
Wolfram Mathematica ® Tutorial Collection

ADVANCED NUMERICAL
INTEGRATION IN MATHEMATICA

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

NIntegrate Introduction . 1

Overview . 1

Design . 6

NIntegrate Integration Strategies . 10

Introduction . 10

Adaptive Strategies . 12

Global Adaptive Strategy . 13

Local Adaptive Strategy . 18

"GlobalAdaptive" versus "LocalAdaptive" . 25

Singularity Handling . 29

Double-Exponential Strategy . 64

"Trapezoidal" Strategy . 73

Oscillatory Strategies . 75

Finite Region Oscillatory Integration . 76

Extrapolating Oscillatory Strategy . 79

Double-Exponential Oscillatory Integration . 81

Crude Monte Carlo and Quasi Monte Carlo Strategies . 86

Global Adaptive Monte Carlo and Quasi Monte Carlo Strategies 94

"MultiPeriodic" . 100
Preprocessors . 104
"SymbolicPreprocessing" . 119
Examples and Applications . 121

NIntegrate Integration Rules . 124
Introduction . 124
Integration Rule Specification . 125
"TrapezoidalRule" . 126
"NewtonCotesRule" . 130
"GaussBerntsenEspelidRule" . 131
"GaussKronrodRule" . 133
"LobattoKronrodRule" . 136
"ClenshawCurtisRule" . 139
"MultiPanelRule" . 141
"CartesianRule" . 143
"MultiDimensionalRule" . 146
"MonteCarloRule" . 150
Comparisons of the Rules . 156
Examples of Pathological Behavior . 163
Index of Technical Terms . 171

NIntegrate References . 172

NIntegrate Introduction

Overview

The Mathematica function NIntegrate is a general numerical integrator. It can handle a wide

range of one-dimensional and multidimensional integrals.

NIntegrate@ f@x1,x2,…,xnD,8x1,a1,b1<,8x2,a2,b2<,…,8xn,an,bn<D

find a numerical integral for the function f over the region
@a1, b2D µ @a2, b2D µ … µ @an, bnD

Finding a numerical integral of a function over a region.

In general, NIntegrate estimates the integral through sampling of the integrand value over the

integration region. The various numerical integration methods prescribe the initial sampling

steps and how the sampling evolves.

NIntegrate uses algorithms called "integration strategies" that attempt to compute integral

estimates that satisfy user-specified precision or accuracy goals. The integration strategies use

"integration rules" that compute integral estimates using weighted sums.

This numerically computes the integral Ÿ0
1 1

x
„ x.

In[25]:= NIntegrateB 1

x
,8x,0,1<F

Out[25]= 2.

NIntegrate uses symbolic preprocessing that simplifies integrals with piecewise functions and

even or odd functions. Part of the symbolic preprocessing is the detection of one-dimensional

oscillatory integrals of the types NIntegrate can handle efficiently.

This integrates a piecewise function over the interval @0, 2D.

In[26]:= NIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<F

Out[26]= 4.

This integrates a highly oscillatory function over the interval @2, 3D.

In[27]:= NIntegrateAHx - 2L2 Sin@4000 xD, 8x, 2, 3<E

Out[27]= -0.000158625

This is a plot of the previous oscillatory integrand over 1
50

 of the integration region.

In[28]:= PlotBHx - 2L2 Sin@4000 xD, :x, 2 +
2

50
, 2 +

3

50
>F

Out[28]=
2.045 2.050 2.055 2.060

-0.003

-0.002

-0.001

0.001

0.002

0.003

This integrates a piecewise combination of a piecewise function and an oscillatory function.

In[29]:= NIntegrateB

PiecewiseB::
1

Abs@x - 1D
, x < 2>, 9Hx - 2L2 Sin@4000 xD, 2 < x < 3=>F, 8x, 0, 3<F

Out[29]= 3.99984

NIntegrate oscillatory algorithms are only for one-dimensional integrals. The oscillatory algo-

rithms for finite regions are different from the oscillatory algorithms for infinite regions.

One-dimensional numerical integration is much simpler, and better understood, than multidimen-

sional numerical integration. This is the reason a distinction between the two is made. All

NIntegrate strategies except the oscillatory strategies can be used for multidimensional

integration.

2 Advanced Numerical Integration in Mathematica

Here is a two-dimensional function: a cone with base in the square @-1, 1D×@-1, 1D.

In[30]:= Plot3DBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<, PlotRange Ø AllF

Out[30]=

Here is the integral of the cone function.

In[7]:= NIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<F

Out[7]= 1.0472

Here are the sampling points used by NIntegrate. Note that the sampling points are only in a
quarter of the integration region.

In[8]:= GraphicsB:PointSize@0.01D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<,

8y, -1, 1<, EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DDF>,

Axes -> True, PlotRange Ø 88-1, 1<, 8-1, 1<<F

Out[8]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Advanced Numerical Integration in Mathematica 3

Here are the sampling points used by NIntegrate without symbolic preprocessing. (The
reason that NIntegrate gives the slwcon message is because no symbolic preprocessing is
applied.) Note that the sampling points are in the whole integration region and that they are
denser around the circumference of the cone base and around the cone apex.

In[9]:=

GraphicsB:PointSize@0.005D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<,

Method -> 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor ß

Sow@8x, y<DFF@@2, 1DDF>, Axes Ø True, AxesOrigin Ø 8-1, -1<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[9]=

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

NIntegrate has several ways to deal with singular integrands. The deterministic adaptive

strategies "GlobalAdaptive" and "LocalAdaptive" use singularity handling techniques (based

on variable transformations) to speed up the convergence of the integration process. The strat-

egy "DoubleExponential" employs trapezoidal quadrature with a special variable transforma-

tion on the integrand. This rule-transformation combination achieves optimal convergence for

integrands analytic on an open set in the complex plane containing the interval of integration.

The strategy "DuffyCoordinates" simplifies or eliminates certain types of singularities in

multidimensional integrals.

Here is a one-dimensional integration with singularity handling.

In[2]:= NIntegrateB
1

x
, 8x, 0, 1<, PrecisionGoal Ø 10F êê Timing

Out[2]= 80.006999, 2.<

Without singularity handling the previous integral is computed more slowly.

4 Advanced Numerical Integration in Mathematica

Without singularity handling the previous integral is computed more slowly.

In[3]:= NIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"GlobalAdaptive", "SingularityDepth" Ø ¶<,

MaxRecursion Ø 100, PrecisionGoal Ø 10F êê Timing

Out[3]= 80.008999, 2.<

For multidimensional integrands that have certain spherical symmetry the strategy

"DuffyCoordinates" converges quite fast.

Here is a "DuffyCoordinates" integration.

In[12]:= NIntegrateB
1

x2 + y2 + z2
, 8x, 0, 1<,

8y, 0, 1<, 8z, 0, 1<, Method Ø "DuffyCoordinates"F êê Timing

Out[12]= 80.031, 1.19004<

Here is a computation of the previous integral with the default settings; it is approximately 5
times slower.

In[13]:= NIntegrateB
1

x2 + y2 + z2
, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<F êê Timing

Out[13]= 80.203, 1.19004<

The "Trapezoidal" strategy gives optimal convergence for analytic periodic integrands when

the integration interval is exactly one period.

Here is a calculation of an integral computed with the trapezoidal strategy. The result is com-
pared with the exact value. The result computed with "Trapezoidal" is obtained faster and it
is more precise than the one with default NIntegrate settings.

In[5]:= exact = IntegrateBCos@20 xD4, :x, 0, 2
p

20
>F

Out[5]=
3 p

80

In[37]:= resTrap = NIntegrateBCos@20 xD4, :x, 0, 2
p

20
>, PrecisionGoal Ø 150,

WorkingPrecision Ø 200, Method Ø "Trapezoidal"F; êê Timing

Out[37]= 80.015, Null<

In[40]:= Abs@exact - resTrapD

Out[40]= 0.µ10-201

Advanced Numerical Integration in Mathematica 5

Here is a (slower) computation of the same integral but with the default Method settings for
NIntegrate.

In[38]:= resDef = NIntegrateBCos@20 xD4, :x, 0, 2
p

20
>,

PrecisionGoal Ø 150, WorkingPrecision Ø 200F; êê Timing

Out[38]= 80.219, Null<

In[39]:= Abs@exact - resDefD

Out[39]= 0.µ10-201

For multidimensional integrals, or in cases when only a rough integral estimate is needed,

Monte Carlo methods are useful. NIntegrate has both crude and adaptive Monte Carlo and

quasi Monte Carlo strategies.

Here is a multidimensional integral done quickly with a Monte Carlo algorithm.

In[19]:= X = Array@x, 30D;

NIntegrateB
1

TotalüX
, Evaluate@Sequence üü Map@8Ò, 0, 1< &, XDD,

Method Ø "AdaptiveMonteCarlo", PrecisionGoal Ø 3F

Out[20]= 0.0674103

Design

Features

The principal features of the NIntegrate framework are:

† Code reuse (common code base)

† Object orientation (method property specification and communication)

† Data hiding

† Separation of method initialization phase and runtime computation

† Hierarchical and reentrant numerical methods

† Type- and precision-dynamic methods

† User extensibility and prototyping through plug-in capabilities

† Specialized data structures

6 Advanced Numerical Integration in Mathematica

Strategies, Rules, and Preprocessors

NIntegrate strategies can be divided into two general groups: deterministic and Monte Carlo.

Each group can be divided further into adaptive, nonadaptive, and specialized strategies. Adap-

tive strategies try to improve the integral estimate by concentrating their efforts around the

problematic areas. Non-adaptive strategies try to improve the integral estimate just by increas-

ing the number of sampling points in the integration region. Specialized strategies are made for

certain types of integrals (e.g., a product of an oscillatory and a non-oscillatory function).

Strategies Deterministic Monte Carlo

adaptive "GlobalAdaptive" "AdaptiveMonteCarlo"
"LocalAdaptive" "AdaptiveQuasiMonteCarlo"

nonadaptive "DoubleExponential" "MonteCarlo"
"Trapezoidal"

specialized "DuffyCoordinates"
"Oscillatory"

"PrincipalValue"

NIntegrate built-in integration strategies.

The strategies "GlobalAdaptive" and "LocalAdaptive" can have specifications of what integra-

tion rules to use.

Here is an example of "GlobalAdaptive" with an integration rule specification.

In[21]:= NIntegrateB
1

x
LogB

1

x
F, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", Method Ø "ClenshawCurtisRule"<F

Out[21]= 4.

Advanced Numerical Integration in Mathematica 7

Both "GlobalAdaptive" and "LocalAdaptive" adaptive strategies can be used with one-

dimensional and multidimensional integration rules.

 rules

one-dimensional "BooleRule"
"ClenshawCurtisRule"

"GaussBerntsenEspelidRule"
"GaussKronrodRule"
"LobattoKronrodRule"
"LobattoPeanoRule"
"MultiPanelRule"
"NewtonCotesRule"
"PattersonRule"

"SimpsonThreeEightsRule"
"TrapezoidalRule"

multidimensional "CartesianRule"
"MultiDimensionalRule"

Built-in integration rules that can be used by "GlobalAdaptive" and "LocalAdaptive".

The capabilities of all strategies are extended through integral preprocessing. The preprocessors

can be seen as strategies that delegate integration to other strategies (preprocessors included).

Here is an example of the preprocessing of an integrand which is even with respect to each of
its variables.

In[22]:= NIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<, 8y, -1, 1<,

Method -> 8"EvenOddSubdivision", Method Ø "LocalAdaptive"<F

Out[22]= 1.0472

8 Advanced Numerical Integration in Mathematica

Here are the sampling points of the previous integration. If no preprocessing had been done,
the plot would have been in the region @-1, 1D×@-1, 1D with a symmetry along both the x
axis and the y axis.

In[23]:= GraphicsB:PointSize@0.005D,

PointBReapBNIntegrateBBooleAx2 + y2 < 1E * 1 - x2 + y2 , 8x, -1, 1<,

8y, -1, 1<, Method -> 8"EvenOddSubdivision", Method Ø "LocalAdaptive"<,
EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DDF>,

Axes Ø True, PlotRange Ø 88-1, 1<, 8-1, 1<<F

Out[23]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

 preprocessors

"SymbolicPiecewiseSubdivision"
"EvenOddSubdivision"
"OscillatorySelection"
"UnitCubeRescaling"

NIntegrate preprocessors.

User Extensibility

Built-in methods can be used as building blocks for the efficient construction of special-purpose

integrators. User-defined integration rules and strategies can also be added.

Advanced Numerical Integration in Mathematica 9

NIntegrate Integration Strategies

Introduction

An integration strategy is an algorithm that attempts to compute integral estimates that satisfy

user-specified precision or accuracy goals.

An integration strategy prescribes how to manage and create new elements of a set of disjoint

subregions of the initial integral region. Each subregion might have its own integrand and

integration rule associated with it. The integral estimate is the sum of the integral estimates of

all subregions. Integration strategies use integration rules to compute the subregion integral

estimates. An integration rule samples the integrand with a set of points, called abscissas (or

sampling points).

To improve an integral estimate the integrand should be sampled at additional points. There are

two principal approaches: (i) adaptive strategies try to identify the problematic integration

areas and concentrate the computational efforts (i.e., sampling points) on them; (ii) non-

adaptive strategies increase the number of sampling points over the whole region in order to

compute a higher degree integration rule estimate that reuses the integrand evaluations of the

former integral estimate.

Both approaches can use symbolic preprocessing and variable transformation or sequence

summation acceleration to achieve faster convergence.

In the following integration, the symbolic piecewise preprocessor in NIntegrate recognizes
the integrand as a piecewise function, and the integration is done over regions for which x ¥ 1

with the integrand 1

x-1
 and regions for which x § 1 with the integrand 1

1-x
.

In[31]:= NIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<F

Out[31]= 4.

10 Advanced Numerical Integration in Mathematica

Here is a plot of all sampling points used in the integration. The integrand is sampled at the x
coordinates in the order of the y coordinates (in the plot). It can be seen that the sampling
points are concentrated near the singularity point 1. The patterns formed by the sampling
points at the upper part of the plot differ from the patterns of the lower part of the plot because
a singularity handler is applied.

In[10]:= points =

ReapBNIntegrateB
1

Abs@x - 1D
, 8x, 0, 2<, EvaluationMonitor :> Sow@xDFF@@2, 1DD;

Graphics@8PointSize@0.006D,
Point êü NüTranspose@8points, Range@Length@pointsDD<D<,

PlotRange Ø All, AspectRatio -> 1, Axes -> TrueD

Out[11]=

The section "Adaptive Strategies" gives a general description of the adaptive strategies. The

default (main) strategy of NIntegrate is global adaptive, which is explained in the section

"Global Adaptive Strategy". Complementary to it is the local adaptive strategy, which is

explained in the section "Local Adaptive Strategy". Both adaptive strategies use singularity

handling mechanisms, which are explained in the section "Singularity Handling".

The Monte Carlo strategies are explained in the sections "Crude Monte Carlo and Quasi Monte

Carlo Strategies" and "Global Adaptive Monte Carlo and Quasi Monte Carlo Strategies".

The strategies NIntegrate uses for special types of integrals (or integrands) are explained in

the corresponding sections: "Duffy's coordinates strategy", "Oscillatory strategies", and

"Cauchy principal value integration".

Advanced Numerical Integration in Mathematica 11

Here is a table with links to descriptions of built-in integration strategies of NIntegrate.

strategies deterministic Monte Carlo

adaptive "GlobalAdaptive" "AdaptiveMonteCarlo"

"LocalAdaptive" "AdaptiveQuasiMonteCarlo"

non-adaptive "DoubleExponential
" "MonteCarlo"

"Trapezoidal"

specialized "DuffyCoordinates"

"Oscillatory"

"PrincipalValue"

Adaptive Strategies

Adaptive strategies try to concentrate computational efforts where the integrand is discontinu-

ous or has some other kind of singularity. Adaptive strategies differ by the way they partition

the integration region into disjoint subregions. The integral estimates of each subregion con-

tribute to the total integral estimate.

The basic assumption for the adaptive strategies is that for given integration rule R and inte-

grand f , if an integration region V is partitioned into, say, two disjoint subregions V1 and V2 ,

V = V1 ‹ V2, V1 › V2 = 0, then the sum of the integral estimates of R over V1 and V2 is closer to the

actual integral ŸV f „ x. In other words,

(1)ŸV f „ x - RV H f L > ŸV f „ x - RV1 H f L + RV2 H f L ,

and (1) will imply that the sum of the error estimates for RV1 H f L and RV2 H f L is smaller than the

error estimate of RV H f L.

Hence an adaptive strategy has these components [MalcSimp75]:

(i) an integration rule to compute the integral and error estimates over a region;

(ii) a method for deciding which elements of a set of regions 8Vi<i=1
n to partition/subdivide;

(iii) stopping criteria for deciding when to terminate the adaptive strategy algorithm.

12 Advanced Numerical Integration in Mathematica

Global Adaptive Strategy

A global adaptive strategy reaches the required precision and accuracy goals of the integral

estimate by recursive bisection of the subregion with the largest error estimate into two halves,

and computes integral and error estimates for each half.

The global adaptive algorithm for NIntegrate is specified with the Method option value
"GlobalAdaptive".

In[32]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "GlobalAdaptive"D

Out[32]= 2.

option name default value

Method Automatic integration rule used to compute integral
and error estimates over each subregion

"SingularityDepth" Automatic number of recursive bisections before
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"GlobalAdaptive" options.

"GlobalAdaptive" is the default integration strategy of NIntegrate. It is used for both one-

dimensional and multidimensional integration. "GlobalAdaptive" works with both Cartesian

product rules and fully symmetric multidimensional rules.

"GlobalAdaptive" uses a data structure called a "heap" to keep the set of regions partially

sorted, with the largest error region being at the top of the heap. In the main loop of the algo-

rithm the largest error region is bisected in the dimension that is estimated to be responsible

for most of its error.

It can be said that the algorithm produces the leaves of a binary tree, the nodes of which are

the regions. The children of a node/region are its subregions obtained after bisection.

After a bisection of a region and the subsequent integration over the new (sub)regions, new

global integral and global error estimates are computed, which are sums of the integral and

error estimates of all regions that are leaves of the binary tree.

Advanced Numerical Integration in Mathematica 13

Each region has a record of how many bisections are made per dimension in order to produce

it. When a region has been produced through too many bisections a singularity flattening algo-

rithm is applied to it; see Singularity Handling.

"GlobalAdaptive" stops if the following expression is true:

(2)globalError § globalIntegral 10-pg Í globalError § 10-ag,

where pg and ag are precision and accuracy goals.

The strategy also stops when the number of recursive bisections of a region exceeds a certain

number (see MinRecursion and MaxRecursion), or when the global integration error oscillates

too much (see "MaxErrorIncreases").

Theoretical and practical evidence show that the global adaptive strategies have in general

better performance than the local adaptive strategies [MalcSimp75][KrUeb98].

MinRecursion and MaxRecursion

The minimal and maximal depths of the recursive bisections are given by the values of the

options MinRecursion and MaxRecursion.

If for any subregion the number of bisections in any of the dimensions is greater than

MaxRecursion then the integration by "GlobalAdaptive" stops.

Setting MinRecursion to a positive integer forces recursive bisection of the integration regions

before the integrand is ever evaluated. This can be done to ensure that a narrow spike in the

integrand is not missed. (See Tricking the error estimator.)

For multidimensional integration an effort is made to bisect in each dimension for each level of

recursion in MinRecursion.

"MaxErrorIncreases"

Since (1) is expected to hold in "GlobalAdaptive" the global error is expected to decrease

after the bisection of the largest error region and the integration over its new parts. In other

words the global error is expected to be more or less monotonically decreasing with respect to

the number of integration steps.

14 Advanced Numerical Integration in Mathematica

The global error might oscillate due to phase errors of the integration rules. Still, the global

error is assumed at some point to start decreasing monotonically.

Below are listed cases in which this assumption might become false.

(i) The actual integral is zero.

Zero integral.

In[3]:= NIntegrate@Sin@xD, 8x, 0, 2 p<, MaxRecursion -> 100D

Out[3]= 0.

(ii) The specified working precision is not dense enough for the specified precision goal.

The working precision is not dense enough.

In[33]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
MaxRecursion Ø 100, PrecisionGoal -> 17D êê InputForm

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one
of the following: the difference between the values of PrecisionGoal and WorkingPrecision
is too small; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function;
or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
2.0000000000000018` and 2.1241892251243344`*^-16 for the integral and error estimates. à

Out[33]//InputForm= 2.0000000000000018

(iii) The integration is badly conditioned [KrUeb98]. For example, the reason might be that the

integrand is defined by complicated expressions or in terms of approximate solutions of mathe-

matical problems (such as differential equations or nonlinear algebraic equations).

The strategy "GlobalAdaptive" keeps track of the number of times the total error estimate

has not decreased after the bisection of the region with the largest error estimate. When that

number becomes bigger than the value of the "GlobalAdaptive" option

"MaxErrorIncreases", the integration stops with a message (NIntegrate::eincr).

The default value of "MaxErrorIncreases" is 400 for one-dimensional integrals and 2000 for

multidimensional integrals.

Advanced Numerical Integration in Mathematica 15

The following integration invokes the message NIntegrate::eincr, with the default value of
"MaxErrorIncreases".

In[1]:= NIntegrateASinAx2 + xE, 8x, 0, 80 Pi<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one
of the following: the difference between the values of PrecisionGoal and WorkingPrecision
is too small; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function;
or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
2.972314689667426` and 9.140875003915308` for the integral and error estimates. à

Out[1]= 0.

Increasing "MaxErrorIncreases" silences the NIntegrate::eincr message.

In[2]:= res = NIntegrateASinAx2 + xE, 8x, 0, 80 Pi<,
Method Ø 8"GlobalAdaptive", "MaxErrorIncreases" Ø 10000<, MaxRecursion Ø 20E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[2]= 0.533246

The result compares well with the exact value.

In[3]:= exact = IntegrateASinAx2 + xE, 8x, 0, 80 Pi<E;
Abs@res - exactD

Out[4]= 6.84008µ10-13

Example Implementation of a Global Adaptive Strategy

This computes Gauss|Kronrod abscissas, weights, and error weights.

In[15]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This is a definition of a function that applies the integration rule with abscissas and weights
computed to the function f over the interval 8a, b<.

In[16]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D

16 Advanced Numerical Integration in Mathematica

This is a definition of a simple global adaptive algorithm that finds the integral of the function f
over the interval 8aArg, bArg< with relative error tol.

In[17]:= IStrategyGlobalAdaptive@f_, 8aArg_, bArg_<, tol_D :=
ModuleB8t, integral, error, regions, r1, r2, a = aArg, b = bArg, c<,

8integral, error< = IRuleEstimate@f, 8a, b<D;
H* boundaries, integral, error *L
regions = 888a, b<, integral, error<<;

WhileBerror >= tol * integral,
H* splitting of the region with the largest error *L

8a, b< = regionsP1, 1T; c =
a + b

2
;

H* integration of the left region *L
8integral, error< = IRuleEstimate@f, 8a, c<D;
r1 = 88a, c<, integral, error<;

H* integration of the right region *L
8integral, error< = IRuleEstimate@f, 8c, b<D;
r2 = 88c, b<, integral, error<;

H* sort the regions: the largest error one is the first *L
regions = Join@8r1, r2<, Rest@regionsDD;
regions = Sort@regions, Ò1P3T > Ò2P3T &D;

H* global integral and error *L
8integral, error< = Total@Map@Rest@Ò1D &, regionsDD;

F;

integral
F;

This defines an integrand.

In[18]:= f@x_D := 1 ê Sqrt@xD

The global adaptive strategy defined earlier gives the following result.

In[19]:= res = IStrategyGlobalAdaptiveAf, 80, 1<, 10-8E

Out[19]= 2.

Here is the exact result.

In[20]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[20]= 2

The relative error is within the prescribed tolerance.

In[21]:= Abs@res - exactD ê exact

Out[21]= 2.63409µ10-9

Advanced Numerical Integration in Mathematica 17

Local Adaptive Strategy

In order to reach the required precision and accuracy goals of the integral estimate, a local

adaptive strategy recursively partitions the subregion into smaller disjoint subregions and

computes integral and error estimates for each of them.

The local adaptive algorithm for NIntegrate is specified with the Method option value
"LocalAdaptive".

In[5]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "LocalAdaptive"D

Out[5]= 2.

option name default value

Method Automatic integration rule used to compute integral
and error estimates over the subregions

"SingularityDepth" Automatic number of recursive bisections before
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"Partitioning" Automatic how to partition the regions in order to
improve their integral estimate

"InitialEstimateRelaxation
"

True attempt to adjust the magnitude of the
initial integral estimate in order to avoid
unnecessary computation

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"LocalAdaptive" options.

Like "GlobalAdaptive", "LocalAdaptive" can be used for both one-dimensional and multidi-

mensional integration. "LocalAdaptive" works with both Cartesian product rules and fully

symmetric multidimensional rules.

The "LocalAdaptive" strategy has an initialization routine and a Recursive Routine (RR). RR

produces the leaves of a tree, the nodes of which are regions. The children of a node/region are

subregions obtained by its partition. RR takes a region as an argument and returns an integral

estimate for it.

18 Advanced Numerical Integration in Mathematica

RR uses an integration rule to compute integral and error estimates of the region argument. If

the error estimate is too big, RR calls itself on the region's disjoint subregions obtained by

partition. The sum of the integral estimates returned from these recursive calls becomes the

region's integral estimate.

RR makes the decision to continue the recursion knowing only the integral and error estimates

of the region at which it is executed. (This is why the strategy is called "local adaptive.")

The initialization routine computes an initial estimation of the integral over the initial regions.

This initial integral estimate is used in the stopping criteria of RR: if the error of a region is

significant compared to the initial integral estimate then that region is partitioned into disjoint

regions and RR is called on them; if the error is insignificant the recursion stops.

The error estimate of a region, regionError, is considered insignificant if

(3)initialIntegral + regionError == initialIntegral.

The stopping criteria (3) will compute the integral to the working precision. Since you want to

compute the integral estimate to user-specified precision and accuracy goals, the following

stopping criteria is used:

(4)
integralEst = MinAinitialIntegral 10-pg ë eps, 10-ag ë epsE;
integralEst + regionError == integralEst,

where eps is the smallest number such that 1 + eps ≠ 1 at the working precision, and pg and ag

are the user-specified precision and accuracy goals.

The recursive routine of "LocalAdaptive" stops the recursion if:

1. there are no numbers of the specified working precision between region's boundaries;

2. the maximum recursion level is reached;

3. the error of the region is insignificant, i.e., the criteria (4) is true.

MinRecursion and MaxRecursion

The options MinRecursion and MaxRecursion for "LocalAdaptive" have the same meaning

and functionality as they do for "GlobalAdaptive". See MinRecursion and MaxRecursion.

Advanced Numerical Integration in Mathematica 19

"InitialEstimateRelaxation"

After the first recursion is finished a better integral estimate, I2, will be available. That better

estimate is compared to the two integral estimates, I1 and I1 e that the integration rule has used

to give the integral estimate (I1) and the error estimate (I1 - I1 e) for the initial step. If

r =
I2 - I1

I2 - I1 e
< 1,

then the integral estimate integralEst in (4) can be increased~that is, the condition (4) is

relaxed~with the formula

integralEst = integralEst ê r,

since r < 1 means that the rule's integral estimate is more accurate than what the rule's error

estimate predicts.

"Partitioning"

"LocalAdaptive" has the option "Partitioning" to specify how to partition the regions that

do not satisfy (4). For one-dimensional integrals, if "Partitioning" is set to Automatic,

"LocalAdaptive" partitions a region between the sampling points of the (rescaled) integration

rule. In this way, if the integration rule is of closed type, every integration value can be reused.

If "Partitioning" is given a list of integers 8p1, p2, …, pn< with length n that equals the number

of integral variables, each dimension i of the integration region is divided into pi equal parts. If

"Partitioning" is given an integer p, all dimensions are divided into p equal parts.

20 Advanced Numerical Integration in Mathematica

Consider the following function.

In[4]:= PlotB
1

10 J
1

2
- xN

2
+ 1

, 8x, 0, 1<F

Out[4]=

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

These are the sampling points used by "LocalAdaptive" with its automatic region partition-
ing. It can be seen that the sampling points of each recursion level are between the sampling
points of the previous recursion level.

In[1]:= sampledPoints = ReapBNIntegrateB
1

10 J
1

2
- xN

2
+ 1

, 8x, 0, 1<,

Method Ø 8"LocalAdaptive"<, EvaluationMonitor ß Sow@xDFF@@2, 1DD;
ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[2]=

0.2 0.4 0.6 0.8 1.0

50

100

150

These are the sampling points used by "LocalAdaptive" integration which partitions the
regions with large error into three subregions. The patterns formed clearly show the three next
recursion level subregions of each region of the first and second recursion levels.

Advanced Numerical Integration in Mathematica 21

In[5]:= sampledPoints = ReapBNIntegrateB
1

10 J
1

2
- xN

2
+ 1

,

8x, 0, 1<, Method Ø 8"LocalAdaptive", "Partitioning" Ø 3<,
EvaluationMonitor ß Sow@xDFF@@2, 1DD;

ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[6]=

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Multidimensional example of using the "Partitioning" option. To make the plot, the sam-
pling points of the first region to be integrated, @0, 1Dµ @0, 1D, are removed.

In[7]:= sampledPoints =
ReapANIntegrateAHx + yL6, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"LocalAdaptive",

"Partitioning" Ø 83, 4<<, EvaluationMonitor ß Sow@8x, y<DEE@@2, 1DD;
sampledPoints = Partition@sampledPoints, Length@sampledPointsD ê H3 * 4 + 1LD;
sampledPoints = Flatten@Rest@sampledPointsD, 1D;
ListPlot@sampledPoints, AspectRatio Ø 1, GridLines -> 8Range@3D ê 3, Range@4D ê 4<D

Out[10]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Reuse of Integrand Values

With its default partitioning settings for one-dimensional integrals "LocalAdaptive" reuses the

integrand values at the end points of the sub-intervals that have integral and error estimates

that do not satisfy (4).

22 Advanced Numerical Integration in Mathematica

Sampling points of the integration of Ÿ0
1x6 „ x by "LocalAdaptive". The variable rulePoints

determines the number of points in the integration rule used by "LocalAdaptive".
In[13]:= rulePoints = 5;

sampledPoints =
ReapANIntegrateAx6, 8x, 0, 1<, Method Ø 8"LocalAdaptive", "SymbolicProcessing" Ø

0, Method Ø 8"ClenshawCurtisRule", "Points" Ø rulePoints<,
"SingularityHandler" Ø None<, EvaluationMonitor ß Sow@xDEE@@2, 1DD;

Length@sampledPointsD
ListPlot@Transpose@8sampledPoints, Range@Length@sampledPointsDD<DD

Out[15]= 65

Out[16]=

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

The percent of reused points in the integration.

In[17]:= totalRulePoints = 2 rulePoints - 1;
totalPoints = HtotalRulePoints - 1L totalRulePoints + totalRulePoints;
totalPoints - Length@sampledPointsD

totalPoints
êê N

Out[19]= 0.197531

Example Implementation of a Local Adaptive Strategy

This computes Clenshaw|Curtis abscissas, weights, and error weights.

In[33]:= 8absc, weights, errweights< =
NIntegrate`ClenshawCurtisRuleData@6, MachinePrecisionD;

This is a definition of a function that applies the integration rule, with the abscissas and weights
computed in the previous example, to the function f over the interval 8a, b<.

In[34]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error, scaledAbsc<,
scaledAbsc = Rescale@absc, 80, 1<, 8a, b<D;
8integral, error< = Hb - aL

TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8scaledAbsc, weights, errweights<D;
8integral, Abs@errorD, scaledAbsc<

D

Advanced Numerical Integration in Mathematica 23

This defines a simple local adaptive algorithm that finds the integral of the function f over the
interval 8aArg, bArg< with relative error tol.

In[35]:= LocalAdaptiveRecurrence@f_, 8a_, b_<, integralEst_D :=
Module@8regions, integral, error, scaledAbsc<,

8integral, error, scaledAbsc< = IRuleEstimate@f, 8a, b<D;

If@N@integralEst + errorD == N@integralEstD,
H* Stopping criteria is satisfied *L
integral,
H* ELSE call itself recursively *L
regions = Partition@scaledAbsc, 2, 1D;
Total@LocalAdaptiveRecurrence@f, Ò1, integralEstD & êü regionsD

D
D;

IStrategyLocalAdaptive@f_, 8aArg_, bArg_<, tol_D :=
Module@8integral, error, a = aArg, b = bArg, d = 1, dummy<,

If@a > b, 8a, b< = 8b, a<; d = -1D;

H* initial integral estimate *L
8integral, error, dummy< = IRuleEstimate@f, 8a, b<D;

d * LocalAdaptiveRecurrence@f, 8a, b<, d * integral * tol ê $MachineEpsilonD
D;

This defines a function.

In[37]:= f@x_D := Sqrt@xD * Sin@xD

The local adaptive strategy gives the result.

In[38]:= res = IStrategyLocalAdaptiveAf, 80, 8 p<, 10-8E

Out[38]= -4.38857

This is the exact result.

In[39]:= exact = Integrate@f@xD, 8x, 0, 8 p<D

Out[39]=
p

2
H-4 + FresnelC@4DL

The relative error is within the prescribed tolerance.

In[40]:= Abs@res - exactD ê exact

Out[40]= -2.03056µ10-11

24 Advanced Numerical Integration in Mathematica

"GlobalAdaptive" versus "LocalAdaptive"

In general the global adaptive strategy has better performance than the local adaptive one. In

some cases though the local adaptive strategy is more robust and/or gives better performance.

There are two main differences between "GlobalAdaptive" and "LocalAdaptive":

1. "GlobalAdaptive" stops when the sum of the errors of all regions satisfies the precision

goal, while "LocalAdaptive" stops when the error of each region is small enough compared to

an estimate of the integral.

2. To improve the integral estimate "GlobalAdaptive" bisects the region with largest error,

while "LocalAdaptive" partitions all regions the error for which is not small enough.

For multidimensional integrals "GlobalAdaptive" is much faster because "LocalAdaptive"

does partitioning along each axis, so the number of regions can explode combinatorically.

Why and how global adaptive strategy is faster for one-dimensional smooth integrands is

proved (and explained) in [MalcSimp75].

When "LocalAdaptive" is faster and performs better than "GlobalAdaptive", it is because the

precision-goal-stopping criteria and partitioning strategy of "LocalAdaptive" are more suited

for the integrand's nature. Another factor is the ability of "LocalAdaptive" to reuse the inte-

gral values of all points already sampled. "GlobalAdaptive" has the ability to reuse very few

integral values (at most 3 per rule application, 0 for the default one-dimensional rule, the

Gauss|Kronrod rule).

The following subsection demonstrates the performance differences between

"GlobalAdaptive" and "LocalAdaptive".

"GlobalAdaptive" Is Generally Better than "LocalAdaptive"

The table that follows, with timing ratios and numbers of integrand evaluations, demonstrates

that "GlobalAdaptive" is better than "LocalAdaptive" for the most common cases. All inte-

grals considered are one-dimensional over @0, 1D, because (i) for multidimensional integrals the

performance differences should be expected to deepen, since "LocalAdaptive" partitions the

regions along each axis, and (ii) one-dimensional integrals over different ranges can be

rescaled to be over @0, 1D.

Advanced Numerical Integration in Mathematica 25

Here are the definitions of some functions, precision goals, number of integrations, and the
integration rule. The variable integrationRule can be changed in order to compare the
profiling runs with the same integration rule. The last function is derived from ‰-x sinHxL by the

variable change xØ-1 + 1
1-x

 that transforms @0, 1L into @0, ¶L.

In[70]:= funcs = : x ,
1

x
,
Sin@200 xD

x
, Log@xD, x26,

1

104 J
1

2
- xN

2
+ 1

, -
‰
1-

1

1-x SinA1 -
1

1-x
E

H1 - xL2
>;

precs = 86, 8, 10, 12, 14<;
n = 10; H* number of integrations to determine the timing *L
integrationRule = Automatic;

In[74]:= FRangesToCube@88x, 0, ¶<<D

Out[74]= ::x Ø -1 +
1

1 - x
>,

1

H1 - xL2
>

Exact integral values. All integrals are over @0, 1D.
In[75]:= exactvals = Integrate@Ò, 8x, 0, 1<D & êü funcs;

"GlobalAdaptive" timings.

