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ABSTRACT. The aim of this essay is to distinguish and analyze 
several difficulties confronting attempts to reconcile the fundamental 
quantum mechanical dynamics with Born's rule. It is shown that 
many of the proposed accounts of measurement fail at least one of 
the problems. In particular, only collapse theories and hidden vari- 
ables theories have a chance of succeeding, and, of the latter, the 
modal interpretations fail. Any real solution demands new physics. 

cursory survey of the literature reveals that many dis- 

tinguished authors have missed the point, and I do not 

know of  any discussion which uses just the taxonomy 

I will employ. As we will see by the end, if  the analysis 
presented in paper is accepted, many proposed solutions 

to the measurement  problem will fall by the wayside. 

Richard Feynman once described his attitude toward 
quantum theory as follows: 

[We] always have had (secret, secret, close the doors!) we always 
have had a great deal of difficulty in understanding the world view 
that quantum mechanics represents. At least I do, because I'm 
an old enough man that I haven't got to the point that this stuff 
is obvious to me. Okay, I still get nervous with i t . . .  you know 
how it always is, every new idea, it takes a generation or two until 
it becomes obvious that there is no real problem. It has not yet 
become obvious to me that there's no real problem. I cannot 
define the real problem, therefore I suspect there's no real 
problem, but I'm not sure there's no real problem. (Feynman, 
1982, p. 471) 

What  is remarkable about this quotation is the uncer- 

tainty that Feynman  expresses.  At least in the philo- 
sophical literature, there seems to be general agreement 

that there is a central interpretational problem in 

quantum theory, namely the measurement  problem. But 

on closer examination, this seeming agreement dissolves 
into radical disagreement about just what the problem 

is, and what would constitute a satisfactory solution of  
it. 

There are, in fact, several construals of  the problem, 
each of  which has a different focus. In this paper,  I 

would like to lay out clearly three of  these construals, 
and to argue that other, popular, s tatements of  the 

problem omit  the central puzzle altogether. I do not 

claim any of  these observat ions to be part icularly 

original, 1 and will be delighted if the reader finds this 
account  to be boringly obvious  and familiar. But a 
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PROBLEM 1: The problem of outcomes 

The following three claims are mutually inconsistent. 

1.A The wave-function of a system is complete ,  i.e. 
the wave-funct ion specifies (directly or indirectly) all 
of  the physical properties of  a system. 

1 .B The wave-function always evolves in accord with 
a linear dynamical  equation (e.g. the Schr6dinger 
equation). 

1.C Measurements  of, e.g., the spin of  an electron 
always (or at least usually) have determinate outcomes, 
i.e., at the end of the measurement  the measuring device 
is either in a state which indicates spin up (and not 
down) or spin down (and not up). 

The proof  of  the inconsistency of these three claims 
is familiar. For example, a good z-spin measuring device 

must be a device which has a ready state and two indi- 
cator states (call them "UP"  and "DOWN") ,  e.g. the 

state of  a pointer  pointing to the right ("UP")  and to 
the left ( "DOWN") .  Further, the device must be so con- 

structed that if  it is in its ready state and a z-spin up 

electron is fed in, it will evolve,  with certainty, into the 

"UP" state, and if a z-spin down electron is fed in it will 
evolve,  with certainty, into the " D O W N "  state. Using 
obvious notation: 

IZ-up)e ® Iready) d ~ Iz-up) e @ ["UP")d, and 
Iz-down)e ® Iready)d --~ Iz-down)e @ I"DOWN")d 

What  happens to this device if we feed in an electron 

in an eigenstate of  x-spin rather than z-spin? Since 
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Ix-up)e = 1/'/2 Iz-up)e + l/q2 Iz-down},, the question 
amounts to what the initial wave-function 

(1/ '~ Iz-up)e + 1/~/-2 Iz-down)e) ® Iready)d 

will evolve into. If 1.B is correct, and the evolution is 
linear, then this initial state must evolve into 

State S*: 1/,1-2 lz-Up)e ® I"UP")a) + 
1/~/2 Iz-down)e) ® I"DOWN")a) 

and the question is what kind of state of the measuring 
device this represents. 

If 1.A is correct, and the wave-function is complete, 
then this wave-function must specify, directly or indi- 
rectly, every physical fact about the measuring device. 
But, simply by symmetry, it seems that this wave- 
function cannot possibly describe a measuring device in 
the "UP" but not "DOWN" state or in the "DOWN" 
but not "UP" state. Since "UP" and "'DOWN" enter 
symmetrically into the final state, by what argument 
could one attempt to show that this device is, in fact, 
in exactly one of the two indicator states? 

