
Wolfram Mathematica ® Tutorial Collection

ADVANCED NUMERICAL
INTEGRATION IN MATHEMATICA



For use with Wolfram Mathematica® 7.0 and later. 

For the latest updates and corrections to this manual: 
visit reference.wolfram.com 

For information on additional copies of this documentation: 
visit the Customer Service website at www.wolfram.com/services/customerservice 
or email Customer Service at info@wolfram.com 

Comments on this manual are welcomed at: 
comments@wolfram.com 

Printed in the United States of America. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc. 

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright 
holder. 

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described 
in this document, including without limitation such aspects of the system as its code, structure, sequence, 
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless 
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement 
of the copyright. 

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express, 

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation, 

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of 

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet 

your requirements or that the operation of the Software will be uninterrupted or error free. As such, 

Wolfram does not recommend the use of the software described in this document for applications in 

which errors or omissions could threaten life, injury or significant loss. 

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM, 
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of 
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple 
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not 
associated with Mathematica Policy Research, Inc. 



Contents

NIntegrate Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

NIntegrate Integration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Adaptive Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Global Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Local Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

"GlobalAdaptive" versus "LocalAdaptive" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Singularity Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Double-Exponential Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

"Trapezoidal" Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Oscillatory Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Finite Region Oscillatory Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Extrapolating Oscillatory Strategy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Double-Exponential Oscillatory Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Crude Monte Carlo and Quasi Monte Carlo Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Global Adaptive Monte Carlo and Quasi Monte Carlo Strategies . . . . . . . . . . . . . . . . . . 94

"MultiPeriodic" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Preprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
"SymbolicPreprocessing" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



NIntegrate Integration Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Integration Rule Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
"TrapezoidalRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
"NewtonCotesRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
"GaussBerntsenEspelidRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
"GaussKronrodRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
"LobattoKronrodRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
"ClenshawCurtisRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
"MultiPanelRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
"CartesianRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
"MultiDimensionalRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
"MonteCarloRule" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Comparisons of the Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Examples of Pathological Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Index of Technical Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

NIntegrate References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



NIntegrate Introduction

Overview

The Mathematica  function NIntegrate  is  a  general  numerical  integrator.  It  can handle  a  wide

range of one-dimensional and multidimensional integrals. 

NIntegrate@ f@x1,x2,…,xnD,8x1,a1,b1<,8x2,a2,b2<,…,8xn,an,bn<D

find a numerical integral for the function f over the region 
@a1, b2D µ @a2, b2D µ … µ @an, bnD

Finding a numerical integral of a function over a region. 

In general, NIntegrate estimates the integral through sampling of the integrand value over the

integration  region.  The  various  numerical  integration  methods  prescribe  the  initial  sampling

steps and how the sampling evolves.

NIntegrate  uses  algorithms  called  "integration  strategies"  that  attempt  to  compute  integral

estimates that satisfy user-specified precision or accuracy goals. The integration strategies use

"integration rules" that compute integral estimates using weighted sums.

This numerically computes the integral Ÿ0
1 1

x
„ x.

In[25]:= NIntegrateB 1

x
,8x,0,1<F

Out[25]= 2.

NIntegrate  uses symbolic  preprocessing that  simplifies  integrals  with  piecewise functions and

even or  odd  functions.  Part  of  the  symbolic  preprocessing  is  the  detection  of  one-dimensional

oscillatory integrals of the types NIntegrate can handle efficiently.

This integrates a piecewise function over the interval @0, 2D.

In[26]:= NIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<F

Out[26]= 4.



This integrates a highly oscillatory function over the interval @2, 3D.

In[27]:= NIntegrateAHx - 2L2 Sin@4000 xD, 8x, 2, 3<E

Out[27]= -0.000158625

This is a plot of the previous oscillatory integrand over 1
50

 of the integration region.

In[28]:= PlotBHx - 2L2 Sin@4000 xD, :x, 2 +
2

50
, 2 +

3

50
>F

Out[28]=
2.045 2.050 2.055 2.060

-0.003

-0.002

-0.001

0.001

0.002

0.003

This integrates a piecewise combination of a piecewise function and an oscillatory function.

In[29]:= NIntegrateB

PiecewiseB::
1

Abs@x - 1D
, x < 2>, 9Hx - 2L2 Sin@4000 xD, 2 < x < 3=>F, 8x, 0, 3<F

Out[29]= 3.99984

NIntegrate  oscillatory  algorithms are only  for  one-dimensional  integrals.  The oscillatory  algo-

rithms for finite regions are different from the oscillatory algorithms for infinite regions.

One-dimensional numerical integration is much simpler, and better understood, than multidimen-

sional  numerical  integration.  This  is  the  reason  a  distinction  between  the  two  is  made.  All 

NIntegrate  strategies  except  the  oscillatory  strategies  can  be  used  for  multidimensional

integration.
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Here is a two-dimensional function: a cone with base in the square @-1, 1D×@-1, 1D.

In[30]:= Plot3DBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<, PlotRange Ø AllF

Out[30]=

Here is the integral of the cone function.

In[7]:= NIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<F

Out[7]= 1.0472

Here are the sampling points used by NIntegrate. Note that the sampling points are only in a 
quarter of the integration region.

In[8]:= GraphicsB:PointSize@0.01D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<,

8y, -1, 1<, EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DDF>,

Axes -> True, PlotRange Ø 88-1, 1<, 8-1, 1<<F

Out[8]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Here are the sampling points used by NIntegrate without symbolic preprocessing. (The 
reason that NIntegrate gives the slwcon message is because no symbolic preprocessing is 
applied.) Note that the sampling points are in the whole integration region and that they are 
denser around the circumference of the cone base and around the cone apex.

In[9]:=

GraphicsB:PointSize@0.005D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<,

Method -> 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor ß

Sow@8x, y<DFF@@2, 1DDF>, Axes Ø True, AxesOrigin Ø 8-1, -1<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[9]=

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

NIntegrate  has  several  ways  to  deal  with  singular  integrands.  The  deterministic  adaptive

strategies "GlobalAdaptive" and "LocalAdaptive" use singularity handling techniques (based

on variable transformations) to speed up the convergence of the integration process. The strat-

egy "DoubleExponential"  employs trapezoidal  quadrature with  a  special  variable  transforma-

tion  on  the  integrand.  This  rule-transformation  combination  achieves  optimal  convergence  for

integrands analytic on an open set in the complex plane containing the interval of integration.

The  strategy  "DuffyCoordinates"  simplifies  or  eliminates  certain  types  of  singularities  in

multidimensional integrals. 

Here is a one-dimensional integration with singularity handling.

In[2]:= NIntegrateB
1

x
, 8x, 0, 1<, PrecisionGoal Ø 10F êê Timing

Out[2]= 80.006999, 2.<

Without singularity handling the previous integral is computed more slowly.
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Without singularity handling the previous integral is computed more slowly.

In[3]:= NIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"GlobalAdaptive", "SingularityDepth" Ø ¶<,

MaxRecursion Ø 100, PrecisionGoal Ø 10F êê Timing

Out[3]= 80.008999, 2.<

For  multidimensional  integrands  that  have  certain  spherical  symmetry  the  strategy

"DuffyCoordinates" converges quite fast.

Here is a "DuffyCoordinates" integration.

In[12]:= NIntegrateB
1

x2 + y2 + z2
, 8x, 0, 1<,

8y, 0, 1<, 8z, 0, 1<, Method Ø "DuffyCoordinates"F êê Timing

Out[12]= 80.031, 1.19004<

Here is a computation of the previous integral with the default settings; it is approximately 5 
times slower.

In[13]:= NIntegrateB
1

x2 + y2 + z2
, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<F êê Timing

Out[13]= 80.203, 1.19004<

The  "Trapezoidal"  strategy  gives  optimal  convergence  for  analytic  periodic  integrands  when

the integration interval is exactly one period.

Here is a calculation of an integral computed with the trapezoidal strategy. The result is com-
pared with the exact value. The result computed with "Trapezoidal" is obtained faster and it 
is more precise than the one with default NIntegrate settings.

In[5]:= exact = IntegrateBCos@20 xD4, :x, 0, 2
p

20
>F

Out[5]=
3 p

80

In[37]:= resTrap = NIntegrateBCos@20 xD4, :x, 0, 2
p

20
>, PrecisionGoal Ø 150,

WorkingPrecision Ø 200, Method Ø "Trapezoidal"F; êê Timing

Out[37]= 80.015, Null<

In[40]:= Abs@exact - resTrapD

Out[40]= 0.µ10-201
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Here is a (slower) computation of the same integral but with the default Method settings for 
NIntegrate.

In[38]:= resDef = NIntegrateBCos@20 xD4, :x, 0, 2
p

20
>,

PrecisionGoal Ø 150, WorkingPrecision Ø 200F; êê Timing

Out[38]= 80.219, Null<

In[39]:= Abs@exact - resDefD

Out[39]= 0.µ10-201

For  multidimensional  integrals,  or  in  cases  when  only  a  rough  integral  estimate  is  needed,

Monte  Carlo  methods  are  useful.  NIntegrate  has  both  crude  and  adaptive  Monte  Carlo  and

quasi Monte Carlo strategies.

Here is a multidimensional integral done quickly with a Monte Carlo algorithm. 

In[19]:= X = Array@x, 30D;

NIntegrateB
1

TotalüX
, Evaluate@Sequence üü Map@8Ò, 0, 1< &, XDD,

Method Ø "AdaptiveMonteCarlo", PrecisionGoal Ø 3F

Out[20]= 0.0674103

Design

Features

The principal features of the NIntegrate framework are:

† Code reuse (common code base)

† Object orientation (method property specification and communication)

† Data hiding

† Separation of method initialization phase and runtime computation

† Hierarchical and reentrant numerical methods

† Type- and precision-dynamic methods

† User extensibility and prototyping through plug-in capabilities

† Specialized data structures
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Strategies, Rules, and Preprocessors

NIntegrate  strategies can be divided into two general groups: deterministic and Monte Carlo.

Each group can be divided further into adaptive, nonadaptive, and specialized strategies. Adap-

tive  strategies  try  to  improve  the  integral  estimate  by  concentrating  their  efforts  around  the

problematic areas. Non-adaptive strategies try to improve the integral estimate just by increas-

ing the number of sampling points in the integration region. Specialized strategies are made for

certain types of integrals (e.g., a product of an oscillatory and a non-oscillatory function).

Strategies Deterministic Monte Carlo

adaptive "GlobalAdaptive" "AdaptiveMonteCarlo"
"LocalAdaptive" "AdaptiveQuasiMonteCarlo"

nonadaptive "DoubleExponential" "MonteCarlo"
"Trapezoidal"

specialized "DuffyCoordinates"
"Oscillatory"

"PrincipalValue"

NIntegrate built-in integration strategies.

The strategies "GlobalAdaptive" and "LocalAdaptive" can have specifications of what integra-

tion rules to use.

Here is an example of "GlobalAdaptive" with an integration rule specification.

In[21]:= NIntegrateB
1

x
LogB

1

x
F, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", Method Ø "ClenshawCurtisRule"<F

Out[21]= 4.

Advanced Numerical Integration in Mathematica     7



Both  "GlobalAdaptive"  and  "LocalAdaptive"  adaptive  strategies  can  be  used  with  one-

dimensional and multidimensional integration rules. 

 rules

one-dimensional "BooleRule"
"ClenshawCurtisRule"

"GaussBerntsenEspelidRule"
"GaussKronrodRule"
"LobattoKronrodRule"
"LobattoPeanoRule"
"MultiPanelRule"
"NewtonCotesRule"
"PattersonRule"

"SimpsonThreeEightsRule"
"TrapezoidalRule"

multidimensional "CartesianRule"
"MultiDimensionalRule"

Built-in integration rules that can be used by "GlobalAdaptive" and "LocalAdaptive".

The capabilities of all strategies are extended through integral preprocessing. The preprocessors

can be seen as strategies that delegate integration to other strategies (preprocessors included). 

Here is an example of the preprocessing of an integrand which is even with respect to each of 
its variables.

In[22]:= NIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<,

Method -> 8"EvenOddSubdivision", Method Ø "LocalAdaptive"<F

Out[22]= 1.0472
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Here are the sampling points of the previous integration. If no preprocessing had been done, 
the plot would have been in the region @-1, 1D×@-1, 1D with a symmetry along both the x 
axis and the y axis. 

In[23]:= GraphicsB:PointSize@0.005D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<,

8y, -1, 1<, Method -> 8"EvenOddSubdivision", Method Ø "LocalAdaptive"<,
EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DDF>,

Axes Ø True, PlotRange Ø 88-1, 1<, 8-1, 1<<F

Out[23]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

 preprocessors

"SymbolicPiecewiseSubdivision"
"EvenOddSubdivision"
"OscillatorySelection"
"UnitCubeRescaling"

NIntegrate preprocessors.

User Extensibility

Built-in methods can be used as building blocks for the efficient construction of special-purpose

integrators. User-defined integration rules and strategies can also be added.

Advanced Numerical Integration in Mathematica     9



NIntegrate Integration Strategies

Introduction

An integration strategy is an algorithm that attempts to compute integral estimates that satisfy

user-specified precision or accuracy goals.

An integration strategy prescribes how to manage and create new elements of a set of disjoint

subregions  of  the  initial  integral  region.  Each  subregion  might  have  its  own  integrand  and

integration rule associated with it. The integral estimate is the sum of the integral estimates of

all  subregions.  Integration  strategies  use  integration  rules  to  compute  the  subregion  integral

estimates.  An integration rule  samples  the integrand with  a  set  of  points,  called abscissas  (or

sampling points).

To improve an integral estimate the integrand should be sampled at additional points. There are

two  principal  approaches:  (i)  adaptive  strategies  try  to  identify  the  problematic  integration

areas  and  concentrate  the  computational  efforts  (i.e.,  sampling  points)  on  them;  (ii)  non-

adaptive  strategies  increase  the  number  of  sampling  points  over  the  whole  region  in  order  to

compute a higher degree integration rule estimate that reuses the integrand evaluations of the

former integral estimate.

Both  approaches  can  use  symbolic  preprocessing  and  variable  transformation  or  sequence

summation acceleration to achieve faster convergence. 

In the following integration, the symbolic piecewise preprocessor in NIntegrate recognizes 
the integrand as a piecewise function, and the integration is done over regions for which x ¥ 1 

with the integrand 1

x-1
 and regions for which x § 1 with the integrand 1

1-x
.

In[31]:= NIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<F

Out[31]= 4.
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Here is a plot of all sampling points used in the integration. The integrand is sampled at the x 
coordinates in the order of the y coordinates (in the plot). It can be seen that the sampling 
points are concentrated near the singularity point 1. The patterns formed by the sampling 
points at the upper part of the plot differ from the patterns of the lower part of the plot because 
a singularity handler is applied. 

In[10]:= points =

ReapBNIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<, EvaluationMonitor :> Sow@xDFF@@2, 1DD;

Graphics@8PointSize@0.006D,
Point êü NüTranspose@8points, Range@Length@pointsDD<D<,

PlotRange Ø All, AspectRatio -> 1, Axes -> TrueD

Out[11]=

The  section  "Adaptive  Strategies"  gives  a  general  description  of  the  adaptive  strategies.  The

default  (main)  strategy  of  NIntegrate  is  global  adaptive,  which  is  explained  in  the  section

"Global  Adaptive  Strategy".  Complementary  to  it  is  the  local  adaptive  strategy,  which  is

explained  in  the  section  "Local  Adaptive  Strategy".  Both  adaptive  strategies  use  singularity

handling mechanisms, which are explained in the section "Singularity Handling". 

The Monte Carlo strategies are explained in the sections "Crude Monte Carlo and Quasi  Monte

Carlo Strategies" and "Global Adaptive Monte Carlo and Quasi Monte Carlo Strategies".

The  strategies  NIntegrate  uses  for  special  types  of  integrals  (or  integrands)  are  explained in

the  corresponding  sections:  "Duffy's  coordinates  strategy",  "Oscillatory  strategies",  and

"Cauchy principal value integration".
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Here is a table with links to descriptions of built-in integration strategies of NIntegrate.

strategies deterministic Monte Carlo

adaptive "GlobalAdaptive" "AdaptiveMonteCarlo"

"LocalAdaptive" "AdaptiveQuasiMonteCarlo"

non-adaptive "DoubleExponential
" "MonteCarlo"

"Trapezoidal"

specialized "DuffyCoordinates"

"Oscillatory"

"PrincipalValue"

Adaptive Strategies

Adaptive strategies try to concentrate computational efforts where the integrand is discontinu-

ous or has some other kind of  singularity.  Adaptive strategies differ  by the way they partition

the  integration  region  into  disjoint  subregions.  The  integral  estimates  of  each  subregion  con-

tribute to the total integral estimate.

The basic  assumption  for  the  adaptive  strategies  is  that  for  given integration  rule  R  and inte-

grand  f ,  if  an  integration  region  V  is  partitioned  into,  say,  two  disjoint  subregions  V1  and  V2 ,

V = V1 ‹ V2, V1 › V2 = 0, then the sum of the integral estimates of R over V1 and V2 is closer to the

actual integral ŸV f „ x. In other words,

(1)ŸV f „ x - RV H f L > ŸV f „ x - RV1 H f L + RV2 H f L ,

and (1)  will  imply that  the sum of  the error  estimates for  RV1 H f L  and RV2 H f L  is  smaller  than the

error estimate of RV H f L.

Hence an adaptive strategy has these components [MalcSimp75]:

(i) an integration rule to compute the integral and error estimates over a region;

(ii) a method for deciding which elements of a set of regions 8Vi<i=1
n  to partition/subdivide;

(iii) stopping criteria for deciding when to terminate the adaptive strategy algorithm. 
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Global Adaptive Strategy

A  global  adaptive  strategy  reaches  the  required  precision  and  accuracy  goals  of  the  integral

estimate by recursive bisection of the subregion with the largest error estimate into two halves,

and computes integral and error estimates for each half. 

The global adaptive algorithm for NIntegrate is specified with the Method option value 
"GlobalAdaptive".

In[32]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "GlobalAdaptive"D

Out[32]= 2.

option name default value

Method Automatic integration rule used to compute integral 
and error estimates over each subregion

"SingularityDepth" Automatic number of recursive bisections before 
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"GlobalAdaptive" options.

"GlobalAdaptive"  is  the  default  integration  strategy  of  NIntegrate.  It  is  used  for  both  one-

dimensional  and  multidimensional  integration.  "GlobalAdaptive"  works  with  both  Cartesian

product rules and fully symmetric multidimensional rules.

"GlobalAdaptive"  uses  a  data  structure  called  a  "heap"  to  keep  the  set  of  regions  partially

sorted, with the largest error region being at the top of the heap. In the main loop of the algo-

rithm the largest  error  region is  bisected in  the dimension that  is  estimated to  be responsible

for most of its error.

It can be said that the algorithm produces the leaves of a binary tree, the nodes of which are

the regions. The children of a node/region are its subregions obtained after bisection.

After  a  bisection  of  a  region  and  the  subsequent  integration  over  the  new  (sub)regions,  new

global  integral  and  global  error  estimates  are  computed,  which  are  sums  of  the  integral  and

error estimates of all regions that are leaves of the binary tree.
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Each region has a record of how many bisections are made per dimension in order to produce

it. When a region has been produced through too many bisections a singularity flattening algo-

rithm is applied to it; see Singularity Handling.

"GlobalAdaptive" stops if the following expression is true:

(2)globalError § globalIntegral 10-pg Í globalError § 10-ag,

where pg and ag are precision and accuracy goals.

The strategy also stops when the number of recursive bisections of a region exceeds a certain

number  (see  MinRecursion  and  MaxRecursion),  or  when  the  global  integration  error  oscillates

too much (see "MaxErrorIncreases").

Theoretical  and  practical  evidence  show  that  the  global  adaptive  strategies  have  in  general

better performance than the local adaptive strategies [MalcSimp75][KrUeb98].

MinRecursion and MaxRecursion

The  minimal  and  maximal  depths  of  the  recursive  bisections  are  given  by  the  values  of  the

options MinRecursion and MaxRecursion.

If  for  any  subregion  the  number  of  bisections  in  any  of  the  dimensions  is  greater  than

MaxRecursion then the integration by "GlobalAdaptive" stops. 

Setting MinRecursion to a positive integer forces recursive bisection of the integration regions

before the integrand is ever evaluated. This can be done to ensure that a narrow spike in the

integrand is not missed. (See Tricking the error estimator.)

For multidimensional integration an effort is made to bisect in each dimension for each level of

recursion in MinRecursion.

"MaxErrorIncreases"

Since  (1)  is  expected  to  hold  in  "GlobalAdaptive"  the  global  error  is  expected  to  decrease

after  the  bisection  of  the  largest  error  region and the integration over  its  new parts.  In  other

words the global error is expected to be more or less monotonically decreasing with respect to

the number of integration steps.
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The  global  error  might  oscillate  due  to  phase  errors  of  the  integration  rules.  Still,  the  global

error is assumed at some point to start decreasing monotonically.

Below are listed cases in which this assumption might become false.

(i) The actual integral is zero.

Zero integral.

In[3]:= NIntegrate@Sin@xD, 8x, 0, 2 p<, MaxRecursion -> 100D

Out[3]= 0.

(ii) The specified working precision is not dense enough for the specified precision goal.

The working precision is not dense enough.

In[33]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
MaxRecursion Ø 100, PrecisionGoal -> 17D êê InputForm

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one
of the following: the difference between the values of PrecisionGoal and WorkingPrecision
is too small; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function;
or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
2.0000000000000018` and 2.1241892251243344`*^-16 for the integral and error estimates. à

Out[33]//InputForm= 2.0000000000000018

(iii) The integration is badly conditioned [KrUeb98]. For example, the reason might be that the

integrand is defined by complicated expressions or in terms of approximate solutions of mathe-

matical problems (such as differential equations or nonlinear algebraic equations).

The  strategy  "GlobalAdaptive"  keeps  track  of  the  number  of  times  the  total  error  estimate

has not decreased after the bisection of the region with the largest error estimate. When that

number  becomes  bigger  than  the  value  of  the  "GlobalAdaptive"  option

"MaxErrorIncreases", the integration stops with a message (NIntegrate::eincr).

The  default  value  of  "MaxErrorIncreases"  is  400  for  one-dimensional  integrals  and  2000  for

multidimensional integrals.
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The following integration invokes the message NIntegrate::eincr, with the default value of 
"MaxErrorIncreases".

In[1]:= NIntegrateASinAx2 + xE, 8x, 0, 80 Pi<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one
of the following: the difference between the values of PrecisionGoal and WorkingPrecision
is too small; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function;
or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
2.972314689667426` and 9.140875003915308` for the integral and error estimates. à

Out[1]= 0.

Increasing "MaxErrorIncreases" silences the NIntegrate::eincr message.

In[2]:= res = NIntegrateASinAx2 + xE, 8x, 0, 80 Pi<,
Method Ø 8"GlobalAdaptive", "MaxErrorIncreases" Ø 10000<, MaxRecursion Ø 20E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[2]= 0.533246

The result compares well with the exact value.

In[3]:= exact = IntegrateASinAx2 + xE, 8x, 0, 80 Pi<E;
Abs@res - exactD

Out[4]= 6.84008µ10-13

Example Implementation of a Global Adaptive Strategy

This computes Gauss|Kronrod abscissas, weights, and error weights.

In[15]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This is a definition of a function that applies the integration rule with abscissas and weights 
computed to the function f  over the interval 8a, b<.

In[16]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D
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This is a definition of a simple global adaptive algorithm that finds the integral of the function f  
over the interval 8aArg, bArg< with relative error tol.

In[17]:= IStrategyGlobalAdaptive@f_, 8aArg_, bArg_<, tol_D :=
ModuleB8t, integral, error, regions, r1, r2, a = aArg, b = bArg, c<,

8integral, error< = IRuleEstimate@f, 8a, b<D;
H* boundaries, integral, error *L
regions = 888a, b<, integral, error<<;

WhileBerror >= tol * integral,
H* splitting of the region with the largest error *L

8a, b< = regionsP1, 1T; c =
a + b

2
;

H* integration of the left region *L
8integral, error< = IRuleEstimate@f, 8a, c<D;
r1 = 88a, c<, integral, error<;

H* integration of the right region *L
8integral, error< = IRuleEstimate@f, 8c, b<D;
r2 = 88c, b<, integral, error<;

H* sort the regions: the largest error one is the first *L
regions = Join@8r1, r2<, Rest@regionsDD;
regions = Sort@regions, Ò1P3T > Ò2P3T &D;

H* global integral and error *L
8integral, error< = Total@Map@Rest@Ò1D &, regionsDD;

F;

integral
F;

This defines an integrand.

In[18]:= f@x_D := 1 ê Sqrt@xD

The global adaptive strategy defined earlier gives the following result.

In[19]:= res = IStrategyGlobalAdaptiveAf, 80, 1<, 10-8E

Out[19]= 2.

Here is the exact result.

In[20]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[20]= 2

The relative error is within the prescribed tolerance.

In[21]:= Abs@res - exactD ê exact

Out[21]= 2.63409µ10-9
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Local Adaptive Strategy

In  order  to  reach  the  required  precision  and  accuracy  goals  of  the  integral  estimate,  a  local

adaptive  strategy  recursively  partitions  the  subregion  into  smaller  disjoint  subregions  and

computes integral and error estimates for each of them. 

The local adaptive algorithm for NIntegrate is specified with the Method option value 
"LocalAdaptive".

In[5]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "LocalAdaptive"D

Out[5]= 2.

option name default value

Method Automatic integration rule used to compute integral 
and error estimates over the subregions

"SingularityDepth" Automatic number of recursive bisections before 
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"Partitioning" Automatic how to partition the regions in order to 
improve their integral estimate

"InitialEstimateRelaxation
"

True attempt to adjust the magnitude of the 
initial integral estimate in order to avoid 
unnecessary computation

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"LocalAdaptive" options.

Like  "GlobalAdaptive",  "LocalAdaptive"  can  be  used for  both  one-dimensional  and multidi-

mensional  integration.  "LocalAdaptive"  works  with  both  Cartesian  product  rules  and  fully

symmetric multidimensional rules.

The  "LocalAdaptive"  strategy  has  an  initialization  routine  and  a  Recursive  Routine  (RR).  RR

produces the leaves of a tree, the nodes of which are regions. The children of a node/region are

subregions obtained by its partition. RR takes a region as an argument and returns an integral

estimate for it.
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RR uses an integration rule to compute integral and error estimates of the region argument. If

the  error  estimate  is  too  big,  RR  calls  itself  on  the  region's  disjoint  subregions  obtained  by

partition.  The  sum  of  the  integral  estimates  returned  from  these  recursive  calls  becomes  the

region's integral estimate. 

RR makes the decision to continue the recursion knowing only the integral and error estimates

of the region at which it is executed. (This is why the strategy is called "local adaptive.")

The initialization  routine  computes  an  initial  estimation  of  the  integral  over  the  initial  regions.

This  initial  integral  estimate  is  used  in  the  stopping  criteria  of  RR:  if  the  error  of  a  region  is

significant compared to the initial  integral  estimate then that region is partitioned into disjoint

regions and RR is called on them; if the error is insignificant the recursion stops.

The error estimate of a region, regionError, is considered insignificant if

(3)initialIntegral + regionError == initialIntegral.

The stopping criteria (3) will  compute the integral to the working precision. Since you want to

compute  the  integral  estimate  to  user-specified  precision  and  accuracy  goals,  the  following

stopping criteria is used:

(4)
integralEst = MinAinitialIntegral 10-pg ë eps, 10-ag ë epsE;
integralEst + regionError == integralEst,

where eps is the smallest number such that 1 + eps ≠ 1 at the working precision, and pg and ag

are the user-specified precision and accuracy goals.

The recursive routine of "LocalAdaptive" stops the recursion if:

1. there are no numbers of the specified working precision between region's boundaries;

2. the maximum recursion level is reached;

3. the error of the region is insignificant, i.e., the criteria (4) is true.

MinRecursion and MaxRecursion

The  options  MinRecursion  and  MaxRecursion  for  "LocalAdaptive"  have  the  same  meaning

and functionality as they do for "GlobalAdaptive". See MinRecursion and MaxRecursion.
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"InitialEstimateRelaxation"

After  the  first  recursion  is  finished a  better  integral  estimate,  I2,  will  be  available.  That  better

estimate is compared to the two integral estimates, I1 and I1 e that the integration rule has used

to give the integral estimate (I1) and the error estimate ( I1 - I1 e ) for the initial step. If

r =
I2 - I1

I2 - I1 e
< 1,

then  the  integral  estimate  integralEst  in  (4)  can  be  increased~that  is,  the  condition  (4)  is

relaxed~with the formula

integralEst = integralEst ê r,

since r < 1  means that  the rule's  integral  estimate is  more accurate than what the rule's  error

estimate predicts.

"Partitioning"

"LocalAdaptive"  has  the  option  "Partitioning"  to  specify  how to  partition  the  regions  that

do  not  satisfy  (4).  For  one-dimensional  integrals,  if  "Partitioning"  is  set  to  Automatic,

"LocalAdaptive" partitions a region between the sampling points of the (rescaled) integration

rule. In this way, if the integration rule is of closed type, every integration value can be reused.

If "Partitioning" is given a list of integers 8p1, p2, …, pn< with length n that equals the number

of integral variables, each dimension i of the integration region is divided into pi  equal parts. If

"Partitioning" is given an integer p, all dimensions are divided into p equal parts.
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Consider the following function.

In[4]:= PlotB
1

10 J
1

2
- xN

2
+ 1

, 8x, 0, 1<F

Out[4]=

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

These are the sampling points used by "LocalAdaptive" with its automatic region partition-
ing. It can be seen that the sampling points of each recursion level are between the sampling 
points of the previous recursion level.

In[1]:= sampledPoints = ReapBNIntegrateB
1

10 J
1

2
- xN

2
+ 1

, 8x, 0, 1<,

Method Ø 8"LocalAdaptive"<, EvaluationMonitor ß Sow@xDFF@@2, 1DD;
ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[2]=

0.2 0.4 0.6 0.8 1.0

50

100

150

These are the sampling points used by "LocalAdaptive" integration which partitions the 
regions with large error into three subregions. The patterns formed clearly show the three next 
recursion level subregions of each region of the first and second recursion levels. 
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In[5]:= sampledPoints = ReapBNIntegrateB
1

10 J
1

2
- xN

2
+ 1

,

8x, 0, 1<, Method Ø 8"LocalAdaptive", "Partitioning" Ø 3<,
EvaluationMonitor ß Sow@xDFF@@2, 1DD;

ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[6]=
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Multidimensional example of using the "Partitioning" option. To make the plot, the sam-
pling points of the first region to be integrated, @0, 1Dµ @0, 1D, are removed.

In[7]:= sampledPoints =
ReapANIntegrateAHx + yL6, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"LocalAdaptive",

"Partitioning" Ø 83, 4<<, EvaluationMonitor ß Sow@8x, y<DEE@@2, 1DD;
sampledPoints = Partition@sampledPoints, Length@sampledPointsD ê H3 * 4 + 1LD;
sampledPoints = Flatten@Rest@sampledPointsD, 1D;
ListPlot@sampledPoints, AspectRatio Ø 1, GridLines -> 8Range@3D ê 3, Range@4D ê 4<D

Out[10]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Reuse of Integrand Values

With its default partitioning settings for one-dimensional integrals "LocalAdaptive" reuses the

integrand values  at  the end points  of  the sub-intervals  that  have integral  and error  estimates

that do not satisfy (4).
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Sampling points of the integration of Ÿ0
1x6 „ x by "LocalAdaptive". The variable rulePoints 

determines the number of points in the integration rule used by "LocalAdaptive".
In[13]:= rulePoints = 5;

sampledPoints =
ReapANIntegrateAx6, 8x, 0, 1<, Method Ø 8"LocalAdaptive", "SymbolicProcessing" Ø

0, Method Ø 8"ClenshawCurtisRule", "Points" Ø rulePoints<,
"SingularityHandler" Ø None<, EvaluationMonitor ß Sow@xDEE@@2, 1DD;

Length@sampledPointsD
ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[15]= 65

Out[16]=
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The percent of reused points in the integration.

In[17]:= totalRulePoints = 2 rulePoints - 1;
totalPoints = HtotalRulePoints - 1L totalRulePoints + totalRulePoints;
totalPoints - Length@sampledPointsD

totalPoints
êê N

Out[19]= 0.197531

Example Implementation of a Local Adaptive Strategy

This computes Clenshaw|Curtis abscissas, weights, and error weights.

In[33]:= 8absc, weights, errweights< =
NIntegrate`ClenshawCurtisRuleData@6, MachinePrecisionD;

This is a definition of a function that applies the integration rule, with the abscissas and weights 
computed in the previous example, to the function f  over the interval 8a, b<.

In[34]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error, scaledAbsc<,
scaledAbsc = Rescale@absc, 80, 1<, 8a, b<D;
8integral, error< = Hb - aL

TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8scaledAbsc, weights, errweights<D;
8integral, Abs@errorD, scaledAbsc<

D
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This defines a simple local adaptive algorithm that finds the integral of the function f  over the 
interval 8aArg, bArg< with relative error tol.

In[35]:= LocalAdaptiveRecurrence@f_, 8a_, b_<, integralEst_D :=
Module@8regions, integral, error, scaledAbsc<,

8integral, error, scaledAbsc< = IRuleEstimate@f, 8a, b<D;

If@N@integralEst + errorD == N@integralEstD,
H* Stopping criteria is satisfied *L
integral,
H* ELSE call itself recursively *L
regions = Partition@scaledAbsc, 2, 1D;
Total@LocalAdaptiveRecurrence@f, Ò1, integralEstD & êü regionsD

D
D;

IStrategyLocalAdaptive@f_, 8aArg_, bArg_<, tol_D :=
Module@8integral, error, a = aArg, b = bArg, d = 1, dummy<,

If@a > b, 8a, b< = 8b, a<; d = -1D;

H* initial integral estimate *L
8integral, error, dummy< = IRuleEstimate@f, 8a, b<D;

d * LocalAdaptiveRecurrence@f, 8a, b<, d * integral * tol ê $MachineEpsilonD
D;

This defines a function.

In[37]:= f@x_D := Sqrt@xD * Sin@xD

The local adaptive strategy gives the result.

In[38]:= res = IStrategyLocalAdaptiveAf, 80, 8 p<, 10-8E

Out[38]= -4.38857

This is the exact result.

In[39]:= exact = Integrate@f@xD, 8x, 0, 8 p<D

Out[39]=
p

2
H-4 + FresnelC@4DL

The relative error is within the prescribed tolerance.

In[40]:= Abs@res - exactD ê exact

Out[40]= -2.03056µ10-11
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"GlobalAdaptive" versus "LocalAdaptive"

In general the global adaptive strategy has better performance than the local adaptive one. In

some cases though the local adaptive strategy is more robust and/or gives better performance. 

There are two main differences between "GlobalAdaptive" and "LocalAdaptive":

1.  "GlobalAdaptive"  stops  when  the  sum  of  the  errors  of  all  regions  satisfies  the  precision

goal, while "LocalAdaptive" stops when the error of each region is small enough compared to

an estimate of the integral. 

