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Introduction to Unconstrained 
Optimization

Mathematica  has  a  collection  of  commands  that  do  unconstrained  optimization  (FindMinimum

and  FindMaximum)  and  solve  nonlinear  equations  (FindRoot)  and  nonlinear  fitting  problems

(FindFit).  All  these  functions  work,  in  general,  by  doing  a  search,  starting  at  some  initial

values  and  taking  steps  that  decrease  (or  for  FindMaximum,  increase)  an  objective  or  merit

function. 

The  search  process  for  FindMaximum  is  somewhat  analogous  to  a  climber  trying  to  reach  a

mountain peak in a thick fog; at any given point, basically all that climbers know is their posi-

tion,  how  steep  the  slope  is,  and  the  direction  of  the  fall  line.  One  approach  is  always  to  go

uphill. As long as climbers go uphill steeply enough, they will eventually reach a peak, though it

may not  be the highest  one.  Similarly,  in  a  search for  a  maximum, most  methods are  ascent

methods where every step increases the height and stops when it reaches any peak, whether it

is the highest one or not. 

The  analogy  with  hill  climbing  can  be  reversed  to  consider  descent  methods  for  finding  local

minima. For the most part, the literature in optimization considers the problem of finding min-

ima, and since this applies to most of the Mathematica commands, from here on, this documen-

tation will follow that convention. 

For example, the function x sinHx + 1L  is not bounded from below, so it has no global minimum,

but it has an infinite number of local minima.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the function x Sin@x + 1D.

In[2]:= Plot@x Sin@x + 1D, 8x, -10, 10<D

Out[2]=
-10 -5 5 10

-10

-5

5



This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 0.

In[3]:= FindMinimumPlot@x Sin@x + 1D, 8x, 0<D

Out[3]= :8-0.240125, 8x Ø -0.520269<<, 8Steps Ø 5, Function Ø 6, Gradient Ø 6<,

-0.5 -0.4 -0.3 -0.2 -0.1

-0.20

-0.15

-0.10

-0.05

>

The  FindMinimumPlot  command  is  defined  in  the  Optimization`UnconstrainedProblems`

package loaded automatically by this notebook. It runs FindMinimum, keeps track of the func-

tion and gradient evaluations and steps taken during the search (using the EvaluationMonitor

and StepMonitor  options), and shows them superimposed on a plot of the function. Steps are

indicated with blue lines, function evaluations are shown with green points, and gradient evalua-

tions are shown with  red points.  The minimum found is  shown with  a  large black point.  From

the plot, it is clear that FindMinimum has found a local minimum point. 

This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 2.

In[4]:= FindMinimumPlot@x Sin@x + 1D, 8x, 2<D

Out[4]=

Starting  at  2,  FindMinimum  heads  to  different  local  minima,  at  which  the  function  is  smaller

than at the first minimum found.

From these two plots, you might come to the conclusion that if you start at a point where the

function is sloping downward, you will always head toward the next minimum in that direction.

However,  this  is  not  always  the  case;  the  steps  FindMinimum  takes  are  typically  determined

using  the  value  of  the  function  and  its  derivatives,  so  if  the  derivative  is  quite  small,

FindMinimum may think it has to go quite a long way to find a minimum point.

2     Unconstrained Optimization

:8-3.83922, 8x Ø 3.95976<<, 8Steps Ø 4, Function Ø 9, Gradient Ø 9<,

3 4 5 6 7

-4

-2

2

4

6

>



This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 7.

In[5]:= FindMinimumPlot@x Sin@x + 1D, 8x, 7<D

Out[5]=

When  starting  at  x = 7,  which  is  near  a  local  maximum,  the  first  step  is  quite  large,  so

FindMinimum returns a completely different local minimum. 

All these commands have "find" in their name because, in general, their design is to search to

find any point where the desired condition is satisfied. The point found may not be the only one

(in the case of roots) or even the best one (in the case of fits, minima, or maxima), or, as you

have seen, not even the closest one to the starting condition. In other words, the goal is to find

any  point  at  which  there  is  a  root  or  a  local  maximum or  minimum.  In  contrast,  the  function

NMinimize  tries  harder  to  find  the  global  minimum  for  the  function,  but  NMinimize  is  also

generally given constraints to bound the problem domain. However, there is a price to pay for

this generality~NMinimize has to do much more work and, in fact, may call one of the "Find"

functions to polish a result at the end of its process, so it generally takes much more time than

the "Find" functions.

In two dimensions, the minimization problem is more complicated because both a step direction

and step length need to be determined.

This shows the steps taken by FindMinimum  to find a local minimum of the function 
cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<.

In[6]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[6]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 9, Function Ø 13, Gradient Ø 13<,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>
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The FindMinimumPlot command for two dimensions is similar to the one-dimensional case, but

it  shows  the  steps  and  evaluations  superimposed  on  a  contour  plot  of  the  function.  In  this

example,  it  is  apparent  that  FindMinimum  needed  to  change  direction  several  times  to  get  to

the local minimum. You may notice that the first step starts in the direction of steepest descent

(i.e.,  perpendicular  to  the  contour  or  parallel  to  the  gradient).  Steepest  descent  is  indeed  a

possible strategy for local  minimization, but it  often does not converge quickly.  In subsequent

steps in this example, you may notice that the search direction is not exactly perpendicular to

the  contours.  The  search  is  using  information  from past  steps  to  try  to  get  information  about

the curvature of the function, which typically gives it a better direction to go. Another strategy,

which usually converges faster, but can be more expensive, is to use the second derivative of

the function. This is usually referred to as "Newton's" method. 

This shows the steps taken using Newton's method.

In[7]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[7]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

In  this  example,  it  is  clear  that  the  extra  information  that  "Newton's"  method  uses  about  the

curvature of the function makes a big difference in how many steps it takes to get to the mini-

mum. Even though Newton's method takes fewer steps, it may take more total execution time

since  the  symbolic  Hessian  has  to  be  computed  once  and  then  evaluated  numerically  at  each

step. 

Usually there are tradeoffs between the rate of convergence or total number of steps taken and

cost per step. Depending on the size of the problems you want to solve, you may want to pick a

particular  method  to  best  match  that  tradeoff  for  a  particular  problem.  This  documentation  is

intended  to  help  you  understand  those  choices  as  well  as  some  ways  to  get  the  best  results

from the  functions  in  Mathematica.  For  the  most  part,  examples  will  be  used  to  illustrate  the

ideas, but a limited exposition on the mathematical theory behind the methods will be given so

that you can better understand how the examples work.
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For the most part, local minimization methods for a function f  are based on a quadratic model

(1)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p.

The subscript k  refers to the kth  iterative step. In Newton's method, the model is based on the

exact Hessian matrix, Bk = “2 f HxkL , but other methods use approximations to “2 f HxkL, which are

typically less expensive to compute. A trial step sk  is typically computed to be the minimizer of

the model, which satisfies the system of linear equations.

Bk sk = -“ f HxkL

If f  is sufficiently smooth and xk  is sufficiently close to a local minimum, then with Bk = “2 f HxkL,

the sequence of steps xk+1 = sk + xk  is guaranteed to converge to the local minimum. However, in

a  typical  search,  the  starting  value  is  rarely  close  enough  to  give  the  desired  convergence.

Furthermore,  Bk  is  often  an  approximation  to  the  actual  Hessian  and,  at  the  beginning  of  a

search, the approximation is frequently quite inaccurate. Thus, it is necessary to provide addi-

tional control  to the step sequence to improve the chance and rate of convergence. There are

two frequently used methods for controlling the steps: line search and trust region methods. 

In a "line search" method, for each trial step sk  found, a one-dimensional search is done along

the direction of sk  so that xk+1 = xk + ak sk. You could choose ak  so that it minimizes f Hxk+1L in this

direction,  but  this  is  excessive,  and  with  conditions  that  require  that  f Hxk+1L  decreases  suffi-

ciently in value and slope, convergence for reasonable approximations Bk can be proven. Mathe-

matica uses a formulation of these conditions called the Wolfe conditions.

In a "trust region" method, a radius Dk  within which the quadratic model qkHpL  in equation (1) is

“trusted” to be reasonably representative of the function. Then, instead of solving for the uncon-

strained minimum of (1), the trust region method tries to find the constrained minimum of (1)

with °p¥ § Dk. If the xk  are sufficiently close to a minimum and the model is good, then often the

minimum  lies  within  the  circle,  and  convergence  is  quite  rapid.  However,  near  the  start  of  a

search, the minimum will lie on the boundary, and there are a number of techniques to find an

approximate  solution  to  the  constrained  problem.  Once  an  approximate  solution  is  found,  the

actual  reduction  of  the  function  value  is  compared  to  the  predicted  reduction  in  the  function

value and, depending on how close the actual value is to the predicted, an adjustment is made

for Dk+1.
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For symbolic minimization of a univariate smooth function, all that is necessary is to find a point

at  which  the  derivative  is  zero  and  the  second  derivative  is  positive.  In  multiple  dimensions,

this  means  that  the  gradient  vanishes  and  the  Hessian  needs  to  be  positive  definite.  (If  the

Hessian is positive semidefinite, the point is a minimizer, but is not necessarily a strict one.) As

a  numerical  algorithm converges,  it  is  necessary  to  keep  track  of  the  convergence  and  make

some judgment as to when a minimum has been approached closely enough. This is based on

the sequence of steps taken and the values of the function, its gradient, and possibly its Hes-

sian  at  these  points.  Usually,  the  Mathematica  Find…  functions  will  issue  a  message  if  they

cannot be fairly certain that this judgment is correct. However, keep in mind that discontinuous

functions or functions with rapid changes of scale can fool any numerical algorithm.

When  solving  "nonlinear  equations",  many  of  the  same  issues  arise  as  when  finding  a  "local

minimum".  In  fact,  by  considering  a  so-called  merit  function,  which  is  zero  at  the  root  of  the

equations, it is possible to use many of the same techniques as for minimization, but with the

advantage  of  knowing  that  the  minimum value  of  the  function  is  0.  It  is  not  always  advanta-

geous to use this approach, and there are some methods specialized for nonlinear equations. 

Most examples shown will be from one and two dimensions. This is by no means because Mathe-

matica  is  restricted  to  computing  with  such  small  examples,  but  because  it  is  much  easier  to

visually illustrate the main principles behind the theory and methods with such examples.
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Methods for Local Minimization

Introduction to Local Minimization

The essence of most methods is in the local quadratic model 

qkHpL = f HxkL + “ f HxkLT p +
1

2
pT Bk p

that  is  used  to  determine  the  next  step.  The  FindMinimum  function  in  Mathematica  has  five

essentially different ways of choosing this model, controlled by the method option. These meth-

ods are similarly used by FindMaximum and FindFit.

"Newton" use the exact Hessian or a finite difference approximation 
if the symbolic derivative cannot be computed

"QuasiNewton" use the quasi-Newton BFGS approximation to the Hessian 
built up by updates based on past steps

"LevenbergMarquardt" a Gauss|Newton method for least-squares problems; the 
Hessian is approximated by JT J, where J is the Jacobian of 
the residual function

"ConjugateGradient" a nonlinear version of the conjugate gradient method for 
solving linear systems; a model Hessian is never formed 
explicitly

"PrincipalAxis" works without using any derivatives, not even the gradi -
ent, by keeping values from past steps; it requires two 
starting conditions in each variable

Basic method choices for FindMinimum .

With  Method -> Automatic,  Mathematica  uses  the  "quasi-Newton"  method  unless  the  problem

is structurally a sum of squares, in which case the Levenberg|Marquardt variant of the "Gauss|

Newton"  method  is  used.  When  given  two  starting  conditions  in  each  variable,  the  "principal

axis" method is used.
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Newton's Method

One significant advantage Mathematica provides is that it can symbolically compute derivatives.

This  means  that  when  you  specify  Method -> "Newton"  and  the  function  is  explicitly  differen-

tiable, the symbolic derivative will  be computed automatically. On the other hand, if  the func-

tion is not in a form that can be explicitly differentiated, Mathematica  will  use finite difference

approximations to compute the Hessian, using structural information to minimize the number of

evaluations  required.  Alternatively  you  can  specify  a  Mathematica  expression,  which  will  give

the Hessian with numerical values of the variables. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In this example, FindMinimum  computes the Hessian symbolically and substitutes numerical 
values for x and y when needed.

In[2]:= FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method -> "Newton"D

Out[2]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

This defines a function that is only intended to evaluate for numerical values of the variables.

In[3]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

The derivative of this function cannot be found symbolically since the function has been defined

only to evaluate with numerical values of the variables. 

This shows the steps taken by FindMinimum  when it has to use finite differences to compute 
the gradient and Hessian.

In[4]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67867<<,

8Steps Ø 4, Function Ø 89, Gradient Ø 26, Hessian Ø 5<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>
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When  the  gradient  and  Hessian  are  both  computed  using  finite  differences,  the  error  in  the

Hessian  may  be  quite  large  and  it  may  be  better  to  use  a  different  method.  In  this  case,

FindMinimum  does  find  the  minimum  quite  accurately,  but  cannot  be  sure  because  of  inade-

quate  derivative  information.  Also,  the  number  of  function  and  gradient  evaluations  is  much

greater  than  in  the  example  with  the  symbolic  derivatives  computed  automatically  because

extra evaluations are required to approximate the gradient and Hessian, respectively. 

If it is possible to supply the gradient (or the function is such that it can be computed automati-

cally),  the  method  will  typically  work  much  better.  You  can  give  the  gradient  using  the

Gradient option, which has several ways you can "specify derivatives".

This defines a function that returns the gradient for numerical values of x and y.

In[5]:= g@x_?NumberQ, y_?NumberQD = Map@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒD &, 8x, y<D

Out[5]= 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=

This tells FindMinimum  to use the supplied gradient. The Hessian is computed using finite 
differences of the gradient.

In[6]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<, Gradient Ø g@x, yD, Method Ø "Newton"D

Out[6]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

If  you  can  provide  a  program that  gives  the  Hessian,  you  can  provide  this  also.  Because  the

Hessian is only used by Newton's method, it is given as a method option of Newton.

This defines a function that returns the Hessian for numerical values of x and y.

In[7]:= h@x_?NumberQ, y_?NumberQD =
Outer@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒÒD &, 8x, y<, 8x, y<D

Out[7]= 99-4 x2 CosAx2 - 3 yE + 2 CosAx2 + y2E - 2 SinAx2 - 3 yE - 4 x2 SinAx2 + y2E,

6 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E=,

96 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E, -9 CosAx2 - 3 yE + 2 CosAx2 + y2E - 4 y2 SinAx2 + y2E==

This tells FindMinimum  to use the supplied gradient and Hessian.

In[8]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø g@x, yD, Method Ø 8"Newton", "Hessian" Ø h@x, yD<D

Out[8]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

In  principle,  Newton's  method  uses  the  Hessian  computed  either  by  evaluating  the  symbolic

derivative  or  by  using  finite  differences.  However,  the  convergence  for  the  method  computed
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this  way  depends  on  the  function  being  convex,  in  which  case  the  Hessian  is  always  positive

definite. It is common that a search will  start at a location where this condition is violated, so

the algorithm needs to take this possibility into account.

