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Chapter 1

A Historical Introduction

1.1 Motivation

Theoretical science up to the end of the 19th century can be viewed as the study
of solutions of differential equations and the modeling of natural phenomena by
deterministic solutions of these differential equations. It was commonly thought
at that time that if all initial data was known, one would be able to predict the
future with certainty.

We now know this is not so, in at least two ways. First, the advent of quantum
mechanics in the early party of the 20th gave rise to a new physics and thus
a new theoretical basis for all science, which had at it core a purely statistical
element. Second, more recently, the concept of chaos has been studied. in which
even quite simple differential equation systems have the rather alarming prop-
erty of giving rise to essentially unpredictable behavior. To be sure, one can
predict the future of such a system given its initial conditions, but any error in
the initial conditions is so rapidly (exponentially) magnified that no practical
predictability remains.

We will not be discussing chaos and quantum mechanics in these notes. We will
be giving a semi-historical outline of how a phenomenological theory of fluctu-
ating phenomena arose and what its essential point are. The clear usefulness
of predictable models indicates that life is not entirely chaos. But there is a
limit to predictability and what we will be most concerned with in these notes
are models of limited predictability. The experience of careful measurements in
science normally gives us data like that of Figure 1, representing the growth of
the number of molecules of a substance X formed by a chemical reaction of the
form X 
 A.
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Figure 1.1: Stochastic simulation of an isomerization reaction X 
 A

A well-defined deterministic motion is quite evident and it is reproducible, unlike
the fluctuations around this motion, which are not.

1.2 Some Historical Examples

1.2.1 Brownian Motion

The observation that, when suspended in water, small pollen grains are found
to be in a very animated and irregular state of motion, was first systematically
investigated by Robert brown in 1827, and the observed phenomena became
known as Brownian motion because of his fundamental pioneering work. Brown
was a botanist and thus tested whether this motion was in some way a manifes-
tation of life. By showing that the motion was present in any suspension of fine
particles - glass, minerals and even a fragment of the sphinx - he ruled out any
specifically organics origin of this motion. The motion is illustrated in Figure
2.
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Figure 1.2: Motion of a point undergoing Brownian motion

The riddle of Brownian motion was not quickly solved, and a satisfactory expla-
nation did not come about until 1905, when Einstein published an explanation
under the rather modest title “über die von der molekular-kinetischen Theorie
de Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen” (concerning the motion, as required by the molecular-kinetic theory
of heat, of particles suspended in liquids at rest). The same explanation was
independently developed by Smoluchowski, who was responsible for much of the
later systematic development and for much of the experimental verification of
brownian motion.

There were two major points in Einstein’s solution to the problem of Brownian
motion.

(i) The motion is caused by the exceedingly frequent impacts on the pollen
grain of the incessantly moving molecules of the liquid in which it is sus-
pended.

(ii) The motion of these molecules is so complicated that its effect on the
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pollen grain can only be described probabilistically in terms of exceedingly
frequent statistically independent impacts.

The existence of fluctuations like those described by Einstein calls out for a
statistical explanation if this type of phenomena. Statistics has already been
used by Maxwell and Boltzmann in their famous gas theories, but only as a
description of possible states and the likelihood of their arising and not as an
intrinsic part of the time evolution of the system. Rayleigh was, in fact, the
first to consider a statistical description in this context, but for one reason
or another, very little arose out of his work. For practical purposes, Einstein’s
explanation of the nature of Brownian motion must be regarded as the beginning
of stochastic modeling of natural phenomena. Stochastic is an adjective that
refers to systems whose behavior is intrinsically non-deterministic, sporadic, and
categorically not intermittent (i.e. random). A stochastic process is one whose
behavior is non-deterministic, in that a system’s subsequent state is determined
both by the process’s predictable actions and by a random element.

Einstein’s reasoning is very clear and elegant. It contains all of the basic concepts
that will make up the subject matter of these notes. Rather than paraphrase
a classic piece of work, I will simply give an extended excerpt from Einstein’s
original paper(translated).

It must be clearly assumed that each individual particle executes a motion which
is independent of the motions of all other particles; it will also be considered
that the movements of one and the same particle in different time intervals are
independent processes, as long as these time intervals are not chosen too small.

We introduce a time interval τ into consideration, which is very small compared
to the observable time intervals, but nevertheless so large that in two successive
time intervals τ , the motions executed by the particle can be thought of as events
which are independent of each other.

Now let there be a total of n particles suspended in a liquid. In a time interval τ ,
the X-coordinate of the individual particles will increase by an amount δ, where
for each particle ∆ has a different (positive or negative) value. There will be a
certain frequency law for ∆; the number dn of the particles which experience
a shift which is between ∆ and ∆ + d∆ will be expressible by an equation of the
form

dn = nφ(∆)d∆ (1.1)

where ∫ ∞
−∞

φ(∆)d∆ = 1 (1.2)

and φ is only different from zero for very small values of ∆, and satisfies the
condition

φ(∆) = φ(−∆) (1.3)
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We now investigate how the diffusion coefficient depends on φ. We shall once
more restrict ourselves to the case where the number ν of particles per unit
volume depends only on x and t.

Let ν = f(x, t) be the number of particles per unit volume. We compute the
distribution of particles at the time t + τ from the distribution at time t, From
the definition of the function φ(∆), it is easy to find the number of particles
which at t + τ are found between two planes perpendicular to the x-axis and
passing through the points x and x+ dx. One obtains

f(x, t+ τ)dx = dx

∫ ∞
=∞

f(x+ ∆), t)Φ(∆)d∆ (1.4)

But since τ is very small

f(x, t+ τ) = f(x, t) + τ
∂f

∂t
(1.5)

Furthermore, we develop f(x+ ∆, t) in powers of ∆:

f(x+ ∆, t) = f(x, t+∆
∂f(x, t)

∂x
+

∆2

2!

∂2f(x, t)

∂x2
+ · · · (1.6)

We can use this series under the integral, because only small values of ∆ con-
tribute to this equation. We obtain

f +
∂f

∂t
τ = f

∫ ∞
=∞

Φ(∆)d∆ +
∂f

∂x

∫ ∞
=∞

∆Φ(∆)d∆ +
∂2f

∂x2

∫ ∞
=∞

∆2

2!
Φ(∆)d∆ (1.7)

Because φ(x) = φ(−x), the second, fourth, etc terms on the right-hand side van-
ish, while out of the first, third, fifth, etc terms, each one is very small compared
with the previous. We obtain from this equation, by taking into consideration∫ ∞

=∞
Φ(∆)d∆ = 1 (1.8)

and setting
1

τ

∫ ∞
=∞

∆2

2!
Φ(∆)d∆ = D (1.9)

and keeping only the first and third terms on the right-hand side,

∂f

∂t
= D

∂2f

∂x2
· · · (1.10)

This is already known as the differential equation of diffusion and it can be seen
that D is the diffusion coefficient.

The problem, which corresponds to the problem of diffusion from a single point
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(neglecting the interaction between the diffusing particles), is now completely
determined mathematically: its solution is

f(x, t) =
n√
4πD

e−x
2/4Dt

√
t

(1.11)

We now calculate, with the help of this equation, the displacement λx in the di-
rection of the X-axis that a particle experiences on the average or, more exactly,
the square root of the arithmetic mean of the square of the displacement on the
direction of the X-axis; it is

λx =
√
x̄2 =

√
2Dt (1.12)

Einstein’s derivation is really based on a discrete time assumption, that impacts
happen only at times 0, τ, 2τ, 3τ, ...., and his resulting equation (1.10) for the
distribution function f(x, t) and its solution (1.11) are to be regarded as approx-
imations, in which τ is considered so small that t may be considered as being
continuous. Nevertheless, his description contains most of the major concepts
which have been developed more generally and more rigorously since then, and
which are central to these notes. For example:

(i) The Chapman-Kolmogorov Equation occurs as Einstein’s equation (1.4).
It states that the probability of the particle being at point x at time t+ τ
is given by the sum of the probability of all possible “pushes” ∆ from
position x + δ, multiplied by the probability of being at x + ∆ at time
t. This assumption is based on the independence of the push ∆ of any
previous history of the motion: it is only necessary to know the initial
position of the particle at time t - not at any previous time. This is
the Markov postulate and the Chapman-Kolmogorov equation, of which
(1.4) is a special form, is the central dynamical equation to all Markov
processes. We will discuss Markov processes in Chapter 3 of these notes.

(ii) The Fokker-Planck Equation: Eq. (1.10) is the diffusion equation, a spe-
cial case of the Fokker-Planck equation, which describes a large class of
very interesting stochastic processes in which the system has a continu-
ous sample path. In this case, that means the pollen grain’s position, if
thought of as obeying a probabilistic law given by solving the diffusion
equation (1.10), in which time t is continuous (not discrete, as assumed
by Einstein), can be written x(t), where x(t) is a continuous function of
time - but a random function. This leads us to consider the possibility
of describing the dynamics of the system in some direct probabilistic way,
so that we would have a random or stochastic differential equation for the
path. This procedure was initiated by Langevin with his famous equation,
which we will discuss in Chapter 4 of these notes.

(iii) The Kramers-Moyal and similar expansions are essentially the same as
that used by Einstein to go from (1.4) (the Chapman-Kolmogorov equa-
tion) to the diffusion equation (1.10). The use of this type of approxima-
tion, which effectively replaces a process whose sample paths need not be
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continuous with one where paths are continuous is a much discussed topic
in the literature.

1.2.2 Langevin’s Equation

Sometime after Einstein’s original derivation, Langevin presented a new method
which was quite different from Einstein’s and, according to him, “infinitely more
simple”. His reasoning was as follows;

From statistical mechanics, it was known that the mean kinetic energy of the
Brownian particle should, in equilibrium, reach a value

〈 12mv
2〉 = 1

2kT (1.13)

(T : absolute temperature, k: Boltzmann’s constant).(Both Einstein and Smolu-
chowski had used this fact). Acting on the particle, of mass m there should be
two forces:

(i) a viscous drag : assuming this is given but he same formula as in micro-
scopic hydrodynamics, this is −6πηadx/dt, η being the viscosity and a the
diameter of the particle, assumed spherical.

(ii) another fluctuating force X which represents the incessant impacts of the
molecules of the liquid on the Brownian particle. All that is known about it
is that fact, and it should be positive and negative with equal probability.

Thus, the equation of motion for the position of the particle is given by Newton’s
law as

m
d2x

dt2
= −6πηa

dx

dt
+X (1.14)

and multiplying by x, this can be written

m

2

d2

dt2
(x2)−mv2 = −3πηa

d(x2)

dt
+Xx (1.15)

where v = dx/dt. We now average over a large number of different particles and
use (1.13) to obtain an equation for 〈x2〉:

m

2

d2

dt2
(x2) + 3πηa

d(x2)

dt
= kT (1.16)

where 〈xX〉 has been set equal to zero because(to quote Langevin) “of the
irregularity of the quantity X”. One then finds the general solution

d(x2)

dt
=

kT

3πηa
+ Ce−6πηat/m (1.17)

where C is an arbitrary constant. Langevin estimated that the decaying expo-
nential approaches zero with a time constant of the order of 10−8s, which for
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any practical observation at that time was essentially immediately. Thus, for
practical purposes, we can neglect this term and integrate once more to get

〈x2〉 − 〈x2
0〉 =

[
kT

3πηa

]
t (1.18)

This corresponds to (1.12) as deduced by Einstein, provided we identify

D =
kT

6πηa
(1.19)

a result which Einstein derived in the same paper but by independent means.

Langevin’s equation was the first example of the stochastic differential equation
- a differential equation with a random term X and hence whose solution is, in
some sense, a random function. Each solution of Langevin’s equation represents
a different random trajectory and, using only rather simple properties of X (his
fluctuating force), measurable results can be derived.

One question arises: Einstein explicitly required that (on a sufficiently large
time scale) the change ∆ be completely independent of the preceding value of
∆. Langevin did not mention such a concept explicitly, but it is there, implicitly,
when one sets 〈Xx〉 equal to zero. The concept that X is extremely irregular
and ( which is not mentioned by Langevin, but is implicit) that X and x are
independent of each other - that the irregularities in x as a function of time,
do not conspire to always be in the same direction as those of X, so that,
possibly, the product could not be set equal to zero; these are really equivalent
to Einstein’s independence assumption. The method Langevin gives is clearly
more direct, at least at first glance, and gives a very natural way of generalizing
a dynamical equation to a probabilistic equation. An adequate mathematical
grounding for the approach of Langevin, however, was not available until more
than 40 years later, when Ito formulated his concepts of stochastic differential
equations. In this formulation, a precise statement of the independence of X
and x will lead to the calculus of stochastic differentials, which we will discuss
in Chapter 4.

1.3 Birth-Death Processes

A wide variety of phenomena can be modelled by a particular kind of process
called a birth-death process. The name obviously stems from the modeling of
human or animal populations in which individuals are born, or die. One of the
most entertaining models is that of the predator-prey system consisting of two
kinds of animal, one of which preys on the other, which itself is supplied with an
inexhaustible food supply. Thus, letting X symbolize the prey, Y the predator,
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and A the food of the prey, the process under consideration might be

X+A→ 2X (1.20a)

X+Y → 2Y (1.20b)

Y → B (1.20c)

which have the following naive, but charming interpretation. The first equation
symbolizes the prey eating one unit of food, and reproducing immediately. The
second equation symbolizes a predator consuming a prey (who thereby dies
- this is the only death mechanism considered for the prey) and immediately
reproducing. The final equation symbolizes the death of the predator by natural
causes. It is easy to guess model differential equations for x and y, the numbers
of X and Y . One might assume that the first reaction symbolizes a rate of
production of X proportional to the product of x and the amount of food; the
second equation a production rate of Y (and an equal rate of consumption of
X) proportional to xy, and the last equation a death rate for Y , in which the
rate of death of Y is simply proportional to y; thus, we may write

dx

dt
= k1ax− k2xy (1.21a)

dy

dt
= k2xy − k3y (1.21b)

Figure 1.3: Time development in predator-prey systems. (a) Solutions of deter-
ministic equations (1.21) (x = solid, y = dashed). (b) Data for real predator-
prey system. Predator and prey are mites.
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The solutions of these equations, which were independently developed by Lotka
and Volterra, have very interesting oscillating solutions, as shown in Figure
1.3(a) above. These oscillations are qualitatively easily explicable. In the ab-
sence of significant number of predators, the prey population grows rapidly until
the presence of so much prey for the predators to eat stimulates their rapid re-
production, at the same time reducing the number of prey which get eaten.
Because a large number of prey have been eaten, there are no longer enough to
maintain the population of predators, which then die out, returning us to our
initial situation. The cycles repeat indefinitely and are indeed, at least quali-
tatively, a feature of many real predator-prey systems and example is given in
Figure 1.3(b) above.

Of course, the realistic systems do not follow the solutions of differential equa-
tions exactly - they flute about such curves. One must include these fluctuations
and the simplest way to do this is by means of a birth-death master equation.
We assume a probability distribution P (x, y, t), for the number of individuals
at a given time and ask for a probabilistic law corresponding to (1.21). This
is done by assuming that in an infinitesimal time ∆t, the following transition
probability laws hold.

Prob(x→ x+ 1; y → y) = k1ax∆t (1.22a)

Prob(x→ x− 1; y → y + 1) = k2xy∆t (1.22b)

Prob(x→ x; y → y − 1) = k3y∆t (1.22c)

Prob(x→ x; y → y) = 1− (k1ax+ k2xy + k3y)∆t (1.22d)

Thus, we simply, for example, replace the simple rate laws by probability laws.
We then employ what amounts to the same equation as Einstein and others
used, i.e., the Chapman-Kolmogorov equation, namely, we write the probability
at t+∆t as a sum of terms, each of which represents the probability of a previous
state multiplied by the probability of a transition to the state (x, y). Thus, we
find

P (x, y, t+ δt)− P (x, y, t)

∆t
= k1a(x− 1)P (x− 1, y, t) + k2(x+ 1)(y − 1)P (x+ 1, y − 1, t)

+ k3(y + 1)P (x, y + 1, t)− (k1ax+ k2xy + k3y)P (x, y, t) (1.23)

and letting ∆t→ 0, the left-hand side = ∂P (x, y, t)/∂t. In writing the assumed
probability laws (1.22), we are assuming that the probability of each of the
events occurring can be determined simply from the knowledge of x and y. This
is again the Markov postulate, which was mentioned in Section 1.2.1. In the
case of brownian motion, very convincing arguments can be made in favor of
this Markov assumption. Here it is by no means clear. The concept of heredity,
i.e., that the behavior of progeny is related to that of parents, clearly contradicts
this assumption. How to include heredity is another matter; by no means does
a unique prescription exist.
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The assumption of the Markov postulate in this context is valid to the extent
that different individuals of the same species are similar; it is invalid to the
extent that, nevertheless, perceptible inheritable differences do exist.

This model has wide application - in fact to any system to which a population
of individuals may be attributed, for example systems of molecules of various
chemical compounds, of electrons, of photons and similar physical particles as
well as biological systems. The particular choice of transition probabilities is
made on various grounds determined by the degree to which details of the births
and deaths involved are known. The simple multiplicative laws, as illustrated in
(1.23), are the most elementary choice, ignoring, as they do, almost all details
of the processes involved. In some of the physical processes we can derive the
transition probabilities in much greater detail and with greeter precision.

Equation (1.23) has no simple solution., but one major property differentiates
equations like it from an equation of Langevin’s type, in which the fluctuation
terms is simply added to the differential equation. Solutions of (1.23) determined
both the gross deterministic motion and the fluctuations; the fluctuations are
typically of the same order of magnitude as the square roots of the numbers of
individuals involved. It is not difficult to simulate a sample time development
of the process as shown in Figure 1.4 below.

Figure 1.4: Simulation of stochastic equations (1.22).

The figure does show the correct general features, but the model is so obviously
simplified that exact agreement can never be expected. Thus, in contrast to the
situation in Brownian motion, we are not dealing here so much with a theory
of a phenomenon, as with a class of mathematical models, which are simple
enough to have a very wide range of approximate validity. In fact, a theory can
be developed which can deal with a wide range of models in this category and

11



there is a close connection between this kind of theory and that of stochastic
differential equations, which we are discussing in these notes.

1.4 Noise in Electronic Systems

The early days of radio with low transmission powers and primitive receivers,
made it evident to every ear that there were a great number of highly irregular
electrical signals which occurred either in the atmosphere, the receiver, or the
radio transmitter, and which were given the collective name of “noise”, since
this is certainly what they sounded like on the radio. Two principal sources of
noise are shot noise and Johnson noise.

1.4.1 Shot Noise

In a vacuum tube (and in solid-state devices) we get a non steady electrical
current, since it is generated by individual electrons, which are accelerated across
a distance and deposit their charge one at a time on the anode. The electric
current arising from such a process can be written

I9t0 =
∑
tk

F (t− tk) (1.24)

where F (t− tk) represents the contribution to the current of an electron which
arrives at time tk. Each electron is therefore assumed to give rise to the same
shaped pulse, but with an appropriate delay, as in Figure 1.5.

Figure 1.5: Illustration of shot noise: identical electric pulses arrive at random
times.

A statistical aspect arises immediately if we consider what kind of choice must
be made for tk. The simplest choice is that each electron arrives independently
of the previous one - that is, the times tk are randomly distributed with a cer-
tain average number per unit time in the range (−∞,∞), or whatever time is
under consideration.
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The analysis of such noise was developed during the 1920’s and 1930’s by Schot-
tky and Rice.

We will find that there is a close connection between shot noise and processes
described by birth-death master equations. For, if we consider n, the number
of electrons that arrived up to time t, to be a statistical quantity described by
a probability P (n, t), then the assumption that the electrons arrive indepen-
dently is clearly the Markov assumption. Then assuming that the probability
that an electron will arrive in the time interval between t and t + δt is com-
pletely independent of t and n, its only dependence can be on ∆t. By choosing
an appropriate constant λ, we may write

Prob(n→ n+ 1, in time ∆t) = λ∆t (1.25)

so that
P (n, t+ ∆t) = P (n, t)(1− λ∆t) + P (n− 1, t)λ∆t (1.26)

and taking the limit ∆t→ 0

∂P (n, t)

∂t
= λ[P (n− 1, t)− P (n, t)] (1.27)

which is a pure birth process. By writing

G(s, t) =
∑
n

snP (n, t) (1.28)

[here, G(s, t) is known as the generating function for P (n, t), and the particular
technique of solving equations this way is widely used], we find

∂G(s, t)

∂t
= λ(s− 1)G(s, t) (1.29)

so that
G(s, t) = eλ(s−1)tG(s, 0) (1.30)

By requiring at time t = 0 that no electrons has arrived, it is clear that P (0, 0)
is 1 and P (n, 0 is zero for all n� 1, so that G(s, 0) = 1. Expanding the solution
(1.30) in powers of s, we find

P (n, t) = e−λt
(λt)n

n!
(1.31)

which is known as a Poisson distribution (see Section 2.8.3). Let us introduce
the variable N(t), which is to be considered as the number of electrons which
have arrived up to time t, and is a random quantity. Then

P (n, t) = Prob{N(t) = n} (1.32)

and N(t) can be called a Poisson process variable. Then clearly, the quantity
µ(t), formally defined by

µ(t) =
dN(t)

dt
(1.33)
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is zero, except when N(t) increases by 1; at that state it is a Dirac delta function,
i.e.,

µ(t) =
∑
k

δ(t− tk) (1.34)

where the tk are times of arrival of the individual electrons. We may write

I(t) =

∫ ∞
−∞

dt′ F (t− t′)µ(t′) (1.35)

A very reasonable restriction on F (t− t′) is that it vanishes if t < t′, and that
for t → ∞, it also vanishes. This imply means that no current arises from an
electron before it arrives, and that the effect of its arrival eventually dies out.
We assume then, for simplicity, the standard (Green function) form

F (t) =

{
e−αt (t > 0)

0 (t < 0)
(1.36)

so that (1.35) can be rewritten as

I(t) =

∫ t

−∞
dt′ qe−α(t−t′) dN(t′)

dt′
(1.37)

We can derive a simple differential equation. We differentiate I(t) to obtain

dI(t)

dt
=

[
qe−α(t−t′) dN(t′)

dt′

]
t′=t

+

∫ t

−∞
dt′ (−αq)e−α(t−t′) dN(t′)

dt′
(1.38)

so that
dI(t)

dt
= −αI(t) + qµ(t) (1.39)

This is a kind of stochastic differential equation, similar to Langevin’s equation,
in which, however, the fluctuating force is given by qµ(t), where µ(t) is the
derivative of the Poisson process, as given by (1.34). However, the mean of µ(t)
is nonzero, in fact, from (1.33)

〈µ(t)dt〉 = 〈dN(t)〉 = λdt (1.40)

〈[dN(t)− λdt]2〉 = λdt (1.41)

from the properties of the Poisson distribution, for which the variance equals
the mean. Defining, then, the fluctuation as the difference between the mean
value and dN(t), we write

dη(t) = dN(t)− λdt (1.42)

so that the stochastic differential equation (1.39) takes the form

dI(t) = [λq − αI(t)]dt+ qdη(t) (1.43)

14



Now how does one solve such an equation? In this case, we have an academic
problem anyway since the solution is known, but one would like to have a
technique. Suppose we try to follow the method used by Langevin - what will
we get as an answer? The short reply to this question is: nonsense. For example,
using ordinary calculus and assuming 〈I(t)dη(t)〉 = 0, we can derive

d〈I(t)〉
dt

= λq − α〈I(t)〉 (1.44)

1

2

d〈I2(t)〉
dt

= λq〈I(t)〉 − α〈I2(t)〉 (1.45)

solving in the limit t→∞, where the mean values would reasonably be expected
to be constant one finds

〈I(∞)〉 =
λq

α
and (1.46)

〈I2(∞)〉 =

(
λq

α

)2

(1.47)

The first answer is reasonable - it merely gives the average current through the
system in a reasonable equation, but the second implies that the mean square
current is the same as the square of the mean, i.e., the current at t → ∞ does
not fluctuate! This is rather unreasonable, and the solution to the problem will
show that stochastic differential equations are rather more subtle than we have
so far presented.

Firstly, the notation in terms of differentials used in (1.40-1.43) has been chosen
deliberately. In deriving (1.45), one uses ordinary calculus, i.e., one writes

d(I2) ≡ (I + dI)4 − I2 = 2IdI + (dI)2 (1.48)

and then one drops the (dI)2 term as being of second order in dI. But now look
at (1.41): this is equivalent to

〈dη(t)2〉 = λdt (1.49)

so that a quantity of second order in dη is actually of first order in dt. The
reason is not difficult to find. Clearly,

dη(t) = dN(t)− λdt (1.50)

but the curve of N(t) is a step function, discontinuous, and certainly not dif-
ferentiable, at the times of arrival of the individual electrons. In the ordinary
sense, none of these calculus manipulations is permissible. But we can make
sense out of them as follows. Let us simply calculate 〈d(I2)〉 using (1.43,1.48,
1.49):

〈d(I2)〉 = 2〈I{[λq − αI]dt+ qdη(t)}〉+ 〈{[λq − αI]dt+ qdη(t)]}2〉 (1.51)
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We now assume again that 〈I(t)dη(t)〉 = 0 and expand, after taking averages
using the fact that 〈dη(t)2〉 = λt, to first-order in dt. We obtain

1

2
d〈d(I2)〉 =

[
λq〈I〉 − α〈I2〉+

q2λ

2

]
dt (1.52)

and this gives

〈I2(∞)〉 − 〈I(∞)〉2 =
q2λ

2α
(1.53)

Thus, there are fluctuations from this point of view, as t→∞. The extra term
in (1.52) as compared to (1.45) arises directly out of the statistical considera-
tions implicit in N(t) being a discontinuous random function.

Thus, we have discovered a somewhat deeper way of looking at Langevin’s kind
of equation - the treatment of which, from this point of view, now seems ex-
tremely naive. In Langevin’s method the fluctuating force X is not specified, but
it will become clear in these notes that problems such as we have just considered
are very widespread. The moral is that random functions cannot normally be
differentiated according to the usual laws of calculus: special rules have to be
developed, and a precise specification of what one means by differentiation be-
comes important. We will specify these problems and their solutions in Chapter
4 which will discuss situations in which fluctuations are Gaussian.

1.4.2 Autocorrelation Functions and Spectra

The measurements which one can carry out on fluctuating systems such as elec-
tric circuits are, in practice, not of unlimited variety. So far, we have considered
the distribution functions, which tell us, at any time, what the probability dis-
tribution of the values of a stochastic quantity are. If we are considering a
measurable quantity x(t) which fluctuates with time, in practice we can some-
times determine the distribution of the values of x, though more usually, what
is available at one time are the mean x̄)t) and the variance var{x(t)}.

The mean and the variance do not tell a great deal about the underlying dy-
namics of what is happening. What would be of interest is some quantity which
is a measure of the influence of a value of x at time t on the value at time t+ τ .
Such a quantity is the autocorrelation function, which was first introduced by
Taylor as

G(t) = lim
T→∞

1

T

∫ T

0

dt x(t)x(t+ τ) (1.54)

This is the time average of a two-time product over an arbitrary large time T ,
which is then allowed to become infinite.

At this time, single purpose auotcorrelators exist, which sample data and di-
rectly construct the autocorrelation function of a desired process, from laser
light scattering signals to bacterial counts.
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A more traditional approach to autocorrelation is to compute the spectrum of
the quantity x(t). This is defined in two stages. First, define

y(ω) =

∫ T

0

dt e−iωtx(t) (1.55)

then the spectrum is defined by

S(ω) = lim
T→∞

1

2πT
|y(ω)|2 (1.56)

The autocorrelation function and the spectrum are closely connected. By a little
manipulation one finds

S(ω) = lim
T→∞

[
1

π

∫ T

0

cos (ωτ)dτ
1

T

∫ T−τ

0

x(t)x(t+ τ)dt

]
(1.57)

and taking the limit T →∞ (under suitable assumptions to ensure then validity
of certain interchanges of order), one finds

S(ω) =
1

π

∫ ∞
0

cos (ωτ)G(τ)dτ (1.58)

This is a fundamental result which relates the Fourier transform of the autocor-
relation function to the spectrum. The result may be put in a slightly different
form when one notices that

G(−τ) = lim
T→∞

1

T

∫ T−τ

−τ
dt x(t+ τ)x(t) = G(τ) (1.59)

so we obtain

S(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ (1.60)

with the corresponding inverse

G(τ) =

∫ ∞
−∞

eiωτS(ω)dω (1.61)

This result is known as the Wiener-Khinchin theorem and has widespread ap-
plication.