2.  To  improve  the  integral  estimate  "GlobalAdaptive"  bisects  the  region  with  largest  error,

while "LocalAdaptive" partitions all regions the error for which is not small enough. 

For  multidimensional  integrals  "GlobalAdaptive"  is  much  faster  because  "LocalAdaptive"

does partitioning along each axis, so the number of regions can explode combinatorically.

Why  and  how  global  adaptive  strategy  is  faster  for  one-dimensional  smooth  integrands  is

proved (and explained) in [MalcSimp75].

When "LocalAdaptive" is faster and performs better than "GlobalAdaptive", it is because the

precision-goal-stopping  criteria  and  partitioning  strategy  of  "LocalAdaptive"  are  more  suited

for  the integrand's nature.  Another factor is  the ability  of  "LocalAdaptive"  to reuse the inte-

gral  values of  all  points already sampled. "GlobalAdaptive"  has the ability to reuse very few

integral  values  (at  most  3  per  rule  application,  0  for  the  default  one-dimensional  rule,  the

Gauss|Kronrod rule).

The  following  subsection  demonstrates  the  performance  differences  between

"GlobalAdaptive" and "LocalAdaptive".

"GlobalAdaptive" Is Generally Better than "LocalAdaptive"

The table that follows, with timing ratios and numbers of  integrand evaluations, demonstrates

that "GlobalAdaptive"  is  better  than "LocalAdaptive"  for  the most common cases.  All  inte-

grals considered are one-dimensional  over @0, 1D,  because (i)  for multidimensional  integrals the

performance  differences  should  be  expected  to  deepen,  since  "LocalAdaptive"  partitions  the

regions  along  each  axis,  and  (ii)  one-dimensional  integrals  over  different  ranges  can  be

rescaled to be over @0, 1D.
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Here are the definitions of some functions, precision goals, number of integrations, and the 
integration rule. The variable integrationRule can be changed in order to compare the 
profiling runs with the same integration rule. The last function is derived from ‰-x sinHxL by the 

variable change xØ-1 + 1
1-x

 that transforms @0, 1L into @0, ¶L.

In[70]:= funcs = : x ,
1

x
,
Sin@200 xD

x
, Log@xD, x26,

1

104 J
1

2
- xN

2
+ 1

, -
‰
1-

1

1-x SinA1 -
1

1-x
E

H1 - xL2
>;

precs = 86, 8, 10, 12, 14<;
n = 10; H* number of integrations to determine the timing *L
integrationRule = Automatic;

In[74]:= FRangesToCube@88x, 0, ¶<<D

Out[74]= ::x Ø -1 +
1

1 - x
>,

1

H1 - xL2
>

Exact integral values. All integrals are over @0, 1D.
In[75]:= exactvals = Integrate@Ò, 8x, 0, 1<D & êü funcs;

"GlobalAdaptive" timings.

In[76]:= gatimings =
Map@FirstüTiming@Do@NIntegrate@Ò@@1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD,

Method Ø 8"GlobalAdaptive", "SymbolicProcessing" Ø 0,
Method Ø integrationRule, "SingularityHandler" Ø None<,

MaxRecursion Ø 200D, 8n<DD &, Outer@List, funcs, precs, 1D, 82<D;

"LocalAdaptive" timings.

In[77]:= latimings =
Map@FirstüTiming@Do@NIntegrate@Ò@@1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD,

Method Ø 8"LocalAdaptive", "SymbolicProcessing" Ø 0,
Method Ø integrationRule, "SingularityHandler" Ø None<,

MaxRecursion Ø 200D, 8n<DD &, Outer@List, funcs, precs, 1D, 82<D;

"GlobalAdaptive" function evaluations.

In[78]:= ganfevals =
Map@Hk = 0; res = NIntegrate@Ò@@1, 1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD, Method Ø

8"GlobalAdaptive", "SymbolicProcessing" Ø 0, Method Ø integrationRule,
"SingularityHandler" Ø None<, MaxRecursion Ø 200,

EvaluationMonitor ß k++D; 8k, Abs@res - Ò@@1, 2DDD ê Abs@Ò@@1, 2DDD<L &,
Outer@List, Transpose@8funcs, exactvals<D, precs, 1D, 82<D;

"LocalAdaptive" function evaluations.

In[79]:= lanfevals =
Map@Hk = 0; res = NIntegrate@Ò@@1, 1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD, Method Ø

8"LocalAdaptive", "SymbolicProcessing" Ø 0, Method Ø integrationRule,
"SingularityHandler" Ø None<, MaxRecursion Ø 200,

EvaluationMonitor ß k++D; 8k, Abs@res - Ò@@1, 2DDD ê Abs@Ò@@1, 2DDD<L &,
Outer@List, Transpose@8funcs, exactvals<D, precs, 1D, 82<D;
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Table with the timing ratios and integrand evaluations.

In[80]:= GridBPrependBTransposeü8funcs, ColumnForm êü Table@precs, 8Length@funcsD<D,
ColumnForm êü Hlatimings ê gatimingsL, ColumnForm@First êü ÒD & êü ganfevals,
ColumnForm@First êü ÒD & êü lanfevals<,

Style@Ò, "SmallText"D & êü :"functions", "precision goals",

"
LocalAdaptive timings

GlobalAdaptive timings
", "GlobalAdaptive\nfunction\nevaluations",

"LocalAdaptive\nfunction\nevaluations">F, Frame Ø AllF

Out[80]=

functions precision goals LocalAdaptive timings

GlobalAdaptive timings
GlobalAdaptive
function
evaluations

LocalAdaptive
function
evaluations

x 6
8
10
12
14

0.916655
1.28947
0.916675
1.79999
2.30768

165
253
407
649
1023

121
289
569
1017
1969

1

x
6
8
10
12
14

1.18185
1.55555
1.94999
2.25424
2.8324

715
1045
1683
2651
4125

568
1184
2416
4376
8632

Sin@200 xD

x
6
8
10
12
14

2.45784
2.95364
3.97817
4.95302
5.92579

1595
3047
4807
6237
11913

3032
7064
14736
24144
53768

Log@xD 6
8
10
12
14

20.5385
22.3438
19.8297
9.18835
6.21505

341
495
781
1243
1925

9080
9080
9080
9080
9080

x26 6
8
10
12
14

2.56254
5.76456
5.09996
5.60002
9.80017

77
121
165
297
407

177
737
1353
2137
2697

1

1+10000 K
1

2
-xO

2
6
8
10
12
14

1.74996
1.72977
2.17773
3.35385
4.8646

297
495
649
1089
1705

513
737
1297
3201
5329

- ‰
1-

1

1-x SinB1 -
1

1-x
F ì H1 - xL2 6

8
10
12
14

1.80001
2.24996
4.51424
4.1915
7.31431

165
231
363
583
1001

288
512
1184
1632
4376
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Table with the errors of the integrations. Both "GlobalAdaptive" and "LocalAdaptive" 
reach the required precision goals.

In[81]:= Grid@Prepend@Transposeü8funcs, ColumnForm êü Table@precs, 8Length@funcsD<D,
ColumnForm@Ò@@2DD & êü ÒD & êü ganfevals,
ColumnForm@Ò@@2DD & êü ÒD & êü lanfevals<, Style@Ò, "SmallText"D & êü

8"functions", "precision goals", "GlobalAdaptive\nrelative errors",
"LocalAdaptive\nrelative errors"<D, Frame Ø AllD

Out[81]=

functions precision goals GlobalAdaptive
relative errors

LocalAdaptive
relative errors

x 6
8
10
12
14

3.59747µ10-8

5.62106µ10-10

3.10635µ10-12

1.81521µ10-14

9.99201µ10-16

1.82143µ10-8

1.35204µ10-10

1.00403µ10-12

7.49401µ10-15

1.66533µ10-16

1

x
6
8
10
12
14

4.76822µ10-7

2.63409µ10-9

1.02884µ10-11

5.56222µ10-14

1.11022µ10-15

2.16468µ10-7

1.60735µ10-9

1.19349µ10-11

4.52083µ10-13

3.21965µ10-15

Sin@200 xD

x
6
8
10
12
14

1.35856µ10-8

7.50499µ10-11

1.46188µ10-13

6.11798µ10-15

8.04997µ10-16

1.55299µ10-9

1.13674µ10-11

8.51687µ10-14

1.288µ10-15

1.77099µ10-15

Log@xD 6
8
10
12
14

9.6888µ10-8

7.56936µ10-10

5.91283µ10-12

2.23155µ10-14

6.66134µ10-16

0.
0.
0.
0.
0.

x26 6
8
10
12
14

5.80785µ10-15

5.6205µ10-15

1.31145µ10-15

1.31145µ10-15

1.31145µ10-15

1.90696µ10-11

4.68375µ10-14

0.
0.
0.

1

1+10000 K
1

2
-xO

2
6
8
10
12
14

1.78976µ10-15

1.90162µ10-15

1.34232µ10-15

1.34232µ10-15

1.45418µ10-15

5.1618µ10-11

7.94206µ10-14

2.2372µ10-16

1.1186µ10-16

2.2372µ10-16

-
‰
1-

1

1-x SinB1-
1

1-x
F

H1-xL2
6
8
10
12
14

1.24141µ10-10

1.77636µ10-15

1.77636µ10-15

1.77636µ10-15

1.11022µ10-15

1.47526µ10-12

1.83453µ10-12

1.8463µ10-12

0.
0.
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Singularity Handling

The adaptive strategies of NIntegrate speed up their convergence through variable transforma-

tions at  the integration region boundaries and user-specified singular  points  or  manifolds.  The

adaptive strategies also ignore the integrand evaluation results at singular points.

Singularity specification is discussed in "User-specified Singularities".

Multidimensional  singularity  handling  with  variable  transformations  should  be  used  with  cau-

tion; see "IMT Multidimensional Singularity Handling". Coordinate change for a multidimensional

integral  can  simplify  or  eliminate  singularities;  see  "Duffy's  Coordinates  for  Multidimensional

Singularity Handling".

For details about how NIntegrate ignores singularities see "Ignoring the Singularity".

The  computation  of  Cauchy  principal  value  integrals  is  described  in  "Cauchy  Principal  Value

Integration".

User-Specified Singularities

Point Singularities

If it  is known where the singularities occur, they can be specified in the ranges of integration,

or through the option Exclusions.

Here is an example of an integral that has two singular points at p
6
 and p

3
.

In[58]:= NIntegrateB
1

Jx -
p

6
N

1

Jx -
p

3
N

, :x, 0,
p

6
,

p

3
,

p

2
>F

Out[58]= 3.87444µ10-8 - 3.14159 Â

Here is an example of a two-dimensional integral with a singular point at H1, 1L.

In[59]:= NIntegrateALogAH1 - xL2 + H1 - yL2E, 8x, 0, 1, 2<, 8y, 0, 1, 2<E

Out[59]= -2.94423
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Here is an example of an integral that has two singular points at p
6
 and p

3
 specified with the 

Exclusions option.

In[60]:= NIntegrateB
1

Jx -
p

6
N

1

Jx -
p

3
N

, :x, 0,
p

2
>, Exclusions Ø :

p

6
,

p

3
>F

Out[60]= 3.87444µ10-8 - 3.14159 Â

Here is an example of a two-dimensional integral with a singular point at H1, 1L specified with 
the Exclusions option.

In[61]:= NIntegrateALogAH1 - xL2 + H1 - yL2E, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø 881, 1<<E

Out[61]= -2.94423

Curve, Surface, and Hypersurface Singularities

Singularities  over  curves,  surfaces,  or  hypersurfaces  in  general  can  be  specified  through  the

option Exclusions  with their equations. Such singularities, generally, cannot be specified using

variable ranges. 

This two-dimensional function is singular along the curve x2 + y2 = 1.

In[62]:= Plot3DALog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E

Out[62]=

Using Exclusions the integral is quickly calculated.

In[12]:= NIntegrateALog@H1 - Hx^2 + y^2LL^2D,
8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E êê Timing

Out[12]= 80.33295, 1.28132<
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NIntegrate will reach convergence much more slowly if no singularity specification is given.

In[35]:= NIntegrate@Log@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<D êê Timing

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 2000 times. The global error

is expected to decrease monotonically after a number of integrand evaluations. Suspect
one of the following: the working precision is insufficient for the specified precision
goal; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function; or
the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
1.2814579311938816` and 0.0003423677128377028` for the integral and error estimates. à

Out[35]= 81.43478, 1.28146<

Here is an example of a case in which a singular curve can be specified with the variable 
ranges. If x œ @0, 2D and y œ @0, 2D this would not be possible~see the following example.

In[10]:= NIntegrateBLog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 1<, :y, 0, 1 - x2 , 1>F

Out[10]= -2.33614

Example Implementation of Curve, Surface, and Hypersurface 
Singularity Handling

If the curve, surface, or hypersurface on which the singularities occur is known in implicit form

(i.e., it can be described as a single equation) the function Boole  can be used to form integra-

tion regions that have the singular curves, surfaces, or hypersurfaces as boundaries. 

This two-dimensional function has singular points along the curve x2 + y2 = 1.

In[66]:= Plot3DALog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E

Out[66]=
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Using Boole the integral is calculated quickly.

In[9]:= NIntegrate@Log@H1 - Hx^2 + y^2LL^2D * Boole@x^2 + y^2 < 1D, 8x, 0, 2<, 8y, 0, 2<D +
NIntegrate@Log@H1 - Hx^2 + y^2LL^2D * Boole@x^2 + y^2 > 1D,
8x, 0, 2<, 8y, 0, 2<D êê Timing

Out[9]= 80.295955, 1.28132<

This two-dimensional function has singular points along the curve x + H1 - yL2 = 1.

In[68]:= Plot3DBLogBI1 - Ix + H1 - yL2MM2F, 8x, -2, 2<, 8y, -1, 3<, Exclusions Ø x + H1 - yL2 ã 1F

Out[68]=

Again, using Boole the integral is calculated quickly.

In[8]:= NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 < 1D,
8x, -2, 2<, 8y, -1, 3<, PrecisionGoal Ø 4D +

NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 > 1D,
8x, -2, 2<, 8y, -1, 3<, PrecisionGoal Ø 4D êê Timing

Out[8]= 80.432933, -2.22243<

32     Advanced Numerical Integration in Mathematica



This is how the sampling points of the integration look. 

In[6]:= gr1 = 8Red, Point êü Nü
Reap@NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 < 1D, 8x, -2, 2<,

8y, -1, 3<, PrecisionGoal Ø 4, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD<;
gr2 = 8Blue, Point êü NüReap@NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D *

Boole@x + H1 - yL^2 > 1D, 8x, -2, 2<, 8y, -1, 3<,
PrecisionGoal Ø 4, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD<;

Graphics@8PointSize@0.006D, gr1, gr2<, Axes Ø True, AxesOrigin Ø 8-2, -1<D

Out[7]=

-1 0 1 2

0

1

2

3

Here is a function that takes a singular curve, surface, or hypersurface specification and uses 
the function Boole to make integration regions that have the singularities on their boundaries. 

In[1]:= SingularManifoldNIntegrate@f_, ranges___, Equal@eq_, n_?NumericQD, opts___D :=
NIntegrate@f * Boole@eq < nD, ranges, optsD +
NIntegrate@f * Boole@eq > nD, ranges, optsD

This defines a three-dimensional function.

In[2]:= f@x_, y_, z_D := Log@HH1 - Hx + H1 - yL^2 + H1 - zL^2LLL^2D;

Here is the integral of a three-dimensional function with singular points along the surface 
x + H1 - yL2 + H1 - zL2 = 1. 

In[3]:= SingularManifoldNIntegrate@f@x, y, zD, 8x, -2, 2<, 8y, -1, 3<,
8z, -1, 1<, x + H1 - yL^2 + H1 - zL^2 ã 1, PrecisionGoal Ø 3D

Out[3]= 21.7471 - 4.892636912996955µ10-339 Â
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These are the sampling points of the integration. 

In[4]:= gr1 = 8Red,
Point@Re@ÒDD & êü Reap@NIntegrate@f@x, y, zD * Boole@x + H1 - yL^2 + H1 - zL^2 < 1D,

8x, -2, 2<, 8y, -1, 3<, 8z, -1, 1<, PrecisionGoal Ø 3,
EvaluationMonitor :> Sow@8x, y, z<DDD@@2, 1DD<;

gr2 = 8Blue, Point@Re@ÒDD & êü Reap@NIntegrate@f@x, y, zD *
Boole@x + H1 - yL^2 + H1 - zL^2 > 1D, 8x, -2, 2<, 8y, -1, 3<, 8z, -1, 1<,

PrecisionGoal Ø 3, EvaluationMonitor :> Sow@8x, y, z<DDD@@2, 1DD<;
Graphics3D@8PointSize@0.006D, gr1, gr2<, Axes -> TrueD

Out[5]=

-2

-1

0

1

2 -1

0

1

2

3

-1.0

-0.5

0.0

0.5

1.0

"SingularityHandler" and "SingularityDepth"

Adaptive  strategies  improve  the  integral  estimate  by  region  bisection.  If  an  adaptive  strategy

subregion is obtained by the number of bisections specified by the option "SingularityDepth",

it is decided that subregion has a singularity. Then the integration over that subregion is done

with the singularity handler specified by "SingularityHandler".

option name default value

"SingularityDepth" Automatic number of recursive bisections before 
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"GlobalAdaptive" and "LocalAdaptive" singularity handling options.

If  there is  an integrable singularity  at  the boundary of  a  given region of  integration,  bisection

could  easily  recur  to  MaxRecursion  before  convergence  occurs.  To  deal  with  these  situations

the  adaptive  strategies  of  NIntegrate  use  variable  transformations  (IMT,
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"DoubleExponential", SidiSin) to speed up the integration convergence, or a region transfor-

mation  (Duffy's  coordinates)  that  relaxes  the  order  of  the  singularity.  The  theoretical  back-

ground of  the  variable  transformation  singularity  handlers  is  given by  the  Euler|Maclaurin  for-

mula [DavRab84].

Use of the IMT Variable Transformation

The  IMT  variable  transformation  is  the  variable  transformation  in  a  quadrature  method  pro-

posed  by  Iri,  Moriguti,  and  Takasawa,  called  in  the  literature  the  IMT  rule

[DavRab84][IriMorTak70]. The IMT rule is based upon the idea of transforming the independent

variable in such a way that all derivatives of the new integrand vanish at the end points of the

integration interval.  A trapezoidal  rule is  then applied to the new integrand, and under proper

conditions high accuracy of the result might be attained [IriMorTak70][Mori74]. 

Here is a numerical integration that uses the IMT variable transformation for singularity 
handling.

In[13]:= NIntegrateB
1

Sqrt@1 - xD
, 8x, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø 8IMT, "TuningParameters" Ø 810, 2<<<F

Out[13]= 2.

option name default value

"TuningParameters" 10 a pair of numbers 8a, p< that are the 
tuning parameters in the IMT transforma-

tion formula a ‰
1- 1

tp ; if only a number a is 
given, it is interpreted as 8a, 1<

IMT singularity handler option.

Adaptive  strategies  of  NIntegrate  employ  only  the  transformation  of  the  IMT  rule.  With  the

decision  that  a  region  might  have  a  singularity,  the  IMT  transformation  is  applied  to  its  inte-

grand. The integration continues, though not with a trapezoidal rule, but with the same integra-

tion  rule  used  before  the  transformation.  (Singularity  handling  with  "DoubleExponential"

switches to a trapezoidal integration rule.)

Advanced Numerical Integration in Mathematica     35



Also,  adaptive strategies of  NIntegrate  use a variant  of  the original  IMT transformation,  with

the transformed integrand vanishing only at one of the ends.

The IMT transformation ja,pHtL : H0, 1DØ H0, 1D, a > 0, p > 0, is defined.

In[14]:= j@a_, p_, t_D := a ExpB1 -
1

tp
F;

j@t_D := j@1, 1, tD

The parameters a and p are called tuning parameters [MurIri82]. 

The limit of the derivative of the IMT transformation is 0.

In[16]:= Limit@D@j@a, p, tD, tD, t Ø 0, Assumptions Ø 8a > 0, p > 0<D

Out[16]= 0

Here is the plot of the IMT transformation.

In[17]:= Plot@j@tD, 8t, 0, 1<, AxesOrigin -> 80, -0.02<,
PlotRange Ø All, AspectRatio Ø AutomaticD

Out[17]=

0.2 0.4 0.6 0.8 1.0
0.0

0.2
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0.6

0.8

1.0

From the graph above follows that the transformed sampling points are much denser around 0.

This  means  that  if  the  integrand  is  singular  at  0  it  will  be  sampled  more  effectively,  since  a

larger part of the integration rule sampling points will  contribute large integrand values to the

integration rule's integral estimate.
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Since for any given working precision the numbers around 0 are much denser than the numbers 
around 1, after a region bisection the adaptive strategies of NIntegrate reverse the bisection 
variable of the subregion that has the right end of the bisected interval. This can be seen from 
the following plot.

In[18]:= pnts = ReapBNIntegrateB
1

x
, 8x, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø 8IMT, "TuningParameters" Ø 1<<,
PrecisionGoal Ø 2, EvaluationMonitor ß Sow@xDFFP2, 1T;

ListPlot@Transpose@8pnts, Range@Length@pntsDD<DD

Out[19]=

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

No other singularity handler is applied to the subregions of a region to which the IMT variable

transformation has been applied.

IMT Transformation by Example

Consider the function 1

x
 over H0, 1D that has a singularity at 0.

In[29]:= f@x_D := 1 ê Sqrt@xD

In[30]:= Plot@f@xD, 8x, 0, 1<D

Out[30]=

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

3.5

4.0
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Assume the integration is done with "GlobalAdaptive", with singularity handler IMT and 
singularity depth 4. After four bisections "GlobalAdaptive" will have a region with bound-
aries 80, 1 ê16< that contains the singular end point. For that region the IMT variable transforma-
tion will change its boundaries to 80, 1< and its integrand to the following.

In[31]:= 8a, b< = 80, 1 ê 16<;
f@Rescale@j@tD, 80, 1<, 8a, b<DD D@Rescale@j@tD, 80, 1<, 8a, b<D, tD

Out[32]=
‰
1-

1

t

4 t2

Here is the plot of the new integrand.

In[33]:= 8a, b< = 80, 1 ê 16<;
Plot@f@Rescale@j@tD, 80, 1<, 8a, b<DD D@Rescale@j@tD, 80, 1<, 8a, b<D, tD êê

Evaluate, 8t, 0, 1<, AxesOrigin -> 80, -0.02<, PlotRange Ø AllD

Out[34]=

0.2 0.4 0.6 0.8 1.0
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The singularity is smashed!

Some  of  the  sampling  points,  though,  become  too  close  to  the  singular  end,  and  therefore

special care should be taken for sampling points that coincide with the singular point because of

the  IMT  transformation.  NIntegrate  ignores  evaluations  at  singular  points;  see  "Ignoring  the

Singularity".

For example, consider the sampling points and weights of the Gauss|Kronrod rule.

In[35]:= 8absc, weights, errweight< = NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

The Gauss|Kronrod sampling points for the region 80, 1 ê16< and the derivatives of the rescaling 
follow.

In[36]:= abscGK = RescaleBÒ1, 80, 1<, :0,
1

16
>F & êü absc

Out[36]= 80.000497332, 0.00293188, 0.00768229, 0.0144228, 0.0225115,
0.03125, 0.0399885, 0.0480772, 0.0548177, 0.0595681, 0.0620027<
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In[37]:= derivativesGK = DBRescaleBt, 80, 1<, :0,
1

16
>F, tF ê. t Ø Ò & êü absc

Out[37]= :
1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
>

Here is the integral estimate.

In[38]:= Hf@abscGKD derivativesGKL.weights

Out[38]= 0.484375

With the IMT transformation, these are the sampling points and derivatives.

In[39]:= abscGKIMT = RescaleBj@Ò1D, 80, 1<, :0,
1

16
>F & êü

NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD@@1DD

Out[39]= 94.48942µ10-56, 9.37893µ10-11, 0.0000497657, 0.00222946, 0.0105784,
0.0229925, 0.0355954, 0.0463014, 0.0543271, 0.0594983, 0.0620007=

In[40]:= derivativesGKIMT = DBRescaleBj@tD, 80, 1<, :0,
1

16
>F, tF ê. t Ø Ò & êü

NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD@@1DD

Out[40]= 97.09017µ10-52, 4.26208µ10-8, 0.00329389, 0.0418657, 0.0815397,
0.0919699, 0.0869529, 0.0782486, 0.0706212, 0.0654993, 0.0629993=

Here is the integral estimate with the IMT transformation.

In[41]:= Hf@abscGKIMTD derivativesGKIMTL.weights

Out[41]= 0.500562

The estimate calculated with the IMT variable transformation is much closer to the exact value.

In[42]:= IntegrateB
1

x
, :x, 0,

1

16
>F

Out[42]=
1

2

Use of Double-Exponential Quadrature

When adaptive strategies use the IMT variable transformation they do not change the integra-

tion rule on the IMT-transformed regions. In contrast to this you can use both a variable trans-

formation and a different integration rule on the regions considered to have singularity. (This is
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more  in  the  spirit  of  the  IMT  rule  [DavRab84].)  This  is  exactly  what  happens  when  double-

exponential quadrature is used~double-exponential quadrature uses the trapezoidal rule.

NIntegrate  can use double-exponential quadrature for singularity handling only for one-dimen-

sional integration.

Here is a numerical integration that uses double-exponential quadrature for singularity handling.

In[103]:= NIntegrateB
1

Sqrt@1 - xD
, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DoubleExponential"<F

Out[103]= 2.

IMT versus "DoubleExponential" versus No Singularity Handling 
for One-Dimensional Integrals

Both  singularity  handlers  (IMT  and  "DoubleExponential")  are  applied  to  regions  that  are

obtained through too many bisections (as specified by "SingularityDepth"). 

The  main  difference  between  them  is  that  IMT  does  not  change  the  integration  rule  used  to

compute integral estimates on the region it is applied to~IMT is only a variable transformation.

On  the  other  hand,  "DoubleExponential"  uses  both  variable  transformation  and  a  different

integration rule~the trapezoidal rule~to compute integral estimates on the region it is applied

to.  In  other  words,  the  singularity  handler  "DoubleExponential"  delegates  the  integration  to

the double-exponential quadrature as described in Double-Exponential Strategy.

As  a  consequence,  a  region to  which the IMT  singularity  handler  is  applied  is  still  going to  be

subject  to  bisection  by the adaptive  integration strategy.  Therefore,  until  the  precision  goal  is

reached the  integrand evaluations  done before  the  last  bisection  will  be  thrown away.  On the

other hand, a region to which the "DoubleExponential"  singularity handler is applied will  not

be bisected. The trapezoidal rule quadrature used by "DoubleExponential" will  compute inte-

gral  estimates  over  the  region  with  an  increasing  number  of  sampling  points  at  each  step,

completely reusing the integrand evaluations of the sampling points from the previous steps.

So, if the integrand is "very" analytic (i.e., no rapid or sudden changes of the integrand and its

derivatives  wrt  the  integration  variable)  over  the  regions  with  end  point  singularity,  the

"DoubleExponential"  singularity  handler  is  going  to  be  much  faster  than  the  IMT  singularity
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handler.  In  the  cases  where  the  integrand  is  not  analytic  in  the  region  given  to  the

"DoubleExponential"  singularity  handler,  or  the  double  transformation  of  the  integrand  con-

verges too slowly, it is better to switch to the IMT singularity handler. This is done if the option

"SingularityHandler" is set to Automatic.

Following  are  tables  that  compare  the  IMT,  "DoubleExponential",  and  Automatic  singularity

handlers applied at different depths of bisection.

This loads a package that defines the profiling function NIntegrateProfile that gives the 
number of sampling points and the time needed by a numerical integration command.

In[17]:= Needs@"Integration`NIntegrateUtilities`"D;

Table for a "very" analytical integrand 1

x
 that the "DoubleExponential" singularity handler 

easily computes.
In[34]:= exact = 2;

tbl = t = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfileBNIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 100FF;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD< & êü

88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference from", "the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[36]//TableForm=

SingularityDepth Difference from
the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 9.53644µ10-7 715 0.0044994

IMT 1 1.06581µ10-14 88 0.0025996

DoubleExponential 1 3.10862µ10-15 65 0.0020997

IMT 4 6.21725µ10-15 154 0.0028996

DoubleEponential 4 3.10862µ10-15 132 0.0024996

Automatic 4 3.10862µ10-15 132 0.0022996

Table for an integrand, 70

104 Jx-
1

32
N
2
+
1

16

, that does not have a singularity and has a nearly discontinu-

ous derivative (i.e., it is not "very" analytical). The Automatic singularity handler starts with 
"DoubleExponential" and then switches to IMT.
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In[37]:= f@x_D :=
70

104 Jx -
1

32
N
2
+

1

16

;

exact = Integrate@f@xD, 8x, 0, 1<D;
tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfile@NIntegrate@f@xD, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",
"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 100, PrecisionGoal Ø 8DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference", "from the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[40]//TableForm=

SingularityDepth Difference
from the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 1.95399µ10-14 495 0.0038994

IMT 1 1.42109µ10-14 528 0.006699

DoubleExponential 1 7.10543µ10-15 3240 0.0436934

IMT 4 2.4869µ10-14 594 0.006899

DoubleEponential 4 7.10543µ10-15 950 0.012998

Automatic 4 1.77636µ10-14 552 0.0069989

A table for an integrand, 
x+

1

-1+Log@xD

x Log@xD
, for which the Automatic singularity handler starts with 

"DoubleExponential" and then switches to IMT.

In[41]:= f@x_D :=
x +

1

-1+Log@xD

x Log@xD
;

exact = Integrate@f@xD, 8x, 0, 1<D;
tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfile@NIntegrate@f@xD, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",
"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 3000, PrecisionGoal Ø 6DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference from", "the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[44]//TableForm=

SingularityDepth Difference from
the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 0.000555531 56925 2.26286

IMT 1 4.58522µ10-14 88 0.0027996

DoubleExponential 1 7.00532µ10-10 131 0.012998

IMT 4 7.88258µ10-15 132 0.0028996

DoubleEponential 4 7.00528µ10-10 197 0.0165974

Automatic 4 1.95931µ10-10 182 0.0044993
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IMT Multidimensional Singularity Handling

When used for multidimensional integrals, the IMT singularity handler speeds up the integration

process only when the singularity is along one of the axes. When the singularity is at a corner

of  the  integration  region,  using  IMT  is  counterproductive.  The  function  NIntegrateProfile

defined earlier is used in the following examples.

The number of integrand evaluations and timings for an integrand that has a singularity only 
along the x axis. The default (automatic) singularity handler chooses to apply IMT to regions 
obtained after the default (four) bisections. 

In[19]:= NIntegrateProfileüNIntegrateB
1

Sqrt@xD
+ y, 8x, 0, 1<, 8y, 0, 1<F

Out[19]= 8IntegralEstimate Ø 2.500000004270092, Evaluations Ø 442, Timing Ø 0.025<

The number of integrand evaluations and timings for an integrand that has a singularity only 
along the x axis with no singularity handler application.

In[20]:= NIntegrateProfileüNIntegrateB
1

Sqrt@xD
+ y, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<, MaxRecursion Ø 30F

Out[20]= 8IntegralEstimate Ø 2.4999994380778543, Evaluations Ø 1445, Timing Ø 0.0231<

The number of integrand evaluations and timings for an integrand that has a singularity at a 
corner of the integration region. The default (automatic) singularity handler chooses to apply 
the singularity handler DuffyCoordinates to regions obtained after the default (four) bisec-
tions. 

In[21]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<F

Out[21]= 8IntegralEstimate Ø 1.7627471522176814, Evaluations Ø 2006, Timing Ø 0.038<

The number of integrand evaluations and timings for an integrand that has a singularity at a 
corner of the integration region. IMT is applied to regions obtained after the default (four) 
bisections. 

In[22]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "IMT"<, MaxRecursion Ø 30F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
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NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. à

Out[22]= 8IntegralEstimate Ø 1.762747132592934, Evaluations Ø 7004, Timing Ø 0.0941<

The number of integrand evaluations and timings for an integrand that has a singularity at a 
corner of the integration region with no singularity handler application.

In[23]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<, MaxRecursion Ø 30F

Out[23]= 8IntegralEstimate Ø 1.7627469943973395, Evaluations Ø 3791, Timing Ø 0.0451<

Duffy's Coordinates for Multidimensional Singularity Handling

Duffy's coordinates is a technique that transforms an integrand over a square, cube, or hyper-

cube with a singular point in one of the corners into an integrand with a singularity over a line,

which might be easier to integrate.

The following integration uses Duffy's coordinates.

In[63]:= NIntegrateB
1

x2 + y2
, 8y, 0, 1<, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DuffyCoordinates"<F êê Timing

Out[63]= 80.017997, 1.76275<

The following integration does not use Duffy's coordinates.

In[62]:= NIntegrateB
1

x2 + y2
, 8y, 0, 1<, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" -> None<,
MaxRecursion -> 20F êê Timing

Out[62]= 80.038994, 1.76275<

The NIntegrate  strategies "GlobalAdaptive"  and "LocalAdaptive"  apply the Duffy's  coordi-

nates technique only at the corners of the integration region.
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When the singularity of a multidimensional integral occurs at a point, the coupling of the vari-

ables  will  make  the  singularity  variable  transformations  used  in  one-dimensional  integration

counterproductive. A variable transformation that has a geometrical nature, proposed by Duffy

in  [Duffy82],  makes  a  change of  variables  that  replaces  a  point  singularity  at  a  corner  of  the

integration region with a "softer" one on a plane. 

If  d  is  the dimension of  integration and r = x12 + x22 + … + xd2,  then Duffy's  coordinates is  a  suit-

able technique for singularities of the following type (see again [Duffy82]):

1. ra, ra ln r, a > -d ;

2. x1a1 x2a2 …xdad rb, ai > -1, i œ @1, dD, ⁄ai + b > -d ;

3. Ic1 x1 b + c2 x2 b + … + cd xd bM
a, b > 0, a b > -d, ci > 0, i œ @1, dD.

For example, consider the integral

‡
0

1

‡
0

x 1

4 x2 + y2
„ x „ y.

If the integration region H0, 1Dµ H0, xD is changed to H0, 1Dµ H0, 1D with the rule yØ x y, the Jacobian

of which is x, the integral becomes

(5)Ÿ0
1
Ÿ0
x 1

4 x2+y2
„ x „ y ñ Ÿ0

1
Ÿ0
1 x

4 x2+Hx yL2
„ x „ y ñ Ÿ0

1
Ÿ0
1 1

y2+4
„ x „ y.

The last integral has no singularities at all!

Now consider the integral

(6)Ÿ0
1
Ÿ0
1 1

4 x2+y2
„ x „ y,

which is equivalent to the sum

‡
0

1

‡
0

x 1

4 x2 + y2
„ x „ y + ‡

0

1

‡
x

1 1

4 x2 + y2
„ x „ y.