So if 1.A and 1.B are correct, 1.C must be wrong. If 
1.A and 1.B are correct, z-spin measurements carried 
out on electrons in x-spin eigenstates will simply fail 
to have determinate outcomes. This seems to fly in the 
face of Born's rule, which says that such measurements 
should have a 50% chance of coming out "UP" and a 
50% chance of coming out "DOWN". But that is 
an additional problem, which we still take up later. In 
any case, the three postulates have been shown to be 
inconsistent. 

A few comments are in order. When, in 1.A, we say 
that the wave-function is complete, we mean simply that 
all physical properties of a system are reflected, 
somehow, in the wave-function. It follows that two 
systems described by identical wave-functions would be 
physically identical in all respects. We do not assert in 
any deep sense that the wave-function is real, nor do 
we assert that physically identical systems must have 
mathematically identical wave-functions. As an analogy, 
in classical electromagnetic theory, the scalar and vector 
potentials are not, in some sense, real. Physical reality 
belongs to the electric and magnetic fields, and the 
gauge freedom in the vector and scalar potentials was 
not understood as a real degree of physical freedom. 
Different potentials which give rise to the same fields 
were taken to be physically equivalent. But even though 
the classical potentials are not real, they are complete: 
two systems described by the same potentials are 

electromagnetically identical. There is nothing more to 
the state of the fields than is represented in the poten- 
tials. So we are not here concerned with the physical 
reality (in some sense) of the wave-function but with its 
representational completenegs. 

Since the problem of outcomes derives from the 
incompatibility of three claims, proposed solutions to 
it can be taxonomized by which claim or claims they 
abandon. Theories which abandon 1.A are generally 
called hidden-variables theories, since they postulate 
more to physical reality than is represented in the wave- 
function. The name is, however, quite tendentious and 
misleading. In Bohm's theory, for example, the extra 
variables (particle positions) far from being hidden are 
quite manifest. The positions of particles is what we 
can easily see. So to avoid the connotation buried 
in "hidden," let us call these additional variables 
theories. 

Theories which abandon 1.B are generally called 
collapse theories. Since they deny that the evolution of 
the wave-function is always linear, they must assert that 
it is, at least sometimes, non-linear. If the evolution is 
generally linear and only occasionally non-linear (as 
in the original Spontaneous Localization theory of 
Ghirardi, Rimini, and Weber, 1986), then the brief non- 
linear episodes can reasonably be called collapses. But 
the theory might not take such a form. The Continuous 
Spontaneous Localization Theory of Perle (1990), for 
example, has an evolution which is always non-linear. 
So a less tendentious name for these theories is non- 
linear theories. 

Theories which retain 1 .A and 1.B while abandoning 
I.C are not common. The salient example is the so- 
called Many-Worlds theory, which in some sense arises 
from Everett's Relative State interpretation. In Many- 
Worlds talk, at the end of the measurement, the mea- 
suring device indicates both outcomes, one in one world 
and one in another. We could reasonably call any such 
theory a multiverse theory. Of course, one could also 
deny 1.C in another way, by claiming that the measuring 
device doesn't indicate anything at all at the end of the 
measurement. We might call this a nulliverse theory. 
Everett's original paper (1957), when read carefully, 
seems to contain a nulliverse theory, although he seems 
unaware of it3 

A solution of this first measurement problem, then, 
must of necessity be either an additional variables 
theory, a non-linear theory, or a multiverse theory (or 
some combination of these). Each of these options 
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carries with it an obligation, the discharging of which 
demands the postulation of new physics. The measure- 
ment problem is sometimes portrayed as merely philo- 
sophical, or of no interest to physics proper. This is quite 
untrue. 

If one opts for an additional variables theory, one 
must specify what the additional variables are and what 

laws govern them. If one says there is more to a physical 
object than is captured in the wave-function, the 
immediate physical problem is to state what more (or 
what else) there is and how it behaves. In Bohmian 
mechanics, the additional variables are particle positions 
and the dynamics of these variables is provided by 
Bohm's equation. This is new physics. In the modal 
interpretations, the additional variables are what van 
Fraassen (1991) calls the value states. We will return 
to this later. 

