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Bell’s theorem is a fundamental result in quantum mechanics: it discrim-
inates between quantum mechanics and all theories where probabilities in
measurement results arise from the ignorance of pre-existing local proper-
ties. We give an extremely simple proof of Bell’s inequality: a single figure
suffices. This simplicity may be useful in the unending debate of what ex-
actly the Bell inequality means, since the hypothesis at the basis of the proof
become extremely transparent. It is also a useful didactic tool, as the Bell
inequality can be explained in a single intuitive lecture.

1 Introduction

Einstein had a dream. He believed quantum mechanics was an incomplete de-
scription of reality [1] and that its completion might explain the troublesome
fundamental probabilities of quantum mechanics as emerging from some hid-
den degrees of freedom: probabilities would arise because of our ignorance
of these “hidden variables”. His dream was that probabilities in quantum
mechanics might turn out to have the same meaning as probabilities in clas-
sical thermodynamics, where they refer to our ignorance of the microscopic
degrees of freedom (e.g. the position and velocity of each gas molecule):
he wrote, “the statistical quantum theory would, within the framework of
future physics, take an approximately analogous position to the statistical
mechanics within the framework of classical mechanics” [2].

A decade after Einstein’s death, John Bell [3, 4] shattered this dream in
the worst possible way from Einstein’s point of view [4]: any completion of
quantum mechanics with hidden variables would be incompatible with rela-
tivistic causality! The essence of Bell’s theorem is that quantum mechanical
probabilities cannot arise from the ignorance of local pre-existing variables.
In other words, if we want to assign pre-existing (but hidden) properties to
explain probabilities in quantum measurements, these properties must be
non-local. This non-locality is of the worst possible kind: an agent with ac-
cess to the non-local variables would be able to transmit information instantly
to a distant location, thus violating relativistic causality and awakening the
nastiest temporal paradoxes [5].
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Modern formulations of quantum mechanics must incorporate Bell’s result
at their core: either they refuse the idea that measurements uncover pre-
existing properties, or they must make use of non-local properties. In the
latter case, they must also introduce some censorship mechanism to pre-
vent the use of hidden variables to transmit information. An example of the
first formulation is the conventional “Copenhagen interpretation” of quan-
tum mechanics, which states that the properties arise from the interaction
between the quantum system and the measurement apparatus, they are not
pre-existing: “unperformed experiments have no results” [6]. An example of
the second formulation is the “de Broglie-Bohm interpretation” of quantum
mechanics that assumes that particle trajectories are hidden variables (they
“exist” independently of position measurements).

Bell’s result is at the core of modern quantum mechanics, as it elucidates the
theory’s precarious equilibrium with relativistic causality. It has spawned an
impressive amount of research. However, it is often ignored in basic quan-
tum mechanics courses since traditional proofs of Bell’s theorem are rather
cumbersome and often overburdened by philosophical considerations. Here
we give an extremely simple graphical proof of Mermin’s version [7, 8] of
Bell’s theorem. The simplicity of the proof is key to clarifying all the the-
orem’s assumptions, the identification of which generated a large debate in
the literature (e.g. see [9]).

2 Bell’s theorem

Let us define a “local” theory as a one where the outcomes of an experiment
on a system are independent of the actions performed on a different system
which has no causal connection with the first. For example, the temperature
of this room is independent on whether I choose to wear purple socks today.
Einstein’s relativity provides a stringent condition for causal connections: if
two events are outside their respective light cones, there cannot be any causal
connection among them.

Let us define a “counterfactual” theory [10, 11] as one whose experiments
uncover properties that are pre-existing. In other words, in a counterfactual
theory it is meaningful to assign a property to a system (e.g. the position
of an electron) independently of whether the measurement of such property
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is carried out. [Sometime this counterfactual definiteness property is also
called “realism”, but it is best to avoid such philosophically laden term to
avoid misconceptions].

Bell’s theorem can be phrased as “quantum mechanics cannot be both local
and counterfactual”. A logically equivalent way of stating it is “quantum
mechanics is either non-local or non-counterfactual”.

To prove this theorem, Bell provided an inequality (referring to correlations
of measurement results) that is satisfied by all local and counterfactual the-
ories. He then showed that quantum mechanics violates this inequality, and
hence cannot be local and counterfactual.