The first integral of that sum is transformed as in (5); for the second one, though, the change

of  H0, 1Dµ H1, xD  into  H0, 1Dµ H0, 1D  by  yØ x + H1 - xL y  has  the  Jacobian  1 - x,  which  will  not  bring  the

desired cancellation of terms. Fortunately, a change of the order of integration:
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‡
0

1

‡
x

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

y 1

4 x2 + y2
„ y „ x,

makes the second integral amenable for the transformation in (5): 

(7)Ÿ0
1
Ÿ0
y 1

4 x2+y2
„ y „ x ñ Ÿ0

1
Ÿ0
x 1

4 y2+x2
„ x „ y ñ Ÿ0

1
Ÿ0
1 x

4 Hx yL2+x2
„ x „ y ñ Ÿ0

1
Ÿ0
1 1

1+4 y2
„ x „ y.

(In the second integral in the equation (3) the variables were permuted, which is not necessary

to prove the mathematical equivalence, but it is faster when computing the integrals.) 

So the integral (6) can be rewritten as an integral with no singularities:

‡
0

1

‡
0

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

1 1

y2 + 4
+

1

1 + 4 y2
„ x „ y.

If the integration variables were not permuted in (7), the integral (6) is going to be rewritten as

‡
0

1

‡
0

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

1 1

y2 + 4
+

1

1 + 4 x2
„ x „ y.

That  is  a  more  complicated  integral,  as  its  integrand  is  not  simple  along  both  axes.  Subse-

quently it is harder to compute than the former one.

Here is the number of sampling points for the simpler integral.

In[58]:= ReapBNIntegrateB
1

y2 + 4

+
1

1 + 4 y2
, 8x, 0, 1<, 8y, 0, 1<,

PrecisionGoal Ø 8, EvaluationMonitor :> Sow@8x, y<DFF@@2, 1DD êê Length

Out[58]= 187

Here is the number of sampling points for the more complicated integral.

In[59]:= ReapBNIntegrateB
1

y2 + 4

+
1

1 + 4 x2
, 8x, 0, 1<, 8y, 0, 1<,

PrecisionGoal Ø 8, EvaluationMonitor :> Sow@8x, y<DFF@@2, 1DD êê Length

Out[59]= 323
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NIntegrate  uses  a  generalization  to  arbitrary  dimension  of  the  technique  in  the  example

above.  (In  [Duffy82]  third  dimension  is  described  only.)  An  example  implementation  together

with the generalization description are given below.

Here is a table that compares the different singularity handlings for Ÿ0
1
Ÿ0
1 1

x2+y2
„ x „ y. (The 

profiling function NIntegrateProfile defined earlier is used.)
In[74]:= exact = Integrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<D;

tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê. NIntegrateProfile@
NIntegrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø
Ò1@@2DD, "SymbolicProcessing" Ø 0<, MaxRecursion Ø 12DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88None, Infinity<, 8"IMT", 1<, 8"IMT", 4<,
8"DuffyCoordinates", 4<,
8"DuffyCoordinates", 1<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "IMT",

"DuffyCoordinates", "DuffyCoordinates"<, 8"SingularityDepth",
ColumnForm@8"Difference", "from the", "nexact integral"<D,
ColumnForm@8"Number of", "function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[75]=

Duffy's Coordinates Strategy

When  Duffy's  coordinates  are  applicable,  a  numerical  integration  result  is  obtained  faster  if

Duffy's coordinate change is made before the actual integration begins. Making the transforma-

tion  beforehand,  though,  requires  knowledge  at  which  corner(s)  of  the  integration  region  the

singularities  occur.  The  "DuffyCoordinates"  strategy  in  NIntegrate  facilitates  such  pre-

integration transformation. 
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Here is an example with an integrand that has singularities at two different corners of its 
integration region.

In[84]:= NIntegrateB
1

x2 + y2
+

1

x + H1 - yL

, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0<, 80, 1<<<F

Out[84]= 2.86732

option name default value

Method 9"GlobalAdaptive",
"SingularityDepth"->¶=

the strategy with which the integration will 
be made after applying Duffy's coordinates 
transformation

"Corners" All a vector or a list of vectors that specify the 
corner(s) to apply the Duffy's coordinates 
tranformation to; the elements of the 
vectors are either 0 or 1; each vector 
length equals the dimension of the integral

"DuffyCoordinates" options.

The first thing "DuffyCoordinates" does is to rescale the integral into one that is over the unit

hypercube  (or  square,  or  cube).  If  only  one  corner  is  specified  "DuffyCoordinates"  applies

Duffy's  coordinates  transformation  as  described  earlier.  If  more  than  one  corner  is  specified,

the unit hypercube of the previous step is partitioned into disjoint cubes with side length of one-

half.  Consider  the  integrals  over  these  disjoint  cubes.  Duffy's  coordinates  transformation  is

applied to the ones that have a vertex that is specified to be singular. The rest are transformed

into integrals over the unit cube. Since all integrals at this point have an integration region that

is  the  unit  cube,  they  are  summated,  and  that  sum  is  given  to  NIntegrate  with  a  Method

option that is the same as the one given to "DuffyCoordinates".

The  actual  integrand  used  by  "DuffyCoordinates"  can  be  obtained  through

NIntegrate`DuffyCoordinatesIntegrand, which has the same arguments as NIntegrate.
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Here is an example for the "DuffyCoordinates" integrand of a three-dimensional function 
that is singular at one of the corners of the integration region.

In[78]:= NIntegrate`DuffyCoordinatesIntegrandB
1

x3 + H1 - yL3 + z3
, 8x, 0, 1<, 8y, 0, 1<,

8z, 0, 1<, Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1, 0<<F êê

Simplify@Ò, Assumptions Ø 80 § x § 1, 0 § y § 1, 0 § z § 1<D &

Out[78]= 3
x

1 + y3 + z3

Here is an example for the "DuffyCoordinates" integrand for a two-dimensional function 
that is singular at two of the corners of the integration region.

In[79]:= NIntegrate`DuffyCoordinatesIntegrandB
1

x2 + y2

1

x2 + H1 - yL2
, 8x, 0, 1<,

8y, 0, 1<, Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0<, 80, 1<<<F êê

Simplify@Ò, Assumptions Ø 80 § x § 1, 0 § y § 1<D &

Out[79]=
1

I1 + 2 x + x2 + y2M I5 + 2 x + x2 - 4 y + y2M

+
1

I2 + 2 x + x2 - 2 y + y2M I2 + 2 x + x2 + 2 y + y2M

+

2

I1 + y2M I4 - 4 x + x2 I1 + y2MM

+
2

I1 + y2M I4 - 4 x y + x2 I1 + y2MM

"DuffyCoordinates"  might  considerably  improve  speed  for  the  types  of  integrands  described

in "Duffy's Coordinates for Multidimensional Singularity Handling".

Integration with "DuffyCoordinates".

In[80]:= NIntegrateB
1

x2 + y2 + z2
+

1

x2 + y2 + H1 - zL2
, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0, 0<, 80, 0, 1<<<F êê Timing

Out[80]= 80.022997, 2.38008<

Integration with the default NIntegrate options settings which is much slower than the 

previous one.

In[81]:= NIntegrateB
1

x2 + y2 + z2
+

1

x2 + y2 + H1 - zL2
,

8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<F êê Timing

Out[81]= 80.25296, 2.38008<
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Here is another example of a speedup by "DuffyCoordinates".

In[82]:= NIntegrateB
1

x + Sin@1 - yD

, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1<<F êê Timing

Out[82]= 80.010999, 1.12142<

Integration with the default NIntegrate options settings which is much slower than the 

previous one.

In[83]:= NIntegrateB
1

x + Sin@1 - yD

, 8x, 0, 1<, 8y, 0, 1<F êê Timing

Out[83]= 80.035994, 1.12142<

Duffy's Coordinates Generalization and Example Implementation

See  "Duffy's  Coordinates  for  Multidimensional  Singularity  Handling"  for  the  theory  of  Duffy's

coordinates.

The implementation is based on the following two theorems.

Theorem  1:  A  d-dimensional  cube  can  be  divided  into  d  disjoint  geometrically  equivalent  d-

dimensional pyramids (with bases Hd - 1L-dimensional cubes) and with coinciding apexes. 

Proof:  Assume the  side  length  of  the  cube is  1,  the  cube has  a  vertex  at  the  origin,  and the

coordinates  of  all  other  vertexes  are  1  or  0.  Consider  the  Hd - 1L-dimensional  cube  walls

ws = 8c1, …, cs-1, 1, cs+1, …, cd<, where ci œ @0, 1D. Their number is exactly d, and the origin does not

belong  to  them.  Each  of  the  ws  walls  can  form  a  pyramid  with  the  origin.  This  proves  the

theorem.
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Here is a plot that illustrates the theorem in 3D.

In[89]:= grx = GraphicsComplex@880, 0, 0<, 81, 0, 0<, 81, 0, 1<, 81, 1, 1<, 81, 1, 0<<,
8Polygon@81, 2, 3<D, Polygon@81, 3, 4<D, Polygon@81, 4, 5<D,
Polygon@81, 5, 2<D, Polygon@82, 3, 4, 5<D<D;

gry = MapAt@Map@RotateLeft@ÒD &, ÒD &, grx, 81<D;
grz = MapAt@Map@RotateRight@ÒD &, ÒD &, grx, 81<D;
Graphics3D@8Opacity@0.5D, Red, grx, Cyan, gry, Yellow, grz<D

Out[92]=

If  the d  axes are denoted x1, x2, …, xd  the pyramid formed with the wall  w1 = 81, c2, …, cd<  can be

described as  0 § x1 § 1, 0 § xi § x1, i œ 82, …, d< .  Let  si  denote the permutation derived after  rotat-

ing 81, …, d< cyclically i times to the left (i.e., applying i times RotateLeft  to 81, …, d<). Then the

following theorem holds:

Theorem 2: For any integral over the unit cube the following equalities hold:

‡
0

1

‡
0

1
… ‡

0

1
f Hx1, …, xdL „ x1 … „ xd = ‡

0

1

‡
0

x1
… ‡

0

x1
‚
i=0

d-1

f Jxsi
1
, …, xsi

d
N „ xsi

1
… „ xsi

d
=

‡
0

1

‡
0

1
… ‡

0

1
x1d-1‚

i=0

d

f Jx1 xsi
1
, …, xsi

i+1
, …, x1 xsi

d
N „ xsi

1
… „ xsi

d
.

Proof: The first equality follows from Theorem 1. The second equality is just a change of vari-

ables that transforms a pyramid to a cube.
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Here is a function that gives the rules and the Jacobian for the transformation of a hypercube 
with a specified side into a region. 

In[93]:= FRangesToCube@ranges_, cubeSides : 88_, _< ...<D :=
Module@8t, t1, jac, vars, rules = 8<<,

vars = First êü ranges;
t = MapThread@Ht1 = Rescale@Ò1@@1DD, Ò2, 8Ò1@@2DD, Ò1@@3DD< ê. rulesD;

AppendTo@rules, Ò1@@1DD Ø t1D; t1L &, 8ranges, cubeSides<D;
jac = Times üü MapThread@D@Ò1, Ò2D &, 8t, vars<D;
8rules, jac<

D ê; Length@rangesD ã Length@cubeSidesD;
FRangesToCube@ranges_, cubeSide : 8_, _<D :=

FRangesToCube@ranges, Table@cubeSide, 8Length@rangesD<DD;
FRangesToCube@ranges_D := FRangesToCube@ranges, 80, 1<D;

Here is an example of unit-square to infinite region rescaling.

In[96]:= FRangesToCube@88x, 0, 8<, 8y, x, ¶<<D

Out[96]= ::x Ø 8 x, y Ø -1 + 8 x +
1

1 - y
>,

8

H1 - yL2
>

Here is a function that computes the integrals obtained by the Duffy's coordinates technique 
when the singularity is at the origin.

In[97]:= DuffyCoordinatesAtOrigin@F_, ranges___D :=
DuffyCoordinatesBounds@F, First êü 8ranges<, Transpose@Rest êü 8ranges<DD;

DuffyCoordinatesBounds@F_, vars_, bounds_D :=
Module@8rules, jac, newF, rots, res, range<,
8rules, jac< = FRangesToCube@Transpose@Prepend@bounds, varsDDD;
newF = HF ê. rulesL * jac;
rots = NestList@RotateLeft@Ò1D &, vars, Length@varsD - 1D;
res = Prepend@Map@newF ê. Thread@vars -> Ò1D &, Rest@rotsDD, newFD;
range = Join@88vars@@1DD, 0, 1<<, Map@8Ò, 0, vars@@1DD< &, Rest@varsDDD;
8rules, jac< = FRangesToCube@rangeD;
8HTotal@resD ê. rulesL * jac, Sequence üü H 8Ò1, 0, 1< & êü varsL<

D;

Here is a function that computes the integrals obtained by the Duffy's coordinates technique for 
a specified corner of the hypercube where the singularity occurs.

In[99]:= DuffyCoordinates@F_, ranges___D :=
DuffyCoordinates@F, ranges, Table@0, 8Length@8ranges<D<DD;

DuffyCoordinates@F_, rangesSeq__, corner_?HVectorQ@Ò1, IntegerQD &LD :=
Module@8factor, ranges = 8rangesSeq<, newrange, t<,
factor = 1;
newrange = 8<;
MapIndexed@H

t = rangesPÒ2P1TT;
If@Ò1 ã 0,
newrange = Append@newrange, tD,
newrange = Append@newrange, 8tP1T, tP3T, tP2T<D; factor = -factorDL &,

cornerD;
DuffyCoordinatesAtOrigin@factor * F, Sequence üü newrangeD

D;

Here is a symbolic example.

In[101]:= DuffyCoordinates@F@x, yD, 8x, 0, 1<, 8y, 0, 1<D

Out[101]= 8x HF@x, x yD + F@x y, xDL, 8x, 0, 1<, 8y, 0, 1<<
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Here is another symbolic example.

In[102]:= DuffyCoordinates@F@x, y, zD, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<D

Out[102]= 9x2 HF@x, x y, x zD + F@x y, x z, xD + F@x z, x, x yDL, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<=

Here is a computational example.

In[103]:= NIntegrate üü DuffyCoordinatesB
1

x2 + y2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<F

Out[103]= 9.52813

Using Duffy's coordinates is much faster than using no singularity handling (see the next 
example).

In[108]:= res = NINT üü

DuffyCoordinatesB
1

x2 + H3 - yL2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<, 80, 1, 0<F;

res = Hold@Evaluate@resDD ê. NINT Ø NIntegrate;
Timing üü res

Out[110]= 80.009998, 9.52813<

Integration using no singularity handling.

In[111]:= Timing üNIntegrateB
1

x2 + y2 + z2
, 8x, 0, 4<, 8y, 0, 3<,

8z, 0, 2<, Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<F

Out[111]= 80.180971, 9.52813<

Of course, the internal implementation of NIntegrate gives similar performance results.

In[107]:= Timing üNIntegrateB
1

x2 + H3 - yL2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1, 0<, "SymbolicProcessing" Ø 0<F

Out[107]= 80.011998, 9.52813<

Ignoring the Singularity

Another way of handling a singularity is to ignore it.  NIntegrate  ignores sampling points that

coincide with a singular point. 
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Consider the following integral that has a singular point at 1.

‡
0

2
logIH1 - xL2M „ x.

The integrand goes to -¶ when the integration variable is close to 1. 

Here is a plot of the integrand.

In[118]:= PlotALogAH1 - xL2E, 8x, 0, 2<, PlotRange Ø AllE

Out[118]=

0.5 1.0 1.5 2.0

-15

-10

-5

NIntegrate gives a result that is close to the exact one.

In[114]:=

exact = ‡
0

2
LogAH1 - xL2E „x;

exact - NIntegrateALogAH1 - xL2E, 8x, 0, 2<E

exact
Out[115]= 0.0000124017

Convergence is achieved when MaxRecursion is increased.

In[45]:= NIntegrateALogAH1 - xL2E, 8x, 0, 2<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[45]= -4.

With  its  default  options  NIntegrate  has  a  sampling  point  at  1,  as  can  be  seen  from  the

following.

Check that NIntegrate has 1 as a sampling point.

In[119]:= InputForm êü Select@Ò, 0.9 < Ò < 1.01 &D &ü
Reap@NIntegrate@x, 8x, 0, 2<, EvaluationMonitor ß Sow@xDDD@@2, 1DD

Out[119]= 81.<
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But  for  NIntegrate@Log@H1 - xL2D, 8x, 0, 2<D  the  evaluation  monitor  has  not  picked  a  sam-

pling point that is 1.

Sampling points that belong to the interval A1 - 106, 1 + 106E.

In[120]:= InputForm êü Select@Ò, 0.99999 < Ò < 1.00001 &D &üReapA
NIntegrateALogAH1 - xL2E, 8x, 0, 2<, EvaluationMonitor ß Sow@xDEE@@2, 1DD

Out[120]= 8<

In other words,  the singularity at  1  is  ignored. Ignoring the singularity is  equivalent to having

an integrand that is zero at the singular sampling point.

Note that the integral is easily integrated if the singular point is specified in the variable range.

Following are the numbers of sampling points and timings for NIntegrate  with the singular and

nonsingular range specifications.

Integration with the singular point specified.

In[123]:= 9ReapANIntegrateALogAH1 - xL2E, 8x, 0, 1, 2<, EvaluationMonitor :> Sow@xDEE@@2, 1DD êê

Length, TimingANIntegrateALogAH1 - xL2E, 8x, 0, 1, 2<EE@@1DD=

Out[123]= 8260, 0.005999<

Integration by ignoring the singularity.

In[122]:= 9ReapANIntegrateALogAH1 - xL2E, 8x, 0, 2<,
MaxRecursion -> 20, EvaluationMonitor :> Sow@xDEE@@2, 1DD êê Length,

TimingANIntegrateALogAH1 - xL2E, 8x, 0, 2<, MaxRecursion -> 20EE@@1DD=

Out[122]= 8670, 0.008998<

A more interesting example of ignoring the singularity is using Bessel functions in the denomina-

tor of the integrand.

Integral with several (five) integrable singularities.

In[124]:= NIntegrateB
1

Sqrt@Abs@BesselJ@2, xDDD
, 8x, 1, 20<, MaxRecursion Ø 1000F êê InputForm

Out[124]//InputForm= 59.539197071142375
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The result can be checked using NIntegrate  with singular range specification with the zeros of

BesselJ@2, xD (see BesselJZero).

Integration with the Bessel zeros specified as singular points.

In[125]:= NIntegrateB
1

Sqrt@Abs@BesselJ@2, xDDD
,

8x, 1, 5.135622301840683`, 8.417244140399848`, 11.619841172149059`,
14.79595178235126`, 17.959819494987826`, 20<, PrecisionGoal Ø 8F êê InputForm

Out[125]//InputForm= 59.53926944377681

Needless to say, the last integration required the calculation of the BesselJ  zeros. The former

one "just integrates" without any integrand analysis. 

Ignoring the singularity may not work with oscillating integrands. 

For example, these two integrals are equivalent.

In[126]:= IntegrateB
1

x
Sin@xD, 8x, 1, ¶<F == IntegrateB

1

x
SinB

1

x
F, 8x, 0, 1<F

Out[126]= True

NIntegrate can do the first one.

In[127]:= NIntegrateB
1

x
Sin@xD, 8x, 1, ¶<F

Out[127]= 0.624713

NIntegrate cannot do the second one.

In[128]:= NIntegrateB
1

x
SinB

1

x
F, 8x, 0, 1<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100F

Out[128]= 0.µ101

However, if the integrand is monotonic in a neighborhood of its singularity, or more precisely, if

it  can  be  majorized  by  a  monotonic  integrable  function,  it  can  be  shown that  by  ignoring  the

singularity, convergence will be reached.

For  theoretical  justification  and  practical  recommendations  of  ignoring  the  singularity  see

[DavRab65IS] and [DavRab84].
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Automatic Singularity Handling 

One-Dimensional Integration 

When  the  option  "SingularityHandler"  is  set  to  Automatic  for  a  one-dimensional  integral,

"DoubleExponential" is used on regions that are obtained by "SingularityDepth" number of

partitionings.  As  explained  earlier,  this  region  will  not  be  partitioned  further  as  long  as  the

"DoubleExponential"  singularity  handler  works  over  it.  If  the  error  estimate  computed  by

"DoubleExponential" does not evolve in a way predicted by the theory of the double-exponen-

tial quadrature, the singularity handling for this region is switched to IMT. 

As  explained  in  "Convergence  Rate",  the  following  dependency  of  the  error  is  expected  with

respect to the number of double-exponential sampling points:

‰
-

c n

log n ,

where c is a positive constant. Consider the relative errors Em and En of two consecutive double-

exponential quadrature calculations, made with m and n number of sampling points respectively,

for which m < n. Assuming Em < 1, En < 1, and Em > En it should be expected that

(8)
Em
En

¥ ‰
-
c m

logm

‰
-
c n

log n

ñ

(9)
log Em
log En

§
-

c m

logm

-
c n

log n

=
m log n
n logm

.

The switch from "DoubleExponential" to IMT happens when:

(i)  the  region  error  estimate  is  larger  than  the  absolute  value  of  the  region  integral  estimate

(hence the relative error is not smaller than 1);

(ii) the inequality (2) is not true in two different instances;

(iii)  the  integrand  values  calculated  with  the  double-exponential  transformation  do  not  decay

fast enough.
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Here is an example of a switch from "DoubleExponential" to IMT singularity handling. On 
the plot the integrand is sampled at the x coordinates in the order of the y coordinates. The 

patterns of the sampling points over B0, 1
16
F show the change from Gaussian quadrature 

(y œ @0, 97D) to double-exponential quadrature (y œ @98, 160D), which later is replaced by Gaussian 
quadrature using the IMT variable transformation (y œ @160, 400D). 

In[143]:= k = 0;

f@x_D :=
70

104 Jx -
1

32
N
2
+

1

16

;

gr =
Reap@NIntegrate@f@xD, 8x, 0, 1<, EvaluationMonitor ß Sow@Point@8N@xD, k++<DDDD@@
2, 1DD; Graphics@8PointSize@0.006D, gr<, AspectRatio Ø 1,

Axes Ø True, PlotRange Ø All, GridLines Ø 8None, 897, 160<<D

Out[145]=

0.2 0.4 0.6 0.8 1.0

100

200

300

400

Multidimensional Integration

When  the  option  "SingularityHandler"  is  set  to  Automatic  for  a  multidimensional  integral,

both "DuffyCoordinates" and IMT are used. 

A region needs to meet the following conditions in order for "DuffyCoordinates" to be applied:

† the  region  is  obtained  by  "SingularityDepth"  number  of  bisections  (or  partition-

ings) along each axis;

† the region is  a corner of  one of  the initial  integration regions (the specified integra-

tion  region  can  be  partitioned  into  integration  regions  by  piecewise  handling  or  by

user-specified singularities).
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A region needs to meet the following conditions in order for IMT to be applied:

† the region is obtained with by "SingularityDepth" number of bisections (or partition-

ings) along predominantly one axis;

† the  region is  not  a  corner  region and it  is  on  a  side  of  one of  the  initial  integration

regions.

In other words, IMT is applied to regions that are derived through "SingularityDepth" number

of  partitionings  but  do  not  satisfy  the  conditions  of  the  "DuffyCoordinates"  automatic

application.

IMT is effective if the singularity is along one of the axes. Using IMT for point singularities can

be counterproductive.

Sampling points of two-dimensional integration, Ÿ0
1
Ÿ0
1 1

x+y
„ y „ x, with Automatic (left) and 

"DuffyCoordinates" (right) singularity handling. It can be seen that the automatic singular-
ity handling uses almost two times more points than "DuffyCoordinates". To illustrate the 
effect of the singularity handlers they are applied after two bisections.

In[133]:= pointsAutomatic = ReapBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityDepth" Ø 2, "SingularityHandler" Ø Automatic<,
EvaluationMonitor ß Sow@8x, y<DFFP2, 1T; pointsDuffy =

ReapBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityDepth" Ø 2, "SingularityHandler" Ø "DuffyCoordinates"<,
EvaluationMonitor ß Sow@8x, y<DFFP2, 1T;

Row@8Graphics@8PointSize@0.015D, Point êü pointsAutomatic<,
Axes -> True, ImageSize Ø 200,
PlotLabel Ø "Sampling\ Points:\ " <> ToString@Length@pointsAutomaticDDD,

Graphics@8PointSize@0.015D, Point êü pointsDuffy<, Axes -> True, ImageSize Ø
200, PlotLabel Ø "Sampling\ Points:\ " <> ToString@Length@pointsDuffyDDD<D

Out[134]=

0.2 0.4 0.6 0.8 1.0
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1.0
Sampling Points: 2193
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Sampling Points: 1224
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Timings for the integral, Ÿ0
1
Ÿ0
1 1

x+y
„ y „ x, with singularity handlers Automatic, 

"DuffyCoordinates", and IMT and with no singularity handling. The integral has a point 
singularity at 80, 0<. 

In[47]:= TableFormB:Ò, TimingBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø Ò<FF@@1DD> & êü

8Automatic, "DuffyCoordinates", "IMT", None<, TableHeadings Ø
8None, 8StyleForm@ColumnForm@8"Singularity", "handler"<D, FontFamily Ø TimesD,

StyleForm@"Time HsL", FontFamily Ø TimesD<<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[47]//TableForm=

Singularity
handler

Time HsL

Automatic 0.023997
DuffyCoordinates 0.015997
IMT 0.032995
None 0.032995

Timings for the integral, Ÿ0
1
Ÿ0
1 x10 + 1

y
„ y „ x, singular along y axis with singularity handlers 

Automatic, "DuffyCoordinates", and IMT and with no singularity handling.

In[46]:= TableFormB

:Ò, TimingBNIntegrateB
1

y
+ x10, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityHandler" Ø Ò<, MaxRecursion Ø 20FF@@1DD> & êü

8Automatic, "DuffyCoordinates", "IMT", None<, TableHeadings Ø
8None, 8StyleForm@ColumnForm@8"Singularity", "handler"<D, FontFamily Ø TimesD,

StyleForm@"Time HsL", FontFamily Ø TimesD<<F

Out[46]//TableForm=

Singularity
handler

Time HsL

Automatic 0.021997
DuffyCoordinates 0.038994
IMT 0.023996
None 0.035995
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Cauchy Principal Value Integration

To  evaluate  the  Cauchy  principal  value  of  an  integral,  NIntegrate  uses  the  strategy

PrincipalValue. 

Cauchy principal value integration with singular point at 2.

In[153]:= NIntegrateB
x

x - 2
, 8x, 0, 2, 5<, Method Ø "PrincipalValue"F

Out[153]= 2.36355

In  NIntegrate,  PrincipalValue  uses  the  strategy  specified  by  its  Method  option  to  work

directly on those regions where there is no difficulty and by pairing values symmetrically about

the  specified  singularities  in  order  to  take  advantage  of  the  cancellation  of  the  positive  and

negative values. 

"PrincipalValue" options.

Thus the specification

NIntegrateA f@xD, 8x, a, b, c<, Method -> 9"PrincipalValue",
Method -> methodspec, "SingularPointIntegrationRadius" -> e=E

is evaluated as

‡
a

b-e
f HxL „ x + ‡

0

e

H f Hb + tL + f Hb - tLL „ t + ‡
b+e

c
f HxL „ x,

Advanced Numerical Integration in Mathematica     61

option name default value

Method Automatic method specification used to compute 
estimates over subregions

SingularPointIntegrationRÖ
adius

Automatic a number e1 or a list of numbers 
8e1, e2, …, en< that correspond to the 
singular points b1, b2, …, bn in the range 
specification; with each pair Hbi, eiL an 
integral of the form 

Ÿ0
e
H f Hb + tL + f Hb - tLL „ t is formed



where each of the integrals is evaluated using NIntegrate  with Method -> methodspec. If e is not

given  explicitly,  a  value  is  chosen  based  upon  the  differences  b - a  and  c - b.  The  option

SingularPointIntegrationRadius can take a list of numbers that equals the number of singu-

lar points. For the derivation of the formula see [DavRab84].

This finds the Cauchy principal value of Ÿ-1ê2
1 1

x+x2
„ x. 

In[14]:= NIntegrateB
1

x + x2
, :x, -

1

2
, 0, 1>, Method Ø PrincipalValueF

Out[14]= -0.6931471805596523

Here is the Cauchy principal value of Ÿ-2
1 1
x+x2

„ x. Note that there are two singularities that need 

to be specified. 
In[114]:= NIntegrate[1/(x+x^2), {x, -2, -1, 0, 1},Method->PrincipalValue]

Out[114]= -1.38629

The singular points can be specified using the Exclusions option.

In[30]:= NIntegrate@1 ê Hx + x^2L, 8x, -2, 1<, Method -> PrincipalValue, Exclusions Ø 8-1, 0<D

Out[30]= -1.38629

This checks the value. The result would be 0 if everything were done exactly. 

In[31]:= % + 2Log[2]

Out[31]= 7.59615µ10-13

It  should  be  noted  that  the  singularities  must  be  located  exactly.  Since  the  algorithm  pairs

together the points on both sides of the singularity, if  the singularity is slightly mislocated the

cancellation will not be sufficiently good near the pole and the result can be significantly in error

if NIntegrate converges at all. 

Sampling Points Visualization

Consider the calculation of the principal value of 

‡
0

2 1

logHxL
„ x.
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The following examples show two ways of  visualizing the sampling points.  The first  shows the

sampling points used. Since the integrand is modified in order to do the principal value integra-

tion, it  might be desired to see the points at which the original integrand is evaluated. This is

shown on the second example.

Here are sampling points used by NIntegrate. There are no points over the interval B 3
4

, 5
4
F, 

because of the PrincipalValue integration 

Ÿ0
1-1ê4 1

logHxL
„ x + Ÿ0

1ê4
J

1
logH1+tL

+ 1
logH1-tL

NN „ t + Ÿ1+1ê4
2 1

logHxL
„ x, and there are sampling points over B0, 1

4
F.

In[154]:= k = 0;
tbl = Reap@NIntegrate@1 ê Log@xD, 8x, 0, 1, 2<,

Method Ø 8"PrincipalValue", "SingularPointIntegrationRadius" Ø 1 ê 4<,
EvaluationMonitor ß Sow@8x, ++k<DDD@@2, 1DD;

ListPlot@tbl, PlotRange -> AllD

Out[156]=
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This defines a function which accumulates the argument values given to the integrand.

In[1]:= Clear@fD; f@x_?NumericQD := HAppendTo@tbl, 8x, ++k<D; 1 ê Log@xDL;

Here are the points at which the integrand has been evaluated. Note the symmetric pattern 

over the interval B 3
4

, 5
4
F.

In[166]:= k = 0; tbl = 8<;
NIntegrate@f@xD, 8x, 0, 1, 2<,

Method -> 8"PrincipalValue", "SingularPointIntegrationRadius" Ø 1 ê 4<D;
ListPlot@tbl, PlotRange -> AllD

Out[168]=
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Double-Exponential Strategy

The  double-exponential  quadrature  consists  of  applying  the  trapezoidal  rule  after  a  variable

transformation. The double-exponential quadrature was proposed by Mori and Takahasi in 1974

and  it  was  inspired  by  the  so-called  IMT  rule  and  TANH rule.  The  transformation  is  given  the

name  "double-exponential"  since  its  derivative  decreases  double-exponentially  when  the  inte-

grand's variable reaches the ends of the integration region.

The double-exponential algorithm for NIntegrate is specified with the Method option value 
"DoubleExponential".

In[169]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "DoubleExponential"D

Out[169]= 2.

option name default value

"ExtraPrecision" 50 maximum extra precision to be used 
internally

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"DoubleExponential" options.

The double-exponential strategy can be used for one-dimensional and multidimensional integra-

tion. When applied to multidimensional integrals it uses the Cartesian product of the trapezoidal

rule.

A double-exponential transformation fHtL transforms the integral

(10)Ÿa
b f HtL „ x

into

(11)Ÿ-¶
+¶ f HfHtLL f£HtL „ x,

where Ha, bL can be finite, half-infinite (b =¶), or infinite (a = -¶, b =¶). The integrand f HxL must

be analytic in Ha, bL and might have singularity at one or both of the end points.

The  transformed  integrand  decreases  double-exponentially,  that  is,  f HfHtLL f ' HtL º  expH-c expH t LL

as t Ø ±¶.
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The function fHtL  is  analytic  in  H-¶, ¶L.  It  is  known that  for  an integral  like  (11)  of  an analytic

integrand the trapezoidal rule is an optimal rule [Mori74].

The transformations used for the different types of integration regions are:

(12)Ÿa
b f HxL „ xïx = a+b

2
+ 1
2
Hb - aL tanhJ 1

2
p sinhHxLN,

‡
a

¶

f HxL „ xïx = a + ‰
1

2
p sinhHxL,

‡
-¶

¶

f HxL „ xïx = sinh
1

2
p sinhHxL ,

where a and b are finite numbers.

The trapezoidal rule is applied to (11):

(13)DEHhL = h⁄i=-¶
¶ f HfHi hLL f£Hi hL

The terms in (13) decay double-exponentially for large enough i . Therefore the summation in

(13) is cut off at the terms that are too small to contribute to the total sum. (A criterion similar

to (3) for the local adaptive strategy is used. See also the following double-exponential example

implementation.)

The strategy "DoubleExponential" employs the double-exponential quadrature.

The  "DoubleExponential"  strategy  works  best  for  analytic  integrands;  see  "Comparison  of

Double-Exponential and Gaussian Quadrature".

"DoubleExponential" uses the Cartesian product of double-exponential quadratures for multidi-

mensional integrals.

Cartesian double-exponential quadrature.

In[48]:= NIntegrateB
1

Sqrt@x + yD
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø "DoubleExponential", MaxRecursion Ø 200F

Out[48]= 1.10457
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As  with  the  other  Cartesian  product  rules,  if  "DoubleExponential"  is  used  for  dimensions

higher than three, it might be very slow due to combinatorial explosion.

The following plot illustrates the Cartesian product character of the "DoubleExponential" 
multidimensional integration.

In[49]:= tbl = Reap@
NIntegrate@Sqrt@xD Sqrt@yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø "DoubleExponential",
MaxRecursion Ø 200, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD;

Graphics@8PointSize@0.005D, Point êü N@tblD<, Axes Ø TrueD

Out[50]=
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Double-exponential quadrature can be used for singularity handling in adaptive strategies; see

"Singularity Handling".

MinRecursion and MaxRecursion

The  option  MinRecursion  has  the  same  meaning  and  functionality  as  it  does  for

"GlobalAdaptive"  and  "LocalAdaptive"  described  in  "MinRecursion  and  MaxRecursion".

MaxRecursion  for  "DoubleExponential"  restricts  how many  times  the  trapezoidal  quadrature

estimates are improved; see "Example Implementation of Double-Exponential Quadrature".

Comparison of Double-Exponential and Gaussian Quadrature

The "DoubleExponential" strategy works best for analytic integrands. For example, the follow-

ing integral is done by "DoubleExponential" three times faster than the Gaussian quadrature

(using a global adaptive algorithm).
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Integration with "DoubleExponential".