If one opts for a non-linear theory, then one must 
specify exactly when and in exactly what way the 
dynamical evolution fails to be linear. In the GRW 
theory, this is given by the (stochastic) collapse 
equation. This is again new physics. The theory of Perle 
gives another example. 

The "traditional" interpretation of quantum theory, 
if it is to be coherent, must be a non-linear theory. Bohr 
and the other founders explicitly rejected Einstein, 
Podolsky and Rosen's argument that quantum theory is 
incomplete (thus asserting 1.A), and they also insisted 
that macroscopic measuring devices be described by the 
language of classical physics (thus asserting 1.C, since 
in classical terms the pointer must point exactly one 
direction). So they must deny 1.B. It is no accident that 
von Neumann's (1955) classic presentation of the theory 
explicitly postulates collapses. 

What the traditional theory did not do is state, in clear 
physical terms, the conditions under which the non- 
linear evolution takes place. There were, of course, 
theorems that if one puts in collapses somewhere  

between the microscopic and the macroscopic, then, for 
all practical purposes, it doesn't much matter where they 
are put in. But if the linear evolution which governs 
the development of the fundamental object in one's 
physical theory occasionally breaks down or suspends 

i tself  in favor of a radically different evolution, then it 
is a physical question of the first order exactly under 
what circumstances, and in what way, the breakdown 
o c c u r s .  

The traditional theory papered over this defect by 
describing the collapses in terms of imprecise notions 

such as "observation" or "measurement". 3 This is not 
much better than saying that the evolution is linear 
except when it is cloudy, and saying no more about how 
many, or what kind, of clouds precipitate this radical 
shift in the operation of fundamental physical law. 

Denial of 1.C entails other difficulties. At the least, 
one must explain why it seems that z-spin measurements 
made on x-spin-up particles have determinate results, or 
perhaps why it seems that it seems that way. We will 
return to this in the next section. 

I hope that the problem of outcomes looks familiar. 
It is just the usual understanding of the Schr6dinger cat 
problem laid out in a formally exact way. Oddly enough, 
when so laid out, it becomes immediately evident that 
a fair amount of work in the foundations of quantum 
theory misses the mark. 

The most widespread misunderstanding arises from 
the claim that the measurement problem has to do with 
superpositions versus mixed states. The state S* is 
a superposition of the states [z-up)e ® I"UP")a and 
Iz-down)e ® I"DOWN")e. There is another state 
(which one can construct using statistical operators) 
which is called a mixed state, and which we can 
write 50%[[z-up)e ® ["UP")d] + 50%[Iz-down)e ® 
I"DOWN")d]. Let us call this state M*. This state has 
slightly different mathematical properties from S*, in 
that the so-called interference terms are eliminated. It 
is also the state we would use to make predictions if 
we knew that the whole system was either in [z-up)e ® 
I"UP")~ or in [z-down)e ® I"DOWN")d, and ascribed 
a 50% likelihood to each. It has often been claimed 
that the measurement problem is just the problem of 
explaining how the measuring device gets from the 
state S* to the state M* (see, e.g., Redhead, 1987, 
p. 56). 

This understanding of the measurement problem has 
inspired several attempts to show how such an evolu- 
tion might occur according to the linear dynamics (e.g. 
Bub, 1989; Hepp, 1972). Since the interaction of the 
electron with the measuring device does not lead to M*, 
these attempts commonly take the form of adding in 
other interactions with the environment, sometimes 
involving very complex mathematical considerations. 
But even if these were to succeed, it should be obvious 
that the problem has not been touched. M*, just as much 
as S*, is symmetric between a state in which the device 
is "UP" and one in which it is "DOWN". M* does not 
represent exactly one of the outcomes as occurring. The 
argument goes through unscathed. 
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Given that the state M* is the one we would use to 
do calculations if there really were an outcome, but we 

were just unsure which it is, one may wonder why 
deriving M* would not solve the measurement problem. 
That is, if we get M*, why can't  we use the so-called 

ignorance interpretation and say that the system is 

really in either Iz-Up)e ® I"UP")a or in Iz-down)e ® 
I"DOWN")a, with a 50% chance of  each? The short 
answer is that this is affirming the consequent.  Just 
because being ignorant justifies the use of M*, it doesn't  
follow that if M* is the state of the system, we can 

regard ourselves as ignorant of anything (i.e. of  the real 
state). More bluntly, in order to use the ignorance inter- 
pretation of  mixtures, there must be something of  which 
we are ignorant. If  1.B holds, then even if linear evo- 
lution can lead to M*, still we will not be ignorant of  
what the wave-function really is: it will be M*. And if 
1.A holds, then there is nothing (beside what is repre- 
sented in the wave-function) for us to be ignorant of. 
So if  we continue to hold to 1.A and 1.B we cannot 
invoke the ignorance interpretation of  mixtures, even 
if the linear evolution leads to a mixture. 4 