Here is an example where the search starts near a local maximum.

In[9]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.2<, 8y, .5<<, Method -> "Newton"D

Out[9]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 4, Function Ø 11, Gradient Ø 11, Hessian Ø 5<,

1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55
0.5

1.0

1.5

2.0

>

When sufficiently near a local maximum, the Hessian is actually negative definite. 

This computes the eigenvalues of the Hessian near the local maximum.

In[10]:= Eigenvalues@h@1.2, .5DD

Out[10]= 8-15.7534, -6.0478<

If  you were to only apply the Newton step formula in cases where the Hessian is  not  positive

definite,  it  is  possible  to  get  a  step  direction  that  does  not  lead  to  a  decrease  in  the  function

value. 

This computes the directional derivative for the direction found by solving “2 f HxkL s0 = -“ f HxkL. 
Since it is positive, moving in this direction will locally increase the function value.

In[11]:= LinearSolve@h@1.2, .5D, -g@1.2, .5DD.g@1.2, .5D

Out[11]= 0.0172695

It is crucial for the convergence of line search methods that the direction be computed using a

positive  definite  quadratic  model  Bk  since  the  search  process  and  convergence  results  derived

from it depend on a direction with sufficient descent.  See "Line Search Methods". Mathematica
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modifies the Hessian by a diagonal matrix Ek with entries large enough so that Bk = “2 f HxkL + Ek is

positive  definite.  Such  methods  are  sometimes  referred  to  as  modified  Newton  methods.  The

modification to Bk  is done during the process of computing a Cholesky decomposition somewhat

along the lines described in [GMW81], both for dense and sparse Hessians. The modification is

only  done  if  “2 f HxkL  is  not  positive  definite.  This  decomposition  method  is  accessible  through

LinearSolve if you want to use it independently. 

This computes the step using B0 s0 = -“ f HxkL, where B0 is determined as the Cholesky factors of 
the Hessian are being computed.

In[12]:= LinearSolve@h@1.2, .5D, -g@1.2, .5D,
Method Ø 8"Cholesky", "Modification" Ø "Minimal"<D

Out[12]= 80.00405502, 0.0196737<

The computed step is in a descent direction.

In[13]:= %.g@1.2, .5D

Out[13]= -0.00645255

Besides the robustness of the (modified) Newton method, another key aspect is its convergence

rate.  Once  a  search  is  close  enough  to  a  local  minimum,  the  convergence  is  said  to  be  q-

quadratic, which means that if x* is the local minimum point, then 

°xk+1 - x*¥ § b °xk - x*¥2

for some constant b > 0.

At machine precision, this does not always make a substantial difference since it is typical that

most of the steps are spent getting near to the local minimum. However, if you want a root to

extremely  high  precision,  Newton's  method  is  usually  the  best  choice  because  of  the  rapid

convergence. 

This computes a very high-precision solution using Newton's method. The precision is adap-
tively increased from machine precision (the precision of the starting point) to the maximal 
working precision of 100000 digits. Reap is used with Sow to save the steps taken. Counters 
are used to track and print the number of function evaluations and steps used.

In[14]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1.<, 8y, 1.<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 27 evaluations
Out[14]= 4.56134

Unconstrained Optimization     11



When  the  option  WorkingPrecision -> prec  is  used,  the  default  for  the  AccuracyGoal  and

PrecisionGoal is prec ê 2. Thus, this example should find the minimum to at least 50000 digits.

This computes a symbolic solution for the position of the minimum which the search approaches.

In[15]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD

Out[15]= : -
9

2
- p +

3

2
9 + 10 p ,

1

2
-3 + 9 + 10 p >

This computes the norm of the distance from the search points at the end of each step to the 
exact minimum.

In[16]:= N@Map@Norm@exact - ÒD &, pointsDD

Out[16]= 90.140411, 0.0156607, 0.000236558, 6.09444µ10-8, 3.8255µ10-15, 1.59653µ10-29, 3.24619µ10-58,

4.8604µ10-108, 1.26122µ10-212, 5.865676867279906µ10-406, 1.755647053247051µ10-791,
4.345222958143836µ10-1581, 1.099183429735576µ10-3141, 1.614858677992596µ10-6262,
5.998002325828813µ10-12514, 1.543301971989607µ10-25010, 1.131416408748486µ10-50010=

The  reason  that  more  function  evaluations  were  required  than  the  number  of  steps  is  that

Mathematica  adaptively  increases  the  precision  from  the  precision  of  the  initial  value  to  the

requested maximum WorkingPrecision. The sequence of precisions used is chosen so that as

few computations are done at the most expensive final precision as possible under the assump-

tion  that  the  points  are  converging  to  the  minimum.  Sometimes  when  Mathematica  changes

precision, it is necessary to reevaluate the function at the higher precision.

This shows a table with the precision of each of the points with the norm of their errors.

In[17]:= TableForm@Transpose@8Map@Precision, pointsD, N@Map@Norm@exact - ÒD &, pointsDD<DD

Out[17]//TableForm=

MachinePrecision 0.140411
MachinePrecision 0.0156607
MachinePrecision 0.000236558

MachinePrecision 6.09444µ10-8

24.4141 3.8255µ10-15

48.8283 1.59653µ10-29

97.6565 3.24619µ10-58

195.313 4.8604µ10-108

390.626 1.26122µ10-212

781.252 5.865676867279906µ10-406

1562.5 1.755647053247051µ10-791

3125.01 4.345222958143836µ10-1581

6250.02 1.099183429735576µ10-3141

12500. 1.614858677992596µ10-6262

25000.1 5.998002325828813µ10-12514

50000.2 1.543301971989607µ10-25010

100000. 1.131416408748486µ10-50010
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Note  that  typically  the  precision  is  roughly  double  the  scale  Ilog10M of  the  error.  For  Newton's

method this  is  appropriate  since  when the  step  is  computed,  the  scale  of  the  error  will  effec-

tively double according to the quadratic convergence.

FindMinimum  always starts with the precision of the starting values you gave it. Thus, if you do

not want it to use adaptive precision control, you can start with values, which are exact or have

at least the maximum WorkingPrecision. 

This computes the solution using only precision 100000 throughout the computation. (Warning: 
this takes a very long time to complete.)

In[18]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1<, 8y, 1<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 18 evaluations
Out[18]= 1259.84 Second

Even though this may use fewer function evaluations, they are all done at the highest precision,

so typically adaptive precision saves a lot of time. For example, the previous command without

adaptive precision takes more than 50 times as long as when starting from machine precision.

With Newton’s method, both "line search" and "trust region" step control are implemented. The

default, which is used in the preceding examples, is the line search. However, any of them may

be done with the trust region approach. The approach typically requires more numerical linear

algebra computations per step, but because steps are better controlled, may converge in fewer

iterations.

This uses the unconstrained problems package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[19]:= p = GetFindMinimumProblem@RosenbrockD

Out[19]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F
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This shows the steps taken by FindMinimum  with a trust region Newton method for a Rosen-
brock function.

In[20]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" -> "TrustRegion"<D

Out[20]= :92.14681µ10-26, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 22, Gradient Ø 22, Hessian Ø 22<,
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>

This shows the steps taken by FindMinimum  with a line search Newton method for the same 
function.

In[21]:= FindMinimumPlot@p, Method Ø "Newton"D

Out[21]= :94.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<,
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>

You  can  see  from the  comparison  of  the  two  plots  that  the  trust  region  method  has  kept  the

steps  within  better  control  as  the  search  follows  the  valley  and  consequently  converges  with

fewer function evaluations.

The following table summarizes the options you can use with Newton's method.

option name default value

"Hessian" Automatic an expression to use for computing the 
Hessian matrix 

"StepControl" "LineSearch" how to control steps; options include 
"LineSearch", "TrustRegion", or None

Method options for Method -> "Newton". 
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Quasi-Newton Methods

There  are  many  variants  of  quasi-Newton  methods.  In  all  of  them,  the  idea  is  to  base  the

matrix Bk in the quadratic model

qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

on an approximation of the Hessian matrix built up from the function and gradient values from

some or all steps previously taken.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the quasi-Newton method. The path is much less direct 
than for Newton’s method. The quasi-Newton method is used by default by FindMinimum  for 
problems that are not sums of squares.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 13, Gradient Ø 13<,
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>

The  first  thing  to  notice  about  the  path  taken  in  this  example  is  that  it  starts  in  the  wrong

direction. This direction is  chosen because at the first  step all  the method has to go by is  the

gradient,  and  so  it  takes  the  direction  of  steepest  descent.  However,  in  subsequent  steps,  it

incorporates  information  from  the  values  of  the  function  and  gradient  at  the  steps  taken  to

build up an approximate model of the Hessian. 

The  methods  used  by  Mathematica  are  the  Broyden|Fletcher|Goldfarb|Shanno  (BFGS)  updates

and, for large systems, the limited-memory BFGS (L-BFGS) methods, in which the model Bk  is

not stored explicitly, but rather Bk-1 “ f HxkL  is calculated by gradients and step directions stored

from past steps.
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The  BFGS method  is  implemented  such  that  instead  of  forming  the  model  Hessian  Bk  at  each

step,  Cholesky  factors  Lk  such  that  Lk.LkT= Bk  are  computed  so  that  only  OIn2M  operations  are

needed to solve the system Bk sk = -“ f HxkL [DS96] for a problem with n variables.

For large-scale sparse problems, the BFGS method can be problematic because, in general, the

Cholesky factors (or the Hessian approximation Bk  or its inverse) are dense, so the OIn2M mem-

ory and operations requirements become prohibitive compared to algorithms that  take advan-

tage  of  sparseness.  The  L-BFGS  algorithm  [NW99]  forms  an  approximation  to  the  inverse

Hessian based on the last m past steps, which are stored. The Hessian approximation may not

be as complete, but the memory and order of operations are limited to OHn mL for a problem with

n variables. In Mathematica 5, for problems over 250 variables, the algorithm is switched auto-

matically  to  L-BFGS.  You  can  control  this  with  the  method  option  "StepMemory" -> m.  With

m = ¶, the full BFGS method will always be used. Choosing an appropriate value of m is a trade-

off between speed of convergence and the work done per step. With m < 3, you are most likely

better off using a "conjugate gradient" algorithm.

This shows the same example function with the minimum computed using L-BFGS with m = 5.

In[3]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method Ø 8"QuasiNewton", "StepMemory" Ø 5<D

0.8 1 1.2 1.4 1.6
1

1.2

1.4

1.6

1.8

Out[3]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 10, Function Ø 13, Gradient Ø 13<, Ü ContourGraphics Ü<

Quasi-Newton  methods  are  chosen  as  the  default  in  Mathematica  because  they  are  typically

quite fast and do not require computation of the Hessian matrix, which can be quite expensive

both  in  terms  of  the  symbolic  computation  and  numerical  evaluation.  With  an  adequate  "line

search",  they  can  be  shown  to  converge  superlinearly  [NW99]  to  a  local  minimum where  the

Hessian is positive definite. This means that 
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lim
kØ¶

°xk+1 - x*¥

°xk - x*¥
= 0

or, in other words, the steps keep getting smaller. However, for very high precision, this does

not compare to the q-quadratic convergence rate of "Newton's" method.

This shows the number of steps and function evaluations required to find the minimum to high 
precision for the problem shown.

In[4]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1.<, 8y, 1.<<,

Method -> "QuasiNewton", WorkingPrecision Ø 10000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

95 steps and 106 evaluations
Out[4]= 2.79623

Newton's  method  is  able  to  find  ten  times  as  many  digits  with  far  fewer  steps  because  of  its

quadratic  convergence  rate.  However,  the  convergence  with  the  quasi-Newton  method  is  still

superlinear since the ratio of the errors is clearly going to zero.

This makes a plot showing the ratios of the errors in the computation. The ratios of the errors 
are shown on a logarithmic scale so that the trend can clearly be seen over a large range of 
magnitudes.

In[5]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD;
errs = Map@Norm@N@exact - ÒDD &, pointsD;
ListPlot@Log@10, Drop@errs, 1D ê Drop@errs, -1DDD

Out[5]=

20 40 60 80

-100

-80

-60

-40

-20

The following table summarizes the options you can use with quasi-Newton methods.

option name default value

"StepMemory" Automatic the effective number of steps to 
"remember" in the Hessian approximation; 
can be a positive integer or Automatic

"StepControl" "LineSearch" how to control steps; can be 
"LineSearch" or None

Method options for Method -> "QuasiNewton". 
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Gauss|Newton Methods

For minimization problems for which the objective function is a sum of squares,

f HxL =
1

2
‚
j=1

m

r jHxL2 =
1

2
rHxL.rHxL,

it  is  often  advantageous  to  use  the  special  structure  of  the  problem.  Time  and  effort  can  be

saved by computing the residual function rHxL,  and its derivative, the Jacobian JHxL.  The Gauss|

Newton  method  is  an  elegant  way  to  do  this.  Rather  than  using  the  complete  second-order

Hessian matrix for the quadratic model, the Gauss|Newton method uses Bk = JkT Jk  in (1) such

that the step pk is computed from the formula

JkT Jk pk = -“ fk = - JkT rk,

where  Jk = JHxkL,  and  so  on.  Note  that  this  is  an  approximation  to  the  full  Hessian,  which  is

JT J +⁄j=1
m r j “2 r j. In the zero residual case, where r = 0 is the minimum, or when r varies nearly

as  a  linear  function  near  the  minimum point,  the  approximation  to  the  Hessian  is  quite  good

and the quadratic convergence of "Newton’s method" is commonly observed. 

Objective functions, which are sums of squares, are quite common, and, in fact, this is the form

of  the  objective  function  when  FindFit  is  used  with  the  default  value  of  the  NormFunction

option.  One  way  to  view  the  Gauss|Newton  method  is  in  terms  of  least-squares  problems.

Solving the Gauss|Newton step is the same as solving a linear least-squares problem, so apply-

ing  a  Gauss|Newton  method  is  in  effect  applying  a  sequence  of  linear  least-squares  fits  to  a

nonlinear  function.  With  this  view,  it  makes  sense  that  this  method is  particularly  appropriate

for the sort of nonlinear fitting that FindFit does.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[2]:= p = GetFindMinimumProblem@RosenbrockD

Out[2]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F
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When  Mathematica  encounters  a  problem  that  is  expressly  a  sum  of  squares,  such  as  the

Rosenbrock  example,  or  a  function  that  is  the  dot  product  of  a  vector  with  itself,  the  Gauss|

Newton method will be used automatically. 

This shows the steps taken by FindMinimum  with the Gauss|Newton method for Rosenbrock’s 
function using a trust region method for step control.

In[3]:= FindMinimumPlot@p, Method Ø AutomaticD

Out[3]= :80., 8X1 Ø 1., X2 Ø 1.<<, 8Steps Ø 15, Residual Ø 21, Jacobian Ø 16<,
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>

If you compare this with the same example done with "Newton’s method", you can see that it

was  done  with  fewer  steps  and  evaluations  because  the  Gauss|Newton  method  is  taking

advantage of the special structure of the problem. The convergence rate near the minimum is

just as good as for Newton’s method because the residual is zero at the minimum. 