In[215]:= NIntegrateB
LogA 1

x
E

x1ê4
, 8x, 0, 1<, PrecisionGoal Ø 10,

Method Ø 8"DoubleExponential", "SymbolicProcessing" Ø 0<F êê Timing

Out[215]= 80.001999, 1.77778<

Integration with Gauss quadrature. (The default strategy of NIntegrate, "GlobalAdaptive" 
uses by default a Gauss|Kronrod integration rule with 5 Gaussian points and 6 Kronrod points.)

In[51]:= NIntegrateB
LogA 1

x
E

x1ê4
, 8x, 0, 1<, PrecisionGoal Ø 10, MaxRecursion Ø 100, Method Ø

8"GlobalAdaptive", "SingularityDepth" Ø ¶, "SymbolicProcessing" Ø 0<F êê Timing

Out[51]= 80.008998, 1.77778<

Since  "DoubleExponential"  converges  double-exponentially  with  respect  to  the  number  of

evaluation  points,  increasing  the  precision  goal  slightly  increases  the  work  done  by

"DoubleExponential".  This  is  illustrated  for  two  integrals,  Ÿ0
1 1

x
„ x  and  Ÿ0

1
‰20 Hx-1L sinH256 xL „ x.

Each table entry shows the error and number of evaluations.

Double-exponential quadrature and Gaussian quadrature for Ÿ0
1 1

x
„ x. Increasing the precision 

goal does not change the number of sampling points used by "DoubleExponential".

In[217]:= methods = 8"DoubleExponential", "GlobalAdaptive"<;
pgoals = Range@5, 15, 2D;
TableFormB

OuterB k = 0; res = NIntegrateB
1

Sqrt@xD
, 8x, 0, 1<, Method Ø Ò1, PrecisionGoal Ø Ò2,

MaxRecursion Ø 20, EvaluationMonitor :> k++F; 8Abs@res - 2D ê 2, k< &,

methods, pgoalsF êê Transpose, TableHeadings Ø 8pgoals, methods<, TableDepth Ø 2F

Out[219]=

DoubleExponential GlobalAdaptive

5 91.55431µ10-15, 33= 91.55431µ10-15, 132=

7 80., 64< 91.55431µ10-15, 132=

9 80., 64< 98.88178µ10-16, 229=

11 80., 64< 98.88178µ10-16, 273=

13 80., 64< 98.88178µ10-16, 405=

15 80., 123< 98.88178µ10-16, 640=
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Double-exponential quadrature and Gaussian quadrature for Ÿ0
1
‰20 Hx-1L sinH256 xL „ x. Increasing 

the precision goal does not change the number of sampling points used by 
"DoubleExponential". (The integrations are done without symbolic preprocessing.)

In[220]:= methods = 8"DoubleExponential", "GlobalAdaptive"<;
pgoals = Range@6, 10, 2D;
TableForm@
Outer@Hk = 0; res = NIntegrate@Exp@20 Hx - 1LD Sin@256 xD, 8x, 0, 1<, Method Ø

8Ò1, "SymbolicProcessing" Ø 0<, PrecisionGoal Ø Ò2, MaxRecursion Ø 20,
EvaluationMonitor :> k++D; 8Abs@res - 2D ê 2, k<L &, methods, pgoals, 1D êê

Transpose, TableHeadings Ø 8pgoals, methods<, TableDepth Ø 2D

Out[222]=

DoubleExponential GlobalAdaptive
6 81.00007, 758< 81.00007, 1454<
8 81.00007, 758< 81.00007, 2357<
10 81.00007, 758< 81.00007, 3369<

On  the  other  hand,  for  non-analytic  integrands  "DoubleExponential"  is  quite  slow,  and  a

global adaptive algorithm using Gaussian quadrature can resolve the singularities easily.

"DoubleExponential" needs more than 10000 integrand evaluations to compute this integral 
with a non-analytic integrand.

In[52]:= k = 0;
8NIntegrate@Abs@Sin@3 * xDD, 8x, 0, p<,

Method Ø 8"DoubleExponential", "SymbolicProcessing" Ø 0<,
MaxRecursion Ø 10, EvaluationMonitor :> k++D, k<

Out[53]= 82., 10185<

Gaussian quadrature is much faster for the integral.

In[54]:= k = 0; 8NIntegrate@Abs@Sin@3 * xDD, 8x, 0, p<,
Method Ø 8"GlobalAdaptive", "SymbolicProcessing" Ø 0<,
MaxRecursion Ø 10, EvaluationMonitor :> k++D, k<

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[54]= 82., 385<

Further, "DoubleExponential" might be slowed down by integrands that have nearly discontinu-

ous derivatives, that is, integrands that are not "very" analytical. 

Here is an example with a not "very" analytical integrand.

In[226]:= NIntegrateB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, Method Ø "DoubleExponential"F êê Timing

Out[226]= 80.011998, 2.77878<
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Again, Gaussian quadrature is much faster.

In[227]:= NIntegrateB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, Method Ø "GlobalAdaptive"F êê Timing

Out[227]= 80.005999, 2.77878<

Here are the plots of the integrand 1

16 Jx-
p

4
N
2
+
1

16

 and its derivative.

In[228]:= BlockB8gr, gr1<,

gr = PlotB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, PlotRange Ø AllF;

gr1 = PlotBDB
1

16 Ix -
p

4
M
2
+

1

16

, xF êê Evaluate, 8x, 0, 1<, PlotRange Ø AllF;

GraphicsArray@8gr, gr1<D
F

Out[228]=
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Convergence Rate

This  section  demonstrates  that  the  asymptotic  error  of  the  double-exponential  quadrature  in

terms of the number n of evaluation points used is 

(14)‰
-

c n

logHnL ,

where c is a positive constant.
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This defines a double-exponential integration function that an returns integral estimate and the 
number of points used.

In[229]:= DERuleEstimate@f_, 8a_, b_<, h_, wprec_: MachinePrecisionD :=
BlockB8$MaxExtraPrecision = 50000, f, F, i, j, temp, s1, s2<,

f@t_D := RescaleB
1

2
TanhB

1

2
p Sinh@tDF + 1 , 80, 1<, 8a, b<F;

F@t_D := Evaluate@f@f@tDD * D@f@tD, tDD;
i = 1;
s1 = FixedPoint@Htemp = F@i * hD; i++; N@N@temp, 3 * wprecD + Ò1, wprecDL &, 0D;
j = -1;
s2 = FixedPoint@Htemp = F@j * hD; j--; N@N@temp, 3 * wprecD + Ò1, wprecDL &, 0D;
8i - j + 1, h Hs1 + F@0D + s2L<

F;

This defines a function.

In[230]:= f@x_D :=
1

x1ê4
LogB

1

x
F

This is the exact integral.

In[231]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[231]=
16

9

This finds the errors and number of evaluation points for a range of step sizes of the trapezoidal 
rule.

In[232]:= 8a, b< = 80, 1<;
wprec = 30;

range = TableB
1

i
, 8i, 2, 7<F;

range = Join@range, Mean êü Partition@range, 2, 1DD;
range = Sort@range, GreaterD;
err = Map@DERuleEstimate@f, 8a, b<, Ò1, wprecD &, rangeD;
err = Map@8Ò1P1T, Abs@exact - Ò1P2TD< &, errD; H* errors *L
logErr = Map@8Ò1P1T, Log@Ò1P2TD< &, errD; H* logarithm of the errors *L
points = First êü err;

This fits x
Log@xD

 through the logarithms of the errors; see (14).

In[239]:= p@x_D := EvaluateBFitBlogErr, :1,
x

Log@xD
>, xFF

Here is the fitted function. The summation term 30.48 is just a translation parameter.

In[240]:= p@xD

Out[240]= 30.48 -
6.497 x

Log@xD

70     Advanced Numerical Integration in Mathematica



You see that the errors fit the model (14):

In[241]:= ListLinePlot@8logErr, 8Ò1, p@Ò1D< & êü points<,
PlotRange -> All, PlotStyle -> 88Red<, 8Blue<<D

Out[241]=
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Example Implementation of Double-Exponential Quadrature

Following  is  an  example  implementation  of  the  double-exponential  quadrature  with  the  finite

region variable transformation (transformation (12) earlier).

This is a definition of a function that applies the trapezoidal rule to a transformed integrand. 
The function uses (13) and it is made to reuse integral estimates computed with a twice larger 
step.

In[173]:= IRuleEstimate@F_, h_, oldSum_: NoneD :=
BlockB8$MaxExtraPrecision = 50000, step, i, temp, s1, s2<,
If@oldSum === None, step = 1, step = 2D;
i = 1;
s1 = FixedPoint@Htemp = F@i * hD; i += step; N@N@temp, 60D + Ò1DL &, 0D;
i = -1;
s2 = FixedPoint@Htemp = F@i * hD; i -= step; N@N@temp, 60D + Ò1DL &, 0D;

IfBoldSum === None, h Hs1 + F@0D + s2L, h Hs1 + s2L +
oldSum

2
F

F;

This is a definition of a simple double-exponential strategy, which finds the integral of the 
function f  over the finite interval 8a, b< with relative error tol.

In[189]:= Options@IStrategyDoubleExpD = 8"MaxRecursion" Ø 7<;
IStrategyDoubleExp@f_, 8a_, b_<, tol_, opts___D :=

ModuleB8f, F, h, t, temp, k = 0, maxrec<,
maxrec = "MaxRecursion" ê. 8opts< ê. Options@IStrategyDoubleExpD;

f@t_D := EvaluateBRescaleB
1

2
TanhB

1

2
p Sinh@tDF + 1 , 80, 1<, 8a, b<FF;

F@t_D := Evaluate@f@f@tDD * D@f@tD, tDD;
h = 1;
NestWhile@HHtemp = IRuleEstimate@F, h ê= 2, Ò1DL && k++ < maxrecL &,
IRuleEstimate@F, h, NoneD, HAbs@Ò1D * tol <= Abs@Ò1 - Ò2DL &, 2D;

temp
F;
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This defines a function that is singular at 0.

In[194]:= f@x_D :=
1

x
4

Here is the integral estimate from the double-exponential strategy.

In[195]:= IStrategyDoubleExpAf, 80, 1<, 10-8E êê InputForm

Out[195]//InputForm= 1.3333333333333333

Here is the exact result.

In[177]:= Integrate@f@xD, 8x, 0, 1<D êê N êê InputForm

Out[177]//InputForm= 1.3333333333333333

The two results are the same.

This defines an oscillating function. 

In[178]:= f@x_D := Cos@64 * Sin@xDD

Here is the integral estimate given by the double-exponential strategy.

In[179]:= res = IStrategyDoubleExpAf, 80, p<, 10-8E; res êê InputForm

Out[179]//InputForm= 0.29088010217372606

Here is the exact result.

In[180]:= exact = Integrate@f@xD, 8x, 0, p<D

Out[180]= p BesselJ@0, 64D

Here is the exact result in machine precision.

In[181]:= exact êê N êê InputForm

Out[181]//InputForm= 0.2908801021737257

The relative error is within the prescribed tolerance.

In[182]:= Abs@res - exactD ê exact

Out[182]= 1.33587µ10-15
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"Trapezoidal" Strategy

The  "Trapezoidal"  strategy  gives  optimal  convergence  for  analytic  periodic  integrands  when

the integration interval is exactly one period.

option name default value

"ExtraPrecision" 50 maximum extra precision to be used 
internally

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"Trapezoidal" options.

"Trapezoidal" takes the same options as "DoubleExponential". If the integration ranges are

infinite or semi-infinite, "Trapezoidal" becomes "DoubleExponential".

For  theoretical  background,  examples,  and explanations  of  periodic  functions  integration  (with

trapezoidal quadrature) see [Weideman2002].

In[109]:= NIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"Trapezoidal", "SymbolicProcessing" Ø 0<F

NIntegrate::ncvi :
NIntegrate failed to converge to prescribed accuracy after 9 iterated refinements in x in the

region 880., 1.<<. NIntegrate obtained 1.9771819583163235` and
0.009451548754043415` for the integral and error estimates.

Out[109]= 1.97718

Here is a table that shows the number of sampling points for different values of the parameter t 
used by "GlobalAdaptive" and "Trapezoidal" respectively for the integral 

Ÿ0
p cosHt sinHxL-k xL

p
„ x, k = 1.

In[33]:= k = 1;
tab =

TableB:t, 8"IntegralEstimate", "Evaluations", "Timing"< ê. NIntegrateProfileB

NIntegrateB
1

p
Cos@t Sin@xD - k xD, 8x, 0, p<, Method Ø "GaussKronrodRule"F,

1F @@2DD, 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfileBNIntegrateB
1

p
Cos@t Sin@xD - k xD, 8x, 0, p<,

Method -> "Trapezoidal"F, 1F @@2DD>, 8t, 8, 80, 4<F;

TableForm@tab, TableHeadings Ø 8None, 8t, "GlobalAdaptive", "Trapezoidal"<<D
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Out[35]//TableForm=

t GlobalAdaptive Trapezoidal
8 143 33
12 209 33
16 275 65
20 399 65
24 457 65
28 591 65
32 743 65
36 743 65
40 741 65
44 809 129
48 1007 129
52 941 129
56 963 129
60 1095 129
64 1121 129
68 1095 129
72 1137 129
76 1338 129
80 1227 129

Example Implementation

This function makes a trapezoidal quadrature integral estimate with specified points.

In[242]:= TrapStep@f_, 8a_, b_<, n_?IntegerQD :=
ModuleB8h, absc, is<,

h =
b - a

n - 1
;

absc = Table@i, 8i, a, b, h<D;
is = h * Total@MapAt@Ò ê 2 &, f êü absc, 881<, 8-1<<DD;
8is, ¶, n<

F;

This function improves a trapezoidal quadrature integral estimate using sampling points 
between the old ones.

In[257]:= TrapStep@f_, 8a_, b_<, 8oldEstimate_, oldError_, oldn_<D :=
ModuleB8n, h, absc, is<,
n = 2 oldn - 1;

h =
b - a

n - 1
;

absc = Table@i, 8i, a + h, b - h, 2 h<D;
is = h * Total@f êü abscD + oldEstimate ê 2;
8is, Abs@is - oldEstimateD, n<

F;
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This function is an interface to the preceding one.

In[272]:= Options@TrapezoidalIntegrationD = 8"MaxRecursion" Ø 7<;
TrapezoidalIntegration@f_, 8a_, b_<, tol_, opts___D :=
Block@8maxrec, k = 0, temp<,
maxrec = "MaxRecursion" ê. 8opts< ê. Options@TrapezoidalIntegrationD;
NestWhile@HHtemp = TrapStep@f, 8a, b<, ÒDL && k++ < maxrecL &,

TrapStep@f, 8a, b<, 5D, Ò@@2DD > tol &D@@1DD;
temp@@1DD

D

Here is a definition of a (Bessel) function.

In[269]:= f@x_D :=
1

p
Cos@80 Sin@xD - xD

Here is the trapezoidal quadrature estimate.

In[274]:= res = TrapezoidalIntegrationAf, 80, p<, 10-5E êê N

Out[274]= -0.0560573

Here is the exact value.

In[278]:= exact = Integrate@f@xD, 8x, 0, p<D

Out[278]= BesselJ@1, 80D

The relative error is within the prescribed tolerance.

In[279]:= Abs@res - exactD ê exact

Out[279]= -0.572732

Oscillatory Strategies

The  oscillatory  strategies  of  NIntegrate  are  are  for  one-dimensional  integrals.  Generally  in

quadrature, the algorithms for finite region integrals are different from the algorithms for infi-

nite regions. NIntegrate  uses Chebyshev expansions of the integrand and the global adaptive

integration  strategy  for  finite  region  oscillatory  integrals.  For  infinite  oscillatory  integrals

NIntegrate uses either a modification of the double-exponential algorithm or sequence summa-

tion acceleration over the sequence of integrals with regions between the integrand's zeros.
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Here is an example that uses both algorithms.

In[13]:= NIntegrateB

Cos@2000 xD

x
0 < x < 2

Sin@20 xD

x2
x < 0

BesselYA2, x3E ë x x > 2

, 8x, -¶, ¶<F

Out[13]= -1.5496

NIntegrate  automatically  detects  oscillatory  (one-dimensional)  integrands,  and  automatically

decides which algorithm to use according to the integrand's range.

The integrals detected as being of oscillatory type have the form

‡
a

b
kHxL f HxL „ x,

in which the oscillating kernel kHxL is of the form:

1. sinHw xp + cL, cosHw xp + cL, ‰Â w xp for Ha, bL finite;

2. sinHw xp + cL,  cosHw xp + cL,  ‰Â w xp,  JnHw xp + cL,  YnHw xp + cL,  Hn
H1LHw xp + cL,  Hn

H2LHw xp + cL,  jnHw xp + cL,
or ynHw xp + cL for Ha, bL infinite or semi-infinite.

In these oscillating kernel forms w, c and n are real constants, and p is a positive integer.

Finite Region Oscillatory Integration

Modified  Clenshaw|Curtis  quadrature  ([PiesBrand75][PiesBrand84])  is  for  finite  region  one-

dimensional integrals of the form

(15)Ÿa
bsin Hw xp + cL f HxL „ x, Ÿa

bcosHw xp + cL f HxL „ x, or Ÿa
bexpHÂ w xp + cL f HxL „ x,

where a, b, k, c, p are finite real numbers.

The  modified  Clenshaw|Curtis  quadrature  rule  approximates  f HxL  with  a  single  polynomial

through  Chebyshev  polynomials  expansion.  This  leads  to  simplified  computations  because  of

the  orthogonality  of  the  Chebyshev  polynomials  with  sine  and  cosine  functions.  The  modified

Clenshaw|Curtis  quadrature rule  is  used with  the strategy "GlobalAdaptive".  For  smooth f HxL

the modified Clenshaw|Curtis quadrature is usually superior [KrUeb98] to other approaches for

oscillatory  integration  (as  Filon's  quadrature  and  multi-panel  integration  between  the  zeros  of

the integrand).
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Modified  Clenshaw|Curtis  quadrature  is  quite  good  for  highly  oscillating  integrals  of  the  form

(15).  For  example,  modified  Clenshaw|Curtis  quadrature  uses  less  than  a  hundred  integrand

evaluations for both sin H200 xL
x2

 and sin H20000 xL
x2

.

Number of integrand evaluations for modified Clenshaw|Curtis quadrature for slowly oscillating 
kernel.

In[1]:= k = 0; NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>, EvaluationMonitor :> k++F; k

Out[1]= 78

Timing and integral estimates for modified Clenshaw|Curtis quadrature for slowly oscillating 
kernel.

In[3]:= NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>F êê Timing

Out[3]= 80.17, -0.0777739<

Number of integrand evaluations for modified Clenshaw|Curtis quadrature for highly oscillating 
kernel.

In[5]:= k = 0; NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>, EvaluationMonitor :> k++F; k

Out[5]= 78

Timing and integral estimates for modified Clenshaw|Curtis quadrature for highly oscillating 
kernel.

In[6]:= NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>F êê Timing

Out[6]= 80.111, -0.000916893<

On  the  other  hand,  without  symbolic  preprocessing,  the  default  NIntegrate  method~

"GlobalAdaptive"  strategy  with  a  Gauss|Kronrod  rule~uses  thousands  of  evaluations  for

sinH200 xL
x2

, and it cannot integrate sin H20000 xL
x2

.
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Number of integrand evaluations for Gaussian quadrature for slowly oscillating kernel.

In[7]:= k = 0; NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor :> k++F; k

Out[7]= 2656

Timing and integral estimates for Gaussian quadrature for slowly oscillating kernel.

In[8]:= NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

Out[8]= 80.2, -0.0777739<

Number of integrand evaluations for Gaussian quadrature for highly oscillating kernel.

In[9]:= k = 0; NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor :> k++F; k

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.330106<. NIntegrate obtained -0.0905744 and
0.42924020409664687` for the integral and error estimates. à

Out[9]= 1290

Timing and integral estimates for Gaussian quadrature for highly oscillating kernel.

In[10]:= NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.330106<. NIntegrate obtained -0.0905744 and
0.42924020409664687` for the integral and error estimates. à

Out[10]= 90.391, 0.µ10-1=
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Extrapolating Oscillatory Strategy 

The NIntegrate  strategy "ExtrapolatingOscillatory"  is is for oscillating integrals in infinite

one-dimensional regions. The strategy uses sequence convergence acceleration for the sum of

the sequence that consists of each of the integrals with regions between two consecutive zeros

of the integrand.

Here is an example of an integration using "ExtrapolatingOscillatory".

In[294]:= NIntegrateBSin@200 x^2 + 5D
1

Hx + 1L^2
,

8x, 0, ¶<, Method Ø "ExtrapolatingOscillatory"F

Out[294]= -0.0309721

option name default value

Method GlobalAdaptive integration strategy used to integrate 
between the zeros and which will be used if 
ExtrapolatingOscillatory fails

"SymbolicProcessing" Automatic number of seconds to do symbolic process-
ing   

Consider the integral

(16)Ÿa
¶kHxL f HxL „ x,

where  the  function  kHxL  is  the  oscillating  kernel  and  the  function  f HxL  is  smooth.  Let  zi  be  the

zeros  of  kHxL  enumerated  from  the  lower  (finite)  integration  bound,  that  is,  the  inequality

a § z1 < z2 < … < zi < … holds. If the integral (16) converges then the sequence

(17)Ÿa
z1kH xL f HxL „ x, Ÿa

z2kHxL f HxL „ x, …, Ÿa
zikHxL f HxL „ x, …

 converges too. The elements of the sequence (17) are the partial sums of the sequence

(18)Ÿa
z1kHxL f HxL „ x, Ÿz1

z2kHxL f HxL „ x, …, Ÿzi-1
zi kHxL f HxL „ x, ….

Often  a  good  estimate  of  the  limit  of  the  sequence  (17)  can  be  computed  with  relatively  few

elements of it through some convergence acceleration technique.
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The  "Oscillatory"  strategy  uses  NSum  with  Wynn's  extrapolation  method  for  the  integrals  in

(18). Each integral in (18) is calculated by NIntegrate without oscillatory methods.

The "Oscillatory"  strategy applies  its  algorithm to oscillating kernels  kHxL  in  (16)  that  are of

the  form  sinHw xp + cL,  cosHw xp + cL,  JnHw xp + cL,  YnHw xp + cL,  Hn
H1LHw xp + cL,  Hn

H2LHw xp + cL,  jnHw xp + cL,  or

ynHw xp + cL, where w, c, p, and n are real constants.

Example Implementation

The following example implementation illustrates how the "Oscillatory" strategy works.

Here is a definition of an oscillation function that will be integrated in the interval @0, ¶L. The 

zeros of the oscillating function sinHw xL are i 1
w
p, i œ .

In[1]:= Clear@w, k, fD;
w = 20;
k@x_D := Sin@w xD;

f@x_D :=
1

Hx + 1L^2
;

Here is a plot of the oscillatory function in the interval @0, 10D.
In[89]:= Plot@k@xD f@xD, 8x, 0, 10<, PlotPoints -> 1000, PlotRange -> AllD

Out[89]=

2 4 6 8 10

-0.5

0.5

This is a definition of a function that integrates between two consequent zeros. The zeros of the 

oscillating function kHxL = sinHw xL are i 1
w
p, i œ .

In[5]:= psum@i_?NumberQD := NIntegrateBk@xD f@xD, :x, i
1

w
p, Hi + 1L

1

w
p>F
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Here is the integral estimate computed by sequence convergence acceleration (extrapolation).

In[6]:= res = NSum@psum@iD, 8i, 0, ¶<,
Method Ø "AlternatingSigns", "VerifyConvergence" -> FalseD

Out[6]= 0.0492841

Here is the exact integral value.

In[7]:= exact = Integrate@k@xD f@xD, 8x, 0, ¶<D êê N

Out[7]= 0.0492841

The integral estimate is very close to the exact value.

In[8]:=
Abs@exact - resD

Abs@exactD

Out[8]= 2.25444µ10-7

Here is another check using the "ExtrapolatingOscillatory" strategy.

In[94]:= resEO = NIntegrate@Sin@w xD f@xD, 8x, 0, ¶<, Method Ø "ExtrapolatingOscillatory"D

Out[94]= 0.0492841

The integral estimate by "ExtrapolatingOscillatory" is very close to the exact value.

In[95]:=
Abs@exact - resEOD

Abs@exactD

Out[95]= 2.23802µ10-7

Double-Exponential Oscillatory Integration

The strategy "DoubleExponentialOscillatory" is for slowly decaying oscillatory integrals over

one-dimensional infinite regions that have integrands of the form sinHw xp + cL f HxL, cosHw xp + cL f HxL,

or ‰Â w xp f HxL, where x is the integration variable, and w, c, p are constants.

Integration with "DoubleExponentialOscillatory".

In[2]:= NIntegrateASin@2 * xD * I1 ë x2M, 8x, 1, ¶<,
Method Ø 8"DoubleExponentialOscillatory", "SymbolicProcessing" Ø 0<E

Out[2]= 0.0633358
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option name default value

Method None integration strategy which will be used if 
"DoubleExponentialOscillatory" fails

"TuningParameters" Automatic tuning parameters of the error estimation

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing

Options of "DoubleExponentialOscillatory".

"DoubleExponentialOscillatory"  is  based  on  the  strategy  "DoubleExponential",  but

instead of using a transformation that reaches double-exponentially the ends of the integration

interval "DoubleExponentialOscillatory" uses a transformation that reaches double-exponen-

tially the zeros of sinHw xp + cL  and cosHw xp + cL.  The theoretical  foundations and properties of the

algorithm are explained in  [OouraMori91],  [OouraMori99],  [MoriOoura93].  The implementation

of  "DoubleExponentialOscillatory"  uses  the  formulas  and  the  integrator  design  in

[OouraMori99].

The algorithm of "DoubleExponentialOscillatory" will be explained using the sine integral

(19)Is = Ÿ0
¶ f HxL sin Hw xL „ x.

Consider the following transformation 

(20)x = M fHtL
w

, f HtL = t

1-‰-2 t-b I‰t-1M-a I1-‰-t M
,

where a and b are constants satisfying

b =OH1L, a = o
1

M logM
, 0 § a § b § 1.

The parameters a and b are chosen to satisfy

(21)a = bì 1 +
M logHM+1L

4 p
, b = 1

4

(taken from [OouraMori99]).

82     Advanced Numerical Integration in Mathematica



Transformation (20) is applied to (19) to obtain

(22)Is = Ÿ0
¶ f HM Hf tLL sin HM Hf tLLM Hf£ tL êw„ t.

Note  that  w  disappeared  in  the  sine  term.  The  trapezoidal  formula  with  equal  mesh  size  h

applied to (22) gives 

DEOHIs, hL =M h ‚
n=-¶

¶

f HM Hf Hn hL êwL sin HM f Hn hLL f£ Hn hL êw,

which is approximated with the truncated series sum

(23)DEOHIs, h, NL =M h⁄n=-N-

N+ f HM Hf Hn hL êwL sin HM f Hn hLL f£ Hn hL êw, N = N- + N+ + 1.

M and h are chosen to satisfy

M h = p.

The integrand decays double-exponentially at large negative n as can be seen from (20). While

the double-exponential  transformation, (12) in the section "Double-Exponential  Strategy", also

makes  the  integrand  decay  double-exponentially  at  large  positive  t,  the  transformation  (20)

does not decay the integrand at large positive t. Instead it makes the sampling points approach

double-exponentially to the zeros of sinHw xL at large positive t. Moreover

sinHM fHn hLL > sinHM n hL = sinHn pL = 0.

As  is  explained  in  [OouraMori99],  since  sin Hw xL  is  linear  near  any  of  its  zeros,  the  integrand

decreases  double-exponentially  as  x  approaches  a  zero  of  sin Hw xL.  This  is  the  sense  in  which

(23) is considered a double-exponential formula.

The relative error is assumed to satisfy

(24)εM =
†Is-DEOHIs,h,NL§

†Is §
> ‰

-
A

h > ‰
-
AM

p .

In [OouraMori99] the suggested value for A is 5.
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Since  the  DEOHIs, h, NL  formulas  cannot  be  made  progressive,

"DoubleExponentialOscillatory"  (as  proposed  in  [OouraMori99])  does  between  2  and  4

integration estimates with different h. If the desired relative error is ε the integration steps are

the following:

1. Choose M =M1 such that 

M1 = -
p logI ε M

A
,

and compute (23) with M =M1. Let the result be IM1
.

2. Next, set M2 = 2M1, and compute (23) with M =M2. Let the result be IM2
. The relative error of

the  first  integration  step  εM1
=

¢Is-IM1 ¶

†Is §
 is  assumed  to  be  εM1

>
¢IM2-IM1 ¶

¢IM2 ¶
.  From  (24)  εM2

> εM1
2,  and

therefore, if

(25)ε ¥ s
¢IM2-IM1 ¶

¢IM2 ¶

2

is  satisfied,  where  s  is  a  robustness  factor  (by  default  10)  "DoubleExponentialOscillatory"

exits with result IM2
.

3. If (25) does not hold, compute

M3 =M2
log ε

log s
¢IM2-IM1 ¶

¢IM2 ¶

2

and compute (23) with M =M3. If

(26)ε ¥ s
¢IM3-IM2 ¶

¢IM3 ¶

M3ëM2

"DoubleExponentialOscillatory" exits with result IM3
.
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4. If (26) does not hold, compute 

M4 =M3
log ε

log s
¢IM3-IM2 ¶

¢IM3 ¶

M3ëM2

and compute (23) with M =M4. Let the result be IM4
. If 

(27)ε ¥ s
¢IM4-IM3 ¶

¢IM4 ¶

M4ëM3

does not hold, "DoubleExponentialOscillatory" issues the message NIntegrate::deoncon.

If  the  value  of  the  "DoubleExponentialOscillatory"  method  option  is  None,  then  IM4
 is

returned.  Otherwise  "DoubleExponentialOscillatory"  will  return  the  result  of  NIntegrate

called with the "DoubleExponentialOscillatory" method option.

For the cosine integral

(28)Ic = Ÿ0
¶ f HxL cos Hw xL „ x,

the transformation corresponding to (20) is

x =M f t -
p

2M
ìw.

Generalized Integrals

Here is the symbolic computation of the regularized divergent integral Ÿ0
¶logHxL sinHxL „ x.

In[110]:= exact =
Limit@Integrate@Exp@-c xD Log@xD Sin@xD, 8x, 0, ¶<, Assumptions Ø c > 0D, c Ø 0D

Out[110]= -EulerGamma

"DoubleExponentialOscillatory" computes the nonregularized integral above in a general-
ized sense. 

In[111]:= NIntegrate@Log@xD Sin@xD, 8x, 0, ¶<D - exact

Out[111]= 4.89975µ10-12

More  about  the  properties  of  "DoubleExponentialOscillatory"  for  divergent  Fourier  type

integrals can found in [MoriOoura93].
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Non-algebraic Multiplicand

Symbolic integration of an oscillatory integral.

In[116]:= exact = IntegrateBSin@20 xD Cos@18 xD
1

x + 1
, 8x, 0, ¶<F

Out[116]=
1

12
3 p BesselJB-

1

2
, 2F + BesselJB-

1

2
, 38F - BesselJB

1

2
, 2F - BesselJB

1

2
, 38F +

16 19 HypergeometricPFQB81<, :
5

4
,
7

4
>, -361F + HypergeometricPFQB81<, :

5

4
,
7

4
>, -1F

If the oscillatory kernel is multiplied by a nonalgebraic function, 
"DoubleExponentialOscillatory" still gives a good result.

In[117]:= NIntegrateBSin@20 xD Cos@18 xD
1

x + 1
, 8x, 0, ¶<, PrecisionGoal Ø 10F - exact

Out[117]= -1.92081µ10-9

Plots of the integrand and its oscillatory kernel.

In[119]:= PlotB:Sin@20 xD Cos@18 xD
1

x + 1
, Sin@20 xD>, 8x, 0, 3<F

Out[119]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Crude Monte Carlo and Quasi Monte Carlo Strategies

The crude Monte Carlo algorithm estimates a given integral by averaging integrand values over

uniformly  distributed  random  points  in  the  integral's  region.  The  number  of  points  is  incre-

mented until the estimated standard deviation is small enough to satisfy the specified precision

or  accuracy  goals.  A  Monte  Carlo  algorithm  is  called  a  quasi  Monte  Carlo  algorithm  if  it  uses

equidistributed, deterministically generated sequences of points instead of uniformly distributed

random points.
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Here is a crude Monte Carlo integration.

In[3]:= NIntegrateA‰-Ix4+y4M, 8x, -2, 2<, 8y, -2, 2<, Method Ø "MonteCarlo"E

Out[3]= 3.29043

Here is a crude quasi Monte Carlo integration.

In[4]:= NIntegrateA‰-Ix4+y4M, 8x, -2, 2<, 8y, -2, 2<, Method Ø "QuasiMonteCarlo"E

Out[4]= 3.28632

"MonteCarlo" options.

option name default value

MaxPoints 50000 maximum number of sampling points

"Partitioning" 1 partitioning of the integration region along 
each axis

"SymbolicProcessing" 0 number of seconds to do symbolic prepro-
cessing  

"QuasiMonteCarlo" options.

In  Monte  Carlo  methods  [KrUeb98]  the  d-dimensional  integral  ŸV f HxL „ x  is  interpreted  as  the

following expected (mean) value:

(29)ŸV f HxL „ x = volHVL Ÿ
1

volHVL
Boole Hx œ VL f HxL „ x = volHVL EH f L,

where EH f L is the mean value (the expectation) of the function f  interpreted as a random vari-

able,  with  respect  to  the  uniform  distribution  on  V,  that  is,  the  distribution  with  probability

density  vol HVL-1 Boole Hx œ VL.  Boole Hx œ VL  is  denotes  the  characteristic  function  of  the

region V, while volHVL denotes the volume of V.
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option name default value

Method "MonteCarloRuÖ
le"

Monte Carlo rule specification

MaxPoints 50 000 maximum number of sampling points

"RandomSeed" Automatic a seed to reset the random generator

"Partitioning" 1 partitioning of the integration region along 
each axis

"SymbolicProcessing" 0 number of seconds to do symbolic prepro-
cessing  



The  crude  Monte  Carlo  estimate  is  made  with  the  integration  rule  "MonteCarloRule".  The

formulas for the integral and error estimation are given in the section "MonteCarloRule" in the

tutorial "NIntegrate Integration Rules". 

Consider the integral 

‡
W
f HxL „ x.

If  the  original  integration  region  W  is  partitioned  into  the  set  of  disjoint  subregions  8Wi<i=1
m ,

W =‹i=1
m Wi, then the integral estimate is 

‚
i=1

m

MCH f , niL,

and integration error is 

‚
i=1

m

SDH f , niL.

The number  of  sampling  points  used  on  each  subregion  generally  can  be  different,  but  in  the

Monte Carlo algorithms all ni are equal (n1 = n2 = … = nm). 

The partitioning W =‹i=1
m Wi  is called stratification, and each Wi  is called strata. Stratification can

be used to  improve crude Monte Carlo  estimations.  (The adaptive Monte Carlo  algorithm uses

recursive stratification.)