All experiments [12] performed to date have shown that Bell inequalities are
violated, suggesting that our world cannot be both local and counterfactual.
However, it should be noted that no experiment up to now has been able to
test Bell inequalities rigorously, because additional assumptions are required
to take care of experimental imperfections. These assumptions are all quite
reasonable, so that only conspiratorial alternatives to quantum mechanics
(where experimental imperfections are fine-tuned to the properties of the ob-
jects [13]) have yet to be ruled out. In the next couple of years the definitive
Bell inequality experiment will be performed: many research groups world-
wide are actively pursuing it.

If we want to be extremely pedantic in enumerating the hypothesis at the
basis of Bell’s theorem, we must also request

1. that our choice of which experiment to perform is independent of
the properties of the object to be measured (technically, “freedom of
choice” or “no super-determinism” [4]): e.g., if we decided to measure
the color of red objects only, we would falsely conclude that all objects
are red;

2. that future outcomes of the experiment do not influence which appara-
tus settings were previously chosen [14] (whereas clearly the apparatus
settings will influence the outcomes): a trivial causality requirement
(technically, “measurement independence”).

These two hypothesis are usually left implicit because science would be im-
possible without them.
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3 Proof of Bell’s theorem

We use the Bell inequality proposed by Preskill [8], following Mermin’s sug-
gestion [7]. Suppose we have two identical objects, namely they have the same
properties. Suppose also that these properties are predetermined (counter-
factual definiteness) and not generated by their measurement, and that the
determination of the properties of one object will not influence any property
of the other object (locality).

We will only need three properties A, B, and C that can each take two values:
“0” and “1”. For example, if the objects are coins, then A = 0 might mean
that the coin is gold and A = 1 that the coin is copper (property A,material),
B = 0means the coin is shiny and B = 1 it is dull (property B, texture), and
C = 0 means the coin is large and C = 1 it is small (property C, size).

Suppose I do not know the properties because the two coins are a gift in
two wrapped boxes: I only know the gift is two identical coins, but I do not
know whether they are two gold, shiny, small coins (A = 0,B = 0,C = 1) or
two copper, shiny, large coins (1,0,0) or two gold, dull, large coins (1,1,0),
etc. I do know that the properties “exist” (namely, they are counterfactual
and predetermined even if I cannot see them directly) and they are local
(namely, acting on one box will not change any property of the coin in the
other box: the properties refer separately to each coin). These are quite
reasonable assumptions for two coins! My ignorance of the properties is ex-
pressed through probabilities that represent either my expectation of finding
a property (Bayesian view), or the result of performing many repeated ex-
periments with boxes and coins and averaging over some possibly hidden
variable, typically indicated with the letter λ [4], that determines the prop-
erty (frequentist view) [6]. For example, I might say the gift bearer will give
me two gold coins with a 20% probability (he is stingy, but not always).

Bell’s inequality refers to the correlation among measurement outcomes of
the properties: call Psame(A,B) the probability that the properties A of
the first object and B of the second are the same: A and B are both 0
(the first coin is gold and the second is shiny) or they are both 1 (the
first is copper and the second is dull). For example, Psame(A,B) = 1/2
tells me that with 50% chance A = B (namely they are both 0 or both 1).
Since the two coins have equal counterfactual properties, this also implies
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that with 50% chance I get two gold shiny coins or two copper dull coins.
Note that the fact that the two coins have the same properties means that
Psame(A,A) = Psame(B,B) = Psame(C,C) = 1: if one is made of gold, also the
other one will be, or if one is made of copper, also the other one will be, etc.

4 Bell’s Inequality [8]

Under the conditions that three arbitrary two-valued properties A, B, C
satisfy counterfactual definiteness and locality, and that Psame(X,X) = 1
for X = A,B.C (i.e. the two objects have same properties), the following
inequality among correlations holds,

