
∆

d3x‖ψ(x)‖2 (1.75)

Here χ∆ is the characteristic function of ∆, given by χ∆ = 1 when x ∈ ∆ and
χ∆ = 0 when x /∈ ∆. It follows that

P (x ∈ Rn|ψ) = ‖ψ‖2 = (ψ,ψ) = 1 (1.76)

since by definition of the physical system in question we assume that the particle
is somewhere.

More generally, observables are represented in quantum mechanics by self-
adjoint operators a on H. In the bounded case (‖a‖ < ∞) this means a∗ = a,
and the meaning of self-adjointness for unbounded operators will be taken up
later. As in classical physics, observables define questions: what is the value of
a? And once again, a state ψ ∈ H with ‖ψ‖ = 1 is nothing but a list of answers
to such questions. Indeed, the answer to the above question in the state ψ is as
follows:

• The value of the observable a in the state ψ is (ψ, aψ).

Although this is a real number, like in classical physics (thanks to a∗ = a),
it now has the interpretation of the expectation value of the observable a,
rather than its exact value[What this really means is a matter of ongoing de-
bate. For example, do expectation values refer to outcomes of a long series of
measurements? Or to propensities of the observable to have the given expec-
tation value? Or to averages with respect to some unknown theory underlying
quantum mechanics? Etcetera]. In quantum mechanics any projection p defines
a so-called yes-no question: is the system in some state in pH? Thus projec-
tions are the quantum analogues of characteristic functions in classical physics.
The fundamental difference between classical and quantum physics, namely the
intrinsically statistical character of the latter, is beautifully illustrated by yes-no
questions. In the classical case the possible values of χS are 0 (no) and 1 (yes).
In quantum mechanics the answer to the question p in the state ψ is (ψ, aψ).
If ψ ∈ (pH)⊥ one has (ψ, aψ) = 0 and if ψ ∈ pH one has (ψ, aψ) = 1. Indeed,
in the former case (no) one can maintain that the state is not in pH, and in
the latter case (yes) one can safely say that the state is in pH. In classical
physics these are the only possibilities: either x ∈ S or x /∈ S. But in quantum
mechanics ψ ∈ (pH)⊥ and ψ ∈ pH are not the only possibilities! In general,
one has the decomposition ψ = ψ‖ + ψ⊥ as explained in Proposition4.3.6, with
both ψ‖ and ψ⊥ nonzero. Using p2 = p∗ = p, one finds

(ψ, pψ) = (ψ‖, pψ‖) ∈ [0, 1]
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the fact that (ψ, pψ) ∈ [0, 1] follows from ‖p‖ = 1 from projections (which in
turn follows from (4.63)) and (4.54) and Cauchy-Schwarz. Generalizing the
interpretation Born and Pauli gave to wavefunctions, we say that:

The number (ψ, pψ) is the probability that the state ψ lies in pH.

Alternatively:

The probability of the answer yes to the question p in the state ψ is (ψ, pψ).

1.5.3 Trace-class operators and mixed states

To be honest, we have only discussed a limited class of states so far, namely
the pure states. These are states containing maximum information about the
system. Hence in classical physics pure states are points in phase space, whereas
in quantum mechanics they are unit vectors in Hilbert space. However, in some
cases a physics student may not know the precise state of the system, for example
because he is drunk. A professor of experimental physics may be in the same
situation, this time because he does not know enough theoretical physics to
figure out which state he has prepared in the lab. In either case one is unable
to distinguish a number of candidate states.

The way out is to make a list of possible pure states (xk), xk ∈M (in classical
physics) or (ψk), ψk ∈ H (in quantum physics and assign each state a probability
Pk. Of course, one should have Pk ∈ [0, 1] for each k and

∑
k Pk = 1. In classical

physics the answer to the question what the value of f is, is then given by

〈f〉 =
∑
k

Pkf(xk)

In quantum physics, the value of a in the given state ρ is

〈a〉 =
∑
k

Pk(ψk, aψk) (1.77)

In textbooks on quantum mechanics one here introduces a density matrix

ρ =
∑
k

Pk |ψk〉 〈ψk| (1.78)

where [ψk] = |ψk〉 〈ψk| is the projection onto the one-dimensional subspace
spanned by ψk or |ψk〉, i.e. (for general unit vectors ψ or |ψ〉) in the one-
dimensional case

[ψ]ϕ := (ψ,ϕ)ψ or |ψ〉 〈ψ |ϕ〉 |ϕ〉 (1.79)

This a tautology; it coincides with (4.67) since 〈ψ |ϕ〉 = (ψ,ϕ). This is one
of the many instances where the Dirac language used in quantum mechanics is
actually better than the one in math books.
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In any case, one now writes (4.77) as

〈a〉 = Tr(ρa) (1.80)

Here the trace of a (bounded) operator b is defined as follows: take any or-
thonormal basis (ei) of H and put

Tr b :=
∑
i

(ei, bei) (1.81)

This is supposed to be independent of the chosen basis. So if ρ is given by
(4.78) and the vectors ψk, are mutually orthogonal, one may choose a basis that
contains all of them. In that case one easily shows that

Tr(ρa) =
∑
k

Pk(ψk, aψk) (1.82)

so that (4.77) and (4.81) are the same.

In quantum mechanics density matrices are often called mixed states. If (4.78)
contains only one term ρ = [ψ], one has Tr(ρa) = (ψ, aψ) and the state is
actually pure.

We now present the general theory of the trace; this is more complicated than
the physics literature suggests. For example, the independence of the trace on
the basis chosen is delicate. If dim(H) < ∞ there is no problem; a simple
computation shows that ∑

i

(ei, aei) =
∑
i

(ui, aui) (1.83)

for any two o.n.b. (ei) and (ui) (just expand ui in terms of the ei and inter-
change summations). However, if dim(H) =∞ one can find bounded operators
b : H → H and orthonormal bases (uk) and (ei) such that

∑
i(ei, bei) =∞ and∑

k(uk, bek) =∞.

To avoid this, in order to make sense of the trace when H is infinite-dimensional
one needs a class of operators a for which (4.81) is (i) finite and (ii) indepen-
dent of the basis. This class can be constructed in (at least) two different but
equivalent ways. The simplest way is as follows.

1. In order to have a well-defined trace, an operator b needs to be bounded
and compact.

2. If b is compact, then so is b∗b. Morever, b∗b is self-adjoint, since

(b∗b)∗ = b∗b∗∗ = b∗b
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3. So we can apply Theorem 4.4.7 with a = b∗b. This yields

b∗b =
∑
k

µkpk

for certain µ∈R and projection pk : H → H. Now, if ψ ∈ pkH, so
that b∗bψ = µkψ, taking the inner product with ψ one has, (ψ, n∗bψ) =
µk(ψ,ψ), i.e., ‖bψ‖2 = µk‖ψ‖2. Hence µk ≥ 0.

Definition 4.5.1 We say that a bounded operator b : H → H is trace-class
when b is compact and

∑
k

√
µk < ∞. Here the µk are the eigenvalues of b∗b.

If b is trace-class we write b ∈ B1(H).

Another approach to the trace is based on the notion of the square root of the
operator b∗b itself (instead of on the square root of its eigenvalues, as above).
Let us call an operator b : H → H positive when (f, bf) ≥ 0 for all f ∈ H.
We write b ≥ 0. We will often use the simple property that if b is positive,
then b∗ = b. It turns out that if b is positive, then (4.81) is independent of the
orthonormal basis (ei), so it is either finite or infinite. If it is finite this defines
the trace of b, and we say b is trace-class. This defines the trace for positive
operators.

To define the trace in general, one uses the square-root of a positive operator.
Namely, one can show that if b is positive, then there exists a unique operator√
b with the properties

√
b
2

= ben
√
b > 0. In particular, the absolute value

|b| :=
√
b∗b (1.84)

is defined, as we have just seen that b ∗ b is positive. We now say that an
arbitrary bounded operator b is trace-class if Tr |b| < ∞, where the trace is
given by (4.81). It turns out that b is trace-class in this sense mathrmiff it is
trace-class according to Definition 4.5.1.

In any case, the most important properties of the trace are:

Theorem 4.5.2 Suppose b is trace-class, or b ∈ B1(H) Then:

1. The expression (4.81), called the trace of b, is absolutely convergent and
independent of the orthonormal basis (ei).

2. If a is bounded, then ab ∈ B1(H) and ba ∈ B1(H) and

Tr(ab) = Tr(ba) (1.85)

3. If u is unitary then

Tr(ubu−1) = Tr(b) (1.86)
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This theorem is easy to use but by no means easy to prove. We return to
quantum mechanics.

Definition 4.5.3 An bounded operator ρ : H → H is called a density operator
or density matrix if:

1. ρ is positive

2. ρ is trace-class

3. Tr ρ = 1

By part 2 of Theorem 4.5.2, for any bounded operator a the expectation value
(4.80) is well defined. Furthermore, since ρ is compact (cf. Definition 4.5.1) and
self-adjoint (as follows from its positivity), we may apply Theorem 4.4.7 with
a = ρ. This yields the expansion (4.78) and we have come full circle.

The above mathematical model of quantum mechanics is too limited, however.
The states are OK, but most observables in quantum mechanics turn out to be
unbounded. Position and momentum are examples. We now turn to the theory
of such unbounded observables.

1.6 Closed Unbounded Operators

1.6.1 The closure

We are now familiar with two classes of operators on a Hilbert space: bounded
ones, and compact ones. As we have seen, the latter are precisely those bounded
operators for which a spectral theory analogous to that for matrices exists.
It would be possible to develop the spectral theory of general bounded (self-
adjoint)operators at this point, but in fact it turns out that this theory can
be written down almost without extra effort for the far wider class of closed
(self-adjoint) operators.