A similar non-solution of  the problem comes under 
the heading of superselection rules (e.g. Beltrametti and 
Cassinelli, 1981). The idea here is to argue that even 
though the wave-function never actually gets to the state 
M*, still, given certain restrictions on what can actually 
be observed or measured, S* may be observationally 
indistinguishable from M*. Sometimes this is stated as 
the result that, given the superselection rules, certain 
superpositions do not exist. This way of stating the 
result is clearly tendentious: since observational indis- 
tinguishability is a symmetric relation, one could just 
as well say that the mixtures don' t  exist! In any case, 
having shown that even getting a true mixture does not 
solve the problem unless one also denies either 1.A or 
1.B, this approach cannot, on its own, work. And if one 
does deny 1.A or 1.B, then it is superfluous. 

One final approach deserves some notice here. When 
I discuss these matters with physicists, someone 
invariably objects that the ensemble interpretation of  
the wave-function avoids this tri lemma completely. 
According to that interpretation, the wave-function is 
not intended to describe individual systems but only 
collections of systems (see Ballentine, 1970). Thus the 
state S* does not describe any individual detector and 
electron in some weird state, it describes an (ideally 
infinite) collection of  detectors and electrons, each of  
which are in decidedly non-weird states. In fact, one 

uses something like Born 's  rule to interpret S* as an 
ensemble of detectors half of which are indicating "UP" 
and half "DOWN".  

But this ensemble interpretation does not avoid the 
trilemma - it simply directly denies 1.A. According to 
this approach, the wave-function is not a complete 
physical description of any individual detector or cat 
or electron. And since we are interested in individual 

cats and detectors and electrons, since it is a plain 
physical fact that some individual cats are alive and 
some dead, some individual detectors point to "UP" and 
some to "DOWN",  a complete physics, which is able 
at least to describe and represent these physical facts, 
must have more to it than ensemble wave-functions. If 
the wave-function does not completely describe the 
physical states of  individual cats we should seek a new 
physics which does. 

PROBLEM 2: The problem of statistics 

The three propositions in the problem of outcomes are 
not, strictu sensu, incompatible. We used a symmetry 
argument to show that S* could not, if it is a complete 
physical description, represent a detector which is 
indicating "UP" but not "DOWN"  or vice versa. But 
symmetry arguments are not a matter of logic. Since we 
have not discussed any constraints on how the wave- 
function represents physical states, we could adopt a 
purely brute force solution: simply stipulate that the 
state S* represents a detector indicating, say, "UP". 
Then 1.A, 1.B and 1.C could all be simultaneously true. 

If  this seems a bit too crude, perhaps we could argue 
that while S* doesn' t  represent a detector in a definite 
state, it is a practically unrealizable state. Suppose we 
claim that in any state of the form 

ix(lz-up)e ® I"UP")a) + 
13(Iz-down),) ® I"DOWN")d) 

the detector indicates "UP" if ix > ~ and "DOWN" if 
ix < ~. Then the special case of  ix = ~, which yields 
S*, is still problematic, but it is in some sense a set 
of  measure zero. In any real system, perhaps, the two 
coefficients will be at least slightly different, defeating 
the symmetry argument and yielding a determinate 
outcome. 

The ploy just described would defeat the problem 
of  outcomes, but immediately falls prey to a second 
objection. Suppose that instead of  feeding into the z- 
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spin detector an electron with x-spin up, we feed in an 
electron with definite spin up in a direction which 
differs from the z-direction by 45 ° . The spin state of the 
incoming electron, that is, is 

-qr3/2 Iz-up) e + 1/2 Iz-down)e 

The whole system would evolve linearly into 

State S**: "f3/2 (Iz-Up)e ® I"UP")d) + 
1/2 (Iz-down)e ® I"DOWN")a). 

Now by the interpretation rule suggested above, since 
et > [~, S** would represent a state in which the detector 
definitely points to "UP". So this interpretation would 
imply that the experiment described should always have 
the same result: "UP". But the usual application of 
Born's rule says that the outcome of this experiment is 
not so determined, and that there is, in fact, a 3/4 chance 
of getting "UP" and a 1/4 chance of "DOWN". 