The  Levenberg|Marquardt  method  is  a  Gauss|Newton  method  with  "trust  region"  step  control

(though  it  was  originally  proposed  before  the  general  notion  of  trust  regions  had  been  devel-

oped).  You  can  request  this  method  specifically  by  using  the  FindMinimum  option

Method -> "LevenbergMarquardt" or equivalently Method -> "GaussNewton".

Sometimes it is awkward to express a function so that it will explicitly be a sum of squares or a

dot product of a vector with itself. In these cases, it is possible to use the "Residual" method

option to  specify  the residual  directly.  Similarly,  you can specify  the derivative of  the residual

with  the  "Jacobian"  method  option.  Note  that  when  the  residual  is  specified  through  the

"Residual"  method  option,  it  is  not  checked  for  consistency  with  the  first  argument  of

FindMinimum. The values returned will depend on the value given through the option.

This finds the minimum of Rosenbrock’s function using the specification of the residual.

In[4]:= FindMinimumB
1

2
JH1 - X1L2 + 100 I-X1

2 + X2M
2
N, 88X1, -1.2`<, 8X2, 1.`<<,

Method Ø 9"LevenbergMarquardt", "Residual" Ø 91 - X1, 10 I-X1
2 + X2M==F

Out[4]= 80., 8X1 Ø 1., X2 Ø 1.<<
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option name default value

"Residual" Automatic allows you to directly specify the residual r 
such that f = 1 ê2 r.r

"EvaluationMonitor" Automatic an expression that is evaluated each time 
the residual is evaluated

"Jacobian" Automatic allows you to specify the (matrix) deriva -
tive of the residual

"StepControl" "TrustRegion" must be "TrustRegion", but allows you 
to change control parameters through 
method options

Method options for Method -> "LevenbergMarquardt".

Another natural  way of  setting up sums of  squares problems in Mathematica  is  with FindFit,

which computes nonlinear fits to data. A simple example follows.

Here is a model function.

In[5]:= fm@a_, b_, c_, x_D := a If@x > 0, Cos@b xD, Exp@c xDD

Here is some data generated by the function with some random perturbations added.

In[6]:= Block@8e = 0.1, a = 1.2, b = 3.4, c = 0.98<,
data = Table@8x, fm@a, b, c, xD + e RandomReal@ 8-.5, .5<D<, 8x, -5, 5, .1<DD;

This finds a nonlinear least-squares fit to the model function.

In[7]:= fit = FindFit@data, fm@a, b, c, xD, 88a, 1<, 8b, 3<, 8c, 1<<, xD

Out[7]= 8a Ø 1.20826, b Ø 3.40018, c Ø 1.0048<

This shows the fit model with the data.

In[8]:= Show@8ListPlot@dataD,
Plot@fm@a, b, c, xD ê. fit, 8x, -5, 5<, PlotStyle Ø RGBColor@0, 1, 0DD<D

Out[8]=

In  the  example,  FindFit  internally  constructs  a  residual  function  and  Jacobian,  which  are  in

turn  used  by  the  Gauss|Newton  method  to  find  the  minimum  of  the  sum  of  squares,  or  the
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nonlinear least-squares fit. Of course, FindFit  can be used with other methods, but because a

residual  function  that  evaluates  rapidly  can  be  constructed,  it  is  often  faster  than  the  other

methods.

Nonlinear Conjugate Gradient Methods

The basis for a nonlinear conjugate gradient method is to effectively apply the linear conjugate

gradient method, where the residual is replaced by the gradient. A model quadratic function is

never explicitly formed, so it is always combined with a "line search" method.

The first nonlinear conjugate gradient method was proposed by Fletcher and Reeves as follows.

Given a step direction pk, use the line search to find ak such that xk+1 = xk + ak pk. Then compute

(1)bk+1 =
“ f Ixk+1M.“ f Ixk+1M

“ f IxkM.“ f IxkM

pk+1 = bk+1 pk - “ f Hxk+1L.

It  is  essential  that  the  line  search  for  choosing  ak satisfies  the  strong  Wolfe  conditions;  this  is

necessary to ensure that the directions pk are descent directions [NW99]]. 

An alternate method, which generally (but not always) works better in practice, is that of Polak

and Ribiere, where equation (2) is replaced with 

(2)bk+1 =
“ f Ixk+1M.( “ f Ixk+1M-“ f IxkMM

“ f IxkM.“ f IxkM
.

In formula (3), it is possible that bk+1 can become negative, in which case Mathematica uses the

algorithm modified by using pk+1 = maxHbk+1, 0L pk - “ f Hxk+1L. In Mathematica, the default conjugate

gradient method is  Polak|Ribiere,  but the Fletcher|Reeves method can be chosen by using the

method option

Method Ø 8"ConjugateGradient", Method -> "FletcherReeves"<.

The advantage of conjugate gradient methods is that they use relatively little memory for large-

scale problems and require no numerical linear algebra, so each step is quite fast. The disadvan-

tage is that they typically converge much more slowly than "Newton" or "quasi-Newton" meth-

ods.  Also,  steps  are  typically  poorly  scaled  for  length,  so  the  "line  search"  algorithm  may

require more iterations each time to find an acceptable step.
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This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the nonlinear conjugate gradient method. The path is 
much less direct than for Newton’s method. 

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method -> "ConjugateGradient"D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 22, Gradient Ø 22<,
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One  issue  that  arises  with  nonlinear  conjugate  gradient  methods  is  when  to  restart  them.  As

the search moves, the nature of the local quadratic approximation to the function may change

substantially.  The  local  convergence  of  the  method  depends  on  that  of  the  linear  conjugate

gradient  method,  where the quadratic  function is  constant.  With a constant  quadratic  function

for n  variables and an exact line search, the linear algorithm will  converge in n  or fewer itera-

tions. By restarting (taking a steepest descent step with bk+1 = 0) every so often, it is possible

to eliminate information from previous points, which may not be relevant to the local quadratic

model at the current search point. If you look carefully at the example, you can see where the

method was restarted and a steepest  descent  step was taken.  One option is  to  simply restart

after  every  k  iterations,  where  k <= n.  You  can  specify  this  using  the  method  option

"RestartIterations" -> k.  An  alternative  is  to  restart  when  consecutive  gradients  are  not

sufficiently orthogonal according to the test

“ f HxkL.“ f Hxk-1L

“ f HxkL.“ f HxkL
< n,

with  a  threshold  n  between  0  and  1.  You  can  specify  this  using  the  method  option

"RestartThreshold" -> n.
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The table summarizes the options you can use with the conjugate gradient methods.

option name default value

"Method" "PolakRibiere" nonlinear conjugate gradient method can 
be "PolakRibiere" or 
"FletcherReeves"

"RestartThreshold" 1ê10 threshold n for gradient orthogonality 
below which a restart will be done

"RestartIterations" ¶ number of iterations after which to restart

"StepControl" "LineSearch" must be "LineSearch", but you can use 
this to specify line search methods

Method options for Method -> "ConjugateGradient".

It should be noted that the default method for FindMinimum  in Mathematica 4 was a conjugate

gradient method with a near exact line search. This has been maintained for legacy reasons and

can  be  accessed  by  using  the  FindMinimum  option  Method -> "Gradient".  Typically,  this  will

use  more  function  and  gradient  evaluations  than  the  newer  Method -> "ConjugateGradient",

which itself often uses far more than the methods that Mathematica currently uses as defaults.

Principal Axis Method

"Gauss|Newton" and "conjugate gradient"  methods use derivatives.  When Mathematica  cannot

compute symbolic derivatives, finite differences will  be used. Computing derivatives with finite

differences  can  impose  a  significant  cost  in  some  cases  and  certainly  affects  the  reliability  of

derivatives,  ultimately  having  an  effect  on  how  good  an  approximation  to  the  minimum  is

achievable. For functions where symbolic derivatives are not available, an alternative is to use a

derivative-free  algorithm,  where  an  approximate  model  is  built  up  using  only  values  from

function evaluations. 

Mathematica uses the principal axis method of Brent [Br02] as a derivative-free algorithm. For

an n-variable problem, take a set of search directions u1, u2, …, un  and a point x0.  Take xi  to be

the  point  that  minimizes  f  along  the  direction  ui  from  xi-1  (i.e.,  do  a  "line  search"  from  xi-1),

then replace ui with ui+1. At the end, replace un with xn - x0. Ideally, the new ui should be linearly

independent, so that a new iteration could be undertaken, but in practice, they are not. Brent's

algorithm involves using the singular value decomposition (SVD) on the matrix U = Hu1, u2, ... unL
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to realign them to the principal directions for the local quadratic model. (An eigen decomposi-

tion  could  be  used,  but  Brent  shows  that  the  SVD  is  more  efficient.)  With  the  new  set  of  ui

obtained, another iteration can be done. 

Two distinct starting conditions in each variable are required for this method because these are

used  to  define  the  magnitudes  of  the  vectors  ui.  In  fact,  whenever  you  specify  two  starting

conditions in each variable, FindMinimum, FindMaximum, and FindFit will use the principal axis

algorithm by default. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the search path and function evaluations for FindMinimum  to find a local minimum 
of the function cosIx2 - 3 yM + sinIx2 + y2M.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.4, 1.5<, 8y, 1, 1.1<<, Method Ø "PrincipalAxis"D

Out[2]= :8-2., 8x Ø 2.12265, y Ø 0.454686<<, 8Steps Ø 4, Function Ø 148<,
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The basics of the search algorithm can be seen quite well from the plot since the derivative-free

line search algorithm requires a substantial number of function evaluations. First a line search is

done in the x direction, then from that point, a line search is done in the y direction, determin-

ing the step direction. Once the step is taken, the vectors ui  are realigned appropriately to the

principal  directions  of  the  local  quadratic  approximation  and  the  next  step  is  similarly  com-

puted. 

The algorithm is efficient in terms of convergence rate; it has quadratic convergence in terms of

steps. However, in terms of function evaluations, it is quite expensive because of the derivative-

free line search required.  Note that  since the directions given to the line search (especially  at

the beginning) are not necessarily descent directions, the line search has to be able to search in

both  directions.  For  problems  with  many  variables,  the  individual  linear  searches  in  all  direc-

tions become very expensive, so this method is typically better suited to problems without too

many variables.
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Methods for Solving Nonlinear Equations

Introduction to Solving Nonlinear Equations

There  are  some  close  connections  between  finding  a  "local  minimum"  and  solving  a  set  of

nonlinear  equations.  Given  a  set  of  n  equations  in  n  unknowns,  seeking  a  solution  rHxL ã 0  is

equivalent to minimizing the sum of squares rHxL. rHxL when the residual is zero at the minimum,

so there is a particularly close connection to the "Gauss|Newton" methods. In fact, the Gauss|

Newton  step  for  local  minimization  and  the  "Newton"  step  for  nonlinear  equations  are  exactly

the same. Also, for a smooth function, "Newton’s method" for local minimization is the same as

Newton’s  method  for  the  nonlinear  equations  “ f = 0.  Not  surprisingly,  many  aspects  of  the

algorithms are similar; however, there are also important differences.

Another  thing  in  common  with  minimization  algorithms  is  the  need  for  some  kind  of  "step

control". Typically, step control is based on the same methods as minimization except that it is

applied to a merit function, usually the smooth 2-norm squared, rHxL. rHxL.

"Newton" use the exact Jacobian or a finite difference approximation 
to solve for the step based on a locally linear model

"Secant" work without derivatives by constructing a secant approxi -
mation to the Jacobian using n past steps; requires two 
starting conditions in each dimension

"Brent" method in one dimension that maintains bracketing of 
roots; requires two starting conditions that bracket a root

Basic method choices for FindRoot.

Newton's Method

Newton's method for nonlinear equations is based on a linear approximation

rHxL =MkHpL = rHxkL + JHxkL p, p = Hx - xkL,

so the Newton step is found simply by setting MkHpL = 0, 

JHxkL pk = -rHxkL.
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Near  a  root  of  the  equations,  Newton's  method  has  q-quadratic  convergence,  similar  to

"Newton's"  method  for  minimization.  Newton's  method  is  used  as  the  default  method  for

FindRoot. 

Newton's  method can be used with either  "line search" or  "trust  region" step control.  When it

works, the line search control is typically faster, but the trust region approach is usually more

robust.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Here is the Rosenbrock problem as a FindRoot problem.

In[2]:= p = GetFindRootProblem@RosenbrockD

Out[2]= FindRootProblemA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<E

This finds the solution of the nonlinear system using the default line search approach. (Newton's 
method is the default method for FindRoot.)

In[3]:= FindRootPlot@pD

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 15, Residual Ø 27, Jacobian Ø 15<,
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>

Note that each of the line searches started along the line x == 1. This is a particular property of

the Newton step for this particular problem.

This computes the Jacobian and the Newton step symbolically for the Rosenbrock problem.

In[4]:= J = OuterAD, 910 I-X1
2 + X2M, 1 - X1=, 8X1, X2<E;

LinearSolveAJ, -910 I-X1
2 + X2M, 1 - X1=E

Out[4]= 91 - X1, 2 X1 - X1
2 - X2=

When  this  step  is  added  to  the  point,  8X1, X2<,  it  is  easy  to  see  why  the  steps  go  to  the  line

X1 = 1.  This  is  a  particular  feature  of  this  problem,  which  is  not  typical  for  most  functions.

26     Unconstrained Optimization



Because  the  "trust  region"  approach  does  not  try  the  Newton  step  unless  it  lies  within  the

region bound, this  feature does not  show up so strongly when the trust  region step control  is

used.

This finds the solution of the nonlinear system using the trust region approach. The search is 
almost identical to the search with the "Gauss|Newton" method for the Rosenbrock objective 
function in FindMinimum .

In[5]:= FindRootPlot@p, Method Ø 8"Newton", "StepControl" Ø "TrustRegion"<D

Out[5]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 16, Residual Ø 21, Jacobian Ø 16<,
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When the structure of the Jacobian matrix is sparse, Mathematica will use SparseArray  objects

both to compute the Jacobian and to handle the necessary numerical linear algebra. 

When  solving  nonlinear  equations  is  used  as  a  part  of  a  more  general  numerical  procedure,

such  as  solving  differential  equations  with  implicit  methods,  often  starting  values  are  quite

good, and complete convergence is not absolutely necessary. Often the most expensive part of

computing  a  Newton  step  is  finding  the  Jacobian  and  computing  a  matrix  factorization.  How-

ever,  when close  enough to  a  root,  it  is  possible  to  leave the  Jacobian frozen for  a  few steps

(though this does certainly affect the convergence rate). You can do this in Mathematica using

the method option "UpdateJacobian",  which gives the number of steps to go before updating

the Jacobian. The default is "UpdateJacobian" -> 1, so the Jacobian is updated every step.

This shows the number of steps, function evaluations, and Jacobian evaluations required to find 
a simple square root when the Jacobian is only updated every three steps.

In[6]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, Method Ø 8"Newton", "UpdateJacobian" Ø 3<,

EvaluationMonitor ß e++, StepMonitor ß s++,
Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D

Out[6]= 88x Ø 1.41421<, 5, 9, 2<

This shows the number of steps, function evaluations, and Jacobian evaluations required to find 
a simple square root when the Jacobian is updated every step.