To come to grips with the notion of un unbounded operator, we note the fol-
lowing.

Theorem 4.6.1 An operator on a Hilbert space H is bounded iff it is continuous
in the sense that fn → f implies afn → af for all convergent sequences (fn) in
H.

Let a : H → H be bounded. By (4.54), if fn− > f in H, that is, ‖fn − f‖ → 0,
then afn → af in H, since ‖afn − af‖ ≤ ‖a‖‖fn − f‖. Conversely, if a is not
bounded, then for each n ∈ N there is fn ∈ H with ‖fn‖ = 1 and ‖afn‖ ≥ n.
The sequence (gn = fn/n) converges to 0, but since ‖agn‖ ≥ 1, the sequence
(agn) does not converge to a0 = 0. Hence a is not continuous, and the implica-
tion continuous ⇒ bounded has been proved by reductio ad absurdum.
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It follows that unbounded operators are discontinuous: if fn → f it is not guar-
anteed that a afn → af ; indeed, it is not guaranteed that (afn) converges at
all! Hence an essential difference between the bounded and the unbounded case
is that whereas for bounded operators a Proposition 4.3.3 states that even if a
is initially defined on some dense subspace D of H, it can uniquely be extended
to H by continuity, for unbounded operators a such an extension by continuity
will not in general exist. Although a discontinuous extension to H might ex-
ist, in practice it is very unusual to talk about unbounded operators a defined
on H. This is because interesting unbounded operators tend to be defined on
D ⊂ H by some natural expression, which simply does not make sense on all
of H. Consequently, the specification of the subspace D on which a is defined,
called the domain of a, denoted by D(a) is absolutely essential when a is an
unbounded operator.

Recall that a subspace K ⊂ H is called dense in H when for each f ∈ H there
is a sequence (fn) in K converging to f .

Unless explicitly stated otherwise, we always assume that

the domain of an operator is dense in H.

For example, we have seen that a ∈ C(R) defines a bounded operator on
H = L2(R) by multiplication when ‖f‖ <∞, i.e., when a is bounded. When a
is unbounded as a function, we cannot really make the natural claim that conse-
quently a is unbounded as a multiplication operator on H, since a does not map
H to itself as soon as it is unbounded. What we can say, however, is that a is
unbounded as a multiplication operator on the subspace D(a) = Cc(R), which
(by our definition of L2) is dense in H. Other examples are given by differential
operators: whereas one cannot really say that a = id/dx is unbounded on L2(R)
since the derivative of most functions in L2 is not even defined, one can say that
a is unbounded on, say, D(a) = C1

c (R) := Cc(R) ∩ C1(R).

There is some flexibility in the choice of the domain, and the theory of un-
bounded operators of closable type even largely revolves around the business
of enlarging a given domain. Here we define an extension of a given operator
a : D(a)→ H as an operator a1 : D(a1)→ H where D(a) ⊂ D(a1) and a1 = a
on D(a); we write a ⊂ a1. As we have seen, if a is bounded there is only one
interesting extension, namely the one defined on any larger domain (including
H) by continuity, but in the unbounded case the theory of extension of operators
turns out to be very rich indeed. As a rather trivial example, we could have
defined a = id/dx initially on D(a) = C1

c (R) := Cc(R) ∩ C1(R); the same ex-
pression a1 = id/dx but now defined on D(a1) = Cc(R) is formally an extension
of a. Similarly, an unbounded multiplication operator a ∈ C(R) may initially
be defined on D(a) = C∞c (R), to be extended by the same expression defined
on D(a1) = Cc(R), as above. Clearly, the largest possible domain on which a
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multiplication operator a ∈ C(Ω) can be defined in the natural way is

D(a) = {f ∈ L2(Ω)|af ∈ L2(Ω)} (1.87)

The particular unbounded operators that one can deal with satisfy a relic of
continuity. To explain this, we define the graph of a as the subset {f, af} ⊂
H ×H. To define the notion of closedness in H ×H we equip this set with the
structure of a Hilbert space in the following way: we first equip H × H with
the structure of a vector space by defining 〈f1, f2〉+ 〈g1, g2〉 := 〈f1 + g1f2 + g2〉
and λ〈f1, f2〉 := 〈λf1, λf2〉, and subsequently putting an inner product on it by
(〈f1, f2〉, 〈g1, g2〉) := (f1, g1) + (f2, g2). With this structure, H ×H is a Hilbert
space called H ⊕H, for it is precisely the direct sum of H with itself.

Definition 4.6.2 A closed operator A closed operator a : D(a) → H is
a linear map from a dense subspace D(a) ⊂ H to H for which either of the
following equivalent conditions holds:

• If fn → f in H for a sequence(fn) in D(a and (afn) converges in H, then
f ∈ D(a) and afn → af in H.

• The graph of a is closed.

• The domain D(a) is closed in the norm ‖f‖2a := ‖f‖2 + ‖af‖2.

Note that the norm ‖ · ‖a comes from the new inner product (f, g)a := (f, g) +
(af, ag) on D(a). Hence D(a) is a Hilbert space in the new inner product when
a is closed.

It is quite unusual for an operator to be closed in the form initially given. For
example, a multiplication operator a in L2(Ω)s not closed on Cc(Ω); in fact, a
turns out to be closed only on the domain (4.87). Fortunately, an operator a
that is not closed may often be extended into a closed one. The condition for
this to be possible is as follows.

Definition 4.6.3 A closable operator a : D(a) → H is a linear map from a
dense subspace D(a) ⊂ H to H with the property that the closure G(a)− of its
graph is itself the graph G(a−) of some operator a− (called the closure of a

In other words, a− is a closed extension of a. It is clear that a− is uniquely
defined by its graph G(a−) = G(a)−.

Proposition 4.6.4 An operator a is closable iff either of the following equivalent
conditions holds:

• If fn → 0 for a sequence (fn) in D(a) and if (afn) converges, then (afn)
must converge to 0.

• The closure G(a)− of the graph of a does not contain any element of the
form (0, g) for g 6= 0.
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In that case, the domain of the closure a− of a is the set of all f ∈ H to which
some sequence (fn) in D(a) converges and for which (afn) converges as well.
Its action is given by a−f := limn afn. Finally, the operator a− is the smallest
closed extension of a.

To verify that a− is indeed closed, suppose fn → f and afn → g, with (fn)
in D(a−). Since fn ∈ D(a−) for fixed n, there exists (fm,n) in D(a) such that
limM fm,n = fn and limm afm,n =: gn exists. Then clearly limm,n fm,n = f ,
and we claim that

lim
m,n

afm,n = g (1.88)

Namely, ‖afm,n − g‖ ≤ ‖afm,n − afn‖+ ‖afn − g‖ For ε > 0 take n so that the
second term is < ε/2. For that fixed n, a(fm,n − fn) converges as m → ∞ be-
cause afm,n → gn and afn is independent of m. Also, recall that fm,n− fn → 0
as m → ∞. By assumption, a is closable, hence by definition one must have
a(fm,n − fn) → 0 in m. Hence we may find m so that ‖afm,n − afn‖ < ε/2,
so that ‖afm,n − g‖ < ε, and (4.88) follows. Hence f ∈ D(a−). Finally, since
a−f := limm,n afm,n one has a−f = g by (4.88), or a−f = limn afn by defini-
tion of g. It follows that a− is closed. This extension of a is clearly the minimal
closed one.

This argument shows that for a− to be closed it is sufficient that a is closable.
Conversely, if a fails to be closable it cannot have any closed extension whatso-
ever, since a− is by definition linear, and a−0 = 0 for any operator. The second
condition for closability is then clearly equivalent to the first.

For example, a multiplication operator a in H = L2(Ω) is closable on Cc(Ω): in
both cases the closure has domain (4.87). On the other hand, an example of a
non-closable operator is given by H = L2(Ω), D(a) = Cc(Ω), and af := f(0)g,
where g ∈ H is arbitrary.

In general, even closed unbounded operators may have closed extensions, a
phenomenon which is particular important in connection with the theory of
self-adjointness; see below.

This section would not be complete without mentioning a special case of one
of the most famous theorems in functional analysis, namely the closed graph
theorem (for Hilbert spaces):

Theorem 4.6.5 If a : H → H has a closed graph, then it is bounded. In other
words, a closed operator defined on all of H is necessarily bounded.

We will use this theorem only once, since in applications an operator defined on
H is usually already known to be bounded, whereas unbounded operators are
never defined on H, so that their graph cannot be studied in any case[On the
theoretical side, however, an important consequence of the closed graph theorem
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is another famous result known as the open mapping theorem: a bounded
surjective operator on a Hilbert space H is open (in that the image of an open
set in H is open; the boundedness of H implies the opposite, namely that the
inverse image of an open set in H is open)].

1.6.2 Symmetric and self-adjoint operators

The most important closed operators, not just for quantum mechanics also but
for mathematics as a whole, are the self-adjoint ones. To define these, first recall
the definition of the adjoint a* in the unbounded case: see Definition 4.3.4.

Although it may even happen that D(a∗) is zero, this is pretty pathological,
and in most natural examples D(a∗) turns out to be dense. For example, a
multiplication operator a ∈ C(Ω) on H = L2(Ω), defined on any of the domains
we have considered (i.e., D(a) = C∞c (Ω), D(a) = Cc(Ω), or (4.66)), has a∗ = ā
(i.e., the complex conjugate of a seen as a multiplication operator) defined on
D(a∗) given by the right-hand side of (4.66). The following important result
shows when D(a∗) is dense.