In[76]:= gatimings =
Map@FirstüTiming@Do@NIntegrate@Ò@@1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD,

Method Ø 8"GlobalAdaptive", "SymbolicProcessing" Ø 0,
Method Ø integrationRule, "SingularityHandler" Ø None<,

MaxRecursion Ø 200D, 8n<DD &, Outer@List, funcs, precs, 1D, 82<D;

"LocalAdaptive" timings.

In[77]:= latimings =
Map@FirstüTiming@Do@NIntegrate@Ò@@1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD,

Method Ø 8"LocalAdaptive", "SymbolicProcessing" Ø 0,
Method Ø integrationRule, "SingularityHandler" Ø None<,

MaxRecursion Ø 200D, 8n<DD &, Outer@List, funcs, precs, 1D, 82<D;

"GlobalAdaptive" function evaluations.

In[78]:= ganfevals =
Map@Hk = 0; res = NIntegrate@Ò@@1, 1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD, Method Ø

8"GlobalAdaptive", "SymbolicProcessing" Ø 0, Method Ø integrationRule,
"SingularityHandler" Ø None<, MaxRecursion Ø 200,

EvaluationMonitor ß k++D; 8k, Abs@res - Ò@@1, 2DDD ê Abs@Ò@@1, 2DDD<L &,
Outer@List, Transpose@8funcs, exactvals<D, precs, 1D, 82<D;

"LocalAdaptive" function evaluations.

In[79]:= lanfevals =
Map@Hk = 0; res = NIntegrate@Ò@@1, 1DD, 8x, 0, 1<, PrecisionGoal Ø Ò@@2DD, Method Ø

8"LocalAdaptive", "SymbolicProcessing" Ø 0, Method Ø integrationRule,
"SingularityHandler" Ø None<, MaxRecursion Ø 200,

EvaluationMonitor ß k++D; 8k, Abs@res - Ò@@1, 2DDD ê Abs@Ò@@1, 2DDD<L &,
Outer@List, Transpose@8funcs, exactvals<D, precs, 1D, 82<D;

26 Advanced Numerical Integration in Mathematica

Table with the timing ratios and integrand evaluations.

In[80]:= GridBPrependBTransposeü8funcs, ColumnForm êü Table@precs, 8Length@funcsD<D,
ColumnForm êü Hlatimings ê gatimingsL, ColumnForm@First êü ÒD & êü ganfevals,
ColumnForm@First êü ÒD & êü lanfevals<,

Style@Ò, "SmallText"D & êü :"functions", "precision goals",

"
LocalAdaptive timings

GlobalAdaptive timings
", "GlobalAdaptive\nfunction\nevaluations",

"LocalAdaptive\nfunction\nevaluations">F, Frame Ø AllF

Out[80]=

functions precision goals LocalAdaptive timings

GlobalAdaptive timings
GlobalAdaptive
function
evaluations

LocalAdaptive
function
evaluations

x 6
8
10
12
14

0.916655
1.28947
0.916675
1.79999
2.30768

165
253
407
649
1023

121
289
569
1017
1969

1

x
6
8
10
12
14

1.18185
1.55555
1.94999
2.25424
2.8324

715
1045
1683
2651
4125

568
1184
2416
4376
8632

Sin@200 xD

x
6
8
10
12
14

2.45784
2.95364
3.97817
4.95302
5.92579

1595
3047
4807
6237
11913

3032
7064
14736
24144
53768

Log@xD 6
8
10
12
14

20.5385
22.3438
19.8297
9.18835
6.21505

341
495
781
1243
1925

9080
9080
9080
9080
9080

x26 6
8
10
12
14

2.56254
5.76456
5.09996
5.60002
9.80017

77
121
165
297
407

177
737
1353
2137
2697

1

1+10000 K
1

2
-xO

2
6
8
10
12
14

1.74996
1.72977
2.17773
3.35385
4.8646

297
495
649
1089
1705

513
737
1297
3201
5329

- ‰
1-

1

1-x SinB1 -
1

1-x
F ì H1 - xL2 6

8
10
12
14

1.80001
2.24996
4.51424
4.1915
7.31431

165
231
363
583
1001

288
512
1184
1632
4376

Advanced Numerical Integration in Mathematica 27

Table with the errors of the integrations. Both "GlobalAdaptive" and "LocalAdaptive"
reach the required precision goals.

In[81]:= Grid@Prepend@Transposeü8funcs, ColumnForm êü Table@precs, 8Length@funcsD<D,
ColumnForm@Ò@@2DD & êü ÒD & êü ganfevals,
ColumnForm@Ò@@2DD & êü ÒD & êü lanfevals<, Style@Ò, "SmallText"D & êü

8"functions", "precision goals", "GlobalAdaptive\nrelative errors",
"LocalAdaptive\nrelative errors"<D, Frame Ø AllD

Out[81]=

functions precision goals GlobalAdaptive
relative errors

LocalAdaptive
relative errors

x 6
8
10
12
14

3.59747µ10-8

5.62106µ10-10

3.10635µ10-12

1.81521µ10-14

9.99201µ10-16

1.82143µ10-8

1.35204µ10-10

1.00403µ10-12

7.49401µ10-15

1.66533µ10-16

1

x
6
8
10
12
14

4.76822µ10-7

2.63409µ10-9

1.02884µ10-11

5.56222µ10-14

1.11022µ10-15

2.16468µ10-7

1.60735µ10-9

1.19349µ10-11

4.52083µ10-13

3.21965µ10-15

Sin@200 xD

x
6
8
10
12
14

1.35856µ10-8

7.50499µ10-11

1.46188µ10-13

6.11798µ10-15

8.04997µ10-16

1.55299µ10-9

1.13674µ10-11

8.51687µ10-14

1.288µ10-15

1.77099µ10-15

Log@xD 6
8
10
12
14

9.6888µ10-8

7.56936µ10-10

5.91283µ10-12

2.23155µ10-14

6.66134µ10-16

0.
0.
0.
0.
0.

x26 6
8
10
12
14

5.80785µ10-15

5.6205µ10-15

1.31145µ10-15

1.31145µ10-15

1.31145µ10-15

1.90696µ10-11

4.68375µ10-14

0.
0.
0.

1

1+10000 K
1

2
-xO

2
6
8
10
12
14

1.78976µ10-15

1.90162µ10-15

1.34232µ10-15

1.34232µ10-15

1.45418µ10-15

5.1618µ10-11

7.94206µ10-14

2.2372µ10-16

1.1186µ10-16

2.2372µ10-16

-
‰
1-

1

1-x SinB1-
1

1-x
F

H1-xL2
6
8
10
12
14

1.24141µ10-10

1.77636µ10-15

1.77636µ10-15

1.77636µ10-15

1.11022µ10-15

1.47526µ10-12

1.83453µ10-12

1.8463µ10-12

0.
0.

28 Advanced Numerical Integration in Mathematica

Singularity Handling

The adaptive strategies of NIntegrate speed up their convergence through variable transforma-

tions at the integration region boundaries and user-specified singular points or manifolds. The

adaptive strategies also ignore the integrand evaluation results at singular points.

Singularity specification is discussed in "User-specified Singularities".

Multidimensional singularity handling with variable transformations should be used with cau-

tion; see "IMT Multidimensional Singularity Handling". Coordinate change for a multidimensional

integral can simplify or eliminate singularities; see "Duffy's Coordinates for Multidimensional

Singularity Handling".

For details about how NIntegrate ignores singularities see "Ignoring the Singularity".

The computation of Cauchy principal value integrals is described in "Cauchy Principal Value

Integration".

User-Specified Singularities

Point Singularities

If it is known where the singularities occur, they can be specified in the ranges of integration,

or through the option Exclusions.

Here is an example of an integral that has two singular points at p
6
 and p

3
.

In[58]:= NIntegrateB
1

Jx -
p

6
N

1

Jx -
p

3
N

, :x, 0,
p

6
,

p

3
,

p

2
>F

Out[58]= 3.87444µ10-8 - 3.14159 Â

Here is an example of a two-dimensional integral with a singular point at H1, 1L.

In[59]:= NIntegrateALogAH1 - xL2 + H1 - yL2E, 8x, 0, 1, 2<, 8y, 0, 1, 2<E

Out[59]= -2.94423

Advanced Numerical Integration in Mathematica 29

Here is an example of an integral that has two singular points at p
6
 and p

3
 specified with the

Exclusions option.

In[60]:= NIntegrateB
1

Jx -
p

6
N

1

Jx -
p

3
N

, :x, 0,
p

2
>, Exclusions Ø :

p

6
,

p

3
>F

Out[60]= 3.87444µ10-8 - 3.14159 Â

Here is an example of a two-dimensional integral with a singular point at H1, 1L specified with
the Exclusions option.

In[61]:= NIntegrateALogAH1 - xL2 + H1 - yL2E, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø 881, 1<<E

Out[61]= -2.94423

Curve, Surface, and Hypersurface Singularities

Singularities over curves, surfaces, or hypersurfaces in general can be specified through the

option Exclusions with their equations. Such singularities, generally, cannot be specified using

variable ranges.

This two-dimensional function is singular along the curve x2 + y2 = 1.

In[62]:= Plot3DALog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E

Out[62]=

Using Exclusions the integral is quickly calculated.

In[12]:= NIntegrateALog@H1 - Hx^2 + y^2LL^2D,
8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E êê Timing

Out[12]= 80.33295, 1.28132<

30 Advanced Numerical Integration in Mathematica

NIntegrate will reach convergence much more slowly if no singularity specification is given.

In[35]:= NIntegrate@Log@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<D êê Timing

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 2000 times. The global error

is expected to decrease monotonically after a number of integrand evaluations. Suspect
one of the following: the working precision is insufficient for the specified precision
goal; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function; or
the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
1.2814579311938816` and 0.0003423677128377028` for the integral and error estimates. à

Out[35]= 81.43478, 1.28146<

Here is an example of a case in which a singular curve can be specified with the variable
ranges. If x œ @0, 2D and y œ @0, 2D this would not be possible~see the following example.

In[10]:= NIntegrateBLog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 1<, :y, 0, 1 - x2 , 1>F

Out[10]= -2.33614

Example Implementation of Curve, Surface, and Hypersurface
Singularity Handling

If the curve, surface, or hypersurface on which the singularities occur is known in implicit form

(i.e., it can be described as a single equation) the function Boole can be used to form integra-

tion regions that have the singular curves, surfaces, or hypersurfaces as boundaries.

This two-dimensional function has singular points along the curve x2 + y2 = 1.

In[66]:= Plot3DALog@H1 - Hx^2 + y^2LL^2D, 8x, 0, 2<, 8y, 0, 2<, Exclusions Ø x2 + y2 ã 1E

Out[66]=

Advanced Numerical Integration in Mathematica 31

Using Boole the integral is calculated quickly.

In[9]:= NIntegrate@Log@H1 - Hx^2 + y^2LL^2D * Boole@x^2 + y^2 < 1D, 8x, 0, 2<, 8y, 0, 2<D +
NIntegrate@Log@H1 - Hx^2 + y^2LL^2D * Boole@x^2 + y^2 > 1D,
8x, 0, 2<, 8y, 0, 2<D êê Timing

Out[9]= 80.295955, 1.28132<

This two-dimensional function has singular points along the curve x + H1 - yL2 = 1.

In[68]:= Plot3DBLogBI1 - Ix + H1 - yL2MM2F, 8x, -2, 2<, 8y, -1, 3<, Exclusions Ø x + H1 - yL2 ã 1F

Out[68]=

Again, using Boole the integral is calculated quickly.

In[8]:= NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 < 1D,
8x, -2, 2<, 8y, -1, 3<, PrecisionGoal Ø 4D +

NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 > 1D,
8x, -2, 2<, 8y, -1, 3<, PrecisionGoal Ø 4D êê Timing

Out[8]= 80.432933, -2.22243<

32 Advanced Numerical Integration in Mathematica

This is how the sampling points of the integration look.

In[6]:= gr1 = 8Red, Point êü Nü
Reap@NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D * Boole@x + H1 - yL^2 < 1D, 8x, -2, 2<,

8y, -1, 3<, PrecisionGoal Ø 4, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD<;
gr2 = 8Blue, Point êü NüReap@NIntegrate@Log@H1 - Hx + H1 - yL^2LL^2D *

Boole@x + H1 - yL^2 > 1D, 8x, -2, 2<, 8y, -1, 3<,
PrecisionGoal Ø 4, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD<;

Graphics@8PointSize@0.006D, gr1, gr2<, Axes Ø True, AxesOrigin Ø 8-2, -1<D

Out[7]=

-1 0 1 2

0

1

2

3

Here is a function that takes a singular curve, surface, or hypersurface specification and uses
the function Boole to make integration regions that have the singularities on their boundaries.

In[1]:= SingularManifoldNIntegrate@f_, ranges___, Equal@eq_, n_?NumericQD, opts___D :=
NIntegrate@f * Boole@eq < nD, ranges, optsD +
NIntegrate@f * Boole@eq > nD, ranges, optsD

This defines a three-dimensional function.

In[2]:= f@x_, y_, z_D := Log@HH1 - Hx + H1 - yL^2 + H1 - zL^2LLL^2D;

Here is the integral of a three-dimensional function with singular points along the surface
x + H1 - yL2 + H1 - zL2 = 1.

In[3]:= SingularManifoldNIntegrate@f@x, y, zD, 8x, -2, 2<, 8y, -1, 3<,
8z, -1, 1<, x + H1 - yL^2 + H1 - zL^2 ã 1, PrecisionGoal Ø 3D

Out[3]= 21.7471 - 4.892636912996955µ10-339 Â

Advanced Numerical Integration in Mathematica 33

These are the sampling points of the integration.

In[4]:= gr1 = 8Red,
Point@Re@ÒDD & êü Reap@NIntegrate@f@x, y, zD * Boole@x + H1 - yL^2 + H1 - zL^2 < 1D,

8x, -2, 2<, 8y, -1, 3<, 8z, -1, 1<, PrecisionGoal Ø 3,
EvaluationMonitor :> Sow@8x, y, z<DDD@@2, 1DD<;

gr2 = 8Blue, Point@Re@ÒDD & êü Reap@NIntegrate@f@x, y, zD *
Boole@x + H1 - yL^2 + H1 - zL^2 > 1D, 8x, -2, 2<, 8y, -1, 3<, 8z, -1, 1<,

PrecisionGoal Ø 3, EvaluationMonitor :> Sow@8x, y, z<DDD@@2, 1DD<;
Graphics3D@8PointSize@0.006D, gr1, gr2<, Axes -> TrueD

Out[5]=

-2

-1

0

1

2 -1

0

1

2

3

-1.0

-0.5

0.0

0.5

1.0

"SingularityHandler" and "SingularityDepth"

Adaptive strategies improve the integral estimate by region bisection. If an adaptive strategy

subregion is obtained by the number of bisections specified by the option "SingularityDepth",

it is decided that subregion has a singularity. Then the integration over that subregion is done

with the singularity handler specified by "SingularityHandler".

option name default value

"SingularityDepth" Automatic number of recursive bisections before
applying a singularity handler

"SingularityHandler" Automatic singularity handler

"GlobalAdaptive" and "LocalAdaptive" singularity handling options.

If there is an integrable singularity at the boundary of a given region of integration, bisection

could easily recur to MaxRecursion before convergence occurs. To deal with these situations

the adaptive strategies of NIntegrate use variable transformations (IMT,

34 Advanced Numerical Integration in Mathematica

"DoubleExponential", SidiSin) to speed up the integration convergence, or a region transfor-

mation (Duffy's coordinates) that relaxes the order of the singularity. The theoretical back-

ground of the variable transformation singularity handlers is given by the Euler|Maclaurin for-

mula [DavRab84].

Use of the IMT Variable Transformation

The IMT variable transformation is the variable transformation in a quadrature method pro-

posed by Iri, Moriguti, and Takasawa, called in the literature the IMT rule

[DavRab84][IriMorTak70]. The IMT rule is based upon the idea of transforming the independent

variable in such a way that all derivatives of the new integrand vanish at the end points of the

integration interval. A trapezoidal rule is then applied to the new integrand, and under proper

conditions high accuracy of the result might be attained [IriMorTak70][Mori74].

Here is a numerical integration that uses the IMT variable transformation for singularity
handling.

In[13]:= NIntegrateB
1

Sqrt@1 - xD
, 8x, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø 8IMT, "TuningParameters" Ø 810, 2<<<F

Out[13]= 2.

option name default value

"TuningParameters" 10 a pair of numbers 8a, p< that are the
tuning parameters in the IMT transforma-

tion formula a ‰
1- 1

tp ; if only a number a is
given, it is interpreted as 8a, 1<

IMT singularity handler option.

Adaptive strategies of NIntegrate employ only the transformation of the IMT rule. With the

decision that a region might have a singularity, the IMT transformation is applied to its inte-

grand. The integration continues, though not with a trapezoidal rule, but with the same integra-

tion rule used before the transformation. (Singularity handling with "DoubleExponential"

switches to a trapezoidal integration rule.)

Advanced Numerical Integration in Mathematica 35

Also, adaptive strategies of NIntegrate use a variant of the original IMT transformation, with

the transformed integrand vanishing only at one of the ends.

The IMT transformation ja,pHtL : H0, 1DØ H0, 1D, a > 0, p > 0, is defined.

In[14]:= j@a_, p_, t_D := a ExpB1 -
1

tp
F;

j@t_D := j@1, 1, tD

The parameters a and p are called tuning parameters [MurIri82].

The limit of the derivative of the IMT transformation is 0.

In[16]:= Limit@D@j@a, p, tD, tD, t Ø 0, Assumptions Ø 8a > 0, p > 0<D

Out[16]= 0

Here is the plot of the IMT transformation.

In[17]:= Plot@j@tD, 8t, 0, 1<, AxesOrigin -> 80, -0.02<,
PlotRange Ø All, AspectRatio Ø AutomaticD

Out[17]=

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

From the graph above follows that the transformed sampling points are much denser around 0.

This means that if the integrand is singular at 0 it will be sampled more effectively, since a

larger part of the integration rule sampling points will contribute large integrand values to the

integration rule's integral estimate.

36 Advanced Numerical Integration in Mathematica

Since for any given working precision the numbers around 0 are much denser than the numbers
around 1, after a region bisection the adaptive strategies of NIntegrate reverse the bisection
variable of the subregion that has the right end of the bisected interval. This can be seen from
the following plot.

In[18]:= pnts = ReapBNIntegrateB
1

x
, 8x, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø 8IMT, "TuningParameters" Ø 1<<,
PrecisionGoal Ø 2, EvaluationMonitor ß Sow@xDFFP2, 1T;

ListPlot@Transpose@8pnts, Range@Length@pntsDD<DD

Out[19]=

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

No other singularity handler is applied to the subregions of a region to which the IMT variable

transformation has been applied.

IMT Transformation by Example

Consider the function 1

x
 over H0, 1D that has a singularity at 0.

In[29]:= f@x_D := 1 ê Sqrt@xD

In[30]:= Plot@f@xD, 8x, 0, 1<D

Out[30]=

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

3.5

4.0

Advanced Numerical Integration in Mathematica 37

Assume the integration is done with "GlobalAdaptive", with singularity handler IMT and
singularity depth 4. After four bisections "GlobalAdaptive" will have a region with bound-
aries 80, 1 ê16< that contains the singular end point. For that region the IMT variable transforma-
tion will change its boundaries to 80, 1< and its integrand to the following.

In[31]:= 8a, b< = 80, 1 ê 16<;
f@Rescale@j@tD, 80, 1<, 8a, b<DD D@Rescale@j@tD, 80, 1<, 8a, b<D, tD

Out[32]=
‰
1-

1

t

4 t2

Here is the plot of the new integrand.

In[33]:= 8a, b< = 80, 1 ê 16<;
Plot@f@Rescale@j@tD, 80, 1<, 8a, b<DD D@Rescale@j@tD, 80, 1<, 8a, b<D, tD êê

Evaluate, 8t, 0, 1<, AxesOrigin -> 80, -0.02<, PlotRange Ø AllD

Out[34]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

The singularity is smashed!

Some of the sampling points, though, become too close to the singular end, and therefore

special care should be taken for sampling points that coincide with the singular point because of

the IMT transformation. NIntegrate ignores evaluations at singular points; see "Ignoring the

Singularity".

For example, consider the sampling points and weights of the Gauss|Kronrod rule.

In[35]:= 8absc, weights, errweight< = NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

The Gauss|Kronrod sampling points for the region 80, 1 ê16< and the derivatives of the rescaling
follow.

In[36]:= abscGK = RescaleBÒ1, 80, 1<, :0,
1

16
>F & êü absc

Out[36]= 80.000497332, 0.00293188, 0.00768229, 0.0144228, 0.0225115,
0.03125, 0.0399885, 0.0480772, 0.0548177, 0.0595681, 0.0620027<

38 Advanced Numerical Integration in Mathematica

In[37]:= derivativesGK = DBRescaleBt, 80, 1<, :0,
1

16
>F, tF ê. t Ø Ò & êü absc

Out[37]= :
1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
>

Here is the integral estimate.

In[38]:= Hf@abscGKD derivativesGKL.weights

Out[38]= 0.484375

With the IMT transformation, these are the sampling points and derivatives.

In[39]:= abscGKIMT = RescaleBj@Ò1D, 80, 1<, :0,
1

16
>F & êü

NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD@@1DD

Out[39]= 94.48942µ10-56, 9.37893µ10-11, 0.0000497657, 0.00222946, 0.0105784,
0.0229925, 0.0355954, 0.0463014, 0.0543271, 0.0594983, 0.0620007=

In[40]:= derivativesGKIMT = DBRescaleBj@tD, 80, 1<, :0,
1

16
>F, tF ê. t Ø Ò & êü

NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD@@1DD

Out[40]= 97.09017µ10-52, 4.26208µ10-8, 0.00329389, 0.0418657, 0.0815397,
0.0919699, 0.0869529, 0.0782486, 0.0706212, 0.0654993, 0.0629993=

Here is the integral estimate with the IMT transformation.

In[41]:= Hf@abscGKIMTD derivativesGKIMTL.weights

Out[41]= 0.500562

The estimate calculated with the IMT variable transformation is much closer to the exact value.

In[42]:= IntegrateB
1

x
, :x, 0,

1

16
>F

Out[42]=
1

2

Use of Double-Exponential Quadrature

When adaptive strategies use the IMT variable transformation they do not change the integra-

tion rule on the IMT-transformed regions. In contrast to this you can use both a variable trans-

formation and a different integration rule on the regions considered to have singularity. (This is

Advanced Numerical Integration in Mathematica 39

more in the spirit of the IMT rule [DavRab84].) This is exactly what happens when double-

exponential quadrature is used~double-exponential quadrature uses the trapezoidal rule.

NIntegrate can use double-exponential quadrature for singularity handling only for one-dimen-

sional integration.

Here is a numerical integration that uses double-exponential quadrature for singularity handling.

In[103]:= NIntegrateB
1

Sqrt@1 - xD
, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DoubleExponential"<F

Out[103]= 2.

IMT versus "DoubleExponential" versus No Singularity Handling
for One-Dimensional Integrals

Both singularity handlers (IMT and "DoubleExponential") are applied to regions that are

obtained through too many bisections (as specified by "SingularityDepth").

The main difference between them is that IMT does not change the integration rule used to

compute integral estimates on the region it is applied to~IMT is only a variable transformation.

On the other hand, "DoubleExponential" uses both variable transformation and a different

integration rule~the trapezoidal rule~to compute integral estimates on the region it is applied

to. In other words, the singularity handler "DoubleExponential" delegates the integration to

the double-exponential quadrature as described in Double-Exponential Strategy.

As a consequence, a region to which the IMT singularity handler is applied is still going to be

subject to bisection by the adaptive integration strategy. Therefore, until the precision goal is

reached the integrand evaluations done before the last bisection will be thrown away. On the

other hand, a region to which the "DoubleExponential" singularity handler is applied will not

be bisected. The trapezoidal rule quadrature used by "DoubleExponential" will compute inte-

gral estimates over the region with an increasing number of sampling points at each step,

completely reusing the integrand evaluations of the sampling points from the previous steps.

So, if the integrand is "very" analytic (i.e., no rapid or sudden changes of the integrand and its

derivatives wrt the integration variable) over the regions with end point singularity, the

"DoubleExponential" singularity handler is going to be much faster than the IMT singularity

40 Advanced Numerical Integration in Mathematica

handler. In the cases where the integrand is not analytic in the region given to the

"DoubleExponential" singularity handler, or the double transformation of the integrand con-

verges too slowly, it is better to switch to the IMT singularity handler. This is done if the option

"SingularityHandler" is set to Automatic.

Following are tables that compare the IMT, "DoubleExponential", and Automatic singularity

handlers applied at different depths of bisection.

This loads a package that defines the profiling function NIntegrateProfile that gives the
number of sampling points and the time needed by a numerical integration command.

In[17]:= Needs@"Integration`NIntegrateUtilities`"D;

Table for a "very" analytical integrand 1

x
 that the "DoubleExponential" singularity handler

easily computes.
In[34]:= exact = 2;

tbl = t = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfileBNIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 100FF;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD< & êü

88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference from", "the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[36]//TableForm=

SingularityDepth Difference from
the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 9.53644µ10-7 715 0.0044994

IMT 1 1.06581µ10-14 88 0.0025996

DoubleExponential 1 3.10862µ10-15 65 0.0020997

IMT 4 6.21725µ10-15 154 0.0028996

DoubleEponential 4 3.10862µ10-15 132 0.0024996

Automatic 4 3.10862µ10-15 132 0.0022996

Table for an integrand, 70

104 Jx-
1

32
N
2
+
1

16

, that does not have a singularity and has a nearly discontinu-

ous derivative (i.e., it is not "very" analytical). The Automatic singularity handler starts with
"DoubleExponential" and then switches to IMT.

Advanced Numerical Integration in Mathematica 41

In[37]:= f@x_D :=
70

104 Jx -
1

32
N
2
+

1

16

;

exact = Integrate@f@xD, 8x, 0, 1<D;
tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfile@NIntegrate@f@xD, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",
"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 100, PrecisionGoal Ø 8DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference", "from the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[40]//TableForm=

SingularityDepth Difference
from the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 1.95399µ10-14 495 0.0038994

IMT 1 1.42109µ10-14 528 0.006699

DoubleExponential 1 7.10543µ10-15 3240 0.0436934

IMT 4 2.4869µ10-14 594 0.006899

DoubleEponential 4 7.10543µ10-15 950 0.012998

Automatic 4 1.77636µ10-14 552 0.0069989

A table for an integrand,
x+

1

-1+Log@xD

x Log@xD
, for which the Automatic singularity handler starts with

"DoubleExponential" and then switches to IMT.

In[41]:= f@x_D :=
x +

1

-1+Log@xD

x Log@xD
;

exact = Integrate@f@xD, 8x, 0, 1<D;
tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfile@NIntegrate@f@xD, 8x, 0, 1<, Method Ø 8"GlobalAdaptive",
"SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø Ò1@@2DD,
"SymbolicProcessing" Ø 0<, MaxRecursion Ø 3000, PrecisionGoal Ø 6DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88"IMT", Infinity<, 8"IMT", 1<, 8"DoubleExponential", 1<,
8"IMT", 4<, 8"DoubleExponential", 4<,
8Automatic, 4<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "DoubleExponential",

"IMT", "DoubleEponential", "Automatic"<,
8"SingularityDepth", ColumnForm@8"Difference from", "the exact integral"<D,
ColumnForm@8"Number of function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[44]//TableForm=

SingularityDepth Difference from
the exact integral

Number of function
evaluations

Time HsL

No singularity handling ¶ 0.000555531 56925 2.26286

IMT 1 4.58522µ10-14 88 0.0027996

DoubleExponential 1 7.00532µ10-10 131 0.012998

IMT 4 7.88258µ10-15 132 0.0028996

DoubleEponential 4 7.00528µ10-10 197 0.0165974

Automatic 4 1.95931µ10-10 182 0.0044993

42 Advanced Numerical Integration in Mathematica

IMT Multidimensional Singularity Handling

When used for multidimensional integrals, the IMT singularity handler speeds up the integration

process only when the singularity is along one of the axes. When the singularity is at a corner

of the integration region, using IMT is counterproductive. The function NIntegrateProfile

defined earlier is used in the following examples.

The number of integrand evaluations and timings for an integrand that has a singularity only
along the x axis. The default (automatic) singularity handler chooses to apply IMT to regions
obtained after the default (four) bisections.

In[19]:= NIntegrateProfileüNIntegrateB
1

Sqrt@xD
+ y, 8x, 0, 1<, 8y, 0, 1<F

Out[19]= 8IntegralEstimate Ø 2.500000004270092, Evaluations Ø 442, Timing Ø 0.025<

The number of integrand evaluations and timings for an integrand that has a singularity only
along the x axis with no singularity handler application.

In[20]:= NIntegrateProfileüNIntegrateB
1

Sqrt@xD
+ y, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<, MaxRecursion Ø 30F

Out[20]= 8IntegralEstimate Ø 2.4999994380778543, Evaluations Ø 1445, Timing Ø 0.0231<

The number of integrand evaluations and timings for an integrand that has a singularity at a
corner of the integration region. The default (automatic) singularity handler chooses to apply
the singularity handler DuffyCoordinates to regions obtained after the default (four) bisec-
tions.

In[21]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<F

Out[21]= 8IntegralEstimate Ø 1.7627471522176814, Evaluations Ø 2006, Timing Ø 0.038<

The number of integrand evaluations and timings for an integrand that has a singularity at a
corner of the integration region. IMT is applied to regions obtained after the default (four)
bisections.

In[22]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "IMT"<, MaxRecursion Ø 30F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Advanced Numerical Integration in Mathematica 43

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. à

Out[22]= 8IntegralEstimate Ø 1.762747132592934, Evaluations Ø 7004, Timing Ø 0.0941<

The number of integrand evaluations and timings for an integrand that has a singularity at a
corner of the integration region with no singularity handler application.

In[23]:= NIntegrateProfileüNIntegrateB
1

SqrtAx2 + y2E
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<, MaxRecursion Ø 30F

Out[23]= 8IntegralEstimate Ø 1.7627469943973395, Evaluations Ø 3791, Timing Ø 0.0451<

Duffy's Coordinates for Multidimensional Singularity Handling

Duffy's coordinates is a technique that transforms an integrand over a square, cube, or hyper-

cube with a singular point in one of the corners into an integrand with a singularity over a line,

which might be easier to integrate.

The following integration uses Duffy's coordinates.

In[63]:= NIntegrateB
1

x2 + y2
, 8y, 0, 1<, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DuffyCoordinates"<F êê Timing

Out[63]= 80.017997, 1.76275<

The following integration does not use Duffy's coordinates.

In[62]:= NIntegrateB
1

x2 + y2
, 8y, 0, 1<, 8x, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" -> None<,
MaxRecursion -> 20F êê Timing

Out[62]= 80.038994, 1.76275<

The NIntegrate strategies "GlobalAdaptive" and "LocalAdaptive" apply the Duffy's coordi-

nates technique only at the corners of the integration region.

44 Advanced Numerical Integration in Mathematica

When the singularity of a multidimensional integral occurs at a point, the coupling of the vari-

ables will make the singularity variable transformations used in one-dimensional integration

counterproductive. A variable transformation that has a geometrical nature, proposed by Duffy

in [Duffy82], makes a change of variables that replaces a point singularity at a corner of the

integration region with a "softer" one on a plane.

If d is the dimension of integration and r = x12 + x22 + … + xd2, then Duffy's coordinates is a suit-

able technique for singularities of the following type (see again [Duffy82]):

1. ra, ra ln r, a > -d ;

2. x1a1 x2a2 …xdad rb, ai > -1, i œ @1, dD, ⁄ai + b > -d ;

3. Ic1 x1 b + c2 x2 b + … + cd xd bM
a, b > 0, a b > -d, ci > 0, i œ @1, dD.

For example, consider the integral

‡
0

1

‡
0

x 1

4 x2 + y2
„ x „ y.

If the integration region H0, 1Dµ H0, xD is changed to H0, 1Dµ H0, 1D with the rule yØ x y, the Jacobian

of which is x, the integral becomes

(5)Ÿ0
1
Ÿ0
x 1

4 x2+y2
„ x „ y ñ Ÿ0

1
Ÿ0
1 x

4 x2+Hx yL2
„ x „ y ñ Ÿ0

1
Ÿ0
1 1

y2+4
„ x „ y.

The last integral has no singularities at all!

Now consider the integral

(6)Ÿ0
1
Ÿ0
1 1

4 x2+y2
„ x „ y,

which is equivalent to the sum

‡
0

1

‡
0

x 1

4 x2 + y2
„ x „ y + ‡

0

1

‡
x

1 1

4 x2 + y2
„ x „ y.

The first integral of that sum is transformed as in (5); for the second one, though, the change

of H0, 1Dµ H1, xD into H0, 1Dµ H0, 1D by yØ x + H1 - xL y has the Jacobian 1 - x, which will not bring the

desired cancellation of terms. Fortunately, a change of the order of integration:

Advanced Numerical Integration in Mathematica 45

‡
0

1

‡
x

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

y 1

4 x2 + y2
„ y „ x,

makes the second integral amenable for the transformation in (5):

(7)Ÿ0
1
Ÿ0
y 1

4 x2+y2
„ y „ x ñ Ÿ0

1
Ÿ0
x 1

4 y2+x2
„ x „ y ñ Ÿ0

1
Ÿ0
1 x

4 Hx yL2+x2
„ x „ y ñ Ÿ0

1
Ÿ0
1 1

1+4 y2
„ x „ y.

(In the second integral in the equation (3) the variables were permuted, which is not necessary

to prove the mathematical equivalence, but it is faster when computing the integrals.)

So the integral (6) can be rewritten as an integral with no singularities:

‡
0

1

‡
0

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

1 1

y2 + 4
+

1

1 + 4 y2
„ x „ y.

If the integration variables were not permuted in (7), the integral (6) is going to be rewritten as

‡
0

1

‡
0

1 1

4 x2 + y2
„ x „ y ñ ‡

0

1

‡
0

1 1

y2 + 4
+

1

1 + 4 x2
„ x „ y.

That is a more complicated integral, as its integrand is not simple along both axes. Subse-

quently it is harder to compute than the former one.

Here is the number of sampling points for the simpler integral.

In[58]:= ReapBNIntegrateB
1

y2 + 4

+
1

1 + 4 y2
, 8x, 0, 1<, 8y, 0, 1<,

PrecisionGoal Ø 8, EvaluationMonitor :> Sow@8x, y<DFF@@2, 1DD êê Length

Out[58]= 187

Here is the number of sampling points for the more complicated integral.

In[59]:= ReapBNIntegrateB
1

y2 + 4

+
1

1 + 4 x2
, 8x, 0, 1<, 8y, 0, 1<,

PrecisionGoal Ø 8, EvaluationMonitor :> Sow@8x, y<DFF@@2, 1DD êê Length

Out[59]= 323

46 Advanced Numerical Integration in Mathematica

NIntegrate uses a generalization to arbitrary dimension of the technique in the example

above. (In [Duffy82] third dimension is described only.) An example implementation together

with the generalization description are given below.

Here is a table that compares the different singularity handlings for Ÿ0
1
Ÿ0
1 1

x2+y2
„ x „ y. (The

profiling function NIntegrateProfile defined earlier is used.)
In[74]:= exact = Integrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<D;

tbl = HHt = 8"IntegralEstimate", "Evaluations", "Timing"< ê. NIntegrateProfile@
NIntegrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityHandler" Ø Ò1@@1DD, "SingularityDepth" Ø
Ò1@@2DD, "SymbolicProcessing" Ø 0<, MaxRecursion Ø 12DD;

8Ò1@@2DD, Abs@t@@1, 1DD - exactD, t@@2DD, t@@3DD<L &L êü
88None, Infinity<, 8"IMT", 1<, 8"IMT", 4<,
8"DuffyCoordinates", 4<,
8"DuffyCoordinates", 1<<;

TableForm@tbl, TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"No singularity handling", "IMT", "IMT",

"DuffyCoordinates", "DuffyCoordinates"<, 8"SingularityDepth",
ColumnForm@8"Difference", "from the", "nexact integral"<D,
ColumnForm@8"Number of", "function", "evaluations"<D, "Time HsL"<<, 8-1<DD

Out[75]=

Duffy's Coordinates Strategy

When Duffy's coordinates are applicable, a numerical integration result is obtained faster if

Duffy's coordinate change is made before the actual integration begins. Making the transforma-

tion beforehand, though, requires knowledge at which corner(s) of the integration region the

singularities occur. The "DuffyCoordinates" strategy in NIntegrate facilitates such pre-

integration transformation.