Formally, the following three claims are mutually 
inconsistent: 

2.A The wave-function of a system is complete, i.e. 
the wave-function specifies (directly or indirectly) all 
of the physical properties of a system. 

2.B The wave-function always evolves in accord with 
a deterministic dynamical equation (e.g. the Schr6dinger 
equation). 

2.C Measurement situations which are described by 
identical initial wave-functions sometimes have dif- 
ferent outcomes, and the probability of each possible 
outcome is given (at least approximately) by Born's 
rule. 

The inconsistency of 2.A, 2.B and 2.C is patent: If 
the wave-function always evolves deterministically 
(2.B) then two systems which begin with identical 
wave-functions will end with identical wave-functions. 
But if the wave-function is complete (2.A), then systems 
with identical wave-functions are identical in all 
respects. In particular, they cannot contain detectors 
which are indicating different outcomes, contra 2.C. 

Additional variables theories can solve the problem 
by denying 2.A. If there is more to the physical state 
of a system than is reflected in the wave-function, then 
systems with identical initial wave-functions may be 
physically different (with respect to the values of the 
additional variables), and, more importantly, systems 
with identical final wave-functions may also be physi- 
cally different. Thus, the two detectors may indeed 
indicate different outcomes at the end. Note that 
this only works if the direction a pointer is pointing is 

determined by the additional variables, that is, if the 
additional variables are manifest rather than hidden. 
Detectors that differ only in hidden (i.e. unobservable) 
physical respects would not help us at all. 

Non-linear theories can solve the problem by also 
denying that the evolution of the wave-function is deter- 
ministic. The collapses in the traditional interpretation, 
as well as the GRW theory, are postulated to be irre- 
ducibly stochastic. Identical initial wave-functions 
evolve into different outcomes because they evolve 
differently. 

Denying 2.C, however, is a more difficult matter. 
Born's rule is a central part of the quantum mechanical 
formalism; it is the means by which predictions are 
actually made. To deny 2.C is to deny the empirical 
heart of the theory. This is the deep reason for the 
unsatisfactory nature of the Many-Worlds approach. For 
even if we can find a way to understand the denial of 
1.C, even if we could comprehend how a simple spin 
measurement could have many results, or none, still no 
sense could be made of Born's rule. Born's rule gives 
the probability for a spin measurement to come out 
"UP" rather than "DOWN". If all such measurements 
have no result, or if all such measurements have both 
results, then there is no probability at all for such an 
outcome. 

Compare again S* and S**. On the usual interpreta- 
tions, if Schr6dinger evolution leads to S* then there is 
a 50% chance of getting "UP" and 50% chance of 
"DOWN". If the evolution leads to S**, there is a 75% 
chance of "UP" and 25% chance of "DOWN". But on 
the Many-Worlds picture, what marks the difference in 
S* and S**? In both cases one has two outcomes, one 
"UP" and one "DOWN". What could Born's rule be 
telling us about these two cases? What do the numbers 
0.75, 0.5 and 0.25 derived from the rule mean? Not that 
one world is more likely than another, since all will be 
created. Do the numbers indicate that some worlds are 
more real? 

The usual approach to answering this question is 
as follows. First, imagine an infinite sequence of, 
say, z-spin measurements made on electrons. At each 
measurement, the world bifurcates, and every possible 
sequence of results appears on some branch. Now 
collect together the branches in which the observed 
long-term frequency of results matches the predictions 
derived from Born's rule. That is, if the measurements 
lead to state S*, collect together the branches in 
which the frequency of "UP" results limits to 0.5; if 
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the experiments lead to S**, collect the branches where 
the frequency limits to 0.75. In each case, the number 
assigned by Born's rule to that set of branches (the 
branches where quantum mechanical predictions are 
borne out) approaches 1. This is supposed to be 
important. 