Proposition 4.6.6 Let a : D(a) → H (where D(a) is dense ) be an operator
on a Hilbert space H.

1. The adjoint a∗ is closed.

2. The operator a is closable iffD(a∗) is dense.

3. In that case, one has a− = a∗∗ and (a−)∗ = a∗.

We now come to the central definition of this section. An equality a = b between
unbounded operators always stand for D(a) = D(b) and a = b. Similarly, a ⊂ b
means D(a) ⊂ D(b) and b = a on D(a).

Definition 4.6.7 Let a : D(a)→ H (where D(a) is dense) be an operator on a
Hilbert space H.

• If a = a∗, i.e., if D(a∗) = D(a) and (af, g) = (f, ag) for all f, g ∈ D(a),
then a is called self-adjoint.

• If a∗∗ = a∗ (equivalently, if a is closable and a− = a∗ or (a−)∗ = a∗),
then a is called essentially self-adjoint.

• If a ⊂ a∗ i.e., if (af, g) = (f, ag) for all f, g ∈ D(a), then a is called
symmetric.

It follows Proposition 4.6.6 that a self-adjoint operator is closed, and that a
symmetric operator is closable (because D(a∗), containing D(a), is dense). For
a symmetric operator one has a ⊆ a− = a∗∗ ⊆ a∗, with equality at the first
position when a is closed, and equality at the second position when a is essen-
tially self-adjoint; when both equalities hold, a is self-adjoint. Conversely, an
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essentially self-adjoint operator is, of course, symmetric. A symmetric operator
may or may not have self-adjoint extensions; we will deal with this problem in
detail later on. Without proof we quote the Hellinger-Toeplitz theorem: If
a is self-adjoint on D(a) = H, then a is bounded. This confirms the idea that it
is pointless to try to define unbounded operators on all of H in some manifestly
discontinuous way. All this is very subtle, but the following example illustrates
at least the easy part of the theory:

Proposition 4.6.8 A real-valued multiplication operator a ∈ C(Ω) on H =
L2(Ω) is essentially self-adjoint on D(a) = C∞c (Ω), and on D(a) = Cc(Ω), and
is self-adjoint on

D(a) = {f ∈ L2(Ω)|af ∈ L2(Ω)} (1.89)

Cf. (4.66)). Of course, D(a) = H when ‖a‖∞ < ∞, since in that case a is a
bounded operator, as we have seen.

1.7 Spectral Theory for Self-Adjoint Operators

We denote the kernel or null space of a map a by N(a) and its range or image
by R(a). As before, D(a) denotes the domain of a. Also, a−z for z ∈ C denotes
the operator a− z.

1.7.1 Resolvent and spectrum

The theory of the spectrum of a closed operator on a Hilbert space (which may
be bounded or unbounded) is a generalization of the theory of eigenvalues of a
matrix. From linear algebra we recall:

Proposition 4.7.1 Let a : Cn → Cn be a linear map. Then a is injective iff it
is surjective.

Corollary 4.7.2 Let a : Cn → Cn be a linear map. Then a − z is invertible
(i.e., injective and surjective) iff z is not an eigenvalue of a, i.e., if there exists
no f ∈ Cn such that af = zf . Defining the spectrum σ(a) of a : Cn → Cn as
the set of eigenvalues of a and the resolvent ρ(a) as the set of all z ∈ C for
which a− z is invertible, we therefore have

σ(a) = C\ρ(a) (1.90)

If z ∈ ρ(a), the equation (a − z)f = g for the unknown f ∈ Cn has a unique
solution for any g; existence follows from the surjectivity of a − z, whereas
uniqueness follows from its injectivity (if a − z fails to be injective then any
element of its kernel can be added to a given solution).

Now, if a is an operator on an infinite-dimensional Hilbert space, it may not
have any eigenvalues, even when it is bounded and self-adjoint. For example, if
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a(x) = exp (−x2) the associated multiplication operator a : L2(R) → L2(R) is
bounded and self-adjoint, but it has no eigenvalues at all: the equation af = λf
for eigenvectors is exp (−x2)f = λf for (almost) all x ∈ R, which holds only
if f is nonzero at a single point. But in that case f is not an element of L2.
However, the situation is not hopeless. More generally, let any a ∈ Cb(R),
interpreted as a multiplication operator a : L2(R)→ L2(R). If x0 ∈ R one may
find approximate eigenvectors of a in the following sense: take

fn(x) :=
(n
π

)1/4

e−n(x−x0)2/2 (1.91)

Then ‖fn‖ = 1 and limn→∞(a(x) − a(x0))fn = 0, although the sequence fn
itself has no limit in L2(R). Thus we may call λ = a(x0) something like a
generalized eigenvalue of a for any x0 ∈ R, and define the spectrum accordingly:
let a : D(a) → H be a (possibly unbounded) operator on a Hilbert space. We
say that λ ∈ σ(a) when there exists a sequence (fn) in D(a) for which ‖fn‖ = 1
and

lim
n→∞

(a− λ)fn = 0 (1.92)

Of course, when λ is an eigenvalue of a with eigenvector f , we may take fn = f
for all n. However, this is not the official definition of the spectrum, which is as
follows.

Definition 4.7.3 Let a : D(a) → H be a (possibly unbounded) operator on a
Hilbert space. The resolvent ρ(a) is the set of all z ∈ C for which a−z : D(a)→
H is lnjectlve and surjectlve (l.e., lnvertlble). The spectrum σ(a) of a is defined
by σ(a) := C\ρ(a).

Hence the property (4.90) has been turned into a definition! We will prove the
equivalence of this definition of the spectrum with the definition above later
on. In the example just given, one has σ(a) = a(R) if the right domain of a is
used, namely (III.17). Thus the spectrum can be nonempty even if there arent
any eigenvalues. The subsequent theory shows that these are precisely the right
definitions for spectral theory.

The following result explains the role of closedness[Some books define the re-
solvent of a, as the set of those z ∈ C for which (a − z) is invertible and has
bounded inverse. In that case, the resolvent is empty when a, is not closed].

Proposition 4.7.4 If an operator a : D(a) → R(a) = H has an inverse, then
a−1 is bounded iff a is closed.

Returning to the equation (a− z)f = g, it now follows that when z ∈ ρ(a), the
solution f depends continuously on the initial data g iff a is closed. To avoid
pathologies, we therefore assume that a is closed in what follows. Furthermore,
as we shall see, practically every argument below breaks down when (a− z)−1

is unbounded. This also explains why as far as spectral theory is concerned
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there isnt much difference between bounded operators and closed unbounded
operators: in both cases (a− z)−1 is bounded for z ∈ ρ(a).

One then easily shows:

Proposition 4.7.5 Let a be a closed operator.

1. ρ(a) is open (and hence σ(a) is closed) in C.

2. ρ(a∗) = ρ(a); σ(a∗) = σ(a)

For unbounded operators the spectrum can (literally) be any subset of C, in-
cluding the empty set.

1.7.2 The spectrum of self-adjoint operators

For a general closed operator a, we may decompose the spectrum as

σ(a) = σd(a) ∪ σc(a) (1.93)

where the discrete spectrum σd(a) consists of all eigenvalues of a, and the
continuous spectrum σc(a) is the remainder of σ(a). Recall that eigenvalues lie
in σ(a), for if (a− λ)f = 0 for some nonzero f then a− λ cannot be injective.
The spectrum of self-adjoint operators has a particularly transparent structure.

Theorem 4.7.6 Let a be a self-adjoint operator (i.e., a∗ = a), and let z ∈ C.
Then one of the following possibilities occurs:

1. R(a− z) = H iff z ∈ ρ(a)

2. R(a− z)− = H butR(a− z) 6= H iff z ∈ σc(a)

3. R(a− z)− 6= H iff z ∈ σd(a)

with associated lemmas:

Lemma 4.7.7 If a is closable (equivalently, if D(a∗) is dense), then R(a−z)− =
N(a∗ − z̄)⊥ and N(a∗ − z̄ = R(a− z)⊥

Lemma 4.7.8 Let a be symmetric. Then ‖(a− z)f‖ ≥ |Im(z)|‖f‖

Lemma 4.7.9 Let a be any densely defined operator. If ‖af‖ ≥ C‖f‖ for some
C > 0 and all f ∈ D(a), then a is injective and a−1 : R(a)→ D(a) is bounded
with bound ‖a−1‖ ≤ C−1

Lemma 4.7.10 If b is closed and injective, then b−1 : R(b)→ D(b) is closed

Lemma 4.7.11 If b is closed and bounded, then D(b) is closed
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with the corollary

Theorem 4.7.12 Let a be a symmetric operator. Then the following properties
are equivalent:

1. a∗ = a, i.e., a is self-adjoint

2. a is closed and N(a∗ ± i) = 0

3. R(a± i) = H

4. R(a− z) = h for all z ∈ C\R

5. σ(a−) ⊂ R

Similarly, the following properties are equivalent:

1. a∗ = a∗∗, i.e., a is essentially self-adjoint

2. N(a∗ ± i) = 0

3. R(a± i)− = H

4. R(a− z)− = H for all z ∈ C\R

5. σ(a−) ⊂ R

Corollary 4.7.132 Let a∗ = a. Then σ(a) ⊂ R. In other words, the spectrum
of a self-adjoint operator is real

Finally we have the proposition:

Proposition 4.7.14 Let a ∈ C(Ω) define a real-valued multiplication operator
on

D(a) = {f ∈ L2(Ω)|af ∈ L2(Ω)} ⊂ H = L2(Ω)

so that a∗ = a (cf. Proposition 4.6.8.) Then the operator a is injective iff
a(x) 6= 0 for all x ∈ Ω, and surjective iff there exists ε > 0 so that |a(x)| ≥ ε
for all x ∈ Ω; in that case a is injective and has bounded inverse. Consequently,
σ(a) = a(Ω)− with a(Ω) := {a(x), x ∈ Ω}

which leads to the theorem:

Theorem 4.7.15 Let a be self-adjoint. Then λ ∈ σ(a) iff there exists a sequence
(fn) in D(a) with ‖fn‖ = 1 for all n such that limn(a− λ)fn = 0
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1.7.3 Application to quantum mechanics

The theory of self-adjoint operators has many applications, for example to the
theory of boundary value problems for linear partial differential equations. In
these notes we focus on applications to quantum mechanics.