Advanced Numerical Integration in Mathematica 47

Here is an example with an integrand that has singularities at two different corners of its
integration region.

In[84]:= NIntegrateB
1

x2 + y2
+

1

x + H1 - yL

, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0<, 80, 1<<<F

Out[84]= 2.86732

option name default value

Method 9"GlobalAdaptive",
"SingularityDepth"->¶=

the strategy with which the integration will
be made after applying Duffy's coordinates
transformation

"Corners" All a vector or a list of vectors that specify the
corner(s) to apply the Duffy's coordinates
tranformation to; the elements of the
vectors are either 0 or 1; each vector
length equals the dimension of the integral

"DuffyCoordinates" options.

The first thing "DuffyCoordinates" does is to rescale the integral into one that is over the unit

hypercube (or square, or cube). If only one corner is specified "DuffyCoordinates" applies

Duffy's coordinates transformation as described earlier. If more than one corner is specified,

the unit hypercube of the previous step is partitioned into disjoint cubes with side length of one-

half. Consider the integrals over these disjoint cubes. Duffy's coordinates transformation is

applied to the ones that have a vertex that is specified to be singular. The rest are transformed

into integrals over the unit cube. Since all integrals at this point have an integration region that

is the unit cube, they are summated, and that sum is given to NIntegrate with a Method

option that is the same as the one given to "DuffyCoordinates".

The actual integrand used by "DuffyCoordinates" can be obtained through

NIntegrate`DuffyCoordinatesIntegrand, which has the same arguments as NIntegrate.

48 Advanced Numerical Integration in Mathematica

Here is an example for the "DuffyCoordinates" integrand of a three-dimensional function
that is singular at one of the corners of the integration region.

In[78]:= NIntegrate`DuffyCoordinatesIntegrandB
1

x3 + H1 - yL3 + z3
, 8x, 0, 1<, 8y, 0, 1<,

8z, 0, 1<, Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1, 0<<F êê

Simplify@Ò, Assumptions Ø 80 § x § 1, 0 § y § 1, 0 § z § 1<D &

Out[78]= 3
x

1 + y3 + z3

Here is an example for the "DuffyCoordinates" integrand for a two-dimensional function
that is singular at two of the corners of the integration region.

In[79]:= NIntegrate`DuffyCoordinatesIntegrandB
1

x2 + y2

1

x2 + H1 - yL2
, 8x, 0, 1<,

8y, 0, 1<, Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0<, 80, 1<<<F êê

Simplify@Ò, Assumptions Ø 80 § x § 1, 0 § y § 1<D &

Out[79]=
1

I1 + 2 x + x2 + y2M I5 + 2 x + x2 - 4 y + y2M

+
1

I2 + 2 x + x2 - 2 y + y2M I2 + 2 x + x2 + 2 y + y2M

+

2

I1 + y2M I4 - 4 x + x2 I1 + y2MM

+
2

I1 + y2M I4 - 4 x y + x2 I1 + y2MM

"DuffyCoordinates" might considerably improve speed for the types of integrands described

in "Duffy's Coordinates for Multidimensional Singularity Handling".

Integration with "DuffyCoordinates".

In[80]:= NIntegrateB
1

x2 + y2 + z2
+

1

x2 + y2 + H1 - zL2
, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 880, 0, 0<, 80, 0, 1<<<F êê Timing

Out[80]= 80.022997, 2.38008<

Integration with the default NIntegrate options settings which is much slower than the

previous one.

In[81]:= NIntegrateB
1

x2 + y2 + z2
+

1

x2 + y2 + H1 - zL2
,

8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<F êê Timing

Out[81]= 80.25296, 2.38008<

Advanced Numerical Integration in Mathematica 49

Here is another example of a speedup by "DuffyCoordinates".

In[82]:= NIntegrateB
1

x + Sin@1 - yD

, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1<<F êê Timing

Out[82]= 80.010999, 1.12142<

Integration with the default NIntegrate options settings which is much slower than the

previous one.

In[83]:= NIntegrateB
1

x + Sin@1 - yD

, 8x, 0, 1<, 8y, 0, 1<F êê Timing

Out[83]= 80.035994, 1.12142<

Duffy's Coordinates Generalization and Example Implementation

See "Duffy's Coordinates for Multidimensional Singularity Handling" for the theory of Duffy's

coordinates.

The implementation is based on the following two theorems.

Theorem 1: A d-dimensional cube can be divided into d disjoint geometrically equivalent d-

dimensional pyramids (with bases Hd - 1L-dimensional cubes) and with coinciding apexes.

Proof: Assume the side length of the cube is 1, the cube has a vertex at the origin, and the

coordinates of all other vertexes are 1 or 0. Consider the Hd - 1L-dimensional cube walls

ws = 8c1, …, cs-1, 1, cs+1, …, cd<, where ci œ @0, 1D. Their number is exactly d, and the origin does not

belong to them. Each of the ws walls can form a pyramid with the origin. This proves the

theorem.

50 Advanced Numerical Integration in Mathematica

Here is a plot that illustrates the theorem in 3D.

In[89]:= grx = GraphicsComplex@880, 0, 0<, 81, 0, 0<, 81, 0, 1<, 81, 1, 1<, 81, 1, 0<<,
8Polygon@81, 2, 3<D, Polygon@81, 3, 4<D, Polygon@81, 4, 5<D,
Polygon@81, 5, 2<D, Polygon@82, 3, 4, 5<D<D;

gry = MapAt@Map@RotateLeft@ÒD &, ÒD &, grx, 81<D;
grz = MapAt@Map@RotateRight@ÒD &, ÒD &, grx, 81<D;
Graphics3D@8Opacity@0.5D, Red, grx, Cyan, gry, Yellow, grz<D

Out[92]=

If the d axes are denoted x1, x2, …, xd the pyramid formed with the wall w1 = 81, c2, …, cd< can be

described as 0 § x1 § 1, 0 § xi § x1, i œ 82, …, d< . Let si denote the permutation derived after rotat-

ing 81, …, d< cyclically i times to the left (i.e., applying i times RotateLeft to 81, …, d<). Then the

following theorem holds:

Theorem 2: For any integral over the unit cube the following equalities hold:

‡
0

1

‡
0

1
… ‡

0

1
f Hx1, …, xdL „ x1 … „ xd = ‡

0

1

‡
0

x1
… ‡

0

x1
‚
i=0

d-1

f Jxsi
1
, …, xsi

d
N „ xsi

1
… „ xsi

d
=

‡
0

1

‡
0

1
… ‡

0

1
x1d-1‚

i=0

d

f Jx1 xsi
1
, …, xsi

i+1
, …, x1 xsi

d
N „ xsi

1
… „ xsi

d
.

Proof: The first equality follows from Theorem 1. The second equality is just a change of vari-

ables that transforms a pyramid to a cube.

Advanced Numerical Integration in Mathematica 51

Here is a function that gives the rules and the Jacobian for the transformation of a hypercube
with a specified side into a region.

In[93]:= FRangesToCube@ranges_, cubeSides : 88_, _< ...<D :=
Module@8t, t1, jac, vars, rules = 8<<,

vars = First êü ranges;
t = MapThread@Ht1 = Rescale@Ò1@@1DD, Ò2, 8Ò1@@2DD, Ò1@@3DD< ê. rulesD;

AppendTo@rules, Ò1@@1DD Ø t1D; t1L &, 8ranges, cubeSides<D;
jac = Times üü MapThread@D@Ò1, Ò2D &, 8t, vars<D;
8rules, jac<

D ê; Length@rangesD ã Length@cubeSidesD;
FRangesToCube@ranges_, cubeSide : 8_, _<D :=

FRangesToCube@ranges, Table@cubeSide, 8Length@rangesD<DD;
FRangesToCube@ranges_D := FRangesToCube@ranges, 80, 1<D;

Here is an example of unit-square to infinite region rescaling.

In[96]:= FRangesToCube@88x, 0, 8<, 8y, x, ¶<<D

Out[96]= ::x Ø 8 x, y Ø -1 + 8 x +
1

1 - y
>,

8

H1 - yL2
>

Here is a function that computes the integrals obtained by the Duffy's coordinates technique
when the singularity is at the origin.

In[97]:= DuffyCoordinatesAtOrigin@F_, ranges___D :=
DuffyCoordinatesBounds@F, First êü 8ranges<, Transpose@Rest êü 8ranges<DD;

DuffyCoordinatesBounds@F_, vars_, bounds_D :=
Module@8rules, jac, newF, rots, res, range<,
8rules, jac< = FRangesToCube@Transpose@Prepend@bounds, varsDDD;
newF = HF ê. rulesL * jac;
rots = NestList@RotateLeft@Ò1D &, vars, Length@varsD - 1D;
res = Prepend@Map@newF ê. Thread@vars -> Ò1D &, Rest@rotsDD, newFD;
range = Join@88vars@@1DD, 0, 1<<, Map@8Ò, 0, vars@@1DD< &, Rest@varsDDD;
8rules, jac< = FRangesToCube@rangeD;
8HTotal@resD ê. rulesL * jac, Sequence üü H 8Ò1, 0, 1< & êü varsL<

D;

Here is a function that computes the integrals obtained by the Duffy's coordinates technique for
a specified corner of the hypercube where the singularity occurs.

In[99]:= DuffyCoordinates@F_, ranges___D :=
DuffyCoordinates@F, ranges, Table@0, 8Length@8ranges<D<DD;

DuffyCoordinates@F_, rangesSeq__, corner_?HVectorQ@Ò1, IntegerQD &LD :=
Module@8factor, ranges = 8rangesSeq<, newrange, t<,
factor = 1;
newrange = 8<;
MapIndexed@H

t = rangesPÒ2P1TT;
If@Ò1 ã 0,
newrange = Append@newrange, tD,
newrange = Append@newrange, 8tP1T, tP3T, tP2T<D; factor = -factorDL &,

cornerD;
DuffyCoordinatesAtOrigin@factor * F, Sequence üü newrangeD

D;

Here is a symbolic example.

In[101]:= DuffyCoordinates@F@x, yD, 8x, 0, 1<, 8y, 0, 1<D

Out[101]= 8x HF@x, x yD + F@x y, xDL, 8x, 0, 1<, 8y, 0, 1<<

52 Advanced Numerical Integration in Mathematica

Here is another symbolic example.

In[102]:= DuffyCoordinates@F@x, y, zD, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<D

Out[102]= 9x2 HF@x, x y, x zD + F@x y, x z, xD + F@x z, x, x yDL, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<=

Here is a computational example.

In[103]:= NIntegrate üü DuffyCoordinatesB
1

x2 + y2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<F

Out[103]= 9.52813

Using Duffy's coordinates is much faster than using no singularity handling (see the next
example).

In[108]:= res = NINT üü

DuffyCoordinatesB
1

x2 + H3 - yL2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<, 80, 1, 0<F;

res = Hold@Evaluate@resDD ê. NINT Ø NIntegrate;
Timing üü res

Out[110]= 80.009998, 9.52813<

Integration using no singularity handling.

In[111]:= Timing üNIntegrateB
1

x2 + y2 + z2
, 8x, 0, 4<, 8y, 0, 3<,

8z, 0, 2<, Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<F

Out[111]= 80.180971, 9.52813<

Of course, the internal implementation of NIntegrate gives similar performance results.

In[107]:= Timing üNIntegrateB
1

x2 + H3 - yL2 + z2
, 8x, 0, 4<, 8y, 0, 3<, 8z, 0, 2<,

Method Ø 8"DuffyCoordinates", "Corners" Ø 80, 1, 0<, "SymbolicProcessing" Ø 0<F

Out[107]= 80.011998, 9.52813<

Ignoring the Singularity

Another way of handling a singularity is to ignore it. NIntegrate ignores sampling points that

coincide with a singular point.

Advanced Numerical Integration in Mathematica 53

Consider the following integral that has a singular point at 1.

‡
0

2
logIH1 - xL2M „ x.

The integrand goes to -¶ when the integration variable is close to 1.

Here is a plot of the integrand.

In[118]:= PlotALogAH1 - xL2E, 8x, 0, 2<, PlotRange Ø AllE

Out[118]=

0.5 1.0 1.5 2.0

-15

-10

-5

NIntegrate gives a result that is close to the exact one.

In[114]:=

exact = ‡
0

2
LogAH1 - xL2E „x;

exact - NIntegrateALogAH1 - xL2E, 8x, 0, 2<E

exact
Out[115]= 0.0000124017

Convergence is achieved when MaxRecursion is increased.

In[45]:= NIntegrateALogAH1 - xL2E, 8x, 0, 2<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100E

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[45]= -4.

With its default options NIntegrate has a sampling point at 1, as can be seen from the

following.

Check that NIntegrate has 1 as a sampling point.

In[119]:= InputForm êü Select@Ò, 0.9 < Ò < 1.01 &D &ü
Reap@NIntegrate@x, 8x, 0, 2<, EvaluationMonitor ß Sow@xDDD@@2, 1DD

Out[119]= 81.<

54 Advanced Numerical Integration in Mathematica

But for NIntegrate@Log@H1 - xL2D, 8x, 0, 2<D the evaluation monitor has not picked a sam-

pling point that is 1.

Sampling points that belong to the interval A1 - 106, 1 + 106E.

In[120]:= InputForm êü Select@Ò, 0.99999 < Ò < 1.00001 &D &üReapA
NIntegrateALogAH1 - xL2E, 8x, 0, 2<, EvaluationMonitor ß Sow@xDEE@@2, 1DD

Out[120]= 8<

In other words, the singularity at 1 is ignored. Ignoring the singularity is equivalent to having

an integrand that is zero at the singular sampling point.

Note that the integral is easily integrated if the singular point is specified in the variable range.

Following are the numbers of sampling points and timings for NIntegrate with the singular and

nonsingular range specifications.

Integration with the singular point specified.

In[123]:= 9ReapANIntegrateALogAH1 - xL2E, 8x, 0, 1, 2<, EvaluationMonitor :> Sow@xDEE@@2, 1DD êê

Length, TimingANIntegrateALogAH1 - xL2E, 8x, 0, 1, 2<EE@@1DD=

Out[123]= 8260, 0.005999<

Integration by ignoring the singularity.

In[122]:= 9ReapANIntegrateALogAH1 - xL2E, 8x, 0, 2<,
MaxRecursion -> 20, EvaluationMonitor :> Sow@xDEE@@2, 1DD êê Length,

TimingANIntegrateALogAH1 - xL2E, 8x, 0, 2<, MaxRecursion -> 20EE@@1DD=

Out[122]= 8670, 0.008998<

A more interesting example of ignoring the singularity is using Bessel functions in the denomina-

tor of the integrand.

Integral with several (five) integrable singularities.

In[124]:= NIntegrateB
1

Sqrt@Abs@BesselJ@2, xDDD
, 8x, 1, 20<, MaxRecursion Ø 1000F êê InputForm

Out[124]//InputForm= 59.539197071142375

Advanced Numerical Integration in Mathematica 55

The result can be checked using NIntegrate with singular range specification with the zeros of

BesselJ@2, xD (see BesselJZero).

Integration with the Bessel zeros specified as singular points.

In[125]:= NIntegrateB
1

Sqrt@Abs@BesselJ@2, xDDD
,

8x, 1, 5.135622301840683`, 8.417244140399848`, 11.619841172149059`,
14.79595178235126`, 17.959819494987826`, 20<, PrecisionGoal Ø 8F êê InputForm

Out[125]//InputForm= 59.53926944377681

Needless to say, the last integration required the calculation of the BesselJ zeros. The former

one "just integrates" without any integrand analysis.

Ignoring the singularity may not work with oscillating integrands.

For example, these two integrals are equivalent.

In[126]:= IntegrateB
1

x
Sin@xD, 8x, 1, ¶<F == IntegrateB

1

x
SinB

1

x
F, 8x, 0, 1<F

Out[126]= True

NIntegrate can do the first one.

In[127]:= NIntegrateB
1

x
Sin@xD, 8x, 1, ¶<F

Out[127]= 0.624713

NIntegrate cannot do the second one.

In[128]:= NIntegrateB
1

x
SinB

1

x
F, 8x, 0, 1<, Method Ø "GlobalAdaptive", MaxRecursion Ø 100F

Out[128]= 0.µ101

However, if the integrand is monotonic in a neighborhood of its singularity, or more precisely, if

it can be majorized by a monotonic integrable function, it can be shown that by ignoring the

singularity, convergence will be reached.

For theoretical justification and practical recommendations of ignoring the singularity see

[DavRab65IS] and [DavRab84].

56 Advanced Numerical Integration in Mathematica

Automatic Singularity Handling

One-Dimensional Integration

When the option "SingularityHandler" is set to Automatic for a one-dimensional integral,

"DoubleExponential" is used on regions that are obtained by "SingularityDepth" number of

partitionings. As explained earlier, this region will not be partitioned further as long as the

"DoubleExponential" singularity handler works over it. If the error estimate computed by

"DoubleExponential" does not evolve in a way predicted by the theory of the double-exponen-

tial quadrature, the singularity handling for this region is switched to IMT.

As explained in "Convergence Rate", the following dependency of the error is expected with

respect to the number of double-exponential sampling points:

‰
-

c n

log n ,

where c is a positive constant. Consider the relative errors Em and En of two consecutive double-

exponential quadrature calculations, made with m and n number of sampling points respectively,

for which m < n. Assuming Em < 1, En < 1, and Em > En it should be expected that

(8)
Em
En

¥ ‰
-
c m

logm

‰
-
c n

log n

ñ

(9)
log Em
log En

§
-

c m

logm

-
c n

log n

=
m log n
n logm

.

The switch from "DoubleExponential" to IMT happens when:

(i) the region error estimate is larger than the absolute value of the region integral estimate

(hence the relative error is not smaller than 1);

(ii) the inequality (2) is not true in two different instances;

(iii) the integrand values calculated with the double-exponential transformation do not decay

fast enough.

Advanced Numerical Integration in Mathematica 57

Here is an example of a switch from "DoubleExponential" to IMT singularity handling. On
the plot the integrand is sampled at the x coordinates in the order of the y coordinates. The

patterns of the sampling points over B0, 1
16
F show the change from Gaussian quadrature

(y œ @0, 97D) to double-exponential quadrature (y œ @98, 160D), which later is replaced by Gaussian
quadrature using the IMT variable transformation (y œ @160, 400D).

In[143]:= k = 0;

f@x_D :=
70

104 Jx -
1

32
N
2
+

1

16

;

gr =
Reap@NIntegrate@f@xD, 8x, 0, 1<, EvaluationMonitor ß Sow@Point@8N@xD, k++<DDDD@@
2, 1DD; Graphics@8PointSize@0.006D, gr<, AspectRatio Ø 1,

Axes Ø True, PlotRange Ø All, GridLines Ø 8None, 897, 160<<D

Out[145]=

0.2 0.4 0.6 0.8 1.0

100

200

300

400

Multidimensional Integration

When the option "SingularityHandler" is set to Automatic for a multidimensional integral,

both "DuffyCoordinates" and IMT are used.

A region needs to meet the following conditions in order for "DuffyCoordinates" to be applied:

† the region is obtained by "SingularityDepth" number of bisections (or partition-

ings) along each axis;

† the region is a corner of one of the initial integration regions (the specified integra-

tion region can be partitioned into integration regions by piecewise handling or by

user-specified singularities).

58 Advanced Numerical Integration in Mathematica

A region needs to meet the following conditions in order for IMT to be applied:

† the region is obtained with by "SingularityDepth" number of bisections (or partition-

ings) along predominantly one axis;

† the region is not a corner region and it is on a side of one of the initial integration

regions.

In other words, IMT is applied to regions that are derived through "SingularityDepth" number

of partitionings but do not satisfy the conditions of the "DuffyCoordinates" automatic

application.

IMT is effective if the singularity is along one of the axes. Using IMT for point singularities can

be counterproductive.

Sampling points of two-dimensional integration, Ÿ0
1
Ÿ0
1 1

x+y
„ y „ x, with Automatic (left) and

"DuffyCoordinates" (right) singularity handling. It can be seen that the automatic singular-
ity handling uses almost two times more points than "DuffyCoordinates". To illustrate the
effect of the singularity handlers they are applied after two bisections.

In[133]:= pointsAutomatic = ReapBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<, Method Ø

8"GlobalAdaptive", "SingularityDepth" Ø 2, "SingularityHandler" Ø Automatic<,
EvaluationMonitor ß Sow@8x, y<DFFP2, 1T; pointsDuffy =

ReapBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityDepth" Ø 2, "SingularityHandler" Ø "DuffyCoordinates"<,
EvaluationMonitor ß Sow@8x, y<DFFP2, 1T;

Row@8Graphics@8PointSize@0.015D, Point êü pointsAutomatic<,
Axes -> True, ImageSize Ø 200,
PlotLabel Ø "Sampling\ Points:\ " <> ToString@Length@pointsAutomaticDDD,

Graphics@8PointSize@0.015D, Point êü pointsDuffy<, Axes -> True, ImageSize Ø
200, PlotLabel Ø "Sampling\ Points:\ " <> ToString@Length@pointsDuffyDDD<D

Out[134]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Sampling Points: 2193

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Sampling Points: 1224

Advanced Numerical Integration in Mathematica 59

Timings for the integral, Ÿ0
1
Ÿ0
1 1

x+y
„ y „ x, with singularity handlers Automatic,

"DuffyCoordinates", and IMT and with no singularity handling. The integral has a point
singularity at 80, 0<.

In[47]:= TableFormB:Ò, TimingBNIntegrateB
1

x + y
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø Ò<FF@@1DD> & êü

8Automatic, "DuffyCoordinates", "IMT", None<, TableHeadings Ø
8None, 8StyleForm@ColumnForm@8"Singularity", "handler"<D, FontFamily Ø TimesD,

StyleForm@"Time HsL", FontFamily Ø TimesD<<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[47]//TableForm=

Singularity
handler

Time HsL

Automatic 0.023997
DuffyCoordinates 0.015997
IMT 0.032995
None 0.032995

Timings for the integral, Ÿ0
1
Ÿ0
1 x10 + 1

y
„ y „ x, singular along y axis with singularity handlers

Automatic, "DuffyCoordinates", and IMT and with no singularity handling.

In[46]:= TableFormB

:Ò, TimingBNIntegrateB
1

y
+ x10, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"GlobalAdaptive",

"SingularityHandler" Ø Ò<, MaxRecursion Ø 20FF@@1DD> & êü

8Automatic, "DuffyCoordinates", "IMT", None<, TableHeadings Ø
8None, 8StyleForm@ColumnForm@8"Singularity", "handler"<D, FontFamily Ø TimesD,

StyleForm@"Time HsL", FontFamily Ø TimesD<<F

Out[46]//TableForm=

Singularity
handler

Time HsL

Automatic 0.021997
DuffyCoordinates 0.038994
IMT 0.023996
None 0.035995

60 Advanced Numerical Integration in Mathematica

Cauchy Principal Value Integration

To evaluate the Cauchy principal value of an integral, NIntegrate uses the strategy

PrincipalValue.

Cauchy principal value integration with singular point at 2.

In[153]:= NIntegrateB
x

x - 2
, 8x, 0, 2, 5<, Method Ø "PrincipalValue"F

Out[153]= 2.36355

In NIntegrate, PrincipalValue uses the strategy specified by its Method option to work

directly on those regions where there is no difficulty and by pairing values symmetrically about

the specified singularities in order to take advantage of the cancellation of the positive and

negative values.

"PrincipalValue" options.

Thus the specification

NIntegrateA f@xD, 8x, a, b, c<, Method -> 9"PrincipalValue",
Method -> methodspec, "SingularPointIntegrationRadius" -> e=E

is evaluated as

‡
a

b-e
f HxL „ x + ‡

0

e

H f Hb + tL + f Hb - tLL „ t + ‡
b+e

c
f HxL „ x,

Advanced Numerical Integration in Mathematica 61

option name default value

Method Automatic method specification used to compute
estimates over subregions

SingularPointIntegrationRÖ
adius

Automatic a number e1 or a list of numbers
8e1, e2, …, en< that correspond to the
singular points b1, b2, …, bn in the range
specification; with each pair Hbi, eiL an
integral of the form

Ÿ0
e
H f Hb + tL + f Hb - tLL „ t is formed

where each of the integrals is evaluated using NIntegrate with Method -> methodspec. If e is not

given explicitly, a value is chosen based upon the differences b - a and c - b. The option

SingularPointIntegrationRadius can take a list of numbers that equals the number of singu-

lar points. For the derivation of the formula see [DavRab84].

This finds the Cauchy principal value of Ÿ-1ê2
1 1

x+x2
„ x.

In[14]:= NIntegrateB
1

x + x2
, :x, -

1

2
, 0, 1>, Method Ø PrincipalValueF

Out[14]= -0.6931471805596523

Here is the Cauchy principal value of Ÿ-2
1 1
x+x2

„ x. Note that there are two singularities that need

to be specified.
In[114]:= NIntegrate[1/(x+x^2), {x, -2, -1, 0, 1},Method->PrincipalValue]

Out[114]= -1.38629

The singular points can be specified using the Exclusions option.

In[30]:= NIntegrate@1 ê Hx + x^2L, 8x, -2, 1<, Method -> PrincipalValue, Exclusions Ø 8-1, 0<D

Out[30]= -1.38629

This checks the value. The result would be 0 if everything were done exactly.

In[31]:= % + 2Log[2]

Out[31]= 7.59615µ10-13

It should be noted that the singularities must be located exactly. Since the algorithm pairs

together the points on both sides of the singularity, if the singularity is slightly mislocated the

cancellation will not be sufficiently good near the pole and the result can be significantly in error

if NIntegrate converges at all.

Sampling Points Visualization

Consider the calculation of the principal value of

‡
0

2 1

logHxL
„ x.

62 Advanced Numerical Integration in Mathematica

The following examples show two ways of visualizing the sampling points. The first shows the

sampling points used. Since the integrand is modified in order to do the principal value integra-

tion, it might be desired to see the points at which the original integrand is evaluated. This is

shown on the second example.

Here are sampling points used by NIntegrate. There are no points over the interval B 3
4

, 5
4
F,

because of the PrincipalValue integration

Ÿ0
1-1ê4 1

logHxL
„ x + Ÿ0

1ê4
J

1
logH1+tL

+ 1
logH1-tL

NN „ t + Ÿ1+1ê4
2 1

logHxL
„ x, and there are sampling points over B0, 1

4
F.

In[154]:= k = 0;
tbl = Reap@NIntegrate@1 ê Log@xD, 8x, 0, 1, 2<,

Method Ø 8"PrincipalValue", "SingularPointIntegrationRadius" Ø 1 ê 4<,
EvaluationMonitor ß Sow@8x, ++k<DDD@@2, 1DD;

ListPlot@tbl, PlotRange -> AllD

Out[156]=

0.5 1.0 1.5 2.0

50

100

150

This defines a function which accumulates the argument values given to the integrand.

In[1]:= Clear@fD; f@x_?NumericQD := HAppendTo@tbl, 8x, ++k<D; 1 ê Log@xDL;

Here are the points at which the integrand has been evaluated. Note the symmetric pattern

over the interval B 3
4

, 5
4
F.

In[166]:= k = 0; tbl = 8<;
NIntegrate@f@xD, 8x, 0, 1, 2<,

Method -> 8"PrincipalValue", "SingularPointIntegrationRadius" Ø 1 ê 4<D;
ListPlot@tbl, PlotRange -> AllD

Out[168]=

0.5 1.0 1.5 2.0

50

100

150

Advanced Numerical Integration in Mathematica 63

Double-Exponential Strategy

The double-exponential quadrature consists of applying the trapezoidal rule after a variable

transformation. The double-exponential quadrature was proposed by Mori and Takahasi in 1974

and it was inspired by the so-called IMT rule and TANH rule. The transformation is given the

name "double-exponential" since its derivative decreases double-exponentially when the inte-

grand's variable reaches the ends of the integration region.

The double-exponential algorithm for NIntegrate is specified with the Method option value
"DoubleExponential".

In[169]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method -> "DoubleExponential"D

Out[169]= 2.

option name default value

"ExtraPrecision" 50 maximum extra precision to be used
internally

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"DoubleExponential" options.

The double-exponential strategy can be used for one-dimensional and multidimensional integra-

tion. When applied to multidimensional integrals it uses the Cartesian product of the trapezoidal

rule.

A double-exponential transformation fHtL transforms the integral

(10)Ÿa
b f HtL „ x

into

(11)Ÿ-¶
+¶ f HfHtLL f£HtL „ x,

where Ha, bL can be finite, half-infinite (b =¶), or infinite (a = -¶, b =¶). The integrand f HxL must

be analytic in Ha, bL and might have singularity at one or both of the end points.

The transformed integrand decreases double-exponentially, that is, f HfHtLL f ' HtL º expH-c expH t LL

as t Ø ±¶.

64 Advanced Numerical Integration in Mathematica

The function fHtL is analytic in H-¶, ¶L. It is known that for an integral like (11) of an analytic

integrand the trapezoidal rule is an optimal rule [Mori74].

The transformations used for the different types of integration regions are:

(12)Ÿa
b f HxL „ xïx = a+b

2
+ 1
2
Hb - aL tanhJ 1

2
p sinhHxLN,

‡
a

¶

f HxL „ xïx = a + ‰
1

2
p sinhHxL,

‡
-¶

¶

f HxL „ xïx = sinh
1

2
p sinhHxL ,

where a and b are finite numbers.

The trapezoidal rule is applied to (11):

(13)DEHhL = h⁄i=-¶
¶ f HfHi hLL f£Hi hL

The terms in (13) decay double-exponentially for large enough i . Therefore the summation in

(13) is cut off at the terms that are too small to contribute to the total sum. (A criterion similar

to (3) for the local adaptive strategy is used. See also the following double-exponential example

implementation.)

The strategy "DoubleExponential" employs the double-exponential quadrature.

The "DoubleExponential" strategy works best for analytic integrands; see "Comparison of

Double-Exponential and Gaussian Quadrature".

"DoubleExponential" uses the Cartesian product of double-exponential quadratures for multidi-

mensional integrals.

Cartesian double-exponential quadrature.

In[48]:= NIntegrateB
1

Sqrt@x + yD
, 8x, 0, 1<, 8y, 0, 1<,

Method Ø "DoubleExponential", MaxRecursion Ø 200F

Out[48]= 1.10457

Advanced Numerical Integration in Mathematica 65

As with the other Cartesian product rules, if "DoubleExponential" is used for dimensions

higher than three, it might be very slow due to combinatorial explosion.

The following plot illustrates the Cartesian product character of the "DoubleExponential"
multidimensional integration.

In[49]:= tbl = Reap@
NIntegrate@Sqrt@xD Sqrt@yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø "DoubleExponential",
MaxRecursion Ø 200, EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD;

Graphics@8PointSize@0.005D, Point êü N@tblD<, Axes Ø TrueD

Out[50]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Double-exponential quadrature can be used for singularity handling in adaptive strategies; see

"Singularity Handling".

MinRecursion and MaxRecursion

The option MinRecursion has the same meaning and functionality as it does for

"GlobalAdaptive" and "LocalAdaptive" described in "MinRecursion and MaxRecursion".

MaxRecursion for "DoubleExponential" restricts how many times the trapezoidal quadrature

estimates are improved; see "Example Implementation of Double-Exponential Quadrature".

Comparison of Double-Exponential and Gaussian Quadrature

The "DoubleExponential" strategy works best for analytic integrands. For example, the follow-

ing integral is done by "DoubleExponential" three times faster than the Gaussian quadrature

(using a global adaptive algorithm).

66 Advanced Numerical Integration in Mathematica

Integration with "DoubleExponential".

In[215]:= NIntegrateB
LogA 1

x
E

x1ê4
, 8x, 0, 1<, PrecisionGoal Ø 10,

Method Ø 8"DoubleExponential", "SymbolicProcessing" Ø 0<F êê Timing

Out[215]= 80.001999, 1.77778<

Integration with Gauss quadrature. (The default strategy of NIntegrate, "GlobalAdaptive"
uses by default a Gauss|Kronrod integration rule with 5 Gaussian points and 6 Kronrod points.)

In[51]:= NIntegrateB
LogA 1

x
E

x1ê4
, 8x, 0, 1<, PrecisionGoal Ø 10, MaxRecursion Ø 100, Method Ø

8"GlobalAdaptive", "SingularityDepth" Ø ¶, "SymbolicProcessing" Ø 0<F êê Timing

Out[51]= 80.008998, 1.77778<

Since "DoubleExponential" converges double-exponentially with respect to the number of

evaluation points, increasing the precision goal slightly increases the work done by

"DoubleExponential". This is illustrated for two integrals, Ÿ0
1 1

x
„ x and Ÿ0

1
‰20 Hx-1L sinH256 xL „ x.

Each table entry shows the error and number of evaluations.

Double-exponential quadrature and Gaussian quadrature for Ÿ0
1 1

x
„ x. Increasing the precision

goal does not change the number of sampling points used by "DoubleExponential".

In[217]:= methods = 8"DoubleExponential", "GlobalAdaptive"<;
pgoals = Range@5, 15, 2D;
TableFormB

OuterB k = 0; res = NIntegrateB
1

Sqrt@xD
, 8x, 0, 1<, Method Ø Ò1, PrecisionGoal Ø Ò2,

MaxRecursion Ø 20, EvaluationMonitor :> k++F; 8Abs@res - 2D ê 2, k< &,

methods, pgoalsF êê Transpose, TableHeadings Ø 8pgoals, methods<, TableDepth Ø 2F

Out[219]=

DoubleExponential GlobalAdaptive

5 91.55431µ10-15, 33= 91.55431µ10-15, 132=

7 80., 64< 91.55431µ10-15, 132=

9 80., 64< 98.88178µ10-16, 229=

11 80., 64< 98.88178µ10-16, 273=

13 80., 64< 98.88178µ10-16, 405=

15 80., 123< 98.88178µ10-16, 640=

Advanced Numerical Integration in Mathematica 67

Double-exponential quadrature and Gaussian quadrature for Ÿ0
1
‰20 Hx-1L sinH256 xL „ x. Increasing

the precision goal does not change the number of sampling points used by
"DoubleExponential". (The integrations are done without symbolic preprocessing.)

In[220]:= methods = 8"DoubleExponential", "GlobalAdaptive"<;
pgoals = Range@6, 10, 2D;
TableForm@
Outer@Hk = 0; res = NIntegrate@Exp@20 Hx - 1LD Sin@256 xD, 8x, 0, 1<, Method Ø

8Ò1, "SymbolicProcessing" Ø 0<, PrecisionGoal Ø Ò2, MaxRecursion Ø 20,
EvaluationMonitor :> k++D; 8Abs@res - 2D ê 2, k<L &, methods, pgoals, 1D êê

Transpose, TableHeadings Ø 8pgoals, methods<, TableDepth Ø 2D

Out[222]=

DoubleExponential GlobalAdaptive
6 81.00007, 758< 81.00007, 1454<
8 81.00007, 758< 81.00007, 2357<
10 81.00007, 758< 81.00007, 3369<

On the other hand, for non-analytic integrands "DoubleExponential" is quite slow, and a

global adaptive algorithm using Gaussian quadrature can resolve the singularities easily.

"DoubleExponential" needs more than 10000 integrand evaluations to compute this integral
with a non-analytic integrand.

In[52]:= k = 0;
8NIntegrate@Abs@Sin@3 * xDD, 8x, 0, p<,

Method Ø 8"DoubleExponential", "SymbolicProcessing" Ø 0<,
MaxRecursion Ø 10, EvaluationMonitor :> k++D, k<

Out[53]= 82., 10185<

Gaussian quadrature is much faster for the integral.