But to suppose that this result is of any use at all is 
to commit a manifest petitio principii. What is the 
significance of the fact that this set of branches is 
assigned a number that approaches 1 ? That they (or one 
of them?) are certain to occur while the remainder of 
the branches do not? Certainly not, for every one of the 
branches is equally certain to occur. That it is proba- 
bilistically certain that I will "go down" a branch with 
good frequencies? Certainly not, for "/" don't go down 
any particular branch at all; rather, I myself bifurcate 
at every branch, with one of my descendants going 
down each. There is, in the Many Worlds picture, simply 
nothing for the numbers generated by Born's rule to be 
probabilities of, and this problem is not ameliorated if 
those numbers approach 1 or 0. The denial of 2.C (and 
correlatively of 1.C) cannot be reconciled with the 
quantum theory as it is used to make predictions. 
Without also employing either additional variables or a 
non-linear, stochastic evolution of the wave-function, 
the multiverse (or nulliverse) views cannot solve our 
problems, and if they do invoke either of these, then the 
postulation of the many worlds is sheer extravagance. 
From here on, then, we will confine our attention solely 
to additional variables and non-linear (stochastic) 
theories. 

Only the postulation of additional variables or the 
invocation of non-linear dynamics can solve our first 
two measurement problems. As J. S. Bell succinctly 
put it, "either the wave-function, as given by the 
Schr6dinger equation, is not everything, or it is not 
right" (1987, p. 201). But simply adding some addi- 
tional variable or some non-linear dynamics is not 
sufficient to resolve our puzzles. Putting together the 
two problems, we can say that whatever new physics 
we invent to solve the measurement problem, it must be 
so constructed that (a) measurements typically have 
outcomes and (b) probabilities are assigned to those 
outcomes which at least approximate the probabilities 
derived by use of Born's rule. These conditions supply 
the standard by which one can evaluate new theories. 

As an example, Bohmian mechanics answers the first 
challenge by taking particle positions as the additional 
variables and by asserting that measurement outcomes 

are typically determined by the positions of particles 
(such as those in a pointer). Since the particles have 
determinate positions, the measurements have determi- 
nate outcomes. Meeting the second point is a much 
more subtle business. It demands a close analysis of 
the wave-functions that are actually used in making 
quantum mechanical predictions (the so-called effective 
wave-function) and showing that, given a particular 
probability distribution over initial conditions of the 
universe, the frequencies observed typically match those 
derived via Born's rule from the effective wave-func- 
tions (see D/arr, Goldstein and Zhangi, 1992, for details). 
Since the dynamics is deterministic, Bohm's theory 
must ultimately rely on probability distributions over 
initial conditions; additional variables governed by 
stochastic laws could proceed differently. 

Theories which retain the completeness of the wave- 
function face a different challenge. To solve the first 
problem, one must specify the conditions under which 
the wave-function represents an experiment with a 
determinate outcome (as S* doesn't) and show that the 
new dynamics will typically lead to such states. To solve 
the second, one must further show that the probabili- 
ties for the various outcomes at least nearly approxi- 
mate those derived using Born's rule. 

The traditional interpretation holds that a system has 
a physical property exactly when its wave-function is 
an eigenstate of the operator associated with that 
property. The dynamics must therefore lead to eigen- 
states of the pointer observable. They do so, in the 
traditional story, by stipulation: measurements collapse 
the wave-function to one of the appropriate eigenstates. 
Further, they do so with the right probabilities, again 
simply by stipulation. 

But an interpretation need not embrace this so-called 
eigenstate-eigenvalue rule. If we use Born's rule without 
any emendation, the rule looks strong in one direction: 
if a system is in an eigenstate of an observable, then any 
measurement of that observable is probabilistically 
certain to have a particular result. If any measurement 
of (say) z-spin on a given electron is certain to have 
the outcome "UP", then this seems quite sufficient to 
assert that the electron has z-spin up. The other direc- 
tion, though, is more shaky. If statistical thermody- 
namics is correct, no state of a liquid is certain to result 
in a particular reading on a thermometer, since the liquid 
might interact with the thermometer so that heat flows 
from the cooler thermometer to the warmer liquid. 
Such behavior is highly unlikely, but possible. So one 
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might well assert that a system has a value for a physical 
magnitude even though measurements are not certain to 
reveal that value. 

This is the route taken by GRW. The non-linear 
evolution of the wave-function in that theory will not 
lead to eigenstates of pointer position, although it will 
lead to states that are, in a precise sense, nearly eigen- 
states. GRW must insist that such near eigenstates count 
as outcomes, and then show that the outcomes have the 
right probabilities of occurrence. 