It means that one may either directly measure the autocorrelation function of a
signal, or the spectrum, and convert back and forth, which by means of the fast
Fourier transform (FFT) and high-speed computers is relatively straightforward.

1.4.3 Fourier Analysis of Fluctuating Functions: Station-
ary Systems

The autocorrelation function has been defined so far as a time average of a
signal, but we may also consider the ensemble average. in which we repeat the
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same measurement many times, and compute averages, denoted by 〈 〉. It will
be shown that for very many systems, the time average is equal to the ensemble
average; such systems are termed ergodic (Section 3.7.1).

If we have a fluctuating quantity x(t), then we can consider the average

〈x(t)x(t+ τ)〉 = G(τ) (1.62)

this result is a consequence of our ergodic assumptions.

Now it is very natural to write a Fourier transform for the stochastic quantity
x(t)

x(t) ==

∫
dω c(ω)eiωt (1.63)

and consequently,

c(ω) =
1

2π

∫
dt x(t)e−iωt (1.64)

Note that x(t) era implies

c(ω) = c∗(−ω) (1.65)

If the system is ergodic, we must have a constant 〈x(t)〉, since the time average is
clearly constant. The process is then stationary by which we mean that all time-
dependent averages are functions only of time differences, i.e., averages of func-
tions x(t1), x(t2), ...., x(tn) are equal to those of x(t1+∆), x(t2+∆), ...., x(tn+∆).

For convenience, in what follows, we assume 〈x〉 = 0. Hence

〈c(ω)〉 =
1

2π

∫
dt 〈x〉e−iωt = 0 (1.66)

〈c(ω)c∗(ω′)〉 =
1

(2π)2

∫ ∫
dt dt′ e−iωt+iω

′t′〈x(t)x(t′)〉

=
1

2π
δ(ω − ω′)

∫
dτ eiωτG(τ)

= δ(ω − ω′)S(ω) (1.67)

Here we find not only a relationship between the mean square 〈|c(ω)|2〉 and
the spectrum, but also the result that stationarity alone implies that c(ω) and
c∗(ω′) are uncorrelated, since the term δ(ω − ω′) arises because 〈x(t)x(t′)〉 is a
function only of t− t′.

1.4.4 Johnson Noise and Nyquist’s Theorem

Two brief and elegant papers appeared in 1928 in which Johnson demonstrated
experimentally that an electric resistor automatically generated fluctuations of
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electric voltage, and Nyquist demonstrated its theoretical derivation, in com-
plete agreement with Johnson’s experiment. The principle involved was already
known by Schottky and is the same as that used by Einstein and Langevin.
This principle is that of thermal equilibrium. If a resistor R produces electric
fluctuations, these will produce a current which will generate heat. The heat
produced in the resistor must exactly balance the energy taken out of the fluc-
tuations. The detailed working out of this principle will not be carried out here.
We note, however, that such results are common throughout the physics and
chemistry of stochastic processes, where the principles of statistical mechanics,
whose basis is not essentially stochastic, are brought in to complement those
of stochastic processes. The experimental result found was the following. We
have and electric resistor or resistance R at absolute temperature T . Suppose
by means of a suitable filter we measure E(ω)dω, the voltage across the resistor
with angular frequency in the range (ω, ω + dω). Then, if k is Boltzmann’s
constant,

〈E2(ω)〉 = 2RkT (1.68)

This result is known as Nyquist’s theorem. Johnson remarked. “The effect is one
of the causes of what is called ‘tube noise’ in vacuum tube amplifiers. Indeed,
it is often by far the largest part of the ‘noise’ of a good amplifier”.

Johnson noise is easily described by the formalism of the previous subsection.
The mean noise voltage is zero across the resistor, and the system is arranged so
that it is in a steady state and is expected to be well represented by a stationary
process. Johnson’s quantity is, in practice, a limit of the kind (1.56) and may
be summarized by saying that the voltage spectrum S(ω) is given by

S(ω) = 2RkT (1.69)

that is, the spectrum is flat, i.e., a constant function of ω. In the case of light,
the frequencies correspond to different colors of light. If we perceive light to
be white, it is found that in practice all colors are present in equal proportions
- the optical spectrum of white light is thus flat - at least within the visible
range. In analogy, the term white noise is applied to a noise voltage (or any
other fluctuating quantity) whose spectrum is flat.

White noise cannot actually exist. The simplest demonstration is to note that
the mean power dissipated in the resistor in the frequency range (ω1, ω2) is given
by ∫ ω2

ω1

dω S(ω)/R = 2kT (ω2 − ω1) (1.70)

so that the total power dissipated at all frequencies is infinite. Nyquist realized
this, and noted that, in practice, there would be quantum corrections which
would, at room temperature, make the spectrum flat only up to 7 × 1013Hz,
which is not detectable in practice, in a radio situation. The actual power
dissipated would be somewhat less than infinite, 10−10 W in fact! And in
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practice there are other limiting factors such as the inductance of the system,
which would limit the spectrum to even lower frequencies.

From the definition of the spectrum in terms of the autocorrelation function in
Section 1.4, we have

〈E(t+ τ)E(t)〉 = G(τ)

=
1

2π

∫ ∞
−∞

dω e−iωτ2RkT

= 2RkTδ(τ) (1.71)

which implies that no matter how small the time difference τ , E(t + τ) and
E(t) are not correlated. This is, of course, a direct result of the flatness of the
spectram. A typical model of S(ω) that is almost flat is

S(ω) =
2RkT

ω2τ2
C + 1

(1.72)

This is flat provided that ω � τ−1
c . The Fourier transform can be explicitly

evaluated in this case to give

〈E(t+ τ)E(t)〉 =
RkT

τc
e−τ/τc (1.73)

so that the autocorrelation function vanshes only for τ � τc, which is called the
correlation time of the fluctuating voltage. Thus, the delay function correlation
function appears as an idealization, only valid on a sufficiently long time scale.
Some examples are shown below.

Figure 1.6: Correlation Functions(solid) and corresponding spectraI(dashed) for
(a) short correlation time corresponding to an almost flat spectrum; (b) long
correlation time, giving a quite rapidly decreasing spectrum.

This discussion is very reminiscent of Einstein’s assumption regarding Brown-
ian motion and of the behavior of Langevin’s fluctuating force. The idealized
white noise will play a highly important role in these notes but, in just the same
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way as the fluctuation term that arises in a stochastic differential equation is
not the same as an ordinary differential, we will find that differential equations
that include white noise as a driving term have to be handled with great care.
Such equations arise very naturally in any fluctuating system and it is possible
to arrange by means of Stratonovich’s rules for ordinary calculus rules to ap-
ply, but at the cost of imprecise mathematical definition and some difficulties
in stochastic manipulation. It turns out to be far better to abandon ordinary
calculus and use the Ito calculus, which is not very different (it is, in fact, very
similar to the calculus presented for shot noise( and to preserve tractable sta-
tistical properties. All of these ideas will be discussed in Chapter 4.

White noise, as we have noted above, does not exist as a physically realizable
process and the rather singular behavior it exhibits does not arise in any real-
izable context. It is, however, fundamental in a mathematical, and indeed in
a physical sense, in that it is an idealization of very many processes that do
occur. The slightly strange rule which we will develop for the calculus of white
noise are not really very difficult and are very much easier to handle than any
method which always deals with real noise. Furthermore, situations in which
white noise is not a good approximation can very often be indirectly expressed
quite simply in terms of white noise. In this sense, white noise is the starting
point from which a wide range of stochastic descriptions can be derived, and is
therefore fundamental to the discussions in these notes.

1.5 The Stock Market

The equations of Brownian motion were in fact6 first derived by Bachelier in
a doctoral thesis in which he applied the ideas of probability to the pricing of
shares and options in the stock market. He introduced the idea of the relative
value x = C −X0 of a share, that is, the difference between its absolute value
X and the most probable value X0. He then considered the probability distri-
bution px,t of relative share prices x at time t, and then deduced the “law of
composition” of these probabilities

pcx,t1+t2 =

∫
px,t1pz−x,t2dz (1.74)

This is the Chapman-Kolmogorov equation, that is, it is essentially Einstein’s
equation (1.2.4), and the reasoning used to deduce it is basically the same as
that of Einstein. Bachelier then sought a solution of the form

p = Ae−B
2x2

(1.75)

and showed that A and B would be functions of time, concluding

“The definitive expression for the probability is thus

p =
1

2πk
√
t
e−

x2

4πk2t (1.76)
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The mathematical expectation∫ ∞
0

pxdx = k
√
t (1.77)

is proportional to the square root of the time”

Bachelier gave another derivation more similar to Einstein’s, in which he di-
vided time into discrete intervals, and considered discrete jumps in the share
prices, arriving finally at the heat equation (1.2.10) as the differential equation
for the probability distribution. The thesis then considers applications of this
probability law to a range of the kind of financial transactions current on the
Paris stock exchange of the early 1900’s. The value of the woek lies in the ideas,
rather than the actual results, since Bachelier’s use of the Gaussian form for the
distribution px,t clearly has the defect that there is a finite probability that the
stock price can become negative, a possibility that he considers, but prefers to
treat as negligible.

1.5.1 Statistics of Returns

That the price changes x can have a Gaussian distribution is a reasonable result
only if these changes are small compared with the mean price - but this must
clearly break down with increasing time if 〈x2〉 ∼ t. Bachelier’s work did not
generate much interest in fianc circles until the 1960s, when Samuelson decided
to develop the approach further. Damuelson rather unfairly criticized bach-
elor for “forgetting” that negative prices of shares were not permissible, and
suggested a solution to this problem by proposing that changes in prices are
most reasonably described as percentages. Explicitly, he proposes the correct
quantity is what has become known as the return on the share price, given by

r =
x

X
(1.78)

that is the fractional gain or loss in the share price. This leads to a formulation
in which

p = logX (1.79)

is regarded as the quantity that undergoes Brownian motion. This has the ob-
vious advantage that p→ −infty means X → 0, so the natural range (0,∞) of
prices is recovered.

There is also a certain human logic in the description. Prices move as a result
of judgments by buyers and sellers, to whom the natural measure of a price
change is not the absolute size of the change, but the fractional change. The
improvement over Bachelier’s result is so significant, and the resulting descrip-
tion in terms of the logarithm of the price and the fractional price change so
simple, that this is the preferred model today. Samuelson termed the process
geometric Brownian motion or alternatively economic Brownian motion.
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1.5.2 Financial Derivatives

In order to smooth the running of business, it is often helpful to fix in advance
the price of a commodity which will be needed in the future - for example,
the price of wheat which has not yet been grown and harvested is moderately
uncertain. A baker could choose to pay a fixed sum now for future delivery
of wheat. Rather than deal with an individual grower, the baker can buy the
ingrown wheat from a dealer in wheat futures, who charges a premium and
arranges appropriate contracts with growers. However, the contract to deliver
wheat at a certain price on a future date can itself become a tradable item.
Having purchased such a contract, the baker can sell it to another baker, or
indeed, to anyone else, who may but it with the view to selling it at a future
date, without ever having anything to do with any wheat at all.

Such a contract is known as a derivative security. The wheat future exists
only because there is a market for real wheat, but nevertheless can develop
an existence of its own. Another kind of derivative is an option, in which one
buys the right to purchase something at a future date at a definite price. If
the market price on the date at which the option is exercised is larger than the
option price, one discards the option and pays the market price. Purchasing
the option limits exposure to price rises, transferring the risk to the seller of the
option, who charges appropriately, and specializes in balancing risks. Options
to purchase other securities , such as shares and stocks, are very common, and
indeed there are options markets which trade under standardized conditions.

1.5.3 The Black-Scholes Formula

Although a description of market processes in terms of stochastic processes was
well-known by the 1970s, it was not clear how it could be used as a tool for
making investment decisions. The breakthrough came with the realization that
a portfolio containing an appropriate mice of cash, stocks and options could be
devised in which the short term fluctuations in various values could be cancelled,
and that this gave a relatively simple formula for valuing options - the Black-
Scholes Formula - which would be of very significant value in making investment
decisions. This formula has truly revolutionized the practice of finance; to quote
Samuelson:

“A great economist of an earlier generation said that, usefull though
economic theory is for understanding the world, no one would go to
an economic theorist for advice on how to run a brewery or produce
a mousetrap. Today that sage would have to change his tune: eco-
nomic principles really do apply and woe the accountant or marketer
who runs counter to economic law. Paradoxically, one of our most
elegant and complex sector of economic analysis - the modern theory
of finance - is confirmed daily by millions of statistical observations.
When today’s associate professor of security analysis is asked ’Young
man, if you’re so smart why ain’t you rich?’, he replies by laughing
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all the way to the bank or his appointment as a high-paid consultant
to Wall Street.”

The derivation was given first by Black and Scholes and a different derivation
was given by Merton. The formula depends critically on the description of
the returns on securities as a Brownian motion process, which is of limited
accuracy. Nevertheless, the formula is sufficiently realistic to make investing in
stocks and options a logical and rational process, justifying Samuelson’s perhaps
over-dramatized view of modern financial theory.

1.5.4 Heavy Tailed Distributions

There is however, no doubt that the geometric Brownian motion model of fi-
nancial markets is not exact, and even misses out on very important features.
One need only study the empirical values of the returns in stock market records
(as well as other kinds of markets) and check what kinds of distributions are
in practice observed. The results are not really in agreement with a gaussian
distribution of returns - rather, the observed distribution of returns is usually
approximately gaussian for small values of r, but the probability of large values
of r is always observed to be significantly larger than the Gaussian prediction -
the observed distributions are said to have heavy tails.

The field of Continuous Time Finance is an impressive theoretical edifice built
on a flawed foundation of brownian motion, but so far it appears to be the most
practical method for modeling financial markets. With modern electronic bank-
ing and transfer of funds, it is possible to trade over very short time intervals,
during which perhaps, in spite of the overall increase of trading activity which
results, a Brownian description is valid.

It is certainly sufficiently valued for its practitioners to be highly valued, as
Samuelson notes. However, every so often one of these practitioners makes a
spectacular loss, threatening financial institutions. While there is public alarm
about billion dollar losses, those who acknowledge the significance of heavy tails
are unsurprised.
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Chapter 2

Probability Concepts

In the last chapter, we introduced probability notions without any definitions.
In order to formulate essential concepts more precisely, it is necessary to have
some more precise expression of these concepts. The intneion of this chapter is
to provide some background, and to present a number of essential results. We
will not give a through outline of mathematical probability, but only those parts
that we need.

2.1 Events, and Sets of Events

It is convenient to use a notation which is as general as possible in order to
describe those occurrences to which we might wish to assign probabilities. For
example, we may wish to talk about a situation in which there are 6.4 × 1014

molecules in a certain region of space; or a situation in which a Brownian particle
is at a certain point x in space; or possibly there are 10 mice and 3 owls in a
certain region of a forest.

These occurrences are all examples of practical realizations of events. More
abstractly, an event is simply a member of a certain space, which in the cases
most practically occurring can be characterized by a vector of integers

n = (n1, n2, n3, .....) (2.1)

or a vector of real numbers

x = (x1, x2, x3, .....) (2.2)

The dimension of the vector is arbitrary.

It is convenient to use the language of set theory, introduce the concept of a set
of events, and use the notation

ω ∈ A (2.3)
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to indicate that the event ω is one of the events contained in A. For example,
one may consider the set A(25) of events in the ecological population in which
there are no more than 25 animals present; clearly the event ω̄ that there are 3
mice, a tiger, and no other animals present satisfies

ω̄ ∈ A(25) (2.4)

More significantly, suppose we define the set of events A(r,∆V ) that a molecule
is within a volume element ∆V centered on a point r. In this case, the practical
significance of working in terms of sets of events becomes clear, because we
should normally be able to determine whether or not a molecule is within a
neighborhood ∆V of r, but to determine whether the particle is exactly at r is
impossible. Thus, if we define the event ω(y) that the molecule is at point y, it
makes sense to ask whether

y ∈ A(r,∆V ) (2.5)

and to assign a certain probability to the set A(r,∆V ), which is to be interpreted
as the probability of the occurrence of (2.5).

2.2 Probabilities

Most people have an intuitive conception of a probability, based on their own
experience. However, a precise formulation of intuitive concepts is fraught with
difficulties, and it has been found most convenient to axiomatize probability
theory as an essentially abstract science, in which a probability measure P (A)
is assigned to every set A, in the space of events, including

the set of all events: Ω (2.6)

the set of no events: ∅ (2.7)

in order to define probability, we need our sets of events to form a closed system
(known by mathematicians as a σ-algebra) under the set theoretic operations
of union and intersection.

2.2.1 Probability Axioms

We introduce the probability of A, P (A), as a function of A satisfying the
following probability axioms:

(i)

P (A) ≥ 0 for all A (2.8)

(ii)

P (Ω) = 1 (2.9)
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(iii) if Ai(i = 1, 2, 3, ...) is a countable (but possibly infinite) collection of non
overlapping sets, i.e., such that

Ai ∩Aj = ∅ (2.10)

for all i 6= j, then

P
(
∪
i
A
)

=
∑
i

P (Ai) (2.11)

(iv) if λ is the complement of A, i.e., the set of all events not contained in A,
then

P (Ã) = 1− P (A) (2.12)

(v)

P (∅) = 0 (2.13)

2.2.2 The Meaning of P (A)

There is no way of making probability theory correspond to reality without
requiring a certain degree of intuition. The probability P (A), as axiomatized
above, is the intuitive probability that an “arbitrary” event ω, i.e., an event ω
“chosen at random”, will satisfy ω ∈ A. Or more explicitly, if we choose an
event “at random” from Ω N times, the relative frequency that the particular
event chosen will satisfy ω ∈ A approaches P (A) as the number of times, N ,
we choose the event , approaches infinity. The number of choices N can be
visualized as being done one after the other(“independent” tosses of one die)
or at the same time (N dice are thrown at the same time “independently”).
All definitions of this kind must be intuitive, as we can see by the way the un-
defined terms (“arbitrary”, “at random”, “independent”) keep turning up. By
eliminating what we now think of as intuitive ideas and axiomatizing probabil-
ity, Kolmogorov cleared the road for a rigorous development of mathematical
probability. But the circular definition problems posed by wanting an intuitive
understanding remain. The simplest way of looking at axiomatic probability is
as a formal method of manipulating probabilities using the axioms. In order to
apply the theory, the probability space must be defined and and the probability
measure P assigned. These are a priori probabilities, which are simply assumed.
Examples of such a priori probabilities abound in applied disciplines. For exam-
ple, in equilibrium statistical mechanics one assigns equal probabilities to equal
volumes of phase space. Einstein’s reasoning in Brownian motion assigned a
probability φ(∆) to the probability of a “push” ∆ from a position x at time t.

The task of applying probability is (i) to assume some set of a priori probabili-
ties which seem reasonable and deduce results from this and from the structure
of the probability space, (ii) to measure experimental results with some appara-
tus which is constructed to measure quantities in accordance with these a priori
probabilities.
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The structure of the probability space is very important, especially when the
space of events is compounded by the additional concept of time. This extension
makes the effective probability space infinite-dimensional, since we can construct
events such as “the particle was at points xn at times tn, n = 1, 2, ....,∞”.

2.2.3 The Meaning of the Axioms

Any intuitive concept of probability gives rise to nonnegative probabilities, and
the probability that an arbitrary event is contained in the set of all events must
be 1 no matter what our definition of the word arbitrary. Hence, axioms (i) and
(ii) are understandable. The heart of the matter lies in axiom (iii). Suppose we
are dealing with only 2 sets A and B, and A ∩B = ∅. This means there are no
events contained in both A and B. Therefore, the probability that ω ∈ A ∪ B
is the probability that either ω ∈ A or ω ∈ B. Intuitive considerations tell us
this probability is the sum of the individual probabilities, i.e.,

P (A ∪B) ≡ P (ω ∈ A) or P (ω ∈ B) = P (A) + P (B) (2.14)

(notice that this not a proof - merely an explanation).

The extension now to any finite number of non overlapping sets is obvious, but
the extension to any countable number of non overlapping sets requires some
comment.

The extension must be made restrictive because of the existence of sets labelled
by a continuous index, for example x, the position in space. The probability of
a molecule being in the set whose only element is x is zero; but the probability
of being in a region R of finite volume is nonzero. The region R is a union of sets
of the form {x} - but not a countable union. Thus, axiom (iii) is not applicable
and the probability of being in R is not equal to the sum of the probabilities of
being in {x}.

2.2.4 Random Variables

The concept of a random variable is a notational convenience which is central
to these notes. Suppose we have an abstract probability space whose events
can be written x. Then we can introduce the random variable F (x) which is
a function of x, which takes on certain values for each x. In particular, the
identity function of x, written X(x) is of interest; it is given by

X(x) = x (2.15)

We will normally use capitals in these notes to denote random variables and
small letters x to denote their values whenever it is necessary to make a distinc-
tion.

Very often, we have some quite different underlying probability space Ω with
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values ω, and talk about X(ω) which is some function of ω, and then omit
explicit mention of ω. This can be for either of two reasons:

(i) we specify the events by the values of x anyway, i.e., we identify x and ω

(ii) the underlying events ω are too complicated to describe, or sometimes,
even to know

For example, in the case of the position of a molecule in a liquid, we really should
interpret each ω as being capable of specifying all the positions, momenta and
orientations of each molecule in that volume of the liquid; but this is simply too
difficult to write down, and often unnecessary.

One great advantage of introducing the concepts of a random variable is the
simplicity with which one may handle functions of random variables, e.g., X2,
sin (a ·X), etc, and compute means and distributions of these. Further, by
defining stochastic differential equations, one can also quite simply talk about
the time development of random variables in a way which is quite analogous to
the classical description by means of differential equations of non probabilistic
systems.

2.3 Joint and Conditional Probabilities: Inde-
pendence

2.3.1 Joint Probabilities

We explained in Section 2.2.3 how the occurrence of mutually exclusive events
is related to the concept of nonintersecting sets. We must now consider the
concept P (A∩B), where A∩B is nonempty. An event ω which satisfies ω ∈ A
will only satisfy ω ∈ A ∩B if ω ∈ B as well.

Thus, P (A ∩B) = P{(ω ∈ A) and (ω ∈ B)} (2.16)

and P (A∩B) is called the joint probability that the event ω is contained in both
classes, or, alternatively, that both the events ω ∈ A and ω ∈ B occur. Joint
probabilities occur naturally in the context of these notes in two ways:

(i) When the event is specified by a vector, e.g., m mice and n tigers. The
probability of this event is the joint probability of [m mice (and any num-
ber of tigers)] and [n tigers (and any number of mice)]. All vector speci-
fications are implicitly joint probabilities in this sense.

(ii) When more than one time is considered : what is the probability that (at
time t1 there are m1 tigers and n1 mice) and (at time t2 there are m2

tigers and n2 mice). To consider such a probability, we have effectively
created out of the events at time t1 and the vents at time t2, joint events
involving one event at each time. In essence, there is no difference between
these two cases except for the fundamental dynamical role of time.
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2.3.2 Conditional Probabilities

We may specify conditions on the events we are interested in and consider only
these, e.g., the probability of 21 buffaloes given that we know there are 100 lions.
What does this mean? Clearly, we will be interested in those events contained
in the set B = {all events where exactly 100 lions occur}. This means that we
need to define conditional probabilities, which are defined only on the collection
of all sets contained in B. We define the conditional probability as

P (A|B) =
P (A ∩B)

P (B)
(2.17)

and this satisfies our intuitive conception that the conditional probability that
ω ∈ A (given that we know ω ∈ B), is given by dividing the probability of joint
occurrence by the probability (ω ∈ b).

We can define in both directions, i.e., we have

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (2.18)

There is no particular conceptual difference between, say, the probability of
{(21 buffaloes) given (100 lions)} and the reversed concept. However, when two
times are involved, we do see a difference. For example, the probability that a
particle is at position x1 at time t1, given that it was at x2 at the previous time
t2, is a very natural thing to consider; indeed, it will turn out to be a central
concept in these notes. The converse sounds strange, i.e., the probability that a
particle is at position x1 at time t1, given that it will be at position x2 at a later
time t2. It smacks of clairvoyance - we cannot conceive of any natural way in
which we would wish to consider it, although it is, in principle, a quantity very
similar to the “natural” conditional probability, in which the condition precedes
the event under consideration.

The natural definition has already occurred in these notes, for example, the
φ(∆)d∆ of Einstein (Section 1.2.1) is the probability that a particle at x at
time t will be in the range [x+ ∆, x+ δ+ d∆] at time t+ τ . Our intuition tells
us as it told Einstein (as can be seen by reading the extract from his paper) that
this kind of conditional probability is directly related to the time development
of a probabilistic system.

2.3.3 Relationship Between Joint Probabilities of Differ-
ent Orders

Suppose we have a collection of sets Bi such that

Bi ∩Bj = ∅ i 6= j (2.19)

∪
i
Bi = Ω (2.20)

30



so that the sets divide up the space Ω into non overlapping subsets.

Then
∪
i
(A ∩Bi) = A ∩ ∪

i
Bi = A ∩ Ω = A (2.21)

Now, using the probability axiom (iii), we see that the A ∩ Bi satisfy the con-
ditions on the Ai used there, so that∑

i

P (A ∩Bi) = P
[
∪
i
(A ∩Bi)

]
(2.22)

= P (A) (2.23)

and thus ∑
i

P (A|Bi)P (Bi) = P (A) (2.24)

Thus, summing over all mutually exclusive possibilities of B in the joint prob-
ability eliminates that variable.

Hence, in general, ∑
i

P (Ai ∩Bj ∩ Ck · · · ) = P (Bj ∩ Ck · · · ) (2.25)

The result (2.24) has very significant consequences in the development of the
theory of stochastic processes, which depend heavily on joint probabilities.

2.3.4 Independence

We need a probabilistic way of specifying what we mean by independent events.
Two sets of events A and B should represent independent sets of events if the
specification that a particular event is contained in B has no influence on the
probability of that event belonging to A. Thus, the conditional probability
P (A|B) should be independent of B, and hence

P (A ∩B) = P (A)P (B) (2.26)

In the case of several events, we need a somewhat stronger specification. The
events (ω ∈ Ai) (i = 1, 2, ....., n) will be considered to be independent if for any
susbset (i1, i2, ....., ik) of the set (1, 2, ....n)

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2).....P (Aik) (2.27)

It is important to require factorization for all possible combination, as in (2.27).
For example, for three sets Ai, it is quite conceivable that

P (Ai ∩Aj) = P (Ai)P (Aj) (2.28)

for all different i and j, but also that

A1 ∩A2 = A2 ∩A3 = A3 ∩A1 (2.29)

as shown in the figure below.
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Figure 2.1: Illustration of statistical independence in pairs, but not in threes. In
the three sets Aj ∩Ai is, in all cases, the central region. By appropriate choice
of probabilities, we can arrange for P (Ai ∩Aj) = P (Ai)P (Aj).

This requires

P (A1 ∩A2 ∩A3) = P (A2 ∩A3 ∩A3) = P (A2 ∩A3)

= P (A2)P (A3) 6= P (A1)P (A2)P (A3) (2.30)

We can see that the occurrence of ω ∈ A2 and ω ∈ A3, necessarily implies the
occurrence of ω ∈ A1. In this sense, the events are obviously not independent.

Random variable X1, X2, X3, ...., will be said to be independent random vari-
ables, if for all sets of the form Ai = (x such that ai ≤ x ≤ bi) the events
X1 ∈ A1, X2 ∈ A2, X3 ∈ A3, ....... are independent events. This will mean that
all values of the Xi are assumed independently of those of the remaining Xi.