In section 4.5 we initially assumed that observables in quantum mechanics are
mathematically represented by bounded self-adjoint operators, i.e. linear maps
a : B(H)→ B(H) such that ‖a‖ <∞ and a∗ = a. As already mentioned at the
end of that section, however, this model is too limited. For example, in physics
textbooks you will find the position and momentum operators

q̂i = xi

p̂i = −i~ ∂

∂xi
(1.94)

Here h ~ ∈ R+ is a constant of nature, called Plancks constant, and i = 1, 2, 3.
These operators are allegedly defined on H = L2(R3), but we know from the
previous work that at least q̂i is unbounded. It is a multiplication operator of
the form aψ(x) = âψ(x) with â ∈ C(R3), in this case â(x) = xi. As we have
seen, a is bounded iff ‖a‖∞ < ∞, and this clearly not the case for xi. Hence
the position operator is unbounded. It follows from Proposition 4.6.8 that q̂i is
self-adjoint on the domain

D(q̂i) = {ψ ∈ L2(R3)|xiψ ∈ L2(R3)} (1.95)

where xiψ is shorthand for the function x 7→ xiψ(x).

Although we have not had the opportunity to develop the necessary machinery,
the story of the momentum operator p̂i is similar. If we denote the Fourier
transform of ψ ∈ L2(R3) by ψ̂, and call its argument k = (k1, k2, k3) ∈ R3, we
can write

ψ̂(k) =

∫
R3

d3xψ(x)e−ikx (1.96)

where kx = x1k1 + x2k2 + x3k3. This improper integral is defined as follows.

1. Approximate ψ by a sequence (ψn) in Cc(R3) (i.e. limn→∞ ψn = ψ in the
norm of L2(R3)). This is possible by Proposition 4.2.9.

2. Put

ψ̂n(k) :=

∫
R3

d3xψn(x)e−ikx (1.97)

as proper Riemann integrals (the integrand is continuous and since ψn has
compact support the integral is proper, i.e. over a finite region).

3. It turns out that ψ̂n is a Cauchy sequence in L2(R3), so we may finally
define

ψ̂ := lim
n→∞

ψ̂n (1.98)

where the limit is taken in L2(R3).
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It turns out that ψ ∈ L2(R3) iff ψ̂ ∈ L2(R3), and that one can reconstruct ψ

from ψ̂ by

ψ(x) =

∫
R3

d3k

(2π)3
ψ̂(k)eikx (1.99)

which is defined by the same procedure as (4.96). This reconstruction is as an
element of L2; we cannot recover ψ as an element 0L2 from its Fourier transform.
Thus (4.99) holds almost everywhere but not for all x.

The correct domain of the momentum operator p̂i, is then as follows:

D(p̂i) = {ψ ∈ L2(R3)|kiψ̂ ∈ L2(R3)} (1.100)

On this domain one has p̂∗i = p̂i, i.e. the momentum operator is self-adjoint.

In general, any quantum-mechanical observable a should be a self-adjoint oper-
ator on some Hilbert space. By Corollary 4.7.13, this implies that the spectrum
of a is real, and we will see later that the spectral theorem for self-adjoint op-
erators enables one to construct yes-no questions similar to χ∆ for the position
operator (as discussed earlier).

1.7.4 The Hamiltonian

In case that the observable is the Hamiltonian, more detailed statements can be
made, as follows.

Hamiltons equations of motion for classical mechanics were given in (4.73) and
(4.74). Quantum mechanics has a single equation of motion, known as the
Schrodinger equation. The role of the classical Hamiltonian h = h(p, q) (i.e. a
function on phase space) is now played by a certain operator h on a Hilbert space
H, whose specification is part of the definition of a given physical system. The
precise form of this operator is usually guessed from the form of the classical
Hamiltonian. For example, if H = L2(R3) and the classical Hamiltonian is
(4.74), Schrodinger took the quantum Hamiltonian to be

h = − ~2

2m

3∑
i=1

∂2

∂x2
i

+ V (1.101)

Here m is the mass of a particle moving in a potential V , seen as a a multipli-
cation operator. For example, if the particle is an electron in a hydrogen atom,
the potential is given by V (x) = −e/|x| It is clear that h cannot be defined on
all of L2(R3): the partial derivatives of an arbitrary ψ ∈ L2(R3) will not be
defined (and even if they are defined the result may not be square-integrable),
and the product VΨ may not lie in L2(R3) either, especially when the potential
is singular (as is the case for the hydrogen atom and many other examples).
Hence h is an unbounded operator, and we have to find a domain on which it is
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self-adjoint. Even for V = 0 this is a nontrivial problem. The solution is similar
to the case of the momentum operator: it turns out that the free Hamiltonian

h0 = − ~2

2m

3∑
i=1

∂2

∂x2
i

(1.102)

is self-adjoint on the domain

D(h0) = {ψ ∈ L2(R3)|k2ψ̂ ∈ L2(R3)} (1.103)

with k2 = k2
1 + k2

2 + k2
3. For nonzero potential the problem is very difficult,

although most realistic cases have been completely understood now. All known
examples support the following interpretation of the spectrum of the Hamilto-
nian:

• The discrete spectrum σd(h) corresponds to the bound states of the system

• The continuous spectrum σc(h) corresponds to the scattering states

To clarify this, first note that if E ∈ σd(h), by definition there is an eigenvector
ψE such that hψE = EψE . Hence ψE is a solution to the time-independent
Schrodinger equation with energy E. For example, for the hydrogen atom one
has En = −mee

4/2~2n2, where me is the mass of the electron and e is its charge,
with the well-known eigenfunctions ψn,`,m. Such an eigenfunction describes a
bound state, in which the electron forms a standing wave around the nucleus.

There is an interesting difference between the classical and the quantum-mechanical
description of bound states: a planet revolving around the sun is in a bound
state, but it clearly displays time-dependent behavior (it moves around)! An
electron in a bound state, on the other hand, evolves according to the time-
dependent Schrodinger equation. We will turn to the precise mathematical
meaning of this equation in the next section, but for the moment we just write
it down:

hψ(t) = i~
dψ(t)

dt
(1.104)

This equation should be seen as the quantum-mechanical analogue of Hamiltons
equations (4.101). If E ∈ σd(h), a possible solution of (4.104) is

ψE(t) = e−itE/~ψE (1.105)

Although formally ψE(t) changes in time, physically nothing really happens, as
ψE(s) and ψE(t) for s 6= t merely differ by a phase factor. Hence any expectation
value (ψE(t), aψE(t)) is independent of t. So bound states in quantum mechanics
are static, whereas in classical mechanics they are dynamical. This makes the
transition from quantum mechanics to classical mechanics in the limit ~ → 0
very difficult.

In any case, given h = h∗ we may split up the Hilbert space H on which h acts
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by H = Hd⊕Hc, where Hd contains all eigenvectors of h and Hc = H⊥d . States
in Hc really move in time, and physically turn out to describe situations in which
a particle moves in space in a non-closed trajectory. For example, think of a
comet moving into the solar system with such a speed that it is not captured by
the gravitational pull of the sun, but moves out again. In atomic physics, think
of an electron shot into an atom and, after being scattered, moving out again.

1.7.5 Stones theorem

The time-dependent Schrodinger equation (4.104) is very delicate, mathemat-
ically speaking. Let us start with the left-hand side. The Hamiltonian h is
generally an unbounded operator, so we should worry about its domain and
possible self-adjointness (in order to qualify as an observable). The right-hand
side involves a limit, since by definition

dψ(t)

dt
:= lim

s→0

ψ(t+ s)− ψ(t)

s
(1.106)

Since for fixed t the object ψ(t) is an element of a Hilbert space H, the natural
meaning of this limit is to take it in the natural norm of H (i.e., as always, the
one derive from the inner product). The existence of the limit then means: for
each fixed t there is a vector ψ̇(t) ∈ H such that

lim
s→0
‖ψ(t+ s)− ψ(t)

s
− ψ̇(t)‖ = 0 (1.107)

If it exists, the vector ψ̇(t) is by definition the time-derivative dψ(t)/dt (as the
notation already suggests). But why should this limit exist?

Hence both the left-hand side and the right-hand side of the time-dependent
Schrodinger equation (4.104) are problematic. Stones Theorem provides a com-
plete mathematical meaning of the time-dependent Schrodinger equation and in
fact relates the problem on one side to that on the other. In doing so, it provides
an explanation of self-adjointness as well. Stones Theorem is generally regarded
as a highlight in the interaction between Hilbert space theory and quantum
mechanics (although it may be considered a theorem in pure mathematics if so
desired).

Stones theorem can be read in two directions:

1. Given the Hamiltonian h as a self-adjoint operator, it defines the time-
evolution ψ(t)

2. Given the time-evolution ψ(t), it defines the Hamiltonian h as a self-
adjoint operator

Thus the theorem provides a relationship between the global time-evolution and
the infinitesimal time-evolution given by the Hamiltonian and the Schrodinger
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equation.