PROBLEM 3: The problem of effect 

The quantum mechanics of von Neumann, with col- 
lapses to eigenstates governed by probabilities derived 
from Born's rule, has spawned the most accurate 
predictions in the history of physics. The problem with 
it, as we have seen, is its fundamental vagueness: the 
notion of a measurement must be taken as an unexpli- 
cated primitive which ineliminably appears in the 
collapse postulate. We have been laying out the require- 
ments for a fundamental theory to get by labor what 
the traditional approach secures by theft: an exact 
dynamics which, by virtue of the interaction of systems, 
yields outcomes with at least approximately the Born 
probabilities. So far we have mentioned two approaches 
which succeed: that of Bohm and that of GRW/Perle. 
A third class of proposals exist which might also solve 
the first two measurement problems, yet which run afoul 
of another. 

I will denominate the approaches I have in mind 
modal interpretations. The leading example is the theory 
of van Fraassen (1991). It would be hard to give a 
precise characterization of the class, and perhaps 
not every modal interpretation falls prey to the third 
measurement problem, but the example will serve to 
illustrate how the third problem extends beyond the first 
two. 

The modal interpretations all postulate additional 
variables. The wave-function (which van Fraassen calls 
the "dynamic" state) does not collapse, and so systems 
must be ascribed an additional state (the "value" state) 
which indicates further properties of the system. Since 
the wave-function does not collapse, the outcomes of 
measurements must be reflected solely in the value 
state. Two successive runs of our spin experiment may 
both terminate with the wave-function in state S* 
while in one' run the electron is found to have spin up 

and in the other spin down. The difference is found in 
the value state. Hence we solve the problem of 
outcomes. 

The problem is statistics as solved as follows. First, 
a physical characterization of a measurement interac- 
tion is offered (e.g. ibid., p. 225), and then it is postu- 
lated that at the end of a measurement, the probabilities 
for various value states are given by Born's rule. No 
other detailed dynamics for the value states are offered. 
The difference between the modal interpretation and 
Bohm's theory lies in just this: Bohm's theory offers a 
universal dynamics for the additional variables, and then 
demonstrates that Born's rule will be (approximately) 
satisfied in measurements, while the modal interpreta- 
tions fix probabilities for the additional variables only 
after measurements, and fix them by direct appeal to 
Born's rule. 

Given these stipulations, and assuming that the char- 
acterization of measurement situations is tenable (i.e. 
that it picks out most of what we take to be measure- 
ments 5) this approach obviously clears the first two 
hurdles. What further problems could there be? 

In the traditional collapse interpretation, wave col- 
lapses serve to solve the problem of outcomes (by 
collapsing to states with definite outcomes) and the 
problem of statistics (by collapsing with the right prob- 
abilities). But the collapses play a third function: they 
change the state of a system and so influence its future 
development. The x-spin up electron which enters the 
z-spin apparatus could trigger either "UP" or "DOWN". 
But the electron which emerges does so in an eigenstate 
of z-spin. If the result of the first measurement is "UP", 
a second measurement will certainly yield another 
"UP", and similarly for "DOWN". The result of a 
measurement therefore has predictive power for the 
future: after the first measurement is completed we are 
in a position to know more about the outcome of the 
second than we could before the first measurement was 
made. Any theory which seeks to replicate the empir- 
ical content of the traditional theory should have this 
feature. Let us call this the problem of  effect, to indicate 
the effect of the first measurement on the particle (or 
at least on our knowledge of the particle). 

The GRW theory does not fall prey to this problem 
since the result of the first measurement is secured by 
wave-collapse. The dynamics of the wave-function then 
propagates the effect into the future: the wave-function 
of the.particle when it reaches the second apparatus 
bears the marks of the first measurement. Bohm's theory 
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also avoids the problem of effect, although by a com- 
pletely different route. Since the wave-function never 
collapses, the universal wave-function at the moment of 
the second measurement does not indicate the result of 
the first. 6 ~l'he result of the first measurement is reflected 
solely in the additional variables, the particle positions. 
But the dynamics of those variables are so constructed 
that the information is propagated into the future: the 
particle found to be z-spin up at the first detector will 
certainly so be found a t  the second (see Albert, 1992, 
p. 147 ff.). 

But van Fraassen's interpretation has no resources 
to solve the problem of effect. The result of the first 
measurement is not codified in the subsequent wave- 
function since the wave-function never collapses. What 
of the value state? 

