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FRACTAL APPLICATIONS IN LANDSCAPE ECOLOGY 
 

1. Fractal Geometry: Pure Fractals 
A. What is Not a Fractal? 
Consider any geometric object with increasing detail (i.e. finer grain). For non-fractal 
geometric shapes, enlargements (dilations) become smoother. A curve becomes a straight 
line (defining the tangent at point P). We can say that the curve is “attracted by dilation” 
to a straight line. Every standard (non-fractal) shape converges under dilation (i.e. 
increasing detail) to a “universal attractor.” 

Another way of thinking about this is that for standard geometric objects, “increasingly 
accurate measurements based upon successive scale reductions give series converging to 
a limit: the true extent of the object.” (Li 2000 p. 34). In other words, the object has some 
fundamental grain, and we “lose the shape” as we consider finer scales. If we are looking 
at a square with length X, we see only line segments or points as we view it with window 
sizes less than X2. 
 
B. What is a Fractal? 
For objects characterized by fractal geometry, shapes remain unchanged as the scale of 
observation is progressively refined. “The structure of every piece holds the key to the 
whole structure” (Mandelbrot 1989, p. 4).   

Increasingly accurate measurements no longer converge to the true extent of the object, 
since the object (e.g. a curve) does not converge to a single rectifiable length or area. 
Instead, the process of repeatedly zooming in to observe increasing detail will generate 
infinite series with common dimension D, the fractal dimension. Unlike standard 
geometric objects, fractal objects have a non-linear dimension. 

A classic example of this is a coastline. When smaller units (e.g. pieces of string on a 
planar map) are used to measure a coastline, the apparent length of the coastline becomes 
greater. For example, a Spanish encyclopedia gives the length of the common border 
between Spain and Portugal as 987 km, whereas the Portuguese, using finer measuring 
units, arrived at a length of 1214 km for the same border (Zeide 1991).  

Fractal patterns are generated by iterative processes. Simple rules for pattern generation 
can generate rich, complex structures. Since the same pattern generation rule is applied at 
all scales, pattern at different scales is self-similar. Self-similarity may also be referred to 
as scale invariance.  

Self-similarity means that spatial objects or time series phenomena reveal an underlying 
simple form that repeats itself at different scales of observation. The level of variation 
(i.e. shape) at all scales can be described by a single parameter (fractal dimension).  

- Fractal dimension of pure fractals:   
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where D = fractal dimension, N = the number of steps used to measure a unit length, and 
r is the scale ratio. 
 
Another, similar way of describing the fractal dimension by looking across scales (i.e. 
scale 1 and scale 2) is: 
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where L1, L2 measure lengths of curves in units and S1, S2 measure the 
sizes of the units (i.e., scales) used in the measurements. 

Fractal dimension of a linear fractal curve varies between D=1 and D=2, since when 
D=2, it is in fact 2-dimensional and has become an area. A straight line has D =1 since  
N = r. As D gets greater than 1, it is beginning to “fill space” in the second dimension 
(i.e. has developed curvature). When considering volumes, the value of D ranges between 
2 (completely smooth 2-D surface) and 3 (“infinitely crumpled three-dimensional 
object”, Turner et al. 2001 p. 117).  

Simple example of a fractal, the Deterministic Koch Curve (3 iterations)  

                   
             D = log(4)/log(3) = 1.2619. 

Note that coastlines of the world appear to be fractal with dimension of 
approximately 1.25, very close to that of the Koch Curve. Another example of a fractal 
pattern is the Sierpinski gasket (Fig. 1). There are endless examples of fractal geometric 
patterns that have been derived, and it is relatively simple to develop computer programs 
allowing generation of highly sophisticated fractal patterns. The question then becomes: 
do we observe these fractal patterns in nature, or are they simply human constructs? 

Fig. 1. from Mandelbrot 1989, 
Fig. 1. The Sierpinski gasket. 
The four small diagrams at top 
show the iterative process used in 
constructing the fractal. The basic 
step of the construction is to 
divide a given black triangle into 
four sub-triangles, and then to 
“white out” the middle fourth. 
The diagram at bottom shows the 
process at an “advanced” stage. 
Clearly each of the three reduced 
“gaskets” is simply one-third of 
the overall shape, which is 
repeated over different scales. 
Therefore the overall pattern is 
self-similar and the fractal 
dimension of the shape is scale-
independent. 
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2. Fractals in Nature 

There is ever-growing evidence of fractal patterns in nature. This is true for coastlines, as 
already mentioned; the boundaries of clouds; coral reefs; breeding bird home ranges; tree 
crowns; and of course certain landscape mosaic patterns. Figure 2 gives an example, from 
the Turner et al. 2001 text, of nested soil patterns that look similar across scales and so 
might well be described by fractal measures. 

 

 
Fig. 2, from Turner et al. 2001 Figure 5.10. 
Nested maps of soil patterns in northwest Europe 
at scales ranging from 100 km to 100 m. Note 
how natural variation may look similar across 
scales. Redrawn from Burroughs, 1986. 

 

 

 

 

 

 

 

 

Fractal patterns in nature are seldom perfect geometric fractals such as the Koch Curve. 
Rather, they are statistical fractals, with a great deal of “noise” and stochastic variation 
(Fig. 3).  

 

 
Fig. 3. from Johnson et al. 1995, Figs 1-2.  
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True fractals are infinite mathematical sets, while fractal patterns in nature are of course 
finite (discussed in Johnson et al. 1995). At the fine scale, they are limited by some 
fundamental building block, even if it is down to the atom or subatomic particle. At the 
coarse scale, they are limited to the range of scales at which similar pattern-creating 
processes act to form their characteristic patterns.  