Psame(A,B) + Psame(A,C) + Psame(B,C) ≥ 1 (1)

namely, a Bell inequality. The proof of such inequality is given graphically in
Figure 1 below. The inequality basically says that the sum of the probabilities
that the two properties are the same if I consider respectively A and B, A
and C, and B and C must be larger than one. This is intuitively clear:
since the two coins have the same properties, the sum of the probabilities
that the coins are gold and shiny, copper and dull, gold and large, cop-
per and small, shiny and small, dull and large is greater than one: all the
combinations have been counted, possibly more than once. In Figure 2 [15]
the events to which the probabilities represented by the Venn diagrams of
Figure 1 refer are made explicit. This is true, of course, only if the two objects
have same counterfactual properties and the measurement of one does not
affect the outcome of the other. If we lack counterfactual properties, we
cannot infer that the first coin is shiny only because we measured the second
to be shiny, even if we know that the two coins have the same properties:
without counterfactual definiteness, we cannot even speak of the first coin’s
texture unless we measure it. Moreover, if a measurement of the second coin’s
texture can change the one of the first coin (non-locality) again we cannot
infer the first coin’s texture from a measurement of the second: even if we
know that the initial texture of the coins was the same, the measurement
on the second may change such property of the first. The “counterfactual
definiteness” hypothesis we used here can be relaxed somewhat, as shown in
the appendix.
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Figure 1: Proof of Bell inequality (1) using areas to represent probabilities.
(a) The dashed area represents the probability that property A of the first
object and B of the second are equal (both 1 or both 0): Psame(A,B). The
white area represents the probability that they are different: Pdiff(A,B).
The whole circle has area 1 = Psame(A,B) + Pdiff(A,B). (b) The gray area
represents the probability that A and C are equal, and the non-gray area
represents the probability that A and C are different. If A of the first object
is different from both B and C of the second (dotted area), then B and C
of the second object must be the same. Hence, the probability that B and
C are the same must be larger than (or equal to) the dotted area: since B is
the same for the two objects, Psame(B,C) must be larger than (or equal to)
the dotted area. (c) The quantity Psame(A,B) + Psame(A,C) + Psame(B,C)
is hence larger than (or equal to) the sum of the dashed + gray + dotted
areas, which is in turn larger than (or equal to) the full circle of area 1:
this proves the Bell inequality (1). The reasoning fails if we do not employ
counterfactual properties, for example if complementarity prevents us from
assigning values to both properties B and C of the second object. It also
fails if we employ non-local properties, for example if a measurement of B
on an object to find its value changes the value of A of the other object.
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Figure 2: Explicit depiction of the properties whose probabilities are rep-
resented by the areas of the Venn diagrams in Figure1. The properties are
represented by a triplet of numbers (A,B,C) that indicate the (counterfac-
tual, local) values of the properties A, B, and C for both objects. Note that
in the dotted area A must be different from both B and C, so that B and C
must be equal there (B and C are equal also in the intersection between the
two smaller sets, but that is irrelevant to the proof).

To prove Bell’s theorem, we now provide a quantum system that violates
the above inequality. Consider two two-level systems (qubits) in the joint
entangled state ∣Φ+⟩ = (∣00⟩+∣11⟩)/

√
2, and consider the two-valued properties

A,B, and C obtained by projecting the qubit on the states

A ∶
⎧⎪⎪⎨⎪⎪⎩

∣a0⟩ ≡ ∣0⟩
∣a1⟩ ≡ ∣1⟩

B ∶
⎧⎪⎪⎨⎪⎪⎩

∣b0⟩ ≡ 1
2 ∣0⟩ +

√
3
2 ∣1⟩

∣b1⟩ ≡
√
3
2 ∣0⟩ − 1

2 ∣1⟩
C ∶
⎧⎪⎪⎨⎪⎪⎩

∣c0⟩ ≡ 1
2 ∣0⟩ −

√
3
2 ∣1⟩

∣c1⟩ ≡
√
3
2 ∣0⟩ + 1

2 ∣1⟩
(2)

where it is easy to check that ∣b1⟩ is orthogonal to ∣b0⟩ and ∣c1⟩ is orthogonal
to ∣c0⟩. It is also easy to check that

∣Φ+⟩ = ∣a0a0⟩ + ∣a1a1⟩√
2

= ∣b0b0⟩ + ∣b1b1⟩√
2

= ∣c0c0⟩ + ∣c1c1⟩√
2

(3)

so that the two qubits have the same properties, namely Psame(A,A) =
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Psame(B,B) = Psame(C,C) = 1: the measurement of the same property on
both qubits always yields the same outcome, both 0 or both 1.