2.4 Mean Values and Probability Density

The mean value of a random variable R(ω) in which the basic events ω countably
specifiable is given by

〈R〉 =
∑
ω

P (ω)R(ω) (2.31)

where P (ω) means the probability of the set containing only the single event ω.
In the case of a continuous variable, the probability axioms enable us to define
a probability density p(ω) such that if A(ω0, dω0) is the set

(ω0 ≤ ω < ω0 + dω0) (2.32)
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then

p(ω))dω0 = P [A(ω0, dω0)] (2.33)

≡ p(ω0, dω0) (2.34)

The last is a notation often used by mathematicians. Details of how this is done
are nicely explained by Feller. In this case,

〈R〉 =

∫
ω∈|OMega

dω R(ω)p(ω) (2.35)

One can often (as mentioned in Section 2.2.4) use R itself to specify the event,
so we will often write

〈R〉 =

∫
dRRp(R) (2.36)

Obviously, p(R) is not the same function of R as p(ω) is of ω - more precisely

p(R0)dR0 = P [R0 < R < R0 + dR0] (2.37)

2.4.1 Determination of Probability Density by Means of
Arbitrary Functions

Suppose for every function f(R) we know

〈f(R)〉 =

∫
dR f(R)p(R) (2.38)

then we know p(R), which is known as a probability density. The proof follows
by choosing

f(R) =

{
1 R0 ≤ R < R0 + dR0

0 otherwise
(2.39)

Because the expectation of an arbitrary function is sometimes a little easier to
work with than a density, this relation will be used occasionally in these notes.

Notation: The notation 〈A〉 for the expectation used in these notes is a physi-
cist’s notation. The most common mathematical notation is E(A), which is in
my opinion a little less intuitive.

2.4.2 Sets of Probability Zero

If a density p(R) exists, the probability that R is in the interval (R0, R0 + dR)
goes to zero with dR. Hence, the probability that R has exactly the value R0 is
zero; and similarly for any other value.

Thus, in such a case, there are sets S(Ri), each containing only one point Ri,
which have zero probability. From probability axiom (iii), any countable union
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of such sets, i.e., any set containing only a countable number of points (e.g., all
rational numbers) has probability zero. In general, all equalities in probability
theory are at best only “almost certainly true”, i.e., they may be untrue on sets
of probability zero. Alternatively, one says, for example,

X = Y with probability 1 (2.40)

which is by no means the same as saying that

X(R) = Y (R) for all R (2.41)

Of course, if the theory is to have any connection with reality, events with
probability zero do not occur.

In particular, notice that our previous result if inspected carefully, only implies
that we know p(R) only with probability 1, given that we know 〈f(R)〉 for all
f(R).

2.5 The Interpretation of Mean Values

The question of what to measure in a probabilistic system is nontrivial. In
practice, one measures either a set of individual values of a random variable
(the number of animals of a certain kind in a certain region at certain points
in time; the electric current passing through a given circuit element in each of
a large number of replicas of that circuit, etc.) or alternatively, the measuring
procedure may implicitly construct an average of some kind. For example, to
measure an electric current, we may measure the electric charge transferred and
divide by the time taken - this gives a measure of the average number of electrons
transferred per unit time. It is important to note the essential difference in this
case, that it will not normally be possible to measure anything other than a few
selected averages and thus, higher moments (for example) will be unavailable.

In contrast, when we measure individual events (as in counting animals), we
can then construct averages of the observables by the obvious methods

X̄N =
1

N

N∑
n=1

X(n) (2.42)

The quantities X(n) are the individual observed values of the quantity X. We
expect that as the number of samples N becomes very large, the quantity X̄N

approaches the mean 〈X〉 and that, in fact,

lim
N→∞

1

N

N∑
n=1

f [X(n)] = lim
N→∞

f(X)N = 〈f(X)〉 (2.43)

and such a procedure will determine the probability density function p(x) of X
if we carry out this procedure for all functions f . The validity of this procedure
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depends on the degree of independence of the successive measurements and is
dealt with in Section 2.5.2.

In the case where only averages themselves are directly determined by the mea-
suring method, it will not normally be possible to measure X(n) and therefore,
it will not, in general, be possible to determine f(X)N . All that will be available
will be f(X̄N ) - quite a different thing unless f is linear. We can often find sit-
uation in which measurable quantities are related (by means of some theory) to
mean values of certain functions, but to hope to measure, for example, the mean
value of an arbitrary function of the number of electrons in a conductor is quite
hopeless. The mean number - yes, and indeed even the mean square number,
but the measuring methods available are not direct. We do not enumerate the
individual numbers of electrons at different times and hence arbitrary functions
are not attainable.

2.5.1 Moments, Correlations, and Covariances

Quantities of interest are given by the moments 〈Xn〉 since these are often easily
calculated. However, probability densities must always vanish as x → ±∞, so
we see that higher moments tell us only about the properties of unlikely large
values of X. In practice we find that the most important quantities are related
to the first and second moments. In particular, for a single variable X, the
variance is defined by

var[X] ≡ [σ[X]]2 ≡ 〈[X − 〈X〉]2〉 (2.44)

and as is well known, the variance var[X] or its square root the standard devi-
ation σ[X], is a measure of the degree to which the values of X deviate from
the mean value 〈X〉.

In the case of several variables, we define the covariance matrix as

〈Xi, Xj〉 ≡ 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 ≡ 〈XiXj〉 − 〈Xi〉〈Xj〉 (2.45)

Obviously,

〈Xi, Xj〉 = var[Xi] (2.46)

If the variables are independent in pairs, the covariance matrix is diagonal.

2.5.2 The Law of Large Numbers

As an application of the previous concepts, let us investigate the following model
of measurement. We assume that we measure the same quantity N times,
obtaining sample values of the random variable X(n) :′, (n = 1, 2, ..., N). Since
these are all measurements of the same quantity at successive times, we assume
that for every n, X(n) has the same probability distribution but we do not
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assume the X(n) to be independent. However, provided that the covariance
matrix 〈X(n), X(m)〉 vanishes sufficiently rapidly as |n−m| → ∞, then defining

X̄N =
1

N

N∑
n=1

X(n) (2.47)

we will show
lim
N→∞

X̄N = 〈X〉 (2.48)

It is clear that
〈X̄N 〉 = 〈X〉 (2.49)

We now calculate the variance of X̄N and show that as N → ∞ it vanishes
under certain conditions:

〈X̄N X̄N 〉2 =
1

N2

N∑
n,m=1

〈Xn, Xm〉 (2.50)

Provided 〈Xn, Xm〉 falls off sufficiently rapidly as |n−m| → ∞, we find

lim
N→∞

(var[X̄N ]) = 0 (2.51)

so that limN→∞ X̄N is a deterministic variable equal to 〈X〉.

Two models of 〈Xn, Xm〉 can be chosen.

(a)
〈Xn, Xm〉 ∼ Kλ|n−m|, (λ < 1) (2.52)

for which one finds

var[X̄N ] ∼ 2K

N2

(
λN+2 −N(λ− 1)− λ

(λ− 1)2

)
− K

N
→ 0 (2.53)

(b)
〈Xn, Xm〉 ∼ |n−m|−1, (n 6= m) (2.54)

and one approximately finds

var[X̄N ] ∼ 2

N
logN − 1

N
→ 0 (2.55)

In both these cases, var[XN ]→ 0, but the rate of convergence is very different.
Interpreting n,m as the times at which the measurement is carried out, one
sees that even very slowly decaying correlations are permissible. The law of
large numbers comes in many forms. The central limit theorem is an even
more precise result in which the limiting distribution function of X̄N − 〈X〉 is
determined (see Section 2.8.2).
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2.6 Characteristic Function

One would like a condition where the variables are independent, not just in
pairs. To this end (and others) we define the characteristic function.

If s is the vector (s1, s2, ...., sn), and X = (X1, X2, ....., Xn) is a vector of random
variables, then the characteristic function (or moment generating function) is
defined by

φ(s) = 〈exp (is ·X)〉 =

∫
dx p(x) exp (is · x) (2.56)

the characteristic function has the following properties:

(i) φ(0) = 1

(ii) |φ(s)| ≤ 1

(iii) φ(s) is a uniformly continuous function of its arguments for all finite real
s

(iv) If the moments 〈
∏
iX

mi
i 〉 exist, then〈∏

i

Xmi
i

〉
=

[∏
i

(
−i ∂
∂si

)mi
φ(s)

]
s=0

(2.57)

(v) A sequence of probability densities converges to limiting probability den-
sity if and only if the corresponding characteristic functions converge to
the corresponding characteristic function of the limiting probability den-
sity.

(vi) Fourier inversion formula

p(x) =
1

(2π)n

∫
dsφ(s) exp (−ix · s) (2.58)

Because of this inversion formula φ(s) determines p(x) with probability 1.
Hence, the characteristic function does truly characterize the probability
density.

(vii) Independent random variables: from the definition of independent ran-
dom variables in Section 2.3.4, it follows that the variables X1, X2, ... are
independent if and only if

p(x1, x2, ...., xn) = p(x1)p(x2).......p(xn) (2.59)

in which case,

φ(s1, s2, ....., sn) = φ(s1)φ(s2)......φ(sn) (2.60)
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(viii) Sum of independent random variables: if X1, X2, .... are independent ran-
dom variables and if

Y =

N∑
i=1

Xi (2.61)

and the characteristic function of Y is

φy(s) = 〈exp (isY )〉 (2.62)

then

φy(s) =

n∏
i=1

φi(s) (2.63)

The characteristic function plays an important role in these notes which arises
from the convergence property (v), which allows us to perform limiting pro-
cesses on the characteristic function rather than the probability distribution
itself, and often makes proofs easier. Further, the fact that the characteristic
function is truly characteristic, i.e., the inversion formula (vi), shows that differ-
ent characteristic functions arise from different distributions. As well as this, the
straightforward derivation of the moments by (2.57) makes any determination
of the characteristic function directly relevant to measurable quantities.

2.7 Cumulant Generating Function: Correlation
Functions and Cumulants

A further important property of the characteristic function arises by considering
its logarithm

Φ(s) = log φ(s) (2.64)

which is called the cumulant generating function. Let us assume that all mo-
ments exist so that φ(s) and hence, Φ(s), is expandable in a power series which
can be written as

Φ(s) =

∞∑
r=1

ir
∑
(m)

〈〈Xm1
1 Xm2

2 ......Xmn
n 〉〉

sm1
1 sm2

2 ......smnn
m1!m2!.....mn!

δ

(
r,

n∑
i=1

mi

)
(2.65)

where the quantities 〈〈Xm1
1 Xm2

2 ......Xmn
n 〉〉 are called the cumulants of the vari-

able X. The notation chosen should not be taken to mean that the cumulants
are functions of the particular product of powers of the X; it rather indicates
the moment of highest order which occurs in their expression in terms of mo-
ments. Stratonovich also uses the term correlation functions, a term which we
will reserve for cumulants which involve more than one Xi. For, if the X are all
independent, the factorization property (2.61) implies that Φ(s) (the cumulant
generating function) is a sum of n terms, each of which is a function of only one
si and hence the coefficient of mixed terms, i.e., the corraltion functions (in our
terminology) are all zero and the converse is true. Thus, the magnitude of the
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correlation functions is a measure of the degree of correlation.

The cumulants and correlation functions can be evaluated in terms of moments
by expanding the characteristic function as a power series:

φ(s) =

∞∑
r=1

ir

r!

∑
(m)

〈Xm1
1 Xm2

2 ......Xmn
n 〉

r!

m1!m2!.....mn!
δ

(
r,

n∑
i=1

mi

)
sm1

1 sm2
2 ......smnn

(2.66)
Expanding the logarithm in a power series, and comparing it with (2.65) for
Φ(s), the relationship between the cumulants and the moments can be deduced.
No simple formula can be given, but the first few cumulants can be exhibited:
we find

〈〈Xi〉〉 = 〈Xi〉 (2.67)

〈〈XiXj〉〉 = 〈XiXj〉 − 〈Xi〉〈Xj〉 (2.68)

〈〈XiXjXk〉〉 = 〈XiXjXk〉 − 〈XiXj〉〈Xk〉 − 〈Xi〉〈XJXk〉
− 〈XiXk〉〈Xj〉+ 2〈Xi〉〈Xj〉〈Xk〉 (2.69)

Here, all formulae are also valid for any number of equal i, j, k, l. An expoicit
general formula can be given as follows. Suppose we wish to calculate the
cumulant 〈〈X1X2X3.....Xn〉〉. The procedure is the following:

(i) Write a sequence of n dots ................

(ii) Divide into p+ 1 subsets by inserting angle brackets

〈...〉〈..〉〈......〉..〈..〉 (2.70)

(iii) Distribute the symbols X1....Xn in places of the dots in such a way that
all different expressions of this kind occur, e.g.,

〈X1〉〈X2X3〉 = 〈X1〉〈X3X2〉 6= 〈X3〉〈X1X2〉 (2.71)

(iv) Take the sum of all such terms for a given p. Call this Cp(X1, X2, ....., Xn)

(v)

〈〈X1X2X3.....Xn〉〉 =

n−1∑
p=0

(−1)pp!Cp(X1, X2, ..., Xn) (2.72)

A derivation of this formula was given by Merton. The particular proce-
dure is due to van Kampen.

(vi) Cumulants in which there is one or more repeated element : For example
〈〈X2

1X2X3〉〉 - simply evaluate 〈〈X1X2X3X4〉〉 and set X1 = X4 in the
resulting expression.
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2.7.1 Example: Cumulant of Order 4: 〈〈X1X2X3X4〉〉
(a) p = 0

Only term is 〈X1X2X3X4〉 = C0(X1, X2, X3, X4)

(b) p = 1

Partition 〈.〉〈...〉
Term {〈X1〉〈X2X3X4〉+ 〈X2〉〈X3X4X1〉+ 〈X3〉〈X4X1X2〉

+ 〈X4〉〈X1X2X3〉 ≡ D1

Partition 〈..〉〈..〉
Term 〈X1X2〉〈X3X4〉+ 〈X1X3〉〈X2X4〉+ 〈X1X4〉〈X2X3〉 ≡ D2

Hence
D1 +D2 = C1(X1, X2, X3, X4) (2.73)

(c) p = 2

Partition 〈.〉〈.〉〈..〉
Term 〈X1〉〈X2〉〈X3X4〉+ 〈X1〉〈X3〉〈X2X4〉+ 〈X1〉〈X4〉〈X2X3〉

+ 〈X2〉〈X3〉〈X1X4〉+ 〈X2〉〈X4〉〈X1X3〉+ 〈X3〉〈X4〉〈X1X2〉
= C2(X1, X2, X3, X4)

(d) p = 3

Partition 〈.〉〈.〉〈.〉〈.〉
Term 〈X1〉〈X2〉〈X3〉〈X4〉 = C3(X1, X2, X3, X4)

Hence,
〈〈X1X2X3X4〉〉 = C0 − C1 + 2C2 − 6C3 (2.74)

2.7.2 Significance of Cumulants

From (2.67), 2.68) we see that the first two cumulants are the means 〈Xi〉 and
covariances 〈Xi, Xj〉. Higher-order cumulants contain information of decreasing
significance, unlike higher-order moments. We cannot set all moments higher
than a certain order equal to zero since 〈X2n〉 ≥ 〈Xn〉2 and thus, all moments
contain information about lower moments.

For cumulants, however, we can consistently set

〈〈X〉〉 = a

〈〈X2〉〉 = σ2

〈〈Xn〉〉 = 0 (n > 2)
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and we can easily deduce by using the inversion formula for the characteristic
function that

p(x) =
1

σ
√

2π
exp

(
− (x− a)2

2σ2

)
(2.75)

that is, a Gaussian probability distribution. It does not, however, seem pos-
sible to give more than this intuitive justification. Indeed, the theorem of
Marcinkiewicz shows that the cumulant generating function cannot be a poly-
nomial of degree greater than 2, that is, either all but the first 2 cumulants
vanish or there are an infinite number of nonvanishing cumulants. The greatest
significance of cumulants lies in the definition of the correlation functions of dif-
ferent variables in terms of them; this leads further to important approximation
methods.

2.8 Gaussian and Poissonian Probability Distri-
butions

2.8.1 The Gaussian Distribution

By far the most important probability distribution is the Gaussian, or normal
distribution. Here we collect together the most important facts about it.

If X is a vector of n Gaussian random variables, the corresponding multivariate
probability density function can be written

p(x) =
1√

(2π)n det (σ)
exp

[
− 1

2 (x− x̄)Tσ−1(x− x̄)
]

(2.76)

so that

〈X〉 =

∫
dx xp(x) = x̄ (2.77)

〈XXT 〉 =

∫
dx xxT p(x) = x̄x̄T + σ (2.78)

and the characteristic function is given by

φ(s) = 〈exp
(
isTX

)
〉 = exp

(
isT x̄− 1

2sTσs
)

(2.79)

This particularly simple characteristic function implies that all cumulants of
higher order than 2 vanish, and hence means that all moments of order higher
than 2 are expressible in terms of those of order 1 and 2. The relationship
(2.78) means that σ is the covariance matrix (as defined in Section 2.5.1), i.e.,
the matrix whose elements are the second-order correlation functions. Of course,
σ is symmetric.

The precise relationship between the higher moments and the covariance matrix
σ can be written down straightforwardly by using the relationship between the
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moments and the characteristic function [Section 2.6 (iv)]. The formula is only
simple if x̄ = 0, in which case the odd moments vanish and the even moments
satisfy

〈XiXjXk......〉 =
(2N)!

N !2N
{σijσklσmn....}sym (2.80)

where the subscript “sum” means the symmetrized form of the product of σ’s,
and 2N is the order of the moment. For example,

〈X1X2X3X4〉 =
4!

4 · 2!

{
1

3
[σ12σ34 + σ41σ23 + σ13σ24

}
= σ12σ34 + σ41σ23 + σ13σ24 (2.81)

〈X4
1 〉 =

4!

4 · 2!

{
σ2

11

}
= 3σ2

11 (2.82)

2.8.2 Central Limit Theorem

The Gaussian distribution is important for a variety of reasons. Many variables
are, in practice, empirically well approximated by Gaussians and the reason for
this arises from the central limit theorem, which, roughly speaking, asserts that
a random variable composed of the sum of many parts, each independent but
arbitrarily distributed, is Gaussian. More precisely, let X1, X2, X3, ....., Xn be
independent random variables such that

〈Xi〉 = 0 , var[Xi] = b2i (2.83)

and let the distribution function of Xi be pi(xi).

Define

Sn =

n∑
i=1

Xi (2.84)

and

σ2
n = var[Sn] =

n∑
i=1

b2i (2.85)

We require further the fulfilment of the Lindeberg condition:

lim
n→∞

 1

σ2
n

n∑
i=1

∫
|x|>tσn

dxx2pi(x)

 = 0 (2.86)

for any fixed t > 0. Then, under these conditions, the distribution of the nor-
malized sums Sn/σn tends to the Gaussian with zero mean and unit variance.

The proof of the theorem can be found in many texts. It is worthwhile com-
menting on the hypotheses, however. We first note that the summands Xi
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are required to be independent. This condition is not absolutely necessary; for
example, choose

Xi =

i+j∑
r=i

Yr (2.87)

where the Yj are independent. Since the sum of the X’s can be rewritten as a
sum of Y ’s (with certain finite coefficients), the theorem is still true.

Roughly speaking, as long as the correlation between Xi and Xj goes to zero
sufficiently rapidly as |i−j| → ∞, a central limit theorem will be expected. The
Lindeberg condition (2.86) is not an obviously understandable condition but it
is the weakest condition which expresses the requirement that the probability
for |Xi| to be large is very small. For example, if all the bi are infinite or greater
than some constant C, it is clear that σ2

n diverges as n → ∞. The sum of
integrals in (2.86( is the sum of contributions to variances for all |Xi| > tσn,
and it is clear that as n → ∞, each contribution goes to zero. The Lindeberg
condition requires the sum of all the contributions not diverge as fast as σ2

n. In
practice, it is a rather weak requirement; satisfied if |Xi| < C for all Xi, or if
pi(x) goes to zero sufficiently rapidly as x→ ±∞. An exception is

pi(x) =
ai

π(x2 + a2
i )

(2.88)

the Cauchy, or Lorentzian distribution. The variance of this distribution is
infinite and, in fact, the sum of all the Xi has a distribution of the same form as
(2.88) with ai replaced by

∑n
i=1 ai. Obviously, the Lindeberg condition is not

satisfied.

2.8.3 The Poisson Distribution

A distribution which plays a central role in the study of random variables which
take on positive integer values is the Poisson distribution. If X is the relevant
variable the Poisson distribution is defined by

P (X = x) ≡ P (x) =
e−ααx

x!
(2.89)

and clearly, the factorial moments, defined by

〈Xr〉f = 〈x(x− 1)........(x− r + 1)〉 (2.90)

are given by
〈Xr〉f = αr (2.91)

For variables whose range bis nonnegative integral, we can very naturally define
the generating function

G(s) =

∞∑
x=0

sxP (x) = 〈sx〉 (2.92)
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which is related to the characteristic function by

G(s) = φ(−i log s) (2.93)

The generating function has the useful property that

〈Xr〉f =

[(
∂

∂s

)r
G(s)

]
s=1

(2.94)

For the Poisson distribution we have

G(s) =

∞∑
x=0

e−α(sα)x

x!
= eα(s−1) (2.95)

We may also define the factorial cumulant generating function g(s) by

g(s) = logG(s) (2.96)

and the factorial cumulants 〈〈Xr〉〉f by

g(s) =

∞∑
x=1

〈〈Xr〉〉f
(s− 1)r

r!
(2.97)

We see that the Poisson distribution has all but the first factorial cumulant zero.

The Poisson distribution arises naturally in very many contexts, for example, we
have already met it is Section 1.5.1 as the solution of a simple master equation. It
plays a similar central role in the study of random variables which take on integer
values to that occupied by the Gaussian distribution in the study of variables
with a continuous range. However, the only simple multivariate generalization
of the Poisson is simply a product of Poissons, i.e., of the form

P (x1, x2, x3, ....) =

n∏
i=1

e−αi(αi)
x
i

xi!
(2.98)

There is no logical concept of a correlated multipoisson distribution, similar to
that of a correlated multivariate Gaussian distribution.

2.9 Limits of Sequences of random Variables

Much of computational work consists of determining approximations to random
variables, in which the concept of a limit of a sequence of random variables
naturally arises. However, there is no unique way of defining such a limit.

For suppose we have a probability space Ω, and a sequence of random variables
Xn defined on Ω. Then by the limit of the sequence as n→∞

X = lim
n→∞

Xn (2.99)
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we mean a random variable X which, in some sense, is approached by the
sequence of random variables Xn. The various possibilities arise when one
considers that the probability space Ω has elements ω which have a probability
density p(ω). Then we can choose the following definitions.

2.9.1 Almost Certain Limit

Xn converges almost certainly to X if, for all ω except a set of probability zero

lim
n→∞

Xn(ω) = X(ω) (2.100)

Thus each realization of Xn converges on X and we write

ac− lim
n→∞

Xn = X (2.101)

2.9.2 Mean Square Limit (Limit in the Mean)

Another possibility is to regard the Xn(ω) as functions of ω, and look for the
mean square deviation of Xn(ω) from X(ω). Thus, we say that Xn converges
to X in the mean square if

lim
n→∞

∫
dω p(ω)[Xn(ω)−X(ω)]2 ≡ lim

n→∞
〈(Xn −X)2〉 = 0 (2.102)

This is the kind of limit which is well known in Hilbert space theory. We write

ms− lim
n→∞

Xn = X (2.103)

2.9.3 Stochastic Limit, or Limit in Probability

We can consider the possibility that Xn(ω) approaches X because the proba-
bility of deviation from X approaches zero precisely, this means that if for any
ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0 (2.104)

then the stochastic limit go Xn is X.

In this case we write
st− lim
n→∞

Xn = X (2.105)

2.9.4 Limit in Distribution

An even weaker form of convergence occurs if, for any continuous bounded
function f(x)

lim
n→infty

〈f(Xn)〉 = 〈f(X)〉 (2.106)

In this case the convergence of the limit is said to be in distribution. In partic-
ular, using exp ixs) for f(x), we find that the characteristic functions approach
each other, and hence the probability density of Xn approach that of X.
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2.9.5 Relationships Between Limits

The following relations can be show.

Almost certain convergence ⇒ stochastic convergence

Convergence in mean square ⇒ stochastic convergence

Stochastic convergence ⇒ convergence in distribution

All of these limits have uses in applications.
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Chapter 3

Markov Processes

3.1 Stochastic Processes

All the examples given in Chapter 1 can be mathematically described as stochas-
tic processes by which we mean, in a loose sense, systems which evolve proba-
bilistically in time or more precisely, systems in which a certain time-dependent
random variable X(t) exists. We can measure values x1,x2,x3, .... etc., of X(t)
at times t1, t2, t3, .... and we assume that a set of joint probability densities

p(x1, t1; x2, t2; x3, t3; ....) (3.1)

exists, which completely describe the system.

In terms of these joint probability density functions, one can also define condi-
tional probability densities:

p(x1, t1; x2, t2; ....|y1, τ1; y2, τ2; ....) ≡ p(x1, t1; x2, t2; ....; y1, τ1; y2, τ2; ....)

p(y1, τ1; y2, τ2; ....)
(3.2)

These definitions are valid independently of the ordering of the times, although
it is usual to consider only times which increase from right to left, i.e.,

t1 ≥ t2 ≥ t3 ≥ ..... ≥ τ1 ≥ τ2 ≥ ...... (3.3)

The concept of an evolution equation leads us to consider the conditional prob-
abilities as predictions of the future values of X(t) (i.e., x1,x2,x3, .... at times
t1, t2, t3, ....) given the knowledge of the past (values y1, τ1; y2, τ2; .... at times
τ1, τ2, τ3, ....).

3.1.1 Kinds of Stochastic Process

The concept of a general stochastic process is very loose. To define the process
we need to know at least all possible joint probabilities of the kind (3.1). If such
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knowledge does define the process, it is known as a separable stochastic process.
All the processes considered in these notes will be assumed to be separable.

(a) Complete Independence: This is the most simple kind of stochastic
process; it satisfies the property

p(x1, t1; x2, t2; x3, t3; ....) =
∏
i

p(xi, ti) (3.4)

which means that the value of X at time t is completely independent of
its values in the past (or future).

(b) Bernoulli Trials: An even more special case occurs when the p(xi, ti)
are independent of ti, so that the same probability law governs the process
at all times. We then have the Bernoulli trials, in which a probabilistic
process is repeated at successive times.

(c) Martingales: The conditional mean value of X(t) given that X(t0) = x0

is defined as

〈X(t)|[x0, t0]〉 ≡
∫
dxxp(x, t|x0, t0) (3.5)

In a Martingale this has the simple property

〈X(t)|[x0, t0]〉 = x0 (3.6)

The martingale property is a rather strong property, and is associated
with many similar and related processes, such as local martingales, sub-
martingales, super-martingales, etc., which have come to be extensively
studied and used in the past 25 years.

(d) Markov Processes: The next most simple idea is that of the Markpv
process in which knowledge of only the present determines the future, and
most of these notes are built around this concept.

3.2 Markov Process

The Markov assumption is formulated in terms of conditional probabilities. We
require that if the times satisfy the ordering (3.3), the conditional probability
is determined entirely by the knowledge of the most recent condition, i.e.,

p(x1, t1; x2, t2; ....|y1, τ1; y2, τ2; ....) = p(x1, t1; x2, t2; ....|y1, τ1) (3.7)

This is simply a more precise statement of the assumptions made by Einstein,
Smoluchowski and others. It is, even by itself, extremely powerful. For it
means that we can define everything in terms of simple conditional probabili-
ties p(x1, t1|y1, τ1). For example, , by definition of the conditional probability
density p(x1, t1; x2, t2|y1, τ1) = p(x1, t1|x2, t2; y1, τ1)p(x2, t2|y1, τ1) and using
the Markov assumption (3.7, we find)

p(x1, t1; x2, t2|y1, τ1) = p(x1, t1|x2, t2)p(x2, t2|y1, τ1) (3.8)
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and it is not difficult to see that an arbitrary joint probability can be expressed
simply as

p(x1, t1; x2, t2; x3, t3; ....; xn, tn)

= p(x1, t1|x2, t2)p(x2, t2|x3, t3)p(x3, t3|x4, t4)...