In[54]:= k = 0; 8NIntegrate@Abs@Sin@3 * xDD, 8x, 0, p<,
Method Ø 8"GlobalAdaptive", "SymbolicProcessing" Ø 0<,
MaxRecursion Ø 10, EvaluationMonitor :> k++D, k<

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[54]= 82., 385<

Further, "DoubleExponential" might be slowed down by integrands that have nearly discontinu-

ous derivatives, that is, integrands that are not "very" analytical.

Here is an example with a not "very" analytical integrand.

In[226]:= NIntegrateB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, Method Ø "DoubleExponential"F êê Timing

Out[226]= 80.011998, 2.77878<

68 Advanced Numerical Integration in Mathematica

Again, Gaussian quadrature is much faster.

In[227]:= NIntegrateB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, Method Ø "GlobalAdaptive"F êê Timing

Out[227]= 80.005999, 2.77878<

Here are the plots of the integrand 1

16 Jx-
p

4
N
2
+
1

16

 and its derivative.

In[228]:= BlockB8gr, gr1<,

gr = PlotB
1

16 Ix -
p

4
M
2
+

1

16

, 8x, 0, 1<, PlotRange Ø AllF;

gr1 = PlotBDB
1

16 Ix -
p

4
M
2
+

1

16

, xF êê Evaluate, 8x, 0, 1<, PlotRange Ø AllF;

GraphicsArray@8gr, gr1<D
F

Out[228]=

0.2 0.4 0.6 0.8 1.0

5

10

15

0.2 0.4 0.6 0.8 1.0

-150

-100

-50

50

100

150

Convergence Rate

This section demonstrates that the asymptotic error of the double-exponential quadrature in

terms of the number n of evaluation points used is

(14)‰
-

c n

logHnL ,

where c is a positive constant.

Advanced Numerical Integration in Mathematica 69

This defines a double-exponential integration function that an returns integral estimate and the
number of points used.

In[229]:= DERuleEstimate@f_, 8a_, b_<, h_, wprec_: MachinePrecisionD :=
BlockB8$MaxExtraPrecision = 50000, f, F, i, j, temp, s1, s2<,

f@t_D := RescaleB
1

2
TanhB

1

2
p Sinh@tDF + 1 , 80, 1<, 8a, b<F;

F@t_D := Evaluate@f@f@tDD * D@f@tD, tDD;
i = 1;
s1 = FixedPoint@Htemp = F@i * hD; i++; N@N@temp, 3 * wprecD + Ò1, wprecDL &, 0D;
j = -1;
s2 = FixedPoint@Htemp = F@j * hD; j--; N@N@temp, 3 * wprecD + Ò1, wprecDL &, 0D;
8i - j + 1, h Hs1 + F@0D + s2L<

F;

This defines a function.

In[230]:= f@x_D :=
1

x1ê4
LogB

1

x
F

This is the exact integral.

In[231]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[231]=
16

9

This finds the errors and number of evaluation points for a range of step sizes of the trapezoidal
rule.

In[232]:= 8a, b< = 80, 1<;
wprec = 30;

range = TableB
1

i
, 8i, 2, 7<F;

range = Join@range, Mean êü Partition@range, 2, 1DD;
range = Sort@range, GreaterD;
err = Map@DERuleEstimate@f, 8a, b<, Ò1, wprecD &, rangeD;
err = Map@8Ò1P1T, Abs@exact - Ò1P2TD< &, errD; H* errors *L
logErr = Map@8Ò1P1T, Log@Ò1P2TD< &, errD; H* logarithm of the errors *L
points = First êü err;

This fits x
Log@xD

 through the logarithms of the errors; see (14).

In[239]:= p@x_D := EvaluateBFitBlogErr, :1,
x

Log@xD
>, xFF

Here is the fitted function. The summation term 30.48 is just a translation parameter.

In[240]:= p@xD

Out[240]= 30.48 -
6.497 x

Log@xD

70 Advanced Numerical Integration in Mathematica

You see that the errors fit the model (14):

In[241]:= ListLinePlot@8logErr, 8Ò1, p@Ò1D< & êü points<,
PlotRange -> All, PlotStyle -> 88Red<, 8Blue<<D

Out[241]=

25 30 35 40 45 50 55

-60

-40

-30

-20

-10

Example Implementation of Double-Exponential Quadrature

Following is an example implementation of the double-exponential quadrature with the finite

region variable transformation (transformation (12) earlier).

This is a definition of a function that applies the trapezoidal rule to a transformed integrand.
The function uses (13) and it is made to reuse integral estimates computed with a twice larger
step.

In[173]:= IRuleEstimate@F_, h_, oldSum_: NoneD :=
BlockB8$MaxExtraPrecision = 50000, step, i, temp, s1, s2<,
If@oldSum === None, step = 1, step = 2D;
i = 1;
s1 = FixedPoint@Htemp = F@i * hD; i += step; N@N@temp, 60D + Ò1DL &, 0D;
i = -1;
s2 = FixedPoint@Htemp = F@i * hD; i -= step; N@N@temp, 60D + Ò1DL &, 0D;

IfBoldSum === None, h Hs1 + F@0D + s2L, h Hs1 + s2L +
oldSum

2
F

F;

This is a definition of a simple double-exponential strategy, which finds the integral of the
function f over the finite interval 8a, b< with relative error tol.

In[189]:= Options@IStrategyDoubleExpD = 8"MaxRecursion" Ø 7<;
IStrategyDoubleExp@f_, 8a_, b_<, tol_, opts___D :=

ModuleB8f, F, h, t, temp, k = 0, maxrec<,
maxrec = "MaxRecursion" ê. 8opts< ê. Options@IStrategyDoubleExpD;

f@t_D := EvaluateBRescaleB
1

2
TanhB

1

2
p Sinh@tDF + 1 , 80, 1<, 8a, b<FF;

F@t_D := Evaluate@f@f@tDD * D@f@tD, tDD;
h = 1;
NestWhile@HHtemp = IRuleEstimate@F, h ê= 2, Ò1DL && k++ < maxrecL &,
IRuleEstimate@F, h, NoneD, HAbs@Ò1D * tol <= Abs@Ò1 - Ò2DL &, 2D;

temp
F;

Advanced Numerical Integration in Mathematica 71

This defines a function that is singular at 0.

In[194]:= f@x_D :=
1

x
4

Here is the integral estimate from the double-exponential strategy.

In[195]:= IStrategyDoubleExpAf, 80, 1<, 10-8E êê InputForm

Out[195]//InputForm= 1.3333333333333333

Here is the exact result.

In[177]:= Integrate@f@xD, 8x, 0, 1<D êê N êê InputForm

Out[177]//InputForm= 1.3333333333333333

The two results are the same.

This defines an oscillating function.

In[178]:= f@x_D := Cos@64 * Sin@xDD

Here is the integral estimate given by the double-exponential strategy.

In[179]:= res = IStrategyDoubleExpAf, 80, p<, 10-8E; res êê InputForm

Out[179]//InputForm= 0.29088010217372606

Here is the exact result.

In[180]:= exact = Integrate@f@xD, 8x, 0, p<D

Out[180]= p BesselJ@0, 64D

Here is the exact result in machine precision.

In[181]:= exact êê N êê InputForm

Out[181]//InputForm= 0.2908801021737257

The relative error is within the prescribed tolerance.

In[182]:= Abs@res - exactD ê exact

Out[182]= 1.33587µ10-15

72 Advanced Numerical Integration in Mathematica

"Trapezoidal" Strategy

The "Trapezoidal" strategy gives optimal convergence for analytic periodic integrands when

the integration interval is exactly one period.

option name default value

"ExtraPrecision" 50 maximum extra precision to be used
internally

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"Trapezoidal" options.

"Trapezoidal" takes the same options as "DoubleExponential". If the integration ranges are

infinite or semi-infinite, "Trapezoidal" becomes "DoubleExponential".

For theoretical background, examples, and explanations of periodic functions integration (with

trapezoidal quadrature) see [Weideman2002].

In[109]:= NIntegrateB
1

x
, 8x, 0, 1<, Method Ø 8"Trapezoidal", "SymbolicProcessing" Ø 0<F

NIntegrate::ncvi :
NIntegrate failed to converge to prescribed accuracy after 9 iterated refinements in x in the

region 880., 1.<<. NIntegrate obtained 1.9771819583163235` and
0.009451548754043415` for the integral and error estimates.

Out[109]= 1.97718

Here is a table that shows the number of sampling points for different values of the parameter t
used by "GlobalAdaptive" and "Trapezoidal" respectively for the integral

Ÿ0
p cosHt sinHxL-k xL

p
„ x, k = 1.

In[33]:= k = 1;
tab =

TableB:t, 8"IntegralEstimate", "Evaluations", "Timing"< ê. NIntegrateProfileB

NIntegrateB
1

p
Cos@t Sin@xD - k xD, 8x, 0, p<, Method Ø "GaussKronrodRule"F,

1F @@2DD, 8"IntegralEstimate", "Evaluations", "Timing"< ê.

NIntegrateProfileBNIntegrateB
1

p
Cos@t Sin@xD - k xD, 8x, 0, p<,

Method -> "Trapezoidal"F, 1F @@2DD>, 8t, 8, 80, 4<F;

TableForm@tab, TableHeadings Ø 8None, 8t, "GlobalAdaptive", "Trapezoidal"<<D

Advanced Numerical Integration in Mathematica 73

Out[35]//TableForm=

t GlobalAdaptive Trapezoidal
8 143 33
12 209 33
16 275 65
20 399 65
24 457 65
28 591 65
32 743 65
36 743 65
40 741 65
44 809 129
48 1007 129
52 941 129
56 963 129
60 1095 129
64 1121 129
68 1095 129
72 1137 129
76 1338 129
80 1227 129

Example Implementation

This function makes a trapezoidal quadrature integral estimate with specified points.

In[242]:= TrapStep@f_, 8a_, b_<, n_?IntegerQD :=
ModuleB8h, absc, is<,

h =
b - a

n - 1
;

absc = Table@i, 8i, a, b, h<D;
is = h * Total@MapAt@Ò ê 2 &, f êü absc, 881<, 8-1<<DD;
8is, ¶, n<

F;

This function improves a trapezoidal quadrature integral estimate using sampling points
between the old ones.

In[257]:= TrapStep@f_, 8a_, b_<, 8oldEstimate_, oldError_, oldn_<D :=
ModuleB8n, h, absc, is<,
n = 2 oldn - 1;

h =
b - a

n - 1
;

absc = Table@i, 8i, a + h, b - h, 2 h<D;
is = h * Total@f êü abscD + oldEstimate ê 2;
8is, Abs@is - oldEstimateD, n<

F;

74 Advanced Numerical Integration in Mathematica

This function is an interface to the preceding one.

In[272]:= Options@TrapezoidalIntegrationD = 8"MaxRecursion" Ø 7<;
TrapezoidalIntegration@f_, 8a_, b_<, tol_, opts___D :=
Block@8maxrec, k = 0, temp<,
maxrec = "MaxRecursion" ê. 8opts< ê. Options@TrapezoidalIntegrationD;
NestWhile@HHtemp = TrapStep@f, 8a, b<, ÒDL && k++ < maxrecL &,

TrapStep@f, 8a, b<, 5D, Ò@@2DD > tol &D@@1DD;
temp@@1DD

D

Here is a definition of a (Bessel) function.

In[269]:= f@x_D :=
1

p
Cos@80 Sin@xD - xD

Here is the trapezoidal quadrature estimate.

In[274]:= res = TrapezoidalIntegrationAf, 80, p<, 10-5E êê N

Out[274]= -0.0560573

Here is the exact value.

In[278]:= exact = Integrate@f@xD, 8x, 0, p<D

Out[278]= BesselJ@1, 80D

The relative error is within the prescribed tolerance.

In[279]:= Abs@res - exactD ê exact

Out[279]= -0.572732

Oscillatory Strategies

The oscillatory strategies of NIntegrate are are for one-dimensional integrals. Generally in

quadrature, the algorithms for finite region integrals are different from the algorithms for infi-

nite regions. NIntegrate uses Chebyshev expansions of the integrand and the global adaptive

integration strategy for finite region oscillatory integrals. For infinite oscillatory integrals

NIntegrate uses either a modification of the double-exponential algorithm or sequence summa-

tion acceleration over the sequence of integrals with regions between the integrand's zeros.

Advanced Numerical Integration in Mathematica 75

Here is an example that uses both algorithms.

In[13]:= NIntegrateB

Cos@2000 xD

x
0 < x < 2

Sin@20 xD

x2
x < 0

BesselYA2, x3E ë x x > 2

, 8x, -¶, ¶<F

Out[13]= -1.5496

NIntegrate automatically detects oscillatory (one-dimensional) integrands, and automatically

decides which algorithm to use according to the integrand's range.

The integrals detected as being of oscillatory type have the form

‡
a

b
kHxL f HxL „ x,

in which the oscillating kernel kHxL is of the form:

1. sinHw xp + cL, cosHw xp + cL, ‰Â w xp for Ha, bL finite;

2. sinHw xp + cL, cosHw xp + cL, ‰Â w xp, JnHw xp + cL, YnHw xp + cL, Hn
H1LHw xp + cL, Hn

H2LHw xp + cL, jnHw xp + cL,
or ynHw xp + cL for Ha, bL infinite or semi-infinite.

In these oscillating kernel forms w, c and n are real constants, and p is a positive integer.

Finite Region Oscillatory Integration

Modified Clenshaw|Curtis quadrature ([PiesBrand75][PiesBrand84]) is for finite region one-

dimensional integrals of the form

(15)Ÿa
bsin Hw xp + cL f HxL „ x, Ÿa

bcosHw xp + cL f HxL „ x, or Ÿa
bexpHÂ w xp + cL f HxL „ x,

where a, b, k, c, p are finite real numbers.

The modified Clenshaw|Curtis quadrature rule approximates f HxL with a single polynomial

through Chebyshev polynomials expansion. This leads to simplified computations because of

the orthogonality of the Chebyshev polynomials with sine and cosine functions. The modified

Clenshaw|Curtis quadrature rule is used with the strategy "GlobalAdaptive". For smooth f HxL

the modified Clenshaw|Curtis quadrature is usually superior [KrUeb98] to other approaches for

oscillatory integration (as Filon's quadrature and multi-panel integration between the zeros of

the integrand).

76 Advanced Numerical Integration in Mathematica

Modified Clenshaw|Curtis quadrature is quite good for highly oscillating integrals of the form

(15). For example, modified Clenshaw|Curtis quadrature uses less than a hundred integrand

evaluations for both sin H200 xL
x2

 and sin H20000 xL
x2

.

Number of integrand evaluations for modified Clenshaw|Curtis quadrature for slowly oscillating
kernel.

In[1]:= k = 0; NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>, EvaluationMonitor :> k++F; k

Out[1]= 78

Timing and integral estimates for modified Clenshaw|Curtis quadrature for slowly oscillating
kernel.

In[3]:= NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>F êê Timing

Out[3]= 80.17, -0.0777739<

Number of integrand evaluations for modified Clenshaw|Curtis quadrature for highly oscillating
kernel.

In[5]:= k = 0; NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>, EvaluationMonitor :> k++F; k

Out[5]= 78

Timing and integral estimates for modified Clenshaw|Curtis quadrature for highly oscillating
kernel.

In[6]:= NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>F êê Timing

Out[6]= 80.111, -0.000916893<

On the other hand, without symbolic preprocessing, the default NIntegrate method~

"GlobalAdaptive" strategy with a Gauss|Kronrod rule~uses thousands of evaluations for

sinH200 xL
x2

, and it cannot integrate sin H20000 xL
x2

.

Advanced Numerical Integration in Mathematica 77

Number of integrand evaluations for Gaussian quadrature for slowly oscillating kernel.

In[7]:= k = 0; NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor :> k++F; k

Out[7]= 2656

Timing and integral estimates for Gaussian quadrature for slowly oscillating kernel.

In[8]:= NIntegrateB
Sin@200 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

Out[8]= 80.2, -0.0777739<

Number of integrand evaluations for Gaussian quadrature for highly oscillating kernel.

In[9]:= k = 0; NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<, EvaluationMonitor :> k++F; k

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.330106<. NIntegrate obtained -0.0905744 and
0.42924020409664687` for the integral and error estimates. à

Out[9]= 1290

Timing and integral estimates for Gaussian quadrature for highly oscillating kernel.

In[10]:= NIntegrateB
Sin@20 000 xD

x2
, :x,

2

10
, 2>,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.330106<. NIntegrate obtained -0.0905744 and
0.42924020409664687` for the integral and error estimates. à

Out[10]= 90.391, 0.µ10-1=

78 Advanced Numerical Integration in Mathematica

Extrapolating Oscillatory Strategy

The NIntegrate strategy "ExtrapolatingOscillatory" is is for oscillating integrals in infinite

one-dimensional regions. The strategy uses sequence convergence acceleration for the sum of

the sequence that consists of each of the integrals with regions between two consecutive zeros

of the integrand.

Here is an example of an integration using "ExtrapolatingOscillatory".

In[294]:= NIntegrateBSin@200 x^2 + 5D
1

Hx + 1L^2
,

8x, 0, ¶<, Method Ø "ExtrapolatingOscillatory"F

Out[294]= -0.0309721

option name default value

Method GlobalAdaptive integration strategy used to integrate
between the zeros and which will be used if
ExtrapolatingOscillatory fails

"SymbolicProcessing" Automatic number of seconds to do symbolic process-
ing

Consider the integral

(16)Ÿa
¶kHxL f HxL „ x,

where the function kHxL is the oscillating kernel and the function f HxL is smooth. Let zi be the

zeros of kHxL enumerated from the lower (finite) integration bound, that is, the inequality

a § z1 < z2 < … < zi < … holds. If the integral (16) converges then the sequence

(17)Ÿa
z1kH xL f HxL „ x, Ÿa

z2kHxL f HxL „ x, …, Ÿa
zikHxL f HxL „ x, …

 converges too. The elements of the sequence (17) are the partial sums of the sequence

(18)Ÿa
z1kHxL f HxL „ x, Ÿz1

z2kHxL f HxL „ x, …, Ÿzi-1
zi kHxL f HxL „ x, ….

Often a good estimate of the limit of the sequence (17) can be computed with relatively few

elements of it through some convergence acceleration technique.

Advanced Numerical Integration in Mathematica 79

The "Oscillatory" strategy uses NSum with Wynn's extrapolation method for the integrals in

(18). Each integral in (18) is calculated by NIntegrate without oscillatory methods.

The "Oscillatory" strategy applies its algorithm to oscillating kernels kHxL in (16) that are of

the form sinHw xp + cL, cosHw xp + cL, JnHw xp + cL, YnHw xp + cL, Hn
H1LHw xp + cL, Hn

H2LHw xp + cL, jnHw xp + cL, or

ynHw xp + cL, where w, c, p, and n are real constants.

Example Implementation

The following example implementation illustrates how the "Oscillatory" strategy works.

Here is a definition of an oscillation function that will be integrated in the interval @0, ¶L. The

zeros of the oscillating function sinHw xL are i 1
w
p, i œ .

In[1]:= Clear@w, k, fD;
w = 20;
k@x_D := Sin@w xD;

f@x_D :=
1

Hx + 1L^2
;

Here is a plot of the oscillatory function in the interval @0, 10D.
In[89]:= Plot@k@xD f@xD, 8x, 0, 10<, PlotPoints -> 1000, PlotRange -> AllD

Out[89]=

2 4 6 8 10

-0.5

0.5

This is a definition of a function that integrates between two consequent zeros. The zeros of the

oscillating function kHxL = sinHw xL are i 1
w
p, i œ .

In[5]:= psum@i_?NumberQD := NIntegrateBk@xD f@xD, :x, i
1

w
p, Hi + 1L

1

w
p>F

80 Advanced Numerical Integration in Mathematica

Here is the integral estimate computed by sequence convergence acceleration (extrapolation).

In[6]:= res = NSum@psum@iD, 8i, 0, ¶<,
Method Ø "AlternatingSigns", "VerifyConvergence" -> FalseD

Out[6]= 0.0492841

Here is the exact integral value.

In[7]:= exact = Integrate@k@xD f@xD, 8x, 0, ¶<D êê N

Out[7]= 0.0492841

The integral estimate is very close to the exact value.

In[8]:=
Abs@exact - resD

Abs@exactD

Out[8]= 2.25444µ10-7

Here is another check using the "ExtrapolatingOscillatory" strategy.

In[94]:= resEO = NIntegrate@Sin@w xD f@xD, 8x, 0, ¶<, Method Ø "ExtrapolatingOscillatory"D

Out[94]= 0.0492841

The integral estimate by "ExtrapolatingOscillatory" is very close to the exact value.

In[95]:=
Abs@exact - resEOD

Abs@exactD

Out[95]= 2.23802µ10-7

Double-Exponential Oscillatory Integration

The strategy "DoubleExponentialOscillatory" is for slowly decaying oscillatory integrals over

one-dimensional infinite regions that have integrands of the form sinHw xp + cL f HxL, cosHw xp + cL f HxL,

or ‰Â w xp f HxL, where x is the integration variable, and w, c, p are constants.

Integration with "DoubleExponentialOscillatory".

In[2]:= NIntegrateASin@2 * xD * I1 ë x2M, 8x, 1, ¶<,
Method Ø 8"DoubleExponentialOscillatory", "SymbolicProcessing" Ø 0<E

Out[2]= 0.0633358

Advanced Numerical Integration in Mathematica 81

option name default value

Method None integration strategy which will be used if
"DoubleExponentialOscillatory" fails

"TuningParameters" Automatic tuning parameters of the error estimation

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

Options of "DoubleExponentialOscillatory".

"DoubleExponentialOscillatory" is based on the strategy "DoubleExponential", but

instead of using a transformation that reaches double-exponentially the ends of the integration

interval "DoubleExponentialOscillatory" uses a transformation that reaches double-exponen-

tially the zeros of sinHw xp + cL and cosHw xp + cL. The theoretical foundations and properties of the

algorithm are explained in [OouraMori91], [OouraMori99], [MoriOoura93]. The implementation

of "DoubleExponentialOscillatory" uses the formulas and the integrator design in

[OouraMori99].

The algorithm of "DoubleExponentialOscillatory" will be explained using the sine integral

(19)Is = Ÿ0
¶ f HxL sin Hw xL „ x.

Consider the following transformation

(20)x = M fHtL
w

, f HtL = t

1-‰-2 t-b I‰t-1M-a I1-‰-t M
,

where a and b are constants satisfying

b =OH1L, a = o
1

M logM
, 0 § a § b § 1.

The parameters a and b are chosen to satisfy

(21)a = bì 1 +
M logHM+1L

4 p
, b = 1

4

(taken from [OouraMori99]).

82 Advanced Numerical Integration in Mathematica

Transformation (20) is applied to (19) to obtain

(22)Is = Ÿ0
¶ f HM Hf tLL sin HM Hf tLLM Hf£ tL êw„ t.

Note that w disappeared in the sine term. The trapezoidal formula with equal mesh size h

applied to (22) gives

DEOHIs, hL =M h ‚
n=-¶

¶

f HM Hf Hn hL êwL sin HM f Hn hLL f£ Hn hL êw,

which is approximated with the truncated series sum

(23)DEOHIs, h, NL =M h⁄n=-N-

N+ f HM Hf Hn hL êwL sin HM f Hn hLL f£ Hn hL êw, N = N- + N+ + 1.

M and h are chosen to satisfy

M h = p.

The integrand decays double-exponentially at large negative n as can be seen from (20). While

the double-exponential transformation, (12) in the section "Double-Exponential Strategy", also

makes the integrand decay double-exponentially at large positive t, the transformation (20)

does not decay the integrand at large positive t. Instead it makes the sampling points approach

double-exponentially to the zeros of sinHw xL at large positive t. Moreover

sinHM fHn hLL > sinHM n hL = sinHn pL = 0.

As is explained in [OouraMori99], since sin Hw xL is linear near any of its zeros, the integrand

decreases double-exponentially as x approaches a zero of sin Hw xL. This is the sense in which

(23) is considered a double-exponential formula.

The relative error is assumed to satisfy

(24)εM =
†Is-DEOHIs,h,NL§

†Is §
> ‰

-
A

h > ‰
-
AM

p .

In [OouraMori99] the suggested value for A is 5.

Advanced Numerical Integration in Mathematica 83

Since the DEOHIs, h, NL formulas cannot be made progressive,

"DoubleExponentialOscillatory" (as proposed in [OouraMori99]) does between 2 and 4

integration estimates with different h. If the desired relative error is ε the integration steps are

the following:

1. Choose M =M1 such that

M1 = -
p logI ε M

A
,

and compute (23) with M =M1. Let the result be IM1
.

2. Next, set M2 = 2M1, and compute (23) with M =M2. Let the result be IM2
. The relative error of

the first integration step εM1
=

¢Is-IM1 ¶

†Is §
 is assumed to be εM1

>
¢IM2-IM1 ¶

¢IM2 ¶
. From (24) εM2

> εM1
2, and

therefore, if

(25)ε ¥ s
¢IM2-IM1 ¶

¢IM2 ¶

2

is satisfied, where s is a robustness factor (by default 10) "DoubleExponentialOscillatory"

exits with result IM2
.

3. If (25) does not hold, compute

M3 =M2
log ε

log s
¢IM2-IM1 ¶

¢IM2 ¶

2

and compute (23) with M =M3. If

(26)ε ¥ s
¢IM3-IM2 ¶

¢IM3 ¶

M3ëM2

"DoubleExponentialOscillatory" exits with result IM3
.

84 Advanced Numerical Integration in Mathematica

4. If (26) does not hold, compute

M4 =M3
log ε

log s
¢IM3-IM2 ¶

¢IM3 ¶

M3ëM2

and compute (23) with M =M4. Let the result be IM4
. If

(27)ε ¥ s
¢IM4-IM3 ¶

¢IM4 ¶

M4ëM3

does not hold, "DoubleExponentialOscillatory" issues the message NIntegrate::deoncon.

If the value of the "DoubleExponentialOscillatory" method option is None, then IM4
 is

returned. Otherwise "DoubleExponentialOscillatory" will return the result of NIntegrate

called with the "DoubleExponentialOscillatory" method option.

For the cosine integral

(28)Ic = Ÿ0
¶ f HxL cos Hw xL „ x,

the transformation corresponding to (20) is

x =M f t -
p

2M
ìw.

Generalized Integrals

Here is the symbolic computation of the regularized divergent integral Ÿ0
¶logHxL sinHxL „ x.

In[110]:= exact =
Limit@Integrate@Exp@-c xD Log@xD Sin@xD, 8x, 0, ¶<, Assumptions Ø c > 0D, c Ø 0D

Out[110]= -EulerGamma

"DoubleExponentialOscillatory" computes the nonregularized integral above in a general-
ized sense.

In[111]:= NIntegrate@Log@xD Sin@xD, 8x, 0, ¶<D - exact

Out[111]= 4.89975µ10-12

More about the properties of "DoubleExponentialOscillatory" for divergent Fourier type

integrals can found in [MoriOoura93].

Advanced Numerical Integration in Mathematica 85

Non-algebraic Multiplicand

Symbolic integration of an oscillatory integral.

In[116]:= exact = IntegrateBSin@20 xD Cos@18 xD
1

x + 1
, 8x, 0, ¶<F

Out[116]=
1

12
3 p BesselJB-

1

2
, 2F + BesselJB-

1

2
, 38F - BesselJB

1

2
, 2F - BesselJB

1

2
, 38F +

16 19 HypergeometricPFQB81<, :
5

4
,
7

4
>, -361F + HypergeometricPFQB81<, :

5

4
,
7

4
>, -1F

If the oscillatory kernel is multiplied by a nonalgebraic function,
"DoubleExponentialOscillatory" still gives a good result.

In[117]:= NIntegrateBSin@20 xD Cos@18 xD
1

x + 1
, 8x, 0, ¶<, PrecisionGoal Ø 10F - exact

Out[117]= -1.92081µ10-9

Plots of the integrand and its oscillatory kernel.

In[119]:= PlotB:Sin@20 xD Cos@18 xD
1

x + 1
, Sin@20 xD>, 8x, 0, 3<F

Out[119]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Crude Monte Carlo and Quasi Monte Carlo Strategies

The crude Monte Carlo algorithm estimates a given integral by averaging integrand values over

uniformly distributed random points in the integral's region. The number of points is incre-

mented until the estimated standard deviation is small enough to satisfy the specified precision

or accuracy goals. A Monte Carlo algorithm is called a quasi Monte Carlo algorithm if it uses

equidistributed, deterministically generated sequences of points instead of uniformly distributed

random points.

86 Advanced Numerical Integration in Mathematica

Here is a crude Monte Carlo integration.

In[3]:= NIntegrateA‰-Ix4+y4M, 8x, -2, 2<, 8y, -2, 2<, Method Ø "MonteCarlo"E

Out[3]= 3.29043

Here is a crude quasi Monte Carlo integration.

In[4]:= NIntegrateA‰-Ix4+y4M, 8x, -2, 2<, 8y, -2, 2<, Method Ø "QuasiMonteCarlo"E

Out[4]= 3.28632

"MonteCarlo" options.

option name default value

MaxPoints 50000 maximum number of sampling points

"Partitioning" 1 partitioning of the integration region along
each axis

"SymbolicProcessing" 0 number of seconds to do symbolic prepro-
cessing

"QuasiMonteCarlo" options.

In Monte Carlo methods [KrUeb98] the d-dimensional integral ŸV f HxL „ x is interpreted as the

following expected (mean) value:

(29)ŸV f HxL „ x = volHVL Ÿ
1

volHVL
Boole Hx œ VL f HxL „ x = volHVL EH f L,

where EH f L is the mean value (the expectation) of the function f interpreted as a random vari-

able, with respect to the uniform distribution on V, that is, the distribution with probability

density vol HVL-1 Boole Hx œ VL. Boole Hx œ VL is denotes the characteristic function of the

region V, while volHVL denotes the volume of V.

Advanced Numerical Integration in Mathematica 87

option name default value

Method "MonteCarloRuÖ
le"

Monte Carlo rule specification

MaxPoints 50 000 maximum number of sampling points

"RandomSeed" Automatic a seed to reset the random generator

"Partitioning" 1 partitioning of the integration region along
each axis

"SymbolicProcessing" 0 number of seconds to do symbolic prepro-
cessing

The crude Monte Carlo estimate is made with the integration rule "MonteCarloRule". The

formulas for the integral and error estimation are given in the section "MonteCarloRule" in the

tutorial "NIntegrate Integration Rules".

Consider the integral

‡
W
f HxL „ x.

If the original integration region W is partitioned into the set of disjoint subregions 8Wi<i=1
m ,

W =‹i=1
m Wi, then the integral estimate is

‚
i=1

m

MCH f , niL,

and integration error is

‚
i=1

m

SDH f , niL.

The number of sampling points used on each subregion generally can be different, but in the

Monte Carlo algorithms all ni are equal (n1 = n2 = … = nm).

The partitioning W =‹i=1
m Wi is called stratification, and each Wi is called strata. Stratification can

be used to improve crude Monte Carlo estimations. (The adaptive Monte Carlo algorithm uses

recursive stratification.)

AccuracyGoal and PrecisionGoal

The default values for AccuracyGoal and PrecisionGoal are Infinity and 2 respectively

when NIntegrate's Monte Carlo algorithms are used.

MaxPoints

The option MaxPoints specifies what is the maximum number of (pseudo) random sampling

points to be used to compute the Monte Carlo estimate of an integral.

88 Advanced Numerical Integration in Mathematica

Here is an example in which the maximum number of sampling points is reached and
NIntegrate stops with a message.

In[261]:= NIntegrateB
1

x
, 8x, 0.01, 1<, Method Ø 9"MonteCarlo", "MaxPoints" Ø 103=F

NIntegrate::maxp: The integral failed to converge after 1100 integrand evaluations. NIntegrate obtained
1.768394116870677` and 0.03357978772002253` for the integral and error estimates.

Out[261]= 1.76839

"RandomSeed"

The value of the option "RandomSeed" is used to seed the random generator used to make the

sampling integration points. In that respect the use "RandomSeed" in Monte Carlo method is

similar to the use of SeedRandom and RandomReal.

By using "RandomSeed" the results of a Monte Carlo integration can be reproduced. The results

of the following two runs are identical.

Here is a Monte Carlo integration that uses "RandomSeed".

In[56]:= NIntegrateB
1

x
, 8x, 0.01, 1<,

Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<F êê InputForm

Out[56]//InputForm= 1.7828815270494558

This Monte Carlo integration gives the same number.

In[57]:= NIntegrateB
1

x
, 8x, 0.01, 1<,

Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<F êê InputForm

Out[57]//InputForm= 1.7828815270494558

Advanced Numerical Integration in Mathematica 89

The following shows the first 20 points used in the Monte Carlo integrations.

In[65]:= pnts =

ReapBNIntegrateB
1

x
, 8x, 0.01, 1<, Method Ø 8"MonteCarlo", "RandomSeed" Ø 12<,

EvaluationMonitor ß Sow@xDFFP2, 1T;
Take@
pnts,
20D

Out[66]= 80.149394, 0.0460797, 0.526197, 0.402254, 0.249858, 0.155351,
0.75201, 0.447633, 0.826597, 0.899822, 0.672286, 0.322249, 0.737047,
0.162606, 0.53339, 0.12339, 0.36747, 0.095921, 0.83827, 0.16102<

The points coincide with the points made using SeedRandom and Random.
In[67]:= SeedRandom@12D; RandomReal@80.01, 1<, 20D

Out[67]= 80.149394, 0.0460797, 0.526197, 0.402254, 0.249858, 0.155351,
0.75201, 0.447633, 0.826597, 0.899822, 0.672286, 0.322249, 0.737047,
0.162606, 0.53339, 0.12339, 0.36747, 0.095921, 0.83827, 0.16102<

Stratified Crude Monte Carlo Integration

In stratified sampling Monte Carlo integration you break the region into several subregions and

apply the crude Monte Carlo estimate on each subregion separately.

From the expected (mean) value formula, Equation (29) at the beginning of Crude Monte Carlo

and Quasi Monte Carlo Strategies, you have

(30)EH f L = 1
volHVL Ÿv f HxL „ x.

Let the region V be bisected into two half-regions, V1 and V2. EiH f L is the expectation of f on Vi,

and VariH f L is the variance of f on Vi. From the theorem [PrFlTeuk92]

(31)VarH f L = 1
4
HE1H f L - E2H f LL2 +

1
2
HVar1H f L + Var2H f LL

you can see that the stratified sampling gives a variance that is never larger than the crude

Monte Carlo sampling variance.

There are two ways to specify strata for the "MonteCarlo" strategy. One is to specify "singular"

points in the variable range specifications, the other is to use the method sub-option

"Partitioning".

90 Advanced Numerical Integration in Mathematica

Stratified crude Monte Carlo integration using variable ranges specifications.

In[124]:= NIntegrateAx2 + y2, 8x, 0, 1 ê 3, 2 ê 3, 1<,
8y, 0, 1 ê 3, 2 ê 4, 3 ê 4, 1<, Method Ø "MonteCarlo"E

Out[124]= 0.666398

Stratified crude Monte Carlo integration using the sub-option "Partitioning".

In[123]:= NIntegrateAx2 + y2, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8"MonteCarlo", "Partitioning" Ø 83, 4<<E

Out[123]= 0.671852

If "Partitioning" is given a list of integers, 8p1, p2, …, pn< with length n that equals the number

of integral variables, each dimension i of the integration region is divided into pi equal parts. If

"Partitioning" is given an integer p, all dimensions are divided into p equal parts.

This graph demonstrates the stratified sampling specified with "Partitioning". Each cell
contains 3 points, as specified by the "MonteCarloRule" option "Points".

In[95]:= parts = 83, 4<;
t = Reap@NIntegrate@1, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"MonteCarlo",

"Partitioning" Ø parts, Method Ø 8"MonteCarloRule", "Points" Ø 3<<,
EvaluationMonitor ß Sow@8x, y<DDDP2, 1T;

grX = HLine@88Ò1, 0<, 8Ò1, 1<<D &L êü TableBi, :i, 0, 1,
1

partsP1T
>F;

grY = HLine@880, Ò1<, 81, Ò1<<D &L êü TableBi, :i, 0, 1,
1

partsP2T
>F;

grLP = Point êü t;
Graphics@8grLP, grX, grY, Red, grLP<, Axes -> TrueD

Out[100]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Advanced Numerical Integration in Mathematica 91

Stratified Monte Carlo sampling can be specified if the integration variable ranges are given

with intermediate singular points.