It may be noted that IN [the value state of the incoming particle], 
on this picture, plays no predictive role. The character of the 
initial values of the observables could at best be a symptom or 
clue to what the initial [dynamic] state is. The expectation and 
indeed character of the future is determined, to the partial extent 
that it is determined at all, by the dynamic state W (of the whole 
system) alone . . . .  What then is the empirical significance of 
actual values of observables? They do not increase predictive 
power if added to a description of the concurrent dynamic state. 
In that sense they are 'empirically superfluous'. (van Fraassen, 
1991, p. 277) 

At the end of the first measurement, the dynamic 
state of the whole system is S*. On the basis of 
that  state, one could not predict whether the second 
measurement will result in "UP" or "DOWN". Further 
suppose that at the end of the first measurement, the 
value state of the first detector is "UP", i.e. the first 
measurement had an up outcome. How will this new 
information improve our predictive power? According 
to the passage just cited, not at all. Since the second 
measurement is not affected by the incoming values, it 
is not affected by the outcome of the first measurement. 
The problem of effect cannot be solved. 7 

Richard Healey's (1989) interpretation of quantum 
mechanics, although unlike van Fraassen's in many 
ways, suffers from the same defect. The only probabil- 
ities that appear in Healey's theory ultimately derive 
from the universal wave-function, which undergoes no 
collapses (ibid., p. 78). When a system interacts with 
the environment, its additional variables (which Healey 
calls the "'dynamical state") evolve stochastically in 
some unspecified way, but such that at the end of the 
interaction the probabilities for its final state are derived 

from the universal wave-function at  that t ime (ibid., 
p. 82). But since the universal wave-function never 
collapses, it bears no marks of the history of the 
additional variables, and hence of the history of mea- 
surement outcomes. The only way to get quantum 
mechanical probabilities into the picture is for such 
stochastic evolution to occur, but if it does, all influence 
of past measurement outcomes will be destroyed. 

A theory without wave collapse can only solve the 
problem of effect if the dynamics of the additional vari- 
ables force the additional variables to carry informa- 
tion about the results of measurements through time. 
This will be an intrinsically more difficult task for a 
theory in which those dynamics are stochastic. It is no 
accident that Bohm's theory, the most successful hidden 
variables theory, has a deterministic dynamics, and is 
thereby able to derive an effective counterpart to clas- 
sical collapse. 

Between the three of them, the problems of mea- 
surement have fairly laid waste to the countryside. 
Approaches based on superselection rules or environ- 
mental interactions (h la Hepp) fail at the first, as does 
the ensemble interpretation. The Many-Worlds theory 
cannot survive the second; the modal interpretation (as 
expounded by van Fraassen) and Healey's interpretation 
fall at the third. 

We are not left empty-handed. Bohm's interpretation 
and the GRW theory still stand, and there are others that 
can survive the test. But at least we can be clear about 
the questions that must be asked of an interpretation. Is 
it an additional variables interpretation whose dynamics 
guarantee solutions to the problem of statistics and the 
problem of effect? Is it a collapse theory that leads to 
appropriate outcome states with the right probabilities, 
and whose fundamental terms all have clear physical 
significance? If the answer in each case is "no", then 
commit it to the flames, for it can contain nothing but 
sophistry and illusion. 

Notes 

Much of this paper is really a group effort, derived from a 
discussion group held in Princeton in 1992. Bas van Fraassen and 
Ned Hall particularly drew our attention to the second of the three 
problems. Needless to say, none of the participants should be taken 
as endorsing this account. 
2 Everett defines in a mathematically impeccable way the relative 
state of one system with respect to an arbitrarily chosen state of a 
second system, given the joint wave-function of the pair. If the 
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electron and device are in state S*, the relative state of the device 
with respect to the (arbitrarily chosen) lz-up) state of the electron is 
I"UP") and the relative state with respect to Iz-down) is I"DOWN"), 
and the relative state relative to Ix-up) is a superposition of I"UP") 
and I"DOWN"). But since (in reality) the electron is in none of those 
states, it seems quite irrelevant what these relative states are. 
3 See Bell (1990) for the definitive criticism of traditional formu- 
lations. 
4 Bell puts this in his usual trenchant way: "The idea that elimina- 
tion of coherence, in some way or other, implies the replacement 
of 'and' by 'or ' ,  is a very common one among solvers of the 
'measurement problem'. It has always puzzled me." (1990, p. 25) 
5 This is non-trivial. See Albert (1992), p. 191ff. for a criticism of, 
the use of the polar decomposition theorem. It is also not clear that 
van Fraassen's approach to this works. 
6 This is true of the universal wave-function. The effective wave- 
function of the particle is influenced by the first result: see Dfirr et 
al. (1992). 
7 See Maudlin (1994) for further discussion. 
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