AccuracyGoal and PrecisionGoal

The  default  values  for  AccuracyGoal  and  PrecisionGoal  are  Infinity  and  2  respectively

when NIntegrate's Monte Carlo algorithms are used.

MaxPoints

The  option  MaxPoints  specifies  what  is  the  maximum  number  of  (pseudo)  random  sampling

points to be used to compute the Monte Carlo estimate of an integral. 
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Here is an example in which the maximum number of sampling points is reached and 
NIntegrate stops with a message.

In[261]:= NIntegrateB
1

x
, 8x, 0.01, 1<, Method Ø 9"MonteCarlo", "MaxPoints" Ø 103=F

NIntegrate::maxp: The integral failed to converge after 1100 integrand evaluations. NIntegrate obtained
1.768394116870677` and 0.03357978772002253` for the integral and error estimates.

Out[261]= 1.76839

"RandomSeed"

The value of the option "RandomSeed" is used to seed the random generator used to make the

sampling  integration  points.  In  that  respect  the  use  "RandomSeed"  in  Monte  Carlo  method  is

similar to the use of SeedRandom and RandomReal.

By using "RandomSeed" the results of a Monte Carlo integration can be reproduced. The results

of the following two runs are identical.

Here is a Monte Carlo integration that uses "RandomSeed".

In[56]:= NIntegrateB
1

x
, 8x, 0.01, 1<,

Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<F êê InputForm

Out[56]//InputForm= 1.7828815270494558

This Monte Carlo integration gives the same number.

In[57]:= NIntegrateB
1

x
, 8x, 0.01, 1<,

Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<F êê InputForm

Out[57]//InputForm= 1.7828815270494558
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The following shows the first 20 points used in the Monte Carlo integrations.

In[65]:= pnts =

ReapBNIntegrateB
1

x
, 8x, 0.01, 1<, Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<,

EvaluationMonitor ß Sow@xDFFP2, 1T;
Take@
pnts,
20D

Out[66]= 80.149394, 0.0460797, 0.526197, 0.402254, 0.249858, 0.155351,
0.75201, 0.447633, 0.826597, 0.899822, 0.672286, 0.322249, 0.737047,
0.162606, 0.53339, 0.12339, 0.36747, 0.095921, 0.83827, 0.16102<

The points coincide with the points made using SeedRandom and Random.
In[67]:= SeedRandom@12D; RandomReal@80.01, 1<, 20D

Out[67]= 80.149394, 0.0460797, 0.526197, 0.402254, 0.249858, 0.155351,
0.75201, 0.447633, 0.826597, 0.899822, 0.672286, 0.322249, 0.737047,
0.162606, 0.53339, 0.12339, 0.36747, 0.095921, 0.83827, 0.16102<

Stratified Crude Monte Carlo Integration

In stratified sampling Monte Carlo integration you break the region into several subregions and

apply the crude Monte Carlo estimate on each subregion separately.

From the expected (mean) value formula, Equation (29) at the beginning of Crude Monte Carlo

and Quasi Monte Carlo Strategies, you have

(30)EH f L = 1
volHVL Ÿv f HxL „ x.

Let the region V  be bisected into two half-regions, V1  and V2. EiH f L is the expectation of f  on Vi,

and VariH f L is the variance of f  on Vi. From the theorem [PrFlTeuk92]

(31)VarH f L = 1
4
HE1H f L - E2H f LL2 +

1
2
HVar1H f L + Var2H f LL

you  can  see  that  the  stratified  sampling  gives  a  variance  that  is  never  larger  than  the  crude

Monte Carlo sampling variance.

There are two ways to specify strata for the "MonteCarlo" strategy. One is to specify "singular"

points  in  the  variable  range  specifications,  the  other  is  to  use  the  method  sub-option

"Partitioning".
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Stratified crude Monte Carlo integration using variable ranges specifications.

In[124]:= NIntegrateAx2 + y2, 8x, 0, 1 ê 3, 2 ê 3, 1<,
8y, 0, 1 ê 3, 2 ê 4, 3 ê 4, 1<, Method Ø "MonteCarlo"E

Out[124]= 0.666398

Stratified crude Monte Carlo integration using the sub-option "Partitioning".

In[123]:= NIntegrateAx2 + y2, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8"MonteCarlo", "Partitioning" Ø 83, 4<<E

Out[123]= 0.671852

If "Partitioning" is given a list of integers, 8p1, p2, …, pn< with length n that equals the number

of integral variables, each dimension i of the integration region is divided into pi  equal parts. If

"Partitioning" is given an integer p, all dimensions are divided into p equal parts.

This graph demonstrates the stratified sampling specified with "Partitioning". Each cell 
contains 3 points, as specified by the "MonteCarloRule" option "Points".

In[95]:= parts = 83, 4<;
t = Reap@NIntegrate@1, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"MonteCarlo",

"Partitioning" Ø parts, Method Ø 8"MonteCarloRule", "Points" Ø 3<<,
EvaluationMonitor ß Sow@8x, y<DDDP2, 1T;

grX = HLine@88Ò1, 0<, 8Ò1, 1<<D &L êü TableBi, :i, 0, 1,
1

partsP1T
>F;

grY = HLine@880, Ò1<, 81, Ò1<<D &L êü TableBi, :i, 0, 1,
1

partsP2T
>F;

grLP = Point êü t;
Graphics@8grLP, grX, grY, Red, grLP<, Axes -> TrueD

Out[100]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Stratified  Monte  Carlo  sampling  can  be  specified  if  the  integration  variable  ranges  are  given

with intermediate singular points. 

Stratified Monte Carlo sampling through specification of intermediate singular points. 

In[18]:= ranges = ::x, 0,
1

4
,
3

5
, 1>, :y, 0,

2

5
,
3

4
, 1>>;

t = Reap@NIntegrate@1, Evaluate@Sequence üü rangesD,
Method Ø 8"MonteCarlo", Method Ø 8"MonteCarloRule", "Points" Ø 3<<,
EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD;

grX = Line@88Ò1, 0<, 8Ò1, 1<<D & êü Restüranges@@1DD;
grY = Line@880, Ò1<, 81, Ò1<<D & êü Restüranges@@2DD;
grLP = Point êü t;
Graphics@8grLP, grX, grY, Red, grLP<, Axes -> TrueD

Out[23]=
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0.2

0.4

0.6

0.8

1.0

Stratified sampling improves the efficiency of the crude Monte Carlo estimation: if  the number

of  strata is  s,  the standard deviation of  the stratified Monte Carlo estimation is  s  times less of

the standard deviation of the crude Monte Carlo estimation. (See the following example.)

The following benchmark shows that stratification speeds up the convergence.

In[120]:= n = 10; res =

TimingBDoBNIntegrateB
‰x - 1

‰ - 1
, 8x, 0, 1<, Method Ø 9"MonteCarlo", "Partitioning" Ø

Ò1, "MaxPoints" Ø 106=, PrecisionGoal Ø 2F, 8n<FFP1T ì n & êü Range@4D;

ColumnForm@
resD

Out[121]= 0.0114982
0.0039994
0.0025996
0.0020997
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Convergence Speedup of the Stratified Monte Carlo Integration

The following example confirms that if the number of strata is s, the standard deviation of the

stratified Monte Carlo estimation is s times less than the standard deviation of the crude Monte

Carlo estimation.

Here is a stratified integration definition based on the expected (mean) value formula (29).

In[122]:= MonteCarloEstimate@f_, strata_, n_D :=

J:Ò1P1T, Ò1P2T > &NBTotalB :
Mean@f êü Ò1D

strata
,
Variance@f êü Ò1D

strata2 n

strata

> & êü

TableBRandomBReal, :
i - 1

strata
,

i

strata
>F, 8i, strata<, :

n

strata
>FFF

Consider this integral.

In[123]:= f@x_D :=
‰x - 1

‰ - 1

NB‡
0

1
f@xD „xF

Out[124]= 0.418023

Here the integral above is approximated with 1000 points for the number of strata running from 
1 to 40.

In[125]:= t = Table@MonteCarloEstimate@f, i, 1000D, 8i, 1, 40<D;

These are the ratios between the standard deviations and the nonstratified, crude Monte Carlo 
estimation.

In[126]:= ratios = Transpose@tDP2T ê Transpose@tDP2, 1T;

Note that ratiosPiT is the ratio for the Monte Carlo estimation with i number of strata. This 

allows you to try a least squares fit of the function 1
x
 to ratios.

In[127]:= p@x_D := EvaluateüFitBratios, :
1

x
>, xF

p@xD

Out[128]=
1.0075

x
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The fitting of 1
x
 shows a coefficient very close to 1, which is a confirmation of the rule of thumb 

that s number of strata give s-times faster convergence. This is the plot of the ratios and the 1
x
 

least squares fit.
In[130]:= ListLinePlot@8ratios, p êü Range@Length@ratiosDD<,

PlotRange -> All, PlotStyle -> 88Red<, 8Blue<<D

Out[130]=

10 20 30 40
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0.4

0.6

0.8

1.0

Global Adaptive Monte Carlo and Quasi Monte Carlo 
Strategies

The global adaptive Monte Carlo and quasi Monte Carlo strategies recursively bisect the subre-

gion  with  the  largest  variance  estimate  into  two  halves,  and  compute  integral  and  variance

estimates for each half. 

Here is an example of adaptive Monte Carlo integration.

In[1]:= NIntegrateA‰-Ix4+y4M, 8x, -p, p<, 8y, -p, p<, Method Ø "AdaptiveMonteCarlo"E

Out[1]= 3.2531

option name default value

Method MonteCarloRule MonteCarloRule specification

"Partitioning" Automatic initial partitioning of the integration region 
along each axis

"BisectionDithering" 0 offset from the middle of the region side 
that is parallel to the bisection axis

"MaxPoints" Automatic maximum number of (pseudo-)random 
sampling points to be used

"RandomSeed" Automatic random seed used to generate the 
(pseudo-)random sampling points

Adaptive (quasi) Monte Carlo uses crude (quasi) Monte Carlo estimation rule on each subregion.
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The  process  of  subregion  bisection  and  subsequent  bi-integration  is  expected  to  reduce  the

global variance, and it is referred to as recursive stratified sampling. It is motivated by a theo-

rem that states that if a region is partitioned into disjoint subregions the random variable vari-

ance over the region is greater than or equal to the sum of the random variable variances over

each subregion. (See "Stratified Monte Carlo Integration" in the section "Crude Monte Carlo and

Quasi Monte Carlo Strategies".)

The  global  adaptive  Monte  Carlo  strategy  "AdaptiveMonteCarlo"  is  similar  to

"GlobalAdaptive". There are some important differences though.

1. "AdaptiveMonteCarlo"  does  not  use  singularity  flattening,  and  does  not  have  detectors
for slow convergence and noisy integration.

2. "AdaptiveMonteCarlo"  chooses  randomly  the  bisection  dimension.  To  avoid  irregular
separation of different coordinates a dimension recurs only if other dimensions have been
chosen for bisection. 

3. "AdaptiveMonteCarlo"  can  be  tuned  to  bisect  the  subregions  away  from  the  middle.
More at "BisectionDithering".

MinRecursion and MaxRecursion

The options MinRecursion  and MaxRecursion  for  the adaptive Monte Carlo  methods have the

same  meaning  and  functionality  as  they  do  for  "GlobalAdaptive".  See  "MinRecursion  and

MaxRecursion".

"Partitioning"

The  option  "Partitioning"  of  "AdaptiveMonteCarlo"  provides  initial  stratification  of  the

integration.  It  has  the  same  meaning  and  functionality  as  "Partitioning"  of  the  strategy

"MonteCarlo".
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"BisectionDithering"

When the integrand has some special symmetry that puts significant parts of it in the middle of

the region, it  is better if  the bisection is done slightly away from the middle. The value of the

option "BisectionDithering" -> dith specifies that the splitting fraction of the region's splitting

dimension side should be at 1
2
± dith instead of 1

2
. The sign of dith is changed in a random man-

ner.  The  default  value  given  to  "BisectionDithering"  is  1
10

.  The  allowed  values  for  dith  are

reals in the interval B- 1
4

, 1
4
F.

Consider the function.

In[195]:= f@x_, y_D := ‰- 30 IHx-5L4+Hy-5L4M;
Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD

Out[196]=

Consider the integral.

In[197]:= Integrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<D
% êê N

Out[197]=
J-4 GammaB 5

4
F + GammaB 1

4
, 18750FN

2

4 30

Out[198]= 0.599987
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The integral is seriously underestimated if no bisection dithering is used i.e., 
"BisectionDithering" is given 0.

In[199]:= MeanüTable@NIntegrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<,
Method Ø 8"AdaptiveMonteCarlo", "BisectionDithering" Ø 0<D, 820<D

Out[199]= 0.40383

The following picture shows why the integral is underestimated. The black points are the integra-
tion sampling points. It can be seen that half of the peak of the integrand is undersampled.

In[204]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<,
Method Ø 8"AdaptiveMonteCarlo", "BisectionDithering" Ø 0, "RandomSeed" Ø 10<,
PrecisionGoal Ø 2, EvaluationMonitor ß Sow@8x, y, 0<DDD;

Print@"Integral value ", tP1TD
cp = Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD;
Graphics3D@8cpP1T, PointSize@0.006D, Point êü tP2, 1T<,
BoxRatios Ø 81, 1, 0.4<, PlotRange Ø All, Axes -> TrueD

Integral value 0.292876

Out[207]=

Specifying bisection dithering of 10 % gives a satisfactory estimation.

In[212]:= MeanüTableBNIntegrateBf@x, yD, 8x, 0, 10<, 8y, 0, 10<,

Method Ø :"AdaptiveMonteCarlo", "BisectionDithering" ->
1

10
>F, 830<F

Out[212]= 0.596772
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It can be seen on this plot, that the peak of the integrand is sampled better.

In[213]:= t = ReapBNIntegrateBf@x, yD, 8x, 0, 10<, 8y, 0, 10<,

Method Ø :"AdaptiveMonteCarlo", "BisectionDithering" Ø
1

10
, RandomSeed Ø 10>,

PrecisionGoal Ø 2, EvaluationMonitor ß Sow@8x, y, 0<DFF;
Print@"Integral value ", tP1TD
cp = Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD;
Graphics3D@8cpP1T, PointSize@0.006D, Point êü tP2, 1T<,
BoxRatios Ø 81, 1, 0.4<, PlotRange Ø All, Axes -> TrueD

Integral value 0.610217

Out[216]=

Choice of Bisection Axis

For multidimensional integrals the adaptive Monte Carlo algorithm chooses the splitting axis of

an integration region in two ways: (i) by random selection or (ii) by minimizing the variance of

the  integral  estimates  of  each  half.  The  axis  selection  is  a  responsibility  of  the

"MonteCarloRule".

Example: Comparison with Crude Monte Carlo

Generally,  the  "AdaptiveMonteCarlo"  strategy  has  greater  performance  than  "MonteCarlo".

This is demonstrated with the examples in this subsection.
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Consider the function.

In[217]:= f@x_, y_D := ‰-IHx+1L2+Hy+1L2M + ‰-IHx-1L2+Hy-1L2M

This is a plot of the function.

In[218]:= Plot3D@f@x, yD, 8x, -p, p<, 8y, -p, p<D

Out[218]=

It can be seen from the following profiling that "AdaptiveMonteCarlo" uses nearly three times

fewer sampling points than the crude "MonteCarlo" strategy.

These are the sampling points and timing for "MonteCarlo".

In[219]:= 8k = 0;
HresMC = NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<, Method Ø "MonteCarlo",

PrecisionGoal Ø 2, EvaluationMonitor ß k++DL êê Timing êê First, k<
Out[219]= 80.689894 Second, 22500<

These are the sampling points and timing for "AdaptiveMonteCarlo".

In[220]:= 8k = 0;
HresAMC =

NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<, Method Ø "AdaptiveMonteCarlo",
PrecisionGoal Ø 2, EvaluationMonitor ß k++DL êê Timing êê First, k<

Out[220]= 80.180972 Second, 5300<

This is the exact result.

In[221]:= exact = Integrate@f@x, yD, 8x, -p, p<, 8y, -p, p<D

Out[221]=
1

2
p H-Erf@1 - pD + Erf@1 + pDL HErf@-1 + pD + Erf@1 + pDL
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Here is the timing for 100 integrations with "MonteCarlo".

In[222]:= tblMC = Table@NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<,
Method Ø "MonteCarlo", PrecisionGoal Ø 2D, 8100<D; êê Timing

Out[222]= 811.8842 Second, Null<

The "MonteCarlo" integration compares well with the exact result. The numbers below show 
the error of the mean of the integral estimates, the mean of the relative errors of the integral 
estimates, and the variance of the integral estimates.

In[223]:= :Abs@Mean@tblMCD - exactD, MeanBAbsB
tblMC - exact

exact
FF,

HtblMC - exactL.HtblMC - exactL

Length@tblMCD
>

Out[223]= 80.00137993, 0.00813663, 0.00430569<

Here is the timing for 100 integrations with "AdaptiveMonteCarlo", which is several times 
faster than "MonteCarlo" integrations.

In[233]:= tblAMC = Table@NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<,
Method Ø "AdaptiveMonteCarlo", PrecisionGoal Ø 2D, 8100<D; êê Timing

Out[233]= 84.21336 Second, Null<

The "AdaptiveMonteCarlo" integration result compares well with the exact result. The 
numbers below show the error of the mean of the integral estimates, the mean of the relative 
errors of the integral estimates, and the variance of the integral estimates.

In[234]:= :Abs@Mean@tblAMCD - exactD,

MeanBAbsB
tblAMC - exact

exact
FF,

HtblAMC - exactL.HtblAMC - exactL

Length@tblAMCD
>

Out[234]= 80.0129984, 0.00742212, 0.00366479<

"MultiPeriodic"

The  strategy  "MultiPeriodic"  transforms  all  integrals  into  integrals  over  the  unit  cube  and

periodizes the integrands to be one-periodic with respect to each integration variable. Different

periodizing  functions  (or  none)  can  be  applied  to  different  variables.  "MultiPeriodic"  works

for integrals with dimension less than or equal to twelve. If "MultiPeriodic" is given, integrals

with higher dimension the "MonteCarlo" strategy is used.
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Here is an example of integration with "MultiPeriodic".

In[2]:= NIntegrateA‰-Ix14+x24+x34M, 8x1, -p, p<,
8x2, -p, p<, 8x3, -p, p<, Method Ø "MultiPeriodic"E

Out[2]= 5.95735

option name default value

"Transformation" SidiSin periodizing transformation applied to the 
integrand

"MinPoints" 0 minimal number of sampling points

"MaxPoints" 105 maximum number of sampling points

"SymbolicProcessing" Automatic number of seconds to be used for symbolic 
preprocessing

"MultiPeriodic"  can  be  seen  as  a  multidimensional  generalization  of  the  strategy

"Trapezoidal". It can also be seen as a quasi Monte Carlo method.

"MultiPeriodic" uses lattice integration rules; see [SloanJoe94] [KrUeb98]. 

Here integration lattice in d, d œ , is understood to be a discrete subset of d  which is closed

under addition and subtraction, and which contains d. A lattice integration rule [SloanJoe94] is

a rule of the form 

Q f HxL =
1

N
‚
i=1

N

f HxiL,

where 8x1, x2, …, xN< are all the points of an integration lattice contained in @0, 1Ln.

If "MultiPeriodic" is called on, a d-dimensional integral option "Transformation" takes a list

of one-argument functions 8 f1, f2, …, fd< that is used to transform the corresponding variables. If

"Transformation" is given a list with length l smaller than d, then the last function, fl, is used

for the last d - l integration variables. If "Transformation" is given a function, that function will

be used to transform all the variables.

Let  d  be  the  dimension  of  the  integral.  If  d = 1  "MultiPeriodic"  calls  "Trapezoidal"  after

applying the periodizing transformation. For dimensions higher than 12  "MonteCarlo"  is  called

without applying periodizing transformations. "MultiPeriodic" uses the so-called 2d  copy rules

for 
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for 2 § d § 12. For each 2 § d § 12 "MultiPeriodic" has a set of copy rules that are used to com-

pute a sequence of integral estimates. The rules with a smaller number of points are used first.

If  the  error  estimate  of  a  rule  satisfies  the  precision  goal,  or  if  the  difference  of  two  integral

estimates in the sequence satisfies the precision goal, the integration stops. 

Number of points for the 2d copy rules in the rule sets for different dimensions.

In[3]:= tbl = HFirst êü Ò &L êü Rest@NIntegrate`MultiPeriodicDump`copyrulesD;
tbl = MapIndexed@Ò1 * 2^HÒ2@@1DD + 1L &, tblD;
mlen = Max@Length êü tblD;
tbl = Map@Join@Ò, Table@"", 8mlen - Length@ÒD<DD &, tblD;
Style@TableForm@Transpose@tblD,

TableHeadings Ø 8Automatic, Range@2, Length@tblD + 1D<D, SmallD

Out[7]=

2 3 4 5 6 7 8 9 10 11 12

1 4996 4952 5008 5024 5056 5248 4864 5632 5120 6144 12288

2 10012 9992 9904 10016 10048 10112 10496 9728 11264 10240 20480

3 20012 20024 19984 19808 20032 20096 20224 20992 19456 22528 45056

4 40028 40024 40048 39968 39616 40064 40192 40448 41984 38912 77824

5 80044 80056 80048 80096 79936 79232 80128 80384 80896 83968 167936

6 160036 160088 160112 160096 160192 159872 158464 160256 160768 161792 323584

7 320084 320072 320176 320224 320192 320384 319744 316928 320512 321536 643072

8 640448 640384 640768 639488 633856 641024 1282048

9 1280896 1280768 1281536 1278976 1267712 2535424

10 2561792 2561536 2563072 2557952 5115904

11 5123584 5123072 5126144 10252288

12 10247168 10246144 20492288

13 20494336 40988672

Comparison with "MultiDimensionalRule"

Generally "MultiPeriodic" is slower than "GlobalAdaptive" using "MultiDimensionalRule".

For  computing  high-dimension  integrals  with  lower  precision,  "MultiPeriodic"  might  give

results faster.

This defines the function of eight arguments.

In[8]:= f@x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_D :=
1 ë H1 + 0.9671190054385935` x1 + 0.21216802639809276` x2 +

0.682779542171783` x3 + 0.32962509624641606` x4 + 0.5549215440908636` x5 +
0.7907543870000786` x6 + 0.8580353669569777` x7 + 0.4796298578498076` x8L9
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Timing in seconds for computing Ÿ0
1… Ÿ0

1 f @x1, …, x8D „ x1 … „ x8 using "MultiPeriodic" and 

"GlobalAdaptive" with "MultiDimensionalRule".
In[11]:=

tbl = TableA8"IntegralEstimate", "Evaluations", "Timing"< ê.
NIntegrateProfileANIntegrateAf@x1, x2, x3, x4, x5, x6, x7, x8D, 8x1, 0, 1<,

8x2, 0, 1<, 8x3, 0, 1<, 8x4, 0, 1<, 8x5, 0, 1<, 8x6, 0, 1<, 8x7, 0, 1<,
8x8, 0, 1<, Method Ø meth, MaxPoints Ø 108, PrecisionGoal Ø pgE, 1E, 8pg, 1, 4<,

8meth, 8"MultiPeriodic", 8"MultiDimensionalRule", "Generators" Ø 5<,
8"MultiDimensionalRule", "Generators" Ø 9<<<E;

TableForm@Map@Ò@@3DD &, tbl, 82<D, TableHeadings Ø
Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"Precision goal Ø 1", "Precision goal Ø 2",

"Precision goal Ø 3", "Precision goal Ø 4"<, 8"MultiPeriodic",
ColumnForm@8"MultiDimensionalRule", "with 5 generators"<D, ColumnForm@
8"MultiDimensionalRule", "with 9 generators"<D<<, 8-1<D, TableSpacing Ø 3D

Out[12]//TableForm=

Number of integrand evaluations for computing Ÿ0
1… Ÿ0

1 f @x1, …, x8D „ x1 … „ x8 using 

"MultiPeriodic" and "GlobalAdaptive" with "MultiDimensionalRule".
In[13]:= TableForm@Map@Ò@@2DD &, tbl, 82<D,

TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"Precision goal Ø 1", "Precision goal Ø 2",

"Precision goal Ø 3", "Precision goal Ø 4"<, 8"MultiPeriodic",
ColumnForm@8"MultiDimensionalRule", "with 5 generators"<D, ColumnForm@
8"MultiDimensionalRule", "with 9 generators"<D<<, 8-1<D, TableSpacing Ø 3D

Out[13]//TableForm=

Advanced Numerical Integration in Mathematica     103



Preprocessors

The capabilities of all  strategies are extended through symbolic preprocessing of the integrals.

The  preprocessors  can  be  seen  as  strategies  that  delegate  integration  to  other  strategies

(preprocessors included).

"SymbolicPiecewiseSubdivision"

"SymbolicPiecewiseSubdivision"  is  a  preprocessor  that  divides  an  integral  with  a  piecewise

integrand into integrals  with disjoint  integration regions on each of  which the integrand is  not

piecewise. 

option name default value

Method Automatic integration strategy or preprocessor to 
which the integration will be passed

"ExpandSpecialPiecewise" True which piecewise functions should be 
expanded 

TimeConstraint 5 the maximum number of seconds for which 
the piecewise subdivision will be attempted

"MaxPiecewiseCases" 100 the maximum number of subregions the 
piecewise preprocessor can return

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

Options of "SymbolicPiecewiseSubdivision".

As was mentioned at the beginning of the tutorial,  NIntegrate  is  able to integrate simultane-

ously integrals with disjoint domains each having a different integrand. Hence, after the prepro-

cessing  with  "SymbolicPiecewiseSubdivision"  the  integration  continues  in  the  same way as

if,  say,  NIntegrate  were  given  ranges  with  singularity  specifications  (which  can  be  seen  as

specifying integrals with disjoint domains with the same integrand). For example, the strategy

"GlobalAdaptive"  tries  to  improve  the  integral  estimate  of  the  region  with  the  largest  error

through  bisection,  and  will  choose  that  largest  error  region  regardless  of  which  integrand  it

corresponds to. 

Below are the sampling points for the numerical estimation of the integral 
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On the plot, the integrand is sampled at the x coordinates in the order of the ord coordinates. 

It can be seen that "GlobalAdaptive" alternates sampling for the piece 2

sinH-xL
, x < 0 with 

sampling for the piece 1

x
, x ¥ 0 .

In[12]:= pnts = ReapBNIntegrateBPiecewiseB::
2

Sin@-xD
, x < 0>, :

1

x
, x ¥ 0>>F,

8x, -1, 1<, PrecisionGoal Ø 8, EvaluationMonitor ß Sow@xDFF@@2, 1DD;
ListPlot@Transpose@8pnts, Range@Length@pntsDD<D, PlotRange Ø All,
AxesOrigin Ø 8-1, 0<, AxesLabel Ø 8x, "sampling\norder"<D

Out[13]=
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Here are the sampling points for the numerical estimation of the integral 
Ÿ-p
p
Ÿ-p
p Boole@x2 + y2 > 1D sin Hx2 + y2L „ y „ x. The integrand is plotted on the left, the sampling 

points are plotted on the right. The integral has been partitioned into Ÿ-p
-1
Ÿ-p
p sinIx2 + y2M „ y „ x + 

Ÿ-1
1
Ÿ-p
- 1-x2 sinIx2 + y2M „ y „ x + Ÿ-1

1
Ÿ

1-x2
p sinIx2 + y2M „ y „ x  + Ÿ1

p
Ÿ-p
p sinIx2 + y2M „ y „ x, that is why the 

sampling points form a different pattern for -1 § x § 1. 

In[14]:= gr = Plot3DABooleAx2 + y2 > 1E SinAx2 + y2E, 8x, - p, p<, 8y, -p, p<E;
grSP =

Point êü ReapANIntegrateABooleAx2 + y2 > 1E SinAx2 + y2E, 8x, - p, p<, 8y, -p, p<,
Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø "GlobalAdaptive"<,
PrecisionGoal Ø 3, EvaluationMonitor ß Sow@8x, y<DEE@@2, 1DD;

grSP = Graphics@8PointSize@0.005D, grSP<, Axes Ø True, AxesOrigin Ø 8- p, - p<D;
GraphicsArray@8gr, grSP<D

In[17]:=
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"ExpandSpecialPiecewise"

In some cases it is preferable to do piecewise expansion only over certain piecewise functions.

In these case the option "ExpandSpecialPiecewise" can be given a list of functions to do the

piecewise expansion with.

This Monte Carlo integral is done faster with piecewise expansion only over Boole.

In[18]:= f@x_, y_D :=

BooleAx2 + 2 y2 < 1E AbsAx2 + y3 - 2E AbsA-x2 + y2 + 1E AbsAx2 - 3 y2 + xE
1

x2 + y2 + 10

;

NIntegrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<,
Method Ø 8"SymbolicPiecewiseSubdivision",

"ExpandSpecialPiecewise" Ø 8Boole<, Method Ø "MonteCarlo"<D êê Timing
Out[19]= 80.108984, 0.634721<

Here is a Monte Carlo integration with piecewise expansion over both Boole and Abs.

In[20]:= NIntegrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<,
Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø "MonteCarlo"<D êê Timing

Out[20]= 80.19197, 0.625164<

"EvenOddSubdivision"

"EvenOddSubdivision"  is  a  preprocessor  that  reduces  the  integration  region  if  the  region  is

symmetric  around the origin  and the integrand is  determined to  be even or  odd.  The conver-

gence of odd integrals is verified by default.

option name default value

Method Automatic integration strategy or preprocessor to 
which the integration will be passed

VerifyConvergence Automatic should the convergence be verified if an 
odd integral is detected

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

Options of "EvenOddSubdivision".

When  the  integrand  is  an  even  function  and  the  integration  region  is  symmetric  around  the

origin, the integral can be computed by integrating only on some part of the integration region

and multiplying with a corresponding factor.
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Here is a plot of an even function and the sampling points without any preprocessing.

In[21]:= gr = Plot3DB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<F;

grSP = PointB

ReapBNIntegrateB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<, Method Ø 8Automatic,

"SymbolicProcessing" Ø 0<, EvaluationMonitor ß Sow@8x, y<DFFP2, 1TF;
grSP = Graphics@8PointSize@0.01D, grSP<, Axes Ø True, AxesOrigin Ø 8-p, -p<D;
GraphicsGrid@88gr, grSP<<D

Out[24]=

These are the sampling points used by NIntegrate after "EvenOddSubdivision" has been 
applied. Note that the sampling points are only in the region @0, pDµ @0, pD.

In[25]:= GraphicsB:PointSize@0.01D,

Point êü ReapBNIntegrateB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<,

EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DD>, Axes Ø TrueF

Out[25]=
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Transformation Theorem

The preprocessor "EvenOddSubdivision" is based on the following theorem.

Theorem: Given the d-dimensional integral

‡
a0

b0
… ‡

aiIx1,…,xi-1M

biIx1,…,xi-1M
… ‡

anIx1,…,xd-1M

bnIx1,…,xd-1M
f Hx1, …, xdL „ x1 … „ xd,

assume that for some i œ 81, 2, …, d< these equalities hold:

a) aiHx1, …, xi-1L = -biHx1, …, xi-1L,

b) for all j > i, j œ 81, 2, …, d<:

a jIx1, …, xi, …, x j-1M = a jIx1, …, -xi, …, x j-1M,
b jIx1, …, xi, …, x j-1M = b jIx1, …, -xi, …, x j-1M.

In other words the range of xi  is symmetric around the origin, and the boundaries of the vari-

ables x j, j > i are even functions wrt xi.

Then:

a) the integral is equivalent to

2 ‡
a0

b0
… ‡

0

biIx1,…,xiM
… ‡

ad Ix1,…,xd-1M

bd Ix1,…,xd-1M
f Hx1, …, xdL „ x1 … „ xd

if the integrand is even wrt xi, that is,

f Hx1, …, xi, …, xdL = f Hx1, …, -xi, …, xdL;

b) the integral is equivalent to 0, if the integrand is odd wrt xi, that is, 

f Hx1, …, xi, …, xdL = - f Hx1, …, -xi, …, xdL.

Note that the theorem above can be applied several times over an integral. 

To illustrate the theorem consider the integral Ÿ0
1
Ÿ-x
x
Ÿ2
y2x „ z „ y „ x. It is symmetric along y, and the

integrand and the bounds of z are even functions wrt y.

108     Advanced Numerical Integration in Mathematica



Here is a plot of the sampling points without the application of "EvenOddSubdivision" 
(black) and with "EvenOddSubdivision" applied (red).

In[26]:= grEven = Point êü ReapANIntegrateAx, 8x, 0, 1<, 8y, -x, x<, 9z, 2, y2=,
Method Ø 8"SymbolicPreprocessing", "UnitCubeRescaling" Ø False,

Method -> 8"LobattoKronrodRule", "GaussPoints" Ø 5<<,
EvaluationMonitor ß Sow@8x, y, z<DEE@@2, 1DD;

gr = Point êü ReapANIntegrateAx, 8x, 0, 1<, 8y, -x, x<, 9z, 2, y2=,
Method Ø 8"LobattoKronrodRule", "GaussPoints" Ø 5, "SymbolicProcessing" Ø 0<,
EvaluationMonitor ß Sow@8x, y, z<DEE@@2, 1DD;

Graphics3D@8gr, Red, grEven<, PlotRange Ø All, Axes Ø True,
ViewPoint -> 82.813, 0.765, 1.718<D

Out[28]=
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If the bounds of z are not even functions wrt y then the symmetry along y is broken. For exam-

ple, the integral Ÿ0
1
Ÿ-x
x
Ÿ2
yx „ z „ y „ x has no symmetry NIntegrate can exploit. 

Here is a plot of the sampling points with "EvenOddSubdivision" applied (red). The region 
has no symmetry along y.

In[29]:= grEven = Point êü Reap@NIntegrate@x, 8x, 0, 1<, 8y, -x, x<, 8z, 2, y<,
Method Ø 8"SymbolicPreprocessing", "UnitCubeRescaling" Ø False,

Method -> 8"LobattoKronrodRule", "GaussPoints" Ø 5<<,
EvaluationMonitor ß Sow@8x, y, z<DDD@@2, 1DD;

Graphics3D@8Red, grEven<, PlotRange Ø All, Axes Ø True,
ViewPoint -> 82.813, 0.765, 1.718<D

Out[30]=
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"VerifyConvergence"

Consider the following divergent integral Ÿ-¶
¶ x „ x. NIntegrate detects it as an odd function 

over a symmetric domain and tries to integrate Ÿ0
¶x „ x (that is, check the convergence of 

Ÿ0
¶x „ x). Since no convergence was reached as is indicated by the ncvb message, NIntegrate 

gives the message oidiv that the integral might be divergent.
In[31]:= NIntegrate@x, 8x, -¶, ¶<D

Out[31]= 0.

If the option VerifyConvergence is set to False no convergence verification~and hence no 
integrand evaluation~will be done after the integral is found to be odd.

In[32]:= NIntegrate@x, 8x, -¶, ¶<,
Method Ø 8"EvenOddSubdivision", "VerifyConvergence" Ø False<D

Out[32]= 0.