...p(xn−1, tn−1|xn, tn) (3.9)

provided
t1 ≥ t2 ≥ t3 ≥ ..... ≥ tn−1 ≥ tn (3.10)

3.2.1 Consistency - the Chapman-Kolmogorov Equation

From Section 2.3.3 we require that summing over all mutually exclusive events
of one kind in a joint probability eliminates that variable, i.e.,∑

B

P (A ∩B ∩ C...) = P (A ∩ C...) (3.11)

and when this is applied to stochastic processes, we get two deceptively similar
equations:

p(x1, t1) =

∫
dx2 p(x1, t1; x2, t2) =

∫
dx2 p(x1, t1|x2, t2)p(x2, t2) (3.12)

This equation is an identity valid for all stochastic processes and is the first in
a hierarchy of equations, the second of which is

p(x1, t1|x3, t3) =

∫
dx2 p(x1, t1; x2, t2|x3, t3)

=

∫
dx2 p(x1, t1; x2, t2|x3, t3)p(x2, t2|x3, t3) (3.13)

This equation is always valid. We now introduce the Markov assumption. If t1 ≥
t2 ≥ t3, we can drop the t3 dependence in the doubly conditional probability
and write

p(x1, t1|x3, t3) =

∫
dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3) (3.14)

which is the Chapman-Kolmogorov equation.

What is the essential difference between (3.14) and (3.12)? The obvious answer
is that (3.12) is for unconditioned probabilities, whereas (3.14) is for conditioned
probabilities. Equation (3.14) is a rather complex nonlinear functional equation
relating all conditional probabilities p(xi, ti|xj , tj) to each other, whereas (3.12)
simply constructs the one time probabilities in the future t1 of t2, given the
conditional probability p(x1, t1|x2, t2).

The Chapman-Kolmogorov equation has many solutions. These are best un-
derstood by deriving the differential form which is done later in Section 3.4.1
under certain rather mild conditions.
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3.2.2 Discrete State Spaces

In the case where we have a discrete variable, we will use the symbol N =
(N1, N2 < N3, ...), where The Ni are random variables which take on integral
values. Clearly, now we can replace∫

dx←→
∑
n

(3.15)

and we can now write the Chapman-Kolmogorov equation for such a process as

P (n1, t1|n3, t3) =
∑
n2

P (n1, t1|n2, t2)P (n2, t2|n3, t3) (3.16)

This is now matrix multiplication, with possibly infinite matrices.

3.2.3 More general Measures

A more general formulation would assume a measure dµ(x) instead of dx where a
variety of choices can be made. For example, if µ(x) is a step function with steps
at integral values of x, we recover the discrete space form. Most mathematical
works attempt to be as general as possible. For applications, such generality can
lead to lack of clarity so, where possible, we will favor a more specific notation.

3.3 Continuity in Stochastic Processes

Whether or not the random variable X(t) has a continuous range of possible
values is a completely different question from whether the sample path of X(t)
is a continuous function of t. For example, in a gas composed of molecules with
velocities V(t), it is clear that all possible values of V(t) are in principle real-
izable, so that the range of V(t) is continuous. However, a model of collisions
in a gas of hard spheres as occurring instantaneously is often considered, and
in such a model the velocity before the collision vi, will change instantaneously
at the time of impact to another value vf , so the sample path of V(t) is not
continuous. Nevertheless, in such a model, the position of a gas molecule X(t)
would be expected to change continuously.

A major question now arises. Do Markov processes with continuous sample
paths actually exist in reality? Notice the combination of Markov and contin-
uous. It is almost certainly the case that in a classical picture (i.e., not quan-
tum mechanical), all variables with a continuous range have continuous sample
paths.Even the hard sphere gas mentioned above is an idealization and more
realistically, one should allow some potential to act which would continuously
deflect the molecules during a collision. But it would also be the case that, if we
observe on such a fine time scale, the process will probably not be Markovian.
The immediate history of the whole system will almost certainly be required
to predict even the probabilistic future. This is certainly born out out in all
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attempts to derive Markovian probabilistic equations from mechanics. Equa-
tions which are derived are rarely truly Markovian - rather there is a curtain
characteristic memory time during which the previous history is important.

This means that in the real world there is really no such thing as a Markov
process; rather, there may be systems whose memory time is so small that, on
the time scale on which we carry out observations, it is fair to regard them a
being well approximated by a Markov process. But in this case, the question
of whether the sample paths are continuous is not relevant. The sample paths
of the approximating Markov process certainly need not be continuous. Even if
collisions of molecules are not accurately modeled by hard spheres, during the
time taken for a collision, a finite change of velocity takes place and this will
appear in the approximating Markov process as a discrete step. On this time
scale, even the position may change discontinuously, thus giving the picture of
Brownian motion as modeled by Einstein.

In chemical reactions, for example, the time taken for an individual reaction to
proceed to completion - roughly of the same order of magnitude as the collision
time for molecules - provides yet another minimum time, since during this time,
states which cannot be described in terms of individual molecules exist. Here,
therefore, the very description of the state in terms of individual molecules re-
quires a certain minimum time scale to be considered.

However, Markov processes with continuous sample paths do exist mathemati-
cally and are useful in describing reality. The model of the gas mentioned above
provides a useful example. The position of the molecule is indeed probably best
modeled as changing discontinuously by discrete jumps. Compared to the dis-
tance travelled, however, these jumps are infinitesimal and a continuous curve
provides a good approximation to the sample path. On the other hand, the ve-
locities can change by amounts which are the same order of magnitude as typical
values attained in practice. The average velocity of a molecule in a gas is about
1000m/s and during a collision can easily reverse sign. The velocities simply
cannot reach (with any significant probability) values for which the change of
velocity can be regarded as very small. Hence, there is no sense in a continuous
path description of velocities of a gas.

3.3.1 Mathematical Definition of a Continuous Markov
Process

For a Markov process, it can be shown that with probability one, the sample
paths are continuous functions of t, if for any ε > 0 we have

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx p(x, t+ ∆t|z, t) = 0 (3.17)

uniformly in z, t and δt.
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This means that the probability for the final position x to be finitely different
from z goes to zero faster than ∆t, as δt goes to zero. Equation (3.17) is
sometime called the Lindeberg condition. Note this different than the earlier
one.

Examples

(i) Einstein’s solution for his f(x, t) (Section 1.2.1) is really the conditional
probability p(x, t|0, 0). Following his method we would find

p(x, t+ ∆t|z, t) =
1√

4πD∆t
e−

(x−z)2
4D∆t (3.18)

and it is easy to check that (3.17) is satisfied in this case. Thus, Brownian
motion in Einstein’s formulation has continuous sample paths.

(ii) Cauchy process: Suppose

p(x, t+ ∆t|z, t) =
∆t

π[(x− z)2 + ∆t2]
(3.19)

Then this does satisfy (3.17) so the sample paths are discontinuous.

However, in both cases, we have as required for consistency

lim
∆t→0

p(x, t+ ∆t|z, t) = δ(x− z) (3.20)

and it is easy to show that in both cases, the Chapman-Kolmogorov equation
is satisfied.

The difference between the two processes just described is illustrated in the
figure below

Figure 3.1: Illustration of sample paths of the Cauchy process X(t)(t) (dashed)
and Brownian motion W (t) (solid).
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in which simulations of both processes are given. The difference between the two
is striking. Notice, however, that even the Brownian motion curve is extremely
irregular, even though continuous - in fact it is nowhere differentiable. The
Cauchy process curve, however, is only piecewise continuous.

3.4 Differential Chapman-Kolmogorov Equation

Under appropriate assumptions, the Chapman-Kolmogorov equation can be re-
duced to a differential equation. The assumptions made are closely connected
with the continuity properties of the process under consideration. Because of
the form of the continuity condition (3.17), one is led to consider a method
of dividing the differentiability conditions into two parts, one corresponding to
continuous motion of a representative point and the other to discontinuous mo-
tion.

We require the following conditions for all ε > 0:

(i)

lim
∆t→0

p(x, t+ ∆t|z, t)
∆t

= W (x|z, t) (3.21)

uniformly in x, z, and t for |x− z| ≥ ε.

(ii)

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx (xi − zi)p(x, t+ ∆t|z, t) = Ai(z, t) +O(ε) (3.22)

(iii)

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx (xi − zi)(xj − zj)p(x, t+ ∆t|z, t) = Bij(z, t) +O(ε)

(3.23)

the last two being uniform in x, z, and t.

Notice that all higher-order coefficients of the form (3.22,3.23) must vanish. For
example, consider the third-order quantity defined by

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx (xi − zi)(xj − zj)(xk − zk)p(x, t+ ∆t|z, t) = Cijk(z, t) +O(ε)

(3.24)
Since Cijk is symmetric in i, j, k consider∑

i,j,k

αiαjαkCijk(z, t) ≡ C̄(α, z, t) (3.25)
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so that

Cijk(z, t) =
1

3!

∂3

∂αi∂αj∂αk
C̄(α, z, t) (3.26)

Then,

|C̄(α, z, t)| ≤ lim
∆t→0

1

∆t

∫
|x−z|>ε

|α · ((x)− z)|[α · ((x)− z)]2p(x, t+ ∆t|z, t)dx +O(ε)

≤ |α|ε lim
∆t→0

∫
[α · ((x)− z)]2p(x, t+ ∆t|z, t)dx +O(ε)

= ε|α|[αiαjBij(z, t) +O(ε)] +O(ε)

= O(ε) (3.27)

so that C is zero. Similarly, we can show that all corresponding higher-order
qualities also vanish.

According to the condition for continuity (3.17), the process can only have
continuous paths of W (x|z, t) vanishes for all x 6= z. Thus, this function must
in some way describe discontinuous motion, while the quantities Ai and Bij
must be connected with continuous motion.

3.4.1 Derivation of the Differential Chapman-Kolmogorov
Equation

We consider the time evolution of the expectation of a function f(z) which is
twice continuously differentiable.

Thus,

∂t

∫
dx f(x)p(x, t|y, t′)

= lim
∆t→0

1

∆t

{∫
dx f(x)[p(x, t+ ∆t|y, t′)− p(x, t|y, t′)]

}
(3.28)

= lim
∆t→0

1

∆t

{∫
dx

∫
dz f(x)p(x, t+ ∆t|z, t)p(z, t|y, t′)−

∫
dz f(z)p(z, t|y, t′)

}
(3.29)

where we have used the Chapman-Kolmogorov equation in the positive term of
(3.28) to produce the corresponding term in (3.29)

We now divide the integral over x into two regions |x− z| ≥ ε and |x− z| < ε.
When |x−z| < ε, since f(z) is, by assumption, twice continuously differentiable,
we may write

f(x) = f(z)+
∑
i

∂f(z)

∂zi
(xi−zi)+ 1

2

∑
i,j

∂2f(z)

∂zi∂zj
(xi−zi)(xj−zj)+|x−z|2R(x, z)

(3.30)
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where we have(again by the twice continuously differentiability)

|R(x, z)| → 0 as |x− z| → 0 (3.31)

Now substitute in (3.29)

(3.29) = lim
∆t→0

1

∆t


∫ ∫
|x−z|<ε

dxdz

∑
i

(xi − zi)
∂f

∂zi
+ 1

2

∑
i,j

(xi − zi)(xj − zj)
∂2f

∂zi∂zj


× p(x, t+ ∆t|z, t)p(z, t|y, t′)

+

∫ ∫
|x−z|<ε

dxdz|x− z|2p(x, t+ ∆t|z, t)p(z, t|y, t′)

+

∫ ∫
|x−z|<ε

dxdzf(x)p(x, t+ ∆t|z, t)p(z, t|y, t′)

+

∫ ∫
|x−z|<ε

dxdzf(z)p(x, t+ ∆t|z, t)p(z, t|y, t′)

−
∫ ∫

dxdzf(z)p(x, t+ ∆t|z, t)p(z, t|y, t′)
}

(3.32)

Note that since p(x, t + ∆t|z, t) is a probability, the integral over x in the last
term gives 1 - this is simply the last term in (3.29).

We now consider this expression line by line.

Lines 1 and 2: By the assumed uniform convergence, we take the limit inside
the integral to obtain [using conditions (ii) and (iii) of Section 3.4]

∫
dz

∑
i

Ai(z)
∂f

∂zi
+ 1

2

∑
i,j

Bij
∂2f

∂zi∂zj

 p(z, t|y, t′) +O(ε) (3.33)

Line 3: This is a remainder term and vanishes as ε→ 0. For∣∣∣∣∣∣∣
1

∆t

∫
|x−z|<ε

|x− z|2R(x, z)p(x, t+ ∆t|z, t)

∣∣∣∣∣∣∣
≤

 1

∆t

∫
|x−z|<ε

|x− z|2p(x, t+ ∆t|z, t)

 max
|x−z|<ε

|R(x, z)|

→

∑
i,j

Bij(z, t) +O(ε)

{ max
|x−z|<ε

|R(x, z)|
}

(3.34)
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From (3.31) we can see that as ε→ 0, the factor in curly brackets vanishes.

Lines 4-6: We can put these all together to obtain∫ ∫
|x−z|<ε

dxdz f(z)[W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] (3.35)

The whole right-hand side of (3.32) is independent of ε. Hence taking the limit
ε→ 0, we find

∂t

∫
dz f(z)p(z, t|y, t′) =

∫
dz

∑
i

Ai(z)
∂f(z)

∂zi
+ 1

2

∑
i,j

Bij(z)
∂2f(z)

∂zi∂zj

 p(z, t|y, t′)
+

∫
dz f(z)

{
−
∫
dx[W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)]

}
(3.36)

Notice that we use the definition

lim
ε→0

∫
|x−z|<ε

dxF (x, z) ≡ −
∫
dxF (x, z) (3.37)

for the principal value integral of a function F (x, z). For (3.36) to have any
meaning, this integral should exist. Equation (3.21) defines W (x|z, t) only for
x 6= z and hence leaves open the possibility that it is infinite at x = z, as is
indeed the case for the Cauchy process, discussed in Section 3.3.1, for which

W (x|z, t) =
1

π(x− z)2
(3.38)

However, if p(z, t|y, t′) is continuous and once differentiable, then the principal
value integral exists. In the remainder of these notes we will not write this
integral explicitly as a principal value integral since one rarely considers the
singular cases for which it is necessary.

The final step is now to integrate by parts. We find∫
dz f(z)∂tp(z, t|y, t′)

=

∫
dz f(z)

−∑
i

∂

∂zi
Ai(z, t)p(z, t|y, t′) + 1

2

∑
i,j

∂2

∂zi∂zj
Bij(z, t)p(z, t|y, t′)

+

∫
dx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)]}

+ surface terms (3.39)

We have not specified the range of the integrals. Suppose the process is confined
to a region R with surface S. Then clearly,

p(x, t|z, t′) = 0 unless both x and z ∈ R (3.40)
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It is clear that by definition we have

W (x|z, t) = 0 unless both x and z ∈ R (3.41)

But the condition on Ai(z, t) and Bij(z, t) can result in discontinuities in these
functions as defined by (3.22) and (3.23) since p(x, t+ ∆t|z, t′), the conditional
probability, can very reasonably change discontinuous ly a z crosses the bound-
ary of R, reflecting the fact that no transitions are allowed from outside R to
inside R.

In integrating by parts, we are forced to differentiate both Ai and Bij and by
our reasoning above, one cannot assume that this is possible on the boundary
of the region. Hence, let us choose f(z) to be arbitrary but nonvanishing only
in an arbitrary region R′ entirely contained in R. We can then deduce that for
all z in the interior or R,

∂p(z, t|y, t′)
∂t

= −
∑
i

∂

∂zi
Ai(z, t)p(z, t|y, t′)

+ 1
2

∑
i,j

∂2

∂zi∂zj
Bij(z, t)p(z, t|y, t′)

+

∫
dx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] (3.42)

Surface terms do not arise, since they necessarily vanish.

This equation is the differential Chapman-Kolmogorov equation.

3.4.2 Status of the Differential Chapman-Kolmogorov Equa-
tion

From our serivation it is not clear to what extent solutions of the differen-
tial Chapman-Kolmogorov equation are solutions of the Chapman-Kolmogorov
equation itself or indeed, to what extent solutions exist. It is certainly true, how-
ever, that a set of conditional probabilities which obey the Chapman-Kolmogorov
equation does generate a Markov process, in the sense that the joint probabili-
ties so generated satisfy all probability axioms.

It can be shown that, under certain conditions, if we specify A(x, t),B(x, t)
(which must be positive semi-definite), and W (x|y, t) (which must be non-
negative), that a non-negative solution to the differential Chapman-Kolmogorov
equation exists, and this solution also satisfies the Chapman-Kolmogorov equa-
tion. The conditions to be satisfied are the initial condition,

p(z, t|y, t) = δ(y − z) (3.43)

which follows from the definition of the conditional probability density, and any
appropriate boundary conditions.
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3.5 Interpretation of Conditions and Results

Each of the conditions (i), (ii), (iii) of Section 3.4 can now be seen to give rise to
a distinctive part of the equation, whose interpretation is rather straightforward.
We can identify three processes taking place, which are known as jumps, drift
and diffusion.

3.5.1 Jump Processes: The Master Equation

We consider a case in which

Ai(z, t) = Bij(z, t) = 0 (3.44)

so that we now have the master equation:

∂p(z, t|y, t′)
∂t

=

∫
dx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] (3.45)

To first order in ∆t we solve approximately, as follows. Notice that

p(z, t|y, t) = δ(y − z) (3.46)

Hence,

p(z, t+ ∆t|y, t)− p(z, t|y, t)
∆t

=

∫
dx [W (z|x, t)p(x, t|y, t)−W (x|z, t)p(z, t|y, t)]

p(z, t+∆t|y, t) = p(z, t|y, t)+∆t

∫
dx [W (z|x, t)p(x, t|y, t)−W (x|z, t)p(z, t|y, t)]

p(z, t+ ∆t|y, t) = δ(y − z) + ∆t

∫
dx [W (z|x, t)δ(y − x)−W (x|z, t)δ(y − z)]

so that

p(z, t+ ∆t|y, t) = δ(y − z)

[
1−

∫
dxW (x|y, t)∆t

]
+W (z|y, t)∆t (3.47)

We see that for any ∆t there is a finite probability, given by the coefficient of
the δ(y − z) in (3.47), for the particle to stay at the original position y. The
distribution of those particles which do not remain at y is given by W (z|y, t)
after appropriate normalization. Thus, a typical path X(t) will consist of sec-
tions of straight lines X(t) = constant, interspersed with discontinuous jumps
whose distribution is given by W (z|y, t). For this reason, the process is known
as a jump process. The paths are discontinuous at discrete points.

(a) Time Between Jumps: The probability Q(y, t, t0) that, given that we
start from point y at time t0, we are still at point y at time t is given for
infinitesimal ∆t by

Q(y, t0 + ∆t, t0) = 1−
∫
dxW (x|y, t0)∆t (3.48)

58



Clearly this means that

∂Q(y, t, t0)

∂t
= −

∫
dxW (x|y, t)Q(y, t, t0) (3.49)

If the jump probability is independent of t, then this has the simple solution

Q(y, t, t0) = exp (−λt) (3.50)

with λ =

∫
dxW (x|y) (3.51)

Thus, the jump times are exponentially distributed, and can be simulated very
simply. To simulate, one first chooses a jump time according to the probabil-
ity law (3.50), and then chooses the value of x to which the jump was made
according to a probability law

w(x|y) =
W (x|y)

λ
(3.52)

If the jump probability is not independent of t, the same procedure is in principle
possible, but instead of using the exponential form (3.50), one must solve the
differential equation (3.49).

(b) Integer State Space: In the case where the state space consists of integers
only, the master equation takes the form

∂tP (n, t|n′, t′) =
∑
m

[W (n|m, t)P (m, t|n′, t′)−W (m|n, t)P (n, t|n′, t′)] (3.53)

There is no longer any question that only jumps can occur, since only discrete
values of the state variable N(t) are allowed. It is most important, however, to
be aware that a pure jump process can occur even though the variable X(t) can
take on a continuous range of variables.

3.5.2 Diffusion Processes: The Fokker-Planck Equation

When the quantities W (z|x, t) are zero, the differential Chapman-Kolmogorov
equation reduces to the Fokker-Planck equation:

∂p(z, t|y, t′)
∂t

= −
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, t′)]+

1

2

∑
i,j

∂2

∂zi∂zj
[Bij(z, t)p(z, t|y, t′)]

(3.54)
and the corresponding process is known mathematically as a diffusion process.
The vector A(z, t) is known as the drift vector and the matrix B(z, t) as the
diffusion matrix. The diffusion matrix is positive semidefinite and symmetric
as a result of its definition (3.23). It is easy to see from (3.21), the definition
of W (x|z, t), that the requirement (3.17) for continuity of the sample paths is
satisfied if W (x|z, t) is zero. Hence, the Fokker-Planck equation describes a
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process in which X(t) has continuous sample paths.

In fact, we can heuristically give a much more definite description of the process.
Let us consider computing p(z, t+ ∆t|y, t), given that

p(z, t|y, t) = δ(y − z) (3.55)

For small ∆t, the solution of the Fokker-Planck equation will still be on the
whole sharply peaked, and hence derivative of Ai(z, t) and Bij(z, t) will be
negligible compared to those of p. We are thus reduced to solving, approximately

∂p(z, t|y, t′)
∂t

= −
∑
i

Ai(z, t)
∂p(z, t|y, t′)

∂zi
+

1

2

∑
i,j

Bij(z, t)
∂2p(z, t|y, t′)

∂zi∂zj
(3.56)

where we have neglected the time dependence of Ai and Bij for small t − t′.
Equation (3.56) can now be solved, subject to the initial condition (3.55), and
we get

p(z, t+ ∆t|y, t) = {(2π)N det [B(y, t)∆t]}−1/2

× exp

{
−1

2

[z− y −A(y, t)∆t]T [B(y, t)∆t]−1[z− y −A(y, t)∆t]

∆t

}
(3.57)

that is, a Gaussian distribution with variance matrix B(y, t) and mean y +
A(y, t)∆t. We get the picture of a system moving with a systematic drift,
whose velocity is A(y, t), on which is superimposed a Gaussian fluctuation with
covariance matrix B(y, t)∆t, that is we can write

y(t+ ∆t) = y(t) + A(y, t)∆t+ η(t)∆t1/2 (3.58)

where

〈η(t)〉 = 0 (3.59)

〈η(t)η(t)T 〉 = B(y, t) (3.60)

It is easy to see that this picture gives

(i) Sample paths which are always continuous, since it is clear that y(t +
∆t)→ y(t) as ∆t→ 0.

(ii) Sample paths which are nowhere differentiable, because of the ∆t1/2 oc-
curring in (3.58).

We will see later, in Chapter 4 that the heuristic picture of (3.58) can be made
much more precise and leads to the concept of the stochastic differential equa-
tion.
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3.5.3 Deterministic Processes: Liouville’s Equation

It is possible that in the differential Chapman-Kolmogorov equation (3.42) only
the first term is nonzero, so we are led to the special case of a Liouville equation:

∂p(z, t|y, t′)
∂t

= −
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, t′)] (3.61)

which occurs in classical mechanics. This equation describes a completely de-
terministic motion, i.e., if x)y, t) is the solution of the ordinary differential
equation

dx(t)

dt
= A[x(t), t] (3.62)

with
x(y, t′) = y (3.63)

then the solution to (3.61) with initial condition

p(z, t′|y, t′) = δ(z− y) (3.64)

is
p(z, t|y, t′) = δ[z− x(y, t)] (3.65)

The proof of this assertion is best obtained by direct substitution. For∑
i

∂

∂zi
{Ai(z, t)δ[z− x(y, t)]} =

∑
i

∂

∂zi
{Ai(x(y, t), t)δ[z− x(y, t)]} (3.66)

=
∑
i

{
Ai(x(y, t), t)

∂

∂zi
δ[z− x(y, t)]

}
(3.67)

and
∂

∂t
δ[z− x(y, t)] = −

∑
i

∂

∂zi
δ[z− x(y, t)]

dxi(y, t)

dt
(3.68)

and by use of (3.62), we see that (3.67) and (3.68) are equal. Thus, if the par-
ticle is in a well-defined initial position y at time t′, it stays on the trajectory
obtained by solving the ordinary differential equation (3.62).

Hence, deterministic motion, as defined by a first-order differential equation of
the form (3.62), is an elementary form of Markov process. The solution (3.65)
is, of course, merely a special case of the kind of process approximated by equa-
tions like (3.57) in which the Gaussian part is zero.

3.5.4 General Processes

In general, none of the quantities in A(z, t), B(z, t) and W (x|z, t) need vanish,
and in this case we obtain a process whose sample paths are as illustrated in
the figure below
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Figure 3.2: Illustration of a sample path of a general Markov process, in which
drift, diffusion and jumps exist.

i.e., a piecewise continuous path made up of pieces which correspond to a dif-
fusion process with a nonzero drift, onto which is superimposed a fluctuating
part.

It is also possible that A(z, t) is nonzero, but B(z, t) is zero and here the sample
paths are, as in the figure below

Figure 3.3: Sample path of a Markov process with only drift and jumps.

composed of pieces of smooth curve[ solutions of (3.62)] with discontinuities
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superimposed. This is very like the picture one would expect in a dilute gas
where the particles move freely between collisions which cause an instantaneous
change in momentum, though not position.

3.6 Equations for Time Development in Initial
Time - Backward Equations

We can derive much more simply than in Section 3.4, some equations which give
the time development with respect to the initial variables y, t′ of p(x, t|y, t′).

We consider

lim
∆t′→0

1

∆t′
{p(x, t|y, t′ + ∆t′)− p(x, t|y, t′)} (3.69)

= lim
∆t′→0

1

∆t′

∫
dz p(z, t′ + ∆t′|y, t′){p(x, t|y, t′ + ∆t′)− p(x, t|z, t′ + ∆t′)}

(3.70)

The second line follows by use of the Chapman-Kolmogorov equation in the
second term and by noting that the first term gives 1× p(x, t|y, t′ + ∆t′).

The assumptions that are necessary are now the existence of all relevant deriva-
tives, and that p(x, t|y, t′) is continuous and bounded in x, t, t′ for some range
t− t′ > δ > 0. We may then write

(3.70) = lim
∆t′→0

1

∆t′

∫
dz p(z, t′ + ∆t′|y, t′){p(x, t|y, t′)− p(x, t|z, t′)} (3.71)

We now proceed using similar techniques to those used in Section 3.4.1 and
finally derive

∂p(x, t|y, t′)
∂t

= −
∑
i

Ai(y, t
′)
∂p(x, t|y, t′)

∂yi
+ 1

2

∑
i,j

Bij(y, t
′)
∂2p(x, t|y, t′)

∂yi∂yj

+

∫
dzW (z|y, t′){p(x, t|y, t′)− p(x, t|z, t′)} (3.72)

This will be called the backward differential Chapman-Kolmogorov equation.
In a mathematical sense, it is better defined than the corresponding forward
equation (3.42). The appropriate initial condition for both equations is

p(x, t|y, t) = δ(x− y) for all t (3.73)

representing the obvious fact that if the particle is at y at time t, the probability
deistic for finding it a x at the same time is δ(x− y).

The forward and backward equations are equivalent to each other. For, solu-
tions of the forward equation, subject to the initial condition (3.73) and any
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appropriate boundary conditions, yield solutions of the Chapman-Kolmogorov
equation as noted in Section 3.4.2. But these have just been shown to yield the
backward equation. The basic difference is which set of variables is held fixed.
In the case of the forward equation, we hold y and t′ fixed, and solutions exist
for t ≥ t′, so that (3.73) is an initial condition for the forward equation. For
the backward equation, solutions exist for t′ ≤ t, so that since the backwards
equation expresses development in t′, (3.73) is better termed a finsl condition
in this case.

Since they are equivalent, the forward and backward equations are both useful.
The forward equation gives more directly the values of measurable quantities
as a function of the observed time t, and tends to be used more commonly in
applications. The backward equation finds most application in the study of first
passage time or exit problems, in which we find the probability that a particle
leaves a region in a given time.