We already know what a self-adjoint operator is. To state the theorem, we
need to define the notion of time-evolution on a Hilbert space. We motivate
this definition by some intuition from quantum mechanics. Physicists solve the
time-dependent Schrodinger equation with initial value ψ(0) = ψ by

ψ(t) = u(t)ψ (1.108)

where
u(t) = e−ith/~ (1.109)

Here we assume that the Hamiltonian h is time-independent. Indeed, if h is
bounded (a situation that rarely occurs in practice except when H is finite-
dimensional) the exponential in (4.109) can simply be defined by a norm-
convergent power-series. When h is not bounded the exponential cannot be
defined in this way. We will define the exponential of an unbounded operator
in the next section using spectral calculus.

Some desirable properties of u(t) may be read off nonetheless from Australian
style formal computation with the motto no worries about any mathematical
problem that might arise. We then take these heuristic properties as axioms.

First, we expect that (ψ(s))(t) = ψ(s+ t), and this indeed follows from (4.109)
and the formal computation exp(ta)exp(sa) = exp((s + t)a), where a is any
operator. Indeed, this is rigorously true when a is bounded. This translates
into the property

u(s)u(t) = u(s+ t) (1.110)

for all s, t ∈ R. Furthermore, one clearly has

u(0) = 0 (1.111)

and the strong continuity property

lim
t→0

u(t)ψ = ψ (1.112)

for each ψ ∈ H. Finally, each u(t) is unitary. This follows from (4.109) by a
formal computation:

u(t)u(t)∗ = e−ith/~(eith/~)∗ = e−ith/~eith
∗/~ = eith/~ = 1

and similarly for u(t)∗u(t) = 1. Here we have used h∗ = h.

To some up, intuition based on the Schrodinger equation suggests the following
idea[Those familiar with groups and representations will recognize that this is
just the definition of a continuous unitary representation of R as a topological
group. Condition (4.112) can be shown to be equivalent to the continuity of the
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map 〈t, ψ〉 7→ u(t)ψ from R×H to H].

Definition 4.7.16 A time-evolution on H is a map R→ B(H), t 7→ u(t), with
the properties (4.110), (4.111) and (4.113) and where u(t) is unitary for each t

We now state Stones theorem. We put ~ = 1 for simplicity

Theorem 4.7.17

1. Let t 7→ u(t) be a time-evolution on H. Define an operator h by the
domain

D(h) : {ψ ∈ H| lim
s→0

u(s)− 1

s
ψ exists} (1.113)

and the action

hψ := i lim
s→0

u(s)− 1

s
ψ (1.114)

The D(h) is dense in H and h is self-adjoint.

2. Provided ψ ∈ D(h), for each t ∈ R the vector ψ(t) = u(t0ψ lies in D(h)
and satisfies the time-dependent Schrodinger equation

hψ(t) = i
dψ(t)

dt
(1.115)

3. Given a (densely defined) self-adjoint operator h on H there exists a unique
time-evolution on H that is related to h in the way just specified. Explicitly,
one has

u(t) = e−ith (1.116)

where the exponential function is defined by the spectral calculus.

We also have the associated lemma:

Lemma 4.7.18 Suppose h is a symmetric operator, i.e. D(h) is dense and

(hϕ, ψ) = (ϕ, hψ) (1.117)

for all ϕ,ψ ∈ D(h). If R(h+ i) = H and R(h− i) = H, then h is self-adjoint.

So far, we have thought of t 7→ u(t)ψ as the time-evolution of ψ. But nothing has
relied on this interpretation (this is the power of abstraction in mathematicsl).
Consider the following example. Take H = L2(R) and define the map t 7→ u(t)
by

(u(t)ψ)(x) := ψ(x− t) (1.118)

which satisfies Definition 4.7.16. Using superior foresight, we now rename the
operator h defined in Part 1 of Theorem 4.7.17 as p̂. Then (4.113) is just

D(p̂) := {ψ ∈ L2(R)|ψ′ ∈ L2(R)} (1.119)
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where the derivative ψ′ is defined as follows:

ψ′(x) := lim
s→0

ψ(x+ s)− ψ(x)

s
(1.120)

the limit not being meant pointwise in x but in the norm of L2(R). Reinserting
h, the action (4.114) of p̂ is

p̂ψ = −i~dψ
dx

(1.121)

This is indeed the usual momentum operator, and Stones theorem states that
it is self-adjoint on the domain (4.121). The theory of the Fourier transform
finally shows that the domains (4.121) and (4.100) coincide.

More generally, the domains of many operators of interest in quantum theory
can be determined through Stones theorem.

1.8 The Spectral Theorem

In this section we prove the spectral theorem for self-adjoint operators a. This
theorem generalizes the expansion or spectral decomposition (see Theorem 4,4.7)

a =
∑
i

λipi (1.122)

of a self-adjoint compact operator (such as a hermitian matrix) in terms of its
eigenvalues λi and the projections pi of the corresponding eigenspaces (i.e., if
ψ ∈ piH then aψ = λiψ. Let us note the properties

pi ⊥ pj (i 6= j) (1.123)

(since the eigenvectors belonging to different eigenvalues are orthogonal) and∑
i

pi = 1 (1.124)

(for the eigenvectors form an orthonormal basis).

This spectral decomposition plays a leading role in the probability interpretation
of quantum mechanics, which reads as follows in case the observable a = a∗ is
a compact operator :

1. The possible values of the observable a : H → H that may be found when
it is measured are its eigenvalues λi ∈ R;

2. The probability that λi occurs when a is measured when the system is in
a state ψ ∈ H (i.e. a unit vector) is

P (a = λi|ψ) = (ψ, piψ) = ‖piψ‖2 (1.125)
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Here we have used the standard notation for conditional probabilities. In par-
ticular, when pi is one-dimensional and ei ∈ piH is a unit vector one has the
Born rule

P (a = λi|ψ) = |(ei, ψ)|2 (1.126)

As we have pointed out before, in general a self-adjoint operator need not have
any eigenvalues at all (recall the example of the multiplication operator a(x) =
exp(−x2) on H = L2(R)), or may have mixed spectrum consisting of both
eigenvalues and continuous spectrum (for example, a multiplication operator a ∈
C(Ω) on L2(Ω) with compact support has eigenvalue 0 with infinite multiplicity,
since any ψ with support disjoint from a satisfies aψ = 0, whereas the remainder
of the range of a will form its continuous spectrum).

Hence, given a = a∗, we need to generalize:

• The map λi 7→ pi ≡ p({λi}) from the spectrum of a to the set of projec-
tions on H

• The expansion (4.122).

1.8.1 Spectral measures

We start with the former. The appropriate generalization turns out to be a
map B 7→ p(B) from the Borel subsets[lf you are unfamiliar with this concept,
think of just any reasonable subset of R. For example, all open subsets of R
as well as all countable intersections of open sets are Borel, as are all closed
subsets of R and all countable unions thereof. In fact, it is practically (though
not logically) impossible to construct a subset of R that is not Borel!] of R to
the set of projections on H. This map, called the spectral measure on R defined
by a, will have the following properties.

Definition 4.8.1 A map B 7→ p(B) from the Borel subsets of R to the set of
projections on H is called a spectral measure when:

1. p(∅) = 0

2. p(R) = 1

3. p(A ∩B) = p(A)p(B)

4. p(A ∪B) = p(A) + p(B) when A ∩B = 0

5. p(∪nBn) = ∧p(Bn), where ∧pn is the smallest projection p such that
pn ≤ p for all n

Note that 1. follows from 4. It follows from the third item that all p(B) commute
among each other when B varies, since A ∩B = B ∩A. It also follows that

p(A)p(B) = 0 if A ∩B = ∅ (1.127)
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It will also turn out that p(B) = 0 if B ∩ σ(a) = ∅) (see Corollary. 4.8.10), so
that the spectral measure of a may be regarded as a map from the Borel sets in
σ(a) to the set of projections on H. This property allows us to write down the
map B 7→ p(B) for compact self-adjoint operators: if a is compact and a∗ = a
one has

p(B) =
∑
i|λi∈B

pi (1.128)

In particular, pi = p({λi}) as already mentioned. The property (4.123) is then
a special case of (4.127), and (4.124) follows from properties 2, 4 and 5 in
Definition 4.8.1.

Given a self-adjoint operator a, we will construct a spectral measure B 7→ p(B)
by means of

p(B) = χB(a) (1.129)

Here χB : R→ {0, 1} is the characteristic function of B, but we will show how to
define it with a self-adjoint operator instead of a real number as its argument. In
terms of this spectral measure associated with a, the probability interpretation
of quantum mechanics for arbitrary self-adjoint operators is as follows:

1. The possible values of a : D(a) → H that may be found when it is mea-
sured are the elements of its spectrum σ(a);

2. The probability that some value within B ⊂ σ(a) occurs when a is mea-
sured when the system is in a state ψ ∈ H is

P (a ∈ B|ψ) = (ψ, p(B)ψ) = ‖p(B)ψ‖2 (1.130)

For example, take the position operator q̂ on L2(R) with domain

D(q̂) = {ψ ∈ L2(R)|xψ ∈ L2(R)} (1.131)

and action q̂ψ(x) = xψ(x); see (4.94) and (4.95). This operator is self-adjoint;
see Proposition 4.6.8. It turns out that

p(B) = χB (1.132)

as a multiplication operator on L2(R). Hence (4.130) becomes

P (q̂ ∈ B|ψ) =

∫
R
dxχB(x)|ψ(x)|2 =

∫
B

dx|ψ(x)|2 (1.133)

See also (4.75). More generally, the multiplication operator a on L2(Ω defined
by â ∈ C(Ω) (i.e., aψ = âψ) gives rise to the spectral measure

p(B) = χâ−1(B) (1.134)

where â−1(B) = {x ∈ Ω|â(x) ∈ B}. Hence

P (q̂ ∈ B|ψ) =

∫
â−1(B)

dnx|ψ(x)|2 (1.135)
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A completely different example is provided by the unit operator a = 1 = id,
which leads to

p(B) =

{
1 if 1 ∈ B
0 if 1 /∈ B

(1.136)

Hence

p(id ∈ B|ψ) =

{
1 if 1 ∈ B
0 if 1 /∈ B

(1.137)

In other words, the unit operator assumes the value 1 with probability one.