"OscillatorySelection"

"OscillatorySelection"  is  a  preprocessor  that  selects  specialized  algorithms  for  efficient

evaluation  of  one-dimensional  oscillating  integrals,  the  integrands  of  which  are  products  of  a

trigonometric or Bessel function and a non-oscillating or a much slower oscillating function.
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Options of "OscillatorySelection".

option name default value

"BesselInfiniteRangeMethod
"

"ExtrapolatingOscillatory"

 specialized integration algorithm for infinite 
region integrals with Bessel functions

"FourierFiniteRangeMethod" Automatic specialized integration algorithm for Fourier 
integrals over finite ranges

"FourierInfiniteRangeMethÖ
od"

9"DoubleExponentialOscillatory",
Method->"ExtrapolatingOscillatory"=

specialized integration algorithm for Fourier 
integrals over infinite regions

Method "GlobalAdaptive
"

integration strategy or preprocessor to 
which the integration will be passed

"TermwiseOscillatory" False if the value of this option is True then the 
algorithm is selected for each term in a 
sum of oscillatory functions 

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing



"OscillatorySelection" is used by default.

In[33]:= NIntegrateB
Sin@20 xD

x + 1
, 8x, 0, ¶<F

Out[33]= 0.049757

Without the "OscillatorySelection" preprocessor NIntegrate does not reach conver-
gence with its default option settings.

In[34]:= NIntegrateB
Sin@20 xD

x + 1
, 8x, 0, ¶<, Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F

Out[34]= 0.µ102

The preprocessor "OscillatorySelection" is designed to work with the internal output of the

"SymbolicPiecewiseSubdivision"  preprocessor.  "OscillatorySelection"  itself  partitions

oscillatory integrals that include the origin or have oscillatory kernels that need to be expanded

or transformed into forms for which the oscillatory algorithms are designed. 

Here is a piecewise function integration in which all methods of "OscillatorySelection" 
are used. For this integral the preprocessor "SymbolicPiecewiseSubdivision" divides the 
integral into four different integrals; for each of these integrals "OscillatorySelection" 
selects an appropriate algorithm.

In[1]:= NIntegrateB

BesselJ@3,-xD

-x
x < 0

Cos@200 xD

x
0 < x < 20

Sin@2 x+3D

x2
x > 30

1

Log@xD
True

, 8x, -¶, ¶<F

Out[1]= 3.77933

The following table shows the names of the "OscillatorySelection" options used to 
specify the algorithms for each sub-interval in the integral above.

xœH-¶,0D "BesselInfiniteRangeMethod"

xœ@0,20D "FourierFiniteRangeMethod"

xœ@30,¶L "FourierInfiniteRangeMethod"

xœ@20,30D Method
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In this example "DoubleExponentialOscillatory" is called twice. 
"DoubleExponentialOscillatory" is a special algorithm for Fourier integrals, and the 
formula ‰2 Â x

2
= cosI2 x2M + Â sinI2 x2M makes the integrand a sum of two Fourier integrands.

In[35]:= NIntegrateB
ExpA2 Â x2E

x + 1
, 8x, 0, ¶<F êê InputForm

Out[35]//InputForm= 0.39934219109623426 + 0.2791805912092563*I

To demonstrate that "OscillatorySelection" has used the formula 
‰2 Â x

2
= cosI2 x2M + Â sinI2 x2M, here is the integral above split "by hand." The result is identical with 

the last result.

In[36]:= NIntegrateB
CosA2 x2E

x + 1
, 8x, 0, ¶<F + Â NIntegrateB

SinA2 x2E

x + 1
, 8x, 0, ¶<F êê InputForm

Out[36]//InputForm= 0.39934219109623426 + 0.2791805912092563*I

The  value  Automatic  for  the  option  "FourierFiniteRangeMethod"  means  that  if  the  integra-

tion strategy specified with the option Method is one of "GlobalAdaptive" or "LocalAdaptive"

then  that  strategy  will  be  used  for  the  finite  range  Fourier  integration,  otherwise

"GlobalAdaptive" will be used.

Here is a piecewise function integration that uses "DoubleExponential" strategy for the non-
oscillatory integral and "LocalAdaptive" for the finite range oscillatory integral.

In[37]:= NIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

,

8x, 1, 40<, Method Ø 8"SymbolicPiecewiseSubdivision",
Method Ø 8"OscillatorySelection", Method Ø "DoubleExponential",

"FourierFiniteRangeMethod" Ø 8"LocalAdaptive", "Partitioning" Ø 3<<<F

Out[37]= 8.94871

These are the sampling points of the preceding integration and integral but with default option 
settings. The pattern between @0, 20D on the left picture is typical for the local adaptive quadra-
ture~the recursive partitioning into three parts can be seen (because of the option 
"Partitioning" -> 3 given to "LocalAdaptive"). The pattern over @0, 20D on the right 
picture comes from "GlobalAdaptive". The pattern between @20, 40D on the first picture is 
typical for the double-exponential quadrature. The same pattern can be seen on the second 
picture between @20, 21 + 1 ê4D since "GlobalAdaptive" uses by default the 
"DoubleExponential" singularity handler.

112     Advanced Numerical Integration in Mathematica



In[38]:= k = 0; pointsDELA = ReapBNIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

,

8x, 1, 40<, Method Ø 8"SymbolicPiecewiseSubdivision",
Method Ø 8"OscillatorySelection", Method Ø "DoubleExponential",

"FourierFiniteRangeMethod" Ø 8"LocalAdaptive", "Partitioning" Ø 3<,
"FourierInfiniteRangeMethod" Ø "ExtrapolatingOscillatory"<<,

EvaluationMonitor ß Sow@8x, k++<DFFP2, 1T;

k = 0; points = ReapBNIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

, 8x, 1, 40<,

EvaluationMonitor ß Sow@8x, k++<DFFP2, 1T;
grDELA = Graphics@8PointSize@0.01D, Point êü pointsDELA<,

AspectRatio -> 1, Axes -> True,
PlotRange -> 880, 40<, All<D;

gr = Graphics@8PointSize@0.01D, Point êü points<,
AspectRatio -> 1, Axes -> True, PlotRange -> 880, 40<, All<D;

GraphicsGrid@88grDELA, gr<<D

Out[42]=
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If the application of a particular oscillatory method is desired for a particular type of oscillatory

integrals, either the corresponding options of "OscillatorySelection"  should be changed, or

the  Method  option  in  NIntegrate  should  be  used  without  the  preprocessor

"OscillatorySelection".

Here is a piecewise function integration that uses "ExtrapolatingOscillatory" for any of 
the infinite range oscillatory integrals.

In[10]:= NIntegrateB

BesselJ@3,-xD

-x
x < 0

Cos@200 xD

x
0 < x < 20

Sin@2 x+3D

x2
x > 30

1

Log@xD
True

, 8x, -¶, ¶<,

Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø 8"OscillatorySelection",
"FourierInfiniteRangeMethod" Ø "ExtrapolatingOscillatory"<<F

Out[10]= 3.77933
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If "ExtrapolatingOscillatory" is given as the method, "OscillatorySelection" uses 
it for infinite range oscillatory integration.

In[1]:= NIntegrateB
SinA2 x3 + 3E

x2
, 8x, 1, ¶<, Method Ø "ExtrapolatingOscillatory"F êê Timing

Out[1]= 80.137979, -0.0206489<

The integration above is faster with the default options of NIntegrate. For this integral 
"OscillatorySelection", which is applied by default, uses 
"DoubleExponentialOscillatory".

In[2]:= NIntegrateB
SinA2 x3 + 3E

x2
, 8x, 1, ¶<F êê Timing

Out[2]= 80.010998, -0.0206489<

Working with Sums of Oscillating Terms

In  many  cases  it  is  useful  to  apply  the  oscillatory  algorithms  to  integrands  that  are  sums  of

oscillating functions. That is, each term of such integrands is a product of an oscillating function

and a less oscillating one.  (See "Oscillatory Strategies"  for  the forms recognized as oscillatory

by NIntegrate.)

Here is an example of integration that applies the specialized oscillatory NIntegrate algo-
rithms to each term of the integrand.

In[4]:= NIntegrateB
Cos@100 xD + Sin@18 xD + Cos@12 xD

x
, 8x, 1, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø True<F êê Timing

Out[4]= 80.067989, 0.0879161<

By default this option is set to False, and the integral cannot be computed.

In[5]:= NIntegrateB
Cos@100 xD + Sin@18 xD + Cos@12 xD

x
, 8x, 1, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø False<F êê Timing

Out[5]= 90.039994, 4.83416µ10123=

The  option  is  "TermwiseOscillatory"  is  set  by  default  to  False  since  splitting  the  integrals

can lead in some cases to divergent results.
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Here is a convergent integral. If it is split into two integrals each will be divergent.

In[6]:= IntegrateB
Cos@xD2

x2
-
Cos@2 xD

x2
, 8x, 0, ¶<F êê N

Out[6]= 1.5708

If "TermwiseOscillatory" -> True is used the result is some big number (and lots of 
messages). 

In[4]:= NIntegrateB
Cos@xD2

x2
-
Cos@2 xD

x2
, 8x, 0, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø True<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 99.61429µ10-225=. NIntegrate obtained
1.09277555296995444002380282417575577402166042202745166400395762181`65.95458Ö
9770191*^27949 and

1.09277555296995444002380282417575577402166042202745166400395762181`65.95458Ö
9770191*^27949 for the integral and error estimates. à

General::ovfl : Overflow occurred in computation. à

General::unfl : Underflow occurred in computation. à

General::unfl : Underflow occurred in computation. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =

98.11799844178877794786317075103237559684904034257010450192228126196µ10-76=.
NIntegrate obtained -5.03035µ1076 and
4.9601122390425185`*^76 for the integral and error estimates. à

Out[4]= 1.092775552969954µ1027949

If "TermwiseOscillatory" -> False is used the result is closer to the exact one. 

In[7]:= NIntegrate@Cos@xD^2 ê x^2 - Cos@2 xD ê x^2, 8x, 0, Infinity<,
Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø False<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 8132.64<. NIntegrate obtained 1.570930116084087` and
0.000748285430212249` for the integral and error estimates. à

Out[7]= 1.57093
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"UnitCubeRescaling"

"UnitCubeRescaling" is a preprocessor that transforms the integration region into a unit cube

or hypercube. The variables of the original integrand are replaced the result is multiplied by the

Jacobian of the transformation. 

option name default value

"FunctionalRangesOnly" True what ranges should be transformed to the 
unit cube

Method "GlobalAdaptive" integration strategy or preprocessor to 
which the integration will be passed

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing

Options of "UnitCubeRescaling".

This uses unit cube rescaling and it is faster than the computation that follows.

In[10]:= NIntegrateBSinAx2 + y2E ì x2 + y2 , 8x, 0, 5<,

:y, 0, x >, Method Ø "UnitCubeRescaling"F êê Timing

Out[10]= 80.221967, 0.596359<

This integration does not use unit cube rescaling. It is done approximately three times slower 
than the previous one.

In[11]:= NIntegrateBSinAx2 + y2E ì x2 + y2 , 8x, 0, 5<, :y, 0, x >,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

Out[11]= 80.570913, 0.596359<

"UnitCubeRescaling" transforms the integral

(32)Ÿa1
b1
Ÿa2Hx1L
b2Hx1L… Ÿad Ix1,…,xd-1M

bd Ix1,…,xd-1M f Hx1, …, xdL „ x1 … „ xd

into an integral over the hypercube @0, 1Dd. Assuming that a1 and b1 are finite and ai , bi, i = 2, …, d

are piecewise continuous functions the transformation used by "UnitCubeRescaling" is

(33)xi = aiIx
`
1, …, x` i-1M + x

`
iIbiI x

`
1, …, x` i-1M - aiIx

`
1, …, x` i-1MM, i = 1, …, d.
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The Jacobian of this transformation is

(34)JIx`1, …, x`dM =¤i=1
d IbiIx

`
1, …, x`dM - aiIx

`
1, …, x`dMM.

If for the ith  axis one or both of ai  and bi  are infinite, then the formula for xi  in (33) is a non-

affine  transformation  that  maps  @0, 1D  into  AaiIx
`
1, …, x` i-1M, biI x

`
1, …, x` i-1ME.  NIntegrate  uses  the

following transformations:

x = a +
1

1 - x`
- 1, x œ @a, ¶L,

x = 1 + b -
1

x`
, x œ @-¶, bL,

x = -
1

-1 + x`
-

1

x`
, x œ H-¶, ¶L,

where x` œ @0, 1D.

Applying "UnitCubeRescaling" makes the integrand more complicated if the integration region

boundaries  are  constants  (finite  or  infinite).  Since  NIntegrate  has  efficient  affine  and  infinite

internal  variable transformations the integration process would become slower.  If  some of  the

integration  region  boundaries  are  functions,  applying  "UnitCubeRescaling"  would  make  the

integration  faster  since  the  computations  that  involve  the  integration  variables  are  done  only

when  the  integrand  is  evaluated.  Because  of  these  performance  considerations

"UnitCubeRescaling" has the option "FunctionRangesOnly". If "FunctionRangesOnly" is set

to True the rescaling is applied only to multidimensional functional ranges.

This integration uses unit cube rescaling.

In[12]:= NIntegrateAExp@-1 ê 10 Hx + yLD x2, 8x, 0, ¶<, 8y, 0, ¶<,
Method Ø 8"UnitCubeRescaling", "FunctionalRangesOnly" Ø False<E êê Timing

Out[12]= 80.483926, 20000.<

This integration does not use unit cube rescaling. It is done approximately two times faster than 
the previous one.

In[13]:= NIntegrateAExp@-1 ê 10 Hx + yLD x2, 8x, 0, ¶<, 8y, 0, ¶<,
Method Ø 8"UnitCubeRescaling", "FunctionalRangesOnly" Ø True<E êê Timing

Out[13]= 80.184972, 20000.<
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Example Implementation

The  transformation  process  used  by  "UnitCubeRescaling"  is  the  same  as  the  following  one

implemented  by  the  function  FRangesToCube  (also  defined  in  "Duffy's  Coordinates  Generaliza-

tion and Example Implementation").

This function provides the transformation (33) and its Jacobian (34) for a list of integration 
ranges and a list of rectangular parallelepiped sides or a hypercube side.

In[14]:= FRangesToCube@ranges_, cubeSides : 88_, _< ...<D :=
Module@8t, t1, jac, vars, rules = 8<<,

vars = First êü ranges;
t = MapThread@Ht1 = Rescale@Ò1@@1DD, Ò2, 8Ò1@@2DD, Ò1@@3DD< ê. rulesD;

AppendTo@rules, Ò1@@1DD Ø t1D; t1L &, 8ranges, cubeSides<D;
jac = Times üü MapThread@D@Ò1, Ò2D &, 8t, vars<D;
8rules, jac<

D ê; Length@rangesD ã Length@cubeSidesD;
FRangesToCube@ranges_, cubeSide : 8_, _<D :=

FRangesToCube@ranges, Table@cubeSide, 8Length@rangesD<DD;
FRangesToCube@ranges_D := FRangesToCube@ranges, 80, 1<D;

Each transformation of the transformation (33) can be done with Rescale.

In[17]:= Rescale@x, 80, 1<, 8a, b<D

Out[17]= a + H-a + bL x

Note that for given axis i the transformation rules already derived for axes 1, …, i - 1 need to be

applied to the original boundaries before the rescaling of boundaries along the ith axis.

The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @0, 1Dµ @aHxL, bHxLD. 
In[18]:= 8transRules, jacobian< = FRangesToCube@88x, 0, 1<, 8y, a@xD, b@xD<<D;

transRules
jacobian

Out[19]= 8x Ø x, y Ø a@xD + y H-a@xD + b@xDL<

Out[20]= -a@xD + b@xD

Application of the transformation to a function.

In[21]:= HF@x, yD ê. transRulesL jacobian

Out[21]= H-a@xD + b@xDL F@x, a@xD + y H-a@xD + b@xDLD
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The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @0, ¶Dµ @aHxL, bHxLD. 
In[22]:= 8transRules, jacobian< = FRangesToCube@88x, 0, ¶<, 8y, a@xD, b@xD<<D;

transRules
jacobian

Out[23]= :x Ø -1 +
1

1 - x
, y Ø aB-1 +

1

1 - x
F + y -aB-1 +

1

1 - x
F + bB-1 +

1

1 - x
F >

Out[24]=
-aB-1 +

1

1-x
F + bB-1 +

1

1-x
F

H1 - xL2

The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @a0, b0Dµ @a1HxL, b1HxLD. 
In[25]:= 8transRules, jacobian< = FRangesToCube@88x, a0, b0<, 8y, a1@xD, b1@xD<<D;

transRules
jacobian

Out[26]=

Out[27]= H-a0 + b0L H-a1@a0 + x H-a0 + b0LD + b1@a0 + x H-a0 + b0LDL

"SymbolicPreprocessing"

"SymbolicPreprocessing"  is a composite preprocessor made to simplify the switching on and

off of the other preprocessors.

"SymbolicPreprocessing" options.
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option name default value

Method Automatic integration strategy or preprocessor to 
which the integration will be passed

"SymbolicPiecewiseSubdiviÖ
sion"

True piecewise subdivision

"EvenOddSubdivision" True even-odd subdivision

"OscillatorySelection" True detection of products with an oscillatory 
function

"UnitCubeRescaling" Automatic rescaling to the unit hypercube

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing



When  "UnitCubeRescaling"  is  set  to  Automatic  it  is  applied  only  to  multidimensional  func-

tional ranges.

Here is an example of the integration of Ÿ-1
1
Ÿ0
x2 BooleBx

2+y2<
1

2
F

x2+y2
„ y „ x with different combinations of 

preprocessor application.

In[30]:= grarr = MapBGraphicsB:PointSize@0.01D,

Point êü ReapBNIntegrateB
Boole@x^2 + y^2 < 1 ê 2D

x2 + y2
, 8x, -1, 1<, 9y, 0, x2=,

Method Ø 8"SymbolicPreprocessing", "EvenOddSubdivision" Ø Ò@@1DD,
"SymbolicPiecewiseSubdivision" Ø Ò@@2DD, Method Ø 8"GlobalAdaptive",

Method Ø "GaussKronrodRule", "SingularityDepth" Ø ¶<<,
PrecisionGoal Ø 3, EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DD>,

PlotRange Ø 88-1, 1<, 80, 1<<, Axes -> TrueF &,
Outer@List, 8False, True<, 8False, True<D,
8-2<F;

Grid@Join@88"", SpanFromLeft, "SymbolicPiecewiseSubdivision", SpanFromLeft<,
8SpanFromAbove, SpanFromBoth, False, True<<,

8Join@8"EvenOddSubdivision", False<, grarrP1TD<,
8Join@8SpanFromAbove, True<, grarrP2TD<D, Dividers Ø AllD

Out[44]=

SymbolicPiecewiseSubdivision
False True

EvenOddSubdivision False
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Examples and Applications

Closed-Contour Integrals

This function calculates the mass of a closed contour given in polar coordinates parametrization.

In[42]:= ClosedContourIntegral@fexpr_,
8x_, xpareq_<, 8y_, ypareq_<, 8q_, 0, 2 p<, opts___D :=

NIntegrateBfexpr x2 + y2 ê. 8x Ø xpareq, y Ø ypareq<, 8q, 0, 2 p<,

Evaluate@Sequence üü Append@8opts<, Method Ø "Trapezoidal"DDF

This is circumference of the ellipse with radii 2 and 3 using Integrate.

In[43]:= 8a, b< = 82, 3<;

exact = IntegrateB a2 Cos@qD2 + b2 Sin@qD2 , 8q, 0, 2 p<F

Out[44]= 8 EllipticEB-
5

4
F

Here is the circumference approximation of the ellipse with radii 2 and 3 using the same 
function.

In[45]:= ep = ClosedContourIntegral@1, 8x, a Cos@qD<, 8y, b Sin@qD<, 8q, 0, 2 p<D

Out[45]= 15.8654

 The approximation compares quite well with the exact value.

In[46]:= Abs@exact - epD

Out[46]= 9.14824µ10-13
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Fourier Series Calculation

This is a Mathematica function that calculates a truncated Fourier series approximation of a 
function.

In[83]:= FourierAnalysis@f_, 8x_, xmin_, xmax_<, nterms_,
integrator_: HNIntegrate@ÒÒ, Method Ø "GlobalAdaptive", MaxRecursion Ø 30D &LD :=

BlockB8a, b, funcTerms<, a =
2

Hxmax - xminL

TableBintegratorBCosB
2 p

xmax - xmin
j xF f, 8x, xmin, xmax<F, 8j, 0, nterms<F;

b =
2

Hxmax - xminL
TableBintegratorBSinB

2 p

xmax - xmin
j xF f, 8x, xmin, xmax<F,

8j, 1, nterms<F;

funcTerms =
aP1T

2
+ TotalBTableBCosB

2 p

xmax - xmin
j xF aPj + 1T +

SinB
2 p

xmax - xmin
j xF bPjT, 8j, 1, nterms<FF;

funcTerms
F;

Fourier approximation of x3 + x2 over @-2, 2D using Integrate.

In[84]:= func = FourierAnalysisAx3 + x2, 8x, -2, 2<, 12, IntegrateE

Out[84]=
4

3
-
16 CosA p x

2
E

p2
+
4 Cos@p xD

p2
-
16 CosB 3 p x

2
F

9 p2
+
Cos@2 p xD

p2
-
16 CosB 5 p x

2
F

25 p2
+
4 Cos@3 p xD

9 p2
-

16 CosB 7 p x

2
F

49 p2
+
Cos@4 p xD

4 p2
-
16 CosB 9 p x

2
F

81 p2
+
4 Cos@5 p xD

25 p2
-
16 CosB 11 p x

2
F

121 p2
+
Cos@6 p xD

9 p2
+

16 I-6 + p2M SinA p x

2
E

p3
+

I24 - 16 p2M Sin@p xD

2 p3
+
16 I-2 + 3 p2M SinB 3 p x

2
F

9 p3
+

I3 - 8 p2M Sin@2 p xD

2 p3
+

16 I-6 + 25 p2M SinB 5 p x

2
F

125 p3
+

I8 - 48 p2M Sin@3 p xD

18 p3
+
16 I-6 + 49 p2M SinB 7 p x

2
F

343 p3
+
1

2

3

8 p3
-
4

p
Sin@4 p xD +

16 I-2 + 27 p2M SinB 9 p x

2
F

243 p3
-
4 I-3 + 50 p2M Sin@5 p xD

125 p3
+
16 I-6 + 121 p2M SinB 11 p x

2
F

1331 p3
+

I1 - 24 p2M Sin@6 p xD

18 p3
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This a plot of x3 + x2 and the Fourier series approximation.

In[85]:= PlotA9TooltipAx3 + x2, "Original\nfunction"E,
Tooltip@func, "Fourier\napproximation"D=, 8x, -2, 2<, PlotRange Ø AllE

Out[85]=

-2 -1 1 2

5

10

This calculates a 60-term Fourier approximation of Sin@x3 + 1
2
D over @-4, 4D using 

NIntegrate. If Integrate is used the calculation will be very slow.

In[86]:= func = FourierAnalysisBSinBx3 +
1

2
F, 8x, -4, 4<, 60F; êê Timing

Out[86]= 811.2887, Null<

This a plot of Sin@x3 + 1
2
D and the Fourier series approximation.

In[87]:= PlotB:TooltipBSinBx3 +
1

2
F, "Original\nfunction"F,

Tooltip@func, "Fourier\napproximation"D>, 8x, -4, 4<, PlotRange Ø AllF

Out[87]=
-4 -2 2 4

-1.0

-0.5

0.5

1.0
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NIntegrate Integration Rules

Introduction

An integration rule computes an estimate of an integral over a region using a weighted sum. In

the context of NIntegrate  usage, an integration rule object provides both an integral estimate

and an error estimate as a measure of the integral estimate's accuracy.

An integration rule samples the integrand with a set of points. These points are called sampling

points.  In  the  literature  these  are  usually  called  abscissas.  Corresponding  to  each  sampling

point xi there is a weight number wi. An integration rule estimates the integral Ÿa
b f HxL „ x with the

weighted  sum ⁄wi f HxiL.  An  integration  rule  is  a  functional,  that  is,  it  maps  functions  over  the

interval @a, bD (or a more general region) into real numbers. 

If a rule is applied over the region V this will be denoted as RV H f L, where f  is the integrand.

The  sampling  points  of  the  rules  considered  below  are  chosen  to  compute  estimates  for  inte-

grals either over the interval @0, 1D, or the unit cube @0, 1Dd, or the "centered" unit cube B- 1
2

, 1
2
F
d
,

where  d  is  the  dimension  of  the  integral.  So  if  V  is  one  of  these  regions,  RH f L  will  be  used

instead of  RV H f L.  When these  rules  are  applied  to  other  regions,  their  abscissas  and estimates

need to be scaled accordingly.

The integration rule R is said to be exact for the function f  if R@a,bDH f L = Ÿa
b f HxL „ x. 

The application of an integration rule R to a function f  will be referred as an integration of f , for

example, "when f  is integrated by R, we get RH f L."

A one-dimensional integration rule is said to be of degree n if it integrates exactly all polynomi-

als of degree n or less, and will fail to do so for at least one polynomial of degree n + 1. 

A multidimensional integration rule is said to be of degree n if it integrates exactly all monomi-

als of degree n or less, and will fail to do so for at least one monomial of degree n + 1, that is,

the  rule  is  exact  for  all  monomials  of  the  form  ¤i=1
d xi

ai,  where  d  is  the  dimension,  ai ¥ 0,  and

⁄i=1
d ai § n.
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A null rule of degree m will integrate to zero all monomials of degree § m and will fail to do so

for  at  least  one monomial  of  degree m + 1.  Each null  rule  may be thought  of  as  the difference

between a basic integration rule and an appropriate integration rule of a lower degree.

If the set of sampling points of a rule R1 of degree n contains the set of sampling points of a rule

R2 of a lower degree m, that is, n >m, then R2 is said to be embedded in R1. This will be denoted

as R2 Õ R1.

An integration rule of degree n that is a member of a family of rules with a common derivation

and  properties  but  different  degrees  will  be  denoted  as  RH f , nL,  where  R  might  be  chosen  to

identify the family. (For example, trapezoidal rule of degree 4 might be referred to as TH f , 4L.)

If each rule in a family is embedded in another rule in the same family, then the rules of that

family  are  called  progressive.  (For  any  given  m œ   there  exists  n œ , n >m,  for  which

RH f , mL Õ RH f , nL).

An  integration  rule  is  of  open  type  if  the  integrand  is  not  evaluated  at  the  end  points  of  the

interval. It is of closed type if it uses integrand evaluations at the interval end points.

An  NIntegrate  integration  rule  object  has  one  integration  rule  for  the  integral  estimate  and

one or several null rules for the error estimate. The sampling points of the integration rule and 

the null  rules coincide. It should be clear from the context whether "integration rule" or "rule"

would mean an NIntegrate integration rule object, or an integration rule in the usual mathemat-

ical sense.

Integration Rule Specification

All integration rules described below, except "MonteCarloRule", are to be used by the adaptive

strategies  of  NIntegrate.  In  NIntegrate,  all  Monte  Carlo  strategies,  crude  and adaptive,  use

"MonteCarloRule".  Changing  the  integration  rule  component  of  an  integration  strategy  will

make a different integration algorithm. 

The  way  to  specify  what  integration  rule  the  adaptive  strategies  in  NIntegrate  (see  "Global

Adaptive Strategy" and "Local Adaptive Strategy") should use is through a Method suboption.

Here is an example of using an integration rule with a strategy ("GlobalAdaptive").

In[1]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø "ClenshawCurtisRule"<D êê InputForm

Out[1]//InputForm= 1.9999999999193905
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Here is an example of using the same integration rule as in the example above through a 
different strategy ("LocalAdaptive").

In[2]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"LocalAdaptive", Method Ø "ClenshawCurtisRule"<D êê InputForm

Out[2]//InputForm= 1.9999999976742142

If  NIntegrate  is  given  a  method  option  that  has  only  an  integration  rule  specification  other

than "MonteCarloRule",  then that  rule  is  used with  the "GlobalAdaptive"  strategy.  The two

inputs below are equivalent.

For this integration only integration rule is specified.

In[3]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "LobattoKronrodRule"D êê InputForm

Out[3]//InputForm= 2.0000000000019873

For this integration an integration strategy and an integration rule are specified.

In[4]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø "LobattoKronrodRule"<D êê InputForm

Out[4]//InputForm= 2.0000000000019873

Similarly  for  "MonteCarloRule",  the  adaptive  Monte  Carlo  strategy  is  going  to  be  used  when

the following two equivalent commands are executed.

For this Monte Carlo integration only the "MonteCarloRule" is specified.

In[5]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "MonteCarloRule"D êê InputForm

Out[5]//InputForm= 1.9923900530424228

For this Monte Carlo integration a Monte Carlo integration strategy and "MonteCarloRule" 
are specified.

In[6]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"AdaptiveMonteCarlo", Method Ø "MonteCarloRule"<D êê InputForm

Out[6]//InputForm= 1.9745771611582486

"TrapezoidalRule"

The  trapezoidal  rule  for  integral  estimation  is  one  of  the  simplest  and  oldest  rules  (possibly

used by the Babylonians and certainly by the ancient Greek mathematicians):

(35)Hb - aL f HaL+ f HbL
2

º Ÿa
b f HxL „ x.

126     Advanced Numerical Integration in Mathematica



The compounded trapezoidal rule is a Riemann sum of the form

(36)TH f , nL = 1
2
h f HaL + h⁄i=1

n-1 f Ha + h iL + 1
2
h f HbL º Ÿa

b f HxL „ x,

where h = b-a
n-1

.

If the Method option is given the value "TrapezoidalRule", the compounded trapezoidal rule is

used to estimate each subinterval formed by the integration strategy.

A "TrapezoidalRule" integration:

In[7]:= NIntegrate@x + 5, 8x, 0, 7<, Method -> "TrapezoidalRule"D

Out[7]= 59.5

option name default value

"Points" 5 number of coarse trapezoidal points

"RombergQuadrature" True should Romberg quadrature be used or not

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"TrapezoidalRule" options.

The  trapezoidal  rule  and  its  compounded  (multipanel)  extension  are  not  very  accurate.  (The

compounded trapezoidal rule is exact for linear functions and converges at least as fast as n-2, if

the  integrand  has  continuous  second  derivative  [DavRab84].)  The  accuracy  of  the  multipanel

trapezoidal rule can be increased using the "Romberg quadrature".

Since the abscissas of TH f , nL are a subset of TH f , 2 n - 1L, the difference TH f , 2 n - 1L - TH f , nL , can

be  taken  to  be  an  error  estimate  of  the  integral  estimate  TH f , 2 n - 1L,  and  can  be  computed

without extra integrand evaluations.

The option  "Points" -> k  can  be  used to  specify  how many coarse  points  are  used.  The  total

number of points used by "TrapezoidalRule" is 2 k - 1.

This verifies that the sampling points are as in (36).

In[8]:= k = 4;
ReapüNIntegrate@x + 5, 8x, 1, 7<,

Method -> 8"TrapezoidalRule", "Points" Ø k, "RombergQuadrature" Ø False<,
EvaluationMonitor :> Sow@xDD

Out[9]= 854., 881., 2., 3., 4., 5., 6., 7.<<<
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"TrapezoidalRule" can be used for multidimensional integrals too.

Here is a multidimensional integration with "TrapezoidalRule". The exact result is 

Ÿ0
1
Ÿ0
1
Ix2 + yM „ y „ x = 5 ê6 = 0.8333333 ….

In[10]:= NIntegrate@x^2 + y, 8x, 0, 1<, 8y, 0, 1<, Method -> "TrapezoidalRule"D

Out[10]= 0.833333

Remark: NIntegrate  has both a trapezoidal rule and a trapezoidal strategy; see "Trapezoidal"

Strategy  in  the  tutorial  Integration  Strategies.  All  internally  implemented  integration  rules  of

NIntegrate  have  the  suffix  -Rule.  So  "TrapezoidalRule"  is  used  to  specify  the  trapezoidal

integration rule, and "Trapezoidal" is used to specify the trapezoidal strategy.

Romberg Quadrature

The idea of the Romberg quadrature is to use a linear combination of TH f , nL and TH f , 2 n - 1L that

eliminates the same order terms of truncation approximation errors of TH f , nL and TH f , 2 n - 1L.

From the Euler|Maclaurin formula [DavRab84] we have

‡
a

b
f HxL „ x =

1

2
h f HaL + h‚

i=1

n-1

f Ha + h iL +
1

2
h f HbL -

1

12
h2 H f £HbL - f £HaLL +

1

720
Hb - aL h4 f 4@xD,

where

h =
b - a

n - 1
, a < x < b.

Hence we can write

‡
a

b
f HxL „ x = TH f , nL + A h2 +OIh4M,

‡
a

b
f HxL „ x = TH f , 2 n - 1L + A

h

2

2

+OIh4M.
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The h2  terms of the equations above can be eliminated if  the first  equation is  subtracted from

the second equation four times. The result is  

‡
a

b
f HxL „ x =

4 TH f , 2 n - 1L - T H f , nL

3
+OIh4M.

This example shows that a trapezoidal rule using the Romberg quadrature gives better perfor-
mance than the standard trapezoidal rule. Also, the result of the former is closer to the exact 

result, Ÿ0
1 x „ x = 2

3
= 0.6666666 ….

In[11]:= NIntegrate@Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø 8"TrapezoidalRule",

"Points" Ø 5, "RombergQuadrature" Ø True<, "SingularityDepth" Ø ¶<,
MaxRecursion Ø 100, PrecisionGoal Ø 8D êê InputForm êê Timing

Out[11]= 80.06399, 0.6666666666571325<

Here is an integration with a trapezoidal rule that does not use Romberg quadrature.

In[10]:= NIntegrate@Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø 8"TrapezoidalRule", "Points" Ø 5,

"RombergQuadrature" Ø False<, "SingularityDepth" Ø ¶<,
MaxRecursion Ø 100, PrecisionGoal Ø 8D êê InputForm êê Timing

Out[10]= 80.109983, 0.6666666644416138<

"TrapezoidalRule" Sampling Points and Weights

The following calculates the trapezoidal sampling points, weights, and error weights for a given 
precision.

In[3]:= n = 5; precision = MachinePrecision;
8absc, weights, errweights< = NIntegrate`TrapezoidalRuleData@n, precisionD

Out[4]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0625, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.0625<,
8-0.0625, 0.125, -0.125, 0.125, -0.125, 0.125, -0.125, 0.125, -0.0625<<

Here is how the Romberg quadrature weights and error weights can be derived.

In[5]:= rombergAbsc = absc;
lowOrderWeights = -Herrweights - weightsL;

rombergWeights =
4 weights - lowOrderWeights

3
;

rombergErrorWeights = rombergWeights - weights;
8rombergAbsc, rombergWeights, rombergErrorWeights<

Out[9]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0416667, 0.166667, 0.0833333, 0.166667, 0.0833333, 0.166667, 0.0833333, 0.166667, 0.0416667<,
8-0.0208333, 0.0416667, -0.0416667, 0.0416667,
-0.0416667, 0.0416667, -0.0416667, 0.0416667, -0.0208333<<
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"NewtonCotesRule"

Newton|Cotes integration formulas are formulas of interpolatory type with sampling points that

are equally spaced. 