Stratified Monte Carlo sampling through specification of intermediate singular points.

In[18]:= ranges = ::x, 0,
1

4
,
3

5
, 1>, :y, 0,

2

5
,
3

4
, 1>>;

t = Reap@NIntegrate@1, Evaluate@Sequence üü rangesD,
Method Ø 8"MonteCarlo", Method Ø 8"MonteCarloRule", "Points" Ø 3<<,
EvaluationMonitor ß Sow@8x, y<DDD@@2, 1DD;

grX = Line@88Ò1, 0<, 8Ò1, 1<<D & êü Restüranges@@1DD;
grY = Line@880, Ò1<, 81, Ò1<<D & êü Restüranges@@2DD;
grLP = Point êü t;
Graphics@8grLP, grX, grY, Red, grLP<, Axes -> TrueD

Out[23]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Stratified sampling improves the efficiency of the crude Monte Carlo estimation: if the number

of strata is s, the standard deviation of the stratified Monte Carlo estimation is s times less of

the standard deviation of the crude Monte Carlo estimation. (See the following example.)

The following benchmark shows that stratification speeds up the convergence.

In[120]:= n = 10; res =

TimingBDoBNIntegrateB
‰x - 1

‰ - 1
, 8x, 0, 1<, Method Ø 9"MonteCarlo", "Partitioning" Ø

Ò1, "MaxPoints" Ø 106=, PrecisionGoal Ø 2F, 8n<FFP1T ì n & êü Range@4D;

ColumnForm@
resD

Out[121]= 0.0114982
0.0039994
0.0025996
0.0020997

92 Advanced Numerical Integration in Mathematica

Convergence Speedup of the Stratified Monte Carlo Integration

The following example confirms that if the number of strata is s, the standard deviation of the

stratified Monte Carlo estimation is s times less than the standard deviation of the crude Monte

Carlo estimation.

Here is a stratified integration definition based on the expected (mean) value formula (29).

In[122]:= MonteCarloEstimate@f_, strata_, n_D :=

J:Ò1P1T, Ò1P2T > &NBTotalB :
Mean@f êü Ò1D

strata
,
Variance@f êü Ò1D

strata2 n

strata

> & êü

TableBRandomBReal, :
i - 1

strata
,

i

strata
>F, 8i, strata<, :

n

strata
>FFF

Consider this integral.

In[123]:= f@x_D :=
‰x - 1

‰ - 1

NB‡
0

1
f@xD „xF

Out[124]= 0.418023

Here the integral above is approximated with 1000 points for the number of strata running from
1 to 40.

In[125]:= t = Table@MonteCarloEstimate@f, i, 1000D, 8i, 1, 40<D;

These are the ratios between the standard deviations and the nonstratified, crude Monte Carlo
estimation.

In[126]:= ratios = Transpose@tDP2T ê Transpose@tDP2, 1T;

Note that ratiosPiT is the ratio for the Monte Carlo estimation with i number of strata. This

allows you to try a least squares fit of the function 1
x
 to ratios.

In[127]:= p@x_D := EvaluateüFitBratios, :
1

x
>, xF

p@xD

Out[128]=
1.0075

x

Advanced Numerical Integration in Mathematica 93

The fitting of 1
x
 shows a coefficient very close to 1, which is a confirmation of the rule of thumb

that s number of strata give s-times faster convergence. This is the plot of the ratios and the 1
x

least squares fit.
In[130]:= ListLinePlot@8ratios, p êü Range@Length@ratiosDD<,

PlotRange -> All, PlotStyle -> 88Red<, 8Blue<<D

Out[130]=

10 20 30 40

0.0

0.4

0.6

0.8

1.0

Global Adaptive Monte Carlo and Quasi Monte Carlo
Strategies

The global adaptive Monte Carlo and quasi Monte Carlo strategies recursively bisect the subre-

gion with the largest variance estimate into two halves, and compute integral and variance

estimates for each half.

Here is an example of adaptive Monte Carlo integration.

In[1]:= NIntegrateA‰-Ix4+y4M, 8x, -p, p<, 8y, -p, p<, Method Ø "AdaptiveMonteCarlo"E

Out[1]= 3.2531

option name default value

Method MonteCarloRule MonteCarloRule specification

"Partitioning" Automatic initial partitioning of the integration region
along each axis

"BisectionDithering" 0 offset from the middle of the region side
that is parallel to the bisection axis

"MaxPoints" Automatic maximum number of (pseudo-)random
sampling points to be used

"RandomSeed" Automatic random seed used to generate the
(pseudo-)random sampling points

Adaptive (quasi) Monte Carlo uses crude (quasi) Monte Carlo estimation rule on each subregion.

94 Advanced Numerical Integration in Mathematica

The process of subregion bisection and subsequent bi-integration is expected to reduce the

global variance, and it is referred to as recursive stratified sampling. It is motivated by a theo-

rem that states that if a region is partitioned into disjoint subregions the random variable vari-

ance over the region is greater than or equal to the sum of the random variable variances over

each subregion. (See "Stratified Monte Carlo Integration" in the section "Crude Monte Carlo and

Quasi Monte Carlo Strategies".)

The global adaptive Monte Carlo strategy "AdaptiveMonteCarlo" is similar to

"GlobalAdaptive". There are some important differences though.

1. "AdaptiveMonteCarlo" does not use singularity flattening, and does not have detectors
for slow convergence and noisy integration.

2. "AdaptiveMonteCarlo" chooses randomly the bisection dimension. To avoid irregular
separation of different coordinates a dimension recurs only if other dimensions have been
chosen for bisection.

3. "AdaptiveMonteCarlo" can be tuned to bisect the subregions away from the middle.
More at "BisectionDithering".

MinRecursion and MaxRecursion

The options MinRecursion and MaxRecursion for the adaptive Monte Carlo methods have the

same meaning and functionality as they do for "GlobalAdaptive". See "MinRecursion and

MaxRecursion".

"Partitioning"

The option "Partitioning" of "AdaptiveMonteCarlo" provides initial stratification of the

integration. It has the same meaning and functionality as "Partitioning" of the strategy

"MonteCarlo".

Advanced Numerical Integration in Mathematica 95

"BisectionDithering"

When the integrand has some special symmetry that puts significant parts of it in the middle of

the region, it is better if the bisection is done slightly away from the middle. The value of the

option "BisectionDithering" -> dith specifies that the splitting fraction of the region's splitting

dimension side should be at 1
2
± dith instead of 1

2
. The sign of dith is changed in a random man-

ner. The default value given to "BisectionDithering" is 1
10

. The allowed values for dith are

reals in the interval B- 1
4

, 1
4
F.

Consider the function.

In[195]:= f@x_, y_D := ‰- 30 IHx-5L4+Hy-5L4M;
Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD

Out[196]=

Consider the integral.

In[197]:= Integrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<D
% êê N

Out[197]=
J-4 GammaB 5

4
F + GammaB 1

4
, 18750FN

2

4 30

Out[198]= 0.599987

96 Advanced Numerical Integration in Mathematica

The integral is seriously underestimated if no bisection dithering is used i.e.,
"BisectionDithering" is given 0.

In[199]:= MeanüTable@NIntegrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<,
Method Ø 8"AdaptiveMonteCarlo", "BisectionDithering" Ø 0<D, 820<D

Out[199]= 0.40383

The following picture shows why the integral is underestimated. The black points are the integra-
tion sampling points. It can be seen that half of the peak of the integrand is undersampled.

In[204]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 10<, 8y, 0, 10<,
Method Ø 8"AdaptiveMonteCarlo", "BisectionDithering" Ø 0, "RandomSeed" Ø 10<,
PrecisionGoal Ø 2, EvaluationMonitor ß Sow@8x, y, 0<DDD;

Print@"Integral value ", tP1TD
cp = Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD;
Graphics3D@8cpP1T, PointSize@0.006D, Point êü tP2, 1T<,
BoxRatios Ø 81, 1, 0.4<, PlotRange Ø All, Axes -> TrueD

Integral value 0.292876

Out[207]=

Specifying bisection dithering of 10 % gives a satisfactory estimation.

In[212]:= MeanüTableBNIntegrateBf@x, yD, 8x, 0, 10<, 8y, 0, 10<,

Method Ø :"AdaptiveMonteCarlo", "BisectionDithering" ->
1

10
>F, 830<F

Out[212]= 0.596772

Advanced Numerical Integration in Mathematica 97

It can be seen on this plot, that the peak of the integrand is sampled better.

In[213]:= t = ReapBNIntegrateBf@x, yD, 8x, 0, 10<, 8y, 0, 10<,

Method Ø :"AdaptiveMonteCarlo", "BisectionDithering" Ø
1

10
, RandomSeed Ø 10>,

PrecisionGoal Ø 2, EvaluationMonitor ß Sow@8x, y, 0<DFF;
Print@"Integral value ", tP1TD
cp = Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<, PlotPoints Ø 30, PlotRange Ø AllD;
Graphics3D@8cpP1T, PointSize@0.006D, Point êü tP2, 1T<,
BoxRatios Ø 81, 1, 0.4<, PlotRange Ø All, Axes -> TrueD

Integral value 0.610217

Out[216]=

Choice of Bisection Axis

For multidimensional integrals the adaptive Monte Carlo algorithm chooses the splitting axis of

an integration region in two ways: (i) by random selection or (ii) by minimizing the variance of

the integral estimates of each half. The axis selection is a responsibility of the

"MonteCarloRule".

Example: Comparison with Crude Monte Carlo

Generally, the "AdaptiveMonteCarlo" strategy has greater performance than "MonteCarlo".

This is demonstrated with the examples in this subsection.

98 Advanced Numerical Integration in Mathematica

Consider the function.

In[217]:= f@x_, y_D := ‰-IHx+1L2+Hy+1L2M + ‰-IHx-1L2+Hy-1L2M

This is a plot of the function.

In[218]:= Plot3D@f@x, yD, 8x, -p, p<, 8y, -p, p<D

Out[218]=

It can be seen from the following profiling that "AdaptiveMonteCarlo" uses nearly three times

fewer sampling points than the crude "MonteCarlo" strategy.

These are the sampling points and timing for "MonteCarlo".

In[219]:= 8k = 0;
HresMC = NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<, Method Ø "MonteCarlo",

PrecisionGoal Ø 2, EvaluationMonitor ß k++DL êê Timing êê First, k<
Out[219]= 80.689894 Second, 22500<

These are the sampling points and timing for "AdaptiveMonteCarlo".

In[220]:= 8k = 0;
HresAMC =

NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<, Method Ø "AdaptiveMonteCarlo",
PrecisionGoal Ø 2, EvaluationMonitor ß k++DL êê Timing êê First, k<

Out[220]= 80.180972 Second, 5300<

This is the exact result.

In[221]:= exact = Integrate@f@x, yD, 8x, -p, p<, 8y, -p, p<D

Out[221]=
1

2
p H-Erf@1 - pD + Erf@1 + pDL HErf@-1 + pD + Erf@1 + pDL

Advanced Numerical Integration in Mathematica 99

Here is the timing for 100 integrations with "MonteCarlo".

In[222]:= tblMC = Table@NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<,
Method Ø "MonteCarlo", PrecisionGoal Ø 2D, 8100<D; êê Timing

Out[222]= 811.8842 Second, Null<

The "MonteCarlo" integration compares well with the exact result. The numbers below show
the error of the mean of the integral estimates, the mean of the relative errors of the integral
estimates, and the variance of the integral estimates.

In[223]:= :Abs@Mean@tblMCD - exactD, MeanBAbsB
tblMC - exact

exact
FF,

HtblMC - exactL.HtblMC - exactL

Length@tblMCD
>

Out[223]= 80.00137993, 0.00813663, 0.00430569<

Here is the timing for 100 integrations with "AdaptiveMonteCarlo", which is several times
faster than "MonteCarlo" integrations.

In[233]:= tblAMC = Table@NIntegrate@f@x, yD, 8x, -p, p<, 8y, -p, p<,
Method Ø "AdaptiveMonteCarlo", PrecisionGoal Ø 2D, 8100<D; êê Timing

Out[233]= 84.21336 Second, Null<

The "AdaptiveMonteCarlo" integration result compares well with the exact result. The
numbers below show the error of the mean of the integral estimates, the mean of the relative
errors of the integral estimates, and the variance of the integral estimates.

In[234]:= :Abs@Mean@tblAMCD - exactD,

MeanBAbsB
tblAMC - exact

exact
FF,

HtblAMC - exactL.HtblAMC - exactL

Length@tblAMCD
>

Out[234]= 80.0129984, 0.00742212, 0.00366479<

"MultiPeriodic"

The strategy "MultiPeriodic" transforms all integrals into integrals over the unit cube and

periodizes the integrands to be one-periodic with respect to each integration variable. Different

periodizing functions (or none) can be applied to different variables. "MultiPeriodic" works

for integrals with dimension less than or equal to twelve. If "MultiPeriodic" is given, integrals

with higher dimension the "MonteCarlo" strategy is used.

100 Advanced Numerical Integration in Mathematica

Here is an example of integration with "MultiPeriodic".

In[2]:= NIntegrateA‰-Ix14+x24+x34M, 8x1, -p, p<,
8x2, -p, p<, 8x3, -p, p<, Method Ø "MultiPeriodic"E

Out[2]= 5.95735

option name default value

"Transformation" SidiSin periodizing transformation applied to the
integrand

"MinPoints" 0 minimal number of sampling points

"MaxPoints" 105 maximum number of sampling points

"SymbolicProcessing" Automatic number of seconds to be used for symbolic
preprocessing

"MultiPeriodic" can be seen as a multidimensional generalization of the strategy

"Trapezoidal". It can also be seen as a quasi Monte Carlo method.

"MultiPeriodic" uses lattice integration rules; see [SloanJoe94] [KrUeb98].

Here integration lattice in d, d œ , is understood to be a discrete subset of d which is closed

under addition and subtraction, and which contains d. A lattice integration rule [SloanJoe94] is

a rule of the form

Q f HxL =
1

N
‚
i=1

N

f HxiL,

where 8x1, x2, …, xN< are all the points of an integration lattice contained in @0, 1Ln.

If "MultiPeriodic" is called on, a d-dimensional integral option "Transformation" takes a list

of one-argument functions 8 f1, f2, …, fd< that is used to transform the corresponding variables. If

"Transformation" is given a list with length l smaller than d, then the last function, fl, is used

for the last d - l integration variables. If "Transformation" is given a function, that function will

be used to transform all the variables.

Let d be the dimension of the integral. If d = 1 "MultiPeriodic" calls "Trapezoidal" after

applying the periodizing transformation. For dimensions higher than 12 "MonteCarlo" is called

without applying periodizing transformations. "MultiPeriodic" uses the so-called 2d copy rules

for

Advanced Numerical Integration in Mathematica 101

for 2 § d § 12. For each 2 § d § 12 "MultiPeriodic" has a set of copy rules that are used to com-

pute a sequence of integral estimates. The rules with a smaller number of points are used first.

If the error estimate of a rule satisfies the precision goal, or if the difference of two integral

estimates in the sequence satisfies the precision goal, the integration stops.

Number of points for the 2d copy rules in the rule sets for different dimensions.

In[3]:= tbl = HFirst êü Ò &L êü Rest@NIntegrate`MultiPeriodicDump`copyrulesD;
tbl = MapIndexed@Ò1 * 2^HÒ2@@1DD + 1L &, tblD;
mlen = Max@Length êü tblD;
tbl = Map@Join@Ò, Table@"", 8mlen - Length@ÒD<DD &, tblD;
Style@TableForm@Transpose@tblD,

TableHeadings Ø 8Automatic, Range@2, Length@tblD + 1D<D, SmallD

Out[7]=

2 3 4 5 6 7 8 9 10 11 12

1 4996 4952 5008 5024 5056 5248 4864 5632 5120 6144 12288

2 10012 9992 9904 10016 10048 10112 10496 9728 11264 10240 20480

3 20012 20024 19984 19808 20032 20096 20224 20992 19456 22528 45056

4 40028 40024 40048 39968 39616 40064 40192 40448 41984 38912 77824

5 80044 80056 80048 80096 79936 79232 80128 80384 80896 83968 167936

6 160036 160088 160112 160096 160192 159872 158464 160256 160768 161792 323584

7 320084 320072 320176 320224 320192 320384 319744 316928 320512 321536 643072

8 640448 640384 640768 639488 633856 641024 1282048

9 1280896 1280768 1281536 1278976 1267712 2535424

10 2561792 2561536 2563072 2557952 5115904

11 5123584 5123072 5126144 10252288

12 10247168 10246144 20492288

13 20494336 40988672

Comparison with "MultiDimensionalRule"

Generally "MultiPeriodic" is slower than "GlobalAdaptive" using "MultiDimensionalRule".

For computing high-dimension integrals with lower precision, "MultiPeriodic" might give

results faster.

This defines the function of eight arguments.

In[8]:= f@x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_D :=
1 ë H1 + 0.9671190054385935` x1 + 0.21216802639809276` x2 +

0.682779542171783` x3 + 0.32962509624641606` x4 + 0.5549215440908636` x5 +
0.7907543870000786` x6 + 0.8580353669569777` x7 + 0.4796298578498076` x8L9

102 Advanced Numerical Integration in Mathematica

Timing in seconds for computing Ÿ0
1… Ÿ0

1 f @x1, …, x8D „ x1 … „ x8 using "MultiPeriodic" and

"GlobalAdaptive" with "MultiDimensionalRule".
In[11]:=

tbl = TableA8"IntegralEstimate", "Evaluations", "Timing"< ê.
NIntegrateProfileANIntegrateAf@x1, x2, x3, x4, x5, x6, x7, x8D, 8x1, 0, 1<,

8x2, 0, 1<, 8x3, 0, 1<, 8x4, 0, 1<, 8x5, 0, 1<, 8x6, 0, 1<, 8x7, 0, 1<,
8x8, 0, 1<, Method Ø meth, MaxPoints Ø 108, PrecisionGoal Ø pgE, 1E, 8pg, 1, 4<,

8meth, 8"MultiPeriodic", 8"MultiDimensionalRule", "Generators" Ø 5<,
8"MultiDimensionalRule", "Generators" Ø 9<<<E;

TableForm@Map@Ò@@3DD &, tbl, 82<D, TableHeadings Ø
Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"Precision goal Ø 1", "Precision goal Ø 2",

"Precision goal Ø 3", "Precision goal Ø 4"<, 8"MultiPeriodic",
ColumnForm@8"MultiDimensionalRule", "with 5 generators"<D, ColumnForm@
8"MultiDimensionalRule", "with 9 generators"<D<<, 8-1<D, TableSpacing Ø 3D

Out[12]//TableForm=

Number of integrand evaluations for computing Ÿ0
1… Ÿ0

1 f @x1, …, x8D „ x1 … „ x8 using

"MultiPeriodic" and "GlobalAdaptive" with "MultiDimensionalRule".
In[13]:= TableForm@Map@Ò@@2DD &, tbl, 82<D,

TableHeadings Ø Map@Style@Ò, FontFamily Ø Times, FontSize Ø 11D &,
88"Precision goal Ø 1", "Precision goal Ø 2",

"Precision goal Ø 3", "Precision goal Ø 4"<, 8"MultiPeriodic",
ColumnForm@8"MultiDimensionalRule", "with 5 generators"<D, ColumnForm@
8"MultiDimensionalRule", "with 9 generators"<D<<, 8-1<D, TableSpacing Ø 3D

Out[13]//TableForm=

Advanced Numerical Integration in Mathematica 103

Preprocessors

The capabilities of all strategies are extended through symbolic preprocessing of the integrals.

The preprocessors can be seen as strategies that delegate integration to other strategies

(preprocessors included).

"SymbolicPiecewiseSubdivision"

"SymbolicPiecewiseSubdivision" is a preprocessor that divides an integral with a piecewise

integrand into integrals with disjoint integration regions on each of which the integrand is not

piecewise.

option name default value

Method Automatic integration strategy or preprocessor to
which the integration will be passed

"ExpandSpecialPiecewise" True which piecewise functions should be
expanded

TimeConstraint 5 the maximum number of seconds for which
the piecewise subdivision will be attempted

"MaxPiecewiseCases" 100 the maximum number of subregions the
piecewise preprocessor can return

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

Options of "SymbolicPiecewiseSubdivision".

As was mentioned at the beginning of the tutorial, NIntegrate is able to integrate simultane-

ously integrals with disjoint domains each having a different integrand. Hence, after the prepro-

cessing with "SymbolicPiecewiseSubdivision" the integration continues in the same way as

if, say, NIntegrate were given ranges with singularity specifications (which can be seen as

specifying integrals with disjoint domains with the same integrand). For example, the strategy

"GlobalAdaptive" tries to improve the integral estimate of the region with the largest error

through bisection, and will choose that largest error region regardless of which integrand it

corresponds to.

Below are the sampling points for the numerical estimation of the integral

104 Advanced Numerical Integration in Mathematica

‡
-1

1
2

sinH-xL
x < 0

1

x
x ¥ 0

„ x

On the plot, the integrand is sampled at the x coordinates in the order of the ord coordinates.

It can be seen that "GlobalAdaptive" alternates sampling for the piece 2

sinH-xL
, x < 0 with

sampling for the piece 1

x
, x ¥ 0 .

In[12]:= pnts = ReapBNIntegrateBPiecewiseB::
2

Sin@-xD
, x < 0>, :

1

x
, x ¥ 0>>F,

8x, -1, 1<, PrecisionGoal Ø 8, EvaluationMonitor ß Sow@xDFF@@2, 1DD;
ListPlot@Transpose@8pnts, Range@Length@pntsDD<D, PlotRange Ø All,
AxesOrigin Ø 8-1, 0<, AxesLabel Ø 8x, "sampling\norder"<D

Out[13]=

-0.5 0.0 0.5 1.0
x

50

100

150

200

250

300

sampling
order

Here are the sampling points for the numerical estimation of the integral
Ÿ-p
p
Ÿ-p
p Boole@x2 + y2 > 1D sin Hx2 + y2L „ y „ x. The integrand is plotted on the left, the sampling

points are plotted on the right. The integral has been partitioned into Ÿ-p
-1
Ÿ-p
p sinIx2 + y2M „ y „ x +

Ÿ-1
1
Ÿ-p
- 1-x2 sinIx2 + y2M „ y „ x + Ÿ-1

1
Ÿ

1-x2
p sinIx2 + y2M „ y „ x + Ÿ1

p
Ÿ-p
p sinIx2 + y2M „ y „ x, that is why the

sampling points form a different pattern for -1 § x § 1.

In[14]:= gr = Plot3DABooleAx2 + y2 > 1E SinAx2 + y2E, 8x, - p, p<, 8y, -p, p<E;
grSP =

Point êü ReapANIntegrateABooleAx2 + y2 > 1E SinAx2 + y2E, 8x, - p, p<, 8y, -p, p<,
Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø "GlobalAdaptive"<,
PrecisionGoal Ø 3, EvaluationMonitor ß Sow@8x, y<DEE@@2, 1DD;

grSP = Graphics@8PointSize@0.005D, grSP<, Axes Ø True, AxesOrigin Ø 8- p, - p<D;
GraphicsArray@8gr, grSP<D

In[17]:=

Advanced Numerical Integration in Mathematica 105

"ExpandSpecialPiecewise"

In some cases it is preferable to do piecewise expansion only over certain piecewise functions.

In these case the option "ExpandSpecialPiecewise" can be given a list of functions to do the

piecewise expansion with.

This Monte Carlo integral is done faster with piecewise expansion only over Boole.

In[18]:= f@x_, y_D :=

BooleAx2 + 2 y2 < 1E AbsAx2 + y3 - 2E AbsA-x2 + y2 + 1E AbsAx2 - 3 y2 + xE
1

x2 + y2 + 10

;

NIntegrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<,
Method Ø 8"SymbolicPiecewiseSubdivision",

"ExpandSpecialPiecewise" Ø 8Boole<, Method Ø "MonteCarlo"<D êê Timing
Out[19]= 80.108984, 0.634721<

Here is a Monte Carlo integration with piecewise expansion over both Boole and Abs.

In[20]:= NIntegrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<,
Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø "MonteCarlo"<D êê Timing

Out[20]= 80.19197, 0.625164<

"EvenOddSubdivision"

"EvenOddSubdivision" is a preprocessor that reduces the integration region if the region is

symmetric around the origin and the integrand is determined to be even or odd. The conver-

gence of odd integrals is verified by default.

option name default value

Method Automatic integration strategy or preprocessor to
which the integration will be passed

VerifyConvergence Automatic should the convergence be verified if an
odd integral is detected

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

Options of "EvenOddSubdivision".

When the integrand is an even function and the integration region is symmetric around the

origin, the integral can be computed by integrating only on some part of the integration region

and multiplying with a corresponding factor.

106 Advanced Numerical Integration in Mathematica

Here is a plot of an even function and the sampling points without any preprocessing.

In[21]:= gr = Plot3DB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<F;

grSP = PointB

ReapBNIntegrateB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<, Method Ø 8Automatic,

"SymbolicProcessing" Ø 0<, EvaluationMonitor ß Sow@8x, y<DFFP2, 1TF;
grSP = Graphics@8PointSize@0.01D, grSP<, Axes Ø True, AxesOrigin Ø 8-p, -p<D;
GraphicsGrid@88gr, grSP<<D

Out[24]=

These are the sampling points used by NIntegrate after "EvenOddSubdivision" has been
applied. Note that the sampling points are only in the region @0, pDµ @0, pD.

In[25]:= GraphicsB:PointSize@0.01D,

Point êü ReapBNIntegrateB1 + SinB x2 + y2 F, 8x, -p, p<, 8y, -p, p<,

EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DD>, Axes Ø TrueF

Out[25]=

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Advanced Numerical Integration in Mathematica 107

Transformation Theorem

The preprocessor "EvenOddSubdivision" is based on the following theorem.

Theorem: Given the d-dimensional integral

‡
a0

b0
… ‡

aiIx1,…,xi-1M

biIx1,…,xi-1M
… ‡

anIx1,…,xd-1M

bnIx1,…,xd-1M
f Hx1, …, xdL „ x1 … „ xd,

assume that for some i œ 81, 2, …, d< these equalities hold:

a) aiHx1, …, xi-1L = -biHx1, …, xi-1L,

b) for all j > i, j œ 81, 2, …, d<:

a jIx1, …, xi, …, x j-1M = a jIx1, …, -xi, …, x j-1M,
b jIx1, …, xi, …, x j-1M = b jIx1, …, -xi, …, x j-1M.

In other words the range of xi is symmetric around the origin, and the boundaries of the vari-

ables x j, j > i are even functions wrt xi.

Then:

a) the integral is equivalent to

2 ‡
a0

b0
… ‡

0

biIx1,…,xiM
… ‡

ad Ix1,…,xd-1M

bd Ix1,…,xd-1M
f Hx1, …, xdL „ x1 … „ xd

if the integrand is even wrt xi, that is,

f Hx1, …, xi, …, xdL = f Hx1, …, -xi, …, xdL;

b) the integral is equivalent to 0, if the integrand is odd wrt xi, that is,

f Hx1, …, xi, …, xdL = - f Hx1, …, -xi, …, xdL.

Note that the theorem above can be applied several times over an integral.

To illustrate the theorem consider the integral Ÿ0
1
Ÿ-x
x
Ÿ2
y2x „ z „ y „ x. It is symmetric along y, and the

integrand and the bounds of z are even functions wrt y.

108 Advanced Numerical Integration in Mathematica

Here is a plot of the sampling points without the application of "EvenOddSubdivision"
(black) and with "EvenOddSubdivision" applied (red).

In[26]:= grEven = Point êü ReapANIntegrateAx, 8x, 0, 1<, 8y, -x, x<, 9z, 2, y2=,
Method Ø 8"SymbolicPreprocessing", "UnitCubeRescaling" Ø False,

Method -> 8"LobattoKronrodRule", "GaussPoints" Ø 5<<,
EvaluationMonitor ß Sow@8x, y, z<DEE@@2, 1DD;

gr = Point êü ReapANIntegrateAx, 8x, 0, 1<, 8y, -x, x<, 9z, 2, y2=,
Method Ø 8"LobattoKronrodRule", "GaussPoints" Ø 5, "SymbolicProcessing" Ø 0<,
EvaluationMonitor ß Sow@8x, y, z<DEE@@2, 1DD;

Graphics3D@8gr, Red, grEven<, PlotRange Ø All, Axes Ø True,
ViewPoint -> 82.813, 0.765, 1.718<D

Out[28]=

0.2

0.6

1.0

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

If the bounds of z are not even functions wrt y then the symmetry along y is broken. For exam-

ple, the integral Ÿ0
1
Ÿ-x
x
Ÿ2
yx „ z „ y „ x has no symmetry NIntegrate can exploit.

Here is a plot of the sampling points with "EvenOddSubdivision" applied (red). The region
has no symmetry along y.

In[29]:= grEven = Point êü Reap@NIntegrate@x, 8x, 0, 1<, 8y, -x, x<, 8z, 2, y<,
Method Ø 8"SymbolicPreprocessing", "UnitCubeRescaling" Ø False,

Method -> 8"LobattoKronrodRule", "GaussPoints" Ø 5<<,
EvaluationMonitor ß Sow@8x, y, z<DDD@@2, 1DD;

Graphics3D@8Red, grEven<, PlotRange Ø All, Axes Ø True,
ViewPoint -> 82.813, 0.765, 1.718<D

Out[30]=

0.2
0.6

1.0

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

Advanced Numerical Integration in Mathematica 109

"VerifyConvergence"

Consider the following divergent integral Ÿ-¶
¶ x „ x. NIntegrate detects it as an odd function

over a symmetric domain and tries to integrate Ÿ0
¶x „ x (that is, check the convergence of

Ÿ0
¶x „ x). Since no convergence was reached as is indicated by the ncvb message, NIntegrate

gives the message oidiv that the integral might be divergent.
In[31]:= NIntegrate@x, 8x, -¶, ¶<D

Out[31]= 0.

If the option VerifyConvergence is set to False no convergence verification~and hence no
integrand evaluation~will be done after the integral is found to be odd.

In[32]:= NIntegrate@x, 8x, -¶, ¶<,
Method Ø 8"EvenOddSubdivision", "VerifyConvergence" Ø False<D

Out[32]= 0.

"OscillatorySelection"

"OscillatorySelection" is a preprocessor that selects specialized algorithms for efficient

evaluation of one-dimensional oscillating integrals, the integrands of which are products of a

trigonometric or Bessel function and a non-oscillating or a much slower oscillating function.

110 Advanced Numerical Integration in Mathematica

Options of "OscillatorySelection".

option name default value

"BesselInfiniteRangeMethod
"

"ExtrapolatingOscillatory"

 specialized integration algorithm for infinite
region integrals with Bessel functions

"FourierFiniteRangeMethod" Automatic specialized integration algorithm for Fourier
integrals over finite ranges

"FourierInfiniteRangeMethÖ
od"

9"DoubleExponentialOscillatory",
Method->"ExtrapolatingOscillatory"=

specialized integration algorithm for Fourier
integrals over infinite regions

Method "GlobalAdaptive
"

integration strategy or preprocessor to
which the integration will be passed

"TermwiseOscillatory" False if the value of this option is True then the
algorithm is selected for each term in a
sum of oscillatory functions

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

"OscillatorySelection" is used by default.

In[33]:= NIntegrateB
Sin@20 xD

x + 1
, 8x, 0, ¶<F

Out[33]= 0.049757

Without the "OscillatorySelection" preprocessor NIntegrate does not reach conver-
gence with its default option settings.

In[34]:= NIntegrateB
Sin@20 xD

x + 1
, 8x, 0, ¶<, Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F

Out[34]= 0.µ102

The preprocessor "OscillatorySelection" is designed to work with the internal output of the

"SymbolicPiecewiseSubdivision" preprocessor. "OscillatorySelection" itself partitions

oscillatory integrals that include the origin or have oscillatory kernels that need to be expanded

or transformed into forms for which the oscillatory algorithms are designed.

Here is a piecewise function integration in which all methods of "OscillatorySelection"
are used. For this integral the preprocessor "SymbolicPiecewiseSubdivision" divides the
integral into four different integrals; for each of these integrals "OscillatorySelection"
selects an appropriate algorithm.

In[1]:= NIntegrateB

BesselJ@3,-xD

-x
x < 0

Cos@200 xD

x
0 < x < 20

Sin@2 x+3D

x2
x > 30

1

Log@xD
True

, 8x, -¶, ¶<F

Out[1]= 3.77933

The following table shows the names of the "OscillatorySelection" options used to
specify the algorithms for each sub-interval in the integral above.

xœH-¶,0D "BesselInfiniteRangeMethod"

xœ@0,20D "FourierFiniteRangeMethod"

xœ@30,¶L "FourierInfiniteRangeMethod"

xœ@20,30D Method

Advanced Numerical Integration in Mathematica 111

In this example "DoubleExponentialOscillatory" is called twice.
"DoubleExponentialOscillatory" is a special algorithm for Fourier integrals, and the
formula ‰2 Â x

2
= cosI2 x2M + Â sinI2 x2M makes the integrand a sum of two Fourier integrands.

In[35]:= NIntegrateB
ExpA2 Â x2E

x + 1
, 8x, 0, ¶<F êê InputForm

Out[35]//InputForm= 0.39934219109623426 + 0.2791805912092563*I

To demonstrate that "OscillatorySelection" has used the formula
‰2 Â x

2
= cosI2 x2M + Â sinI2 x2M, here is the integral above split "by hand." The result is identical with

the last result.

In[36]:= NIntegrateB
CosA2 x2E

x + 1
, 8x, 0, ¶<F + Â NIntegrateB

SinA2 x2E

x + 1
, 8x, 0, ¶<F êê InputForm

Out[36]//InputForm= 0.39934219109623426 + 0.2791805912092563*I

The value Automatic for the option "FourierFiniteRangeMethod" means that if the integra-

tion strategy specified with the option Method is one of "GlobalAdaptive" or "LocalAdaptive"

then that strategy will be used for the finite range Fourier integration, otherwise

"GlobalAdaptive" will be used.

Here is a piecewise function integration that uses "DoubleExponential" strategy for the non-
oscillatory integral and "LocalAdaptive" for the finite range oscillatory integral.

In[37]:= NIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

,

8x, 1, 40<, Method Ø 8"SymbolicPiecewiseSubdivision",
Method Ø 8"OscillatorySelection", Method Ø "DoubleExponential",

"FourierFiniteRangeMethod" Ø 8"LocalAdaptive", "Partitioning" Ø 3<<<F

Out[37]= 8.94871

These are the sampling points of the preceding integration and integral but with default option
settings. The pattern between @0, 20D on the left picture is typical for the local adaptive quadra-
ture~the recursive partitioning into three parts can be seen (because of the option
"Partitioning" -> 3 given to "LocalAdaptive"). The pattern over @0, 20D on the right
picture comes from "GlobalAdaptive". The pattern between @20, 40D on the first picture is
typical for the double-exponential quadrature. The same pattern can be seen on the second
picture between @20, 21 + 1 ê4D since "GlobalAdaptive" uses by default the
"DoubleExponential" singularity handler.

112 Advanced Numerical Integration in Mathematica

In[38]:= k = 0; pointsDELA = ReapBNIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

,

8x, 1, 40<, Method Ø 8"SymbolicPiecewiseSubdivision",
Method Ø 8"OscillatorySelection", Method Ø "DoubleExponential",

"FourierFiniteRangeMethod" Ø 8"LocalAdaptive", "Partitioning" Ø 3<,
"FourierInfiniteRangeMethod" Ø "ExtrapolatingOscillatory"<<,

EvaluationMonitor ß Sow@8x, k++<DFFP2, 1T;

k = 0; points = ReapBNIntegrateB

Cos@200 xD

x6
0 < x < 20

1

x-20
True

, 8x, 1, 40<,

EvaluationMonitor ß Sow@8x, k++<DFFP2, 1T;
grDELA = Graphics@8PointSize@0.01D, Point êü pointsDELA<,

AspectRatio -> 1, Axes -> True,
PlotRange -> 880, 40<, All<D;

gr = Graphics@8PointSize@0.01D, Point êü points<,
AspectRatio -> 1, Axes -> True, PlotRange -> 880, 40<, All<D;

GraphicsGrid@88grDELA, gr<<D

Out[42]=

10 20 30 40

50

100

150

200

10 20 30 40

50

100

150

200

If the application of a particular oscillatory method is desired for a particular type of oscillatory

integrals, either the corresponding options of "OscillatorySelection" should be changed, or

the Method option in NIntegrate should be used without the preprocessor

"OscillatorySelection".