In[7]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, EvaluationMonitor ß e++, StepMonitor ß s++,

Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D
Out[7]= 88x Ø 1.41421<, 4, 5, 4<
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Of course for a simple one-dimensional root, updating the Jacobian is trivial in cost, so holding

the update is only of use here to demonstrate the idea.

option name default value

"UpdateJacobian" 1 number of steps to take before updating 
the Jacobian

"StepControl" "LineSearch" method for step control, can be 
"LineSearch", "TrustRegion", or 
None (which is not recommended)

Method options for Method -> "Newton" in FindRoot.

The Secant Method

When derivatives cannot be computed symbolically, "Newton’s" method will be used, but with a

finite  difference  approximation  to  the  Jacobian.  This  can  have  cost  in  terms  of  both  time  and

reliability. Just as for minimization, an alternative is to use an algorithm specifically designed to

work without derivatives. 

In  one  dimension,  the  idea  of  the  secant  method  is  to  use  the  slope  of  the  line  between two

consecutive  search  points  to  compute  the  step  instead  of  the  derivative  at  the  latest  point.

Similarly in n dimensions, differences between the residuals at n points are used to construct an

approximation of sorts to the Jacobian. Note that this is similar to finite differences, but rather

than trying to make the difference interval small in order to get as good a Jacobian approxima-

tion  as  possible,  it  effectively  uses  an  average derivative  just  like  the  one-dimensional  secant

method. Initially, the n points are constructed from two starting points that are distinct in all n

dimensions. Subsequently, as steps are taken, only the n points with the smallest merit function

value are kept. It is rare, but possible, that steps are collinear and the secant approximation to

the Jacobian becomes singular. In this case, the algorithm is restarted with distinct points.

The  method requires  two starting  points  in  each  dimension.  In  fact,  if  two  starting  points  are

given  in  each  dimension,  the  secant  method  is  the  default  method  except  in  one  dimension,

where "Brent’s" method may be chosen.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`
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This shows the solution of the Rosenbrock problem with the secant method.

In[2]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2, -1.<, 8X2, 1., .9<<E

Out[2]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 21, Residual Ø 70<,
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Note  that,  as  compared  to  "Newton’s"  method,  many  more  residual  function  evaluations  are

required.  However,  the  method  is  able  to  follow  the  relatively  narrow  valley  without  directly

using derivative information. 

This shows the solution of the Rosenbrock problem with Newton’s method using finite differ-
ences to compute the Jacobian.

In[3]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<,

Method Ø 8"Newton", StepControl -> "TrustRegion"<, Jacobian -> "FiniteDifference"E

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 17, Residual Ø 70, Jacobian Ø 16<,
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However,  when  compared  to  Newton’s  method  with  finite  differences,  the  number  of  residual

function  evaluations  is  comparable.  For  sparse  Jacobian  matrices  with  larger  problems,  the

finite difference Newton method will usually be more efficient since the secant method does not

take advantage of sparsity in any way.

Brent’s Method

When searching for a real simple root of a real valued function, it is possible to take advantage

of  the  special  geometry  of  the  problem,  where  the  function  crosses  the  axis  from negative  to
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positive  or  vice  versa.  Brent’s  method  [Br02]  is  effectively  a  safeguarded  secant  method  that

always keeps a point where the function is positive and one where it is negative so that the root

is always bracketed. At any given step, a choice is made between an interpolated (secant) step

and a bisection in such a way that eventual convergence is guaranteed. 

If  FindRoot  is  given  two  real  starting  conditions  that  bracket  a  root  of  a  real  function,  then

Brent’s  method  will  be  used.  Thus,  if  you  are  working  in  one  dimension  and  can  determine

initial conditions that will bracket a root, it is often a good idea to do so since Brent’s method is

the most robust algorithm available for FindRoot.

Even though essentially all the theory for solving nonlinear equations and local minimization is

based on smooth functions, Brent’s method is sufficiently robust that you can even get a good

estimate for a zero crossing for discontinuous functions.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and function evaluations used in an attempt to find the root of a discontinu-
ous function.

In[2]:= FindRootPlot@2 UnitStep@Sin@xDD - 1, 8x, 3, 4<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]= :8x Ø 3.14159<, 8Steps Ø 50, Residual Ø 51<,
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The method gives  up and issues  a  message when the root  is  bracketed very  closely,  but  it  is

not able to find a value of the function, which is zero. This robustness carries over very well to

continuous functions that are very steep.

This shows the steps and function evaluations used to find the root of a function that varies 
rapidly near its root.

In[3]:= FindRootPlot@ArcTan@10000 Sin@xD D, 8x, 3, 4<, PlotRange Ø AllD

Out[3]= :8x Ø 3.14159<, 8Steps Ø 18, Residual Ø 19<,
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>
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Step Control

Introduction to Step Control

Even with "Newton methods" where the local model is based on the actual Hessian, unless you

are close to a root or minimum, the model step may not bring you any closer to the solution. A

simple example is given by the following problem.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a simple example for root finding with step control disabled where the iteration 
alternates between two points and does not converge. Note: On some platforms, you may see 
convergence. This is due to slight variations in machine-number arithmetic, which may be 
sufficient to break the oscillation.

In[2]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<,
Method Ø 8Newton, StepControl Ø None<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]=

This shows the same example problem with step control enabled. Since the first evaluation 
point has not reduced the size of the function, the line search restricts the step and so the 
iteration converges to the solution.

In[3]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<, Method Ø "Newton"D

Out[3]= :8x Ø 0.<, 8Steps Ø 2, Residual Ø 3, Jacobian Ø 2<,
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>
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A  good  step-size  control  algorithm  will  prevent  repetition  or  escape  from  areas  near  roots  or

minima from happening. At the same time, however, when steps based on the model function

are appropriate, the step-size control algorithm should not restrict them, otherwise the conver-

gence  rate  of  the  algorithm  would  be  compromised.  Two  commonly  used  step-size  control

algorithms  are  "line  search"  and  "trust  region"  methods.  In  a  line  search  method,  the  model

function  gives  a  step  direction,  and  a  search  is  done  along  that  direction  to  find  an  adequate

point  that  will  lead  to  convergence.  In  a  trust  region  method,  a  distance  in  which  the  model

function will be trusted is updated at each step. If the model step lies within that distance, it is

used; otherwise, an approximate minimum for the model function on the boundary of the trust

region  is  used.  Generally  the  trust  region  methods  are  more  robust,  but  they  require  more

numerical linear algebra.

Both step control methods were developed originally with minimization in mind. However, they

apply well to finding roots for nonlinear equations when used with a merit function. In Mathemat -

ica, the 2-norm merit function rHxL.rHxL is used.

Line Search Methods

A method like "Newton’s" method chooses a step, but the validity of that step only goes as far

as  the  Newton quadratic  model  for  the  function  really  reflects  the  function.  The idea of  a  line

search is  to  use the direction of  the chosen step,  but  to  control  the length,  by solving a one-

dimensional problem of minimizing 

f HaLã f Ha pk + xkL,

where pk is the search direction chosen from the position xk. Note that 

f ' HaLã“ f Ha pk + xkL.pk,

so if you can compute the gradient, you can effectively do a one-dimensional search with deriva-

tives. 

Typically,  an  effective  line  search  only  looks  toward  a > 0  since  a  reasonable  method  should

guarantee that the search direction is a descent direction, which can be expressed as f£ a < 0.

It  is  typically  not  worth the effort  to  find an exact  minimum of  f  since the search direction is

rarely exactly the right direction. Usually it is enough to move closer. 

32     Unconstrained Optimization



One condition that measures progress is called the Armijo or sufficient decrease condition for a

candidate a*.

fHa*L § fH0L + m f ' H0L, 0 < m < 1

Often with this condition, methods will converge, but for some methods, Armijo alone does not

guarantee convergence for smooth functions. With the additional curvature condition, 

†f ' Ha*L§ § h †f ' H0L§, 0 < m § h < 1,

many methods can be proven to converge for smooth functions. Together these conditions are

known  as  the  strong  Wolfe  conditions.  You  can  control  the  parameters  m  and  h  with  the

"DecreaseFactor" -> m and "CurvatureFactor" -> h options of "LineSearch".

The  default  value  for  "CurvatureFactor" -> h  is  h 0.9,  except  for

Method -> "ConjugateGradient" where h = 0.1 is used since the algorithm typically works better

with a closer-to-exact line search. The smaller h is, the closer to exact the line search is. 

If you look at graphs showing iterative searches in two dimensions, you can see the evaluations

spread out along the directions of the line searches. Typically, it only takes a few iterations to

find a point satisfying the conditions. However, the line search is not always able to find a point

that  satisfies  the  conditions.  Usually  this  is  because  there  is  insufficient  precision  to  compute

the points closely enough to satisfy the conditions, but it can also be caused by functions that

are not completely smooth or vary extremely slowly in the neighborhood of a minimum.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In[2]:= FindMinimum@x^2 ê 2 + Cos@xD, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[2]= 81., 8x Ø 0.000182658<<
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This runs into problems because the real differences in the function are negligible compared to

evaluation differences around the point, as can be seen from the plot.

In[24]:= Plot@x^2 ê 2 + Cos@xD, 8x, 0, .0004<, PlotRange Ø 81 - 10^-15, 1 + 10^-15<D

Out[24]=
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Sometimes it  can help to subtract out the constants so that small  changes in the function are

more significant.

In[18]:= FindMinimum@x^2 ê 2 + Cos@xD - 1, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[18]= 91.11022µ10-16, 8x Ø 0.00024197<=

In  this  case,  however,  the  approximation  is  only  slightly  closer  because  the  function  is  quite

noisy near 0, as can be seen from the plot.

In[19]:= Plot@x^2 ê 2 + Cos@xD - 1, 8x, 0, .0004<D

Out[19]=
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8.µ 10-16

1.µ 10-15

Thus,  to  get  closer  to  the  correct  value  of  zero,  higher  precision  is  required  to  compute  the

function more accurately.

For some problems, particularly where you may be starting far from a root or a local minimum,

it  may be  desirable  to  restrict  steps.  With  line  searches,  it  is  possible  to  do  this  by  using  the

"MaxRelativeStepSize"  method option.  The default  value  picked for  this  is  designed to  keep

searches from going wildly out of control, yet at the same time not prevent a search from using

reasonably large steps if appropriate.
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This is an example of a problem where the Newton step is very large because the starting point 
is at a position where the Jacobian (derivative) is nearly singular. The step size is (not severely) 
limited by the option.

In[3]:= FindRootPlot@Cos@x PiD, 88x, -5<<D

Out[3]=

This shows the same example but with a more rigorous step-size limitation, which finds the root 
near the starting condition.

In[4]:= FindRootPlot@Cos@x PiD, 88x, -5<<,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", "MaxRelativeStepSize" Ø .1<<D

Out[4]= :8x Ø -4.5<, 8Steps Ø 5, Residual Ø 5, Jacobian Ø 5<,
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Note that you need to be careful not to set the "MaxRelativeStepSize" option too small, or it

will affect convergence, especially for minima and roots near zero.

The following table shows a summary of the options, which can be used to control line searches.

option name default value

"Method" Automatic method to use for executing the line 
search; can be Automatic, 
"MoreThuente", "Backtracking", or 
"Brent"

"CurvatureFactor" Automatic factor h in the Wolfe conditions, between 0 
and 1; smaller values of h result in a more 
exact line search

"DecreaseFactor" 1ê10000 factor m in the Wolfe conditions, between 0 
and h

"MaxRelativeStepSize" 10 largest step that will be taken relative to 
the norm of the current search point, can 
be any positive number or ¶ for no 
restriction

Method options for "StepControl" Ø "LineSearch".
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The following sections will describe the three line search algorithms implemented in Mathemat-

ica. Comparisons will be made using the Rosenbrock function.

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[5]:= p = GetFindMinimumProblem@RosenbrockD

Out[5]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F

MoreThuente

The default  line search used by FindMinimum,  FindMaximum,  and FindFit  is  one described by

More and Thuente in [MT94]. It tries to find a point that satisfies both the decrease and curva-

ture conditions by using bracketing and quadratic and cubic interpolation.

This shows the steps and evaluations done with Newton’s method with the default line search 
parameters. Points with just red and green are where the function and gradient were evaluated 
in the line search, but the Wolfe conditions were not satisfied so as to take a step.

In[10]:= FindMinimumPlot@p, Method Ø NewtonD

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

Out[10]= 994.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,
8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<, Ü ContourGraphics Ü=

The points at which only the function and gradient were evaluated were the ones attempted in

the  line  search  phase  that  did  not  satisfy  both  conditions.  Unless  restricted  by

"MaxRelativeStepSize", the line search always starts with the full step length (a = 1), so that

if the full (in this case Newton) step satisfies the line search criteria, it will be taken, ensuring a

full convergence rate close to a minimum.

Decreasing  the  curvature  factor,  which  means  that  the  line  search  ends  nearer  to  the  exact

minimum,  decreases  the  number  of  steps  taken  by  Newton’s  method  but  increases  the  total

number of function and gradient evaluations.
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This shows the steps and evaluations done with Newton’s method with a curvature factor in the 
line search parameters that is smaller than the default. Points with just red and green are 
where the function and gradient were evaluated in the line search, but the Wolfe conditions 
were not satisfied so as to take a step.

In[31]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", CurvatureFactor Ø .1<<D

Out[31]= :95.54946µ10-22, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 14, Function Ø 61, Gradient Ø 61, Hessian Ø 15<,
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>

This  example  demonstrates  why a  more  exact  line  search  is  not  necessarily  better.  When the

line search takes the step to the right at the bottom of the narrow valley, the Newton step is

based  on  moving  along  the  valley  without  seeing  its  curvature  (the  curvature  of  the  valley  is

beyond  quadratic  order),  so  the  Newton  steps  end  up  being  far  too  long,  even  though  the

direction is better. On the other hand, some methods, such as the conjugate gradient method,

need a better line search to improve convergence.

Backtracking

This  is  a simple line search that starts from the given step size and backtracks toward a step

size of 0, stopping when the sufficient decrease condition is met. In general with only backtrack-

ing, there is no guarantee that you can satisfy the curvature condition, even for nice functions,

so the convergence properties of the methods are not assured. However, the backtracking line

search also does not need to evaluate the gradient at each point, so if gradient evaluations are

relatively  expensive,  this  may  be  a  good  choice.  It  is  used  as  the  default  line  search  in

FindRoot  because  evaluating  the  gradient  of  the  merit  function  involves  computing  the  Jaco-

bian, which is relatively expensive.
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In[32]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Backtracking"<<D

Out[32]= :91.2326µ10-30, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 25, Function Ø 34, Gradient Ø 26, Hessian Ø 25<,
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>

Each  backtracking  step  is  taken by  doing  a  polynomial  interpolation  and finding  the  minimum

point for the interpolant. This point ak is used as long as it lies between c1 ak-1 and c2 ak-1, where

ak-1  is  the  previous  value  of  the  parameter  a  and  0 < c1 § c2 < 1.  By  default,  c1 = 0.1  and  c2 = 0.5,

but they can be controlled by the method option "BacktrackFactors" -> 8c1, c2<. If you give a

single  value for  the factors,  this  sets  c1 = c2,  and no interpolation is  used.  The value 1/2 gives

bisection.