The Newton|Cotes quadrature for NIntegrate can be specified with the Method option value 
"NewtonCotesRule".

In[20]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "NewtonCotesRule"D

Out[20]= 2.

option name default value

"Points" 3 number of coarse Newton|Cotes points

"Type" Closed type of the Newton|Cotes rule

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"NewtonCotesRule" options.

Let  the  interval  of  integration,  @a, bD,  be  divided  into  n - 1  subintervals  of  equal  length  by  the

points

a, a + h, a + 2 h, …, a + Hn - 1L h = b, h =
b - a

n - 1
.

Then the integration formula of interpolatory type is given by

‡
a

b
f HxL „ x º

b - a

n - 1
‚
k=0

n-1

Bn-1,k f Ha + h kL,

where

Bn-1,k =
n - 1

b - a
‡
a

b wHxL

H-a - k h + xLw£Ha + h kL
„ x,

with

wHxL = Hx - aL Hx - a - hL …Hx - a - Hn - 1L hL.
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When n is large, the Newton|Cotes n-point coefficients are large and are of mixed sign.

In[21]:= NIntegrate`NewtonCotesRuleData@25, MachinePrecisionD@@2DD

Out[21]= 90.00421169, 0.0712002, -0.499965, 5.17028, -43.2178, 306.528, -1854.44, 9697.73, -44332.4,

178882., -642291., 2.0662µ106, -5.98934µ106, 1.57199µ107, -3.75117µ107, 8.16646µ107,
-1.62678µ108, 2.97256µ108, -4.99278µ108, 7.72171µ108, -1.10118µ109, 1.44964µ109,
-1.76314µ109, 1.98245µ109, -2.06138µ109, 1.98245µ109, -1.76314µ109, 1.44964µ109,
-1.10118µ109, 7.72171µ108, -4.99278µ108, 2.97256µ108, -1.62678µ108, 8.16646µ107,
-3.75117µ107, 1.57199µ107, -5.98934µ106, 2.0662µ106, -642291., 178882., -44332.4,
9697.73, -1854.44, 306.528, -43.2178, 5.17028, -0.499965, 0.0712002, 0.00421169=

Since  this  may lead  to  large  losses  of  significance  by  cancellation,  a  high-order  Newton|Cotes

rule must be used with caution.

"NewtonCotesRule" Sampling Points and Weights

The following calculates the Newton|Cotes sampling points, weights, and error weights for a 
given precision.

In[22]:= n = 5; precision = MachinePrecision;
8absc, weights, errweights< = NIntegrate`NewtonCotesRuleData@n, precisionD

Out[23]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0348854, 0.20769, -0.0327337, 0.370229, -0.160141, 0.370229, -0.0327337, 0.20769, 0.0348854<,
8-0.0428924, 0.20769, -0.388289, 0.370229, -0.293474, 0.370229, -0.388289, 0.20769, -0.0428924<<

"GaussBerntsenEspelidRule"

Gaussian quadrature uses optimal sampling points (through polynomial interpolation) to form a

weighted sum of the integrand values over these points. On a subset of these sampling points a

lower order quadrature rule can be made. The difference between the two rules can be used to

estimate the error. Berntsen and Espelid derived error estimation rules by removing the central

point of Gaussian rules with odd number of sampling points.

The Gaussian quadrature for NIntegrate can be specified with the Method option value 
"GaussBerntsenEspelidRule".

In[24]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "GaussBerntsenEspelidRule"D

Out[24]= 2.

option name default value

"Points" Automatic number of Gauss points

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing
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A Gaussian rule GH f , nL of n points for integrand f  is exact for polynomials of degree 2 n - 1 (i.e.,

GH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 1). 

Gaussian rules  are  of  open type since the integrand is  not  evaluated at  the end points  of  the

interval. (Lobatto rules, Clenshaw|Curtis rules, and the trapezoidal rule are of closed type since

they use integrand evaluations at the interval end points.)

This defines the divided differences functional [Ehrich2000]

dvdHt1, t2, …, ts+1L @ f D =‚
n=1

s+1

‰
m=1
m≠n

s+1

Itn - tmM
-1 f HtnL, 0 § t1 < t2 < … < ts+1 § 1.

For the Gaussian rule GH f , 2 n + 1L, with sampling points x1, x2, …, x2 n+1, Berntsen and Espelid have

derived the following error estimate functional (see [Ehrich2000])

EHGH f , 2m + 1LL = H-1Ln
22 n+1 n !2 H2 nL !

H4 n + 1L !
dvdHx1, x2, …, x2 n+1L @ f D.

(The original formula in [Ehrich2000] is for sampling points in @-1, 1D. The formula above is for

sampling points in @0, 1D.)

This example shows the number of sampling points used by NIntegrate with various values of
 the

 
"GaussBerntsenEspelidRule" option "Points".

In[25]:= Table@Hk = 0; NIntegrate@x^H1 ê 2L, 8x, 0, 1<,
Method Ø 8"GaussBerntsenEspelidRule", "Points" Ø i<,
EvaluationMonitor :> k++D; kL, 8i, 2, 20<D

Out[25]= 8164, 106, 110, 128, 146, 164, 182, 200, 218, 236, 225, 243, 261, 279, 231, 245, 259, 273, 287<
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"GaussBerntsenEspelidRule" Sampling Points and Weights

The following calculates the Gaussian abscissas, weights, and Bernsen|Espelid error weights for 
a given number of coarse points and precision.

In[26]:= n = 5; precision = 20;
8absc, weights, errweights< =
NIntegrate`GaussBerntsenEspelidRuleData@n, precisionD

Out[27]= 880.010885670926971503598, 0.056468700115952350462,
0.13492399721297533795, 0.24045193539659409204, 0.36522842202382751383,
0.50000000000000000000, 0.63477157797617248617, 0.75954806460340590796,
0.86507600278702466205, 0.94353129988404764954, 0.98911432907302849640<,

80.027834283558086833242, 0.06279018473245231232, 0.09314510546386712571,
0.11659688229599523996, 0.13140227225512333109, 0.13646254338895031536,
0.13140227225512333109, 0.11659688229599523996, 0.09314510546386712571,
0.06279018473245231232, 0.027834283558086833242<,

8-0.02558041542407929977, 0.0854662509217516437, -0.1540701386250929081,
0.2156264139318621619, -0.257904654193391913, 0.272925086777900631, -0.257904654193391913,
0.215626413931862162, -0.154070138625092908, 0.0854662509217516437, -0.0255804154240792998<<

The Berntsen|Espelid error weights are implemented below.

This implements the divided differences.

In[28]:= polyd@vec_List, nu_D := HTimes üü Hvec@@nuDD - Drop@vec, 8nu<DLL^H-1L;
dvdWeights@vec_ListD :=

dvdWeights@vecD = Table@polyd@vec, nuD, 8nu, 1, Length@vecD<D;

This computes the abscissas and the weights of G H f , 2 n + 1L.
In[30]:= 8absc, weights, errweights< = NIntegrate`GaussRuleData@2 n + 1, precisionD;

This computes the Berntsen|Espelid error weights.

In[31]:=

JH-1Ln p Gamma@1 + nD2N

GammaA 3

2
+ 2 nE 22 n

dvdWeights@abscD

Out[31]= 8-0.02558041542407929977, 0.0854662509217516437, -0.1540701386250929081,
0.2156264139318621619, -0.2579046541933919131, 0.2729250867779006307, -0.257904654193391913,
0.215626413931862162, -0.154070138625092908, 0.0854662509217516437, -0.0255804154240792998<

"GaussKronrodRule"

Gaussian quadrature uses optimal sampling points (through polynomial interpolation) to form a

weighted sum of the integrand values over these points. The Kronrod extension of a Gaussian

rule  adds  new sampling  points  in  between  the  Gaussian  points  and  forms  a  higher-order  rule

that reuses the Gaussian rule integrand evaluations.
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The Gauss|Kronrod quadrature for NIntegrate can be specified with the Method option value 
"GaussKronrodRule".

In[32]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "GaussKronrodRule"D

Out[32]= 2.

option name default value

"Points" Automatic number of Gauss points that will be 
extended with Kronrod points

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing

"GaussKronrodRule" options.

A Gaussian rule GH f , nL of n points for integrand f  is exact for polynomials of degree 2 n - 1, that

is, GH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 1.

Gauss|Kronrod rules are of open type since the integrand is not evaluated at the end points of

the interval.

The Kronrod extension GKH f , nL of a Gaussian rule with n  points GH f , nL adds n + 1 points to GH f , nL

and the extended rule is exact for polynomials of degree 3 n + 1 if n  is even, or 3 n + 2 if n is odd.

The weights associated with a Gaussian rule change in its Kronrod extension.

Since  the  abscissas  of  GH f , nL  are  a  subset  of  GKH f , nL,  the  difference  †GKH f , nL -GH f , nL§  can  be

taken  to  be  an  error  estimate  of  the  integral  estimate  GKH f , nL,  and  can  be  computed  without

extra integrand evaluations.

This example shows the number of sampling points used by NIntegrate with various values of 
"GaussKronrodRule" option "Points".

In[33]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"GaussKronrodRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 2, 20<D
Out[33]= 8284, 91, 63, 33, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41<

For an implementation description of Kronrod extensions of Gaussian rules, see [PiesBrand74]. 
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"GaussKronrodRule" Sampling Points and Weights

The following calculates the Gauss|Kronrod abscissas, weights, and error weights for a given 
number of coarse points and precision.

In[34]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`GaussKronrodRuleData@n, precisionD

Out[35]= 880.00795731995257876775, 0.04691007703066800360,
0.12291663671457538978, 0.23076534494715845448, 0.36018479341910840329,
0.50000000000000000000, 0.63981520658089159671, 0.76923465505284154552,
0.87708336328542461022, 0.95308992296933199640, 0.99204268004742123225<,

80.021291018375540916432, 0.05761665831123669701, 0.093400398278246328734,
0.12052016961432379335, 0.13642490095627946117, 0.1414937089287456066,
0.13642490095627946117, 0.12052016961432379335, 0.093400398278246328734,
0.05761665831123669701, 0.021291018375540916432<,

80.021291018375540916432, -0.06084678421685784675, 0.093400398278246328734,
-0.11879416563535944067, 0.13642490095627946117, -0.14295073551569883784,
0.13642490095627946117, -0.11879416563535944067, 0.093400398278246328734,
-0.06084678421685784675, 0.021291018375540916432<<

The  calculations  below  demonstrate  the  degree  of  the  Gauss-Kronrod  integration  rule  (see

above).

This computes the degree of the Gauss|Kronrod integration rule.

In[36]:= p = If@OddQ@nD, 3 * n + 2, 3 * n + 1D

Out[36]= 17

This defines a function.

In[37]:= f@x_D := xp

The command below implements the integration rule weighted sums for the integral  estimate,

⁄i=1
2 n+1wi f HxiL, and the error estimate, ⁄i=1

2 n+1 ei f HxiL, where 8xi <i=1
2 n+1  are the abscissas, 8wi <i=1

2 n+1  are the

weights, and 8ei <i=1
2 n+1 are the error weights.

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[38]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[38]= 80.0555555555555555556, 0.0004434409627672096<

The integral estimate coincides with the exact result.

In[39]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[39]= 0.055555555555555555556
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The error estimate is not zero since the embedded Gauss rule is exact for polynomials of degree

§ 2 n - 1. If we integrate a polynomial of that degree, the error estimate becomes zero.

This defines a function.

In[40]:= f@x_D := x2 n-1

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[41]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[41]= 90.1000000000000000000, 0.µ10-20=

Here is the exact result using Integrate.

In[42]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[42]= 0.10000000000000000000

"LobattoKronrodRule"

The  Lobatto  integration  rule  is  a  Gauss-type  rule  with  preassigned  abscissas.  It  uses  the  end

points  of  the  integration  interval  and  optimal  sampling  points  inside  the  interval  to  form  a

weighted  sum of  the  integrand  values  over  these  points.  The  Kronrod  extension  of  a  Lobatto

rule adds new sampling points in between the Lobatto rule points and forms a higher-order rule

that reuses the Lobatto rule integrand evaluations.

NIntegrate uses the Kronrod extension of the Lobatto rule if the Method option is given the 
value "LobattoKronrodRule".

In[43]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "LobattoKronrodRule"D

Out[43]= 2.

option name default value

"Points" 5 number of Gauss|Lobatto points that will 
be extended with Kronrod points

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"LobattoKronrodRule" options.

A Lobatto rule LH f , nL of n points for integrand f  is exact for polynomials of degree 2 n - 3, (i.e.,

LH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 3). 
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The Kronrod extension LKH f , nL  of a Lobatto rule with n  points LH f , nL  adds n - 1  points to LH f , nL

and the extended rule is exact for polynomials of degree 3 n - 2 if n is even, or 3 n - 3 if n is odd.

The weights associated with a Lobatto rule change in its Kronrod extension.

As  with  "GaussKronrodRule",  the  number  of  Gauss  points  is  specified  with  the  option

"GaussPoints".  If  "LobattoKronrodRule"  is  invoked with  "Points" -> n,  the  total  number  of

rule points will be 2 n - 1.

This example shows the number of sampling points used by NIntegrate with various values 
the of "LobattoKronrodRule" option "Points".

In[44]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"LobattoKronrodRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 3, 20<D
Out[44]= 8304, 91, 63, 33, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39<

Since the Lobatto rule is a closed rule, the integrand needs to be evaluated at the end points of

the interval. If there is a singularity at these end points, NIntegrate will ignore it.

For an implementation description of Kronrod extensions of Lobatto rules, see [PiesBrand74]. 

"LobattoKronrodRule" Sampling Points and Weights

The following calculates the Lobatto|Kronrod abscissas, weights, and error weights for a given 
number of coarse points and precision.

In[45]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`LobattoKronrodRuleData@n, precisionD

Out[46]= 990.µ10-20, 0.05479723624366560671, 0.17267316464601143283,
0.32950886704450351424, 0.50000000000000000000, 0.67049113295549648576,
0.82732683535398856717, 0.94520276375633439329, 1.0000000000000000000=,

80.015321869488536155203, 0.089631349776603677990, 0.14198938902406054911,
0.16711686990820884179, 0.1718810436051815362, 0.16711686990820884179,
0.14198938902406054911, 0.089631349776603677990, 0.015321869488536155203<,

8-0.034678130511463844797, 0.089631349776603677990, -0.13023283319816167312,
0.16711686990820884179, -0.18367451195037401934, 0.16711686990820884179,
-0.13023283319816167312, 0.089631349776603677990, -0.034678130511463844797<=

The  calculations  below  demonstrate  the  degree  of  the  Lobatto|Kronrod  integration  rule  (see

above).

This computes the degree of the Lobatto|Kronrod integration rule.

In[47]:= p = If@OddQ@nD, 3 * n - 3, 3 * n - 2D

Out[47]= 12
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This defines a function.

In[48]:= f@x_D := xp

The command below implements the integration rule weighted sums for the integral  estimate,

⁄i=1
2 n-1wi f HxiL, and the error estimate, ⁄i=1

2 n-1 ei f HxiL, where 8xi <i=1
2 n-1  are the abscissas, 8wi <i=1

2 n-1  are the

weights, and 8ei <i=1
2 n-1  are the error weights. 

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[49]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[49]= 80.0769230769230769213, -0.0011566945263191618<

The preceding integral estimate coincides with the exact result.

In[50]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[50]= 0.076923076923076923077

The preceding error estimate is not zero since the embedded Lobatto rule is exact for polynomi-

als of degree § 2 n - 3. If we integrate a polynomial of that degree, the error estimate becomes

zero.

This defines a function.

In[51]:= f@x_D := x2 n-3

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[52]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[52]= 90.1249999999999999964, -7.µ10-19=

The exact result using Integrate.

In[53]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[53]= 0.12500000000000000000
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"ClenshawCurtisRule"

A Clenshaw|Curtis rule uses sampling points derived from the Chebyshev polynomial approxima-

tion of the integrand. 

The Clenshaw|Curtis quadrature for NIntegrate can specified with the Method option value 
"ClenshawCurtisRule".

In[54]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "ClenshawCurtisRule"D

Out[54]= 2.

option name default value

"Points" 5 number of coarse Clenshaw|Curtis points

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing

"ClenshawCurtisRule" options.

Theoretically a Clenshaw|Curtis rule with n sampling points is exact for polynomials of degree n

or  less.  In  practice,  though,  Clenshaw|Curtis  rules  achieve  the  accuracy  of  the  Gaussian  rules

[Evans93][OHaraSmith68].  The  error  of  the  Clenshaw|Curtis  formula  is  analyzed  in

[OHaraSmith68].

The sampling points  of  the classical  Clenshaw|Curtis  rule are zeros of  Chebyshev polynomials.

The sampling points of a practical Clenshaw|Curtis rule are chosen to be Chebyshev polynomial

extremum  points.  The  classical  Clenshaw|Curtis  rules  are  not  progressive,  but  the  practical

Clenshaw|Curtis rules are [DavRab84][KrUeb98].

Let PCCH f , nL denote a practical Clenshaw|Curtis rule of n sampling points for the function f .

The progressive property means that the sampling points of PCCH f , nL are a subset of the sam-

pling points of PCCH f , 2 n - 1L. Hence the difference PCCH f , 2 n - 1L - PCCH f , nL§ can be taken to be

an  error  estimate  of  the  integral  estimate  PCCH f , 2 n - 1L,  and  can  be  computed  without  extra

integrand evaluations.

The NIntegrate option Method -> 8"ClenshawCurtisRule", "Points" -> k< uses a 
practical Clenshaw|Curtis rule with 2 n - 1 points PCCH f , 2 n - 1L.

In[55]:= NIntegrate@Sqrt@xD, 8x, 0, 1<, Method -> 8"ClenshawCurtisRule", "Points" -> 10<D

Out[55]= 0.666667
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This example shows the number of sampling points used by NIntegrate with various values of 
the "ClenshawCurtisRule" option "Points".

In[56]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"ClenshawCurtisRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 3, 20<D
Out[56]= 8208, 226, 79, 83, 35, 41, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39<

"ClenshawCurtisRule" Sampling Points and Weights

Here are the sampling points and the weights of the Clenshaw|Curtis rule for a given coarse 
number of points and precision.

In[57]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`ClenshawCurtisRuleData@n, precisionD

Out[58]= 990.µ10-21, 0.03806023374435662194, 0.14644660940672623780,
0.30865828381745511414, 0.50000000000000000000, 0.69134171618254488586,
0.85355339059327376220, 0.96193976625564337806, 1.00000000000000000000=,

80.00793650793650793651, 0.07310932460800907751, 0.13968253968253968254,
0.18085892936024489075, 0.19682539682539682540, 0.18085892936024489075,
0.13968253968253968254, 0.07310932460800907751, 0.00793650793650793651<,

8-0.02539682539682539683, 0.07310932460800907751, -0.1269841269841269841,
0.18085892936024489075, -0.20317460317460317460, 0.18085892936024489075,
-0.12698412698412698413, 0.07310932460800907751, -0.02539682539682539683<=

Here is another way to compute the sampling points of PCCH f , 2 n - 1L.
In[59]:= nn = 2 n - 1;

NB
1

2
TableBCosB

p

nn - 1
iF, 8i, nn - 1, 0, -1<F +

1

2
, precisionF

Out[60]= 80, 0.038060233744356621936, 0.14644660940672623780,
0.30865828381745511414, 0.50000000000000000000, 0.69134171618254488586,
0.85355339059327376220, 0.96193976625564337806, 1.0000000000000000000<

This defines a function.

In[61]:= f@x_D := x2 n-1

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[62]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[62]= 80.10000000000000000000, 0.0017578125000000000<

The exact value by Integrate.

In[63]:= Integrate@f@xD, 8x, 0, 1<D

Out[63]=
1

10
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"MultiPanelRule"

"MultiPanelRule"  combines  into  one  rule  the  applications  of  a  one-dimensional  integration

rule over two or more adjacent intervals. An application of the original rule to any of the adja-

cent intervals is called a panel.

Here is an example of an integration with "MultiPanelRule".

In[64]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"MultiPanelRule", Method -> "GaussKronrodRule", "Panels" -> 3<D

Out[64]= 2.

"MultiPanelRule" options.

Let the unit interval @0, 1D be partitioned into k sub-intervals with the points 0 = y0 < y1 < … < yk = 1.

If we have the rule

RH f L =‚
i=1

n

wi f HxiL º ‡
0

1
f HxL „ x,

it can be transformed into a rule for the interval Ay j-1, y jE,

1

y j - y j-1
‚
i=1

n

wi f Ixi Iy j - y j-1M + y j-1M º ‡
y j-1

y j
f HxL „ x, j = 1, …, k.

Let xi j = xi Iy j - y j-1M + y j-1, and y j - y j-1 = 1 êk, j = 1, …, k. Then the k-panel integration rule based on

RH f L can be written explicitly as

kµRH f L =‚
j=1

k 1

y j - y j-1
‚
i=1

n

wi f Ixi j M =
1

k
„

j=1

k

‚
i=1

n

wi f Ixi j M.
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option name default value

Method "NewtonCotesRuÖ
le"

integration rule specification that provides 
the abscissas, weights, and error weights 
for a single panel

"Panels" 5 number of panels

"SymbolicProcessing" Automatic number of seconds to do symbolic 
processing



If RH f L is closed, that is, RH f L has 0 and 1 as sampling points, then xn j-1 = x1 j, and the number of

sampling points of kµRH f L  can be reduced to k Hn - 1L + 1.  (This is done in the implementation of

"MultiPanelRule".)

More about the theory of multi-panel rules, also referred to as compounded or composite rules,

can be found in [KrUeb98] and [DavRab84].

"MultiPanelRule" Sampling Points and Weights

The sampling points and the weights of the "MultiPanelRule" can be obtained with this 
command.

In[65]:= npanels = 3;
NIntegrate`MultiPanelRuleData@
8"GaussKronrodRule", "Points" -> 2<, npanels, MachinePrecisionD

Out[66]= 880.0123633, 0.0704416, 0.166667, 0.262892, 0.32097, 0.345697, 0.403775,
0.5, 0.596225, 0.654303, 0.67903, 0.737108, 0.833333, 0.929558, 0.987637<,

80.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704,
0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966<,

80.0329966, -0.0848485, 0.103704, -0.0848485, 0.0329966, 0.0329966, -0.0848485, 0.103704,
-0.0848485, 0.0329966, 0.0329966, -0.0848485, 0.103704, -0.0848485, 0.0329966<<

Here are the abscissas and weights of a Gauss|Kronrod rule.

In[67]:= 8absc, weights, errweights< = NIntegrate`GaussKronrodRuleData@2, MachinePrecisionD

Out[67]= 880.03709, 0.211325, 0.5, 0.788675, 0.96291<,
80.0989899, 0.245455, 0.311111, 0.245455, 0.0989899<,
80.0989899, -0.254545, 0.311111, -0.254545, 0.0989899<<

The multi-panel rule abscissas can be obtained using Rescale.

In[68]:= Join üü MapBRescale@absc, 80, 1<, ÒD &, PartitionBRange@0, npanelsD
1

npanels
, 2, 1FF

Out[68]= 80.0123633, 0.0704416, 0.166667, 0.262892, 0.32097, 0.345697, 0.403775,
0.5, 0.596225, 0.654303, 0.67903, 0.737108, 0.833333, 0.929558, 0.987637<

This shows how to derive the multi-panel rule weights from the original weights.

In[69]:=
1

npanels
Join üü Table@weights, 8npanels<D

Out[69]= 80.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182,
0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966<
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"CartesianRule"

A d-dimensional Cartesian rule has sampling points that are a Cartesian product of the sampling

points of d one-dimensional rules. The weight associated with a Cartesian rule sampling point is

the product of the one-dimensional rule weights that correspond to its coordinates.

The Cartesian product integration for NIntegrate can be specified with the Method option 
value "CartesianRule".

In[70]:= NIntegrate@1 ê Sqrt@x + y + zD, 8x, 0, 1<,
8y, 0, 1<, 8z, 0, 1<, Method -> "CartesianRule"D

Out[70]= 0.862877

option name default value

Method "GaussKronrodR
ule"

a rule or a list of rules with which the 
Cartesian product rule will be formed

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"CartesianRule" options.

For example, suppose we have the formulas:

‡
0

1
f1HxL „ x º‚

i=1

n1
wi1 f1Iai1M,

‡
0

1
f2HxL „ x º‚

i=1

n2
wi2 f2Iai2M,

‡
0

1
f3HxL „ x º‚

i=1

n3

wi
3 f3Iai

3M.

that are exact for polynomials of degree d1, d2, and d3, respectively. Then it is not difficult to see

that the formula with n1µn2µn3 points,

‡
0

1

‡
0

1

‡
0

1
f Hx, y, zL „ x „ y „ z º‚

i=1

n1

‚
j=1

n2

‚
k=1

n3

w1 i w2 j w3 k f Ia1 i, a2 j, a3 kM
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is exact for polynomials in x1, x2, x3 of degree minHd1, d2, d3L. Note that the weight associated with

the abscissa 9ai1, ai2, ai
3= is wi1 wi2 wi

3.

The general  Cartesian product  formula for  D  one-dimensional  rules  the i  of  which has ni  sam-

pling points 9a j
i =
j=1

ni  and weights 9w j
i =
j=1

ni  is

(37)ŸV f Hx1, …, xdL „ x1 … „ xD º⁄i1=1
n1 I… ⁄iD=1

nD I¤k=1
D wik

k M f Iai1
1 , …, aiD

D MM.

Clearly (1) can be written as 

(38)ŸV f HxL „ x º⁄iD=1
n wi f HaiL,

where n =¤k=1
D nk , and for each integer k œ @1, nD, ak = 9ai

1, …, ai
k= and wk =¤k=1

D wik
k .

Here is a visualization of a Cartesian product rule integration. Along the x axis 
"TrapezoidalRule" is used; along the y axis "GaussKronrodRule" is used.

In[71]:= pnts = Reap@NIntegrate@x + y^9, 8x, 0, 1<, 8y, 0, 1<, Method ->
88"TrapezoidalRule", "Points" -> 4<, 8"GaussKronrodRule", "Points" -> 5<<,

EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;
Graphics@Point êü pnts, AspectRatio -> 1, Axes Ø True, AxesOrigin Ø 8-0.02, -0.02<D

Out[72]=

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cartesian  rules  are  applicable  for  relatively  low dimensions  ( § 4),  since  for  higher  dimensions

they are subject to "combinatorial  explosion." For example, a five-dimensional Cartesian prod-

uct of  5  identical  one-dimensional  rules each having 10  sampling points would have 10^5  sam-

pling points.
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NIntegrate  uses  Cartesian  product  rule  if  the  integral  is  multidimensional  and  the  Method

option is given a one-dimensional rule or a list of one-dimensional rules.

Here is an example specifying Cartesian product rule integration with GaussKronrodRule.

In[73]:= NIntegrate@x + y, 8x, 0, 1<, 8y, 0, 1<, Method -> "GaussKronrodRule"D

Out[73]= 1.

Here is an example specifying Cartesian product rule integration with a list of one-dimensional 
integration rules.

In[74]:= NIntegrate@x + y, 8x, 0, 1<, 8y, 0, 1<,
Method -> 8"LobattoKronrodRule", "GaussKronrodRule"<D

Out[74]= 1.

Another example specifying Cartesian product rule integration with a list of one-dimensional 
integration rules.

In[75]:= NIntegrate@x + y^3, 8x, 0, 1<, 8y, 0, 1<, Method ->
88"TrapezoidalRule", "Points" -> 8<, 8"GaussKronrodRule", "GaussPoints" -> 12<<D

Out[75]= 0.75

More about Cartesian rules can be found in [Stroud71].

"CartesianRule" Sampling Points and Weights

The sampling points and the weights of the "CartesianRule" rule can be obtained with the 

command NIntegrate`CartesianRuleData.
In[76]:= crule = NIntegrate`CartesianRuleData@88"GaussKronrodRule", "GaussPoints" Ø 2<,

8"TrapezoidalRule", "Points" Ø 2<<, MachinePrecisionD
Out[76]= NIntegrate`CartesianRule@8880.03709, 0.211325, 0.5, 0.788675, 0.96291<, 80., 0.5, 1.<<,

880.0989899, 0.245455, 0.311111, 0.245455, 0.0989899<, 80.166667, 0.666667, 0.166667<<,
880.0989899, -0.254545, 0.311111, -0.254545, 0.0989899<, 8-0.0833333, 0.166667, -0.0833333<<<D

NIntegrate`CartesianRuleData  keeps  the  abscissas  and  the  weights  of  each  rule  separated.

Otherwise, as it can be seen from (38) the result might be too big for higher dimensions. 
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The results of NIntegrate`CartesianRuleData can be put into the form of (38) with this 
function.

In[77]:= productFunc = MapAt@Flatten@Outer@Times, Sequence üü ÒDD &, Ò, 81, 3<D &ü
MapAt@Flatten@Outer@Times, Sequence üü ÒDD &, Ò, 81, 2<D &ü

MapAt@Flatten@Outer@List, Sequence üü ÒD, Length@ÒD - 1D &, Ò, 81, 1<D &;

In[78]:= productFunc@cruleD

Out[78]= NIntegrate`CartesianRule@
8880.03709, 0.<, 80.03709, 0.5<, 80.03709, 1.<, 80.211325, 0.<, 80.211325, 0.5<,

80.211325, 1.<, 80.5, 0.<, 80.5, 0.5<, 80.5, 1.<, 80.788675, 0.<,
80.788675, 0.5<, 80.788675, 1.<, 80.96291, 0.<, 80.96291, 0.5<, 80.96291, 1.<<,

80.0164983, 0.0659933, 0.0164983, 0.0409091, 0.163636, 0.0409091, 0.0518519, 0.207407,
0.0518519, 0.0409091, 0.163636, 0.0409091, 0.0164983, 0.0659933, 0.0164983<,

8-0.00824916, 0.0164983, -0.00824916, 0.0212121, -0.0424242, 0.0212121, -0.0259259, 0.0518519,
-0.0259259, 0.0212121, -0.0424242, 0.0212121, -0.00824916, 0.0164983, -0.00824916<<D

"MultiDimensionalRule"

A fully symmetric integration rule for the cube B- 1
2

, 1
2
F
d
, d œ , d > 1 consists of sets of points with

the  following  properties:  (i)  all  points  in  a  set  can  be  generated  by  permutations  and/or  sign

changes  of  the  coordinates  of  any  fixed  point  from  that  set;  (ii)  all  points  in  a  set  have  the

same weight associated with them.

The fully symmetric multidimensional integration (fully symmetric cubature) for NIntegrate 
can be specified with the Method option value "MultiDimensionalRule".

In[79]:= NIntegrate@1 ê Sqrt@x + yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø "MultiDimensionalRule"D

Out[79]= 1.10457

A  set  of  points  of  a  fully  symmetric  integration  rule  that  satisfies  the  preceding  properties  is

called  an  orbit.  A  point  of  an  orbit,  8x1, x2, …, xd<,  for  the  coordinates  of  which  the  inequality

x1 ¥ x2 ¥ … ¥ xd holds, is called a generator. (See [KrUeb98][GenzMalik83].) 

option name default value

"Generators" 5 number of generators of the fully symmet-
ric rule 

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"MultiDimensionalRule" options.
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If an integration rule has K orbits denoted W1, W2, …, WK, and the ith of them, Wi, has a weight wi

associated with it, then the integral estimate is calculated with the formula

‡
B-

1

2
,
1

2
F
d f HXL „X º‚

i=1

K

wi ‚
X jœWi

f IX jM.

A null rule of degree m will integrate to zero all monomials of degree § m and will fail to do so

for  at  least  one monomial  of  degree m + 1.  Each null  rule  may be thought  of  as  the difference

between a basic integration rule and an appropriate integration of lower degree.

The "MultiDimensionalRule"  object  of  NIntegrate  is  basically an interface to three different

integration  rule  objects  that  combine  an  integration  rule  and  one  or  several  null  rules.  Their

number  of  generators  and  orders  are  summarized  in  the  table  below.  The  rule  objects  with  6

and 9 generators use three null  rules,  each of  which is  a linear combination of  two null  rules.

The  null  rule  linear  combinations  are  used  in  order  to  avoid  phase  errors.  See

[BerntEspGenz91] for more details about how the null rules are used.

Number of generators and orders of the fully symmetric rules of NIntegrate:

Number of Generators Integration Rule
Order

Order of Each of the Null Rules Described in

5 7 5 AGenzMalik80E

6 7 5, 3, 1 AGenzMalik83EABerntEspGenz91E

9 9 7, 5, 3 AGenzMalik83EABerntEspGenz91E

This is the number of sampling points used by NIntegrate with its fully symmetric multidimen-

sional integration rules for integrals of the form Ÿ0
1
Ÿ0
1
Hxm + ymL „ y „ x, m = 1, …, 20.

In[80]:= tbl = Table@Prepend@Table@
Hk = 0; NIntegrate@x^m + y^m, 8x, 0, 1<, 8y, 0, 1<,

Method -> 8"MultiDimensionalRule", "Generators" -> gen<,
EvaluationMonitor :> k++D; kL, 8gen, 85, 6, 9<<D, mD, 8m, 1, 20<D;

Grid@Join@88"Monomial", "Number of generators", SpanFromLeft, SpanFromLeft<,
8"degree", "5", "6", "9"<<, tblD,

Dividers -> 88False, True, False<, 8False, False, True, False<<,
Alignment -> 8Center<D

Monomial Number of generators
degree 5 6 9

1 17 21 33
2 17 426615 33
3 17 206157 33
4 17 21 21417
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Out[81]=

5 17 21 39897
6 527 651 33
7 1003 903 33
8 1241 1281 231
9 1445 1617 429
10 1717 1785 561
11 3145 3045 561
12 3689 3297 561
13 3825 3843 561
14 3825 3843 825
15 4063 3591 957
16 3893 2247 1089
17 3961 2205 1155
18 3995 3297 1155
19 4403 3255 1155
20 6035 4137 1155

"MultiDimensionalRule" Sampling Points and Weights

This subsection gives an example of a calculation of an integral estimate with a fully symmetric

multidimensional rule. 

Here is the parameter for the number of generators.

In[82]:= numberOfGenerators = 9;

This function takes a generator point and creates its orbit.

In[83]:= MakeOrbit@generator_D :=
Module@8perms, signs, gperms, len = Length@generatorD<,
perms = Permutations@Range@lenDD;
signs = Flatten@Outer@List, Sequence üü Table@81, -1<, 8len<DD, len - 1D;
gperms = Map@Part@generator, Ò1D &, permsD;
Union@Flatten@Outer@Times, gperms, signs, 1D, 1DD

D;

The generators and weights for given number of generators.

In[84]:= dimension = 2;
precision = MachinePrecision;
rdata =

NIntegrate`MultiDimensionalRuleData@numberOfGenerators, precision, dimensionD;
generators = rdata@@1, 1DD;
weights = rdata@@1, 2DD;

This computes the orbit of each generator.