Here is a piecewise function integration that uses "ExtrapolatingOscillatory" for any of
the infinite range oscillatory integrals.

In[10]:= NIntegrateB

BesselJ@3,-xD

-x
x < 0

Cos@200 xD

x
0 < x < 20

Sin@2 x+3D

x2
x > 30

1

Log@xD
True

, 8x, -¶, ¶<,

Method Ø 8"SymbolicPiecewiseSubdivision", Method Ø 8"OscillatorySelection",
"FourierInfiniteRangeMethod" Ø "ExtrapolatingOscillatory"<<F

Out[10]= 3.77933

Advanced Numerical Integration in Mathematica 113

If "ExtrapolatingOscillatory" is given as the method, "OscillatorySelection" uses
it for infinite range oscillatory integration.

In[1]:= NIntegrateB
SinA2 x3 + 3E

x2
, 8x, 1, ¶<, Method Ø "ExtrapolatingOscillatory"F êê Timing

Out[1]= 80.137979, -0.0206489<

The integration above is faster with the default options of NIntegrate. For this integral
"OscillatorySelection", which is applied by default, uses
"DoubleExponentialOscillatory".

In[2]:= NIntegrateB
SinA2 x3 + 3E

x2
, 8x, 1, ¶<F êê Timing

Out[2]= 80.010998, -0.0206489<

Working with Sums of Oscillating Terms

In many cases it is useful to apply the oscillatory algorithms to integrands that are sums of

oscillating functions. That is, each term of such integrands is a product of an oscillating function

and a less oscillating one. (See "Oscillatory Strategies" for the forms recognized as oscillatory

by NIntegrate.)

Here is an example of integration that applies the specialized oscillatory NIntegrate algo-
rithms to each term of the integrand.

In[4]:= NIntegrateB
Cos@100 xD + Sin@18 xD + Cos@12 xD

x
, 8x, 1, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø True<F êê Timing

Out[4]= 80.067989, 0.0879161<

By default this option is set to False, and the integral cannot be computed.

In[5]:= NIntegrateB
Cos@100 xD + Sin@18 xD + Cos@12 xD

x
, 8x, 1, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø False<F êê Timing

Out[5]= 90.039994, 4.83416µ10123=

The option is "TermwiseOscillatory" is set by default to False since splitting the integrals

can lead in some cases to divergent results.

114 Advanced Numerical Integration in Mathematica

Here is a convergent integral. If it is split into two integrals each will be divergent.

In[6]:= IntegrateB
Cos@xD2

x2
-
Cos@2 xD

x2
, 8x, 0, ¶<F êê N

Out[6]= 1.5708

If "TermwiseOscillatory" -> True is used the result is some big number (and lots of
messages).

In[4]:= NIntegrateB
Cos@xD2

x2
-
Cos@2 xD

x2
, 8x, 0, ¶<,

Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø True<F

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 99.61429µ10-225=. NIntegrate obtained
1.09277555296995444002380282417575577402166042202745166400395762181`65.95458Ö
9770191*^27949 and

1.09277555296995444002380282417575577402166042202745166400395762181`65.95458Ö
9770191*^27949 for the integral and error estimates. à

General::ovfl : Overflow occurred in computation. à

General::unfl : Underflow occurred in computation. à

General::unfl : Underflow occurred in computation. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =

98.11799844178877794786317075103237559684904034257010450192228126196µ10-76=.
NIntegrate obtained -5.03035µ1076 and
4.9601122390425185`*^76 for the integral and error estimates. à

Out[4]= 1.092775552969954µ1027949

If "TermwiseOscillatory" -> False is used the result is closer to the exact one.

In[7]:= NIntegrate@Cos@xD^2 ê x^2 - Cos@2 xD ê x^2, 8x, 0, Infinity<,
Method Ø 8"OscillatorySelection", "TermwiseOscillatory" Ø False<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 8132.64<. NIntegrate obtained 1.570930116084087` and
0.000748285430212249` for the integral and error estimates. à

Out[7]= 1.57093

Advanced Numerical Integration in Mathematica 115

"UnitCubeRescaling"

"UnitCubeRescaling" is a preprocessor that transforms the integration region into a unit cube

or hypercube. The variables of the original integrand are replaced the result is multiplied by the

Jacobian of the transformation.

option name default value

"FunctionalRangesOnly" True what ranges should be transformed to the
unit cube

Method "GlobalAdaptive" integration strategy or preprocessor to
which the integration will be passed

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

Options of "UnitCubeRescaling".

This uses unit cube rescaling and it is faster than the computation that follows.

In[10]:= NIntegrateBSinAx2 + y2E ì x2 + y2 , 8x, 0, 5<,

:y, 0, x >, Method Ø "UnitCubeRescaling"F êê Timing

Out[10]= 80.221967, 0.596359<

This integration does not use unit cube rescaling. It is done approximately three times slower
than the previous one.

In[11]:= NIntegrateBSinAx2 + y2E ì x2 + y2 , 8x, 0, 5<, :y, 0, x >,

Method Ø 8Automatic, "SymbolicProcessing" Ø 0<F êê Timing

Out[11]= 80.570913, 0.596359<

"UnitCubeRescaling" transforms the integral

(32)Ÿa1
b1
Ÿa2Hx1L
b2Hx1L… Ÿad Ix1,…,xd-1M

bd Ix1,…,xd-1M f Hx1, …, xdL „ x1 … „ xd

into an integral over the hypercube @0, 1Dd. Assuming that a1 and b1 are finite and ai , bi, i = 2, …, d

are piecewise continuous functions the transformation used by "UnitCubeRescaling" is

(33)xi = aiIx
`
1, …, x` i-1M + x

`
iIbiI x

`
1, …, x` i-1M - aiIx

`
1, …, x` i-1MM, i = 1, …, d.

116 Advanced Numerical Integration in Mathematica

The Jacobian of this transformation is

(34)JIx`1, …, x`dM =¤i=1
d IbiIx

`
1, …, x`dM - aiIx

`
1, …, x`dMM.

If for the ith axis one or both of ai and bi are infinite, then the formula for xi in (33) is a non-

affine transformation that maps @0, 1D into AaiIx
`
1, …, x` i-1M, biI x

`
1, …, x` i-1ME. NIntegrate uses the

following transformations:

x = a +
1

1 - x`
- 1, x œ @a, ¶L,

x = 1 + b -
1

x`
, x œ @-¶, bL,

x = -
1

-1 + x`
-

1

x`
, x œ H-¶, ¶L,

where x` œ @0, 1D.

Applying "UnitCubeRescaling" makes the integrand more complicated if the integration region

boundaries are constants (finite or infinite). Since NIntegrate has efficient affine and infinite

internal variable transformations the integration process would become slower. If some of the

integration region boundaries are functions, applying "UnitCubeRescaling" would make the

integration faster since the computations that involve the integration variables are done only

when the integrand is evaluated. Because of these performance considerations

"UnitCubeRescaling" has the option "FunctionRangesOnly". If "FunctionRangesOnly" is set

to True the rescaling is applied only to multidimensional functional ranges.

This integration uses unit cube rescaling.

In[12]:= NIntegrateAExp@-1 ê 10 Hx + yLD x2, 8x, 0, ¶<, 8y, 0, ¶<,
Method Ø 8"UnitCubeRescaling", "FunctionalRangesOnly" Ø False<E êê Timing

Out[12]= 80.483926, 20000.<

This integration does not use unit cube rescaling. It is done approximately two times faster than
the previous one.

In[13]:= NIntegrateAExp@-1 ê 10 Hx + yLD x2, 8x, 0, ¶<, 8y, 0, ¶<,
Method Ø 8"UnitCubeRescaling", "FunctionalRangesOnly" Ø True<E êê Timing

Out[13]= 80.184972, 20000.<

Advanced Numerical Integration in Mathematica 117

Example Implementation

The transformation process used by "UnitCubeRescaling" is the same as the following one

implemented by the function FRangesToCube (also defined in "Duffy's Coordinates Generaliza-

tion and Example Implementation").

This function provides the transformation (33) and its Jacobian (34) for a list of integration
ranges and a list of rectangular parallelepiped sides or a hypercube side.

In[14]:= FRangesToCube@ranges_, cubeSides : 88_, _< ...<D :=
Module@8t, t1, jac, vars, rules = 8<<,

vars = First êü ranges;
t = MapThread@Ht1 = Rescale@Ò1@@1DD, Ò2, 8Ò1@@2DD, Ò1@@3DD< ê. rulesD;

AppendTo@rules, Ò1@@1DD Ø t1D; t1L &, 8ranges, cubeSides<D;
jac = Times üü MapThread@D@Ò1, Ò2D &, 8t, vars<D;
8rules, jac<

D ê; Length@rangesD ã Length@cubeSidesD;
FRangesToCube@ranges_, cubeSide : 8_, _<D :=

FRangesToCube@ranges, Table@cubeSide, 8Length@rangesD<DD;
FRangesToCube@ranges_D := FRangesToCube@ranges, 80, 1<D;

Each transformation of the transformation (33) can be done with Rescale.

In[17]:= Rescale@x, 80, 1<, 8a, b<D

Out[17]= a + H-a + bL x

Note that for given axis i the transformation rules already derived for axes 1, …, i - 1 need to be

applied to the original boundaries before the rescaling of boundaries along the ith axis.

The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @0, 1Dµ @aHxL, bHxLD.
In[18]:= 8transRules, jacobian< = FRangesToCube@88x, 0, 1<, 8y, a@xD, b@xD<<D;

transRules
jacobian

Out[19]= 8x Ø x, y Ø a@xD + y H-a@xD + b@xDL<

Out[20]= -a@xD + b@xD

Application of the transformation to a function.

In[21]:= HF@x, yD ê. transRulesL jacobian

Out[21]= H-a@xD + b@xDL F@x, a@xD + y H-a@xD + b@xDLD

118 Advanced Numerical Integration in Mathematica

The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @0, ¶Dµ @aHxL, bHxLD.
In[22]:= 8transRules, jacobian< = FRangesToCube@88x, 0, ¶<, 8y, a@xD, b@xD<<D;

transRules
jacobian

Out[23]= :x Ø -1 +
1

1 - x
, y Ø aB-1 +

1

1 - x
F + y -aB-1 +

1

1 - x
F + bB-1 +

1

1 - x
F >

Out[24]=
-aB-1 +

1

1-x
F + bB-1 +

1

1-x
F

H1 - xL2

The transformation rules and the Jacobian for @0, 1Dµ @0, 1DØ @a0, b0Dµ @a1HxL, b1HxLD.
In[25]:= 8transRules, jacobian< = FRangesToCube@88x, a0, b0<, 8y, a1@xD, b1@xD<<D;

transRules
jacobian

Out[26]=

Out[27]= H-a0 + b0L H-a1@a0 + x H-a0 + b0LD + b1@a0 + x H-a0 + b0LDL

"SymbolicPreprocessing"

"SymbolicPreprocessing" is a composite preprocessor made to simplify the switching on and

off of the other preprocessors.

"SymbolicPreprocessing" options.

Advanced Numerical Integration in Mathematica 119

option name default value

Method Automatic integration strategy or preprocessor to
which the integration will be passed

"SymbolicPiecewiseSubdiviÖ
sion"

True piecewise subdivision

"EvenOddSubdivision" True even-odd subdivision

"OscillatorySelection" True detection of products with an oscillatory
function

"UnitCubeRescaling" Automatic rescaling to the unit hypercube

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

When "UnitCubeRescaling" is set to Automatic it is applied only to multidimensional func-

tional ranges.

Here is an example of the integration of Ÿ-1
1
Ÿ0
x2 BooleBx

2+y2<
1

2
F

x2+y2
„ y „ x with different combinations of

preprocessor application.

In[30]:= grarr = MapBGraphicsB:PointSize@0.01D,

Point êü ReapBNIntegrateB
Boole@x^2 + y^2 < 1 ê 2D

x2 + y2
, 8x, -1, 1<, 9y, 0, x2=,

Method Ø 8"SymbolicPreprocessing", "EvenOddSubdivision" Ø Ò@@1DD,
"SymbolicPiecewiseSubdivision" Ø Ò@@2DD, Method Ø 8"GlobalAdaptive",

Method Ø "GaussKronrodRule", "SingularityDepth" Ø ¶<<,
PrecisionGoal Ø 3, EvaluationMonitor ß Sow@8x, y<DFF@@2, 1DD>,

PlotRange Ø 88-1, 1<, 80, 1<<, Axes -> TrueF &,
Outer@List, 8False, True<, 8False, True<D,
8-2<F;

Grid@Join@88"", SpanFromLeft, "SymbolicPiecewiseSubdivision", SpanFromLeft<,
8SpanFromAbove, SpanFromBoth, False, True<<,

8Join@8"EvenOddSubdivision", False<, grarrP1TD<,
8Join@8SpanFromAbove, True<, grarrP2TD<D, Dividers Ø AllD

Out[44]=

SymbolicPiecewiseSubdivision
False True

EvenOddSubdivision False

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

True

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

120 Advanced Numerical Integration in Mathematica

Examples and Applications

Closed-Contour Integrals

This function calculates the mass of a closed contour given in polar coordinates parametrization.

In[42]:= ClosedContourIntegral@fexpr_,
8x_, xpareq_<, 8y_, ypareq_<, 8q_, 0, 2 p<, opts___D :=

NIntegrateBfexpr x2 + y2 ê. 8x Ø xpareq, y Ø ypareq<, 8q, 0, 2 p<,

Evaluate@Sequence üü Append@8opts<, Method Ø "Trapezoidal"DDF

This is circumference of the ellipse with radii 2 and 3 using Integrate.

In[43]:= 8a, b< = 82, 3<;

exact = IntegrateB a2 Cos@qD2 + b2 Sin@qD2 , 8q, 0, 2 p<F

Out[44]= 8 EllipticEB-
5

4
F

Here is the circumference approximation of the ellipse with radii 2 and 3 using the same
function.

In[45]:= ep = ClosedContourIntegral@1, 8x, a Cos@qD<, 8y, b Sin@qD<, 8q, 0, 2 p<D

Out[45]= 15.8654

 The approximation compares quite well with the exact value.

In[46]:= Abs@exact - epD

Out[46]= 9.14824µ10-13

Advanced Numerical Integration in Mathematica 121

Fourier Series Calculation

This is a Mathematica function that calculates a truncated Fourier series approximation of a
function.

In[83]:= FourierAnalysis@f_, 8x_, xmin_, xmax_<, nterms_,
integrator_: HNIntegrate@ÒÒ, Method Ø "GlobalAdaptive", MaxRecursion Ø 30D &LD :=

BlockB8a, b, funcTerms<, a =
2

Hxmax - xminL

TableBintegratorBCosB
2 p

xmax - xmin
j xF f, 8x, xmin, xmax<F, 8j, 0, nterms<F;

b =
2

Hxmax - xminL
TableBintegratorBSinB

2 p

xmax - xmin
j xF f, 8x, xmin, xmax<F,

8j, 1, nterms<F;

funcTerms =
aP1T

2
+ TotalBTableBCosB

2 p

xmax - xmin
j xF aPj + 1T +

SinB
2 p

xmax - xmin
j xF bPjT, 8j, 1, nterms<FF;

funcTerms
F;

Fourier approximation of x3 + x2 over @-2, 2D using Integrate.

In[84]:= func = FourierAnalysisAx3 + x2, 8x, -2, 2<, 12, IntegrateE

Out[84]=
4

3
-
16 CosA p x

2
E

p2
+
4 Cos@p xD

p2
-
16 CosB 3 p x

2
F

9 p2
+
Cos@2 p xD

p2
-
16 CosB 5 p x

2
F

25 p2
+
4 Cos@3 p xD

9 p2
-

16 CosB 7 p x

2
F

49 p2
+
Cos@4 p xD

4 p2
-
16 CosB 9 p x

2
F

81 p2
+
4 Cos@5 p xD

25 p2
-
16 CosB 11 p x

2
F

121 p2
+
Cos@6 p xD

9 p2
+

16 I-6 + p2M SinA p x

2
E

p3
+

I24 - 16 p2M Sin@p xD

2 p3
+
16 I-2 + 3 p2M SinB 3 p x

2
F

9 p3
+

I3 - 8 p2M Sin@2 p xD

2 p3
+

16 I-6 + 25 p2M SinB 5 p x

2
F

125 p3
+

I8 - 48 p2M Sin@3 p xD

18 p3
+
16 I-6 + 49 p2M SinB 7 p x

2
F

343 p3
+
1

2

3

8 p3
-
4

p
Sin@4 p xD +

16 I-2 + 27 p2M SinB 9 p x

2
F

243 p3
-
4 I-3 + 50 p2M Sin@5 p xD

125 p3
+
16 I-6 + 121 p2M SinB 11 p x

2
F

1331 p3
+

I1 - 24 p2M Sin@6 p xD

18 p3

122 Advanced Numerical Integration in Mathematica

This a plot of x3 + x2 and the Fourier series approximation.

In[85]:= PlotA9TooltipAx3 + x2, "Original\nfunction"E,
Tooltip@func, "Fourier\napproximation"D=, 8x, -2, 2<, PlotRange Ø AllE

Out[85]=

-2 -1 1 2

5

10

This calculates a 60-term Fourier approximation of Sin@x3 + 1
2
D over @-4, 4D using

NIntegrate. If Integrate is used the calculation will be very slow.

In[86]:= func = FourierAnalysisBSinBx3 +
1

2
F, 8x, -4, 4<, 60F; êê Timing

Out[86]= 811.2887, Null<

This a plot of Sin@x3 + 1
2
D and the Fourier series approximation.

In[87]:= PlotB:TooltipBSinBx3 +
1

2
F, "Original\nfunction"F,

Tooltip@func, "Fourier\napproximation"D>, 8x, -4, 4<, PlotRange Ø AllF

Out[87]=
-4 -2 2 4

-1.0

-0.5

0.5

1.0

Advanced Numerical Integration in Mathematica 123

NIntegrate Integration Rules

Introduction

An integration rule computes an estimate of an integral over a region using a weighted sum. In

the context of NIntegrate usage, an integration rule object provides both an integral estimate

and an error estimate as a measure of the integral estimate's accuracy.

An integration rule samples the integrand with a set of points. These points are called sampling

points. In the literature these are usually called abscissas. Corresponding to each sampling

point xi there is a weight number wi. An integration rule estimates the integral Ÿa
b f HxL „ x with the

weighted sum ⁄wi f HxiL. An integration rule is a functional, that is, it maps functions over the

interval @a, bD (or a more general region) into real numbers.

If a rule is applied over the region V this will be denoted as RV H f L, where f is the integrand.

The sampling points of the rules considered below are chosen to compute estimates for inte-

grals either over the interval @0, 1D, or the unit cube @0, 1Dd, or the "centered" unit cube B- 1
2

, 1
2
F
d
,

where d is the dimension of the integral. So if V is one of these regions, RH f L will be used

instead of RV H f L. When these rules are applied to other regions, their abscissas and estimates

need to be scaled accordingly.

The integration rule R is said to be exact for the function f if R@a,bDH f L = Ÿa
b f HxL „ x.

The application of an integration rule R to a function f will be referred as an integration of f , for

example, "when f is integrated by R, we get RH f L."

A one-dimensional integration rule is said to be of degree n if it integrates exactly all polynomi-

als of degree n or less, and will fail to do so for at least one polynomial of degree n + 1.

A multidimensional integration rule is said to be of degree n if it integrates exactly all monomi-

als of degree n or less, and will fail to do so for at least one monomial of degree n + 1, that is,

the rule is exact for all monomials of the form ¤i=1
d xi

ai, where d is the dimension, ai ¥ 0, and

⁄i=1
d ai § n.

124 Advanced Numerical Integration in Mathematica

A null rule of degree m will integrate to zero all monomials of degree § m and will fail to do so

for at least one monomial of degree m + 1. Each null rule may be thought of as the difference

between a basic integration rule and an appropriate integration rule of a lower degree.

If the set of sampling points of a rule R1 of degree n contains the set of sampling points of a rule

R2 of a lower degree m, that is, n >m, then R2 is said to be embedded in R1. This will be denoted

as R2 Õ R1.

An integration rule of degree n that is a member of a family of rules with a common derivation

and properties but different degrees will be denoted as RH f , nL, where R might be chosen to

identify the family. (For example, trapezoidal rule of degree 4 might be referred to as TH f , 4L.)

If each rule in a family is embedded in another rule in the same family, then the rules of that

family are called progressive. (For any given m œ  there exists n œ , n >m, for which

RH f , mL Õ RH f , nL).

An integration rule is of open type if the integrand is not evaluated at the end points of the

interval. It is of closed type if it uses integrand evaluations at the interval end points.

An NIntegrate integration rule object has one integration rule for the integral estimate and

one or several null rules for the error estimate. The sampling points of the integration rule and

the null rules coincide. It should be clear from the context whether "integration rule" or "rule"

would mean an NIntegrate integration rule object, or an integration rule in the usual mathemat-

ical sense.

Integration Rule Specification

All integration rules described below, except "MonteCarloRule", are to be used by the adaptive

strategies of NIntegrate. In NIntegrate, all Monte Carlo strategies, crude and adaptive, use

"MonteCarloRule". Changing the integration rule component of an integration strategy will

make a different integration algorithm.

The way to specify what integration rule the adaptive strategies in NIntegrate (see "Global

Adaptive Strategy" and "Local Adaptive Strategy") should use is through a Method suboption.

Here is an example of using an integration rule with a strategy ("GlobalAdaptive").

In[1]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø "ClenshawCurtisRule"<D êê InputForm

Out[1]//InputForm= 1.9999999999193905

Advanced Numerical Integration in Mathematica 125

Here is an example of using the same integration rule as in the example above through a
different strategy ("LocalAdaptive").

In[2]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"LocalAdaptive", Method Ø "ClenshawCurtisRule"<D êê InputForm

Out[2]//InputForm= 1.9999999976742142

If NIntegrate is given a method option that has only an integration rule specification other

than "MonteCarloRule", then that rule is used with the "GlobalAdaptive" strategy. The two

inputs below are equivalent.

For this integration only integration rule is specified.

In[3]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "LobattoKronrodRule"D êê InputForm

Out[3]//InputForm= 2.0000000000019873

For this integration an integration strategy and an integration rule are specified.

In[4]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø "LobattoKronrodRule"<D êê InputForm

Out[4]//InputForm= 2.0000000000019873

Similarly for "MonteCarloRule", the adaptive Monte Carlo strategy is going to be used when

the following two equivalent commands are executed.

For this Monte Carlo integration only the "MonteCarloRule" is specified.

In[5]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "MonteCarloRule"D êê InputForm

Out[5]//InputForm= 1.9923900530424228

For this Monte Carlo integration a Monte Carlo integration strategy and "MonteCarloRule"
are specified.

In[6]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"AdaptiveMonteCarlo", Method Ø "MonteCarloRule"<D êê InputForm

Out[6]//InputForm= 1.9745771611582486

"TrapezoidalRule"

The trapezoidal rule for integral estimation is one of the simplest and oldest rules (possibly

used by the Babylonians and certainly by the ancient Greek mathematicians):

(35)Hb - aL f HaL+ f HbL
2

º Ÿa
b f HxL „ x.

126 Advanced Numerical Integration in Mathematica

The compounded trapezoidal rule is a Riemann sum of the form

(36)TH f , nL = 1
2
h f HaL + h⁄i=1

n-1 f Ha + h iL + 1
2
h f HbL º Ÿa

b f HxL „ x,

where h = b-a
n-1

.

If the Method option is given the value "TrapezoidalRule", the compounded trapezoidal rule is

used to estimate each subinterval formed by the integration strategy.

A "TrapezoidalRule" integration:

In[7]:= NIntegrate@x + 5, 8x, 0, 7<, Method -> "TrapezoidalRule"D

Out[7]= 59.5

option name default value

"Points" 5 number of coarse trapezoidal points

"RombergQuadrature" True should Romberg quadrature be used or not

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"TrapezoidalRule" options.

The trapezoidal rule and its compounded (multipanel) extension are not very accurate. (The

compounded trapezoidal rule is exact for linear functions and converges at least as fast as n-2, if

the integrand has continuous second derivative [DavRab84].) The accuracy of the multipanel

trapezoidal rule can be increased using the "Romberg quadrature".

Since the abscissas of TH f , nL are a subset of TH f , 2 n - 1L, the difference TH f , 2 n - 1L - TH f , nL , can

be taken to be an error estimate of the integral estimate TH f , 2 n - 1L, and can be computed

without extra integrand evaluations.

The option "Points" -> k can be used to specify how many coarse points are used. The total

number of points used by "TrapezoidalRule" is 2 k - 1.

This verifies that the sampling points are as in (36).

In[8]:= k = 4;
ReapüNIntegrate@x + 5, 8x, 1, 7<,

Method -> 8"TrapezoidalRule", "Points" Ø k, "RombergQuadrature" Ø False<,
EvaluationMonitor :> Sow@xDD

Out[9]= 854., 881., 2., 3., 4., 5., 6., 7.<<<

Advanced Numerical Integration in Mathematica 127

"TrapezoidalRule" can be used for multidimensional integrals too.

Here is a multidimensional integration with "TrapezoidalRule". The exact result is

Ÿ0
1
Ÿ0
1
Ix2 + yM „ y „ x = 5 ê6 = 0.8333333 ….

In[10]:= NIntegrate@x^2 + y, 8x, 0, 1<, 8y, 0, 1<, Method -> "TrapezoidalRule"D

Out[10]= 0.833333

Remark: NIntegrate has both a trapezoidal rule and a trapezoidal strategy; see "Trapezoidal"

Strategy in the tutorial Integration Strategies. All internally implemented integration rules of

NIntegrate have the suffix -Rule. So "TrapezoidalRule" is used to specify the trapezoidal

integration rule, and "Trapezoidal" is used to specify the trapezoidal strategy.

Romberg Quadrature

The idea of the Romberg quadrature is to use a linear combination of TH f , nL and TH f , 2 n - 1L that

eliminates the same order terms of truncation approximation errors of TH f , nL and TH f , 2 n - 1L.

From the Euler|Maclaurin formula [DavRab84] we have

‡
a

b
f HxL „ x =

1

2
h f HaL + h‚

i=1

n-1

f Ha + h iL +
1

2
h f HbL -

1

12
h2 H f £HbL - f £HaLL +

1

720
Hb - aL h4 f 4@xD,

where

h =
b - a

n - 1
, a < x < b.

Hence we can write

‡
a

b
f HxL „ x = TH f , nL + A h2 +OIh4M,

‡
a

b
f HxL „ x = TH f , 2 n - 1L + A

h

2

2

+OIh4M.

128 Advanced Numerical Integration in Mathematica

The h2 terms of the equations above can be eliminated if the first equation is subtracted from

the second equation four times. The result is

‡
a

b
f HxL „ x =

4 TH f , 2 n - 1L - T H f , nL

3
+OIh4M.

This example shows that a trapezoidal rule using the Romberg quadrature gives better perfor-
mance than the standard trapezoidal rule. Also, the result of the former is closer to the exact

result, Ÿ0
1 x „ x = 2

3
= 0.6666666 ….

In[11]:= NIntegrate@Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø 8"TrapezoidalRule",

"Points" Ø 5, "RombergQuadrature" Ø True<, "SingularityDepth" Ø ¶<,
MaxRecursion Ø 100, PrecisionGoal Ø 8D êê InputForm êê Timing

Out[11]= 80.06399, 0.6666666666571325<

Here is an integration with a trapezoidal rule that does not use Romberg quadrature.

In[10]:= NIntegrate@Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", Method Ø 8"TrapezoidalRule", "Points" Ø 5,

"RombergQuadrature" Ø False<, "SingularityDepth" Ø ¶<,
MaxRecursion Ø 100, PrecisionGoal Ø 8D êê InputForm êê Timing

Out[10]= 80.109983, 0.6666666644416138<

"TrapezoidalRule" Sampling Points and Weights

The following calculates the trapezoidal sampling points, weights, and error weights for a given
precision.

In[3]:= n = 5; precision = MachinePrecision;
8absc, weights, errweights< = NIntegrate`TrapezoidalRuleData@n, precisionD

Out[4]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0625, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.0625<,
8-0.0625, 0.125, -0.125, 0.125, -0.125, 0.125, -0.125, 0.125, -0.0625<<

Here is how the Romberg quadrature weights and error weights can be derived.

In[5]:= rombergAbsc = absc;
lowOrderWeights = -Herrweights - weightsL;

rombergWeights =
4 weights - lowOrderWeights

3
;

rombergErrorWeights = rombergWeights - weights;
8rombergAbsc, rombergWeights, rombergErrorWeights<

Out[9]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0416667, 0.166667, 0.0833333, 0.166667, 0.0833333, 0.166667, 0.0833333, 0.166667, 0.0416667<,
8-0.0208333, 0.0416667, -0.0416667, 0.0416667,
-0.0416667, 0.0416667, -0.0416667, 0.0416667, -0.0208333<<

Advanced Numerical Integration in Mathematica 129

"NewtonCotesRule"

Newton|Cotes integration formulas are formulas of interpolatory type with sampling points that

are equally spaced.

The Newton|Cotes quadrature for NIntegrate can be specified with the Method option value
"NewtonCotesRule".

In[20]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "NewtonCotesRule"D

Out[20]= 2.

option name default value

"Points" 3 number of coarse Newton|Cotes points

"Type" Closed type of the Newton|Cotes rule

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"NewtonCotesRule" options.

Let the interval of integration, @a, bD, be divided into n - 1 subintervals of equal length by the

points

a, a + h, a + 2 h, …, a + Hn - 1L h = b, h =
b - a

n - 1
.

Then the integration formula of interpolatory type is given by

‡
a

b
f HxL „ x º

b - a

n - 1
‚
k=0

n-1

Bn-1,k f Ha + h kL,

where

Bn-1,k =
n - 1

b - a
‡
a

b wHxL

H-a - k h + xLw£Ha + h kL
„ x,

with

wHxL = Hx - aL Hx - a - hL …Hx - a - Hn - 1L hL.

130 Advanced Numerical Integration in Mathematica

When n is large, the Newton|Cotes n-point coefficients are large and are of mixed sign.

In[21]:= NIntegrate`NewtonCotesRuleData@25, MachinePrecisionD@@2DD

Out[21]= 90.00421169, 0.0712002, -0.499965, 5.17028, -43.2178, 306.528, -1854.44, 9697.73, -44332.4,

178882., -642291., 2.0662µ106, -5.98934µ106, 1.57199µ107, -3.75117µ107, 8.16646µ107,
-1.62678µ108, 2.97256µ108, -4.99278µ108, 7.72171µ108, -1.10118µ109, 1.44964µ109,
-1.76314µ109, 1.98245µ109, -2.06138µ109, 1.98245µ109, -1.76314µ109, 1.44964µ109,
-1.10118µ109, 7.72171µ108, -4.99278µ108, 2.97256µ108, -1.62678µ108, 8.16646µ107,
-3.75117µ107, 1.57199µ107, -5.98934µ106, 2.0662µ106, -642291., 178882., -44332.4,
9697.73, -1854.44, 306.528, -43.2178, 5.17028, -0.499965, 0.0712002, 0.00421169=

Since this may lead to large losses of significance by cancellation, a high-order Newton|Cotes

rule must be used with caution.

"NewtonCotesRule" Sampling Points and Weights

The following calculates the Newton|Cotes sampling points, weights, and error weights for a
given precision.

In[22]:= n = 5; precision = MachinePrecision;
8absc, weights, errweights< = NIntegrate`NewtonCotesRuleData@n, precisionD

Out[23]= 880., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.<,
80.0348854, 0.20769, -0.0327337, 0.370229, -0.160141, 0.370229, -0.0327337, 0.20769, 0.0348854<,
8-0.0428924, 0.20769, -0.388289, 0.370229, -0.293474, 0.370229, -0.388289, 0.20769, -0.0428924<<

"GaussBerntsenEspelidRule"

Gaussian quadrature uses optimal sampling points (through polynomial interpolation) to form a

weighted sum of the integrand values over these points. On a subset of these sampling points a

lower order quadrature rule can be made. The difference between the two rules can be used to

estimate the error. Berntsen and Espelid derived error estimation rules by removing the central

point of Gaussian rules with odd number of sampling points.

The Gaussian quadrature for NIntegrate can be specified with the Method option value
"GaussBerntsenEspelidRule".

In[24]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "GaussBerntsenEspelidRule"D

Out[24]= 2.

option name default value

"Points" Automatic number of Gauss points

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

Advanced Numerical Integration in Mathematica 131

"GaussBerntsenEspelidRule" options.

A Gaussian rule GH f , nL of n points for integrand f is exact for polynomials of degree 2 n - 1 (i.e.,

GH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 1).

Gaussian rules are of open type since the integrand is not evaluated at the end points of the

interval. (Lobatto rules, Clenshaw|Curtis rules, and the trapezoidal rule are of closed type since

they use integrand evaluations at the interval end points.)

This defines the divided differences functional [Ehrich2000]

dvdHt1, t2, …, ts+1L @ f D =‚
n=1

s+1

‰
m=1
m≠n

s+1

Itn - tmM
-1 f HtnL, 0 § t1 < t2 < … < ts+1 § 1.

For the Gaussian rule GH f , 2 n + 1L, with sampling points x1, x2, …, x2 n+1, Berntsen and Espelid have

derived the following error estimate functional (see [Ehrich2000])

EHGH f , 2m + 1LL = H-1Ln
22 n+1 n !2 H2 nL !

H4 n + 1L !
dvdHx1, x2, …, x2 n+1L @ f D.

(The original formula in [Ehrich2000] is for sampling points in @-1, 1D. The formula above is for

sampling points in @0, 1D.)

This example shows the number of sampling points used by NIntegrate with various values of
 the

"GaussBerntsenEspelidRule" option "Points".

In[25]:= Table@Hk = 0; NIntegrate@x^H1 ê 2L, 8x, 0, 1<,
Method Ø 8"GaussBerntsenEspelidRule", "Points" Ø i<,
EvaluationMonitor :> k++D; kL, 8i, 2, 20<D

Out[25]= 8164, 106, 110, 128, 146, 164, 182, 200, 218, 236, 225, 243, 261, 279, 231, 245, 259, 273, 287<

132 Advanced Numerical Integration in Mathematica

"GaussBerntsenEspelidRule" Sampling Points and Weights

The following calculates the Gaussian abscissas, weights, and Bernsen|Espelid error weights for
a given number of coarse points and precision.

In[26]:= n = 5; precision = 20;
8absc, weights, errweights< =
NIntegrate`GaussBerntsenEspelidRuleData@n, precisionD

Out[27]= 880.010885670926971503598, 0.056468700115952350462,
0.13492399721297533795, 0.24045193539659409204, 0.36522842202382751383,
0.50000000000000000000, 0.63477157797617248617, 0.75954806460340590796,
0.86507600278702466205, 0.94353129988404764954, 0.98911432907302849640<,

80.027834283558086833242, 0.06279018473245231232, 0.09314510546386712571,
0.11659688229599523996, 0.13140227225512333109, 0.13646254338895031536,
0.13140227225512333109, 0.11659688229599523996, 0.09314510546386712571,
0.06279018473245231232, 0.027834283558086833242<,

8-0.02558041542407929977, 0.0854662509217516437, -0.1540701386250929081,
0.2156264139318621619, -0.257904654193391913, 0.272925086777900631, -0.257904654193391913,
0.215626413931862162, -0.154070138625092908, 0.0854662509217516437, -0.0255804154240792998<<

The Berntsen|Espelid error weights are implemented below.

This implements the divided differences.