3. Fractals as Landscape Metrics 

Fractal relationships have been used generally to describe shape complexity of patches in 
landscapes. The fractal power law equation relating patch area to perimeter is: 

( )dkPA =  

where A = patch area, P = some measure of patch perimeter, k is a constant that is 
dependent upon the measure used for P, and d = fractal dimension.  

If the length of one side of an object is used to estimate P, k = 1.0, and 
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There are various different formulas for calculating fractal dimension of actual 
landscapes. One commonly used formulation is the perimeter-area fractal dimension, 
sometimes called the double log fractal dimension. 

Perimeter-Area Fractal Dimension 

For analyzing empirical landscapes, we can regress the natural logarithm of patch 
perimeter vs. the natural logarithm of patch area 
for all patches.  The fractal dimension will be 
estimated as double the slope of the regression 
line, since: 
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where,  
P = patch perimeter,  
A = patch area,  
D = fractal dimension 
K = constant (intercept in regression) 
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- This is a measure of patch complexity: greater values indicate more complex 
shapes 

- D = 1 for simple Euclidean shapes (circles if vector, rectangles if raster) 
- D = 2 for the most complex, convoluted shapes with plane-filling perimeters 
- The double log fractal dimension is very sensitive to sample size, since it is based 

on regression analysis 
- The regression approach assumes that self-similar patterns exist across various 

sizes of landscape patches 

Fractal dimensions have been used as a metric of the complexity of landscape patterns, in 
the sense of comparing different landscapes, analyzing changes of a particular landscape 
over time, and for comparing shape complexity of patches of different size. Human-
influenced landscapes often exhibit simpler patterns, as evidenced by lower values of the 
fractal dimension (D). In a classic study, Krummel et al. (1987) measured the fractal 
dimension of deciduous forest patches in Mississippi. They found that smaller patches 
associated with forest management (i.e. woodlots) had simpler boundaries (smaller D) 
than larger patches whose boundaries were influenced more by natural processes (Fig. 4). 

 

 
Figure 4. from Turner et al., Figure 5.11, redrawn 
from Krummel et al., 1987. (a) Fractal dimension (D) 
of forest patches in the vicinity of Natchez, 
Mississippi, as a function of patch size. (b) Section of 
the original map illustrating how small patches tend 
to be simple in shape. (c) Section of the original map 
illustrating the more complex shapes associated with 
the larger patches. 

 

 

 

 

 

 

 

 

 

Figure 4 was estimated by 306 successive regressions of log(P) on log(A).! The first 
regression included the 200 smallest forest patches, with successive regressions formed 
by removing the smallest and adding the next largest patch. 

Similarly, Mladenoff et al. (1993) used the method of Krummel et al. (1987) to calculate 
the perimeter-area fractal dimension over a range of patch sizes, in a comparison of old-
growth and anthropogenically disturbed forest landscapes in Wisconsin (Figure 5). They 
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found that the old-growth landscape (Sylvania) had a characteristic pattern of simpler 
patch shapes for smaller patches, and complex patch shapes for larger patches. The 
anthropogenically disturbed landscape (Border Lakes) had lost this characteristic pattern, 
with patches of all sizes having statistically similar fractal dimension. Essentially, the 
Border Lakes forest had lost the “large, landscape-integrating” patches of old-growth 
hemlock that formed the matrix of the natural landscape, providing connectivity 
(Mladenoff et al. 1993).  

 

 
Figure 5, from Mladenoff et al. 1993, Fig. 3. See 
figure legend.  

 

 

 

 

 

 

 
4. Fractals and Spatial Scaling 
Since fractals are by definition self-similar, identification of “natural breaks” in the 
distribution of fractal dimension values over scales (e.g. Figs. 4, 5) should help to identify 
natural domains of scale (Wiens 1989) over which pattern-process relationships remain 
relatively constant. A change in the fractal dimension of a pattern may indicate that 
different pattern-producing processes have emerged as dominant. Rapid change in fractal 
dimension with small changes in measurement scale may indicate chaotic transitions 
between scale domains.  

Similarly, where fractal dimension is invariant over a range of measurement scales and 
patterns are therefore self-similar, we should be able to extrapolate our observations 
across scales if we only know the pattern at one scale and the fractal dimension. Fractals 
should help us to find the “scaling parameter” or scaling function for translating across 
scales. This is the Holy Grail of many landscape ecologists. We don’t seem to know how 
to do this yet. But herein lies the promise of fractal applications in ecology. Otherwise, 
the fractal dimension may be just another fancy way to quantify the relative complexity 
(i.e. space-filling characteristics) of a given ecological pattern. 

5. Fractals and Generation of Artificial Landscapes 

A practical application of fractals is the generation of artificial landscapes that, while of 
precisely known fundamental characteristics, exhibit more realistic patterns than simple 
random landscapes. We will be applying fractals in this manner when we use the RULE 
software in our “Neutral Models” laboratory exercise. Such artificial landscapes (i.e. 
neutral landscape models, topic of a future lecture) may be represented using multifractal 
maps, which seem realistic because they are generated by a fractal algorithm that 
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generates spatially correlated patterns of patchiness (Gardner 1999). Therefore, such 
maps are useful when investigators wish to simulate movement and dispersal of 
organisms (With et al. 1997). One widely used algorithm for multifractal maps uses a 
midpoint displacement algorithm similar to that shown, above, for the Koch curve. The 
actual midpoint is perturbed by a random variate, and the degree of randomness is 
controlled by an input parameter, H (range: 0 – 1.0). When H is low, maps will be highly 
fragmented; when H is high, maps will be highly aggregated (Fig. 6; Gardner and Walters 
2002).   

 
Fig. 6. from Gardner and Walters 2002. See 
figure legend.  
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