In this example, the effect of the relatively large backtrack factor is quite apparent.

In[33]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" Ø
8"LineSearch", Method Ø 8"Backtracking", "BacktrackFactors" Ø 1 ê 2<<<D

Out[33]= :93.74398µ10-21, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 29, Gradient Ø 22, Hessian Ø 22<,
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>

option name default value

"BacktrackFactors" 81ê10, 1ê2< determine the minimum and maximum 
factor by which the attempted step length 
must shrink between backtracking steps

Method option for line search Method -> "Backtracking".
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Brent

This uses the derivative-free univariate method of Brent [Br02] for the line search. It attempts

to find the minimum of f a  to within tolerances, regardless of the decrease and curvature fac-

tors. In effect, it has two phases. First, it tries to bracket the root, then it uses "Brent’s" com-

bined  interpolation/golden  section  method  to  find  the  minimum.  The  advantage  of  this  line

search is that it does not require, as the other two methods do, that the step be in a descent

direction, since it will look in both directions in an attempt to bracket the minimum. As such it is

very  appropriate  for  the  derivative-free  "principal  axis"  method.  The  downside  of  this  line

search is that it typically uses many function evaluations, so it is usually less efficient than the

other two methods.

This example shows the effect of using the Brent method for line search. Note that in the phase 
of bracketing the root, it may use negative values of a. Even though the number of Newton 
steps is relatively small in this example, the total number of function evaluations is much larger 
than for other line search methods.

In[34]:= FindMinimumPlot@p,
Method Ø 8"Newton", "StepControl" Ø 8"LineSearch", Method Ø "Brent"<<D

Out[34]= :91.01471µ10-23, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 13, Function Ø 188, Gradient Ø 14, Hessian Ø 14<,
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>

Trust Region Methods

A trust region method has a region around the current search point, where the quadratic model

(3)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

for  "local  minimization"  is  "trusted"  to  be  correct  and  steps  are  chosen  to  stay  within  this

region.  The  size  of  the  region  is  modified  during  the  search,  based  on  how  well  the  model

agrees with actual function evaluations. 
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Very  typically,  the  trust  region  is  taken  to  be  an  ellipse  such  that  °D p¥ § D.  D  is  a  diagonal

scaling  (often  taken  from  the  diagonal  of  the  approximate  Hessian)  and  D  is  the  trust  region

radius, which is updated at each step.

When the step based on the quadratic model alone lies within the trust region, then, assuming

the function value gets smaller, that step will be chosen. Thus, just as with "line search" meth-

ods, the step control does not interfere with the convergence of the algorithm near to a mini-

mum  where  the  quadratic  model  is  good.  When  the  step  based  on  the  quadratic  model  lies

outside the trust region, a step just up to the boundary of the trust region is chosen, such that

the  step  is  an  approximate  minimizer  of  the  quadratic  model  on  the  boundary  of  the  trust

region. 

Once  a  step  pk  is  chosen,  the  function  is  evaluated  at  the  new point,  and  the  actual  function

value is checked against the value predicted by the quadratic model. What is actually computed

is the ratio of actual to predicted reduction.

rk =
f HxkL - f Hxk+ pkL

qkH0L - qkHpkL
=

actual reduction of f

predicted model reduction of f

If  rk  is  close  to  1,  then  the  quadratic  model  is  quite  a  good  predictor  and  the  region  can  be

increased in size. On the other hand, if rk  is too small, the region is decreased in size. When rk

is below a threshold, h, the step is rejected and recomputed. You can control this threshold with

the method option "AcceptableStepRatio" -> h. Typically the value of h is quite small to avoid

rejecting steps that would be progress toward a minimum. However, if obtaining the quadratic

model at a point is quite expensive (e.g., evaluating the Hessian takes a relatively long time), a

larger value of h will reduce the number of Hessian evaluations, but it may increase the number

of function evaluations.

To start the trust region algorithm, an initial radius D needs to be determined. By default Mathe-

matica uses the size of the step based on the model (1) restricted by a fairly loose relative step

size limit. However, in some cases, this may take you out of the region you are primarily inter-

ested  in,  so  you  can  specify  a  starting  radius  D0  using  the  option

"StartingScaledStepSize" -> D0.  The  option  contains  Scaled  in  its  name  because  the  trust

region radius works through the diagonal scaling D, so this is not an absolute step size.
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This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and evaluations taken during a search for a local minimum of a function 
similar to Rosenbrock's function, using Newton's method with trust region step control.

In[2]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<,
Method Ø 8"Newton", "StepControl" -> "TrustRegion"<, MaxRecursion Ø 0D

Out[2]= :8-100., 8x Ø 1., y Ø 178.5<<,

8Steps Ø 16, Function Ø 20, Gradient Ø 17, Hessian Ø 16<,
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>

The plot looks quite bad because the search has extended over such a large region that the fine

structure of the function cannot really be seen on that scale.

This shows the steps and evaluations for the same function, but with a restricted initial trust 
region radius D0. Here the search stays much closer to the initial condition and follows the 
narrow valley.

In[3]:= FindMinimumPlot@Hx - 1L^2 + 100 Sin@x^2 - yD, 88x, -1<, 8y, 1<<, Method Ø
8"Newton", "StepControl" Ø 8"TrustRegion", "StartingScaledStepSize" Ø 1<<D

Out[3]= :8-100., 8x Ø 1., y Ø 2.5708<<,

8Steps Ø 18, Function Ø 20, Gradient Ø 19, Hessian Ø 19<,
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>

It  is  also  possible  to  set  an  overall  maximum bound  for  the  trust  region  radius  by  using  the

option "MaxScaledStepSize" -> Dmax so that for any step, Dk § Dmax. 
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Trust  region  methods  can  also  have  difficulties  with  functions  which  are  not  smooth  due  to

problems with  numerical  roundoff  in  the function computation.  When the function is  not  suffi-

ciently smooth, the radius of the trust region will keep getting reduced. Eventually, it will get to

the point at which it is effectively zero.

This gets the Freudenstein|Roth test problem from the Optimization 

`Unconstrained Problems`package in a form where it can be solved by FindMinimum . 
(See "Test Problems".)

In[4]:= pfr = GetFindMinimumProblem@FreudensteinRothD

Out[4]= FindMinimumProblemAH-13 + X1 + X2 H-2 + H5 - X2L X2LL
2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL

2,
88X1, 0.5<, 8X2, -2.<<, 8<, FreudensteinRoth, 82, 2<E

This finds a local minimum for the function using the default method. The default method in this 
case is the (trust region) Levenberg|Marquardt method since the function is a sum of squares.

In[5]:= FindMinimumPlot@pfrD

FindMinimum::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified
by the AccuracyGoal option. There is a possibility that the
method has stalled at a point which is not a local minimum. à

Out[5]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 16, Residual Ø 35, Jacobian Ø 17<,
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>

The message means that the size of the trust region has become effectively zero relative to the

size of the search point, so steps taken would have negligible effect. Note: On some platforms,

due to subtle differences in machine arithmetic, the message may not show up. This is because

the  reasons  leading  to  the  message  have  to  do  with  numerical  uncertainty,  which  can  vary

between different platforms.
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This makes a plot of the variation function along the X1 direction at the final point found.

In[6]:= BlockA8e = 10^-7, x1f = 11.412778991937346, x2f = -0.8968052550911878, min<,
min = H-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2 ê.

8X1 Ø x1f, X2 Ø x2f<;
PlotAIH-13 + X1 + X2 H-2 + H5 - X2L X2LL2 + H-29 + X1 + X2 H-14 + X2 H1 + X2LLL2M - min ê.

X2 Ø x2f, 8X1, x1f - e, x1f + e<EE

Out[6]=

11.4128 11.4128 11.4128

-2.µ 10-14
-1.µ 10-14

1.µ 10-14
2.µ 10-14
3.µ 10-14
4.µ 10-14
5.µ 10-14

The plot along one direction makes it fairly clear why no more improvement is possible. Part of

the  reason the  Levenberg|Marquardt  method gets  into  trouble  in  this  situation  is  that  conver-

gence  is  relatively  slow  because  the  residual  is  nonzero  at  the  minimum.  With  "Newton's"

method, the convergence is faster, and the full quadratic model allows for a better estimate of

step size, so that FindMinimum  can have more confidence that the default tolerances have been

satisfied.

In[52]:= FindMinimumPlot@pfr, Method Ø 8"Newton", StepControl Ø "TrustRegion"<D

Out[52]= :848.9843, 8X1 Ø 11.4128, X2 Ø -0.896805<<,

8Steps Ø 6, Function Ø 7, Gradient Ø 7, Hessian Ø 7<,
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>

The following table summarizes the options for controlling trust region step control.

option name default value

"AcceptableStepRatio" 1ê10000 the threshold h, such that when the actual 
to prediction reduction rk ¥ h, the search is 
moved to the computed step

"MaxScaledStepSize" ¶ the value Dmax, such that the trust region 
size Dk < Dmax for all steps

"StartingScaledStepSize" Automatic the initial trust region size D0

Method options for "StepControl" -> "TrustRegion".
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Setting Up Optimization Problems in 
Mathematica

Specifying Derivatives

The function FindRoot  has a Jacobian  option; the functions FindMinimum,  FindMaximum,  and

FindFit  have a Gradient  option; and the "Newton" method has a method option Hessian. All

these  derivatives  are  specified  with  the  same  basic  structure.  Here  is  a  summary  of  ways  to

specify derivative computation methods.

Automatic find a symbolic derivative for the function and use finite 
difference approximations if a symbolic derivative cannot 
be found

Symbolic same as Automatic, but gives a warning message if finite 
differences are to be used

FiniteDifference use finite differences to approximate the derivative

expression use the given expression with local numerical values of the 
variables to evaluate the derivative

Methods for computing gradient, Jacobian, and Hessian derivatives.

The basic specification for a derivative is just the method for computing it. However, all of the

derivatives take options as well. These can be specified by using a list 8method, opts<. Here is a

summary of the options for the derivatives.

option name default value

"EvaluationMonitor" None expression to evaluate with local values of 
the variables every time the derivative is 
evaluated, usually specified with :> instead 
of -> to prevent symbolic evaluation

"Sparse" Automatic sparse structure for the derivative; can be 
Automatic, True, False, or a pattern 
SparseArray  giving the nonzero structure

"DifferenceOrder" 1 difference order to use when finite differ-
ences are used to compute the derivative

Options for computing gradient, Jacobian, and Hessian derivatives.
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A few examples will help illustrate how these fit together. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This defines a function that is only intended to evaluate for numerical values of the variables.

In[2]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

With just Method Ø "Newton",  FindMinimum  issues an lstol  message because it  was not able

to resolve the minimum well enough due to lack of good derivative information.

This shows the steps taken by FindMinimum  when it has to use finite differences to compute 
the gradient and Hessian.

In[3]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::symd:
Unable to automatically compute the symbolic derivative of f@x, yD with respect to the arguments

8x, y<. Numerical approximations to derivatives will be used instead. à

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[3]=

>
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 The following describes how you can use the gradient option to specify the derivative.

This computes the minimum of f@x, yD using a symbolic expression for its gradient.

In[4]:= FindMinimumPlotAf@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=,
Method Ø "Newton"E

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,
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>

Symbolic  derivatives  are  not  always  available.  If  you  need  extra  accuracy  from  finite  differ-

ences, you can increase the difference order from the default of 1 at the cost of extra function

evaluations.

This computes the minimum of f@x, yD using a second-order finite difference to compute the 
gradient.

In[5]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø 8Automatic, "DifferenceOrder" Ø 2<, Method Ø "Newton"D

Out[5]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 102, Gradient Ø 24, Hessian Ø 6<,
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>

Note that the number of  function evaluations is  much higher because function evaluations are

used to compute the gradient, which is used to approximate the Hessian in turn. (The Hessian

is  computed  with  finite  differences  since  no  symbolic  expression  for  it  can  be  computed  from

the information given.)
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The  information  given  from  FindMinimumPlot  about  the  number  of  function,  gradient,  and

Hessian evaluations is quite useful. The EvaluationMonitor options are what make this possi-

ble. Here is an example that simply counts the number of each type of evaluation. (The plot is

made using Reap and Sow to collect the values at which the evaluations are done.)

This computes the minimum with counters to keep track of the number of steps and the num-
ber of function, gradient, and Hessian evaluations.

In[6]:= Block@8s = 0, e = 0, g = 0, h = 0<,
8FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88 x, 1<, 8y, 1<<, StepMonitor ß s++, EvaluationMonitor ß e++,
Gradient Ø 8Automatic, EvaluationMonitor ß g++<, Method Ø
8"Newton", "Hessian" Ø 8Automatic, EvaluationMonitor ß h++<<D, s, e, g, h<D

Out[6]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 5, 6, 6, 6<

Using such diagnostics can be quite useful for determining what methods and/or method param-

eters may be most successful for a class of problems with similar characteristics.

When  Mathematica  can  access  the  symbolic  structure  of  the  function,  it  automatically  does  a

structural  analysis  of  the  function  and its  derivatives  and uses  SparseArray  objects  to  repre-

sent the derivatives when appropriate. Since subsequent numerical linear algebra can then use

the  sparse  structures,  this  can  have  a  profound  effect  on  the  overall  efficiency  of  the  search.

When Mathematica cannot do a structural analysis, it has to assume, in general, that the struc-

ture  is  dense.  However,  if  you  know  what  the  sparse  structure  of  the  derivative  is,  you  can

specify  this  with  the  "Sparse"  method  option  and  gain  huge  efficiency  advantages,  both  in

computing derivatives (with finite differences, the number of evaluations can be reduced signifi-

cantly) and in subsequent linear algebra. This issue is particularly important when working with

vector-valued variables. A good example for illustrating this aspect is the extended Rosenbrock

problem, which has a very simple sparse structure.

This gets the extended Rosenbrock function with 1000 variables in symbolic form ready to be 
solved with FindRoot using the UnconstrainedProblems` package.

In[7]:= n = 1000; Short@ pex = GetFindRootProblem@ExtendedRosenbrock, nD, 20D

Out[7]//Short= FindRootProblemA910 I-X1
2 + X2M, 1 - X1, á997à, 1 - X999=, 8á1à<, 8<, á18à, 81000, 1000<E

This solves the problem using the symbolic form of the function.

In[8]:= Timing@Norm@1 - H Array@XÒ &, nD ê. ProblemSolve@pexDLDD

Out[8]= 80.321984, 0.<
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For a function with simple form like this, it is easy to write a vector form of the function, which

can  be  evaluated  much  more  quickly  than  the  symbolic  form  can,  even  with  automatic

compilation.

This defines a vector form of the extended Rosenbrock function, which evaluates very efficiently.

In[9]:= ExtendedRosenbrockResidual@X_ListD := Module@8x1, x2<,
x1 = Take@X, 81, -1, 2<D;
x2 = Take@X, 82, -1, 2<D;
Flatten@Transpose@810 Hx2 - x1^2L, 1 - x1<DDD

This extracts the starting point as a vector from the problem structure.