More generally, suppose σ(a) is discrete. In that case the spectral theorem below
will take the same form (4.122) as for compact operators. One then recovers
(4.128), so that

P (a ∈ B|ψ) =
∑
i|λi∈B

(ψ, piψ) (1.138)

Let us write

Pψ(B) := (ψ, p(B)ψ) (1.139)

for the probabilities defined by a given spectral measure on H and a unit vector
ψ ∈ H; if the spectral measure is derived from a self-adjoint operator a one of
course has Pψ(B) = P (a ∈ B|ψ) as in (4.130). It now follows from Definition
4.8.1 and ‖ψ‖ = 1 that the numbersPψ(B) define a probability measure on R
in the following sense.

Definition 4.8.2 A map B 7→ P (B) from the Borel subsets of R to [0, 1] is
called a probability measure when:

1. P (R) = 1

2. P (∪nBn) =
∑
n P (Bn) whenever Bi ∩Bj = ∅ for i 6= j

Note that P (A ∪ B) = P (A) + P (B) when A ∩ B = ∅ is a special case of the
second property, from which P (∅) = 0 follows by taking A = ∅).

This shows that a quantum-mechanical observable (i.e. a self-adjoint operator)
a and a state (i.e. a unit vector) ψ in a Hilbert space H together define a
probability measure on R through (4.129) and (4.139). This should be compared
with the classical situation, in which one starts with a measure space X, a
probability measure µ on X, and a measurable function f : X → R. From
these data, one obtains a probability measure P on R by P (B) := µ(f−1(B)).
Clearly, X, µ and f play the roles of H, ψ and a, respectively. Here R may be
replaced by f(X) ⊂ R, just as R may be replaced by σ(a) ∈ R in the Hilbert
space situation.
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1.8.2 Construction of spectral measures

Now that we know the goal, we are going to make sense of (4.129). We do
this for bounded self-adjoint operators a; the unbounded case will be dealt with
later. The idea is this. For a polynomial p(x) =

∑n
k=1 ckx

k on R, it is clear
what p(a) should mean, namely p(a) =

∑n
k=1 cka

k. We now approximate χB
by polynomials (p)n pointwise, pn(x)→ χB for all x ∈ R (see below for a caveat
and a precise version). We then define χB(a) and hence p(B) by limn pn(a),
where the limit has to be taken in a certain way (see below). This procedure is
justified by the following lemmas.

Lemma 4.8.3 Let K = [−k, k] ⊂ R, k ∈ R+. For each positive bounded (Borel)
function f : K → R there exists a bounded monotone increasing sequence (pk)
of polynomials on K that converges pointwise to f .

This means that

0 ≤ p0(x) ≤ p1(x) ≤ ......pn(x) ≤ pn+1(x) ≤ ...... ≤ c

for some c > 0 and all x ∈ K, and

lim
n→∞

pn(x) = f(x) (1.140)

for all x ∈ K.

Lemma 4.8.4

1. If p is a real polynomial on K and p(x) ≥ 0 for all x ∈ K, then p(a) ≥ 0.

2. Consequently, if (pn) is a monotone increasing sequence (pn) of real poly-
nomials on K bounded by c, then the sequence of operators (an := pn(a))
satisfies

0 ≤ p0(a) ≤ p1(a) ≤ ......pn(a) ≤ pn+1(a) ≤ ...... ≤ c (1.141)

Recall that a ≤ b for two bounded operators means that (ψ, aψ) ≤ (ψ, bψ) for
all ψ ∈ H.

Lemma 4.8.5 If pq is the pointwise product of two (possibly complex-valued)
polynomials p and q, then (pq)(a) = p(a)q(a), and similarly for p + q and cp,
c ∈ R. Moreover, one has p(a)∗ = p̄(a) (where p̄ is the complex conjugate of p

We say that a sequence (an) of bounded self-adjoint operators is monotone
increasing bounded when

a0 ≤ a1 ≤ ........an ≤ an+1 ≤ ...... ≤ c (1.142)

for some constant c.
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Lemma 4.8.6 Each monotone increasing bounded sequence (an) of bounded
self-adjoint operators converges strongly to a bounded self-adjoint operator. This
means that for any fixed ψ ∈ H one has

lim
n
anψ = aψ (1.143)

for some bounded self-adjoint operator a. We write this as

a = lim
n
an (1.144)

Now take K such that [−‖a‖, ‖a‖] ⊂ K (see below why) and use Lemma 4.8.3
to find a bounded monotone increasing sequence (pn) of polynomials on K that
converges pointwise to a given positive bounded Borel function f . We then put

f(a) := lim pn(a) where pn(x)→ f(x)∀x6 ∈ K (1.145)

This is independent of the approximating sequence (pn).

We are now in a position to make sense of (4.129) for a bounded and self-adjoint;
just take f = χB in (4.145) to define

χB(a) := lim pn(a) where pn(x)→ χB∀x ∈ K (1.146)

To show that the ensuing map B 7→ p(B) is indeed a spectral measure, we need
a strengthening of Lemma 4.8.1. First, note that any bounded Borel function
f : R→ C can be decomposed as

f = f0 − f1 + i(f2 − f3) (1.147)

with all fi ≥ 0. Definition (4.145) then applies to each of the four terms in the
decomposition of f , and we can define

f(a) := f0(a)− f1(a) + i(f2(a)− f3(a)) (1.148)

Theorem 4.8.7 Let a∗ = a be a bounded operator on H. Let again K =
[−k, k] ⊂ R be such that [−‖a‖, ‖a‖] ⊂ K.

1. The map f 7→ f(a) from the space of bounded Borel functions f : K → C
to the bounded operators on H is an algebra homomorphism in the sense
that

(t1f + t2g)(a) = t1f(a) + t2g(a) (1.149)

(fg)(a) = f(a)g(a) (1.150)

f̄(a) = f(a)∗ (1.151)

Here fg is the pointwise product of f and g and ti ∈ R.

2. The mapf 7→ f(a) preserves positivity in the sense that

f(x) ≤ g(x)∀x ∈ K ⇒ f(a) ≤ g(a) (1.152)
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3. If (fn) is a bounded monotone increasing sequence of (Borel) functions on
K converging pointwise to f , then f(a) = limn fn(a) (strong limit, i.e.,
f(a)ψ = limn fn(a)ψ for each ψ ∈ H

4. One has
‖f(a)‖ ≤ ‖f‖∞ = sup

x∈K
|f(x)| (1.153)

Corollary 4.8.8 The map B 7→ p(B) defined by (4.129) in terms of a bounded
self-adjoint operator a is a spectral measure (cf, Definition 4.8.1).

Indeed, the properties 1-5 in Definition 4.8.1 faithfully reflect the following prop-
erties of characteristic functions:

1. χ∅ = 0

2. χR = 1

3. χA∩B = χAχB

4. χA∪B = χA + χB when A ∩B = ∅

5. χ∪nBn = sup{χBn}

Finally, the spectral measure associated with a is related to the spectrum σ(a)
of a in the following way.

Proposition 4.8.9 One has λ ∈ σ(a) iff p(λ− ε, λ+ ε) 6= 0 for all ε > 0

Corollary 4.8.10 Let B 7→ p(B) be defined by (4.129). If B ∩ σ(a) = ∅, then
p(B) = 0

Now notice that for bounded a = a∗ one has σ(a) ⊆ [−‖a‖, ‖a‖]. We note that,
if z /∈ [−‖a‖, ‖a‖] then a− z is invertible, hence z ∈ ρ(a). Hence everything we
have done so far is independent of the choice of K, as long as it is compact (so
that every polynomial p : K → R is bounded) and contains [−‖a‖, ‖a‖].

1.8.3 The spectral theorem for bounded operators

The map B 7→ P (B) defined by (4.129) generalizes the projections pi in the
spectral theory of compact operators. We now turn to the generalization of the
expansion (4.122). To state this, we first define a map t 7→ E(t) from R to the
set of projections on H by

E(t) := p((−∞, t]) = lim
s→∞

p((−s, t]) (1.154)

where p(B) for B ⊂ R is given by (4.129). In other words,

E(t) = χ(−∞,t](a) (1.155)
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Using part 1 of Theorem 4.8.7, it is easily shown that E(t) is a projection, since

E(t)2 = chi(−∞,t](a)2 = chi2(−∞,t](a) = chi(−∞,t](a) = E(t)

and

E(t)∗ = chi(−∞,t](a)∗ = chi(−∞,t](a) = chi(−∞,t](a) = E(t)

For example, combining (4.128) and (4.154), we have, for compact a = a∗,

E(t) =
∑
i|λi≤t

pi (1.156)

Similarly, from (4.134) and (4.154) we obtain

E(t) = χa≤t := χx ∈ Rn|a(x) ≤ t (1.157)

The map t 7→ E(t) defines a so-called spectral density in the sense that the
following properties hold.