In[28]:= polyd@vec_List, nu_D := HTimes üü Hvec@@nuDD - Drop@vec, 8nu<DLL^H-1L;
dvdWeights@vec_ListD :=

dvdWeights@vecD = Table@polyd@vec, nuD, 8nu, 1, Length@vecD<D;

This computes the abscissas and the weights of G H f , 2 n + 1L.
In[30]:= 8absc, weights, errweights< = NIntegrate`GaussRuleData@2 n + 1, precisionD;

This computes the Berntsen|Espelid error weights.

In[31]:=

JH-1Ln p Gamma@1 + nD2N

GammaA 3

2
+ 2 nE 22 n

dvdWeights@abscD

Out[31]= 8-0.02558041542407929977, 0.0854662509217516437, -0.1540701386250929081,
0.2156264139318621619, -0.2579046541933919131, 0.2729250867779006307, -0.257904654193391913,
0.215626413931862162, -0.154070138625092908, 0.0854662509217516437, -0.0255804154240792998<

"GaussKronrodRule"

Gaussian quadrature uses optimal sampling points (through polynomial interpolation) to form a

weighted sum of the integrand values over these points. The Kronrod extension of a Gaussian

rule adds new sampling points in between the Gaussian points and forms a higher-order rule

that reuses the Gaussian rule integrand evaluations.

Advanced Numerical Integration in Mathematica 133

The Gauss|Kronrod quadrature for NIntegrate can be specified with the Method option value
"GaussKronrodRule".

In[32]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "GaussKronrodRule"D

Out[32]= 2.

option name default value

"Points" Automatic number of Gauss points that will be
extended with Kronrod points

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

"GaussKronrodRule" options.

A Gaussian rule GH f , nL of n points for integrand f is exact for polynomials of degree 2 n - 1, that

is, GH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 1.

Gauss|Kronrod rules are of open type since the integrand is not evaluated at the end points of

the interval.

The Kronrod extension GKH f , nL of a Gaussian rule with n points GH f , nL adds n + 1 points to GH f , nL

and the extended rule is exact for polynomials of degree 3 n + 1 if n is even, or 3 n + 2 if n is odd.

The weights associated with a Gaussian rule change in its Kronrod extension.

Since the abscissas of GH f , nL are a subset of GKH f , nL, the difference †GKH f , nL -GH f , nL§ can be

taken to be an error estimate of the integral estimate GKH f , nL, and can be computed without

extra integrand evaluations.

This example shows the number of sampling points used by NIntegrate with various values of
"GaussKronrodRule" option "Points".

In[33]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"GaussKronrodRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 2, 20<D
Out[33]= 8284, 91, 63, 33, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41<

For an implementation description of Kronrod extensions of Gaussian rules, see [PiesBrand74].

134 Advanced Numerical Integration in Mathematica

"GaussKronrodRule" Sampling Points and Weights

The following calculates the Gauss|Kronrod abscissas, weights, and error weights for a given
number of coarse points and precision.

In[34]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`GaussKronrodRuleData@n, precisionD

Out[35]= 880.00795731995257876775, 0.04691007703066800360,
0.12291663671457538978, 0.23076534494715845448, 0.36018479341910840329,
0.50000000000000000000, 0.63981520658089159671, 0.76923465505284154552,
0.87708336328542461022, 0.95308992296933199640, 0.99204268004742123225<,

80.021291018375540916432, 0.05761665831123669701, 0.093400398278246328734,
0.12052016961432379335, 0.13642490095627946117, 0.1414937089287456066,
0.13642490095627946117, 0.12052016961432379335, 0.093400398278246328734,
0.05761665831123669701, 0.021291018375540916432<,

80.021291018375540916432, -0.06084678421685784675, 0.093400398278246328734,
-0.11879416563535944067, 0.13642490095627946117, -0.14295073551569883784,
0.13642490095627946117, -0.11879416563535944067, 0.093400398278246328734,
-0.06084678421685784675, 0.021291018375540916432<<

The calculations below demonstrate the degree of the Gauss-Kronrod integration rule (see

above).

This computes the degree of the Gauss|Kronrod integration rule.

In[36]:= p = If@OddQ@nD, 3 * n + 2, 3 * n + 1D

Out[36]= 17

This defines a function.

In[37]:= f@x_D := xp

The command below implements the integration rule weighted sums for the integral estimate,

⁄i=1
2 n+1wi f HxiL, and the error estimate, ⁄i=1

2 n+1 ei f HxiL, where 8xi <i=1
2 n+1 are the abscissas, 8wi <i=1

2 n+1 are the

weights, and 8ei <i=1
2 n+1 are the error weights.

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[38]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[38]= 80.0555555555555555556, 0.0004434409627672096<

The integral estimate coincides with the exact result.

In[39]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[39]= 0.055555555555555555556

Advanced Numerical Integration in Mathematica 135

The error estimate is not zero since the embedded Gauss rule is exact for polynomials of degree

§ 2 n - 1. If we integrate a polynomial of that degree, the error estimate becomes zero.

This defines a function.

In[40]:= f@x_D := x2 n-1

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[41]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[41]= 90.1000000000000000000, 0.µ10-20=

Here is the exact result using Integrate.

In[42]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[42]= 0.10000000000000000000

"LobattoKronrodRule"

The Lobatto integration rule is a Gauss-type rule with preassigned abscissas. It uses the end

points of the integration interval and optimal sampling points inside the interval to form a

weighted sum of the integrand values over these points. The Kronrod extension of a Lobatto

rule adds new sampling points in between the Lobatto rule points and forms a higher-order rule

that reuses the Lobatto rule integrand evaluations.

NIntegrate uses the Kronrod extension of the Lobatto rule if the Method option is given the
value "LobattoKronrodRule".

In[43]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "LobattoKronrodRule"D

Out[43]= 2.

option name default value

"Points" 5 number of Gauss|Lobatto points that will
be extended with Kronrod points

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"LobattoKronrodRule" options.

A Lobatto rule LH f , nL of n points for integrand f is exact for polynomials of degree 2 n - 3, (i.e.,

LH f , nL = Ÿa
b f HxL „ x if f HxL is a polynomial of degree § 2 n - 3).

136 Advanced Numerical Integration in Mathematica

The Kronrod extension LKH f , nL of a Lobatto rule with n points LH f , nL adds n - 1 points to LH f , nL

and the extended rule is exact for polynomials of degree 3 n - 2 if n is even, or 3 n - 3 if n is odd.

The weights associated with a Lobatto rule change in its Kronrod extension.

As with "GaussKronrodRule", the number of Gauss points is specified with the option

"GaussPoints". If "LobattoKronrodRule" is invoked with "Points" -> n, the total number of

rule points will be 2 n - 1.

This example shows the number of sampling points used by NIntegrate with various values
the of "LobattoKronrodRule" option "Points".

In[44]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"LobattoKronrodRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 3, 20<D
Out[44]= 8304, 91, 63, 33, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39<

Since the Lobatto rule is a closed rule, the integrand needs to be evaluated at the end points of

the interval. If there is a singularity at these end points, NIntegrate will ignore it.

For an implementation description of Kronrod extensions of Lobatto rules, see [PiesBrand74].

"LobattoKronrodRule" Sampling Points and Weights

The following calculates the Lobatto|Kronrod abscissas, weights, and error weights for a given
number of coarse points and precision.

In[45]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`LobattoKronrodRuleData@n, precisionD

Out[46]= 990.µ10-20, 0.05479723624366560671, 0.17267316464601143283,
0.32950886704450351424, 0.50000000000000000000, 0.67049113295549648576,
0.82732683535398856717, 0.94520276375633439329, 1.0000000000000000000=,

80.015321869488536155203, 0.089631349776603677990, 0.14198938902406054911,
0.16711686990820884179, 0.1718810436051815362, 0.16711686990820884179,
0.14198938902406054911, 0.089631349776603677990, 0.015321869488536155203<,

8-0.034678130511463844797, 0.089631349776603677990, -0.13023283319816167312,
0.16711686990820884179, -0.18367451195037401934, 0.16711686990820884179,
-0.13023283319816167312, 0.089631349776603677990, -0.034678130511463844797<=

The calculations below demonstrate the degree of the Lobatto|Kronrod integration rule (see

above).

This computes the degree of the Lobatto|Kronrod integration rule.

In[47]:= p = If@OddQ@nD, 3 * n - 3, 3 * n - 2D

Out[47]= 12

Advanced Numerical Integration in Mathematica 137

This defines a function.

In[48]:= f@x_D := xp

The command below implements the integration rule weighted sums for the integral estimate,

⁄i=1
2 n-1wi f HxiL, and the error estimate, ⁄i=1

2 n-1 ei f HxiL, where 8xi <i=1
2 n-1 are the abscissas, 8wi <i=1

2 n-1 are the

weights, and 8ei <i=1
2 n-1 are the error weights.

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[49]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[49]= 80.0769230769230769213, -0.0011566945263191618<

The preceding integral estimate coincides with the exact result.

In[50]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[50]= 0.076923076923076923077

The preceding error estimate is not zero since the embedded Lobatto rule is exact for polynomi-

als of degree § 2 n - 3. If we integrate a polynomial of that degree, the error estimate becomes

zero.

This defines a function.

In[51]:= f@x_D := x2 n-3

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[52]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[52]= 90.1249999999999999964, -7.µ10-19=

The exact result using Integrate.

In[53]:= N@Integrate@f@xD, 8x, 0, 1<D, precisionD

Out[53]= 0.12500000000000000000

138 Advanced Numerical Integration in Mathematica

"ClenshawCurtisRule"

A Clenshaw|Curtis rule uses sampling points derived from the Chebyshev polynomial approxima-

tion of the integrand.

The Clenshaw|Curtis quadrature for NIntegrate can specified with the Method option value
"ClenshawCurtisRule".

In[54]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "ClenshawCurtisRule"D

Out[54]= 2.

option name default value

"Points" 5 number of coarse Clenshaw|Curtis points

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

"ClenshawCurtisRule" options.

Theoretically a Clenshaw|Curtis rule with n sampling points is exact for polynomials of degree n

or less. In practice, though, Clenshaw|Curtis rules achieve the accuracy of the Gaussian rules

[Evans93][OHaraSmith68]. The error of the Clenshaw|Curtis formula is analyzed in

[OHaraSmith68].

The sampling points of the classical Clenshaw|Curtis rule are zeros of Chebyshev polynomials.

The sampling points of a practical Clenshaw|Curtis rule are chosen to be Chebyshev polynomial

extremum points. The classical Clenshaw|Curtis rules are not progressive, but the practical

Clenshaw|Curtis rules are [DavRab84][KrUeb98].

Let PCCH f , nL denote a practical Clenshaw|Curtis rule of n sampling points for the function f .

The progressive property means that the sampling points of PCCH f , nL are a subset of the sam-

pling points of PCCH f , 2 n - 1L. Hence the difference PCCH f , 2 n - 1L - PCCH f , nL§ can be taken to be

an error estimate of the integral estimate PCCH f , 2 n - 1L, and can be computed without extra

integrand evaluations.

The NIntegrate option Method -> 8"ClenshawCurtisRule", "Points" -> k< uses a
practical Clenshaw|Curtis rule with 2 n - 1 points PCCH f , 2 n - 1L.

In[55]:= NIntegrate@Sqrt@xD, 8x, 0, 1<, Method -> 8"ClenshawCurtisRule", "Points" -> 10<D

Out[55]= 0.666667

Advanced Numerical Integration in Mathematica 139

This example shows the number of sampling points used by NIntegrate with various values of
the "ClenshawCurtisRule" option "Points".

In[56]:= Table@
Hk = 0; NIntegrate@x^10, 8x, 0, 1<, Method Ø 8"ClenshawCurtisRule", "Points" Ø i<,

EvaluationMonitor :> k++D; kL, 8i, 3, 20<D
Out[56]= 8208, 226, 79, 83, 35, 41, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39<

"ClenshawCurtisRule" Sampling Points and Weights

Here are the sampling points and the weights of the Clenshaw|Curtis rule for a given coarse
number of points and precision.

In[57]:= n = 5; precision = 20;
8absc, weights, errweights< = NIntegrate`ClenshawCurtisRuleData@n, precisionD

Out[58]= 990.µ10-21, 0.03806023374435662194, 0.14644660940672623780,
0.30865828381745511414, 0.50000000000000000000, 0.69134171618254488586,
0.85355339059327376220, 0.96193976625564337806, 1.00000000000000000000=,

80.00793650793650793651, 0.07310932460800907751, 0.13968253968253968254,
0.18085892936024489075, 0.19682539682539682540, 0.18085892936024489075,
0.13968253968253968254, 0.07310932460800907751, 0.00793650793650793651<,

8-0.02539682539682539683, 0.07310932460800907751, -0.1269841269841269841,
0.18085892936024489075, -0.20317460317460317460, 0.18085892936024489075,
-0.12698412698412698413, 0.07310932460800907751, -0.02539682539682539683<=

Here is another way to compute the sampling points of PCCH f , 2 n - 1L.
In[59]:= nn = 2 n - 1;

NB
1

2
TableBCosB

p

nn - 1
iF, 8i, nn - 1, 0, -1<F +

1

2
, precisionF

Out[60]= 80, 0.038060233744356621936, 0.14644660940672623780,
0.30865828381745511414, 0.50000000000000000000, 0.69134171618254488586,
0.85355339059327376220, 0.96193976625564337806, 1.0000000000000000000<

This defines a function.

In[61]:= f@x_D := x2 n-1

These are the integral and error estimates for Ÿ0
1 f HxL „ x computed with the rule.

In[62]:= TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &, 8absc, weights, errweights<D

Out[62]= 80.10000000000000000000, 0.0017578125000000000<

The exact value by Integrate.

In[63]:= Integrate@f@xD, 8x, 0, 1<D

Out[63]=
1

10

140 Advanced Numerical Integration in Mathematica

"MultiPanelRule"

"MultiPanelRule" combines into one rule the applications of a one-dimensional integration

rule over two or more adjacent intervals. An application of the original rule to any of the adja-

cent intervals is called a panel.

Here is an example of an integration with "MultiPanelRule".

In[64]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"MultiPanelRule", Method -> "GaussKronrodRule", "Panels" -> 3<D

Out[64]= 2.

"MultiPanelRule" options.

Let the unit interval @0, 1D be partitioned into k sub-intervals with the points 0 = y0 < y1 < … < yk = 1.

If we have the rule

RH f L =‚
i=1

n

wi f HxiL º ‡
0

1
f HxL „ x,

it can be transformed into a rule for the interval Ay j-1, y jE,

1

y j - y j-1
‚
i=1

n

wi f Ixi Iy j - y j-1M + y j-1M º ‡
y j-1

y j
f HxL „ x, j = 1, …, k.

Let xi j = xi Iy j - y j-1M + y j-1, and y j - y j-1 = 1 êk, j = 1, …, k. Then the k-panel integration rule based on

RH f L can be written explicitly as

kµRH f L =‚
j=1

k 1

y j - y j-1
‚
i=1

n

wi f Ixi j M =
1

k
„

j=1

k

‚
i=1

n

wi f Ixi j M.

Advanced Numerical Integration in Mathematica 141

option name default value

Method "NewtonCotesRuÖ
le"

integration rule specification that provides
the abscissas, weights, and error weights
for a single panel

"Panels" 5 number of panels

"SymbolicProcessing" Automatic number of seconds to do symbolic
processing

If RH f L is closed, that is, RH f L has 0 and 1 as sampling points, then xn j-1 = x1 j, and the number of

sampling points of kµRH f L can be reduced to k Hn - 1L + 1. (This is done in the implementation of

"MultiPanelRule".)

More about the theory of multi-panel rules, also referred to as compounded or composite rules,

can be found in [KrUeb98] and [DavRab84].

"MultiPanelRule" Sampling Points and Weights

The sampling points and the weights of the "MultiPanelRule" can be obtained with this
command.

In[65]:= npanels = 3;
NIntegrate`MultiPanelRuleData@
8"GaussKronrodRule", "Points" -> 2<, npanels, MachinePrecisionD

Out[66]= 880.0123633, 0.0704416, 0.166667, 0.262892, 0.32097, 0.345697, 0.403775,
0.5, 0.596225, 0.654303, 0.67903, 0.737108, 0.833333, 0.929558, 0.987637<,

80.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704,
0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966<,

80.0329966, -0.0848485, 0.103704, -0.0848485, 0.0329966, 0.0329966, -0.0848485, 0.103704,
-0.0848485, 0.0329966, 0.0329966, -0.0848485, 0.103704, -0.0848485, 0.0329966<<

Here are the abscissas and weights of a Gauss|Kronrod rule.

In[67]:= 8absc, weights, errweights< = NIntegrate`GaussKronrodRuleData@2, MachinePrecisionD

Out[67]= 880.03709, 0.211325, 0.5, 0.788675, 0.96291<,
80.0989899, 0.245455, 0.311111, 0.245455, 0.0989899<,
80.0989899, -0.254545, 0.311111, -0.254545, 0.0989899<<

The multi-panel rule abscissas can be obtained using Rescale.

In[68]:= Join üü MapBRescale@absc, 80, 1<, ÒD &, PartitionBRange@0, npanelsD
1

npanels
, 2, 1FF

Out[68]= 80.0123633, 0.0704416, 0.166667, 0.262892, 0.32097, 0.345697, 0.403775,
0.5, 0.596225, 0.654303, 0.67903, 0.737108, 0.833333, 0.929558, 0.987637<

This shows how to derive the multi-panel rule weights from the original weights.

In[69]:=
1

npanels
Join üü Table@weights, 8npanels<D

Out[69]= 80.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182,
0.103704, 0.0818182, 0.0329966, 0.0329966, 0.0818182, 0.103704, 0.0818182, 0.0329966<

142 Advanced Numerical Integration in Mathematica

"CartesianRule"

A d-dimensional Cartesian rule has sampling points that are a Cartesian product of the sampling

points of d one-dimensional rules. The weight associated with a Cartesian rule sampling point is

the product of the one-dimensional rule weights that correspond to its coordinates.

The Cartesian product integration for NIntegrate can be specified with the Method option
value "CartesianRule".

In[70]:= NIntegrate@1 ê Sqrt@x + y + zD, 8x, 0, 1<,
8y, 0, 1<, 8z, 0, 1<, Method -> "CartesianRule"D

Out[70]= 0.862877

option name default value

Method "GaussKronrodR
ule"

a rule or a list of rules with which the
Cartesian product rule will be formed

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"CartesianRule" options.

For example, suppose we have the formulas:

‡
0

1
f1HxL „ x º‚

i=1

n1
wi1 f1Iai1M,

‡
0

1
f2HxL „ x º‚

i=1

n2
wi2 f2Iai2M,

‡
0

1
f3HxL „ x º‚

i=1

n3

wi
3 f3Iai

3M.

that are exact for polynomials of degree d1, d2, and d3, respectively. Then it is not difficult to see

that the formula with n1µn2µn3 points,

‡
0

1

‡
0

1

‡
0

1
f Hx, y, zL „ x „ y „ z º‚

i=1

n1

‚
j=1

n2

‚
k=1

n3

w1 i w2 j w3 k f Ia1 i, a2 j, a3 kM

Advanced Numerical Integration in Mathematica 143

Ö

is exact for polynomials in x1, x2, x3 of degree minHd1, d2, d3L. Note that the weight associated with

the abscissa 9ai1, ai2, ai
3= is wi1 wi2 wi

3.

The general Cartesian product formula for D one-dimensional rules the i of which has ni sam-

pling points 9a j
i =
j=1

ni and weights 9w j
i =
j=1

ni is

(37)ŸV f Hx1, …, xdL „ x1 … „ xD º⁄i1=1
n1 I… ⁄iD=1

nD I¤k=1
D wik

k M f Iai1
1 , …, aiD

D MM.

Clearly (1) can be written as

(38)ŸV f HxL „ x º⁄iD=1
n wi f HaiL,

where n =¤k=1
D nk , and for each integer k œ @1, nD, ak = 9ai

1, …, ai
k= and wk =¤k=1

D wik
k .

Here is a visualization of a Cartesian product rule integration. Along the x axis
"TrapezoidalRule" is used; along the y axis "GaussKronrodRule" is used.

In[71]:= pnts = Reap@NIntegrate@x + y^9, 8x, 0, 1<, 8y, 0, 1<, Method ->
88"TrapezoidalRule", "Points" -> 4<, 8"GaussKronrodRule", "Points" -> 5<<,

EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;
Graphics@Point êü pnts, AspectRatio -> 1, Axes Ø True, AxesOrigin Ø 8-0.02, -0.02<D

Out[72]=

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cartesian rules are applicable for relatively low dimensions (§ 4), since for higher dimensions

they are subject to "combinatorial explosion." For example, a five-dimensional Cartesian prod-

uct of 5 identical one-dimensional rules each having 10 sampling points would have 10^5 sam-

pling points.

144 Advanced Numerical Integration in Mathematica

NIntegrate uses Cartesian product rule if the integral is multidimensional and the Method

option is given a one-dimensional rule or a list of one-dimensional rules.

Here is an example specifying Cartesian product rule integration with GaussKronrodRule.

In[73]:= NIntegrate@x + y, 8x, 0, 1<, 8y, 0, 1<, Method -> "GaussKronrodRule"D

Out[73]= 1.

Here is an example specifying Cartesian product rule integration with a list of one-dimensional
integration rules.

In[74]:= NIntegrate@x + y, 8x, 0, 1<, 8y, 0, 1<,
Method -> 8"LobattoKronrodRule", "GaussKronrodRule"<D

Out[74]= 1.

Another example specifying Cartesian product rule integration with a list of one-dimensional
integration rules.

In[75]:= NIntegrate@x + y^3, 8x, 0, 1<, 8y, 0, 1<, Method ->
88"TrapezoidalRule", "Points" -> 8<, 8"GaussKronrodRule", "GaussPoints" -> 12<<D

Out[75]= 0.75

More about Cartesian rules can be found in [Stroud71].

"CartesianRule" Sampling Points and Weights

The sampling points and the weights of the "CartesianRule" rule can be obtained with the

command NIntegrate`CartesianRuleData.
In[76]:= crule = NIntegrate`CartesianRuleData@88"GaussKronrodRule", "GaussPoints" Ø 2<,

8"TrapezoidalRule", "Points" Ø 2<<, MachinePrecisionD
Out[76]= NIntegrate`CartesianRule@8880.03709, 0.211325, 0.5, 0.788675, 0.96291<, 80., 0.5, 1.<<,

880.0989899, 0.245455, 0.311111, 0.245455, 0.0989899<, 80.166667, 0.666667, 0.166667<<,
880.0989899, -0.254545, 0.311111, -0.254545, 0.0989899<, 8-0.0833333, 0.166667, -0.0833333<<<D

NIntegrate`CartesianRuleData keeps the abscissas and the weights of each rule separated.

Otherwise, as it can be seen from (38) the result might be too big for higher dimensions.

Advanced Numerical Integration in Mathematica 145

The results of NIntegrate`CartesianRuleData can be put into the form of (38) with this
function.

In[77]:= productFunc = MapAt@Flatten@Outer@Times, Sequence üü ÒDD &, Ò, 81, 3<D &ü
MapAt@Flatten@Outer@Times, Sequence üü ÒDD &, Ò, 81, 2<D &ü

MapAt@Flatten@Outer@List, Sequence üü ÒD, Length@ÒD - 1D &, Ò, 81, 1<D &;

In[78]:= productFunc@cruleD

Out[78]= NIntegrate`CartesianRule@
8880.03709, 0.<, 80.03709, 0.5<, 80.03709, 1.<, 80.211325, 0.<, 80.211325, 0.5<,

80.211325, 1.<, 80.5, 0.<, 80.5, 0.5<, 80.5, 1.<, 80.788675, 0.<,
80.788675, 0.5<, 80.788675, 1.<, 80.96291, 0.<, 80.96291, 0.5<, 80.96291, 1.<<,

80.0164983, 0.0659933, 0.0164983, 0.0409091, 0.163636, 0.0409091, 0.0518519, 0.207407,
0.0518519, 0.0409091, 0.163636, 0.0409091, 0.0164983, 0.0659933, 0.0164983<,

8-0.00824916, 0.0164983, -0.00824916, 0.0212121, -0.0424242, 0.0212121, -0.0259259, 0.0518519,
-0.0259259, 0.0212121, -0.0424242, 0.0212121, -0.00824916, 0.0164983, -0.00824916<<D

"MultiDimensionalRule"

A fully symmetric integration rule for the cube B- 1
2

, 1
2
F
d
, d œ , d > 1 consists of sets of points with

the following properties: (i) all points in a set can be generated by permutations and/or sign

changes of the coordinates of any fixed point from that set; (ii) all points in a set have the

same weight associated with them.

The fully symmetric multidimensional integration (fully symmetric cubature) for NIntegrate
can be specified with the Method option value "MultiDimensionalRule".

In[79]:= NIntegrate@1 ê Sqrt@x + yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø "MultiDimensionalRule"D

Out[79]= 1.10457

A set of points of a fully symmetric integration rule that satisfies the preceding properties is

called an orbit. A point of an orbit, 8x1, x2, …, xd<, for the coordinates of which the inequality

x1 ¥ x2 ¥ … ¥ xd holds, is called a generator. (See [KrUeb98][GenzMalik83].)

option name default value

"Generators" 5 number of generators of the fully symmet-
ric rule

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"MultiDimensionalRule" options.

146 Advanced Numerical Integration in Mathematica

If an integration rule has K orbits denoted W1, W2, …, WK, and the ith of them, Wi, has a weight wi

associated with it, then the integral estimate is calculated with the formula

‡
B-

1

2
,
1

2
F
d f HXL „X º‚

i=1

K

wi ‚
X jœWi

f IX jM.

A null rule of degree m will integrate to zero all monomials of degree § m and will fail to do so

for at least one monomial of degree m + 1. Each null rule may be thought of as the difference

between a basic integration rule and an appropriate integration of lower degree.

The "MultiDimensionalRule" object of NIntegrate is basically an interface to three different

integration rule objects that combine an integration rule and one or several null rules. Their

number of generators and orders are summarized in the table below. The rule objects with 6

and 9 generators use three null rules, each of which is a linear combination of two null rules.

The null rule linear combinations are used in order to avoid phase errors. See

[BerntEspGenz91] for more details about how the null rules are used.

Number of generators and orders of the fully symmetric rules of NIntegrate:

Number of Generators Integration Rule
Order

Order of Each of the Null Rules Described in

5 7 5 AGenzMalik80E

6 7 5, 3, 1 AGenzMalik83EABerntEspGenz91E

9 9 7, 5, 3 AGenzMalik83EABerntEspGenz91E

This is the number of sampling points used by NIntegrate with its fully symmetric multidimen-

sional integration rules for integrals of the form Ÿ0
1
Ÿ0
1
Hxm + ymL „ y „ x, m = 1, …, 20.

In[80]:= tbl = Table@Prepend@Table@
Hk = 0; NIntegrate@x^m + y^m, 8x, 0, 1<, 8y, 0, 1<,

Method -> 8"MultiDimensionalRule", "Generators" -> gen<,
EvaluationMonitor :> k++D; kL, 8gen, 85, 6, 9<<D, mD, 8m, 1, 20<D;

Grid@Join@88"Monomial", "Number of generators", SpanFromLeft, SpanFromLeft<,
8"degree", "5", "6", "9"<<, tblD,

Dividers -> 88False, True, False<, 8False, False, True, False<<,
Alignment -> 8Center<D

Monomial Number of generators
degree 5 6 9

1 17 21 33
2 17 426615 33
3 17 206157 33
4 17 21 21417

Advanced Numerical Integration in Mathematica 147

Out[81]=

5 17 21 39897
6 527 651 33
7 1003 903 33
8 1241 1281 231
9 1445 1617 429
10 1717 1785 561
11 3145 3045 561
12 3689 3297 561
13 3825 3843 561
14 3825 3843 825
15 4063 3591 957
16 3893 2247 1089
17 3961 2205 1155
18 3995 3297 1155
19 4403 3255 1155
20 6035 4137 1155

"MultiDimensionalRule" Sampling Points and Weights

This subsection gives an example of a calculation of an integral estimate with a fully symmetric

multidimensional rule.

Here is the parameter for the number of generators.

In[82]:= numberOfGenerators = 9;

This function takes a generator point and creates its orbit.

In[83]:= MakeOrbit@generator_D :=
Module@8perms, signs, gperms, len = Length@generatorD<,
perms = Permutations@Range@lenDD;
signs = Flatten@Outer@List, Sequence üü Table@81, -1<, 8len<DD, len - 1D;
gperms = Map@Part@generator, Ò1D &, permsD;
Union@Flatten@Outer@Times, gperms, signs, 1D, 1DD

D;

The generators and weights for given number of generators.

In[84]:= dimension = 2;
precision = MachinePrecision;
rdata =

NIntegrate`MultiDimensionalRuleData@numberOfGenerators, precision, dimensionD;
generators = rdata@@1, 1DD;
weights = rdata@@1, 2DD;

This computes the orbit of each generator.

In[89]:= orbits = MakeOrbit êü generators;

This defines a function.

In[90]:= Clear@fD
f@x_, y_D := x^3 * y^3

148 Advanced Numerical Integration in Mathematica

This applies the multidimensional rule.

In[92]:= TotalüMapThread@Total@Map@f üü HÒ1 + 1 ê 2L &, Ò1D * Ò2D &, 8orbits, weights<D êê
InputForm

Out[92]//InputForm= 0.06250000000000001

Here is the exact result.

In[93]:= Integrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<D êê N êê InputForm

Out[93]//InputForm= 0.0625

This makes graphics primitives for points of the orbits.

In[94]:= graphs = Graphics@8Red, AbsolutePointSize@4D, Point êü Ò1<,
Axes -> False, AspectRatio -> 1, Frame -> True, FrameTicks Ø None,
PlotRange Ø 88-1, 1<, 8-1, 1<< ê 2, ImageSize Ø 875, 75<D & êü orbits;

Here is how the different orbits look.

In[95]:= Row@graphsD

Out[95]=

Here are all rule points together.

In[96]:= Graphics@First êü graphs, Frame -> True, FrameTicks Ø NoneD

Out[96]=

Advanced Numerical Integration in Mathematica 149

"MonteCarloRule"

A Monte Carlo rule estimates an integral by forming a uniformly weighted sum of integrand

evaluations over random (quasi-random) sampling points.

Here is an example of using "MonteCarloRule" with 1000 sampling points.

In[97]:= NIntegrateB
‰x - 1

‰ - 1
, 8x, 0, 1<, Method Ø 8"MonteCarloRule", "Points" Ø 1000<F

Out[97]= 0.413394

option name default value

"Points" 100 number of sampling points

"PointGenerator" Random sampling points coordinates generator

"AxisSelector" Automatic selection algorithm of the splitting axis
when global adaptive Monte Carlo integra-
tion is used

"SymbolicProcessing" Automatic number of seconds to do symbolic
preprocessing

"MonteCarloRule" options.

In Monte Carlo methods [KrUeb98], the d-dimensional integral ŸV f HxL „ x is interpreted as the

following expected (mean) value

(39)ŸV f HxL „ x = volHVL ŸRd
1

volHVL
BooleHx œ VL f HxL „ x = volHVL EH f L,

where EH f L is the mean value of the function f interpreted as a random variable, with respect to

the uniform distribution on V, that is, the distribution with probability density volHVL-1 BooleHx œ VL.

BooleHx œ VL denotes the characteristic function of the region V; volHVL denotes the volume of V.

The crude Monte Carlo estimate of the expected value EH f L is obtained by taking n independent

random vectors x1, x2, …, xn œd with density volHVL-1 BooleHx œ VL (that is, the vectors are uni-

formly distributed on V), and making the estimate

(40)MCH f , nL = 1
n ⁄i=1

n f HxiL.

150 Advanced Numerical Integration in Mathematica

Remark: The function volHVL-1 BooleHx œ VL is a valid probability density function because it is non-

negative on the whole of d and Ÿd volHVL-1 BooleHx œ VL „ x = 1.

According to the strong law of large numbers, the convergence

MCH f , nLØ mH f L, nØ¶,

happens with probability 1. The strong law of large numbers does not provide information for

the error MCH f , nL - ŸV f HxL „ x, so a probabilistic estimate is used.

Let J be defined as

J = ‡
V
f HxL „ x.

Formula (40) is an unbiased estimator of J (that is, the expectation of MCH f , nL for various sets of

8xi<i=1
n is J) and its variance is

1

n
‡
V
H f HxL - JL2 „ x =

VarH f L

n
,

where VarH f L denotes the variance of f , The standard error of MCH f , nL is thus
VarH f L

n
.

In practice the VarH f L is not known, so it is estimated with the formula

s2 =
1

n - 1
‚
i=1

n

H f HxiL - MCH f , nLL2.

The standard error of MCH f , nL is then

(41)SDH f , nL = s

n
= 1

n Hn-1L
⁄i=1
n H f HxiL - MCH f , nLL2 .

The result of the Monte Carlo estimation can be written as MCH f , nL ± SDH f , nL.

Advanced Numerical Integration in Mathematica 151

It can be seen from Equation (41) that the convergence rate of the crude Monte Carlo estimation

does not depend on the dimension d of the integral, and if n sampling points are used then the

convergence rate is n .

The NIntegrate integration rule "MonteCarloRule" calculates the estimates MCH f , nL and

SDH f , nL.

The estimates can be improved incrementally. That is, if we have the estimates MCH f , n0L and

SDH f , n0L, and a new additional set of sample function values 8 f1, f2, …, fn1 <, then using (40) and

(41) we have

MCH f , n0 + n1L =
1

n0 + n1
MCH f , n0L n0 +‚

i=1

n1
fi ,

SDH f , n0 + n1L =
1

Hn0 + n1L Hn0 + n1 - 1L
Hn0 - 1L n0 SDH f , n0L2 +‚

i=1

n1
H fi - MCH f , n0 + n1LL2

1

2

.

To compute the estimates MCH f , n0 + n1L and SDH f , n0 + n1L, it is not necessary to know the random

points used to compute the estimates MCH f , n0L and SDH f , n0L.

"AxisSelector"

When used for multidimensional global adaptive integration, "MonteCarloRule" chooses the

splitting axis of an integration subregion it is applied to in two ways: (i) by random selection or

(ii) by minimizing the sum of the variances of the integral estimates of each half of the subre-

gion, if the subregion is divided along that axis. The splitting axis is selected after the integral

estimation.

The random axis selection is done in the following way. "MonteCarloRule" keeps a set of axes

for selection, A. Initially A contains all axes. An element of A is randomly selected. The selected

axis is excluded from A. After the next integral estimation, an axis is selected from A and

excluded from it, and so forth. If A is empty, it is filled up with all axes.

152 Advanced Numerical Integration in Mathematica

The minimization of variance axis selection is done in the following way. During the integration

over the region, a subset of the sampling points and their integrand values is stored. Then for

each axis, the variances of the two subregions that the splitting along this axis will produce are

estimated using the stored sampling point and corresponding integrand values. The axis for

which the sum of these variances is minimal is chosen to be the splitting axis, since this would

mean that if the region is split on that axis, the new integration error estimate will be minimal.

If it happens that for some axis all stored points are clustered in one of the half-regions, then

that axis is selected for splitting.

option value

Random random splitting axis election

MinVariance 8MinVariance,
"SubsampleFraction"-> frac<

splitting axis selection that minimizes the sum of variances
of the new regions

"AxisSelector" options.

option name default value

"SubsampleFraction" 1ê10 fraction of the sampling points used to
determine the splitting axis

MinVariance option.

This is an example of using "MonteCarloRule"'s option "AxisSelector".

In[98]:= t = NIntegrateAExpA-IHx - 1 ê 2L2 + Hy - 1 ê 2L2ME, 8x, 0, 1<,
8y, 0, 1<, Method Ø 8"MonteCarloRule", "AxisSelector" Ø Random<E

Out[98]= 0.85354

In the examples below the two axis selection algorithms are compared. In general, the minimiza-

tion of variance selection uses less number of sampling points. Nevertheless, using the minimiza-

tion of variance axis selection slows down the application of "MonteCarloRule". So for integrals

for which both axis selection methods would result in the same number of sampling points, it is

faster to use random axis selection. Also, using larger fraction sampling points to determine the

splitting axis in minimization of variance selection makes the integration slower.

Advanced Numerical Integration in Mathematica 153

Consider the following function.