3.7 Stationary and Homogeneous Markov Pro-
cesses

On Section 1.5.3 we met the concept of a stationary process, which represents
the stochastic motion of a system which has settled down to a steady state,
and whose stochastic properties are independent of when they are measured.
Stationarity can be defined in various degrees, but we will reserve the term
“stationary process” for a strict definition, namely, a stochastic process X(t)
is stationary if X(t) and the process X(t + ε) have the same statistics for any
ε. This is equivalent to saying that all joint probability densities satisfy time
translation invariance, i.e.,

p(x1, t1; x2, t2; x3, t3; .......; xn, tn)

= p(x1 + ε, t1; x2, t2 + ε; x3, t3 + ε; .......; xn, tn + ε) (3.74)

and hence such probabilities are only functions of the time differences, ti − tj .
In particular, the one-time probability is independent of time and can simply
be written as

ps(x) (3.75)

and the two-time joint probability as

ps(x1, t1 − t2; x2, 0) (3.76)

Finally, the conditional probability can also be written as

ps((x1, t1 − t2|x2, 0) (3.77)

For a Markov process, since all joint probabilities can be written as products of
the two-time conditional probability and the one-time probability, a necessary
and sufficient condition for stationarity is the ability to write the one- and tow-
time probabilities in the forms given in (3.74-3.77).
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3.7.1 Ergodic Properties

If we have a stationary process, it is reasonable to expect that average mea-
surements could be constructed by taking values of the variable x at successive
times, and averaging various functions of these. This is effectively a belief that
the law of large numbers (Section 2.5.2) applies to the variables defined by
successive measurements in a stochastic process.

(a) Ergodic Property of the Mean: Let us define the variable X̄(T ) by

X̄(T ) =
1

2T

∫ T

−T
dt x(t) (3.78)

where x(t) is a stationary process, and consider the limit T → ∞. This
represents a possible model of measurement of the mean by averaging over
all times

〈X̄(T )〉 = 〈x〉s (3.79)

We now calculate the variance of X̄(T ). Thus

〈X̄(T )2〉 =
1

4T 2

∫ T

−T

∫ T

−T
dt1dt2 〈x(t1)x(t2)〉 (3.80)

and if the process is stationary,

〈x(t1)x(t2)〉 ≡ R(t1 − t2) + 〈x〉2 (3.81)

where R is the two-time correlation function. Hence,

〈X̄(T )2〉 − 〈x〉2 =
1

4T 2

∫ 2T

−2T

dτ R(τ)(2T − |τ |) (3.82)

where the last factor follows by changing variables to

τ = t1 − t2 , t = t1 (3.83)

and integrating t.

The left-hand side is now the variance of X̄(T ) and we will show that under
certain conditions, this vanishes as T → ∞. Most straightforwardly, all
we require is that

lim
T→∞

1

T

∫ 2T

−2T

dτ

(
1− |τ |

2T

)
R(τ) = 0 (3.84)

which is a little obscure. However, it is clear that a sufficient condition
for this limit to be zero is for∫ ∞

0

dτ |R(τ)| <∞ (3.85)
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in which case, we simply require that the correlation function 〈x(t1)x(t2)〉
should tend to zero sufficient rapidly as |t1− t2| → ∞. In cases of interest
it is frequently found that the asymptotic behavior of R(τ) is

R(τ) ∼ <[A exp (−τ/τc)] (3.86)

where τc is a (possibly complex) parameter known as the correlation time.
Clearly the criterion (3.85) is satisfied, and we find in this case that the
variance in X̄(T ) approaches zero, so that using (3.79) and (2.102), we
may write

ms− lim
T→∞

X̄(T ) = 〈x〉s (3.87)

This means that the averaging procedure (3.78) is indeed valid. It is not
difficult to extend the result to an average of an infinite set of measure-
ments at discrete times tn = t0 + n∆t.

Other ergodic hypotheses can easily be stated, and the two quantities that
are of the most interest are the autocorrelation function and the distribu-
tion function.

(b) Ergodic Property of the Autocorrelation Function: As already
mentioned in Section 1.5.2, the most natural way of measuring an auto-
correlation function is through the definition

G(τ, T ) =
1

T

∫ T

0

dt x(t)x(t+ τ) (3.88)

and we can rather easily carry through similar reasoning to show that

ms− lim
T→∞

G(τ, T ) = 〈x(t)x(t+ τ)〉s (3.89)

provided the following condition is satisfied. Namely, define ρ(τ, λ) by

〈x(t+ λ+ τ)x(t+ λ)x(t+ τ)x(t)〉s = ρ(τ, λ) + 〈x(t+ τ)x(t)〉2s (3.90)

Then we require

lim
T→∞

1

2T

∫ 2T

−2T

(
1− |τ |

2T

)
ρ(τ, λ)dλ = 0 (3.91)

We can see that this means that for sufficiently large λ, the four-time
average (3.90) factorizes into a product of two-time averages, and that
the “error term” ρ(τ, λ) must vanish sufficiently rapidly for λ → ∞. Ex-
ponential behavior, such as that given in (3.86) is sufficient, and usually
found.

(c) Ergodic Property of the Spectrum: We similarly find that the spec-
trum, given by the Fourier transform

S(ω) =
1

2π

∫ ∞
−∞

e−iωτG(τ)dτ (3.92)
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as seen in Section 1.5.2, is also given by the procedure

S(ω) = lim
T→∞

1

2πT

∫ T

0

dt e−iωtx(t) (3.93)

(d) Ergodic Property of the Distribution Function: Finally, the prac-
tical method of measuring the distribution function is to consider an in-
terval (x1, x2) and measure x(t) repeatedly to determine whether it is in
the range or not. This gives a measure of

∫ x2

x1
dx ps(x). Essentially, we are

then measuring the time average value of the function χ(x) defined by

χ(x) =

{
1 x1 < x < x2

0 otherwise
(3.94)

and we adapt the method of proving the ergodicity of 〈x〉 to find that the
distribution is ergodic provided

lim
T→∞

1

2T

∫ 2T

−2T

(
1− |τ |

2T

)∫ x2

x1

dx′ ps(x
′)

{∫ x2

x1

dx [p(x, τ |x′, 0)− ps(x)]

}
= 0

(3.95)
The most obvious sufficient condition here is that

lim
τ→∞

p(x, τ |x′, 0) = ps(x) (3.96)

and that this limit is approached sufficiently rapidly. In practice, an ex-
ponential approach isa frequently found and this is, as in the case of the
mean, quite sufficiently rapid.

This condition is, in fact, sufficient for ergodicity of the mean and autocor-
relation function for a Markov process, since all means can be expressed
in terms of conditional probabilities and the sufficiently rapid achievement
of the limit (3.96) can be readily seen to be sufficient to guarantee both
(3.91) and (3.84). We will call a Markov process simply ergodic if this
rather strong condition is satisfied.

3.7.2 Homogeneous Properties

If the condition (3.96) is satisfied for a stationary Markov process, then we
clearly have a way of constructing from the stationary Markov process a non
stationary process whose limit as time becomes large is the stationary process.
We simply define the process for t, t′ > t0 by

p(x, t) = ps(x, t|x0, t0) (3.97)

p(x, t|x′, t′) = ps(x, t|x′, t′) (3.98)
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and all other joint probabilities are obtained from these in the usual manner for
a Markov process. Clearly, if (3.96) is satisfied, we find that as t → ∞ or as
t0 → −∞,

p(x, t)→ ps(x) (3.99)

and all other probabilities become stationary because the conditional probability
is stationary. Such a process is known as a homogeneous process.

The physical interpretation is rather obvious. We have a stochastic system
whose variable x is by some external agency fixed to have a value x0 at time
t). It then evolves back to a stationary system with the passage of time. This
is how many stationary systems are created in practice.

From the point of view of the differential Chapman-Kolmogorov equation, we
will find that the stationary distribution function ps(x) is a solution of the
stationary differential Chapman-Kolmogorov equation, which takes the form

0 = −
∑
i

∂

∂zi
Ai(z)p(z, t|y, t′) + 1

2

∑
i,j

∂2

∂zi∂zj
Bij(z)p(z, t|y, t′)

+

∫
dx [W (z|x)p(x, t|y, t′)−W (x|z)p(z, t|y, t′)] (3.100)

where we have used the fact that the process is homogeneous to note that A, B,
and W , as defined by (3.21-3.23), are independent of t. This is an alternative
definition of a homogeneous process.

3.7.3 Approach to a Stationary Process

A converse problem also exists. Suppose A, B, and W are independent of
time and ps(z) satisfies (3.100). Under what conditions does a solution of the
differential Chapman-Kolmogorov equation approach a stationary solution of
ps(z)?

There does not appear to be a complete answer to this problem. However, we can
give a reasonably good picture as follows. We define a Lyapunov functional K of
any two solutions p1 and p2 of the differential Chapman-Kolmogorov equation
by

K =

∫
dx p1(x, t)

[
log

p1(x, t)

p2(x, t)

]
(3.101)

and assume for the moment that neither p1 nor p2 are zero anywhere. We will
now show that K is always positive and dK/dt is always negative.

Firstly, noting that both p2(x, t) and p1(x, t) are normalized to one, we write

K(p1, p2, t) =

∫
dx p1(x, t)

{
log

p1(x, t)

p2(x, t)
+
p2(x, t)

p1(x, t)
− 1

}
(3.102)
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and use the inequality valid for all, z > 0,

− log z + z − 1 ≥ 0 (3.103)

to show that K ≥ 0.

Now let us show that dK/dt ≤ 0, We can write (using an abbreviated notation)

dK

dt
=

∫
dx

{
∂p1

∂t
[log p1 + 1− log p2]− ∂p2

∂t

[
p1

p2

]}
(3.104)

We now calculate one by one the contributions to dK/dt from drift, diffusion,
and jump terms in the differential Chapman-Kolmogorov equation:(

dK

dt

)
drift

=
∑
i

∫
x

{
−
[
log

p1

p2
+ 1

]
∂

∂xi
(Aip1) +

p1

p2

∂

∂xi
(Aip2)

}
(3.105)

which can be rearranged to give(
dK

dt

)
drift

=
∑
i

∫
x

∂

∂xi

[
−Aip1 log

(
p1

p2

)]
(3.106)

Similarly, we may calculate(
dK

dt

)
diff

= − 1
2

∑
i,j

∫
x

{[
log

p1

p2
+ 1

]
∂2

∂xi∂xj
(Bijp1)− p1

p2

∂2

∂xi∂xj
(BNijp2)

}
(3.107)

and after some rearranging we may write(
dK

dt

)
diff

=− 1
2

∑
i,j

∫
x p1Bij

{
∂

∂xi

[
log

p1

p2

]}{
∂

∂xi

[
log

p1

p2

]}

+ 1
2

∑
i,j

∫
x

∂2

∂xi∂xj

[
p1Bij log

p1

p2

]
(3.108)

Finally, we may calculate the jump contribution similarly:(
dK

dt

)
jump

=

∫
dxdx′ {[W (x|x′)p1(x′, t)−W (x′|x)p1(x, t)]

×
{

log

[
p1(x, t)

p2(x, t)

]
+ 1

}
−[W (x|x′)p2(x′, t)−W (x′|x)p2(x, t)]

p1(x, t)

p2(x, t)

}
(3.109)

and after some rearrangement,(
dK

dt

)
jump

=

∫
dxdx′W (x|x′)

{
p2(x′, t)

[
φ′ log

φ

φ′

]
− φ+ φ′

}
(3.110)

69



where

φ =
p1(x, t)

p2(x, t)
(3.111)

and φ′ is similarly defined in terms of x′.

We now consider the simplest case. Suppose a stationary solution ps(x) exists
which is nonzero everywhere, except at infinity, where it and its first derivative
vanish. Then we may choose p2(x, t) = ps(x. The contribution to dK/dt from
(3.106) and the second term in (3.108) can be integrated to give surface terms
which vanish at infinity so we find(

dK

dt

)
drift

= 0 (3.112a)(
dK

dt

)
diff

≤ 0 (3.112b)(
dK

dt

)
jump

≤ 0 (3.112c)

where the last inequality comes by setting z = φ′/φ in (3.103).

We must now consider under what situations the equalities in (3.112c) are ac-
tually achieved. Inspection of (3.110) shows that this term will be zero if and
only if φ = φ′ for almost all x and x′ which are such that W (x|x′) 6= 0. Thus,
if W (x|x′) is never zero, i.e., if transitions can take place in both directions be-
tween any pair of states, the vanishing of the jump contribution implies that
φ(x) = φ(x′) for all x anmd x′, that is, φ(x) is independent of x, so that

p1(x, t)

ps(x)
= constant (3.113)

The constant must equal one since p1(x, t) and ps(x) are both normalized.

The term arising from diffusion will be strictly negative if Bij is almost every-
where positive definite. Hence, we have now shown that under rather strong
conditions, namely,

ps(x) 6= 0 with probability 1
W (x|x′) 6= 0 with probability 1
Bij(x) positive definite with probability 1

 (3.114)

that any solution of the differential Chapman-Kolmogorov equation approaches
the stationary solution ps(x) at t→∞.

This result fails in two basic kinds of systems.

(a) Disconnected State Space: The result is best illustrated when Ai and
Bij vanish so we have a pure jump system. Suppose the space divides into
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two regions R1 and R2 such that transitions from R1 to R2 and back are
impossible; hence W (x|x′) = 0 if x and x′ are not both in R1 or R2. Then
it is possible to have dK/dt = 0 if

p1(x, t) =

{
λ1ps(x) x ∈ R1

λ2ps(x) x ∈ R2

(3.115)

so that there are no unique stationary distributions. The two regions
are disconnected and separate stochastic processes take places in each,
and in each of these, there is a unique stationary solution. The relative
probability of being R1 or R2 is not changed by the process.

A similar result holds, in general, if as well we have Bij and Ai vanishing
on the boundary between R1 and R2.

(b) ps(x) Vanishes in Some Definitie Region: If we have

ps(x)

{
= 0 x ∈ R1

6= 0 x ∈ R2

(3.116)

and again Ai and Bij vanish, then jot follows that, since ps(x) satisfies
the stationary equation (3.100),

W (x|y) = 0 , x ∈ R1,x ∈ R2 (3.117)

In other words, no transitions are possible from the region R2 where the
stationary distribution is positive to R1, where the stationary distribution
vanishes.

3.7.4 Autocorrelation Function for Markov Processes

For any Markov process, we can write a very elegant formula for the autocorre-
lation function. We define

〈X(t) | [x0, t0]〉 =

∫
dx xp(x, t|x0, t0) (3.118)

then the autocorrelation matrix is

〈X(t)X(t0)T 〉 =

∫
dx

∫
dx0 xxT0 p(x, t|x0, t0) (3.119)

=

∫
dx0 〈X(t) | [x0, t0]〉xT0 p(x0, t0) (3.120)

Thus, we see that (3.118) defines the mean of X(t) under the condition that
X had the value x0 at time t+0, and (3.120) tells us that the autocorrelation
matrix is obtained by averaging this conditional average (multiplied by xT0 ) at
time t0. These results are true buy definition for any stochastic process.
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In a Markov process we have, however, a unique conditional probability which
determines the whole process. Thus, for a Markov process, 〈X(t) | [x0, t0]〉 is
a uniquely defined quantity, since the knowledge of x0 at time t0 completely
determines the future of the process.

(a) Stationary Autocorrelation Function: The most notable use of this
property is in the computation of the stationary autocorrelation function.
To illustrate how this uniqueness is important, let us consider a non-
Markov stationary process with joint probabilities

p(x1, t1; x2, t2; .......xn, tn) (3.121)

which, of course, depend only on time differences. Let us now create a
corresponding non stationary process by selecting only simple paths which
pass through the point x = a at time t = 0. Thus, we define

p(x1, t1; x2, t2; .......xn, tn) = ps(x1, t1; x2, t2; .......xn, tn|a, 0) (3.122)

Then for this process we note that

〈X(t) | [x0, t0]〉a =

∫
dx xps(x, t|x0, t0; mathbfa, 0) (3.123)

which contains a dependence on a symbolized by the subscript a on the
average bracket. If the original stationary process possesses appropriate
ergodic properties then

lim
τ→∞

ps(x, t+ τ |x0, t0 + τ ; a, 0) = ps(x, t− t0|x0, 0) (3.124)

so that we will also have a stationary conditional average of x

〈X(t) | [x0, t0]〉s = lim
τ→∞

〈X(t+ τ) | [x0, t0 + τ ]〉a (3.125)

and the stationary autocorrelation matrix is given by

〈X(t)X(t0)T 〉s =

∫
dx0 xT0 〈X(t) | [x0, t0]〉s ps(x0) (3.126)

= lim
τ→∞

〈X(t+ τ) |X(t0 + τ)〉a

= lim
τ→∞

∫
dx0 xT0 〈x(t+ τ) | [x0, t0 + τ ]〉a pa(x0, t0 + τ)

(3.127)

However, when the process is Markovian, this cumbersome limiting pro-
cedure is not necessary since

Markov ⇒ 〈X(t) | [x0, t0]〉s = 〈X(t) | [x0, t0]〉a
= 〈X(t) | [x0, t0]〉 (3.128)
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(b) Regression Theorem: Equation (3.120) is a regression theorem when
applied to a Markov process and is the basis of a more powerful regression
theorem for linear systems. By this we mean systems such that a linear
equation of motion exists for the mean, i.e.,

d 〈X(t) | [x0, t0]〉
dt

= −A 〈X(t) | [x0, t0]〉 (3.129)

which is very often the case in systems of practical interest, either as an
exact result or as an approximation. The initial conditions for (3.129) are
clearly

〈X(t) | [x0, t0]〉 = x0 (3.130)

Then from (3.128,3.129)

d

dt
〈X(t)X(t0)T 〉 = −A〈X(t)X(t0)T 〉 (3.131)

with the initial conditions 〈X(t0)X(t0)T 〉. The time correlation matrix

〈X(t)X(t0)T 〉 − 〈X(t)〉〈X(t0)T 〉 = 〈X(t),X(t0)T 〉 (3.132)

obviously obeys the same equation, with the initial condition given by the
covariance matrix at time t0. In a stationary system, we have the result
that if G(t) is the stationary time correlation function and σ the stationary
covariance matrix, then

dG(t)

dt
= −AG(t) (3.133)

G(0) = σ (3.134)

so that

G(t) = exp [−At]σ (3.135)

which is the regression theorem in its simplest form. We again stress that
it is valid for the Markov processes in which the mean values obey linear
evolution equations like (3.129).

For non-Markov processes there is not simple procedure. We must carry
out the complicated procedure implicit in (3.127).

3.8 Examples of Markov Processes

We present here for reference some fundamental solutions of certain cases of the
differential Chapman-Kolmogorov equation.
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3.8.1 The Wiener Process

This takes its name from Norbert Wiener who studied it extensively. From the
point of view of this chapter, it is a solution of the Fokker-Planck equation as
discussed in Section 3.5.2, in which there is only one variable W (t), the drift
coefficient is zero and the diffusion coefficient is 1. Thus, the Fokker-Planck
equation for this case is

∂

∂t
p(w, t|w0, t0) =

1

2

∂2

∂w2
p(w, t|w0, t0) (3.136)

Utilizing the initial condition

p(w, t0|w0, t0) = δ(w − w0) (3.137)

on the conditional probability, we solve (3.136) by use of the characteristic
function

φ(s, t) =

∫
dw p(w, t|wo, t0) exp (isw) (3.138)

which satisfies
∂φ

∂t
= −1

2
s2φ (3.139)

so that

φ(s, t) = exp

[
−1

2
s2(t− t0)

]
φ(s, t0) (3.140)

From (3.137), the initial condition is

φ(s, t0) = exp (iswo) (3.141)

so that

φ(s, t) = exp

[
isw0 −

1

2
s2(t− t0)

]
(3.142)

Performing the Fourier inversion, we have the solution to (3.136):

p(w, t|w0, t0) =
1√

2π(t− t0)
exp

(
− (w − w0)2

2(t− t0)

)
(3.143)

This represents a Gaussian with

〈W (t)〉 = w0 (3.144)

〈[W (t)− w0]2〉 = t− t0 (3.145)

so that the initially sharp distribution spreads in time, as graphed in the figure
below.
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Figure 3.4: Wiener process: spreading of an initially sharp distribution
p(w, t|w0, t0) with increasing time t− t0

A multivariate Wiener process can be defined as

W(t) = [W1(t),W2(t), ....,Wn(t)] (3.146)

which satisfies the multivariate Fokker-Planck equation

∂

∂t
p(w, t|w0, t0) =

1

2

∑
i

∂2

∂w2
i

p(w, t|w0, t0) (3.147)

whose solution is

p(w, t|w0, t0) =
1

[2π(t− t0)]n/2
exp

(
− (w −w0)2

2(t− t0)

)
(3.148)

a multivariate Gaussian with

〈W(t)〉 = w0 (3.149)

and
〈[Wi(t)− w0i][Wj(t)− w0j ]〉 = (t− t))δij (3.150)

The one-variable Wiener process is often simply call Brownian motion, since the
Wiener process equation (3.136) is exactly the same as the differential equation
of diffusion, shown by Einstein to be obeyed by Brownian motion, as we noted
in Section 1.2. The terminology is, however, not universal.

Points of note concerning the Wiener process are:
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(a) Irregularity of Sample Paths: Although the mean value of W (t) is
zero, the mean square becomes infinite as t → infty. This means that
the sample paths of W (t) are very variable, indeed surprisingly so. In the
figure below, we have given a few different sample paths with the same
initial point to illustrate the extreme non-reproducibility of the paths.

Figure 3.5: Three simulated sample paths of the Wiener process, illustrating
their great variability

(b) Non-differentiability of Sample Paths: The Wiener process is a diffu-
sion process and hence the sample paths of W (t) are continuous. However,
they are not differentiable. Consider

Prob

{∣∣∣∣ [W (t+ h)−W (t)

h
]

∣∣∣∣ > k

}
(3.151)

From the solution for the conditional probability, this probability is

2

∫ ∞
kh

dw
1√
2πh

exp

(
−w

2

2h

)
(3.152)

and in the limit h→ 0, this is one. This means that no matter what value
of k we choose, |[W (t+h)−W (t)]/h| is almost certain to be greater than
this, i.e., the derivative at any point is almost certainly infinite. This is in
agreement with the similar intuitive picture presented in Section 3.5.2 and
the simulated paths given in Figure 3.5 illustrate the point dramatically.
This corresponds, of course, to the well-known experimental fact that
the Brownian particles have an exceedingly irregular motion. However,
this is clearly an idealization, since if W (t) represents the position of the
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Brownian particle, this means that its speed is almost certainly infinite.
The Ornstein-Uhlenbeck process is a more realistic model of Brownian
motion (Section 3.8.4).

(c) Independence of Increment: The Wiener process is fundamental to
the study of diffusion processes, and by means of stochastic differential
equations, we can express any diffusion process in terms of the Wiener
process. Of particular importance is the statistical independence of the
increments of W (t). More precisely, since the Wiener process is a Markov
process, the joint probability density can be written

p(wn, tn;wn−1, tn−1;wn−2, tn−2; .......;w0, t0)

=

n−1∏
i=0

p(wi+1, ti+1|wi, ti)p(w0, t0) (3.153)

and using the explicit form of the conditional probabilities (3.143), we see
that

p(wn, tn;wn−1, tn−1;wn−2, tn−2; .......;w0, t0)

=

n∏
i=0

{
1√

2π(ti+1 − ti)
exp

(
− (wi+1 − wi)2

2(ti+1 − ti)

)}
p(w0, t0) (3.154)

If we define the variables

∆Wi ≡W (ti)−W (ti−1) (3.155)

∆ti = ti − ti−1 (3.156)

then the joint probability density for ∆Wi is

p(∆wn; ∆wn−1; ∆wn−2; .....∆w1;w0)

=

n∏
i=1

{
1√

2π∆ti
exp

(
−∆w2

i

2∆ti

)}
p(w0, t0) (3.157)

which shows, from the definition of statistical independence given in Sec-
tion 2.3.4, that the variables ∆Wi are independent of each other and of
W (t0).

The aspect of having independent increments ∆Wi is very important in
the definition of stochastic integration which is carried out in Section 4.2.

(d) Autocorrelation Functions: A quantity of great interest is the auto-
correlation function, already discussed in Sections 1.5.2 and 3.7.4. The
formal definition is

〈W (t)W (s) | [W0, t0]〉 =

∫
dW − 1dw2 w1w2p(w1, t;w2, s|w0, t0) (3.158)
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which is the mean product of W (t) and W (s) on the condition that the
initial value is W (t0) = w0, and we can see, assuming t > s, that

〈W (t)W (s) | [W0, t0]〉 = 〈[W (t)−W (s)]W (s)〉+ 〈[W (s)]2〉 (3.159)

Using the independence of increments, the first average is zero and the
second is given by (3.145) so that we have, in general,

〈W (t)W (s) | [W0, t0]〉 = min(t− t0), s− t0) + w2
0 (3.160)

which is correct for both t > s and t < s.

3.8.2 The Random Walk in One Dimension

A man moves along a line, taking, at random, steps to the left or the right with
equal probability. The steps are of length l so that his position can take on
only the value nl, where n is integral. We want to know the probability that he
reaches a given point a distance nl from the origin after a given elapsed time.

The problem can be defined in two ways. The first, which is more traditional,
is to allow the walker to take steps at times Nτ (N integral) at which times he
must step either left or right, with equal probability. The second is to allow the
walker to take steps left or right with probability per unit time d which means
that the walker waits at each point for a variable time. The second method is
describable by a master equation.

(a) Continuous Time Random Walk: To do a master equation treatment
of the problem, we consider that the transition probability per unit time
is given by the form

W (n+ 1|n, t) = W (n− 1|n, t) = d (3.161)

otherwise, W (n|m, t) = 0 so that, according to Section 3.5.1, the master
equation for the man to be at the position nl, given that he started at n′l,
is

∂tP (n, t|n′, t′) = d[P (n+ 1, t|n′, t′) + P (n− 1, t|n′, t′)] (3.162)

(b) Discrete Time Random Walk: the more classical form of the random
walk does not assume that the man makes his jump to the left or right
according to a master equation, but that he jumps left or right with equal
probability at times Nτ , so that time is a discrete variable. In this case,
we can write

P (n, (N+1)τ |n′, N ′τ) =
1

2
{P (n+ 1, Nτ |n′, N ′τ) + (P (n− 1, Nτ |n′, N ′τ)}

(3.163)
If τ is small, we can view (3.162) and (3.163) as approximations to each
other by writing

P (n, (N + 1)τ |n′, N ′τ) ' P (n,Nτ |n′, N ′τ) + τ∂tP (n, t|n′, t′) (3.164)
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with t = Nτ , t′ = N ′τ and d = 1/2τ ., so that the transition probability
per unit time in the master equation model corresponds to half the inverse
waiting time τ in the discrete time model.

(c) Solutions Using the Characteristic Function: Both systems can be
easily solved by introducing the characteristic function

G(s, t) = 〈eins〉 =
∑
n

P (n, t|n′, t′)eins (3.165)

in which case the master equation gives

∂tG(s, t) = d(eis + e−is − 2)G(s, t) (3.166)

and the discrete time equation becomes

G(s, (N + 1)τ) =
1

2
(eis + e−is)G(s,Nτ) (3.167)

Assuming the man starts at the origin n′ = 0 at time t′ = 0, we find

G(s, 0) = 1 (3.168)

in both cases, so that the solution to (3.166) is

G1(s, t) = exp [(eis + e−is − 2)td] (3.169)

and to (3.167)

G2(s,Nτ) =

[
1

2
(eis + e−is)

]N
(3.170)

The appropriate probability distributions can be obtained by expanding
G1(s, t) and G2(s, t) in powers of exp (is); we find

P1(n, t|0, 0) = e−2tdIn(4td) (3.171)

P2(n,Nτ |0, 0) =

(
1

2

)N
N !

[(
N − n

2

)
!

(
N + n

2

)
!

]−1

(3.172)

The discrete time distribution is also known as the Bernoulli distribution;
it gives the probability of a total of n heads in tossing an unbiased coin
N times.

(d) Continuous Space Limit: For both kinds of random walk, the limit of
continuous space - that is, very many steps of very small size - gives the
Wiener process. If we set the distance travelled as

x = nl (3.173)

so that the characteristic function of the distribution of x is

φ1(s, t) = 〈eisx〉 = G1(ls, t) = exp [(eils + e−ils)− 2]td (3.174)
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Then the limit of infinitesimally small steps l→ 0 is

φ1(s, t)→ exp (−s2tD) (3.175)

where

D = lim
l→0

(l2d) (3.176)

This is the characteristic function of a Gaussian (Section 2.8.1) of the form

P (x, t|0, 0) =
1√

4πDt
exp

(
− x2

4Dt

)
(3.177)

and is of course the distribution for the Wiener process (Section 3.81.) or
Brownian motion, as mentioned in Section 1.2. Thus, the Wiener process
can be regarded as the limit of a continuous time random walk in the limit
of infinitesimally small step size.