We are now ready to calculate the quantity on the left of Bell’s inequality
(1). Just write the state ∣Φ+⟩ in terms of the eigenstates of the properties A,
B, and C. E.g., it is easy to find the value of Psame(A,B) if we write

∣Φ+⟩ = ∣a0⟩ (∣b0⟩ +
√

3 ∣b1⟩) + ∣a1⟩ (
√

3 ∣b0⟩ − ∣b1⟩)
2
√

2

In fact, the probability of obtaining zero for both properties is the square
modulus of the coefficient of ∣a0⟩ ∣b0⟩, namely, ∣1/2

√
2∣2 = 1/8, while the prob-

ability of obtaining one for both is the square modulus of the coefficient of
∣a1⟩ ∣b1⟩, again 1/8. Hence, Psame(A,B) = 1/8 + 1/8 = 1/4. Analogously, we
find that Psame(A,C) = 1/4 and that Psame(B,C) = 1/4 by expressing the
state as

∣Φ+⟩ = ∣a0⟩ (∣c0⟩ +
√

3 ∣c1⟩) − ∣a1⟩ (
√

3 ∣c0⟩ − ∣c1⟩)
2
√

2

∣Φ+⟩ = (∣b0⟩ +
√

3 ∣b1⟩)(∣c0⟩ +
√

3 ∣c1⟩) − (
√

3 ∣b0⟩ − ∣b1⟩)(
√

3 ∣c0⟩ − ∣c1⟩)
4
√

2

Summarizing, we have found

Psame(A,B) + Psame(A,C) + Psame(B,C) = 3
4 < 1 (4)

which violates Bell’s inequality (1).

This proves Bell’s theorem: all local counterfactual theories must satisfy
inequality (1) which is violated by quantum mechanics. Then, quantum
mechanics cannot be a local counterfactual theory: it must either be non-
counterfactual (as in the Copenhagen interpretation) or non-local (as in the
de Broglie-Bohm interpretation).

5 Reference

[1 ] A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical de-
scription of physical reality be considered complete?, Phys. Rev. 47,
777 (1935).

8



[2 ] A. Einstein, in A. Einstein, Philosopher-Scientist, ed. by P.A. Schilpp,
Library of Living Philosophers, Evanston (1949), pg. 671.

[3 ] J. S. Bell, On the Einstein Podolsky Rosen Paradox, Physics 1, 195
(1964); Bell J. S., On the problem of hidden variables in quantum me-
chanics, Rev. Mod. Phys. 38, 447 (1966).

[4 ] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cam-
bridge Univ. Press, Cambridge, 1987).

[5 ] “Bell’s telephone” in R. Werner, Quantum Information Theory - an
Invitation, Springer Tracts in Modern Physics 173, 14, (2001), available
from http://arxiv.org/pdf/quant-ph/0101061

[6 ] A. Peres, Unperformed experiments have no results, Am. J. Phys. 46,
745 (1978).

[7 ] N.D. Mermin, Bringing home the atomic world: Quantum, mysteries
for anybody, Am. J. Phys. 49, 940 (1981).

[8 ] J. Preskill, lecture notes at http://www.theory.caltech.edu/people/preskill/ph229.

[9 ] G. Auletta, Foundations and Interpretation of Quantum Mechanics
(World Scientific, Singapore, 2000).

[10 ] A. Peres, Existence of “Free will” as a problem of Physics, Found.
Phys. 16, 573 (1986).

[11 ] H.P. Stapp, S-Matrix Interpretation of Quantum Theory, Phys. Rev.
D 3, 1303 (1971); Bell’s theorem and world process, Nuovo Cimento
29B, 270 (1975); Are superluminal connections necessary?, Nuovo Ci-
mento 40B, 191 (1977); Locality and reality, Found. Phys. 10, 767
(1980); W. De Baere, On Some Consequences of the Breakdown of
Counterfactual Definiteness in the Quantum World, Fortschr. Phys.
46, 843 (1998).

[12 ] A. Aspect, P. Grangier, G. Roger, Experimental Realization of Einstein-
Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s
Inequalities, Phys. Rev. Lett. 49, 91 (1982).

[13 ] P.M. Pearle, Hidden-Variable Example Based upon Data Rejection,
Phys. Rev. D 2, 1418 (1970).

9



[14 ] Y. Aharonov, A. Botero, M. Scully, Locality or non-locality in quantum
mechanics: Hidden variables without “spooky action-at-a-distance”, Z.
Natureforsh. A56, 5 (2001).