In[10]:= Short@start = pex@@2, All, 2DDD

Out[10]//Short= 8-1.2, 1., -1.2, 1., -1.2, 1., -1.2, á986à, 1., -1.2, 1., -1.2, 1., -1.2, 1.<

This solves the problem using a vector variable and the vector function for evaluation. 

In[11]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<DLDD

Out[11]= 812.2235, 0.<

The  solution  with  the  function,  which  is  faster  to  evaluate,  winds  up  being  slower  overall

because  the  Jacobian  has  to  be  computed  with  finite  differences  since  the  x_List  pattern

makes it opaque to symbolic analysis. It is not so much the finite differences that are slow as

the fact that it needs to do 100 function evaluations to get all the columns of the Jacobian. With

knowledge of the structure, this can be reduced to two evaluations to get the Jacobian. For this

function, the structure of the Jacobian is quite simple.

This defines a pattern SparseArray , which has the structure of nonzeros for the Jacobian of 
the extended Rosenbrock function. (By specifying _ for the values in the rules, the 
SparseArray  is taken to be a template of the Pattern type as indicated in the output form.)

In[12]:= sparsity = SparseArray@
Flatten@Table@88i, i< Ø _, 8i, i + 1< Ø _, 8i + 1, i< Ø _<, 8i, 1, n - 1, 2<DDD

Out[12]= SparseArray@<1500>, 81000, 1000<, PatternD

This solves the problem with the knowledge of the actual Jacobian structure, showing a signifi-
cant cost savings.

In[13]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8Automatic, Sparse Ø sparsity<DLDD

Out[13]= 80.031138, 0.<
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When a sparse structure is given, it is also possible to have the value computed by a symbolic

expression  that  evaluates  to  the  values  corresponding  to  the  positions  given  in  the  sparse

structure template. Note that the values must correspond directly to the positions as ordered in

the  SparseArray  (the  ordering  can  be  seen  using  ArrayRules).  One  way  to  get  a  consistent

ordering of indices is to transpose the matrix twice, which results in a SparseArray  with indices

in lexicographic order.

This transposes the nonzero structure matrix twice to get the indices sorted.

In[14]:= sparsity = Transpose@Transpose@sparsityDD

Out[14]= SparseArray@<1500>, 81000, 1000<, PatternD

This defines a function that will return the nonzero values in the Jacobian corresponding to the 
index positions in the nonzero structure matrix.

In[15]:= ERJValues@X_ListD := Module@8x1, zero<,
x1 = Take@X, 81, -1, 2<D;
zero = 0. x1;
Flatten@Transpose@8-20 x1, 10. + zero, -1. + zero<DDD

This solves the problem with the resulting sparse symbolic Jacobian.

In[16]:= Timing@Norm@1 - HX ê. FindRoot@ExtendedRosenbrockResidual@XD, 8X, start<,
Method Ø 8"Newton"<, Jacobian Ø 8ERJValues@XD, Sparse Ø sparsity<DLDD

Out[16]= 80.025614, 0.<

In  this  case,  using  the  sparse  Jacobian  is  not  significantly  faster  because  the  Jacobian  is  so

sparse that a finite difference approximation can be found for it in only two function evaluations

and because the problem is well  enough defined near the minimum that the extra accuracy in

the Jacobian does not make any significant difference.

Variables and Starting Conditions

All  the functions FindMinimum,  FindMaximum,  and FindRoot  take variable specifications of  the

same form. The function FindFit uses the same form for its parameter specifications.
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FindMinimum@ f,varsD find a local minimum of f  with respect to the variables 
given in vars

FindMinimum@ f,varsD find a local maximum of f  with respect to the variables 
given in vars

FindRoot@ f,varsD find a root f = 0 with respect to the variables given in vars

FindRoot@eqns,varsD find a root of the equations eqns with respect to the vari -
ables given in vars

FindFit@data,expr,pars,varsD find values of the parameters pars that make expr give a 
best fit to data as a function of vars

Variables and parameters in the "Find" functions. 

The list vars (pars for FindFit) should be a list of individual variable specifications. Each variable

specification should be of the following form.

8var,st< variable var has starting value st

8var,st1,st2< variable var has two starting values st1 and st2; the second 
starting condition is only used with the principal axis and 
secant methods

8var,st,rl,ru< variable var has starting value st; the search will be termi -
nated when the value of var goes outside of the interval 
@rl, ruD

8var,st1,st2,rl,ru< variable var has two starting values st1 and st2; the search 
will be terminated when the value of var goes outside of 
the interval @rl, ruD

Individual variable specifications in the "Find" functions. 

The  specifications  in  vars  all  need  to  have  the  same  number  of  starting  values.  When  region

bounds are not specified, they are taken to be unbounded, that is, rl = -¶, ru =¶.

Vector- and Matrix-Valued Variables

The most common use of variables is to represent numbers. However, the variable input syntax

supports variables that are treated as vectors, matrices, or higher-rank tensors. In general, the

"Find"  commands,  with  the  exception  of  FindFit,  which  currently  only  works  with  scalar

variables, will consider a variable to take on values with the same rectangular structure as the

starting conditions given for it. 
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Here is a matrix.

In[1]:= A =
0 1 2
3 4 5
6 7 8

;

This uses FindRoot to find an eigenvalue and corresponding normalized eigenvector for A.

In[2]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, 1<, 8x, 81, 2, 3<<<D

Out[2]= 8l Ø 13.3485, x Ø 80.164764, 0.505774, 0.846785<<

Of course, this is not the best way to compute the eigenvalue, but it does show how the vari-

able dimensions are picked up from the starting values. Since l has a starting value of 1, it is

taken to be a scalar. On the other hand, x is given a starting value, which is a vector of length

3, so it is always taken to be a vector of length 3.

If you use multiple starting values for variables, it is necessary that the values have consistent

dimensions and that each component of the starting values is distinct.

This finds a different eigenvalue using two starting conditions for each variable.

In[3]:= FindRoot@8A.x ã l x, x.x ã 1<, 88l, -2, -1<, 8x, 8-1, 0, 0<, 80, 1, 1<<<D

Out[3]= 8l Ø -1.34847, x Ø 8-0.7997, -0.104206, 0.591288<<

One advantage of variables that can take on vector and matrix values is that they allow you to

write  functions,  which  can  be  very  efficient  for  larger  problems  and/or  handle  problems  of

different sizes automatically.

This defines a function that gives an objective function equivalent to the 
ExtendedRosenbrock problem in the UnconstrainedProblems package. The function 
expects a value of x which is a matrix with two rows. 

In[4]:= ExtendedRosenbrockObjective@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
x1 -= 1;
x1.x1 + 100 x2.x2D

Note that since the value of the function would be meaningless unless x had the correct struc-

ture,  the  definition  is  restricted  to  arguments  with  that  structure.  For  example,  if  you defined

the  function  for  any  pattern  x_,  then  evaluating  with  an  undefined  symbol  x  (which  is  what

FindMinimum  does) gives meaningless unintended results. It is often the case that when work-

ing with functions for vector-valued variables, you will have to restrict the definitions. Note that

the  definition  above  does  not  rule  out  symbolic  values  with  the  right  structure.  For  example,
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 does) gives meaningless unintended results. It is often the case that when work-

the  definition  above  does  not  rule  out  symbolic  values  with  the  right  structure.  For  example,

ExtendedRosenbrockObjective@88x11, x12<, 8x21, x22<<D  gives a symbolic representation of the

function for scalar x11, ….

This uses FindMinimum  to solve the problem given a generic value for the problem size. You 
can change the value of n without changing anything else to solve problems of different size.

In[5]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD, 8x, start<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease in the function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Out[7]= 92.00081µ10-10,
8x Ø 880.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996, 0.999996,

0.999996, 0.999996<, 80.999991, 0.999991, 0.999991, 0.999991,
0.999991, 0.999991, 0.999991, 0.999991, 0.999991, 0.999991<<<=

The  solution  did  not  achieve  the  default  tolerances  due  to  the  fact  that  Mathematica  was  not

able to get symbolic derivatives for the function, so it had to fall back on finite differences that

are not as accurate. 

A  disadvantage  of  using  vector-  and  matrix-valued  variables  is  that  Mathematica  cannot  cur-

rently compute symbolic derivatives for them. Sometimes it is not difficult to develop a function

that gives the correct derivative. (Failing that, if you really need greater accuracy, you can use

higher-order finite differences.)

This defines a function that returns the gradient for the ExtendedRosenbrockObjective 
function. Note that the gradient is a vector obtained by flattening the matrix corresponding to 
the variable positions.

In[8]:= ExtendedRosenbrockGradient@x_ ê; HHLength@xD ã 2L && MatrixQ@xDLD :=
Module@8x1, x2<,
8x1, x2< = x;
x2 -= x1^2;
Flatten@82 Hx1 - 1L - 400 x1 x2, 200 x2<DD

This solves the problem using the symbolic value of the gradient.

In[9]:= n = 10;
start = 8Table@-1.2, 8n<D, Table@1., 8n<D<;
FindMinimum@ExtendedRosenbrockObjective@xD,
8x, start<, Gradient Ø ExtendedRosenbrockGradient@xDD

Out[11]= 93.00886µ10-20,
8x Ø 881., 1., 1., 1., 1., 1., 1., 1., 1., 1.<, 81., 1., 1., 1., 1., 1., 1., 1., 1., 1.<<<=
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Jacobian and Hessian derivatives are often sparse. You can also specify the structural sparsity

of these derivatives when appropriate, which can reduce overall solution complexity by quite a

bit.

Termination Conditions

Mathematically, sufficient conditions for a local minimum of a smooth function are quite straight-

forward:  x*  is  a  local  minimum if  “ f Hx*L = 0  and the Hessian “2 f Hx*L  is  positive  definite.  (It  is  a

necessary  condition  that  the  Hessian  be  positive  semidefinite.)  The  conditions  for  a  root  are

even simpler. However, when the function f  is being evaluated on a computer where its value is

only  known,  at  best,  to  a  certain  precision,  and  practically  only  a  limited  number  of  function

evaluations  are  possible,  it  is  necessary  to  use  error  estimates  to  decide  when  a  search  has

become  close  enough  to  a  minimum  or  a  root,  and  to  compute  the  solution  only  to  a  finite

tolerance. For the most part, these estimates suffice quite well, but in some cases, they can be

in error, usually due to unresolved fine scale behavior of the function.

Tolerances affect how close a search will try to get to a root or local minimum before terminat-

ing the search. Assuming that the function itself  has some error (as is typical when it  is com-

puted  with  numerical  values),  it  is  not  typically  possible  to  locate  the  position  of  a  minimum

much better than to half of the precision of the numbers being worked with. This is because of

the  quadratic  nature  of  local  minima.  Near  the  bottom  of  a  parabola,  the  height  varies  quite

slowly as you move across from the minimum. Thus, if there is any error noise in the function,

it  will  typically  mask the actual  rise  of  the  parabola  over  a  width  roughly  equal  to  the  square

root of the noise. This is best seen with an example.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`
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The following command displays a sequence of plots showing the minimum of the function 

sinHxL - cos HxL + 2  over successively smaller ranges. The curve computed with machine num-
bers is shown in black; the actual curve (computed with 100 digits of precision) is shown in blue.

In[2]:= Table@Block@8e = 10.^-k<,
Show@8Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø BlackD,

Plot@Sin@xD - Cos@xD + Sqrt@2D, 8x, -p ê 4 - e, -p ê 4 + e<, PlotStyle Ø Blue,
WorkingPrecision Ø 100D<, PlotLabel Ø Row@8"Width ", e<DDD, 8k, 5, 9<D

Out[2]=

From  the  sequence  of  plots,  it  is  clear  that  for  changes  of  order  10-8,  which  is  about  half  of

machine precision and smaller, errors in the function are masking the actual shape of the curve

near the minimum. With just sampling of the function at that precision, there is no way to be

sure if a given point gives the smallest local value of the function or not to any closer tolerance.

The  value  of  the  derivative,  if  it  is  computed  symbolically,  is  much  more  reliable,  but  for  the

general case, it is not sufficient to rely only on the value of the derivative; the search needs to

find a local minimal value of the function where the derivative is small to satisfy the tolerances

in general. Note also that if symbolic derivatives of your function cannot be computed and finite

differences  or  a  derivative-free  method  is  used,  the  accuracy  of  the  solution  may  degrade

further.

Root  finding can suffer  from the same inaccuracies  in  the function.  While  it  is  typically  not  as

severe, some of the error estimates are based on a merit function, which does have a quadratic

shape.

For the reason of this limitation, the default tolerances for the Find  functions are all set to be

half of the final working precision. Depending on how much error the function has, this may or

may not be achievable, but in most cases it is a reasonable goal. You can adjust the tolerances

using  the  AccuracyGoal  and  PrecisionGoal  options.  When  AccuracyGoal -> ag  and

PrecisionGoal -> pg, this defines tolerances tola = 10-ag and tolr = 10-pg.
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Given  tola  and  tolr  FindMinimum  tries  to  find  a  value  xk  such  that  °xk - x*¥ § maxHtola, °xk¥ tolrL.  Of

course, since the exact position of the minimum, x*, is not known, the quantity °xk - x*¥ is esti-

mated. This is usually done based on past steps and derivative values. To match the derivative

condition at a minimum, the additional requirement °“ f HxkL¥ § tola is imposed. For FindRoot, the

corresponding condition is that just the residual be small at the root: ° f ¥ § tola.

This finds the 2  to at least 12 digits of accuracy, or within a tolerance of 10-12. The precision 
goal of ¶ means that tolr = 0, so it does not have any effect in the formula. (Note: you cannot 
similarly set the accuracy goal to ¶ since that is always used for the size of the residual.)

In[3]:= FindRoot@x^2 - 2, 8x, 1<, AccuracyGoal Ø 12, PrecisionGoal Ø ¶D

Out[3]= 8x Ø 1.41421<

This shows that the result satisfied the requested error tolerances.

In[4]:= 8x - Sqrt@2D, x^2 - 2< ê. %

Out[4]= 90., 4.44089µ10-16=

This tries to find the minimum of the function sinHxL - cosHxL to 8 digits of accuracy. 
FindMinimum  gives a warning message because of the error in the function as seen in the 
plots.

In[5]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<,
Method -> "Newton", AccuracyGoal Ø 8, PrecisionGoal Ø ¶D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[5]= 8-1.41421, 8x Ø -0.785398<<

This shows that though the value at the minimum was found to be basically machine epsilon, 
the position was only found to the order of 10-8 or so.

In[6]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[6]= 92.22045µ10-16, -1.26022µ10-8=

In multiple dimensions, the situation is even more complicated since there can be more error in

some directions than others, such as when a minimum is found along a relatively narrow valley,

as  in  the  Freudenstein|Roth  problem.  For  searches  such  as  this,  often  the  search  parameters

are  scaled,  which  in  turn  affects  the  error  estimates.  Nonetheless,  it  is  still  typical  that  the

quadratic shape of the minimum affects the realistically achievable tolerances.
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When you need to find a root or minimum beyond the default tolerances, it may be necessary

to  increase  the  final  working  precision.  You  can  do  this  with  the  WorkingPrecision  option.