In[89]:= orbits = MakeOrbit êü generators;

This defines a function.

In[90]:= Clear@fD
f@x_, y_D := x^3 * y^3
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This applies the multidimensional rule.

In[92]:= TotalüMapThread@Total@Map@f üü HÒ1 + 1 ê 2L &, Ò1D * Ò2D &, 8orbits, weights<D êê
InputForm

Out[92]//InputForm= 0.06250000000000001

Here is the exact result.

In[93]:= Integrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<D êê N êê InputForm

Out[93]//InputForm= 0.0625

This makes graphics primitives for points of the orbits.

In[94]:= graphs = Graphics@8Red, AbsolutePointSize@4D, Point êü Ò1<,
Axes -> False, AspectRatio -> 1, Frame -> True, FrameTicks Ø None,
PlotRange Ø 88-1, 1<, 8-1, 1<< ê 2, ImageSize Ø 875, 75<D & êü orbits;

Here is how the different orbits look.

In[95]:= Row@graphsD

Out[95]=

Here are all rule points together.

In[96]:= Graphics@First êü graphs, Frame -> True, FrameTicks Ø NoneD

Out[96]=
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"MonteCarloRule"

A  Monte  Carlo  rule  estimates  an  integral  by  forming  a  uniformly  weighted  sum  of  integrand

evaluations over random (quasi-random) sampling points.

Here is an example of using "MonteCarloRule" with 1000 sampling points.

In[97]:= NIntegrateB
‰x - 1

‰ - 1
, 8x, 0, 1<, Method Ø 8"MonteCarloRule", "Points" Ø 1000<F

Out[97]= 0.413394

option name default value

"Points" 100 number of sampling points

"PointGenerator" Random sampling points coordinates generator

"AxisSelector" Automatic selection algorithm of the splitting axis 
when global adaptive Monte Carlo integra-
tion is used 

"SymbolicProcessing" Automatic number of seconds to do symbolic 
preprocessing

"MonteCarloRule" options.

In  Monte  Carlo  methods  [KrUeb98],  the  d-dimensional  integral  ŸV f HxL „ x  is  interpreted  as  the

following expected (mean) value

(39)ŸV f HxL „ x = volHVL ŸRd
1

volHVL
BooleHx œ VL f HxL „ x = volHVL EH f L,

where EH f L is the mean value of the function f  interpreted as a random variable, with respect to

the uniform distribution on V, that is, the distribution with probability density volHVL-1 BooleHx œ VL.

BooleHx œ VL denotes the characteristic function of the region V; volHVL denotes the volume of V.

The crude Monte Carlo estimate of the expected value EH f L is obtained by taking n independent

random  vectors  x1, x2, …, xn œd  with  density  volHVL-1 BooleHx œ VL  (that  is,  the  vectors  are  uni-

formly distributed on V), and making the estimate

(40)MCH f , nL = 1
n ⁄i=1

n f HxiL.
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Remark: The function volHVL-1 BooleHx œ VL is a valid probability density function because it is non-

negative on the whole of d and Ÿd volHVL-1 BooleHx œ VL „ x = 1.

According to the strong law of large numbers, the convergence

MCH f , nLØ mH f L, nØ¶,

happens  with  probability  1.  The  strong  law of  large  numbers  does  not  provide  information  for

the error MCH f , nL - ŸV f HxL „ x, so a probabilistic estimate is used.

Let J be defined as

J = ‡
V
f HxL „ x.

Formula (40) is an unbiased estimator of J (that is, the expectation of MCH f , nL for various sets of

8xi<i=1
n  is J) and its variance is 

1

n
‡
V
H f HxL - JL2 „ x =

VarH f L

n
,

where VarH f L denotes the variance of f , The standard error of MCH f , nL is thus 
VarH f L

n
.

In practice the VarH f L is not known, so it is estimated with the formula 

s2 =
1

n - 1
‚
i=1

n

H f HxiL - MCH f , nLL2.

The standard error of MCH f , nL is then

(41)SDH f , nL = s

n
= 1

n Hn-1L
⁄i=1
n H f HxiL - MCH f , nLL2 .

The result of the Monte Carlo estimation can be written as MCH f , nL ± SDH f , nL. 
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It can be seen from Equation (41) that the convergence rate of the crude Monte Carlo estimation

does not depend on the dimension d of the integral, and if n sampling points are used then the

convergence rate is n .

The  NIntegrate  integration  rule  "MonteCarloRule"  calculates  the  estimates  MCH f , nL  and

SDH f , nL. 

The  estimates  can  be  improved  incrementally.  That  is,  if  we  have  the  estimates  MCH f , n0L  and

SDH f , n0L,  and a new additional set of  sample  function  values  8 f1, f2, …, fn1 <,  then  using  (40)  and

(41) we have

MCH f , n0 + n1L =
1

n0 + n1
MCH f , n0L n0 +‚

i=1

n1
fi ,

SDH f , n0 + n1L =
1

Hn0 + n1L Hn0 + n1 - 1L
Hn0 - 1L n0 SDH f , n0L2 +‚

i=1

n1
H fi - MCH f , n0 + n1LL2

1

2

.

To compute the estimates MCH f , n0 + n1L and SDH f , n0 + n1L, it is not necessary to know the random

points used to compute the estimates MCH f , n0L and SDH f , n0L. 

"AxisSelector"

When  used  for  multidimensional  global  adaptive  integration,  "MonteCarloRule"  chooses  the

splitting axis of an integration subregion it is applied to in two ways: (i) by random selection or

(ii) by minimizing the sum of the variances of the integral estimates of each half of the subre-

gion, if the subregion is divided along that axis. The splitting axis is selected after the integral

estimation.

The random axis selection is done in the following way. "MonteCarloRule" keeps a set of axes

for selection, A. Initially A contains all axes. An element of A is randomly selected. The selected

axis  is  excluded  from  A.  After  the  next  integral  estimation,  an  axis  is  selected  from  A  and

excluded from it, and so forth. If A is empty, it is filled up with all axes.
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The minimization of variance axis selection is done in the following way. During the integration

over the region, a subset of the sampling points and their integrand values is stored. Then for

each axis, the variances of the two subregions that the splitting along this axis will produce are

estimated  using  the  stored  sampling  point  and  corresponding  integrand  values.  The  axis  for

which the sum of these variances is minimal is chosen to be the splitting axis, since this would

mean that if the region is split on that axis, the new integration error estimate will be minimal.

If it happens that for some axis all stored points are clustered in one of the half-regions, then

that axis is selected for splitting. 

option value

Random random splitting axis election

MinVariance 8MinVariance,
"SubsampleFraction"-> frac<

splitting axis selection that minimizes the sum of variances 
of the new regions

"AxisSelector" options.

option name default value

"SubsampleFraction" 1ê10 fraction of the sampling points used to 
determine the splitting axis

MinVariance option.

This is an example of using "MonteCarloRule"'s option "AxisSelector".

In[98]:= t = NIntegrateAExpA-IHx - 1 ê 2L2 + Hy - 1 ê 2L2ME, 8x, 0, 1<,
8y, 0, 1<, Method Ø 8"MonteCarloRule", "AxisSelector" Ø Random<E

Out[98]= 0.85354

In the examples below the two axis selection algorithms are compared. In general, the minimiza-

tion of variance selection uses less number of sampling points. Nevertheless, using the minimiza-

tion of variance axis selection slows down the application of "MonteCarloRule". So for integrals 

for which both axis selection methods would result in the same number of sampling points, it is

faster to use random axis selection. Also, using larger fraction sampling points to determine the

splitting axis in minimization of variance selection makes the integration slower.
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Consider the following function.

In[2]:= f@x_?NumberQ, y_?NumberQD := BooleBAbsB x -
1

2

2

+ y -
1

2

2

F <
1

6
F ‰-3 Ix2+y2M +

1

2
;

Plot3D@f@x, yD, 8x, 0, 1<, 8y, 0, 1<, PlotRange -> All, PlotPoints -> 20D

Out[3]=

These are the adaptive Monte Carlo integration sampling points for the function above with 
random choice of splitting axis.

In[4]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"AdaptiveMonteCarlo",
Method Ø 8"MonteCarloRule", "AxisSelector" Ø Random<<, MinRecursion Ø 1,

PrecisionGoal Ø 2.8, EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;
Graphics@8PointSize@0.006D, Point@tD<, AspectRatio -> 1, Frame -> True,
PlotLabel -> "Number of sampling points = " <> ToString@Length@tDDD

Out[5]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Number of sampling points = 43200
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These are the sampling points with choice of splitting axes that minimize the variance. Com-
pared to the previous Monte Carlo integration, the sampling points of this one are more concen-
trated around the circle Hx - 1 ê2L2 + Hy - 1 ê2L2 = 1 ê6, and their number is nearly twice as small.

In[6]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8"AdaptiveMonteCarlo", Method Ø 8"MonteCarloRule", "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 1 ê 3<<<, MinRecursion Ø 1,
PrecisionGoal Ø 2.8, EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;

Graphics@8PointSize@0.006D, Point@tD<, AspectRatio -> 1,
Frame -> True,
PlotLabel -> "Number of sampling points = " <> ToString@Length@tDDD

Out[6]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Number of sampling points = 24800

Here is an adaptive Monte Carlo integration that uses random axis selection.

In[104]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<,

Method Ø 8"AdaptiveMonteCarlo", Method Ø 8"MonteCarloRule",
"Points" -> 500, "AxisSelector" Ø Random<<F, 8100<F êê Timing

Out[104]= 84.21036, Null<

Here is an adaptive Monte Carlo integration for the preceding integral that uses the minimiza-
tion of variance axis selection and is slower than using random axis selection. 

In[105]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<, Method Ø 8"AdaptiveMonteCarlo",

Method Ø 8"MonteCarloRule", "Points" -> 500, "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 0.3<<<F, 8100<F êê Timing

Out[105]= 84.20636, Null<
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Using a larger fraction of stored points for the minimization of variance axis choice slows down 
the integration. 

In[106]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<, Method Ø 8"AdaptiveMonteCarlo",

Method Ø 8"MonteCarloRule", "Points" -> 500, "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 0.6<<<F, 8100<F êê Timing

Out[106]= 85.08623, Null<

Comparisons of the Rules

All  integration  rules,  except  "MonteCarloRule",  are  to  be  used  by  adaptive  strategies  in

NIntegrate. Changing the type and the number of points of the integration rule component for

an  integration  strategy  will  make  a  different  integration  algorithm.  In  general  these  different

integration  algorithms  will  perform  differently  for  different  integrals.  Naturally  the  following

questions arise.

1. Is there a type of rule that is better than other types for any integral or for integrals of a
certain type?

2. Given an integration strategy, what rules perform better with it? For what integrals?

3. Given an integral, an integration strategy, and an integration rule, what number of points
in  the  rule  will  minimize  the  total  number  of  sampling  points  used  to  reach  an  integral
estimate that satisfies the precision goal?

For  a  given  integral  and  integration  strategy  the  integration  rule  which  achieves  a  result  that 

satisfies the precision goal with the smallest number of sampling points is called the best integra-

tion rule. There are several factors that determine the best integration rule.

1. In general the higher the degree of the rule the faster the integration will  be for smooth
integrands  and  for  higher-precision  goals.  On  the  other  hand,  the  rule  degree  might  be
too high for the integrand and hence too many sampling points might be used when the
adaptive strategies work around, for example, the integrand's discontinuities.

2. The error estimation functional of a rule influences significantly the total amount of work
by  the  integration  strategy.  Rules  with  a  smaller  number  of  points  might  lead  (i)  to  a
wrong  result  because  of  underestimation  of  the  integral,  or  (ii)  to  applying  too  many
sampling points because of overestimation of the integrand. (See "Examples of Pathologi-
cal  Behavior".)  Further,  the  error  estimation  functional  might  be  computed  with  one  or
several embedded null rules. In general, the larger the number of the null rules the better
the error estimation~fewer phase errors are expected. The number of the null  rules and
the weights assigned to them in the sum that computes the error estimate determines the
sets  of  pathological  integrals  and  integrals  hard  to  compute  for  that  rule.  (Some  of  the
multidimensional  rules  of  
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The error estimation functional of a rule influences significantly the total amount of work
by  the  integration  strategy.  Rules  with  a  smaller  number  of  points  might  lead  (i)  to  a
wrong  result  because  of  underestimation  of  the  integral,  or  (ii)  to  applying  too  many
sampling points because of overestimation of the integrand. (See "Examples of Pathologi-
cal  Behavior".)  Further,  the  error  estimation  functional  might  be  computed  with  one  or

the error estimation~fewer phase errors are expected. The number of the null  rules and
the weights assigned to them in the sum that computes the error estimate determines the
sets  of  pathological  integrals  and  integrals  hard  to  compute  for  that  rule.  (Some  of  the
multidimensional  rules  of  NIntegrate  use  several  embedded  null  rules  to  compute  the
error  estimate.  All  of  the  one-dimensional  integration  rules  of  NIntegrate  use  only  one
null rule.) 

3. Local  adaptive  strategies  are  more  effective  with  closed  rules  that  have  their  sampling
points  more  uniformly  distributed  (for  example,  "ClenshawCurtisRule")  than  with  open
rules  (for  example,  GaussKronrodRule)  and  closed  rules  that  have  sampling  points  dis-
tributed in a non-uniform way (for example, "LobattoKronrodRule").

4. The  percent  of  points  reused  by  the  strategy  might  greatly  determine  what  is  the  best
rule.  For  one-dimensional  integrals,  "LocalAdaptive"  reuses  all  points  of  the  closed
rules. "GlobalAdaptive" throws away almost all points of the regions that need improve-
ment of their error estimate.

Number of Points in a Rule

This  subsection  demonstrates  with  examples  that  the  higher  the  degree of  the  rule  the  faster

the  integration  will  be  for  smooth  integrands  and  for  higher-precision  goals.  It  also  shows

examples  in  which  the  degree  of  the  rule  is  too  high  for  the  integrand  and  hence  too  many

sampling points are used when the adaptive strategies work around the integrand's discontinu-

ities. All examples use Gaussian rules with Berntsen|Espelid error estimate.

Here is the error of a Gaussian rule in the interval @a, bD.

E@GH f , nLD =
Hb - aL2 n+1 Hn !L4

H2 n + 1L@H2 nL !D3
f H2 nLHxL, a < x < b.

(See [DavRab84].)
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Here is a function that calculates the error of a rule for the integral Ÿ0
1 f HxL „ x, using the exact 

value computed by Integrate for comparison.
In[107]:= RuleError@f_, rule_String, prec_, pnts_?NumberQD :=

Block@8absc, weights, errweights<,
8absc, weights, errweights< =
ToExpression@"NIntegrate`" <> rule <> "Data"D@pnts, precD;

Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, weights<DD - Integrate@f@xD, 8x, 0, 1<DD
D;

This defines a list of functions.

In[108]:= funcs = : x , AbsBx -
1

‰
F,

2 x §
1

‰

3 x >
1

‰

,
1

104 J
1

p
- xN

2
+ 1

>;

Here are plots of the functions in the interval @0, 1D.
In[109]:= Row@Plot@Ò, 8x, 0, 1<, PlotRange -> All, Frame -> True,

FrameTicks -> 8None, Automatic<, ImageSize Ø 8120, 120<D & êü funcs, " "D

Out[109]=
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Here is the computation of the errors of "GaussBerntsenEspelidRule" for Ÿ0
1 x „ x, 

Ÿ0
1
¢x - 1

2
¶ „ x, Ÿ0

1 2 x § 1
2

3 x > 1
2

„ x, and Ÿ0
1 1

104 J
1

3
-xN

2
+1

„ x for a range of points.

In[110]:= errors = Table@8pnts, RuleError@Ò, "GaussBerntsenEspelidRule", 30, pntsD<,
8pnts, 4, 100, 1<D & êü Function êü HFunction@8f<, f ê. x -> ÒD êü funcsL;
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Here are plots of how the logarithm of the error decreases for each of the functions. It can be 
seen that the integral estimates of discontinuous functions and functions with discontinuous 
derivatives improve slowly when the number of points is increased.

In[111]:= gr = ListLinePlot@
MapThread@Tooltip@8Ò@@1DD, Log@10, Ò@@2DDD< & êü Ò1, Ò2D &, 8errors, funcs<D,
PlotRange -> 880, 100<, 80, -9<<, AxesOrigin -> 80, 0<, ImageSize -> 8300<D;

xc = 110;
xcSq = 106;
legend =

8Text@funcs@@1DD, 8xc, -2<, 8-1, 0<D, Text@funcs@@2DD, 8xc, -4<, 8-1, 0<D,
Text@funcs@@3DD, 8xc, -6<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -8<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -2<, 8-1, 0<D, Text@" ", 8xcSq, -4<, 8-1, 0<D,
Text@" ", 8xcSq, -6<, 8-1, 0<D, Text@" ", 8xcSq, -8<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &,
8legendSq, Cases@gr, Hue@s__D, ¶D<D;

Row@8gr, " ", Graphics@8 legend, legendSq<,
ImageSize -> 8200, 200<, AspectRatio -> 5D<D

Out[117]=
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Minimal Number of Sampling Points

Here is a function that finds the number of sampling points used in an integration.

In[118]:= Attributes@SamplingPointsD = 8HoldFirst<;
SamplingPoints@expr_D :=
Module@8k = 0, res<,
res = Hold@exprD ê. HoldPattern@NIntegrate@s___DD ß

NIntegrate@s, EvaluationMonitor ß k++D; ReleaseHold@resD; kD

Advanced Numerical Integration in Mathematica     159

20

–2

–4

–6

–8

40 60 80 100



This finds the number of sampling points used for a range of precision goals and a range of 
integration rule coarse points.

In[19]:= tblga = Table@8pg, pnts, SamplingPoints@NIntegrate@Ò,
8x, 0, 1<, Method -> 8"GlobalAdaptive", "SymbolicProcessing" -> 0,

Method -> 8"GaussBerntsenEspelidRule", "Points" -> pnts<<,
MaxRecursion -> 100, WorkingPrecision -> 35, PrecisionGoal -> pgDD<,

8pg, 4, 30<, 8pnts, 4, 25<D & êü funcs;

This finds the for each precision the minimum total number of sampling points. This way the 
number of coarse integration rule points used is also found.

In[121]:= minPnts = HÒ@@Position@Ò, Min@Ò@@3DD & êü ÒDD@@1, 1DDDD &@ÒD & êü ÒL & êü tblga;

This is a plot of the precision goal and the number of integration rule points with which the 
minimum number of total sampling points was used.

In[122]:= gr = ListLinePlot@HDrop@Ò, -1D & êü ÒL & êü minPnts, PlotRange -> 880, 30<, 80, 26<<,
PlotStyle -> Thickness@0.003D, AxesOrigin -> 83, 0<, ImageSize -> 8300, 200<D;

xc = 110;
xcSq = 106;
legend =

8Text@funcs@@1DD, 8xc, -2<, 8-1, 0<D, Text@funcs@@2DD, 8xc, -4<, 8-1, 0<D,
Text@funcs@@3DD, 8xc, -6<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -8<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -2<, 8-1, 0<D, Text@" ", 8xcSq, -4<, 8-1, 0<D,
Text@" ", 8xcSq, -6<, 8-1, 0<D, Text@" ", 8xcSq, -8<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &,
8legendSq, Cases@gr, Hue@s__D, ¶D<D;

Row@8gr, " ", Graphics@8 legend, legendSq<,
ImageSize -> 8200, 200<, AspectRatio -> 5D<D

Out[128]=
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Rule Comparison

Here is a function that calculates the error of a rule for the integral Ÿ0
1 f HxL „ x, using the exact 

value computed by Integrate for comparison.
In[129]:= RuleErrors@f_, rule_String, prec_, pnts_?NumberQD :=

Block@8absc, weights, errweights, exact<,
8absc, weights, errweights< =
ToExpression@"NIntegrate`" <> rule <> "Data"D@pnts, precD;

8Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, weights<DD - Integrate@f@xD, 8x, 0, 1<DD,
Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, errweights<DDD<

D;

This defines a list of functions.

In[130]:= funcs = : x , AbsBx -
1

‰
F,

2 x §
1

‰

3 x >
1

‰

,
1

104 J
1

p
- xN

2
+ 1

>;

Here are plots of the functions in the interval @0, 1D.
In[131]:= Row@Plot@Ò, 8x, 0, 1<, PlotRange -> All, Frame -> True,

FrameTicks -> 8None, Automatic<, ImageSize -> 8120, 120<D & êü funcs, " "D
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This is the computation of the errors of "GaussKronrodRule", "LobattoKronrodRule", 

"TrapezoidalRule", and "ClenshawCurtisRule" for each of the integrals Ÿ0
1 x „ x, 

Ÿ0
1
¢x - 1

2
¶ „ x, Ÿ0

1 2 x § 1
2

3 x > 1
2

„ x, and Ÿ0
1 1

104 J
1

3
-xN

2
+1

„ x for a range of points.

In[132]:= rules = 8"GaussKronrodRule",
"LobattoKronrodRule", "TrapezoidalRule", "ClenshawCurtisRule"<;

errors = Outer@Table@8pnts, RuleErrors@Ò2, Ò1, 30, pntsD<, 8pnts, 4, 100, 1<D &,
rules, Function êü HFunction@8f<, f ê. x -> ÒD êü funcsLD;

exactErrors = Map@Ò@@1DD &, errors, 8-2<D;
ruleErrors = Map@Ò@@2DD &, errors, 8-2<D;
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Here are plots of how the logarithms of the errors decrease for each rule and each function.

In[136]:= Row@8Grid@Join@88"exact errors", "error estimates"<<,
Flatten@Transpose@88Ò, SpanFromLeft< & êü rules, Transpose@Map@

Function@8d<,
Hgr = ListLinePlot@

Map@8Ò@@1DD, Log@10, Ò@@2DDD< & êü Ò &, dD, ImageSize -> 8200, 100<,
PlotRange -> 880, 100<, 80, -9<<, AxesOrigin -> 80, 0<D;

xc = 110;
xcSq = 106;
legend = 8Text@funcs@@1DD, 8xc, -1.5<, 8-1, 0<D,

Text@funcs@@2DD, 8xc, -3.5<, 8-1, 0<D, Text@funcs@@3DD,
8xc, -5.5<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -7.5<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -1.5<, 8-1, 0<D, Text@" ", 8xcSq, -3.5<, 8-1, 0<D,
Text@" ", 8xcSq, -5.5<, 8-1, 0<D,
Text@" ", 8xcSq, -7.5<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &, 8legendSq,
Cases@gr, Hue@s__D, ¶D<D;

grLD, 8exactErrors, ruleErrors<, 82<DD<D, 1DD, Dividers -> AllD,
Graphics@8legend, legendSq<, ImageSize -> 8200, 200<, AspectRatio -> 5D<D
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Examples of Pathological Behavior

Tricking the Error Estimator

In  this  subsection  an  integral  will  be  discussed  which  NIntegrate  underestimates  with  its

default settings since it fails to detect part of the integrand. The part is detected if the precision

goal is increased.

The Wrong Estimation

Consider the following function.

In[13]:= f@x_D := Sech@10 * Hx - 0.2LD^2 + Sech@100 * Hx - 0.4LD^4 + Sech@1000 * Hx - 0.6LD^6

Here is its exact integral over @0, 1D.
In[138]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[138]= 0.210803

NIntegrate gives the estimate.

In[139]:= est = NIntegrate@f@xD, 8x, 0, 1<D

Out[139]= 0.209736

This is too inaccurate when compared to the exact value.

In[140]:= Abs@exact - estD

Out[140]= 0.00106667

Here is the plot of the function, which is also wrong.

In[141]:= Plot@f@xD, 8x, 0, 1<D

Out[141]=
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Better Results

Better results can be achieved using the NIntegrate option PrecisionGoal and increasing 
the recursion depth.

In[17]:= NIntegrate@f@xD, 8x, 0, 1<, Method Ø "GlobalAdaptive",
MaxRecursion Ø 20, PrecisionGoal Ø 12D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[17]= 0.210803

This is a table that finds the precision goal for which no good results are computed.

In[18]:= Table@8pg, NIntegrate@f@xD, 8x, 0, 1<, Method Ø "GlobalAdaptive",
MaxRecursion Ø 20, PrecisionGoal Ø pgD<, 8pg, 6, 12<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. à

Out[18]= 886, 0.209736<, 87, 0.209736<, 88, 0.209736<,
89, 0.210803<, 810, 0.210803<, 811, 0.210803<, 812, 0.210803<<

If the plot points are increased, the plot of the function looks different.

In[144]:= Plot@f@xD, 8x, 0, 1<, PlotPoints Ø 100D

Out[144]=
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Here is the zoomed plot of the spike that Plot is missing with the default options.

In[145]:= eps = 0.0015; Plot@f@xD, 8x, 0.6 - eps, 0.6 + eps<D

Out[145]=
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If this part of the function is integrated, the result fits the quantity that is "lost" (or "missed") 
by NIntegrate with the default option settings.

In[146]:= NIntegrate@f@xD, 8x, 0.6 - eps, 0.6 + eps<D

Out[146]= 0.00106857

In[147]:= Abs@exact - estD

Out[147]= 0.00106667

Why the Estimator Is Misled

These are the abscissas and weights of a Gauss|Kronrod rule used by default by NIntegrate.

In[146]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This defines a function for application of the rule.

In[147]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D

This finds the points at which the adaptive strategy samples the integrand.

In[148]:= cTbl = Reap@NIntegrate@f@xD, 8x, 0, 1<,
EvaluationMonitor ß Sow@xDDD@@2DD êê Flatten;
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This is a plot of the sampling points. The vertical axis is for the order at which the points have 
been used to evaluate the integrand. 

In[149]:= ListPlot@Transpose@8cTbl, Range@1, Length@cTblDD<D, AspectRatio Ø 0.5,
PlotRange Ø 880, 1<, 80, Length@cTblD<<, PlotStyle Ø 8Hue@0.7D<D

Out[149]=
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It  can be seen on the preceding plot that NIntegrate  does extensive computation around the

top of the second spike near x = 0.4. NIntegrate  does not do as much computation around the

unintegrated spike near x = 0.6.

These are Gauss|Kronrod and Gauss abscissas in the last set of sampling points, which is over 
the region @0.5, 0.75D.

In[150]:= gk = Sort@Take@cTbl, -11DD
g = Take@gk, 82, -2, 2<D

Out[150]= 80.501989, 0.511728, 0.530729, 0.557691, 0.590046,
0.625, 0.659954, 0.692309, 0.719271, 0.738272, 0.748011<

Out[151]= 80.511728, 0.557691, 0.625, 0.692309, 0.738272<

Here the integrand is applied over the abscissas.

In[152]:= fgk = f êü gk;
fg = f êü g;

Here is a polynomial approximation of the integrand over the abscissas.

In[154]:= gkf@x_D := Evaluate@InterpolatingPolynomial@Transpose@8gk, fgk<D, xDD
gf@x_D := Evaluate@InterpolatingPolynomial@Transpose@8g, fg<D, xDD
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These plots show that the two polynomial approximations almost coincide over x = 0.6.

In[156]:= Plot@8gkf@xD, gf@xD<, 8x, Min@gkD, Max@gkD<D
eps = 0.01;
Plot@8gkf@xD, gf@xD<, 8x, 0.6 - eps, 0.6 + eps<D

Out[156]=
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Out[158]=
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If the polynomials are integrated over the region where 0.6 is placed, the difference between 
them, which NIntegrate uses as an error estimate, is really small.

In[159]:= Integrate@gkf@xD, 8x, 0.5, 0.75<D
Integrate@gf@xD, 8x, 0.5, 0.75<D
% - %% êê FullForm

Out[159]= 0.000491184

Out[160]= 0.000491184

Out[161]//FullForm= -3.6652469947995314`*^-10

Since  the  difference  is  the  error  estimate  assigned  for  the  region  @0.5, 0.75D,  with  the  default

precision goal NIntegrate never picks it up for further integration refinement.

Phase Errors 

In this subsection are discussed causes why integration rules might seriously underestimate or

overestimate  the  actual  error  of  their  integral  estimates.  Similar  discussion  is  given  in

[LynKag76].
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This defines a function.

In[162]:= f@x_, l_, m_D :=
10-m

Hx - lL2 + 10-2 m

Consider the numerical and symbolic evaluations of the integral of f@x, 0.415, 1.25D over 
the region @-1, 1D.

In[163]:= num = NIntegrate@f@x, 0.415, 1.25D, 8x, -1, 1<, PrecisionGoal -> 2D

Out[163]= 1.72295

In[164]:= exact = Integrate@f@x, 0.415, 1.25D, 8x, -1, 1<D

Out[164]= 3.00604 + 0. Â

They differ significantly. The precision goal requested is 2, but relative error is much higher than 
10-2.

In[165]:= Abs@num - exactD ê Abs@exactD

Out[165]= 0.426837

(Note that NIntegrate gives correct results for higher-precision goals.)

Below is an explanation why this happens.

Let  the  integration  rule  R2  be  embedded  in  the  rule  R1.  Accidentally,  the  error  estimate

R1V @ f D - R2V @ f D  of  the  integral  estimate  R1V @ f D,  where  V = @-1, 1D,  can  be  too  small  compared

with the exact error R2V @ f D - ŸV f HxL „ x .

To demonstrate this, consider the Gauss|Kronrod rule GK@ f , 5D with 11 sampling points that has 
an embedded Gauss rule G@ f , 5D with 5 sampling points. (This is the rule used in the two integra-
tions above.) 

In[166]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This defines a function that applies the rule.

In[167]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D

This is the integral Ÿ-1
1 f @x, l, mD „ x of f@x, l, mD previously defined.

In[168]:= exact = -ArcTan@10m H-1 + lLD + ArcTan@10m H1 + lLD;
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We can plot a graph with the estimated error of GKH f , 5L and the real error for different values 

of l in @-1, 1D. That is, you plot GKH f , 5L -GH f , 5L  and GKH f , 5L - Ÿ-1
1 f @x, l, mD „ x .

In[169]:= BlockB8l, m = 1.15, pnts = 1000, rres, errres, exactres, lambdas<,
H* the plot uses 1000 values l *L

lambdas = TableBl, :l, -1, 1,
2

pnts - 1
>F;

H* this computes the integral and error esitmates over the l's *L
8rres, errres< = Transposeü

Map@Function@8l<, IRuleEstimate@f@Ò1, l, Evaluate@mDD &, 8-1, 1<DD, lambdasD;

H* this computes the exact integrals over the l's *L
exactres = Map@exact ê. l -> Ò1 &, lambdasD;

H* this finds the number underestimating error estimates *L
Print@"Percent of underestimation: ",
100 * Length@Select@errres - Abs@exactres - rresD, Ò1 < 0 &DD ê Length@lambdasD êê N,
"%", " "D;

H* the plots, blue is for GK@f,5D-GK@f,5D ,
red is for GK@f,5D-Ÿ-1

1 f@x,l,mD *L
ListLinePlot@8Transpose@8lambdas, errres<D,

Transpose@8lambdas, Abs@exactres - rresD<D<, PlotRange -> All,
PlotStyle -> 88Hue@0.7D<, 8Hue@0D<<, AxesLabel -> 8l, "error"<D

F

Percent of underestimation: 23.8%

Out[169]=
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In the plot above, the blue graph is for the estimated error, GKH f , 5L -GH f , 5L . The graph of the

actual error GKH f , 5L - Ÿ-1
1 f @x, l, mD „ x  is red.

You  can  see  that  the  value  0.415  of  the  parameter  l  is  very  close  to  one  of  the

GKH f , 5L -GH f , 5L  local minimals.

A one-dimensional quadrature rule can be seen as the result of the integration of a polynomial

that is  fitted through the rule's abscissas and the integrand values over them. We can further

try to see the actual fitting polynomials for the integration of f@x, l, mD.
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In[170]:= Clear@FitPlotsD;
FitPlots@f_, 8a_, b_<, abscArg_D :=

Module@8absc = Rescale@abscArg, 80, 1<, 8a, b<D<,
H* this finds the interpolating polynomial
through the Gauss abscissas and the values of f over them *L

polyGauss@x_D := Evaluate@InterpolatingPolynomial@Transpose@
8Take@absc, 82, -2, 2<D, f@Ò1D & êü HTake@absc, 82, -2, 2<DL<D, xDD;

H* this finds the interpolating polynomial through the Gauss-
Kronrod abscissas and the values of f over them *L

polyGaussKronrod@x_D := Evaluate@InterpolatingPolynomial@
Transpose@8absc, f@Ò1D & êü absc<D, xDD;

H* plot of the Gauss interpolating points *L
samplPointsGauss = Graphics@8GrayLevel@0D, PointSize@0.02D, Point êü

Transpose@8Take@absc, 82, -2, 2<D, f@Ò1D & êü Take@absc, 82, -2, 2<D<D<D;

H* plot of the Gauss-Kronrod interpolating points *L
samplPointsGaussKronrod =
Graphics@8Red, PointSize@0.012D, Point êü Transpose@8absc, f@Ò1D & êü absc<D<D;

H* interpolating polynomials and f plots *L
Block@8$DisplayFunction = Identity<,
funcPlots = Plot@8polyGauss@xD, polyGaussKronrod@xD, f@xD<, 8x, a, b<,

PlotRange -> All, PlotStyle -> 88Hue@0.7D<, 8Hue@0.8D<, 8Hue@0D<<D;
D;

exact = Integrate@f@xD, 8x, a, b<D;
r1 = Integrate@polyGauss@xD, 8x, a, b<D;
r2 = Integrate@polyGaussKronrod@xD, 8x, a, b<D;
Print@"estimated integral:" <> ToStringür2,
" exact integral:" <> ToStringüReüexactD;

Print@"estimated error:" <> ToStringüAbs@r1 - r2D,
" actual error:" <> ToStringüAbs@r2 - exactDD;

Show@8funcPlots, samplPointsGauss, samplPointsGaussKronrod<D
D;

In the plots below the function f@x, l, mD is plotted in red, the Gauss polynomial is plotted in

blue, the Gauss|Kronrod polynomial is plotted in violet, the Gauss sampling points are in black,

and the Gauss|Kronrod sampling points are in red.

You can see that since the peak of f@x, 0.415, 1.25D falls approximately halfway between two

abscissas, its approximation is an underestimate.

In[172]:= FitPlots@f@Ò1, 0.415, 1.25D &, 8-1, 1<, abscD

estimated integral:1.72295 exact integral:3.00604

estimated error:0.0133177 actual error:1.28309

Out[172]=
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Conversely, you can see that since the peak of f@x, 0.53, 1.25D falls approximately on one of

the abscissas, its approximation is an overestimate.

In[173]:= FitPlots@f@Ò1, 0.53, 1.25D &, 8-1, 1<, abscD

estimated integral:4.77891 exact integral:2.98577

estimated error:3.77834 actual error:1.79313

Out[173]=
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Index of Technical Terms
Abscissas

Degree of a one-dimensional integration rule

Degree of a multidimensional integration rule 

Exact rule

Embedded rule

Null rule

Product rule

Progressive rule

Sampling points
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