1. E is monotone increasing, that is, E(s) ≤ E(t) if s ≤ t. For projections,
this is equivalent to E(s)H ⊆ E(t)H

2. E is strongly right-continuous, that is, limε→0+ E(t+ ε) = E(t)

3. limt→−∞E(t) = 0 and limt→+∞E(t) = 1.

The spectral theorem now has the following form.

Theorem 4.8.11 Let a be a bounded self-adjoint operator on H and let f : R→
R be a bounded (Borel) function. Then

f(a) =

∫
dE(t)f(t) (1.158)

In particular, the cases f(t) = t and f(t) = 1 generalize (4.122) and (4.124),
respectively:

a =

∫
dE(t)t (1.159)

1 =

∫
dE(t) (1.160)

To make sense of this theorem, we need to define the integral. As we shall see,
defining it already proves the theorem. We proceed in four steps.

1. For f = χB we put ∫
dE(t)χB(t) := p(B) = χB(a) (1.161)
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2. For a simple function f =
∑
k ckχBk (finite sum) with ck ≥ 0 we define

the integral by extending the previous case by linearity, i.e.∫
dE(t)

∑
k

ckχBk :=
∑
k

ckp(Bk) =
∑
k

ckχBk(a) (1.162)

This already proves the spectral theorem for simple functions, since if f
is simple, then (4.162) coincides with (4.159).

3. For general bounded positive (Borel) functions f , we use Lemma 4.8.12 to
find a sequence (sn) of simple functions (subject to the conditions stated
in the lemma) converging pointwise to f to define∫

dE(t)f(t) ≡
∫

dE(t) lim
n
sn(t) := lim

n

∫
dE(t)sn(t) (1.163)

By (4.162), this equals ∫
dE(t)f(t) = lim

n
sn(a) (1.164)

The existence of this limit follows in the same way as in (4.145), with
polynomials replaced by simple functions.

4. Finally, the general (i.e. complex) case follows as in (4.147) and defining
the integral by linearity, i.e. if f = f0 − f1 + i(f2 − f3) with all fi ≥ 0,
then ∫

dE(f)f(t) :=

∫
dE(f)f0(t)−

∫
dE(t)f1(t)

+ i

(∫
dE(t)f2(t)−

∫
dE(t)f3(t)

)
(1.165)

If we now use the the third claim in Theorem 4.8.7, we see that the right-hand
side of (4.164) is just f(a). This proves Theorem 4.8.11.

As we have seen, proving the spectral theorem is just a matter of defining the
integral in the right way! The only substantial result on which the proof relies
is this:

Lemma 4.8.12 Let K = [−k, k] ⊂ R, k ∈ R+. For each positive bounded
(Borel) function f : K → R there exists a bounded monotone increasing sequence
(sn) of simple functions on K that converges pointwise to f

An important proposition is

Proposition 4.8.13 One has λ ∈ σd(a) iff p({λ}) 6= 0, in which case p({λ})
equals the projection onto the eigenspace Hλ of a.
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Consequently, if σ(a) = σd(a) the integral in (4.159) only picks up contributions
from t = λi ∈ σd(a). Approximating the function f(t) = t in the appropriate
way then yields (4.122).

1.8.4 The spectral theorem for unbounded operators

The spectral Theorem 4.8.11 is valid when a and f are bounded. If both are
possibly unbounded, the claim is as follows.

Theorem 4.8.14 Let a : D(a) → H be a self-adjoint operator on H and let
f : R→ R be a (Borel) function. Then

f(a) =

∫
dE(t)f(t) (1.166)

is self-adjoint on

D(f(a)) = {ψ ∈ H|
∫

dP|psi(t)|f(t)|2 <∞} (1.167)

In particular,

a =

∫
dE(t)t (1.168)

and

D(a) = {ψ ∈ H|
∫

dP|psi(t)t
2 <∞} (1.169)

Finally we have,

Theorem 4.8.15 Let u be a unitary operator on H. Then there exists a unique
spectral density E on H with the properties E(0) = 0 (hence E(t) = 0 for all
t ≤ 0), E(2π) = 1 (hence E(t) = 1 for all t ≥ 2π), and

u =

∫ 2π

0

dE(t)eit (1.170)

Furthermore, for bounded measurable functions f : T → C (where T is the unit
circle in C one has

f(u) =

∫ 2π

0

dE(t)f(eit) (1.171)
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1.9 Lebesgue Integration

1.9.1 Introduction

In mathematics, Lebesgue integration, named after French mathematician Henri
Lebesgue, refers to both the general theory of integration of a function with
respect to a general measure, and to the specific case of integration of a function
defined on a sub-domain of the real line or a higher dimensional Euclidean space
with respect to the Lebesgue measure.

Before proceeding we digress to learn about the concept of measure.

Measure

In the mathematical branch measure theory, a measure on a set is a systematic
way to assign to each suitable subset a number, intuitively interpreted as the
size of the subset. In this sense, a measure is a generalization of the concepts of
length, area, volume. A particularly important example is the Lebesgue measure
on a Euclidean space, which assigns the conventional length, area and volume
of Euclidean geometry to suitable subsets of an n−dimensional Euclidean space
Rn, n = 1, 2, 3, ..... For instance, the Lebesgue measure of the interval [0, 1] in
the real numbers is its length in the everyday sense of the word, specifically 1.

To qualify as a measure (see Definition below), a function that assigns a non-
negative real number or +∞ to a set’s subsets must satisfy a few conditions.
One important condition is countable additivity. This condition states that the
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size of the union of a sequence of disjoint subsets is equal to the sum of the sizes
of the subsets. However, it is in general impossible to associate a consistent size
to each subset of a given set and also satisfy the other axioms of a measure.
This problem was resolved by defining measure only on a sub-collection of all
subsets; the subsets on which the measure is to be defined are called measur-
able and they are required to form a σ−algebra[the collection of sets over which
a measure is defined], meaning that unions, intersections and complements of
sequences of measurable subsets are measurable. Non-measurable sets in a Eu-
clidean space, on which the Lebesgue measure cannot be defined consistently,
are necessarily complicated, in the sense of being badly mixed up with their
complements; indeed, their existence is a non-trivial consequence of the axiom
of choice.

Measure theory was developed in successive stages during the late 19th and
early 20th centuries by Emile Borel, Henri Lebesgue, Johann Radon and Mau-
rice Fréchet, among others. The main applications of measures are in the foun-
dations of the Lebesgue integral, in Andrey Kolmogorov’s axiomatization of
probability theory and in ergodic theory. In integration theory, specifying a
measure allows one to define integrals on spaces more general than subsets of
Euclidean space; moreover, the integral with respect to the Lebesgue measure
on Euclidean spaces is more general and has a richer theory than its predeces-
sor, the Riemann integral. Probability theory considers measures that assign to
the whole set the size 1, and considers measurable subsets to be events whose
probability is given by the measure. Ergodic theory considers measures that are
invariant under, or arise naturally from, a dynamical system.

Figure 1.1: Informally, a measure has the property of being monotone in the
sense that if A is a subset of B, the measure of A is less than or equal to the
measure of B. Furthermore, the measure of the empty set is required to be 0.
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Definition: Let Σ be a σ−algebra over a set X. A function µ from Σ to the
extended real number line(contains ±∞) s called a measure if it satisfies the
following properties:

• Non-negativity:
µ(E) ≥ 0 for all E ∈ Σ

• Countable additivity: For all countable collections {Ei}i∈I of pairwise
disjoint sets in Σ:

µ

(⋃
i∈I
Ei

)
=
∑
i∈I

µ(Ei)

• Null empty set:
µ(∅) = 0

Requiring the empty set to have measure zero can be viewed a special case of
countable additivity, if one regards the union over an empty collection to be the
empty set

⋃
∅ = ∅ and the sum over an empty collection to be zero

∑
∅ = 0.

A measure that takes values in the set of self-adjoint projections on a Hilbert
space is called a projection-valued measure(PV or PVM); these are used mainly
in functional analysis for the spectral theorem.

Returning to the discussion of Lebesgue integration.

Lebesgue integration plays an important role in real analysis, the axiomatic
theory of probability, and many other fields in the mathematical sciences. The
integral of a non-negative function can be regarded in the simplest case as the
area between the graph of that function and the x−axis. The Lebesgue integral
is a construction that extends the integral to a larger class of functions defined
over spaces more general than the real line. For non-negative functions with a
smooth enough graph (such as continuous functions on closed bounded inter-
vals), the area under the curve is defined as the integral and computed using
techniques of approximation of the region by polygons. For more irregular func-
tions (such as the limiting processes of mathematical analysis and probability
theory), better approximation techniques are required in order to define a suit-
able integral.

The integral of a function f between limits a and b can be interpreted as the
area under the graph of f. This is easy to understand for familiar functions such
as polynomials, but what does it mean for more exotic functions? In general,
what is the class of functions for which ”area under the curve” makes sense?
The answer to this question has great theoretical and practical importance.

As part of a general movement toward rigor in mathematics in the nineteenth
century, attempts were made to put the integral calculus on a firm founda-
tion. The Riemann integral, proposed by Bernhard Riemann (18261866), is a
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broadly successful attempt to provide such a foundation. Riemann’s definition
starts with the construction of a sequence of easily-calculated areas which con-
verge to the integral of a given function. This definition is successful in the
sense that it gives the expected answer for many already-solved problems, and
gives useful results for many other problems.