The limit

l→ 0 , τ → 0 , with D = lim
l→0

(l2/τ) (3.178)

of the discrete time random walk gives the same result. From this form,
we see clearly the expression of D as the mean square distance travelled
per unit time.

We can also see more directly that expanding the right-hand side of (3.162)
as a function of x up to second order in l gives

∂tp(x, t|0, 0) = l2d∂2
xP (x, t|0, 0) (3.179)

The three processes are thus intimately connected with each other at two
levels, namely, under the limits considered, the stochastic equations ap-
proach each other and under those same limits, the solutions to these
equations approach each other. These limits are exactly those used by
Einstein. Comparison with Section 1.2 shows that he modeled Brown-
ian motion by a discrete time and space random walk, but nevertheless,
derived the Wiener process model by expanding the equations for time
development of the distribution function.

The limit results of this section are a slightly more rigorous version of
Einstein’s method. There are generalizations of these results to less spe-
cialized situations and it is a fair statement to make that almost any jump
process has some kind of limit which is a diffusion process. However, the
precise limits are not always so simple, and there are limits in which cer-
tain jump processes become deterministic and are governed by Liouville’s
equation (Section 3.5.3) rather than the full Fokker-Planck equation.
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3.8.3 Poisson Process

We have already noted the Poisson process in Section 1.5.1. The process in which
electrons arrive at an anode or customers arrive at a shop with probability per
unit time λ of arriving, is governed by the master equation for which

W (n+ 1|n, t) = λ (3.180)

otherwise,
W (n|m, t) = 0 (3.181)

This master equation becomes

∂tP (n, t|n′, t′) = λ[P (n− 1, t|n′, t′)− P (n, t|n′, t′)] (3.182)

and by comparison with (3.162) also represents a “one-sided” random walk, in
which the walker steps to the right only with probability per unit time equal to
λ.

The characteristic function equation is similar to (3.166):

∂tG(s, t) = λ[eis − 1]G(s, t) (3.183)

with the solution
G(s, t) = eλt[e

is−1] (3.184)

for the initial condition that there are initially no customers (or electrons) at
time t = 0, yielding

P (n, t|0, 0) =
e−λt(λt)n

n!
(3.185)

a Poisson distribution with mean given by

〈N(t)〉 = λt (3.186)

(a) Continuous Space Limit: In contrast to the random walk, the only
limit that exists is l→ 0, with

λl ≡ v (3.187)

held fixed, and the limiting characteristic function is

lim
l→0
{λt(eils − 1)} (3.188)

with the solution
p(x, t|0, 0) = δ(x− vt) (3.189)

We also see that in this limit the master equation (3.182) would become
the Liouville equation, whose solution would be the deterministic motion
we have derived.
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(b) Asymptotic Approximation: We can do a slightly more refined anal-
ysis. We expand the characteristic function up to second order in s in the
exponent and find

φ(s, t) = G(ls, t) ' e
[
t
(
ivs− s2D2

)]
(3.190)

where, as in the previous section,

D = l2λ (3.191)

This is the characteristic function of a Gaussian with variance Dt and
mean vt, so that we now have

p(x, t|0, 0) ' 1√
2πDt

exp

(
− (x− vt)2

2Dt

)
(3.192)

It is also clear that this solution is the solution of

∂tp(x, t|0, 0) = −v∂xp(x, t|0, 0) +
1

2
D∂2

xp(x, t|0, 0) (3.193)

which is obtained by expanding the master equation (3.182) to order l2,
by writing

p(n− 1, t|0, 0) = λp(x− l, t|0, 0)

' λp(x, t|0, 0)− lλ∂xp(x, t|0, 0) +
1

2
l2λ∂2

xp(x, t|0, 0)

(3.194)

However, this is an approximation or an expansion and not a limit. The
limit l→ 0 gives Liouville’s equation with the purely deterministic solution
(3.189) . Effectively, the limit l → 0 with well-defined v corresponds to
D = 0.

3.8.4 The Ornstein-Uhlenbeck Process

All the examples so far had no stationary distribution, that is, as t → ∞, the
distribution at any finite point approaches zero and we see that, with probability
one, the point moves to infinity.

If we add a linear drift term to the Wiener process, we have a Fokker-Planck
equation of the form

∂tp = ∂x(kxp) +
1

2
D∂2

xp (3.195)

where by p we mean p(x, t|x0, 0). This is the Ornstein-Uhlenbeck process.

(a) Characteristic Function Solution: The equation for the characteristic
function

φ(s) =

∫ ∞
−∞

eisxp(x, t|x0, 0)dx (3.196)
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is

∂tφ+ ks∂sφ = −1

2
Ds2φ (3.197)

The method of characteristics can be used to solve this equation, namely,
if

u(s, t, φ) = a , v(s, t, φ) = b (3.198)

are two integrals of the subsidiary equation (with a and b arbitrary con-
stants)

dt

1
=
ds

ks
= − dφ

1
2Ds

2φ
(3.199)

then a general solution of (3.197) is given by

f(u, v) = 0 (3.200)

The particular integrals are readily found by integrating the equation in-
volving dt and ds and that involving ds and dφ; they are

u(s, t, φ) = se−kt (3.201)

v(s, t, φ) = φeDs
2/4k (3.202)

The general solution can clearly be put in the form v = g(u) with g(u) an
arbitrary function of u. Thus, the general solution is

φ(s, t) = e−Ds
2/4kg[se−kt] (3.203)

The boundary condition

p(x, 0|x0, 0) = δ(x− x0) (3.204)

clearly requires

φ(s, 0) = eix0s (3.205)

and gives

g(s) = exp

(
Ds2

4k
+ ix0s

)
(3.206)

Hence

φ(s, t) = exp

(
Ds2

4k
(1− e−2kt) + isx0e

−kt
)

(3.207)

From Section 2.8.1 this corresponds to a Gaussian with

〈X(t)〉 = x0e
−kt (3.208)

var[X(t)] =
D

2k
(1− e−2kt) (3.209)
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(b) Stationary Solution: Clearly, as t → ∞, the mean and variance ap-
proach limits 0 and D/2k, respectively, which gives a limiting stationary
solution. This solution can also be obtained directly by requiring ∂tp = 0,
so that p satisfies the stationary Fokker-Planck equation

∂x

[
kxp+

1

2
D∂xp

]
= 0 (3.210)

and integrating once, we find[
kxp+

1

2
D∂xp

]x
−∞

= 0 (3.211)

The requirement that p vanish at −∞ together with its derivative, is
necessary for normalization. Hence, we have

1

p
∂xp = −2kx

D
(3.212)

so that

ps(x) =

√
k

πD
exp

(
−kx

2

D

)
(3.213)

This is a Gaussian with mean 0 and variance D/2k, as predicted from the
time-dependent solution.

It is clear that a stationary solution can always be obtained for a one
variable system by this integration method if such a stationary solution
exists. If a stationary solution does not exist, this method gives an un-
normalizable solution.

(c) Time Correlation Functions: The time correlation function analogous
to that mentioned in connection with the Wiener process can be calculated
and is a measurable piece of data in most stochastic systems. However,
we have no easy way of computing it other than by the definition.

〈X(t)X(s) | [x0, t0]〉 =

∫ ∫
dx1dx2 x1x2p(x1, t;x2, s|x0, t0) (3.214)

and using the Markov property

=

∫ ∫
dx1dx2 x1x2p(x1, t|x2, s)p(x2, s|x0, t0) (3.215)

on the assumption that
t ≥ s ≥ t0 (3.216)

The correlation function with a definite initial condition is not normally
of as much interest as the stationary correlation function, which is ob-
tained by allowing the system to approach the stationary distribution. It
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is achieved by putting the initial condition in the remote past, as pointed
out in Section 3.7.2. Letting t0 → −∞, we find

lim
t0→−∞

p(x2, s|x0, t0) = ps(x2) =

√
k

πD
exp

(
−kx

2
2

D

)
(3.217)

and by straightforward substitution and integration and noting that the
stationary mean is zero, we get

〈X(t)X(s)〉s = 〈X(t), X(s)〉s =
D

2k
exp (−k|t− s|) (3.218)

This result demonstrates the general property of stationary processes: that
the correlation functions depend only on the time differences. It is also
a general result that the process we have described in this section is the
only stationary Gaussian Markov process in one real variable.

The results of this section are very easily obtained by the stochastic dif-
ferential equation methods which will be developed in Chapter 4.

The Ornstein-Uhlenbeck process is a simple, explicitly representable pro-
cess, which has a stationary solution. In its stationary state, it is often
used to model a realistic noise signal, in which X(t) and X(s) are only
significantly correlated if

|t− s| ∼ 1

k
≡ τ (3.219)

More precisely, τ , known as the correlation time can be defined for arbi-
trary processes X(s) by

τ =

∫ ∞
0

dt
〈X(t), X(s)〉s
var[X]s

(3.220)

which is independent of the precise functional form of the correlation func-
tion.

3.8.5 Random Telegraph Process

We consider a signal X(t) which can have either of two values a and b and
switches from one to the other with certain probabilities per unit time. Thus,
we have a master equation

∂tP (a, t|x, t0) = −λP (a, t|x, t0) + µP (b, t|x, t0)
∂tP (ab, t|x, t0) = λP (a, t|x, t0)− µP (b, t|x, t0)

}
(3.221)

(a) Time-Dependent Solutions: These can simply be found by noting that

P (a, t|x, t0) + P (b, t|x, t0) = 1 (3.222)
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and using the initial condition

P (x′, t0|x, t0) = δx,x′ (3.223)

A simple equation can then be derived for λP (a, t|x, t0) − µP (b, t|x, t0),
whose solution is

λP (a, t|x, t0)− µP (b, t|x, t0) = exp [−(λ+ µ)(t− t0)](λδa,x − µδb,x)
(3.224)

The solution for the probabilities then takes the form

P (a, t|x, t0) = µ
λ+µ + e−(λ+µ)(t−t0)

(
λ

λ+µδa,x −
µ

λ+µδb,x

)
P (b, t|x, t0) = µ

λ+µ − e
−(λ+µ)(t−t0)

(
λ

λ+µδa,x −
µ

λ+µδb,x

)  (3.225)

The mean of X(t) is straightforwardly computed:

〈X(t) | [x0, t0]〉 =
∑

xP (x, t|x0, t0)

=
aµ+ bλ

µ+ λ
+ e−(λ+µ)(t−t0)

(
x0 −

aµ+ bλ

µ+ λ

)
(3.226)

The variance can also be computed but is a very messy expression.

(b) Stationary Solutions: This process has the stationary solution obtained
by letting t0 → −∞:

Ps(a) =
µ

λ+ µ
, Ps(b) =

λ

λ+ µ
(3.227)

which is obvious from the master equation.

The stationary mean and variance are

〈X〉s =
aµ+ bλ

µ+ λ
(3.228)

var[X]s =
(a− b)2µλ

(λ+ µ)2
(3.229)

(c) Stationary Correlation Functions: To compute the stationary time
correlation function, let t ≥ s, and write

〈X(t)X(s)〉s =
∑
xx′

xx′P (x, t|x′, s)Ps(x′)

=
∑
x′

x′ 〈X(t) | [x′, s]〉Ps(x′) (3.230)
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Now use (3.226-3.229) to obtain

〈X(t)X(s)〉 = angleX〉2s + exp [−(λ+ µ)(t− s)](〈X2〉s − 〈X〉2s)

=

(
aµ+ bλ

µ+ λ

)2

+ exp [−(λ+ µ)(t− s)] (a− b)
2µλ

(λ+ µ)2
(3.231)

Hence,

〈X(t), X(s)〉s = 〈X(t)X(s)〉s − 〈X〉2s =
(a− b)2µλ

(λ+ µ)2
e(λ+µ|t− s| (3.232)

Notice that this time correlation function is exactly the same form as that
of the Ornstein-Uhlenbeck process. Higher-order correlation functions are
not the same of course, but because of this simple correlation function and
the simplicity of the two state process, the random telegraph signal also
finds wide application in model building.
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Chapter 4

The Ito Calculus and
Stochastic Differential
equations

4.1 Motivation

In Section 1.2.2 we met for the first time the equation which is the prototype of
what is now known as a Langevin equation, which can be described heuristically
as an ordinary differential equation in which a rapidly and irregularly fluctuating
random function of time [the term X(t) in Langevin’s original equation] occurs.
The simplicity of Langevin’s derivation of Einstein’s results is in itself sufficient
motivation to attempt to put the concept of such an equation on a reasonably
precise footing.

The simple-minded Langevin equation that turns up most often can be written
in the form

dx

dt
= a(x, t) + b(x, t)ξ(t) (4.1)

where x is the variable of interest, a(x, t) and b(x, t) are certain known functions
and ξ(t) is the rapidly fluctuating random term. An idealized mathematical
formulation of the concept of a “rapidly varying, highly irregular function”
is that for t 6= t′, ξ(t) and ξ(t′) are statistically independent. We also require
〈ξ(t)〉 = 0, since any nonzero mean can be absorbed into the definition of a(x, t),
and thus require that

〈ξ(t)ξ(t′)〉 = δ(t− t′) (4.2)

which satisfies the requirement of no correlation at different times and further-
more, has the rather pathological result that ξ(t) has infinite variance. From a
realistic point of view, we know that no quantity can have such an infinite vari-
ance, but the concept of white noise as an idealization of a realistic fluctuating
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signal does have some meaning, and has already been mentioned in section 1.5.2
in connection with Johnson noise in electrical circuits. We have already met two
sources which might be considered realistic version of almost uncorrelated noise,
namely, the Ornstein-Uhlenbeck process and the random telegraph signal. For
both of these the second-order correlation function can, up to a constant factor,
be put into the form

〈X(t), X(t′)〉 =
γ

2
e−γ|t−t

′| (4.3)

Now the essential difference between these two is that the sample paths of
the random telegraph signal are discontinuous, while those of the Ornstein-
Uhlenbeck process are not. If (4.1) is to be regarded as a real differential equa-
tion, in which ξ(t) is not white noise with a delta function correlation, but rather
a noise with a finite correlation time, then the choice of a continuous function
for ξ(t) seems essential to make this equation realistic: we do not expect dx/dt
to change discontinuously. The limit as γ →∞ of the correlation function (4.3)
is clearly the Dirac delta function since∫ ∞

−∞

γ
2 e
−γ|t−t′|dt′ = 1 (4.4)

and for t 6= t′

lim
γ→∞

γ

2
e−γ|t−t

′| = 0 (4.5)

This means that a possible model of the ξ(t) could be obtained by taking some
kind of limit as γ → ∞ of the Ornstein-Uhlenbeck process. This would corre-
spond in the notation of Section 3.8.4, to the limit k →∞ with D = k2.

This limit simply does not exist. Any such limit must clearly be taken after
calculating measurable quantities. Such a procedure is possible but too cum-
bersome to use as a calculational tool.

An alternative approach is called for. Since we write the differential equation
(4.1), we must expect it to be integrable and hence must expect that

u(t) =

∫ t

0

dt′ ξ(t′) (4.6)

exists.

Suppose we now demand the ordinary property of an integral, that u(t) is a
continuous function of t. This implies that u(t) is a Markov process since we
can write

u(t′) =

∫ t

0

ds ξ(s) +

∫ t′

t

ds ξ(s)

= lim
ε→0

[∫ t−ε

0

ds ξ(s)

]
+

∫ t′

t

ds ξ(s) (4.7)
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and for any ε > 0, the ξ(s) in the first integral are independent of the ξ(s) in
the second integral. Hence, by continuity, u(t) and u(t′)− u(t) are statistically
independent and further, u(t′)−u(t) is independent of u(t′′) for all t′′ < t. This
means that u(t′) is fully determined (probabilistically) from the knowledge of
the value of u(t) and not by any past values. Hence, u(t) is a Markov process.

Since the sample functions of u(t) are continuous, we must be able to describe
u(t) by a Fokker-Planck equation. We can compute the drift and diffusion
coefficients for this process by using the formulae of Section 3.5.2. We can write

〈u(t+ ∆t)− u0 | [u0, t]〉 =

〈∫ t+∆t

t

ξ(s)ds

〉
= 0 (4.8)

and

〈
[u(t+ ∆t)− u0]2

∣∣ [u0, t]
〉

=

∫ t+∆t

t

ds

∫ t+∆t

t

ds′〈ξ(s)ξ(s′)〉

=

∫ t+∆t

t

ds

∫ t+∆t

t

ds′δ(s− s′) = ∆t (4.9)

This means that the drift and diffusion coefficients are

A(u0, t) = lim
∆t→0

〈
[u(t+ ∆t)− u0]2

∣∣ [u0, t]
〉

∆t
= 0 (4.10)

B(u0, t) = lim
∆t→0

〈
[u(t+ ∆t)− u0]2

∣∣ [u0, t]
〉

∆t
= 1 (4.11)

The corresponding Fokker-Planck equation is that of the Wiener process and
we can write ∫ t

o

ξ(t′)dt′ = u(t) = W (t) (4.12)

Thus, we have the paradox that the integral of ξ(t) is W (t), which is itself
not differentiable, as shown in Section 3.8.1. This means that mathematically
speaking, the Langevin equation (4.1) does not exist. However, the correspond-
ing integral equation

x(t)− x(0) =

∫ t

0

a[x(s), s]ds+

∫ t

0

b[x(s), s]ξ(s)ds (4.13)

can be interpreted consistently.

We make the replacement, which follows directly from the interpretation of the
integral of ξ(t) as the Wiener process W (t), that

dW (t) ≡W (t+ dt)−W (t) = ξ(t)dt (4.14)
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and thus write the second integral as∫ t

o

b[x(s), s]dW (s) (4.15)

which is a kind of Stochastic Stieltjes integral with respect to the sample func-
tion W (t). Such an integral can be defined and we will carry this out in the
next section.

Before doing so, it should be noted that the requirement that u(t) be continuous,
while very natural, can be relaxed to yield a way of defining jump processes as
stochastic differential equations. This has already been hinted at in the treat-
ment of shot noise in Section 1.5.1., However, it does not seem to be nearly so
useful and will not be treated in these notes.

As a final point, we note that one normally assumes that ξ(t) is Gaussian, and
satisfies (4.2) as well. The above discussion did not require this: the Gaus-
sian nature follows in fact from the assumed continuity of u(t). Which of these
assumptions is made is, in a strict sense, a matter of taste. However, the conti-
nuity of u(t) seems a much more natural assumption to make than the Gaussian
nature of ξ(t), which involves in principle the determination of moments of ar-
bitrarily high order.

4.2 Stochastic Integration

4.2.1 Definition of the Stochastic Integral

Suppose G(t) is an arbitrary function of time and W (t) is the Wiener process.

We define the stochastic integral
∫ t
t0
G(t′)dW (t′) as a kind of Riemann-Stieltjes

integral. Namely, we divide the interval [t0, t] into n subintervals by means of
partitioning points (as in the figure below)

Figure 4.1: Partitioning of the time interval used in the definition of stochastic
integration
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with
t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ t (4.16)

and define intermediate points τi such that

ti−1 ≤ τi ≤ ti (4.17)

The stochastic integral
∫ t
t0
G(t′)dW (t′) is defined as the limit of the partial sums

Sn =

n∑
i=1

G(τi)[W (ti)−W (ti−1)] (4.18)

It is heuristically quite easy to see that, in general, the integral defined as the
limit of Sn depends on the particular choice of intermediate pint τi. For example,
if we take the choice of G(τi) = W (τi),

〈Sn〉 =

〈
n∑
i=1

W (τi)[W (ti)−W (ti−1)]

〉

=

n∑
i=1

[min(τ,, ti)−min(τi, ti−1)]

=

n∑
i=1

(τi − ti−1) (4.19)

If, for example, we choose for all i

τi = αti + (1− α)ti−1 (0 < α < 1) (4.20)

then

〈Sn〉 =

n∑
i=1

(ti − ti−1)α = (t− t0)α (4.21)

So that the mean value of the integral can be anything between zero and (t−t0),
depending on the choice of intermediate points.

4.2.2 Ito Stochastic Integral

The choice of intermediate points characterized by α = 0, that is by the choice

τi = ti−1 (4.22)

defines the Ito stochastic integral of the function G(t) by∫ t

t0

G(t′)dW (t′) = ms− lim
n→∞

{
n∑
i=1

G(ti−1[W (ti)−W (ti−1)]

}
(4.23)

By ms− lim we mean the mean square limit, as defined in Section 2.9.2.
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4.2.3 Example
∫ t

t)
W (t′)dW (t′)

An exact calculation is possible. We write [writing Wi for W (ti)]

Sn =

n∑
i=1

Wi−1(Wi −Wi−1) ≡
n∑
i=1

Wi−1∆Wi (4.24)

=
1

2

n∑
i=1

[(Wi−1 + ∆Wi)
2 − (Wi−1)2 − (∆Wi)

2] (4.25)

=
1

2
[W (t)2 −W (t0)2]− 1

2

n∑
i=1

∆Wi)
2 (4.26)

We can calculate the mean square limit of the last term. Notice that〈∑
∆W 2

i

〉
=
∑
i

〈(Wi −Wi−1)2〉 =
∑
i

(ti − ti−1) = t− t0 (4.27)

Because of this〈[∑
i

(Wi −Wi−1)2 − (t− t0)2

]〉
=

〈∑
i

(Wi −Wi−1)4

2
∑
i<j

(Wi −Wi−1)2(Wj −Wj−1)2 − 2(t− t0)
∑
i

(Wi −Wi−1)2 + (t− t0)4

〉
(4.28)

Notice that Wi−Wi−1 is a Gaussian variable and is independent of Wj−Wj−1.
hence, we can factorize. Thus

〈(Wi −Wi−1)2(Wj −Wj−1)2〉 = (ti − ti−1)(tj − tj−1) (4.29)

and also using formula (2.82) for the fourth moment of a Gaussian variable

〈(Wi −Wi−1)4〉 = 3〈(Wi −Wi−1)2〉2 = 3(ti − ti−1)2 (4.30)

which combined with (4.29) gives〈[∑
i

(Wi −Wi−1)2 − (t− t0)2

]〉
= 2

∑
i

(ti − ti−1)2 +
∑
i,j

[(ti − ti−1 − (t− t0)][(tj − tj−1 − (t− t0)]

= 2
∑
i

(ti − ti−1)2 → 0 as n→∞ (4.31)

Thus,

ms− lim
n→∞

∑
i

(Wi −Wi−1)2 = t− t0 (4.32)
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by definition of the mean square limit, so∫ t

t0

W (t′)dW (t′) =
1

2
[W (t)2 −W (t0)2 − (t− t0)] (4.33)

Comments

(i) 〈∫ t

t0

W (t′)dW (t′)

〉
=

1

2
[〈W (t)2〉 − 〈W (t0)2〉 − (t− t0)] = 0 (4.34)

This is also obvious by definition, since the individual terms are (Wi−1∆Wi),
which vanishes because ∆Wi is statistically independent of Wi−1, as was
demonstrated in Section 3.8.1.

(ii) The result for the integral is no longer the same as for the ordinary
Riemann-Stieltjes integral in which the term (t − t0) would be absent.
The reason for this is that [W (t + ∆t) −W (t)] is almost always of order√
t, so that in contrast to ordinary integration, terms of second-order in

∆W (t) do not vanish on taking the limit.

4.2.4 The Stratonovich Integral

An alternative definition was introduced by Stratonovich as a stochastic integral
in which the anomalous term (t−t0) does not occur. We define this fully in Sec-
tion 4.4 - in the cases considered so far, it amounts to evaluating the integrand
as a function of W (t) at the value 1

2 [W (ti) +W (ti−1)]. It is straightforward to
show that

(S)

∫ t

t0

W (t′)dW (t′) = ms− lim
n→∞

n∑
i=1

W (ti) +W (ti−1)

2
[W (ti)−W (ti−1)]

=
1

2
[W (t)2 −W (t0)2] (4.35)

However, the integral defined by Stratonovich [which we will always designate
by a prefixed (S) as in (4.35)] has no general relationship with that defined by
Ito. That is, for arbitrary functions G(t), there is no connection between the
two integrals. In the case, however, where we can specify that G(t) is related
to some stochastic differential equation, a formula can be given relating one to
the other, see Section 4.4.

4.2.5 Nonanticipating Functions

The concept of a nonanticipating function can be easily made quite obscure by
complex notation, but it is really quite simple. We have in mind a situation
in which all functions can be expressed as functions or functionals of a certain

95



Wiener process W (t) through the mechanism of a stochastic differential (or
integral) equation of the form

x(t)− x(0) =

∫ t

t0

a[x(t′), t′]dt′ +

∫ t

t0

b[x(t′), t′]dW (t′) (4.36)

A function G(T ) is called a nonanticipating function of t if G(t) is statistically
independent of W (s) −W (t) for all s and b such that t < s. This means that
G(t) is independent of the behavior of the Wiener process in the future of t.
This is clearly a rather reasonable requirement for a physical function which
could be the solution of an equation like (4.36) in which it seems heuristically
obvious that x(t) involves W (t′) only for t′ ≤ t.

For example, specific non anticipating functions of t are:

(i)
W (t)

(ii) ∫ t

t0

F [W (t′)]dt′

(iii) ∫ t

t0

F [W (t′)]dW (t′)

(iv) ∫ t

t0

G(t′)dt′ (4.37)

(v) ∫ t

t0

G(t′)dW (t′) (4.38)

where in the last two items G(t) itself isa non anticipating function. Results
(iii) and (v) depend on the fact that the Ito stochastic integral, as defined in (),
is the limit of the sequence in which only G(t′) for t′ < t and W (t′) for t′ ≤ t
are involved

The reasons for considering nonanticipating functions specifically are:

(i) Many results can be derived, which are only true for such functions.

(ii) They occur naturally in situations, such as in the study of differential
equations involving time, in which some kind of causality is expected in
the sense that the unknown future cannot affect the present.

(iii) The definition of stochastic differential equations requires such functions.
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4.2.6 Proof that dW (t)2 = dt and dW (t)2+N = 0

The formulae in the heading are the key to the use of the Ito calculus as an
ordinary computational tool. However, as write they are not very precise and
what is really meant is that for an arbitrary nonanticipating function G(t)∫ t

t0

[dW (t′)]2+NG(t′) ≡ ms− lim
n→∞

∑
i

Gi−1∆W 2+N
i

=

{∫ t
t0
dt′G(t′) for N = 0

0 for N > 0
(4.39)

The proof is quite straightforward. For N = 0, let us define

I = lim
n→∞

〈[∑
i

Gi−1(∆W 2
i −∆ti)

]2〉
(4.40)

= lim
n→∞


〈

(Gi−1)2︸ ︷︷ ︸ (∆W 2
i −∆ti)

2︸ ︷︷ ︸+
∑
i>j

2Gi−1Gj−1(∆W 2
j −∆tj)

2︸ ︷︷ ︸ (∆W 2
i −∆ti)

2︸ ︷︷ ︸
〉

(4.41)

The horizontal braces indicate factors which are statistically independent of
each other because of the properties of the Wiener process, and because the Gi
are values of a nonanticipating function which are independent of all ∆Wi for
j > i.

Using this independence, we can factorize the means, and also using

(i) 〈∆W 2
i 〉 = ∆ti

(ii) 〈(∆W 2
i −∆ti)

2〉 = 2∆t2i (from Gaussian nature of ∆Wi)

we find

I = 2 lim
n→∞

[∑
i

∆t2i 〈(Gi−1)2〉

]
(4.42)

Under reasonably mild conditions on G(t) (e.g., boundedness), this means that

ms− lim
n→∞

(∑
i

Gi−1∆W 2
i −

∑
i

Gi−1∆ti

)
= 0 (4.43)

and since

ms− lim
n→∞

∑
i

Gi−1∆ti =

∫ t

t0

G(t′) (4.44)

we have ∫ t

t0

[dW (t′)]2G(t′) =

∫ t

t0

G(t′) (4.45)
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Comments

(i) The proof
∫ t
t0
G(t)[dW (t)]2+N = 0 for N > 0 is similar and uses the

explicit expressions for the higher moments of a Gaussian given in Section
2.8.1.