In[2]:= f@x_?NumberQ, y_?NumberQD := BooleBAbsB x -
1

2

2

+ y -
1

2

2

F <
1

6
F ‰-3 Ix2+y2M +

1

2
;

Plot3D@f@x, yD, 8x, 0, 1<, 8y, 0, 1<, PlotRange -> All, PlotPoints -> 20D

Out[3]=

These are the adaptive Monte Carlo integration sampling points for the function above with
random choice of splitting axis.

In[4]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<, Method Ø 8"AdaptiveMonteCarlo",
Method Ø 8"MonteCarloRule", "AxisSelector" Ø Random<<, MinRecursion Ø 1,

PrecisionGoal Ø 2.8, EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;
Graphics@8PointSize@0.006D, Point@tD<, AspectRatio -> 1, Frame -> True,
PlotLabel -> "Number of sampling points = " <> ToString@Length@tDDD

Out[5]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Number of sampling points = 43200

154 Advanced Numerical Integration in Mathematica

These are the sampling points with choice of splitting axes that minimize the variance. Com-
pared to the previous Monte Carlo integration, the sampling points of this one are more concen-
trated around the circle Hx - 1 ê2L2 + Hy - 1 ê2L2 = 1 ê6, and their number is nearly twice as small.

In[6]:= t = Reap@NIntegrate@f@x, yD, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8"AdaptiveMonteCarlo", Method Ø 8"MonteCarloRule", "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 1 ê 3<<<, MinRecursion Ø 1,
PrecisionGoal Ø 2.8, EvaluationMonitor :> Sow@8x, y<DDD@@2, 1DD;

Graphics@8PointSize@0.006D, Point@tD<, AspectRatio -> 1,
Frame -> True,
PlotLabel -> "Number of sampling points = " <> ToString@Length@tDDD

Out[6]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Number of sampling points = 24800

Here is an adaptive Monte Carlo integration that uses random axis selection.

In[104]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<,

Method Ø 8"AdaptiveMonteCarlo", Method Ø 8"MonteCarloRule",
"Points" -> 500, "AxisSelector" Ø Random<<F, 8100<F êê Timing

Out[104]= 84.21036, Null<

Here is an adaptive Monte Carlo integration for the preceding integral that uses the minimiza-
tion of variance axis selection and is slower than using random axis selection.

In[105]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<, Method Ø 8"AdaptiveMonteCarlo",

Method Ø 8"MonteCarloRule", "Points" -> 500, "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 0.3<<<F, 8100<F êê Timing

Out[105]= 84.20636, Null<

Advanced Numerical Integration in Mathematica 155

Using a larger fraction of stored points for the minimization of variance axis choice slows down
the integration.

In[106]:= DoBNIntegrateB
1

x2 + y2
, 8x, -1, 2<, 8y, -1, 2<, Method Ø 8"AdaptiveMonteCarlo",

Method Ø 8"MonteCarloRule", "Points" -> 500, "AxisSelector" Ø

8"MinVariance", "SubsampleFraction" Ø 0.6<<<F, 8100<F êê Timing

Out[106]= 85.08623, Null<

Comparisons of the Rules

All integration rules, except "MonteCarloRule", are to be used by adaptive strategies in

NIntegrate. Changing the type and the number of points of the integration rule component for

an integration strategy will make a different integration algorithm. In general these different

integration algorithms will perform differently for different integrals. Naturally the following

questions arise.

1. Is there a type of rule that is better than other types for any integral or for integrals of a
certain type?

2. Given an integration strategy, what rules perform better with it? For what integrals?

3. Given an integral, an integration strategy, and an integration rule, what number of points
in the rule will minimize the total number of sampling points used to reach an integral
estimate that satisfies the precision goal?

For a given integral and integration strategy the integration rule which achieves a result that

satisfies the precision goal with the smallest number of sampling points is called the best integra-

tion rule. There are several factors that determine the best integration rule.

1. In general the higher the degree of the rule the faster the integration will be for smooth
integrands and for higher-precision goals. On the other hand, the rule degree might be
too high for the integrand and hence too many sampling points might be used when the
adaptive strategies work around, for example, the integrand's discontinuities.

2. The error estimation functional of a rule influences significantly the total amount of work
by the integration strategy. Rules with a smaller number of points might lead (i) to a
wrong result because of underestimation of the integral, or (ii) to applying too many
sampling points because of overestimation of the integrand. (See "Examples of Pathologi-
cal Behavior".) Further, the error estimation functional might be computed with one or
several embedded null rules. In general, the larger the number of the null rules the better
the error estimation~fewer phase errors are expected. The number of the null rules and
the weights assigned to them in the sum that computes the error estimate determines the
sets of pathological integrals and integrals hard to compute for that rule. (Some of the
multidimensional rules of

156 Advanced Numerical Integration in Mathematica

The error estimation functional of a rule influences significantly the total amount of work
by the integration strategy. Rules with a smaller number of points might lead (i) to a
wrong result because of underestimation of the integral, or (ii) to applying too many
sampling points because of overestimation of the integrand. (See "Examples of Pathologi-
cal Behavior".) Further, the error estimation functional might be computed with one or

the error estimation~fewer phase errors are expected. The number of the null rules and
the weights assigned to them in the sum that computes the error estimate determines the
sets of pathological integrals and integrals hard to compute for that rule. (Some of the
multidimensional rules of NIntegrate use several embedded null rules to compute the
error estimate. All of the one-dimensional integration rules of NIntegrate use only one
null rule.)

3. Local adaptive strategies are more effective with closed rules that have their sampling
points more uniformly distributed (for example, "ClenshawCurtisRule") than with open
rules (for example, GaussKronrodRule) and closed rules that have sampling points dis-
tributed in a non-uniform way (for example, "LobattoKronrodRule").

4. The percent of points reused by the strategy might greatly determine what is the best
rule. For one-dimensional integrals, "LocalAdaptive" reuses all points of the closed
rules. "GlobalAdaptive" throws away almost all points of the regions that need improve-
ment of their error estimate.

Number of Points in a Rule

This subsection demonstrates with examples that the higher the degree of the rule the faster

the integration will be for smooth integrands and for higher-precision goals. It also shows

examples in which the degree of the rule is too high for the integrand and hence too many

sampling points are used when the adaptive strategies work around the integrand's discontinu-

ities. All examples use Gaussian rules with Berntsen|Espelid error estimate.

Here is the error of a Gaussian rule in the interval @a, bD.

E@GH f , nLD =
Hb - aL2 n+1 Hn !L4

H2 n + 1L@H2 nL !D3
f H2 nLHxL, a < x < b.

(See [DavRab84].)

Advanced Numerical Integration in Mathematica 157

Here is a function that calculates the error of a rule for the integral Ÿ0
1 f HxL „ x, using the exact

value computed by Integrate for comparison.
In[107]:= RuleError@f_, rule_String, prec_, pnts_?NumberQD :=

Block@8absc, weights, errweights<,
8absc, weights, errweights< =
ToExpression@"NIntegrate`" <> rule <> "Data"D@pnts, precD;

Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, weights<DD - Integrate@f@xD, 8x, 0, 1<DD
D;

This defines a list of functions.

In[108]:= funcs = : x , AbsBx -
1

‰
F,

2 x §
1

‰

3 x >
1

‰

,
1

104 J
1

p
- xN

2
+ 1

>;

Here are plots of the functions in the interval @0, 1D.
In[109]:= Row@Plot@Ò, 8x, 0, 1<, PlotRange -> All, Frame -> True,

FrameTicks -> 8None, Automatic<, ImageSize Ø 8120, 120<D & êü funcs, " "D

Out[109]=

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6

2.0
2.2
2.4
2.6
2.8
3.0

0.0
0.2
0.4
0.6
0.8
1.0

Here is the computation of the errors of "GaussBerntsenEspelidRule" for Ÿ0
1 x „ x,

Ÿ0
1
¢x - 1

2
¶ „ x, Ÿ0

1 2 x § 1
2

3 x > 1
2

„ x, and Ÿ0
1 1

104 J
1

3
-xN

2
+1

„ x for a range of points.

In[110]:= errors = Table@8pnts, RuleError@Ò, "GaussBerntsenEspelidRule", 30, pntsD<,
8pnts, 4, 100, 1<D & êü Function êü HFunction@8f<, f ê. x -> ÒD êü funcsL;

158 Advanced Numerical Integration in Mathematica

Here are plots of how the logarithm of the error decreases for each of the functions. It can be
seen that the integral estimates of discontinuous functions and functions with discontinuous
derivatives improve slowly when the number of points is increased.

In[111]:= gr = ListLinePlot@
MapThread@Tooltip@8Ò@@1DD, Log@10, Ò@@2DDD< & êü Ò1, Ò2D &, 8errors, funcs<D,
PlotRange -> 880, 100<, 80, -9<<, AxesOrigin -> 80, 0<, ImageSize -> 8300<D;

xc = 110;
xcSq = 106;
legend =

8Text@funcs@@1DD, 8xc, -2<, 8-1, 0<D, Text@funcs@@2DD, 8xc, -4<, 8-1, 0<D,
Text@funcs@@3DD, 8xc, -6<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -8<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -2<, 8-1, 0<D, Text@" ", 8xcSq, -4<, 8-1, 0<D,
Text@" ", 8xcSq, -6<, 8-1, 0<D, Text@" ", 8xcSq, -8<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &,
8legendSq, Cases@gr, Hue@s__D, ¶D<D;

Row@8gr, " ", Graphics@8 legend, legendSq<,
ImageSize -> 8200, 200<, AspectRatio -> 5D<D

Out[117]=

x

x-
1

‰

2 x§
1

‰

3 x>
1

‰

1

10000 K
1

p
- xO

2
+ 1

Minimal Number of Sampling Points

Here is a function that finds the number of sampling points used in an integration.

In[118]:= Attributes@SamplingPointsD = 8HoldFirst<;
SamplingPoints@expr_D :=
Module@8k = 0, res<,
res = Hold@exprD ê. HoldPattern@NIntegrate@s___DD ß

NIntegrate@s, EvaluationMonitor ß k++D; ReleaseHold@resD; kD

Advanced Numerical Integration in Mathematica 159

20

–2

–4

–6

–8

40 60 80 100

This finds the number of sampling points used for a range of precision goals and a range of
integration rule coarse points.

In[19]:= tblga = Table@8pg, pnts, SamplingPoints@NIntegrate@Ò,
8x, 0, 1<, Method -> 8"GlobalAdaptive", "SymbolicProcessing" -> 0,

Method -> 8"GaussBerntsenEspelidRule", "Points" -> pnts<<,
MaxRecursion -> 100, WorkingPrecision -> 35, PrecisionGoal -> pgDD<,

8pg, 4, 30<, 8pnts, 4, 25<D & êü funcs;

This finds the for each precision the minimum total number of sampling points. This way the
number of coarse integration rule points used is also found.

In[121]:= minPnts = HÒ@@Position@Ò, Min@Ò@@3DD & êü ÒDD@@1, 1DDDD &@ÒD & êü ÒL & êü tblga;

This is a plot of the precision goal and the number of integration rule points with which the
minimum number of total sampling points was used.

In[122]:= gr = ListLinePlot@HDrop@Ò, -1D & êü ÒL & êü minPnts, PlotRange -> 880, 30<, 80, 26<<,
PlotStyle -> Thickness@0.003D, AxesOrigin -> 83, 0<, ImageSize -> 8300, 200<D;

xc = 110;
xcSq = 106;
legend =

8Text@funcs@@1DD, 8xc, -2<, 8-1, 0<D, Text@funcs@@2DD, 8xc, -4<, 8-1, 0<D,
Text@funcs@@3DD, 8xc, -6<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -8<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -2<, 8-1, 0<D, Text@" ", 8xcSq, -4<, 8-1, 0<D,
Text@" ", 8xcSq, -6<, 8-1, 0<D, Text@" ", 8xcSq, -8<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &,
8legendSq, Cases@gr, Hue@s__D, ¶D<D;

Row@8gr, " ", Graphics@8 legend, legendSq<,
ImageSize -> 8200, 200<, AspectRatio -> 5D<D

Out[128]=

0 5 10 15 20 25 30

5

10

15

20

25 x

x-
1

‰

2 x§
1

‰

3 x>
1

‰

1

10000 K
1

p
- xO

2
+ 1

160 Advanced Numerical Integration in Mathematica

Rule Comparison

Here is a function that calculates the error of a rule for the integral Ÿ0
1 f HxL „ x, using the exact

value computed by Integrate for comparison.
In[129]:= RuleErrors@f_, rule_String, prec_, pnts_?NumberQD :=

Block@8absc, weights, errweights, exact<,
8absc, weights, errweights< =
ToExpression@"NIntegrate`" <> rule <> "Data"D@pnts, precD;

8Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, weights<DD - Integrate@f@xD, 8x, 0, 1<DD,
Abs@Total@MapThread@f@Ò1D Ò2 &, 8absc, errweights<DDD<

D;

This defines a list of functions.

In[130]:= funcs = : x , AbsBx -
1

‰
F,

2 x §
1

‰

3 x >
1

‰

,
1

104 J
1

p
- xN

2
+ 1

>;

Here are plots of the functions in the interval @0, 1D.
In[131]:= Row@Plot@Ò, 8x, 0, 1<, PlotRange -> All, Frame -> True,

FrameTicks -> 8None, Automatic<, ImageSize -> 8120, 120<D & êü funcs, " "D

Out[131]=

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6

2.0
2.2
2.4
2.6
2.8
3.0

0.0
0.2
0.4
0.6
0.8
1.0

This is the computation of the errors of "GaussKronrodRule", "LobattoKronrodRule",

"TrapezoidalRule", and "ClenshawCurtisRule" for each of the integrals Ÿ0
1 x „ x,

Ÿ0
1
¢x - 1

2
¶ „ x, Ÿ0

1 2 x § 1
2

3 x > 1
2

„ x, and Ÿ0
1 1

104 J
1

3
-xN

2
+1

„ x for a range of points.

In[132]:= rules = 8"GaussKronrodRule",
"LobattoKronrodRule", "TrapezoidalRule", "ClenshawCurtisRule"<;

errors = Outer@Table@8pnts, RuleErrors@Ò2, Ò1, 30, pntsD<, 8pnts, 4, 100, 1<D &,
rules, Function êü HFunction@8f<, f ê. x -> ÒD êü funcsLD;

exactErrors = Map@Ò@@1DD &, errors, 8-2<D;
ruleErrors = Map@Ò@@2DD &, errors, 8-2<D;

Advanced Numerical Integration in Mathematica 161

Here are plots of how the logarithms of the errors decrease for each rule and each function.

In[136]:= Row@8Grid@Join@88"exact errors", "error estimates"<<,
Flatten@Transpose@88Ò, SpanFromLeft< & êü rules, Transpose@Map@

Function@8d<,
Hgr = ListLinePlot@

Map@8Ò@@1DD, Log@10, Ò@@2DDD< & êü Ò &, dD, ImageSize -> 8200, 100<,
PlotRange -> 880, 100<, 80, -9<<, AxesOrigin -> 80, 0<D;

xc = 110;
xcSq = 106;
legend = 8Text@funcs@@1DD, 8xc, -1.5<, 8-1, 0<D,

Text@funcs@@2DD, 8xc, -3.5<, 8-1, 0<D, Text@funcs@@3DD,
8xc, -5.5<, 8-1, 0<D, Text@funcs@@4DD, 8xc, -7.5<, 8-1, 0<D<;

legendSq = 8Text@" ", 8xcSq, -1.5<, 8-1, 0<D, Text@" ", 8xcSq, -3.5<, 8-1, 0<D,
Text@" ", 8xcSq, -5.5<, 8-1, 0<D,
Text@" ", 8xcSq, -7.5<, 8-1, 0<D<;

legendSq = MapThread@Append@Ò1, Background -> Ò2D &, 8legendSq,
Cases@gr, Hue@s__D, ¶D<D;

grLD, 8exactErrors, ruleErrors<, 82<DD<D, 1DD, Dividers -> AllD,
Graphics@8legend, legendSq<, ImageSize -> 8200, 200<, AspectRatio -> 5D<D

Out[136]=

exact errors error estimates
GaussKronrodRule

20 40 60 80 100

-8

-6

-4

-2
20 40 60 80 100

-8

-6

-4

-2

LobattoKronrodRule

20 40 60 80 100

-8

-6

-4

-2
20 40 60 80 100

-8

-6

-4

-2

TrapezoidalRule

20 40 60 80 100

-8

-6

-4

-2
20 40 60 80 100

-8

-6

-4

-2

ClenshawCurtisRule

20 40 60 80 100

-8

-6

-4

-2
20 40 60 80 100

-8

-6

-4

-2

x

x-
1

‰

2 x§
1

‰

3 x>
1

‰

1

10000 K
1

p
- xO

2
+ 1

162 Advanced Numerical Integration in Mathematica

Examples of Pathological Behavior

Tricking the Error Estimator

In this subsection an integral will be discussed which NIntegrate underestimates with its

default settings since it fails to detect part of the integrand. The part is detected if the precision

goal is increased.

The Wrong Estimation

Consider the following function.

In[13]:= f@x_D := Sech@10 * Hx - 0.2LD^2 + Sech@100 * Hx - 0.4LD^4 + Sech@1000 * Hx - 0.6LD^6

Here is its exact integral over @0, 1D.
In[138]:= exact = Integrate@f@xD, 8x, 0, 1<D

Out[138]= 0.210803

NIntegrate gives the estimate.

In[139]:= est = NIntegrate@f@xD, 8x, 0, 1<D

Out[139]= 0.209736

This is too inaccurate when compared to the exact value.

In[140]:= Abs@exact - estD

Out[140]= 0.00106667

Here is the plot of the function, which is also wrong.

In[141]:= Plot@f@xD, 8x, 0, 1<D

Out[141]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Advanced Numerical Integration in Mathematica 163

Better Results

Better results can be achieved using the NIntegrate option PrecisionGoal and increasing
the recursion depth.

In[17]:= NIntegrate@f@xD, 8x, 0, 1<, Method Ø "GlobalAdaptive",
MaxRecursion Ø 20, PrecisionGoal Ø 12D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[17]= 0.210803

This is a table that finds the precision goal for which no good results are computed.

In[18]:= Table@8pg, NIntegrate@f@xD, 8x, 0, 1<, Method Ø "GlobalAdaptive",
MaxRecursion Ø 20, PrecisionGoal Ø pgD<, 8pg, 6, 12<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. à

Out[18]= 886, 0.209736<, 87, 0.209736<, 88, 0.209736<,
89, 0.210803<, 810, 0.210803<, 811, 0.210803<, 812, 0.210803<<

If the plot points are increased, the plot of the function looks different.

In[144]:= Plot@f@xD, 8x, 0, 1<, PlotPoints Ø 100D

Out[144]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

164 Advanced Numerical Integration in Mathematica

Here is the zoomed plot of the spike that Plot is missing with the default options.

In[145]:= eps = 0.0015; Plot@f@xD, 8x, 0.6 - eps, 0.6 + eps<D

Out[145]=

0.5990 0.5995 0.6000 0.6005 0.6010 0.6015

0.2

0.4

0.6

0.8

1.0

If this part of the function is integrated, the result fits the quantity that is "lost" (or "missed")
by NIntegrate with the default option settings.

In[146]:= NIntegrate@f@xD, 8x, 0.6 - eps, 0.6 + eps<D

Out[146]= 0.00106857

In[147]:= Abs@exact - estD

Out[147]= 0.00106667

Why the Estimator Is Misled

These are the abscissas and weights of a Gauss|Kronrod rule used by default by NIntegrate.

In[146]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This defines a function for application of the rule.

In[147]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D

This finds the points at which the adaptive strategy samples the integrand.

In[148]:= cTbl = Reap@NIntegrate@f@xD, 8x, 0, 1<,
EvaluationMonitor ß Sow@xDDD@@2DD êê Flatten;

Advanced Numerical Integration in Mathematica 165

This is a plot of the sampling points. The vertical axis is for the order at which the points have
been used to evaluate the integrand.

In[149]:= ListPlot@Transpose@8cTbl, Range@1, Length@cTblDD<D, AspectRatio Ø 0.5,
PlotRange Ø 880, 1<, 80, Length@cTblD<<, PlotStyle Ø 8Hue@0.7D<D

Out[149]=

0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

It can be seen on the preceding plot that NIntegrate does extensive computation around the

top of the second spike near x = 0.4. NIntegrate does not do as much computation around the

unintegrated spike near x = 0.6.

These are Gauss|Kronrod and Gauss abscissas in the last set of sampling points, which is over
the region @0.5, 0.75D.

In[150]:= gk = Sort@Take@cTbl, -11DD
g = Take@gk, 82, -2, 2<D

Out[150]= 80.501989, 0.511728, 0.530729, 0.557691, 0.590046,
0.625, 0.659954, 0.692309, 0.719271, 0.738272, 0.748011<

Out[151]= 80.511728, 0.557691, 0.625, 0.692309, 0.738272<

Here the integrand is applied over the abscissas.

In[152]:= fgk = f êü gk;
fg = f êü g;

Here is a polynomial approximation of the integrand over the abscissas.

In[154]:= gkf@x_D := Evaluate@InterpolatingPolynomial@Transpose@8gk, fgk<D, xDD
gf@x_D := Evaluate@InterpolatingPolynomial@Transpose@8g, fg<D, xDD

166 Advanced Numerical Integration in Mathematica

These plots show that the two polynomial approximations almost coincide over x = 0.6.

In[156]:= Plot@8gkf@xD, gf@xD<, 8x, Min@gkD, Max@gkD<D
eps = 0.01;
Plot@8gkf@xD, gf@xD<, 8x, 0.6 - eps, 0.6 + eps<D

Out[156]=

0.55 0.60 0.65 0.70 0.75

0.002

0.004

0.006

0.008

Out[158]=

0.595 0.600 0.605 0.610

0.0012

0.0013

0.0014

0.0015

0.0016

If the polynomials are integrated over the region where 0.6 is placed, the difference between
them, which NIntegrate uses as an error estimate, is really small.

In[159]:= Integrate@gkf@xD, 8x, 0.5, 0.75<D
Integrate@gf@xD, 8x, 0.5, 0.75<D
% - %% êê FullForm

Out[159]= 0.000491184

Out[160]= 0.000491184

Out[161]//FullForm= -3.6652469947995314`*^-10

Since the difference is the error estimate assigned for the region @0.5, 0.75D, with the default

precision goal NIntegrate never picks it up for further integration refinement.

Phase Errors

In this subsection are discussed causes why integration rules might seriously underestimate or

overestimate the actual error of their integral estimates. Similar discussion is given in

[LynKag76].

Advanced Numerical Integration in Mathematica 167

This defines a function.

In[162]:= f@x_, l_, m_D :=
10-m

Hx - lL2 + 10-2 m

Consider the numerical and symbolic evaluations of the integral of f@x, 0.415, 1.25D over
the region @-1, 1D.

In[163]:= num = NIntegrate@f@x, 0.415, 1.25D, 8x, -1, 1<, PrecisionGoal -> 2D

Out[163]= 1.72295

In[164]:= exact = Integrate@f@x, 0.415, 1.25D, 8x, -1, 1<D

Out[164]= 3.00604 + 0. Â

They differ significantly. The precision goal requested is 2, but relative error is much higher than
10-2.

In[165]:= Abs@num - exactD ê Abs@exactD

Out[165]= 0.426837

(Note that NIntegrate gives correct results for higher-precision goals.)

Below is an explanation why this happens.

Let the integration rule R2 be embedded in the rule R1. Accidentally, the error estimate

R1V @ f D - R2V @ f D of the integral estimate R1V @ f D, where V = @-1, 1D, can be too small compared

with the exact error R2V @ f D - ŸV f HxL „ x .

To demonstrate this, consider the Gauss|Kronrod rule GK@ f , 5D with 11 sampling points that has
an embedded Gauss rule G@ f , 5D with 5 sampling points. (This is the rule used in the two integra-
tions above.)

In[166]:= 8absc, weights, errweights< =
NIntegrate`GaussKronrodRuleData@5, MachinePrecisionD;

This defines a function that applies the rule.

In[167]:= IRuleEstimate@f_, 8a_, b_<D :=
Module@8integral, error<,
8integral, error< = Hb - aL TotalüMapThread@8f@Ò1D Ò2, f@Ò1D Ò3< &,

8Rescale@absc, 80, 1<, 8a, b<D, weights, errweights<D;
8integral, Abs@errorD<

D

This is the integral Ÿ-1
1 f @x, l, mD „ x of f@x, l, mD previously defined.

In[168]:= exact = -ArcTan@10m H-1 + lLD + ArcTan@10m H1 + lLD;

168 Advanced Numerical Integration in Mathematica

We can plot a graph with the estimated error of GKH f , 5L and the real error for different values

of l in @-1, 1D. That is, you plot GKH f , 5L -GH f , 5L and GKH f , 5L - Ÿ-1
1 f @x, l, mD „ x .

In[169]:= BlockB8l, m = 1.15, pnts = 1000, rres, errres, exactres, lambdas<,
H* the plot uses 1000 values l *L

lambdas = TableBl, :l, -1, 1,
2

pnts - 1
>F;

H* this computes the integral and error esitmates over the l's *L
8rres, errres< = Transposeü

Map@Function@8l<, IRuleEstimate@f@Ò1, l, Evaluate@mDD &, 8-1, 1<DD, lambdasD;

H* this computes the exact integrals over the l's *L
exactres = Map@exact ê. l -> Ò1 &, lambdasD;

H* this finds the number underestimating error estimates *L
Print@"Percent of underestimation: ",
100 * Length@Select@errres - Abs@exactres - rresD, Ò1 < 0 &DD ê Length@lambdasD êê N,
"%", " "D;

H* the plots, blue is for GK@f,5D-GK@f,5D ,
red is for GK@f,5D-Ÿ-1

1 f@x,l,mD *L
ListLinePlot@8Transpose@8lambdas, errres<D,

Transpose@8lambdas, Abs@exactres - rresD<D<, PlotRange -> All,
PlotStyle -> 88Hue@0.7D<, 8Hue@0D<<, AxesLabel -> 8l, "error"<D

F

Percent of underestimation: 23.8%

Out[169]=

-1.0 -0.5 0.5 1.0
l

0.5

1.0

1.5

2.0

2.5

3.0

3.5

error

In the plot above, the blue graph is for the estimated error, GKH f , 5L -GH f , 5L . The graph of the

actual error GKH f , 5L - Ÿ-1
1 f @x, l, mD „ x is red.

You can see that the value 0.415 of the parameter l is very close to one of the

GKH f , 5L -GH f , 5L local minimals.

A one-dimensional quadrature rule can be seen as the result of the integration of a polynomial

that is fitted through the rule's abscissas and the integrand values over them. We can further

try to see the actual fitting polynomials for the integration of f@x, l, mD.

Advanced Numerical Integration in Mathematica 169

In[170]:= Clear@FitPlotsD;
FitPlots@f_, 8a_, b_<, abscArg_D :=

Module@8absc = Rescale@abscArg, 80, 1<, 8a, b<D<,
H* this finds the interpolating polynomial
through the Gauss abscissas and the values of f over them *L

polyGauss@x_D := Evaluate@InterpolatingPolynomial@Transpose@
8Take@absc, 82, -2, 2<D, f@Ò1D & êü HTake@absc, 82, -2, 2<DL<D, xDD;

H* this finds the interpolating polynomial through the Gauss-
Kronrod abscissas and the values of f over them *L

polyGaussKronrod@x_D := Evaluate@InterpolatingPolynomial@
Transpose@8absc, f@Ò1D & êü absc<D, xDD;

H* plot of the Gauss interpolating points *L
samplPointsGauss = Graphics@8GrayLevel@0D, PointSize@0.02D, Point êü

Transpose@8Take@absc, 82, -2, 2<D, f@Ò1D & êü Take@absc, 82, -2, 2<D<D<D;

H* plot of the Gauss-Kronrod interpolating points *L
samplPointsGaussKronrod =
Graphics@8Red, PointSize@0.012D, Point êü Transpose@8absc, f@Ò1D & êü absc<D<D;

H* interpolating polynomials and f plots *L
Block@8$DisplayFunction = Identity<,
funcPlots = Plot@8polyGauss@xD, polyGaussKronrod@xD, f@xD<, 8x, a, b<,

PlotRange -> All, PlotStyle -> 88Hue@0.7D<, 8Hue@0.8D<, 8Hue@0D<<D;
D;

exact = Integrate@f@xD, 8x, a, b<D;
r1 = Integrate@polyGauss@xD, 8x, a, b<D;
r2 = Integrate@polyGaussKronrod@xD, 8x, a, b<D;
Print@"estimated integral:" <> ToStringür2,
" exact integral:" <> ToStringüReüexactD;

Print@"estimated error:" <> ToStringüAbs@r1 - r2D,
" actual error:" <> ToStringüAbs@r2 - exactDD;

Show@8funcPlots, samplPointsGauss, samplPointsGaussKronrod<D
D;

In the plots below the function f@x, l, mD is plotted in red, the Gauss polynomial is plotted in

blue, the Gauss|Kronrod polynomial is plotted in violet, the Gauss sampling points are in black,

and the Gauss|Kronrod sampling points are in red.

You can see that since the peak of f@x, 0.415, 1.25D falls approximately halfway between two

abscissas, its approximation is an underestimate.

In[172]:= FitPlots@f@Ò1, 0.415, 1.25D &, 8-1, 1<, abscD

estimated integral:1.72295 exact integral:3.00604

estimated error:0.0133177 actual error:1.28309

Out[172]=

-1.0 -0.5 0.5 1.0

5

10

15

170 Advanced Numerical Integration in Mathematica

Conversely, you can see that since the peak of f@x, 0.53, 1.25D falls approximately on one of

the abscissas, its approximation is an overestimate.

In[173]:= FitPlots@f@Ò1, 0.53, 1.25D &, 8-1, 1<, abscD

estimated integral:4.77891 exact integral:2.98577

estimated error:3.77834 actual error:1.79313

Out[173]=
-1.0 -0.5 0.5 1.0

-15

-10

-5

5

10

15

Index of Technical Terms
Abscissas

Degree of a one-dimensional integration rule

Degree of a multidimensional integration rule

Exact rule

Embedded rule

Null rule

Product rule

Progressive rule

Sampling points

Advanced Numerical Integration in Mathematica 171

NIntegrate References

[BerntEspGenz91] Berntsen, J., T. O. Espelid, and A. Genz. "An Adaptive Algorithm for the

Approximate Calculation of Multiple Integrals." ACM Trans. Math. Softw. 17, no. 4 (1991):

437|451. http://citeseer.ist.psu.edu/berntsen91adaptive.html

[BrezRedZag91] Brezinski, C. and M. Redivo Zaglia. Extrapolation Methods. North-Holland,

1991.

[CohRodVil99] Cohen, H., F. Rodriguez Villegas, and D. Zagier. "Convergence Acceleration of

Alternating Series." Experimental Mathematics 9, no. 1 (2000): 3-12.

http://www.expmath.org/restricted/9/9.1/cohen.ps

[DavRab65IS] Davis, P. J. and P. Rabinowitz. "Ignoring the Singularity in Approximate

Integration." J. SIAM: Series B, Numerical Analysis 2, no. 3 (1965): 367|383.

[DavRab84] Davis, P. J. and P. Rabinowitz. Methods of Numerical Integration, 2nd ed.

Academic Press, 1984.

[DeBruijn58] De Bruijn, N. G. Asymptotic Methods in Analysis. North-Holland, 1958.

[Duffy82] Duffy, M. G. "Quadrature over a Pyramid or Cube of Integrands with a Singularity at

a Vertex." J. SIAM Numer. Anal. 19, no. 6 (1982).

[Ehrich2000] Ehrich, S. "Stopping Functionals for Gaussian Quadrature Formulas." J. Comput.

Appl. Math. Special issue on Numerical Analysis 2000, Vol. V: Quadrature and Orthogonal

Polynomials 127, no. 1|2 (2001): 153|171. http://citeseer.ist.psu.edu/ehrich00stopping.html

[Evans93] Evans, G. Practical Numerical Integration. Wiley, 1993.

[GenzMalik80] Genz, A. C. and A. A. Malik. "An Adaptive Algorithm for Numerical Integration

over an N-dimensional Rectangular Region." J. Comp. Appl. Math. 6, no. 4 (1980): 295|302.

[GenzMalik83] Genz, A. C. and A. A. Malik. "An Imbedded Family of Fully Symmetric Numerical

Integration Rules." J. SIAM Numer. Anal. 20, no. 3 (1983): 580|588.

[HammHand64] Hammersley, J. M. and D. C. Handscomb. Monte Carlo Methods. Chapman and

Hall, 1964.

172 Advanced Numerical Integration in Mathematica

[IriMorTak70] Iri, M., S. Moriguti, and Y. Takasawa. "On a Certain Quadrature Formula."

Kokyuroku of the Res. Inst. for Math. Sci. Kyoto Univ. 91 (1970): 82|118 (in Japanese). English

translation in J. Comp. Appl. Math. 17, no. 1|2 (1987): 3|20.

[KrUeb98] Krommer, A. R. and C. W. Ueberhuber. Computational Integration. SIAM

Publications, 1998.

[LynKag76] Lyness, J. N. and J. J. Kaganove. "Comments on the Nature of Automatic

Quadrature Routines." ACM Trans. Math. Software 2, no. 1 (1976): 65|81.

[MalcSimp75] Malcolm, M. A. and R. B. Simpson. "Local versus Global Strategies for Adaptive

Quadrature." ACM Transactions on Mathematical Software 1, no. 2 (1975): 129|146.

[Mori74] Mori, M. "On the Superiority of the Trapezoidal Rule for the Integration of Periodic

Analytic Functions." Memoirs of Numerical Mathematics 1 (1974): 11|19.

[MoriOoura93] Ooura, T. and M. Mori. "Double Exponential Formulas for Fourier Type Integrals

with a Divergent Integrand." In Contributions in Numerical Mathematics, World Scientific Series

in Applicable Analysis, Vol. 2 301|308, 1993.

[MurIri82] Murota, K. and M. Iri. "Parameter Tuning and Repeated Application of the IMT-Type

Transformation in Numerical Quadrature." Numerische Mathematik 38, no. 3 (1982): 347|363.

[OouraMori91] Ooura, T. and M. Mori. "A Double Exponential Formula for Oscillatory Functions

over the Half Infinite Interval." J. Comput. Appl. Math. 38, no. 1|3 (1991): 353|360.

[OouraMori99] Ooura, T. and M. Mori. "A Robust Double Exponential Formula for Fourier Type

Integrals." J. Comput. Appl. Math. 112, no. 1|2 (1999): 229|241.

[OHaraSmith68] O'Hara, H. and F. J. Smith. "Error Estimation in the Clenshaw|Curtis

Quadrature Formula." Comput. J. 11 (1968): 213|219.

[PiesBrand74] Piessens, R. and M. Branders. "A Note on the Optimal Addition of Abscissas to

Quadrature Formulas of Gauss and Lobatto Type." Math. of Comput. 28, no. 125 (1974):

135|139.

[PiesBrand75] Piessens, R. and M. Branders. "Algorithm 002. Computation of Oscillating

Integrals." J. Comput. Appl. Math. 1 (1975): 153|164.

[PiesBrand84] Piessens, R. and M. Branders. "Computation of Fourier Transform Integrals Using

Chebyshev Series Expansions." Computing 32, no. 2 (1984): 177|186.

Advanced Numerical Integration in Mathematica 173

[PrFlTeuk92] Press, W. H., B. P. Flannery, and S. A. Teukolsky. Numerical Recipes in C.

Cambridge University Press, 1992.

[Rice75] Rice, J. R. "A Metalgorithm for Adaptive Quadrature." J. Assoc. Comput. Mach. 22, no.

1 (1975): 61|82.

[SkKeip93] Skeel, R. D. and J. B. Keiper. Elementary Numerical Computing with Mathematica.

McGraw-Hill, Inc. (1993)

[SloanJoe94] Sloan, I. H. and S. Joe. Lattice Methods for Multiple Integration. Oxford University

Press, 1994.

[Stroud71] Stroud, A. H. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971.

[Weideman2002] Weideman, J. A. C. "Numerical Integration of Periodic Functions: A Few

Examples." Amer. Math. Monthly 109, no. 1 (2002): 21|36.

174 Advanced Numerical Integration in Mathematica