When  you  use  WorkingPrecision -> prec,  the  search  starts  at  the  precision  of  the  starting

values  and  is  adaptively  increased  up  to  prec  as  the  search  converges.  By  default,

WorkingPrecision -> MachinePrecision,  so  machine  numbers  are  used,  which  are  usually

much faster. Going to higher precision can take significantly more time, but can get you much

more accurate results if your function is defined in an appropriate way. For very high-precision

solutions,  "Newton's"  method  is  recommended  because  its  quadratic  convergence  rate  signifi-

cantly reduces the number of steps ultimately required.

It  is  important  to  note  that  increasing  the  setting  of  the  WorkingPrecision  option  does  no

good  if  the  function  is  defined  with  lower-precision  numbers.  In  general,  for

WorkingPrecision -> prec  to  be  effective,  the  numbers  used  to  define  the  function  should  be

exact  or  at  least  of  precision  prec.  When  possible,  the  precision  of  numbers  in  the  function  is

artificially  raised  to  prec  using  SetPrecision  so  that  convergence  still  works,  but  this  is  not

always possible. In any case, when the functions and derivatives are evaluated numerically, the

precision of the results is raised to prec if necessary so that the internal arithmetic can be done

with prec digit precision. Even so, the actual precision or accuracy of the root or minimum and

its  position  is  limited  by  the  accuracy  in  the  function.  This  is  especially  important  to  keep  in

mind when using FindFit, where data is usually only known up to a certain precision.

Here is a function defined using machine numbers.

In[7]:= f@x_?NumberQD := Sin@1. xD - Cos@1. xD;

Even with higher working precision, the minimum cannot be resolved better because the actual 
function still has the same errors as shown in the plots. The derivatives were specified to keep 
other things consistent with the computation at machine precision shown previously.

In[8]:= FindMinimum@f@xD, 8x, 0<, Gradient Ø 8Cos@1. xD + Sin@1. xD<,
Method Ø 8"Newton", Hessian Ø 88Cos@1. xD - Sin@1. xD<<<,
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the function. You may need
more than 20.` digits of working precision to meet these tolerances. à

Out[8]= 8-1.4142135623730949234, 8x Ø -0.78539817599970194669<<
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Here is the computation done with 20-digit precision when the function does not have machine 
numbers.

In[9]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton",
AccuracyGoal Ø 8, PrecisionGoal Ø ¶, WorkingPrecision Ø 20D

Out[9]= 8-1.4142135623730950488, 8x Ø -0.78539816339744830962<<

If  you  specify  WorkingPrecision -> prec,  but  do  not  explicitly  specify  the  AccuracyGoal  and

PrecisionGoal  options,  then  their  default  settings  of  Automatic  will  be  taken  to  be

AccuracyGoal -> prec ê 2  and  PrecisionGoal -> prec ê 2.  This  leads  to  the  smallest  tolerances

that can realistically be expected in general, as discussed earlier.

Here is the computation done with 50-digit precision without an explicitly specified setting for 
the AccuracyGoal or PrecisionGoal options.

In[10]:= FindMinimum@Sin@xD - Cos@xD, 8x, 0<, Method -> "Newton", WorkingPrecision Ø 50D

Out[10]= 8-1.4142135623730950488016887242096980785696718753769,
8x Ø -0.78539816339744830961566084581987572104929234984378<<

This shows that though the value at the minimum was actually found to be even better than the 
default 25-digit tolerances.

In[11]:= 8Sqrt@2D + %@@1DD, p ê 4 + x ê. %@@2DD<

Out[11]= 90.µ10-50, 0.µ10-51=

The following table shows a summary of the options affecting precision and tolerance.

option name default value

WorkingPrecision MachinePrecis-
ion

the final working precision, prec, to use; 
precision is adaptively increased from the 
smaller of prec and the precision of the 
starting conditions to prec

AccuracyGoal Automatic setting ag determines an absolute tolerance 
by tola = 10-ag; when Automatic, 
ag = prec ê 2

PrecisionGoal Automatic setting pg determines an absolute toler-
ance by tolr = 10-pg; when Automatic, 
pg = prec ê 2

Precision and tolerance options in the "Find" functions. 

A search will  sometimes converge slowly. To prevent slow searches from going on indefinitely,

the  Find  commands  all  have  a  maximum  number  of  iterations  (steps)  that  will  be  allowed

before terminating. This can be controlled with the option 
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before terminating. This can be controlled with the option MaxIterations  that has the default

value MaxIterations -> 100.  When a search terminates with this condition, the command will

issue the cvmit message.

This gets the Brown|Dennis problem from the Optimization`UnconstrainedProblems` 
package.

In[12]:= Short@bd = GetFindMinimumProblem@BrownDennisD, 5D

Out[12]//Short= FindMinimumProblemB -‰1ë5 + X1 +
X2
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2
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2N
2
,

88X1, 25.<, 8X2, 5.<, 8X3, -5.<, 8X4, -1.<<, 8<, BrownDennis, 84, 20<F

This attempts to solve the problem with the default method, which is the Levenberg|Marquardt 
method, since the function is a sum of squares.

In[13]:= ProblemSolve@bdD

FindMinimum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[13]= 8105443., 8X1 Ø -7.35071, X2 Ø 11.7365, X3 Ø -0.60436, X4 Ø 0.168396<<

The Levenberg|Marquardt method is converging slowly on this problem because the residual is

nonzero  near  the  minimum  and  the  second-order  part  of  the  Hessian  is  needed.  While  the

method eventually does converge in just under 400 steps, perhaps a better option is to use a

method which may converge faster.

In[44]:= ProblemSolve@bd, Method Ø QuasiNewtonD

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[44]= 885822.2, 8X1 Ø -11.5944, X2 Ø 13.2036, X3 Ø -0.403439, X4 Ø 0.236779<<

In a larger calculation, one possibility when hitting the iteration limit is to use the final search

point, which is returned, as a starting condition for continuing the search, ideally with another

method.
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Symbolic Evaluation

The  functions  FindMinimum,  FindMaximum,  and  FindRoot  have  the  HoldAll  attribute  and  so

have  special  semantics  for  evaluation  of  their  arguments.  First,  the  variables  are  determined

from the second argument, then they are localized. Next, the function is evaluated symbolically,

then processed into an efficient form for numerical  evaluation. Finally, during the execution of

the  command,  the  function  is  repeatedly  evaluated  with  different  numerical  values.  Here  is  a

list showing these steps with additional description.

Determine variables process the second argument; if the second argument is 
not of the correct form (a list of variables and starting 
values), it will be evaluated to get the correct form

Localize variables in a manner similar to Block and Table, add rules to the 
variables so that any assignments given to them will not 
affect your Mathematica session beyond the scope of the 
"Find" command and so that previous assignments do 
not affect the value (the variable will evaluate to itself at 
this stage)

Evaluate the function with the locally undefined (symbolic) values of the vari-
ables, evaluate the first argument (function or equations). 
Note: this is a change which was instituted in Mathemat-
ica 5, so some adjustments may be necessary for code 
that ran in previous versions. If your function is such that 
symbolic evaluation will not keep the function as intended 
or will be prohibitively slow, you should define your func- 
tion so that it only evaluates for numerical values of the 
variables. The simplest way to do this is by defining your 
function using PatternTest  (?), as in 
f@x_?NumberQD := definition. 

Preprocess the function analyze the function to help determine the algorithm to 
use (e.g., sum of squares -> Levenberg|Marquardt); 
optimize and compile the function for faster numerical 
evaluation if possible: for FindRoot this first involves 
going from equations to a function

Compute derivatives compute any needed symbolic derivatives if possible;  
otherwise, do preprocessing needed to compute deriva-
tives using finite differences

Evaluate numerically repeatedly evaluate the function (and derivatives when 
required) with different numerical values

Steps in processing the function for the "Find" commands.
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FindFit  does  not  have  the  HoldAll  attribute,  so  its  arguments  are  all  evaluated  before  the

commands begin. However, it uses all of the stages described above, except instead of evaluat-

ing  the  function,  it  constructs  a  function  to  minimize  from the  model  function,  variables,  and

provided data.

You will sometimes want to prevent symbolic evaluation, most often when your function is not

an  explicit  formula,  but  a  value  derived  through  running  through  a  program.  An  example  of

what happens and how to prevent the symbolic evaluation is shown.

This attempts to solve a simple boundary value problem numerically using shooting.

In[1]:= FindRoot@
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, Pi<D

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à

FindRoot::nlnum:
The function value 8x@1.D< is not a list of numbers with dimensions 81< at 8xp< = 83.14159<. à

Out[1]= FindRoot@First@x@1D ê.
NDSolve@8x££@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0, x£@-1D ã xp<, x, 8t, -1, 1<DD, 8xp, p<D

The command fails because of the symbolic evaluation of the function. You can see what hap-

pens when you evaluate it inside of Block.

This evaluates the function given to FindRoot with a local (undefined) value of xp.

In[2]:= Block@8xp<,
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0, x@-1D ã 0,

x'@-1D ã xp<, x, 8t, -1, 1<DDD

NDSolve::ndinnt : Initial condition xp is not a number or a rectangular array of numbers. à

ReplaceAll::reps :
9NDSolveA9x@tD H1+Times@á2àDL+x££@tD ã 0, x@-1D ã 0, x£@-1D ã xp=, x, 8t, -1, 1<E= is neither a list of

replacement rules nor a valid dispatch table, and so cannot be used for replacing. à
Out[2]= x@1D
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Of course, this is not at all what was intended for the function; it does not even depend on xp.

What happened is that without a numerical value for xp, NDSolve fails, so ReplaceAll (ê.) fails

because  there  are  no  rules.  First  just  returns  its  first  argument,  which  is  x@1D.  Since  the

function is meaningless unless xp has numerical values, it should be properly defined.

This defines a function that returns the value x@1D as a function of a numerical value for x'@tD 
at t = -1.

In[3]:= fx1@xp_?NumberQD :=
First@x@1D ê. NDSolve@8x''@tD + Hx@tD UnitStep@tD + 1L x@tD ã 0,

x@-1D ã 0, x'@-1D ã xp<, x, 8t, -1, 1<DD

An advantage of having a simple function definition outside of FindRoot  is that it can indepen-

dently be tested to make sure that it is what you really intended.

This makes a plot of fx1.

In[4]:= Plot@fx1@xpD, 8xp, 0, 5<D

Out[4]=

From  the  plot,  you  can  deduce  two  bracketing  values  for  the  root,  so  it  is  possible  to  take

advantage of "Brent's" method to quickly and accurately solve the problem.

This solves the shooting problem.

In[5]:= FindRoot@fx1@xpD, 8xp, 3, 4<D

Out[5]= 8xp Ø 3.34372<

It may seem that symbolic evaluation just creates a bother since you have to define the func-

tion specifically to prevent it. However, without symbolic evaluation, it is hard for Mathematica

to take advantage of its unique combination of numerical and symbolic power. Symbolic evalua-

tion  means  that  the  commands  can  consistently  take  advantage  of  benefits  that  come  from

symbolic  analysis,  such  as  algorithm  determination,  automatic  computation  of  derivatives,

automatic optimization and compilation, and structural analysis. 
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UnconstrainedProblems Package

Plotting Search Data

The  utility  functions  FindMinimumPlot  and  FindRootPlot  show  search  data  for  FindMinimum

and  FindRoot  for  one-  and  two-dimensional  functions.  They  work  with  essentially  the  same

arguments  as  FindMinimum  and  FindRoot  except  that  they  additionally  take  options,  which

affect the graphics functions they call  to provide the plots, and they do not have the HoldAll

attribute as do FindMinimum and FindRoot. 

FindMinimumPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindMinimum@ f, 8x, xst<D superimposed on a plot of f  
versus x; opts may include options from both 
FindMinimum  and Plot

FindMinimumPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindMinimum@ f, 88x, xst<, 8y, yst<<D superimposed on 
a contour plot of f  as a function of x and y; opts may 
include options from both FindMinimum  and 
ContourPlot

FindRootPlot@ f,8x,xst<,optsD plot the steps and the points at which the function f  and 
any of its derivatives which were evaluated in 
FindRoot@ f, 8x, xst<D superimposed on a plot of f  
versus x; opts may include options from both FindRoot 
and Plot

FindRootPlot@ f,
88x,xst<,8y,yst<<,optsD

plot the steps and the points at which the function f  and 
any of its derivatives that were evaluated in 
FindRoot@ f, 88x, xst<, 8y, yst<<D superimposed on a 
contour plot of the merit function f  as a function of x and 
y; opts may include options from both FindRoot and 
ContourPlot

Plotting search data.

Note  that  to  simplify  processing  and  reduce  possible  confusion  about  the  function  f ,

FindRootPlot does not accept equations; it finds a root f = 0.
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Steps and evaluation points are color coded for easy detection as follows:

† Steps are shown with blue lines and blue points.

† Function evaluations are shown with green points.

† Gradient evaluations are shown with red points.

† Hessian evaluations are shown with cyan points.

† Residual function evaluations are shown with yellow points.

† Jacobian evaluations are shown with purple points.

† The search termination is shown with a large black point.

FindMinimumPlot and FindRootPlot return a list containing 8result, summary, plot<, where:

† result is the result of FindMinimum or FindRoot.

† summary is a list of rules showing the numbers of steps and evaluations of the function and
its derivatives.

† plot is the graphics object shown.

This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 
minimum of the function cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<. Options are 
given to ContourPlot  so that no contour lines are shown and the function value is indicated 
by grayscale. Since FindMinimum  by default uses the "quasi-Newton" method, there are only 
evaluations of the function and gradient that occur at the same points, indicated by the red 
circles with green centers.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Contours Ø 100, ContourLines Ø FalseD

Out[2]=
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This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1<. Since the 
problem is a sum of squares, FindMinimum  by default uses the "Gauss|Newton"/Levenberg|
Marquardt method that derives a residual function and only evaluates it and its Jacobian. Points 
at which the residual function is evaluated are shown with yellow dots. The yellow dots sur-
rounded by a large purple circle are points at which the Jacobian was evaluated as well.

In[3]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2, 88x, 1<, 8y, 1<<D

Out[3]= :92.27472µ10-28, 8x Ø 2.06482, y Ø 1.42116<=,

8Steps Ø 6, Residual Ø 7, Jacobian Ø 7<,
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This shows in two dimensions the steps and evaluations used by FindMinimum  to find a local 

minimum of the function Ix2 - 3 yM2 + sin2Ix2 + y2M starting at the point 8x, y< = 81, 1< using 
"Newton’s" method. Points at which the function, gradient, and Hessian were all evaluated are 
shown by concentric green, red, and cyan circles. Note that in this example, all of the Newton 
steps satisfied the Wolfe conditions, so there were no points where the function and gradient 
were evaluated separately from the Hessian, which is not always the case. Note also that 
Newton’s method finds a different local minimum than the default method.

In[4]:= FindMinimumPlot@Hx^2 - 3 yL^2 + Sin@x^2 + y^2D^2,
88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[4]= :94.03019µ10-29, 8x Ø 1.57033, y Ø 0.82198<=,

8Steps Ø 6, Function Ø 10, Gradient Ø 10, Hessian Ø 7<,
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This shows the steps and evaluations used by FindMinimum  to find a local minimum of the 

function ex + 1
x
 with two starting values superimposed on the plot of the function. Options are 

given to Plot so that the curve representing the function is thick and purple. With two starting 
values, FindMinimum  uses the derivative-free principal axis method, so there are only function 
evaluations, indicated by the green dots.