(ii) dW (t) only occurs in integrals so that when we restrict ourselves to nonan-
ticipating functions, we can simply write

dW (t)2 ≡ dt (4.46)

dW (t)2+N ≡ 0 (N > 0) (4.47)

(iii) The results are only valid for the Ito integral, since we have used the fact
that ∆Wi is independent of Gi−1. In the Stratonovich integral,

∆Wi = W (ti)−W (ti−1) (4.48)

Gi−1 = G
(

1
2 (ti + ti−1)

)
(4.49)

and although G(T ) is nonanticipating, this is not sufficient to guarantee
the independence of ∆Wi and Gi−1 as thus defined.

(iv) By similar methods one can prove that∫ t

t0

G(t′) dt′ dW (t′) ≡ ms− lim
n→∞

∑
Gi−i∆Wi∆ti = 0 (4.50)

and similarly for higher powers. The simplest way of characterizing these
results is to say that dW (t) is an infinitesimal order of 1

2 and that in
calculating differentials, infinitesimals of higher order than 1 are discarded.

4.2.7 Properties of the Ito Stochastic Integral

(a) Existence: One can show that the Ito stochastic integral
∫ t
t0
G(t′)dW (t′)

exists whenever the function G(t′) is continuous and nonanticipating on
the classed interval [t0, t].

(b) Integration of Polynomials: We can formally use the result of Section
4.2.6:

d[W (t)]n = [W (t) + dW (t)]n −W (t)n =

n∑
r=1

(
n

r

)
W (t)n−rdW (t)r (4.51)

and using the fact that dW (t)r → 0 for all r > 2,

= nW (t)n−1dW (t) +
n(n− 1)

2
W (t)n−2dt (4.52)
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so that∫ t

t0

W (t′)ndW (t′) =
1

n+ 1
[W (t)n+1 −W (t0)n+1]− n

2

∫ t

t0

W (t′)n−1dt′

(4.53)

(c) Two Kinds of Integral: We note that for each G(t) there are two kinds
of integrals, namely,∫ t

t0

G(t′)dt′ and

∫ t

t0

G(t′)dW (t′) (4.54)

both of which occur in the previous equation. There is, in general, no
connection between these two kinds of integral.

(d) General Differentiation Rules: In forming differentials, as in (b) above,
one must keep all terms up to second order in dW (t). This means that,
for example,

d{exp [W (t)]} = exp [W (t) + dW (t)]− exp [W (t)] (4.55)

= exp [W (t)]

[
dW (t) +

1

2
dW (t)2

]
(4.56)

= exp [W (t)]

[
dW (t) +

1

2
dt

]
(4.57)

For an arbitrary function

df [W (t), t] =
∂f

∂t
dt+

1

2

∂2f

∂t2
(dt)2 +

∂f

∂W
dW (t)

+
1

2

∂2f

∂W 2
[dW (t)]2 +

∂2f

∂W∂t
dt dW (t) + ... (4.58)

and we use
[dW (t)]2 → dt (4.59)

dt dW (t)→ 0 Section 4.2.6, comment (iv)] (4.60)

(dt)2 → 0 (4.61)

and all higher powers, to arrive at

df [W (t), t] =

(
∂f

∂t
+

1

2

∂2f

∂W 2

)
dt+

∂f

∂W
dW (t) (4.62)

(e) Mean Value Formula: For nonanticipating G(t).〈∫ t

t0

G(t′)dW (t′)

〉
= 0 (4.63)
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Proof: Since G(t) is nonanticipating, in the definition of the stochastic
integral, 〈∑

i

Gi−1∆Wi

〉
=
∑
i

〈Gi−1〉〈∆Wi〉 = 0 (4.64)

We know from Section 2.9.5 that operations of ms − lm and 〈 〉 may be
interchanged. Hence, taking the limit of (4.64), we have the result.

This result is not true for Stratonovich’s integral, since the value of Gi−1

is chosen in the middle of the interval, and may be correlated with ∆Wi.

(f) Correlation Formula: Ig G(t) and H(t) are arbitrary continuous nonan-
ticipating functions,〈∫ t

t0

G(t′)dW (t′)

∫ t

t0

H(t′)dW (t′)

〉
=

∫ t

t0

〈G(t′)H(t′)〉dt′ (4.65)

Proof: Notice that〈∑
i

Gi−1∆Wi

∑
j

Hj−1∆Wj

〉
〈∑

i

Gi−1Hi−1(∆Wi)
2

〉
+

〈∑
i>j

(Gi−1Hj−1 +Gj−1Hi−1)∆Wi∆Wj

〉
(4.66)

In the second term, ∆Wi is independent of all other terms since j < i,
and G and H are nonanticipating. Hence, we may factorize out the term
〈∆Wi〉 = 0 so that this term vanishes. Using

〈∆W 2
i 〉 = ∆ti (4.67)

and interchanging mean and limit operations, the result follows.

(g) Relation to Delta-Correlated White Noise: Formally, this is equiv-
alent to the idea that Langevin terms ξ(t) are delta correlated and uncor-
related with F (t) and G(t). For, rewriting

dW (t)→ ξ(t)dt (4.68)

it is clear that if F (t) and G(t) are nonanticipating, ξ(t) is independent of
them, and we get∫ t

t0

dt′
∫ t

t0

ds′〈G(t′)H(s′)ξ(t′)ξ(s′)〉 =

∫ t

t0

∫ t

t0

dt′ ds′ 〈G(t′)H(s′)〉〈ξ(t′)ξ(s′)〉

(4.69)
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which implies

〈ξ(t)ξ(s)〉 = δ(t− s) (4.70)

An important point of definition arises here, however. In integrals in-
volving delay functions, it frequently occurs in the study of stochastic
differential equations that the argument of the delay function is equal to
either the upper or lower limit of the integral, that is, we find integrals
like

I1 =

∫ t2

t1

dt f(t)δ(t− t1) (4.71)

or

I2 =

∫ t2

t1

dt f(t)δ(t− t2) (4.72)

Various conventions can be made concerning the value of such integrals.
We will show that in the present context, we must always make the inter-
pretation

I1 = f(t1) (4.73)

I2 = 0 (4.74)

corresponding to counting all the weight of the delay fundtion at the lower
limit of an integral, and none of the weight at the upper limit. To demon-
strate this, note that〈∫ t

t0

G(t′)dW (t′)

[∫ t

t0

H(s′)dW (s′)

]〉
= 0 (4.75)

This follows, since the function defined by the integral inside the square
bracket is, by Section 4.2.5 comment (v), a nonanticipating function and
hence the complete integrand, [obtained by multiplying by G(t′) which is
also nonanticipating] is itself nonanticipating. Hence the average vanishes
by the result of Section4.27e.

Now using the formulation in terms of the Langevin source ξ(t), we can
rewrite (4.75) as ∫ t

t0

∫ t

t0

〈G(t′)H(s′)〉δ(t′ − s′) (4.76)

which corresponds to not counting the weight of the delta function at the
upper limit. Consequently, the full weight must be counted at the lower
limit.

This property is a direct consequence of the definition of the Ito integral
as in (4.23), in which the increment points “towards the future”. That is,
we can interpret

dW (t) = W (t+ dt)−W (t) (4.77)

101



In the case of the Stratonovich integral, we get quite a different formula,
which is by no means as simple to prove as in the Ito case, but which
amounts to choosing

I1 = 1
2f(t1)

I2 = 1
2f(t2)

 (Stratonovich) (4.78)

This means that in both cases, the delta function occurring at the limit of
an integral has half its weight counted. This formula, although intuitively
more satisfying than the Ito form, is more complicated to use, especially
in the perturbation theory of stochastic differential equations, where the
Ito method makes very many terms vanish.

4.3 Stochastic Differential equations (SDE)

We concluded in Section 4.1, that the most satisfactory interpretation of the
Langevin equation

dx

dt
= a(x, t) + b(x, t)ξ(t) (4.79)

is a stochastic differential equation

x(t)− x(0) =

∫ t

0

dt′ a[x(t′), t′] +

∫ t

0

dW (t′) b[x(t′), t′] (4.80)

Unfortunately, the kind of stochastic integral to be used is not given by the
reasoning of Section 4.1. The Ito integral is mathematically and technically the
most satisfactory, but it is not always the most natural choice physically. The
Stratonovich integral is the natural choice for an interpretation which assumes
ξ(t) is real noise(not white noise) with finite correlation time, which is then
allowed to become infinitesimally small after calculating measurable quantities.
Furthermore, a Stratonovich interpretation enables us to use ordinary calculus,
which is not possible for an Ito interpretation.

From a mathematical point of view, the choice is made clear by the near impos-
sibility of carrying out proofs using the Stratonovich integral. We will therefore
define the Ito SDE, develop its equivalence with the Straonovich SDE, and use
either form depending on the circumstances.

4.3.1 Ito Stochastic Differential equation: Definition

A stochastic quantity x(t) obeys an Ito SDE written as

dx(t) = a[x(t), t]dt+ b[x(t), t]dW (t) (4.81)

if for all t and t0,

x(t)− x(0) =

∫ t

0

a[x(t′), t′]dt′ +

∫ t

0

b[x(t′), t′]dW (t′) (4.82)
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Before considering what conditions must be satisfied by the coefficients in (4.82),
it is wise to consider what one means by a solution of such an equation and what
the uniqueness of the solution would mean in this context. For this purpose,
we can consider a discretized version of the SDE obtained by taking a mesh of
points (as illustrated in the figure below) such that

t0 < t1 < t2 < · · · < tn−1 < tn = t (4.83)

Figure 4.2: Illustration of the Cauchy-Euler procedure for constructing an ap-
proximate solution of the stochastic differential equation dx(t) = a[x(t), t]dt +
b[x(t), t]dW (t)

and writing the equation as

xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆Wi (4.84)

Here,
xi = x(ti)

∆ti = ti+1 − ti
∆Wi = W (ti+1)−W (ti)

 (4.85)

(a) Cauchy-Euler Construction of the Solution of an Ito SDE: We see
from (4.84) that an approximate procedure for solving the equation is to
calculate xi+1 from the knowledge of xi by adding a deterministic term

a(xi, ti)∆ti (4.86)

and a stochastic term
b(xi, ti)∆Wi (4.87)

The stochastic term contains an element ∆Wi, which is the increment of
the Wiener process, but is statistically independent of xi if

(i) x0 is itself independent of all W (t)−W (t0) for t > t) (thus, the initial
conditions if considered random, must be nonanticipating), and
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(ii) a(x, t) is a nonanticipating function of t for any fixed x.

Constructing an approximate solution iteratively by use of (4.84), we see
that xi is always independent of ∆Wj for j ≥ i.

The solution is then formally constructed by letting the mesh size go to
zero. To say that the solution is unique means that for a given sample
function W̃ (t) of the random Wiener process W (t), the particular solu-
tion of the equation which arises is unique. To say the solution exists
means that with probability one, a solution exists for any choice of sample
function W̃ (t) of the Wiener process W (t).

(b) Existence and Uniqueness of Solutions of an Ito SDE: Existence
and uniqueness will not be proved here. The conditions which are required
for existence and uniqueness in a time interval [t0, T ] are:

(i) Lipschitz condition: a K exists such that

|a(x, t− a(y, t)|+ |b(x, t)− b(y, t)| ≤ K|x− y| (4.88)

for all x and y, and all t in the range [t0, T ].

(ii) Growth condition: a K exists such that for all t in the range [t0, T ],

|a(x, t)|2 + |b(x, t)|2 ≤ K2(1 + |x|2) (4.89)

Under these conditions there will be a unique nonanticpating solution x(t)
in the range [t0, T ].

Almost every stochastic differential equation encountered in practice sat-
isfies the Lipschitz condition since it is essentially a smoothness condition.
However, the growth condition is often violated. This does not mean that
no solution exists, rather, it means the solution may “explode” to infinity,
that is, the value of x can become infinite in a finite time; in practice,
a finite random time. This phenomenon occurs in ordinary differential
equations, for example,

dx

dt
=

1

2
ax3 (4.90)

has the general solution with an initial condition x = x0 at t = 0

x(t) =
1√

−at+ 1
x2

0

(4.91)

If a is positive, this becomes infinite when x0 = (at)−1/2, but if a is
negative, the solution never explodes. Failing to satisfy the Lipschitz
condition does not guarantee the solution will explode.
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4.3.2 Dependence on Initial Conditions and Parameters

In exactly the same way as in the case of deterministic differential equation, if
the functions which occur in a stochastic differential equation depend continu-
ously on parameters, then the solution normally depends continuously on that
parameter. Similarly, the solution depends continuously on initial conditions.
Let us formulate this more precisely. Consider a one-variable equation

dx = a(λ, x, t)dt+ b(λ, x, t)dW (t) (4.92)

with initial condition
x(t0) = c(λ) (4.93)

where λ is a parameter. Let the solution of (4.92) be x(λ, t). Suppose

(i)
st− lim
λ→λ0

c(λ) = c(λ0) (4.94)

(ii) For every N > 0

lim
λ→λ0

{
sup

t∈[t0,T ],|x|<N
[|a(λ, x, t)− a(λ0, x, t)|+ |b(λ, x, t)− b(λ0, x, t)|]

}
= 0

(4.95)

(iii) There exists a K independent of λ such that

|a(λ, x, t)|2 + |b(λ, x, t)|2 ≤ K2(1 + |x|2) (4.96)

Then,

st− lim
λ→λ0

{
sup

t∈[t0,T ]

|x(λ, t)− x(λ0, t)|

}
= 0 (4.97)

Comments

(i) Recalling the definition of stochastic limit, the interpretation of the limit
(4.97) is that as λ→ λ0, the probability that the maximum deviation over
any finite interval [t0, T ] between x(λ, t) and x(λ0, t) is nonzero, goes to
zero.

(ii) Dependence on the initial condition is achieved by letting a and b be
independent of λ.

(iii) The result will be very useful in justifying perturbation expansions.

(iv) Condition (ii) is written in the most natural form for the case that the
functions a(x, t) and b(x, t) are not themselves stochastic. It often arises
that a(x, t) and b(x, t) are themselves stochastic (nonanticipating) func-
tions. In this case, condition (ii) must be replaced by a probabilistic
statement. It is, in fact, sufficient to replace limλ→λ0

by st− lim
λ→λ0

.
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4.3.3 Markov Property of the Solution of an Ito SDE

We now show that x(t), the solution to the stochastic differential equation (4.82),
is a Markov process. Heuristically, the result is obvious, since with a given
initial condition x(t0), the future time development is uniquely (stochastically)
determined, that is, x(t) for t > t0 is determined only by

(i) The particular sample path of W (t) for t > t0

(ii) The value of x(t0)

Since x(t) is a nonanticipating function of t, W (t) for t > t0 is independent of
x(t) for t < t0. Thus, the time development of x(t) for t > t0 is independent of
x(t) for t < t0 provided x(t0) is known. Hence, x(t) is a Markov process.

4.3.4 Change of variables: Ito’s Formula

Consider and arbitrary function of x(t) : f [x(t)]. What stochastic differential
equation does it obey? We use the results of Section 4.2.6 to expand df [x(t)] to
second order in dW (t):

df [x(t)] = f [x(t) + dx(t)]− f [x(t)] (4.98)

= f ′[x(t)]dx(t) + 1
2f
′′[x(t)]dx(t)2 + · · · (4.99)

= f ′[x(t)]{a[x(t), t]dt+ b[x(t), t]dW (t)}+ 1
2f
′′[x(t)]b[x(t), t]2dW (t)2

(4.100)

where all other terms have been discarded since they are higher order. Now use
dW (t)2 = dt to obtain

df [x(t)] = {a[x(t), t]f ′[x(t)] + 1
2b[(x(t), t]2f ′′[x(t)]}dt

+ b[x(t), t]f ′[x(t)]dW (t) (4.101)

This formula is known as Ito’s formula and shows that changing variables is not
given by ordinary calculus unless f [x(t)] is merely linear in x(t).

Many Variables: In practice, Ito’s formula becomes very complicated and the
easiest method is to simply use the multivariate form of the rule that dW (t) is
and infinitesimal of order 1

2 . By similar methods to those used in Section 4.2.6,
we can show that for an n dimensional Wiener process W (t),

dWi(t)dWj(t) = δijdt (4.102a)

dWi(t)
N−2 = 0 (N > 0) (4.102b)

dWi(t)dt = 0 (4.102c)

dt1+N = 0 (N > 0) (4.102d)

which imply that dWi(t) is an infinitesimal number of order 1
2 . Note, however,

that (4.102a) is a consequence of the independence of dWi(t) and dWj(t). To
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develop Ito’s formula for functions of an n dimensional vector x(t) satisfying
the stochastic differential equation

dx = A(x, t)dt+ B(x, t)dW(t) (4.103)

we simply follow this procedure. The result is

df [x] =

{∑
i

Ai(x, t)∂if(x)

+ 1
2

∑
i,j

[
B(x, t)BT (x, t)

]
ij
∂i∂jf(x)

 dt

+
∑
i,j

Bij(x, t)∂if(x)dWj(t) (4.104)

4.3.5 Connection Between Fokker-Planck Equation and
Stochastic Differential Equation

(a) Forward Fokker-Planck Equation: We now consider the time devel-
opment of an arbitrary f(x(t)). Using Ito’s formula

〈df [x(t)]〉
dt

=

〈
df [x(t)]

dt

〉
=

d

dt
〈f [x(t)]〉

=
〈
a[x(t), t]∂xf + 1

2b[x(t), t]2∂2
xf
〉

(4.105)

However, x(t) has a conditional probability density p(x, t|x0, t0) and

d

dt
〈f [x(t)]〉 =

∫
dx f(x)∂tp(x, t|x0, t0)

=

∫
dx
[
a(x, t)∂xf + 1

2b(x, t)
2∂2
xf
]
p(x, t|x0, t0) (4.106)

This is now of the same form as (3.36) of Section 3.4.1. Under the same
conditions as there, we integrate by parts and discard the surface terms
to obtain∫

dx f(x)∂tp =

∫
dx f(x)

{
−∂x[a(x, t)p] + 1

2∂
2
x[b(x, t)2p]

}
(4.107)

and hence, since f(x) is arbitrary,

∂tp(x, t|x0, t0) = ∂x[a(x, t)p(x, t|x0, t0)] + 1
2∂

2
x[b(x, t)2p(x, t|x0, t0)]

(4.108)
We have thus a complete equivalence to a diffusion process defined by a
drift co0efficient a(x, t) and a diffusion coefficient b(x, t)2.
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The results are precisely analogous to Section 3.5.2, in which it was shown
that the diffusion process could be locally approximated by an equation
resembling an Ito stochastic differential equation.

(b) Backward Fokker-Planck Equation - the Feynman-Kac Formula:
Suppose a function g(x, t) obeys the backward Fokker-Planck equation

∂tg = −a(x, t)∂g − 1
2b(x, t)

2∂2
xg (4.109)

with the initial condition

g(x, T ) = G(x) (4.110)

If x(t) obeys the stochastic differential equation (4.81), then using Ito’s
rule (adapted appropriately to account for explicit time dependence), the
function g[x(t), t] obeys the stochastic differential equation

dg[x(t), t] =
{
∂tg = a[(x(t), t]∂xgg[(x(t), t] + 1

2b[(x(t), t]2∂2
xg[(x(t), t]

}
dt

+ b[(x(t), t]∂xg[(x(t), t]dW (t) (4.111)

and using (4.109) this becomes

dg[(x(t), t] = b[(x(t), t]∂xg[(x(t), t]dW (t) (4.112)

Now integrate from t to T , and take the mean

〈g[x(T ), T ]〉 − 〈g[x(t), t]〉 =

〈∫ T

t

b[x(t′), t′]∂xg[x(t′), t′]dW (t′)

〉
= 0

(4.113)
Let the initial condition of the stochastic differential equation for x(t′)
and t′ = t be

x(t) = x (4.114)

where x is a non-stochastic value, so that

〈g[x(t), t]〉 = g(x, t) (4.115)

At the other end of the interval, use the final condition (4.110) to write

〈g[x(T ), T ]〉 = 〈G[x(T )]|x(t) = x〉 (4.116)

where the notation on the right hand side indicates the mean conditional
on the initial condition (4.114).

Putting these two together, the Feynman-Kac formula results:

〈G[x(T )]|x(t) = x〉 = g(x, t) (4.117)

where g(x, t) is the solution of the backward Fokker-Planck equation (4.109)
with initial condition (4.110).
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This formula is essentially equivalent to the fact that p(x, t|x0, t0) obeys
the backward Fokker-Planck equation in the arguments x0, t0 as shown in
Section 3.6, since

〈G[x(T )]|x(t0) = x0〉 =

∫
dxG(x)p(x, T |x0, t0) (4.118)

4.3.6 Multivariable Systems

In general, many variable systems of stochastic differential equations can be
defined for n variables by

dx = A(x, t)dtB(x, t)dW(t) (4.119)

where dW(t) is an n variable Wiener process, as defined in Section 3.8.1. The
many variable version of the reasoning used in Section 4.3.5 shows that the
Fokker-Planck equation for the conditional probability density p(x, t|x0, t0) ≡ p
is

∂tp =
∑
i

∂t[Ai(x, t)p] + 1
2

∑
i,j

∂i∂j
{[

B(x, t)BT (x, t)
]}

(4.120)

Notice that the same Fokker-Planck equation arises from all matrices B such
that BBT is the same. This means that we can obtain the same Fokker-Planck
equation by replacing B by BS where S is orthogonal, i.e., SST = 1. Notice
that S may depend on x(t).

This can be seen directly from the stochastic differential equation. Suppose
S(t) is an orthogonal matrix with an arbitrary nonanticipating dependence on
t. Then define

dV(t) = S(t)dW(t) (4.121)

Now the vector dV(t) is a linear combination of Gaussian variables dW(t) with
coefficients S(t) which are independent of dW(t), since S(t) is nonanticipating.
For any fixed value of S(t), the dV(t) are thus Gaussian and their correlation
matrix is

〈dVi(t)dVj(t)〉 =
∑

l,mSil(t)Sjm(t)〈dWl(t)dWm(t)〉

=
∑
l

Sil(t)Sjl(t)dt = δijdt (4.122)

since S(t) is orthogonal. Hence, all the moments are independent of S(t) and are
the same as those of dW(t), so dV(t) is itself Gaussian with the same correlation
matrix as dW(t). Finally, averages at different times factorize, for example, if
t > t′ in ∑

i,k

〈[dWi(t)Sij(t)]
m[dWk(t′)Skl(t

′)]n〉 (4.123)

we can factorize out the averages of dWi(t) to various powers since dWi(t) is
independent of all other terms. Evaluating these we will find that the orthogonal
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nature of S(t) gives, after averaging over dWi(t), simply

∑
k

〈[dWj(t)]
m〉 〈[dWk(t′)Skl(t

′)]n〉 (4.124)

which similarly gives 〈[dWj(t)]
m[dWl(t

′)]n〉. Hence, the dV(t) are also incre-
ments of a Wiener process. The orthogonal transformation simply mixes up
different sample paths of the process, without changing its stochastic nature.

Hence, instead of (4.119) we can write

dx = A(x, t)dtB(x, t)ST (t)S(t)dW(t)

= A(x, t)dtB(x, t)ST (t)dV(t) (4.125)

and since V(t) is itself simply a Wiener process, this equation is equivalent to

dx = A(x, t)dtB(x, t)ST (t)dW(t) (4.126)

which is exactly the same Fokker-Planck equation (4.120).

We will return to some examples in which this identity is relevant in Section
4.5.5.

4.4 The Stratonovich Stochastic Integral

The Stratonovich stochastic integral is an alternative to the Ito definition, in
which Ito’s formula, developed in Section 4.3.4, is replaced by the ordinary chain
rule for change of variables. This apparent advantage does not come without
cost, since in Stratonovich’s definition the independence of a non-anticipating
integrand G(t) and the increment dW (t) in a stochastic integral no longer holds.
This means that increment and the integral are correlated, and therefore to give
a full definition of the Stratonovich integral requires some way of specifying what
this correlation is.

The correlation is implicitly specified in the situation of most interest, the case
in which the integrand is a function whose stochastic nature arises from a depen-
dence on a variable x(t) which obeys a stochastic differential equation. Since the
aim is to recover the chain rule for change of variables in a stochastic differential
equation this seems a reasonable restriction.
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4.4.1 Definition of the Stratonovich Stochastic Integral

Stratonovich defined a stochastic integral of an integrand which is a function of
x(t) and t by

(S)

∫ t

t0

G[x(t′), t′]dW (t′)

= ms− lim
n→∞

n∑
i=1

G
{

1
2 (x(ti) + x(ti−1), ti−1)

}
[W (ti)−W (ti−1)]

(4.127)

The Stratonovich integral is clearly related to a mid-loint choice of τi in the
definition of stochastic integration as given in Section 4.2.1, but clearly is not
necessarily equivalent to that definition. Rather, instead of everlasting x at the
midpoint 1

2 (ti + ti−1), the average of the values at the two time points is taken.
Furthermore it is only the dependence on x(t) that is averaged in this way, and
not the explicit dependence on t. However, if G(z, t) is differentiable in t, the
integral can be shown to be independent of the particular choice of value for t
in the range [ti−1, ti].

4.4.2 Stratonovich Stochastic Differential Equation

It is possible to write a stochastic differential equation (SDE) using Stratonovich’s
integral

x(t) = x(t0) +

∫ t

t0

dt′ α[x(t′), t′] + (S)

∫ t

t0

dt′ dW (t′)β[x(t′), t′] (4.128)

(a) Change of Variables for the Straonovich SDE: The definition of the
Stratonovich integral is such as to make the ordinary rules of calculus valid
for change of variables. This means, that for the Stratonovich integral,
Ito’s formula is replaced by the simple calculus rule

(S) df [x(t)]− f ′[x(t)]{a[x(t), t]dt+ b[x(t), t]dW (t)} (4.129)

This can be proved quite simply from the definition (4.127). The essence
of the proof can be explained by using the simple SDE

xi+1 = xi +B
[

1
2 (xi+1 + xi)

]
(Wi+1 −Wi) (4.130)

To find the Stratonovich SDE for f [x(t)], we need only use the Taylor
series expansion of a function about a midpoint in the form

f(x+ 1) = f(x− a) +

∞∑
n=0

f2n+1(x)a2n+1

(2n+ 1)!
(4.131)
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In expanding f(xi+1) we only need to keep terms up to second order, so
we drop all but the first two terms and write

f(xi+1) = f(xi) + f ′
[

1
2 (xi+1 + xi)

]
(xi+1 − xi)

= f ′
[

1
2 (xi+1 + xi)

]
B
[

1
2 (xi+1 + xi)

]
(Wi+1 −Wi) (4.132)

This means that the Stratonovich SDE for f [x(t)] is

(S) df [x(t)] = f ′[x(t)]B[x(t)]dW (t) (4.133)

which is the ordinary calculus rule. The extension the the general case
(4.128) is straightforward.

(b) Equivalent to Ito SDE: We will show that the Stratonovich SDE is in
fact equivalent to an appropriate Ito SDE. Let us assume that x(t) is a
solution of the Ito SDE

dx(t) = a[x(t), t]dtb[x(t), t]dW (t) (4.134)

and deduce the α and β for a corresponding Stratonovich equation of the
form (4.128). In both cases, the solution x(t) is the same function.