However, Riemann integration does not interact well with taking limits of se-
quences of functions, making such limiting processes difficult to analyze. This is
of prime importance, for instance, in the study of Fourier series, Fourier trans-
forms and other topics. The Lebesgue integral is better able to describe how
and when it is possible to take limits under the integral sign. The Lebesgue
definition considers a different class of easily-calculated areas than the Riemann
definition, which is the main reason the Lebesgue integral is better behaved. The
Lebesgue definition also makes it possible to calculate integrals for a broader
class of functions. For example, the Dirichlet function, which is 0 where its
argument is irrational and 1 otherwise, has a Lebesgue integral, but it does not
have a Riemann integral.

1.9.2 Construction of the Lebesgue integral

The discussion that follows parallels the most common expository approach
to the Lebesgue integral. In this approach, the theory of integration has two
distinct parts:

1. A theory of measurable sets and measures on these sets.

2. A theory of measurable functions and integrals on these functions.

Measure Theory

Measure theory was initially created to provide a useful abstraction of the no-
tion of length of subsets of the real line and, more generally, area and volume
of subsets of Euclidean spaces. In particular, it provided a systematic answer
to the question of which subsets of R have a length. As was shown by later
developments in set theory, it is actually impossible to assign a length to all
subsets of R in a way which preserves some natural additivity and translation
invariance properties. This suggests that picking out a suitable class of measur-
able subsets is an essential prerequisite.

The Riemann integral uses the notion of length explicitly. Indeed, the element
of calculation for the Riemann integral is the rectangle [a, b]× [c, d], whose area
is calculated to be (b− a)(d− c). The quantity b− a is the length of the base of
the rectangle and d− c is the height of the rectangle. Riemann could only use
planar rectangles to approximate the area under the curve because there was
no adequate theory for measuring more general sets.

In the development of the theory in most modern textbooks (after 1950), the
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approach to measure and integration is axiomatic. This means that a measure
is any function µ defined on a certain class X of subsets of a set E, which satis-
fies a certain list of properties. These properties can be shown to hold in many
different cases.

Integration

We start with a measure space (E,X, µ) where E is a set, X is a σ−algebra of
subsets of E and µ is a (non-negative) measure on X of subsets of E.

For example, E can be Euclidean n−space Rn or some Lebesgue measurable
subset of it, X will be the σ−algebra of all Lebesgue measurable subsets of E,
and µ will be the Lebesgue measure. In the mathematical theory of probability,
we confine our study to a probability measure µ, which satisfies µ(E) = 1.

In Lebesgue’s theory, integrals are defined for a class of functions called mea-
surable functions. A function f is measurable if the pre-image[In mathematics,
the image of a subset of a function’s domain under (or through) the function is
the set of all outputs obtained when the function is evaluated at each element
of the subset. The inverse image or preimage of a particular subset S of the
codomain of a function is the set of all elements of the domain that map to the
members of S] of every closed interval is in X:

f−1([a, b]) ∈ X for all a < b

It can be shown that this is equivalent to requiring that the pre-image of any
Borel subset of R be in X. We will make this assumption henceforth. The set of
measurable functions is closed under algebraic operations, but more importantly
the class is closed under various kinds of pointwise sequential limits:

sup
k∈N

fk , lim inf
k∈N

fk , lim sup
k∈N

fk

are measurable if the original sequence (fk)k, where k ∈ N, consists of measur-
able functions.

We build up an integral ∫
E

f dµ =

∫
E

f(x)µ(dx)

or measurable real-valued functions f defined on E in stages:

Indicator functions: To assign a value to the integral of the indicator function
1S of a measurable set S consistent with the given measure µ, the only reasonable
choice is to set: ∫

1Sdµ = µ(S)

70



Notice that the result may be equal to +∞, unless µ is a finite measure.

Simple functions: A finite linear combination of indicator functions∑
k

ak1Sk

where the coefficients ak are real numbers and the sets Sk are measurable, is
called a measurable simple function. We extend the integral by linearity to
non-negative measurable simple functions. When the coefficients ak are non-
negative, we set∫ (∑

k

ak1Sk

)
dµ =

∑
k

ak

∫
1Skdµ =

∑
k

akµ(Sk)

The convention 0×∞ = 0 must be used, and the result may be infinite. Even
if a simple function can be written in many ways as a linear combination of
indicator functions, the integral will always be the same; this can be shown
using the additivity property of measures.

Some care is needed when defining the integral of a real-valued simple function,
in order to avoid the undefined expression (∞ − ∞): one assumes that the
representation

f =
∑
k

ak1Sk

is such that µ(Sk) < ∞ whenever ak 6= 0. Then the above formula for the
integral of f makes sense, and the result does not depend upon the particular
representation of f satisfying the assumptions. If B is a measurable subset of
E and s a measurable simple function one defines∫

B

sdµ =

∫
1Bsdµ =

∑
k

akµ(Sk ∩B)

Non-negative functions: Let f be a non-negative measurable function on E
which we allow to attain the value +∞, in other words, f takes non-negative
values in the extended real number line. We define∫

E

fdµ = sup

{∫
E

sdµ : 0 ≤ s ≤ f, s simple

}
We need to show this integral coincides with the preceding one, defined on the
set of simple functions. When E is a segment [a, b], there is also the question of
whether this corresponds in any way to a Riemann notion of integration. It is
possible to prove that the answer to both questions is yes.

We have defined the integral of f for any non-negative extended real-valued
measurable function on E. For some functions, this integral

∫
E
f dµ will be
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infinite.

Signed functions: To handle signed functions, we need a few more definitions.
If f is a measurable function of the set E to the reals (including ±∞), then we
can write

f = f+ + f−

where

f+(x) =

{
f(x) if f(x) > 0

0 otherwise

f−(x) =

{
−f(x) if f(x) < 0

0 otherwise

Note that both f+ and f− are non-negative measurable functions. Also note
that

|f | = f+ + f−

if ∫
|f |dµ <∞

then f is called Lebesgue integrable. In this case, both integrals satisfy∫
f+dµ <∞ ,

∫
f−dµ <∞

and it makes sense to define∫
fdµ =

∫
f+dµ−

∫
f−dµ

It turns out that this definition gives the desirable properties of the integral.

Complex valued functions can be similarly integrated, by considering the real
part and the imaginary part separately.

Intuitive interpretation

To get some intuition about the different approaches to integration, let us imag-
ine that it is desired to find a mountain’s volume (above sea level).
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Figure 1.2: Riemann-Darboux’s integration (in blue) and Lebesgue integration
(in red)

The Riemann-Darboux approach: Divide the base of the mountain into
a grid of 1 meter squares. Measure the altitude of the mountain at the cen-
ter of each square. The volume on a single grid square is approximately 1 ×
1×(altitude), so the total volume is the sum of the altitudes.

The Lebesgue approach: Draw a contour map of the mountain, where each
contour is 1 meter of altitude apart. The volume of earth contained in a single
contour is approximately that contour’s area times its height. So the total vol-
ume is the sum of these volumes.

We can summarize the difference between the Riemann and Lebesgue approaches
thus: ”to compute the Riemann integral of f , one partitions the domain [a, b]
into subintervals”, while in the Lebesgue integral, ”one is in effect partitioning
the range of f”.

Example

Consider the indicator function of the rational numbers, 1Q. This function is
nowhere continuous.

• 1Q is not Riemann-integrable on [0, 1]: No matter how the set [0, 1]
is partitioned into subintervals, each partition will contain at least one
rational and at least one irrational number, since rationals and irrationals
are both dense in the reals. Thus the upper Darboux sums will all be one,
and the lower Darboux sums will all be zero.

• 1Q is Lebesgue-integrable on [0, 1] using the Lebesgue measure: Indeed
it is the indicator function of the rationals so by definition∫

[0,1]

1Qdµ = µ(Q ∩ [0, 1]) = 0

since Q is countable.
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Domain of Integration

A technical issue in Lebesgue integration is that the domain of integration is
defined as a set (a subset of a measure space), with no notion of orientation. In
elementary calculus, one defines integration with respect to an orientation:∫ b

a

f := −
∫ b

a

f

Generalizing this to higher dimensions yields integration of differential forms.
By contrast, Lebesgue integration provides an alternative generalization, inte-
grating over subsets with respect to a measure; this can be notated as∫

A

fdµ =

∫
[a,b]

fdµ

to indicate integration over a subset A.

1.9.3 Limitations of the Riemann integral

Here we discuss the limitations of the Riemann integral and the greater scope
offered by the Lebesgue integral. We presume a working understanding of the
Riemann integral.

With the advent of Fourier series, many analytical problems involving integrals
came up whose satisfactory solution required interchanging limit processes and
integral signs. However, the conditions under which the integrals

∑
k

∫
fk(x)dx and

∫ [∑
k

fk(x)

]
dx

are equal proved quite elusive in the Riemann framework. There are some other
technical difficulties with the Riemann integral. These are linked with the limit-
taking difficulty discussed above.

Failure of monotone convergence. As shown above, the indicator function
1Q on the rationals is not Riemann integrable. In particular, the Monotone
convergence theorem fails. To see why, let {ak} be an enumeration of all the
rational numbers in [0, 1] (they are countable so this can be done.) Then let

gk(x) =

{
1 if x = aj , j ≤ k
0 otherwise

The function gk is zero everywhere except on a finite set of points, hence its
Riemann integral is zero. The sequence gk is also clearly non-negative and
monotonically increasing to 1Q, which is not Riemann integrable.

Unsuitability for unbounded intervals. The Riemann integral can only
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integrate functions on a bounded interval. It can however be extended to un-
bounded intervals by taking limits, so long as this doesn’t yield an answer such
as ∞−∞.

Integrating on structures other than Euclidean space. The Riemann
integral is inextricably linked to the order structure of the line.
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