[15 ] G. Ghirardi, On a recent proof of nonlocality without inequalities,
Found. Phys. 41, 1309 (2011), also at arXiv:1101.5252.

6 APPENDIX: Hidden variable models

In the spirit of the original proof of Bell’s theorem [4, 15], one can relax
the “counterfactual definiteness” hypothesis somewhat. In fact, instead of
supposing that there are some pre-existing properties of the objects (counter-
factual definiteness), we can suppose that the properties are not completely
pre-determined, but that a hidden variable λ exists and the properties have a
probability distribution that is a function of λ. The “hidden variable model”
hypothesis is weaker than counterfactual definiteness: if the properties are
pre-existing, then their probability distribution in λ is trivial: there is a
value of λ that determines uniquely the property, e.g., a value λ0 such that
the probability Pi(a = 0∣A,λ0) = 1 and hence Pi(a = 1∣A,λ0) = 0, namely it is
certain that property A for object i has the value a = 0 for λ = λ0.

Following [15], we now show that a local, hidden variable model together
with the request that the two systems can have identical properties, implies
counterfactual definiteness. This means that we can replace “counter-factual
definiteness” with “hidden variable model” in the proof of Bell theorem,
which, with these relaxed hypothesis states that “no local hidden variable
model can rep- resent quantum mechanics”.

Call P (x,x′∣X,X ′, λ) the probability distribution (due to the hidden vari-
able model) that the measurement of the property X on the first object
gives result x and the measurement of X ′ on the second gives x′, where
X,X ′ = A,B,C denote the three two-valued properties A, B, and C. The
locality means that the probability distributions of the properties of the two
objects factorize, namely P (x,x′∣X,X ′, λ) = P1(x∣X,λ)P2(x′∣X ′, λ): the fac-
torization of the probability means that the probability of seeing some value
x of the property X for object 1 is independent of which property X ′ one
chooses to measure and what result x′ one obtains on object 2 (and vice
versa).

10



If two objects have the same property, then Psame(X,X) = 1, namely the
probability that a measurement of the same property X on the two objects
gives opposite results (say, x = 1 and x′ = 0) is null. In formulas,

∑
λ

P (x = 1, x′ = 0∣X,X,λ)p(λ) = 0 (5)

where the ∑λ emphasizes that we are averaging over the hidden variables
(since they are hidden): p(λ) is the probability distribution of the hidden
variable λ in the initial (joint) state of the two systems. Note that in Eq. (5),
we are measuring the same property X on both objects but we are looking
for the probability of obtaining opposite results x′ ≠ x. As argued above,
locality implies factorization of the probability, namely Eq. (5) becomes

∑
λ

P1(x = 1∣X,λ)P2(x′ = 0∣X,λ)p(λ) = 0 (6)

Since P1, P2, and p are probabilities, they must be positive. Consider the
values of λ for which p(λ) > 0: the above sum can be null only if either P1

or P2 is null. Namely if P1(x = 1∣X,λ) = 0 (which implies that X has the
predetermined value x = 0) or if P2(x′ = 0∣X,λ) = 0 (which means that X
has predetermined value x′ = 1): we remind that counterfactual definiteness
means that Pi(x∣X,λ) is either 0 or 1: it is equal to 0 if the property X
of the ith object does not have the value x, and it is equal to 1 if it does
have the value x. We have, hence, shown that Eq. (6) implies counterfactual
definiteness for property X: its value is predetermined for one of the two
objects.

Summarizing, if we assume that a local hidden variable model admits two
objects that have the same values of their properties, then we can prove
counterfactual definiteness. This means that we can relax the “counterfactual
definiteness” hypothesis in the proof of the Bell theorem, replacing it with
the “existence of a hidden variable model”, so that the Bell theorem takes
the meaning that “no local hidden variable model can describe quantum
mechanics” [the hypothesis that two objects can have the same values for
the properties is implicit in the fact that such objects exist in quantum
mechanics, see Eq. (3)]. Namely, if we want to use a hidden variable model
to describe quantum mechanics (as in the de Broglie-Bohm interpretation),
such model must be non-local. Otherwise we cannot use a hidden variable
model (as in the Copenhagen interpretation).
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