We first compute the connection between the Ito integral
∫ t
t0
dW (t′) b[x(t′), t′]

and the Stratonovich integral (S)
∫ t
t0
dW (t′)β[x(t′), t′]:

(S)

∫ t

t0

dW (t′)β[x(t′), t′] '
∑
i

β
[

1
2 (x(ti) + x(ti−1)), ti−1

]
∆W (ti−1)

(4.135)
In (4.135) we write

x(ti) = x(ti−1) + ∆x(ti−1) (4.136)

and use the Ito SDE (4.134) to write

∆x(ti) = a[x(ti−1), ti−1]∆ti−1 + b[x(ti−1), ti−1]∆W (ti−1) (4.137)

Then applying Ito’s formula, we can write

β
[

1
2 (x(ti) + x(ti−1)), ti−1

]
= β

[
x(ti−1) + 1

2∆x(ti−1), ti−1

]
= β(ti−1) +

[
a(ti−1)∂xβ(ti−1) + 1

4b
2(ti−1)

] 1

2
∆ti−1

1
2b(ti−1)∂xβ(ti−1)∆W (ti−1) (4.138)

(For simplicity, we write β(ti) etc, instead of β[x(ti), ti] wherever possible).
Putting all these back in the original equation (4.134) and dropping as
usual dt2, dtdW (t), and setting dW (t)2 = dt, we find

(S)

∫
=
∑
i

β(ti−1){W (ti)−W (ti−1)}+ 1
2

∑
i

b[x(t′), t′]∂xβ(ti−1)(ti−ti−1)

(4.139)
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Hence we derive

(S)

∫ t

t0

β[x(t′), t′]dW (t′) =

∫ t

t0

β[x(t′), t′]dW (t′)

+ 1
2

∫ t

t0

b[x(t′), t′]∂xβ[x(t′), t′]dt′ (4.140)

This formula gives a connection between the Ito and Stratonovich integrals
of functions β[x(t′), t′], in which x(t′) is the solution of the Ito SDE (4.128).
It does not give a general connection between the Ito and Stratonovich
integrals of arbitrary functions.

If we now make the choice

α(x, t) = a(x, t)− 1
2b(x, t)∂xb(x, t)

β(x, t) = b(x, t) (4.141)

we see that: the Ito SDE:

dx = adt+ bdW (t) (4.142)

is the same as the Stratonovich SDE

(S) dx =
(
a− 1

2b∂xb
)
dt+ bdW (t) (4.143)

and conversely, the Stratononvich SDE

(S) dx = αdt+ βdW (t) (4.144)

is the same as the Ito SDE

dx =
(
α+ 1

2β∂xβ
)
dt+ βdW (t) (4.145)

(c) ManyVariables: If a many variable Ito equation is

dx = A(x, t) + B(x, t)dW(t) (4.146)

then the corresponding Stratonovich equation can be shown similarly to
be given by replacing

Asi = Ai − 1
2

∑
j,k

Bkj∂kBij

Bs = B (4.147)

(d) Fokker-Planck Equation: Corresponding to the Stratonovich SDE,

(s) dx = As(x, t) + Bs(x, t)dW(t) (4.148)
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we can, by use of (4.147) and the known correspondence (Section 4.3.6)
between the Ito stochastic differential equation and the Fokker-Planck
equation, show that the equivalent Fokker-Planck equation is

∂tp = −
∑
i

∂i{Asip}+ 1
2

∑
i,j,k

∂,{Bsik∂j [Bsjkp]} (4.149)

which is often known as the “Stratonovich form” of the Fokker-Planck
equation. In contrast to the two forms of the stochastic differential equa-
tion, the two forms of the Fokker-Planck equation have a different appear-
ance but are (of course) interpreted with the same rules - those of ordinary
calculus.

4.5 Some Examples and Solutions

4.5.1 Coefficients without x Dependence

The simple equation
dx = a(t)dt+ b(t)dW (t) (4.150)

with (t) and b(t) nonrandom functions of time, is solved by integrating

x(t) = x0 +

∫ t

t0

a(t′)dt′ +

∫ t

t0

b(t′)dW (t′) (4.151)

Here, x0 can be either a nonrandom initial condition or may be random, but
must be independent of W (t)−W (t0) for t > t0; otherwise, x(t) is not nonan-
ticipating.

As constructed, x(t) is Gaussian, provided x0 is either nonrandom or itself gaus-
sian, since ∫ t

t0

b(t′)dW (t′) (4.152)

is simply a linear combination of infinitesimal Gaussian variables. Further,

〈x(t)〉 = 〈x0〉+

∫ t

t0

a(t′)dt′ (4.153)

(since the mean of the Ito integral vanishes), and

〈[x(t)− 〈x(t)〉][x(s)− 〈x(s)〉]〉 ≡ 〈x(t), x(s)〉

= var[x0] +

〈∫ t

t0

b(t′)dW (t′)

∫ s

t0

b(s′)dW (s′)

〉
= var[x0] +

∫ min(t,s)

t0

[b(t′)]2dt′ (4.154)
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where we have used the result (4.65) with, however

G(t′) =

{
b(t′) t′ < t

0 t′ ≥ t
(4.155)

H(t′) =

{
b(t′) t′ < s

0 t′ ≥ s
(4.156)

The process is thus completely determined.

4.5.2 Multiplicative Linear White Noise Process - Geo-
metric Brownian Motion

The equation

dx = cxdW (t) (4.157)

is known as a multiplicative white noise process because it is linear in x, but
the “noise term” dW (t) multiplies x. It is also commonly known as geometric
Brownian motion.

We can solve this exactly by using Ito’s formula. Let us define a new variable
by

y = log x (4.158)

so that

dy =
1

x
dx− 1

2x2
(dx)2 = cdW (t)− 1

2
c2dt (4.159)

This equation can now be directly integrated, so we obtain

y(t) = y(t0) + c[W (t)−W (t0)]− 1

2
c2(t− t0) (4.160)

and hence

x(t) = x(t0) exp
{
c[W (t)−W (t0)]− 1

2c
2(t− t0)

}
(4.161)

(a) Mean value: We can calculate the mean by using the formula for any
Gaussian variable z with zero mean

〈exp z〉 exp
(

1
2 〈z

2〉
)

(4.162)

so that

〈x(t)〉 = 〈x(t0)〉 exp
[

1
2c

2(t− t0)− 1
2c

2(t− t0)
]

= 〈x(t0)〉 (4.163)

The result is also obvious from definition, since

d〈x(t)〉 = 〈dx(t)〉 = 〈cx(t)dW (t)〉 (4.164)
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(b) Autocorrelation Function: We can also calculate the autocorrelation
function

〈x(t)x(s)〉 = 〈x(t0)〉2
〈
exp c[W (t) +W (s) = W (t0)]− 1

2c
2(t+ s− 2t0)

〉
= 〈x(t0)〉2 exp 1

2c
2[〈[W (t) +W (s)− 2W (t0)]2〉 − (t+ s− 2t0)]

= 〈x(t0)〉2 exp 1
2c

2[t+ s− 4t0 − 2min(t, s)− (t+ s− 2t0)]

= 〈x(t0)〉2 exp [c2min(t− t0, s− t0) (4.165)

(c) Stratonovich Interpretation: The solution of this equation interpreted
as a Stratonovich equation can also be obtained, but ordinary calculus
would then be valid. Thus, instead of (4.159) we would obtain

(S) dy = cdW (t) (4.166)

and hence
x(t) = x(t0) exp c[W (t)−W (t0)] (4.167)

In this case,
〈x(t)〉 = 〈x(t0)〉 exp

[
1
2c

2(t− t0)
]

(4.168)

and

〈x(t)x(s)〉 = 〈x(t0)〉2 exp
{

1
2c

2[t+ s− t0 + 2min(t− t0, s− t0)]
}

(4.169)
One sees that there is a clear difference between these two answers.

4.5.3 Complex Oscillator with Noisy frequency

This a simplification of a model due to Kubo and is a slight generalization of
the previous example for complex variables. We consider

dz

dt
= i
(
ω +

√
2γξ(t)

)
z (4.170)

which formally represents a simple model of an oscillator with a mean frequency
ω perturbed by a noise term ξ(t).

Physically, this is best modeled by writing a Stratonovich equation

(S) dz = i
(
ωdt+

√
2γdW (t)

)
z (4.171)

which is equivalent to the Ito equation (from Section 4.4)

dz = [(iω − γ)t]〈z(0)〉 (4.172)

Taking the mean value, we see immediately that

d〈z(t)〉
dt

= (iω − γ)〈z〉 (4.173)
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with the damped oscillatory solution

〈z(t)〉 = exp [(iω − γ)t]〈z(0)〉 (4.174)

One can show fully why the Stratonovich model is more appropriate. The most
obvious way to see this is to note that ξ(t) would, in practice, be somewhat
smoother than a white noise and ordinary calculus would apply, as in the case
of the Stratonovich interpretation.

Now in this case, the correlation function obtained from solving the original
Stratonovich equation is

〈z(t)z(s)〉 = 〈z(0)2〉 exp [(iω − γ)(t+ s)− 2γ min(t, s)] (4.175)

In the limit t.s→∞, with t+ τ = s,

lim
t→infty

〈x(t+ τ)z(t)〉 = 0 (4.176)

However, the correlation function of physical interest is the complex correlations

〈z(t)z∗(s)〉 = 〈|z(0)|2〉〈exp {iω(t− s) + i
√

2γ[W (t)−W (s)]}〉
= 〈|z(0)|2 exp {iω(t− s)− γ[t+ s− 2min(t, s)]}〉
= 〈|z(0)|2〉 exp [iω(t− s)− γ|t− s|] (4.177)

Thus, the complex correlation function has a damping term which arises purely
from the noise. It may be thought of as a noise induced dephasing effect,
whereby the phases of an ensemble of initial states with initial phases diffuse
away from the value ωt arising from the deterministic motion, as illustrated in
the figure below.

Figure 4.3: Illustration of the decay of the mean aptitude of a complex oscillator
as a result of dephasing.
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The mean of the ensemble consequently decays, although the amplitude |z(t)|
of any member of the ensemble is unchanged. For large time differences, z(t)
and z∗(s) become independent.

A realistic oscillator cannot be described by this model of a complex oscilla-
tor. However, the qualitative behavior is very similar, and this model may be
regarded as a prototype model of oscillators with noisy frequency.

4.5.4 Ornstein-Uhlenbeck Process

Taking the Fokker-Planck equation given for the Ornstein-Uhlenbeck process
in Section 3.8.4, we can immediately write down the SDE using the result of
Section 4.3.5:

dx = −kxdt+
√
DdW (t) (4.178)

and solve this directly. Putting

y = x ekt (4.179)

then

dy = (dx)d(ekt) + (dx)ekt + xd(ekt)

= [−kxdt+
√
DdW (t)]kektdt+ [−kxdt+

√
DdW (t)]ekt + kxektdt (4.180)

We note that the first product vanishes, involving only dt2, and dW (t)dt (in
fact, it can be seen that this will always happen if we simply multiply x by a
deterministic function of time). We get

dy =
√
DektdW (t) (4.181)

so that integrating and resubstituting for y, we get

x(t) = x(0)e−kt +
√
D

∫ t

0

e−k(t−t′)dW (t′) (4.182)

If the initial condition is deterministic or Gaussian distributed, then x(t) is
clearly Gaussian, with mean and variance

〈x(t)〉 = 〈x(0)〉e−kt (4.183)

var[x(t)] =

〈{
[x(0)− 〈x(0)〉]e−kt +

√
D

∫ t

0

e−k(t−t′)dW (t′)

}2
〉

(4.184)

Taking the initial condition to be nonanticipating, that is, independent of dW (t)
for t > 0, we can write using the result of Section 4.4f

var[x(t)] = var[x(0)]e−2kt +D

∫ t

0

e−2k(t−t′)dt′

=

(
var[x(0)]− D

2k

)
e−2kt +

D

2k
(4.185)
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These equations are the same as those obtained directly by solving the Fokker-
Planck equation in Section 3.8.4, with the added generalization of a nonan-
ticipating random initial condition. Added to the fact that the solution is a
Gaussian variable, we also have the correct conditional probability.

The time correlation function can also be calculated directly and is,

〈x(t), x(s)〉 = var[x(0)]e−k(t+s) +D

〈∫ t

0

e−k(t−t′)dW (t′)

∫ s

0

e−k(s−s′)dW (s′)

〉
= var[x(0)]e−k(t+s) +D

∫ min(t,s)

0

e−k(t+s−2t′)dt′

=

[
var[x(0)]− D

2k

]
e−k(t+s) +

D

2k
e−k|t−s| (4.186)

Notice that if k > 0, as t, s → ∞ with finite |t − s|, the correlation function
becomes stationary and the form deduced in Section 3.8.4.

In fact, if we set the initial time at −∞ rather than 0, the solution (4.182)
becomes

x(t) =
√
D

∫ t

−∞
e−k(t−t′)dW (t′) (4.187)

in which the correction function and the mean obviously assume their stationery
values. Since the process is Gaussian, this makes it stationary.

4.5.5 Conversion from Cartesian to Polar Coordinates

A model often used to describe an optical field is given by a pair of Ornstein-
Uhlenbeck processes describing the real and imaginary components of the elec-
tric field, i.e.,

dE1(t) = −γE1(t)dt+ εdW1(t) (4.188)

dE2(t) = −γE2(t)dt+ εdW2(t) (4.189)

It is of interest to convert to polar coordinates. We set

E1(t) = a(t) cosφ(t) (4.190)

E2(t) = a(t) sinφ(t) (4.191)

and for simplicity, also define

µ(t) = log a(t) (4.192)

so that

µ(t) + iφ(t) = log [E1(t) + iE2(t)] (4.193)
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We then use the Ito calculus to derive

d(µ+ iφ) =
d(E1(t) + iE2(t))

E1(t) + iE2(t)
− [d(E1(t) + iE2(t))]2

2(E1(t) + iE2(t))2

= −γ(E1(t) + iE2(t))

E1(t) + iE2(t)
dt+

ε(dW1(t) + idW2(t))

E1(t) + iE2(t)

− ε2[dW1(t) + idW2(t)]2

2(E1(t) + iE2(t))2
(4.194)

and noting dW1(t)dW2(t) = 0, and dW1(t)2 = dW2(t)2 = dt, it can be seen that
the last term vanishes, so we find

d[µ(t) + iφ(t)] = −γdt+ ε exp [−µ(t)− iφ(t)]{dW1(t) + idW2(t))} (4.195)

We now take the real part, set a(t) = exp [µ(t)] and using the Ito calculus find

da(t) =

(
−γa(t) +

ε2

2a(t)

)
dt+ ε(dW1(t) cosφ(t) + dW2(t) sinφ(t)) (4.196)

The imaginary part yields

dφ(t) =
ε

a(t)
(−dW1(t) cosφ(t) + dW2(t) sinφ(t)) (4.197)

We now define

dWa(t) = dW1(t) cosφ(t) + dW2(t) sinφ(t)
dWφ(t) = −dW1(t) cosφ(t) + dW2(t) sinφ(t)

}
(4.198)

We note that this is an orthogonal transformation of the kind mentioned in
Section 4.3.6, so that we may take dWa(t) and dWφ(t) as increments of inde-
pendent Wiener processes Wa(t) and Wφ(t).

Hence, the stochastic differential equations for phase and amplitude are

dφ(t) =
ε

a(t)
dWφ(t) (4.199)

da(t) =

(
−γa(t) +

ε2

2a(t)

)
dt+ εdWa(t) (4.200)

Comment. Using the rules given in Section 4.4 (ii), it is possible to convert
both the Cartesian equations (4.188, 4.189) and the polar equations (4.199,
4.200) to the Stratonovich form, and find that both are exactly the same as
the Ito form. Nevertheless, a direct conversion using ordinary calculus is not
possible. Doing so would get the same result until (4.195) where the term
[ε2/2a(t)]dt would not be found. This must be compensated by an extra term
which arises from the fact that the Stratonovich increments dWi(t) are correlated
with φ(t) and thus, dWa(t) and dWφ(t) cannot simply be defined by (4.197). We
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see the advantage of the Ito method which retains the statistical independence
of dW(t) and variables evaluated at time t.

Unfortunately, the equations in Polar form are not soluble, as the corresponding
Cartesian equations are. There is advantage, however, in dealing with polar
equations in the laser, whose equations are similar, but have an added term
proportional to a(t)2dt in (4.200).

4.5.6 Multivariate Ornstein-Uhlenbeck Process

We define the process by the stochastic differential equation

dx(t) = −Ax(t)dt+BdW(t) (4.201)

(A and B are constant matrices) for which the solution is easily obtained (as in
Section 4.5.4):

x(t) = exp (−At)x(0) +

∫ t

0

exp [−A(t− t′)]BdW (t′) (4.202)

The mean is
〈x(t)〉 = exp (−At)〈x(0)〉 (4.203)

The correlation function follows similarly

〈x(t),xT (s)〉 ≡ 〈[x(t)− 〈x(t)〉][x(s)− 〈x(s)〉]T 〉
= exp (−At)〈x(0),xT (0)〉 exp (−As)

+

∫ min(t,s)

0

exp [−A(t− t′)]BBT exp [−AT (s− s)]dt′ (4.204)

The integral can be explicitly evaluated in certain special cases, and for partic-
ular low-dimensional problems, it is possible to simply multiply everything out
term by ten. In the remainder, we set 〈x(0),xT (0)〉 = 0, corresponding to a
deterministic initial condition, and evaluate a few special cases.

(a) The Case AAT = ATA: In this case (for real A) we can find a unitary
matrix S such that

SS† = 1

SAS† = SATS† = diag(λ1, λ2, ......, λn) (4.205)

For simplicity, assume t ≥ s. Then

〈x(t),xT (s)〉 = S†G(t, s)S (4.206)

where

[G(t, s)]ij =
(BBT )ij
λi + λj

[exp (−λi|t− s|)− exp (−λit− λjs)] (4.207)
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(b) Stationary Variance: If A has only eigenvalues with positive real part,
a stationary solution exists of the form

xs(t) =

∫ t

−∞
exp [−A(t− t′)]BdW (t′) (4.208)

We have of course
〈xs(t)〉 = 0 (4.209)

〈xs(t),xTs (s)〉 =

∫ min(t,s)

0

exp [−A(t− t′)]BBT exp [−AT (s− s′)]dt′

(4.210)
Let us define the stationary covariance matrix σ by

σ = 〈xs(t),xTs (t)〉 (4.211)

This can be evaluated by means of an algebraic equation thus:

Aσ + σAT =

∫ t

−∞
A exp [−A(t− t′)]BBT exp [−AT (t− t′)]dt′

+

∫ t

−∞
exp [−A(t− t′)]BBT exp [−AT (t− t′)]AT dt′

=

∫ t

−∞

d

dt′
{exp [−A(t− t′)]BBT exp [−AT (t− t′)]}dt′

(4.212)

Carrying out the integral, we find that the lower limit vanishes by the
assumed positivity of the eigenvalues of A and hence only the upper limit
remains, giving

Aσ + σAT = BBT (4.213)

as and algebraic equation for the stationary covariance matrix.

(c) Stationary Variance for Two Dimensions: We note that if A is a
2× 2 matrix, it satisfies the characteristic equation

A2 − (TrA)A+ (detA) = 0 (4.214)

and form (4.209) and the fact that (4.214) implies exp (−At) is a polyno-
mial of degree 1 in A, we must be able to write

σ = αBBT + β(ABBT +BBTAT ) + γABBTAT (4.215)

Using (4.214), we find (4.213) is satisfied if

α+ (TrA)β − (detA)γ = 0 (4.216)

2β(detA) + 1 = 0 (4.217)
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β + (TrA)γ = 0 (4.218)

From which we have

σ =
(detA)BBT + [A− (TrA)BBT [A− (TrA)]T

2(TrA)(detA)
(4.219)

(d) Time Correlation Matrix in the Stationary State: From the solu-
tion of (4.209), we see that if t > s,

〈xs(t),xTs (s)〉 =

∫ s

−∞
exp [−A(t− t′)]BBT exp [−AT (t− t′)]dt′

= exp [−A(t− s)]σ , t > s (4.220)

and similarly,

= σ exp [−AT (s− t)] , t < s (4.221)

This depends only on s− t, as expected of a stationary solution. Defining
then

Gs(t− s) = 〈xs(t),xTs (s)〉 (4.222)

we see (remembering σ = σT ) that

Gs(t− s) = [Gs(s− t)]T (4.223)

(e) Spectrum Matrix in Stationary State: The spectrum matrix turns
out to be rather simple. We define similarly to Section 1.5.2:

S(ω) =
1

2π

∫ ∞
−∞

e−iωτGs(τ)dτ

=
1

2π

{∫ ∞
0

exp [−(iω +A)τ ]σdτ +

∫ 0

−∞
σ exp [(−iω +AT )τ ]dτ

}
=

1

2π
[(A+ iω)−1)σ + σ(AT − iω)−1] (4.224)

Hence,

(A+ iω)S(ω)(AT − iω) =
1

2π
(σAT +Aσ) (4.225)

and using (4.213) we get

S(ω) =
1

2π
(A+ iω)−1BBT (AT − iω)−1 (4.226)

(f) Regression Theorem: The result (4.220) is also known as a regression
theorem in that it states that the time development Gs(τ) is for τ > 0
governed by the same law of time development as the mean, as in (4.203).
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It is a consequence of the Markovian linear nature of the problem. The
time derivative of the stationary correlation function is

d

dτ
[Gs(τ)]dτ =

d

dτ
〈xs(τ),xTs (0)〉dτ

= 〈[−Axs(τ)dτ +BdW(τ)],xTs (0)〉 (4.227)

Since τ > 0, the increment dW(τ) is uncorrelated with xTs (0), this means
that

d

dτ
[Gs(τ)] = −AGs(τ) (4.228)

Thus, computation of Gs(τ) requires the knowledge of Gs(0) = σ and the
time development equation of the mean. This result is similar to those of
Section 3.7.4.

4.5.7 The General Single Variable Linear Equation

(a) Homogeneous Case: We consider firstly the homogeneous case

dx = [b(t)dt+ g(t)dW (t)]x (4.229)

and using the usual Ito rules, write

y = log x (4.230)

so that

dy =
dx

x
− dx2

2x2
= b(t)dt+ g(t)dW (t)− 1

2g(t2)dt (4.231)

and integrating and inverting (4.230), we get

x(t) = x(0) exp

{∫ t

0

[
b(t′)− 1

2g(t′)2
]
dt′ +

∫ t

0

g(t′)dW (t′)

}
≡ x(0)φ(t) (4.232)

which serves to define φ(t).

We note that [using (4.162)

〈[x(t)]n〉 = 〈[x(0)]n〉
〈

exp

{
n

∫ t

0

[
b(t′)− 1

2g(t′)2
]
dt′ + n

∫ t

0

g(t′)dW (t′)

}〉
= 〈[x(0)]n〉 exp

{
n

∫ t

0

b(t′)dt′ + 1
2n(n− 1)

∫ t

0

g(t′)2dt′
}

(4.233)
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(b) Inhomogeneous Case: Now consider

dx = [a(t) + b(t)x]dt+ [f(t) + g(t)x]dW (t) (4.234)

and write
z(t) = x(t)[φ(t)]−1 (4.235)

with φ(t) as defined in (4.232) and a solution of the inhomogeneous equa-
tion (4.229). Then we write

dz = dx[φ(t)]−1 + xd[φ(t)−1] + dxd[φ(t)−1] (4.236)

Noting that d[φ(t)−1] = −dφ(t)[φ(t)]−2 + [dφ(t)]2[φ(t)]−3 and using Ito
rules, we find

dz = {[a(t)− f(t)g(t)]dt+ f(t)dW (t)}φ(t)−1 (4.237)

which is directly integrable. Hence, the solution is

x(t) = φ(t)

{
x(0) +

∫ t

0

φ(t′)−1{[a(t′)− f(t′)g(t′)]dt′ + f(t′)dW (t′)

}
(4.238)

(c) Moments and Autocorrelation: It is better to derive equations for the
moments from (4.234) rather than calculate moments and autocorrelation
directlyy from the solution (4.238).

For we have

d[x(t)n] = nx(t)n−1dx(t) + 1
2n(n− 1)x(t)n−2[dx(t)]2

= nx(t)n−1dx(t) + 1
2n(n− 1)x(t)n−2[f(t) + g(t)x(t)]2dt (4.239)

Hence,

d

dt
〈x(t)n〉 = 〈x(t)n〉

[
nb(t) + 1

2n(n− 1)g(t)2
]

+ 〈x(t)n−1〉[na(t) + n(n− 1)f(t)g(t)]

+ 〈x(t)n−2〉 12n(n− 1)f(t)2 (4.240)

These equations form a hierarchy in which the nth equation involves the
solutions of the previous two, and can be integrated successively.

4.5.8 Multivariable Linear Equations

(a) Homogeneous Case: The equation is

dx(t) =

[
B(t)dt+

∑
i

Gi(t)dWi(t)

]
x(t) (4.241)
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where B(t), Gi(t
′) are matrices. The equation is not, in general. soluble

in closed form unless the matrices B(t), Gi(t
′) commute at all times with

each other, i.e.,
Gi(t)Gj(t

′) = Gj(t
′)Gi(t)

B(t)Gi(t
′) = Gi(t

′)B(t)
B(t)B(t′) = B(t′)B(t)

 (4.242)

In this case, the solution is completely analogous to the one variable case
and we have

x(t) = Φ(t)x(0) (4.243)

with

Φ(t) = exp

{∫ t

0

[
B(t)− 1

2

∑
i

Gi(t)
2

]
dt+

∫ t

0

∑
i

Gi(t)dWi(t)

}
(4.244)

(b) Inhomogeneous Case: We can reduce the inhomogeneous case to the
homogeneous case in exactly the same way as in one dimension. Thus, we
consider

dx(t) = [A(t) +B(t)x] dt+
∑
i

[Fi(t) +Gi(t)x]dW (t) (4.245)

and write
y(t) = ψ(t)−1x(t) (4.246)

where ψ(t) is a matrix solution of the homogeneous equation (4.241). We
first have to evaluate d[ψ−1]. For any matrix M we have MM−1 = 1, so
expanding to second order, Md[M−1] + dMM−1 + dMdM−1] = 0.

Hence, dM−1] = −[M + dM ]−1dMM−1 and again to second order

dM−1] = −M−1dMM−1 +M−1dMM−1dMM−1 (4.247)

and thus, since ψ(t) satisfies the homogeneous equation,

d[ψ(t)−1] = ψ(t)−1

{[
−B(t) +

∑
i

Gi(t)
2

]
dt−

∑
i

Gi(t)dWi(t)

}
(4.248)

and, again taking differentials

dy(t) = ψ(t)−1

{[
A(t)−

∑
i

Gi(t)Fi(t)

]
dt+

∑
i

Fi(t)dWi(t)

}
(4.249)

Hence,

x(t) = ψ(t)

{
x(0) +

∫ t

0

ψ(t′)−1

{[
A(t′)−

∑
i

Gi(t
′)Fi(t

′)

]
dt′

+
∑
i

Fi(t
′)dWi(t

′)

}}
(4.250)
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This solution is not very useful for practical purposes, even when the
solution for the homogeneous equation is known, because of the difficulty
in evaluating means and correlation functions.

4.5.9 Time-Dependent Ornstein-Uhlenbeck Process

This is a particular case of the previous general linear equation which is soluble.
It is a generalization of the multivariate Ornstein-Uhlenbeck process (Section
4.5.6) to include time-dependent parameters, namely,

dx(t) = −A(t)x(t) +B(t)dW(t) (4.251)

This is clearly of the same form as (4.245) with the replacements

A(t)→ 0
B(t)→ −A(t)∑
i Fi(t)dWi(t)→ B(t)dW(t)

Gi(t)→ 0

 (4.252)

The corresponding homogeneous equation is simply the deterministic equation

dx(t) = −A(t)x(t)dt (4.253)

which is soluble provided A(t)A(t′) = A(t′)A(t) and has the solution

x(t) = ψ(t)x(0) (4.254)

with

ψ(t) = exp

[
−
∫ t

0

A(t′)dt′
]

(4.255)

Thus, applying (4.252),

x(t) = exp

[
−
∫ t

0

A(t′)dt′
]
x(0) +

∫ t

0

{
exp

[
−
∫ t

t′
A(s)ds

]}
B(t′)dW(t′)

(4.256)
This is very similar to the solution of the time-independent Ornstein-Uhlenbeck
process, as derived in Section 4.5.6, equation (4.202).

From this we have

〈x(t)〉 = exp

[
−
∫ t

0

A(t′)dt′
]
〈x(0)〉 (4.257)

〈x(t),xT (t)〉 = exp

[
−
∫ t

0

A(t′)dt′
]
〈x(0),xT (0)〉 exp

[
−
∫ t

0

A(t′)dt′
]

+

∫ t

0

dt′ exp

[
−
∫ t

t′
A(s)ds

]
B(t′)BT (t′) exp

[
−
∫ t

t′
A(s)ds

]
(4.258)

The time-dependent Ornstein-Uhlenbeck process will arise very naturally in
connection with the development of asymptotic methods in low-noise systems.
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