In[5]:= FindMinimumPlot@Exp@xD + 1 ê x, 8x, 1, 1.1<,
PlotStyle Ø 8Thickness@.025D, RGBColor@.4, 0, .4D<D

Out[5]=

This shows in two dimensions the steps and evaluations used by FindRoot to find a root of the 
function 9x2 - 3 y, sinIx2 + y2M= = 80, 0< starting at the point 8x, y< = 81, 1<. As described earlier, the 
function is a residual, and the default method in FindRoot evaluates the residual and its 
Jacobian as shown by the yellow dots and purple circles. Note that this plot is nearly the same 
as the one produced by FindMinimumPlot with the default method for the function 

Ix2 - 3 yM2 + sin2Ix2 + y2M since the residual is the same. FindRootPlot also shows the zero 
contour of each component of the residual function in red and green.

In[6]:= FindRootPlot@8x^2 - 3 y, Sin@x^2 + y^2D<, 88x, 1<, 8y, 1<<D

Out[6]= :8x Ø 2.06482, y Ø 1.42116<, 8Steps Ø 7, Residual Ø 7, Jacobian Ø 7<,
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Test Problems

All  the  test  problems  presented  in  [MGH81]  have  been  coded  into  Mathematica  in  the

Optimization`UnconstrainedProblems`  package.  A  data  structure  is  used  so  that  the  prob-

lems can be processed for solution and testing with FindMinimum  and FindRoot  in a seamless

way.  The  lists  of  problems for  FindMinimum  and  FindRoot  are  in  $FindMinimumProblems  and

$FindRootProblems,  respectively,  and  a  problem  can  be  accessed  using

GetFindMinimumProblem and GetFindRootProblem.
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$FindMinimumProblems list of problems that are appropriate for FindMinimum

GetFindMinimumProblem@probD get the problem prob using the default size and starting 
values in a FindMinimumProblem data structure 

GetFindMinimumProblem@prob,8n,m<D

get the problem prob with n variables such that it is a sum 
of m squares in a FindMinimumProblem data structure

GetFindMinimumProblem@prob,size,startD

get the problem prob with given size and starting value start 
in a FindMinimumProblem data structure

FindMinimumProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to 
be solved by FindMinimum

Accessing FindMinimum  problems. 

$FindRootProblems list of problems that are appropriate for FindRoot

GetFindRootProblem@probD get the problem prob using the default size and starting 
values in a FindRootProblem data structure 

GetFindRootProblem@prob,nD get the problem prob with n variables (and n equations) in 
a FindRootProblem data structure

GetFindRootProblem@prob,n,startD get the problem prob with size n and starting value start in 
a FindRootProblem data structure

FindRootProblem@ f,vars,opts,prob,sizeD

a data structure that contains a minimization problem to 
be solved by FindRoot

Accessing FindRoot problems. 

GetFindMinimumProblem  and GetFindRootProblem  are  both  pass  options  to  be  used by  other

commands.  They also  accept  the  option  Variables -> vars  which  is  used to  specify  what  vari-

ables to use for the problems.

option name default value

Variables XÒ& a function that is applied to the integers 
1, … n to generate the variables for a 
problem with n variables or a list of length 
n containing the variables

Specifying variable names.
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This loads the package.

In[1]:= << Optimization`UnconstrainedProblems`

This gets the Beale problem in a FindMinimumProblem data structure.

In[2]:= beale = GetFindMinimumProblem@BealeD

Out[2]= FindMinimumProblemB
3

2
- X1 H1 - X2L

2

+
9

4
- X1 I1 - X2

2M

2

+
21

8
- X1 J1 - X2

3N

2

,

88X1, 1.<, 8X2, 1.<<, 8<, Beale, 82, 3<F

This gets the Powell singular function problem in a FindRootProblem data structure.

In[3]:= ps = GetFindRootProblem@PowellSingular, Variables Ø 8x, y, z, w<D

Out[3]= FindRootProblemB:x + 10 y, 5 H-w + zL, Hy - 2 zL2, 10 H-w + xL2>,

88x, 3.<, 8y, -1<, 8z, 0.<, 8w, 1.<<, 8<, PowellSingular, 84, 4<F

Once you have a FindMinimumProblem  or FindRootProblem  object,  in addition to simply solv-

ing the problem, there are various tests that you can run. 

ProblemSolve@p,optsD solve the problem in p, giving the same output as 
FindMinimum  or FindRoot

ProblemStatistics@p,optsD solve the problem, giving a list 8sol, stats<, where sol is 
the output of ProblemSolve@pD and evals is a list of rules 
indicating the number of steps and evaluations used

ProblemTime@p,optsD solve the problem giving a list 8sol, Time -> time<, where 
sol is the output of ProblemSolve@pD and time is time 
taken to solve the problem; if time is less than a second, 
the problem will be solved multiple times to get an average 
timing

ProblemTest@p,optsD solve the problem, giving a list of rules including the step 
and evaluation statistics and time from 
ProblemStatistics@pD and ProblemTime@pD along 
with rules indicating the accuracy and precision of the 
solution as compared with a reference solution

FindMinimumPlot@p,optsD plot the steps and evaluation points for solving a 
FindMinimumProblem p

FindRootPlot@p,optsD plot the steps and evaluation points for solving a 
FindRootProblem p

Operations with FindMinimumProblem and FindRootProblem data objects.
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Any  of  the  previous  commands  shown  can  take  options  that  are  passed  on  directly  to

FindMinimum  or  FindRoot  and override any options for  these functions which may have been

specified when the problem was set up.

This uses FindRoot to solve the Powell singular function problem and gives the root.

In[4]:= ProblemSolve@psD

Out[4]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9, w Ø 1.41916µ10-9=

This does the same as the previous example, but includes statistics on steps and evaluations 
required.

In[5]:= ProblemStatistics@psD

Out[5]= 9x Ø 8.86974µ10-9, y Ø -8.86974µ10-10, z Ø 1.41916µ10-9,

w Ø 1.41916µ10-9, 8Steps Ø 28, Function Ø 29, Jacobian Ø 28<=

This uses FindMinimum  to solve the Beale problem and averages the timing over several trials 
to get the average time it takes to solve the problem.

In[6]:= ProblemTime@bealeD

Out[6]= 992.63792µ10-19, 8X1 Ø 3., X2 Ø 0.5<=, Time Ø 0.00201428 Second=

This uses FindMinimum  to solve the Beale problem, compares the result with a reference 
solution, and gives a list of rules indicating the results of the test.

In[7]:= ProblemTest@bealeD

Out[7]= 8FunctionAccuracy Ø 18.5787, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 9.7438, SpatialPrecision Ø 9.85325,
Time Ø 0.00202963 Second, Steps Ø 6, Residual Ø 8, Jacobian Ø 7, Messages Ø 8<<

ProblemTest gives a way to easily compare two different methods for the same problem.

This uses FindMinimum  to solve the Beale problem using "Newton’s" method, compares the 
result with a reference solution, and gives a list of rules indicating the results of the test.

In[8]:= ProblemTest@beale, Method -> "Newton"D

Out[8]= 8FunctionAccuracy Ø 25.5581, FunctionPrecision Ø Indeterminate,
SpatialAccuracy Ø 12.384, SpatialPrecision Ø 12.6444, Time Ø 0.00297526 Second,
Steps Ø 8, Function Ø 9, Gradient Ø 9, Hessian Ø 9, Messages Ø 8<<
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Most  of  the  rules  returned  by  these  functions  are  self-explanatory,  but  a  few  require  some

description. Here is a table clarifying those rules.

"FunctionAccuracy" the accuracy of the function value -Log@10, °error in f¥D

"FunctionPrecision" the precision of the function value 
-Log@10, °relative error in f¥D

"SpatialAccuracy" the accuracy in the position of the minimizer or root 
-Log@10, °error in x¥D

"SpatialPrecision" the precision in the position of the minimizer or root 
-Log@10, °relative error in x¥D

"Messages" a list of messages issued during the solution of the problem

A very useful comparison is to see how a list of methods affect a particular problem. This is easy to do by 
setting up a FindMinimumProblem object and mapping a problem test over a list of methods.

This gets the Chebyquad problem. The output has been abbreviated to save space.

In[9]:= Short@cq = GetFindMinimumProblem@ChebyquadD, 5D

Out[9]//Short= FindMinimumProblemB
1

81
H-9 + 2 X1 + 2 X2 + 2 X3 + 2 X4 + 2 X5 + 2 X6 + 2 X7 + 2 X8 + 2 X9L

2 +

1

81
I-3 H-1 + 2 X1L + 4 H-1 + 2 X1L

3 - 3 H-1 + 2 X2L + á21à + 4 H-1 + 2 X9L
3M

2
+

1

81
Iá35à + 16á1à5M

2
+

1

81
Há1àL2 +

1

81
á1à2 + Há1à + á1àL2 +

1

15
+
1

9
Há1àL

2

+
1

35
+
1

9
I-9 + á35à + 32 H-1 + á1àL6M

2

+

1

63
+
1

9
I9 - 32 H-1 + 2 X1L

2 + á51à + 128 H-1 + 2 X9L
8M

2

, á3à, 89, 9<F

Here is a list of possible methods.

In[10]:= methods = 8Automatic, "QuasiNewton", 8"QuasiNewton", "StepMemory" Ø 10<,
"Newton", 8"Newton", "StepControl" -> "TrustRegion"<, "ConjugateGradient"<;

This makes a table comparing the different methods in terms of accuracy and computation time.

In[11]:= TableForm@Map@Join@8Ò<, 8"Time", "FunctionAccuracy", "SpatialAccuracy"< ê.
ProblemTest@cq, Method Ø ÒDD &, methodsDD

Out[11]//TableForm=

Automatic 0.0288897 20.0663 9.94666
QuasiNewton 0.0317216 17.1785 8.3777
QuasiNewton
StepMemory Ø 10 0.0323488 16.4119 7.47304

Newton 0.0769076 20.025 9.34314
Newton
StepControl Ø TrustRegion 0.0761128 21.8281 10.6614

ConjugateGradient 0.0388904 15.7931 7.72219

It  is  possible  to  generate  tables  of  how  a  particular  method  affects  a  variety  of  problems  by

mapping over the names in $FindMinimumProblems or $FindRootProblems. 
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This sets up a function that tests a problem with FindMinimum  using its default settings except 
with a large setting for MaxIterations so that the default (Levenberg|Marquardt) method can 
run to convergence.

In[12]:= TestDefault@problem_D := Join@8"Name" Ø problem<,
ProblemTest@GetFindMinimumProblem@problem, MaxIterations Ø 1000DDD

This makes a table showing some of the results from testing all the problems in 
$FindMinimumProblems. It may take several minutes to run.

In[13]:= TableForm@Map@H8"Name", "Time", "Residual", "Jacobian", "FunctionAccuracy",
"SpatialAccuracy"< ê. TestDefault@ÒDL &, $FindMinimumProblemsDD

Out[13]//TableForm=

Rosenbrock 0.00284034 21 16 15.9546 15.9546
FreudensteinRoth 0.00442559 35 17 14.1484 8.4797
PowellBadlyScaled 0.00276841 18 17 29.9092 12.4303
BrownBadlyScaled 0.00182188 10 10 20.5345 16.2673
Beale 0.00199867 8 7 18.5787 9.7438
JennrichSampson 0.00828054 34 20 13.3703 8.87261
HelicalValley 0.00218182 11 9 32.0055 17.2046
Bard 0.00673732 7 7 16.9157 8.00751
Gauss 0.00786546 3 3 21.1019 11.0733
Meyer 0.0264677 126 116 11.5089 9.95814
Gulf 0.0120229 89 17 31.109 13.543
Box3D 0.00715045 6 6 18.9447 8.68579
PowellSingular 0.0034851 28 28 30.3044 7.73816
Wood 0.00791268 69 64 23.5366 13.0536
KowalikOsborne 0.010429 36 35 18.6639 8.33507
BrownDennis 0.0899279 412 375 9.13811 6.11409
Osborne1 0.0224698 20 17 17.4797 9.3597
BiggsExp6 0.0231614 50 36 30.2266 14.4925
Osborne2 0.121583 20 17 17.1587 7.90304
Watson 0.0736547 11 9 18.8178 6.68865
ExtendedRosenbrock 0.0954113 21 16 29.9092 15.9546
ExtendedPowell 0.123236 27 27 29.9092 7.21075
PenaltyFunctionI 0.0249084 117 94 18.1356 6.96613
PenaltyFunctionII 0.0271926 109 72 15.9546 7.62089
VariablyDimensionedFunction 0.130756 17 17 15.9546 15.9546
TrigonometricFunction 0.00774007 7 7 28.0238 14.6546
BrownAlmostLinear 0.00557332 14 13 29.1488 0.668059
DiscreteBoundaryValue 0.00547087 4 4 30.5195 14.2959
DiscreteIntegralEquation 0.0105878 4 4 29.3985 14.8825
BroydenTridiagonal 0.00479374 5 5 17.9475 9.44685
BroydenBanded 0.00825598 8 7 28.0567 15.503
LinearFullRank 0.00370734 2 2 14.7505 14.6348
LinearRank1 0.00938284 55 2 15.0515 ERROR
LinearRank1Z 0.00742234 37 2 15.0515 ERROR
Chebyquad 0.0280148 11 9 20.0663 9.94666

The two cases where the spatial accuracy is shown as ERROR are for linear problems, which do

not have an isolated minimizer. The one case, which has a spatial accuracy that is quite poor,

has multiple minimizers, and the method goes to a different minimum than the reference one.

Many of these functions have multiple local minima, so be aware that the error may be reported

as large only because a method went to a different minimum than the reference one.

70     Unconstrained Optimization



References

[AN96] Adams, L. and J. L. Nazareth, eds. Linear and Nonlinear Conjugate Gradient-Related 

Methods. SIAM, 1996.

[Br02] Brent, R. P.  Algorithms for Minimization without Derivatives. Dover, 2002 (Original 

volume 1973).

[DS96] Dennis, J. E. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization. 

SIAM, 1996 (Original volume 1983).

[GMW81] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.

[MW93] More, J. J. and S. J. Wright. Optimization Software Guide. SIAM, 1993.

[MT94] More, J. J. and D. J. Thuente. "Line Search Algorithms with Guaranteed Sufficient 

Decrease." ACM Transactions on Mathematical Software 20, no. 3 (1994): 286|307.

[MGH81] More, J. J., B. S. Garbow, and K. E. Hillstrom. "Testing Unconstrained Optimization 

Software." ACM Transactions on Mathematical Software 7, no. 1 (1981): 17|41.

[NW99] Nocedal, J. and S. J. Wright. Numerical Optimization. Springer, 1999.

[PTVF92] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes 

in C, 2nd ed. Cambridge University Pressn, 1992.

[Rhein98] Rheinboldt, W. C. Methods for Solving Systems of Nonlinear Equations. SIAM, 1998 

(Original volume 1974).

Unconstrained Optimization     71






